

Designing	for	Scalability	with
Erlang/OTP

Francesco	Cesarini	and	Steve	Vinoski

Designing	for	Scalability	with	Erlang/OTP
by	Francesco	Cesarini	and	Steve	Vinoski

Copyright	©	2016	Francesco	Cesarini	and	Stephen	Vinoski.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles
(http://safaribooksonline.com).	For	more	information,	contact	our
corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editor:	Andy	Oram Indexer:	Lucie	Haskins

Production	Editor:	Nicholas	Adams Interior	Designer:	David	Futato

Copyeditor:	Christina	Edwards Cover	Designer:	Karen	Montgomery

Proofreader:	Rachel	Head Illustrator:	Rebecca	Demarest

May	2016:	First	Edition

http://safaribooksonline.com

Revision	History	for	the	First	Edition
2016-05-11:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781449320737	for	release
details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Designing
for	Scalability	with	Erlang/OTP,	the	cover	image,	and	related	trade	dress	are
trademarks	of	O’Reilly	Media,	Inc.

While	the	publisher	and	the	authors	have	used	good	faith	efforts	to	ensure	that
the	information	and	instructions	contained	in	this	work	are	accurate,	the
publisher	and	the	authors	disclaim	all	responsibility	for	errors	or	omissions,
including	without	limitation	responsibility	for	damages	resulting	from	the	use	of
or	reliance	on	this	work.	Use	of	the	information	and	instructions	contained	in
this	work	is	at	your	own	risk.	If	any	code	samples	or	other	technology	this	work
contains	or	describes	is	subject	to	open	source	licenses	or	the	intellectual
property	rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-449-32073-7

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781449320737

Dedication

To	Alison,	Peter	and	baby	Bump	for	being	patient	and	supportive.
—	Francesco

	

To	Dooley	and	Ed,	for	teaching	me	how,	and	to	Cindy,	Ryan,	Erin,	Andrew,
and	Jake,	for	being	why.

—	Steve

	

To	Joe,	Mike,	Robert,	for	making	that	phone	call.
—	Francesco	&	Steve

Preface

This	book	is	what	you	get	if	you	put	together	an	Erlang	enthusiast	who	worked
on	the	R1	release	of	OTP	in	1996	and	a	Distributed	Systems	specialist	who
discovered	a	decade	later	how	Erlang/OTP	allows	you	to	focus	on	the	real
challenges	of	systems	development	while	avoiding	accidental	difficulties.

By	describing	how	OTP	behaviors	are	built	and	why	they	are	needed,	we	show
you	how	to	use	them	to	architect	standalone	nodes.	In	our	original	proposal	to
O’Reilly,	we	stopped	here.	But	when	writing	the	book,	we	decided	to	push	the
bar	further,	documenting	our	practices,	design	decisions,	and	common	pitfalls
when	architecting	a	distributed	system.	These	patterns,	through	a	set	of	design
choices	and	tradeoffs	we	make,	give	us	the	scalability,	reliability,	and	availability
for	which	Erlang/OTP	is	well	known.	Contrary	to	popular	belief,	this	does	not
happen	magically	or	out	of	the	box,	but	it	sure	is	much	easier	to	achieve	than
with	any	other	programming	language	out	there	that	does	not	emulate	Erlang’s
semantics	nor	run	on	the	BEAM	virtual	machine.

Francesco:	Why	This	Book?
Someone	once	told	me	that	writing	books	is	a	bit	like	having	children.	Once
you’ve	written	one	and	are	holding	your	paper	copy,	excitement	takes	over,	you
quickly	forget	the	hard	work	and	sacrifices,	and	you	want	to	start	writing	another
one.	I’ve	been	intending	to	write	the	sequel	to	Erlang	Programming	(O’Reilly)
since	first	holding	the	paper	copy	in	June	2009.	I	had	no	children	of	my	own
when	I	started	this	project,	but	it	ended	up	taking	so	long	that	my	second	one	is
now	on	its	way.	Whoever	said	that	good	things	are	not	worth	waiting	for?

As	with	the	first	book,	we	based	Designing	for	Scalability	with	Erlang/OTP	on
the	examples	in	the	Erlang	Solution’s	OTP	training	material	I	developed.	I	used
the	examples	and	started	explaining	them,	converting	my	lectures	and	approach
to	teaching	into	words.	When	done	with	a	chapter,	I	went	back	and	ensured	the
parts	students	struggled	to	understand	were	clear.	Questions	that	were	commonly
asked	by	the	best	students	ended	up	in	sidebars,	and	long	chapters	were	divided
into	smaller	ones.	It	all	went	well	until	we	reached	Chapter	11	and	12,	because
there	was	no	unified	way	of	doing	release	handling	or	software	upgrade.	Rather,
there	were	tools,	many	of	them.	Some	were	integrated	in	our	client’s	build	and
release	cycle,	others	worked	out	of	the	box.	Some	were	unusable.	The	chapters
are	what	we	hope	will	become	the	ultimate	guide	to	anyone	wanting	to
understand	how	release	handling	and	software	upgrade	of	systems	works	behind
the	scenes.	They	also	explain	what	you	need	to	know	should	you	have	to
troubleshoot	existing	tools	or	write	your	own.

But	the	real	trouble	started	with	Chapter	13.	Not	having	examples	or	training
material,	I	found	myself	formalizing	what	was	in	our	heads	and	documenting	the
approaches	we	take	when	architecting	Erlang/OTP	systems,	trying	to	align	it
with	the	theory	of	distributed	computing.	Chapter	13	turned	into	four	chapters
that	took	as	long	to	write	as	the	first	ten.	For	those	of	you	who	bought	the	early
access,	I	hope	the	wait	was	worth	it.	For	those	who	wisely	waited	for	us	to	finish
before	buying	your	copy,	enjoy!

Steve:	Why	This	Book?
I	first	discovered	Erlang/OTP	in	2006	while	researching	ways	to	develop
enterprise	integration	software	faster,	cheaper,	and	better.	No	matter	how	I
looked	at	it,	Erlang/OTP	was	clearly	superior	to	the	C++	and	Java	languages	my
colleagues	and	I	had	long	been	using	at	that	time.	In	2007	I	joined	a	new
company	and	began	using	Erlang/OTP	for	a	commercial	product,	and	it	turned
out	to	be	everything	my	earlier	investigation	promised	it	would	be.	I	taught	the
language	to	some	colleagues	and	before	long,	fewer	than	a	handful	of	us	were
developing	software	that	was	more	capable,	more	reliable,	easier	to	evolve,	and
ready	for	production	far	faster	than	similar	code	being	written	by	a	significantly
larger	team	of	C++	programmers.	To	this	day	I	remain	wholly	convinced	of	the
impressive	practical	effectiveness	of	Erlang/OTP.

Over	the	years	I’ve	published	quite	a	bit	of	technical	material,	and	my	intended
audience	for	all	of	it	has	always	been	other	practitioners	like	me.	This	book	is	no
exception.	In	the	first	12	chapters	we	provide	the	deep	level	of	detail	that
practicing	developers	need	in	order	to	fully	understand	the	fundamental	design
principles	of	OTP.	With	those	details	we	mix	a	number	of	useful	nuggets	of
practical	knowledge	—	modules,	functions,	and	approaches	that	will	save	you
significant	time	and	effort	in	your	day-to-day	design,	development,	and
debugging	efforts.	In	the	final	four	chapters	we	shift	gears,	focusing	more	on	the
big	picture	of	the	tradeoffs	involved	in	developing,	deploying,	and	operating
resilient,	scalable	distributed	applications.	Due	to	the	staggering	amount	of
knowledge,	approaches,	and	tradeoffs	involved	in	distributed	systems,	fault
tolerance,	and	DevOps,	writing	these	chapters	concisely	proved	difficult,	but	I
believe	we	hit	just	the	right	balance	of	providing	plenty	of	great	advice	without
getting	lost	in	the	weeds.

I	hope	this	book	helps	you	improve	the	quality	and	utility	of	the	software	and
systems	you	develop.

Who	Should	Read	This	Book
This	book’s	intended	audience	includes	Erlang	and	Elixir	developers	and
architects	who	have	made	their	way	through	at	least	one	of	the	introductory
books	and	are	ready	to	take	their	knowledge	to	the	next	level.	It	is	not	a	book	to
start	off	with,	but	rather	the	book	that	picks	up	where	all	others	leave	you.
Chapters	3–12	build	on	each	other	and	should	be	read	sequentially,	as	do
Chapters	13–16.	If	you	do	not	need	an	Erlang	primer,	feel	free	to	skip	Chapter	2.

How	To	Read	This	Book
We	wrote	this	book	to	be	compatible	with	Erlang	Release	18.2.	Most	of	the
features	we	describe	work	with	earlier	releases;	major	features	that	don’t	are
indicated	in	the	book.	Currently	unknown	incompatibilities	with	future	releases
will	be	detailed	on	our	errata	page	and	fixed	in	the	book’s	github	repository.	You
are	encouraged	to	download	the	examples	in	the	book	from	our	github	repository
and	run	them	yourself	to	better	understand	them.

https://github.com/francescoc/scalabilitywitherlangotp

Acknowledgments
Writing	this	book	has	been	a	long	journey.	While	undertaking	it	we’ve	had	a	lot
of	great	help	from	a	lot	of	wonderful	people.	Our	editor	Andy	Oram	has	been	an
endless	source	of	ideas	and	suggestions,	patiently	guiding	us,	giving	us	feedback
while	providing	ongoing	encouragement.	Thank	you	Andy,	we	couldn’t	have
done	it	without	you!	Simon	Thompson,	coauthor	of	Erlang	Programming	helped
with	the	book	proposal	and	laid	the	foundation	for	the	second	chapter.	Many
thanks	to	Robert	Virding	for	contributing	some	of	the	examples.	We’ve	had
many	readers,	reviewers	and	contributors	give	us	feedback	as	we	drip-fed	them
the	chapters.	At	the	risk	of	forgetting	someone,	they	are:	are	Richard	Ben	Aleya,
Roberto	Aloi,	Jesper	Louis	Andersen,	Bob	Balance,	Eva	Bihari,	Martin
Bodocky,	Natalia	Chechina,	Jean-François	Cloutier,	Richard	Croucher,	Viktória
Fördős,	Heinz	Gies,	Joacim	Halén,	Fred	Hebert,	Csaba	Hoch,	Torben	Hoffmann,
Bob	Ippolito,	Aman	Kohli,	Jan	Willem	Luiten,	Jay	Nelson,	Robby	Raschke,
Andrzej	Śliwa,	David	Smith,	Sam	Tavakoli,	Premanand	Thangamani,	Jan	Uhlig,
John	Warwick,	David	Welton,	Ulf	Wiger,	and	Alexander	Yong.	If	we	missed
you,	our	sincere	apologies!	Drop	us	an	email	and	you	will	be	promptly	added.	A
shout-out	goes	to	the	staff	at	Erlang	Solutions	for	reading	the	chapters	as	they
were	being	written	and	everyone	else	who	submitted	to	the	errata	as	part	of	the
early	release.	A	special	thank	you	goes	to	all	of	you	who	cheered	us	on	through
social	media	channels,	especially	other	authors.	You	know	who	you	are!	Last,
but	not	least,	thanks	to	the	production,	marketing,	and	conference	teams	at
O’Reilly	who	kept	on	reminding	us	that	it’s	not	over	until	you	are	holding	the
paper	copy.	We	really	appreciate	your	support!

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic
Indicates	new	terms,	applications,	URLs,	email	addresses,	filenames,
directory	names,	and	file	extensions.

Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	such	as	variable	or	function	names,	databases,	data	types,
environment	variables,	statements,	and	keywords.	Also	used	for	behaviors,
commands,	and	command-line	options.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

TIP
This	icon	signifies	a	tip	or	suggestion.

NOTE
This	icon	signifies	a	general	note.

CAUTION
This	icon	indicates	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download
at:	https://github.com/francescoc/scalabilitywitherlangotp

This	book	is	here	to	help	you	get	your	job	done.	In	general,	you	may	use	the
code	in	this	book	in	your	programs	and	documentation.	You	do	not	need	to
contact	us	for	permission	unless	you’re	reproducing	a	significant	portion	of	the
code.	For	example,	writing	a	program	that	uses	several	chunks	of	code	from	this
book	does	not	require	permission.	Selling	or	distributing	a	CD-ROM	of
examples	from	O’Reilly	books	does	require	permission.	Answering	a	question
by	citing	this	book	and	quoting	example	code	does	not	require	permission.
Incorporating	a	significant	amount	of	example	code	from	this	book	into	your
product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the
title,	author,	publisher,	and	ISBN.	For	example:	“Designing	for	Scalability	with
Erlang/OTP	by	Francesco	Cesarini	and	Steve	Vinoski	(O’Reilly).	Copyright
2016	Francesco	Cesarini	and	Stephen	Vinoski,	978-1-449-32073-7.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission
given	above,	feel	free	to	contact	us	at	permissions@oreilly.com.

https://github.com/francescoc/scalabilitywitherlangotp
mailto:permissions@oreilly.com

Safari®	Books	Online
NOTE

Safari	Books	Online	is	an	on-demand	digital	library	that	lets	you	easily	search
over	7,500	technology	and	creative	reference	books	and	videos	to	find	the
answers	you	need	quickly.

With	a	subscription,	you	can	read	any	page	and	watch	any	video	from	our	library
online.	Read	books	on	your	cell	phone	and	mobile	devices.	Access	new	titles
before	they	are	available	for	print,	and	get	exclusive	access	to	manuscripts	in
development	and	post	feedback	for	the	authors.	Copy	and	paste	code	samples,
organize	your	favorites,	download	chapters,	bookmark	key	sections,	create	notes,
print	out	pages,	and	benefit	from	tons	of	other	time-saving	features.

O’Reilly	Media	has	uploaded	this	book	to	the	Safari	Books	Online	service.	To
have	full	digital	access	to	this	book	and	others	on	similar	topics	from	O’Reilly
and	other	publishers,	sign	up	for	free	at	http://my.safaribooksonline.com.

http://my.safaribooksonline.com/?portal=oreilly

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at:

http://bit.ly/designing-for-scalability-with-erlangotp

To	comment	or	ask	technical	questions	about	this	book,	send	email	to:
bookquestions@oreilly.com

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our
website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/designing-for-scalability-with-erlangotp
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter	1.	Introduction

You	need	to	implement	a	fault-tolerant,	scalable,	soft	real-time	system	with
requirements	for	high	availability.	It	has	to	be	event-driven	and	react	to	external
stimuli,	load,	and	failure.	It	must	always	be	responsive.	You	have	heard,
rightfully	so,	of	many	success	stories	telling	you	Erlang	is	the	right	tool	for	the
job.	And	indeed	it	is	—	but	while	Erlang	is	a	powerful	programming	language,
it’s	not	enough	on	its	own	to	group	these	features	all	together	and	build	complex
reactive	systems.	To	get	the	job	done	correctly,	quickly,	and	efficiently,	you	also
need	middleware,	reusable	libraries,	tools,	design	principles,	and	a	programming
model	that	tells	you	how	to	architect	and	distribute	your	system.

Our	goal	with	this	book	is	to	explore	multiple	facets	of	availability	and
scalability,	as	well	as	related	topics	such	as	concurrency,	distribution,	and	fault
tolerance,	in	the	context	of	the	Erlang	programming	language	and	its	OTP
framework.	Erlang/OTP	was	created	when	the	team	at	the	Ericsson	Computer
Science	Laboratory	(CS	Lab)	set	out	to	investigate	how	they	could	efficiently
develop	the	next	generation	of	telecommunications	systems	in	an	industry	where
time	to	market	was	becoming	critical.	This	was	before	the	Web,	before	tablets
and	smartphones,	massively	multiuser	online	gaming,	messaging,	and	the
Internet	of	Things.

At	that	time,	the	only	systems	that	required	the	levels	of	scalability	and	fault
tolerance	we	take	for	granted	today	were	boring	phone	switches.	They	had	to
handle	massive	traffic	spikes	on	New	Year’s	Eve,	fulfill	regulatory	obligations
for	the	availability	of	calls	to	emergency	services,	and	avoid	the	painfully
expensive	contractual	penalties	forced	on	infrastructure	suppliers	whose
equipment	caused	outages.	In	layman’s	terms,	if	you	picked	up	the	phone	and
did	not	hear	the	dial	tone	on	the	other	end,	you	could	be	sure	of	two	things:	top-
level	management	would	get	into	serious	trouble	and	the	outage	would	make	the
front	page	news	in	the	papers.	No	matter	what,	those	switches	were	not	allowed
to	fail.	Even	when	components	and	infrastructure	around	them	were	failing,
requests	had	to	be	handled.	Today,	regulators	and	fines	have	been	replaced	with
impatient	users	with	no	loyalty	who	will	not	hesitate	to	switch	suppliers,	and
front-page	newspaper	articles	have	been	replaced	by	mass	hysteria	on	social

media.	But	the	core	problems	of	availability	and	scalability	remain.

As	a	result,	telecoms	switches	and	modern	systems	alike	have	to	react	to	failure
as	much	as	they	have	to	react	to	load	and	internal	events.	So	while	the	folks	at
the	Ericsson	Computer	Science	Lab	did	not	set	out	to	invent	a	programming
language,	the	solution	to	the	problem	they	were	out	to	solve	happened	to	be	one.
It’s	a	great	example	of	inventing	a	language	and	programming	model	that
facilitates	the	task	of	solving	a	specific,	well-defined	problem.

Defining	the	Problem
As	we	show	throughout	this	book,	Erlang/OTP	is	unique	among	programming
languages	and	frameworks	in	the	breadth,	depth,	and	consistency	of	the	features
it	provides	for	scalable,	fault-tolerant	systems	with	requirements	for	high
availability.	Designing,	implementing,	operating,	and	maintaining	these	systems
is	challenging.	Teams	that	succeed	in	building	and	running	them	do	so	by
continuously	iterating	through	those	four	phases,	constantly	using	feedback	from
production	metrics	and	monitoring	to	help	find	areas	they	can	improve	not	only
in	their	code,	but	also	in	their	development	and	operating	processes.	Successful
teams	also	learn	how	to	improve	scalability	through	other	means,	such	as	testing,
experimentation,	and	benchmarking,	and	they	keep	up	on	research	and
development	relevant	to	their	system	characteristics.	Nontechnical	issues	such	as
organizational	values	and	culture	can	also	play	a	significant	part	in	determining
whether	teams	can	meet	or	exceed	their	system	requirements.

We	used	the	terms	distributed,	fault-tolerant,	scalable,	soft	real-time,	and	highly
available	to	describe	the	systems	we	plan	on	building	with	OTP.	But	what	do
these	words	actually	mean?

Scalable	refers	to	how	well	a	computing	system	can	adapt	to	changes	in	load	or
available	resources.	Scalable	websites,	for	example,	are	able	to	smoothly	handle
traffic	spikes	without	dropping	any	client	requests,	even	when	hardware	fails.	A
scalable	chat	system	might	be	able	to	accommodate	thousands	of	new	users	per
day	without	disruption	of	the	service	it	provides	to	its	current	users.

Distributed	refers	to	how	systems	are	clustered	together	and	interact	with	each
other.	Clusters	can	be	architected	to	scale	horizontally	by	adding	commodity	(or
regular)	hardware,	or	on	a	single	machine,	where	additional	instances	of
standalone	nodes	are	deployed	to	better	utilize	the	available	cores.	Single
machines	can	also	be	virtualized,	so	that	instances	of	an	operating	system	run	on
other	operating	systems	or	share	the	bare-metal	resources.	Adding	more
processing	power	to	a	database	cluster	could	enable	it	to	scale	in	terms	of	the
amount	of	data	it	can	store	or	how	many	requests	per	second	it	can	handle.
Scaling	downward	is	often	equally	as	important;	for	example,	a	web	application
built	on	cloud	services	might	want	to	deploy	extra	capacity	at	peak	times	and

release	unused	computing	instances	as	soon	as	usage	drops.

Systems	that	are	fault	tolerant	continue	to	operate	predictably	when	things	in
their	environment	are	failing.	Fault	tolerance	has	to	be	designed	into	a	system
from	the	start;	don’t	even	consider	adding	it	as	an	afterthought.	What	if	there	is	a
bug	in	your	code	or	your	state	gets	corrupted?	Or	what	if	you	experience	a
network	outage	or	hardware	failure?	If	a	user	sending	a	message	causes	a
process	to	crash,	the	user	is	notified	of	whether	the	message	was	delivered	or	not
and	can	be	assured	that	the	notification	received	is	correct.

By	soft	real-time,	we	mean	the	predictability	of	response	and	latency,	handling	a
constant	throughput,	and	guaranteeing	a	response	within	an	acceptable	time
frame.	This	throughput	has	to	remain	constant	regardless	of	traffic	spikes	and
number	of	concurrent	requests.	No	matter	how	many	simultaneous	requests	are
going	through	the	system,	throughput	must	not	degrade	under	heavy	loads.
Response	time,	also	known	as	latency,	has	to	be	relative	to	the	number	of
simultaneous	requests,	avoiding	large	variances	in	requests	caused	by	“stop	the
world”	garbage	collectors	or	other	sequential	bottlenecks.	If	your	system
throughput	is	a	million	messages	per	second	and	a	million	simultaneous	requests
happen	to	be	processed,	it	should	take	1	second	to	process	and	deliver	a	request
to	its	recipient.	But	if	during	a	spike,	two	million	requests	are	sent,	there	should
be	no	degradation	in	the	throughput;	not	some,	but	all	of	the	requests	should	be
handled	within	2	seconds.

High	availability	minimizes	or	completely	eliminates	downtime	as	a	result	of
bugs,	outages,	upgrades,	or	other	operational	activities.	What	if	a	process
crashes?	What	if	the	power	supply	to	your	data	center	is	cut	off?	Do	you	have	a
redundant	supply	or	battery	backup	that	gives	you	enough	time	to	migrate	your
cluster	and	cleanly	shut	down	the	affected	servers?	Or	network	and	hardware
redundancy?	Have	you	dimensioned	your	system	ensuring	that,	even	after	losing
part	of	your	cluster,	the	remaining	hardware	has	enough	CPU	capacity	to	handle
peak	loads?	It	does	not	matter	if	you	lose	part	of	your	infrastructure,	if	your
cloud	provider	is	experiencing	an	embarrassing	outage,	or	if	you	are	doing
maintenance	work;	a	user	sending	a	chat	message	wants	to	be	reassured	that	it
reaches	its	intended	recipient.	The	system’s	users	expect	it	to	just	work.	This	is
in	contrast	to	fault	tolerance,	where	the	user	is	told	it	did	not	work,	but	the
system	itself	is	unaffected	and	continues	to	run.	Erlang’s	ability	to	do	software
upgrades	during	runtime	helps.	But	if	you	start	thinking	of	what	is	involved

when	dealing	with	database	schema	changes,	or	upgrades	to	non–backward-
compatible	protocols	in	potentially	distributed	environments	handling	requests
during	the	upgrade,	simplicity	fades	very	quickly.	When	doing	your	online
banking	on	weekends	or	at	night,	you	want	to	be	sure	you	will	not	be	met	with
an	embarrassing	“closed	for	routine	maintenance”	sign	posted	on	the	website.

Erlang	indeed	facilitates	solving	many	of	these	problems.	But	at	the	end	of	the
day,	it	is	still	just	a	programming	language.	For	the	complex	systems	you	are
going	to	implement,	you	need	ready-built	applications	and	libraries	you	can	use
out	of	the	box.	You	also	need	design	principles	and	patterns	that	inform	the
architecture	of	your	system	with	an	aim	to	create	distributed,	reliable	clusters.
You	need	guidelines	on	how	to	design	your	system,	together	with	tools	to
implement,	deploy,	monitor,	operate,	and	maintain	it.	In	this	book	we	cover
libraries	and	tools	that	allow	you	to	isolate	failure	on	a	node	level,	and	create	and
distribute	multiple	nodes	for	scalability	and	availability.

You	need	to	think	hard	about	your	requirements	and	properties,	making	certain
you	pick	the	right	libraries	and	design	patterns	that	ensure	the	final	system
behaves	the	way	you	want	it	to	and	does	what	you	originally	intended.	In	your
quest,	you	will	have	to	make	tradeoffs	that	are	mutually	dependent	—	tradeoffs
on	time,	resources,	and	features	and	tradeoffs	on	availability,	scalability,	and
reliability.	No	ready-made	library	can	help	you	if	you	do	not	know	what	you
want	to	get	out	of	your	system.	In	this	book,	we	guide	you	through	the	steps	in
understanding	these	requirements,	and	walk	you	through	the	steps	involved	in
making	design	choices	and	the	tradeoffs	needed	to	achieve	them.

OTP
OTP	is	a	domain-independent	set	of	frameworks,	principles,	and	patterns	that
guide	and	support	the	structure,	design,	implementation,	and	deployment	of
Erlang	systems.	Using	OTP	in	your	projects	will	help	you	avoid	accidental
complexity:	things	that	are	difficult	because	you	picked	inadequate	tools.	But
other	problems	remain	difficult,	irrespective	of	the	programming	tools	and
middleware	you	choose.

Ericsson	realized	this	very	early	on.	In	1993,	alongside	the	development	of	the
first	Erlang	product,	Ericsson	started	a	project	to	tackle	tools,	middleware,	and
design	principles.	The	developers	wanted	to	avoid	accidental	difficulties	that	had
already	been	solved,	and	instead	focus	their	energy	on	the	hard	problems.	The
result	was	BOS,	the	Basic	Operating	System.	In	1995,	BOS	merged	with	the
development	of	Erlang,	bringing	everything	under	one	roof	to	form	Erlang/OTP
as	we	know	it	today.	You	might	have	heard	the	dream	team	that	supports	Erlang
being	referred	to	as	the	OTP	team.	This	group	was	a	spinoff	of	this	merge,	when
Erlang	was	moved	out	of	a	research	organization	and	a	product	group	was
formed	to	further	develop	and	maintain	it.

Spreading	knowledge	of	OTP	can	promote	Erlang	adoption	in	more	“tried	and
true”	corporate	IT	environments.	Just	knowing	there	is	a	stable	and	mature
platform	available	for	application	development	helps	technologists	sell	Erlang	to
management,	a	crucial	step	in	making	its	industrial	adoption	more	widespread.
Startups,	on	the	other	hand,	just	get	on	with	it,	with	Erlang/OTP	allowing	them
to	achieve	speed	to	market	and	reduce	their	development	and	operations	costs.

OTP	is	said	to	consist	of	three	building	blocks	(Figure	1-1)	that,	when	used
together,	provide	a	solid	approach	to	designing	and	developing	systems	in	the
problem	domain	we’ve	just	described.	They	are	Erlang	itself,	tools	and	libraries,
and	a	set	of	design	principles.	We’ll	look	at	each	in	turn.

Figure	1-1.	OTP	components

WHAT’S	IN	A	NAME?

What	does	OTP	stand	for?	We’d	rather	not	tell	you.	If	you	search	for	the	“OTP	song”	you	might	be	led
to	believe	it	means	One	True	Pair.	Or	let	your	imagination	go	wild,	and	guess	Oh	This	is	Perfect,	On
The	Phone,	or	Open	Transaction	Platform.	Some	might	think	OTP	stands	for	Online	Transaction
Processing,	but	that’s	normally	abbreviated	as	OLTP.	More	politically	incorrect	suggestions	have	also
been	made	when	hipsters	were	enlisted	in	an	attempt	to	make	Erlang	more	cool	in	the	Erlang	the
Movie	sequel.	Alas,	none	of	these	are	correct.	OTP	is	short	for	Open	Telecom	Platform,	a	name	coined
by	Bjarne	Däcker,	former	head	of	the	Computer	Science	Lab	(the	birthplace	of	Erlang)	at	Ericsson.

Open	was	a	buzzword	at	Ericsson	in	the	mid-90s.	Everything	had	to	be	open:	open	systems,	open
hardware,	open	platforms.	Ericsson’s	marketing	department	went	as	far	as	to	print	posters	of	open
landscapes,	hanging	them	in	the	corridors	with	the	text	“Open	Systems.”	No	one	really	understood
what	was	meant	by	Open	Systems	(or	any	of	the	other	openness),	but	it	was	a	buzzword,	so	why
disappoint	and	not	jump	on	an	opportunity	and	(for	once)	be	buzzword	compliant?	As	a	result,	the
Open	in	OTP	became	a	no-brainer.

Today,	we	say	that	“open”	stands	for	the	openness	of	Erlang	toward	other	programming	languages,
APIs,	and	protocols	—	a	far	cry	from	the	openness	of	the	days	when	it	was	first	released.	OTP	R1	was
in	fact	everything	but	open.	Today,	think	of	openness	as	being	about	JInterface,	ei	and	erl_interface,
HTTP,	TCP/IP,	UDP/IP,	IDL,	ASN.1,	CORBA,	SNMP,	and	other	integration-oriented	support
provided	by	Erlang/OTP.

The	word	“telecom”	was	chosen	when	Erlang	was	used	only	internally	within	Ericsson	for	telecom
products,	long	before	open	source	would	change	the	world.	It	might	have	made	sense	in	the	mid-90s,
but	no	rebranding	ever	took	place,	so	today	we	say	that	the	telecom	in	the	name	refers	to	the
distributed,	fault-tolerant,	scalable,	soft	real-time	characteristics	with	requirements	of	high	availability.
These	are	characteristics	present	in	telecom	systems,	but	equally	valid	in	a	wide	range	of	other
verticals.	The	developers	of	OTP	were	solving	a	problem	for	telecom	systems	that	became	relevant	to
the	rest	of	the	software	industry	only	when	the	Web	was	invented	and	everything	had	to	be	web	scale.
Erlang	was	web	scale	even	before	the	Web	itself!

The	final	word	in	OTP,	“platform,”	while	boring,	is	the	only	word	truly	describing	the	OTP
middleware.	It	was	chosen	at	a	time	when	Ericsson’s	management	was	going	over	the	top	developing
a	variety	of	platforms.	Everything	software	related	had	to	be	developed	on	a	(preferably	open)
platform.

So	indeed,	Bjarne	picked	an	acronym	that	made	sense	and	would	keep	higher	management	happy,
ensuring	they	kept	on	funding	the	project.	They	might	not	have	understood	what	the	CS	Lab	was
working	on	and	the	trouble	it	was	about	to	cause,	but	at	least	they	were	pleased	and	allowed	it	all	to
happen.

Since	Erlang/OTP	was	released	as	open	source	in	1998,	many	discussions	on	rebranding	have	taken
place,	but	none	were	conclusive.	In	the	early	days,	developers	outside	of	the	telecoms	sector
mistakenly	bypassed	OTP,	because	—	using	their	own	words	—	they	were	“not	developing	telecom
applications.”	The	community	and	Ericsson	have	today	settled	for	using	OTP,	toning	down	the
telecom,	but	stressing	its	importance.	This	seems	to	be	a	fair	compromise.	In	this	book,	this	sidebar	is
the	only	place	where	telecom	will	be	mentioned	as	being	part	of	OTP.

Erlang
The	first	building	block	is	Erlang	itself,	which	includes	the	semantics	of	the
language	and	its	underlying	virtual	machine.	Key	language	features	such	as
lightweight	processes,	lack	of	shared	memory,	and	asynchronous	message
passing	will	bring	you	a	step	closer	to	your	goal.	Just	as	important	are	links	and
monitors	between	processes,	and	dedicated	channels	for	the	propagation	of	the
error	signals.	The	monitors	and	error	reporting	allow	you	to	build,	with	relative
ease,	complex	supervision	hierarchies	with	built-in	fault	recovery.	Because
message	passing	and	error	propagation	are	asynchronous,	the	semantics	and
logic	of	a	system	that	was	developed	to	run	in	a	single	Erlang	node	can	be	easily
distributed	without	having	to	change	any	of	the	code	base.

One	significant	difference	between	running	on	a	single	node	and	running	in	a
distributed	environment	is	the	latency	with	which	messages	and	errors	are
delivered.	But	in	soft	real-time	systems,	you	have	to	consider	latency	regardless
of	whether	the	system	is	distributed	or	under	heavy	load.	So	if	you	have	solved
one	facet	of	the	problem,	you	have	solved	both.

Erlang	lets	you	run	all	your	code	on	top	of	a	virtual	machine	highly	optimized
for	concurrency,	with	a	per-process	garbage	collector,	yielding	predictable	and
simple	system	behavior.	Other	programming	environments	do	not	have	this
luxury	because	they	need	an	extra	layer	to	emulate	Erlang’s	concurrency	model
and	error	semantics.	To	quote	Joe	Armstrong,	coinventor	of	Erlang,	“You	can
emulate	the	logic	of	Erlang,	but	if	it	is	not	running	on	the	Erlang	virtual
machine,	you	cannot	emulate	the	semantics.”	The	only	languages	that	today	get
away	with	this	are	built	on	the	BEAM	emulator,	the	prevailing	Erlang	virtual
machine.	There	is	a	whole	ecosystem	of	them,	with	the	Elixir	and	Lisp	Flavored
Erlang	languages	being	the	ones	gaining	most	traction	at	the	time	of	writing.
What	we	write	in	this	book	about	Erlang	also	applies	to	them.

Tools	and	Libraries
The	second	building	block,	which	came	about	before	open	source	became	the
widespread	norm	for	software	projects,	includes	applications	that	ship	as	part	of
the	standard	Erlang/OTP	distribution.	You	can	view	each	application	as	a	way	of
packaging	resources	in	OTP,	where	applications	may	have	dependencies	on
other	applications.	The	applications	include	tools,	libraries,	interfaces	toward
other	languages	and	programming	environments,	databases	and	database	drivers,
standard	components,	and	protocol	stacks.	The	OTP	documentation	does	a	fine
job	of	separating	them	into	the	following	subsets:

The	basic	applications	include	the	following:
The	Erlang	runtime	system	(erts)

The	kernel

The	standard	libraries	(stdlib)

The	system	architecture	support	libraries	(sasl)

They	provide	the	tools	and	basic	building	blocks	needed	to	architect,	create,
start,	and	upgrade	your	system.	We	cover	the	basic	applications	in	detail
throughout	this	book.	Together	with	the	compiler,	these	are	the	minimal
subset	of	applications	necessary	in	any	system	written	in	Erlang/OTP	to	do
anything	meaningful.

The	database	applications	include	mnesia,	Erlang’s	distributed	database,
and	odbc,	an	interface	used	to	communicate	with	relational	SQL	databases.
Mnesia	is	a	popular	choice	because	it	is	fast,	runs	and	stores	its	data	in	the
same	memory	space	as	your	applications,	and	is	easy	to	use,	as	it	is
accessed	through	an	Erlang	API.

The	operations	and	maintenance	applications	include	os_mon,	an
application	that	allows	you	to	monitor	the	underlying	operating	system;
snmp,	a	Simple	Network	Management	Protocol	agent	and	client;	and
otp_mibs,	management	information	bases	that	allow	you	to	manage	Erlang
systems	using	SNMP.

The	collection	of	interface	and	communication	applications	provide
protocol	stacks	and	interfaces	to	work	with	other	programming	languages,
including	an	ASN.1	(asn1)	compiler	and	runtime	support,	direct	hooks	into
C	(ei	and	erl_interface)	and	Java	(jinterface)	programs,	along	with	an	XML
parser	(xmerl).	There	are	security	applications	for	SSL/TLS,	SSH,
cryptography,	and	public	key	infrastructure.	Graphics	packages	include	a
port	of	wxWidgets	(wx),	together	with	an	easy-to-use	interface.	The	eldap
application	provides	a	client	interface	toward	the	Lightweight	Directory
Access	Protocol	(LDAP).	And	for	telecom	aficionados,	there	is	a	Diameter
stack	(as	defined	in	RFC	6733),	used	for	policy	control	and	authorization,
alongside	authentication	and	accounting.	Dig	even	deeper	and	you	will	find
the	Megaco	stack.	Megaco/H.248	is	a	protocol	for	controlling	elements	of	a
physically	decomposed	multimedia	gateway,	separating	the	media
conversion	from	the	call	control.	If	you	have	ever	used	a	smartphone,	you
have	very	likely	indirectly	taken	the	Erlang	diameter	and	megaco
applications	for	a	spin.

The	collection	of	tools	applications	facilitate	the	development,	deployment,
and	management	of	your	Erlang	system.	We	cover	only	the	most	relevant
ones	in	this	book,	but	outline	them	all	here	so	you	are	aware	of	their
existence:
The	debugger	is	a	graphical	tool	that	allows	you	to	step	through	your	code
while	influencing	the	state	of	the	functions.

The	observer	integrates	the	application	monitor	and	the	process	manager,
alongside	basic	tools	to	monitor	your	Erlang	systems	as	they	are	being
developed	and	in	production.

The	dialyzer	is	a	static	analysis	tool	that	finds	type	discrepancies,	dead
code,	and	other	issues.

The	event	tracer	(et)	uses	ports	to	collect	trace	events	in	distributed
environments,	and	percept	allows	you	to	locate	bottlenecks	in	your	system
by	tracing	and	visualizing	concurrency-related	activities.

Erlang	Syntax	Tools	(syntax_tools)	contains	modules	for	handling	Erlang
syntax	trees	in	a	way	that	is	compatible	with	other	language-related	tools.
It	also	includes	a	module	merger	allowing	you	to	merge	Erlang	modules,
together	with	a	renamer,	solving	the	issue	of	clashes	in	a	nonhierarchical

module	space.

The	parsetools	application	contains	the	parse	generator	(yecc)	and	a
lexical	analyzer	generator	for	Erlang	(leex).

Reltool	is	a	release	management	tool	that	provides	a	graphical	front	end
together	with	back-end	hooks	that	can	be	used	by	more	generic	build
systems.

Runtime_tools	is	a	collection	of	utilities	including	DTrace	and	SystemTap
probes,	and	dbg,	a	user-friendly	wrapper	around	the	trace	built-in
functions	(BIFs).

Finally,	the	tools	application	is	a	collection	of	profilers,	code	coverage
tools,	and	module	cross-reference	analysis	tools,	as	well	as	the	Erlang
mode	for	the	emacs	editor.

The	test	applications	provide	tools	for	unit	testing	(eunit),	system	testing,
and	black-box	testing.	The	Test	Server	(packaged	in	the	test_server
application)	is	a	framework	that	can	be	used	as	the	engine	of	a	higher-level
test	tool	application.	Chances	are	that	you	will	not	be	using	it,	because	OTP
provides	one	of	these	higher-level	test	tools	in	the	form	of	common_test,	an
application	suited	for	black-box	testing.	Common_test	supports	automated
execution	of	Erlang-based	test	cases	toward	most	target	systems
irrespective	of	programming	language.

We	need	to	mention	the	Object	Request	Brokers	(ORBs)	and	interface
definition	language	(IDL)	applications	for	nostalgic	reasons,	reminding	one
of	the	coauthors	of	his	past	sins.	They	include	a	broker	called	orber,	an	IDL
compiler	called	ic,	and	a	few	other	CORBA	Common	Object	Services	no
longer	used	by	anyone.

We	cover	and	refer	to	some	of	these	applications	and	tools	in	this	book.	Some	of
the	tools	we	do	not	cover	are	described	in	Erlang	Programming	(O’Reilly),	and
those	that	aren’t	are	covered	by	the	set	of	reference	manual	pages	and	the	user’s
guide	that	comes	as	part	of	the	standard	Erlang/OTP	documentation.

These	applications	are	not	the	full	extent	of	tool	support	for	Erlang;	they	are
enhanced	by	thousands	of	other	applications	implemented	and	supported	by	the
community	and	available	as	open	source.	We	cover	some	of	the	prevailing

applications	in	the	latter	half	of	the	book,	where	we	focus	on	distributed
architectures,	availability,	scalability,	and	monitoring.	They	include	the	Riak
Core	and	Scalable	Distributed	(SD)	Erlang	frameworks;	load	regulation
applications	such	as	jobs	and	safetyvalve;	and	monitoring	and	logging
applications	such	as	elarm,	folsom,	exometer,	and	lager.	Once	you’ve	read	this
book	and	before	starting	your	project,	review	the	standard	and	open	source
Erlang/OTP	reference	manuals	and	user’s	guides,	because	you	never	know	when
they	will	come	in	handy.

https://github.com/basho/riak_core
http://www.dcs.gla.ac.uk/research/sd-erlang/

System	Design	Principles
The	third	building	block	of	OTP	consists	of	a	set	of	abstract	principles,	design
rules,	and	generic	behaviors.	The	abstract	principles	describe	the	software
architecture	of	an	Erlang	system,	using	processes	in	the	form	of	generic
behaviors	as	basic	ingredients.	Design	rules	keep	the	tools	you	use	compatible
with	the	system	you	are	developing.	Using	this	approach	provides	a	standard
way	of	solving	problems,	making	code	easier	to	understand	and	maintain,	as
well	as	providing	a	common	language	and	vocabulary	among	the	teams.

OTP	generic	behaviors	can	be	seen	as	formalizations	of	concurrent	design
patterns.	Behaviors	are	packaged	into	library	modules	containing	generic	code
that	solves	a	common	problem.	They	have	built-in	support	for	debugging,
software	upgrade,	generic	error	handling,	and	built-in	functionality	for	upgrades.

Behaviors	can	be	worker	processes,	which	do	all	of	the	hard	work,	and
supervisor	processes,	whose	only	tasks	are	to	start,	stop,	and	monitor	workers	or
other	supervisors.	Because	supervisors	can	monitor	other	supervisors,	the
functionality	within	an	application	can	be	chained	so	that	it	can	be	more	easily
developed	in	a	modular	fashion.	The	processes	monitored	by	a	supervisor	are
called	its	children.

OTP	provides	predefined	libraries	for	workers	and	supervisors,	allowing	you	to
focus	on	the	business	logic	of	the	system.	We	structure	processes	into
hierarchical	supervision	trees,	yielding	fault-tolerant	structures	that	isolate
failure	and	facilitate	recovery.	OTP	allows	you	to	package	a	supervision	tree	into
an	application,	as	seen	in	Figure	1-2,	where	circles	with	double	rings	are
supervisors	and	the	other	processes	are	workers.

Figure	1-2.	OTP	application

Generic	behaviors	that	come	as	part	of	the	OTP	middleware	include:
Generic	servers,	providing	a	client-server	design	pattern

Generic	finite	state	machines,	allowing	you	to	implement	FSMs

Event	handlers	and	managers,	allowing	you	to	generically	deal	with	event
streams

Supervisors,	monitoring	other	worker	and	supervision	processes

Applications,	allowing	you	to	package	resources,	including	supervision
trees

We	cover	them	all	in	detail	in	this	book,	as	well	as	explaining	how	to	implement
your	own.	We	use	behaviors	to	create	supervision	trees,	which	are	packaged	into
applications.	We	then	group	applications	together	to	form	a	release.	A	release
describes	what	runs	in	a	node.

Erlang	Nodes
An	Erlang	node	consists	of	several	loosely	coupled	applications,	which	might	be
comprised	of	some	of	the	applications	described	in	“Tools	and	Libraries”
combined	with	other	third-party	applications	and	applications	you	write
specifically	for	the	system	you	are	trying	to	implement.	These	applications	could
be	independent	of	each	other	or	rely	on	the	services	and	APIs	of	other
applications.	Figure	1-3	illustrates	a	typical	release	of	an	Erlang	node	with	the
virtual	machine	(VM)	dependent	on	the	hardware	and	operating	system,	and
Erlang	applications	running	on	top	of	the	VM	interfacing	with	non-Erlang
components	that	are	OS	and	hardware	dependent.

Figure	1-3.	An	Erlang	node

Group	together	a	cluster	of	Erlang	nodes	—	potentially	pairing	them	up	with
nodes	written	in	other	programming	languages	—	and	you	have	a	distributed
system.	You	can	now	scale	your	system	by	adding	nodes	until	you	hit	certain
physical	limits.	These	may	be	dictated	by	how	you	shared	your	data,	by
hardware	or	network	constraints,	or	by	external	dependencies	that	act	as
bottlenecks.

Distribution,	Infrastructure,	and	Multicore
Fault	tolerance	—	one	of	Erlang’s	fundamental	requirements	from	its	telecom
roots	—	has	distribution	as	its	mainspring.	Without	distribution,	the	reliability
and	availability	of	an	application	running	on	just	a	single	host	would	depend
heavily	on	the	reliability	of	the	hardware	and	software	comprising	that	host.	Any
problems	with	the	host’s	CPU,	memory,	persistent	storage,	peripherals,	power
supply,	or	backplane	could	easily	take	down	the	entire	machine	and	the
application	along	with	it.	Similarly,	problems	in	the	host’s	operating	system	or
support	libraries	could	bring	down	the	application	or	otherwise	render	it
unavailable.	Achieving	fault	tolerance	requires	multiple	computers	with	some
degree	of	coordination	between	them,	and	distribution	provides	the	avenue	for
that	coordination.

For	decades,	the	computing	industry	has	explored	how	programming	languages
can	support	distribution.	Designing	general-purpose	languages	is	difficult
enough;	designing	them	to	support	distribution	significantly	adds	to	that
difficulty.	Because	of	this,	a	common	approach	is	to	add	distribution	support	to
nondistributed	programming	languages	through	optional	libraries.	This	approach
has	the	benefit	of	allowing	distribution	support	to	evolve	separately	from	the
language	itself,	but	it	often	suffers	from	an	impedance	mismatch	with	the
language,	feeling	to	developers	as	if	it	were	“bolted	on.”	Since	most	languages
use	function	calls	as	the	primary	means	of	transferring	control	and	data	from	one
part	of	an	application	to	another,	add-on	distribution	libraries	often	model
exchanges	between	distributed	parts	of	an	application	as	function	calls	as	well.
While	convenient,	this	approach	is	fundamentally	broken	because	the	semantics
of	local	and	remote	function	calls,	especially	their	failure	modes,	are	markedly
different.

In	Erlang,	processes	communicate	via	asynchronous	message	passing.	This
works	even	if	a	process	is	on	a	remote	node	because	the	Erlang	virtual	machine
supports	passing	messages	from	one	node	to	another.	When	one	node	joins
another,	it	also	becomes	aware	of	any	nodes	already	known	to	the	other.	In	this
manner,	all	the	nodes	in	a	cluster	form	a	mesh,	enabling	any	process	to	send	a
message	to	another	process	on	any	other	node	in	the	cluster.	Each	node	in	the
cluster	also	automatically	tracks	liveness	of	other	nodes	in	order	to	become

aware	of	nonresponsive	nodes.	The	advantages	of	asynchronous	message
passing	in	systems	running	on	a	node	is	extended	to	systems	running	in	clusters,
as	replies	can	be	received	alongside	errors	and	timeouts.

Erlang’s	message	passing	and	clustering	primitives	can	serve	as	the	basis	for	a
wide	variety	of	distributed	system	architectures.	For	example,	service-oriented
architecture	(SOA),	especially	in	its	more	modern	variant,	microservices,	is	a
natural	fit	for	Erlang	given	the	ease	of	developing	and	deploying	server-like
processes.	Clients	treat	such	processes	as	services,	communicating	with	them	by
exchanging	messages.	As	another	example,	consider	that	Erlang	clusters	do	not
require	master	or	leader	nodes,	which	means	that	using	them	for	peer-to-peer
systems	of	replicas	works	well.	Clients	can	send	service	request	messages	to	any
peer	node	in	the	cluster,	and	the	peer	can	either	handle	the	request	itself	or	route
it	to	another	peer.	The	concept	of	standalone	clusters,	known	as	groups	that
communicate	with	each	other	through	gateway	nodes	that	can	go	up	and	down	or
lose	connectivity	exists	in	a	framework	called	SD	Erlang.	Another	popular
distributed	framework,	inspired	by	the	Amazon	Dynamo	paper	published	in
2007,	is	Riak	Core,	offering	consistent	hashing	to	schedule	jobs,	recovery	from
partitioned	networks	and	failed	nodes	through	consistent	hashing,	eventual
consistency,	and	virtual	nodes	dividing	state	and	the	data	into	small,	manageable
entities	that	can	be	replicated	and	moved	across	nodes.

With	distributed	systems,	you	can	also	achieve	scalability.	In	fact,	availability,
consistency,	and	scalability	go	hand	in	hand,	each	affecting	the	others.	It	starts
with	the	concurrency	model	and	the	concept	of	message	passing	within	the	node,
which	we	extend	across	the	network	to	use	for	clustering	nodes.	Erlang’s	virtual
machine	takes	advantage	of	today’s	multicore	systems	by	allowing	processes	to
execute	with	true	concurrency,	running	simultaneously	on	different	cores.
Because	of	the	symmetric	multiprocessing	(SMP)	capabilities	of	the	Erlang
virtual	machine,	Erlang	is	already	prepared	to	help	applications	scale	vertically
as	the	number	of	cores	per	CPU	continues	to	increase.	And	because	adding	new
nodes	to	a	cluster	is	easy	—	all	it	takes	is	to	have	that	node	contact	just	one	other
node	to	join	the	mesh	—	horizontal	scaling	is	also	well	within	easy	reach.	This,
in	turn,	allows	you	to	focus	on	the	real	challenge	when	dealing	with	distributed
systems:	namely,	distributing	your	data	and	state	across	hosts	and	networks	that
are	unreliable.

http://bit.ly/riak-dynamo

Summing	Up
To	make	design,	implementation,	operation,	and	maintainability	easier	and	more
robust,	your	programming	language	and	middleware	have	to	be	compact,	their
behavior	in	runtime	predictable,	and	the	resulting	code	base	maintainable.	We
keep	talking	about	fault-tolerant,	scalable,	soft	real-time	systems	with
requirements	for	high	availability.	The	problems	you	have	to	solve	do	not	have
to	be	complicated	in	order	to	benefit	from	the	advantages	Erlang/OTP	brings	to
the	table.	Advantages	will	be	evident	if	you	are	developing	solutions	targeted	for
embedded	hardware	platforms	such	as	the	Parallela	board,	the	BeagleBoard,	or
the	Raspberry	Pi.	You	will	find	Erlang/OTP	ideal	for	the	orchestration	code	in
embedded	devices,	for	server-side	development	where	concurrency	comes	in
naturally,	and	all	the	way	up	to	scalable	and	distributed	multicore	architectures
and	supercomputers.	It	eases	the	development	of	the	harder	software	problems
while	making	simpler	programs	even	easier	to	implement.

What	You’ll	Learn	in	This	Book
This	book	is	divided	into	two	sections.	The	first	part,	from	Chapter	3	to
Chapter	10,	deals	with	the	design	and	implementation	of	a	single	node.	You
should	read	these	chapters	sequentially,	because	their	examples	and	explanations
build	on	prior	ones.	The	second	half	of	the	book,	from	Chapter	11	to	Chapter	16,
focuses	on	tools,	techniques,	and	architectures	used	for	deployment,	monitoring,
and	operations,	while	explaining	the	theoretical	approaches	needed	to	tackle
issues	such	as	reliability,	scalability,	and	high	availability.	The	second	half	builds
in	part	on	the	examples	covered	in	the	first	half	of	the	book,	but	can	be	read
independently	of	it.

We	begin	with	an	overview	of	Erlang	in	Chapter	2,	intended	not	to	teach	you	the
language	but	rather	as	a	refresher	course.	If	you	do	not	yet	know	Erlang,	we
recommend	that	you	first	consult	one	or	more	of	the	excellent	books	designed	to
help	you	learn	the	language,	such	as	Simon	St.	Laurent’s	Introducing	Erlang,
Erlang	Programming	by	Francesco	Cesarini	and	Simon	Thompson,	or	any	of	the
other	books	we	mention	in	Chapter	2.	Our	overview	touches	on	the	major
elements	of	the	language,	such	as	lists,	functions,	processes	and	messages,	and
the	Erlang	shell,	as	well	as	those	features	that	make	Erlang	unique	among
languages,	such	as	process	linking	and	monitoring,	live	upgrades,	and
distribution.

Following	the	Erlang	overview,	Chapter	3	dives	into	process	structures.	Erlang
processes	can	handle	a	wide	variety	of	tasks,	yet	regardless	of	the	particular
tasks	or	their	problem	domains,	similar	code	structures	and	process	lifecycles
surface,	akin	to	the	common	design	patterns	that	have	been	observed	and
documented	for	popular	object-oriented	languages	like	Java	and	C++.	OTP
captures	and	formalizes	these	common	process-oriented	structures	and	lifecycles
into	behaviors,	which	serve	as	the	base	elements	of	OTP’s	reusable	frameworks.

In	Chapter	4	we	explore	in	detail	our	first	worker	process.	It	is	the	most	popular
and	frequently	used	OTP	behavior,	the	gen_server.	As	its	name	implies,	it
supports	generic	client-server	structures,	with	the	server	governing	particular
computing	resources	—	perhaps	just	a	simple	Erlang	Term	Storage	(ETS)
instance,	or	a	pool	of	network	connections	to	a	remote	non-Erlang	server	—	and

granting	clients	access	to	them.	Clients	communicate	with	generic	servers
synchronously	in	a	call-response	fashion,	asynchronously	via	a	one-way
message	called	a	cast,	or	via	regular	Erlang	messaging	primitives.	Full
consideration	of	these	modes	of	communication	requires	us	to	scrutinize	various
aspects	of	the	processes	involved,	such	as	what	happens	if	the	client	or	server
dies	in	the	middle	of	a	message	exchange,	how	timeouts	apply,	and	what	might
happen	if	a	server	receives	a	message	it	does	not	understand.	By	addressing
these	and	other	common	issues,	the	gen_server	handles	a	lot	of	details
independently	of	the	problem	domain,	allowing	developers	to	focus	more	of
their	time	and	energy	on	their	applications.	The	gen_server	behavior	is	so
useful	that	it	not	only	appears	in	most	nontrivial	Erlang	applications	but	is	used
throughout	OTP	itself	as	well.

Prior	to	examining	more	OTP	behaviors,	we	follow	our	discussion	of
gen_server	with	a	look	at	some	of	the	control	and	observation	points	the	OTP
behaviors	provide	(Chapter	5).	These	features	reflect	another	aspect	of
Erlang/OTP	that	sets	it	apart	from	other	languages	and	frameworks:	built-in
observability.	If	you	want	to	know	what	your	gen_server	process	is	doing,	you
can	simply	enable	debug	tracing	for	that	process,	either	at	compile	time	or	at
runtime	from	an	Erlang	shell.	Enabling	traces	causes	it	to	emit	information	that
indicates	what	messages	it	is	receiving	and	what	actions	it	is	taking	to	handle
them.	Erlang/OTP	also	provides	functions	for	peering	into	running	processes	to
see	their	backtraces,	process	dictionaries,	parent	processes,	linked	processes,	and
other	details.	There	are	also	OTP	functions	for	examining	status	and	internal
state	specifically	for	behaviors	and	other	system	processes.	Because	of	these
debug-oriented	features,	Erlang	programmers	often	forego	the	use	of	traditional
debuggers	and	instead	rely	on	tracing	to	help	them	diagnose	errant	programs,	as
it	is	typically	both	faster	to	set	up	and	more	informative.

We	then	examine	another	OTP	behavior,	gen_fsm	(Chapter	6),	which	supports	a
generic	FSM	pattern.	As	you	may	already	know,	an	FSM	is	a	system	that	has	a
finite	number	of	states,	and	incoming	messages	can	advance	the	system	from
one	state	to	another,	with	side	effects	potentially	occurring	as	part	of	the
transitions.	For	example,	you	might	consider	your	television	set-top	box	as	being
an	FSM	where	the	current	state	represents	the	selected	channel	and	whether	any
on-screen	display	is	shown.	Pressing	buttons	on	your	remote	causes	the	set-top

box	to	change	state,	perhaps	selecting	a	different	channel,	or	changing	its	on-
screen	display	to	show	the	channel	guide	or	list	any	on-demand	shows	that	might
be	available	for	purchase.	FSMs	are	applicable	to	a	wide	variety	of	problem
domains	because	they	allow	developers	to	more	easily	reason	about	and
implement	the	potential	states	and	state	transitions	of	their	applications.
Knowing	when	and	how	to	use	gen_fsm	can	save	you	from	trying	to	implement
your	own	ad	hoc	state	machines,	which	often	quickly	devolve	into	spaghetti
code	that	is	hard	to	maintain	and	extend.

Logging	and	monitoring	are	critical	parts	of	any	scalability	success	story,	since
they	allow	you	to	glean	important	information	about	your	running	systems	that
can	help	pinpoint	bottlenecks	and	problematic	areas	that	require	further
investigation.	The	Erlang/OTP	gen_event	behavior	(Chapter	7)	provides	support
for	subsystems	that	emit	and	manage	event	streams	reflecting	changes	in	system
state	that	can	impact	operational	characteristics,	such	as	sustained	increases	in
CPU	load,	queues	that	appear	to	grow	without	bound,	or	the	inability	of	one
node	in	a	distributed	cluster	to	reach	another.	These	streams	do	not	have	to	stop
with	your	system	events.	They	could	handle	your	application-specific	events
originating	from	user	interaction,	sensor	networks,	or	third-party	applications.	In
addition	to	exploring	the	gen_event	behavior,	we	also	take	a	look	at	the	OTP
system	architecture	support	libraries	(SASL)	error-logging	event	handlers,	which
provide	flexibility	for	managing	supervisor	reports,	crash	reports,	and	progress
reports.

Event	handlers	and	error	handlers	are	staples	of	numerous	programming
languages,	and	they	are	incredibly	useful	in	Erlang/OTP	as	well,	but	do	not	let
their	presence	here	fool	you:	dealing	with	errors	in	Erlang/OTP	is	strikingly
different	from	the	approaches	to	which	most	programmers	are	accustomed.

After	gen_event,	the	next	behavior	we	study	is	the	supervisor	(Chapter	8),
which	manages	worker	processes.	In	Erlang/OTP,	supervisor	processes	start
workers	and	then	keep	an	eye	on	them	while	they	carry	out	application	tasks.
Should	one	or	more	workers	die	unexpectedly,	the	supervisor	can	deal	with	the
problem	in	one	of	several	ways	that	we	explain	later	in	the	book.	This	form	of
handling	errors,	known	as	“let	it	crash,”	differs	significantly	from	the	defensive
programming	tactics	that	most	programmers	employ.	“Let	it	crash”	and
supervision,	together	a	critical	cornerstone	of	Erlang/OTP,	are	highly	effective	in

practice.

We	then	look	into	the	final	fundamental	OTP	behavior,	the	application
(Chapter	9),	which	serves	as	the	primary	point	of	integration	between	the
Erlang/OTP	runtime	and	your	code.	OTP	applications	have	configuration	files
that	specify	their	names,	versions,	modules,	the	applications	upon	which	they
depend,	and	other	details.	When	started	by	the	Erlang/OTP	runtime,	your
application	instance	in	turn	starts	a	top-level	supervisor	that	brings	up	the	rest	of
the	application.	Structuring	modules	of	code	into	applications	also	lets	you
perform	code	upgrades	on	live	systems.	A	release	of	an	Erlang/OTP	package
typically	comprises	a	number	of	applications,	some	of	which	are	part	of	the
Erlang/OTP	open	source	distribution	and	others	that	you	provide.

Having	examined	the	standard	behaviors,	we	next	turn	our	attention	to
explaining	how	to	write	your	own	behaviors	and	special	processes	(Chapter	10).
Special	processes	are	processes	that	follow	certain	design	rules,	allowing	them	to
be	added	to	OTP	supervision	trees.	Knowing	these	design	rules	can	not	only	help
you	understand	implementation	details	of	the	standard	behaviors,	but	also	inform
you	of	their	tradeoffs	and	allow	you	to	better	decide	when	to	use	them	and	when
to	write	your	own	instead.

Chapter	11	describes	how	OTP	applications	in	a	single	node	are	coupled	together
and	started	as	a	whole.	You	will	have	to	create	your	own	release	files,	referred	to
in	the	Erlang	world	as	rel	files.	The	rel	file	lists	the	versions	of	the	applications
and	the	runtime	system	that	are	used	by	the	systools	module	to	bundle	up	the
software	into	a	standalone	release	directory	that	includes	the	virtual	machine.
This	release	directory,	once	configured	and	packaged,	is	ready	to	be	deployed
and	run	on	target	hosts.	We	cover	the	community-contributed	tools	rebar3	and
relx,	the	best	way	to	build	your	code	and	your	releases.

The	Erlang	virtual	machine	has	configurable	system	limits	and	settings	you	need
to	be	aware	of	when	deploying	your	systems.	There	are	many,	ranging	from
limits	regulating	the	maximum	number	of	ETS	tables	or	processes	to	included
code	search	paths	and	modes	used	for	loading	modules.	Modules	in	Erlang	can
be	loaded	at	startup,	or	when	they	are	first	called.	In	systems	with	strict	revision
control,	you	will	have	to	run	them	in	embedded	mode,	loading	modules	at
startup	and	crashing	if	modules	do	not	exist,	or	in	interactive	mode,	where	if	a
module	is	not	available,	an	attempt	to	load	it	is	made	before	terminating	the

process.	An	external	monitoring	heart	process	monitors	the	Erlang	virtual
machine	by	sending	heartbeats	and	invoking	a	script	that	allows	you	to	react
when	these	heartbeats	are	not	acknowledged.	You	implement	the	script	yourself,
allowing	you	to	decide	whether	restarting	the	node	is	enough	or	whether	—
based	on	a	history	of	previous	restarts	—	you	want	to	escalate	the	crash	and
terminate	the	virtual	instance	or	reboot	the	whole	machine.

Although	Erlang’s	dynamic	typing	allows	you	to	upgrade	your	module	at
runtime	while	retaining	the	process	state,	it	does	not	coordinate	dependencies
among	modules,	changes	in	process	state,	or	non–backward-compatible
protocols.	OTP	has	the	tools	to	support	system	upgrades	on	a	system	level,
including	not	only	the	applications,	but	also	the	runtime	system.	The	principles
and	supporting	libraries	are	presented	in	Chapter	12,	from	defining	your	own
application-upgrade	scripts	to	writing	scripts	that	support	release	upgrades.
Approaches	and	strategies	for	handling	changes	to	your	database	schema	are
provided,	as	are	guidelines	for	upgrades	in	distributed	environments	and	non–
backward-compatible	protocols.	For	major	upgrades	in	distributed	environments
where	bugs	are	fixed,	protocols	improved,	and	database	schema	changed,
runtime	upgrades	are	not	for	the	faint	of	heart.	But	they	are	incredibly	powerful,
allowing	automated	upgrades	and	nonstop	operations.	Finding	your	online
banking	is	unavailable	because	of	maintenance	should	now	be	a	thing	of	the
past.	If	it	isn’t,	send	a	copy	of	this	book	to	your	bank’s	IT	department.

Operating	and	maintaining	any	system	requires	visibility	into	what	is	going	on.
Scaling	clusters	require	strategies	for	how	you	share	your	data	and	state.	And
fault	tolerance	requires	an	approach	to	how	you	replicate	and	persist	it.	In	doing
so,	you	have	to	deal	with	unreliable	networks,	failure,	and	recovery	strategies.
While	each	of	these	subjects	merits	a	book	of	its	own,	the	final	chapters	of	this
book	will	provide	you	with	the	theoretical	background	needed	when	distributing
your	systems	and	making	them	reliable	and	scalable.	We	provide	this	theory	by
describing	the	steps	needed	to	design	a	scalable,	highly	available	architecture	in
Erlang/OTP.

Chapter	13	will	give	you	an	overview	of	the	approaches	needed	when	designing
your	distributed	architecture,	breaking	up	your	functionality	into	standalone
nodes.	In	doing	so,	each	standalone	node	type	will	be	assigned	a	specific
purpose,	such	as	acting	as	a	client	gateway	managing	TCP/IP	connection	pools
or	providing	a	service	such	as	authentication	or	payments.	For	each	node	type,

we	define	an	approach	to	specifying	interfaces	and	defining	the	state	and	data
each	node	needs.	We	conclude	the	chapter	by	describing	the	most	common
distributed	architectural	patterns	and	the	different	network	protocols	that	can	be
used	to	connect	them.

When	you	have	your	distributed	architecture	in	place,	you	need	to	make	design
choices	that	will	impact	fault	tolerance,	resilience,	reliability,	and	availability.
You	know	what	data	and	state	you	need	in	your	node	types,	but	how	are	you
going	to	distribute	it	and	keep	it	consistent?	Are	you	going	for	the	share-
everything,	share-something,	or	share-nothing	approach,	and	what	are	the
tradeoffs	you	need	to	make	when	choosing	strong,	causal,	or	eventual
consistency?	In	Chapter	14,	we	describe	the	different	approaches	you	can	take,
introducing	the	retry	strategies	you	need	to	be	aware	of	in	case	a	request	times
out	as	the	result	of	process,	node,	or	network	failure	or	the	mere	fact	that	the
network	or	your	servers	are	running	over	capacity.

It	is	easy	to	say	that	you	are	going	to	add	hardware	to	make	your	system	scale
horizontally,	but	alas,	the	design	choices	introduced	in	Chapter	14	will	have	an
impact	on	your	system’s	scalability.	In	Chapter	15,	we	describe	the	impacts
resulting	from	your	data-sharing	strategy,	consistency	model,	and	retry	strategy.
We	cover	capacity	planning,	including	the	load,	peak,	and	stress	tests	you	need
to	subject	your	system	to	to	guarantee	it	behaves	in	a	predictable	way	under
heavy	load	even	when	the	hardware,	software,	and	infrastructure	around	it	are
failing.

Once	you’ve	designed	your	scalability	and	availability	strategies,	you	need	to
tackle	monitoring.	If	you	want	to	achieve	five-nines	uptime,	you	need	to	not
only	know	what	is	going	on,	but	also	be	able	to	quickly	determine	what
happened,	and	why.	We	conclude	the	book	with	Chapter	16,	looking	at	how
monitoring	is	used	for	preemptive	support	and	postmortem	debugging.

Monitoring	focuses	on	metrics,	alarms,	and	logs.	This	chapter	discusses	the
importance	of	system	and	business	metrics.	Examples	of	system	metrics	include
the	amount	of	memory	your	node	is	using,	process	message	queue	length,	and
hard-disk	utilization.	Combining	these	with	business	metrics,	such	as	the	number
of	failed	and	successful	login	attempts,	message	throughput	per	second,	and
session	duration,	yields	full	visibility	of	how	your	business	logic	is	affecting
your	system	resources.

Complementing	metrics	is	alarming,	where	you	detect	and	report	anomalies,
allowing	the	system	to	take	action	to	try	to	resolve	them	or	to	alert	an	operator
when	human	intervention	is	required.	Alarms	could	include	a	system	running	out
of	disk	space	(resulting	in	the	automatic	invocation	of	scripts	for	compressing	or
deleting	logs)	or	a	large	number	of	failed	message	submissions	(requiring	human
intervention	to	troubleshoot	connectivity	problems).	Preemptive	support	at	its
best,	detecting	and	resolving	issues	before	they	escalate,	is	a	must	when	dealing
with	high	availability.	If	you	do	not	have	a	real-time	view	of	what	is	going	on,
resolving	issues	before	they	escalate	becomes	extremely	difficult	and
cumbersome.

And	finally,	logging	of	major	events	in	the	system	helps	you	troubleshoot	your
system	after	a	crash	where	you	lost	its	state,	so	you	can	retrieve	the	call	flow	of	a
particular	request	among	millions	of	others	to	handle	a	customer	services	query,
or	just	provide	data	records	for	billing	purposes.

With	your	monitoring	in	place,	you	will	be	ready	to	architect	systems	that	are	not
only	scalable,	but	also	resilient	and	highly	available.	Happy	reading!	We	hope
you	enjoy	the	book	as	much	as	we	enjoyed	writing	it.

Chapter	2.	Introducing	Erlang

This	book	assumes	a	basic	knowledge	of	Erlang,	which	is	best	obtained	through
practice	and	by	reading	some	of	the	many	excellent	introductory	Erlang	books
out	there	(including	two	written	for	O’Reilly;	see	“Summing	Up”).	But	for	a
quick	refresher,	this	chapter	gives	you	an	overview	of	important	Erlang
concepts.	We	draw	attention	particularly	to	those	aspects	of	Erlang	you’ll	need	to
know	when	you	come	to	learn	OTP.

Recursion	and	Pattern	Matching
Recursion	is	the	way	Erlang	programmers	get	iterative	or	repetitive	behavior	in
their	programs.	It	is	also	what	keeps	processes	alive	in	between	bursts	of	activity.
Our	first	example	shows	how	to	compute	the	factorial	of	a	positive	number:

-module(ex1).

-export([factorial/1]).

factorial(0)	->

				1;

factorial(N)	when	N	>	0	->

				N	*	factorial(N-1).

We	call	the	function	factorial	and	indicate	that	it	takes	a	single	argument
(factorial/1).	The	trailing	/1	is	the	arity	of	a	function,	and	simply	refers	to	the
number	of	arguments	the	function	takes	—	in	our	example,	1.

If	the	argument	we	pass	to	the	function	is	the	integer	0,	we	match	the	first	clause,
returning	1.	Any	integer	greater	than	0	is	bound	to	the	variable	N,	returning	the
product	of	N	and	factorial(N-1).	The	iteration	will	continue	until	we	pattern
match	on	the	function	clause	that	serves	as	the	base	case.	The	base	case	is	the
clause	where	recursing	stops.	If	we	call	factorial/1	with	a	negative	integer,	the
call	fails	as	no	clauses	match.	But	we	don’t	bother	dealing	with	the	problems
caused	by	a	caller	passing	a	noninteger	argument;	this	is	an	Erlang	principle	we
discuss	later.

Erlang	definitions	are	contained	in	modules,	which	are	stored	in	files	of	the	same
name,	but	with	a	.erl	extension.	So,	the	filename	of	the	preceding	module	would
be	ex1.erl.	Erlang	programs	can	be	evaluated	in	the	Erlang	shell,	invoked	by	the
command	erl	in	your	Unix	shell	or	by	double-clicking	on	the	Erlang	icon.	Make
sure	that	you	start	your	Erlang	shell	in	the	same	directory	as	your	source	code.	A
typical	session	goes	like	this:

$	erl														%	Comments	on	interactions	are	given	in	this	format.

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

1>	c(ex1).

{ok,ex1}

2>	ex1:factorial(3).

6

3>	ex1:factorial(-3).

**	exception	error:	no	function	clause	matching

																				ex1:factorial(-3)	(ex1.erl,	line	4)

4>	factorial(2).	

**	exception	error:	undefined	shell	command	factorial/1

5>	q().

ok

$

In	shell	command	1,	we	compile	the	Erlang	file.	We	go	on	to	do	a	fully	qualified
function	call	in	command	line	2,	where	by	prefixing	the	module	name	to	the
function	we	are	able	to	invoke	it	from	outside	the	module	itself.	The	call	in	shell
command	3	fails	with	a	function	clause	error	because	no	clauses	match	for
negative	numbers.	Before	terminating	the	shell	with	the	shell	command	q(),	we
call	a	local	function,	factorial(2),	in	shell	command	4.	It	fails	as	it	is	not	fully
qualified	with	a	module	name.

Recursion	is	not	just	for	computing	simple	values;	we	can	write	imperative
programs	using	the	same	style.	The	following	is	a	program	to	print	every
element	of	a	list,	separated	by	tabs.	As	with	the	previous	example,	the	function	is
presented	in	two	clauses,	where	each	clause	has	a	head	and	a	body,	separated	by
the	arrow	(->).	In	the	head	we	see	the	function	applied	to	a	pattern,	and	when	a
function	is	applied	to	an	argument,	the	first	clause	whose	pattern	matches	the
argument	is	used.	In	this	example	the	[]	matches	an	empty	list,	whereas	[X|Xs]
matches	a	nonempty	list.	The	[X|Xs]	syntax	assigns	the	first	element	of	the	list,
or	head,	to	X	and	the	remainder	of	the	list,	or	tail,	to	Xs	(if	you	have	not	yet	noted
it,	Erlang	variables	such	as	X,	Xs,	and	N	all	start	with	uppercase	letters):

-module(ex2).

-export([print_all/1]).

print_all([])	->

				io:format("~n");

print_all([X|Xs])	->

				io:format("~p\t",[X]),

				print_all(Xs).

The	effect	is	to	print	each	item	from	the	list,	in	the	order	that	it	appears	in	the
list,	with	a	tab	(\t)	after	each	item.	Thanks	to	the	base	case,	which	runs	when	the
list	is	empty	(when	it	matches	[]),	a	newline	(~n)	is	printed	at	the	end.	Unlike	in
the	ex1:factorial/1	example	shown	earlier,	the	pattern	of	recursion	in	this

example	is	tail	recursive.	It	is	used	in	Erlang	programs	to	give	looping	behavior.
A	function	is	said	to	be	tail	recursive	if	the	only	recursive	calls	to	the	function
occur	as	the	last	expression	to	be	executed	in	the	function	clause.	We	can	think
of	this	final	call	as	a	“jump”	back	to	the	start	of	the	function,	now	called	with	a
different	parameter.	Tail-recursive	functions	allow	last-call	optimization,
ensuring	stack	frames	are	not	added	in	each	iteration.	This	allows	functions	to
execute	in	constant	memory	space	and	removes	the	risk	of	a	stack	overflow,
which	in	Erlang	manifests	itself	through	the	virtual	machine	running	out	of
memory.

If	you	come	from	an	imperative	programming	background,	writing	the	function
slightly	differently	to	use	a	case	expression	rather	than	separate	clauses	may
make	tail	recursion	easier	to	understand:1

all_print(Ys)	->

				case	Ys	of

								[]	->

												io:format("~n");

								[X|Xs]	->

												io:format("~p\t",[X]),

												all_print(Xs)

				end.

When	you	test	either	of	these	print	functions,	note	the	ok	printed	out	after	the
newline.	Every	Erlang	function	has	to	return	a	value.	This	value	is	whatever	the
last	executed	expression	returns.	In	our	case,	the	last	executed	expression	is
io:format("~n").	The	newline	appears	as	a	side	effect	of	the	function,	while	the
ok	is	the	return	value	printed	by	the	shell:

1>	c(ex2).

{ok,ex2}

2>	ex2:print_all([one,two,three]).

one					two					three

ok

3>	Val	=	io:format("~n").

ok

4>	Val.

ok

The	arguments	in	our	example	play	the	role	of	mutable	variables,	whose	values
change	between	calls.	Erlang	variables	are	single	assignment,	so	once	you’ve
bound	a	value	to	a	variable,	you	can	no	longer	change	that	variable.	In	a
recursive	function	variables	of	the	same	name,	including	function	arguments,	are

considered	fresh	in	every	function	iteration.	We	can	see	the	behavior	of	single
assignment	of	variables	here:

1>	A	=	3.

3

2>	A	=	2+1.

3

3>	A	=	3+1.

**	exception	error:	no	match	of	right	hand	side	value	4

In	shell	command	1,	we	successfully	assign	an	unbound	variable.	In	shell
command	2,	we	pattern	match	an	assigned	variable	to	its	value.	Pattern	matching
fails	in	shell	command	3,	because	the	value	on	the	right-hand	side	differs	from
the	current	value	of	A.

Erlang	also	allows	pattern	matching	over	binary	data,	where	we	match	on	a	bit
level.	This	is	an	incredibly	powerful	and	efficient	construct	for	decoding	frames
and	dealing	with	network	protocol	stacks.	How	about	decoding	an	IPv4	packet
in	a	few	lines	of	code?

-define(IP_VERSION,	4).

-define(IP_MIN_HDR_LEN,	5).

handle(Dgram)	->

			DgramSize	=	byte_size(Dgram),

			<<?IP_VERSION:4,	HLen:4,	SrvcType:8,	TotLen:16,	ID:16,	...,

					Flgs:3,	FragOff:13,	TTL:8,	Proto:8,		HdrChkSum:16,	...,

					SrcIP:32,	DestIP:32,	Body/binary>>	=	Dgram,

			if

					(HLen	>=	5)	and	(4*HLen	=<	DgramSize)	->

								OptsLen	=	4*(HLen	-	?IP_MIN_HDR_LEN),

								<<Opts:OptsLen/binary,	Data/binary>>	=	Body,

								...

			end.

We	first	determine	the	size	(number	of	bytes)	of	Dgram,	a	variable	holding	an
IPv4	packet	as	binary	data	previously	received	from	a	network	socket.	Next,	we
use	pattern	matching	against	Dgram	to	extract	its	fields;	the	left-hand	side	of	the
pattern	matching	assignment	defines	an	Erlang	binary,	delimited	by	<<	and	>>
and	containing	a	number	of	fields.	The	ellipses	(...)	within	the	binary	are	not
legal	Erlang	code;	they	indicate	fields	we’ve	left	out	to	keep	the	example	brief.
The	numbers	following	most	of	the	fields	specify	the	number	of	bits	(or	bytes	for
binaries)	each	field	occupies.	For	example,	Flgs:3	defaults	to	an	integer	that
matches	3	bits,	the	value	of	which	it	binds	to	the	variable	Flgs.	At	the	point	of

the	pattern	match	we	don’t	yet	know	the	size	of	the	final	field,	Body,	so	we
specify	it	as	a	binary	of	unknown	length	in	bytes	that	we	bind	to	the	variable
Data.	If	the	pattern	match	succeeds,	it	extracts,	in	just	a	single	statement,	all	the
named	fields	from	the	Dgram	packet.	Finally,	we	check	the	value	of	the	extracted
HLen	field	in	an	if	clause,	and	if	it	succeeds,	we	perform	a	pattern	matching
assignment	against	Body	to	extract	Opts	as	a	binary	of	OptsLen	bytes	and	Data	as
a	binary	consisting	of	all	the	rest	of	the	data	in	Body.	Note	how	OptsLen	is
calculated	dynamically.	If	you’ve	ever	written	code	using	an	imperative
language	such	as	Java	or	C	to	extract	fields	from	a	network	packet,	you	can	see
how	much	easier	pattern	matching	makes	the	task.

Functional	Influence
Erlang	was	heavily	influenced	by	other	functional	programming	languages.	One
functional	principle	is	to	treat	functions	as	first-class	citizens;	they	can	be
assigned	to	variables,	be	part	of	complex	data	structures,	be	passed	as	function
arguments,	or	be	returned	as	the	results	of	function	calls.	We	refer	to	the
functional	data	type	as	an	anonymous	function,	or	fun	for	short.	Erlang	also
provides	constructs	that	allow	you	to	define	lists	by	“generate	and	test,”	using
the	analogue	of	comprehensions	in	set	theory.	Let’s	first	start	with	anonymous
functions:	functions	that	are	not	named	and	not	defined	in	an	Erlang	module.

Fun	with	Anonymous	Functions
Functions	that	take	funs	as	arguments	are	called	higher-order	functions.	An
example	of	such	a	function	is	filter,	where	a	predicate	is	represented	by	a	fun
that	returns	true	or	false,	applied	to	the	elements	of	a	list.	filter	returns	a	list
made	up	of	those	elements	that	have	the	required	property;	namely,	those	for
which	the	fun	returns	true.	We	often	use	the	term	“predicate”	to	refer	to	a	fun
that,	based	on	certain	conditions	defined	in	the	function,	returns	the	atoms	true
or	false.	Here	is	an	example	of	how	filter/2	could	be	implemented:

-module(ex3).

-export([filter/2,	is_even/1]).

filter(P,[])	->	[];

filter(P,[X|Xs])	->

				case	P(X)	of

								true	->

												[X|filter(P,Xs)];

								_	->

												filter(P,Xs)

				end.

is_even(X)	->

				X	rem	2	==	0.

To	use	filter,	you	need	to	pass	it	a	function	and	a	list.	One	way	to	pass	the
function	is	to	use	a	fun	expression,	which	is	a	way	of	defining	an	anonymous
function.	In	shell	command	2,	shown	next,	you	can	see	an	example	of	an
anonymous	function	that	tests	for	its	argument	being	an	even	number:

2>	ex3:filter(fun(X)	->	X	rem	2	==	0	end,	[1,2,3,4]).

[2,4]

3>	ex3:filter(fun	ex3:is_even/1,[1,2,3,4]).

[2,4]

A	fun	does	not	have	to	be	anonymous,	and	could	instead	refer	to	a	local	or
global	function	definition.	In	shell	command	3,	we	described	the	function	by	fun
ex3:is_even/1;	i.e.,	by	giving	its	module,	name,	and	arity.	Anonymous
functions	can	also	be	spawned	as	the	body	of	a	process	and	passed	in	messages
between	processes;	we	look	at	processes	in	general	after	the	next	topic.

If	you’re	using	Erlang/OTP	17.0	or	newer,	there’s	another	way	a	fun	does	not

have	to	be	anonymous:	it	can	be	given	a	name.	This	feature	is	especially	handy
in	the	shell	as	it	allows	for	easy	definition	of	recursive	anonymous	functions.	For
example,	we	can	implement	the	equivalent	of	ex3:filter/2	in	the	shell	like
this:

4>	F	=	fun	Filter(_,[])	->	[];

4>	Filter(P,[X|Xs])	->	case	P(X)	of	true	->	[X|Filter(P,Xs)];

4>	false	->	Filter(P,Xs)	end	end.

#Fun<erl_eval.36.90072148>

5>	Filter(fun(X)	->	X	rem	2	==	0	end,[1,2,3,4]).

*	1:	variable	'Filter'	is	unbound

6>	F(fun(X)	->	X	rem	2	==	0	end,[1,2,3,4]).

[2,4]

We	name	our	recursive	function	Filter	by	putting	that	name	just	after	the	fun
keyword.	Note	that	the	name	has	to	appear	in	both	function	clauses:	the	one	on
the	first	line,	which	handles	the	empty	list	case,	and	the	one	defined	on	the	next
two	lines,	which	handles	the	case	when	the	list	isn’t	empty.	You	can	see	two
places	in	the	body	of	the	second	clause	where	we	recursively	call	Filter	to
handle	remaining	elements	in	the	list.	But	even	though	the	function	has	the	name
Filter,	we	still	assign	it	to	shell	variable	F	because	the	name	Filter	is	local	to
the	function	itself,	and	thus	can’t	be	used	outside	the	body	to	invoke	it,	as	our
attempt	to	call	it	on	line	5	shows.	On	line	6,	we	invoke	the	named	fun	via	F	and
it	works	as	expected.	And	because	shell	variables	and	function	names	are	in
different	scopes,	we	could	have	used	the	shell	variable	name	Filter	rather	than
F,	thus	naming	the	function	the	same	way	in	both	scopes.

List	Comprehensions:	Generate	and	Test
Many	of	the	examples	we	have	looked	at	so	far	deal	with	the	manipulation	of
lists.	We’ve	used	recursive	functions	on	them,	as	well	as	higher-order	functions.
Another	approach	is	to	use	list	comprehensions,	expressions	that	generate
elements	and	apply	tests	(or	filters)	to	them.	The	format	is	like	this:

[Expression	||	Generators,	Tests,	Generators,	Tests]

where	each	Generator	has	the	format

			X	<-	[2,3,5,7,11]

The	effect	of	this	is	to	successively	bind	the	variable	X	to	the	values	2,	3,	5,	7,
and	11.	In	other	words,	it	generates	the	elements	from	the	list:	the	symbol	<-	is
meant	to	suggest	the	“element	of”	symbol	for	sets,	∈.	In	this	example,	X	is	called
a	bound	variable.	We’ve	shown	only	one	bound	variable	here,	but	a	list
comprehension	can	be	built	from	multiple	bound	variables	and	generators;	we
show	some	examples	later	in	this	section.

The	Tests	are	Boolean	expressions,	which	are	evaluated	for	each	combination	of
values	of	the	bound	variables.	If	all	the	Tests	in	a	group	return	true,	then	the
Expression	is	generated	from	the	current	values	of	the	bound	variables.	The	use
of	Tests	in	a	list	comprehension	is	optional.	The	list	comprehension	construct	as
a	whole	generates	a	list	of	results,	one	for	each	combination	of	values	of	the
bound	variables	that	passes	all	the	tests.

As	a	first	example,	we	could	rewrite	the	function	filter/2	as	a	list
comprehension:

filter(P,Xs)	->	[X	||	X<-Xs,	P(X)].

In	this	list	comprehension,	the	first	X	is	the	expression,	X<-Xs	is	the	generator,
and	P(X)	is	the	test.	Each	value	from	the	generator	is	tested	with	the	test,	and	the
expression	comprises	only	those	values	for	which	the	test	returns	true.	Values
for	which	the	test	returns	false	are	simply	dropped.	We	can	use	list

comprehensions	directly	in	our	programs,	as	in	the	previous	filter/2	example,
or	in	the	Erlang	shell:

1>	[Element	||	Element	<-	[1,2,3,4],	Element	rem	2	==	0].

[2,4]

2>	[Element	||	Element	<-	[1,2,3,4],	ex3:is_even(Element)].

[2,4]

3>	[Element	||	Element	<-	lists:seq(1,4),	Element	rem	2	==	0].

[2,4]

4>	[io:format("~p~n",[Element])	||	Element	<-	[one,	two,	three]].

one

two

three

[ok,ok,ok]

Note	how,	in	shell	command	4,	we	are	using	list	comprehensions	to	create	side
effects.	The	expression	still	returns	a	list	[ok,ok,ok]	containing	the	return
values	of	executing	the	io:format/2	expression	on	the	elements.

The	next	set	of	examples	show	the	effect	of	multiple	generators	and	interleaved
generators	and	tests.	In	the	first,	for	each	value	of	X,	the	values	bound	to	Y	run
through	3,	4,	and	5.	In	the	second	example,	the	values	of	Y	depend	on	the	value
chosen	for	X	(showing	that	the	expression	evaluates	X	before	Y).	The	remaining
two	examples	apply	tests	to	both	of	the	bound	variables:

5>	[{X,Y}	||	X	<-	[1,2],	Y	<-	[3,4,5]].

[{1,3},{1,4},{1,5},{2,3},{2,4},{2,5}]

6>	[{X,Y}	||	X	<-	[1,2],	Y	<-	[X+3,X+4,X+5]].

[{1,4},{1,5},{1,6},{2,5},{2,6},{2,7}]

7>	[{X,Y}	||	X	<-	[1,2,3],	X	rem	2	/=	0,	Y	<-	[X+3,X+4,X+5],	(X+Y)	rem	2	==	0].

[{1,5},{3,7}]

8>	[{X,Y}	||	X		<-[1,2,3],	X	rem	2	/=	0,	Y	<-	[X+3,X+4,X+5],	(X+Y)	rem	2	/=	0].

[{1,4},{1,6},{3,6},{3,8}]

We’ll	leave	you	with	one	of	our	favorite	list	comprehensions,	which	we
contemplated	leaving	as	an	exercise.2	Given	an	8	×	8	chessboard,	how	many
ways	can	you	place	N	queens	on	it	so	that	they	do	not	threaten	each	other?	In	our
example,	queens(N)	returns	choices	of	positions	of	queens	in	the	bottom	N	rows
of	the	chessboard,	so	that	each	of	these	is	a	list	of	column	numbers	(in	the	given
rows)	where	the	queens	lie.	To	find	out	the	number	of	different	possible
placements,	we	just	count	the	permutations.	Note	the	--	list	difference	operator.
It	complements	++,	which	appends	lists	together.	We	also	use	andalso	instead	of
and,	as	it	short-circuits	the	operation	if	an	expression	evaluates	to	false:

-module(queens).

-export([queens/1]).

queens(0)	->	[[]];

queens(N)	->

				[[Row	|	Columns]	||	Columns	<-	queens(N-1),

								Row	<-	[1,2,3,4,5,6,7,8]	--	Columns,	 %	--	returns	the	list	difference

								safe(Row,	Columns,	1)].

safe(_Row,	[],	_N)	->	true;

safe(Row,	[Column|Columns],	N)	->

				(Row	/=	Column	+	N)	andalso	(Row	/=	Column	-	N)	andalso

								safe(Row,	Columns,	(N+1)).

Processes	and	Message	Passing
Concurrency	is	at	the	heart	of	the	Erlang	programming	model.	Processes	are
lightweight,	meaning	that	creating	them	involves	negligible	time	and	memory
overhead.	Processes	do	not	share	memory,	and	instead	communicate	with	each
other	through	message	passing.	Messages	are	copied	from	the	stack	of	the
sending	process	to	the	heap	of	the	receiving	one.	As	processes	execute
concurrently	in	separate	memory	spaces,	these	memory	spaces	can	be	garbage
collected	separately,	giving	Erlang	programs	very	predictable	soft	real-time
properties,	even	under	sustained	heavy	loads.	Millions	of	processes	can	run
concurrently	within	the	same	VM,	each	handling	a	standalone	task.	Processes
fail	when	exceptions	occur,	but	because	there	is	no	shared	memory,	failure	can
often	be	isolated	as	the	processes	were	working	on	standalone	tasks.	This	allows
other	processes	working	on	unrelated	or	unaffected	tasks	to	continue	executing
and	the	program	as	a	whole	to	recover	on	its	own.

So,	how	does	it	all	work?	Processes	are	created	via	the	spawn(Mod,	Func,
Args)	BIF	or	one	of	its	variants.	The	result	of	a	spawn	call	is	a	process	identifier,
normally	referred	to	as	a	pid.	Pids	are	used	for	sending	messages,	and	can
themselves	be	part	of	the	message,	allowing	other	processes	to	communicate
back.	As	we	see	in	Figure	2-1,	the	process	starts	executing	in	the	function	Func,
defined	in	the	module	Mod	with	arguments	passed	to	the	Args	list.

Figure	2-1.	Spawning	a	process

The	following	example	of	an	“echo”	process	shows	these	basics.	The	first	action
of	the	go/0	function	is	to	spawn	a	process	executing	loop/0,	after	which	it
communicates	with	that	process	by	sending	and	receiving	messages.	The	loop/0

function	receives	messages	and,	depending	on	their	format,	either	replies	to	them
(and	loops)	or	terminates.	To	get	this	looping	behavior,	the	function	is	tail
recursive,	ensuring	it	executes	in	constant	memory	space.

We	know	the	pid	of	the	process	executing	loop/0	from	the	spawn,	but	when	we
send	it	a	message,	how	can	it	communicate	back	to	us?	We’ll	have	to	send	it	our
pid,	which	we	find	using	the	self()	BIF:

-module(echo).

-export([go/0,	loop/0]).

go()	->

				Pid	=	spawn(echo,	loop,	[]),

				Pid	!	{self(),	hello},

				receive

								{Pid,	Msg}	->

								io:format("~w~n",[Msg])

				end,

				Pid	!	stop.

loop()	->

				receive

								{From,	Msg}	->

												From	!	{self(),	Msg},

												loop();

								stop	->

												ok

				end.

In	this	echo	example,	the	go/0	function	first	spawns	a	new	process	executing	the
echo:loop/0	function,	storing	the	resulting	pid	in	the	variable	Pid.	It	then	sends
to	the	Pid	process	a	message	containing	the	pid	of	the	sender,	retrieved	using	the
self()	BIF,	along	with	the	atom	hello.	After	that,	go/0	waits	to	receive	a
message	in	the	form	of	a	pair	whose	first	element	matches	the	pid	of	the	loop
process;	when	such	a	message	arrives,	go/0	prints	out	the	second	element	of	the
message,	exits	the	receive	expression,	and	finishes	by	sending	the	message
stop	to	Pid.

The	echo:loop/0	function	first	waits	for	a	message.	If	it	receives	a	pair
containing	a	pid	From	and	a	message,	it	sends	a	message	containing	its	own	pid
along	with	the	received	Msg	back	to	the	From	process	and	then	calls	itself
recursively.	If	it	instead	receives	the	atom	stop,	loop/0	returns	ok.	When	loop/0
stops,	the	process	that	go/0	originally	spawned	to	run	loop/0	terminates	as	well,
as	there	is	no	more	code	to	execute.

Note	how,	when	we	run	this	program,	the	go/0	call	returns	stop.	Every	function
returns	a	value,	that	of	the	last	expression	it	evaluated.	Here,	the	last	expression
is	Pid	!	go,	which	returns	the	message	we	just	sent	to	Pid:

1>	c(echo).

{ok,echo}

2>	echo:go().

hello

stop

BOUND	VARIABLES	IN	PATTERNS
Pattern	matching	is	different	in	Erlang	than	in	other	languages	with	pattern	matching	because
variables	occurring	in	patterns	can	be	already	bound.	In	the	go	function	in	the	echo	example,
the	variable	Pid	is	already	bound	to	the	pid	of	the	process	just	spawned,	so	the	receive
expression	will	accept	only	those	messages	in	which	the	first	component	is	that	particular	pid;
in	the	scenario	here,	it	will	be	a	message	from	that	pid,	in	fact.

If	a	message	is	received	with	a	different	first	component,	then	the	pattern	match	in	the	receive
will	not	be	successful,	and	the	receive	will	block	until	a	message	is	received	from	process
Pid.

Erlang	message	passing	is	asynchronous:	the	expression	that	sends	a	message	to
a	process	returns	immediately	and	always	appears	to	be	successful,	even	when
the	receiving	process	doesn’t	exist.	If	the	process	exists,	the	messages	are	placed
in	the	mailbox	of	the	receiving	process	in	the	same	order	in	which	they	are
received.	They	are	processed	using	the	receive	expression,	which	pattern
matches	on	the	messages	in	sequential	order.	Message	reception	is	selective,
meaning	that	messages	are	not	necessarily	processed	in	the	order	in	which	they
arrive,	but	rather	the	order	in	which	they	are	matched.	Each	receive	clause
selects	the	message	it	wants	to	read	from	the	mailbox	using	pattern	matching.

Suppose	that	the	mailbox	for	the	loop	process	has	received	the	messages	foo,
stop,	and	{Pid,	hello}	in	that	order.	The	receive	expression	will	try	to	match
the	first	message	(here,	foo)	against	each	of	the	patterns	in	turn;	this	fails,
leaving	the	message	in	the	mailbox.	It	then	tries	to	do	the	same	with	the	second
message,	stop;	this	doesn’t	match	the	first	pattern	but	does	match	the	second,
with	the	result	that	the	process	terminates,	as	there	is	no	more	code	to	execute.

These	semantics	mean	that	we	can	process	messages	in	whatever	order	we
choose,	irrespective	of	when	they	arrive.	Code	like	this:

receive

				message1	->	...

end

receive

				message2	->	...

end

will	process	the	atoms	message1	and	then	message2.	Without	this	feature,	we’d
have	to	anticipate	all	the	different	orders	in	which	messages	can	arrive,	and
handle	each	of	those,	greatly	increasing	the	complexity	of	our	programs.	With
selective	receive,	all	we	do	is	leave	them	in	the	mailbox	for	later	retrieval.

MULTICORE,	SCHEDULERS,	AND	REDUCTIONS

The	biggest	challenges	in	scaling	systems	on	multicore	architectures	are	sequential	code	and	the
serialization	of	operations.	These	could	be	in	your	program,	in	libraries	you	use,	in	the	underlying
virtual	machine,	or	all	of	the	above.	Memory	lock	contention	is	often	the	major	bottleneck,	caused
when	threads	try	to	acquire	a	lock	allowing	them	to	access	and	manipulate	shared	memory.	Erlang
processes	do	not	share	memory,	removing	one	of	the	major	obstacles	and	making	it	the	ideal	language
to	fully	utilize	many-core	computers.	Program	in	Erlang	as	you	would	have	done	on	a	single-core
architecture,	ensuring	you	have	a	process	for	each	truly	concurrent	activity,	and	your	system	will	scale
as	you	add	more	cores.	You	will	be	limited	only	by	your	sequential	code	and	bottlenecks	in	the	BEAM
virtual	machine	—	bottlenecks	that	release	after	release,	are	continually	optimized	or	removed.

For	every	core,	the	BEAM	virtual	machine	starts	a	thread	that	runs	a	scheduler.	Each	scheduler	is
responsible	for	a	group	of	processes,	and	at	any	one	time,	a	process	from	each	scheduler	executes	in
parallel	on	each	core.	Processes	that	are	not	suspended	and	are	ready	to	execute	are	placed	in	the
scheduler’s	run	queue.	The	virtual	machine	also	starts	a	separate	thread	pool	used	for	drivers	and	file
I/O	that	can	operate	without	blocking	any	scheduler	threads.	At	startup,	you	can	limit	the	number	of
threads	and	schedulers,	and	specify	whether	you	want	schedulers	to	be	bound	to	a	core	or	be	allowed
to	migrate	from	one	core	to	another.	Schedulers	are	not	bound	to	cores	by	default	because	such
binding	can	backfire,	slowing	down	the	system	on	certain	architectures.	However,	it	can	result	in
speedups	in	other	situations.	Benchmark	your	system	with	both	approaches.	We	cover	how	to	set
startup	flags	and	parameters	in	“Arguments	and	Flags”	and	benchmarking	in	Chapter	15.

If	the	system	is	running	under	full	load,	the	schedulers	try	to	guarantee	soft	real-time	properties	by
retaining	an	even	balance	of	CPU	time	across	all	processes.	What	the	BEAM	virtual	machine	tries	to
do	is	avoid	cases	where	processes	in	a	run	queue	with	10	processes	get	twice	as	much	CPU	time	as
those	in	a	run	queue	with	20	processes.	This	is	achieved	by	allowing	processes	to	migrate	between	run
queues,	evening	out	their	sizes	across	the	schedulers.	But	if	the	system	isn’t	fully	loaded,	the	virtual
machine	migrates	processes	so	they	occupy	fewer	cores,	and	then	pauses	the	unused	scheduler	threads.
This	allows	cores	to	be	shut	down	and	put	in	energy	saving	mode,	and	later	awakened	when	the	load
of	the	virtual	machine	increases.

Schedulers	decide	when	to	preempt	processes	based	on	an	approximation	of	the	workload	they	have
executed.	This	approximation	is	called	the	reduction	count.	When	a	process	is	preempted,	it	stops
running	and	is	placed	at	the	end	of	the	run	queue,	allowing	the	process	first	in	line	to	execute.
Function	calls	and	BIFs	are	assigned	a	value	of	one	or	more	reductions,	with	the	theory	that	expensive
calls	have	a	higher	reduction	count	than	cheaper	ones.	Each	process	is	allowed	to	execute	a	predefined
number	of	reductions	before	being	preempted,	allowing	the	process	at	the	head	of	the	run	queue	to
execute.	The	number	of	reductions	each	process	is	allowed	to	execute	before	being	suspended	and	the
reduction	count	of	each	instruction	are	purposely	not	documented	to	discourage	premature
optimization,	because	the	reduction	count	and	the	total	number	of	reductions	the	scheduler	allows	a
process	to	execute	may	change	from	one	release	and	hardware	architecture	to	another.

Scheduler	balance,	reductions,	and	the	per-process	garbage	collector	give	the	BEAM	virtual	machine
predictable,	soft	real-time	properties,	even	during	times	of	peak	and	extended	load,	by	maximizing

fairness	and	ensuring	there	is	no	process	starvation.	Other	programming	languages	and	frameworks
not	running	on	BEAM	don’t	provide	preemptive	multitasking.	Application	activities	are	not	allowed	to
block,	preventing	the	event	loop	from	running	frequently	and	dispatching	events	to	their	intended
targets.	If	an	application	blocks,	it	blocks	every	part	of	the	application,	whereas	in	Erlang,	the	only
way	to	block	a	scheduler	(and	all	the	processes	in	its	run	queue)	is	to	drop	into	C	code	and	either
ignorantly	or	purposefully	implement	a	misbehaving	native	implemented	function	(NIF)	or	driver.
Lack	of	preemptive	multitasking	will	therefore	affect	the	soft	real-time	properties	of	a	system,	as	it
will	either	rely	on	the	process	to	cooperatively	preempt	itself,	or	base	preemption	on	specific
operations	instead	of	the	number	and	cost	of	the	operations	themselves.	Having	said	this,	don’t	even
get	us	started	with	“stop	the	world”	garbage	collectors	in	shared	memory	architectures,	which	force	all
threads	to	synchronize	in	order	to	determine	which	objects	are	still	being	used	and	which	ones	can	be
freed.	No	one	named,	no	one	shamed.

Fail	Safe!
In	“Recursion	and	Pattern	Matching”	we	saw	the	factorial	example,	and	how
passing	a	negative	number	to	the	function	causes	it	to	raise	an	exception.	This
also	happens	when	factorial	is	applied	to	something	that	isn’t	a	number,	in	this
case	the	atom	zero:

1>	ex1:factorial(zero).

**	exception	error:	bad	argument	in	an	arithmetic	expression

in	function		ex1:factorial/1

The	alternative	to	this	would	be	to	program	defensively,	and	explicitly	identify
the	case	of	negative	numbers,	as	well	as	arguments	of	any	other	type,	by	means
of	a	catch-all	clause:

factorial(0)	->

				1;

factorial(N)	when	N	>	0,	is_integer(N)	->

				N	*	factorial(N-1);

factorial(_)	->

				{error,bad_argument}.

The	effect	of	this	is	would	be	to	require	every	caller	of	the	function	to	deal	not
only	with	proper	results	(like	120	=	factorial(5))	but	also	improper	ones	of
the	format	{error,bad_argument}.	If	we	do	this,	clients	of	any	function	need	to
understand	its	failure	modes	and	provide	ways	of	dealing	with	them,	mixing
correct	computation	and	error-handling	code.	How	do	you	handle	errors	or
corrupt	data	when	you	do	not	know	what	these	errors	are	or	how	the	data	got
corrupted?

The	Erlang	design	philosophy	says	“let	it	fail!”	so	that	a	function,	process,	or
other	running	entity	deals	only	with	the	correct	case	and	leaves	it	to	other	parts
of	the	system	(specifically	designed	to	do	this)	to	deal	with	failure.	One	way	of
dealing	with	failure	in	sequential	code	is	to	use	the	mechanism	for	exception
handling	given	by	the	try-catch	construct.	Using	the	definition:

factorial(0)	->

				1;

factorial(N)	when	N	>	0,	is_integer(N)	->

				N	*	factorial(N-1).

we	can	see	the	construct	in	action:

2>	ex1:factorial(zero).

**	exception	error:	no	function	clause	matching	ex1:factorial(zero)

3>	try	ex1:factorial(zero)	catch	Type:Error	->	{Type,	Error}	end.

{error,function_clause}

4>	try	ex1:factorial(-2)	catch	Type:Error	->	{Type,	Error}	end.

{error,function_clause}

5>	try	ex1:factorial(-2)	catch	error:Error2	->	{error,	Error2}	end.

{error,function_clause}

6>	try	ex1:factorial(-2)	catch	error:Error3	->	{error,	Error3};

6>																													exit:Reason		->	{exit,	Reason}	end.

{error,function_clause}

The	try-catch	construct	gives	the	user	the	opportunity	to	match	on	the	different
kinds	of	exceptions	in	the	clauses,	handling	them	individually.	In	this	example,
we	match	on	an	error	exception	caused	by	a	pattern	match	failure.	There	are
also	exit	and	throw	exceptions,	the	first	being	the	result	of	a	process	calling	the
exit	BIF	and	the	latter	the	result	of	a	user-generated	exception	using	the	throw
expression.

Links	and	Monitors	for	Supervision
A	typical	Erlang	system	has	lots	of	(possibly	dependent)	processes	running	at	the
same	time.	How	do	these	dependencies	work	with	the	“let	it	fail”	philosophy?
Suppose	process	A	interacts	with	processes	B	and	C	(Figure	2-2);	these	processes
are	dependent	on	each	other,	so	if	A	fails,	they	can	no	longer	function	properly.
A’s	failure	needs	to	be	detected,	after	which	B	and	C	need	to	be	terminated	before
restarting	them	all.	In	this	section	we	describe	the	mechanisms	that	support	this
approach,	namely	process	linking,	exit	signals,	and	monitoring.	These	simple
constructs	enable	us	to	build	libraries	with	complex	supervision	strategies,
allowing	us	to	manage	processes	that	may	be	subjected	to	failure	at	any	time.

Figure	2-2.	Dependent	processes

Links
Calling	link(Pid)	in	a	process	A	creates	a	bidirectional	link	between	processes	A
and	Pid.	Calling	spawn_link/3	has	the	same	effect	as	calling	spawn/3	followed
by	link/1,	except	that	it	is	executed	atomically,	eliminating	the	race	condition
where	a	process	terminates	between	the	spawn	and	the	link.	A	link	from	the
calling	process	to	Pid	is	removed	by	calling	unlink(Pid).

The	key	insight	here	is	that	the	mechanism	needs	to	be	orthogonal	to	Erlang
message	passing,	but	effectuated	with	it.	If	two	Erlang	processes	are	linked,
when	either	of	them	terminates,	an	exit	signal	is	sent	to	the	other,	which	will
then	itself	terminate.	The	terminated	process	will	in	turn	send	the	exit	signal	to
all	the	processes	in	its	linked	set,	propagating	it	through	the	system.	This	can	be
seen	in	Figure	2-3,	where	PidC	terminates	from	whichever	exit	signal	from	PidA
or	PidB	gets	there	first.	The	power	of	the	mechanism	comes	from	the	ways	that
this	default	behavior	can	be	modified,	giving	the	designer	fine	control	over	the
termination	of	the	processes	within	a	system.	We	now	look	at	this	in	more	detail.

Figure	2-3.	Exit	signals	propagating	among	linked	processes

One	pattern	for	using	links	is	as	follows:	a	server	that	controls	access	to

resources	links	to	a	client	while	that	client	has	access	to	a	particular	resource.	If
the	client	terminates,	the	server	will	be	informed	so	it	can	reallocate	the	resource
(or	just	terminate).	If,	on	the	other	hand,	the	client	hands	back	the	resource,	the
server	may	unlink	from	the	client.

Remember,	though,	that	links	are	bidirectional,	so	if	the	server	dies	for	some
reason	while	client	and	server	are	linked,	this	will	by	default	kill	the	client	too,
which	you	may	not	want	to	happen.	If	that’s	the	case,	use	a	monitor	instead	of	a
link,	as	we	explain	in	“Monitors”.

Exit	signals	can	be	trapped	by	calling	the	process_flag(trap_exit,	true)
function.	This	converts	exit	signals	into	messages	of	the	form	{'EXIT',	Pid,
Reason},	where	Pid	is	the	process	identifier	of	the	process	that	has	died	and
Reason	is	the	reason	it	has	terminated.	These	messages	are	stored	in	the
recipient’s	mailbox	and	processed	in	the	same	way	as	all	other	messages.	When
a	process	is	trapping	exits,	the	exit	signal	is	not	propagated	to	any	of	the
processes	in	its	link	set.

Why	does	a	process	exit?	This	can	happen	for	two	reasons.	If	a	process	has	no
more	code	to	execute,	it	terminates	normally.	The	Reason	propagated	will	be	the
atom	normal.	Abnormal	termination	is	initiated	in	case	of	a	runtime	error,
receiving	an	exit	signal	when	not	trapping	exits,	or	by	calling	the	exit	BIFs.
Called	with	a	single	argument,	exit(Reason)	will	terminate	the	calling	process
with	reason	Reason,	which	will	be	propagated	in	the	exit	signal	to	any	other
processes	to	which	the	exiting	one	is	linked.	When	the	exit	BIF	is	called	with
two	arguments,	exit(Pid,	Reason),	it	sends	an	exit	signal	with	reason	Reason
to	the	process	Pid.	This	will	have	the	same	effect	as	if	the	calling	process	had
terminated	with	reason	Reason.

As	we	said	at	the	start	of	this	section,	users	can	control	the	way	in	which
termination	is	propagated	through	a	system.	The	options	are	summarized	in
Table	2-1	and	vary	depending	on	if	the	trap_exit	process	flag	is	set.

Table	2-1.	Propagation	semantics

Reason Trapping	exits Not	trapping	exits

normal Receives	{'EXIT',	Pid,	normal} Nothing	happens

kill Terminates	with	reason	killed Terminates	with	reason	killed

Other Receives	{'EXIT',	Pid,	Other} Terminates	with	reason	Other

As	the	second	column	of	the	table	shows,	a	process	that	is	trapping	exits	will
receive	an	'EXIT'	message	when	a	linked	process	terminates,	whether	the
termination	is	normal	or	abnormal.	The	kill	reason	allows	one	process	to	force
another	to	exit	along	with	it.	This	means	that	there’s	a	mechanism	for	killing	any
process,	even	those	that	trap	exits;	note	that	its	reason	for	termination	is	killed
and	not	kill,	ensuring	that	the	unconditional	termination	does	not	itself
propagate.	If	a	process	is	not	trapping	exits,	nothing	happens	if	a	process	in	its
link	set	terminates	normally.	Abnormal	termination,	however,	results	in	the
process	terminating.

Monitors
Monitors	provide	an	alternative,	unidirectional	mechanism	for	processes	to
observe	the	termination	of	other	processes.	Monitors	differ	from	links	in	the
following	ways:

A	monitor	is	set	up	when	process	A	calls	erlang:monitor(process,	B),
where	the	atom	process	indicates	we’re	monitoring	a	process	and	B	is
specified	by	a	pid	or	registered	name.	This	causes	A	to	monitor	B.

Monitors	have	an	identity	given	by	an	Erlang	reference,	which	is	a	unique
value	returned	by	the	call	to	erlang:monitor/2.	Multiple	monitors	of	B	by
A	can	be	set	up,	each	identified	by	a	different	reference.

A	monitor	is	unidirectional	rather	than	bidirectional:	if	process	A	monitors
process	B,	this	does	not	mean	that	B	monitors	A.

When	a	monitored	process	terminates,	a	message	of	the	form	{'DOWN',
Reference,	process,	Pid,	Reason}	is	sent	to	the	monitoring	process.
This	contains	not	only	the	Pid	and	Reason	for	the	termination,	but	also	the
Reference	of	the	monitor	and	the	atom	process,	which	tells	us	we	were
monitoring	a	process.

A	monitor	is	removed	by	the	call	erlang:demonitor(Reference).	Passing
a	second	argument	to	the	function	in	the	format
erlang:demonitor(Reference,	[flush])	ensures	that	any	{'DOWN',
Reference,	process,	Pid,	Reason}	messages	from	the	Reference	will
be	flushed	from	the	mailbox	of	the	monitoring	process.

Attempting	to	monitor	a	nonexistent	process	results	in	a	{'DOWN',
Reference,	process,	Pid,	Reason}	message	with	reason	noproc;	this
contrasts	with	an	attempt	to	link	to	a	nonexistent	process,	which	terminates
the	linking	process.

If	a	monitored	process	terminates,	processes	that	are	monitoring	it	and	not
trapping	exits	will	not	terminate.

NOTE

References	in	Erlang	are	used	to	guarantee	the	identity	of	messages,	monitors,	and	other
data	types	or	requests.	A	reference	can	be	generated	indirectly	by	setting	up	a	monitor,
but	also	directly	by	calling	the	BIF	make_ref/0.	References	are,	for	all	intents	and
purposes,	unique	across	a	multinode	Erlang	system.	References	can	be	compared	for
equality	and	used	within	patterns,	so	that	it’s	possible	to	ensure	that	a	message	comes
from	a	particular	process,	or	is	a	reply	to	a	particular	message	within	a	communication
protocol.

Taking	monitor/2	and	exit/2	for	a	trial	run,	we	get	the	following	self-
explanatory	results:

1>	Pid	=	spawn(echo,	loop,	[]).

<0.34.0>

2>	erlang:monitor(process,	Pid).

#Ref<0.0.0.34>

3>	exit(Pid,	kill).

true

4>	flush().

Shell	got	{'DOWN',#Ref<0.0.0.34>,process,<0.34.0>,killed}

ok

Records
Erlang	tuples	provide	a	way	of	grouping	related	items,	and	unlike	lists	they
provide	convenient	access	to	elements	at	arbitrary	indexes	via	the	element/2
BIF.	In	practice,	though,	they	are	most	useful	and	manageable	for	groups	of	no
more	than	about	five	or	six	items.	Tuples	larger	than	that	can	cause	maintenance
headaches	by	forcing	you	to	keep	track	throughout	your	code	of	what	field	is	in
which	position	in	the	tuple,	and	using	plain	numbers	to	address	fields	through
element/2	is	error-prone.	Pattern	matching	large	tuples	can	be	tedious	due	to
having	to	ensure	the	correct	number	and	placement	of	variables	within	the	tuple.
Worst	of	all,	though,	is	that	if	you	have	to	add	or	remove	a	field	in	a	tuple,	you
have	to	find	all	the	places	your	code	uses	it	and	make	sure	to	change	each
occurrence	to	the	correct	new	size.

Records	address	the	shortcomings	of	tuples	by	providing	a	way	to	access	fields
of	a	tuple-like	collection	by	name.	Here’s	an	example	of	a	record	used	with	the
Erlang/OTP	inet	module,	which	provides	access	to	TCP/IP	information:

-record(hostent,

								{

									h_name												%	offical	name	of	host

									h_aliases	=	[]				%	alias	list

									h_addrtype								%	host	address	type

									h_length										%	length	of	address

									h_addr_list	=	[]		%	list	of	addresses	from	name	server

								}).

The	-record	directive	is	used	to	define	a	record,	with	the	record	name	specified
as	the	directive’s	first	argument.	The	second	argument,	which	resembles	a	tuple
of	atoms,	defines	the	fields	of	the	record.	Fields	can	have	specific	default	values,
as	shown	here	for	the	h_aliases	and	h_addr_list	fields,	both	of	which	have	the
empty	list	as	their	defaults.	Fields	without	specified	defaults	have	the	atom
undefined	as	their	default	values.

Records	can	be	used	in	assignments,	in	pattern	matching,	and	as	function
arguments,	similarly	to	tuples.	But	unlike	tuples,	record	fields	are	accessed	by
name,	and	any	fields	not	pertinent	to	a	particular	part	of	the	code	can	be	left	out.
For	example,	the	type/1	function	in	this	module	requires	access	only	to	the

h_addrtype	field	of	a	hostent	record:

-module(addr).

-export([type/1]).

-include_lib("kernel/include/inet.hrl").

type(Addr)	->

				{ok,	HostEnt}	=	inet:gethostbyaddr(Addr),

				HostEnt#hostent.h_addrtype.

First,	note	that	to	be	able	to	use	a	record,	we	must	have	access	to	its	definition.
The	-include_lib(...)	directive	here	includes	the	inet.hrl	file	from	the	kernel
application,	where	the	hostent	record	is	defined.	In	the	final	line	of	this
example,	we	access	the	HostEnt	variable	as	a	hostent	record	by	supplying	the
record	name	after	the	#	symbol.	After	the	record	name,	we	access	the	required
record	field	by	name,	h_addrtype.	This	reads	the	value	stored	in	that	field	and
returns	it	as	the	return	value	of	the	type/1	function:

1>	c(addr).

{ok,addr}

2>	addr:type("127.0.0.1").

inet

3>	addr:type("::1").

inet6

Another	way	to	implement	the	type()	function	would	be	to	pattern	match	the
h_addrtype	field	against	the	return	value	of	the	inet:gethostbyaddr/1
function:

type(Addr)	->

				{ok,	#hostent{h_addrtype=AddrType}}	=	inet:gethostbyaddr(Addr),

				AddrType.

Here,	the	AddrType	variable	within	the	pattern	match	captures	the	value	of	the
h_addrtype	field	as	part	of	the	match.	This	form	of	pattern	matching	is	quite
common	with	records,	and	is	especially	useful	within	function	heads	to	extract
fields	of	interest	into	local	variables.	As	you	can	see,	this	approach	is	also
cleaner	than	the	field	access	syntax	used	in	the	previous	example.

To	create	a	record	instance,	you	set	the	fields	as	required:

hostent(Host,	inet)	->

				#hostent{h_name=Host,	h_addrtype=inet,	h_length=4,

													h_addr_list=inet:getaddrs(Host,	inet)}.

In	this	example,	the	hostent/2	function	returns	a	hostent	record	instance	with
specific	fields	set.	Any	fields	not	explicitly	set	in	the	code	retain	their	default
values	specified	in	the	record	definition.

Records	are	just	syntactic	sugar;	under	the	covers,	they	are	implemented	as
tuples.	We	can	see	this	by	calling	the	inet:gethostbyname/1	function	in	the
Erlang	shell:

1>	inet:gethostbyname("oreilly.com").

{ok,{hostent,"oreilly.com",[],inet,4,

													[{208,201,239,101},{208,201,239,100}]}}

2>	rr(inet).

[connect_opts,hostent,listen_opts,...]

3>	inet:gethostbyname("oreilly.com").

{ok,#hostent{h_name	=	"oreilly.com",h_aliases	=	[],

													h_addrtype	=	inet,h_length	=	4,

													h_addr_list	=	[{208,201,239,101},{208,201,239,100}]}}

In	shell	command	1,	we	call	gethostbyname/1	to	retrieve	address	information
for	the	host	oreilly.com.	The	second	element	of	the	result	tuple	is	a	hostent
record,	but	the	shell	displays	it	as	a	plain	tuple	where	the	first	element	is	the
record	name	and	the	rest	of	the	elements	are	the	fields	of	the	record	in
declaration	order.	Note	that	the	names	of	the	record	fields	are	not	part	of	the
actual	record	instance.	To	have	the	record	instance	be	displayed	as	a	record
instead	of	a	tuple,	we	need	to	inform	the	shell	of	the	record	definition.	We	do
that	in	shell	command	2	using	the	rr	shell	command,	which	reads	record
definitions	from	its	argument	and	returns	a	list	of	the	definitions	read	(we
abbreviated	the	returned	list	in	this	example	by	replacing	most	of	it	with	an
ellipsis).	The	argument	passed	to	the	rr	command	can	either	be	a	module	name,
the	name	of	a	source	or	include	file,	or	a	wildcarded	name	as	specified	for	the
filelib:wildcard/1,2	functions.	In	shell	command	3,	we	again	fetch	address
information	for	oreilly.com,	but	this	time	the	shell	prints	the	returned	hostent
value	in	record	format,	with	field	names	included.

CORRECT	RECORD	VERSIONS
You	need	to	be	extremely	careful	in	dealing	with	all	versions	of	records	once	you’ve	changed
their	definition.	You	might	forget	to	compile	a	module	using	the	record	(or	compile	it	with	the
wrong	version),	load	the	wrong	specification	in	the	shell,	or	send	it	to	a	process	running	code
that	has	not	been	upgraded.	Doing	so	will	in	the	best	case	throw	an	exception	when	trying	to
access	or	manipulate	a	field	that	does	not	exist,	and	in	the	worse	case	silently	assign	or	return
the	value	of	a	different	field.

Maps
A	map	in	Erlang	is	a	key-value	collection	type	that	resembles	the	dictionary	and
hash	types	found	in	other	programming	languages.	Maps	differ	from	records	in
several	ways:	map	is	a	built-in	type,	the	number	of	its	fields	or	key-value	pairs	is
not	fixed	at	compile	time,	and	its	keys	can	be	any	Erlang	term	rather	than	just
atoms.	While	some	have	touted	maps	as	a	replacement	for	records,	in	practice
they	each	fulfill	different	needs	and	both	are	useful.	Records	are	fast,	so	use
them	when	you	have	a	fixed	number	of	fields	known	at	compile	time,	while
maps	should	be	used	when	you	have	a	need	to	add	fields	at	runtime.

Creating	and	manipulating	a	map	is	straightforward,	as	shown	here:

1>	EmptyMap	=	#{}.

#{}

2>	erlang:map_size(EmptyMap).

0

3>	RelDates	=	#{	"R15B03-1"	=>	{2012,	11,	28},	"R16B03"	=>	{2013,	12,	11}	}.

#{"R15B03-1"	=>	{2012,11,28},"R16B03"	=>	{2013,12,11}}

4>	RelDates2	=	RelDates#{	"17.0"	=>	{2014,	4,	2}}.

#{"17.0"	=>	{2014,4,2},

		"R15B03-1"	=>	{2012,11,28},

		"R16B03"	=>	{2013,12,11}}

5>	RelDates3	=	RelDates2#{"17.0"	:=	{2014,	4,	9}}.

#{"17.0"	=>	{2014,4,9},

		"R15B03-1"	=>	{2012,11,28},

		"R16B03"	=>	{2013,12,11}}

6>	#{	"R15B03-1"	:=	Date	}	=	RelDates3.

#{"17.0"	=>	{2014,4,2},

		"R15B03-1"	=>	{2012,11,28},

		"R16B03"	=>	{2013,12,11}}

7>	Date.

{2012,11,28}

In	shell	command	1,	we	bind	the	empty	map	#{}	to	the	variable	EmptyMap,	and
then	we	check	its	size	in	shell	command	2	using	the	erlang:map_size/1
function.	As	expected,	its	size	is	0	since	it	contains	no	key-value	pairs.	In	shell
command	3,	we	create	a	map	with	multiple	entries,	where	each	key	is	the	name
of	an	Erlang/OTP	release	paired	with	a	value	denoting	its	release	date,	using	the
=>	map	association	operator.	Shell	command	4	takes	the	existing	RelDates	map
and	adds	a	new	key-value	pair	to	create	a	new	map,	RelDates2.	Unfortunately,
the	date	we	set	in	shell	command	4	is	off	by	one	week	and	we	need	to	change	it;
shell	command	5	shows	how	we	use	the	:=	map	set-value	operator	to	update	the

release	date.	Unlike	the	=>	operator,	the	:=	operator	ensures	that	the	key	being
updated	already	exists	in	the	map,	thereby	preventing	errors	where	the	developer
misspells	the	key	and	accidentally	creates	a	new	key-value	pair	instead	of
updating	an	existing	key.	Finally,	shell	command	6	shows	how	using	a	map	in	a
pattern	match	allows	us	to	capture	the	release	date	associated	with	the	key
"R15B03-1"	into	the	variable	Date,	the	value	of	which	is	accessed	in	shell
command	7.	Note	that	using	the	:=	set-value	operator	is	required	for	map	pattern
matching.

Macros
Erlang	has	a	macro	facility,	implemented	by	the	Erlang	preprocessor	(epp),
which	is	invoked	prior	to	compilation	of	source	code	into	BEAM	code.	Macros
can	be	constants,	as	in:

-define(ANSWER,42).

-define(DOUBLE,2*).

or	take	parameters,	as	in:

-define(TWICE(F,X),F(F(X))).

As	you	can	see	from	the	definition	of	DOUBLE,	it	is	conventional	(but	only
conventional)	to	use	uppercase	names.	The	definition	can	be	any	legal	sequence
of	Erlang	tokens;	it	doesn’t	have	to	be	a	meaningful	expression	in	its	own	right.

Macros	are	invoked	by	preceding	them	with	a	?	character,	as	in:

test()	->	?TWICE(?DOUBLE,?ANSWER)

It	is	possible	to	see	the	effect	of	macro	definitions	by	compiling	with	the	'P'	flag
in	the	shell:

c(<filename>,['P']),

which	creates	a	filename.P	file	in	which	the	previous	definition	of	test/0
becomes:

test()	->	2	*	(2	*	42).

It	is	also	possible	for	a	macro	call	to	record	the	text	of	its	parameters.	For
example,	if	we	define:

	-define(Assign(Var,Exp),	Var=Exp,

									io:format("~s	=	~s	->	~p~n",[??Var,??Exp,Var])).

then	?Assign(Var,Exp)	has	the	effect	of	performing	the	assignment	Var	=	Exp,

but	also,	as	a	side	effect,	prints	out	a	diagnostic	message.	For	example:

test_assign()	->	?Assign(X,	lists:sum([1,2,3])).

behaves	like	this:

1>	macros:test_assign().

X	=	lists	:	sum	([1	,	2	,	3])	->	6

ok

Using	flags,	you	can	define	conditional	macros,	such	as:

-ifdef(debug).

		-define(Assign(Var,Exp),	Var=Exp,

										io:format("~s	=	~s	->	~p~n",[??Var,??Exp,Var])).

-else.

		-define(Assign(Var,Exp),	Var=Exp).

-endif.

Now,	if	you	use	the	compiler	flags	{d,debug}	to	set	the	debug	flag,	?
Assign(Var,Exp)	will	perform	the	assignment	and	print	out	the	diagnostic	code.
Conversely,	leaving	the	debug	flag	unset	by	default	or	clearing	it	through
{u,debug}	will	cause	the	program	to	do	the	assignment	without	executing	the	io
expression.

Upgrading	Modules
One	of	the	advantages	of	dynamic	typing	is	the	ability	to	upgrade	your	code
during	runtime,	without	the	need	to	take	down	the	system.	One	second,	you	are
running	a	buggy	version	of	a	module,	but	you	can	load	a	fix	without	terminating
the	process	and	it	starts	running	the	fixed	version,	retaining	its	state	and
variables	(Figure	2-4).	This	works	not	only	for	bugs,	but	also	for	upgrades	and
new	features.	This	is	a	crucial	property	for	a	system	that	needs	to	guarantee
“five-nines	availability”	—	i.e.,	99.999%	uptime	including	upgrades	and
maintenance.

Figure	2-4.	A	software	upgrade

At	any	one	time,	two	versions	of	a	module	may	exist	in	the	virtual	machine:	the
old	and	current	versions.	Frame	1	in	Figure	2-4	shows	PidA	executing	in	the
current	version	of	module	B.	In	Frame	2,	new	code	for	the	module	B	is	loaded,
either	by	compiling	the	module	in	the	shell	or	by	explicitly	loading	it.	After	you
load	the	module,	PidA	is	still	linked	to	the	same	version	of	B,	which	has	now
become	the	old	version.	But	the	next	time	PidA	makes	a	fully	qualified	call	to	a
function	in	module	B,	a	check	will	be	made	to	ensure	that	PidA	is	running	the
latest	version	of	the	code.	(If	you	recall	from	earlier	in	this	chapter,	a	fully
qualified	call	is	one	where	the	module	name	is	prefixed	to	the	function	name.)	If
the	process	is	not	running	the	latest	version,	the	pointer	to	the	code	will	be
switched	to	the	new	current	version,	as	shown	in	Frame	3.	This	applies	to	all

functions	in	B,	not	just	the	function	whose	call	triggered	the	switch.	While	this	is
the	essence	of	a	software	upgrade,	let’s	go	through	the	fine	print	to	make	sure
you	understand	all	the	details:

Suppose	that	the	code	for	the	loop	of	a	running	process	is	itself	upgraded.
The	effect	depends	on	the	form	of	the	function	call.	If	the	function	call	is
fully	qualified	—	i.e.,	of	the	form	B:loop()	—	the	next	call	will	use	the
upgraded	code;	otherwise	(when	the	call	is	simply	loop()),	the	process	will
continue	to	run	the	old	code.

The	system	holds	only	two	versions	of	the	code,	so	suppose	that	process	p
is	still	executing	v(1)	of	module	B,	and	another	two	new	versions	v(2)	and
v(3)	are	loaded:	since	only	two	versions	may	be	present,	the	earliest	version
v(1)	will	be	purged,	and	any	process	(such	as	p)	looping	in	that	version	of
the	module	will	be	unconditionally	terminated.

New	code	can	be	loaded	in	a	number	of	ways.	Compiling	the	module	will
cause	code	to	be	reloaded;	this	can	be	initiated	in	the	shell	by	c(Module)	or
by	calling	the	Erlang	function	compile:file(Module).	Code	can	also	be
loaded	explicitly	in	the	shell	by	l(Module)	or	by	a	call	to
code:load_file(Module).	In	general,	code	is	loaded	by	calling	a	function
in	a	module	that	is	not	already	loaded.	This	causes	the	compiled	code,	a
.beam	file,	to	be	loaded,	and	for	that	to	happen	the	code	has	to	have	been
already	compiled,	perhaps	using	the	erlc	command-line	tool.	Note	that
recompiling	a	module	with	erlc	does	not	cause	it	to	be	reloaded.

While	old	code	is	purged	when	a	new	version	is	loaded,	it	is	possible	to	call
code:purge(Module)	explicitly	to	purge	an	old	version	(without	loading	a
new	version).	This	has	the	effect	of	terminating	all	processes	running	the
old	code	before	removing	the	code.	The	call	returns	true	if	any	processes
were	indeed	terminated,	and	false	if	none	were.	Calling
code:soft_purge(Module)	will	remove	the	code	only	if	no	processes	were
running	it:	the	result	is	true	in	that	case	and	false	otherwise.

ETS:	Erlang	Term	Storage
While	lists	are	an	important	data	type,	they	need	to	be	linearly	traversed	and,	as
a	result,	will	not	scale.	If	you	need	a	key-value	store	where	the	lookup	time	is
constant,	or	the	ability	to	traverse	your	keys	in	lexicographical	order,	Erlang
Term	Storage	(ETS)	tables	come	in	handy.	An	ETS	table	is	a	collection	of	Erlang
tuples,	keyed	on	a	particular	position	in	the	tuple.

ETS	tables	come	in	four	different	kinds:

Set
Each	key-value	tuple	can	occur	only	once.

Bag
Each	key-value	tuple	combination	can	only	occur	once,	but	a	key	can
appear	multiple	times.

Duplicate	bag
Tuples	can	be	duplicated.

Ordered	set
These	have	the	same	restriction	as	sets,	but	the	tuples	can	be	visited	in	order
by	key.

Access	time	to	a	particular	element	is	in	constant	time,	except	for	ordered	sets,
where	access	time	is	proportional	to	the	logarithm	of	the	size	of	the	table	(O(log
n)	time).

Depending	on	the	options	passed	in	at	table	creation	(ets:new),	tables	have	one
of	the	following	traits:

public

Accessible	to	all	processes.

private

Accessible	to	the	owning	process	only.

protected

All	processes	can	read	the	table,	but	only	the	owner	can	write	to	it.

Tables	can	also	have	their	key	position	specified	at	creation	time	({keypos,N}).
This	is	mainly	useful	when	storing	records,	as	it	allows	the	developer	to	specify
a	particular	field	of	the	record	as	the	key.	The	default	key	position	is	1.

Normally,	programs	access	tables	through	the	table	ID	returned	by	the	call	to
new,	but	tables	can	also	be	named	when	created,	which	makes	them	accessible
by	name.

A	table	is	linked	to	the	process	that	creates	it,	and	is	deleted	when	that	process
terminates.	ETS	tables	are	in-memory	only,	but	long-lived	tables	are	provided	by
DETS	tables,	which	are	stored	on	disk	(hence	the	“D”).

Elementary	table	operations	are	shown	in	the	following	interaction:

1>	TabId	=	ets:new(tab,[named_table]).

tab

2>	ets:insert(tab,{haskell,	lazy}).

true

3>	ets:lookup(tab,haskell).

[{haskell,lazy}]

4>	ets:insert(tab,{haskell,	ghci}).

true

5>	ets:lookup(tab,haskell).

[{haskell,ghci}]

6>	ets:lookup(tab,racket).

[]

As	can	be	seen,	the	default	ETS	table	is	a	set,	so	that	the	insertion	at	line	4
overwrites	the	insertion	at	line	2,	and	the	table	is	keyed	at	the	first	position.	Note
also	that	looking	up	a	key	returns	a	list	of	all	the	tuples	matching	the	key.

Tables	can	be	traversed,	as	seen	here:

7>	ets:insert(tab,{racket,strict}).

true

8>	ets:insert(tab,{ocaml,strict}).

true

9>	ets:first(tab).

racket

10>	ets:next(tab,racket).

haskell

Since	tab	is	a	set	ETS,	the	elements	are	not	ordered	by	key;	instead,	their
ordering	is	determined	by	a	hash	value	internal	to	the	table	implementation.	In
the	example	here,	the	first	key	is	racket	and	the	next	is	haskell.	However,
using	first	and	next	on	an	ordered	set	will	give	traversal	in	order	by	key.	It	is

also	possible	to	extract	bulk	information	using	the	match	function:

11>	ets:match(tab,{'$1','$0'}).

[[strict,ocaml],[ghci,haskell],[strict,racket]]

12>	ets:match(tab,{'$1','_'}).

[[ocaml],[haskell],[racket]]

13>	ets:match(tab,{'$1',strict}).

[[ocaml],[racket]]

The	second	argument,	which	is	a	symbolic	tuple,	is	matched	against	the	tuples	in
the	ETS	table.	The	result	is	a	list	of	lists,	with	each	list	giving	the	values
matched	to	the	named	variables	'$0'	etc.,	in	ascending	order;	these	variables
match	any	value	in	the	tuple.	The	wildcard	value	'_'	also	matches	any	value,	but
its	argument	is	not	reported	in	the	result.

Let’s	implement	code	that	uses	an	ETS	table	to	associate	phone	numbers	—	or
more	accurately,	mobile	subscriber	integrated	services	digital	network
(MSISDN)	numbers	—	to	pids	in	a	module	called	hlr.	We	create	the
associations	when	phones	attach	themselves	to	the	network	and	delete	them
when	they	detach.	We	then	allow	users	to	look	up	the	pid	associated	with	a
particular	phone	number	as	well	as	the	number	associated	with	a	pid.	Read
through	this	code,	as	we	use	it	as	part	of	a	larger	example	in	later	chapters:

-module(hlr).

-export([new/0,	attach/1,	detach/0,	lookup_id/1,	lookup_ms/1]).

new()	->

				ets:new(msisdn2pid,	[public,	named_table]),

				ets:new(pid2msisdn,	[public,	named_table]),

				ok.

attach(Ms)	->

				ets:insert(msisdn2pid,	{Ms,	self()}),

				ets:insert(pid2msisdn,	{self(),	Ms}).

detach()	->

				case	ets:lookup(pid2msisdn,	self())	of

								[{Pid,	Ms}]	->

												ets:delete(pid2msisdn,	Pid),

												ets:delete(msisdn2pid,	Ms);

								[]	->

												ok

				end.

lookup_id(Ms)	->

				case	ets:lookup(msisdn2pid,	Ms)	of

								[]	->	{error,	invalid};

								[{Ms,	Pid}]	->	{ok,	Pid}

				end.

lookup_ms(Pid)	->

				case	ets:lookup(pid2msisdn,	Pid)	of

								[]	->	{error,	invalid};

								[{Pid,	Ms}]	->	{ok,	Ms}

				end.

In	our	test	run	of	the	module,	the	shell	process	attaches	itself	to	the	network
using	the	number	12345.	We	look	up	the	mobile	handset	using	both	the	number
and	the	pid,	after	which	we	detach.	When	reading	the	code,	note	that	we	are
using	a	named	public	table,	meaning	any	process	can	read	and	write	to	it	as	long
as	they	know	the	table	name:

2>	hlr:new().

ok

3>	hlr:attach(12345).

true

4>	hlr:lookup_ms(self()).

{ok,12345}

5>	hlr:lookup_id(12345).

{ok,<0.32.0>}

6>	hlr:detach().

true

7>	hlr:lookup_id(12345).

{error,invalid}

Distributed	Erlang
All	of	the	examples	we	have	looked	at	so	far	execute	on	a	single	virtual	machine,
also	referred	to	as	a	node.	Erlang	has	built-in	semantics	allowing	programs	to
run	across	multiple	nodes:	processes	can	transparently	spawn	processes	on	other
nodes	and	communicate	with	them	using	message	passing.	Distributed	nodes	can
reside	either	on	the	same	physical	or	virtual	host	or	on	different	ones.

This	programming	model	is	designed	to	support	scaling	and	fault	tolerance	on
systems	running	behind	firewalls	over	trusted	networks.	Out	of	the	box,	Erlang
distribution	is	not	designed	to	support	systems	operating	across	potentially
hostile	environments	such	as	the	Internet	or	shared	cloud	instances.	Because
different	systems	have	different	requirements	on	security,	no	one	size	fits	all.
Varying	security	requirements	can	easily	(or	not	so	easily)	be	addressed	if	you
provide	your	own	security	layers	and	authentication	mechanisms,	or	by
modifying	Erlang’s	networking	and	security	libraries.

Naming	and	Communication
In	order	for	an	Erlang	node	to	be	part	of	a	distributed	Erlang	system,	it	needs	to
be	given	a	name.	A	short	name	is	given	by	starting	Erlang	with	erl	-sname
node,	identifying	the	node	on	a	local	network	using	the	hostname.	On	the	other
hand,	starting	a	node	with	the	-name	flag	means	that	it	will	be	given	a	long	name
and	identified	by	the	fully	qualified	domain	name	or	IP	address.	In	a	particular
distributed	system,	all	nodes	must	be	of	the	same	kind,	i.e.,	all	short	or	all	long.

Processes	on	distributed	nodes	are	identified	in	precisely	the	same	way	as	local
nodes,	using	their	pids.	This	allows	constructs	such	as	Pid!Msg	to	send	messages
to	a	process	running	on	any	node	in	the	cluster.	On	the	other	hand,	registering	a
process	with	an	alias	is	local	to	each	host,	so	{bar,'foo@myhost'}!Msg	is	used
to	send	the	message	Msg	to	the	process	named	bar	on	the	node	'foo@myhost'.
Note	the	form	of	this	node	identifier:	it	is	a	combination	of	foo	(the	name	of	the
node)	and	myhost	(the	short	or	local	network	name	of	the	host	on	which	the	node
foo	is	running).

You	can	spawn	and	link	to	processes	on	any	node	in	the	system,	not	just	locally,
using	link(Pid),	spawn(Node,	Mod,	Fun,	Args),	and	spawn_link.	If	the	call	is
successful,	link	will	return	the	atom	true,	while	spawn	returns	the	pid	of	the
process	on	the	remote	host.

WARNING
Code	is	not	automatically	deployed	remotely	for	you!	If	you	spawn	a	process	remotely,	it	is
your	responsibility	to	ensure	that	the	compiled	code	for	the	spawned	process	is	already
available	on	the	remote	host,	and	that	it	is	placed	in	the	search	path	for	the	node	on	that	host.

Node	Connections	and	Visibility
In	order	to	communicate,	Erlang	nodes	must	share	a	secret	cookie.	By	default,
each	node	has	a	randomly	generated	cookie,	unless	there	is	already	a	value
stored	in	the	.erlang.cookie	file	in	your	home	directory.	If	this	file	does	not	exist,
it	is	created	the	first	time	you	start	a	distributed	Erlang	node,	and	populated	with
a	random	sequence	of	characters.	This	behavior	can	be	overridden	by	starting	the
node	with	the	-setcookie	Cookie	flag,	where	Cookie	is	the	cookie	value.
Cookie	values	can	also	be	changed	within	a	program	by	calling
erlang:set_cookie(Node,	Cookie).

In	an	Erlang	distributed	system,	by	default,	all	nodes	know	about	and	can
interact	with	all	others	so	long	as	they	share	a	cookie.	However,	starting	a	node
with	the	-hidden	flag	leaves	it	unconnected	to	anything	initially,	and	any
connections	that	it	needs	to	make	have	to	be	set	up	by	hand.	The	net_kernel
module	allows	fine-grained	control	of	this	and	other	aspects	of	interconnections.
Hidden	nodes	can	have	a	variety	of	uses,	including	operations	and	maintenance,
as	well	as	serving	as	bridges	between	different	node	clusters.

Messages	between	two	processes	on	different	nodes	are	guaranteed	to	be
delivered	in	order:	the	difference	in	a	distributed	system	is	that	it	is	possible	for	a
remote	node	to	go	down.	A	general	mechanism	for	dealing	with	this	is	to
monitor	whether	or	not	the	remote	node	is	alive.	This	is	different	from
monitoring	a	local	process,	described	in	“Monitors”.	Here’s	an	example:

monitor_node(Node,	true),

{serve,	Node}	!	{self(),	Msg},

receive

				{ok,	Resp}	->

								monitor_node(Node,	false),

								<handle	process	response>;		%	Pseudocode	to	handle	the	process	response

				{nodedown,	Node}	->

								<handle	lack	of	response>			%	Pseudocode	to	handle	lack	of	response

end.

In	this	fragment,	a	message	—	such	as	a	remote	procedure	call	—	is	sent	to	the
serve	process	on	Node.	Before	sending	the	request,	Node	is	monitored,	so	that	if
the	node	goes	down,	a	{nodedown,	Node}	message	will	be	received,	and	the	lack
of	response	can	be	handled.	Once	a	response	(Resp)	is	successfully	received,	the

code	switches	off	monitoring	before	processing	the	response.	You	can	also	use
the	monitor_node/2,3	BIFs	to	get	notifications	of	the	health	of	remote	nodes.

To	test	distributed	communications,	start	two	distributed	Erlang	nodes	using
different	names,	but	the	same	cookie:

	erl	-sname	foo	-setcookie	abc

	erl	-sname	bar	-setcookie	abc

In	the	following	sequence,	shell	command	1	pings	the	remote	node,	creating	a
connection.	Shell	command	2	looks	up	all	of	the	connected	nodes	using	the
nodes()	BIF,	binding	the	remote	node	to	the	variable	Node.	Shell	command	4
spawns	a	process	on	the	remote	node,	which	sends	the	shell	process	on	our	local
node	its	pid.	We	receive	that	pid	in	command	5	and	inspect	its	node	of	origin	in
command	6	using	the	node/1	BIF.	Shell	command	7	spawns	a	process	on	a
remote	node,	sending	the	node	identifier	back	to	the	local	node.	Note	how	node
names	are	atoms,	and	thus	are	defined	within	single	quotes:

$	erl	-sname	bar	-setcookie	abc

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

(bar@macbook-pro-2)1>	net_adm:ping('foo@macbook-pro-2').

pong

(bar@macbook-pro-2)2>	[Node]	=	nodes().

['foo@macbook-pro-2']

(bar@macbook-pro-2)3>	Shell	=	self().	

<0.38.0>

(bar@macbook-pro-2)4>	spawn(Node,	fun()	->	Shell	!	self()	end).

<5985.46.0>

(bar@macbook-pro-2)5>	receive	Pid	->	Pid	end.

<5985.46.0>

(bar@macbook-pro-2)6>	node(Pid).

'foo@macbook-pro-2'

(bar@macbook-pro-2)7>	spawn(Node,	fun()	->	Shell	!	node()	end).

<5985.47.0>

(bar@macbook-pro-2)8>	flush().

Shell	got	'foo@macbook-pro-2'

ok

Summing	Up
In	this	chapter,	we’ve	given	an	overview	of	the	basics	of	Erlang	we	believe	are
important	for	understanding	the	examples	in	the	remainder	of	the	book.	The
concurrency	model,	error-handling	semantics,	and	distributed	processing	not
only	make	Erlang	a	powerful	tool,	but	are	the	foundation	of	OTP’s	design.
Module	upgrades	during	runtime	is	just	the	icing	on	the	cake.	Before	you
progress,	be	warned	that	the	better	you	understand	the	internals	of	Erlang,	the
more	you	are	going	to	get	out	of	the	OTP	design	principles	and	this	book.	We
provide	many	more	examples	written	in	pure	Erlang,	which	for	some	might	be
enough	to	understand	the	OTP	rationale.	Try	moving	ahead,	but	if	you	find
yourself	struggling,	we	suggest	reading	Erlang	Programming,	published	by
O’Reilly	and	coauthored	by	one	of	the	authors	of	this	book.	The	current	book
can	be	seen	as	a	continuation	of	Erlang	Programming,	expanding	many	of	the
original	examples	from	that	book.	Other	great	titles	that	will	also	do	the	trick
include	Simon	St.	Laurent’s	Introducing	Erlang,	also	published	by	O’Reilly;
Fred	Hébert’s	Learn	You	Some	Erlang	for	Great	Good!	from	No	Starch	Press
(and	also	available	online	free	of	charge);	and	Programming	Erlang,	written	by
Erlang	coinventor	Joe	Armstrong	and	published	by	The	Pragmatic	Bookshelf.

What’s	Next?
In	the	upcoming	chapters,	we	introduce	process	design	patterns	and	OTP
behaviors.	We	start	by	providing	an	Erlang	example	of	a	client-server
application,	breaking	it	up	into	generic	and	specific	parts.	The	generic	parts	are
those	that	can	be	reused	from	one	client-server	application	to	another	and	are
packaged	in	library	modules.	The	specific	parts	are	those	that	are	project-specific
and	have	to	be	implemented	for	the	individual	client-server	applications.	In
Chapter	4,	we	migrate	the	code	to	an	OTP-based	generic	server	behavior,
introducing	the	first	building	block	of	Erlang-based	systems.	As	more	behaviors
are	introduced	in	the	subsequent	chapters,	it	will	become	clear	how	Erlang
systems	are	architected	and	glued	together.

But	uglier,	as	we	are	using	a	case	expression	instead	of	pattern	matching	in	the	function	head.

You	should	thank	us	for	this	example.	When	still	a	student,	one	of	the	authors	spent	two	sleepless	nights
trying	to	figure	this	one	out	after	Joe	Armstrong	told	him	it	was	possible	to	solve	it	with	four	lines	of
code.

1

2

Chapter	3.	Behaviors

As	a	prelude	to	learning	how	to	structure	our	process	supervision	trees	and
architect	our	concurrency	models,	let’s	spend	some	time	understanding	the
underlying	principles	behind	behaviors.	Instead	of	diving	straight	into	the	world
of	interface	functions	and	callbacks,	we	explain	what	goes	on	behind	the	scenes,
ensuring	you	use	OTP	behaviors	efficiently	and	understand	their	benefits	and
advantages.	So,	what	are	they?

Erlang	processes	that	solve	radically	different	tasks	follow	similar	design
patterns.	The	most	commonly	used	patterns	have	been	abstracted	and
implemented	in	a	set	of	generic	library	modules	called	the	OTP	behaviors.	When
reading	about	behaviors,	you	should	see	them	as	a	formalization	of	process
design	patterns.

Although	the	strict	concept	of	design	patterns	used	in	object-oriented
programming	hasn’t	been	applied	to	Erlang,	OTP	provides	a	powerful,	reusable
solution	for	concurrent	processes	that	hides	and	abstracts	away	all	of	the	tricky
aspects	and	borderline	conditions.	It	ensures	that	projects	do	not	have	to	reinvent
the	wheel,	while	maximizing	reusability	and	maintainability	through	a	solid,
well-tested,	generic,	and	reusable	code	base.	These	behaviors	are,	in	“design
pattern	speak,”	implementation	libraries	of	the	concurrency	models.

Process	Skeletons
If	you	try	to	picture	an	Erlang	process	managing	a	key-value	store	and	a	process
responsible	for	managing	the	window	of	a	complex	GUI	system,	they	might	at
first	glance	appear	very	different	in	functionality	and	to	have	very	little	in
common.	That	is	often	not	the	case,	though,	as	both	processes	will	share	a
common	lifecycle.	Both	will:

Be	spawned	and	initialized

Repeatedly	receive	messages,	handle	them,	and	send	replies

Be	terminated	(normally	or	abnormally)

Processes,	irrespective	of	their	purpose,	have	to	be	spawned.	Once	spawned,
they	will	initialize	their	state.	The	state	will	be	specific	to	what	that	particular
process	does.	In	the	case	of	a	window	manager,	it	might	draw	the	window	and
display	its	contents.	In	the	case	of	a	key-value	store,	it	might	create	the	empty
table	and	fill	it	with	data	stored	in	backup	files	or	populate	it	using	other	tables
spread	across	a	distributed	cluster	of	nodes.

Once	the	process	has	been	initialized,	it	is	ready	to	receive	events.	These	events
could,	in	the	case	of	the	window	manager,	be	keystrokes	in	the	window	entry
boxes,	button	clicks,	or	menu	item	selections.	They	could	also	be	dragging	and
dropping	of	widgets,	effectively	moving	the	window	or	objects	within	it.	Events
would	be	programmed	as	Erlang	messages.	Upon	receiving	a	particular	message,
the	process	would	handle	the	request	accordingly,	evaluating	the	content	and
updating	its	internal	state.	Keystrokes	would	be	displayed	and	clicking	buttons
or	choosing	menu	items	would	result	in	window	updates,	while	dragging	and
dropping	would	result	in	objects	being	moved	across	the	screen.	A	similar
analogy	could	be	given	for	the	key-value	store.	Asynchronous	messages	could
be	sent	to	insert	and	delete	elements	in	the	tables,	and	synchronous	messages	—
messages	that	wait	for	a	reply	from	the	receiver	—	could	be	used	to	look	up
elements	and	return	their	values	to	the	client.

Finally,	processes	will	terminate.	A	user	might	have	picked	the	Close	entry	in	the
menus	or	clicked	on	the	Destroy	button.	If	that	happens	in	the	window	manager,

resources	allocated	to	that	window	have	to	be	released	and	the	window	hidden	or
shut	down.	Once	the	cleanup	procedure	is	completed,	there	will	be	no	more	code
for	the	process	to	execute,	so	it	should	terminate	normally.	In	the	case	of	the	key-
value	store,	a	stop	message	might	have	been	sent	to	the	process,	resulting	in	the
table	being	backed	up	on	another	node	or	saved	on	a	persistent	medium.

Abnormal	termination	of	the	process	might	also	occur,	as	a	result	of	a	trapped
exception	or	an	exit	signal	from	one	of	the	processes	in	the	link	set.	Where
possible,	if	caught	through	a	trap_exit	flag	or	a	try-catch	expression,	the
exception	should	prompt	the	process	to	call	the	same	set	of	commands	that
would	have	been	called	as	a	result	of	a	normal	termination.	We	say	“where
possible,”	as	the	power	cord	of	the	computer	might	have	been	pulled	out,	the
hard	drive	might	have	failed,	the	administrator	might	have	tripped	over	the
network	cable,	or	the	process	might	have	been	terminated	unconditionally
through	an	exit	signal	with	the	reason	kill.

Figure	3-1	shows	a	typical	process	flow	diagram	outlining	the	lifecycle	of	a
process.

Figure	3-1.	The	process	skeleton

As	we’ve	described,	even	if	processes	perform	different	tasks,	they	will	perform
these	tasks	in	a	similar	way,	following	particular	patterns.	As	a	result	of

following	these	patterns,	processes	share	a	similar	code	base.	A	typical	Erlang
process	loop,	which	has	to	be	started,	must	handle	events,	and	is	finally
terminated,	might	look	like	this:

start(Args)	->																									%	Start	the	server.

				spawn(server,	init,	[Args]).

init(Args)	->																										%	Initialize	the	internal	process	state.

				State	=	initialize_state(Args),

				loop(State).

loop(State)	->																									%	Receive	and	handle	messages.

				receive

								{handle,	Msg}	->

												NewState	=	handle(Msg,	State),

												loop(NewState);

								stop	->

												terminate(State)											%	Stop	the	process.

				end.

terminate(State)	->																				%	Clean	up	prior	to	termination.

				clean_up(State).

This	pattern	is	typical	of	a	client-server	behavior.	The	server	is	started,	then	it
receives	requests	in	the	handle/2	function,	where	necessary	sends	replies,
changes	the	state,	and	loops	ready	to	handle	the	next	incoming	message.	Upon
receiving	a	stop	message,	the	process	terminates	after	having	cleaned	up	its
resources.

Although	we	say	that	this	is	typical	Erlang	client-server	behavior,	it	is	in	fact	the
pattern	behind	all	patterns.	It	is	so	common	that	even	code	written	without	the
OTP	behavior	libraries	tends	to	use	the	same	function	names.	This	allows
anyone	reading	the	code	to	know	that	the	process	state	is	initialized	in	init/1,
that	messages	are	received	in	loop/1	and	individually	handled	in	the	handle/2
call,	and	finally,	that	any	cleaning	up	of	resources	is	managed	in	the
terminate/1	function.	Someone	trying	to	maintain	the	code	later	will
understand	the	basic	behavior	without	needing	any	knowledge	of	the
communication	protocol,	underlying	architecture,	or	process	structure.

Design	Patterns
Let’s	start	drilling	down	into	a	more	detailed	example,	focusing	on	client-server
architectures	implemented	in	Erlang.	Clients	and	servers	are	represented	as
Erlang	processes,	with	their	requests	and	replies	sent	as	messages.	Have	a	look
at	Figure	3-2	and	think	of	examples	of	client-server	architectures	that	you	have
worked	with	or	read	about,	preferably	architectures	with	few	similarities	among
them	(as	in	our	examples	of	a	key-value	store	and	a	window	manager).	Focusing
on	Erlang	constructs	and	patterns	in	the	code	of	these	applications,	try	to	list	the
similarities	and	differences	between	the	implementations.	Ask	yourself	which
parts	of	the	code	are	generic	and	which	parts	are	specific.	What	code	is	unique	to
that	particular	solution,	and	what	code	could	be	reused	in	other	client-server
applications?

Figure	3-2.	The	client-server	process	architecture

Let’s	give	you	a	hint	in	the	right	direction:	sending	a	client	request	to	a	server
will	be	generic.	It	can	be	done	in	a	uniform	manner	across	any	client-server
architecture,	irrespective	of	what	the	server	does.	What	will	be	specific,
however,	are	the	contents	of	that	message.

We	start	off	by	spawning	a	server.	Creating	a	process	that	calls	the	init/1
function	is	generic.	What	is	specific	are	the	arguments	passed	to	the	call	and	the
expressions	in	the	function	that	initialize	the	process	state	returning	the	loop
data.	The	loop	data	plays	the	role	of	a	variable	that	stores	process	data	between
calls.

Storing	the	loop	data	in	between	calls	will	be	the	same	from	one	process	to
another,	but	the	loop	data	itself	will	be	specific.	It	changes	not	only	according	to
the	particular	task	the	process	might	execute,	but	for	each	particular	instance	of
the	task.

Sending	a	request	to	the	server	will	be	generic,	as	is	the	client-server	protocol
used	to	manage	replies.	What	is	specific	are	the	types	and	contents	of	the
requests	sent	to	the	server,	how	they	are	handled,	and	the	responses	sent	back	to
the	client.	While	the	response	is	specific,	sending	it	back	to	the	client	process	is
handled	generically.

It	should	be	possible	to	stop	servers.	While	sending	a	stop	message	or	handling
an	exception	or	EXIT	signal	is	generic,	the	functions	called	to	clean	up	the	state
prior	to	termination	will	be	specific.

Table	3-1	summarizes	which	parts	of	a	client-server	architecture	are	generic	and
which	parts	are	specific.

Table	3-1.	Client-server	generic	and	specific	code

Generic Specific

Spawning	the	server

Storing	the	loop	data

Sending	requests	to	the	server

Sending	replies	to	the	client

Receiving	server	replies

Stopping	the	server

Initializing	the	server	state

The	loop	data

The	client	requests

Handling	client	requests

Contents	of	server	reply

Cleaning	up

Callback	Modules
The	idea	behind	OTP	behaviors	is	to	split	up	the	code	into	two	modules:	one	for
the	generic	pattern,	referred	to	as	the	behavior	module,	and	one	for	specifics,
referred	to	as	the	callback	module	(Figure	3-3).	The	generic	behavior	module
can	be	seen	as	the	driver.	While	it	doesn’t	know	anything	about	what	the
callback	module	does,	it	is	aware	of	a	set	of	exported	callback	functions	it	has	to
invoke	and	the	format	of	their	return	values.	The	callback	module	isn’t	aware	of
what	the	generic	module	does	either;	it	only	complies	with	the	format	of	the	data
it	has	to	return	when	its	callback	functions	are	invoked.

Figure	3-3.	The	callback	module

Another	way	of	explaining	this	is	as	a	contract	between	the	behavior	and
callback	modules.	They	have	to	agree	on	a	set	of	names	and	types	for	the
functions	in	the	callback	API	and	respect	the	return	values.

The	behavior	module	contains	all	of	the	generic	functionality	reused	from	one
implementation	to	another.	Behaviors	are	provided	by	OTP	as	library	modules.
The	callback	module	is	implemented	by	the	application	developer.	It	contains	all
of	the	specific	code	for	the	implementation	of	that	particular	process.

OTP	provides	five	behaviors	that	cover	the	majority	of	all	cases.	They	are:

Generic	server
Used	to	model	client-server	behaviors

Generic	finite	state	machine
Used	for	FSM	programming

Generic	event	handler/manager
Used	for	writing	event	handlers

Supervisor
Used	for	fault-tolerant	supervision	trees

Application
Used	to	encapsulate	resources	and	functionality

Generic	servers	are	the	most	commonly	used	behavior.	They	are	used	to	model
processes	using	the	client-server	architecture,	including	the	examples	of	the	key-
value	store	and	the	window	manager	we’ve	already	discussed.

Generic	FSM	behaviors	provide	all	of	the	generic	constructs	needed	when
working	with	FSMs.	Developers	commonly	use	FSMs	to	implement	automated
control	systems,	protocol	stacks,	and	decision-making	systems.	The	code	for	the
FSMs	can	be	implemented	manually	or	generated	by	another	program.

Generic	event	handlers	and	managers	are	used	for	event-driven	programming,
where	events	are	received	as	messages	and	one	or	more	actions	(called	handlers)
are	applied	to	them.	Typical	examples	of	handler	functionality	include	logging,
metrics	gathering,	and	alarming.

You	can	view	handlers	as	a	publish-subscribe	communication	layer,	where
publishers	are	processes	sending	events	of	a	specific	type	and	subscribers	are
consumers	who	do	something	with	the	events.

A	supervisor	is	a	behavior	whose	only	tasks	are	to	start,	stop,	and	monitor	its
children,	which	can	be	workers	as	well	as	other	supervisors.	Allowing
supervisors	to	monitor	other	supervisors	results	in	process	structures	we	call
supervision	trees.	We	cover	supervision	trees	in	the	upcoming	chapters.
Supervisors	restart	children	based	on	configuration	parameters	defined	in	the
callback	functions.

Supervision	trees	are	packaged	in	a	behavior	we	call	an	application.	The
application	starts	the	top-level	supervisor,	encapsulating	processes	that	depend
on	each	other	into	the	main	building	blocks	of	an	Erlang	node.

Generic	servers,	FSMs,	and	event	handlers	are	examples	of	workers:	processes
that	perform	the	bulk	of	the	computations.	They	are	held	together	by	supervisors

and	application	behaviors.	If	you	need	other	behaviors	not	included	as	part	of	the
standard	library,	you	can	implement	them	following	a	set	of	specific	rules	and
directives	explained	in	Chapter	10.	We	call	them	special	processes.

Now	you	might	be	wondering:	what	is	the	point	of	adding	a	layer	of	complexity
to	our	software?	The	reasons	are	many.	Using	behaviors,	we	are	reducing	the
code	base	while	creating	a	standardized	programming	style	needed	when
developing	software	in	the	large.	By	encapsulating	all	of	the	generic	design
patterns	in	library	modules,	we	reuse	code	while	reducing	the	development
effort.	The	behavior	libraries	we	use	consist	of	a	solid,	well-tested	base	that	has
been	used	in	production	systems	since	the	mid-90s.	They	cover	all	the	tricky
aspects	of	concurrency,	hiding	them	from	the	programmer.	As	a	result,	the	final
system	will	have	fewer	bugs1	while	being	built	on	a	fault-tolerant	base.	The
behaviors	have	built-in	functionality	such	as	logs,	tracing,	and	statistics,	and	are
extensible	in	a	generic	way	across	all	processes	using	that	behavior.

Another	important	advantage	of	using	behaviors	is	that	they	promote	a	common
programming	style.	Anyone	reading	the	code	in	a	callback	module	will
immediately	know	that	the	process	state	is	initialized	in	the	init	function,	and
that	terminate	contains	the	cleanup	code	executed	whenever	the	process	is
stopped.	They	will	know	how	the	communication	protocol	will	work,	how
processes	are	restarted	in	case	of	failure,	and	how	supervision	trees	are
packaged.	Especially	when	programming	in	the	large,	this	approach	allows
anyone	reading	the	code	to	focus	on	the	project	specifics	while	using	their
existing	knowledge	of	the	generics.	This	common	programming	style	also	brings
a	component-based	terminology	to	the	table,	giving	potentially	distributed	teams
a	way	to	package	their	deliverables	and	use	a	standard	vocabulary	to
communicate	with	each	other.	At	the	end	of	the	day,	much	more	time	is	spent
reading	and	maintaining	code	than	writing	it.	Making	code	easy	to	understand	is
imperative	when	dealing	with	complex	systems	that	never	fail.

So,	with	lots	of	advantages,	what	are	the	disadvantages?	Learning	to	use
behaviors	properly	and	proficiently	can	be	difficult.	It	takes	time	to	learn	how	to
properly	create	systems	using	OTP	design	principles,	but	as	documentation	has
improved,	training	courses	and	books	have	become	available,	and	tools	have
been	written,	this	has	become	less	of	an	issue.	Just	the	fact	that	you	are	reading	a
book	dedicated	largely	to	OTP	says	it	all.

Behaviors	add	a	few	layers	to	the	call	chain,	and	slightly	more	data	will	be	sent
with	every	message	and	reply.	While	this	might	affect	performance	and	memory
usage,	in	most	cases	the	impact	will	be	negligible,	especially	considering	the
improvement	in	quality	and	free	functionality.	What	is	the	point	of	writing	code
that	is	fast	but	buggy?	The	small	increase	in	memory	usage	and	reduction	in
performance	is	a	small	price	to	pay	for	reliability	and	fault	tolerance.	The	rule	of
thumb	is	to	always	start	with	behaviors,	and	optimize	when	bottlenecks	occur.
You	will	find	that	optimizations	as	a	result	of	inefficient	behavior	code	are	rarely
if	ever	needed.

Extracting	Generic	Behaviors
Having	introduced	behaviors,	let’s	look	at	a	familiar	client-server	example
written	in	pure	Erlang	without	using	behaviors.	We	use	the	frequency	server
featured	in	the	Erlang	Programming	book	and	implemented	in	the	frequency
module.	No	worries	if	you	have	not	read	the	book	and	are	not	familiar	with	it;
we	explain	what	it	does	as	we	go	along.	The	server	is	a	frequency	allocator	for
cell	phones.	When	a	phone	connects	a	call,	it	needs	to	have	a	frequency	allocated
for	it	to	use	as	a	communication	channel	for	that	conversation.	The	client	holds
this	frequency	until	the	call	is	terminated,	after	which	the	frequency	is
deallocated,	allowing	other	subscribers	to	reuse	it	(Figure	3-4).

As	this	is	the	first	major	Erlang	example	in	the	book,	we	step	through	it	in	more
detail	than	usual.	In	the	subsequent	chapters,	we	speed	up	the	pace,	so	if	your
Erlang	is	a	bit	rusty,	take	this	opportunity	to	get	up	to	speed.	Here,	we	take	the
code	from	the	frequency	server	example,	find	the	generic	parts	embedded	in	the
module,	and	extract	them	into	a	library	module.	The	outcome	will	be	two
modules:	one	containing	generic	reusable	code,	the	other	containing	specific
code	with	the	frequency	server’s	business	logic.

Figure	3-4.	The	frequency	server

The	clients	and	server	are	represented	as	Erlang	processes,	and	the	exchange	of
information	between	them	occurs	via	message	passing	hidden	behind	a
functional	interface.	The	functional	interface	used	by	the	clients	contains	the
functions	allocate/0	and	deallocate/1:

allocate()	->	{ok,	Frequency}	|	{error,	no_frequency}

deallocate(Frequency)	->	ok

The	allocate/0	function	returns	the	result	{ok,	Frequency}	if	there	is	at	least
one	available	frequency.	If	all	frequencies	are	in	use,	the	tuple	{error,
no_frequency}	is	returned	instead.	When	the	client	is	done	with	a	phone	call,	it
can	release	the	frequency	it’s	using	by	making	a	function	call	to	deallocate/1,

passing	the	Frequency	in	use	as	an	argument.

We	start	the	server	with	the	start/0	call,	later	terminating	it	with	stop/0:

start()->	true

stop()	->	ok

The	server	is	registered	statically	with	the	alias	frequency,	so	no	pids	need	to	be
saved	and	used	for	message	passing.

A	trial	run	of	the	frequency	module	from	the	shell	might	look	like	this.	We	start
the	server,	allocate	all	six	available	frequencies,	and	fail	to	allocate	a	seventh
one.	Only	by	deallocating	frequency	11	are	we	then	able	to	allocate	a	new	one.
We	terminate	the	trial	run	by	stopping	the	server:

1>	frequency:start().

true

2>	frequency:allocate(),	frequency:allocate(),	frequency:allocate(),

			frequency:allocate(),frequency:allocate(),	frequency:allocate().	

{ok,15}

3>	frequency:allocate().	

{error,no_frequency}

4>	frequency:deallocate(11).

ok

5>	frequency:allocate().

{ok,11}

6>	frequency:stop().

ok

If	you	need	a	deeper	understanding	of	the	code,	feel	free	to	download	the
module	from	the	book’s	code	repository	and	run	the	example.	Next,	we	go
through	the	code	in	detail,	explain	what	it	does,	and	separate	out	the	generic	and
the	specific	parts.

Starting	the	Server
Let’s	begin	with	the	functions	used	to	create	and	initialize	the	server.	The
start/0	function	spawns	a	process	that	calls	the	frequency:init/0	function,
registering	it	with	the	frequency	alias.	The	init	function	initializes	the	process
state	with	a	tuple	containing	the	list	of	available	frequencies,	conveniently
hardcoded	in	the	get_frequencies/0	function,	and	the	list	of	allocated
frequencies,	represented	by	the	empty	list.	We	bind	the	frequency	tuple,	referred
to	in	the	rest	of	the	example	as	the	process	state	or	loop	data,	to	the
Frequencies	variable.	The	process	state	variable	changes	with	every	iteration	of
the	loop	when	available	frequencies	are	moved	between	the	lists	of	allocated	and
available	ones.

Note	how	we	export	the	init/0	function,	because	it	is	passed	as	an	argument	to
the	spawn	BIF,	and	how	we	register	the	server	process	with	the	same	name	as	the
module.	The	latter,	while	not	mandatory,	is	considered	a	good	Erlang
programming	practice	as	it	facilitates	debugging	and	troubleshooting	live
systems:

-module(frequency).

-export([start/0,	stop/0,	allocate/0,	deallocate/1]).

-export([init/0]).

start()	->	register(frequency,	spawn(frequency,	init,	[])).

init()	->

				Frequencies	=	{get_frequencies(),	[]},

				loop(Frequencies).

get_frequencies()	->	[10,11,12,13,14,15].

Have	a	look	at	the	preceding	code	and	try	to	spot	the	generic	expressions.	Which
expressions	will	not	change	from	one	client-server	implementation	to	another?

Starting	with	the	export	directives,	you	always	have	to	start	and	stop	servers,
irrespective	of	what	they	do.	So,	we	consider	these	functions	to	be	generic.	Also
generic	are	the	spawning,	registering,	and	calling	of	an	initialization	function
containing	the	expressions	used	to	initialize	the	process	state.	The	process	state
will	be	bound	to	a	variable	and	passed	to	the	process	loop.	Note,	however,	that
while	the	functions	and	BIFs	might	be	considered	generic,	expressions	in	the

functions	and	arguments	passed	to	them	aren’t.	They	will	differ	between
different	client-server	implementations.	We’ve	highlighted	all	the	parts	we
consider	generic	in	the	following	code	example:

-module(frequency).

-export([start/0,	stop/0,	allocate/0,	deallocate/1]).

-export([init/0]).

start()	->

				register(frequency,	spawn(frequency,	init,	[])).

init()	->

				Frequencies	=	{get_frequencies(),	[]},

				loop(Frequencies).

get_frequencies()	->	[10,11,12,13,14,15].

From	the	generic,	let’s	move	on	to	the	specific,	which	is	the	nonhighlighted	code
in	the	previous	example.	The	first	server-specific	detail	that	stands	out	in	the
example	is	the	module	name	frequency.	Module	names	obviously	differ	from
one	server	implementation	to	another.	The	client	functions	allocate/0	and
deallocate/1	are	also	specific	to	this	particular	client-server	application,	as	you
will	probably	not	find	them	in	a	window	manager	or	a	key-value	store	(and	if
they	did	happen	to	share	the	same	name,	the	functions	would	be	doing
something	completely	different).	Although	starting	the	server,	spawning	the
server	process,	and	registering	it	are	generic,	the	registered	name	and	module
containing	the	init	function	are	considered	specific.

The	arguments	passed	to	the	init	function	are	also	specific.	In	our	example,	we
are	not	passing	any	arguments	(hence	the	arity	0),	but	that	could	change	in	other
client-server	implementations.	The	expressions	in	the	init/0	function	are	used
to	initialize	the	process	state.	Initializing	the	state	is	different	from	one
implementation	to	another.	Various	applications	might	initialize	window	settings
and	display	the	window,	create	an	empty	key-value	store,	and	upload	a	persistent
backup,	or,	in	this	example,	generate	a	tuple	containing	the	list	of	available
frequencies.

When	the	process	state	has	been	initialized,	it	is	bound	to	a	variable.	Storing	the
process	state	is	considered	generic,	but	the	contents	of	the	state	itself	are
specific.	In	the	code	example	that	follows,	we	highlight	the	Frequency	variable
as	specific.	This	means	that	the	content	of	the	variable	is	specific,	whereas	the

mechanism	of	passing	it	to	the	process	loop	is	generic.	Finally,	the
get_frequencies/0	call	used	in	init/0	is	also	specific.	In	a	real-world
implementation,	we	would	probably	read	the	frequencies	from	a	configuration
file	or	a	persistent	database,	or	through	a	query	to	the	base	stations.	For	the	sake
of	this	example,	we’ve	been	lazy	and	hardcoded	them	in	the	module.

Let’s	highlight	the	specific	code:

-module(frequency).

-export([start/0,	stop/0,	allocate/0,	deallocate/1]).

-export([init/0]).

start()	->

				register(frequency,	spawn(frequency,	init,	[])).

init()	->

				Frequencies	=	{get_frequencies(),	[]},

				loop(Frequencies).

get_frequencies()	->	[10,11,12,13,14,15].

Are	you	seeing	the	pattern	and	line	of	thought	we	are	emphasizing?	Let’s
continue	doing	the	same	with	the	rest	of	the	module,	starting	with	the	client
functions.

The	Client	Functions
We	refer	to	the	functions	called	by	client	processes	to	control	and	access	the
services	of	a	server	process	as	the	client	API.	It	is	always	good	practice,	for
readability	and	maintainability,	to	hide	message	passing	and	protocol	in	a
functional	interface.	The	client	functions	in	the	running	example	do	exactly	this.
In	fact,	we’ve	taken	it	a	step	further	here,	encapsulating	the	sending	of	requests
and	receiving	of	replies	in	the	call/1	and	reply/2	functions.	They	contain	code
that	otherwise	would	have	to	be	cloned	for	every	message	sent	and	received:

stop()	 									->	call(stop).

allocate()	 	->	call(allocate).

deallocate(Freq)	->	call({deallocate,	Freq}).

call(Message)	->

				frequency	!	{request,	self(),	Message},

				receive

	 {reply,	Reply}	->	Reply	end.

reply(Pid,	Reply)	->

				Pid	!	{reply,	Reply}.

The	stop/0	function	sends	the	atom	stop	to	the	server.	The	server,	upon
receiving	stop	in	its	receive-evaluate	loop,	interprets	it	and	takes	appropriate
action.	For	readability	and	maintainability	reasons,	it	is	good	practice	to	use
keywords	that	describe	what	we	are	trying	to	do,	but	for	all	it	matters,	we	could
have	used	the	atom	foobar,	as	it	is	not	the	name	of	the	atom	but	the	meaning	we
give	it	in	our	program	that	is	important.	In	our	case,	stop	ensures	a	normal
termination	of	the	process.	We	will	see	how	it	is	handled	later	in	the	example.

The	client	functions	allocate/0	and	deallocate/1	are	called	and	executed	in
the	scope	of	the	client	process.	The	client	sends	a	message	to	the	server	by
executing	one	of	the	client	functions	in	the	frequency	module.	The	message	is
passed	as	an	argument	to	the	call/1	function	and	bound	to	the	Message	variable.
The	Message	is	in	turn	inserted	in	a	tuple	of	the	form	{request,	Pid,
Message},	where	the	pid	is	the	client	process	identifier,	retrieved	by	calling	the
self()	BIF	and	used	by	the	server	as	the	destination	for	a	response	in	the	format
{reply,	Reply}.	We	refer	to	this	extra	padding	as	the	“protocol”	between	the
client	and	the	server	(see	Figure	3-5).

Figure	3-5.	The	message	protocol

The	server	receives	the	request,	handles	it,	and	sends	a	reply	using	the	reply/2
call.	It	passes	the	pid	sent	in	the	client	request	as	the	first	argument	and	its	reply
message	as	the	second.	This	message	is	pattern	matched	in	the	receive	clause	of
the	call/1	function,	returning	the	contents	of	the	variable	Reply	as	a	result.	This
will	be	the	result	returned	by	the	client	functions.	A	sequence	diagram	with	the
exchange	of	messages	between	the	cell	phones	and	the	frequency	server	is
shown	in	Figure	3-6.

Figure	3-6.	The	frequency	server	messages

So,	which	parts	of	the	code	are	generic?	Which	will	not	change	from	one	client-
server	implementation	to	another?	First	in	line	is	the	stop/0	function,	used

whenever	we	want	to	inform	the	server	that	it	has	to	terminate.	This	code	can	be
reused,	as	it	is	universal	in	what	it	does.	Every	time	we	want	to	send	a	message,
we	use	call/1.	There	is	a	catch,	however,	as	this	function	is	not	completely
generic.	Have	a	look	at	the	code	and	try	to	spot	the	anomaly:

stop()	 									->	call(stop).	

allocate()	 	->	call(allocate).

deallocate(Freq)	->	call({deallocate,	Freq}).

call(Message)	->

				frequency	!	{request,	self(),	Message},

				receive

								{reply,	Reply}	->	Reply

				end.

reply(Pid,	Reply)	->

				Pid	!	{reply,	Reply}.	

We	are	sending	a	message	to	a	registered	process	frequency.	This	name	will
change	from	one	server	implementation	to	the	next.	However,	everything	else	in
the	call	is	generic.	The	function	reply/2,	called	by	the	server	process,	is	also
completely	generic.	So	what	remains	specific	in	the	client	functions	are	the
client	functions	themselves,	their	message	content	to	the	server,	and	the	name	of
the	server:

stop()	 									->	call(stop).

allocate()	 	->	call(allocate).

deallocate(Freq)	->	call({deallocate,	Freq}).

call(Message)	->

				frequency	!	{request,	self(),	Message},

				receive

								{reply,	Reply}	->	Reply

				end.

reply(Pid,	Reply)	->

				Pid	!	{reply,	Reply}.

By	hiding	the	message	protocol	in	a	functional	interface	and	abstracting	it,	we
are	able	to	change	it	without	affecting	the	code	outside	of	the	frequency
module,	client	calls	included.	We	show	how	this	comes	in	handy	later	in	the
chapter,	when	we	start	dealing	with	some	of	the	common	error	patterns	that
occur	when	working	with	concurrent	programming.

The	Server	Loop
Server	processes	iterate	in	a	receive-evaluate	loop.	They	wait	for	client	requests,
handle	them,	return	a	result,	and	loop	again,	waiting	for	the	next	message	to
arrive.	With	every	iteration,	they	may	update	their	process	state	and	might
generate	side	effects:

loop(Frequencies)	->

				receive

								{request,	Pid,	allocate}	->

												{NewFrequencies,	Reply}	=	allocate(Frequencies,	Pid),

												reply(Pid,	Reply),

												loop(NewFrequencies);

								{request,	Pid	,	{deallocate,	Freq}}	->

												NewFrequencies	=	deallocate(Frequencies,	Freq),

												reply(Pid,	ok),

												loop(NewFrequencies);

								{request,	Pid,	stop}	->

												reply(Pid,	ok)

				end.

In	our	frequency	server	example	the	loop/1	function	receives	the	allocate,
{deallocate,	Frequency},	and	stop	commands.	Allocating	a	frequency	is	done
through	the	helper	function	allocate/2,	which,	given	the	loop	data	and	the	pid
of	the	client,	moves	a	frequency	from	the	available	list	to	the	allocated	list.
Deallocating	a	frequency	invokes	the	deallocate/2	call	to	do	the	opposite,
moving	the	frequency	from	the	list	of	allocated	frequencies	to	the	available	list.

Both	calls	return	the	pair	of	updated	frequency	lists	that	make	up	the	process
state;	this	new	state	is	bound	to	the	variable	NewFrequencies	and	passed	to	the
tail-recursive	loop/1	call.	In	both	cases,	a	reply	is	sent	back	to	the	clients.	When
allocating	a	frequency,	the	contents	of	the	variable	Reply	are	either	{error,
no_frequency}	or	{ok,	Frequency}.	When	deallocating	a	frequency,	the	server
sends	back	the	atom	ok.

When	stopping	the	server,	we	acknowledge	having	received	the	message	through
the	ok	response,	and	by	the	lack	of	a	call	to	loop/1	we	make	the	process
terminate	normally,	as	opposed	to	an	abnormal	termination	that	results	from	a
runtime	error.	In	this	example,	there	is	nothing	to	clean	up,	so	we	don’t	do
anything	other	than	acknowledge	the	stop	message.	Had	this	server	handled
some	resource	such	as	a	key-value	store,	we	could	have	ensured	that	the	data

was	safely	backed	up	on	a	persistent	medium.	Or	in	the	case	of	a	window	server,
we’d	close	the	window	and	release	any	allocated	objects	associated	with	it.

With	all	of	this	in	mind,	what	functionality	do	you	think	is	generic?

For	starters,	looping	is	generic.	The	protocol	used	to	send	and	receive	messages
is	generic,	but	the	messages	and	replies	themselves	aren’t.	Finally,	stopping	the
server	is	generic,	as	is	acknowledging	the	stop	message.	The	generic	parts	of	the
code	are	highlighted	here:

loop(Frequencies)	->

				receive

								{request,	Pid,	allocate}	->

												{NewFrequencies,	Reply}	=	allocate(Frequencies,	Pid),

												reply(Pid,	Reply),

												loop(NewFrequencies);

								{request,	Pid,	{deallocate,	Freq}}	->

												NewFrequencies	=	deallocate(Frequencies,	Freq),

												reply(Pid,	ok),

												loop(NewFrequencies);

								{request,	Pid,	stop}	->

												reply(Pid,	ok)

				end.

We	have	not	highlighted	the	variables	Frequencies	and	NewFrequencies	used	to
store	the	process	state.	Although	storing	the	process	state	is	generic,	the	state
itself	is	specific.	That	is,	the	type	of	the	state	and	the	particular	value	that	this
variable	has	are	specific,	but	not	the	generic	task	of	storing	the	variable	itself.

With	the	generic	contents	out	of	the	way,	the	specifics	include	the	loop	data,	the
client	messages,	how	we	handle	the	messages,	and	the	responses	we	send	back
as	a	result:

loop(Frequencies)	->

				receive

								{request,	Pid,	allocate}	->

												{NewFrequencies,	Reply}	=	allocate(Frequencies,	Pid),

												reply(Pid,	Reply),

												loop(NewFrequencies);

								{request,	Pid,	{deallocate,	Freq}}	->

												NewFrequencies	=	deallocate(Frequencies,	Freq),

												reply(Pid,	ok),

												loop(NewFrequencies);

								{request,	Pid,	stop}	->

												reply(Pid,	ok)

				end.

Had	there	been	specific	code	to	be	executed	when	stopping	the	server,	it	would
also	have	been	marked	as	specific.	This	code	is	usually	placed	in	a	function

called	terminate,	which,	given	the	reason	for	termination	and	the	loop	data,
handles	all	of	the	cleaning	up.

Functions	Internal	to	the	Server
The	functions	that	actually	perform	the	work	of	allocating	or	deallocating	a
frequency	within	the	server	are	not	“visible”	outside	the	server	module	itself,
and	so	we	call	them	internal	to	the	server.	The	allocate/1	call	returns	a	tuple
with	the	new	frequencies	and	the	reply	to	send	back	to	the	client.	If	there	are	no
available	frequencies,	the	first	function	clause	will	pattern	match	because	the	list
is	empty.	The	frequencies	are	not	changed,	and	{error,	no_frequency}	is
returned	to	the	client.	If	there	is	at	least	one	frequency,	the	second	function
clause	will	match.

The	available	frequency	list	is	split	into	a	head	and	a	tail,	where	the	head
contains	the	available	frequency,	and	the	tail	(a	possibly	empty	list)	contains	the
remaining	available	frequencies.	The	frequency	with	the	client	pid	is	added	to
the	allocated	list,	and	the	response	{ok,	Freq}	is	sent	back	to	the	client.

When	deallocating	a	frequency	in	the	deallocate/2	function,	we	delete	it	from
the	allocated	list	and	add	it	to	the	available	one.	Have	a	look	at	the	functions	and
try	to	figure	out	what	is	generic	and	what	is	specific:2

allocate({[],	Allocated},	_Pid)	->

				{{[],	Allocated},	{error,	no_frequency}};

allocate({[Freq|Free],	Allocated},	Pid)	->

				{{Free,	[{Freq,	Pid}|Allocated]},	{ok,	Freq}}.

deallocate({Free,	Allocated},	Freq)	->

				NewAllocated	=	lists:keydelete(Freq,	1,	Allocated),

				{[Freq|Free],	NewAllocated}.

This	should	have	been	an	easy	question	to	answer,	as	these	internal	functions	are
all	specific	to	our	frequency	server.	When	did	you	last	allocate	and	deallocate
frequencies	when	working	with	a	key-value	store	or	a	window	manager?

The	Generic	Server
Now	that	we’ve	gone	through	this	example	and	distinguished	the	generic	from
the	specific	code,	let’s	get	to	the	core	of	this	chapter,	namely	the	separation	of
the	code	into	two	separate	modules.	Figure	3-7	shows	we	can	now	put	all	of	the
generic	code	into	the	server	module	and	all	of	the	specific	code	into	frequency.
Despite	these	changes,	we	maintain	the	same	functionality	and	interface.	Calling
the	frequency	module	in	our	new	implementation	should	be	no	different	from
the	trial	run	we	did	in	“Extracting	Generic	Behaviors”.

Figure	3-7.	The	frequency	and	server	modules

The	server	module	is	in	control,	managing	the	process	activities.	Whenever	it
has	to	handle	specific	functionality	it	does	not	know	how	to	execute,	it	hands
over	to	the	callback	functions	in	the	frequency	module.	Let’s	start	with	the
generic	code	in	the	server	module	that	starts	and	initializes	the	server:

-module(server).																									%	server.erl

-export([start/2,	stop/1,	call/2]).

-export([init/2]).

start(Name,	Args)	->

				register(Name,	spawn(server,	init,	[Name,	Args])).

init(Mod,	Args)	->

				State	=	Mod:init(Args),

				loop(Mod,	State).

Spawning	a	process,	registering	it,	and	calling	the	init	function	are	all	generic,
whereas	the	alias	with	which	we	register	the	process,	the	name	of	the	callback
module,	and	the	arguments	we	pass	to	the	init	function	are	all	specific.	We	pass

this	specific	information	as	parameters	to	the	server:start/2	function,	using
them	where	needed.	Name	is	used	both	as	the	registered	name	of	the	frequency
process	and	as	the	name	of	the	callback	module.	Args	is	passed	to	the	init
function	and	is	used	to	initialize	the	process	state.

We	keep	the	client	functions	in	the	frequency	module,	using	it	as	a	wrapper
around	the	server.	By	doing	so,	we	are	hiding	implementation	details,	including
the	very	use	of	the	server	module.	Just	like	in	our	previous	example,	we	start
the	server	using	frequency:start/0,	resulting	in	a	call	to	server:start/2.	The
newly	spawned	server,	through	the	Mod:init/1	call,	invokes	the	init/1	callback
function	in	the	frequency	module,	initializing	the	process	state	by	creating	the
tuple	containing	the	available	and	allocated	frequencies.	Mod	is	bound	to	the
callback	module	frequency	and	Args	is	bound	to	[].	The	frequency	tuple	gets
bound	to	the	State	variable,	which	along	with	Mod	is	passed	as	an	argument	to
the	loop	in	the	server	module:

-module(frequency).																						%	frequency.erl

-export([start/0,	stop/0,	allocate/0,	deallocate/1]).

-export([init/1,	terminate/1,	handle/2]).

start()	->	server:start(frequency,	[]).

init(_Args)	->

				{get_frequencies(),	[]}.

get_frequencies()	->	[10,11,12,13,14,15].

The	init/1	callback	is	required	to	return	the	initial	process	state,	stored	and
used	in	the	server	receive-evaluate	loop.	In	the	init/1	callback	function,	note
that	we	are	not	using	the	value	of	the	_Args	parameter.	Because	init/1	is	a
callback	function,	we	have	to	follow	the	required	protocol	and	functional
interface	for	that	callback	API.	In	the	general	case,	init/1	requires	an	argument
because	there	might	be	server	implementations	that	need	data	at	startup.	This
particular	example	doesn’t,	so	we	pass	the	empty	list	and	ignore	it.

Let’s	jump	back	to	the	server	module.	When	a	client	process	wants	to	send	a
request	to	the	server,	it	does	so	by	calling	server:call(frequency,	Msg).	The
server,	when	responding,	does	so	using	the	reply/2	call.	We	are,	in	effect,
hiding	all	of	the	message	passing	behind	a	functional	interface.

Another	generic	function	is	server:stop/1.	We	distinguish	this	function	from
call/2	because	we	want	to	fix	its	meaning	and	therefore	differentiate	it	from
server:call(frequency,	{stop,	self()}),	which	could	be	treated	by	the
developer	as	a	specific	call	rather	than	as	a	generic	server	control	message.
Instead,	by	calling	stop,	we	invoke	the	terminate/1	callback	function,	which	is
given	the	process	state	and	will	contain	all	of	the	specific	code	executed	when
shutting	down	the	server.	In	our	case,	we	have	kept	the	example	to	a	minimum.
Note,	however,	that	we	could	have	chosen	to	terminate	all	of	the	client	processes
that	had	been	allocated	a	frequency:

stop(Name)	->																												%	server.erl

				Name	!	{stop,	self()},

				receive	{reply,	Reply}	->	Reply	end.

call(Name,	Msg)	->

				Name	!	{request,	self(),	Msg},

				receive	{reply,	Reply}	->	Reply	end.

reply(To,	Reply)	->

				To	!	{reply,	Reply}.

To	ensure	that	we	maintain	the	same	interface,	we	export	exactly	the	same
functions	in	our	new	implementation	of	the	frequency	module:

stop()											->	server:stop(frequency).														%	frequency.erl

allocate()							->	server:call(frequency,	{allocate,	self()}).

deallocate(Freq)	->	server:call(frequency,	{deallocate,	Freq}).

These	functions	send	requests	and	stop	messages	to	the	server.	When	the	process
receives	the	messages,	the	relevant	callback	functions	in	the	frequency	module
are	invoked.	In	the	case	of	the	stop	message,	it	is	the	function	terminate/1.	It
takes	the	process	state	as	an	argument	and	its	return	value	is	sent	back	to	the
client,	becoming	the	return	value	of	the	stop/1	call:

loop(Mod,	State)	->																						%	server.erl

				receive

								{request,	From,	Msg}	->

												{NewState,	Reply}	=	Mod:handle(Msg,	State),

												reply(From,	Reply),

												loop(Mod,	NewState);

								{stop,	From}		->

												Reply	=	Mod:terminate(State),

												reply(From,	Reply)

				end.

In	the	case	of	a	call	request,	the	handle/2	callback	is	invoked.	The	call	takes	two
arguments,	the	first	being	the	message	bound	to	the	variable	Msg	and	the	second
the	process	state	bound	to	the	variable	State.	Pattern	matching	on	the	Msg	picks
the	function	clause	that	handles	the	message.	The	callback	has	to	return	a	tuple
in	the	format	{NewState,	Reply},	where	NewState	contains	the	updated
frequencies	and	Reply	is	the	reply	sent	back	to	the	client.	Have	a	look	at	the
implementation	of	allocate/2.	It	returns	exactly	that:	a	tuple	where	the	first
element	is	the	updated	process	state	and	the	second	element	either	{ok,
Frequency}	or	{error,	no_frequency}.

The	first	clause	of	the	receive	in	loop/2	takes	the	return	value	from	handle/2,
sends	back	a	reply	to	the	client	using	reply/2,	and	loops	with	the	new	state,
awaiting	the	next	request:

terminate(_Frequencies)	->															%	frequency.erl

				ok.

handle({allocate,	Pid},	Frequencies)	->

				allocate(Frequencies,	Pid);

handle({deallocate,	Freq},	Frequencies)	->

				{deallocate(Frequencies,	Freq),	ok}.

allocate({[],	Allocated},	_Pid)	->

				{{[],	Allocated},	{error,	no_frequency}};

allocate({[Freq|Free],	Allocated},	Pid)	->

				{{Free,	[{Freq,	Pid}|Allocated]},	{ok,	Freq}}.

deallocate({Free,	Allocated},	Freq)	->

				NewAllocated	=	lists:keydelete(Freq,	1,	Allocated),

				{[Freq|Free],	NewAllocated}.

The	same	applies	to	the	deallocate	request.	The	frequency	is	deallocated,	the
handle/2	call	returns	a	tuple	with	the	new	state	returned	by	the	deallocate/2
call,	and	the	response,	the	atom	ok,	is	sent	back	to	the	client.

So	what	we	now	have	is	our	frequency	example	split	up	into	a	generic	library
module	we	call	server	and	a	specific	callback	module	we	call	frequency.	This
is	all	there	is	to	understanding	Erlang	behaviors.	It	is	all	about	splitting	up	the
code	into	generic	and	specific	parts,	and	packaging	the	generic	parts	into
reusable	libraries	to	hide	as	much	of	the	complexity	as	possible	from	the
developers.	We’ve	kept	this	example	simple	to	show	our	point,	and	barely
scratched	the	surface	of	the	corner	cases	that	are	handled	behind	the	scenes	in

the	proper	behavior	libraries.	We	cover	these	details	in	the	next	section,	and
introduce	them	as	we	talk	about	the	individual	behavior	library	modules.

Message	Passing:	Under	the	Hood
Concurrent	programming	is	not	easy.	You	need	to	deal	with	race	conditions,
deadlocks,	and	critical	sections	as	well	as	many	corner	cases.	Despite	this,	you
rarely	hear	Erlang	developers	complain,	let	alone	discuss	these	problems.	The
reason	is	simple:	most	of	these	issues	become	nonissues	as	a	result	of	the	OTP
framework.	In	this	chapter,	we	extracted	the	generic	code	from	a	particular
client-server	system,	but	in	doing	so	we	kept	our	example	as	simple	as	possible.
There	are	many	error	conditions	in	a	scenario	like	this	that	are	handled	behind
the	scenes	by	the	behavior	library	modules	we	cover	in	the	next	chapter.	Just	to
emphasize	the	point,	they	are	handled	without	the	programmer	having	to	be
aware	of	them.	Race	conditions,	especially	with	multicore	architectures,	have
become	more	common,	but	they	should	be	picked	up	with	appropriate	modeling
and	testing	tools	such	as	Concuerror,	McErlang,	PULSE,	and	QuickCheck.

Having	said	that,	let’s	look	at	an	example	of	how	behavior	libraries	help	us	hide
a	lot	of	the	tricky	cases	an	inexperienced	developer	might	not	think	of	when	first
implementing	a	concurrent	system.	We	use	the	call/2	function	from	the
previous	example,	expanding	it	as	we	go	along:

call(Name,	Message)	->

				Name	!	{request,	self(),	Message},

				receive

								{reply,	Reply}	->	Reply

				end.

reply(Pid,	Reply)	->

				Pid	!	{reply,	Reply}.

We	send	a	message	to	the	server	of	the	format	{request,	Pid,	Message}	and
wait	for	a	response	of	the	format	{reply,	Reply}.	When	we	receive	the	reply,	as
shown	in	Figure	3-8,	how	can	we	be	confident	that	the	reply	is	actually	a	reply
from	the	server,	and	not	a	message	sent	by	another	process	but	also	complying
with	the	protocol?

Figure	3-8.	Message	race	conditions

Given	this	implementation,	we	can’t.	The	solution	to	this	problem	is	to	use
references.	By	creating	a	unique	reference	with	the	make_ref()	BIF,	adding	it	to
the	message,	and	including	it	in	the	reply,	we	will	be	guaranteed	that	the
response	is	actually	the	reply	to	our	request,	and	not	just	a	message	that	happens
to	comply	with	our	protocol.	Adding	references,	our	code	looks	like	this:3

call(Name,	Msg)	->

				Ref	=	make_ref(),

				Name	!	{request,	{Ref,	self()},	Msg},

				receive	{reply,	Ref,	Reply}	->	Reply	end.

reply({Ref,	To},	Reply)	->

				To	!	{reply,	Ref,	Reply}.

Note	how	Ref	is	already	bound	when	entering	the	receive	clause,	ensuring
replies	are	the	result	of	the	original	message.	This	solves	the	problem,	but	is	this
enough?	What	happens	if	the	server	crashes	before	we	send	a	request?	If	Name	is
an	alias,	we	are	covered	because	the	client	process	will	terminate	when	trying	to
send	a	message	to	a	nonexistent	registered	process.	But	if	Name	is	a	pid,	the
message	will	be	lost	and	the	client	will	hang	in	the	receive	clause	of	the	call
function.	Or	similarly,	what	happens	if	the	server	crashes	between	receiving	the
message	and	sending	the	reply?	This	could	be	as	a	result	of	our	request,	or	as	the
result	of	another	client	request	it	might	be	handling.	Having	a	registered	process
will	not	cover	this	case	either,	as	the	process	is	alive	when	the	message	is	sent.

The	solution	is	to	monitor	the	server.	In	doing	so,	let’s	use	the	monitor	BIF

instead	of	a	link,	because	links	are	bidirectional	and	might	cause	side	effects	on
the	server	if	the	child	process	were	to	be	killed	during	the	request.	While	the
client	wants	to	monitor	termination	of	the	server,	terminating	the	client	should
not	affect	the	server.	The	monitor	BIF	returns	a	unique	reference,	so	we	can
drop	the	make_ref()	BIF	and	use	the	monitor	reference	to	tag	our	messages:

call(Name,	Msg)	->

				Ref	=	erlang:monitor(process,	Name),

				Name	!	{request,	{Ref,	self()},	Msg},

				receive

								{reply,	Ref,	Reply}	->

												erlang:demonitor(Ref),

												Reply;

								{'DOWN',	Ref,	process,	_Name,	_Reason}	->

												{error,	no_proc}

				end.

Have	we	covered	everything	that	can	go	wrong?	No,	not	really.	By	monitoring
the	process,	we	are	now	exposing	ourselves	to	another	race	condition.	Consider
the	following	sequence	of	events:

1.	 The	client	monitors	the	server.

2.	 The	client	sends	a	request	to	the	server.

3.	 The	server	receives	the	request	and	handles	it.

4.	 The	server	sends	back	a	response	to	the	client.

5.	 The	server	crashes	as	the	result	of	another	request.

6.	 The	client	receives	a	DOWN	message	as	a	result	of	the	monitor.

7.	 The	client	extracts	the	server	response	from	its	mailbox.

8.	 The	client	demonitors	the	(now	defunct)	server.

We	are	stuck	with	a	DOWN	message	in	the	client	mailbox	containing	a	reference
that	will	never	match.	Now,	what	are	the	chances	of	that	happening?	Do	you
really	think	someone	would	think	of	that	particular	test	case	where	the	server
terminates	right	after	it	sends	the	client	its	reply,	but	before	the	client	executes
the	erlang:demonitor/2	call?	While	this	is	an	extreme	corner	case,	we	still

need	to	handle	the	DOWN	message	as	it	might	cause	a	memory	leak.	We	do	this	by
passing	the	[flush]	option	to	the	second	argument	in	the	demonitor/2	call,
ensuring	that	any	DOWN	messages	belonging	to	that	monitor	are	not	left	lingering
in	the	process	mailbox.

Are	we	there	yet?	No,	not	really:	what	if	Name	is	not	an	alias	of	a	registered
process?	We	need	a	catch	to	trap	any	exception	raised	as	a	result	of	the	client
sending	a	message	to	a	nonexistent	registered	process.	We	don’t	really	care
about	the	result	of	the	catch	—	if	we	did,	we	would	have	used	try-catch
instead	—	because	if	the	server	does	not	exist,	monitor/1	will	send	a	DOWN
message.	Our	new	code	now	looks	like	this:

call(Name,	Msg)	->

				Ref	=	erlang:monitor(process,	Name),

				catch	Name	!	{request,	{Ref,	self()},	Msg},

				receive

								{reply,	Ref,	Reply}	->

												erlang:demonitor(Ref,	[flush]),

												Reply;

								{'DOWN',	Ref,	process,	_Name,	_Reason}	->

												{error,	no_proc}

				end.

Unfortunately,	though,	these	changes	are	still	not	enough.	What	happens	if
process	A	does	a	synchronous	call	to	B	at	the	same	time	as	process	B	calls	A?	By
“synchronous	call,”	we	mean	an	Erlang	message	exchange	where	the	sending
process	expects	a	response,	and	the	message	and	response	are	each	sent	as
asynchronous	messages.	Process	A	enters	the	receive	clause	right	after	sending
its	request	matching	on	a	unique	reference	sent	with	the	request,	and	B	does	the
same.	Back	to	answering	our	original	question,	if	two	processes	synchronously
call	each	other	using	this	code,	we	get	a	deadlock.	While	deadlocks	are	a	result
of	a	design	flaw,	they	might	happen	in	live	systems,	and	a	recovery	mechanism
(preferably	a	generic	one)	needs	to	be	put	in	place.	The	easiest	way	to	resolve
deadlocks	is	through	a	timeout	in	your	receive	statement,	terminating	the
process.	We	go	into	more	detail	on	deadlocks	and	timeouts	and	show	you	how
OTP	solves	this	problem	in	the	next	chapter.

Summing	Up
In	this	chapter,	we’ve	covered	the	principles	behind	concurrency	design	patterns,
introducing	the	concept	of	behavior	libraries.	We	hope	we	have	made	our	point
about	the	importance	and	power	of	behavior	libraries,	as	understanding	them	is
fundamental	to	understanding	the	underlying	principles	of	OTP.	Decades	of
experience	in	process-oriented	programming	are	reflected	in	them,	removing	the
burden	from	the	developers,	reducing	their	code	bases,	and	ensuring	that	corner
cases	are	handled	in	a	consistent,	efficient,	and	correct	manner.	Be	honest:	how
many	of	the	corner	cases	discussed	in	this	example	would	you	have	handled	in	a
first	iteration?	What	about	your	colleagues?	Imagine	testing	and	maintaining	a
system	where	everyone	has	reinvented	the	wheel	with	their	own	representation
of	these	concurrent	conditions	and	corner	cases!	The	bottom	line	is	that	standard
OTP	behaviors	handle	all	of	these	issues;	that	is	why	you	should	use	them.

If	you	have	the	time,	pick	a	simple	client-server	example	you	might	have	written
when	learning	Erlang.	It	could	be	a	key-value	store,	a	chat	server,	or	any	other
process	that	receives	and	handles	requests.	If	you	do	not	have	any	examples	at
hand,	use	the	mobile	subscriber	database	example	from	the	ETS	and	DETS
chapter	of	the	Erlang	Programming	book.	You	can	download	the	code	from	the
authors’	GitHub	repositories.

Another	useful	exercise	is	to	extend	the	call	function	with	an	after	clause,
making	the	process	exit	with	reason	timeout.	Create	a	new	function:

call(Name,	Message,	Timeout)

which,	given	a	Timeout	integer	value	in	milliseconds	or	the	atom	infinity,
allows	users	to	set	their	own	timeouts.	Keep	the	call/2	call,	setting	the	default
to	5	seconds.	If	the	server	does	not	respond	within	the	given	timeout	value,	make
the	client	process	terminate	abnormally	with	the	reason	timeout.	Don’t	forget	to
clean	up	before	exiting,	as	the	exit	signal	might	be	caught	in	a	try-catch
expression	in	the	code	using	the	server	library.

https://github.com/francescoc/scalabilitywitherlangotp

What’s	Next?
In	the	next	chapters,	we	introduce	the	library	modules	that	together	give	us	the
OTP	behaviors.	We	start	with	the	gen_server	library,	and	then	later	use	a
similar	approach	to	introduce	FSMs,	event	handlers,	supervisors,	and
applications.	We	have	not	yet	covered	deadlocks,	timeouts,	and	error	cases	that
can	arise	when	dealing	with	distribution	or	messages	that	never	match.	These	are
all	topics	we	discuss	when	covering	the	individual	behavior	libraries.

Bug-free	systems	exist	only	in	the	dreams	of	the	bureaucrats.	When	using	Erlang/OTP,	equal	focus
should	be	placed	on	correctness	and	error	recovery,	as	the	bugs	will	manifest	themselves	in	production
systems	whether	you	like	it	or	not.

Warning,	this	is	a	trick	question.

Minor	changes	are	also	needed	to	the	code	in	order	to	get	the	stop	call	to	work.	We	skip	them	in	this
example.

1

2

3

Chapter	4.	Generic	Servers

Having	broken	up	the	radio	frequency	allocator	into	generic	and	specific
modules	and	investigated	some	of	the	corner	cases	that	can	occur	when	dealing
with	concurrency,	you	will	have	figured	out	there	is	no	need	to	go	through	this
process	every	time	you	have	to	implement	a	client-server	behavior.	In	this
chapter,	we	introduce	the	gen_server	OTP	behavior,	a	library	module	that
contains	all	of	the	generic	client-server	functionality	while	handling	a	large
number	of	corner	cases.	Generic	servers	are	the	most	commonly	used	behavior
pattern,	setting	the	foundations	for	other	behaviors,	all	of	which	can	be	(and	in
the	early	days	of	OTP	were)	implemented	using	this	module.

Generic	Servers
The	gen_server	module	implements	the	client-server	behavior	we	extracted	in
the	previous	chapter.	It	is	part	of	the	standard	library	application	and	available	as
part	of	the	Erlang/OTP	distribution.	It	contains	the	generic	code	that	interfaces
with	the	callback	module	through	a	set	of	callback	functions.	The	callback
module,	in	our	example	containing	the	code	specific	to	the	frequency	server,	is
implemented	by	the	programmer.	The	callback	module	has	to	export	a	series	of
functions	that	follow	naming	and	typing	conventions,	so	that	their	inputs	and
return	values	conform	to	the	protocol	required	by	the	behavior.

As	seen	in	Figure	4-1,	the	functions	of	both	the	behavior	and	callback	module
execute	within	the	scope	the	same	server	process.	In	other	words,	a	process
loops	in	the	generic	server	module,	invoking	the	callback	functions	in	the
callback	module	as	needed.

Figure	4-1.	The	callback	and	behavior	modules

The	gen_server	library	module	provides	functions	to	start	and	stop	the	server.
You	supply	callback	code	to	initialize	the	system,	and	in	the	case	of	either
normal	or	abnormal	process	termination,	it	is	possible	to	call	a	function	from
your	callback	module	to	clean	up	the	state	prior	to	termination.	In	particular,	you
no	longer	need	to	send	messages	to	your	process.	Generic	servers	encapsulate	all
message	passing	in	two	functions	—	one	for	sending	synchronous	messages	and
one	for	sending	asynchronous	messages.	These	handle	all	of	the	borderline	cases
we	discussed	in	the	previous	chapter,	and	many	others	we	probably	hadn’t	even
realized	could	be	an	issue	or	cause	a	race	condition.	There	is	also	built-in

functionality	for	software	upgrades,	where	you	are	able	to	suspend	your	process
and	migrate	data	from	one	version	of	your	system	to	the	next.	Generic	servers
also	provide	timeouts,	both	on	the	client	side	when	sending	requests,	and	on	the
server	side	when	no	messages	are	received	in	a	predetermined	time	interval.

We	now	cover	all	of	the	callback	functions	required	when	using	generic	servers.
They	include:

The	init/1	callback	function	initializes	a	server	process	created	by	the
gen_server:start_link/4	call.

The	handle_call/3	callback	function	handles	synchronous	requests	sent	to
the	server	by	gen_server:call/2.	When	the	request	has	been	handled,
call/2	returns	a	value	computed	by	handle_call/3.

Asynchronous	requests	are	taken	care	of	in	the	handle_cast/2	callback
function.	The	requests	originate	in	the	gen_server:cast/2	call,	which
sends	a	message	to	a	server	process	and	immediately	returns.

Termination	is	handled	when	any	of	the	server	callback	functions	return	a
stop	message,	resulting	in	the	terminate/2	callback	function	being	called.

We	look	at	these	functions	in	more	detail	including	all	of	their	arguments,	return
values,	and	associated	callbacks	as	soon	as	we’ve	covered	the	module	directives.

Behavior	Directives
When	we	are	implementing	an	OTP	behavior,	we	need	to	include	behavior
directives	in	our	module	declarations.

-module(frequency).

-behavior(gen_server).

-export([start_link/1,	init/1,	...]).

start_link(...)	->	...

The	behavior	directive	is	used	by	the	compiler	to	issue	warnings	about	callback
functions	that	are	not	defined,	not	exported,	or	defined	with	the	wrong	arity.	The
dialyzer	tool	also	uses	these	declarations	for	checking	type	discrepancies.	An
even	more	important	use	of	the	behavior	directive	is	for	the	poor	souls1	who
have	to	support,	maintain,	and	debug	your	code	long	after	you’ve	moved	on	to
other	exciting	and	stimulating	projects.	They	will	see	these	directives	and
immediately	know	you	have	been	using	the	generic	server	patterns.	If	they	want
to	see	the	initialization	of	the	server,	they	go	to	the	init/1	function.	If	they	want
to	see	how	the	server	cleans	up	after	itself,	they	jump	to	terminate/3.	This	is	a
great	improvement	over	a	situation	in	which	every	company,	project,	or
developer	reinvents	their	own,	possibly	buggy,	client-server	implementations.
No	time	is	wasted	understanding	this	framework,	allowing	whoever	is	reading
the	code	to	concentrate	on	the	specifics.

BEHAVIOR	VERSUS	BEHAVIOUR

You	might	have	noticed	that	we	are	using	the	American	spelling	when	adding	the	behavior	directive	in
the	callback	module.	British	chums,	don’t	despair.	When	defining	your	behavior	directives,	both	the
American	“behavior”	and	British	“behaviour”	spellings	are	honored:

-behavior(tcp_wrapper).

-behaviour(tcp_wrapper).

The	same	applies	when	defining	your	behavior_info/1	callback	function.	Many	moons	ago,	if	you
did	not	stick	to	the	British	spelling,	swallowing	your	pride	and	forcing	yourself	to	type	in	that	extra
letter,	you	would	get	an	unknown	behavior	warning	when	compiling	your	callback	module.	Many
have	been	caught	out	and	spent	endless	hours	trying	to	figure	out	the	problem	and	resolve	it.

In	our	example	code,	compiler	warnings	come	as	a	result	of	the	-
behavior(gen_server).	directive	because	we	omit	the	code_change/3
function,	a	callback	we	cover	in	Chapter	12	when	discussing	release	upgrades.	In
addition	to	this	directive,	we	sometimes	use	a	second,	optional	directive,	-
vsn(Version),	to	keep	track	of	module	versions	during	code	upgrade	(and
downgrade).	We	cover	versions	in	more	detail	in	Chapter	12.

Starting	a	Server
With	the	knowledge	of	our	module	directives,	let’s	start	a	server.	Generic	servers
and	other	OTP	behaviors	are	started	not	with	the	spawn	BIFs,	but	with	dedicated
functions	that	do	more	behind	the	scenes	than	just	spawn	a	process:

gen_server:start_link({local,Name},Mod,Args,Opts)	->

				{ok,	Pid}	|	ignore	|	{error,	Reason}

The	start_link/4	function	takes	four	arguments.	The	first	tells	the	gen_server
module	to	register	the	process	locally	with	the	alias	Name.	Mod	is	the	name	of	the
callback	module,	where	the	server-specific	code	and	the	callback	functions	will
be	found.	Args	is	an	Erlang	term	passed	to	the	callback	function	that	initializes
the	server	state.	Opts	is	a	list	of	process	and	debugging	options	we	cover	in
Chapter	5.	For	the	time	being,	let’s	keep	it	simple	and	pass	the	empty	list	for
Opts.	If	a	process	is	already	registered	with	the	Name	alias,	{error,
{already_started,	Pid}}	is	returned.	Keep	a	vigilant	eye	on	which	process
executes	which	functions.	You	can	note	them	in	Figure	4-2,	where	the	server
bound	to	the	process	Pid	is	started	by	the	supervisor.	The	supervisor	is	denoted
by	a	double	ring	as	it	is	trapping	exits.

Figure	4-2.	Starting	a	generic	server

When	the	gen_server	process	has	been	spawned,	it	is	registered	with	the	alias

Name,	subsequently	calling	the	init/1	function	in	the	callback	module	Mod.	The
init/1	function	takes	Args,	the	third	parameter	to	the	start_link	call,	as	an
argument,	irrespective	of	whether	it	is	needed.	If	no	arguments	are	needed,	the
init/1	function	can	ignore	it	with	the	don’t	care	variable.	Keep	in	mind	that
Args	can	be	any	valid	Erlang	term;	you	are	not	bound	to	using	lists.

NOTE
If	Args	is	a	(possibly	empty)	list,	the	list	will	be	passed	to	init/1	as	a	list,	and	not	result	in	an
init	of	a	different	arity	being	called.	For	example,	if	you	pass	[foo,	bar],	init([foo,bar])
will	be	called,	not	init(foo,	bar).	This	is	a	common	mistake	developers	make	when
transitioning	from	Erlang	to	OTP,	as	they	confuse	the	properties	of	spawn	and	spawn_link	with
those	of	the	behavior	start	and	start_link	functions.

The	init/1	callback	function	is	responsible	for	initializing	the	server	state.	In
our	example,	this	entails	creating	the	variable	containing	the	lists	of	available
and	allocated	frequencies:

start()	->																																																							%	frequency.erl

				gen_server:start_link({local,	frequency},	frequency,	[],	[]).

init(_Args)	->

				Frequencies	=	{get_frequencies(),	[]},

				{ok,	Frequencies}.

get_frequencies()	->	[10,11,12,13,14,15].

If	successful,	init/1	callback	function	returns	{ok,	LoopData}.	If	the	startup
fails	but	you	do	not	want	to	affect	other	processes	started	by	the	same	supervisor,
return	ignore.	If	you	want	to	affect	other	processes,	return	{stop,	Reason}.	We
cover	ignore	in	Chapter	8	and	stop	in	“Termination”.

In	our	example,	start_link/4	passes	the	empty	list	[]	to	init/1,	which	in	turn
uses	the	_Args	don’t	care	variable	to	ignore	it.	We	could	have	passed	any	other
Erlang	term,	as	long	as	we	make	it	clear	to	anyone	reading	the	code	that	no
arguments	are	needed.	The	atom	undefined	or	the	empty	tuple	{}	are	other
favorites.

By	passing	{timeout,	Ms}	as	an	option	in	the	Opts	list,	we	allow	our	generic

server	Ms	milliseconds	to	start	up.	If	it	takes	longer,	start_link/4	returns	the
tuple	{error,	timeout}	and	the	behavior	process	is	not	started.	No	exception	is
raised.	We	cover	options	in	more	detail	in	Chapter	5.

Starting	a	generic	server	behavior	process	is	a	synchronous	operation.	Only
when	init/1	callback	function	returns	{ok,	LoopData}	to	the	server	loop	does
the	gen_server:start_link/4	function	return	{ok,	Pid}.	It’s	important	to
understand	the	synchronous	nature	of	start_link	and	its	importance	to	a
repeatable	startup	sequence.	The	ability	to	deterministically	reproduce	an	error	is
important	when	troubleshooting	issues	that	occur	at	startup.	You	could
asynchronously	start	all	of	the	processes,	checking	each	afterward	to	make	sure
they	all	started	correctly.	But	as	a	result	of	changing	scheduler	implementations
and	configuration	values	running	on	multi-core	architectures,	deploying	to
different	hardware	or	operating	systems,	or	even	the	state	of	the	network
connectivity,	the	processes	would	not	necessarily	always	initialize	their	state	and
complete	the	startup	sequence	in	the	same	order.	If	all	goes	well,	you	won’t	have
an	issue	with	the	variability	inherent	in	an	asynchronous	startup	approach,	but	if
race	conditions	manifest	themselves,	trying	to	figure	out	what	went	wrong	and
when,	especially	in	production	environments,	is	not	for	the	faint	of	heart.	The
synchronous	startup	approach	implemented	in	start_link	clearly	ensures
through	its	simplicity	that	each	process	has	started	correctly	before	moving	on	to
the	next	one,	providing	determinism	and	reproducible	startup	errors	on	a	single
node.	If	startup	errors	are	influenced	by	external	factors	such	as	networks,
external	databases,	or	the	state	of	the	underlying	hardware	or	OS,	try	to	contain
them.	In	the	cases	where	determinism	does	not	help,	a	controlled	startup
procedure	removes	any	element	of	doubt	as	to	where	the	issue	might	be.

Message	Passing
Having	started	our	generic	server	and	initialized	its	loop	data,	we	now	look	at
how	communication	works.	As	you	might	have	understood	from	the	previous
chapter,	sending	messages	using	the	!	operator	is	out	of	fashion.	OTP	uses
functional	interfaces	that	provide	a	higher	level	of	abstraction.	The	gen_server
module	exports	functions	that	allow	us	to	send	both	synchronous	and
asynchronous	messages,	hiding	the	complexity	of	concurrent	programming	and
error	handling	from	the	programmer.

Synchronous	Message	Passing
While	Erlang	has	asynchronous	message	passing	built	in	as	part	of	the	language,
there	is	nothing	stopping	us	from	implementing	synchronous	calls	using	existing
primitives.	This	is	what	the	gen_server:call/2	function	does.	It	sends	a
synchronous	Message	to	the	server	and	waits	for	a	Reply	while	the	server
handles	the	request	in	a	callback	function.	The	Reply	is	passed	as	the	return
value	to	the	call.	The	message	and	reply	follow	a	specific	protocol	and	contain	a
unique	tag	(or	reference),	matching	the	message	and	the	response.	Let’s	have	a
look	at	the	gen_server:call/2	function	in	more	detail:

gen_server:call(Name,	Message)	->	Reply

Name	is	either	the	server	pid	or	the	registered	name	of	the	server	process.	The
Message	is	an	Erlang	term	that	gets	forwarded	as	part	of	the	request	to	the	server.
Requests	are	received	as	Erlang	messages,	stored	in	the	mailbox,	and	handled
sequentially.	Upon	receiving	a	synchronous	request,	the	handle_call(Message,
_From,	LoopData)	callback	function	is	invoked	in	the	callback	module.	The	first
argument	is	the	Message	passed	to	gen_server:call/2.	The	second	argument,
_From,	contains	a	unique	request	identifier	and	information	about	the	client.	We
will	ignore	it	for	the	time	being,	binding	it	to	a	don’t	care	variable.	The	third
argument	is	the	LoopData	originally	returned	by	the	init/1	callback	function.
You	should	be	able	to	follow	the	call	flow	in	Figure	4-3.

Figure	4-3.	Synchronous	message	passing

The	handle_call/3	callback	function	contains	all	the	code	required	to	handle
the	request.	It	is	good	practice	to	have	a	separate	handle_call/3	clause	for
every	request	and	to	use	pattern	matching	to	pick	the	right	one,	instead	of	using	a
case	statement	to	single	out	the	individual	messages.	In	the	function	clause,	we
would	execute	all	of	the	code	for	that	particular	request	and,	when	done,	return	a
tuple	of	the	format	{reply,	Reply,	NewLoopData}.	A	callback	module	uses	the
atom	reply	to	tell	the	gen_server	that	the	second	element,	Reply,	has	to	be	sent
back	to	the	client	process,	becoming	the	return	value	of	the	gen_server:call/2
request.	The	third	element,	NewLoopData,	is	the	callback	module’s	new	state,
which	the	gen_server	passes	into	the	next	iteration	of	its	tail-recursive	receive-
evaluate	loop.	If	LoopData	does	not	change	in	the	body	of	the	function,	we	just
return	the	original	value	in	the	reply	tuple.	The	gen_server	merely	stores	it
without	inspecting	it	or	manipulating	its	contents.	Once	it	sends	the	reply	tuple
back	to	the	client,	the	server	is	then	ready	to	handle	the	next	request.	If	no
messages	are	queued	up	in	the	process	mailbox,	the	server	is	suspended	waiting
for	a	new	request	to	arrive.

In	our	frequency	server	example,	allocating	a	frequency	needs	a	synchronous
call	because	the	reply	to	the	call	must	contain	the	allocated	frequency.	To	handle
the	request,	we	call	the	internal	function	allocate/2,	which	you	might	recall
returns	{NewFrequencies,	Reply}.	NewFrequencies	is	the	tuple	containing	the
lists	of	allocated	and	available	frequencies,	while	the	Reply	is	the	tuple	{ok,
Frequency}	or	{error,	no_frequency}:

allocate()	->																																																				%	frequency.erl

				gen_server:call(frequency,	{allocate,	self()}).

handle_call({allocate,	Pid},	_From,	Frequencies)	->

				{NewFrequencies,	Reply}	=	allocate(Frequencies,	Pid),

				{reply,	Reply,	NewFrequencies}.

Once	completed,	the	allocate/0	function	called	by	the	client	process	returns
{ok,	Frequency}	or	{error,	no_frequency}.	The	updated	loop	data	containing
available	and	allocated	frequencies	is	stored	in	the	generic	server	receive-
evaluate	loop	awaiting	the	next	request.

Asynchronous	Message	Passing
If	the	client	needs	to	send	a	message	to	the	server	but	does	not	expect	a	reply,	it
can	use	asynchronous	requests.	This	is	done	using	the	gen_server:cast/2
library	function:

gen_server:cast(Name,	Message)	->	ok

Name	is	the	pid	or	the	locally	registered	alias	of	the	server	process.	Message	is	the
term	the	client	wants	to	send	to	the	server.	As	soon	as	the	cast/2	call	has	sent	its
request,	it	returns	the	atom	ok.	On	the	server	side,	the	request	is	stored	in	the
process	mailbox	and	handled	sequentially.	When	it	is	received,	the	Message	is
passed	on	to	the	handle_cast/2	callback	function,	implemented	by	the
developer	in	the	callback	module.

The	handle_cast/2	callback	function	takes	two	arguments.	The	first	is	the
Message	sent	by	the	client,	while	the	second	is	the	LoopData	previously	returned
by	the	init/1,	handle_call/3,	or	handle_cast/2	callbacks.	This	can	be	seen	in
Figure	4-4.

Figure	4-4.	Asynchronous	message	passing

The	handle_cast/2	callback	function	has	to	return	a	tuple	of	the	format
{noreply,	NewLoopData}.	The	NewLoopData	will	be	passed	as	an	argument	to
the	next	call	or	cast	request.

In	some	applications,	client	functions	return	a	hardcoded	value,	often	the	atom
ok,	relying	on	side	effects	executed	in	the	callback	module.	Such	functions	could
be	implemented	as	asynchronous	calls.	In	our	frequency	example,	did	you	notice
that	frequency:deallocate(Freq)	always	returns	the	atom	ok?	We	don’t	really
care	if	handling	the	request	is	delayed	because	the	server	is	busy	with	other	calls,
making	it	a	perfect	candidate	for	an	example	using	a	generic	server	cast:

deallocate(Frequency)	->																																									%	frequency.erl

				gen_server:cast(frequency,	{deallocate,	Frequency}).

handle_cast({deallocate,	Freq},	Frequencies)	->

				NewFrequencies	=	deallocate(Frequencies,	Freq),

				{noreply,	NewFrequencies};

The	client	function	deallocate/1	sends	an	asynchronous	request	to	the	generic
server	and	immediately	returns	the	atom	ok.	This	request	is	picked	up	by	the
handle_cast/2	function,	which	pattern	matches	the	{deallocate,	Frequency}
message	in	the	first	argument	and	binds	the	loop	data	to	Frequencies	in	the
second.	In	the	function	body,	it	calls	the	helper	function	deallocate/2,	moving
Frequency	from	the	list	of	allocated	frequencies	to	the	list	of	available	ones.	The
return	value	of	deallocate/2	is	bound	to	the	variable	NewFrequencies,	returned
as	the	new	loop	data	in	the	noreply	control	tuple.

Note	that	we	said	that	only	in	some	applications	do	client	functions	ignore	return
values	from	server	functions	with	side	effects.	Pinging	a	server	to	make	sure	it	is
alive,	for	example,	would	rely	on	gen_server:call/2	raising	an	exception	if	the
server	had	terminated	or	if	there	were	a	delay,	possibly	as	a	result	of	heavy	load,
in	handling	the	request	and	sending	the	response.	Another	example	where
synchronous	calls	are	used	is	when	there	is	a	need	to	throttle	requests	and	control
the	rate	at	which	messages	are	sent	to	the	server.	We	discuss	the	need	to	throttle
messages	in	Chapter	15.

As	with	pure	Erlang,	calls	and	casts	should	be	abstracted	in	a	functional	API	if
used	from	outside	the	module.	This	gives	you	greater	flexibility	to	change	your
protocol	and	hide	private	implementation-related	information	from	the	caller	of

the	function.	Place	the	client	functions	in	the	same	module	as	the	process,	as	this
makes	it	easier	to	follow	the	message	flow	without	jumping	between	modules.

Other	Messages
OTP	behaviors	are	implemented	as	Erlang	processes.	So	while	communication
should	ideally	occur	through	the	protocols	defined	in	the	gen_server:call/2
and	gen_server:cast/2	functions,	that	is	not	always	the	case.	As	long	as	the	pid
or	registered	name	is	known,	there	is	nothing	stopping	a	user	from	sending	a
message	using	the	Name	!	Message	construct.	In	some	cases,	Erlang	messages
are	the	only	way	to	get	information	across	to	the	generic	server.	For	example,	if
the	server	is	linked	to	other	processes	or	ports	but	has	called	the
process_flag(trap_exit,	true)	BIF	to	trap	exits	from	those	processes	or
ports,	it	might	receive	EXIT	signal	messages.	Also,	communication	between
processes	and	ports	or	sockets	is	based	on	message	passing.	And	finally,	what	if
we	are	using	a	process	monitor,	monitoring	distributed	nodes	or	communicating
with	legacy,	non-OTP-compliant	code?

These	examples	all	result	in	our	server	receiving	Erlang	messages	that	do	not
comply	with	the	internal	OTP	messaging	protocol	of	the	server.	Compliant	or
not,	if	you	are	using	features	that	can	generate	messages	to	your	server,	then
your	server	code	has	to	be	capable	of	handling	them.	Generic	servers	provide	a
callback	function	that	takes	care	of	all	of	these	messages.	It	is	the
handle_info(_Msg,	LoopData)	callback.	When	called,	it	has	to	return	either	the
tuple	{noreply,	NewLoopData}	or,	when	stopping,	{stop,	Reason,
NewLoopData}:

handle_info(_Msg,	LoopData)	->																																			%	frequency.erl

				{noreply,	LoopData}.

It	is	common	practice,	even	if	you	are	not	expecting	any	messages,	to	include
this	callback	function.	Not	doing	so	and	sending	the	server	a	non-OTP-compliant
message	(they	arrive	when	you	least	expect	them!)	would	result	in	a	runtime
error	and	the	server	terminating,	as	the	handle_info/2	function	would	be	called
in	the	callback	module,	resulting	in	an	undefined	function	error.

We’ve	kept	our	frequency	server	example	simple.	We	ignore	any	message
coming	in,	returning	the	unchanged	LoopData	in	the	noreply	tuple.	If	you	are
certain	you	should	not	be	receiving	non-OTP	messages,	you	could	log	such

messages	as	errors.	If	we	wanted	to	print	an	error	message	every	time	a	process
the	server	was	linked	to	terminated	abnormally,	the	code	would	look	like	this
(we	are	assuming	that	the	server	in	question	is	trapping	exits):

handle_info({'EXIT',	_Pid,	normal},	LoopData)	->

				{noreply,	LoopData};

handle_info({'EXIT',	Pid,	Reason},	LoopData)	->

				io:format("Process:	~p	exited	with	reason:	~p~n",[Pid,	Reason]),

				{noreply,	LoopData};

handle_info(_Msg,	LoopData)	->

				{noreply,	LoopData}.

WARNING
One	of	the	downsides	of	OTP	is	the	overhead	resulting	from	the	layering	of	the	various
behavior	modules	and	the	data	overhead	required	by	the	communication	protocol.	Both	will
affect	performance.	In	an	attempt	to	shave	a	few	microseconds	from	their	calls,	developers
have	been	known	to	bypass	the	gen_server:cast	function	and	use	the	Pid	!	Msg	construct
instead,	or,	even	worse,	embed	receive	statements	in	their	callback	functions	to	receive	these
messages.	Don’t	do	this!	You	will	make	your	code	hard	to	debug,	support,	and	maintain,	lose
many	of	the	advantages	OTP	brings	to	the	table,	and	get	the	authors	of	this	book	to	stop	liking
you.	If	you	need	to	shave	off	microseconds,	optimize	only	when	you	know	from	actual
performance	measurements	that	your	program	is	not	fast	enough.

Unhandled	Messages
Erlang	uses	selective	receives	when	retrieving	messages	from	the	process
mailbox.	But	allowing	us	to	extract	certain	messages	while	leaving	others
unhandled	comes	with	the	risk	of	memory	leakages.	What	happens	if	a	message
type	is	never	read?	Using	Erlang	without	OTP,	the	message	queue	would	get
longer	and	longer,	increasing	the	number	of	messages	to	be	traversed	before	one
is	successfully	pattern	matched.	This	message	queue	growth	will	manifest	itself
in	the	Erlang	VM	through	high	CPU	usage	as	a	result	of	the	traversal	of	the
mailbox,	and	by	the	VM	eventually	running	out	of	memory	and	possibly	being
restarted	through	heart,	which	we	cover	in	Chapter	11.

All	of	this	is	valid	if	we	are	using	pure	Erlang,	but	OTP	behaviors	take	a
different	approach.	Messages	are	handled	in	the	same	order	in	which	they	are
received.	Start	your	frequency	server,	and	try	sending	yourself	a	message	you	are
not	handling:

1>	frequency:start().

{ok,<0.33.0>}

2>	gen_server:call(frequency,	foobar).

=ERROR	REPORT====	29-Nov-2015::18:27:45	===

**	Generic	server	frequency	terminating	

**	Last	message	in	was	foobar

**	When	Server	state	==	{data,[{"State",

																																{{available,[10,11,12,13,14,15]},

																																	{allocated,[]}}}]}

**	Reason	for	termination	==	

**	{function_clause,[{frequency,handle_call,

																																[foobar,

																																	{<0.44.0>,#Ref<0.0.4.112>},

																																	{[10,11,12,13,14,15],[]}],

																																[{file,"frequency.erl"},{line,63}]},

																					{gen_server,try_handle_call,4,

																																	[{file,"gen_server.erl"},{line,629}]},

																					{gen_server,handle_msg,5,

																																	[{file,"gen_server.erl"},{line,661}]},

																					{proc_lib,init_p_do_apply,3,

																															[{file,"proc_lib.erl"},{line,240}]}]}

This	is	probably	not	what	you	were	expecting.	The	frequency	server	terminated
with	a	function_clause	runtime	error,	printing	an	error	report.2	When	you	call
a	function,	one	of	the	clauses	always	has	to	match.	Failure	to	do	so	results	in	a
runtime	error.	When	doing	a	gen_server	call	or	cast,	the	message	is	always
retrieved	from	the	mailbox	in	the	generic	server	loop,	and	the	handle_call/3	or

handle_cast/2	callback	function	is	invoked.	In	our	example,
handle_call(foobar,	_From,	LoopData)	doesn’t	match	any	of	the	clauses,
causing	the	function	clause	error	we’ve	just	viewed.	The	same	would	happen
with	a	cast.

How	do	we	avoid	such	errors?	One	option	is	to	have	a	catch-all,	where	unknown
messages	are	pattern	matched	to	a	don’t	care	variable	and	ignored.	This	is
specific	to	the	application,	and	may	or	may	not	be	the	answer.	A	catch-all	might
be	the	norm	with	the	handle_info/2	callback	when	dealing	with	ports,	sockets,
links,	monitors,	and	monitoring	of	distributed	nodes	where	there	is	a	risk	of
forgetting	to	handle	a	particular	message	not	needed	by	the	application.	When
dealing	with	calls	and	casts,	however,	all	requests	should	originate	from	the
behavior	callback	module	and	any	unknown	messages	should	be	caught	in	the
early	stages	of	testing.

If	in	doubt,	don’t	be	defensive,	and	instead	make	your	server	terminate	when
receiving	unknown	messages.	Treat	these	terminations	as	bugs,	and	either	handle
the	messages	or	correct	them	at	the	source.	If	you	do	decide	to	ignore	unknown
messages,	don’t	forget	to	log	them.

Synchronizing	Clients
What	happens	in	a	situation	where	two	clients	each	send	a	synchronous	request
to	a	server,	but	instead	of	immediately	responding	to	each	individually,	the
server	has	to	wait	for	both	requests	before	responding	to	the	first?	We
demonstrate	this	in	Figure	4-5.	This	could	be	done	for	synchronization	purposes
or	because	the	server	needs	the	data	from	both	requests.

Figure	4-5.	Rendezvous	with	generic	servers

The	solution	to	this	problem	is	simple.	Do	you	remember	the	From	field	in	the
handle_call(Message,	From,	State)	callback	function?	Instead	of	returning	a
reply	back	to	the	behavior	loop,	we	return	{noreply,	NewState}.	We	then	use

the	From	attribute	and	the	function:

gen_server:reply(From,	Reply)

to	later	send	back	the	reply	to	the	client	when	it	suits	us.	In	the	case	of	having	to
synchronize	two	clients,	it	could	be	in	the	second	handle_call/3	callback,
where	the	From	value	for	the	first	client	is	stored	between	the	calls	either	as	part
of	the	NewState	or	in	a	table	or	database.

You	can	also	use	reply/2	if	a	synchronous	request	triggers	a	time-consuming
computation	and	the	only	response	the	client	is	interested	in	is	an
acknowledgment	that	the	request	has	been	received	and	is	in	the	process	of	being
fulfilled,	without	having	to	wait	for	the	whole	computation	to	be	completed.	To
send	an	immediate	acknowledgment,	the	gen_server:reply/2	call	can	be	used
in	the	callback	itself:

handle_call({add,	Data},	From,	Sum)	->	

				gen_server:reply(From,	ok),	

				timer:sleep(1000),

				NewSum	=	add(Data,	Sum),

				io:format("From:~p,	Sum:~p~n",[From,	NewSum]),

				{noreply,	NewSum}.

Let’s	run	this	code,	assuming	it	is	a	generic	server	implemented	in	the	from
callback	module.	The	call	timer:sleep/1	will	suspend	the	process,	allowing	the
shell	process	to	handle	the	response	from	gen_server:reply/2	before	the
io:format/2	call:

1>	gen_server:start({local,	from},	from,	0,	[]).

{ok,<0.53.0>}

2>	gen_server:call(from,	{add,	10}).

ok

From:{<0.55.0>,#Ref<0.0.3.248>},	Sum:10

Note	the	value	and	format	of	the	From	argument	we	are	printing	in	the	shell.	It	is
a	tuple	containing	the	client	pid	and	a	unique	reference.	This	reference	is	used	in
a	tag	with	the	reply	sent	back	to	the	client,	ensuring	that	it	is	in	fact	the	intended
reply,	and	not	a	message	conforming	to	the	protocol	sent	from	another	process.
Always	use	From	as	an	opaque	data	type;	don’t	assume	it	is	a	tuple,	as	its
representation	might	change	in	future	releases.

Termination
What	if	we	want	to	stop	a	generic	server?	So	far,	we’ve	seen	the	callback
functions	init/1,	handle_call/3,	and	handle_cast/2	return	{ok,	LoopData},
{reply,	Reply,	LoopData},	and	{noreply,	LoopData},	respectively.	Stopping
the	server	requires	the	callbacks	to	return	different	tuples:

init/1	can	return	{stop,	Reason}

handle_call/3	can	return	{stop,	Reason,	Reply,	LoopData}

handle_cast/2	can	return	{stop,	Reason,	LoopData}

handle_info/2	can	return	{stop,	Reason,	LoopData}

These	return	values	terminate	with	the	same	behavior	as	if	exit(Reason)	were
called.	In	the	case	of	calls	and	casts,	before	exiting,	the	callback	function
terminate(Reason,	LoopData)	is	called.	It	allows	the	server	to	clean	up	after
itself	before	being	shut	down.	Any	value	returned	by	terminate/2	is	ignored.	In
the	case	of	init,	stop	should	be	returned	if	something	fails	when	initializing	the
state.	As	a	result,	terminate/2	will	not	be	called.	If	we	return	{stop,	Reason}
in	the	init/1	callback,	the	start_link	function	returns	{error,	Reason}.

In	our	frequency	server	example,	the	stop/0	client	function	sends	an
asynchronous	message	to	the	server.	Upon	receiving	it,	the	handle_cast/2
callback	returns	the	tuple	with	the	stop	control	atom,	which	in	turn	results	in	the
terminate/2	call	being	invoked.	Have	a	look	at	the	code:

stop()	->	gen_server:cast(frequency,	stop).																						%	frequency.erl

handle_cast(stop,	LoopData)	->

				{stop,	normal,	LoopData}.

terminate(_Reason,	_LoopData)	->

				ok.

To	keep	the	example	simple,	we’ve	left	terminate	empty.	In	an	ideal	world,	we
would	probably	have	killed	all	of	the	client	processes	that	were	allocated	a

frequency,	thereby	terminating	their	tasks	using	those	frequencies	and	ensuring
that	upon	a	restart,	all	frequencies	are	available.

Look	at	the	message	gen_server:cast/2	sends	to	the	frequency	server.	You’ll
notice	it	is	the	atom	stop,	pattern	matched	in	the	first	argument	of	the
handle_cast/2	call.	The	message	has	no	meaning	other	than	the	one	we	give	to
it	in	our	code.	We	could	have	sent	any	atom,	like	gen_server:cast(frequency,
donald_duck).	Pattern	matching	donald_duck	in	the	handle_cast/2	would	have
given	us	the	same	result.	The	only	stop	that	has	special	meaning	is	the	one	that
occurs	in	the	first	element	of	the	tuple	returned	by	handle_cast/2,	as	it	is
interpreted	in	the	receive-evaluate	loop	of	the	generic	server.

If	you	are	shutting	down	your	server	as	part	of	your	normal	workflow	(e.g.,	the
socket	it	is	handling	has	been	closed,	or	the	hardware	it	controls	and	monitors	is
shutting	down),	it	is	good	practice	to	set	your	Reason	to	normal.	A	non-normal
reason,	while	perfectly	acceptable,	will	result	in	error	reports	being	logged	by
the	SASL	logger.	These	entries	might	overshadow	those	of	real	crashes.	(The
SASL	logger	is	another	freebie	you	get	when	using	OTP.	We	cover	it	in
Chapter	9.)

Although	servers	can	be	stopped	normally	by	returning	the	stop	tuple,	there
might	be	cases	when	they	terminate	as	the	result	of	a	runtime	error.	In	these
cases,	if	the	generic	server	is	trapping	exits	(by	having	called	the
process_flag(trap_exit,	true)	BIF),	terminate/2	will	also	be	called,	as
shown	in	Figure	4-6.	If	you	are	not	trapping	exits,	the	process	will	just	terminate
without	calling	terminate/2.

Figure	4-6.	Abnormal	server	termination

If	you	want	the	terminate/2	function	to	execute	after	abnormal	terminations,
you	have	to	set	the	trap_exit	flag.	If	it	is	not	set,	a	supervisor	or	linked	process
might	bring	the	server	down	without	allowing	it	to	clean	up.

Having	said	this,	always	check	the	context	for	termination.	If	a	runtime	error	has
occurred,	clean	up	the	server	state	with	extreme	care,	as	you	might	end	up
corrupting	your	data	and	so	set	your	system	up	for	more	runtime	errors	after	the
server	restarts.	When	restarting,	you	should	aim	to	recreate	the	server	state	from
correct	(and	unique)	sources	of	data,	not	a	copy	you	stored	right	before	the	crash,
as	it	might	have	been	corrupted	by	the	same	fault	that	caused	the	crash.

Call	Timeouts
When	sending	synchronous	messages	to	your	server	using	a	gen_server	call,
you	should	expect	a	response	within	milliseconds.	But	what	if	there	is	a	delay	in
sending	the	response?	Your	server	might	be	extremely	busy	handling	thousands
of	requests,	or	there	might	be	bottlenecks	in	external	dependencies	such	as
databases,	authentication	servers,	IP	networks,	or	any	other	resource	or	API
taking	its	time	to	respond.	OTP	behaviors	have	a	built-in	timeout	of	5	seconds	in
their	synchronous	gen_server:call	APIs.	This	should	be	enough	to	cater	to
most	queries	in	any	soft	real-time	system,	but	there	are	borderline	cases	that
need	to	be	handled	differently.	If	you	are	sending	a	synchronous	request	using
OTP	behaviors	and	have	not	received	a	response	within	5	seconds,	the	client
process	will	raise	an	exception.	Let’s	try	it	out	in	the	shell	with	the	following
callback	module:

-module(timeout).

-behavior(gen_server).

-export([init/1,	handle_call/3]).

init(_Args)	->

				{ok,	undefined}.

handle_call({sleep,	Ms},	_From,	LoopData)	->

				timer:sleep(Ms),

				{reply,	ok,	LoopData}.

In	the	gen_server:call/2	function,	we	send	a	message	of	the	format	{sleep,
Ms},	where	Ms	is	a	value	used	in	the	timer:sleep/1	call	executed	in	the
handle_call/3	callback.	Sending	a	value	larger	than	5,000	milliseconds	should
cause	the	gen_server:call/2	function	to	raise	an	exception,	as	such	a	value
exceeds	the	default	timeout.	Let’s	try	it	out	in	the	shell.	We	assume	that	the
timeout	module	is	already	compiled,	so	as	to	avoid	the	compiler	warnings	from
the	callback	functions	we	have	omitted:

1>	gen_server:start_link({local,	timeout},	timeout,	[],	[]).

{ok,<0.66.0>}

2>	gen_server:call(timeout,	{sleep,	1000}).

ok

3>	catch	gen_server:call(timeout,	{sleep,	5001}).

{'EXIT',{timeout,{gen_server,call,[timeout,{sleep,5001}]}}}

4>	flush().

Shell	got	{#Ref<0.0.0.300>,ok}

5>	gen_server:call(timeout,	{sleep,	5001}).

**	exception	exit:	{timeout,{gen_server,call,[timeout,{sleep,5001}]}}

					in	function		gen_server:call/2

6>	catch	gen_server:call(timeout,	{sleep,	1000}).

{'EXIT',{noproc,{gen_server,call,[timeout,{sleep,1000}]}}}

We	start	the	server,	and	in	shell	command	2,	we	send	a	synchronous	message
telling	the	server	to	sleep	for	1,000	milliseconds	before	replying	with	the	atom
ok.	As	this	is	within	the	5-second	default	timeout,	we	get	our	response	back.	But
in	shell	command	3,	we	raise	the	timeout	to	5,001	milliseconds,	causing	the
gen_server:call/2	function	to	raise	an	exception.	In	our	example,	shell
command	3	catches	the	exception,	allowing	the	client	function	to	handle	any
special	cases	that	might	arise	as	a	result	of	the	timeout.

If	you	decide	to	catch	exceptions	arising	as	the	result	of	a	timeout,	be	warned:	if
the	server	is	alive	but	busy,	it	will	send	back	a	response	after	the	timeout
exception	has	been	raised.	This	response	has	to	be	handled.	If	the	client	is	itself
an	OTP	behavior,	the	exception	will	result	in	the	handle_info/2	call	being
invoked.	If	this	call	has	not	been	implemented,	the	client	process	will	crash.

If	the	call	is	from	a	pure	Erlang	client,	the	exception	will	be	stored	in	the	client
mailbox	and	never	handled.	Having	unread	messages	in	your	mailbox	will
consume	memory	and	slow	down	the	process	when	new	messages	are	received,
as	the	littering	messages	need	to	be	traversed	before	new	ones	will	be	pattern
matched.	Not	only	that,	but	sending	a	message	to	a	process	with	a	large	number
of	unread	messages	will	slow	down	the	sender,	because	the	send	operation	will
consume	more	reductions.	This	will	have	a	knock-on	effect,	potentially
triggering	more	timeouts	and	further	growing	the	number	of	littering	messages
in	the	client	mailbox.

The	performance	penalty	when	sending	messages	to	a	process	with	a	long
message	queue	does	not	apply	to	behaviors	synchronously	responding	to	the
process	where	the	request	originated.	If	the	client	process	has	a	long	message
queue,	thanks	to	compiler	and	virtual	machine	optimizations,	the	receive	clause
will	match	the	reply	without	having	to	traverse	the	whole	message	queue.

We	see	the	proof	of	this	memory	leak	in	shell	command	4,	where	unread
messages	are	flushed.	Had	we	not	flushed	the	message,	it	would	have	remained
in	the	shell’s	mailbox.	Throughout	this	book,	we	keep	reminding	you	not	to

handle	corner	cases	and	unexpected	errors	in	your	code,	as	you	run	the	risk	of
introducing	more	bugs	and	errors	than	you	actually	solve.	This	is	a	typical
example	where	side	effects	resulting	from	these	timeouts	will	probably	manifest
themselves	only	under	extreme	load	in	a	live	system.

Now	have	a	look	at	shell	command	5	and	Figure	4-7.	We	have	a	call	that	causes
the	client	process	to	crash,	because	it	is	executed	outside	the	scope	of	a	try-
catch	statement.	In	a	majority	of	cases,	if	your	server	is	not	responding	for	any
(possibly	unknown)	reason,	making	the	client	process	terminate	and	letting	the
supervisor	deal	with	it	is	probably	the	best	approach.	In	this	example,	the	shell
process	terminates	and	is	immediately	restarted.	The	timeout	server	sends	a
response	to	the	old	client	(and	shell)	pid	after	5,001	milliseconds.	As	this	process
does	not	exist	anymore,	the	message	is	discarded.	So	why	does	shell	command	6
fail	with	reason	noproc?	Have	a	look	at	the	sequence	of	shell	commands	and	see
if	you	can	figure	it	out	before	reading	on.

Figure	4-7.	Server	timeouts

When	we	started	the	server,	we	linked	it	to	the	shell,	making	the	shell	process	act
as	both	the	client	and	the	parent.	The	timeout	server	terminated	after	we
executed	a	gen_server:call/2	call	outside	of	the	scope	of	a	try-catch	in	shell
command	5.	Because	the	server	is	not	trapping	exits,	when	the	shell	terminated,
the	EXIT	signal	propagated	to	the	server,	causing	it	to	also	terminate.	In	normal
circumstances,	the	client	and	the	parent	of	the	server	that	links	to	it	would	not	be
the	same	process,	so	this	would	not	occur.	These	issues	tend	to	show	up	when

testing	behaviors	from	the	shell,	so	keep	them	in	mind	when	working	on	your
exercises.

So,	how	do	we	supply	something	other	than	the	5-second	default	timeout	value
in	behaviors?	Easy:	we	set	our	own	timeout.	In	generic	servers,	we	do	this	using
the	following	function	call:

gen_server:call(Server,	Message,	TimeOut)	->	Reply

where	TimeOut	is	either	the	desired	value	in	milliseconds	or	the	atom	infinity.

A	client	call	will	often	consist	of	a	chain	of	synchronous	requests	to	several,
potentially	distributed,	behavior	processes.	They	might	in	turn	send	requests	to
external	resources.	More	often	than	not,	choosing	timeout	values	becomes	tricky,
as	these	processes	are	accessing	services	and	APIs	provided	by	third	parties
completely	out	of	your	control.	Systems	that	have	been	known	to	respond	in
milliseconds	to	the	majority	of	the	requests	can	take	seconds	or	even	minutes
under	extreme	loads.	The	throughput	of	your	system	counted	in	operations	per
second	might	still	be	the	same,	but	when	there	is	a	higher	load	—	possibly	many
orders	of	magnitude	higher	—	going	through	it,	the	latency	of	the	individual
requests	will	be	higher.

The	only	way	to	answer	the	question	of	what	TimeOut	you	should	set	is	to	start
with	your	external	requirements.	If	a	client	specifies	a	30-second	timeout,	start
with	it	and	work	your	way	through	the	chain	of	requests.	What	are	the
guaranteed	response	times	of	your	external	dependencies?	How	will	disk	access
and	I/O	respond	under	extreme	load?	What	about	network	latency?	Spend	lots	of
time	stress	testing	your	system	on	the	target	hardware	and	fine-tune	your	values
accordingly.	When	you’re	unsure,	start	with	the	5,000-millisecond	default	value.
Use	the	value	infinity	with	extreme	care,	avoiding	it	altogether	unless	there’s
no	other	alternative.

Deadlocks
Picture	two	generic	servers	in	a	badly	designed	system.	server1	does	a
synchronous	call	to	server2.	server2	receives	the	request,	and	through	a	series
of	calls	in	other	modules	ends	up	(possibly	unknowingly)	executing	a
synchronous	callback	to	server1.	Observing	Figure	4-8,	this	problem	is	resolved
not	through	complex	deadlock	prevention	algorithms,	but	through	timeouts.

Figure	4-8.	Generic	server	deadlocks

If	server1	has	not	received	a	response	within	5,000	milliseconds,	it	terminates,
causing	server2	to	terminate	as	well.	Depending	on	what	gets	there	first,	the
termination	is	triggered	either	through	the	monitor	signal	or	through	a	timeout	of
its	own.	If	more	processes	are	involved	in	the	deadlock,	the	termination	will
propagate	to	them	as	well.	The	supervisor	will	receive	the	EXIT	signals	and
restart	the	servers	accordingly.	The	termination	is	stored	in	a	log	file	where	it	is
hopefully	detected,	resulting	in	the	bug	leading	to	the	deadlock	being	fixed.

STRATEGIES	FOR	AVOIDING	DEADLOCKS

Despite	the	ease	of	creating	deadlocks,	they	are	extremely	rare,	no	matter	how	complex	the	program
might	be.	This	has	to	do	with	how	the	systems	are	architected,	the	concurrency	is	modeled,	and
dependencies	among	processes	and	applications	are	handled.	The	lack	of	shared	memory	and	critical
sections	helps	remove	the	danger	of	deadlocks.	Experienced	Erlang	programmers	will	by	default
ensure	that	their	programs	are	designed	to	avoid	deadlocks,	often	without	having	to	think	about	it.
Newbies,	however,	need	to	find	a	suitable	strategy	in	the	initial	design	phase	of	the	system	and	stick	to
it.	A	standard	practice	when	dealing	with	static	processes	that	are	not	started	and	terminated
dynamically	is	to	allow	synchronous	calls	to	be	made	only	to	processes	that	were	started	before	the

process	making	the	call.	Calls	from	older	processes	to	younger	ones	may	only	be	asynchronous.	If	a
reply	is	required	from	the	younger	process,	it	sends	it	back	through	a	(possibly	asynchronous)	callback
function.	The	start	order	of	static	processes	is	defined	in	supervision	trees,	which	also	happens	to	be
the	order	used	with	dynamic	processes.	This	will	become	clear	when	we	cover	supervision	trees	and
restart	orders	in	Chapter	8.	You	need	to	keep	it	in	mind	when	processes	are	grouped	into	supervision
trees,	when	supervision	trees	are	grouped	into	applications,	and	when	application	start	orders	are
defined.

In	17	years	of	working	with	Erlang,	I’ve	come	across	only	one	deadlock.3
Process	A	synchronously	called	process	B,	which	in	turn	did	a	remote	procedure
call	to	another	node	that	resulted	in	a	synchronous	call	to	process	C.	Process	C
synchronously	called	process	D,	which	did	another	remote	procedure	call	back	to
the	first	node.	This	call	resulted	in	a	synchronous	callback	to	process	A,	which
was	still	waiting	for	a	response	back	from	B.	We	discovered	this	deadlock	when
integrating	the	two	nodes	for	the	first	time,	and	it	took	us	5	minutes	to	solve.
Process	A	should	have	called	B	asynchronously,	and	process	B	should	have
responded	back	to	A	with	an	asynchronous	callback.	So	while	there	is	a	risk	of
deadlocks,	if	you	approach	the	problem	right,	it	is	minimal,	as	the	largest	cause
of	deadlocks	occurs	when	controlling	execution	and	failure	in	critical	sections	—
something	for	which	the	shared-nothing	approach	in	Erlang	provides	plenty	of
alternatives.

Generic	Server	Timeouts
Picture	a	generic	server	whose	task	is	to	monitor	and	communicate	with	a
particular	hardware	device.	If	the	server	has	not	received	a	message	from	the
device	within	a	predefined	timeout,	it	should	send	a	ping	request	to	ensure	the
device	is	alive.	These	ping	requests	can	be	triggered	by	internal	timeouts,	created
by	adding	a	timeout	value	in	the	control	tuples	sent	back	as	a	result	of	the
behavior	callback	functions:

init/1								->	{ok,	LoopData,	Timeout}

handle_call/3	->	{reply,	Reply,	LoopData,	Timeout}

handle_cast/2	->	{noreply,	LoopData,	Timeout}

handle_info/2	->	{noreply,	LoopData,	Timeout}

The	value	Timeout	is	either	an	integer	in	milliseconds	or	the	atom	infinity.	If
the	server	does	not	receive	a	message	in	Timeout	milliseconds,	it	receives	a
timeout	message	in	its	handle_info/2	callback	function.	Returning	infinity	is
the	same	as	not	setting	a	timeout	value.	Let’s	try	it	with	a	simple	example	where
every	5,000	milliseconds,	we	generate	a	timeout	that	retrieves	the	current	time
and	prints	the	seconds.	We	can	pause	the	timer	and	restart	it	by	sending	the
synchronous	messages	start	and	pause:

-module(ping).			

-behavior(gen_server).

-export([init/1,	handle_call/3,	handle_info/2]).

-define(TIMEOUT,	5000).

init(_Args)	->

				{ok,	undefined,	?TIMEOUT}.

handle_call(start,	_From,	LoopData)	->

				{reply,	started,	LoopData,	?TIMEOUT};

handle_call(pause,	_From,	LoopData)	->

				{reply,	paused,	LoopData}.

handle_info(timeout,	LoopData)	->

				{_Hour,_Min,Sec}	=	time(),	

				io:format("~2.w~n",[Sec]),

				{noreply,	LoopData,	?TIMEOUT}.

Assuming	the	ping	module	is	compiled,	we	start	it	and	generate	a	timeout	every
5	seconds.	We	can	suspend	the	timeout	by	sending	it	the	pause	message,	which

when	handled	in	the	second	clause	of	the	handle_call/3	function	does	not
include	a	timeout	in	its	return	tuple.	We	turn	it	back	on	with	the	start	message:

1>	gen_server:start({local,	ping},	ping,	[],	[]).

{ok,<0.38.0>}

22

27

2>	gen_server:call(ping,	pause).

paused

3>	gen_server:call(ping,	start).

started

51

56

4>	gen_server:call(ping,	start).

started

4

Because	we	set	a	relatively	high	timeout,	we	do	not	generate	a	timeout	message
at	5,000-millisecond	intervals.	We	send	a	timeout	message	only	if	a	message	has
not	been	received	by	the	behavior.	If	a	message	is	received,	as	is	happening	with
shell	command	4	in	our	example,	the	timer	is	reset.

If	you	need	timers	that	may	not	be	reset	or	have	to	run	at	regular	intervals
irrespective	of	incoming	messages,	use	functions	such	as	erlang:send_after/3
or	those	provided	by	the	timer	module,	including	apply_after/3,
send_after/2,	apply_interval/4,	and	send_interval/2.

Hibernating	Behaviors
If	instead	of	a	timeout	value	or	the	atom	infinity	we	return	the	atom
hibernate,	the	server	will	reduce	its	memory	footprint	and	enter	a	wait	state.
You	will	want	to	use	hibernate	when	servers	that	receive	intermittent,	memory-
intensive	requests	are	causing	the	system	to	run	low	on	memory.	Using
hibernate	will	discard	the	call	stack	and	run	a	full-sweep	garbage	collection,
placing	everything	in	one	continuous	heap.	The	allocated	memory	is	then	shrunk
to	the	size	of	the	data	on	the	heap.	The	server	will	remain	in	this	state	until	it
receives	a	new	message.

WARNING
There	is	a	cost	associated	with	hibernating	processes,	as	it	involves	a	full-sweep	garbage
collection	prior	to	hibernating	and	one	soon	after	the	process	wakes	up.	Use	hibernation	only	if
you	do	not	expect	the	behavior	to	receive	any	messages	in	the	foreseeable	future	and	need	to
economize	on	memory,	not	for	servers	receiving	frequent	bursts	of	messages.	Using	it	as	a
preemptive	measure	is	dangerous,	especially	if	your	process	is	busy,	as	it	might	(and	probably
will)	cost	more	to	hibernate	the	process	than	to	just	leave	it	as	is.	The	only	way	to	know	for
sure	is	to	benchmark	your	system	under	stress	and	demonstrate	a	gain	in	performance	along
with	a	substantial	reduction	in	memory	usage.	Add	it	as	an	afterthought	only	if	you	know	what
you	are	doing.	If	in	doubt,	don’t	do	it!

Going	Global
Behavior	processes	can	be	registered	locally	or	globally.	In	our	examples,	they
have	all	been	registered	locally	using	a	tuple	of	the	format	{local,
ServerName},	where	ServerName	is	an	atom	denoting	the	alias.	This	is
equivalent	to	registering	the	process	using	the	register(ServerName,	Pid)
BIF.	But	what	if	we	want	location	transparency	in	a	distributed	cluster?

Globally	registered	processes	piggyback	on	the	global	name	server,	which	makes
them	transparently	accessible	in	a	cluster	of	(possibly	partitioned)	distributed
nodes.	The	name	server	stores	local	replicas	of	the	names	on	every	node	and
monitors	node	health	and	changes	in	connectivity,	ensuring	there	is	no	central
point	of	failure.	You	register	a	server	globally	by	using	the	{global,	Name}
tuple	as	an	argument	to	the	server	name	field.	It	is	equivalent	to	registering	the
process	using	the	function	global:register_name(Name,	Pid).	Use	the	same
tuple	in	your	synchronous	and	asynchronous	calls:

gen_server:start_link({global,Name},Mod,Args,Opts)	->

				{ok,	Pid}	|	ignore	|	{error,	Reason}

gen_server:call({global,	Name},	Message)	->	Reply

gen_server:cast({global,	Name},	Message)	->	ok

There	is	an	API	that	allows	you	to	replace	the	global	process	registry	with	one
you	have	implemented	yourself.	You	can	create	your	own	when	the	functionality
provided	by	the	global	module	is	not	enough,	or	when	you	want	a	different
behavior	that	caters	for	different	network	topologies.	You	need	to	provide	a
callback	module	—	say,	Module	—	that	exports	the	same	functions	and	return
values	defined	in	the	global	module,	namely	register_name/2,
unregister_name/1,	whereis_name/1,	and	send/2.	Name	registration	then	uses
the	tuple	{via,	Module,	Name},	and	starting	your	process	using	{via,	global,
Name}	is	the	same	as	registering	it	globally	using	{global,	Name}.	For	globally
registered	processes,	the	Name	does	not	have	to	be	an	atom;	rather,	any	Erlang
term	is	valid.	Once	you	have	your	callback	module,	you	can	start	your	process
and	send	messages	using:

gen_server:start_link({via,	Module,	Name},Mod,Args,Opts)	->	{ok,	Pid}

gen_server:call({via,	Module,	Name},	Message)	->	Reply

gen_server:cast({via,	Module,	Name},	Message)	->	ok

In	the	remainder	of	the	book,	we	aggregate	{via,	Module,	Name},	{local,
Name},	and	{global,	Name}	using	NameScope.	Most	servers	are	registered
locally,	but	depending	on	the	complexity	of	the	system	and	clustering	strategies,
global	and	via	are	used	as	well.

When	communicating	with	behaviors,	you	can	use	their	pids	instead	of	their
registered	aliases.	Registering	behaviors	is	not	mandatory;	not	registering	allows
multiple	instances	of	the	same	behavior	to	run	in	parallel.	When	starting	the
behaviors,	just	omit	the	name	field:

gen_server:start_link(Mod,	Args,	Opts)	->

				{ok,	Pid}	|	ignore	|	{error,	Reason}

If	you	broadcast	a	request	to	all	servers	within	a	cluster	of	nodes,	you	can	use	the
generic	server	multi_call/3	call	if	you	need	results	back	and	abcast/3	if	you
don’t:

gen_server:multi_call(Nodes,	Name,	Request	[,	Timeout])	->

				{[{Node,Reply}],	BadNodes}

gen_server:abcast(Nodes,	Name,	Request)	->	abcast

On	the	servers	of	the	individual	nodes,	requests	are	handled	in	the
handle_call/3	and	handle_cast/2	callbacks,	respectively.	When	broadcasting
asynchronously	with	abcast,	no	checks	are	made	to	see	whether	or	not	the	nodes
are	connected	and	still	alive.	Requests	to	nodes	that	cannot	be	reached	are
simply	thrown	away.

Linking	Behaviors
When	you	start	behaviors	in	the	shell,	you	link	the	shell	process	to	them.	If	the
shell	process	terminates	abnormally,	its	EXIT	signal	will	propagate	to	the
behaviors	it	started	and	cause	them	to	terminate.	Generic	servers	can	be	started
without	linking	them	to	their	parent	by	calling	gen_server:start/3	or
gen_server:start/4.	Use	these	functions	with	care,	and	preferably	only	for
development	and	testing	purposes,	because	behaviors	should	always	be	linked	to
their	parent:

gen_server:start(NameScope,Mod,Args,Opts)

gen_server:start(Mod,Args,Opts)	->

				{ok,	Pid}	|	{error,	{already_started,	Pid}}

Erlang	systems	will	operate	for	years	in	the	absence	of	rebooting	the	computers
they	run	on.	They	can	continue	even	during	software	upgrades	for	bug	fixes,
feature	enhancements,	and	new	functionality,	and	through	behaviors	terminating
abnormally	and	being	restarted.	When	shutting	down	a	subsystem,	you	need	to
be	100%	certain	that	all	processes	associated	with	that	subsystem	are	terminated,
and	avoid	leaving	any	orphan	processes	lingering.	The	only	way	to	do	so	with
certainty	is	using	links.	We	go	into	more	detail	when	we	cover	supervisor
behaviors	in	Chapter	8.

Summing	Up
In	this	chapter,	we	have	introduced	the	most	important	concepts	and
functionality	in	the	generic	server	behavior,	the	behavior	behind	all	behaviors.
You	should	by	now	have	a	good	understanding	of	the	advantages	of	using	the
gen_server	behavior	instead	of	rolling	your	own.	We	have	covered	the	majority
of	functions	and	associated	callbacks	needed	when	using	this	behavior.	Although
you	do	not	need	to	understand	everything	that	goes	on	behind	the	scenes,	we
hope	you	now	have	an	idea	and	appreciation	that	there	is	more	than	meets	the
eye.	The	most	important	functions	we	have	covered	are	listed	in	Table	4-1.

Table	4-1.	gen_server	callbacks

gen_server	function	or	action gen_server	callback
function

gen_server:start/3,	gen_server:start/4,	gen_server:start_link/3,
gen_server:start_link/4

Module:init/1

gen_server:call/2,	gen_server:call/3,	gen_server:multi_call/2,
gen_server:multi_call/3

Module:handle_call/3

gen_server:cast/2,	gen_server:abcast/2,	gen_server:abcast/3 Module:handle_cast/2

Pid	!	Msg,	monitors,	exit	messages,	messages	from	ports	and	sockets,	node
monitors,	and	other	non-OTP	messages

Module:handle_info/2

Triggered	by	returning	{stop,	...}	or	when	terminating	abnormally	while
trapping	exits

Module:terminate/2

When	compiling	behavior	modules,	you	will	have	seen	a	warning	about	the
missing	code_change/3	callback.	We	cover	it	in	Chapter	11	when	looking	at
release	handling	and	software	upgrades.	In	the	next	chapter,	while	using	the
generic	server	behavior	as	an	example,	we	look	at	advanced	topics	and	behavior-
specific	functionality	that	comes	with	OTP.

At	this	point,	you	will	want	to	make	sure	you	review	the	manual	pages	for	the
gen_server	module.	If	you	are	feeling	brave,	read	the	code	in	the	gen_server.erl
source	file,	and	the	source	for	the	gen	helper	module.	Having	read	this	and	the
previous	chapter	and	understood	the	corner	cases,	you	will	discover	the	code	is
not	as	cryptic	as	it	might	first	appear.

What’s	Next?
The	next	chapter	contains	odds	and	ends	that	allow	you	to	dig	deeper	into
behaviors.	We	start	investigating	the	built-in	tracing	and	logging	functionality
we	get	from	using	them.	We	also	introduce	you	to	the	Opts	flags	in	the	start
functions.	The	flags	allow	you	to	fine-tune	performance	and	memory	usage,	as
well	as	start	your	behavior	with	trace	flags	enabled.	So	read	on,	as	interesting
things	are	in	store	in	the	next	chapter.

At	the	risk	of	sounding	repetitious,	be	nice	to	them,	as	it	might	be	you	someday.

If	you	run	this	example	in	the	shell,	you	will	also	get	an	error	report	from	the	shell	itself	terminating	as	a
result	of	the	exit	signal	propagating	through	the	link.

I’m	the	author	who	in	the	previous	book	caused	the	nationwide	data	outage	in	a	mobile	network.

1

2

3

Chapter	5.	Controlling	OTP
Behaviors

We	have	in	the	previous	chapters	covered	the	highlights	of	the	gen_server
behavior.	You	should	by	now	have	implemented	your	first	client-server
application	and	started	to	build	an	idea	of	how	OTP	behaviors	help	you	to	reduce
your	code	base	by	allowing	you	to	focus	on	the	specifics	of	what	your	system
has	to	do.	This	chapter	digs	deeper	into	behaviors,	exploring	some	of	the
advanced	topics	intermixed	with	built-in	functionality.	While	we	are	focusing	on
generic	servers,	most	of	what	we	write	will	apply	to	many	of	the	other	behaviors,
including	those	you	could	implement	yourself.	Read	with	care,	as	we	reference
this	chapter	often	in	the	remainder	of	this	book.

The	sys	Module
We’ve	mentioned	many	times	the	built-in	functionality	you	get	as	a	result	of
using	OTP	behaviors	and	the	ease	with	which	you	can	add	your	own	features.
Most	of	what	we	cover	is	accessed	through	the	sys	module,	allowing	you	to
generate	trace	events,	inspect	and	manipulate	behavior	state,	as	well	as	send	and
receive	system	messages.	All	of	this	functionality	works	on	the	standard	OTP
behaviors,	but	also,	as	we	show	in	Chapter	10,	you	can	reuse	it	when	defining
your	own	behaviors.

Tracing	and	Logging
Let’s	find	out	how	built-in	tracing	works	by	running	a	little	example.	Start	your
frequency	server	in	the	shell	and,	using	the	sys	module,	try	the	following:

1>	frequency:start().

{ok,<0.35.0>}

2>	sys:trace(frequency,	true).

ok

3>	frequency:allocate().

DBG	frequency	got	call	{allocate,<0.33.0>}	from	<0.33.0>

DBG	frequency	sent	{ok,10}	to	<0.33.0>,

						new	state	{[11,12,13,14,15],[{10,<0.33.0>}]}

{ok,10}

4>	frequency:deallocate(10).

DBG	frequency	got	cast	{deallocate,10}

ok

DBG	frequency	new	state	{[10,11,12,13,14,15],[]}

5>	sys:trace(frequency,	false).

ok

By	turning	on	the	trace	flags	for	our	frequency	allocator,	we	are	able	to	generate
printouts	of	system	events,	including	messages	and	state	changes.	Our	example
pipes	the	messages	out	to	the	shell.	If	we	instead	use	the	sys:log/2	call,	we
store	them	in	the	server	loop.	They	can	be	displayed	using	the	print	flag	or	can
be	retrieved	as	an	Erlang	data	structure	through	the	get	flag:

6>	sys:log(frequency,	true).

ok

7>	{ok,	Freq}	=	frequency:allocate(),	frequency:deallocate(Freq).

ok

8>	sys:log(frequency,	print).

DBG	frequency	got	call	{allocate,<0.33.0>}	from	<0.33.0>

DBG	frequency	sent	{ok,10}	to	<0.33.0>,	

						new	state	{[11,12,13,14,15],[{10,<0.33.0>}]}

DBG	frequency	got	cast	{deallocate,10}

DBG	frequency	new	state	{[10,11,12,13,14,15],[]}

ok

9>	sys:log(frequency,	get).

{ok,[{{in,{'$gen_call',{<0.33.0>,#Ref<0.0.4.59>},

																							{allocate,<0.33.0>}}},

						frequency,#Fun<gen_server.0.40920150>},

					{{out,{ok,10},<0.33.0>,{[11,12,13,14,15],[{10,<0.33.0>}]}},

						frequency,#Fun<gen_server.6.40920150>},

					{{in,{'$gen_cast',{deallocate,10}}},

						frequency,#Fun<gen_server.0.40920150>},

					{{noreply,{[10,11,12,13,14,15],[]}},

						frequency,#Fun<gen_server.4.40920150>}]}

10>	sys:log(frequency,	false).

ok

When	you	use	the	sys:log/2	call	to	store	trace	events	in	the	server	loop,	the
default	number	of	events	stored	is	10.	You	can	override	this	number	by	passing
the	{true,	Int}	flag	when	enabling	logging.	Int	is	an	integer	denoting	the	new
default	number	of	events	you	want	to	store.	When	you	plan	to	deal	with	large
volumes	of	debug	messages,	or	leave	debugging	turned	on	for	a	long	time,	use
sys:log_to_file/2	to	pipe	the	messages	to	a	text	file.

System	Messages
Have	a	look	at	the	return	value	of	shell	command	9	in	the	previous	example.	If
we	pass	the	get	flag	to	sys:log/2,	we	get	back	a	list	of	system	events.	The
forms	of	the	events	in	the	log	depend	on	the	processes	producing	them,	but
generally	each	event	contains	a	system	message	with	one	the	following	forms:

{in,	Msg}

This	system	message	is	triggered	when	a	message	(including	a	timeout)	is
sent	to	the	gen_server.	Msg	includes	any	construct	that	is	part	of	the	OTP
message	protocol,	e.g.,	{'$gen_cast',	Msg}	for	casts	and	{'$gen_call',
{Pid,	Ref},	Msg}	for	calls.	For	any	regular	Erlang	term	sent	as	a	message
to	a	gen_server	process,	Msg	will	simply	be	that	term.

{out,	Msg,	To,	State}

This	system	message	is	generated	when	replying	to	the	client	using	the
{reply,	Reply,	NewState}	control	tuple,	but	is	not	generated	for	replies
sent	via	gen_server:reply/2.	Msg	is	the	reply	sent	to	the	client,	and	To	is
the	pid	of	the	client.	State	is	the	same	as	NewState	specified	in	the	reply
tuple.

term()

System	messages	of	any	format	are	allowed.	For	example,	the	return	value
of	shell	command	9	includes	the	message	{noreply,
{[10,11,12,13,14,15],[]}},	which	is	the	result	of	handle_cast/2	after
handling	the	deallocate	cast.	The	second	element	of	the	noreply	tuple	is
the	new	state	of	the	gen_server.

Note	that	the	documentation	at	the	time	of	writing	(up	to	and	including	Erlang
18)	for	the	sys	module	also	specifies	{in,	Msg,	From}	and	{out,	Msg,	To}	as
valid	system	messages,	but	these	are	not	used	by	any	standard	behaviors.

Your	Own	Trace	Functions
You	can	implement	your	own	trace	functions	by	implementing	your	own	fun	that
gets	triggered	in	conjunction	with	a	system	event.	You	can	pattern	match	on	the
events,	taking	any	course	of	action	you	like.	Trace	functions	can	be	used	to
generate	your	own	debug	printouts,	turn	on	low-level	traces	using	dbg	or	the
trace	BIFs,	enable	logging	of	particular	information,	run	diagnostic	functions,	or
execute	any	other	code	you	might	need	(or	none	at	all).

The	following	example	keeps	a	counter	for	every	time	a	client	is	refused	a
frequency	and	prints	a	warning	message.1	Note	how	we	achieve	this	without
touching	the	original	frequency	code:

11>	F	=	fun(Count,{out,	{error,	no_frequency},	Pid,	_LoopData},	ProcData)	->

														io:format("*DBG*	Warning,	Client	~p	refused	frequency!	Count:~w~n",

														[Pid,	Count]),	Count	+	1;

														(Count,		_,	_)	->

																Count

									end.

#Fun<erl_eval.18.54118792>

12>	sys:install(frequency,	{F,	1}).

ok

13>	frequency:allocate(),	frequency:allocate(),	frequency:allocate(),

				frequency:allocate(),	frequency:allocate(),	frequency:allocate().

{ok,15}

14>	frequency:allocate().

DBG	Warning,	Client	<0.33.0>	refused	frequency!	Count:1

{error,no_frequency}

15>	frequency:allocate().

DBG	Warning,	Client	<0.33.0>	refused	frequency!	Count:2

{error,no_frequency}

16>	sys:remove(frequency,	F).

false

17>	frequency:allocate().

{error,no_frequency}

Let’s	look	at	this	example	in	more	detail.	We	create	a	fun	F	that	takes	three
arguments.	The	first,	Count,	is	the	state	of	the	debug	function,	passed	between
calls.	Count,	in	this	example,	acts	like	a	state	variable,	as	we’ve	chosen	to	count
the	number	of	times	the	first	function	clause	is	matched.	Other	trace	functions
might	use	more	complicated	states.	The	second	argument	is	the	system	message,
in	which	we	pattern	match	on	outbound	messages	of	the	format	{error,
no_frequency}.	The	third	argument,	ProcData,	is	specific	to	the	behavior	being
traced;	for	example,	for	a	gen_server	it’s	either	the	registered	name	of	the

process	or	its	pid,	whereas	for	a	gen_fsm	it	is	a	tuple	of	the	process	name	or	pid
and	the	current	state	name	of	the	FSM	(we	cover	the	gen_fsm	behavior	in
Chapter	6).	All	other	system	messages	are	ignored	due	to	the	second	clause	of
the	F	function.	We	set	the	state	of	the	debug	function	Count	to	the	integer	1	in
the	second	element	of	the	tuple	of	the	sys:install/2	call	in	shell	command	12.
In	this	command,	we	also	pass	the	fun	F	to	the	frequency	server,	enabling	the
debug	printout.	We	continue	by	calling	frequency:allocate/0	enough	times	to
run	out	of	frequencies,	triggering	the	debug	printout	twice	and	increasing	the
counter.	Every	time	it	is	executed,	F	returns	the	Count	state	variable,	incremented
by	1	if	the	first	clause	pattern	matches	or	unchanged	if	the	second	clause
matches.	Returning	the	atom	done	in	the	debug	function	is	equivalent	to
disabling	the	function	by	calling	sys:remove/2,	as	shown	in	command	line	16.

Statistics,	Status,	and	State
The	sys	module	also	lets	you	collect	general	statistics	on	behaviors	as	well	as
retrieve	information	about	their	internal	state,	including	loop	data,	without
having	to	reinvent	the	wheel	or	implement	anything	new:

18>	sys:statistics(frequency,	true).

ok

19>	frequency:allocate().

{error,no_frequency}

20>	sys:statistics(frequency,get).

{ok,[{start_time,{{2015,11,29},{20,10,54}}},

					{current_time,{{2015,11,29},{20,12,9}}},

					{reductions,33},

					{messages_in,1},

					{messages_out,0}]}

21>	sys:statistics(frequency,	false).

ok

22>	sys:get_status(frequency).

{status,<0.35.0>,

								{module,gen_server},

								[[{'$ancestors',[<0.33.0>]},

										{'$initial_call',{frequency,init,1}}],

									running,<0.33.0>,[],

									[{header,"Status	for	generic	server	frequency"},

										{data,[{"Status",running},

																	{"Parent",<0.33.0>},

																	{"Logged	events",[]}]},

										{data,[{"State",

																		{{available,[]},

																			{allocated,[{15,<0.33.0>},

																															{14,<0.33.0>},

																															{13,<0.33.0>},

																															{12,<0.33.0>},

																															{11,<0.33.0>},

																															{10,<0.33.0>}]}}}]}]]}

While	sys:statistics/2	returns	a	list	of	self-explanatory	tagged	values,	the
tuple	returned	by	sys:get_status/1	is	not	as	obvious.	It	returns	a	tuple	of	the
format:

{status,	Pid,	{module,Mod},	[ProcessDictionary,	SysState,	Parent,	Dbg,	Misc]}

where	Pid	and	Mod	are	the	behavior’s	process	identifier	and	callback	module,
respectively.	The	ProcessDictionary	is	a	list	of	key-value	tuples.	Note	that
while	we	do	not	use	the	process	dictionary	in	our	frequency	server	example,	the
gen_server	library	module	and	other	behaviors	we	have	yet	to	cover	all	do.

SysState	tells	us	whether	the	behavior’s	state	is	running	or	suspended.	By
calling	sys:suspend/1	and	sys:resume/1,	we	can	stop	the	behavior	from
handling	normal	messages,	in	which	case	only	system	messages	are	handled.
Usually	you	suspend	a	process	when	upgrading	software	using	the	OTP-
specified	upgrade	capabilities	or	when	testing	edge	conditions.	You	might	also
suspend	a	process	when	defining	your	own	behaviors,	but	most	probably	not
when	using	standard	behaviors.	The	only	way	you	should	suspend	Erlang
processes	in	the	business	logic	of	your	programs	is	by	using	receive	clauses
when	none	of	the	messages	in	the	mailbox	match.	Using	the	sys:suspend/1	call
in	your	code	is	a	no-no!

Parent	is	the	parent	pid,	needed	by	behavior	processes	that	trap	exits.	If	the
parent	terminates,	the	behavior	processes	have	to	terminate	as	well.	In	this
example,	Parent	is	the	shell	process	ID.	DbgFlag	holds	the	trace	and	statistics
flags,	which	at	the	time	we	retrieved	the	status	had	all	been	turned	off	(hence	the
empty	list).

Finally,	Misc	is	a	list	of	tagged	tuples	that	contain	behavior-specific	information.
The	contained	items	vary	among	behaviors,	and	you	are	able	to	override	them
yourself	by	providing	an	optional	callback	function	in	your	behavior	callback
module.	When	working	with	generic	servers,	the	most	important	information	in
Misc	is	the	loop	data.	You	can	influence	the	contents	of	the	Misc	value	yourself
by	providing	an	optional	callback	function	in	your	behavior	callback	module,
using	the	function	to	format	the	{data,	[{"State",	...}]}	field	to	a	value	the
end	user	might	find	simpler,	more	meaningful,	or	more	helpful:

...

-export([format_status/2]).

...

format_status(Opt,	[ProcDict,	{Available,	Allocated}])	->

				{data,	[{"State",	{{available,	Available},	{allocated,	Allocated}}}]}.

If	Opt	is	the	atom	normal,	it	tells	us	the	status	is	being	retrieved	as	a	result	of	the
sys:get_status/1	call.	If	the	behavior	is	terminating	abnormally	and	the	status
is	being	retrieved	to	incorporate	it	in	an	error	report,	Opt	is	set	to	terminate.

ProcDict	is	a	list	of	key-value	tuples	containing	the	process	dictionary.	In	the
earlier	example,	the	new	state	would	be:

{data,[{"State",	{{available,	[]},{allocated,	[{15,<0.33.0>},	{14,<0.33.0>},	

																																															{13,<0.33.0>},	{12,<0.33.0>},

																																															{11,<0.33.0>},	{10,<0.33.0>}]}}}]}

While	it	is	not	mandatory	to	return	a	tuple	of	the	format	{data,	[{"State",
State}]},	it	is	recommended	in	order	to	stay	consistent	with	what	is	currently	in
use.

To	examine	just	the	loop	data	stored	in	the	behavior	process	by	the	callback
module,	use	sys:get_state/1:

23>	{Free,	Alloc}	=	sys:get_state(frequency).

{[],

	[{15,<0.33.0>},	{14,<0.33.0>},	{13,<0.33.0>},	{12,<0.33.0>},

		{11,<0.33.0>},	{10,<0.33.0>}]}

This	handy	method	allows	you	to	avoid	having	to	extract	the	loop	data	from	the
results	of	sys:get_status/1,	something	that’s	often	difficult	to	do	while
debugging	interactively	in	the	shell.	The	sys:get_state/1	call	is	intended	only
for	debugging,	in	fact,	as	is	the	corresponding	function	sys:replace_state/2,
which	allows	you	to	replace	the	loop	state	of	a	running	behavior	process.	For
example,	imagine	you	are	debugging	in	the	shell	and	you	want	to	quickly	add	a
few	frequencies.	You	could	do	it	by	recompiling	the	code	and	restarting	the
server	—	something	that’s	simple	to	do	when	there	are	only	a	few	frequencies
available,	as	in	our	example,	but	much	more	difficult	if	you	are	in	the	middle	of
a	test	with	thousands	of	allocated	frequencies	and	need	to	retain	the	state:

24>	sys:replace_state(frequency,	fun(_)	->	{[16,17],	Alloc}	end).

{[16,17],

	[{15,<0.33.0>},	{14,<0.33.0>},	{13,<0.33.0>},	{12,<0.33.0>},

		{11,<0.33.0>},	{10,<0.33.0>}]}

25>	frequency:allocate().

{ok,16}

Replacing	the	loop	data	requires	passing	a	function	that	receives	the	current
value	of	the	loop	data	and	returns	a	new	value.	This	allows	you	to	easily	modify
only	the	necessary	portions	of	a	complex	loop	data	value.	In	this	example,	we
replace	the	empty	list	of	available	frequencies	with	a	list	of	two	new	frequencies
while	keeping	the	list	of	allocated	frequencies.	The	sys:replace_state/2
function	returns	the	new	loop	data.	Since	the	new	value	in	our	example	adds
available	frequencies,	the	next	call	to	frequency:allocate/0,	which	previously

was	returning	{error,	no_frequency},	now	returns	{ok,16}.

The	sys	Module	Recap
To	sum	up,	let’s	take	another	look	at	the	functions	in	the	sys	module	we	have
seen.	Note	the	notation	we	are	using	for	[,Timeout]	in	our	function
descriptions.	It	means	an	optional	argument	to	the	call,	defining	functions	of
arity	2	and	3.	Because	these	functions	are	nothing	other	than	synchronous	calls
to	our	behavior,	using	Timeout	allows	us	to	override	the	5-second	default
timeout	time	with	a	value	more	suited	for	our	application.	The	functions	we’ve
covered	are:

sys:trace(Name,TraceFlag	[,Timeout])	->	ok

sys:log(Name,LogFlag	[,Timeout])	->	ok	|	{ok,	EventList}

sys:log_to_file(Name,FileFlag	[,Timeout])	->	ok	|	{error,	open_file}

sys:install(Name,{Func,FuncState}	[,Timeout])	->	ok

sys:remove(Name,Func	[,Timeout])

sys:statistics(Name,Flag	[,Timeout])	->	ok	|	{ok,	Statistics}.

sys:get_status(Name	[,Timeout])	->	{status,	Pid,	{module,	Mod},	Status}

sys:get_state(Name	[,Timeout])	->	State

sys:replace_state(Name,ReplaceFun	[,Timeout])	->	State

sys:suspend(Name	[,Timeout])	->	ok

sys:resume(Name	[,Timeout])	->	ok

To	print	trace	events	to	the	shell,	use	trace/2.	When	logging	the	events	for	later
retrieval,	use	log/2.	Turn	logging	on	and	off	by	setting	LogFlag	to	true	or
false.	By	default,	the	last	10	events	are	stored;	you	can	override	this	value	by
turning	on	logging	using	{true,	Int},	where	Int	is	a	non-negative	integer.

Events	can	be	retrieved	using	the	print	and	get	flags.	When	using
log_to_file/2,	events	are	stored	in	textual	format.	The	FileFlag	is	a	string
denoting	the	absolute	or	relative	filename,	or	the	atom	false	to	turn	it	off.	Use
sys:install/2	to	write	your	own	triggers	and	trace	functions	in	conjunction
with	system	events	and	sys:remove/2	to	recall	them.

When	using	statistics/2,	turn	the	gathering	of	statistics	on	and	off	by	setting
Flag	to	true	or	false,	respectively.	Use	get_state/1	to	examine	loop	data	and

replace_state/2	to	replace	it.	And	finally,	get_status/1	returns	all	the
available	data	relative	to	the	internal	behavior	state.	The	get_state/1,
replace_state/2,	and	get_status/1	functions	are	incredibly	helpful	when
debugging	and	troubleshooting	live	systems.

Remember	the	Opts	parameter	passed	as	the	last	argument	to	the	gen_server
start	functions?	We	used	the	empty	list	as	a	placeholder.	You	can	enable	tracing,
logging,	and	statistics	when	starting	your	behavior	by	using	the	Opts	field.	If	you
pass	[{debug,	DbgList}],	where	DbgList	contains	one	or	more	of	the	entries
trace,	log,	statistics,	and	{log_to_file,	FileName},	these	flags	are	enabled
as	soon	as	the	behavior	process	is	started.

Spawn	Options
When	starting	a	behavior,	you	can	change	the	default	memory	and	garbage
collector	settings	to	address	performance	and	memory	utilization.	The	settings
you	pass	are	the	same	ones	taken	by	the	spawn_opt/4	BIF,	but	passed	as	an
argument	of	the	format	[{spawn_opts,	OptsList}]	along	with	the	debug
options	in	the	behavior	Opts	field.

Use	your	spawn	options	with	care!	The	only	way	to	be	sure	you	have
performance	issues	and	bottlenecks	related	to	memory	management	is	by
profiling	and	benchmarking	your	systems.	In	doing	so,	you	need	to	understand
how	the	underlying	heaps,	memory	allocation,	and	garbage	collection
mechanisms	work.	Premature	optimization	is	the	root	of	all	evil	(after	shared
memory	and	mutable	state).	If	you	do	not	believe	us,	you	will	soon	learn	that
attempts	to	optimize	memory	management	often	have	the	opposite	effect	and
make	your	programs	slower.	The	vast	majority	of	cases	do	not	call	for
performance	tuning,	but	those	that	do	will	greatly	benefit	being	spawned	with	a
larger	heap	or	more	(or	less)	frequent	garbage	collection	cycles.

Memory	Management	and	Garbage	Collection
If	you	suspect	that	your	performance	issues	can	be	addressed	through	memory
management,	benchmark	your	system	while	manipulating	the	heap	and	the
garbage	collector	settings.	Memory-related	options	that	can	be	changed	include:

min_heap_size

Sets	the	size	the	process	heap	will	grow	to	before	the	garbage	collector	(gc)
is	triggered.	This	name	is	misleading,	though,	as	it	is	in	fact	the	maximum
size	the	heap	is	allowed	to	grow	to	before	triggering	the	gc.

min_bin_vheap_size

Sets	the	initial	and	minimal	value	of	the	space	this	process	is	allowed	to	use
in	the	shared	binary	heap	before	triggering	a	garbage	collection	on	the
binaries.

fullsweep_after

Determines	the	number	of	generational	garbage	collections	that	have	to	be
executed	before	a	complete	garbage	collection	pass.

HOW	BEAM’S	GARBAGE	COLLECTION	WORKS

Erlang’s	garbage	collection	can	be	described,	in	technical	terms,	as	a	per-process	generational
semispace	copying	collector	that	uses	Cheney’s	copy	collection	algorithm	together	with	a	global	large
object	space.	Using	less	fancy	words,	whenever	a	process	has	used	up	all	the	memory	allocated	in	its
heap,	the	BEAM	virtual	machine	triggers	a	garbage	collection	that	copies	all	of	the	live	data	(data	still
in	use)	to	a	new	heap,	freeing	up	all	of	the	previously	held	space.

The	garbage	collector	is	called	generational	because	live	data	in	the	heap	that	survives	two	sweeps	is
copied	from	an	area	called	the	young	heap	to	an	area	called	the	old	heap.	Data	is	moved	to	the	old
heap	under	the	assumption	that,	having	survived	two	garbage	collections,	it	will	most	likely	survive
future	ones.	The	garbage	collector	always	starts	by	traversing	data	on	the	young	heap,	copying	live
data	that	has	survived	a	previous	garbage	collection	to	the	old	heap,	and	creating	a	new	young	heap	to
hold	the	rest.	All	the	memory	in	the	original	young	heap	gets	freed.	If	the	garbage	collection	of	the
young	heap	has	been	unable	to	free	enough	memory	(or	there	is	not	enough	memory	to	copy	the	data
from	the	young	heap),	a	full-sweep	garbage	collection	is	triggered.	This	will	inspect	and	free	all	data
no	longer	referenced	in	the	old	heap	as	well	as	the	young	one.

If	there	still	is	not	enough	memory	after	the	full	sweep,	the	heap	size	is	increased	by	allocating
memory	chunks	based	on	a	Fibonacci	recurrence	series	with	a	starting	base	of	12	words	and	38	words.
Each	successive	increase	is	the	sum	of	1	and	the	previous	two	word	counts,	so	the	next	size	would	be
38+12+1,	or	51	words.	This	continues	to	a	size	of	833,026	words,	after	which	it	is	increased	by	20%
of	its	current	size.

A	full-sweep	collection	is	also	triggered	after	a	predefined	number	of	generational	garbage	collections.

Because	of	periods	of	little	activity	and	a	large	allocated	heap,	long-lived	processes	might	be	holding
on	to	data	that	is	no	longer	needed.	This	can	be	addressed	by	configuring	the	number	of	generational
garbage	collections	that	trigger	a	full	sweep	or	by	hibernating	the	process	(see	“Hibernating
Behaviors”).

Not	all	process	data	and	state	is	stored	in	the	respective	process	heaps.	Binaries	larger	than	64	bytes
are	stored	in	a	shared	binary	heap	used	by	all	processes.	They	are	accessed	by	a	reference,	which,
through	message	passing,	can	be	shared	among	processes.	Using	a	reference	makes	message	passing
of	large	binaries	efficient,	because	they	do	not	have	to	be	copied.	A	reference	counter	increments	for
every	reference	pointing	to	the	binary,	and	decrements	when	the	reference	is	removed.	When	this
counter	reaches	0,	the	binary	can	be	garbage	collected.

A	virtual	binary	heap	is	local	to	every	process,	and	is	not	shared	globally.	Garbage	collection	is
triggered	when	any	process	exceeds	its	virtual	binary	heap	size	and	needs	to	free	up	more	space.
Binaries	smaller	than	64	bytes	are	stored	on	the	normal	heap	and	are	copied	to	the	virtual	heap	when
sent	as	a	part	of	a	message	to	other	processes	or	during	garbage	collection.	Garbage	collection	of	the
process	and	virtual	binary	heaps	is	done	on	a	per-process	basis,	reducing	the	disruption	created	by
memory	management	while	retaining	the	soft	real-time	properties	of	the	system.

In	the	following	example,	we	start	the	frequency	server	and	trace	events	related
to	the	garbage	collector.	We	use	the	dbg	tracer	to	measure	how	many
microseconds	the	process	spends	garbage	collecting.	When	allocating	five
frequencies,	the	total	was	9	microseconds	(911,345–911,336):

1>	dbg:tracer().

{ok,<0.35.0>}

2>	{ok,	Pid}	=	frequency:start().

{ok,<0.38.0>}

3>	dbg:p(Pid,	[garbage_collection,	timestamp]).

{ok,[{matched,nonode@nohost,1}]}

4>	frequency:allocate(),	frequency:allocate(),	frequency:allocate(),

			frequency:allocate(),	frequency:allocate().

{ok,14}

(<0.38.0>)	gc_start	[{old_heap_block_size,0},

	{heap_block_size,233},

	{mbuf_size,0},

	{recent_size,0},

	{stack_size,12},

	{old_heap_size,0},

	{heap_size,213},

	{bin_vheap_size,0},

	{bin_vheap_block_size,46422},

	{bin_old_vheap_size,0},

	{bin_old_vheap_block_size,46422}]	(Timestamp:	{1448,829619,911336})

(<0.38.0>)	gc_end	[{old_heap_block_size,0},

	{heap_block_size,233},

	{mbuf_size,0},

	{recent_size,44},

	{stack_size,12},

	{old_heap_size,0},

	{heap_size,44},

	{bin_vheap_size,0},

	{bin_vheap_block_size,46422},

	{bin_old_vheap_size,0},

	{bin_old_vheap_block_size,46422}]	(Timestamp:	{1448,829619,911345})

If	we	now	spawn	the	frequency	server,	setting	the	minimum	heap	size	to	1,024
words	(a	smaller	size	would	have	been	enough),	we	have	enough	memory	to
allocate	the	frequencies	without	triggering	the	garbage	collector:

1>	dbg:tracer().

{ok,<0.35.0>}

2>	{ok,	Pid}	=	gen_server:start_link({local,	frequency},	frequency,	[],

																																						[{spawn_opt,	[{min_heap_size,	1024}]}]).

{ok,<0.38.0>}

3>	dbg:p(Pid,	[garbage_collection,	timestamp]).

{ok,[{matched,nonode@nohost,1}]}

4>	frequency:allocate(),	frequency:allocate(),	frequency:allocate(),

			frequency:allocate(),	frequency:allocate().

{ok,14}

Process	heap
By	increasing	the	{min_heap_size,	Size}	to	an	appropriate	value	in	a	short-
lived	process,	you	can	allow	the	process	to	execute	without	triggering	the
garbage	collector	or	having	to	allocate	more	memory	to	further	increase	the	heap
size.	This	is	ideal	if	a	process	is	created	and	has	a	burst	of	memory-	and	CPU-
intensive	activity,	after	which	it	terminates.	Upon	termination,	all	the	memory	is
efficiently	released	in	one	operation.	Use	this	option	with	care,	though,	as
picking	too	large	a	size	will	increase	memory	consumption	and	might	slow	down
your	program.

Size	is	measured	in	words,	a	unit	size	of	data	used	by	a	particular	processor
architecture.	In	a	32-bit	architecture,	a	word	is	4	bytes	(32	bits),	and	in	a	64-bit
architecture,	8	bytes	(64	bits).	You	could	set	the	minimum	heap	size	for	all
processes	using	the	+hms	flag	when	you	start	the	Erlang	runtime	system	using
erl.	Using	the	+hms	flag	is	advisable	only	if	you	have	relatively	few	processes
running	in	your	system	and,	of	course,	only	if	benchmarks	show	an	increase	in
performance.	As	a	rule	of	thumb,	it	is	always	better	to	set	the	minimum	heap
size	on	a	per-process	basis,	and	only	if	benchmarks	show	benefits.	Because	heap
size	increases	are	based	on	the	Fibonacci	series,	the	minimum	heap	size	set	will
be	the	next	value	in	the	sequence	larger	than	or	equal	to	Size.

Virtual	binary	heap
One	spawn	option	related	to	garbage	collection	and	useful	for	performance
tuning	is	{min_bin_vheap_size,	VSize},	used	to	configure	the	minimum
binary	virtual	heap	size.	The	virtual	binary	heap	size	is	the	space	a	process	is

allowed	to	use	before	triggering	the	garbage	collector	and	freeing	the	space
taken	up	by	binaries	that	are	no	longer	referenced.	This	size	refers	to	binaries
larger	than	64	bytes	in	size.	These	are	accessed	through	binary	references,	which
can	be	used	by	all	processes.	You	can	set	the	virtual	binary	heap	size	for	all
processes	using	the	+hmbs	flag	when	you	start	your	system	with	erl,	but	just	like
with	the	regular	heap,	use	this	option	with	restraint,	and	preferably	only	on
specific	processes,	not	on	all	of	them.

Full	sweep	of	the	heap
By	setting	the	{fullsweep_after,	Number}	spawn	option,	you	can	specify	the
number	of	generational	garbage	collections	that	take	place	before	executing	a
full	sweep.	Setting	Number	to	0	disables	the	generational	garbage	collection
mechanism,	freeing	all	unused	data	in	both	the	young	heap	and	the	old	heap
every	time	it	is	triggered.	This	will	help	in	environments	with	little	RAM	where
memory	has	to	be	strictly	managed.	The	zero	setting	may	also	be	useful	when	a
lot	of	large	binaries	that	are	no	longer	referenced	collect	in	the	old	heap	and	you
want	to	remove	them	frequently.	Setting	a	small	value	will	be	suitable	if	your
data	is	short-lived	and	benchmarks	demonstrate	that	it	is	cluttering	up	your	heap.
The	Erlang	documentation	suggests	a	value	of	10	or	20,	but	you	should	pick
your	own	based	on	the	properties	displayed	by	your	system.	The	default	value	is
much	larger!

A	full-sweep	garbage	collection	is	also	triggered	every	time	you	hibernate	your
process.	This	might	help	reduce	the	memory	footprint	when	working	with
processes	that	have	memory-intensive	computations	but	little	overall	activity.
You	can	set	the	full-sweep	value	globally	for	all	processes	using	the
erlang:system_flag/2	call,	but	we	recommend	you	don’t.	You	can	use	the
process_info/2	BIF	to	get	information	on	the	settings	you	change:

5>	process_info(Pid,	garbage_collection).

{garbage_collection,[{min_bin_vheap_size,46422},

																					{min_heap_size,1598},

																					{fullsweep_after,65535},

																					{minor_gcs,0}]}

Note	the	default	setting	of	fullsweep_after,	a	value	much	higher	than	you
might	expect.	We	had	set	the	min_heap_size	to	1024,	but	in	shell	prompt	5,	it

appears	to	be	1598.	We	requested	1,024	words,	but	1,598	is	the	first	value	greater
than	1,024	in	the	Fibonacci	recurrence	sequence	of	heap	sizes	the	VM	uses,	so
that	value	is	selected	instead	of	1,024.

WARNING
If	you	start	playing	with	the	heap	size	and	garbage	collection	settings,	keep	in	mind	that
memory	is	freed	only	when	the	garbage	collector	is	triggered.	There	might	be	cases	where	the
process	heap	contains	binary	references	to	potentially	large	binaries	in	the	shared	heap.	Each
reference	to	a	binary	is	relatively	small,	so	even	if	the	process	does	not	refer	to	these	binaries
anymore,	potentially	huge	amounts	of	memory	can	be	consumed	without	the	garbage	collector
being	triggered,	because	there	is	still	plenty	of	space	on	the	process	heap.	That	is	why	the	per-
process	virtual	binary	heap	is	there,	calculating	the	total	amount	of	memory	used	up	by	the
binaries	in	the	shared	heap	and	helping	ensure	they	get	garbage	collected	more	promptly.
Under	these	circumstances,	hibernating	the	process	or	triggering	garbage	collection	using	the
erlang:garbage_collect()	BIF	might	prove	more	useful.

Another	potential	risk	is	running	out	of	memory.	As	an	example,	having	a	large
min_heap_size	and	using	the	dangerously	high	default	fullsweep_after	value	of	65535
might	result	in	the	old	heap	growing	because	garbage	collections	are	far	apart,	resulting	in	your
system	running	out	of	memory	before	the	first	full	sweeps	are	triggered.	Always	stress	test
your	systems,	and	let	soak	test	runs	span	days,	if	not	weeks.

Spawn	Options	to	Avoid
The	following	options	should	be	avoided	because	they	either	do	not	work	with
behaviors	or	are	considered	to	be	bad	programming	practice.	Although	monitor
can	be	passed	as	an	option	when	using	the	spawn_opt/3	BIF,	it	is	disallowed	in
generic	servers	and	will	result	in	the	process	terminating	with	a	badarg.	While
you	are	allowed	to	use	link	as	an	option,	starting	the	behaviors	with	start_link
is	preferred.

Process	priorities	should	never	be	set	using	the	{priority,	Level}	option,
where	Level	is	the	atom	low,	normal,	or	high.	Changing	process	priorities	is
even	more	dangerous	than	meddling	with	memory	and	garbage	collection,	as	it
can	upset	the	VM’s	balance	and	have	serious	repercussions	on	the	soft	real-time
properties	of	your	system.	Changing	priorities	can	cause	the	VM’s	schedulers	to
behave	strangely	and	unfairly;	processes	with	a	higher	priority	have	been	known
to	starve	when	the	ratio	between	them	and	those	with	a	lower	priority	reached
certain	limits.	Furthermore,	processes	with	a	lower	priority	have	caused	the
runtime	system	to	run	out	of	memory	when,	under	heavy	load,	messages	were
not	consumed	as	fast	as	they	were	produced.	You	obviously	never	notice	these
issues	when	testing	your	system;	rather,	they	tend	to	come	back	and	bite	you
when	the	live	system	comes	under	heavy	load.	Let	the	runtime	system	decide	on
your	behalf,	especially	when	dealing	with	hundreds	of	thousands	of	processes.
You	have	been	warned!

Timeouts
If	you	want	to	limit	the	time	a	behavior	spends	in	its	init	function,	include	the
option	{timeout,Timeout}.	If	after	Timeout	milliseconds	the	init	callback
function	is	still	executing,	the	process	is	terminated	and	the	start	function	returns
{error,timeout}.	This	option	is	useful	in	very	specific	circumstances,	often	in	a
running	system	with	dynamic	children	responsible	for	a	particular	transient
resource.	We	don’t	recommend	using	it	when	starting	your	system,	though;	we
instead	suggest	that	you	try	to	minimize	the	amount	of	work	executed	in	the
init	function	so	as	to	not	slow	down	the	startup	procedure.

Summing	Up
There	are	many	options	to	control	and	monitor	your	behaviors.	Start	with	built-
in	tracing	and	logging	functionality.	You	can	then	dynamically	add	generic	trace
and	debug	triggers	or	change	your	process	state	using	funs	and	the	sys	module,
during	runtime	and	without	the	need	to	recompile	your	code.	This	is	a	priceless
feature,	as	you	can	use	it	on	systems	you	have	never	seen	that	have	been	running
for	years	on	end	without	the	need	to	restart	them.	You	can	read	more	about	this
in	the	sys	module’s	reference	manual	page.

Optimizing	processes	through	the	use	of	the	memory	flags	in	their	options	is
trickier,	as	it	requires	you	to	benchmark	your	system	and	base	your
optimizations	on	the	information	you	extract	as	a	result	of	your	tests.	It	is	rare
that	you	will	have	to	manipulate	the	default	garbage	collector	settings	or	play
with	your	heap	sizes.	But	if	and	when	you	are	having	performance	problems,
you	will	be	grateful	you	have	read	this	far	in	this	chapter.	If	you	need	more
information,	look	at	the	documentation	of	the	spawn_opt	BIF	in	the	erlang
module’s	manual	page.

What’s	Next?
We	park	online	tracing	for	now,	until	we	implement	our	own	behaviors	(learning
how	it	all	works	behind	the	scenes)	in	Chapter	10,	and	ignore	performance
tuning	until	we	reach	Chapter	13.	In	the	next	chapters,	we	focus	on	the
remaining	behaviors,	starting	with	FSMs,	followed	by	event	managers,
supervisors,	and	applications.	Remember	that	they	are	all	built	on	the	same
foundations,	so	the	sys	module	and	all	of	the	spawn	and	debug	options	we	have
discussed	in	this	chapter	will	be	valid.

The	io:format/2	executed	in	the	fun	attaches	itself	to	the	group	leader	of	the	traced	behavior,	causing
warnings	to	be	printed	in	the	local	shell.	If	you	connect	from	a	remote	shell,	you	will	not	be	able	to	see
them.

1

Chapter	6.	Finite	State	Machines

Now	that	we’ve	become	experts	at	writing	generic	servers,	the	time	has	come	to
master	our	next	behavior.	When	prototyping	systems	with	what	eventually
became	Erlang,	language	inventors	Joe	Armstrong,	Mike	Williams,	and	Robert
Virding	were	implementing	a	soft	telephony	switch	allowing	them	to	phone	each
other	and	say	hello.1	Each	phone	accessing	the	switch	was	prototyped	as	a
process	acting	as	an	FSM.	At	any	one	time,	the	function	would	represent	the
state	the	phone	was	in	(on	hook,	off	hook,	dialing,	ringing,	etc.)	and	receive
events	associated	with	that	state	(incoming	call,	dial,	off	hook,	on	hook,	etc.).

One	of	the	outcomes	of	this	prototyping	activity	was	to	ensure	that	Erlang
became	a	language	suited	for	and	optimized	for	building	nontrivial	and	scalable
FSMs,	a	key	component	in	many	complex	systems.	Developers	use	FSMs	to
program	protocol	stacks,	connectors,	proxies,	workflow	systems,	gaming
engines,	and	simulations,	to	mention	but	a	few	examples.	So	it	was	no	surprise
that	when	OTP	behaviors	came	along,	they	included	generic	FSMs.

In	this	chapter,	we	introduce	FSMs	implemented	in	pure	Erlang.	We	break	an
example	up	into	generic	and	specific	code,	migrating	it	to	the	gen_fsm	behavior.
The	good	news	is	that	all	the	borderline	cases	relating	to	concurrency	and	error
handling	that	apply	to	generic	servers	also	apply	to	FSMs.	So	while	we	might
mention	some	of	them,	there	will	be	no	need	for	us	to	go	into	the	same	level	of
detail.	After	all,	an	FSM	implementation	is	essentially	a	special	variant	of	a
generic	server.

Finite	State	Machines	the	Erlang	Way
Before	diving	into	our	examples,	let’s	get	a	bit	of	automata	theory	out	of	the
way.	An	FSM	is	an	abstract	model	consisting	of	a	finite	number	of	states	and
incoming	events.	When	the	program	is	in	each	state,	it	can	receive	certain	events
from	the	environment	—	and	only	those	events.	When	an	event	arrives	and	the
FSM	is	in	a	certain	state,	the	program	executes	some	predetermined	actions
associated	with	that	state	and	transitions	to	a	new	state.	The	FSM	then	waits	for
a	new	event,	in	the	new	state.

For	instance,	in	the	FSM	shown	in	Figure	6-1,	the	state	day	can	handle	events
eclipse	and	sunset.	eclipse	keeps	the	FSM	in	its	current	state,	while	event	sunset
causes	a	transition	to	state	night.	In	state	night,	event	sunrise	causes	a	transition
back	to	state	day.	Any	other	events	coming	out	of	sequence	(such	as	sunrise
when	in	state	day)	are	handled	only	after	a	transition	to	a	state	where	they	can	be
dealt	with.

Figure	6-1.	Erlang	FSM

In	Erlang,	each	state	is	represented	within	a	tail-recursive	function	and	events
are	represented	as	messages.	So	for	Figure	6-1,	the	code	for	state	day	would	look
as	follows:

day()	->

				receive

								eclipse	->	day();

								sunset		->	night()

				end.

Upon	receiving	an	incoming	event,	the	FSM	executes	one	or	more	actions	before

transitioning	to	its	next	state.	The	state	transition	is	achieved	by	calling	the	next
function,	determined	by	the	combination	of	the	current	state	and	inbound	event.
In	the	following	example,	the	combination	of	the	event	sunrise	in	state	night	will
result	in	the	action	defined	in	the	function	make_roosters_crow/0,	followed	by
a	transition	to	state	day.	Note	how	we	are	not	allowing	solar	eclipses	to	take
place	at	night.	If	the	FSM	receives	an	eclipse	event,	it	remains	in	the	process
mailbox	until	the	FSM	transitions	to	a	state	that	can	handle	it:

night()	->

				receive

								sunrise	->

												make_roosters_crow(),

												day()

				end.

When	you	start	an	FSM,	you	need	to	give	it	a	starting	state	and	initialize	it.	As	in
the	next	code	example,	we	could	initialize	the	FSM	by	spawning	the	init/0
function	and	create	the	Earth	there2	before	moving	on	to	state	day:

start()	->

				spawn(?MODULE,	init,	[]).

init()	->

				create_earth(),

				day().

This	is	how	we	do	FSMs	in	Erlang.	The	keys	to	keeping	FSMs	simple	are
selective	receives,	tail-recursive	functions,	and	the	ability	to	initialize	the	FSM
when	spawning	the	process.

You	should	completely	design	your	FSM,	perhaps	by	drawing	out	a	diagram	like
the	ones	in	this	chapter,	before	you	start	coding.	You	want	to	know	what	your
states,	events,	actions,	and	state	transitions	are.	If	they	get	complex,	see	whether
your	FSM	can	be	split	up	into	smaller	FSMs	that,	during	execution,	pass	the
flow	between	each	other.	They	will	be	easier	to	both	implement	and	maintain.

FSMS	VERSUS	GENERIC	SERVERS
Beware	of	the	common	beginner	error	where	instead	of	using	a	generic	FSM,	you	use	a
generic	server	and	unknowingly	store	the	FSM	state	in	the	loop	data.	Ask	yourself	when
designing	the	system	whether	you	need	an	FSM	or	a	client-server	behavior.	The	answer	is
usually	obvious	if	you	consider	the	question	in	the	design	phase	of	the	project.

Coffee	FSM
To	keep	our	Java	aficionados	happy,	let’s	use	a	coffee	vending	machine	as	an
FSM	example.	It	will	be	an	embedded	application	interfacing	the	hardware
through	a	specific	hardware	module.	The	implementation	we	are	about	to	study
has	three	states:

Selection,	allowing	the	customer	to	select	the	desired	coffee	brew

Payment,	allowing	the	customer	to	insert	coins	and	pay	for	the	selected
item

Remove,	a	state	where	the	FSM	waits	for	the	user	to	remove	the	drink	from
the	machine

These	states	are	linked	by	four	events	that	trigger	actions	and	transitions	to	next
states.	Events	triggered	by	the	customer	include:

Making	a	coffee	selection

Dropping	a	coin	of	any	value	in	the	slot	to	pay	for	the	selection

Pressing	the	cancel	button

Successful	removal	of	the	cup	of	coffee	from	the	machine

Note	that	most	of	these	events	can	be	triggered	in	most	states.	If	the	FSM	is	in
the	payment	state,	there	is	nothing	stopping	a	user	from	pressing	the	coffee
selection	buttons,	or	if	we	are	in	state	selection,	the	user	can	always	insert	a	coin.
If	the	events	can	be	triggered,	they	have	to	be	managed	regardless	of	the	state.
When	events	are	received	in	a	particular	state,	actions	can	be	executed	before
transitioning	to	the	next	state.	The	actions	in	our	example	include:

Display	text	in	the	coffee	machine’s	LED	display

Return	change	or	inserted	coins	to	the	client

Drop	the	cup	in	the	machine

Prepare	the	selected	drink

Reboot	the	coffee	machine	(not	user-initiated)

A	simplified	version	of	the	FSM	can	be	seen	in	Figure	6-2.	Note	that	it	does	not
depict	a	complete	set	of	events	and	actions.	Coins	can	be	inserted	in	states	other
than	payment,	the	cancel	button	can	be	pressed	in	the	selection	or	remove	states,
or	the	hardware	could	be	reset	when	starting	the	FSM.	The	figure	does,	however,
provide	an	overview	of	all	the	state	transitions	and	events	that	trigger	them.	The
figure	annotates	each	transition	with	the	actions	that	are	executed	when	that
transition	is	taken.	Actions	appear	in	brackets	(<>)	and	events	are	in	bold.

Figure	6-2.	Coffee	machine	FSM

With	this	model	in	mind,	let’s	start	by	stepping	through	a	pure	Erlang
implementation	of	the	FSM.	After	that,	we	migrate	the	implementation	to	the
generic	FSM	behavior	module.

The	Hardware	Stub
Embedded	systems	that	require	sensors	and	hardware	interactions	include	device
drivers	written	in	C	interfacing	to	the	Erlang	code.	To	keep	the	example	simple,
we	have	stubbed	this	interaction	in	the	hw.erl	module.	We	use	this	module	in
both	the	Erlang	implementation	and	the	generic	FSM	behavior	implementation:

-module(hw).

-compile(export_all).

display(Str,	Arg)						->	io:format("Display:"	++	Str	++	"~n",	Arg).

return_change(Payment)	->	io:format("Machine:Returned	~w	in	change~n",[Payment]).

drop_cup()													->	io:format("Machine:Dropped	Cup.~n").

prepare(Type)										->	io:format("Machine:Preparing	~p.~n",[Type]).

reboot()															->	io:format("Machine:Rebooted	Hardware~n").

You	will	see	calls	to	this	module	in	the	FSM	implementations.	Functions	being
called	as	a	result	of	the	sensors	in	the	coffee	machine	call	the	client	functions	in
the	coffee.erl	module	directly.	For	testing	purposes,	we	instead	call	them	from
the	shell.	With	this	out	of	the	way,	let’s	start	looking	at	the	implementation	itself.

The	Erlang	Coffee	Machine
In	this	section	we	create	the	Erlang	part	of	the	application,	keeping	in	mind
throughout	how	the	FSM	in	this	example	can	be	generalized	and	made	into	a
reusable	behavior	in	OTP.

Starting
We	start	the	FSM	using	the	start_link/0	function.	It	spawns	a	new	process	that
starts	executing	in	the	init/0	function	and	registers	itself	using	the	name
coffee,	the	same	name	as	the	module.	Here,	we	use	the	?MODULE	preprocessor
construct	to	refer	to	the	module	name	rather	than	using	the	module	name
explicitly,	which	we	did	for	clarity	in	previous	chapters.	The	init/0	function
reboots	the	coffee	machine	and	shows	Make	Your	Selection	in	the	display.	We
then	enter	into	our	first	state	by	calling	the	tail-recursive	function	selection/0.
Have	a	look	at	it	and	try	to	split	it	up	into	generic	and	specific	code:

-module(coffee).

-export([tea/0,	espresso/0,	americano/0,	cappuccino/0,

									pay/1,	cup_removed/0,	cancel/0]).

-export([start_link/0,	init/0]).

start_link()	->

				{ok,	spawn_link(?MODULE,	init,	[])}.

init()	->

				register(?MODULE,	self()),

				hw:reboot(),

				hw:display("Make	Your	Selection",	[]),

				selection().

The	generic	code,	highlighted	in	this	example,	includes	spawning	the	process
that	runs	in	the	init/0	function,	registering	it,	and	transitioning	to	the	first	state.
The	code	specific	to	the	coffee	machine	is	the	process	name,	the	callback
module,	and	the	hardware-specific	operations	executed	in	init/0,	along	with
any	arguments	we	pass	on	to	that	call.	The	first	state	is	also	specific,	as	is	any
loop	data	we	might	pass	on	to	that	state.	In	our	example,	there	is	no	state	needed
at	startup.

The	events
Two	sets	of	client	functions	generate	events	that	are	passed	on	to	the	coffee	FSM

as	asynchronous	calls.	The	first	four	functions	inform	the	FSM	of	the	drink
selection	the	user	made,	together	with	the	price.	The	cup_removed	event	is
triggered	by	hardware	sensors	when	a	cup	is	removed.	If	a	coin	is	inserted,
pay/1	is	called,	with	the	value	of	the	coin	passed	as	an	argument.	Finally,	cancel
is	called	when	the	cancel	button	is	pressed.	As	we	mentioned	earlier,	these
events	can	be	triggered	in	any	state.	There	is	nothing	stopping	a	user	from
pressing	the	cancel	button	when	the	drink	is	being	prepared,	or	inserting	a	coin
without	having	made	a	selection.	The	client	functions	are	as	follows:

%%	Client	Functions	for	Drink	Selections

tea()								->	?MODULE	!	{selection,	tea,							100}.

espresso()			->	?MODULE	!	{selection,	espresso,		150}.

americano()		->	?MODULE	!	{selection,	americano,	100}.

cappuccino()	->	?MODULE	!	{selection,	cappuccino,150}.

%%	Client	Functions	for	Actions

cup_removed()	->	?MODULE	!	cup_removed.

pay(Coin)					->	?MODULE	!	{pay,	Coin}.

cancel()						->	?MODULE	!	cancel.

In	these	client	functions,	the	tags	and	any	data	(such	as	the	price)	associated	with
the	events	are	specific.	What	is	generic	are	the	sending	of	the	events	to	the	FSM
and	the	possibility	of	having	synchronous	and	asynchronous	calls.	In	our
example,	the	calls	are	all	asynchronous.	Had	some	of	them	been	synchronous,
the	return	value	would	also	have	been	specific,	but	the	protocol	and	the	receive
statement	receiving	the	reply	would	have	been	generic.

The	selection	state
In	the	init/0	function,	after	having	initialized	the	coffee	machine,	we	make	the
transition	to	our	first	state.	This	is	the	selection	state,	where	the	customer	picks	a
drink.	Upon	receiving	the	event	{selection,	Type,	Price},	we	display	the
price	of	the	drink	and	move	to	the	next	state,	payment.	In	this	state,	we	pass	the
arguments	Type,	Price,	and	amount	Paid,	initially	set	to	0.	These	three
arguments	are	the	loop	data	needed	in	the	payment	state.

If	a	customer	inserts	a	coin	without	having	made	a	selection,	we	have	to	return
it.	If	the	customer	presses	the	cancel	button,	we	need	to	remove	the	event	from
the	process	mailbox,	ensuring	that	it	is	not	accidentally	received	in	a	later	state:

%%	State:	drink	selection

selection()	->

				receive

								{selection,	Type,	Price}	->

												hw:display("Please	pay:~w",[Price]),

												payment(Type,	Price,	0);

								{pay,	Coin}	->

												hw:return_change(Coin),

												selection();

								_Other	->			%	cancel

												selection()

				end.

Every	combination	of	state	and	event	will	result	in	a	specific	set	of	actions	and	a
transition	to	the	next	state.	The	generic	code	consists	of	the	sections	receiving
events,	handling	state	transitions,	and	storing	the	loop	data.	The	specific	code
relates	to	handling	the	events,	namely	updating	the	display,	returning	the	coins,
and	deciding	on	the	next	state.

The	payment	state
When	the	customer	has	picked	a	drink,	it	is	time	to	either	pay	for	it	or	cancel	the
selection.	Every	coin	inserted	will	result	in	the	event	{pay,	Coin}	being
generated,	where	Coin	is	the	amount	that	has	been	inserted.	This	amount	is
added	to	the	total.	If	the	total	is	greater	than	or	equal	to	the	price	of	the	drink,	the
code	will	trigger	actions	terminating	with	the	transition	to	the	remove	state.	If	not
enough	money	has	been	inserted,	the	remaining	amount	to	be	paid	is	updated
and	the	FSM	remains	in	the	payment	state.	If	the	cancel	button	is	pressed,	any
payment	made	is	returned	to	the	user	and	the	FSM	returns	to	the	selection	state.
Any	other	event	—	more	specifically,	pressing	any	of	the	selection	buttons	—	is
ignored.	The	way	we	ignore	an	event	is	to	reinvoke	the	current	state:

%%	State:	payment

payment(Type,	Price,	Paid)	->

				receive

								{pay,	Coin}	->

												if	

																Coin	+	Paid	>=	Price	->

																				hw:display("Preparing	Drink.",[]),

																				hw:return_change(Coin	+	Paid	-	Price),

																				hw:drop_cup(),	hw:prepare(Type),

																				hw:display("Remove	Drink.",	[]),

																				remove();

																true	->

																				ToPay	=	Price	-	(Coin	+	Paid),

																				hw:display("Please	pay:~w",[ToPay]),

																				payment(Type,	Price,	Coin	+	Paid)

												end;

								cancel	->

												hw:display("Make	Your	Selection",	[]),

												hw:return_change(Paid),

												selection();

								_Other	->	%selection

												payment(Type,	Price,	Paid)

				end.

As	in	the	selection	state,	the	generic	code	includes	receiving	events,	state
transitions,	and	storing	the	loop	data.	Specific	code	includes	the	events
themselves,	the	actions	executed	as	a	result,	and	the	next	state.	Storing	the	loop
data	could	have	been	done	in	one	variable	containing	a	record,	but	as	different
states	need	a	different	number	of	arguments,	this	solution	is	cleaner	for	this
particular	example.

The	remove	state
The	FSM	enters	the	remove	state	when	the	coffee	is	paid	for	and	has	been
brewed.	It	is	a	state	of	its	own	because	the	machine	cannot	be	used	to	brew	other
beverages	until	the	user	removes	the	cup.	When	that	happens,	sensors	will
trigger	the	cup_removed	event	and	reset	the	display.	This	allows	us	to	transition
to	the	selection	state,	where	the	activity	can	start	all	over	again.	There	is	nothing
stopping	the	customer	from	inserting	coins,	and	if	this	happens,	they	have	to	be
returned.	The	same	applies	to	the	customer	pressing	the	cancel	or	selection
buttons,	events	that	have	to	be	ignored:

%%	State:	remove	cup

remove()	->

				receive

								cup_removed	->

												hw:display("Make	Your	Selection",	[]),

												selection();

								{pay,	Coin}	->

												hw:return_change(Coin),

												remove();

								_Other	->			%	cancel/selection

												remove()

				end.

Before	starting	the	next	section	about	the	FSM	behavior,	download	the	code	and
stub	modules	and	try	it	out.	When	doing	so,	take	a	moment	to	think	of	other
possible	implementations	of	an	Erlang-based	FSM.	What	parts	of	them	are
specific	and	what	parts	are	generic?	Of	the	generic	parts,	how	would	you
package	the	generics	into	a	callback-based	library	module?

Generic	FSMs
To	separate	the	generic	from	the	specific	functionality	in	an	FSM,	we’ll	take	the
same	course	we	took	with	generic	servers.	Table	6-1	lists	the	major	generic	and
specific	parts	of	the	FSM.

Table	6-1.	FSM	generic	and	specific	code

Generic Specific

Spawning	the	FSM

Storing	the	loop	data

Sending	events	to	the	FSM

Sending	synchronous	requests

Receiving	replies

Timeouts

Stopping	the	FSM

Initializing	the	FSM	state

The	loop	data

The	events

Handling	events/requests

The	FSM	states

State	transitions

Cleaning	up

Spawning	the	FSM,	ensuring	it	has	started	correctly,	and	registering	it	do	not
change	from	one	implementation	to	another.	What	do	change	are	the	local	or
global	registered	name	of	the	process	(if	registered	at	all),	debugging	options,
and	arguments	needed	for	the	initialization.	Initializing	the	FSM	is	specific,
including	determining	the	initial	state	and	binding	the	loop	data.	Both	are
returned	to	the	generic	FSM	receive-evaluate	loop,	which	generically	stores	the
data	and	state.

Sending	both	synchronous	and	asynchronous	events	and	requests	to	the	FSM	is
generic,	as	is	receiving	replies.	What	is	specific	are	the	contents	of	the	events
and	requests	and	how	they	are	handled	based	on	the	FSM	state.

The	states	are	all	specific,	as	are	the	actions	that	have	to	be	executed,	choosing
the	next	state	to	transition	the	FSM	to,	and	updating	loop	data.	Handling	of
timeouts,	within	both	the	client	and	the	FSM	itself,	is	generic.	What	happens
when	the	timeout	is	triggered,	on	the	other	hand,	is	specific.	Finally,	stopping	the

FSM	is	generic,	while	cleaning	up	prior	to	termination	is	specific.

We	can	view	the	FSM	as	an	extension	of	the	generic	server,	with	state	handling
added	on	top.	Messages	become	events	and	callback	functions	that	receive	the
messages	become	states.	All	of	the	generic	code	is	placed	in	a	library	module
called	gen_fsm,	while	all	of	the	specifics	are	placed	in	a	callback	module.	The
architecture	is	illustrated	in	Figure	6-3,	which	you	can	compare	to	Figure	4-1.

Figure	6-3.	The	FSM	callback	module

A	Behavior	Example
Using	the	coffee	machine	example,	let’s	have	a	look	at	all	the	library	APIs	and
associated	callback	functions	of	the	gen_fsm	behavior	module.	We	explore
starting	and	stopping	the	generic	FSM,	as	well	as	synchronous	and	asynchronous
events.	When	stepping	through	the	code,	compare	the	gen_fsm	behavior	with
gen_server.	If	you	want	to	take	it	for	a	practice	run,	download	the	code	from	the
book’s	repository.

https://github.com/francescoc/scalabilitywitherlangotp

Starting	the	FSM
Every	behavior	callback	module	starts	with	module,	behavior,	and	export
directives.	It	also	contains	all	of	the	state	callback	functions.	While	not
mandatory,	it	is	good	practice	to	also	include	all	of	the	client	functions	that
generate	the	events	in	one	place.	Our	coffee_fsm	module	looks	like	this:

-module(coffee_fsm).

-behavior(gen_fsm).

-export([start_link/0,	stop/0]).

-export([init/1,	terminate/3,	handle_event/3]).								%	Callback	functions

-export([selection/2,	payment/2,	remove/2]).											%	States

-export([americano/0,	cappuccino/0,	tea/0,	espresso/0,	%	Client	functions

									pay/1,	cancel/0,	cup_removed/0]).

The	-behavior	directive	specifies	the	atom	gen_fsm,	used	for	compile-time
warnings	if	callback	functions	are	not	implemented	or	exported.	Exported
functions	include	the	start	and	stop	functions	with	their	respective	callbacks,
the	client	functions,	and	state	callback	functions.

The	coffee	machine	is	started	using	the	gen_fsm:start_link/4	call,	which
spawns	the	FSM	and	links	it	to	the	parent.	It	returns	the	tuple	{ok,	Pid},	where
Pid	identifies	the	spawned	process,	or	{error,	Reason}	if	something	goes
wrong.	We	cover	possible	error	reasons	later;	for	now,	let’s	focus	on	the
example.

As	with	all	OTP	behaviors,	we	prefer	to	wrap	the	start_link/4	call	in	a	client
function,	located	in	the	callback	module.	In	our	example,	we’ve	called	this
function	coffee_fsm:start_link/0,	but	it	could	take	on	any	name	you	like.
What	is	important	is	that	it	eventually	calls	gen_fsm:start_link	and	returns
whatever	this	call	returns:	most	commonly	{ok,	Pid}	or	{error,	Reason},	as
seen	in	Figure	6-4,	or	the	atom	ignore.	These	values	become	relevant	when	we
look	at	supervisors	in	Chapter	8.

Figure	6-4.	Starting	a	gen_fsm

As	soon	as	the	generic	FSM	process	has	been	spawned,	the	init/1	function	in
the	callback	module	is	invoked.	Just	as	with	generic	servers,	this	function
contains	all	the	specific	initialization	code.	In	our	example,	it	will	reboot	the
hardware,	reset	the	display,	and	return	a	tuple	of	the	format	{ok,	StartState,
LoopData},	where	StartState	denotes	the	state	the	FSM	will	be	in	when	it
receives	its	first	event.	LoopData	contains	the	data	passed	to	the	state	callback
functions.	We	are	also	trapping	exits	in	this	example,	for	reasons	that	will
become	obvious	when	we	look	at	termination:

start_link()	->

				gen_fsm:start_link({local,	?MODULE},	?MODULE,	[],	[]).

init([])	->

				hw:reboot(),

				hw:display("Make	Your	Selection",	[]),

				process_flag(trap_exit,	true),

				{ok,	selection,	[]}.

In	our	example,	the	StartState	is	selection	and	the	LoopData	is	not	used,	so
we	simply	return	the	empty	list	value,	[].	When	the	init/1	callback	returns
control	to	the	generic	module,	the	synchronous	gen_fsm:start_link	call
returns.

We	register	the	process	locally	and	set	the	callback	module	using	the	?MODULE
macro,	which	at	compile	time	is	replaced	with	the	atom	coffee_fsm.	We	pass	[]

as	an	argument	to	the	init/1	callback	function	and	set	no	options.

The	following	functions,	identical	to	the	ones	exported	by	the	generic	server
module,	start	an	FSM:

gen_fsm:start_link(NameScope,Mod,Args,Opts)

gen_fsm:start(NameScope,Mod,Args,Opts)

gen_fsm:start_link(Mod,	Args,	Opts)

gen_fsm:start(Mod,	Args,	Opts)	->	{ok,	Pid}

																																		{error,	Error}

																																		ignore

Mod:init/1	->	{ok,	NextState,	LoopData}

														{stop,	Reason}

														ignore

NameScope	defines	how	we	register	our	behavior.	Just	as	with	generic	servers,	it
can	be	set	to	{local,	Name},	{global,	Name},	or	{via,	Module,	ViaName},
where	the	via	tuple	points	to	a	user-defined	process	registry	exporting	the	same
API	as	the	global	module,	all	previously	covered	in	“Going	Global”.	We	can
use	the	start	functions	to	avoid	linking	the	FSM	process	to	its	parent,	and	we	can
also	decide	not	to	register	it.	Opts	(covered	in	Chapter	5)	can	also	be	passed.
They	include	timeout,	debug,	and	spawn	options.	Here,	we	just	pass	an	empty
list	for	Opts.

If	something	goes	wrong	in	the	init/1	callback,	you	can	either	terminate
abnormally	or	return	the	tuple	{stop,	Reason}.	It	will	propagate	the	error	to	the
parent	process	calling	the	gen_fsm	start	function	(typically	via	one	of	the
callback	module’s	start	functions),	causing	it	to	terminate	as	well.	If	the	parent
process	happens	to	be	a	supervisor,	it	will	in	turn	terminate	all	of	its	children	and
abort	the	startup	procedure.	Although	things	can	go	wrong	when	the	system	is
running,	by	default,	the	system	cannot	recover	from	a	fault	in	the	init/1
callback	function.

The	most	common	failure	reason	you	will	encounter	when	testing	your	FSM
from	the	shell	is	{error,	{already_started,	Pid}}.	It	occurs	if	another
process	with	the	same	registered	name	already	exists:

1>	coffee_fsm:start_link().

Machine:Rebooted	Hardware

Display:Make	Your	Selection

{ok,<0.38.0>}

2>	coffee_fsm:start_link().

{error,{already_started,<0.38.0>}}

If	you	want	to	let	the	supervisor	continue	to	start	workers	when	init/1	fails,
return	the	atom	ignore.	Instead	of	aborting	the	startup	procedure,	the	supervisor
will	store	the	child	specification	and	continue	starting	other	behaviors.	We	cover
the	ignore	and	stop	options	in	more	detail	in	Chapter	8	when	we	look	at
supervisors.

Until	then,	the	following	example	should	give	you	an	overview	of	the	different
behaviors.	Pay	particular	attention	to	what	causes	the	process	calling	the	start
and	start_link	functions	to	terminate.	We’ve	omitted	the	module	headers	from
this	example.	If	you	want	to	view	them,	download	the	test_fsm.erl	module	from
the	book’s	code	repository:

start_link(TimerMs,	Options)	->

				gen_fsm:start_link(?MODULE,	TimerMs,	Options).

start(TimerMs,	Options)	->

				gen_fsm:start(?MODULE,	TimerMs,	Options).

init(0)	->

				{stop,	stopped};

init(1)	->

				{next_state,	selection,	[]};

init(TimerMs)	->

				timer:sleep(TimerMs),

				ignore.

Let’s	run	the	code.	In	the	first	set	of	tests,	we	stop	the	FSM	by	returning	{stop,
Reason}:

1>	test_fsm:start_link(0,	[]).

**	exception	exit:	stopped

2>	test_fsm:start(0,	[]).

{error,stopped}

Note	the	difference	when	the	shell	is	linked	to	the	behavior	and	when	it	is	not.

In	shell	commands	3	and	4,	we	initialize	the	FSM	with	the	test_fsm:init(1)
call,	which	accidentally	specifies	next_state	instead	of	ok	as	the	first	element
of	the	return	tuple	in	the	callback	function.	This	results	in	an	invalid	return	value
not	recognized	by	the	FSM	back-end	module,	a	mistake	the	authors	have	made
many	times:

3>	test_fsm:start_link(1,	[]).

**	exception	exit:	{bad_return_value,{next_state,selection,{}}}

4>	test_fsm:start(1,	[]).

{error,{bad_return_value,{next_state,selection,{}}}}

A	behavior	module	will	terminate	with	the	reason	bad_return_value	whenever
you	return	a	control	tuple	that	does	not	follow	the	predefined	protocol.

When	reading	through	this	example,	make	sure	you	understand	the	effect	of	the
EXIT	signal	propagation	when	the	shell	process	is	linked	to	the	FSM	and	when	it
is	not.	In	shell	command	5,	we	pass	a	1,000-millisecond	argument	to	init/1	to
cause	it	to	sleep	for	that	long,	but	set	the	timeout	option	to	100	milliseconds;
this	triggers	a	timeout	in	the	startup	process	that	results	in	the	{error,	timeout}
tuple.	This	will	be	returned	whether	or	not	the	process	is	linked	to	the	shell
process:

5>	test_fsm:start_link(1000,	[{timeout,	100}]).

{error,timeout}

In	our	last	set	of	tests,	in	shell	commands	6	and	7,	our	init/1	function	returns
ignore.	This	does	not	result	in	the	behavior	terminating	abnormally,	and	as	a
result,	does	not	propagate	further:

6>	test_fsm:start_link(2,	[]).

ignore

7>	test_fsm:start(2,	[]).

ignore

Although	these	examples	specifically	use	the	gen_fsm	behavior,	they	are	valid
for	all	OTP	workers.

Enough	on	starting	and	initializing	our	FSMs.	Let’s	move	on	to	important	things
in	life	and	figure	out	how	to	get	this	coffee	brewed.

Sending	Events
Having	started	our	coffee	FSM,	we	need	to	be	able	to	define	the	states	and	send
both	synchronous	and	asynchronous	events.	When	handled,	they	trigger	state
transitions.	Events	are	usually	sent	in	client	functions	defined	in	the	callback
module.	Let’s	start	looking	at	asynchronous	events	in	our	FSM	and	see	how	they
are	handled	in	the	different	states.

Asynchronous	events
Asynchronous	events	are	sent	using	the	gen_fsm:send_event(Name,	Event)
library	function.	This	sends	the	Event	to	the	FSM,	which	handles	it	in	the
callback	function	State(Event,	LoopData)	in	the	callback	module.	After
handling	the	request,	the	State/2	function	returns	the	new	loop	data	with	the
next_state	or	the	stop	reason	(Figure	6-5).

Figure	6-5.	Sending	events

Our	FSM	event	functions	are	split	into	two	categories.	The	first	are	customer
drink	selections.	These	send	events	of	the	format	{selection,	Type,	Price},
where	Type	is	one	of	the	atoms	tea,	espresso,	americano,3	or	cappuccino.
Price	is	either	100	or	150	units:

tea()							->	gen_fsm:send_event(?MODULE,{selection,tea,100}).

espresso()		->	gen_fsm:send_event(?MODULE,{selection,espresso,100}).

americano()	->	gen_fsm:send_event(?MODULE,{selection,americano,150}).

cappuccino()->	gen_fsm:send_event(?MODULE,{selection,cappuccino,150}).

The	second	set	of	events	include	actions	where	the	user	inserts	a	coin,	presses
the	cancel	button,	or	removes	a	cup.	There	are	no	rules	stating	that	events	must
comprise	only	static	values.	Note	how	in	the	pay/1	function	we	pass	a	variable
as	part	of	our	event	—	the	value	of	the	inserted	coin	is	bound	to	Coin	and	passed
through	the	event	{pay,	Coin}:

pay(Coin)					->	gen_fsm:send_event(?MODULE,{pay,	Coin}).

cancel()						->	gen_fsm:send_event(?MODULE,cancel).

cup_removed()	->	gen_fsm:send_event(?MODULE,cup_removed).

Defining	states
States	in	FSMs	are	defined	in	callback	functions,	where	the	name	of	the	function
is	the	name	of	the	state,	Event	is	the	first	argument,	and	LoopData	is	the	second
one.	Remember	that	state	callback	functions	are	defined	in	the	callback	module
and	have	to	be	exported.	The	first	state	we	look	at	is	selection,	where	the
customer	is	prompted	to	choose	a	drink.	It	was	the	start	state	returned	by	the
init/1	function	when	we	started	the	FSM:

selection({selection,Type,Price},	_LoopData)	->

				hw:display("Please	pay:~w",[Price]),

				{next_state,	payment,	{Type,	Price,	0}};

selection({pay,	Coin},	LoopData)	->

				hw:return_change(Coin),

				{next_state,	selection,	LoopData};

selection(_Other,	LoopData)	->

				{next_state,	selection,	LoopData}.

Upon	choosing	a	drink,	one	of	the	functions	tea/0,	espresso/0,	americano/0,
or	cappuccino/0	is	called.	This	sends	an	asynchronous	event	of	the	format
{selection,	Type,	Price}	to	the	FSM.	Regardless	of	which	drink	the
customer	chooses	or	its	price,	the	selection	gets	handled	generically.	This	event
is	pattern	matched	in	the	first	clause	of	the	state	callback	function,	displaying	the
price	the	customer	has	to	pay.	By	returning	the	tuple	{next_state,	NextState,
NewLoopData},	we	return	the	control	to	the	gen_fsm	module	and	wait	for	the	next
event.	In	this	case,	NextState	is	bound	to	the	payment	state	and	LoopData	to	a

tuple	denoting	the	selection	(Type),	the	price,	and	the	amount	paid	so	far,	which
is	initially	set	to	0.	Note	how	we	ignore	the	incoming	loop	data,	set	to	the	empty
list	in	the	init/1	callback	function,	but	create	it	for	the	next	state.

What	happens	if	a	customer	walks	up	to	the	coffee	machine	when	it	is	in	the
selection	state	and	inserts	a	coin?	In	our	example,	we	programmed	the	FSM	to
return	the	coin	using	the	hw:return_change/1	call,	remaining	in	the	selection
state	and	not	changing	the	loop	data	(which	is	set	to	the	empty	list	anyhow).	If
you	prefer	to	keep	the	coin,	just	delete	that	line	of	code.	Or,	if	you	are
implementing	a	deluxe	variant	of	a	coffee	machine,	add	functionality	to	block
the	coin	insert	facility	until	the	selection	has	been	entered.

When	in	the	selection	state,	clients	can	generate	events	that	do	not	require	any
actions	or	state	changes.	They	include	pressing	the	cancel	button	or	setting	off
the	cup	removed	sensors,	events	that	need	to	be	handled	but	can	be	ignored	in
the	sense	that	they	change	neither	the	current	state	nor	the	loop	data.	Had	we	not
included	the	third	function,	a	customer	pressing	the	cancel	button	would	have
triggered	a	call	to	selection(cancel,	[]),	causing	a	runtime	error,	because
none	of	the	function	clauses	would	have	matched.

If	the	customer	selects	an	Americano	coffee,	the	FSM	displays	the	amount	owed
and	moves	to	the	state	payment,	eagerly	awaiting	the	next	event:

payment({pay,	Coin},	{Type,Price,Paid})	when	Coin+Paid	<	Price	->

				NewPaid	=	Coin	+	Paid,

				hw:display("Please	pay:~w",[Price	-	NewPaid]),

				{next_state,	payment,	{Type,	Price,	NewPaid}};

payment({pay,	Coin},	{Type,Price,Paid})	when	Coin+Paid	>=	Price	->

				NewPaid	=	Coin	+	Paid,

				hw:display("Preparing	Drink.",[]),

				hw:return_change(NewPaid	-	Price),

				hw:drop_cup(),	hw:prepare(Type),

				hw:display("Remove	Drink.",	[]),

				{next_state,	remove,	null};

payment(cancel,	{_Type,	_Price,	Paid})	->

				hw:display("Make	Your	Selection",	[]),

				hw:return_change(Paid),

				{next_state,	selection,	null};

payment(_Other,	LoopData)	->

				{next_state,	payment,	LoopData}.

The	customer	now	has	to	pay	for	the	coffee.	Every	time	a	coin	is	inserted,	the
{pay,	Coin}	event	is	generated.	We	add	the	value	in	Coin	to	the	amount	Paid,
and,	if	the	sum	is	less	than	the	price	of	the	drink,	we	display	the	remaining

amount	to	pay.	By	returning	payment	as	the	next	state,	we	keep	the	FSM	in	that
state,	changing	the	loop	data	to	reflect	the	amount	paid	so	far.

If	the	customer	has	inserted	enough	change	to	pay	for	the	drink,	we	trigger	a
chain	of	actions	that	start	by	changing	the	display,	indicating	we	are	preparing
the	drink.	We	return	any	change	and	drop	the	cup.	We	brew	the	drink,	returning
from	the	synchronous	hw:prepare(Type)	call	only	when	the	drink	is	finished.	At
this	point,	we	tell	the	customer	to	remove	the	drink	and	return	the	control	to	the
gen_fsm	control	loop,	indicating	that	the	next	state	is	remove.

While	paying	for	their	coffee,	customers	could	change	their	minds	and	press	the
cancel	button.	If	they	do,	we	change	the	display	to	“Make	Your	Selection,”
return	any	coins	they	might	have	paid,	and	indicate	that	the	next	state	is
selection.	Finally,	if	a	customer	triggers	the	cup	removed	sensors	or	presses	any
of	the	drink	selection	buttons,	we	ignore	the	event	and	remain	in	the	state
payment.

Let’s	assume	the	customer	has	paid	for	a	drink	and	received	the	appropriate
change,	and	the	drink	has	been	brewed.	The	FSM	would	at	this	stage	be	in	the
state	remove:

remove(cup_removed,	LoopData)	->

				hw:display("Make	Your	Selection",	[]),

				{next_state,	selection,	LoopData};

remove({pay,	Coin},	LoopData)	->

				hw:return_change(Coin),

				{next_state,	remove,	LoopData};

remove(_Other,	LoopData)	->

				{next_state,	remove,	LoopData}.

Sensors	in	the	coffee	machine	will	be	triggered	when	the	customer	removes	the
cup.	This	will	trigger	the	coffee_fsm:cup_removed()	call,	resulting	in	the
cup_removed	event	being	handled	in	the	first	clause.	The	coffee	machine	updates
its	display	to	“Make	Your	Selection”	and	the	function	returns,	setting	the	next
state	to	selection.	In	the	remove	state,	customers	can	also	insert	coins,	which	we
return	in	the	second	function	clause,	or	they	can	press	the	cancel	or	drink
selection	buttons,	which	we	ignore	in	the	third	clause.

The	moment	of	truth	has	arrived.	Will	we	get	our	coffee?	Let’s	test	our	program
and	see	if	it	works.	When	compiling	your	behavior,	as	we	saw	in	“Generic
Servers”,	you	get	a	warning	over	the	missing	code_change/3	callback	when

compiling	the	code	in	this	chapter.	We	cover	this	in	Chapter	12	when	looking	at
software	upgrades.

To	better	understand	what	is	going	on,	we’ll	use	the	debug	options	built	into
OTP	and	described	in	“Tracing	and	Logging”.	We	start	the	FSM,	select	tea,
change	our	mind	to	an	Americano	coffee,	and	insert	two	100-unit	coins.	We	get
our	change,	and	while	waiting	to	remove	the	cup,	we	insert	a	50-unit	coin	just
for	the	sake	of	testing	out	the	FSM.	As	you	step	through	the	example,	you	can
distinguish	the	code	you	input	by	the	prompts	(such	as	1>),	and	debugger
printouts	by	the	*DBG*	prefix.	Output	from	io:format/2	in	the	hw.erl	module
starts	with	a	hint	of	what	parts	of	the	system	it	represents	(Display:	or
Machine:),	and	the	rest	of	the	output	is	actual	return	values	from	the	function
calls:

1>	{ok,	Pid}	=	coffee_fsm:start_link().

Display:Make	Your	Selection

{ok,<0.68.0>}

2>	sys:trace(Pid,	true).

ok

3>	coffee_fsm:cancel().

DBG	coffee_fsm	got	event	cancel	in	state	selection

ok

DBG	coffee_fsm	switched	to	state	selection

4>	coffee_fsm:tea().

DBG	coffee_fsm	got	event	{selection,tea,100}	in	state	selection

ok

Display:Please	pay:100

DBG	coffee_fsm	switched	to	state	payment

5>	coffee_fsm:cancel().

DBG	coffee_fsm	got	event	cancel	in	state	payment

ok

Display:Make	Your	Selection

Machine:Returned	0	in	change

DBG	coffee_fsm	switched	to	state	selection

6>	coffee_fsm:americano().

DBG	coffee_fsm	got	event	{selection,americano,150}	in	state	selection

ok

Display:Please	pay:150

DBG	coffee_fsm	switched	to	state	payment

7>	coffee_fsm:pay(100).

DBG	coffee_fsm	got	event	{pay,100}	in	state	payment

ok

Display:Please	pay:50

DBG	coffee_fsm	switched	to	state	payment

8>	coffee_fsm:pay(100).

DBG	coffee_fsm	got	event	{pay,100}	in	state	payment

ok

Display:Preparing	Drink.

Machine:Returned	50	in	change

Machine:Dropped	Cup.

Machine:Preparing	americano.

Display:Remove	Drink.

DBG	coffee_fsm	switched	to	state	remove

9>	coffee_fsm:pay(50).

DBG	coffee_fsm	got	event	{pay,50}	in	state	remove

ok

Machine:Returned	50	in	change

DBG	coffee_fsm	switched	to	state	remove

10>	coffee_fsm:cup_removed().

DBG	coffee_fsm	got	event	cup_removed	in	state	remove

ok

Display:Make	Your	Selection

DBG	coffee_fsm	switched	to	state	selection

11>	sys:trace(Pid,	false).

ok

It	seems	to	work;	time	for	a	break!

Timeouts
We	are	not	sure	if	this	has	ever	happened	to	you,	but	imagine	you’re	standing
patiently	in	line	to	buy	your	coffee.	While	doing	so,	you	decide	what	you	want
and	prepare	the	exact	change,	and	are	ready	to	go.	But	the	person	in	front	of	you
is	apparently	not	in	the	same	rush.	After	spending	ages	reading	through	all	the
options,	they	make	their	selection	and	get	shown	the	price.	Only	then	do	they	dip
into	their	purse	or	pocket	and	start	looking	not	just	for	change,	but	for	the	exact
change.	They	insert	a	penny	and	go	back	in	looking	for	another	one,	until	they
find	no	more.	After	which	they	start	looking	for	nickels	and	dimes.	It	can	be
aggravating,	and	not	only	for	impatient	authors.	Luckily,	we	control	the	coffee
machine	now,	so	we	can	take	advantage	of	that	to	implement	punishment	and
revenge	to	discourage	this	type	of	behavior.

Timeouts	can	be	specified	within	the	FSM	as	an	integer	in	milliseconds	or	as	the
atom	infinity.	We	can	include	them	in	the	init/1	and	State	callback
functions.	When	a	timeout	is	triggered,	the	event	is	sent	to	the	state	the	FSM	is
currently	in.	As	we	are	controlling	the	code	for	the	coffee	machine,	let’s	put	a	bit
of	stress	into	the	lives	of	those	who	do	not	have	any	by	triggering	a	timeout	if	a
user	waits	more	than	10	seconds	between	one	coin	insertion	and	another.	First,
let’s	refactor	the	payment	state	by	adding	a	timeout:

-define(TIMEOUT,	10000).

...

selection({selection,Type,Price},	_LoopData)	->

				...

				{next_state,	payment,	{Type,	Price,	0},	?TIMEOUT};

payment({pay,	Coin},	{Type,Price,Paid})	when	Coin+Paid	>=	Price	->

				...

				{next_state,	remove,	[]};

payment({pay,	Coin},	{Type,Price,Paid})

		when	Coin+Paid	<	Price	->

				...

				{next_state,	payment,	{Type,	Price,	NewPaid},	?TIMEOUT};

payment(timeout,	{Type,	Price,	Paid})	->

				hw:display("Make	Your	Selection",	[]),

				hw:return_change(Paid),

				{next_state,	selection,	[]};

payment(_Other,	LoopData)	->

				{next_state,	payment,	LoopData,	?TIMEOUT}.

Customers	inserting	coins	will	now	have	to	hurry.	If	they	take	longer	than	10
seconds	to	insert	a	coin,	their	selections	will	be	canceled	and	their	money
returned.	There	is	a	risk	that	they’ll	figure	that	out	that	by	pressing	one	of	the
drink	selection	buttons	they	will	get	an	extra	10	seconds,	but	let’s	assume	for
now	that	they	are	too	wrapped	up	looking	for	their	next	penny	to	work	this	out.

In	place	of	a	timeout	value,	we	can	alternatively	return	hibernate	if	we	want	to
reduce	the	generic	FSM’s	memory	footprint.	Use	hibernate	only	if	you	are	not
expecting	the	FSM	to	receive	events	for	a	while,	with	benchmarks	showing	you
have	memory	issues.	We	can	also	stop	the	FSM,	something	we	cover	later	in	this
chapter:

gen_fsm:send_event(NameScope	,Event)	->	ok

Mod:State/2	->	{next_state,	NextState,NewLoopData}

															{next_state	,NextState,NewLoopData,	Timeout}

															{next_state,	NextState,NewLoopData,	hibernate}

															{stop,	Reason,	NewLoopData}

Asynchronous	events	to	all	states
If	you	want	to	send	an	asynchronous	event	but	are	not	concerned	about	the	state
in	which	it	is	received,	you	can	use	the	send_all_state_event/2	call.	This
could	be	useful	if	you	want	to	execute	actions	such	as	formatting	and	printing
the	loop	data	or	stopping	the	FSM.	Events	are	passed	as	the	first	argument	to	the
handle_event/3	callback	function,	which	executes	the	actions	and	then	returns
the	{next_state,	NextState,	NewLoopData}	tuple	back	to	the	gen_fsm	control
loop	(Figure	6-6).

Figure	6-6.	Sending	events	to	all	states

As	with	generic	servers,	the	handle_info/3	callback	function	takes	care	of	all
non-OTP-compliant	messages	such	as	exit	signals,	monitors,	and	messages	sent
using	the	Pid!Msg	construct.	The	handle_info/3	callback	returns	the	same
range	of	control	tuples	as	handle_event/3	and	State/2:

gen_fsm:send_all_state_event(NameScope	,Event)	->	ok

Mod:handle_info/3,

Mod:handle_event/3	->	{next_state,	NextState,NewLoopData}

																						{next_state	,NextState,NewLoopData,	Timeout}

																						{next_state,	NextState,NewLoopData,	hibernate}

																						{stop,	Reason,	NewLoopData}

SELECTIVE	RECEIVES

Selective	receives	are	one	thing	the	OTP	gen_fsm	behavior	module	does	not	provide.	In	complex
FSMs	running	across	unreliable	distributed	networks,	events	occasionally	arrive	out	of	sequence.
Imagine	receiving	a	sunset	event	when	you	are	in	state	night!	You	can	either	buffer	these	events	in
your	loop	data	and	handle	them	when	you	reach	a	state	that	knows	how	to	deal	with	them,	or	add	an
extra	state,	turning	the	out-of-sequence	events	into	valid	ones.	Both	solutions	cause	unnecessary
complexity	when	compared	to	the	simplicity	of	using	a	selective	receive,	leaving	the	events	in	the
process	mailbox	until	they	are	matched	in	a	state	that	can	actually	handle	them.

This	lack	of	functionality	arises	from	a	conscious	design	decision	in	behaviors,	where	messages	are
handled	in	the	order	they	arrive,	ensuring	no	memory	leaks	occur	as	a	result	of	any	message	not	being
matched.	Events	in	the	gen_fsm	behavior	are	handled	on	a	first-in,	first-out	(FIFO)	basis,	and	are
removed	from	the	receiving	process’s	mailbox	when	read.

There	are	two	approaches	if	you	want	to	avoid	the	increase	in	complexity	resulting	from	messages
arriving	out	of	sequence.	You	could	implement	your	own	selective	FSM	behavior,	which	we	explain

how	to	do	in	Chapter	10.	Or	you	can	use	a	selective	FSM	behavior	someone	else	has	already
implemented.	At	the	time	of	writing,	the	most	commonly	used	implementation	is	plain_fsm	by	Ulf
Wiger.	It	follows	all	OTP	principles	and	can	be	included	in	supervision	trees.	The	plain_fsm	source
code	and	examples	are	available	on	GitHub.

Synchronous	events
Although	all	the	events	sent	in	our	FSM	examples	were	asynchronous,
sometimes	we	want	to	ensure	clients	can’t	generate	a	new	event	until	their
previous	one	is	handled.	For	example,	a	diagnostic	client	might	want	to	ask	the
FSM	to	set	a	particular	value	into	a	hardware	register	and	take	no	further	action
until	the	FSM	indicates	the	setting	was	successful.	As	illustrated	in	Figure	6-7,
this	is	when	we	use	the	sync_send_event/2	(or
sync_send_all_state_event/2)	call.

Figure	6-7.	Synchronous	events

This	call	and	its	callback	are	a	middle	ground	between	using	the	call/2	and
handle_call/3	functions	in	the	generic	server	and	using	asynchronous	events
and	event	handling	in	FSMs.	Events	are	handled	in	the	State(Event,	From,
LoopData)	callback,	where	From	is	a	tuple	denoting	the	client	and	the	request
reference.	Instead	of	returning	the	next_state	tuple,	the	callback	returns	a	tuple
of	the	format	{reply,	Reply,	NextState,	NewLoopData}.	Reply	is	sent	back
to	the	client	and	becomes	the	return	value	of	the	gen_fsm:sync_send_event/2
call.

https://github.com/uwiger/plain_fsm

Just	as	with	generic	servers,	we	can	use	the	From	in	a	gen_fsm:reply(From,
Reply)	call	to	send	Reply	back	to	the	original	caller	identified	by	From,	returning
{next_state,	NextState,	NewLoopData}	in	the	State/3	callback	function
itself.

The	gen_fsm:sync_send_all_state_event/2	function	(Figure	6-8)	sends
synchronous	requests	to	the	FSM	regardless	of	its	current	state.	The	event	is
handled	in	the	handle_sync_event/4	callback	function,	which	returns	a	Reply
sent	back	to	the	original	caller,	either	through	the	use	of	From	or	in	the	control
tuple	sent	back	to	the	gen_fsm	module.

Figure	6-8.	Synchronous	all	state	events

gen_fsm:sync_send_event(NameScope,	Event)	->	Reply

gen_fsm:sync_send_event(NameScope,	Event,	Timeout)	->	Reply

gen_fsm:sync_send_all_state_event(NameScope,	Event)	->	Reply

gen_fsm:sync_send_all_state_event(NameScope,	Event,	Timeout)	->	Reply

Mod:State/3,

Mod:handle_sync_event/4	->	{reply,Reply,NextState,NewLoopData}

																											{reply,Reply,NextState,NewLoopData,Timeout}

																											{reply,Reply,NextState,NewLoopData,hibernate}

																											{next_state,NextState,NewLoopData}

																											{next_state,NextState,NewLoopData,Timeout}

																											{next_state,NextState,NewLoopData,hibernate}

																											{stop,Reason,Reply,NewLoopData}

																											{stop,Reason,NewLoopData}

Let’s	use	the	sync_send_all_state_event/2	function	to	trigger	the	actions	for
normal	termination	of	our	coffee	machine.	After	all,	it	doesn’t	really	matter	what
state	it	is	in,	as	long	as	it	stops.

Termination
Our	coffee	machine	can	terminate	for	two	reasons.	It	is	either	stopped	normally,
or	the	process	terminates	abnormally	if	the	exit	BIFs	are	used	or	a	runtime	error
occurs.	For	abnormal	termination,	if	the	FSM	is	trapping	exits	as	a	result	of	a
process_flag(trap_exit,	true)	call,	terminate/3	(Figure	6-9)	is	invoked	in
the	callback	module.	If	the	FSM	is	not	trapping	exits,	the	FSM	terminates	and	its
exit	signal	propagates	to	other	processes	linked	to	it.

Figure	6-9.	Termination

If	a	stop	event	is	sent	using	sync_send_all_state_event/2,	the	event	is
handled	in	handle_sync_event/4.	Note	that	unlike	the	stop	atom	returned	in	the
tuple,	the	stop	we	pass	through	the	sync_send_all_state_event/2	call	has	no
meaning	other	than	one	given	to	it	in	the	program.	This	also	contrasts	with	the
stop	parameter	in	{stop,	Reason,	LoopData},	which	is	interpreted	and	used	by
the	gen_fsm	module	to	terminate	the	FSM.	This	is	exactly	the	same	principle	we
discussed	when	we	looked	at	generic	server	termination	in	“Termination”:

stop()	->	gen_fsm:sync_send_all_state_event(?MODULE,	stop).

handle_sync_event(stop,	_From,	_State,	LoopData)	->

				{stop,	normal,	LoopData}.

terminate(_Reason,	payment,	{_Type,_Price,Paid})	->

				hw:return_change(Paid);

terminate(_Reason,	_StateName,	_LoopData)	->

				ok.

Note	also	how,	in	the	terminate	function,	we	handle	the	cleanup	for	the	states
individually.	If	customers	have	started	paying	for	their	drinks,	they	should
receive	a	refund.	By	doing	this	in	terminate/3,	we	are	also	able	to	refund	users
after	an	abnormal	termination.	Here’s	an	example	of	what	happens:

1>	{ok,	Pid}	=	coffee_fsm:start_link().

Display:Make	Your	Selection

{ok,<0.35.0>}

2>	coffee_fsm:americano().

Display:Please	pay:150

ok

3>	coffee_fsm:pay(100).

Display:Please	pay:50

ok

4>	exit(Pid,	crash).

Display:Shutting	Down

true

Machine:Returned	100	in	change

=ERROR	REPORT====	3-Mar-2013::12:01:25	===

**	State	machine	coffee_fsm	terminating

**	Last	message	in	was	{'EXIT',<0.33.0>,crash}

**	When	State	==	payment

**						Data		==	{americano,150,100}

**	Reason	for	termination	=

**	crash

**	exception	exit:	crash

Summing	Up
We’ve	now	introduced	the	principles	behind	the	generic	FSM	behavior.
Although	it	might	not	be	the	most	commonly	used	behavior,	when	it	fits	your
application	it	will	greatly	simplify	your	task,	making	your	code	more	readable
and	easier	to	maintain.	Table	6-2	lists	the	most	important	functions	we	covered
in	this	chapter.

Table	6-2.	gen_server	callbacks

gen_fsm	function	or	action gen_fsm	callback	function

gen_fsm:start/3,	gen_fsm:start/4,	gen_fsm:start_link/3,
gen_fsm:start_link/4

Module:init/1

gen_fsm:send_event/2 Module:StateName/2

gen_fsm:send_all_state_event/2 Module:handle_event/3

gen_fsm:sync_send_event/2,	gen_fsm:sync_send_event/3 Module:StateName/3

gen_fsm:sync_send_all_state_event/2,
gen_fsm:sync_send_all_state_event/3

Module:handle_sync_event/4

Pid	!	Msg,	monitors,	exit	messages,	messages	from	ports	and	socket,
node	monitors,	and	other	non-OTP	messages

Module:handle_info/2

Triggered	by	returning	{stop,	...}	or	when	terminating	abnormally
while	trapping	exits

Module:terminate/3

Review	the	manual	pages	for	the	gen_fsm	module.	You	can	find	the	code
implementing	the	behavior	library	in	the	gen_fsm.erl	source	file.	If	you
previously	looked	at	the	gen_server.erl	code,	pay	particular	attention	to	how	they
both	interact	with	the	gen.erl	helper	module,	since	other	behaviors	use	it	as	well.

Get	Your	Hands	Dirty
Before	moving	on	to	the	next	chapter,	why	not	have	a	go	at	implementing	an
FSM	to	get	a	feel	for	the	process	of	designing,	coding,	and	testing	it?	If	you	are
not	up	to	coding,	download	the	code	from	the	Chapter	8	examples,	read	through
it,	and	take	it	for	a	trial	run,	since	we	use	the	controller	in	future	examples.	What
makes	this	example	interesting	is	that	different	instances	of	the	behaviors,	each
representing	a	cell	phone,	will	speak	to	each	other.	It	is	a	typical	example	of	a
massively	concurrent	application	where	processes	are	used	to	represent	and
control	resources	or	devices.	The	cell	phones	use	the	home	location	register,	the
database	that	maps	users	registered	on	the	network	to	unique	phone	numbers	that
we	implemented	in	“ETS:	Erlang	Term	Storage”	in	the	hlr	module.

https://github.com/francescoc/scalabilitywitherlangotp

The	Phone	Controllers
In	our	cellular	system,	there	is	no	central	switch.	Instead,	for	every	phone
attached	to	the	network,	we	create	a	phone	controller	that	interacts	with	other
controllers.	Each	controller	is	a	process	implemented	as	an	FSM	holding	the
state	of	a	single	phone.	All	communication	between	the	phone	controllers	must
be	asynchronous	so	as	to	prevent	blocking	of	the	system.	Fulfill	the	following
API	to	implement	the	phone	controllers	in	the	phone_fsm.erl	module:

start_link(PhoneNumber)	->	{ok,	FsmPid}.

Starts	a	new	phone	controller	FSM	process	for	the	phone	number	linked	to
the	calling	process.	This	should	also	attach	the	phone	controller	process	to
its	phone	number	in	the	home	location	register	(HLR).

stop(FsmPid)	->	ok.

Stops	a	phone	controller	FSM	at	FsmPid.	This	should	also	detach	it	from	its
phone	number	in	the	HLR.

connect(FsmPid)	->	ok.,	disconnect(FsmPid)	->	ok.
Called	by	a	phone	to	attach	itself	to	a	phone	controller	FSM	process.	This
must	be	done	so	that	the	phone	controller	knows	where	to	send	the	phone
replies	that	provide	information	about	incoming	and	outgoing	calls.	The
connect	function	call	usually	occurs	when	a	phone	is	started,	or	when	it	is
connecting	to	another	FSM	process.	Note	that	we	connect	to	an	FSM
process	by	its	pid	and	not	its	number.	The	disconnect	function	detaches	a
phone	from	a	phone	controller	FSM	process.

action(FsmPid,	Action)	->	ok.

Sends	an	action	from	the	phone	to	the	phone	controller	at	FsmPid.	The	legal
actions	are:

{outbound,PhoneNumber}

Try	to	connect	to	another	phone.

accept

Accept	a	call	request.

reject

Reject	a	call	request.

hangup

Hang	up	an	ongoing	call.
The	following	calls	send	events	between	the	phone	controllers	inside	the	switch:

busy(FsmPid)	->	ok.

Sends	a	busy	event	to	FsmPid,	generally	as	a	reply	to	an	inbound	request
indicating	that	this	phone	is	busy	and	can’t	accept	the	call

reject(FsmPid)	->	ok.

Sends	a	reject	event	to	FsmPid,	generally	as	a	reply	to	an	inbound	request
indicating	that	we	refuse	the	call

accept(FsmPid)	->	ok.

Sends	an	accept	event	to	FsmPid,	generally	as	a	reply	to	an	inbound	request
indicating	that	we	accept	the	call

hangup(FsmPid)	->	ok.

Sends	a	hangup	event	to	FsmPid	to	terminate	an	ongoing	call

inbound(FsmPid)	->	ok.

Sends	an	inbound	event	to	FsmPid	requesting	that	a	call	be	set	up

Given	this	API,	Figure	6-10	shows	what	the	controller	FSM	might	look	like.
Note	that	the	FSM	is	not	complete:	events	can	come	out	of	sequence	as	a	result
of	race	conditions	or	go	missing	in	action	as	a	result	of	network	or	software
errors.	Before	coding,	make	sure	you	have	reviewed	it	and	added	the	missing
events	and	state	transitions.	You’ll	figure	out	what	they	are	when	reviewing	the
interfaces.

Figure	6-10.	Phone	controller	FSM

Let’s	Test	It
Each	phone	controller	is	connected	to	a	mobile	phone.	You	do	not	have	to	write
the	code	for	the	phone.	It	is	provided	in	the	module	phone.erl	and	has	the
following	API:

start_link(PhoneNumber)	->	{ok,	PhonePid}.

Starts	a	new	phone	for	number	PhoneNumber,	which	is	linked	to	the	calling
process.

stop(PhonePid)	->	ok.

Stops	the	phone	at	PhonePid.

action(PhonePid,	Action)	->	ok.

Performs	an	action	requested	by	the	phone	user	for	the	phone	at	PhonePid.
The	legal	actions	are:

{call,PhoneNumber}

Start	a	call	to	PhoneNumber.

accept

Accept	a	call	request.

reject

Reject	a	call	request.

hangup

Hang	up	an	ongoing	call.
Calling	an	action	will	result	in	events	being	sent	to	the	phone’s	phone
controller	using	the	API	for	the	phone	controller	that	we	defined	in	the
previous	section.

reply(PhonePid,	Reply)	->	ok.

Sends	a	reply	event	from	the	phone	controller	to	the	phone.	The	legal	reply
events	are:

{inbound,PhoneNumber}.
An	inbound	call	has	arrived	from	PhoneNumber.

accept

An	outbound	call	has	been	accepted.

invalid

An	outbound	call	was	attempted	to	an	invalid	number.

reject

An	outbound	call	has	been	rejected.

busy

An	outbound	call	was	attempted	to	a	busy	phone.

hangup

An	outbound	call	has	hung	up.
These	reply	events	will	result	in	the	phone	process	printing	information	on
the	console	of	the	format	PhonePid:	PhoneNumber:	Event.	For	example:

<0,459,0>:	103618:	hangup	

You	should	start	your	phones	in	a	different	node	from	those	running	the	hlr	and
the	phone	controllers.	The	ultimate	test	is	for	a	phone	to	call	itself	and	return	a
busy	signal.	Here	is	a	trial	test	run	with	three	phones:

1>	hlr:new().

{ok,<0.34.0>}

2>	phone_fsm:start_link("123").

{ok,<0.36.0>}

3>	phone_fsm:start_link("124").

{ok,<0.38.0>}

4>	phone_fsm:start_link("125").

{ok,<0.40.0>}

5>	{ok,P123}=phone:start_link("123").

{ok,<0.42.0>}

6>	{ok,P124}=phone:start_link("124").

{ok,<0.44.0>}

7>	{ok,P125}=phone:start_link("125").	

{ok,<0.46.0>}

8>	phone:action(P123,	{call,"124"}).

<0.44.0>:	124:	inbound	call	from	123

ok

9>	phone:action(P124,	accept).	

<0.42.0>:	123:	call	accepted

ok

10>	phone:action(P125,	{call,"123"}).

<0.46.0>:	125:	busy

ok

11>	phone:action(P125,	{call,"124"}).

<0.46.0>:	125:	busy

ok

What’s	Next?
In	the	next	chapter,	we	look	at	another	worker	behavior,	the	generic	event
manager.	It	is	a	slightly	different	from	a	generic	server	and	an	FSM	in	that	a
single	instance	of	an	event	manager	is	allowed	to	have	multiple	callback
modules.	These	callback	modules	are	called	handlers,	and	if	implemented
generically,	they	can	be	reused	across	multiple	managers.	We	use	them	to	add
visibility	into	what	is	going	on	in	our	base	station	controller.

Movie	fans	will	have	seen	this	switch	in	the	blockbuster	production	of	Erlang	the	Movie.	It	was	filmed
when	the	language	was	still	evolving,	so	observant	fans	will	have	noticed	the	old	syntax	in	some	of	the
examples.	If	you	have	not	viewed	it,	look	for	it	on	YouTube.	It	is	a	must-see!

This	would	be	an	interesting	function	to	benchmark.

An	Americano	coffee	is	an	espresso	topped	up	with	water	—	it	could	not	be	omitted	as	it	is	our	favorite.

1

2

3

Chapter	7.	Event	Handlers

The	mobile	frequency	server	your	company	produces	hits	the	market	and
appears	to	be	extremely	popular.	Having	no	visibility	into	its	performance	and
uptime,	you	have	been	asked	to	implement	monitoring	software	that	not	only
collects	statistics	and	logs	important	things	that	happen,	but	also	warns	you
when	things	go	wrong.	And	that	is	where	the	problem	begins.	When	you	are	in
the	office,	you	want	a	widget	to	start	flashing	on	your	screen.	When	you	leave
your	desk,	you	might	want	to	keep	the	widget,	but	also	have	the	system	send	you
an	email.	And	if	you	leave	the	office,	you	want	an	SMS	or	pager	message	but	no
emails.	Your	other	colleagues	on	call	might	prefer	a	phone	call,	as	an	SMS	or
pager	message	would	not	wake	them	up	in	the	middle	of	the	night.	So,	the	same
event	types	must	trigger	different	actions	at	different	times,	all	dependent	on
external	factors.	This	is	where	the	event	handler	behavior	comes	to	the	rescue.

Events
An	event	represents	a	state	change	in	the	system.	It	could	be	a	high	CPU	load,	a
hardware	failure,	or	a	trace	event	resulting	from	the	activity	in	a	port.	An	event
manager	is	an	Erlang	process	that	receives	a	specific	type	of	event,	which	could
be	alarms,	warnings,	equipment	state	changes,	debug	traces,	or	issues	related	to
network	connectivity.	When	generated,	events	are	sent	to	the	manager	in	the
form	of	a	message,	as	shown	in	Figure	7-1.	For	every	event	generated,	the
system	might	want	to	take	a	specific	set	of	actions,	as	discussed	earlier:	generate
SNMP	traps;	send	emails,	SMSs,	or	pager	messages;	collect	statistics;	print
messages	to	a	console;	or	log	the	event	to	a	file.	We	call	these	processes	that
generate	events	producers	and	processes	receiving	and	handling	these	events
consumers.

Figure	7-1.	Event	managers	and	handlers

Event	handlers	are	behavior	callback	modules	that	handle	these	types	of	actions.
They	subscribe	to	events	sent	to	a	manager,	allowing	different	handlers	to
subscribe	to	the	same	events.	Different	managers	handling	different	event	types

can	use	the	same	event	handler.	If	a	handler	allows	you	to	log	events	to	a	file,
another	allows	you	to	print	them	to	a	console,	and	a	third	collects	statistics,	they
could	be	all	be	used	both	by	the	event	manager	dealing	with	debug	traces	and	the
event	manager	handling	equipment	state	changes.	Functionality	to	add,	remove,
query,	and	upgrade	handlers	during	runtime	is	provided	in	the	code
implementing	the	event	manager.	If	you	were	to	implement	the	code	managing
events	and	handlers,	what	would	be	generic	to	all	Erlang	systems	and	what
would	be	specific	to	your	application?	Table	7-1	shows	the	breakdown.

Table	7-1.	Event	handler	and	manager	generic	and	specific
code

Generic Specific

Starting/stopping	the	event	manager

Sending	events

Sending	synchronous	requests

Forwarding	events/requests	to	handlers

Adding/deleting	handlers

Upgrading	handlers

The	events

The	event	handlers

Initializing	event	handlers

Event	handler	loop	data

Handling	events/requests

Cleaning	up

Starting	and	stopping	the	event	manager	processes	is	generic,	as	is	registering
them	with	an	alias.	The	process	name	and	events	sent	to	the	manager	are
specific,	but	the	producer	sending	them,	the	manager	receiving	them,	and	the	act
of	calling	a	handler	are	generic.	The	event	handlers	themselves	are	specific,	as
well	as	what	we	do	to	initialize	them,	along	with	cleaning	up	when	they	are
removed	(or	when	the	event	manager	is	stopped).	How	the	handlers	deal	with	the
events	is	specific,	as	is	their	loop	data.	And	finally,	upgrading	the	handlers	is
generic,	but	what	the	individual	handlers	have	to	do	to	hand	over	their	state	is
specific.

Let’s	have	a	look	at	the	event	behavior	module.	While	the	generic	server	still
acts	as	its	foundation,	it	is	very	different	from	the	behaviors	we’ve	looked	at	so
far.

Generic	Event	Managers	and	Handlers
Generic	event	handlers	and	managers	are	part	of	the	standard	library	application,
and	like	all	other	behaviors,	are	split	up	into	generic	and	specific	code.	The
gen_event	module	contains	all	of	the	generic	code.	The	process	running	this
code	is	often	referred	to	as	the	event	manager.	The	callback	modules	subscribing
to	the	events	and	handling	them	through	a	set	of	callback	functions	are	called	the
event	handlers.	Each	handler	solves	a	specific	event-driven	task	and	is	part	of	the
specific	code.	Unlike	other	behaviors,	which	allow	only	one	callback	module	per
instance,	an	event	manager	can	take	care	of	zero	or	more	event	handlers,	as
shown	in	Figure	7-2.	But	despite	the	possibility	of	there	being	multiple	handlers,
they	will	all	be	executed	in	a	single	event	manager	process.

Figure	7-2.	Handler	callback	module

Starting	and	Stopping	Event	Managers
The	gen_event:start_link(NameScope)	function	starts	a	new	event	manager.
NameScope	specifies	the	local	or	global	process	name	or	the	via	module,	first
explained	in	“Going	Global”.	Should	you	not	want	to	register	the	process,	use
start_link/0	and	communicate	with	it	using	its	pid.	Unlike	with	other
behaviors,	start_link/0	accepts	no	callback	modules,	arguments,	or	options.
Nor	does	it	invoke	any	callback	functions.	All	the	manager	does	is	set	its	handler
list	to	the	empty	list:

gen_event:start()

gen_event:start(NameScope)

gen_event:start_link()

gen_event:start_link(NameScope)	->	{ok,Pid}

																																			{error,{already_started,Pid}}

gen_event:stop(NameScope)	->	ok

Because	you	are	not	calling	an	init/1	callback	function	that	can	return	stop	or
ignore,	or	even	generate	a	runtime	error,	not	much	can	go	wrong	here	unless	an
event	manager	or	process	with	the	same	name	is	already	registered.

Stop	the	event	manager	using	the	gen_event:stop/1	call.

Adding	Event	Handlers
Now	that	we	can	start	and	stop	our	manager,	let’s	implement	a	handler	and	add
it.	Event	handlers	are	added	to	and	removed	from	the	event	manager	process
dynamically,	at	runtime.	They	are	considered	more	generic	than	other	behaviors
because	you	can	implement	an	event	handler	that	can	not	only	handle	different
event	types,	but	do	so	in	different	event	managers.

In	our	logger	example,	we	implement	an	event	handler	that	logs	events	and
unexpected	messages	to	standard	I/O	or	a	file,	depending	on	which	parameters
are	provided	when	it	is	added	to	the	manager.	As	with	our	other	generic
behaviors,	we	start	with	the	behavior	directive	and	export	our	callback	functions:

-module(logger).

-behavior(gen_event).

-export([init/1,	terminate/2,	handle_event/2,	handle_info/2]).	

init(standard_io)		->	

				{ok,	{standard_io,	1}};

init({file,	File})	->	

				{ok,	Fd}	=	file:open(File,	write),

				{ok,	{Fd,	1}};

init(Args)	->

				{error,	{args,	Args}}.

If	we	call	the	gen_event:add_handler(Name,	Mod,	Args)	function,	the	handler
implemented	in	the	Mod	module	is	added	to	the	event	manager.	The	event
manager	calls	the	Mod:init(Args)	callback	function,	returning	{ok,	LoopData},
where	the	LoopData	refers	to	that	particular	handler.	In	our	example,	our	loop
data	contains	a	tuple	with	either	the	file	descriptor	or	the	atom	standard_io	and
the	integer	1,	a	counter	incremented	every	time	we	receive	an	event.	If	we	pass
the	standard_io	atom	as	an	argument,	all	events	will	be	printed	to	the	shell.
Passing	{file,	File},	where	file	is	an	atom	and	File	is	a	string	containing	the
filename,	will	log	all	events	to	that	file.

To	manage	multiple	events,	the	event	manager	stores	its	handlers	and	their	loop
data	in	a	list.	Figure	7-3	shows	our	handler	instance	and	its	loop	data	getting
added	to	the	list	of	other	handlers	stored	by	the	event	manager.

Figure	7-3.	Adding	handlers

You	can	not	only	add	many	handlers	to	a	manager,	but	also	add	the	same	handler
many	times,	storing	different	instances	of	the	loop	data.	In	our	case,	we	could
add	two	logger	handlers,	one	saving	everything	to	a	file	and	the	other	printing
the	events	in	the	shell.	Alternatively,	the	Mod	parameter	can	be	specified	as
{Module,	Id},	where	Id	can	be	any	Erlang	term.	If	Id	is	unique,	it	allows	client
functions	to	differentiate	between	multiple	handlers	using	the	same	callback
module	in	a	particular	manager.

gen_event:add_handler(NameScope,	Mod,	Args)	->	{'EXIT',Reason}

																																																	ok

																																																	Term

Mod:init/1	->	{ok,	LoopData}

														{ok,	LoopData,	hibernate}

														Term

Adding	a	nonexistent	event	handler	will	result	in	the	event	manager	failing	to
call	Mod:init/1	and	returning	{'EXIT',	Reason},	where	Reason	is	the	undef
runtime	error	(the	undefined	function).	Should	the	evaluation	of	any	expression
in	the	init/1	callback	function	fail,	{'EXIT',	Reason}	will	be	returned.	Keep
in	mind	that	{'EXIT',	Reason}	is	the	tuple	caught	within	the	scope	of	a	try-
catch	expression,	and	not	an	exception.

If	the	init/1	callback	returns	a	Term	other	than	{ok,	LoopData},	the	Term	itself
is	returned.	This	includes	the	case	where	the	Term	is	the	atom	ok	without	the

LoopData,	a	common	beginner	error.	Whenever	init/1	does	not	return	{ok,
LoopData},	the	event	handler	is	not	added	to	the	manager.	This	means	just
returning	ok	without	LoopData	will	not	work	as	you	might	at	first	think,	as	the
handler	is	not	added.

In	our	example,	if	the	handler	is	started	with	arguments	that	fail	pattern	matching
in	the	first	two	clauses,	init/1	returns	{error,	{args,	Args}}	and	the
manager	does	not	add	it	to	its	list	of	handlers.	So,	while	init/1	can	return	any
term,	be	careful	and	stick	to	return	values	of	the	format	{ok,	LoopData}	and
{error,	Reason}	to	avoid	confusion.

Just	like	other	behaviors,	you	can	make	your	event	manager	hibernate	in
between	events.	It	is	enough	for	one	handler	to	return	hibernate	for	this	to
happen.	Use	hibernation	with	care,	and	only	if	events	will	be	intermittent.
Hibernating	your	process	will	trigger	a	full-sweep	garbage	collection	before	you
hibernate	and	right	after	waking	up.	This	is	not	a	behavior	you	want	when
receiving	a	large	number	of	events	at	short	intervals.

Deleting	an	Event	Handler
Now	that	we	have	added	a	handler,	let’s	see	what	we	need	to	do	in	order	to
delete	it.	The	logger	callback	module	exports	the	terminate(Args,	LoopData)
callback	function.	This	function	is	invoked	whenever
gen_event:delete_handler(Name,	Mod,	Args)	is	called.	Name	identifies	the
specific	event	manager	process	where	our	handler	is	registered;	it	is	either	its
pid,	or	its	local	Name	if	registered	locally.	But	when	using	name	servers,
{global,	Name}	has	to	be	passed,	or	if	you	are	using	your	own	name	server,
pass	{via,	Name,	Module}.	Mod	specifies	the	handler	you	want	to	delete	and
Args	is	any	valid	Erlang	term	passed	as	the	first	argument	to	terminate/2.	Args
could	be	the	reason	for	termination	or	just	a	parameter	with	instructions	needed
in	the	cleanup	(Figure	7-4).

Figure	7-4.	Deleting	handlers

In	our	example,	if	we	were	to	remove	the	logger	handler,	we	would	have	to	cater
for	the	cases	where	we	are	printing	the	logs	to	standard	I/O	or	to	a	file:

terminate(_Reason,	{standard_io,	Count})	->	

				{count,	Count};

terminate(_Reason,	{Fd,	Count})	->	

				file:close(Fd),

				{count,	Count}.

When	the	terminate/2	function	returns,	the	handler	is	deleted	from	the	list	of
handlers	in	the	specific	event	manager	process	identified	by	the	Name	argument
to	delete_handler/3.	Other	managers	using	the	same	handler	are	not	affected.
If	multiple	handlers	are	registered	using	the	same	Mod,	such	as	one	for	logging	to
standard_io	and	another	for	logging	to	a	file,	they	are	deleted	in	the	reverse
order	of	their	addition.	If	you	stop	the	manager	using	gen_event:stop/1,	all
handlers	are	deleted	with	reason	stop.

Note	how	terminate/2	returns	Term.	This	becomes	the	return	value	of	the
delete_handler/3	call.	In	our	example,	we	return	the	log	counter,	{count,
Count},	which	lets	the	caller	of	delete_handler/3	know	how	many	events	came
through	the	handlers	before	they	were	terminated.	But	if	we	were	upgrading	the
handler,	Term	might	be	all	of	the	loop	data.	We	cover	upgrades	later	in	this
chapter.

Attempting	to	delete	a	handler	that	isn’t	registered	results	in	a	return	value	of
{error,	module_not_found}.	Both	adding	and	deleting	a	handler	in	a
nonexistent	event	manager,	irrespective	of	whether	the	manager	is	referenced
using	a	pid	or	a	registered	alias,	will	result	in	the	calling	process	terminating
with	reason	noproc.

gen_event:delete_handler(NameScope,	Mod,	Args)	->	{error,module_not_found}

																																																		{'EXIT',Reason}

																																																		Term

Mod:terminate/2	->	Term

Sending	Synchronous	and	Asynchronous	Events
Events	can	be	sent	to	the	manager	and	forwarded	to	the	handlers	synchronously
or	asynchronously	depending	on	the	need	to	control	the	rate	at	which	producers
generate	events.	Events	are	handled	by	the	manager	process,	which	invokes	all
added	handlers	sequentially,	one	at	a	time.	If	you	send	multiple	events	to	the
event	manager	and	they	need	to	be	handled	by	several	—	potentially	slow	—
event	handlers,	your	message	queue	might	grow	and	result	in	a	reduction	of
throughput	as	described	in	“Synchronous	versus	asynchronous	calls”,	so	make
sure	your	handler	does	not	become	a	bottleneck.	We	discuss	techniques	to	handle
large	volumes	of	messages	in	“Balancing	Your	System”.

The	gen_event:notify/2	function	sends	an	asynchronous	event	to	all	handlers
and	immediately	returns	ok.	The	callback	function	Mod:handle_event/2	is
called	for	every	handler	that	has	been	added	to	the	manager,	one	at	a	time.
gen_event:sync_notify/2	also	invokes	the	Mod:handle_event/2	callback
function	for	all	handlers.	The	difference	from	its	asynchronous	variant	is	that	ok
is	returned	only	when	all	callbacks	have	been	executed.

Let’s	consider	how	we	might	implement	the	handle_event/2	callback	function
for	our	logger:

handle_event(Event,	{Fd,	Count})	->	

				print(Fd,	Count,	Event,	"Event"),

				{ok,	{Fd,	Count+1}}.

print(Fd,	Count,	Event,	Tag)	->

				io:format(Fd,	"Id:~w	Time:~w	Date:~w~n"++Tag++":~w~n",

														[Count,time(),date(),Event]).

The	handle_event/2	callback,	illustrated	in	Figure	7-5,	receives	an	event
together	with	either	the	atom	standard_io	or	the	file	descriptor	of	the	file
opened	in	the	init/1	callback.	The	print/4	function	invokes	io:format/3	to
output	the	counter	value,	the	current	date	and	time,	and	the	Event	tag	value
followed	by	the	event	itself.

Figure	7-5.	Notifications

If	our	event	handler	receives	any	non-OTP-compliant	events	originating	from
links,	trapping	exits,	process	monitors,	monitoring	distributed	Erlang	nodes,	or
messages	resulting	from	Pid!Msg,	they	are	handled	in	the	handle_info/2
callback	function	of	the	event	handlers:

handle_info(Event,	{Fd,	Count})	->

				print(Fd,	Count,	Event,	"Unknown"),

				{ok,	{Fd,	Count+1}}.

The	implementation	of	handle_info/2	for	the	logger	is	almost	identical	to
handle_event/2,	except	that	it	passes	the	tag	value	"Unknown"	to	the	print
function	to	indicate	that	it	doesn’t	know	the	source	of	the	event.

gen_event:notify(NameScope,	Event)

gen_event:sync_notify(Name,	Event)	->	ok

Mod:handle_event(Event,	Data)

Mod:handle_info(Event,	Data)	->	{ok,	NewData}

																																{ok,	NewData,	hibernate}

																																remove_handler

																																{swap_handler,Args1,NewData,Handler2,Args2}

If	a	handler	returns	remove_handler	from	its	handle_event/2	or
handle_info/2	function,	Mod:terminate(remove_handler,	Data)	is	called	and

the	handler	is	deleted.	We	look	at	swapping	handlers	later	in	this	chapter.	Until
then,	let’s	make	sure	that	the	code	in	the	event	handler	we	have	written	so	far
works.

In	shell	command	1,	we	start	the	event	manager	without	registering	or	linking	it
to	its	parent.	Should	the	shell	process	crash,	the	event	manager	process	will	not
be	affected.	We	proceed	by	adding	a	handler	and	sending	two	notifications,	one
synchronous	and	one	asynchronous:

1>	{ok,	P}	=	gen_event:start().

{ok,<0.35.0>}

2>	gen_event:add_handler(P,	logger,	{file,	"alarmlog"}).

ok

3>	gen_event:notify(P,	{set_alarm,	{no_frequency,	self()}}).

ok

4>	gen_event:sync_notify(P,	{clear_alarm,	no_frequency}).

ok

Note	how	both	calls	return	the	atom	ok.	The	semantic	difference	is	that	shell
command	4	does	not	return	ok	until	all	the	handlers	have	executed	their	handle
calls.

In	shell	command	5,	we	add	a	second	instance	of	the	handler,	this	time	directing
events	to	standard	I/O.	In	shell	command	6,	we	send	a	non-OTP-compliant
message	that	is	logged	and	printed	to	the	shell	by	the	handle_info/2	callback
function	of	our	two	event	handler	instances:

5>	gen_event:add_handler(P,	logger,	standard_io).

ok

6>	P	!	sending_junk.

Id:1	Time:{18,59,25}	Date:{2013,4,26}

Unknown:sending_junk

sending_junk

In	shell	commands	7	and	8,	we	read	the	binary	contents	of	the	alarmlog	file	and
print	them	out	in	the	shell.	We	see	the	first	two	events	we	sent	asynchronously
and	synchronously,	as	well	as	the	unknown	message	received	by	the
handle_info/2	call:

7>	{ok,	Binary}	=	file:read_file("alarmlog").

{ok,<<"Id:1	Time:{18,59,10}	Date:{2013,4,26}\nEvent:{set_alarm,{no_frequency,...

8>	io:format(Binary).

Id:1	Time:{18,59,10}	Date:{2013,4,26}

Event:{set_alarm,{no_frequency,<0.32.0>}}

Id:2	Time:{18,59,14}	Date:{2013,4,26}

Event:{clear_alarm,no_frequency}

Id:3	Time:{18,59,25}	Date:{2013,4,26}

Unknown:sending_junk

ok

9>	gen_event:delete_handler(P,	freq_overload,	stop).

{error,module_not_found}

10>	gen_event:stop(P).

ok

We	wrap	up	this	example	by	trying	to	delete	freq_overload,	an	event	handler
that	has	not	been	added	to	this	event	manager.	As	expected,	this	returns	the	error
module_not_found.	Finally,	we	stop	the	event	manager,	by	default	terminating
all	of	the	event	handlers.

Download	the	logger	handler	from	the	book’s	code	repository	and	take	it	for	a
spin.	Test	sending	it	synchronous	and	asynchronous	messages	when	the	event
manager	has	been	stopped	(or	has	crashed),	and	start	it	using	start_link	and
make	the	shell	crash.	Finally,	try	to	figure	out	what	happens	if	you	provide	an
invalid	filename	when	adding	the	handler.

https://github.com/francescoc/scalabilitywitherlangotp

Retrieving	Data
Let’s	implement	another	event	handler,	one	that	stores	metrics.	Every	time	we
log	an	event,	we	also	bump	up	a	counter	in	an	ETS	table	that	tells	us	how	many
times	this	event	has	been	logged.	If	it	is	the	first	occurrence	of	the	event,	we
create	a	new	entry	in	the	table.	Have	a	look	at	the	code,	and	if	necessary,	refer	to
the	manual	pages	of	the	ets	module:

-module(counters).

-behavior(gen_event).

-export([init/1,	terminate/2,	handle_event/2,	handle_info/2]).

-export([get_counters/1,	handle_call/2]).

get_counters(Pid)	->

				gen_event:call(Pid,	counters,	get_counters).

init(_)		->

				TableId	=	ets:new(counters,	[]),

				{ok,	TableId}.

terminate(_Reason,	TableId)	->

				Counters	=	ets:tab2list(TableId),

				ets:delete(TableId),

				{counters,	Counters}.

handle_event(Event,	TableId)	->

				try	ets:update_counter(TableId,	Event,	1)	of

								_ok	->	{ok,	TableId}

				catch

								error:_	->	ets:insert(TableId,	{Event,	1}),

																			{ok,	TableId}

				end.

handle_call(get_counters,	TableId)	->

				{ok,	{counters,	ets:tab2list(TableId)},	TableId}.

handle_info(_,	TableId)	->

				{ok,	TableId}.

Of	interest	in	this	example	is	how	we	retrieve	the	counters.	Using
gen_event:sync_event/2	would	not	have	worked,	as	despite	it	being
synchronous,	it	forwards	the	event	to	all	handlers	and	returns	ok.	We	need	to
specify	the	handler	to	which	we	want	to	send	our	synchronous	message,	and	we
do	so	using	the	gen_event:call(NameScope,	Mod,	Message)	function.

As	Figure	7-6	shows,	the	event	handler	synchronously	receives	the	request	in	the
Mod:handle_call/2	callback	and	returns	a	tuple	of	the	format	{ok,	Reply,
NewData},	where	Reply	is	the	return	value	of	the	request.

Figure	7-6.	Calls

gen_event:call(NameScope,	Mod,	Request)

gen_event:call(NameScope,	Mod,	Request,	Timeout)		->	Reply

																																																					{error,	bad_module}

																																																					{error,	{'EXIT',	Reason}}

																																																					{error,	Term}

Mod:handle_call(Event,	Data)	->	{ok,	Reply,	NewData}

																																Term

The	default	timeout	in	gen_event:call/3	is	5,000	milliseconds.	It	can	be
overridden	by	passing	either	a	Timeout	value	as	an	integer	in	milliseconds	or	the
atom	infinity.	If	Mod	is	not	an	event	handler	that	has	been	added	to	NameScope,
{error,	bad_module}	is	returned.	If	the	callback	function	handle_call/2
terminates	abnormally	when	handling	the	request,	expect	{error,	{'EXIT',
Reason}}.	And	finally,	if	handle_call/2	returns	any	term	other	than	{ok,
Reply,	NewData},	the	return	value	of	gen_event:call	will	be	{error,	Term}.
In	both	of	these	error	cases,	the	handler	is	removed	from	the	list	managed	by	the
event	manager	without	affecting	the	other	handlers.

1>	{ok,	P}	=	gen_event:start().

{ok,<0.35.0>}

2>	gen_event:add_handler(P,	counters,	{}).

ok

3>	gen_event:notify(P,	{set_alarm,	{no_frequency,	self()}}).

ok

4>	gen_event:notify(P,	{event,	{frequency_denied,	self()}}).

ok

5>	gen_event:notify(P,	{event,	{frequency_denied,	self()}}).

ok

6>	counters:get_counters(P).

{counters,[{{event,{frequency_denied,<0.33.0>}},2},

											{{set_alarm,{no_frequency,<0.33.0>}},1}]}

Handling	Errors	and	Invalid	Return	Values
It	is	not	just	when	its	handle_call/2	terminates	abnormally	or	returns	an	invalid
reply	that	a	handler	gets	deleted.	An	abnormal	termination	in	any	of	its	callbacks
will	also	result	in	deletion.	The	event	manager	and	other	handlers	are	not
affected.	This	differs	from	other	behaviors	in	that	the	event	handler	is	silently
removed,	without	any	notifications	being	sent	to	the	event	manager’s	supervisor.
What	also	differs	from	other	behaviors	is	that	the	event	manager	will	by	default
trap	exits.	The	assumption	is	that	event	managers	are	added	and	removed
dynamically	and	independently	of	each	other,	and	as	a	result,	a	crash	should	not
affect	anything	in	its	surrounding	environment	(see	Figure	7-7).	While	fault
isolation	is	a	good	property,	failing	silently	isn’t.

Figure	7-7.	Handler	crash

To	better	understand	how	abnormal	termination	in	event	handlers	works,	let’s
use	the	following	code	snippet	as	an	example:

-module(crash_example).

-behavior(gen_event).

-export([init/1,	terminate/2,	handle_event/2]).	

init(normal)	->	{ok,	[]};

init(return)	->	error;

init(ok)					->	ok;

init(crash)		->	exit(crash).

terminate(_Reason,	_LoopData)	->	ok.

handle_event(crash,		_LoopData)	->	1/0;

handle_event(return,	_LoopData)	->	error.

Depending	on	what	parameters	we	send	to	the	event	handler	when	adding	it	to
the	event	manager	and	notifying	it	of	an	event,	we	can	generate	runtime	errors
and	return	invalid	values.	Step	through	the	shell	commands	in	the	following
example,	mapping	all	requests	to	the	error	conditions	that	occur:

1>	{ok,P}=gen_event:start().

{ok,<0.35.0>}

2>	gen_event:which_handlers(P).

[]

3>	gen_event:add_handler(P,	crash_example,	return).

error

4>	gen_event:which_handlers(P).

[]

5>	gen_event:add_handler(P,	crash_example,	normal).

ok

6>	gen_event:which_handlers(P).

[crash_example]

7>	gen_event:notify(P,	crash).

ok

=ERROR	REPORT====	27-Apr-2013::09:27:49	===

**	gen_event	handler	crash_example	crashed.

**	Was	installed	in	<0.35.0>

**	Last	event	was:	crash

**	When	handler	state	==	[]

**	Reason	==	{badarith,

																	[{crash_example,handle_event,2,

																						[{file,"crash_example.erl"},{line,13}]},

																		...]}

8>	gen_event:which_handlers(P).

[]

9>	gen_event:add_handler(P,	crash_example,	normal).

ok

10>	gen_event:notify(P,	return).

ok

=ERROR	REPORT====	27-Apr-2013::09:28:41	===

**	gen_event	handler	crash_example	crashed.

**	Was	installed	in	<0.35.0>

**	Last	event	was:	return

**	When	handler	state	==	[]

**	Reason	==	error

11>	gen_event:which_handlers(P).

[]

While	error	reports	are	generated	(these	are	covered	in	more	detail	in	“The
SASL	Application”),	no	runtime	errors	occur,	and	as	a	result,	no	EXIT	signals	are
generated.	Sending	notifications	can	fail	silently,	resulting	in	the	handler	being
deleted	without	any	processes	or	humans	noticing.

You	get	around	this	problem	by	connecting	a	handler	to	the	calling	process	using

gen_event:add_sup_handler/3.	It	works	in	the	same	way	as	add_handler/3,
with	the	side	effect	that	the	calling	process	is	now	monitoring	the	handler,	and
the	calling	process	is	being	monitored	by	the	newly	added	instance	of	the
handler	in	the	manager.	If	an	exception	occurs	or	an	incorrect	return	value	is
returned	in	callbacks	handling	events,	a	message	of	the	format
{gen_event_EXIT,	Mod,	Reason}	is	sent	to	the	process	that	added	the	handler.
Reason	can	be	one	of	the	following:

normal	if	a	callback	function	returned	remove_handler	or	the	handler	was
removed	using	delete_handler/3

shutdown	if	the	event	manager	is	being	stopped,	either	by	its	supervisor	or
by	the	stop/1	call

{'EXIT',	Term}	if	a	runtime	error	occurred

Term	if	the	callback	returned	anything	other	than	{ok,	LoopData}	or	{ok,
Reply,	LoopData}

{swapped,	NewMod,	Pid},	where	Pid	has	swapped	the	handler

We	look	into	swapping	handlers	in	the	next	section.

Monitoring	goes	two	ways.	If	the	process	that	added	the	handler	terminates,	the
handler	is	removed	with	{stop,	Reason}	as	an	argument.	This	ensures	that
multiple	instances	of	the	handler	are	not	included	in	the	manager	should	the
handler	be	added	by	a	behavior	stuck	in	a	cyclic	restart.

FAIL	LOUDLY!
If	you	are	writing	a	system	with	requirements	on	high	availability	and	fault	tolerance,	the	last
thing	you	want	is	a	handler	being	silently	deleted	or	failing	in	init/1	and	not	being	added	at
all.	Always	check	the	return	value	of	the	add_handler/3	and	add_sup_handler/3	calls.	If	you
have	to	use	add_handler,	ensure	that	you	execute	any	code	that	might	fail	as	a	result	of	a	bug,
external	dependencies	(such	as	a	disk	full	error),	or	corrupt	data	within	the	scope	of	a	try-
catch	expression.	Where	possible,	use	add_sup_handler/3,	pattern	matching	on	its	return
value	to	ensure	that	the	handler	has	been	properly	added,	and	pay	attention	to	all	exception
messages	you	receive	as	a	result.	You	don’t	want	your	alarm	system	to	fail	without	raising	any
alarms!

Swapping	Event	Handlers
The	event	manager	provides	functionality	to	swap	handlers	during	runtime.	It
allows	a	handler	to	pass	its	state	to	a	new	handler,	ensuring	that	no	events	are
lost	in	the	process.	The	second	parameter	of	the	gen_event:swap_handler/3
call	is	a	tuple	containing	the	name	of	the	handler	callback	module	we	want	to
replace,	together	with	the	arguments	passed	to	its	terminate	function.	The	third
parameter	is	a	tuple	containing	the	callback	module	of	the	new	handler	and	the
arguments	passed	to	its	init	function.	Figure	7-8	shows	these	parameters	along
with	the	steps	that	take	place	when	swapping	handlers.

Figure	7-8.	Swapping	handlers

The	terminate	callback	function	in	the	old	handler	is	first	called.	Its	return
value,	Res,	is	passed	in	a	tuple	together	with	the	arguments	intended	for	the	init
function	of	the	new	handler.	It	couldn’t	be	simpler!	If	you	want	to	swap	the
handler	and	start	supervising	the	connection	between	the	handler	and	the	calling
process,	use	gen_event:swap_sup_handler/3.	The	handler	you	are	swapping
does	not	have	to	be	supervised.

An	example	is	probably	the	best	way	to	demonstrate	swapping.	Let’s	extend	our
logger	handler	to	be	able	to	flip	between	logging	to	a	file	and	printing	to
standard	I/O.	We	extend	our	terminate	function	to	handle	the	reason	swap,
returning	Res,	a	tuple	of	the	format	{Type,	Count}.	Type	is	either	the	file
descriptor	or	the	atom	standard_io,	and	Count	is	the	unique	ID	for	the	next	item

to	be	logged.	As	we	do	not	know	what	the	logger	we	are	swapping	to	wants	to
do	with	the	events,	we	do	not	close	the	file	and	instead	let	the	handler	deal	with
it	in	its	init/1	call.

In	the	init/1	call,	we	add	two	cases	where	we	accept	the	same	Args	as	when	we
are	adding	the	handler,	but	also	the	results	sent	back	from	terminate.	So,	if	we
are	logging	to	a	file	and	want	to	swap	to	standard	I/O,	we	close	the	file	and
return	{ok,	{standard_io,	Count}}.	If	we	are	printing	to	standard	I/O,	we
open	the	file	and	start	writing	events	in	it.	In	both	cases,	we	retain	whatever
value	Count	is	set	to:

init({standard_io,	{Fd,	Count}})	when	is_pid(Fd)	->

				file:close(Fd),

				{ok,	{standard_io,	Count}};

init({File,	{standard_io,	Count}})	when	is_list(File)	->

				{ok,	Fd}	=	file:open(File,	write),

				{ok,	{Fd,	Count}};

...

terminate(swap,	{Type,	Count})	->

				{Type,	Count};

...

If	we	test	our	code,	starting	the	manager,	adding	the	logger	handler,	raising	an
alarm,	swapping	the	handlers,	and	raising	a	second	alarm,	we	get	the	following
results:

1>	{ok,	P}	=	gen_event:start().

{ok,<0.35.0>}

2>	gen_event:add_handler(P,	logger,	{file,	"alarmlog"}).

ok

3>	gen_event:notify(P,	{set_alarm,	{no_frequency,	self()}}).

ok

4>	gen_event:swap_handler(P,	{logger,	swap},	{logger,	standard_io}).

ok

5>	gen_event:notify(P,	{set_alarm,	{no_frequency,	self()}}).

Id:2	Time:{10,1,16}	Date:{2013,4,27}

Event:{set_alarm,{no_frequency,<0.33.0>}}

ok

6>	{ok,	Binary}=file:read_file("alarmlog"),	io:format(Binary).

Id:1	Time:{10,1,16}	Date:{2013,4,27}

Event:{set_alarm,{no_frequency,<0.33.0>}}

ok

Wrapping	It	All	Up
Now	that	we	have	a	handler,	let’s	wrap	it	in	a	module,	hiding	the	event	manager
API	in	a	more	intuitive	and	application-specific	set	of	functions.	We	do	this	in
the	freq_overload	module,	which	is	responsible	for	starting	the	manager	along
with	providing	an	API	for	setting	and	clearing	the	no_frequency	alarm	and
generating	events	when	a	client	is	denied	a	frequency.	It	also	provides	a	wrapper
around	the	functions	used	to	add	and	delete	handlers.	We	leave	the	handler-
specific	function	calls,	such	as	retrieving	the	counters	or	swapping	from	file	to
standard	I/O,	local	to	the	handlers	themselves:

-module(freq_overload).

-export([start_link/0,	add/2,	delete/2]).

-export([no_frequency/0,	frequency_available/0,	frequency_denied/0]).

start_link()	->	

				case	gen_event:start_link({local,	?MODULE})	of

								{ok,	Pid}	->	

												add(counters,	{}),

												add(logger,	{file,	"log"}),

												{ok,	Pid};

								Error	->

												Error

				end.	

no_frequency()	->

				gen_event:notify(?MODULE,	{set_alarm,	{no_frequency,	self()}}).

frequency_available()	->

				gen_event:notify(?MODULE,	{clear_alarm,	no_frequency}).

frequency_denied()	->

				gen_event:notify(?MODULE,	{event,	{frequency_denied,	self()}}).

add(M,A)	->	gen_event:add_sup_handler(?MODULE,	M,	A).

delete(M,A)	->	gen_event:delete_handler(?MODULE,	M,	A).

Note	how	we	are	adding	the	counters	in	our	freq_overload:start_link/0	call.
This	ensures	that	if	the	event	manager	is	restarted,	the	counters	and	logger
handlers	will	also	be	added.	The	downside	is	that	we	are	unable	to	supervise	the
handlers	from	the	event	manager	process	in	case	it	crashes.	If	you	want	another
process	to	monitor	the	handlers,	use	freq_overload:add/2,	which	uses
gen_event:add_sup_handler/3.

When	setting	alarms	and	raising	events,	we	are	also	including	the	pid	of	the
frequency	allocator.	This	allows	us	to	differentiate	among	different	allocators
(called	the	alarm	or	event	originators),	allowing	operational	staff	to	determine

which	servers	are	overutilized	and	need	to	be	allocated	a	larger	frequency	pool.
We	want	to	raise	an	alarm	every	time	the	allocator	runs	out	of	frequencies	and
clear	it	when	a	frequency	becomes	available.	If	a	client	allocates	the	last
frequency,	we	call	freq_overload:no_frequency/0,	setting	the	no_frequency
alarm.	If	a	frequency	is	deallocated	in	a	state	where	there	were	no	frequencies
available,	we	clear	the	alarm	by	calling
freq_overload:frequency_available/0.	We	also	raise	an	event	every	time	a
user	is	denied	a	frequency	by	calling	the	function
freq_overload:frequency_denied/0.	We	handle	this	as	a	separate	event,	as	we
might	be	out	of	frequencies	but	do	not	reject	requests.	The	code	additions	to
frequency.erl	are	straightforward:

allocate({[],	Allocated},	_Pid)	->

				freq_overload:frequency_denied(),

				{{[],	Allocated},	{error,	no_frequency}};

allocate({[Res|Resources],	Allocated},	Pid)	->

				case	Resources	of

								[]	->	freq_overload:no_frequency();

								_		->	ok

				end,

				{{Resources,	[{Res,	Pid}|Allocated]},	{ok,	Res}}.

deallocate({Free,	Allocated},	Res)	->

				case	Free	of

								[]	->	freq_overload:frequency_available();

								_		->	ok

				end,

				NewAllocated	=	lists:keydelete(Res,	1,	Allocated),

				{[Res|Free],		NewAllocated}.

Now	that	we	have	fixed	other	code	in	the	frequency	allocator	and	implemented
our	freq_overload	event	manager,	let’s	add	the	logger	and	counters	handlers
to	the	event	manager	and	run	them	alongside	each	other,	as	seen	in	Figure	7-9.
Along	with	raising	alarms,	we	also	log	them.

Figure	7-9.	Handler	example

We	start	the	frequency	server	and	the	event	manager	and	add	a	second	logger
event	handler,	this	one	printing	to	the	shell.	In	our	example,	the	frequency
allocator	had	six	frequencies.	In	shell	command	4,	we	allocate	all	of	them,
raising	a	no_frequency	alarm.	This	happens	despite	the	last	request	being
successful	and	returning	{ok,	15}:

1>	frequency:start_link().

{ok,<0.35.0>}

2>	freq_overload:start_link().

{ok,<0.37.0>}

3>	freq_overload:add(logger,	standard_io).

ok

4>	frequency:allocate(),	frequency:allocate(),	frequency:allocate(),

			frequency:allocate(),	frequency:allocate(),	frequency:allocate().

Id:1	Time:{10,41,25}	Date:{2015,2,28}

Event:{set_alarm,{no_frequency,<0.35.0>}}

{ok,15}

5>	frequency:allocate().

Id:2	Time:{10,41,46}	Date:{2015,2,28}

Event:{event,{frequency_denied,<0.35.0>}}

{error,no_frequency}

6>	frequency:allocate().

Id:3	Time:{10,42,0}	Date:{2015,2,28}

Event:{event,{frequency_denied,<0.35.0>}}

{error,no_frequency}

7>	frequency:deallocate(15).

Id:4	Time:{10,42,16}	Date:{2015,2,28}

Event:{clear_alarm,no_frequency}

ok

8>	counters:get_counters(freq_overload).

{counters,[{{set_alarm,{no_frequency,<0.35.0>}},1},

											{{clear_alarm,no_frequency},1},

											{{event,{frequency_denied,<0.35.0>}},2}]}

Having	set	the	alarm,	we	then	try	to	allocate	two	frequencies	and	fail	both	times.
We	clear	the	alarm	when	deallocating	a	frequency	in	shell	command	7.	When	we
retrieve	the	counters,	we	see	that	a	frequency	was	denied	twice	and	that	the
no_frequency	alarm	was	set	and	cleared	once.

The	SASL	Alarm	Handler
We’ve	been	talking	about	alarm	handlers	in	this	chapter	without	giving	a	proper
definition,	but	the	time	has	come	to	set	the	record	straight.	An	alarm	handler	is
the	part	of	the	system	that	records	ongoing	issues	and	takes	appropriate	actions.
If	your	system	reaches	a	high	memory	mark	or	is	running	out	of	disk	space	(or
frequencies),	you	will	want	to	set	(or	raise)	an	alarm.	When	memory	usage
decreases	or	old	log	files	are	deleted,	the	respective	alarms	are	cleared.	At	any
point	in	time,	it	should	be	possible	to	inspect	the	list	of	active	alarms	and	get	a
snapshot	of	ongoing	issues.

The	SASL	alarm	handler	process	is	an	event	manager	and	handler	that	comes	as
part	of	the	Erlang	runtime	system	and	provides	this	functionality.	It	is	a	very
basic	alarm	handler	you	are	encouraged	to	replace	or	complement	in	your	own
project	when	more	functionality	is	required.	The	philosophy	of	developing
Erlang	systems	is	to	start	simple	and	add	complexity	as	your	system	grows.	That
is	exactly	what	has	been	done	with	the	SASL	alarm	handler.

Depending	on	how	you	have	installed	Erlang	on	your	computer,	the	SASL	alarm
handler	might	already	have	been	started.	Run	whereis(alarm_handler).	in
your	shell	to	find	out.	If	you	get	back	the	atom	undefined,	start	the	alarm
handler	by	typing	application:start(sasl).	in	the	shell.	You	might	get	some
progress	reports	printed	out	in	the	shell,	once	again	depending	on	how	you
installed	Erlang.	We	cover	the	reports,	alarming	in	general,	and	other	useful	tools
and	libraries	in	SASL	in	Chapter	9,	Chapter	11,	and	Chapter	16.	For	now,	don’t
worry	about	the	reports.

If	whereis/1	returns	a	pid,	the	alarm	handler	is	already	running	and	you	do	not
need	to	do	anything	other	than	try	it	out:

1>	whereis(alarm_handler).

<0.41.0>

2>	alarm_handler:set_alarm({103,	fan_failure}).

=INFO	REPORT====	26-Apr-2013::08:23:27	===

				alarm_handler:	{set,{103,fan_failure}}

ok

3>	alarm_handler:set_alarm({104,	cabinet_door_open}).

=INFO	REPORT====	26-Apr-2013::08:23:43	===

				alarm_handler:	{set,{104,cabinet_door_open}}

ok

4>	alarm_handler:clear_alarm(104).

=INFO	REPORT====	26-Apr-2013::08:24:04	===

				alarm_handler:	{clear,104}

ok

5>	alarm_handler:get_alarms().

[{103,fan_failure}]

In	our	example,	picture	a	rack	in	which	the	cooling	fan	fails.	A	system
administrator	goes	to	the	rack,	opens	the	cabinet	door	to	inspect	what	is	going
on,	closes	it,	and	heads	off	to	order	a	replacement	fan.	What	we’ve	done	is	raise
two	alarms	with	IDs	103	and	104.	These	IDs	are	used	to	clear	the	alarm,
something	that	happens	in	shell	command	4	when	the	cabinet	door	is	closed.	The
wrapper	around	the	SASL	event	manager	and	event	handler	exports	the
following	functions:

alarm_handler:set_alarm({AlarmId,	Description})	->	ok

alarm_handler:clear_alarm(AlarmId)	->	ok

alarm_handler:get_alarms()	->	[{AlarmId,	Description}]

In	a	complex	system,	you	might	have	hundreds	of	alarms	of	varying	severities,
where	clearing	one	will	by	default	clear	half	a	dozen	other	ones	dependent	on	it.
You	will	want	to	keep	accurate	statistics,	log	everything,	and	in	advanced
systems	run	agents	that	take	immediate	action.	In	the	case	of	the	fan	failure,	for
example,	you	would	want	to	start	shutting	down	all	equipment	in	that	cabinet	to
avoid	overheating.	The	existing	handler	does	none	of	this	and	will	not	scale.	But
to	start	off,	it	works	and	fits	in	with	the	iterative	design,	develop,	and	test	cycles
that	are	the	norm	when	developing	Erlang	systems.

Replacing	or	complementing	the	existing	handler	is	easy.	You	need	to	handle	the
events	{set_alarm,	{AlarmId,	AlarmDescr}}	and	{clear_alarm,	AlarmId}.
If	you	want	to	swap	the	existing	handler	using	swap_handler/3:

gen_event:swap_handler(alarm_handler,	

																							{alarm_handler,	swap},	{NewHandler,	Args})

the	init	function	in	your	new	handler	should	pattern	match	the	argument	{Args,
{alarm_handler,	Alarms}},	where	Args	is	passed	in	the	swap_handler/3	call
and	{alarm_handler,	Alarms}	is	the	term	returned	from	the	terminate/2	call
of	the	old	handler.	Alarms	is	a	list	of	{AlarmId,	Description}	tuples.

Summing	Up
In	this	chapter,	we	introduced	how	events	are	handled	by	the	event	manager
behavior.	You	should	by	now	have	a	good	understanding	of	the	advantages	of
using	the	gen_event	behavior	instead	of	rolling	your	own	or	increasing	the
complexity	of	one	of	your	subsystems	by	integrating	this	functionality	in	it.	The
biggest	difference	between	the	event	manager	and	other	OTP	behaviors	is	the
one-to-many	relationship,	where	you	can	associate	many	event	handlers	with
one	event	manager.	The	most	important	functions	and	callbacks	we	have	covered
are	listed	in	Table	7-2.

Table	7-2.	gen_event	callbacks

gen_event	function	or	action gen_event	callback
function

gen_event:start/0,	gen_event:start/1,	gen_event:start_link/0,
gen_event:start_link/1

gen_event:add_handler/3,	gen_event:add_sup_handler/3 Module:init/1

gen_event:swap_handler/3,	gen_event:swap_sup_handler/3 Module1:terminate/2,
Module2:init/1

gen_event:notify/2,	gen_event:sync_notify/2 Module:handle_event/2

gen_event:call/3,	gen_event:call/4 Module:handle_call/2

gen_event:delete_handler/3 Module:terminate/2

gen_event:stop/1 Module:terminate/2

Pid	!	Msg,	monitors,	exit	messages,	messages	from	ports	and	socket,	node
monitors,	and	other	non-OTP	messages

Module:handle_info/2

Before	reading	on,	make	sure	you	review	the	manual	pages	for	the	gen_event
module.	An	example	that	complements	the	ones	in	this	chapter	is	the
alarm_handler	module.	Read	through	the	code	and	you	will	notice	how	the
developers	have	integrated	the	client	functions	to	start	and	stop	the	event
manager	as	well	as	the	handler	functions	themselves.

What’s	Next?
The	event	manager	is	the	last	worker	behavior	we	cover.	Event	managers,	along
with	generic	servers,	FSMs,	and	behaviors	you	have	written	yourself,	are	started
and	monitored	in	supervision	trees.	The	next	chapter	covers	the	supervisor
behavior,	responsible	for	starting,	stopping,	and	monitoring	other	supervisors
and	workers.	We	show	you	how	to	write	your	own	behaviors	in	Chapter	10.	We
go	into	more	detail	on	the	importance	of	alarms	in	ensuring	the	high	availability
and	reliability	of	your	systems	when	we	cover	monitoring	and	preemptive
support	in	Chapter	16.

Chapter	8.	Supervisors

Now	that	we	are	able	to	monitor	and	handle	predictable	errors,	such	as	running
out	of	frequencies,	we	need	to	tackle	unexpected	errors	arising	as	the	result	of
corrupt	data	or	bugs	in	the	code.	The	catch	is	that	unlike	the	errors	returned	to
the	client	by	the	frequency	allocator	or	alarms	raised	by	the	event	managers,	we
will	not	know	what	the	unexpected	errors	are	until	they	have	occurred.	We	could
speculate,	guess,	and	try	to	add	code	that	handles	the	unexpected	and	hope	for
the	best.	Using	automated	test	generation	tools	based	on	property-based	testing,
such	as	QuickCheck	or	PropEr,	can	definitely	help	create	failure	scenarios	you
would	never	devise	on	your	own.	But	unless	you	have	supernatural	powers,	you
will	never	be	able	to	predict	every	possible	unexpected	error	that	might	occur,	let
alone	handle	it	before	knowing	what	it	is.

Too	often,	developers	try	to	cater	for	bugs	or	corrupt	data	by	implementing	their
own	error-handling	and	recovery	strategies	in	their	code,	with	the	result	that	they
increase	the	complexity	of	the	code	along	with	the	cost	of	maintaining	it	(and,
yet	handle	only	a	fraction	of	the	issues	that	can	arise,	and	more	often	than	not,
end	up	inserting	more	bugs	in	the	system	than	they	solve).	After	all,	how	can
you	handle	a	bug	if	you	don’t	know	what	the	bug	is?	Have	you	ever	come	across
a	C	programmer	who	checks	the	return	values	of	printf	statements,	but	is
unsure	of	what	to	do	if	an	error	actually	occurs?	If	you’ve	come	to	Erlang	from
another	language	that	supports	exception	handling,	such	as	Java	or	C++,	how
many	times	have	you	seen	catch	expressions	that	contain	nothing	more	than
TODO	comments	to	remind	the	development	team	to	fix	the	exception	handlers
at	some	point	in	the	future	—	a	point	that	unfortunately	never	arrives?

This	is	where	the	generic	supervisor	behavior	makes	its	entrance.	It	takes	over
the	responsibility	for	the	unexpected-error-handling	and	recovery	strategies	from
the	developer.	The	behavior,	in	a	deterministic	and	consistent	manner,	handles
monitoring,	restart	strategies,	race	conditions,	and	borderline	cases	most
developers	would	not	think	of.	This	results	in	simpler	worker	behaviors,	as	well
as	a	well-considered	error-recovery	strategy.	Let’s	examine	how	the	supervisor
behavior	works.

http://www.quviq.com/products/erlang-quickcheck/
https://github.com/manopapad/proper

Supervision	Trees
Supervisors	are	processes	whose	only	task	is	to	monitor	and	manage	children.
They	spawn	processes	and	link	themselves	to	these	processes.	By	trapping	exits
and	receiving	EXIT	signals,	the	supervisors	can	take	appropriate	actions	when
something	unexpected	occurs.	Actions	vary	from	restarting	a	child	to	not
restarting	it,	terminating	some	or	all	the	children	that	are	linked	to	the	supervisor,
or	even	terminating	itself.	Child	processes	can	be	both	supervisors	and	workers.

Fault	tolerance	is	achieved	by	creating	supervision	trees,	where	the	supervisors
are	the	nodes	and	the	workers	are	the	leaves	(Figure	8-1).	Supervisors	on	a
particular	level	monitor	and	handle	children	in	the	subtrees	they	have	started.

Figure	8-1.	Supervision	trees

Figure	8-1	uses	a	double	ring	to	denote	processes	that	trap	exits.	Only
supervisors	are	trapping	exits	in	our	example,	but	there	is	nothing	stopping
workers	from	doing	the	same.

Let’s	start	by	writing	our	own	simple	supervisor.	It	will	allow	us	to	better
appreciate	what	needs	to	happen	behind	the	scenes	before	examining	the	OTP
supervisor	implementation.	Given	a	list	of	child	process	specifications,	our
simple	supervisor	starts	the	children	as	specified	and	links	itself	to	them.	If	any
child	terminates	abnormally,	the	simple	supervisor	immediately	restarts	it.	If	the
children	instead	terminate	normally,	they	are	removed	from	the	supervision	tree
and	no	further	action	is	taken.	Stopping	the	supervisor	results	in	all	of	the
children	being	unconditionally	terminated.

Here	is	the	code	that	starts	the	supervisor	and	child	processes:

-module(my_supervisor).

-export([start/2,	init/1,	stop/1]).

start(Name,	ChildSpecList)	->	

				register(Name,	Pid	=	spawn(?MODULE,	init,	[ChildSpecList])),

				{ok,	Pid}.

stop(Name)	->	Name	!	stop.

init(ChildSpecList)	->

				process_flag(trap_exit,	true),

				loop(start_children(ChildSpecList)).

start_children(ChildSpecList)	->

				[{element(2,	apply(M,F,A)),	{M,F,A}}	||	{M,F,A}	<-	ChildSpecList].

When	starting	my_supervisor,	we	provided	the	init/1	function	with	child
specifications.	This	a	list	of	{Module,	Function,	Arguments}	tuples	containing
the	functions	that	will	spawn	and	link	the	child	process	to	its	parent.	We	assume
that	this	function	always	returns	{ok,	Pid},	where	Pid	is	the	process	ID	of	the
newly	spawned	child.	Any	other	return	value	is	interpreted	as	a	startup	error.

We	start	each	child	in	start_children/1	by	calling
apply(Module,Function,Args)	within	a	list	comprehension	that	processes	the
ChildSpecList.	The	result	of	the	list	comprehension	is	a	list	of	tuples	where	the
first	element	is	the	child	pid,	retrieved	from	the	{ok,	Pid}	tuple	returned	from
apply/3,	and	a	tuple	of	the	module,	function,	and	arguments	used	to	start	the
child.	If	Module	does	not	exist,	Function	is	not	exported,	and	if	Args	contains

the	wrong	number	of	arguments,	the	supervisor	process	terminates	with	a
runtime	exception.	When	the	supervisor	terminates,	the	runtime	ensures	that	all
processes	linked	to	it	receive	an	EXIT	signal.	If	the	linked	child	processes	are	not
trapping	exits,	they	will	terminate.	But	if	they	are	trapping	exits,	they	need	to
handle	the	EXIT	signal,	most	likely	by	terminating	themselves,	thereby
propagating	the	EXIT	signal	to	other	processes	in	their	link	set.

It	is	a	valid	assumption	that	nothing	abnormal	should	happen	when	starting	your
system.	If	a	supervisor	is	unable	to	correctly	start	a	child,	it	terminates	all	of	its
children	and	aborts	the	startup	procedure.	While	we	are	all	for	a	resilient	system
that	tries	to	recover	from	errors,	startup	failures	is	where	we	draw	the	line.

loop(ChildList)	->

				receive

								{'EXIT',	Pid,	normal}	->

												loop(lists:keydelete(Pid,1,ChildList));

								{'EXIT',	Pid,	_Reason}	->

												NewChildList	=	restart_child(Pid,	ChildList),

												loop(NewChildList);

								stop	->

												terminate(ChildList)

				end.

restart_child(Pid,	ChildList)	->

				{Pid,	{M,F,A}}	=	lists:keyfind(Pid,	1,	ChildList),

				{ok,	NewPid}	=	apply(M,F,A),

				lists:keyreplace(Pid,1,ChildList,{NewPid,	{M,F,A}}).

terminate(ChildList)	->	

				lists:foreach(fun({Pid,	_})	->	exit(Pid,	kill)	end,	ChildList).

The	supervisor	loops	with	a	tuple	list	of	the	format	{Pid,	{Module,	Function,
Argument}}	returned	from	the	start_children/1	call.	This	tuple	list	is	the
supervisor	state.	We	use	this	information	if	a	child	terminates	abnormally,
mapping	the	pid	to	the	function	used	to	start	it	and	needed	to	restart	it.	If	we
want	to	register	supervisors	with	an	alias,	we	pass	it	as	an	argument	using	the
variable	name.	The	reason	for	not	hardcoding	it	in	the	module	is	that	you	will
often	have	multiple	instances	of	a	supervisor	in	your	Erlang	node.

Having	started	all	the	children,	the	supervisor	process	enters	the	receive-evaluate
loop.	Notice	how	this	is	no	different	from	the	process	skeleton	described	in
“Process	Skeletons”,	and	similar	to	the	generic	loop	in	servers,	FSMs,	and	event
handler	processes.	The	only	difference	from	the	other	behavior	processes	we
have	implemented	in	Erlang	is	that	here	we	handle	only	EXIT	messages	and	take

specific	actions	when	receiving	the	stop	message.

In	our	supervisor,	if	a	child	process	terminates	with	reason	normal,	it	is	deleted
from	the	ChildSpecList	and	the	supervisor	continues	monitoring	other	children.
If	it	terminates	with	a	reason	other	than	normal,	the	child	is	restarted	and	its	old
pid	is	replaced	with	NewPid	in	the	tuple	{Pid,	{Module,	Function,
Argument}}	of	the	child	specification	list.	If	our	supervisor	receives	the	stop
message,	it	traverses	through	its	list	of	child	processes,	terminating	each	one.

Let’s	try	out	my_supervisor	with	the	Erlang	implementation	of	the	coffee	FSM.
If	you	do	the	same,	don’t	forget	to	compile	coffee_fsm.erl	and	hw.erl.	Actually,
on	second	thought,	don’t	compile	hw.erl.	Start	your	coffee	FSM	from	the
supervisor	and	see	what	happens	if	the	hw.erl	stub	module	is	not	available.	When
all	of	the	error	reports	are	being	printed	out,	compile	or	load	hw.erl	from	the
shell,	making	it	accessible:

1>	my_supervisor:start(coffee_sup,	[{coffee_fsm,	start_link,	[]}]).

{ok,	<0.39.0>}

=ERROR	REPORT====	4-May-2013::08:26:51	===

Error	in	process	<0.468.0>	with	exit	value:

{undef,[{hw,reboot,[],[]},{coffee,init,0,[....]}]}

...<snip>...

=ERROR	REPORT====	4-May-2013::08:26:58	===

Error	in	process	<0.474.0>	with	exit	value:

{undef,[{hw,reboot,[],[]},{coffee,init,0,[....]}]}

2>	c(hw).

Machine:Rebooted	Hardware

Display:Make	Your	Selection

{ok,hw}

3>	Pid	=	whereis(coffee_fsm).

<0.476.0>

4>	exit(Pid,	kill).

Machine:Rebooted	Hardware

Display:Make	Your	Selection

true

5>	whereis(coffee).

<0.479.0>

6>	my_supervisor:stop(coffee_sup).

stop

7>	whereis(coffee).

undefined

What	is	happening?	The	coffee	FSM,	in	its	init	function,	calls	hw:reboot/0,
causing	an	undef	error	because	the	module	cannot	be	loaded.	The	supervisor

receives	the	EXIT	signal	and	restarts	the	FSM.	The	restart	becomes	cyclic,
because	restarting	the	FSM	will	not	solve	the	issue;	it	will	continue	to	crash	until
the	module	is	loaded	and	becomes	available.	Compiling	the	hw.erl	module	in
shell	command	2	also	loads	the	module,	allowing	the	coffee	FSM	to	initialize
itself	and	start	correctly.	This	puts	an	end	to	the	cyclic	restart.

Cyclic	restarts	happen	when	restarting	a	process	after	an	abnormal	termination
does	not	solve	the	problem,	resulting	in	the	process	crashing	and	restarting
again.	The	supervisor	behavior	has	mechanisms	in	place	to	escalate	cyclic
restarts.	We	cover	them	later	in	this	chapter.	Now,	back	to	our	example.

In	shell	command	3,	we	find	the	pid	of	the	FSM	and	use	it	to	send	an	exit	signal,
which	causes	the	coffee	FSM	to	terminate.	It	is	immediately	restarted,	something
visible	from	the	printouts	in	the	shell	generated	in	the	init/0	function.	We	stop
the	supervisor	in	shell	command	6,	which,	as	a	result,	also	terminates	its
workers.

Now	comes	the	question	we’ve	been	asking	for	every	other	behavior.	Have	a
look	at	the	code	in	my_supervisor.erl	and,	before	looking	at	the	answer	in
Table	8-1,	ask	yourself:	what	is	generic	and	what	is	specific?1

Table	8-1.	Supervisor	generic	and	specific	code

Generic Specific

Spawning	the	supervisor

Starting	the	children

Monitoring	the	children

Restarting	the	children

Stopping	the	supervisor

Cleaning	up

What	children	to	start

Specific	child	handling:

Start,	restart

Child	dependencies

Supervisor	name

Supervisor	behaviors

Spawning	the	supervisor	and	registering	it	will	be	the	same,	irrespective	of	what
children	the	supervisor	starts	or	monitors.	Monitoring	the	children	and	restarting
them	are	also	generic,	as	are	stopping	the	supervisor	and	terminating	all	of	the
children.	In	other	words,	all	of	the	code	in	my_supervisor.erl	is	generic.	All	of

the	specific	functionality	is	passed	as	variables.	It	includes	the	child	spec	list,	the
order	in	which	the	children	have	to	be	started,	and	the	supervisor	alias.

Although	my_supervisor	will	cater	for	some	use	cases,	it	barely	scratches	the
surface	of	what	a	supervisor	has	to	do.	We	decided	to	keep	our	example	simple,
but	could	have	added	more	specific	parameters.	We’ve	already	seen	that	child
startup	failures	cause	endless	retries.	Supervisors	should	provide	the	ability	to
specify	the	maximum	number	of	restarts	within	a	time	interval	so	that	rather	than
trying	endlessly,	they	can	take	further	action	if	the	child	does	not	start	properly.
And	what	about	dependencies?	If	a	child	terminates,	shouldn’t	the	supervisor
offer	the	option	of	terminating	and	restarting	other	children	that	depend	on	that
child?	These	are	some	of	the	configuration	parameters	included	in	the	OTP
supervisor	behavior	library	module,	which	we	cover	next.

OTP	Supervisors
In	OTP,	we	structure	our	programs	with	one	or	more	supervision	trees.	We	group
together,	under	the	same	subtree,	workers	that	are	either	similar	in	nature	or	have
dependencies,	starting	them	in	order	of	dependency.	When	describing
supervision	trees,	worker	behaviors	are	usually	represented	as	circles,	while
supervisors	are	represented	as	squares.	Figure	8-2	shows	what	the	supervision
structure	of	the	frequency	allocator	example	we’ve	been	working	on	could	look
like.

Figure	8-2.	Supervision	trees

Taking	dependencies	into	consideration,	the	top	supervisor	first	starts	the	event
manager	worker	that	handles	alarms,	because	it	is	not	dependent	on	any	other
worker.	The	top	supervisor	then	starts	the	frequency	allocator,	because	it	sends
alarms	to	the	event	manager.	The	last	process	on	that	level	is	a	phone	supervisor,

which	takes	responsibility	for	starting	and	monitoring	all	of	the	FSMs
representing	the	cell	phones.

Note	how	we	have	grouped	dependent	processes	together	in	one	subset	of	the
tree	and	related	processes	in	another,	starting	them	from	left	to	right	in	order	of
dependency.	This	forms	part	of	the	supervision	strategy	of	a	system	and	in	some
situations	is	put	in	place	not	by	the	developer,	who	focuses	only	on	what
particular	workers	have	to	do,	but	by	the	architect,	who	has	an	overall	view	and
understanding	of	the	system	and	how	the	different	components	interact	with	each
other.

The	Supervisor	Behavior
In	OTP,	the	supervisor	behavior	is	implemented	in	the	supervisor	library
module.	Like	with	all	behaviors,	the	callback	module	is	used	for	nongeneric
code,	including	the	behavior	and	version	directives.	The	supervisor	callback
module	needs	to	export	a	single	callback	function	used	at	startup	to	configure
and	start	the	subset	of	the	tree	handled	by	that	particular	supervisor	(Figure	8-3).

Figure	8-3.	Generic	supervisors

You	may	have	guessed	that	the	single	exported	function	is	the	init/1	function,
containing	all	of	the	specific	supervisor	configuration.	The	callback	module
usually	also	provides	the	function	used	to	start	the	supervisor	itself.	Let’s	look	at
these	calls	more	closely.

Starting	the	Supervisor
As	a	first	step	in	getting	our	complete	supervision	tree	in	place,	we	create	a
supervisor	that	starts	and	monitors	our	frequency	server	and	overload	event
manager.	Because	the	frequency	server	calls	the	overload	event	manager,	it	has	a
dependency	on	the	event	manager.	That	means	that	the	overload	manager	needs
to	be	started	before	the	frequency	server,	and	if	the	overload	manager	terminates,
we	need	to	terminate	the	frequency	server	as	well	before	restarting	them	both.
Supervision	tree	diagrams,	such	as	that	in	Figure	8-4,	show	not	only	the
supervision	hierarchy,	but	also	dependencies	and	the	order	in	which	processes
are	started.

Figure	8-4.	Frequency	server	supervision	tree

Let’s	look	at	the	code	for	the	frequency	supervisor	callback	module.	Like	with
all	other	behaviors,	you	have	to	include	the	behavior	directive.	You	start	the
supervisor	using	the	start	or	start_link	functions,	passing	the	optional
supervisor	name,	the	callback	module,	and	arguments	passed	to	init/1.	As	with
event	managers,	there	is	no	Options	argument	allowing	you	to	set	tracing,
logging,	or	memory	fine-tuning	options:

-module(frequency_sup).

-behavior(supervisor).

-export([start_link/0,	init/1]).

-export([stop/0]).

start_link()	->

				supervisor:start_link({local,?MODULE},?MODULE,	[]).

stop()	->	

				exit(whereis(?MODULE),	shutdown).

init(_)	->

				ChildSpecList	=	[child(freq_overload),	child(frequency)],

				{ok,{{rest_for_one,	2,	3600},	ChildSpecList}}.

child(Module)	->

				{Module,	{Module,	start_link,	[]},

					permanent,	2000,	worker,	[Module]}.

In	our	example,	the	[]	in	the	start_link/3	call	denotes	the	arguments	sent	to
the	init/1	callback,	not	the	Options.	You	cannot	set	sys	options	in	supervisors
at	startup,	but	you	can	do	so	once	the	supervisor	is	started.	Another	difference
from	other	behaviors	is	that	supervisors	do	not	expose	built-in	stop	functionality
to	the	developer.	They	are	usually	terminated	by	their	supervisors	or	when	the
node	itself	is	terminated.	For	those	of	you	who	do	not	want	to	write	systems	that
never	stop	and	insist	on	shutting	down	the	supervisor	from	the	shell,	look	at	the
stop/0	function	we’ve	included;	it	simulates	the	shutdown	procedure	from	a
higher-level	supervisor.

Calling	start_link/3	results	in	invocation	of	the	init/1	callback	function.	This
function	returns	a	tuple	of	the	format	{ok,	SupervisorSpec},	where
SupervisorSpec	is	a	tuple	containing	the	supervisor	configuration	parameters
and	the	child	specification	list	(Figure	8-5).	This	specification	is	a	bit	more
complicated	than	our	pure	Erlang	example,	because	more	is	happening	behind
the	scenes.	The	next	section	provides	a	complete	overview	of	SupervisorSpec.
For	now,	we	informally	introduce	it	by	walking	through	the	example.

Figure	8-5.	Generic	supervisors

In	our	example,	the	first	element	of	the	SupervisorSpec	configuration	parameter
tuple	tells	the	supervisor	that	if	a	child	terminates,	we	want	to	terminate	all
children	that	were	started	after	it	before	restarting	them	all.	In	general	this
element	is	called	the	restart	strategy,	and	to	obtain	the	desired	restart	approach
we	need	for	this	case,	we	specify	the	rest_for_one	strategy.	Following	the
restart	strategy,	the	numbers	2	and	3600	in	the	tuple,	called	the	intensity	and
period,	respectively,	tell	the	supervisor	that	it	is	allowed	a	maximum	of	two
abnormal	child	terminations	per	hour	(3,600	seconds).	If	this	number	is
exceeded,	the	supervisor	terminates	itself	and	its	children,	and	sends	an	exit
signal	to	all	the	processes	in	its	link	set	with	reason	shutdown.	So,	if	this
supervisor	were	part	of	a	larger	supervision	tree,	the	supervisor	monitoring	it
would	receive	the	exit	signal	and	take	appropriate	action.

The	second	element	in	the	SupervisorSpec	configuration	parameter	tuple	is	the
child	specification	list.	Each	item	in	the	list	is	a	tuple	specifying	details	for	how
to	start	and	manage	the	static	child	processes.	In	our	example,	the	first	element
in	the	tuple	is	a	unique	identifier	within	the	supervisor	in	which	it	is	started.
Following	that	is	the	{Module,Function,Arguments}	tuple	indicating	the
function	to	start	and	link	the	worker	to	the	supervisor,	which	is	expected	to
return	{ok,Pid}.	Next,	we	find	the	restart	directive;	the	atom	permanent
specifies	that	when	the	supervisor	is	restarting	workers,	this	worker	should
always	be	restarted.

Following	the	restart	directive	is	the	shutdown	directive,	specified	here	as	2000.
It	tells	the	supervisor	to	wait	2,000	milliseconds	for	the	child	to	shut	down
(including	the	time	spent	in	the	terminate	function)	after	sending	the	EXIT
signal.	There	is	no	guarantee	that	terminate	is	called,	as	the	child	might	be	busy
serving	other	requests	and	never	reach	the	EXIT	signal	in	its	mailbox.

Following	that,	the	worker	atom	indicates	that	the	child	is	a	worker	as	opposed
to	another	supervisor,	and	finally	the	single-element	list	[Module]	specifies	the
callback	module	implementing	the	worker.

supervisor:start_link(NameScope,	Mod,	Args)

supervisor:start_link(Mod,	Args)	->	{ok,	Pid}

																																				{error,	Error}

																																				ignore

Mod:init/1	->	{ok,{{RestartStrategy,MaxR,MaxT},[ChildSpec]}}

														ignore

Because	it	can	be	difficult	to	remember	the	purpose	and	order	of	all	the	fields	of
the	SupervisorSpec,	Erlang	18.0	and	newer	allow	it	to	be	specified	instead	as	a
map.	Here	are	implementations	of	init/1	and	child/1	that	return	our
SupervisorSpec	as	a	map	rather	than	a	tuple:

init(_)	->

				ChildSpecList	=	[child(overload),	child(frequency)],

				SupFlags	=	#{strategy	=>	rest_for_one,

																	intensity	=>	2,	period	=>	3600},

				{ok,	{SupFlags,	ChildSpecList}}.

child(Module)	->

				#{id	=>	Module,

						start	=>	{Module,	start_link,	[]},

						restart	=>	permanent,

						shutdown	=>	2000,

						type	=>	worker,

						modules	=>	[Module]}.

As	you	can	see,	the	SupervisorSpec	map	code	is	much	easier	to	read	because
unlike	in	the	tuple,	all	the	fields	are	named.	If	you’re	using	Erlang	18.0	or	newer,
use	maps	for	your	supervisor	specifications.

Supervisors,	just	like	all	other	behaviors,	can	be	registered	or	referenced	using
their	pids.	If	registering	the	supervisor,	valid	values	to	NameScope	include
{local,Name}	and	{global,Name}.	You	can	also	use	the	name	registry
represented	in	the	{via,	Module,	Name}	tuple,	where	Module	exports	the	same
API	defined	in	the	global	name	registry.

The	init/1	callback	function	normally	returns	the	whole	tuple	comprising	the
restart	tuple	and	a	list	of	child	specifications.	But	if	it	instead	returns	ignore,	the
supervisor	terminates	with	reason	normal.	Note	how	supervisors	do	not	export
start/2,3	functions,	forcing	you	to	link	to	the	parent.	In	the	next	section,	we
look	at	all	the	available	options	and	restart	strategies	in	more	detail.	We	refer	to
these	options	and	strategies	as	the	supervisor	specification.

The	Supervisor	Specification
The	supervisor	specification	is	a	tuple	containing	two	elements	(Figure	8-6):

The	nongeneric	information	about	the	restart	strategy	for	that	particular
supervisor

The	child	specifications	relevant	to	all	static	workers	the	supervisor	starts
and	manages

Figure	8-6.	Supervisor	specification

Let’s	look	at	these	values	in	more	detail,	starting	with	the	restart	tuple.

The	restart	specification
The	restart	tuple,	of	the	format:

{RestartType,	MaxRestart,	MaxTime}

specifies	what	happens	to	the	other	children	in	its	supervision	tree	if	a	child
terminates	abnormally.	By	“child”	we	mean	either	a	worker	or	another
supervisor.	Starting	with	Erlang	18.0,	you	can	also	use	a	map.	The	map	defining
the	restart	specification	has	the	following	type	definition:

#{strategy		=>	strategy(),	

		intensity	=>	non_neg_integer(),	

		period				=>	pos_integer()}

There	are	four	different	restart	types:	one_for_one,	one_for_all,
rest_for_one,	and	simple_one_for_one.	Under	the	one_for_one	strategy
(Figure	8-7),	only	the	crashed	process	is	restarted.	This	strategy	is	ideal	if	the
workers	don’t	depend	on	each	other	and	the	termination	of	one	will	not	affect	the
others.	Imagine	a	supervisor	monitoring	the	worker	processes	that	control	the
instant	messaging	sessions	of	hundreds	of	thousands	of	users.	If	any	of	these
processes	crashes,	it	will	affect	only	the	user	whose	session	is	controlled	by	the
crashed	process.	All	other	workers	should	continue	running	independently	of
each	other.

Figure	8-7.	One	for	one

Under	the	one_for_all	strategy	shown	in	Figure	8-8,	if	a	process	terminates,	all
processes	are	terminated	and	restarted.	This	strategy	is	used	if	all	or	most	of	the
processes	depend	on	each	other.	Picture	a	very	complex	FSM	handling	a
protocol	stack.	To	simplify	the	design,	the	machine	has	been	split	into	separate
FSMs	that	communicate	with	each	other	asynchronously,	and	these	workers	all
depend	on	each	other.	If	one	terminates,	the	others	would	have	to	be	terminated
as	well.	For	these	cases,	pick	the	one_for_all	strategy.

Figure	8-8.	One	for	all

Under	the	rest_for_one	strategy	(Figure	8-9),	all	processes	started	after	the
crashed	process	are	terminated	and	restarted.	Use	this	strategy	if	you	start	the
processes	in	order	of	dependency.	In	our	frequency_sup	example,	we	first	start
the	overload	event	manager,	followed	by	the	frequency	allocator.	The	frequency
allocator	sends	requests	to	the	overload	event	manager	whenever	it	runs	out	of
frequencies.	So	if	the	overload	manager	has	crashed	and	is	being	restarted,	there
is	a	risk	the	frequency	server	might	send	it	requests	that	get	lost.	Under	such
circumstances,	we	want	to	first	terminate	the	frequency	allocator,	and	then
restart	the	overload	manager	and	the	frequency	allocator	in	that	order.

Figure	8-9.	Rest	for	one

If	losing	the	alarms	sent	to	the	frequency	allocator	did	not	matter	(as	the	requests
were	asynchronous),	we	could	have	used	the	one_for_one	strategy.	Or	we	could

have	taken	it	a	step	further	by	making	the	raising	and	clearing	of	the	alarms	to
the	overload	manager	synchronous.	In	this	case,	if	the	overload	manager	had
crashed	and	was	being	restarted,	the	frequency	allocator	would	have	also	been
terminated	only	when	trying	to	make	a	synchronous	call	to	it.	Had	the	frequency
allocator	not	run	out	of	frequencies,	thus	not	needing	to	raise	or	clear	alarms,	it
could	have	continued	functioning.	As	we	have	seen,	there	is	no	“one	size	fits	all”
solution;	it	all	depends	on	the	requirements	you	have	and	behavior	you	want	to
give	your	system.

There	is	one	last	restart	strategy	to	cover:	simple_one_for_one.	It	is	used	for
children	of	the	same	type	added	dynamically	at	runtime,	not	at	startup.	An
example	of	when	we	would	use	this	strategy	is	in	a	supervisor	handling	the
processes	controlling	mobile	phones	that	are	added	to	and	removed	from	the
supervision	tree	dynamically.	We	cover	dynamic	children	and	the
simple_one_for_one	restart	strategy	later	in	this	chapter.

The	last	two	elements	in	the	restart	tuple	are	MaxRestart	and	MaxTime.
MaxRestart	specifies	the	maximum	number	of	restarts	all	child	processes	are
allowed	to	do	in	MaxTime	seconds.	If	the	maximum	number	of	restarts	is	reached
in	this	number	of	seconds,	the	supervisor	itself	terminates	with	reason	shutdown,
escalating	the	termination	to	its	higher-level	supervisor.	What	is	in	effect
happening	is	that	we	are	giving	the	supervisor	MaxRestart	chances	to	solve	the
problem.	If	crashes	still	occur	in	MaxTime	seconds,	it	means	that	a	restart	is	not
solving	the	problem,	so	the	supervisor	escalates	the	issue	to	its	supervisor,	which
will	hopefully	be	able	to	solve	it.

Look	at	the	supervision	tree	in	Figure	8-2.	What	if	the	phone	FSMs	under	the
phone	supervisor	are	crashing	because	of	corrupt	data	in	the	frequency	handler?
No	matter	how	many	times	we	restart	them,	they	will	continue	to	crash,	because
the	problem	lies	in	the	frequency	allocator,	a	worker	supervised	outside	of	our
supervision	subtree.	We	solve	cyclic	restarts	of	this	nature	through	escalation.	If
we	allow	the	phone	supervisor	to	terminate,	the	top	supervisor	will	receive	the
exit	signal	and	restart	the	frequency	server	and	event	manager	workers	before
restarting	the	phone	supervisor.	Hopefully,	the	restart	can	clear	the	corrupt	data,
allowing	the	phone	FSMs	to	function	as	expected.

The	key	to	using	supervisors	is	to	ensure	you	have	properly	designed	your	start

order	and	the	restart	strategy	associated	with	it.	Though	you	will	never	be	able	to
fully	predict	what	will	cause	your	processes	to	terminate	abnormally,	you	can
nevertheless	try	to	design	your	restart	strategy	to	recreate	the	process	state	from
known-good	sources.	Instead	of	storing	the	state	persistently	and	assuming	it	is
uncorrupted	such	that	it	reading	it	after	a	crash	will	correctly	restore	it,	retrieve
the	various	elements	that	created	your	state	from	their	original	sources.

For	example,	if	the	corrupted	data	causing	your	worker	to	crash	was	the	result	of
a	transient	transmission	error,	rereading	it	might	solve	the	problem.	The
supervisor	would	restart	the	worker,	which	in	turn	would	successfully	reread	the
transmission	and	continue	operating.	And	since	the	system	would	have	logged
the	crash,	the	developer	could	look	into	its	cause,	modify	the	code	to	handle	it
appropriately,	and	prepare	and	deploy	a	new	release	to	ensure	that	future	similar
transmission	errors	do	not	negatively	impact	the	system.

In	other	cases,	recovery	might	not	be	as	straightforward.	More	difficult
transmission	errors	might	cause	repeated	worker	crashes,	in	turn	causing	the
supervisor	to	restart	the	worker.	But	since	the	restarts	do	not	correct	the	problem,
the	client	supervisor	eventually	reaches	the	restart	threshold	and	terminates
itself.	This	in	turn	affects	the	top-level	supervisor,	which	eventually	reaches	its
own	restart	threshold,	and	by	terminating	itself	it	takes	the	entire	virtual	machine
down	with	it.	When	the	virtual	machine	terminates,	heart,	a	monitoring
mechanism	we	cover	in	Chapter	11,	detects	that	the	node	is	down	and	invokes	a
shell	script.	The	recovery	actions	in	this	script	could	be	as	simple	as	restarting
the	Erlang	VM	or	as	drastic	as	rebooting	the	computer.	Rebooting	might	reset
the	link	to	the	hardware	that	is	suffering	from	transmission	problems	and	solve
the	problem.	If	it	doesn’t,	after	a	few	reboot	attempts	the	script	might	decide	not
to	try	again	and	instead	alert	an	operator,	requesting	manual	intervention.

Hopefully,	a	load	balancer	will	already	have	kicked	in	to	forward	requests	to
redundant	hardware,	providing	seamless	service	to	end	users.	If	not,	this	is	when
you	receive	a	call	in	the	middle	of	the	night	from	a	panicking	first-line	support
engineer	informing	you	there	is	an	outage.	In	either	case,	the	crash	is	logged,
hopefully	with	enough	data	to	allow	you	to	investigate	and	solve	the	bug:
namely,	ensuring	that	data	is	checked	before	being	introduced	into	your	system
so	that	data	corrupted	by	transmission	errors	is	not	allowed	in	the	first	place.	We
look	at	distributed	architectures	and	fault	tolerance	in	Chapter	13.	For	now,	let’s
stay	focused	on	recovery	of	a	single	node.	Next	in	line	are	child	specifications.

The	child	specification
The	child	specification	contains	all	of	the	information	the	supervisor	needs	to
start,	stop,	and	delete	its	child	processes.	The	specification	is	a	tuple	of	the
format:

{Name,StartFunction,RestartType,ShutdownTime,ProcessType,Modules}

or,	in	Erlang	18.0	or	newer,	a	map	with	the	following	type	specification:

child_spec()	=	#{id	=>	child_id(),							%	mandatory

																	start	=>	mfargs(),						%	mandatory

																	restart	=>	restart(),			%	optional

																	shutdown	=>	shutdown(),	%	optional

																	type	=>	worker(),							%	optional

																	modules	=>	modules()}			%	optional

The	elements	of	the	tuple	are:

Name

Any	valid	Erlang	term,	used	to	identify	the	child.	It	has	to	be	unique	within
a	supervisor,	but	can	be	reused	across	supervisors	within	the	same	node.

StartFunction

A	tuple	of	the	format	{Module,	Function,	Args},	which,	directly	or
indirectly,	calls	one	of	the	behavior	start_link	functions.	Supervisors	can
start	only	OTP-compliant	behaviors,	and	it	is	their	responsibility	to	ensure
that	the	behaviors	can	be	linked	to	the	supervisor	process.	You	cannot	link
regular	Erlang	processes	to	a	supervision	tree,	because	they	do	not	handle
the	system	calls.

RestartType

Tells	the	supervisor	how	to	react	to	a	child’s	termination.	Setting	it	to
permanent	ensures	that	the	child	is	always	restarted,	irrespective	of	whether
its	termination	is	normal	or	abnormal.	Setting	it	to	transient	restarts	a
child	only	after	abnormal	termination.	If	you	never	want	to	restart	a	child
after	termination,	set	RestartType	to	temporary.

ShutdownTime

ShutdownTime	is	a	positive	integer	denoting	a	time	in	milliseconds,	or	the
atom	infinity.	It	is	the	maximum	time	allowed	to	pass	between	the
supervisor	issuing	the	EXIT	signal	and	the	terminate	callback	function

returning.	If	the	child	is	overloaded	and	it	takes	longer,	the	supervisor	steps
in	and	unconditionally	terminates	the	child	process.	Note	that	terminate
will	be	called	only	if	the	child	process	is	trapping	exits.	If	you	are	feeling
grumpy	or	do	not	need	the	behavior	to	clean	up	after	itself,	you	can	instead
specify	brutal_kill,	allowing	the	supervisor	to	unconditionally	terminate
the	child	using	exit(ChildPid,	kill).
Choose	your	shutdown	time	with	care,	and	never	set	it	to	infinity	for	a
worker,	because	it	might	cause	the	worker	to	hang	in	its	terminate	callback
function.	Imagine	that	your	worker	is	trying	to	communicate	with	a	defunct
piece	of	hardware,	the	very	reason	for	your	system	needing	to	be	rebooted.
You	will	never	get	a	response	because	that	part	of	the	system	is	down,	and
this	will	stop	the	system	from	restarting.	If	you	have	to,	use	an	arbitrarily
large	number,	which	will	eventually	allow	the	supervisor	to	terminate	the
worker.	For	children	that	are	supervisors	themselves,	on	the	other	hand,	it	is
common	but	not	mandatory	to	select	infinity,	giving	them	the	time	they
need	to	shut	down	their	potentially	large	subtree.

ProcessType	and	Modules
These	are	used	during	a	software	upgrade	to	control	how	and	which
processes	are	being	suspended	during	the	upgrade.	ProcessType	is	the	atom
worker	or	supervisor,	while	Modules	is	the	list	of	modules	implementing
the	behavior.	In	the	case	of	the	frequency	server,	we	would	include
frequency,	while	for	our	coffee	machine	we	would	specify	coffee_fsm.	If
your	behavior	includes	library	modules	specific	to	the	behavior,	include
them	if	you	are	concerned	that	an	upgrade	of	the	behavior	module	will	be
incompatible	with	one	of	library	modules.	For	example,	if	you	changed	the
API	in	the	hw	interface	module	as	well	as	the	coffee_fsm	behavior	calling
it,	you	would	have	to	atomically	upgrade	both	modules	at	the	same	time	to
ensure	that	coffee_fsm	does	not	call	the	old	version	of	hw.	By	listing	both
of	these	modules,	you	would	be	covered.	But	if	you	did	not	list	hw,	as	in	our
example,	you	would	have	to	ensure	that	any	upgrade	would	be	backward-
compatible	and	handle	both	the	old	and	the	new	APIs.	We	cover	software
upgrades	in	more	detail	in	Chapter	12.
What	if	you	don’t	know	your	Modules	at	compile	time?	Think	of	the	event
manager,	which	is	started	without	any	event	handlers.	When	you	do	not
know	what	will	be	running	when	you	do	a	software	upgrade,	set	Modules	to
the	atom	dynamic.	When	using	dynamic	modules,	the	supervisor	will	send	a

request	to	the	behavior	module	and	retrieve	the	module	names	when	it
needs	them.

Before	looking	at	the	interface	and	callback	details,	let’s	test	our	example	with
what	we’ve	learned.	Looking	at	their	child	specifications,	we	see	that	both	the
overload	event	manager	and	the	frequency	server	are	permanent	worker
processes	given	2	seconds	to	execute	in	their	terminate	functions.	We	start	the
supervisor	and	its	children,	and	see	immediately	that	they	have	started	correctly.
In	shell	command	4,	we	stop	the	frequency	server,	but	because	it	has	its
RestartType	set	to	permanent,	the	supervisor	will	immediately	restart	it.	We
verify	the	restart	in	shell	command	5	by	retrieving	the	pid	for	the	new	frequency
server	process	and	noting	that	it	differs	from	the	pid	of	the	original	server
returned	from	shell	command	2.	In	shell	command	6	we	explicitly	kill	the
frequency	server,	and	shell	command	7	shows	that,	once	again,	it	restarted:

1>	frequency_sup:start_link().

{ok,<0.35.0>}

2>	whereis(frequency).

<0.38.0>

3>	whereis(freq_overload).

<0.36.0>

4>	frequency:stop().

ok

5>	whereis(frequency).

<0.42.0>

6>	exit(whereis(frequency),	kill).

true

7>	whereis(frequency).

<0.45.0>

8>	supervisor:which_children(frequency_sup).

[{frequency,<0.45.0>,worker,[frequency]},

	{freq_overload,<0.36.0>,worker,[freq_overload]}]

9>	supervisor:count_children(frequency_sup).

[{specs,2},{active,2},{supervisors,0},{workers,2}]

In	shell	command	8,	which_children/1	returns	a	tuple	list	containing	the
ChildId	its	pid,	worker	or	supervisor	to	denote	its	role,	and	the	Modules	list.
Be	careful	when	using	this	function	if	your	supervisor	has	lots	of	children,
because	it	will	consume	lots	of	memory.	If	you	are	calling	the	function	from	the
shell,	remember	that	the	result	will	be	stored	in	the	shell	history	and	not	be
garbage	collected	until	the	history	is	cleared.

supervisor:which_children(SupRef)	->	[{Id,	Child,	Type,	Modules}]

supervisor:count_children(SupRef)	->	[{specs,	SpecCount},

																																						{active,	ActiveProcessCount},

																																						{supervisors,	ChildSupervisorCount},

																																						{workers,	ChildWorkerCount}]

supervisor:check_childspecs(ChildSpecs)	->	ok

																																											{error,	Reason}

The	function	count_children/1	returns	a	property	list	covering	the	supervisor’s
child	specifications	and	managed	processes.	The	elements	are:

specs

The	total	number	of	children,	both	those	that	are	active	and	those	that	are
not

active

The	number	of	actively	running	children

workers	and	supervisors
The	number	of	children	of	the	respective	type

And	finally,	check_childspecs/1	is	useful	when	developing	and
troubleshooting	child	specifications	and	startup	issues.	It	validates	a	list	of	child
specifications,	returning	an	error	if	any	are	incorrect	or	the	atom	ok	if	it	finds	no
problems.

Supervisor	specifications	are	easy	to	write.	And	as	a	result,	they	are	also	easy	to
get	wrong.	Too	often,	programmers	pick	configuration	values	that	do	not	reflect
the	reality	and	conditions	under	which	the	application	is	running,	or	copy
specifications	from	other	applications,	or,	even	worse,	use	the	default	values
from	skeleton	templates	that	different	editors	provide.	You	must	take	care	to	get
your	supervision	structure	right	when	designing	your	start	and	restart	strategy,
and	must	build	in	fault	tolerance	and	redundancy.	The	tasks	include	starting	your
processes	in	order	of	dependency,	and	setting	restart	thresholds	that	will
propagate	problems	to	supervisors	higher	up	in	the	hierarchy	and	allow	them	to
take	control	if	supervisors	lower	down	in	the	supervision	tree	cannot	solve	the
issue.

Dynamic	Children
Having	gone	through	the	supervisor	specification	returned	by	the	init/1
callback	function,	you	must	have	come	to	the	realization	that	the	only	child	type
we	have	dealt	with	so	far	is	static	children	started	along	with	the	supervisor.	But
another	approach	is	viable	as	well:	dynamically	creating	the	child	specification
list	in	our	init/1	call	when	starting	the	supervisor.	For	instance,	we	could
inspect	the	number	of	active	mobile	devices	and	start	a	worker	for	each	of	them.
We	have	already	handled	the	end	of	the	worker’s	lifecycle	(by	making	the
worker	transient,	so	that	if	the	phone	is	shut	off,	the	worker	is	terminated),	but
we	don’t	yet	have	similar	flexibility	for	the	start	of	the	lifecycle.	What	if	a
mobile	device	attaches	itself	to	the	network	after	we	have	started	the	supervisor?
The	solution	to	the	problem	is	dynamic	children,	represented	in	Figure	8-10.

Figure	8-10.	Dynamic	children

Let’s	start	an	empty	supervisor	whose	sole	responsibility	will	be	that	of
dynamically	starting	and	monitoring	the	FSM	processes	controlling	mobile
devices.	The	FSM	we’ll	be	using	is	the	one	described	but	left	as	an	exercise	in

“The	Phone	Controllers”.	If	you	have	not	already	solved	it,	download	the	code
from	the	book’s	code	repository.	The	code	includes	a	phone	simulator,	phone.erl,
which	starts	a	specified	number	of	mobile	devices	and	lets	them	call	each	other.
We’ll	make	the	phone	supervisor	a	child	of	the	frequency	supervision	tree.	Let’s
take	a	look	at	the	code	for	the	phone_sup	module:

-module(phone_sup).

-behavior(supervisor).

-export([start_link/0,	attach_phone/1,	detach_phone/1]).

-export([init/1]).

start_link()	->

				supervisor:start_link({local,	?MODULE},	?MODULE,	[]).

init([])	->

				{ok,	{{one_for_one,	10,	3600},	[]}}.

attach_phone(Ms)	->

				case	hlr:lookup_id(Ms)	of

								{ok,	_Pid}				->

												{error,	attached};

								_NotAttached	->

												ChildSpec	=	{Ms,	{phone_fsm,	start_link,	[Ms]},

																									transient,	2000,	worker,	[phone_fsm]},

												supervisor:start_child(?MODULE,	ChildSpec)

				end.

detach_phone(Ms)	->

				case	hlr:lookup_id(Ms)	of

								{ok,	_Pid}				->

												supervisor:terminate_child(?MODULE,	Ms),

												supervisor:delete_child(?MODULE,	Ms);

								_NotAttached	->

												{error,	detached}

				end.

In	the	init/1	supervisor	callback	function	we	set	the	maximum	number	of
restarts	to	10	per	hour,	and	because	mobile	devices	run	independently	of	each
other,	the	one_for_one	restart	strategy	will	do.	Note	that	since	we	intend	to	start
all	children	dynamically,	the	return	value	from	init/1	includes	an	empty	list	of
child	specifications.	Further	down	in	the	module	is	the
phone_sup:attach_phone/1	call,	which,	given	a	mobile	device	number	Ms,
checks	whether	the	number	is	already	registered	on	the	network.	If	not,	it	creates
a	child	specification	and	uses	the	supervisor:start_child/2	call	to	start	it.

Let’s	experiment	with	this	code.	In	shell	commands	1	through	3	in	the	following
interaction,	we	start	the	supervisors	and	initialize	the	home	location	register
database,	hlr	(covered	in	“ETS:	Erlang	Term	Storage”).	We	start	two	phones	in

shell	commands	4	and	5,	providing	simple	phone	numbers	as	arguments.	In	shell
command	6,	we	make	phone	2,	controlled	by	process	P2,	start	an	outbound	call
to	the	phone	with	phone	number	1.	Debug	printouts	are	turned	on	for	both	phone
FSMs,	allowing	you	to	follow	the	interaction	between	the	phone	FSMs	and	the
phone	simulator,	implemented	in	the	phone	module.	Following	the	debug
printouts,	we	can	see	that	phone	2	starts	an	outbound	call	to	phone	1.	Phone	1
receives	the	inbound	call	and	rejects	it,	terminating	the	call	and	making	both
phones	return	to	idle	(as	the	simulator	is	based	on	random	responses,	you	might
get	a	different	result	when	running	the	code):

1>	frequency_sup:start_link().

{ok,<0.35.0>}

2>	phone_sup:start_link().

{ok,<0.40.0>}

3>	hlr:new().

ok

4>	{ok,	P1}	=	phone_sup:attach_phone(1).

{ok,<0.43.0>}

5>	{ok,	P2}	=	phone_sup:attach_phone(2).

{ok,<0.45.0>}

6>	phone_fsm:action({outbound,1},	P2).

DBG	<0.45.0>	got	{'$gen_sync_all_state_event',

																							{<0.33.0>,#Ref<0.0.4.55>},

																							{outbound,1}}	in	state	idle

<0.45.0>	dialing	1

DBG	<0.45.0>	sent	ok	to	<0.33.0>

						and	switched	to	state	calling

DBG	<0.43.0>	got	event	{inbound,<0.45.0>}	in	state	idle

DBG	<0.43.0>	switched	to	state	receiving

ok

DBG	<0.43.0>	got	event	{action,reject}	in	state	receiving

DBG	<0.43.0>	switched	to	state	idle

DBG	<0.45.0>	got	event	{reject,<0.43.0>}	in	state	calling

1	connecting	to	2	failed:rejected

<0.45.0>	cleared

DBG	<0.45.0>	switched	to	state	idle

7>	supervisor:which_children(phone_sup).

[{2,<0.45.0>,worker,[phone_fsm]},

	{1,<0.43.0>,worker,[phone_fsm]}]

8>	supervisor:terminate_child(phone_sup,	2).

ok

9>	supervisor:which_children(phone_sup).

[{2,undefined,worker,[phone_fsm]},

	{1,<0.43.0>,worker,[phone_fsm]}]

10>	supervisor:restart_child(phone_sup,	2).

{ok,<0.53.0>}

11>	supervisor:delete_child(phone_sup,	2).

{error,running}

12>	supervisor:terminate_child(phone_sup,	2).

ok

13>	supervisor:delete_child(phone_sup,	2).

ok

14>	supervisor:which_children(phone_sup).

[{1,<0.43.0>,worker,[phone_fsm]}]

Have	a	look	at	the	other	shell	commands	in	our	example.	You	will	find	functions
used	to	start,	stop,	restart,	and	delete	children	from	the	child	specification	list,
some	of	which	we	use	in	our	phone_sup	module.	Note	how	we	get	the	list	of
workers	when	calling	supervisor:which_children/1.	We	terminate	the	child	in
shell	command	8,	and	note	in	the	response	to	shell	command	9	that	it	is	still	part
of	the	child	specification	list	but	with	the	pid	set	to	undefined.	This	means	that
the	child	specification	still	exists,	but	the	process	is	not	running.	We	can	now
restart	the	child	using	only	the	child	Name	in	shell	command	10.

Keep	in	mind	that	these	function	calls	do	not	use	pids,	but	only	unique	names
identifying	the	child	specifications.	This	is	because	children	crash	and	are
restarted,	so	their	pids	might	change.	Their	unique	names,	however,	will	remain
the	same.

Once	the	supervisor	has	stored	the	child	specification,	we	can	restart	it	using	its
unique	name.	To	remove	it	from	the	child	specification	list,	we	need	to	first
terminate	the	child	as	shown	in	shell	command	12,	after	which	we	call
supervisor:delete_child/2	in	shell	command	13.	Looking	at	the	child
specifications	in	shell	command	14,	we	see	that	the	specification	of	phone	2	has
been	deleted.

Simple	one	for	one
The	simple_one_for_one	restart	strategy	is	used	when	there	is	only	one	child
specification	shared	by	all	the	processes	under	a	single	supervisor.	Our	phone
supervisor	example	fits	this	description,	so	let’s	rewrite	it	using	this	strategy.	In
doing	so,	we	have	added	the	detach_phone/1	function,	which	we	explain	later.
Note	how	we	have	moved	the	hlr:new()	call	to	the	supervisor	init	function:

-module(simple_phone_sup).

-behavior(supervisor).

-export([start_link/0,	attach_phone/1,	detach_phone/1]).

-export([init/1]).

start_link()	->

				supervisor:start_link({local,	?MODULE},	?MODULE,	[]).

init([])	->

				hlr:new(),

				{ok,	{{simple_one_for_one,	10,	3600},

										[{ms,	{phone_fsm,	start_link,	[]},

											transient,	2000,	worker,	[phone_fsm]}]}}.

attach_phone(Ms)	->

				case	hlr:lookup_id(Ms)	of

								{ok,	_Pid}				->

												{error,	attached};

								_NotAttached	->

												supervisor:start_child(?MODULE,	[Ms])

				end.

detach_phone(Ms)	->

				case	hlr:lookup_id(Ms)	of

								{ok,	Pid}				->

												supervisor:terminate_child(?MODULE,	Pid);

								_NotAttached	->

												{error,	detached}

				end.

If	you	have	looked	at	the	code	in	detail,	you	might	have	spotted	a	few
differences	between	the	simple_one_for_one	restart	strategy	and	the	one	we
used	earlier	for	dynamic	children.	The	first	change	is	the	arguments	passed	when
starting	the	children.	In	the	supervisor	init/1	callback	function,	the
{phone_fsm,	start_link,	ChildSpecArgs}	in	the	child	specification	specifies
no	arguments	(ChildSpecArgs	is	[]),	whereas	the	function
phone_fsm:start_link(Args)	in	the	earlier	example	takes	one,	Ms.	As	the
children	are	dynamic,	they	are	started	via	the	function
supervisor:start_child(SupRef,	StartArgs).	This	function	takes	its	second
parameter,	which	it	expects	to	be	a	list	of	terms,	appends	that	list	to	the	list	of
arguments	in	the	child	specification,	and	calls	apply(Module,	Function,
ChildSpecArgs	++	StartArgs).

For	the	phone	FSM,	ChildSpecArgs	in	the	child	specification	is	empty,	so	the
result	of	passing	[Ms]	as	the	second	argument	(StartArgs)	to
supervisor:start_child/2	is	that	it	calls	phone_fsm:start_link(Ms).	It	is
also	worth	noting	that	we	are	initializing	the	ETS	tables	using	the	hlr:new()	call
in	the	init/1	callback,	making	the	supervisor	the	owner	of	the	tables.

The	second	difference	is	that	in	the	simple_one_for_one	strategy	you	do	not	use
the	child’s	name	to	reference	it,	you	use	its	pid.	If	you	study	the	detach_phone/1
function,	you	will	notice	this.	You	will	also	notice	in	the	code	that	we	are
terminating	the	child	without	deleting	it	from	the	child	specification	list.	We
don’t	have	to,	as	it	gets	deleted	automatically	when	terminated.	Thus,	the
functions	supervisor:restart_child/1	and	supervisor:delete_child/1	are

not	allowed.	Only	supervisor:terminate_child/2	will	work.	Testing	the
supervisor	reveals	no	surprises:

1>	frequency_sup:start_link().

{ok,<0.35.0>}

3>	simple_phone_sup:start_link().

{ok,<0.40.0>}

4>	simple_phone_sup:attach_phone(1),	simple_phone_sup:attach_phone(2).

{ok,<0.43.0>}

5>	simple_phone_sup:attach_phone(3).

{ok,<0.45.0>}

6>	simple_phone_sup:detach_phone(3).

ok

7>	supervisor:which_children(simple_phone_sup).

[{undefined,<0.42.0>,worker,[phone_fsm]},

	{undefined,<0.43.0>,worker,[phone_fsm]}]

Once	we’ve	detached	the	phone,	it	does	not	appear	among	the	supervisor
children.	This	is	specific	to	the	simple_one_for_one	strategy,	because	with	the
other	strategies,	you	need	to	both	terminate	and	delete	the	children.	Another
difference	is	during	shutdown;	as	simple_one_for_one	supervisors	often	grow
to	have	many	children	running	independently	of	each	other	(often	a	child	per
concurrent	request),	when	shutting	down,	they	terminate	the	children	in	no
specific	order,	often	concurrently.	This	is	acceptable,	as	determinism	in	these
cases	is	irrelevant,	and	most	probably	not	needed.	Finally,	simple_one_for_one
supervisors	scale	better	with	a	large	number	of	dynamic	children,	as	they	use	a
dict	key-value	dictionary	library	module	to	store	child	specifications,	unlike
other	supervisor	types,	which	use	a	list.	While	other	supervisors	might	be	faster
for	small	numbers	of	children,	performance	deteriorates	quickly	if	the	frequency
at	which	dynamic	children	are	started	and	terminated	is	high.

KEEPING	ETS	TABLES	ALIVE

You	will	recall	that	an	ETS	table	is	linked	to	the	process	that	creates	it.	If	that	process	terminates,
normally	or	abnormally,	the	ETS	table	is	deleted.	You	could	use	the	heir	option	when	creating	the
table	or	call	the	ets:give_away/3	function	in	your	terminate	function	to	transfer	ownership	instead
when	the	owner	terminates.	An	easier	solution,	however,	is	to	place	your	ETS	table	not	in	its	own
process,	but	in	a	supervisor.	Pick	the	supervisor	that	monitors	the	processes	using	the	table,	so	if	the
supervisor	is	terminated,	you	are	guaranteed	that	the	processes	using	it	have	also	terminated.	This
approach	requires	the	table	to	have	public	access	so	that	nonowning	processes	can	both	read	and	write
to	it.	In	our	example,	we	have	placed	our	ETS	tables	mapping	pids	to	numbers	and	numbers	to	pids
there.	If	the	supervisor	is	terminated	or	shuts	down,	so	will	all	of	the	processes	accessing	the	table.
The	primary	drawback	to	this	approach	is	that	if	the	data	in	the	ETS	table	gets	corrupted,	you	need	to
restart	the	supervisor	to	clear	it.	Keep	this	in	mind	if	you	use	this	approach.

This	is	quite	a	bit	of	information	to	absorb.	Before	going	ahead,	let’s	review	the
functional	API	used	to	manage	dynamic	children.	Keep	in	mind	that
terminate_child/2,	restart_child/2,	and	delete_child/2	cannot	be	used
with	simple_one_for_one	strategies:

supervisor:start_child(Name,	ChildSpecOrArgs)		->	{ok,	Pid}

																																																		{ok,	Pid,	Info}

																																																		{error,	already_started	|	

																																																										{already_present,Id}	|

																																																										Reason}

supervisor:terminate_child(Name,	Id)		->	ok

																																									{error,	not_found	|	simple_one_for_one}

supervisor:restart_child(Name,	Id)			->	{ok,	Pid}

																																								{ok,	Pid,	Info}

																																								{error,	running	|	restarting	|

																																																not_found	|	simple_one_for_one}

supervisor:delete_child(Name,	Id)		->	ok

																																						{error,	running	|	restarting	|

																																														not_found	|	simple_one_for_one	|

																																														Reason}

Gluing	it	all	together
Before	wrapping	up	this	example,	let’s	create	the	top-level	supervisor,	bsc_sup,
which	starts	both	the	frequency_sup	and	the	simple_phone_sup	functions.	We
will	test	the	system	using	the	phone.erl	phone	test	simulator,	which	lets	us
specify	the	number	of	phones	and	the	number	of	calls	each	phone	should
attempt,	and	then	makes	random	calls,	replying	to	and	rejecting	calls.	The	code
for	the	top-level	supervisor	is	as	follows:

-module(bsc_sup).

-export([start_link/0,	init/1]).

-export([stop/0]).

start_link()	->

				supervisor:start_link({local,?MODULE},	?MODULE,	[]).

stop()	->	exit(whereis(?MODULE),	shutdown).

init(_)	->

				ChildSpecList	=	[child(freq_overload,	worker),

																					child(frequency,	worker),

																					child(simple_phone_sup,	supervisor)],

				{ok,{{rest_for_one,	2,	3600},	ChildSpecList}}.

child(Module,	Type)	->

				{Module,	{Module,	start_link,	[]},

					permanent,	2000,	Type,	[Module]}.

We	pick	the	rest_for_one	strategy	because	if	the	phones	or	the	phone

supervisor	terminates,	we	do	not	want	to	affect	the	frequency	allocator	and
overload	handler.	But	if	the	frequency	allocator	or	the	overload	handler
terminates,	we	want	to	restart	all	of	the	phone	FSMs.	We	allow	a	maximum	of
two	restarts	per	hour,	after	which	we	escalate	the	problem	to	whatever	is
responsible	for	the	bsc_sup	supervisor.

Suppose	that	corrupted	data	in	the	frequency	server	is	causing	the	phone	FSMs
to	crash.	After	the	simple_phone_sup	has	terminated	three	times	within	an	hour,
thus	surpassing	its	maximum	restart	threshold,	bsc_sup	will	terminate	all	of	its
children,	bringing	the	frequency	server	down	with	it.	The	restart	will	hopefully
clear	up	the	problem,	allowing	the	phones	to	function	normally.	We	show	how
this	escalation	is	handled	in	the	upcoming	chapters.	Until	then,	let’s	use	our
phone.erl	simulator	and	test	our	supervision	structure	and	phone	FSM	by	starting
150	phones,	each	attempting	to	make	500	calls:

1>	bsc_sup:start_link().

{ok,<0.35.0>}

2>	phone:start_test(150,	500).

DBG	<0.107.0>	got	{'$gen_sync_all_state_event',

																								{<0.33.0>,#Ref<0.0.4.37>},

																								{outbound,109}}	in	state	idle

<0.107.0>	dialing	109

...<snip>...

DBG	<0.92.0>	switched	to	state	idle

DBG	<0.53.0>	switched	to	state	idle

3>	counters:get_counters(freq_overload).

{counters,[{{event,{frequency_denied,<0.38.0>}},27},

											{{set_alarm,{no_frequency,<0.38.0>}},6},

											{{clear_alarm,no_frequency},6}]}

For	the	sake	of	brevity,	we’ve	cut	out	all	but	one	of	the	debug	printouts.	Having
run	the	test,	we	retrieve	the	counters	and	see	that	during	the	trial	run,	we	ran	out
of	available	frequencies	six	times,	raising	and	eventually	clearing	the	alarm
accordingly.	During	these	six	intervals,	27	phone	calls	could	not	be	set	up	as	a
result.	Examining	the	logs,	we	can	get	the	timestamps	when	these	calls	were
rejected.	If	a	pattern	emerges,	we	can	use	the	information	to	improve	the
availability	of	frequencies	at	various	hours.

Before	moving	on	to	the	next	section,	if	you	ran	the	test	just	shown	on	your
computer	and	still	have	the	shell	open,	try	killing	the	frequency	server	three
times	using	exit(whereis(frequency),	kill).	You	will	cause	the	top-level

supervisor	to	reach	its	maximum	restart	threshold	and	terminate.	Note	how,
when	the	phone	FSM	detaches	itself	in	the	FSM	terminate	function,	you	get	a
badarg	error	as	a	result	of	the	hlr	ETS	tables	no	longer	being	present.	The	error
reports	originate	in	the	terminate	function	if	the	supervisor	has	terminated
before	the	phone	FSM,	taking	the	ETS	tables	with	it.	These	error	reports	might
shadow	more	important	errors,	so	it	is	always	a	good	idea	within	a	terminate
function	to	embed	calls	that	might	fail	within	a	try-catch	and,	by	default,	return
the	atom	ok.

Non-OTP-Compliant	Processes
Child	processes	linked	to	an	OTP	supervision	tree	have	to	be	OTP	behaviors,	or
follow	the	behavior	principles,	and	be	able	to	handle	and	react	to	OTP	system
messages.	There	are,	however,	times	when	we	want	to	bypass	behaviors	and	use
pure	processes,	either	because	of	performance	reasons	or	simply	as	a	result	of
legacy	code.	We	get	around	this	problem	by	using	supervisor	bridges,
implementing	our	own	behaviors,	or	having	a	worker	spawn	and	link	itself	to
regular	Erlang	processes.

Supervisor	bridges
In	the	mid-1990s,	when	major	projects	for	the	next	generation	of	telecom
infrastructure	of	that	time	were	started	at	Ericsson,	OTP	was	being	implemented.
The	first	releases	of	these	systems,	while	following	many	of	the	design
principles,	were	not	OTP-compliant	because	OTP	did	not	exist.	When	OTP	R1
was	released,	we	ended	up	spending	more	time	in	meetings	discussing	whether
we	should	migrate	these	systems	to	OTP	than	it	would	actually	have	taken	to	do
the	job.	It	is	at	times	like	these,	when	no	progress	is	made,	that	the
supervisor_bridge	behavior	comes	in	handy.

The	supervisor	bridge	is	a	behavior	that	allows	you	to	connect	a	non-OTP-
compliant	set	of	processes	to	a	supervision	tree.	It	behaves	like	a	supervisor
toward	its	supervisor,	but	interacts	with	its	child	processes	using	predefined	start
and	stop	functions.	In	Figure	8-11,	the	right-hand	side	of	the	supervision	tree
consists	of	OTP	behaviors,	while	the	left-hand	side	of	the	supervision	tree
connects	the	non-OTP-compliant	processes.

Figure	8-11.	Supervisor	bridges

Start	a	supervisor	bridge	using	the	supervisor_bridge:start_link/2,3	call,
passing	the	optional	NameScope,	the	callback	Mod,	and	the	Args.	This	results	in
calling	the	init(Args)	callback	function,	in	which	you	start	your	Erlang	process
subtree,	ensuring	all	processes	are	linked	to	each	other.	The	init/1	callback,	if

successful,	has	to	return	{ok,	Pid,	State}.	Save	the	State	and	pass	it	as	a
second	argument	to	the	terminate/2	callback.

If	the	Pid	process	terminates,	the	supervisor	bridge	will	terminate	with	the	same
reason,	causing	the	terminate/2	callback	function	to	be	invoked.	In
terminate/2,	all	calls	required	to	shut	down	the	non-OTP-compliant	processes
have	to	be	made.	At	this	point,	the	supervisor	bridge’s	supervisor	takes	over	and
manages	the	restart.	If	the	supervisor	bridge	receives	a	shutdown	message	from
its	supervisor,	terminate/2	is	also	called.	While	the	supervisor	bridge	handles
all	of	the	debug	options	in	the	sys	module,	the	processes	it	starts	and	is
connected	to	have	no	code	upgrade	and	debug	functionality.	Supervision	will	be
limited	to	what	has	been	implemented	in	the	subtree.

supervisor_bridge:start_link(NameScope,	Mod,	Args)	->

				{ok,	Pid}	|	ignore	|	{error,	{already_started,Pid}}

Mod:init(Args)															->	{ok,Pid,State}	|	ignore	|	{error,Reason}

Mod:terminate(Reason,	State)	->	term()

Adding	non-OTP-compliant	processes
Remember	that	supervisors	can	accept	only	OTP-compliant	processes	as	part	of
their	supervision	tree.	They	include	workers,	supervisors	and	supervisor	bridges.
There	is	one	last	group,	however,	that	can	be	added:	processes	that	follow	a
subset	of	the	OTP	design	principles,	the	same	ones	standard	behaviors	follow.
We	call	processes	that	follow	OTP	principles	but	are	not	part	of	the	standard
behaviors	special	processes.	You	can	implement	your	own	special	processes	by
using	the	proc_lib	module	to	start	your	processes	and	handle	system	messages
in	the	sys	module.	With	little	effort,	the	sys,	debug,	and	stats	options	can	be
added.	Processes	implemented	following	these	principles	can	be	connected	to
the	supervision	tree.	We	cover	them	in	more	detail	in	Chapter	10.

Scalability	and	Short-Lived	Processes
Typical	Erlang	design	creates	one	process	for	each	truly	concurrent	activity	in
your	system.	If	your	system	is	a	database,	you	will	want	to	spawn	a	process	for
every	query,	insert,	or	delete	operation.	But	don’t	get	carried	away.	Your
concurrency	model	will	depend	on	the	resources	in	your	system,	as	in	practice,
you	could	have	only	one	connection	to	the	database.	This	becomes	your
bottleneck,	as	it	ends	up	serializing	your	requests.	In	this	case,	is	sending	this
process	a	message	easier	than	spawning	a	new	one?	If	your	system	is	an	instant
messaging	server,	you	will	want	a	process	for	every	inbound	and	outbound
message,	status	update,	or	login	and	logout	operation.	We	are	talking	about	tens
or	possibly	hundreds	of	thousands	of	simultaneous	processes	that	are	short-lived
and	reside	under	the	same	supervisor.	At	the	time	of	writing,	supervisors	that
have	a	large	number	of	dynamic	children	starting	and	terminating	at	very	short
continuous	intervals	will	not	scale	well	because	the	supervisor	becomes	the
bottleneck.	The	implementation	of	the	simple_one_for_one	strategy	scales
better,	as	unlike	other	supervisor	types	that	store	their	child	specifications	in
lists,	it	uses	the	dict	key-value	library	module.	But	despite	this,	it	will	also	have
its	limits.	Giving	a	rule-of-thumb	measure	of	the	rate	at	which	dynamic	children
can	be	started	and	terminated	is	hard,	because	it	depends	on	the	underlying
hardware,	OS,	and	cores,	as	well	as	the	behavior	of	the	processes	themselves
(including	the	amount	of	data	that	needs	to	be	copied	when	spawning	a	process).
These	issues	are	rare,	but	if	a	supervisor	message	queue	starts	growing	to
thousands	of	messages,	you	know	you	are	affected.	There	are	two	approaches	to
the	problem.

The	clean	approach,	shown	in	Figure	8-12,	is	to	create	a	pool	of	supervisors,
ensuring	that	each	does	not	need	to	cater	for	more	children	than	it	can	handle.
This	is	a	recommended	strategy	if	the	children	have	to	interact	with	other
processes	and	are	often	long-lived.	The	process	on	the	left	is	the	dispatcher,
which	manages	coordination	among	the	supervisors	and,	if	necessary,	starts	new
ones.	You	can	pick	a	supervisor	in	the	pool	using	an	algorithm	that	best	suits
your	needs,	such	as	round	robin,	consistent	hashing,	or	random.

Figure	8-12.	Supervisor	pools

The	second	approach	taken	by	many	is	to	have	a	worker,	more	often	than	not	a
generic	server,	that	spawn_links	a	non-OTP-compliant	process	for	every	request
(Figure	8-13).	You	will	often	find	this	strategy	in	messaging	servers,	web
servers,	and	databases.	This	non-OTP-compliant	process	usually	executes	a
sequential,	synchronous	set	of	operations	and	terminates	as	soon	as	it	has
completed	its	task.	This	solution	potentially	sacrifices	OTP	principles	for	speed
and	scalability,	but	it	ensures	that	your	process	is	linked	to	the	behavior	that
spawned	it;	if	the	process	tree	shuts	down,	the	linked	processes	will	also
terminate.

Figure	8-13.	Linking	to	a	worker

Why	link?	Don’t	forget	that	your	system	will	run	for	years	without	being
restarted.	You	can’t	predict	what	upgrades,	new	functionality,	or	even	abnormal
terminations	will	occur.	The	last	thing	you	want	is	a	set	of	dangling	processes
you	can’t	control,	left	there	after	the	last	failed	upgrade.	Because	you	link	the
non-OTP-compliant	children	to	their	parent,	if	the	parent	terminates,	so	do	the
children.

MULTIPLE	SUPERVISION	POLICIES

Every	child	may	be	associated	with	one	supervisor	or	parent.	OTP	supervision	trees	are	not	set	up	to
handle	cases	where	a	behavior	might	belong	to	two	process	groups	with	different	policies.	If	you	come
across	such	use	cases	where	it	might	make	sense	to	have	multiple	processes	monitor	the	same

behavior,	use	links	and	monitors,	and	ensure	that	only	one	of	the	behaviors	is	responsible	for	handling
the	restart	strategy.

Synchronous	Starts	for	Determinism
Remember	that	when	you	start	behaviors	with	either	the	start	or	start_link
calls,	process	creation	and	the	execution	of	the	init/1	function	are	synchronous.
The	functions	return	only	when	the	init/1	callback	function	returns.	The	same
applies	to	the	supervisor	behavior.	A	crash	during	the	start	of	any	behavior	will
cause	the	supervisor	to	fail,	terminating	all	the	children	it	has	already	started.
Because	starts	are	synchronous	and	if	start	and	restart	times	are	critical,	try	to
minimize	the	amount	of	work	done	in	the	init/1	callback.	You	need	to
guarantee	that	the	process	has	been	restarted	and	is	in	a	consistent	state.	If
starting	up	involves	setting	up	a	connection	toward	a	remote	node	or	a	database
—	a	connection	that	can	later	fail	as	a	result	of	a	transient	error	—	start	setting
up	the	connection	in	your	init/1	function,	but	do	not	wait	for	the	connection	to
come	up.

A	trick	you	can	use	to	postpone	your	initialization	is	to	set	the	timeout	to	0	in
your	init/1	behavior	callback	function.	Setting	a	timeout	in	this	manner	results
in	your	callback	module	receiving	a	timeout	message	immediately	after	init/1
returns,	allowing	you	to	asynchronously	continue	initializing	your	behavior.	This
could	involve	waiting	for	node	or	database	connections	or	any	other	noncritical
parts	over	which	your	init/1	function	does	not	provide	guarantees.	A	more
general	alternative	to	a	timeout	is	for	init/1	to	send	a	suitable	asynchronous
message	to	self(),	which	is	handled	after	init/1	returns,	in	order	to
asynchronously	proceed	with	initialization.

REPAIRING	MNESIA	TABLES

Remember	Mnesia,	the	distributed	database	introduced	in	the	Erlang	Programming	book?	An
unexpected	restart	issue	we	had	many	times	in	live	systems	was	for	Mnesia	to	load	and	fix	its	tables
during	a	restart,	which	can	be	caused	after	a	node	is	shut	down	abnormally	as	the	result	of	a	VM
crashing	or	it	being	killed,	or	after	a	power	outage	or	hardware	fault.	Upon	restarting,	Mnesia	loads	its
tables	asynchronously,	so	as	to	not	block	other	behaviors	from	starting.	Fixing	tables	has	been	known
to	take	a	long	time,	as	logs	and	backups	are	scanned.	If	you	try	to	read	a	value	from	a	table	that	has	not
been	completely	loaded,	the	call	will	raise	an	exception.

If	a	behavior	is	dependent	on	a	set	of	tables,	you	can	get	around	this	problem	by	calling
mnesia:wait_for_tables/2	when	initializing	your	behavior.	This	will	work	without	any	issues	in	a
test	environment	when	tables	are	small,	but	in	production	systems,	the	data	being	loaded	can	be
substantial.	In	fact,	data	sets	in	test	environments	are	usually	so	small	that	you	will	probably	get	away

without	calling	wait_for_tables/2.	But	in	the	worse	case,	in	a	live	system	after	a	major	outage,	can
your	supervisor	startup	handle	waiting	a	couple	of	minutes	for	an	Mnesia	table	being	repaired	as	the
result	of	an	abnormal	termination?	Will	it	cause	unwanted	message	queue	growth	elsewhere,	or	result
in	a	knock-on	effect?	These	are	issues	you	have	to	validate	when	testing	your	system.

Why	are	synchronous	starts	important?	Imagine	first	spawning	all	your	child
processes	asynchronously	and	then	checking	that	they	have	all	started	correctly.
If	something	goes	wrong	at	startup,	the	issue	might	have	been	caused	by	the
order	in	which	processes	were	started	or	the	order	the	expressions	in	their
respective	init	callbacks	were	executed.	Recreating	the	race	condition	that
resulted	in	the	startup	error	might	not	be	trivial.	Your	other	option	is	to	start	a
process,	allow	it	to	initialize,	and	start	the	next	one	only	when	the	init	function
returns.	This	will	give	you	the	ability	to	reproduce	the	sequence	that	led	to	a
startup	error	without	having	to	worry	about	race	conditions.	Incidentally,	this	is
the	way	we	do	it	when	using	OTP,	where	the	combination	of	applications
(covered	in	Chapter	9),	supervisors,	and	the	synchronous	startup	sequence
together	provide	a	“simple	core”	that	guarantees	a	solid	base	for	the	rest	your
system.

Testing	Your	Supervision	Strategy
In	this	chapter,	we’ve	explained	how	to	architect	your	supervision	tree,	group
and	start	processes	based	on	dependencies,	and	ensure	that	you	have	picked	the
right	restart	strategy.	These	tasks	should	not	be	overlooked	or	underestimated.
Although	you	are	encouraged	to	avoid	defensive	programming	and	let	your
behavior	terminate	if	something	unexpected	happens,	you	need	to	make	sure	that
you	have	isolated	the	error	and	are	able	to	recover	from	this	exception.	You
might	have	missed	dependencies,	picked	the	wrong	restart	strategy,	or	set	your
allowed	number	of	restarts	too	high	(or	low)	in	a	possibly	incorrect	time	interval.
How	to	you	test	these	scenarios	and	detect	these	design	anomalies?

ABNORMAL	OR	NORMAL	TERMINATION?

One	of	this	book’s	authors	was	involved	in	a	project	where	each	generic	server	managed	by	the
supervisor	owned	a	TCP	connection.	When	the	socket	was	closed	as	a	result	of	a	connectivity	error,	it
would	terminate	the	behavior	abnormally,	be	restarted,	and	attempt	to	re-establish	the	connection.
Each	network	connectivity	error,	although	perfectly	legitimate,	would	increment	the	counter	for	the
number	of	abnormal	terminations,	occasionally	resulting	in	shutting	the	node	down.	This	was
particularly	evident	when	experiencing	network	connectivity	issues	as	a	result	of	a	firewall
misconfiguration,	router	and	load	balancer	failures,	or	something	as	simple	as	a	system	administrator
tripping	over	a	network	cable.	On	top	of	creating	outages,	other	abnormal	issues	happening	in	the
system	were	being	lost	in	the	sheer	volume	of	error	reports	being	generated.	Because	these	actions	can
happen	under	normal	operations,	the	socket	closings	that	were	not	initiated	by	the	program	itself
should	have	been	handled	as	normal	events	and	not	resulted	in	abnormal	termination.

All	correctly	written	test	specifications	for	Erlang	systems	will	contain	negative
test	cases	where	recovery	scenarios	and	supervision	strategies	have	to	be
validated	by	simulating	abnormal	terminations.	You	need	to	ensure	that	the
system	is	not	only	able	to	start,	but	also	to	restart	and	self-heal	when	something
unexpected	happens.

In	our	first	test	system,	exit(Pid,	Reason)	was	used	to	kill	specific	processes
and	validate	the	recovery	scenarios.	In	later	years,	we	used	Chaos	Monkey,	an
open	source	tool	that	randomly	kills	processes,	simulating	abnormal	errors.	Try
it	while	stress	testing	your	system,	complementing	it	with	fault	injections	where
hardware	and	network	failures	are	being	simulated.	If	your	system	comes	out	of
it	alive,	it	is	on	track	to	becoming	production-ready.

https://github.com/Netflix/SimianArmy

DON’T	TELL	THE	WORLD	YOU	ARE	KILLING
CHILDREN!

While	working	on	the	R1	release	of	OTP,	a	group	of	us	left	the	office	and	took	the	commuter
train	into	Stockholm.	We	were	talking	about	the	ease	of	killing	children,	children	dying,	and	us
not	having	to	worry	about	it,	as	supervisors	would	trap	exits	and	restart	them.	We	were	very
excited	and	vocal	about	this,	as	it	was	at	the	time	a	novel	approach	to	software	development,
and	one	we	were	learning	about	as	we	went	along.	We	were	all	so	engrossed	in	this
conversation	that	we	failed	notice	the	expressions	of	horror	on	the	faces	of	some	elderly	ladies
sitting	next	to	us.	I	have	never	seen	an	expression	of	alarm	turn	so	quickly	into	an	expression
of	relief	as	when	we	finally	got	off	the	train.	Pro	Tip:	when	in	public,	talk	about	behaviors,	not
children,	and	do	not	kill	them	—	terminate	them	instead.	It	will	help	you	make	friends,	and
you	won’t	risk	having	to	explain	yourself	to	a	law	enforcement	officer	who	probably	has	no
sense	of	humor.

How	Does	This	Compare?
How	does	the	approach	of	nondefensive	programming,	letting	supervisors
handle	errors,	compare	to	conventional	programming	languages?	The	urban
legend	among	us	Erlang	programmers	boasted	of	less	code	and	faster	time	to
market.	But	the	numbers	we	quoted	were	based	on	gut	feelings	or	studies	that
were	not	public.	The	very	first	study,	in	fact,	came	from	Ericsson,	where	a
sizable	number	of	features	in	the	MD110	corporate	switch	were	rewritten	from
PLEX	(a	proprietary	language	used	at	the	time)	to	Erlang.	The	result	was	a
tenfold	decrease	in	code	volume.	Worried	that	no	one	would	believe	this	result,
the	official	stance	was	that	you	could	implement	the	same	features	with	four
times	less	code.	Four	was	picked	because	it	was	big	enough	to	be	impressive,	but
small	enough	not	to	be	challenged.	We	finally	got	a	formal	answer	when	Heriot-
Watt	University	in	Scotland	ran	a	study	focused	on	rewriting	C++	production
systems	to	Erlang/OTP.	One	of	the	systems	was	Motorola’s	Data	Mobility	(DM),
a	system	handling	digital	communication	streams	for	two-way	radio	systems
used	by	emergency	services.	The	DM	had	been	implemented	in	C++	with	fault
tolerance	and	reliability	in	mind.	It	was	rewritten	in	Erlang	using	different
approaches,	allowing	the	various	versions	to	be	compared	and	contrasted.

Many	academic	papers	and	talks	have	been	written	on	this	piece	of	research.
One	of	the	interesting	discoveries	was	an	85%	reduction	in	code	in	one	of	the
Erlang	implementations.	This	was	in	part	explained	by	noting	that	27%	of	the
C++	code	consisted	of	error	handling	and	defensive	programming.	The
counterpart	in	Erlang,	if	you	assumed	OTP	to	be	part	of	the	language	libraries,
was	a	mere	1%!

Just	by	using	supervisors	and	the	fault	tolerance	built	into	OTP	behaviors,	you
get	a	code	reduction	of	26%	compared	to	other	conventional	languages.	Remove
the	11%	of	the	C++	code	that	consists	of	memory	management,	remove	another
23%	consisting	of	high-level	communication	—	all	features	that	are	part	of	the
Erlang	semantics	or	part	of	OTP	—	and	include	declarative	semantics	and
pattern	matching,	and	you	can	easily	understand	how	an	85%	code	reduction
becomes	possible.	Read	one	or	two	of	the	papers2	and	have	a	look	at	the
recordings	of	the	presentations	available	online	if	you	want	to	learn	more	about
this	study.

Summing	Up
Building	on	previous	chapters	that	covered	OTP	worker	processes,	this	chapter
explained	how	to	group	them	together	in	supervision	trees.	We	have	looked	at
dependencies	and	recovery	strategies,	and	how	they	allow	you	to	handle	and
isolate	failures	generically.	The	bottom	line	is	for	you	not	to	try	to	handle
software	bugs	or	corrupt	data	in	your	code.	Focus	on	the	positive	cases	and,	in
the	case	of	unexpected	ones,	let	your	process	terminate	and	have	someone	else
deal	with	the	problem.	This	strategy	is	what	we	refer	to	as	fail	safe.

In	Table	8-2	we	list	the	functions	exported	by	the	supervisor	and	supervisor
bridge	behaviors,	together	with	their	respective	callback	functions.	You	can	read
more	about	them	in	their	respective	manual	pages.

Table	8-2.	Supervisor	callbacks

Supervisor	function	or	action Supervisor	callback	function

supervisor:start_link/2,	supervisor:start_link/3 Module:init/1

supervisor_bridge:start_link/2,
supervisor_bridge:start_link/3

Module:init/1,
Module:terminate/2

Before	reading	on,	you	should	also	read	through	the	code	of	the	examples
provided	in	this	chapter	and	look	for	examples	of	supervisor	implementations
online.	Doing	so	will	help	you	understand	how	to	design	your	system	while
keeping	fault	tolerance	and	recovery	in	mind.

What’s	Next?
In	the	next	chapter,	we	cover	how	to	package	supervision	trees	into	a	behavior
called	an	application.	Applications	contain	supervision	trees	and	provide
operations	to	start	and	stop	them.	They	are	seen	as	the	basic	building	blocks	of
Erlang	systems.	In	Chapter	11,	we	look	at	how	we	group	applications	into	a
release,	giving	us	an	Erlang	node.

If	you	are	someone	who	reads	footnotes,	good	for	you,	as	you	can	now	consider	yourself	warned	that
this	is	a	trick	question.

The	most	comprehensive	being	Nyström,	J.	H.,	Trinder,	P.	W.,	and	King,	D.	J.	(2008),	“High-level
distribution	for	the	rapid	production	of	robust	telecoms	software:	Comparing	C++	and	ERLANG,”
Concurrency	Computat.:	Pract.	Exper,	20:	941–968.	doi:	10.1002/cpe.1223.

1

2

Chapter	9.	Applications

In	our	previous	chapters,	we’ve	looked	at	worker	behaviors	and	how	they	can	be
grouped	together	to	form	a	supervision	tree.	In	this	chapter,	we	explore	the
application	behavior,	which	allows	us	to	package	together	supervision	trees,
modules,	and	other	resources	into	one	semi-independent	unit,	providing	the	basic
building	blocks	of	large	Erlang	systems.	An	OTP	application	is	a	convenient
way	to	package	code	and	configuration	files	and	distribute	the	result	around	the
world	for	others	to	use.

An	Erlang	node	typically	consists	of	a	number	of	loosely	coupled	OTP
applications	that	interact	with	each	other.	OTP	applications	come	from	a	variety
of	sources:

Some	are	available	as	part	of	the	standard	Ericsson	distribution,	including
mnesia,	sasl,	and	os_mon.

Other	generic	applications	that	are	not	part	of	the	Ericsson	distribution	but
are	necessary	for	the	functionality	of	many	Erlang	systems	can	be	obtained
commercially	or	as	open	source.	Examples	of	generic	applications	include
elarm	for	alarming,	folsom	or	exometer	for	metrics,	and	lager	for	logging.

Each	node	also	has	one	or	more	nongeneric	applications	that	contain	the
system’s	business	logic.	These	are	often	developed	specifically	for	the
system,	containing	the	core	of	the	functionality.

A	final	category	of	OTP	applications	are	those	that	are	full	user	applications
themselves	that,	together	with	their	dependencies,	could	run	on	a	standalone
basis	in	an	Erlang	node.	The	bundle	of	applications	is	referred	to	as	a
release.	Examples	include	the	Yaws	web	server,	the	Riak	database,	the
RabbitMQ	message	broker,	and	the	MongooseIM	chat	server.	While	not	a
common	practice,	inter-application	throughput	and	overall	performance	can
sometimes	be	improved	by	running	business	logic	applications	together	on
the	same	node	with	these	types	of	full	applications.

Regardless	of	their	sources,	though,	OTP	applications	are	generally	structured
the	same	way.	We	explore	the	details	of	this	structure	in	the	remainder	of	this

chapter.	In	the	rest	of	the	book,	we	use	the	term	“application”	to	refer
specifically	to	an	OTP	application,	and	not	an	application	in	the	broader	sense	of
the	word.

How	Applications	Run
One	way	to	view	an	application	is	as	a	means	of	packaging	resources	into
reusable	components.	Resources	can	consist	of	modules,	processes,	registered
names,	and	configuration	files.	They	could	also	include	other	non-Erlang	source
or	executable	code,	such	as	bash	scripts,	graphics,	or	drivers.	Though	different
OTP	applications	contain	different	resources	and	perform	different	functions	or
services,	to	the	Erlang	run-time	system	they	all	look	the	same;	it	doesn’t
distinguish	between	them	in	terms	of	how	it	loads	and	runs	them,	allows	them	to
be	accessed	and	invoked	from	other	applications,	or	terminates	them.	Figure	9-1
shows	how	various	components	run	together	on	the	Erlang	runtime.

Figure	9-1.	An	Erlang	release

Applications	can	be	configured,	started,	and	stopped	as	a	whole.	This	allows	a
system	to	easily	manage	many	supervision	trees,	running	them	independently	of
each	other.	One	application	can	also	depend	on	another	one;	for	example,	a
server-side	web	application	might	depend	on	a	web	server	application	such	as
Yaws.	Supporting	application	dependencies	means	the	runtime	has	to	handle
starting	and	stopping	applications	in	the	proper	order.	This	provides	a	basis	for
cleanly	encapsulating	functionality	and	encourages	reusability	in	a	way	that	goes
far	beyond	that	of	modules.

http://yaws.hyber.org/

There	are	two	types	of	applications:	normal	applications	and	library
applications.	Normal	applications	start	a	top-level	supervisor,	which	in	turn
starts	its	children,	forming	the	supervision	tree.	Library	applications	contain
library	modules	but	do	not	start	a	supervisor	or	processes	themselves;	the
function	calls	they	export	are	invoked	by	workers	or	supervisors	running	in	a
different	application.	A	typical	example	of	a	library	application	is	stdlib,	which
contains	all	of	the	OTP	standard	libraries	such	as	supervisor,	gen_event,
gen_server,	and	gen_fsm.

Behind	the	scenes	in	the	Erlang	VM	a	process	called	the	application	controller
starts	on	every	node.	For	every	OTP	application,	the	controller	starts	a	pair	of
processes	called	the	application	master.	It	is	the	master	that	starts	and	monitors
the	top-level	supervisor	and	takes	action	if	it	terminates	(Figure	9-2).

Figure	9-2.	Application	controller

When	using	releases	(covered	in	Chapter	11),	the	Erlang	runtime	treats	each
application	as	a	single	unit;	it	can	be	loaded,	started,	stopped,	and	unloaded	as	a

whole.	When	loading	an	application,	the	runtime	system	loads	all	modules	and
checks	all	its	resources.	If	a	module	is	missing	or	corrupt,	startup	fails	and	the
node	is	shut	down.	When	starting	an	application,	the	master	spawns	the	top-level
supervisor,	which	in	turn	starts	the	remainder	of	the	supervision	tree.	If	any	of
the	behaviors	in	the	supervision	tree	fail	at	startup,	the	node	is	also	shut	down.
When	stopped,	the	application	master	terminates	the	top-level	supervisor,
propagating	the	shutdown	exit	signal	to	all	behavior	processes	in	the	supervision
tree.	Finally,	when	unloading	an	application,	the	runtime	purges	all	modules	for
that	application	from	the	system.

Now	that	we	have	a	high-level	overview	of	how	everything	is	glued	together,
let’s	start	looking	at	the	details.

The	Application	Structure
Applications	are	packaged	in	a	directory	that	follows	a	special	structure	and
naming	convention.	Tools	depend	on	this	structure,	as	do	the	release-handling
mechanisms.	A	typical	application	directory	has	the	structure	shown	in	Figure	9-
3,	containing	the	ebin,	src,	priv,	and	include	directories.

Figure	9-3.	Application	structure

The	name	of	the	application	directory	is	the	name	of	the	application	followed	by
its	version	number.	This	allows	you	to	store	different	versions	of	the	application
in	the	same	library	directory,	using	the	code	search	path	to	point	to	the	one	being
used.	Subdirectories	of	an	application	include:

ebin
Contains	the	beam	files	and	the	application	configuration	file,	also	known
as	the	app	file

src
Contains	the	Erlang	source	code	files	and	include	files	that	you	do	not	want
other	applications	to	use

priv
Contains	non-Erlang	files	needed	by	the	application,	such	as	images,
drivers,	scripts,	or	proprietary	configuration	files

include
Contains	exported	include	files	that	can	be	used	by	other	applications

Other	nonstandard	directories,	such	as	doc	for	documentation,	test	for	test	cases,
and	examples,	can	also	be	part	of	your	application.	What	sets	nonstandard
directories	apart	from	the	ones	in	the	previous	list	is	that	the	runtime	system	and
tools	allow	you	to	access	the	standard	directories	by	application	name,	without
having	to	reference	the	version.	For	instance,	when	you	load	an	application,	the
code	search	path	for	that	application	will	point	straight	to	the	ebin	directory	of
the	version	you	are	using.	Or,	if	you	want	to	include	the	.hrl	file	of	another
application,	the	include	path	in	the	makefiles	will	point	to	the	correct	version.
This	doesn’t	happen	with	nonstandard	directories,	and	as	such,	you	or	your	tools
have	to	figure	out	the	path.

Let’s	have	a	look	at	this	structure	in	more	detail	by	following	an	example	in	the
OTP	distribution.	Remember	that	the	directory	structure	of	any	OTP	application
in	the	Erlang	distribution	will	be	the	same	as	those	of	the	applications	you	are
implementing	in	your	system.

Go	to	the	Erlang	root	directory,	and	from	there,	cd	into	the	lib	directory.	If	you
are	unsure	where	Erlang	is	installed,	start	a	shell	and	determine	the	location	of
the	lib	directory	by	typing	code:lib_dir()..	The	lib	directory	contains	all	of	the
applications	included	when	installing	Erlang.	If	you	have	upgraded	your	release
or	installed	patches,	you	might	find	more	than	one	version	of	some	applications.
The	versions	of	the	applications	will	differ	from	release	to	release,	so	what	you
see	might	differ	from	the	examples	in	this	chapter.

Let’s	have	a	look	at	the	contents	of	the	lib	directory	and	the	latest	version	of	the
runtime	tools	application	runtime_tools,	which	should	be	included	in	every
release:

1>	code:lib_dir().

"/usr/local/lib/erlang/lib"

2>	halt().

$	cd	/usr/local/lib/erlang/lib

$	ls

...<snip>...

appmon-2.1.14.2						erts-5.7.5					public_key-0.18

asn1-1.6.13										erts-5.8.1					public_key-0.5

asn1-1.6.14.1								et-1.4									public_key-0.8

asn1-2.0.1											et-1.4.1							reltool-0.5.3

common_test-1.4.7				et-1.4.4.3					reltool-0.5.4

common_test-1.5.1				eunit-2.1.5				reltool-0.6.3

common_test-1.7.1				eunit-2.2.4				runtime_tools-1.8.10

compiler-4.6.5							gs-1.5.11						runtime_tools-1.8.3

compiler-4.7.1							gs-1.5.13						runtime_tools-1.8.4.1

...<snip>...

$	cd	runtime_tools-1.8.10/

$	ls

doc				examples				info				src

ebin			include					priv

The	doc	directory	and	info	file	are	nonstandard,	and	as	such	have	nothing	to	do
with	OTP	(the	Ericsson	OTP	team	uses	them	for	documentation	purposes).
Erlang	developers	often	add	other	application-specific	directories	and	files,	such
as	test	and	examples.	No	guarantees	exist	that	these	nonstandard	directories	and
files	will	be	retained	between	releases.	If	you	look	at	different	versions	of	the
runtime-tools	application,	for	example,	you	will	see	that	earlier	versions	have	an
info	file	that	is	no	longer	present	in	later	versions.

Let’s	focus	on	the	OTP	standard	directories.	If	you	cd	into	the	ebin	directory	of
the	runtime_tools	application	and	examine	its	contents,	you	will	find	.beam	files,
an	.app	file,	and	possibly	an	.appup	file.	The	.beam	files,	as	you	likely	already
know,	contain	Erlang	byte	code.	The	.app	file	is	a	mandatory	application
resource	file	we	explore	in	more	detail	in	“Application	Resource	Files”.	The
.appup	file	might	be	there	if	you	have	at	some	point	upgraded	your	application.
We	cover	this	file	in	more	detail	in	Chapter	12	when	looking	at	software
upgrades.

The	src	directory	contains	the	Erlang	source	code.	If	the	modules	in	this
directory	use	one	or	more	.hrl	files	that	are	not	exported	to	be	used	by	other
applications,	put	them	here.	The	current	working	directory	is	by	default	always
included	in	the	include	file	search	path,	so	when	compiling,	files	you	put	here
will	be	picked	up.	It	is	the	responsibility	of	your	build	system	to	ensure	that
beam	files	resulting	from	compilation	are	moved	from	the	src	to	the	ebin
directory.	Makefiles	and	tools	like	rebar3	(covered	in	“Rebar3”)	normally	do
this	for	you.

Macros	and	records	defined	in	include	files	are	often	part	of	interface
descriptions,	requiring	modules	in	other	applications	to	have	access	to	these
definitions.	The	include	directory	is	used	in	the	build	process	to	provide	access
to	the	.hrl	files	stored	in	it.	Without	having	to	know	the	location	of	the	include
file	directory	or	the	application	version,	you	can	use	the	following	directive:

-include_lib("Application/include/File.hrl").

where	Application	is	the	application	name	without	the	version	and	File.hrl	is
the	name	of	the	include	file.	The	compiler	will	know	which	version	of	the
application	you	are	working	with,	find	the	directory,	and	automatically	include
the	file	without	you	having	to	change	the	version	numbers	between	releases.
Even	if	include	files	do	not	require	the	.hrl	extension,	it	is	good	practice	to
always	use	it.	Version	dependencies	are	handled	in	release	files,	covered	in
Chapter	12.

If	you	run	grep	^-include_lib	ssl*/src/*.erl	from	your	Erlang	lib	directory
to	examine	the	src	directories	of	all	the	versions	of	the	ssl	application	installed
on	your	system,	you	will	notice	that	some	of	the	modules	include	.hrl	files	from
other	applications,	such	as	public_key	and	kernel.	There	will	also	be	a	few
include	files	stored	directly	in	the	src	directory,	which	are	used	only	by	the	ssl
application	itself.

The	priv	directory	contains	non-Erlang-specific	resources.	They	could	be	linked-
in	drivers,	shared	libraries	for	native	implemented	functions	(NIFs),	executables,
graphics,	HTML	pages,	JavaScript,	or	application-specific	configuration	files	—
basically,	any	source	the	application	needs	at	runtime	that	is	not	directly	Erlang-
related	resides	here.	In	the	case	of	the	runtime_tools	application,	the	priv
directory	includes	source	and	object	code	of	its	trace	drivers.	Because	the	path	of
the	priv	directory	will	differ	based	on	the	version	of	the	application	you	are
running,	use	code:priv_dir(Application)	in	your	code	to	generically	find	it.

The	ebin	and	priv	directories	are	usually	the	only	ones	shipped	and	deployed	on
target	machines.	This	will	probably	answer	your	question	as	to	why	the
mandatory	application	resource	file	is	included	in	the	ebin	directory	and	not	src.
If	you	look	at	other	applications	shipped	as	part	of	the	standard	distribution,	you
will	also	notice	that	the	priv	directory	is	not	mandatory	if	it	is	not	used.	The	sasl
application,	for	example,	has	no	priv	directory,	and	there	are	other	such
applications	as	well.

Although	it	is	up	to	you	whether	you	ship	source	code	and	documentation	with
your	products,	it	is	not	a	good	idea	to	bundle	them	up	with	your	release	deployed
on	target	machines,	because	once	you’ve	upgraded	your	beam	files,	no	checks
are	made	to	ensure	the	source	code	is	up	to	date.	Once,	when	called	in	to	resolve

an	outage,	we	were	reading	the	code	on	the	production	machines	until	we
realized	it	was	the	first	release	of	the	code,	now	woefully	out	of	date	as	the
sources	had	since	been	patched,	rewritten,	cleaned	up,	and	redeployed.	After	all,
those	who	deployed	the	new	beam	files	knew	the	source	code	on	the	target
machines	was	not	up	to	date.	They	also	knew	that	they	were	not	always	the	ones
supporting	the	system,	but	assumed	we	would	be	using	the	source	code
repository,	or	that	we	would	just	ask.	Should	you	find	yourself	in	a	similar
predicament,	follow	our	words	of	wisdom	and	always	start	with	the	assumption
that	those	supporting	the	systems	you	have	written	and	deployed	are	antisocial
axe	murderers	who	know	where	you	live.	They	will	not	speak	to	you	in	the
middle	of	the	night	when	called	to	deal	with	an	outage	caused	by	a	bug	in	your
code,	but	might	come	knocking	on	your	door	at	dawn	once	the	system	is
operational	again.

And	while	we	have	your	attention,	please,	never	ever	deploy	the	compiler
application	and	your	system	source	code	with	production	systems.	If	you	do,	you
are	really	asking	for	trouble,	because	you	will	end	up	changing	and	compiling
the	code	on	target	machines	in	an	attempt	to	resolve	the	issue.	Assuming	it	is	the
correct	version	of	the	code	(which	it	probably	isn’t),	and	assuming	it	actually
solves	the	problem	(which	it	probably	won’t),	there	is	still	the	risk	you	will
forget	to	commit	the	changes	back	to	your	actual	source	code	repository.	Don’t
forget	all	of	this	is	happening	at	3	AM,	and	all	you	want	is	to	return	to	sleep.
Code	should	be	taken	from	the	repository	and	tested	in	a	test	environment	before
deploying	it	to	a	live	system.	No	matter	how	urgent	the	fix,	don’t	cut	corners,
because	you	will	risk	paying	the	price	later,	irrespective	of	the	time	of	day	(or
night).

The	Callback	Module
The	application	behavior	is	no	different	from	other	OTP	behaviors.	The	module
containing	the	generic	code,	application,	is	part	of	the	kernel	library,	and	a
callback	module	contains	all	of	the	specific	code	(Figure	9-4).

Figure	9-4.	Application	behavior

The	behavior	directive	must	be	included	in	the	callback	module,	along	with	the
mandatory	and	optional	callbacks.	Of	all	behaviors,	the	application	callback
module	is	the	simplest.	Unless	you	are	dealing	with	takeovers	and	failovers	in
distributed	environments	or	complex	startup	strategies,	expect	your	application
callback	module	to	require	no	more	than	a	few	simple	lines	of	code.

Starting	and	Stopping	Applications
The	callback	module	is	invoked	when	starting	your	application.	You	start	it	by
calling	application:start(Application),	where	Application	is	the
application	name.	This	call	loads	all	of	the	modules	that	are	bundled	with	the
application	and	starts	the	master	processes,	one	of	which	calls	the
Mod:start(StartType,	StartArgs)	callback	function	in	the	application
callback	module.	The	start/2	function	has	to	return	{ok,	Pid},	where	Pid	is
the	process	identifier	of	the	top-level	supervisor.	If	the	application	is	not	already
loaded,	application:load(Application)	is	called	prior	to	starting	the	master
processes.	Our	application	callback	module	looks	something	like	this:

-module(bsc).

-behavior(application).

%%	Application	callbacks

-export([start/2,	stop/1]).

start(_StartType,	_StartArgs)	->

				bsc_sup:start_link().

stop(_Data)	->

				ok.

The	first	argument,	_StartType,	is	ignored	by	most	applications;	it	is	usually	the
atom	normal,	but	if	we’re	running	distributed	applications	with	automated
failover	and	takeover,	it	could	have	the	value	{takeover,	Node}	or	{failover,
Node}.	We	look	at	these	values	later	in	the	chapter.	The	second	argument,
_StartArgs,	comes	from	the	mod	key	of	the	application	resource	file,	described
in	“Application	Resource	Files”.

Figure	9-5	shows	how	the	application	callback	module	starts	the	top-level
supervisor.	The	application	callback	module’s	start/2	function	typically	just
calls	the	start_link	function	provided	by	the	top-level	supervisor.	For	example,
the	bsc:start/2	function	shown	earlier	simply	calls	bsc_sup:start_link/0.

Figure	9-5.	Starting	applications

In	our	case,	bsc_sup:start_link/0	returns	{ok,	Pid},	which	is	also	what
bsc:start/2	returns.	Another	valid	return	value	is	{ok,	Pid,	Data},	where	the
contents	of	Data	are	stored	and	later	passed	to	the	stop/1	callback	function
(Figure	9-6).	If	you	do	not	return	any	Data,	just	ignore	the	argument	passed	to
stop/1	(in	case	you’re	curious,	it	will	be	bound	to	[]	in	that	case).

Figure	9-6.	Stopping	applications

To	stop	an	application,	use	application:stop(Application).	This	results	in	the
callback	function	Mod:stop/1	being	called	after	the	supervision	tree	has	been
terminated,	including	all	workers	and	supervisors.	Mod:prep_stop/1	is	an
equally	important	but	optional	callback	invoked	before	the	processes	are
terminated.	If	you	need	to	clean	anything	up	before	terminating	your	supervision
tree,	prep_stop/1	is	where	you	trigger	it.

Let’s	try	loading,	starting,	and	stopping	the	sasl	application	from	the	standard
OTP	distribution.	Depending	on	how	you	installed	Erlang,	sasl	might	or	might
not	be	started	automatically	when	you	start	the	shell.	You	can	find	out	by	typing
application:which_applications()..	In	the	following	example,	we	do	this	in
shell	command	1,	getting	back	a	list	of	tuples.	The	first	element	is	the

application	name,	the	second	is	a	descriptive	string,1	and	the	third	is	a	string
denoting	the	application	version.	When	you	start	Erlang,	its	boot	script
determines	which	applications	it	starts.	If	the	sasl	application	is	in	there,	first
stop	it	before	attempting	to	run	the	example.	In	our	installation	of	Erlang,	it	is
not	started:

Example	9-1.	Loading	an	application
1>	application:which_applications().

[{stdlib,"ERTS		CXC	138	10","2.0"},

	{kernel,"ERTS		CXC	138	10","3.0"}]

2>	application:load(sasl).

ok

3>	application:start(sasl).

ok

4>

=PROGRESS	REPORT====	17-Feb-2014::19:51:08	===

										supervisor:	{local,sasl_safe_sup}

													started:	[{pid,<0.42.0>},

																							{name,alarm_handler},

																							{mfargs,{alarm_handler,start_link,[]}},

																							{restart_type,permanent},

																							{shutdown,2000},

																							{child_type,worker}]

...<snip>...

4>	application:stop(sasl).

=INFO	REPORT====	17-Feb-2014::19:51:23	===

				application:	sasl

				exited:	stopped

				type:	temporary

ok

The	system	architecture	support	libraries	(sasl)	application	is	a	collection	of
tools	for	building,	deploying,	and	upgrading	Erlang	releases.	It	is	part	of	the
minimal	OTP	release;	together	with	the	kernel	and	stdlib	applications,	it	has	to
be	included	in	all	OTP-compliant	releases.	We	cover	all	of	this	in	more	detail
later.

In	our	example,	we	load	sasl	in	shell	command	2	and	start	it	in	shell	command	3.
You	will	notice	that	when	we	start	the	application,	a	long	list	of	progress	reports
is	printed	in	the	shell	(we	deleted	all	but	the	first	one	from	our	output).	sasl	starts
its	top-level	supervisor,	which	in	turn	starts	other	supervisors	and	workers.	These
progress	reports	come	from	the	supervisors	and	workers	started	as	part	of	the
main	supervision	tree.	We	stop	the	application	in	shell	command	4.	Before
reading	on,	have	a	look	at	the	source	code	of	the	sasl	callback	module,	defined
in	the	file	sasl.erl.	If	you’re	unsure	where	to	find	it,	use	the	shell	command
m(sasl).	It	will	tell	you	where	the	beam	file	is	located.	The	source	code	is	up	a

level,	and	then	down	again	in	a	directory	called	src.	The	functions	to	look	at	in
the	source	code	are	start/2	and	stop/1.

Application	Resource	Files
Every	application	must	be	packaged	with	a	resource	file,	often	referred	to	as	the
app	file.	It	contains	a	specification	consisting	of	configuration	data,	resources,
and	information	needed	to	start	the	application.	The	specification	is	a	tagged
tuple	of	the	format	{application,	Application,	Properties},	where
Application	is	an	atom	denoting	the	application	name	and	Properties	is	a	list
of	tagged	tuples.

Let’s	step	through	the	sasl	application	resource	file	before	putting	one	together
ourselves	for	the	mobile	phone	example.	This	is	version	2.3.3	of	the	application;
be	aware	the	contents	of	your	app	file	might	differ	based	on	the	release	you
downloaded.	Looking	at	it,	you	should	immediately	spot	mod,	which	points	out
the	application	callback	module	and	arguments	passed	to	the	start/2	callback
function:

{application,	sasl,

			[{description,	"SASL		CXC	138	11"},

				{vsn,	"2.3.3"},

				{modules,	[sasl,	alarm_handler,	format_lib_supp,	misc_supp,	overload,	rb,

															rb_format_supp,	release_handler,	release_handler_1,	erlsrv,

															sasl_report,	sasl_report_tty_h,	sasl_report_file_h,	si,

															si_sasl_supp,	systools,	systools_make,	systools_rc,

															systools_relup,	systools_lib]},

				{registered,	[sasl_sup,	alarm_handler,	overload,	release_handler]},

				{applications,	[kernel,	stdlib]},

				{env,	[{sasl_error_logger,	tty},	{errlog_type,	all}]},

				{mod,	{sasl,	[]}}]}.

Let’s	step	through	the	properties	in	order.	The	property	list	contains	a	set	of
standard	items.	All	items	are	optional	—	if	an	item	is	not	included	in	the	list,	a
default	value	is	set	—	but	there	are	a	few	that	almost	all	applications	set.	The	list
of	standard	items	includes:

{description,	Description}

where	Description	is	a	string	of	your	choice.	You	will	see	the	description
string	surface	when	you	call	application:which_applications()	in	the
shell.	The	default	value	is	an	empty	string.

{vsn,	Vsn}

where	Vsn	is	a	string	denoting	the	version	of	the	application.	It	should

mirror	the	name	of	the	directory	and	in	automated	build	systems	is	set	by
scripts,	not	by	hand.	If	omitted,	the	default	value	is	an	empty	string.

{modules,	Modules}

where	Modules	is	a	list	of	modules	defaulting	to	the	empty	list.	The	module
list	is	used	when	creating	your	release	and	loading	the	application,	with	a
one-to-one	mapping	between	the	modules	listed	here	and	the	beam	files
included	in	the	ebin	directory.	If	your	module	beam	file	is	in	the	ebin
directory	but	is	not	listed	here,	it	will	not	be	loaded	automatically.2	This	list
is	also	used	to	check	the	module	namespace	for	clashes	between
applications,	ensuring	names	are	unique.
Each	module	is	specified	as	an	atom	denoting	the	module	name,	as	in	the
sasl	example.	Up	to	R15,	it	was	also	possible	to	specify	the	module
version	{Module,	Vsn},	as	it	appeared	in	the	-vsn(Vsn)	directive	in	the
module	itself.	This	is	no	longer	the	case.

{registered,	Names}

where	Names	contains	a	list	of	registered	process	names	running	in	this
application.	Including	this	property	ensures	that	there	will	be	no	name
clashes	with	registered	names	in	other	applications.	Missing	a	name	will	not
stop	the	process	from	running,	but	could	result	in	a	runtime	error	later	when
another	application	tries	to	register	the	same	name.	If	omitted,	the	default
value	is	the	empty	list.

{applications,	AppList}

where	AppList	is	a	list	of	application	dependencies	that	must	be	started	in
order	for	this	application	to	start.	All	applications	are	dependent	on	the
kernel	and	stdlib	applications,	and	many	also	depend	on	sasl.	Dependencies
are	used	when	generating	a	release	to	determine	the	order	in	which
applications	are	started.	Sometimes,	only	an	application	such	as	sasl	is
provided,	which	in	turn	depends	on	kernel	and	stdlib.	This	will	work,	but	it
makes	the	system	harder	to	maintain	and	understand.	The	default	for	this
property	is	the	empty	list,	but	it	is	extremely	unusual	to	omit	it	since	doing
so	implies	there	are	no	dependencies	on	other	applications.

{env,	EnvList}

where	EnvList	is	a	list	of	{Key,	Value}	tuples	that	set	environment
variables	for	the	application.	Values	can	be	retrieved	using	functions	from

the	application	module:	get_env(Key)	or	get_all_env()	by	processes	in
the	application,	or	get_env(Application,	Key)	and
get_all_env(Application)	for	processes	that	are	not	part	of	the
application.	Environment	variables	can	also	be	set	through	other	means
covered	later	in	this	chapter.	This	property	defaults	to	the	empty	list.

{mod,	Start}

where	Start	is	a	tuple	of	the	format	{Module,	Args}	containing	the
application	callback	module	and	arguments	passed	to	its	start	function.
Each	tuple	results	in	a	call	to	Module:start(normal,	Args)	when	the
application	starts.	Omitting	this	property	will	result	in	the	application	being
treated	as	a	library	application,	started	by	a	supervisor	or	worker	in	another
application,	and	no	supervision	tree	will	be	created	at	startup.

Here	are	some	other	properties	that	are	not	included	in	the	sasl.app	file	example
but	that	are	useful	and	are	often	included	in	other	app	files:

{id,	Id}

where	Id	is	a	string	denoting	the	product	identifier.	This	property	is	used	by
overzealous	configuration	management	trolls	but,	as	you	can	see,	not	by	the
OTP	team.	The	default	value	is	the	empty	string.

{included_applications,	Apps}

where	Apps	is	a	list	of	applications	included	as	subapplications	to	the	main
one.	The	difference	with	included	applications	is	that	their	top-level
supervisors	have	to	be	started	by	one	of	the	other	supervisors.	We	cover
included	applications	in	more	depth	later	in	this	chapter.	Omitting	this
property	will	default	it	to	the	empty	list.

{start_phases,	Phases}

where	Phases	is	a	list	of	tuples	of	the	format	{Phase,	Args}:	Phase	is	an
atom	and	Args	is	a	term.	This	allows	the	application	to	be	started	in	phases,
allowing	it	to	synchronize	with	other	parts	of	the	system	and	start	workers
in	the	background.	Before	Module:start/2	returns,
Module:start_phase(StartPhase,	StartType,	Args)	will	be	called	for
every	phase.	StartType	is	the	atom	normal,	or	the	tuples	{takeover,
Node}	or	{failover,	Node}.	We	cover	start	phases	in	more	detail	later	in
this	chapter.

The	Base	Station	Controller	Application	File
Having	looked	at	how	app	files	are	constructed,	let’s	create	one	we	can	use	in	the
base	station	controller.	Alongside	the	description	and	application	vsn,	we	list
all	of	the	modules	that	form	the	application.	We	follow	that	with	a	list	of	the
registered	worker	and	supervisor	process	names,	and	state	in	the
applications	list	that	the	bsc	application	is	dependent	on	sasl,	kernel,	and
stdlib.	We	do	not	set	any	env	variables,	but	explicitly	keep	the	list	empty	for
readability	reasons.	And	finally,	the	application	callback	module	mod	is	set	to
bsc,	passing	[]	as	a	dummy	argument:

{application,	bsc,

			[{description,	"Base	Station	Controller"},

				{vsn,	"1.0"},

				{modules,	[bsc,	bsc_sup,	frequency,	freq_overload,	

															logger,	simple_phone_sup,	phone_fsm]},

				{registered,	[bsc_sup,	frequency,	frequency_sup,

																		overload,	simple_phone_sup]},

				{applications,	[kernel,	stdlib,	sasl]},

				{env,	[]},

				{mod,	{bsc,	[]}}]}.

With	the	app	file	completed,	all	that	remains	is	to	place	it	in	the	ebin	directory,
compile	the	source	code,	and	make	sure	the	resulting	beam	files	are	placed	in	the
ebin	directory.

Starting	an	Application
When	starting	the	Erlang	emulator,	include	the	path	to	your	application	ebin
directory.	This	is	a	good	habit	when	testing;	bsc	might	be	one	of	the	many
applications	we	have	written	and	for	which	we	need	a	load	path,	so	starting
Erlang	directly	from	the	ebin	directory	might	not	always	be	an	option.	Adding	a
path	will	no	longer	be	a	problem	when	implementing	a	release,	but	do	it	for	now,
as	it	is	not	set	automatically.	In	our	example,	we	add	the	path	when	starting
Erlang	using:

erl	-pa	bsc-1.0/ebin

but	you	could	also	use	code:add_patha/1	to	add	the	path	within	the	Erlang
shell.

Let’s	try	starting	the	bsc	application.	In	shell	prompt	1,	we	fail	because	sasl,	one
of	the	applications	bsc	depends	on,	has	not	been	started.	We	could	have	avoided
that	by	using	application:ensure_all_started/1,	which	starts	up	an
application’s	dependencies	and	then	starts	the	application	itself,	but	here	we
simply	resolve	it	by	starting	sasl	in	shell	command	2	and	then	starting	bsc	again
in	shell	command	3.	For	every	child	started	by	our	top-level	supervisor	bsc_sup,
we	get	a	progress	report	from	sasl.	This	is	all	happening	behind	the	scenes	as	a
result	of	using	OTP	behaviors:

1>	application:start(bsc).

{error,{not_started,sasl}}

2>	application:start(sasl).

...<snip>...

=PROGRESS	REPORT====	9-Jan-2016::18:47:09	===

									application:	sasl

										started_at:	nonode@nohost

ok

3>	application:start(bsc).

=PROGRESS	REPORT====	9-Jan-2016::18:47:40	===

										supervisor:	{local,bsc}

													started:	[{pid,<0.51.0>},

																							{id,freq_overload},

																							{mfargs,{freq_overload,start_link,[]}},

																							{restart_type,permanent},

																							{shutdown,2000},

																							{child_type,worker}]

=PROGRESS	REPORT====	9-Jan-2016::18:47:40	===

										supervisor:	{local,bsc}

													started:	[{pid,<0.53.0>},

																							{id,frequency},

																							{mfargs,{frequency,start_link,[]}},

																							{restart_type,permanent},

																							{shutdown,2000},

																							{child_type,worker}]

=PROGRESS	REPORT====	9-Jan-2016::18:47:40	===

										supervisor:	{local,bsc}

													started:	[{pid,<0.54.0>},

																							{id,simple_phone_sup},

																							{mfargs,{simple_phone_sup,start_link,[]}},

																							{restart_type,permanent},

																							{shutdown,2000},

																							{child_type,worker}]

=PROGRESS	REPORT====	9-Jan-2016::18:47:40	===

									application:	bsc

										started_at:	nonode@nohost

ok

4>	l(phone),	phone:start_test(150,	500).

DBG	<0.123.0>	got	{'$gen_sync_all_state_event',

																								{<0.34.0>,#Ref<0.0.5.140>},

																								{outbound,109}}	in	state	idle

<0.123.0>	dialing	109

...<snip>...

After	starting	the	base	station,	we	took	it	for	a	test	run	by	starting	a	few	hundred
phones	that	randomly	call	each	other.	Because	the	phone	module	is	not	part	of
the	application,	we	load	it	before	calling	phone:start_test/2.	In	our	case,	not
doing	this	would	not	make	a	difference,	but	it	might	if	we	were	running	in
embedded	mode	in	production,	where	modules	are	not	loaded	automatically.	We
cover	different	start	modes	when	looking	at	release	handling	in	Chapter	11.

If	you	have	run	this	example,	keep	the	Erlang	shell	open,	type
observer:start().,	and	read	on.

THE	OBSERVER	TOOL

The	observer	is	a	graphical	tool	that	provides	an	overview	of	Erlang-based	systems.	It	replaces	and
complements	deprecated	utilities	that	you	might	have	come	across	in	older	versions	of	Erlang,
including	the	process	manager	pman,	the	table	visualizer	tv,	and	appmon,	the	application	monitor.	To
reduce	performance	overhead	in	live	systems,	you	should	start	the	observer	tool	in	a	separate	hidden
node,	connecting	to	the	cluster	you	want	to	observe	through	distributed	Erlang.	Because	our	bsc
application	is	still	in	development	mode,	we	can	be	lazy	and	get	away	with	starting	the	observer
locally.

The	observer	window	opens	up	in	the	System	tab,	where	you	can	view	general	information	such	as	the
hardware	architecture,	version	of	the	runtime	system,	and	operating	system-specific	data.	You	will	also
find	details	of	the	CPUs	and	schedulers,	memory	usage,	and	general	runtime	statistics.	The	Load

Charts	tab	will	plot	memory	usage,	scheduler	utilization,	and	I/O	usage	in	real	time.	Although	the
observer	will	not	replace	proper	metrics	and	monitoring	or	store	historical	data,	it	helps	you
understand	the	behavior	of	a	system	under	development.

The	Applications	tab	contains	a	list	of	applications	sorted	in	alphabetical	order	(Figure	9-7).	Click	on
any	of	the	applications	and	you	will	see	the	respective	supervision	trees,	showing	how	workers	and
supervisors	are	linked	to	each	other.	Narrow	down	on	the	bsc	app.	The	first	thing	you	should	notice	is
the	two	application	master	processes.	Note	how	one	of	them	is	linked	to	the	bsc	top-level	supervisor,
which	in	turn	is	linked	to	the	other	worker	and	supervisor	processes	it	started.

Figure	9-7.	The	observer

Click	on	any	of	the	processes	and	you	will	get	a	window	containing	information	on	the	process	itself,
the	message	queue,	the	dictionary,	and	the	stack	trace.	You	can	view	the	same	window	from	the
Processes	tab.	The	Table	Viewer	is	a	port	of	the	table	visualizer,	allowing	you	to	inspect	Mnesia	and
ETS	tables.	Finally,	the	Trace	Overview	is	a	graphical	interface	to	the	trace	BIFs	and	dbg.	You	can
read	more	about	all	these	options	in	the	Observer	User’s	Guide	and	Reference	Manual.

Environment	Variables
Erlang	uses	environment	variables	mainly	to	obtain	configuration	parameters
when	initializing	the	application	behaviors.	You	can	set,	inspect,	and	change
these	variables.	Start	an	Erlang	shell,	make	sure	the	sasl	application	is	running,
and	type	application:get_all_env(sasl)..	Don’t	worry	about	the	meaning	of
the	environment	variables	for	now	—	we	explain	them	later,	when	we	cover	sasl
reports	—	but	be	aware	that	they	are	not	the	same	as	the	environment	variables
supported	by	your	operating	system	shells.	For	now,	we	focus	just	on	how	they
are	set	and	retrieved.

If	you	ran	the	get_all_env(sasl)	call	as	we	suggested,	you	saw	that	it	returns
the	environment	variables	belonging	to	the	sasl	application.	If	you	want	a
specific	variable,	say	errlog_type,	use	application:get_env(sasl,
errlog_type).	If	the	process	retrieving	the	environment	variables	is	part	of	an
application’s	supervision	tree,	you	can	omit	the	application	name	and	just	call
application:get_all_env()	or	application:get_env(Key).

Using	functionality	similar	to	that	in	the	application:get_application()	call,
OTP	uses	the	Erlang	process	group	leader	to	determine	the	application	to	which
the	process	belongs.	In	our	examples	we	are	using	the	shell,	which	is	not	part	of
the	sasl	application	supervision	tree,	so	we	have	to	specify	the	application.

Where	are	these	environment	variables	set?	If	you	look	at	the	sasl.app	file,	you
will	find	them	in	the	env	attribute	of	the	application	resource	file.	The	app	file
usually	contains	default	values	you	might	want	to	override	on	a	case-by-case
basis,	depending	on	the	system	and	use	of	the	application.	This	is	best	done
using	the	system	configuration	file.	It	is	a	plain-text	file	with	the	.config	suffix
containing	an	Erlang	term	of	the	format:

[{Application1,	[{Key1,	Value1},	{Key2,	Value2},	...]},

	{Application2,	[{Key2,	Value2}|...}].

Tell	the	application	controller	which	configuration	file	to	read	when	starting	the
Erlang	VM	by	using:

erl	-config	filename

where	filename	is	the	name	of	the	system	configuration	file,	with	or	without	the
.config	suffix.

If	prototyping,	testing,	or	troubleshooting,	you	can	override	values	set	in	the	app
and	config	files	at	startup	in	the	command-line	prompt	using:

erl	-application	key	value

Although	convenient,	this	approach	should	not	be	used	to	set	values	in
production	systems.	For	the	sake	of	clarity,	stick	to	app	and	config	files,	as	they
will	be	the	first	point	of	call	for	anyone	debugging	or	maintaining	the	system.

With	this	knowledge	at	hand,	let’s	write	our	own	bsc.config	file	containing	the
frequencies	for	our	frequency	allocator	example	and	override	some	of	the	sasl
environment	variables:

[{sasl,	[{errlog_type,	error},	{sasl_error_logger,	tty}]},

	{bsc,	[{frequencies,	[1,2,3,4,5,6]}]}].

This	file	overrides	the	errlog_type	and	sasl_error_logger	environment
variables	set	in	the	app	file.	To	test	the	configuration	parameters	from	the	shell,
start	the	Erlang	node	and	provide	it	with	the	name	of	the	configuration	file,
placed	in	the	same	directory	where	you	start	Erlang.	In	production	systems,
config	files	are	placed	in	specific	release	directories.	We	look	at	them	in	more
detail	in	Chapter	11.

In	the	following	command	starting	the	erl	shell,	we	take	configuration	a	step
further	and	override	sasl_error_logger,	setting	its	value	to	false.	We	do	this
in	the	remainder	of	our	examples	to	suppress	the	progress	reports:

$	erl	-config	bsc.config	-sasl	sasl_error_logger	false	-pa	bsc-1.0/ebin

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

1>	application:start(sasl).

ok

2>	application:get_all_env(sasl).

[{included_applications,[]},

	{errlog_type,error},

	{sasl_error_logger,false}]

3>	application:start(bsc).

ok

4>	application:get_env(bsc,	frequencies).

{ok,[1,2,3,4,5,6]}

5>	application:set_env(bsc,	frequencies,	[1,2,3,4,5,6,7,8,9]).

ok

6>	application:get_env(bsc,	frequencies).

{ok,[1,2,3,4,5,6,7,8,9]}

In	shell	command	1,	we	start	sasl,	retrieving	all	of	its	environment	variables	in
shell	command	2.	Note	the	final	values	of	the	environment	variables:

errlog_type	is	set	in	the	bsc.config	file,	overriding	the	value	set	in	the	app
file.

included_applications	comes	from	the	app	file.	Not	originally	an
environment	variable,	it	is	converted	into	one	by	the	application	controller.

sasl_error_logger	is	set	in	the	app	file,	overridden	in	the	config	file,	and
overridden	again	on	the	Unix	prompt	level	when	starting	Erlang.

The	frequencies	environment	variable	can	be	used	in	the	get_frequencies()
call	of	the	frequency	server	to	retrieve	the	frequencies.	Note	how	we	do	not	have
to	specify	the	application	name	in	the	code,	because	the	runtime	can	determine
the	application	from	the	group	leader	of	the	process	making	the	call.	In	earlier
versions	of	the	frequency	module,	the	get_frequencies/0	function	had	a
hardcoded	list	of	frequencies.	In	this	example,	the	code	will	work	with	or
without	the	bsc.config	file:

get_frequencies()	->

				case	application:get_env(frequencies)	of

								{ok,	FreqList}	->	FreqList;

								undefined						->	[10,11,12,13,14,15]

				end.

In	shell	command	5	in	our	example	interaction,	we	set	environment	variables
directly	in	the	Erlang	shell,	retrieving	them	in	shell	command	6.	The	application
name	is	optional;	if	not	provided,	the	environment	variables	set	and	retrieved
will	be	those	of	the	application	belonging	to	the	process	executing	the	call.	In
our	example,	we	provided	the	application	because	the	shell	process	is	not	part	of
the	bsc	application.

WARNING
Although	there	is	nothing	stopping	you	from	setting	environment	variables	in	the	shell	using
the	application:set_env	functions,	it	is	advisable	to	do	so	only	for	applications	you	have
written	yourself	or	know	well.	For	third-party	applications,	including	those	that	are	part	of	the

Erlang	distribution,	changing	environment	variables	once	the	application	has	been	started	is
dangerous.	As	you	do	not	know	when	and	where	the	application	reads	these	environment
variables,	changing	them	may	cause	it	to	enter	an	inconsistent	state	and	behave	unexpectedly.
You	are	also	not	guaranteed	your	changes	will	survive	a	restart.	Do	this	at	your	own	risk,	and
only	if	you	know	how	the	values	are	read	and	refreshed	by	the	applications	using	them.

Application	Types	and	Termination	Strategies
When	we	stopped	the	sasl	application	in	Example	9-1,	we	got	the	following	info
report:

=INFO	REPORT====	17-Feb-2014::19:51:23	===

				application:	sasl

				exited:	stopped

				type:	temporary

Did	you	notice	that	the	application	type	was	set	to	temporary?	The	type
determines	what	happens	to	the	virtual	machine	and	to	other	applications	within
it	when	your	application	terminates.	The	temporary	type	is	the	default	assigned
when	you	start	an	application	using	application:start(Name).	Three
application	types	exist:

temporary

When	an	application	of	this	type	terminates,	no	matter	what	the	reason,	it
does	not	affect	other	running	applications	or	the	virtual	machine.

transient

If	an	application	of	this	type	terminates	with	reason	normal,	other
applications	are	not	affected.	For	abnormal	terminations,	other	applications
are	terminated,	together	with	the	virtual	machine.	This	option	is	relevant
only	when	writing	your	own	supervisor	behavior	(see	Chapter	10),	because
supervisors	use	reason	shutdown	to	terminate.

permanent

If	a	permanent	application	terminates	for	whatever	reason,	normal	or
abnormal,	all	other	running	applications	are	also	terminated	together	with
the	virtual	machine.

These	options	become	relevant	when	creating	our	own	releases,	as	they	can	be
set	in	the	start	scripts.	In	proper	OTP	releases,	all	applications	tend	to	be
permanent.	Top-level	supervisors	in	an	application	should	never	terminate.
When	they	do,	they	assume	that	your	restart	strategy	failed,	so	the	whole	node	is
taken	down.	Stopping	an	application	with	application:stop/1,	however,	has
no	effect	on	other	applications,	irrespective	of	type.

Distributed	Applications
OTP	comes	with	a	convenient	distribution	mechanism	for	migrating	applications
across	nodes.	It	can	handle	the	majority	of	cases	where	you	need	an	instance	of
an	application	running	in	your	cluster,	and	can	act	as	a	stopgap	measure	until	a
more	complex	solution	can	be	put	in	place.	The	majority	of	cases	assume
reliable	networks,	so	use	with	care	and	make	sure	you	have	covered	your	edge
cases	should	a	network	partition	occur.

Distributed	applications	are	managed	by	a	process	called	the	distributed
application	controller,	implemented	in	the	dist_ac	module	and	registered	with
the	same	name.	You	will	find	an	instance	of	this	process	in	the	kernel
supervision	tree	running	on	every	distributed	node.

To	run	your	distributed	application,	all	you	need	to	do	is	configure	a	few
environment	variables	in	the	kernel	application,	ensure	that	requests	are
transparently	forwarded	to	the	node	where	the	applications	are	running,	and	then
test,	test,	and	test	again.	You	have	to	specify	the	precedence	order	for	the	nodes
where	you	want	the	application	to	run.	If	the	node	on	which	an	application	is
running	fails,	the	application	will	fail	over	to	the	next	node	in	the	precedence
list.	If	a	newly	started	or	connected	node	with	higher	precedence	appears	in	the
cluster,	the	application	will	be	migrated	to	that	node	in	what	OTP	calls	a
takeover.

Let’s	assume	our	system	consists	of	a	cluster	of	four	nodes,	n1@localhost,
n2@localhost,	n3@localhost,	and	n4@localhost.	Let’s	create	a	configuration
file,	dist.config,	setting	the	kernel	environment	variables	distributing	our	bsc
application	across	them:

	[{kernel,	[{distributed,	[{bsc,	1000,	[n1@localhost,{n2@localhost,n3@localhost},

																																								n4@localhost]}]},

																{sync_nodes_mandatory,	[n1@localhost]},

																{sync_nodes_optional,	[n2@localhost,n3@localhost,n4@localhost]},

																{sync_nodes_timeout,	15000}]},

		{bsc,		[{frequencies,	[1,2,3,4,5,6]}]}].

Note	that	if	you	intend	to	run	the	distributed	bsc	example,	you	may	need	to
replace	all	occurrences	of	the	string	“localhost”	in	the	dist.config	file	with	your
own	computer’s	host	name.

Of	the	environment	variables	in	the	kernel	application,	the	first	we	need	to	set	is
distributed.	It	consists	of	a	list	of	tuples	containing	the	application	we	want	to
distribute,	a	timeout	value,	and	the	distributed	list	of	nodes	and	node	tuples,
which	defines	the	order	of	precedence	of	nodes	on	which	we	want	the
application	to	run.	So,	this	list:

[{bsc,	1000,	[n1@localhost,{n2@localhost,n3@localhost},n4@localhost]}]

specifies	bsc	as	the	application,	1000	(measured	in	milliseconds)	as	the	time	to
wait	for	the	node	to	come	back	up,	and	the	following	node	precedence:

[n1@localhost,{n2@localhost,n3@localhost},n4@localhost]

The	precedence	specifies	that	the	application	will	start	on	n1.	Should	that	node
fail	or	be	shut	down,	the	distributed	application	controller	will	wait	1	second	and
then	fail	the	application	over	to	either	n2	or	n3.	They	have	been	given	the	same
precedence	by	being	grouped	into	the	same	tuple.	If	both	n2	and	n3	fail,	the
controller	will	check	to	see	whether	n1	has	come	back	up	and,	if	it	is	still	down,
will	fail	the	application	over	to	n4.	If	one	of	the	other	nodes	comes	back	up,	the
application	is	later	moved	via	a	takeover	to	the	node	with	the	highest
precedence.

The	sync_nodes_mandatory	and	sync_nodes_optional	environment	variables
specify	the	nodes	to	be	connected	into	the	distributed	system.	When	starting	the
system,	the	distributed	application	controller	tries	to	connect	the	specified	nodes,
waiting	for	the	number	of	milliseconds	specified	in	the	{sync_nodes_timeout,
Timeout}	environment	variable.	If	you	omit	the	timeout	when	defining	the	nodes
in	your	kernel	environment	variables,	the	timeout	defaults	to	0.

The	{sync_nodes_mandatory,	NodeList}	environment	variable	defines	the
nodes	with	which	the	distributed	application	controller	must	synchronize;	the
system	will	start	only	if	all	of	these	nodes	are	started	and	connected	to	each	other
within	Timeout	milliseconds.

The	environment	variable	{sync_nodes_optional,	NodeList}	specifies	nodes
that	can	also	be	connected	at	system	startup,	but	unlike	mandatory	nodes,	the
failure	of	any	of	these	nodes	to	join	the	cluster	within	the	specified	Timeout	does

not	prevent	the	system	from	starting	up.

The	best	way	to	understand	the	environment	variable	settings	is	to	play	with	the
dist.config	configuration	file.	Let’s	first	start	node	n2	on	its	own:

$	erl	-sname	n2@localhost	-config	dist	-pa	bsc-1.0/ebin

This	node	will	wait	the	15	seconds	set	in	the	sync_nodes_timeout	value	for	n1
to	come	up.	If	the	node	fails	to	connect	to	n1	within	that	time	frame,	it	will
terminate,	regurgitating	a	long	and	to	the	untrained	eye	incomprehensible	error
message.	Nodes	n3	and	n4	are	optional,	so	assuming	n1	comes	up	within	the
timeout	period,	n2	will	also	wait	for	these	two	nodes	within	the	same	period,
after	which	it	starts	normally	whether	or	not	n3	and	n4	have	connected.

Let’s	try	again,	but	this	time,	before	starting	n2,	start	n1	and	n3:

$	erl	-sname	n1@localhost	-config	dist	-pa	bsc-1.0/ebin

$	erl	-sname	n3@localhost	-config	dist	-pa	bsc-1.0/ebin

The	nodes	will	wait	15	seconds	for	the	optional	nodes	to	come	up.	If	they	don’t,
the	nodes	will	start	regardless.	You	can	try	deleting	n4	from	the	config	file	(or
decide	to	start	it),	avoiding	the	timeout	if	the	other	nodes	are	up.

When	all	nodes	are	up,	let’s	start	the	sasl	and	bsc	applications	on	all	nodes,
starting	with	n3,	followed	by	n2	and	n1.	Type	the	following	in	all	three	Erlang
shells	and	pay	attention	to	when	the	shell	command	returns:

application:start(sasl),	application:start(bsc).

You	will	notice	that	the	shell	will	hang	in	n2	and	n3,	returning	only	when	the	bsc
application	is	started	in	n1,	as	it	is	the	node	running	with	the	highest	priority.	If
you	start	the	observer	and	inspect	the	Applications	tab	on	the	different	nodes,
you	will	notice	that	the	supervision	tree	is	started	only	on	n1.	Looking	at	the
progress	reports	for	n2	and	n3,	you	will	notice	that	the	bsc	application	is	also
started,	but	without	its	supervision	tree.

Keeping	an	eye	on	nodes	n2	and	n3,	shut	down	node	n1	using	the	halt()	shell
command.

The	application	controller	will	wait	1,000	milliseconds	for	n1	to	restart.	If	it
doesn’t,	you	will	see	the	progress	reports	for	the	bsc	app	being	started	on	either
n2	and	n3.	In	our	config	file,	because	both	n2	and	n3	have	the	same	precedence,
either	one	will	be	chosen	nondeterministically.	In	Figure	9-8,	we	assume	that	the
chosen	node	is	n2.

Figure	9-8.	Failing	over	with	different	precedence

Now	that	n1	is	down,	let’s	shut	down	n2	(or	n3	if	the	bsc	application	was	started
on	it	instead).	You	will	see	that	application	fail	over	to	the	remaining	node
(Figure	9-9).	Use	the	observer	to	check	that	the	supervision	tree	has	started
correctly	(Figure	9-7).	Restart	the	node	you	just	shut	down	and	observe	what
happens.	You	will	notice	that	it	hangs	for	15	seconds,	waiting	for	n1	to	restart.
Because	n1	is	mandatory	and	has	not	restarted,	the	node	fails	to	restart.

Figure	9-9.	Failing	over	with	the	same	precedence

Restart	both	n1	and	n2	(or	n3	if	it	was	the	node	that	shut	down)	within	15
seconds	of	each	other.	Both	will	wait	15	seconds	for	the	nonmandatory	node	n4
to	start.	After	the	timeout,	start	both	sasl	and	bsc	on	n2	using
application:start/1.	Just	as	the	first	time	you	started	the	cluster,	the
application	hangs	waiting	for	bsc	to	start	on	n1	so	that	the	nodes	can	coordinate
among	each	other.	When	you	start	bsc	on	n1,	there	will	be	a	takeover	from	n3,
where	the	behaviors	are	terminated	and	the	supervision	tree	is	taken	down
(Figure	9-10).

Figure	9-10.	Application	takeover

This	is	a	limited	approach	that	might	cover	some	use	cases	and	not	others.	The
moral	of	the	story	if	you	go	down	this	route	is	to	pick	your	mandatory	nodes
with	care.	When	designing	your	system	with	no	single	point	of	failure,	you
should	not	assume	or	require	any	of	the	nodes	to	be	up	at	any	one	time.	If	there
are	services	you	require	for	a	failover	or	a	takeover	to	be	successful,	do	the
checks	in	start	phases	when	starting	the	applications	or	in	the	worker	processes

themselves.	While	this	layer	can	be	thin	and	consist	of	only	a	couple	hundred
lines	of	code,	it	is	application	dependent.	Make	sure	you’ve	thought	through
your	design.	We	look	at	other	approaches	to	distributed	architectures	when
discussing	clusters	in	Chapter	13.

Start	Phases
Some	systems	are	so	complex	that	it	is	not	enough	to	start	each	application	one
at	a	time.	In	such	systems,	applications	need	to	be	started	in	phases	and
synchronized	with	each	other.	Imagine	a	node	that	is	part	of	a	cluster	handling
instant	messaging:

1.	 In	a	first	phase,	as	a	background	task,	you	might	want	to	start	loading
all	of	the	Mnesia	tables	containing	routing	and	configuration	data.	This
could	take	time,	as	some	of	the	tables	might	have	to	be	restored	because
of	an	abrupt	shutdown	or	node	crash.

2.	 Once	the	tables	load,	the	next	phase	gets	your	system	to	a	state	where
you	are	ready	to	start	accepting	configuration	requests.	We	refer	to	this
as	enabling	the	administration	state.	This	might	include	checking	links
toward	other	clusters	in	the	federation	that	users	might	want	to	connect
to,	configuring	hardware,	and	waiting	for	all	of	the	other	parts	of	the
system,	such	as	the	authentication	server	or	logging	facility,	to	start
correctly.

3.	 When	this	phase	completes,	you	will	be	able	to	inspect	and	configure
the	system,	but	not	allow	any	users	to	initiate	sessions.	Your	final	start
phase	might	be	to	provide	the	go-ahead	and	start	allowing	users	to	log
on	and	traffic	to	run	through	this	node.	We	refer	to	this	phase	as
enabling	the	operational	state.

If	we	add	the	following	parameter	in	our	bsc.app	file,	we	allow	three	start
phases:

	{start_phases,	[{init,	[]},	{admin,	[]},	{oper,	[]}]}

In	our	application	callback	module	source	file,	bsc.erl,	we	need	to	export	and
define	the	callback	function	start_phase(StartPhase,	StartType,	Args).
This	function	will	be	called	for	every	phase	defined	in	the	app	file,	after	the
supervision	tree	has	been	started	but	before	application:start(Application)
returns.	The	StartPhase	argument	reflects	which	phase	is	currently	being
processed.	So,	in	our	example,	if	we	added:

start_phase(StartPhase,	StartType,	Args)	->

					io:format("bsc:start_phase(~p,~p,~p).~n",	[StartPhase,	StartType,	Args]).

to	our	application	callback	module	bsc.erl	and	ran	it	with	the	updated	bsc.app
file,	we	would	get	the	following	sequence	of	events	when	starting	the
application.	Both	these	files	are	in	the	start_phases	directory	of	the	code
repository:

$	erl	-pz	bsc-1.0/ebin/	-pa	start_phases/	-sasl	sasl_error_logger	false

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

1>	application:start(sasl),	application:start(bsc).

bsc:start_phase(init,normal,[]).

bsc:start_phase(admin,normal,[]).

bsc:start_phase(oper,normal,[]).

ok

Here,	the	StartType	argument	is	always	the	atom	normal,	indicating	this	is	a
normal	startup.	Each	phase	invokes	a	synchronous	or	asynchronous	call	that
triggers	certain	operations,	as	well	as	setting	the	internal	state	that	allows	or
disallows	requests	to	be	handled	by	the	node.

When	shutting	down	the	system,	we	can	disable	the	operational	state,	stopping
new	requests	from	executing	but	allowing	all	existing	requests	to	execute	to
completion.	This	could	make	the	system	reject	user	login	attempts	while
allowing	existing	sessions	to	expire.	When	there	are	no	more	requests	going
through	the	node,	the	operational	state	can	be	disabled	and	the	node	shut	down.
This	could	happen	when	all	the	users	have	logged	out,	or	after	a	timeout,	where
the	system	times	out	the	remaining	sessions	and	disables	the	operational	state.	To
shut	down	the	node,	disable	the	operational	state.	A	simple	example	using	start
phases	appears	in	the	next	section.

Included	Applications
In	your	app	resource	file,	you	have	the	option	of	specifying	the	parameter
included_applications.	The	directory	structure	of	included	applications
should	be	placed	in	the	lib	directory,	alongside	all	other	applications	in	that
release.	When	the	main	application	is	started,	all	included	applications	are
loaded	but	not	started.	It	is	up	to	the	top-level	supervisor	of	the	main	application
to	start	the	included	applications’	supervision	trees.	You	could	start	them	as
dynamic	children	or	as	static	ones	by	returning	the	child	specification	in	the
supervisor	init/1	callback	function.

When	starting	your	application,	you	can	either	call	the	start/2	function	in	the
application	callback	module,	assuming	it	returns	{ok,	Pid}	(and	not	{ok,	Pid,
Data},	since	it	is	not	possible	for	us	to	pass	that	data	to	the	callback	module’s
prep_stop/1	callback	function	as	it	expects	when	it	is	stopped),	or	directly	call
the	start_link	function	of	the	top-level	supervisor.	There	is	no	more	to	it;	it’s
as	simple	as	that!

In	every	node,	included	applications	may	be	included	only	once	by	other
applications.	This	restriction	avoids	clashes	in	the	application	namespace,
ensuring	that	each	module	and	registered	process	(local	or	global)	is	unique.	If
you	need	to	start	several	identical	supervision	trees	in	the	same	node,	place	the
code	in	a	standalone	library	application.	Do	not	include	this	application
anywhere	else	other	than	by	dependency	and	ensure	that	there	are	no	name
clashes	with	the	locally	and	globally	registered	processes.

You	might	be	asking	yourself,	why	go	through	the	hassle	of	included
applications	when	we	can	instead	have	a	flat	application	structure,	starting	the
applications	individually?	The	answer	lies	in	start	phases.

Start	Phases	in	Included	Applications
You	can	use	start	phases	to	synchronize	your	included	applications	at	startup.	As
the	included	application	supervision	trees	are	started	by	the	main	application,
you	need	to	follow	a	few	steps	to	invoke	the	start_phase/3	callback	function	in
the	application	callback	module.

First,	in	your	included	application	app	files,	make	sure	you	have	included	the
mod	and	start_phases	parameters.	The	callback	module	is	used	to	determine
where	the	start_phase/3	call	is	made.	The	arguments	are	ignored,	because	the
ones	in	the	start_phases	item	are	used.

Finally,	in	your	top-level	application,	alongside	your	start	phases,	you	need	to
change	your	mod	parameter	to:

{mod,	{application_starter,[Mod,Args]}}

passing	the	application	callback	module	Mod	and	Args	as	arguments.	The	OTP
application_starter	module	provides	the	logic	to	start	your	top-level
application	and	coordinate	the	start	phases	of	the	included	applications.

The	process	is	straightforward.	The	top-level	application’s	supervision	tree	starts
the	included	applications.	The	first	start_phase/3	function	is	called	in	the
callback	module	of	the	top-level	application,	after	which	all	included
applications	are	traversed	in	the	order	they	are	defined.	If	one	or	more	of	the
included	applications	have	the	same	phase	defined	as	the	one	in	the	top-level
application,	start_phase/3	is	called	for	each	of	these	included	applications.

The	next	start	phase	in	the	top-level	application	is	recursively	triggered.	Start
phases	defined	in	the	included	applications	but	not	in	the	top-level	application
are	never	triggered.

All	of	what	we’ve	described	is	best	shown	in	an	example.	We	create	a	top-level
application,	top_app,	that	includes	the	bsc	application.	The	top_app	callback
module	is	responsible	for	starting	the	supervision	tree	of	the	included	bsc
application:

-module(top_app).

-behavior(application).

-export([start/2,	start_phase/3,	stop/1]).

start(_Type,	_Args)	->

				{ok,	_Pid}	=	bsc_sup:start_link().

start_phase(StartPhase,	StartType,	Args)	->

				io:format("top_app:start_phase(~p,~p,~p).~n",	[StartPhase,	StartType,	Args]).

stop(_Data)	->

				ok.

In	our	top	application’s	top_app.app	file,	we	define	the	start,	admin,	and	stop
phases.	They	are	different	from	the	start	phases	in	bsc,	which	in	“Start	Phases”,
our	previous	example,	were	set	to	init,	admin,	and	oper.	Note	also	the
included_applications	and	the	value	we	give	the	mod	attribute:

{application,	top_app,

			[{description,	"Included	Application	Example"},

				{vsn,	"1.0"},

				{modules,	[top_app]},

				{applications,	[kernel,	stdlib,	sasl]},

				{included_applications,	[bsc]},

				{start_phases,	[{start,	[]},	{admin,	[]},	{stop,	[]}]},

				{mod,	{application_starter,	[top_app,	[]]}}

]

}.

The	start	phases	work	as	follows.	The	top	application	is	started,	which	in	turn
starts	the	bsc	supervision	tree.	Once	that	is	successful,	the	first	start	phase	in
top_app,	start,	is	triggered.	If	any	of	the	included	applications,	in	the	order	they
appear	in	the	included_applications	list,	also	has	this	phase,	it	is	also	called.
If	you	are	trying	this	on	your	computer,	do	not	forget	to	compile	the	contents	of
the	top_app	directory,	and	use	the	bsc.app	file	in	the	start_phases	directory	of
this	chapter’s	code	repository:

$	erl	-pz	bsc-1.0/ebin/	-pa	start_phases/	\

						-pa	top_app/		-sasl	sasl_error_logger	false

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

1>	application:start(sasl),	application:start(top_app).

top_app:start_phase(start,normal,[]).

top_app:start_phase(admin,normal,[]).

bsc:start_phase(admin,normal,[]).

top_app:start_phase(stop,normal,[]).

ok

We	have	kept	the	example	simple	so	as	to	demonstrate	the	principles	without

getting	lost	in	the	business	logic.	In	our	example,	we	call	all	of	the	start	phases	in
the	top	application,	but	only	admin	in	the	included	one,	as	it	is	the	only	phase
they	both	have	in	common.

Combining	Supervisors	and	Applications
Some	supervisor	callback	modules	contain	only	a	few	lines	of	code.	And	if	your
application	does	not	have	to	deal	with	complex	initialization	procedures,	start
phases,	and	distribution,	but	needs	only	to	start	the	top-level	supervisor,	it	will	be
just	as	compact.	A	common	practice	is	to	combine	the	two	callback	modules,	as
their	callback	function	names	do	not	overlap.	While	some	people	will	strongly
disagree	with	this	practice,	you	are	bound	to	come	across	it	when	reading	other
people’s	code	—	even	code	that	is	part	of	the	standard	Ericsson	distribution.

For	example,	cd	into	the	sasl	directory	of	your	OTP	installation	and	have	a	look
at	the	sasl.erl	file.	At	the	time	of	writing,	version	2.6.1	of	the	sasl	application
combined	the	supervisor	init/1	callback	function	in	its	application	module
together	with	the	application	start/2	and	stop/1	callback	functions.	In	this
example,	the	developers	included	only	the	-behavior(application).	directive,
but	there	is	nothing	stopping	you	from	including	the	-behavior(supervisor).
directive	as	well.	The	only	side	effect	is	a	compiler	warning	telling	you	about
two	behavior	directives	in	the	same	callback	module.	We	recommend	including
both	directives,	because	it	facilitates	the	understanding	of	the	purpose	of	the
callback	module.	Here	is	a	simple	example	of	what	combining	the	supervisor
and	application	callback	modules	would	look	like	in	our	bsc	example:

-module(bsc).

-behavior(application).

-behavior(supervisor).

-export([start/2,	start_phase/3,	stop/1,	init/1]).

start(_Type,	_Args)	->

				{ok,	Pid}	=	supervisor:start_link({local,?MODULE},?MODULE,	[]).

start_phase(Phase,	Type,	Args)	->

				io:format("bsc:start_phase(~p,~p,~p).",[Phase,	Type,	Args]).

stop(_Data)	->

				ok.

%%	Supervisor	callbacks

init(_)	->

				ChildSpecList	=	[child(freq_overload),

																					child(frequency),

																					child(simple_phone_sup)],

				{ok,{{rest_for_one,	2,	3600},	ChildSpecList}}.

child(Module)	->

				{Module,	{Module,	start_link,	[]},

					permanent,	2000,	worker,	[Module]}.

The	SASL	Application
Throughout	this	chapter,	we’ve	been	telling	you	to	look	at	the	SASL	callback
module,	app	file,	directory	structure,	and	supervision	tree,	but	we	have	yet	to	tell
you	what	SASL	actually	does.

SASL	stands	for	system	architecture	support	libraries.	The	SASL	application
(sasl)	is	a	container	for	useful	items	needed	in	large-scale	software	design.	It	is
one	of	the	mandatory	applications	(along	with	kernel	and	stdlib)	required	in	a
minimal	OTP	release.	It	is	mandatory	because	it	contains	all	of	the	common
library	modules	used	for	release	handling	and	software	upgrades.

We	cover	releases	in	Chapter	11	and	software	upgrades	in	Chapter	12.	SASL
doesn’t	stop,	however,	at	handling	releases	and	software	upgrades.	In	“The
SASL	Alarm	Handler”,	we	looked	at	the	alarm	handler,	a	simple	alarm	manager
and	handler	that	is	started	by	default	when	you	start	any	OTP-based	system.
SASL	also	has	a	very	basic	way,	through	its	overload	library	module,	to
regulate	CPU	load	in	the	system.	We	cover	load	regulation	in	more	detail	in
Chapter	13,	when	we	discuss	the	architecture	of	a	typical	Erlang	node.	Have
patience.

What	we	concentrate	on	in	this	chapter	are	the	SASL	reports	used	to	monitor	the
activity	in	supervision	trees	when	processes	are	started,	terminated,	and
restarted.	You	will	have	come	across	SASL	reports	in	the	previous	chapters	of
this	book.	They	are	the	printouts	you	see	in	the	shell	when	starting	applications,
supervisors,	and	worker	processes.	You	might	have	noticed	that	they	appeared
only	when	the	SASL	application	was	started	and	the	sasl_error_logger
environment	variable	was	not	set	to	false.

SASL	starts	an	event	handler	that	receives	the	following	reports:

Supervisor	reports
Issued	by	a	supervisor	when	one	of	its	children	terminates	abnormally.

Progress	reports
Issued	by	a	supervisor	when	starting	or	restarting	a	child	or	by	the
application	master	when	starting	the	application.

Error	reports
Issued	by	behaviors	upon	abnormal	termination.

Crash	reports
Issued	by	processes	started	with	the	proc_lib	library,	which	by	default
include	behaviors.	We	cover	proc_lib	in	the	next	chapter.

Default	settings	print	reports	to	standard	I/O.	You	can	override	this	by	setting
environment	variables,	which	allow	you	to	send	the	reports	to	wraparound
binary	logs	as	well	as	to	limit	which	reports	are	forwarded.	The	formats	of	the
reports	vary	depending	on	the	version	of	the	OTP	release	you	are	running.	Let’s
have	a	look	at	the	SASL	environment	variables	that	allow	you	to	control	the
reports:

sasl_error_logger

Defaults	to	tty	and	installs	the	sasl_report_tty_h	handler	module,	which
prints	the	reports	to	standard	output.	If	you	instead	specify
{file,FileName},	where	FileName	is	a	string	containing	the	relative	or
absolute	path	of	a	file,	the	sasl_report_file_h	handler	is	installed,	storing
all	reports	in	FileName.	If	this	environment	variable	is	set	to	false,	no
handlers	are	installed,	and	as	a	result,	no	SASL	reports	are	generated.

errlog_type

Can	take	the	values	error,	progress,	or	all,	the	default	if	you	omit	the
variable.	Use	this	variable	to	restrict	the	types	of	error	or	progress	reports
printed	or	logged	to	file	by	the	installed	handler.

utc_log

An	optional	environment	variable	that,	if	set	to	true,	will	convert	all
timestamps	in	the	reports	to	Universal	Coordinated	Time	(UTC).

The	following	configuration	file	stores	all	the	SASL	reports	in	a	text	file	called
SASLlogs.	We	do	this	by	setting	the	sasl_error_logger	environment	variable	to
{file,	"SASLlogs"}.	We	also	enable	UTC	time	with	the	utc_log	environment
variable:

[{sasl,	[{sasl_error_logger,	{file,	"SASLlogs"}},

									{utc_log,	true}]},

	{bsc,		[{frequencies,	[1,2,3,4,5,6]}]}].

If	you	start	the	sasl	and	bsc	applications	in	a	local,	nondistributed	node,	you	will
find	all	of	the	logs	stored	as	plain	text	in	the	running	directory.	In	our	example,
we	show	just	the	first	and	last	reports.	Note	how	the	UTC	tag	is	appended	to	the
timestamp:

$	erl	-pa	bsc-1.0/ebin/	-config	logtofile.config	

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

1>	application:start(sasl),	application:start(bsc).

ok

2>	halt().

$	cat	SASLlogs

=PROGRESS	REPORT====	9-Jan-2016::10:09:25	UTC	===

										supervisor:	{local,sasl_safe_sup}

													started:	[{pid,<0.40.0>},

																							{name,alarm_handler},

																							{mfargs,{alarm_handler,start_link,[]}},

																							{restart_type,permanent},

																							{shutdown,2000},

																							{child_type,worker}]

...<snip>...

=PROGRESS	REPORT====	9-Jan-2016::10:09:33	UTC	===

									application:	bsc

										started_at:	nonode@nohost

Text	files	might	be	good	during	your	development	phase,	but	when	moving	to
production,	it	is	best	to	move	to	wraparound	logs	that	store	events	in	a
searchable	binary	format.	Because	text	and	binary	formats	are	implemented	by
different	handlers,	they	can	be	added	and	run	alongside	each	other.	To	install	the
binary	log	handler,	error_logger_mf_h,	you	have	to	set	three	environment
variables.	If	any	of	these	are	disabled,	the	handler	will	not	be	added.	The
environment	variables	needed	are:

error_logger_mf_dir

A	string	specifying	the	directory	that	stores	the	binary	logs.	The	default	is	a
period	("."),	which	specifies	the	current	working	directory.	If	this
environment	variable	is	set	to	false,	the	handler	is	not	installed.

error_logger_mf_maxbytes

An	integer	defining	the	maximum	size	in	bytes	of	each	log	file.

error_logger_mf_maxfiles

An	integer	between	1	and	256	specifying	the	maximum	number	of

wraparound	log	files	that	are	generated.
Sticking	to	our	bsc	example,	let’s	try	storing	the	SASL	logs	in	a	binary	file	using
the	rb.config	configuration	file	found	in	the	book’s	code	repository.	Note	how
we	are	explicitly	turning	off	the	events	sent	to	the	shell	by	setting	the
sasl_error_logger	environment	variable	to	false	and	the	frequencies	to	the
atom	crash,	rather	than	a	list	of	integers,	ensuring	that	the	process	fails	when	we
try	to	allocate	a	frequency:

[{sasl,	[{sasl_error_logger,	false},

									{error_logger_mf_dir,	"."},

									{error_logger_mf_maxbytes,	20000},

									{error_logger_mf_maxfiles,	5}]},

	{bsc,		[{frequencies,	crash}]}].

We	start	the	bsc	application	in	shell	command	1,	and	cause	a	crash	of	the
frequency	server	in	shell	command	2	when	we	try	to	pattern	match	the	atom
crash	into	a	head	and	a	tail	in	the	allocate/2	function	of	the	frequency
module:

$	erl	-pa	bsc-1.0/ebin	-config	rb.config

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

1>	application:start(sasl),	application:start(bsc).

ok

2>	frequency:allocate().

=ERROR	REPORT====	9-Jan-2016::19:24:30	===

**	Generic	server	frequency	terminating

**	Last	message	in	was	{allocate,<0.34.0>}

**	When	Server	state	==	{data,[{"State",{{available,crash},{allocated,[]}}}]}

**	Reason	for	termination	==

**	{function_clause,[{frequency,allocate,

																																[{crash,[]},<0.34.0>],

																																[{file,"bsc-1.0/src/frequency.erl"},

																																	{line,99}]},

...<snip>...

3>	rb:start().

rb:	reading	report...done.

{ok,<0.56.0>}

4>	rb:list().

		No																Type				Process							Date					Time

		==																====				=======							====					====

		14												progress			<0.37.0>	2016-01-09	19:24:26

		13												progress			<0.37.0>	2016-01-09	19:24:26

		12												progress			<0.37.0>	2016-01-09	19:24:26

		11												progress			<0.37.0>	2016-01-09	19:24:26

		10												progress			<0.24.0>	2016-01-09	19:24:26

			9												progress			<0.46.0>	2016-01-09	19:24:26

			8												progress			<0.46.0>	2016-01-09	19:24:26

			7												progress			<0.46.0>	2016-01-09	19:24:26

			6												progress			<0.24.0>	2016-01-09	19:24:26

			5															error			<0.46.0>	2016-01-09	19:24:30

			4								crash_report		frequency	2016-01-09	19:24:30

			3			supervisor_report			<0.46.0>	2016-01-09	19:24:30

			2												progress			<0.46.0>	2016-01-09	19:24:30

			1												progress			<0.46.0>	2016-01-09	19:24:30

ok

Try	it	out	yourself	in	the	shell,	as	it	will	help	you	understand	how	applications
and	supervision	trees	work.	The	first	thing	you	will	notice	is	that,	even	though
we	set	sasl_error_logger	to	false,	we	still	get	an	error	report.	This	is	because
all	the	environment	variable	controls	are	supervisor,	crash,	and	progress	reports.
Error	reports	are	printed	out	irrespective	of	configuration	file	settings.	We’ve
reduced	the	size	of	this	particular	error	report	in	the	trial	run,	because	our	focus
is	on	the	report	browser.

Having	caused	a	crash,	we	start	the	report	browser	using	rb:start()	in	shell
command	3.	After	it	reads	in	all	of	the	reports,	we	list	them	in	shell	command	4
with	rb:list().	If	at	any	time	you	do	not	recall	the	report	browser	commands,
rb:help()	will	list	them.	The	progress	reports	14–6	(they	are	listed	in	reverse
order,	with	the	oldest	having	the	highest	number)	are	the	ones	starting	the
application	and	its	supervision	tree.	Let’s	start	by	inspecting	reports	1–5:

The	frequency	server	generates	reports	4	and	5	as	a	result	of	its	abnormal
termination.	The	reports	contain	complementary	information	needed	for
postmortem	debugging	and	troubleshooting.

The	supervisor	generates	report	3	as	a	result	of	the	termination.	It	contains
the	information	stored	by	the	supervisor	of	that	particular	child.

Reports	1	and	2	are	issued	by	the	children	being	restarted.	In	our	case,	it	is
the	frequency	server	that	crashed	and	the	simple_phone_sup	supervisor	that
was	terminated	and	restarted	as	a	result	of	the	rest_for_all	strategy	of	the
top-level	bsc_sup	supervisor.

Progress	Reports
Progress	reports	are	issued	by	a	supervisor	when	starting	a	child,	worker	or
supervisor	alike.	These	reports	include	the	name	of	the	supervisor	and	the	child
specification	of	the	child	being	started.	They	are	also	issued	by	the	application
master	when	starting	or	restarting	an	application.	In	this	case,	the	report	shows
the	application	name	and	the	node	on	which	it	is	started.	Here’s	an	example:

5>	rb:show(6).

PROGRESS	REPORT		<0.7.0>																																				2016-01-09	19:24:26

===

application																																																																	bsc

started_at																																																								nonode@nohost

ok

The	progress	report	in	our	example	is	the	one	telling	us	that	the	bsc	application
was	started	correctly.	Note	how	we	are	using	rb:show/1	to	view	individual
reports.

Error	Reports
Error	reports	are	raised	by	behaviors	upon	abnormal	termination.	In	our	case,	the
frequency	server	generates	the	report	when	terminating	abnormally.	You	can
generate	your	own	error	reports	using	the	error_logger:error_msg(String,
Args)	call,	but	we	advise	against	this.	Use	this	command	sparingly	and	only	for
unexpected	errors,	as	too	many	user-generated	reports	will	hide	serious	issues
and	clutter	the	logs,	making	it	harder	to	find	important	details	when	you	are
looking	for	crash	reports	and	other	real	errors.	Here’s	the	error	report	from	our
example:

6>	rb:show(5).

ERROR	REPORT		<0.51.0>																																						2016-01-09	19:24:30

===

**	Generic	server	frequency	terminating

**	Last	message	in	was	{allocate,<0.34.0>}

**	When	Server	state	==	{data,[{"State",{{available,crash},{allocated,[]}}}]}

**	Reason	for	termination	==

**	{function_clause,[{frequency,allocate,

																																[{crash,[]},<0.34.0>],

																																[{file,"bsc-1.0/src/frequency.erl"},

																																	{line,99}]},

																					{frequency,handle_call,3,

																																[{file,"bsc-1.0/src/frequency.erl"},

																																	{line,66}]},

																					{gen_server,try_handle_call,4,

																																	[{file,"gen_server.erl"},{line,629}]},

																					{gen_server,handle_msg,5,

																																	[{file,"gen_server.erl"},{line,661}]},

																					{proc_lib,init_p_do_apply,3,

																															[{file,"proc_lib.erl"},{line,240}]}]}

ok

7>	error_logger:error_msg("Error	in	~w.	Division	by	zero!~n",	[self()]).

ok

=ERROR	REPORT====	9-Jan-2016::19:28:19	===

Error	in	<0.57.0>.	Division	by	zero!

Crash	Reports
Crash	reports	are	issued	by	processes	started	with	the	proc_lib	library.	If	you
look	at	the	exit	reason	in	our	example,	you	will	realize	that	this	applies	to	all
behaviors,	which	are	started	from	that	library.	A	try-catch	in	the	main	behavior
loop	will	trap	abnormal	terminations	and	generate	a	crash	report.	No	reports	are
generated	if	the	behavior	or	process	terminates	with	reason	normal	or	when	the
supervisor	terminates	the	behavior	with	reason	shutdown.	A	crash	report
contains	information	on	the	crashed	process,	including	exit	reason,	initial
function,	and	message	queue,	as	well	as	other	process	information	typically
found	using	the	process_info	BIFs.	The	crash	report	from	our	example	looks
like	this:

8>	rb:show(4).

CRASH	REPORT		<0.51.0>																																						2016-01-09	19:24:30

===

Crashing	process

			initial_call																																{frequency,init,['Argument__1']}

			pid																																																																	<0.51.0>

			registered_name																																																				frequency

			error_info

									{exit,

												{function_clause,

																[{frequency,allocate,

																					[{crash,[]},<0.34.0>],

																					[{file,"bsc-1.0/src/frequency.erl"},{line,99}]},

																	{frequency,handle_call,3,

																					[{file,"bsc-1.0/src/frequency.erl"},{line,66}]},

																	{gen_server,try_handle_call,4,

																					[{file,"gen_server.erl"},{line,629}]},

																	{gen_server,handle_msg,5,

																					[{file,"gen_server.erl"},{line,661}]},

																	{proc_lib,init_p_do_apply,3,

																					[{file,"proc_lib.erl"},{line,240}]}]},

												[{gen_server,terminate,7,[{file,"gen_server.erl"},{line,826}]},

													{proc_lib,init_p_do_apply,3,

																	[{file,"proc_lib.erl"},{line,240}]}]}

			ancestors																																																					[bsc,<0.47.0>]

			messages																																																																		[]

			links																																																													[<0.48.0>]

			dictionary																																																																[]

			trap_exit																																																														false

			status																																																															running

			heap_size																																																																987

			stack_size																																																																27

			reductions																																																															412

ok

Supervisor	Reports
Supervisor	reports	are	issued	by	supervisors	upon	abnormal	child	termination.
They	usually	follow	the	error	reports	issued	by	the	children	themselves.	The
supervisor	report	contains	the	name	of	the	reporting	supervisor	and	the	phase	of
the	child	in	which	the	error	occurred:

9>	rb:show(3).

SUPERVISOR	REPORT		<0.48.0>																																	2016-01-09	19:24:30

===

Reporting	supervisor																																																{local,bsc}

Child	process

			errorContext																																															child_terminated

			reason

									{function_clause,

												[{frequency,allocate,

																	[{crash,[]},<0.34.0>],

																	[{file,"bsc-1.0/src/frequency.erl"},{line,99}]},

													{frequency,handle_call,3,

																	[{file,"bsc-1.0/src/frequency.erl"},{line,66}]},

													{gen_server,try_handle_call,4,

																	[{file,"gen_server.erl"},{line,629}]},

													{gen_server,handle_msg,5,[{file,"gen_server.erl"},{line,661}]},

													{proc_lib,init_p_do_apply,3,

																	[{file,"proc_lib.erl"},{line,240}]}]}

			pid																																																																	<0.51.0>

			id																																																																	frequency

			mfargs																																													{frequency,start_link,[]}

			restart_type																																																							permanent

			shutdown																																																																2000

			child_type																																																												worker

ok

If	you	look	close	to	the	top	of	the	example	output,	you	will	find	the	report	phase
of	the	child	when	the	error	occurred:	one	of	start_error,	child_terminated,	or
shutdown_error.	In	our	case,	the	termination	happened	because	of	a	runtime
error,	resulting	in	the	report	phase	being	child_terminated.	It	is	followed	with
the	reason	for	termination	and	the	child	specification.

You	can	look	at	the	last	two	progress	reports	on	your	own.	They	are	the	progress
reports	generated	when	the	frequency	server	and	phone	supervisor	are	restarted.
Use	rb:help(),	and	spend	some	time	experimenting	with	the	commands	in	the
report	browser,	especially	the	filters	and	regular	expressions.

THE	SASL	LOGS	WILL	BAIL	YOU	OUT

The	SASL	logs	should	by	default	be	enabled	on	all	nodes	in	production,	as	they	will	be	your	first	point
of	call	when	investigating	a	node	crash	or	trying	to	restart	a	node.	In	the	majority	of	cases,	the	error,
crash,	and	supervisor	reports	will	contain	enough	information	to	figure	out	what	happened.	Always
have	a	separate	start	script	that	allows	you	to	start	Erlang	(and	sasl)	on	its	own,	using	the	command
rb:start([{report_dir,	Dir}])	to	load	the	logs,	because	there	is	a	good	chance	the	Erlang	node
with	your	release	will	not	be	able	to	restart.	Do	not	rely	on	the	Erlang	node	you	are	investigating	to
read	them,	as	it	most	likely	will	not	start.	If	you	have	an	external	alarm	and	monitoring	system,	it	is
always	a	good	idea	to	generate	notifications	when	you	receive	error,	crash,	and	supervisor	reports	to
ensure	you	investigate	them.	With	many	nodes	in	production	—	potentially	thousands	—	aggregating
these	notifications	in	one	place	will	make	life	much	easier	for	you.	You	can	easily	forward	them	to
third-party	tools	by	writing	your	own	event	handler	and	hooking	it	into	the	SASL	event	manager.

Summing	Up
In	this	chapter,	we	covered	the	behavior	that	allows	us	to	package	code,
resources,	configuration	files,	and	supervision	trees	into	what	we	call	an
application.	Applications	are	the	reusable	building	blocks	of	your	systems;	they
are	loaded,	started,	and	stopped	as	a	single	unit.	They	provide	functionality	such
as	start	phases,	synchronization,	and	failover	in	distributed	clusters,	as	well	as
basic	monitoring	and	logging	services.

Table	9-1	lists	the	major	functions	used	to	control	applications.

Table	9-1.	Application	callbacks

Application	function	or	action Application	callback	function

application:start/1,	application:start/2 Module:start/2,	Module:start_phase/3

application:stop/1 Module:prep_stop/1,	Module:stop/2

You	can	read	more	about	applications	in	the	application	manual	pages,	and
about	resource	files	in	the	app	manual	page.	The	OTP	Design	Principles	User’s
Guide,	which	comes	with	the	standard	Erlang	documentation,	has	sections
covering	general,	included,	and	distributed	applications.	To	learn	more	about	the
tools	we’ve	covered,	consult	the	manual	pages	for	the	report	browser,	rb,	as	well
as	the	observer.	Read	through	the	code	of	the	examples	provided	in	this	chapter
and	see	how	applications	in	the	Erlang	distribution	are	packaged	and	configured.

http://bit.ly/erlang-app
http://erlang.org/doc/man/app.html
http://bit.ly/erlang-rb
http://bit.ly/erlang-observer

What’s	Next?
Now	that	we	know	how	to	create	our	applications,	the	basic	building	blocks	for
Erlang	systems,	next	we	look	at	how	to	group	them	together	in	a	release	and	start
our	systems	using	boot	files.	But	first,	we	look	at	some	of	the	libraries	used	to
implement	special	processes,	and	using	that	knowledge	to	define	our	own
behaviors.	What	are	special	processes,	I	hear	you	say?	They	are	processes	that,
despite	not	being	OTP	behaviors	that	come	as	part	of	the	stdlib	application,	can
be	added	to	OTP	supervision	trees.	Read	on	to	find	out	more.

In	case	you	are	wondering,	CXC	is	an	internal	Ericsson	product-numbering	scheme.	It	is	rumored	that	a
copy	of	every	product	with	a	CXC	number	is	stored	in	a	nuclear-proof	bunker	at	a	secret	location
somewhere	in	the	Swedish	woods.

The	code	server	might	load	it	later	when	you	try	to	call	it.

1

2

Chapter	10.	Special	Processes	and
Your	Own	Behaviors

OTP	behaviors,	in	the	vast	majority	of	cases,	provide	you	with	the	concurrency
design	patterns	you	need	in	your	projects.	There	might,	however,	be	occasions
where	you	want	to	create	an	OTP-compliant	application	while	attaching
processes	that	are	not	standard	behaviors	to	your	supervision	tree.	For	instance,
existing	behaviors	might	have	performance	impacts	caused	by	the	overhead	of
the	layers	added	as	a	result	of	abstracting	out	the	generic	parts	and	error
handling.	You	may	want	to	write	new	behaviors	after	separating	your	code	into
generic	and	specific	modules.	Or	you	might	want	to	do	something	as	simple	as
adding	pure	Erlang	processes	to	a	supervision	tree,	making	your	release	OTP
compliant	beyond	the	capabilities	provided	by	supervision	bridges.	For	instance,
you	might	have	to	preserve	that	proof	of	concept	you	wrote	when	you	first
started	exploring	Erlang	that,	against	your	better	judgment,	wound	up	in
production.1

We	refer	to	a	process	that	can	be	added	to	an	OTP	supervision	tree	and	packaged
in	an	application	as	a	special	process.	This	chapter	explains	how	to	write	your
own	special	processes,	providing	you	with	the	flexibility	of	pure	Erlang	while
retaining	all	of	the	advantages	of	OTP.	We	also	explain	how	you	can	take	your
special	processes	a	step	further,	turning	them	into	OTP	behaviors	by	splitting	the
code	into	generic	and	specific	modules	that	interface	with	each	other	through
predefined	callback	functions.	If	you	are	not	planning	on	implementing	your
own	behaviors	or	are	uninterested	in	how	they	work	behind	the	scenes,	feel	free
to	jump	to	the	next	chapter	(or	go	to	the	pub)	without	a	bad	conscience.	You	can
always	come	back	and	read	this	chapter	when	you	need	to.	If,	on	the	other	hand,
we’ve	piqued	your	curiosity,	keep	on	reading.

Special	Processes
In	order	for	a	process	to	be	considered	a	special	process,	and	as	such	be	part	of
an	OTP	supervision	tree,	it	must:

Be	started	using	the	proc_lib	module	and	link	to	its	parent

Be	able	to	handle	system	messages,	system	events,	and	shutdown	requests

Return	the	module	list	if	running	dynamic	modules,	as	we	did	with	event
managers	when	defining	their	child	specs

While	optional,	it	is	useful	if	the	process	is	also	capable	of	handling	debug	flags
and	generating	trace	messages.

We	show	you	how	to	implement	special	processes	by	walking	through	an
example	where	we	implement	a	mutex,	serializing	access	to	critical	resources.

The	Mutex
Mutex	stands	for	mutual	exclusion.	It	ensures	only	one	process	is	allowed	to
execute	the	code	in	the	critical	section	at	any	one	time.	A	critical	resource	could
be	a	printer,	shared	memory,	or	any	other	device	for	which	requests	must	be
serialized	because	it	can	handle	only	one	client	at	a	time.	A	process	executing
code	that	accesses	this	resource	is	said	to	be	in	the	critical	section.	It	needs	to
finish	executing	all	the	code	in	the	critical	section	and	exit	it	before	a	new
process	is	allowed	to	enter.

In	Erlang,	programmers	can	implement	a	mutex	as	an	FSM,	serializing	client
requests	through	a	process	and	managing	the	request	queue	using	the	mailboxes
and	selective	receives.	Because	we	are	implementing	an	FSM,	you	must	be
asking	yourself	why	we	are	not	using	the	gen_fsm	behavior	module.	The	reason
is	that	the	gen_fsm	behavior,	and	any	of	the	other	standard	OTP	behaviors,	for
that	matter,	does	not	allow	us	to	selectively	receive	messages	through	pattern
matching.	Instead,	the	standard	behaviors	force	us	to	handle	events	in	the	order
in	which	they	arrive.	In	contrast,	by	using	the	process	mailbox	and	selective
receives	to	manage	the	queue	of	client	processes	waiting	for	the	mutex,	we
simplify	our	code	because	we	have	to	handle	only	one	client	request	at	a	time,
without	having	to	worry	about	the	others	waiting	in	the	queue.

Mutexes	are	FSMs	with	two	states,	free	and	busy.	A	client	wanting	to	enter	the
critical	section	does	so	by	calling	the	client	function	mutex:wait(Name),	where
Name	is	the	variable	bound	to	the	registered	name	associated	with	the	mutex.	The
wait	call	is	synchronous,	returning	only	when	the	calling	process	is	allowed	to
enter	the	critical	section.	When	that	occurs,	the	FSM	transitions	to	state	busy.

Requests	are	stored	in	the	mailbox	and	handled	on	a	first	in,	first	out	basis.	If	the
mutex	is	being	blocked	by	another	process	in	state	busy,	the	request	is	left	in	the
mailbox	and	handled	when	the	mutex	returns	to	state	free.	When	the	busy
process	is	ready	to	leave	the	critical	section,	it	calls	mutex:signal(Name),	an
asynchronous	call	that	releases	the	mutex.	When	that	occurs,	the	FSM	transitions
back	to	state	free,	ready	to	handle	the	next	request.	Figure	10-1	shows	the	state
transitions	of	a	mutex.

Figure	10-1.	State	transitions	in	a	mutex

Let’s	have	a	look	at	the	mutex	module,	starting	with	the	client	functions	(other
exported	functions	will	be	defined	shortly):

-module(mutex).

-export([start_link/1,	start_link/2,	init/3,	stop/1]).

-export([wait/1,	signal/1]).

wait(Name)	->

				Name	!	{wait,self()},

				Mutex	=	whereis(Name),

				receive

								{Mutex,ok}	->	ok

				end.

signal(Name)	->

				Name	!	{signal,self()},

				ok.

Lots	of	borderline	cases	are	handled	gracefully	in	standard	OTP	behaviors	and
are	often	taken	for	granted	by	the	programmer.	You	might	have	seen	them
yourself	when	looking	at	the	code	in	the	gen_server	or	gen_fsm	modules.	When
implementing	special	processes,	however,	you	need	to	decide	which	borderline
cases	to	handle	and	take	care	of	them	yourself.	In	our	example,	we’ve	opted	for
simplicity	and	do	not	cover	any	of	them.	But	to	give	you	an	idea	of	what	we	are
talking	about,	have	a	look	at	the	wait/1	function,	where	we	do	not	check	if	Name
exists.	We	do	not	monitor	whether	the	mutex	terminates	while	the	client	process

is	suspended	in	its	receive	clause.	Nor	are	we	handling	the	case	where	the
mutex	terminates	right	before	whereis/1	and	is	restarted	and	reregistered
immediately,	leaving	wait/1	in	a	receive	clause	waiting	for	a	message	from	a
live	process	it	will	never	receive.	Nor	have	we	implemented	any	timeouts	if	the
mutex	process	is	deadlocked	or	hanging.

Starting	Special	Processes
When	starting	special	processes,	use	the	start	and	spawn	functions	defined	in
the	proc_lib	library	module	instead	of	Erlang’s	standard	spawn	and	spawn_link
BIFs.	The	proc_lib	functions	store	the	process’s	name,	identity,	parent,
ancestors,	and	initial	function	call	in	the	process	dictionary.	If	the	process
terminates	abnormally,	SASL	crash	reports	are	generated	and	forwarded	to	the
error	logger.	They	contain	all	the	process	info	stored	at	startup,	together	with	the
reason	for	termination.	And	like	with	other	behaviors,	there	is	functionality
allowing	for	a	synchronous	startup	with	an	init	phase.

A	common	error	is	to	attach	a	process	that	doesn’t	implement	a	behavior	to	the
supervision	tree.	There	are	no	warnings	at	compile	time	or	runtime	for	this,	as
the	only	check	made	by	the	supervisor	is	to	ensure	the	tuple	{ok,	Pid}	is
returned.	No	checks	are	made	on	Pid	either.	You	will	notice	things	going	wrong
only	after	a	crash,	restart,	or	upgrade.	And	because	these	processes	do	not	follow
standard	behaviors,	unless	you’ve	tested	your	restart	strategy,	hunting	down	the
issue	will	resemble	more	of	a	wild	goose	chase	than	a	routine	and	civilized
troubleshooting	session.	For	non-OTP-compliant	processes,	use	supervisor
bridges,	covered	in	“Supervisor	bridges”.	This	chapter	shows	you	how	to	create
an	OTP-compliant	process.

Basic	template	for	starting	a	special	process
The	recommended	approach	to	starting	a	special	process	is	to	use	the
proc_lib:start_link(Mod,	Fun,	Args)	call	instead	of	the	spawn_link/3	BIF.
Given	a	module,	a	function,	and	a	list	of	arguments,	it	synchronously	spawns	a
process	and	waits	for	this	process	to	notify	that	it	has	correctly	started	through
the	proc_lib:init_ack(Value)	call.	Value	is	sent	back	to	the	parent	process,
becoming	the	return	value	of	the	start_link/3	call.	Note	how	we	are	passing
optional	DbgOpts	debug	option	parameters	in	our	start_link	call.	We	covered
them	in	Chapter	5.	For	now,	assume	DbgOpts	is	an	empty	list.	Note	also	how	we
are	passing	the	Parent	process	ID	to	the	init/3	function;	we	need	it	in	our	main
loop.	It	is	the	result	of	the	self()	BIF	in	the	start_link/2	call.

start_link(Name)	->

				start_link(Name,	[]).

start_link(Name,	DbgOpts)	->

				proc_lib:start_link(?MODULE,	init,	[self(),	Name,	DbgOpts]).

stop(Name)	->	Name	!	stop.

init(Parent,	Name,	DbgOpts)	->

				register(Name,	self()),

				process_flag(trap_exit,	true),

				Debug	=	sys:debug_options(DbgOpts),

				proc_lib:init_ack({ok,self()}),

				free(Name,	Parent,	Debug).

When	initializing	the	process	state,	we	first	register	the	mutex	with	the	alias
Name.	We	set	the	trap_exit	flag	so	we	can	receive	exit	signals	from	processes	in
our	linked	set	(we	use	links	instead	of	monitors	to	notify	or	terminate	the	caller
if	the	mutex	fails).	And	finally,	we	initialize	the	debug	trace	flags	using	the
sys:debug_options(DbgOpts)	call.	The	return	value	of	debug_options/1	is
passed	as	loop	data	and	stored	in	the	process	state.	It	will	be	needed	whenever
the	special	process	has	to	generate	a	trace	message	or	receives	a	system	message
requesting	it	to	update	its	trace	flags.

As	illustrated	in	Figure	10-2,	once	the	state	is	initialized,	we	call
proc_lib:init_ack(Value)	to	inform	the	parent	that	the	special	process	has
started	correctly.	Value	is	sent	back	and	becomes	the	return	value	of	the
proc_lib:start_link/3	call.	Although	it	isn’t	mandatory,	it	is	common	practice
to	return	{ok,	self()}	because	supervisors	expect	their	children’s	start
functions	to	return	{ok,	Pid}.	If	any	part	of	the	initialization	fails	before	calling
init_ack/1,	proc_lib:start_link/3	terminates	with	the	same	reason.	Have	a
look	at	the	last	line	of	the	init/3	function	and	differentiate	between	the	function
call	free,	which	points	to	the	FSM’s	first	state,	and	Name,	Parent,	and	Debug,
which	is	the	process	state.

Figure	10-2.	Starting	special	processes

The	calls	you	can	use	to	synchronously	start	a	special	process	are:
proc_lib:start(Module,	Function,	Args)

proc_lib:start(Module,	Function,	Args,	Time)

proc_lib:start(Module,	Function,	Args,	Time,	SpawnOpts)	->	Ret

proc_lib:start_link(Module,	Function,	Args)

proc_lib:start_link(Module,	Function,	Args,	Time)

proc_lib:start_link(Module,	Function,	Args,	Time,	SpawnOpts)	->

Ret

proc_lib:init_ack(Ret)

proc_lib:init_ack(Parent,	Ret)	->	ok

The	Ret	return	value	of	the	start/3,4,5	and	start_link/3,4,5	functions
comes	from	the	init_ack/1,2	call.	As	with	other	behaviors,	SpawnOpts	is	a	list
containing	all	options	the	spawn	BIFs	accept,	monitor	excluded.	If	within	Time
milliseconds	init_ack	is	not	called,	the	start	function	returns	{error,

timeout}.	If	you	use	spawn	or	spawn_opt,	do	not	forget	to	link	the	child	to	the
parent	process,	either	through	the	link/1	BIF	or	by	passing	the	link	option	in
SpawnOpts.

Asynchronously	starting	a	special	process
The	following	variations	on	the	standard	spawn	and	spawn_link	functions	are
used	in	situations	where	you	need	asynchronous	starts,	such	as	the	simultaneous
launch	of	hundreds	of	new	processes.	They	spawn	the	child	process	and
immediately	return	its	pid:

proc_lib:spawn(Fun)

proc_lib:spawn_link(Fun)

proc_lib:spawn_opt(Fun,	SpawnOpts)	->	Pid

proc_lib:spawn(Module,	Function,	Args)

proc_lib:spawn_link(Module,	Function,	Args)

proc_lib:spawn_opt(Node,	Function,	SpawnOpts)	->	Pid

Other	options	to	synchronously	start	special	servers	include	spawning	a	process
using	a	fun	and	spawning	a	process	with	the	spawn	options	SpawnOpts.

Use	asynchronous	spawning	with	care,	because	the	functions	might	cause
multiple	processes	to	run	in	parallel,	resulting	in	race	conditions	that	make	your
program	nondeterministic.	The	same	arguments	we	put	forward	in	“Starting	a
Server”	when	discussing	generic	servers	are	valid	here.	A	startup	error	might	be
hard	to	reproduce	if	it	is	dependent	on	a	certain	number	of	concurrent	events
happening	in	a	specific	order,	an	issue	that	is	becoming	more	evident	with
multicore	architectures.	To	be	able	to	deterministically	reproduce	a	startup	error,
create	your	process	synchronously.

Regardless	of	how	you	start	your	special	processes,	they	always	have	to	be
linked	to	their	parent	(by	default,	the	supervisor).	This	happens	automatically	if
you	use	start_link,	spawn_link,	or	pass	the	link	option	in	SpawnOpts.
However,	no	checks	are	made	to	ensure	that	the	process	is	actually	linked	to	the

supervisor,	so	even	here,	omissions	of	this	type	can	be	difficult	to	troubleshoot
and	detect.

The	Mutex	States
As	we	saw,	a	mutex	has	two	states,	free	and	busy,	that	are	implemented	as	tail-
recursive	functions.	The	synchronous	wait	and	asynchronous	signal	events	are
sent	as	messages	together	with	the	client	pid.	The	combination	of	state	and	event
dictates	the	actions	and	state	transitions.	Note	how	when	in	the	free	state,	we
accept	only	the	wait	event,	informing	the	client	through	the	message	{self(),
ok}	that	it	is	allowed	to	enter	the	critical	section.	The	mutex	will	then	transition
to	the	busy	state,	where	the	only	event	that	will	pattern	match	is	signal,	sent	by
Pid.	You	should	have	noticed	that	Pid	was	bound	in	the	function	head	to	the
client	holding	the	mutex.	Upon	receiving	the	signal	event,	the	mutex	transitions
back	to	the	free	state:

free(Name,	Parent,	Debug)	->

				receive

								{wait,Pid}	->

												Pid	!	{self(),ok},

												busy(Pid,	Name,	Parent,	Debug);

								stop	->

												ok

				end.

busy(Pid,	Name,	Parent,	Debug)	->

				receive

								{signal,Pid}	->

												free(Name,	Parent,	Debug)

				end.

Note	how	we	accept	the	stop	message	only	if	the	mutex	is	in	the	free	state.	If
you	stop	the	mutex	in	the	busy	state,	you’ll	leave	the	client	executing	the	code	in
its	critical	section	in	an	unknown	and	possibly	corrupt	state,	because	the	mutex
might	have	been	restarted	and	blocked	by	other	client	processes.	By	stopping	the
mutex	only	in	the	free	state,	you	can	guarantee	a	clean	shutdown.

So	far,	so	good.	We	are	going	back	to	Erlang	101	with	the	basics	of	FSMs.	Let’s
now	start	expanding	the	states	to	handle	the	system	messages	required	by	special
processes.

Handling	Exits
If	the	parent	of	your	special	process	terminates,	your	process	must	terminate	as
well.	If	your	process	does	not	trap	exit	signals,	the	runtime	will	take	care	of	this
for	you	because	you	should	be	linked	to	your	parent.	Non-normal	exit	signals
propagate	to	all	processes	in	the	link	set,	terminating	them	with	the	same	reason
that	terminated	the	original	process.	An	exit	with	reason	normal	doesn’t
propagate,	but	in	OTP,	the	supervisor	guarantees	that	a	parent	will	never
terminate	with	that	reason,	so	you	don’t	have	to	worry	about	it.

Special	processes	that	trap	exits	have	to	monitor	their	parents,	as	they	might
receive	messages	of	the	format:

{'EXIT',	Parent,	Reason}

where	Parent	is	the	parent	pid	and	Reason	is	the	reason	for	termination.	If	they
do,	they	should	clean	up	after	themselves,	possibly	in	their	terminate	or	cleanup
function,	followed	by	a	call	to	the	exit(Reason)	BIF.

In	our	previous	example,	the	mutex	is	trapping	exits,	so	we	have	to	monitor
parent	termination.	Let’s	expand	the	state	functions,	handling	the	EXIT	messages
from	the	parent	process	by	calling	terminate/2.	We	also	call	terminate/2	when
receiving	the	stop	message.	If	the	parent	terminates	in	state	busy,	we	terminate
the	process	holding	the	mutex	before	calling	terminate/2:

free(Name,	Parent,	Debug)	->

				receive

								{wait,Pid}	->

												link(Pid),

												Pid	!	{self(),ok},

												busy(Pid,	Name,	Parent,	Debug);

								stop	->

												terminate(shutdown,	Name);

								{'EXIT',Parent,Reason}	->

												terminate(Reason,	Name)

				end.

busy(Pid,	Name,	Parent,	Debug)	->

				receive

								{signal,Pid}	->

												free(Name,	Parent,	Debug);

								{'EXIT',Parent,Reason}	->

												exit(Pid,	Reason),

												terminate(Reason,	Name)

				end.

terminate(Reason,	Name)	->

				unregister(Name),

				terminate(Reason).

terminate(Reason)	->

				receive

								{wait,Pid}	->

												exit(Pid,	Reason),

												terminate(Reason)

				after	0	->

												exit(Reason)

				end.

The	first	thing	terminate/2	does	is	unregister	the	mutex,	ensuring	that	any
processes	that	try	to	send	it	requests	terminate	with	reason	badarg.	The	mutex
goes	on	to	terminate	all	processes	in	the	queue	by	traversing	its	mailbox	and
extracting	wait	requests.	When	done,	it	knows	no	client	processes	are	kept
hanging	and	terminates	itself	with	reason	Reason.

System	Messages
In	addition	to	monitoring	parents,	special	processes	need	to	manage	system
messages	of	the	format:

{system,	From,	Msg}

where	From	is	the	request	originator	and	Msg	is	the	system	message	itself.	They
could	be	messages	originating	from	the	supervisor	used	to	suspend	and	resume
processes	during	software	upgrades	or	from	a	client	manipulating	or	retrieving
trace	outputs	using	the	sys	module.	What	they	are,	however,	is	irrelevant	to	you
as	a	developer,	as	you	handle	them	as	opaque	data	types	and	just	pass	them	on.

No	matter	what	the	request	is,	these	calls	are	handled	behind	the	scenes	in	the
sys:handle_system_message(Msg,	From,	Parent,	Mod,	Dbg,	Data)

function,	as	seen	in	Figure	10-3.	The	arguments	to	the
sys:handle_system_message/6	call,	although	numerous,	are	straightforward:

Msg	and	From	are	provided	by	the	system	message.

Parent	is	the	parent	pid,	passed	when	spawning	the	special	process.

Mod	is	the	name	of	the	module	implementing	the	special	process.

Dbg	is	the	debug	data,	initially	returned	by	the	sys:debug_options/1	call.

Data	is	used	to	store	the	loop	data	of	the	process.

Figure	10-3.	Handling	system	messages

The	functions	in	the	special	process	module	that	executes	the	call	must	be	tail
recursive	as	they	never	return.	Not	making	them	tail	recursive	will	cause	a
memory	leak	every	time	a	system	message	is	received.	Control	is	handed	back	to
the	special	process	in	the	Mod	module	by	calling	one	of	the	following	callback
functions:

Mod:system_continue(Parent,	Debug,	Data)

Mod:system_terminate(Reason,	Parent,	Debug,	Data)

If	control	is	returned	through	the	system_continue/3	callback	function,	your
special	process	needs	to	return	to	its	main	loop.	If	system_terminate/4	is
instead	called,	probably	as	a	result	of	the	parent	ordering	a	shutdown,	the	special
process	needs	to	clean	up	after	itself	and	terminate	with	reason	Reason.	We	show
you	all	of	this	in	the	mutex	example,	but	first,	let’s	understand	how	debug
printouts	work.

Trace	and	Log	Events
When	we	covered	the	start	functions	earlier	in	this	chapter,	we	discussed	the
SpawnOpts	argument,	which	among	other	options	allows	us	to	pass	debug	flags
to	special	processes.	In	our	mutex:start_link/2	call,	we	can	pass	these	debug
options	in	the	second	argument,	binding	them	to	the	DbgOpts	variable.	DbgOpts
contains	zero	or	more	of	the	trace,	log,	statistics,	and	{log_to_file,
FileName}	flags	described	in	Chapter	5.	This	list	is	passed	by	the	special	process
to	the	sys:debug_options(DbgOpts)	call,	which	initiates	the	debug	routines.
Unrecognized	or	unsupported	debug	options	are	ignored.	The	return	value	of	the
call,	stored	in	the	variable	Debug	in	our	example,	is	kept	in	the	special	process
loop	data	passed	to	all	system	calls.	Remember	the	example	in	“Tracing	and
Logging”	where	we	turned	the	trace	and	logs	on	or	off	during	runtime,	printing
them	in	the	shell	and	diverting	them	to	a	file?	If	everything	is	initialized
correctly,	you	can	generate	similar	trace	logs	with	your	special	processes,	turning
the	options	on	and	off	at	runtime.	All	requests	originating	from	calls	such	as
sys:trace/3	or	sys:log/2	are	received	and	handled	as	system	messages.	What
might	change	in	between	calls	are	the	contents	of	the	Debug	list,	returned	as	part
of	the	system_continue/3	callback	function.

Generating	trace	events	is	a	straightforward	operation	done	by	calling	this
function:

sys:handle_debug(Debug,	DbgFun,	Extra,	Event)

where:
Debug	is	the	initialized	debug	options.

DbgFun	is	a	fun	of	arity	3	that	formats	the	trace	event.

Extra	is	data	that	can	be	used	when	formatting	the	event,	usually	the
process	name	or	the	loop	data.

Event	is	the	trace	event	you	want	to	print	out.

DbgFun	is	a	fun	that	formats	the	event,	sometimes	by	calling	another	function	to

do	so.	The	arguments	passed	to	it	by	the	sys	module	include	the	I/O	device	you
are	writing	to,	which	can	be	either	the	standard_io	or	standard_error	atom	or
the	pid	returned	by	the	file:open	call.	Extra	and	Event	come	from	the
arguments	to	the	handle_debug/4	call:

fun(Dev,	Extra,	Event)	->

				io:format(Dev,	"mutex	~w:	~w~n",	[Extra,Event])

end

You	can	also	add	your	own	trace	functions	at	runtime	using	the	sys:install/2
call,	using	pattern	matching	in	the	fun	head	to	examine	events	and	decide	on	the
flow	of	execution.	With	system	messages	and	trace	outputs	in	place,	let’s	see
how	it	all	fits	together	by	adding	them	to	our	mutex	example.

Putting	It	Together
For	your	convenience,	we’ve	put	the	whole	mutex	example	in	one	place.	Note
how	we’ve	expanded	the	free	and	busy	states	to	include	trace	messages	and
system	messages.	Let’s	focus	on	this	functionality,	starting	with	trace	messages.

When	we	receive	the	wait	and	signal	events,	we	call
sys:handle_debug(Debug,	fun	debug/3,	Name,	Event),	where	Event	is
either	{wait,	Pid}	or	{signal,	Pid}.	This	call	hands	control	over	to	the	sys
module,	which	eventually	calls	the	debug	fun.	In	our	case,	it	is	the	local	function
debug/3.	Have	a	look	at	it,	paying	special	attention	as	to	how	the	I/O	device,
extra	arguments,	and	events	passed	to	it	are	used.	handle_debug/4	returns
NewDebug,	which	is	passed	as	an	argument	to	the	next	state.	When	reviewing	the
example,	remember	the	mutex	process	does	not	implement	the	services	it
protects.	It	just	implements	the	semaphore	that	gives	other	processes	access	to
these	services.	The	complete	mutex	example	looks	like	this:

-module(mutex).

-export([start_link/1,	start_link/2,	init/3,	stop/1]).

-export([wait/1,	signal/1]).

-export([system_continue/3,	system_terminate/4]).

wait(Name)	->

				Name	!	{wait,self()},

				Mutex	=	whereis(Name),

				receive

								{Mutex,ok}	->	ok

				end.

signal(Name)	->

				Name	!	{signal,self()},

				ok.

start_link(Name)	->

				start_link(Name,	[]).

start_link(Name,	DbgOpts)	->

				proc_lib:start_link(?MODULE,	init,	[self(),	Name,	DbgOpts]).

stop(Name)	->	Name	!	stop.

init(Parent,	Name,	DbgOpts)	->

				register(Name,	self()),

				process_flag(trap_exit,	true),

				Debug	=	sys:debug_options(DbgOpts),

				proc_lib:init_ack({ok,self()}),

				NewDebug	=	sys:handle_debug(Debug,	fun	debug/3,	Name,	init),

				free(Name,	Parent,	NewDebug).

free(Name,	Parent,	Debug)	->

				receive

								{wait,Pid}	->	 	 %%	The	user	requests.

												NewDebug	=	sys:handle_debug(Debug,	fun	debug/3,	Name,	{wait,Pid}),

												Pid	!	{self(),ok},

												busy(Pid,	Name,	Parent,	NewDebug);

								{system,From,Msg}	->	 %%	The	system	messages.

												sys:handle_system_msg(Msg,	From,	Parent,

																																		?MODULE,	Debug,	{free,	Name});

								stop	->

												terminate(stopped,	Name,	Debug);

								{'EXIT',Parent,Reason}	->

												terminate(Reason,	Name,	Debug)

				end.

busy(Pid,	Name,	Parent,	Debug)	->

				receive

								{signal,Pid}	->

												NewDebug	=	sys:handle_debug(Debug,	fun	debug/3,	Name,	{signal,Pid}),

												free(Name,	Parent,	NewDebug);

								{system,From,Msg}	->				%%	The	system	messages.

												sys:handle_system_msg(Msg,	From,	Parent,	

																																		?MODULE,	Debug,	{busy,Name,Pid});

								{'EXIT',Parent,Reason}	->

												exit(Pid,	Reason),

												terminate(Reason,	Name,	Debug)

				end.

debug(Dev,	Event,	Name)	->

				io:format(Dev,	"mutex	~w:	~w~n",	[Name,Event]).

system_continue(Parent,	Debug,	{busy,Name,Pid})	->

				busy(Pid,	Name,	Parent,	Debug);

system_continue(Parent,	Debug,	{free,Name})	->

				free(Name,	Parent,	Debug).

system_terminate(Reason,	_Parent,	Debug,	{busy,Name,Pid})	->

				exit(Pid,	Reason),

				terminate(Reason,	Name,	Debug);

system_terminate(Reason,	_Parent,	Debug,	{free,Name})	->

				terminate(Reason,	Name,	Debug).

terminate(Reason,	Name,	Debug)	->

				unregister(Name),

				sys:handle_debug(Debug,	fun	debug/3,	Name,	{terminate,	Reason}),

				terminate(Reason).

terminate(Reason)	->

				receive

								{wait,Pid}	->

												exit(Pid,	Reason),

												terminate(Reason)

				after	0	->

												exit(Reason)

				end.

When	the	free	and	busy	functions	receive	{system,	From,	Msg},	they	tail
recursively	invoke	sys:handle_system_msg(Msg,	From,	Parent,	?MODULE,
Debug,	{State,	LoopData}),	handing	control	over	to	the	sys	module.	The

system	message	is	handled	behing	the	scenes,	after	which	the	function	returns	by
calling	either	system_continue/3	or	system_terminate/4	in	the	mutex	module.
If	the	function	is	not	tail	recursive,	there	will	be,	as	we	mentioned	earlier,	a
memory	leak	for	every	system	message	received.

In	our	example,	if	system_continue	is	called,	we	just	return	to	the	state	we	were
in,	determined	by	the	Name	loop	data	in	state	free	and	the	{Name,	Pid}	loop	data
in	busy,	where	we	wait	for	the	next	event	or	system	call.	In	the	case	of
system_terminate,	if	in	state	busy,	we	terminate	the	process	that	held	the	mutex
(potentially	leaving	the	system	in	an	inconsistent	state),	followed	by	calling
terminate/2.	If	in	state	free,	we	just	call	terminate/2.	In	both	cases,	we
employ	pattern	matching	on	the	final	argument	to	ensure	we	take	the	correct
actions	for	continuation	and	termination.

System	messages	and	debug	options	are	straightforward	to	handle	in	your	own
special	processes.	All	you	need	to	do	is	reuse	the	code	from	this	example,
ensuring	that	when	you	get	handed	back	the	control,	you	go	back	into	your	loop
or	state	with	a	tail-recursive	function.	Before	looking	at	the	trial	run	of	the
mutex,	read	through	the	code	one	more	time	and	make	sure	you	understand	the
what,	why,	and	hows	of	special	processes.

In	our	trial	run,	we	create	a	child	specification	for	our	special	process,	starting	it
as	a	dynamic	child	in	a	supervisor	mutex_sup.	We’ve	not	included	the	supervisor
code	in	this	example,	as	it	is	boilerplate	code.	All	init/1	does	is	return	the
supervisor	specification	with	a	restart	tuple	with	a	one_for_one	strategy
allowing	a	maximum	of	five	restarts	per	hour	and	an	empty	child	list.	You	can
find	the	source	code	in	the	book’s	GitHub	repository.

Note	how	in	the	mutex:start_link/2	arguments	of	the	child	specification,	we
turn	on	the	trace	flag.	This	leads	to	the	trace	printout	when	the	mutex	is	started
as	a	result	of	shell	command	3.	We	turn	on	other	debug	options	using	the	sys
module	in	shell	commands	4	and	5:

1>	ChildSpec	=	{mutex,	{mutex,	start_link,	[printer,	[trace]]},

																			transient,	5000,	worker,	[mutex]}.

{mutex,{mutex,start_link,[printer,[trace]]},

							transient,5000,worker,

							[mutex]}

2>	mutex_sup:start_link().

{ok,<0.35.0>}

3>	supervisor:start_child(mutex_sup,	ChildSpec).

mutex	printer:	init

{ok,<0.37.0>}

4>	sys:log(printer,	{true,10}).

ok

5>	sys:statistics(printer,	true).

ok

6>	mutex:wait(printer),	mutex:signal(printer).

mutex	printer:	{wait,<0.32.0>}

mutex	printer:	{signal,<0.32.0>}

ok

7>	sys:log(printer,	get).

{ok,[{{wait,<0.32.0>},printer,#Fun<mutex.1.94496536>},

					{{signal,<0.32.0>},printer,#Fun<mutex.2.94496536>}]}

8>	sys:log(printer,	print).

mutex	printer:	{wait,<0.32.0>}

mutex	printer:	{signal,<0.32.0>}

ok

9>	sys:get_status(printer).

{status,<0.37.0>,

								{module,mutex},

								[[{'$ancestors',[mutex_sup,<0.32.0>]},

										{'$initial_call',{mutex,init,3}}],

									running,<0.35.0>,

									[{statistics,{{{2014,1,6},{8,50,36}},{reductions,66},0,0}},

										{log,{10,

																[{{signal,<0.32.0>},printer,#Fun<mutex.2.94496536>},

																	{{wait,<0.32.0>},printer,#Fun<mutex.1.94496536>}]}},

										{trace,true}],

									{free,printer}]}

10>	exit(whereis(printer),	kill).

mutex	printer:	init

true

11>	exit(whereis(mutex_sup),	shutdown).

mutex	printer:	{terminate,shutdown}

**	exception	exit:	shutdown

In	shell	command	6,	we	wait	for	the	mutex	and	then	signal	for	it	to	be	released,
and	each	request	generates	a	trace	event.	In	shell	commands	7,	8,	and	9,	we
retrieve	some	of	the	trace	and	status	information	through	the	sys	module,
followed	by	some	tests	with	termination	and	restarts	in	shell	commands	10	and
11.

Do	some	tests	of	your	own,	experimenting	with	multiple	clients,	the	SASL	report
browser,	and	other	sys	commands	such	as	suspending	and	restarting	the
modules.

Dynamic	Modules	and	Hibernating
You	might	recall	from	Chapter	8	that	we	need	to	provide	the	list	of	modules
implementing	the	behavior	in	the	child	specification.	They	are	used	to	determine
which	processes	to	suspend	during	software	upgrades.	There	are	occasions,	as	is
the	case	with	event	managers	and	handlers,	where	the	modules	are	not	known	at
compile	time.	In	the	supervisor	child	specification	module	list,	these	behaviors
were	tagged	with	the	atom	dynamic.	Special	processes	can	also	have	dynamic
modules.

Figure	10-4.	Retrieving	dynamic	modules

If	your	special	process	modules	are	tagged	as	dynamic	in	the	child	specification,
then	as	Figure	10-4	illustrates,	you	need	to	handle	the	system	message
{get_modules,	From}.	From	is	the	pid	of	the	supervisor,	used	to	return	the	list	of
modules	in	the	From	!	{modules,	ModuleList}	expression.

If	you	need	to	hibernate	your	special	processes,	instead	of	the	BIF,	use:

proc_lib:hibernate(Mod,	Fun,	Args)

It	hibernates	the	process	just	like	the	BIF	and	the	standard	OTP	behavior	return
values,	but	as	an	added	feature,	it	also	ensures	that	logging	and	debugging	still
function	when	the	process	wakes	up.

Your	Own	Behaviors
Now	that	you	understand	special	processes,	let’s	take	the	concept	further	by
splitting	the	code	into	generic	and	specific	parts	to	implement	our	own
behaviors.	You	will	want	to	implement	your	own	behaviors	when	several
processes	follow	a	pattern	that	cannot	be	expressed	using	existing	OTP
behaviors.	Generic	servers,	FSMs,	and	event	managers	cater	to	most
programmers’	needs,	so	don’t	get	caught	up	in	the	excitement	and	start	writing
new	behaviors	in	every	project.	Chances	are	you	are	overengineering	a	solution
that	could	easily	be	abstracted	in	a	simple	library	module.

Having	said	that,	there	will	be	times	when	there	are	good	reasons	to	implement
your	own	behaviors.	Patterns	can	be	abstracted	in	generic	and	specific	modules,
when	the	generic	part	is	substantial	enough	to	make	it	worthwhile.	If	you	go
down	this	route,	chances	are	good	that	your	behavior	(or	library)	can	be	built	on
top	of	generic	servers.	If	not,	or	if	you	prefer	to	avoid	generic	servers	because	of
the	performance	overhead,	make	sure	your	behavior	follows	the	design	rules
required	by	special	processes	using	the	sys	and	proc_lib	modules.

NOTE
If	you	are	into	software	archeology	and	have	an	interest	in	the	evolution	of	software,	try	to	get
your	hands	on	the	source	code	of	the	early	versions	of	Erlang/OTP.	Skim	through	the	old
behavior	code	and	you	will	find	that	most	of	the	behaviors	were	built	on	top	of	generic	servers.
Current	OTP	behaviors,	generic	servers	included,	are	built	using	a	module	called	gen.	It	is	a
wrapper	on	top	of	the	sys	and	proc_lib	modules,	handling	a	lot	of	the	tricky	and	borderline
cases	associated	with	concurrent	and	distributed	programming	we’ve	discussed	in	previous
chapters.	Look	for	it	in	the	source	directory	of	your	stdlib	application	and	look	through	the
code.	If	you	are	implementing	your	own	behaviors	and	do	not	want	to	get	caught	out,	you
might	want	to	use	gen	instead	of	rolling	your	own.	Be	warned,	however,	as	it	is	undocumented,
and	it	might	change	in	between	releases	with	little	or	no	notice.

Rules	for	Creating	Behaviors
The	steps	to	creating	your	own	behavior	are	straightforward,	requiring	you	to
break	up	your	code	into	generic	and	specific	modules	and	define	the	callback
functions	and	their	return	values.	When	doing	so,	you	need	to	follow	these
simple	rules:

The	name	of	the	generic	module	has	to	be	the	same	as	the	behavior	name.

You	need	to	list	the	callback	functions	in	the	behavior	module.

In	your	callback	module,	include	the	-behavior(BehaviorName).	directive.

Once	you’ve	compiled	your	generic	behavior	code,	compiling	your	callback
modules	with	the	behavior	directives	will	result	in	warnings	should	you	omit	any
callbacks.

An	Example	Handling	TCP	Streams
Let’s	have	a	look	at	some	parts	of	an	example	in	which	we	implement	our	own
behavior,	focusing	on	the	code	specific	to	our	behavior’s	implementation.	We’ve
omitted	functions	not	relevant	to	the	example,	marking	them	with	...	in	the
code.	If	you	want	to	look	at	the	whole	module,	you	can	find	it	in	the	code
repository	with	the	book’s	examples.	There	is	no	need,	however,	to	view	the	full
example	if	you	are	interested	only	in	understanding	the	specifics	of
implementing	your	own	behavior.

Our	example	is	a	wrapper	that	encapsulates	activities	associated	with	TCP
streams,	including	connections,	configuration,	and	error	handling,	exposing	only
the	stream	of	data	being	received.	Upon	receiving	a	socket	accept	request,	the
behavior	spawns	a	new	process	that	is	kept	alive	for	as	long	as	the	socket	is
open.	The	behavior	receives	the	packets,	forwarding	them	to	the	callback
module	as	they	arrive.	The	socket	can	be	closed	by	the	callback	module	through
a	return	value	of	a	callback	function,	or	indirectly	when	the	TCP	client	closes	its
side	of	the	connection.

The	callback	functions	in	the	callback	module	consist	of	an	initialization
function	called	once	when	the	socket	is	opened,	a	data	handling	call	invoked	for
every	packet	received,	and	a	termination	function	called	when	the	socket	is
closed:

-module(tcp_print).

-export([init_request/0,	get_request/2,	stop_request/2]).

-behavior(tcp_wrapper).

init_request()	->

				io:format("Receiving	Data~n."),	

				{ok,[]}.

get_request(Data,	Buffer)->

				io:format("."),

				{ok,	[Data|Buffer]}.

stop_request(_Reason,	Buffer)	->

				io:format("~n"),

				io:format(lists:reverse(Buffer)),

				io:format("~n").

The	callback	function	init_request/0	returns	{ok,	LoopData}.	The
get_request/2	function	receives	the	TCP	packet	bound	to	the	variable	Data	and

https://github.com/francescoc/scalabilitywitherlangotp

the	LoopData,	returning	either	{ok,	NewLoopData}	or	{stop,	Reason,
NewLoopData}.	In	this	example,	LoopData	is	a	buffer	of	received	TCP	packets
bound	to	the	variable	Buffer.	Upon	closing	the	socket,	stop_request/2	is	given
the	Reason	for	termination	and	the	LoopData,	and	has	to	return	the	atom	ok.

Note	how	we	have	included	the	-behavior(tcp_wrapper).	directive	in	the
code.	This	points	to	the	tcp_wrapper	module,	where	the	behavior	is
implemented.

When	starting	the	tcp_wrapper	behavior,	we	pass	the	callback	module	Mod	and
the	Port	number.	We	spawn	a	process	that	initializes	the	behavior	state,	opens	a
listener	socket,	and	eventually	makes	its	way	to	the	accept/4	function.	For
every	concurrent	stream,	we	accept	a	connection	on	the	listener	socket,	spawn	a
new	process	that	starts	executing	in	the	init_request/2	function,	and	handle
the	stream	through	the	callback	module.	In	the	accept	call,	we	specify	a	timeout
to	keep	from	blocking	infinitely	so	we	can	yield	control	back	to	the	main	loop
(not	shown	in	the	example)	every	second,	ensuring	we	can	handle	system
messages	and	the	EXIT	signal	from	the	parent	process.	We	also	export	the	cast/3
call,	which	allows	us	to	create	a	connection	and	send	a	request	asynchronously
to	the	server:2

-module(tcp_wrapper).

-export([start_link/2,	cast/3]).

-export([init/3,	system_continue/3,	system_terminate/4,	init_request/2]).

-callback	init_request()	->	{'ok',	Reply	::	term()}.

-callback	get_request(Data	::	term(),

																						LoopData	::	term())	->

				{'ok',	Reply	::	term()}	|	

				{'stop',	Reason	::	atom(),	LoopData	::	term()}.

-callback	stop_request(Reason	::	term(),	LoopData	::	term())	->	term().

start_link(Mod,	Port)	->

				proc_lib:start_link(?MODULE,	init,	[Mod,	Port,	self()]).

cast(Host,	Port,	Data)	->

				{ok,	Socket}	=	gen_tcp:connect(Host,	Port,	[binary,	{active,	false},	

																																															{reuseaddr,	true}]),

				send(Socket,	Data),

				ok	=	gen_tcp:close(Socket).

send(Socket,	<<Chunk:1/binary,Rest/binary>>)	->

				gen_tcp:send(Socket,	[Chunk]),

				send(Socket,	Rest);

send(Socket,	<<Rest/binary>>)	->

				gen_tcp:send(Socket,	Rest).

init(Mod,	Port,	Parent)	->

				{ok,	Listener}	=	gen_tcp:listen(Port,	[{active,	false}]),

				proc_lib:init_ack({ok,	self()}),

				loop(Mod,	Listener,	Parent,	sys:debug_options([])).

loop(Mod,	Listener,	Parent,	Debug)	->

				receive

								{system,From,Msg}	->

												sys:handle_system_msg(Msg,	From,	Parent,	

																																		?MODULE,	Debug,	{Listener,	Mod});

								{'EXIT',	Parent,	Reason}	->

												terminate(Reason,	Listener,	Debug);

								{'EXIT',	Child,	_Reason}	->

												NewDebug	=	sys:handle_debug(Debug,	fun	debug/3,

																																																			stop_request,	Child),

												loop(Mod,	Listener,	Parent,	NewDebug)

				after	0	->

												accept(Mod,	Listener,	Parent,	Debug)

				end.

accept(Mod,	Listener,	Parent,	Debug)	->

				case	gen_tcp:accept(Listener,	1000)	of

								{ok,	Socket}	->

												Pid	=	proc_lib:spawn_link(?MODULE,	init_request,	[Mod,	Socket]),

												gen_tcp:controlling_process(Socket,	Pid),

												NewDebug	=	sys:handle_debug(Debug,	fun	debug/3,	init_request,	Pid),

												loop(Mod,	Listener,	Parent,	NewDebug);

								{error,	timeout}	->

												loop(Mod,	Listener,	Parent,	Debug);

								{error,	Reason}	->

												NewDebug	=	sys:handle_debug(Debug,	fun	debug/3,	error,	Reason),

												terminate(Reason,	Listener,	NewDebug)

				end.

system_continue(Parent,	Debug,	{Listener,	Mod})	->

				loop(Mod,	Listener,	Parent,	Debug).

system_terminate(Reason,	_Parent,	Debug,	{Listener,	_Mod})	->

				terminate(Reason,	Listener,	Debug).

terminate(Reason,	Listener,	Debug)	->

				sys:handle_debug(Debug,	fun	debug/3,	terminating,	Reason),

				gen_tcp:close(Listener),

				exit(Reason).

debug(Dev,	Event,	Data)	->

				io:format(Dev,	"Listener	~w:~w~n",	[Event,Data]).

init_request(Mod,	Socket)	->

				{ok,	LoopData}	=	Mod:init_request(),

				get_request(Mod,	Socket,	LoopData).

get_request(Mod,	Socket,	LoopData)	->

				case	gen_tcp:recv(Socket,	0)	of

								{ok,	Data}	->

												case	Mod:get_request(Data,	LoopData)	of

																{ok,	NewLoopData}	->

																				get_request(Mod,	Socket,	NewLoopData);

																{stop,	Reason,	NewLoopData}	->

																				gen_tcp:close(Socket),

																				stop_request(Mod,	Reason,	NewLoopData)

												end;

								{error,	Reason}	->

												stop_request(Mod,	Reason,	LoopData)

				end.

stop_request(Mod,	Reason,	LoopData)	->

				Mod:stop_request(Reason,	LoopData).

The	generic	code	handling	the	TCP	stream	is	straightforward.	It	is	a	process	loop
that	initializes	the	stream	state,	receives	the	packets,	and	terminates	when	the
callback	module	returns	a	stop	tuple,	or	when	the	TCP	client	decides	to	close	its
side	of	the	connection.	For	initialization,	receiving	packets,	and	termination,
appropriate	callback	functions	in	the	Mod	callback	module	are	called.

One	item	that	stands	out	in	our	behavior	implementation	—	probably	the	most
important	one	alongside	the	calling	of	the	callback	functions	—	is	the	callback
specification.	It	lists	the	callback	functions	that	need	to	be	exported	in	the
callback	module,	following	the	directives	set	out	in	the	Erlang	type	and	function
specifications.	The	callback	specifications	are	mapped	to	the
behavior_info(callbacks)	function,	which	returns	a	list	of	the	form
{Function,	Arity}.	You	can	bypass	the	callback	specifications	altogether,
directly	implementing	and	exporting	the	behavior_info/1	call	in	your	generic
behavior	module	(which	is	how	behaviors	were	required	to	be	implemented	with
older	releases	of	Erlang/OTP	prior	to	R15B).	Compare	the	callback
specifications	to	the	callback	functions	in	the	tcp_print	module.	Do	they
match?

-module(tcp_wrapper).

...

-export([behavior_info/1]).

behavior_info(callbacks)	->

				[{init_request,	0},	{get_request,	2},	{stop_request,	2}].

...

The	advantages	of	using	callback	specifications	over	the	behavior_info/1
function	is	that	the	dialyzer	tool	will	find	discrepancies	between	your	callback
modules	and	the	specs,	a	welcome	addition	to	the	undefined	callback	function
compiler	warnings.	The	dialyzer	enables	behavior	callback	warnings	by	default.
Remember	to	compile	your	generic	behavior	module	and	make	it	available	in	the
code	search	path	before	compiling	your	callback	module,	or	else	you	will	get	an
undefined	behavior	warning.

Summing	Up
In	this	chapter,	we’ve	introduced	you	to	the	ins	and	outs	of	implementing	special
processes,	making	them	OTP	compliant	and	including	them	as	part	of	OTP
supervision	trees.	We’ve	also	taken	special	processes	a	step	further,	allowing	you
to	split	the	code	into	generic	and	specific	modules	and	turning	them	into
behaviors	complete	with	callback	modules,	behavior	directives,	and	associated
compiler	warnings.

When	starting	and	hibernating	special	processes,	instead	of	the	standard	BIFs,
you	must	use	the	functions	in	the	proc_lib	module,	listed	in	Table	10-1.

Table	10-1.	Starting	special	process	with	the	proc_lib	module

Function	call Callback	function	or	action

proc_lib:spawn_link/1,2,3,4 None

proc_lib:spawn_opt/2,3,4,5 None

proc_lib:start/3,4,5 proc_lib:init_ack(Parent,	Reply),	proc_lib:init_ack(Reply)

proc_lib:start_link/3,4,5 proc_lib:init_ack(Parent,	Reply),	proc_lib:init_ack(Reply)

proc_lib:hibernate/3 None

The	system	message	calls	in	Table	10-2	and	their	respective	callbacks	need	to	be
managed	by	your	process,	either	by	responding	directly	to	the	process	sending
the	request	or	by	using	the	sys	module.

Table	10-2.	System	requests	and	messages

Message Callback	function	or	action

{system,	From,

Request}

Mod:system_continue(Parent,	Debug,	LoopData),
Mod:system_terminate(Reason,	Parent,	Debug,	LoopData)

{'EXIT',	Parent,

Reason}

exit(Reason)

{get_modules,

From}

From	!	{modules,	ModuleList}

You	can	read	more	about	the	sys	and	proc_lib	modules	in	their	respective
manual	pages.	There	is	an	example	covering	special	processes	and	user-defined

behaviors	in	the	“sys	and	proc_lib”	section	of	the	OTP	Design	Principles	User’s
Guide.	And	finally,	you	can	find	more	information	on	type	and	function
specifications	used	in	defining	your	own	callback	definitions	in	the	Erlang
Reference	Manual	and	User’s	Guide.

If	you	feel	like	coding,	we	suggest	you	download	the	mutex	example	from	the
book’s	code	repository	and	implement	some	of	the	edge	cases	that	can	occur	in
concurrent	applications.	In	your	client	function,	when	requesting	the	mutex,	add
references	guaranteeing	the	validity	of	your	reply	together	with	optional
timeouts.	You	will	also	want	to	monitor	the	mutex	in	case	it	terminates
abnormally	while	you	are	executing	in	the	critical	section.

What’s	Next?
Special	processes	and	user-defined	behaviors	are	the	foundations	used	to	build
existing	and	new	behaviors,	allowing	us	to	glue	them	together	in	a	supervision
tree	and	package	them	in	an	application.	In	the	next	chapter,	on	release	handling
and	system	principles,	we	group	applications	in	a	release	and	see	how	we	can
configure,	start,	and	stop	an	Erlang	node	as	a	whole.

For	those	of	you	working	in	large	companies,	we’re	referring	to	the	projects	where	we’ve	spent	more
time	in	meetings	discussing	and	trying	to	get	approval	for	a	migration	to	OTP	than	it	would	have
actually	taken	to	refactor	the	code.

An	alternative	to	this	timeout	approach	is	to	use	the	prim_inet:async_accept/2	function,	which	sends
the	calling	process	a	message	when	a	new	connection	is	accepted,	but	that	function	is	intended	to	be
private	to	Erlang/OTP	and	so	is	not	part	of	its	documented	and	supported	set	of	API	functions.

1

2

Chapter	11.	System	Principles	and
Release	Handling

Now	that	we	know	how	to	implement	and	use	existing	OTP	behaviors,	organize
them	in	supervision	trees	with	special	processes,	and	package	them	in
applications,	the	time	has	come	to	group	these	applications	together	into	an
Erlang	node	that	can	be	started	up	as	one	unit.	In	many	programming	languages,
packaging	is	a	problem	handled	by	the	operating	system.	In	Erlang,	this	is
handled	in	OTP	by	creating	a	release,	where	a	system	consists	of	one	or	more
possibly	different	releases.	Each	node	runs	a	release,	either	on	a	single	host	or	in
a	distributed	environment.	Standard	releases	allow	your	system	to	follow	a
generic	structure	that	not	only	is	target	independent,	but	can	be	managed	and
upgraded	with	tools	independent	of	the	underlying	operating	system.	So,	while
Erlang’s	release	process	might	appear	complicated,	it	is	as	easy	to	create	a
release	(if	not	easier)	as	it	would	be	to	create	a	non-Erlang	package.	If	we	think
of	the	packaging	hierarchy	in	Erlang,	we	start	with	a	function,	followed	by	a
module	bundled	in	an	application.	An	Erlang	node	consists	of	a	set	of	loosely
coupled	applications,	grouped	together	in	a	release.

You	might	not	have	realized	it,	but	when	you	installed	Erlang	on	your	computer,
you	installed	the	standard	release.	What	differs	between	a	standard	release	and
the	ones	you	create	yourself	are	the	applications	that	are	loaded	and	started
together,	along	with	their	configuration	parameters.	The	underlying	Erlang
runtime	system	does	not	differentiate	between	user-defined	applications	and
applications	that	come	as	part	as	the	Erlang/OTP	distribution,	but	rather	treats
them	in	the	same	manner.	Releases	have	the	same	directory	structure,	their	own
copy	of	the	virtual	machine,	and	manage	release	and	configuration	files	in	a
similar	way.	Because	of	this,	it	should	not	come	as	a	surprise	that	Erlang	releases
you	start	with	the	erl	command	are	created	with	the	same	underlying	tools,
structure,	and	principles	you	use	when	defining	your	own	releases.

In	this	chapter,	we	walk	you	through	the	steps	needed	to	build	a	target	release,
explaining	how	it	all	hangs	together.	We	cover	the	different	release	types,	from

simple	and	interactive	target	systems,	which	give	you	the	flexibility	of	loading
modules	and	easily	starting	applications	at	runtime,	to	embedded	target	systems,
where	applications	are	loaded	and	started	at	startup	under	strict	version	control.
To	create	target	systems,	we	cover	systools,	an	Erlang	library	used	when
integrating	the	creation	of	releases	in	an	existing	tool	chain	or	build	process,	and
the	use	of	rebar3	for	greenfield	projects	or	when	dependency	management
becomes	complicated.

System	Principles
An	Erlang	release	is	defined	as	a	standalone	node	consisting	of:

A	set	of	OTP	applications	written	or	reused	as	part	of	the	project,	typically
containing	the	system’s	business	logic.	The	applications	can	be	proprietary,
open	source,	or	a	combination	thereof.

The	OTP	applications	from	the	standard	distribution	that	the
aforementioned	applications	depend	on.

A	set	of	configuration	and	boot	files,	together	with	a	start	script.

The	Erlang	runtime	system,	including	a	copy	of	the	virtual	machine.

There	are	tools	that	help	you	create	and	package	a	standalone	node,	but	before
introducing	them,	we	cover	all	the	components	in	detail	and	step	you	through	a
build	manually.	This	will	help	you	better	understand	how	a	release	is	structured
and	how	it	works,	along	with	what	options	you	have	available.

The	simplest	way	to	start	an	Erlang	node	is	using	the	erl	command.	You	can
start	your	program	from	the	Erlang	shell	itself	by	typing	in	the	module	and
function	name	or	by	passing	the	-s	flag	to	erl:

$	erl	-s	module	function	arg1	arg2	...

The	function	and	arguments	are	optional.	If	only	the	module	is	listed,	the
command	will	invoke	module:start().	If	the	module	and	function	are	listed,	the
command	will	invoke	module:function().	We	refer	to	this	method	of	starting
your	node	as	a	basic	target	system,	where	you	create	a	Unix	shell	script	that
initializes	your	state	and	calls	the	erl	-s	command.	This	approach	should	be
used	only	when	coding,	for	basic	proofs	of	concepts,	or	for	quick	hacks.	Using
basic	target	systems	in	production	is	not	recommended,	as	you	lose	a	lot	of	the
benefits	that	come	with	OTP.	There	are	better	alternatives.

WARNING

Do	not	ship	basic	target	systems	unless	they	are	proofs	of	concepts	or	quick	hacks.	If	your
program	is	started	by	a	script	that	invokes	erl	-s	myprojectsup	-noshell,	you	lose	all	of	the
benefits	gained	by	OTP	applications	and	their	startup,	supervision,	and	upgrade	procedures.
You	have	everything	to	gain	from	using	boot	files	and	shipping	your	systems	as	embedded
target	systems.

The	next	way	of	starting	your	node	is	as	a	simple	target	system.	It	makes	use	of	a
boot	script	and	tools	shipped	with	the	sasl	application,	facilitating	controlled
software	upgrades	at	runtime.	To	understand	how	simple	target	systems	work,
let’s	start	by	examining	your	Erlang	installation	and	investigating	its	directory
structure	and	all	the	files	and	scripts	associated	with	it.	You	need	to	create	some
of	these	files	yourself	when	generating	the	release,	using	tools	such	as	systools,
reltool,	or	relx,	while	you	can	just	copy	other	files	from	a	repository	or	the
installation	in	your	target	environment.

Start	by	finding	the	top-level	directory,	often	called	the	Erlang	root	directory.	It
is	the	location	where	you	(or	the	scripts	you	used)	installed	Erlang.	If	you	don’t
know	that	location,	start	an	Erlang	node	and	call	code:root_dir().:

$	erl

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

1>	code:root_dir().

"/usr/local/lib/erlang"

2>	q().

ok

$	cd	/usr/local/lib/erlang

$	ls

Install			erts-6.4					erts-7.1			misc

bin							erts-6.3					erts-7.2			releases

erts-6.2		erts-7.0					lib								usr

The	contents	of	the	directory	are	the	output	of	creating	a	release.	They	vary
depending	on	how	(and	from	where)	you	installed	Erlang,	the	number	of
upgrades	you’ve	done	throughout	the	years,	and	the	customizations	made	by
those	who	built	the	release.	There	is,	however,	a	set	of	basic	files	and	directories
that	are	required	and	will	always	be	there,	appearing	with	your	first	installation.

Release	Directory	Structure
In	this	section	we	explore	the	files	needed	for	a	release.	Your	own	releases	will
have	the	same	directories	and	file	structures	as	the	Erlang	root,	so	we	spend
some	time	looking	at	that.	The	only	differences	between	the	root	and	your	own
releases	are	the	applications	that	are	loaded	and	started,	their	versions,	and	the
version	of	the	runtime	system.	This	becomes	evident	in	the	next	few	sections,
where	we	create	our	own	base	station	controller	release	that	follows	these	very
principles.

Four	directories	are	mandatory	in	every	OTP	release,	as	shown	in	Figure	11-1.
We	have	already	looked	at	lib,	which	contains	all	of	the	applications	with	their
version	numbers	appended	to	their	directory	names.	You	rummaged	through	it	in
“The	Application	Structure”	when	reading	about	applications	and	their	directory
structures.	After	upgrades,	you	could	end	up	with	multiple	versions	of	a	single
application,	differentiated	by	a	version	number	in	the	application	directory	name.
With	multiple	instances,	the	code	search	path	defined	when	creating	the	release
usually	points	to	the	ebin	directory	of	the	latest	version	of	the	application.

Figure	11-1.	Release	directory	structure

The	erts	directory	contains	binaries	for	the	Erlang	runtime	system.	Even	here,	if
you	have	at	some	point	upgraded	your	installation,	you	might	find	multiple
instances	of	the	directory,	distinguished	by	the	erts	version	number	appended	to
the	directory	name.	In	erts	the	most	interesting	subdirectory	is	bin.	It	contains
executables	and	shell	scripts	related	not	only	to	the	virtual	machine,	but	also	to
all	the	tools	that	can	be	invoked	from	the	shell.	Look	around	in	the	directory	and
you	will	find	the	following:

erl
A	script	or	program	(depending	on	the	target	environment)	that	starts	the
runtime	system	and	provides	an	interactive	shell.

erlexec
The	binary	executable	called	by	the	erl	script.

erlc

A	common	way	to	run	Erlang-specific	compilers.	The	compiler	chosen
depends	on	the	extension	of	the	file	you	are	trying	to	compile.

epmd
The	Erlang	port	mapper	daemon.	It	acts	as	a	name	server	in	distributed
Erlang	environments,	mapping	Erlang	nodes	to	IP	addresses	and	port
numbers.

escript
Allows	you	to	execute	short	Erlang	programs	as	if	they	were	scripts,
without	having	to	compile	them.

start
Starts	an	embedded	Erlang	target	system	in	Unix	environments.	This	kind
of	release	runs	as	a	daemon	job	without	a	shell	window.	We	look	at
embedded	target	systems	in	“Creating	a	Release	Package”.

run_erl
The	binary	called	by	start	to	start	Unix-based	embedded	systems,	where	I/O
is	streamed	to	pipes.

to_erl
Connects	to	the	Erlang	I/O	streams	with	nodes	started	by	run_erl	in	an
embedded	target	system.

werl
Starts	the	runtime	system	in	Windows	environments,	in	a	separate	window
from	the	console.

start_erl
Part	of	the	chain	of	commands	to	start	embedded	target	systems,	setting	the
boot	and	config	files	in	Unix	systems.	In	Windows	environments,	this	is
similar	to	the	Unix	start	command	previously	described.

erlsrv
Similar	to	run_erl	but	for	Windows	environments,	allowing	Erlang	to	be
started	without	the	need	for	the	user	to	log	in.

heart

Monitors	the	heartbeat	of	the	Erlang	runtime	system	and	calls	a	script	if	the
heartbeat	is	not	acknowledged.

dialyzer
A	static	analysis	tool	for	beam	files	and	Erlang	source	code.	It	finds,	among
other	things,	type	discrepancies	and	dead	or	unreachable	code.	The	dialyzer
should	be	part	of	everyone’s	build	process.

typer
Infers	variable	types	in	Erlang	programs	based	on	how	the	variables	are
used.	It	adds	type	specifications	derived	from	your	source	code	and
provides	input	data	to	the	dialyzer.

Programmers	use	several	of	the	executables	listed	in	the	bin	directory	when
creating	and	starting	an	Erlang	release.	The	ones	we	list	are	the	most	important
and	most	relevant	to	what	we	cover	in	more	detail	later	in	this	chapter.	But	the
list	is	nowhere	near	complete,	as	the	full	contents	depend	on	the	Erlang/OTP
version	and	operating	system	you	are	running.

These	contents	of	the	erts-version/bin	directory	are	similar	to	those	of	bin	in	the
Erlang	root	directory.	The	version-specific	directory	contains	links	and	copies	to
the	scripts	and	executables	of	the	bin	directory	of	the	Erlang	runtime	version	you
start	by	default.	This	directory	is	needed	because	you	might	have	several
versions	of	a	release	installed	and	running	at	any	one	time.	Although	typing	erl
would	point	to	the	script	in	the	bin	directory,	environment	variables	would
redirect	it	to	the	erts-version/bin	version	you	are	using.	Let’s	have	a	look	at	the
contents	of	the	erl	script.	With	release	18.2	on	a	Mac	running	OS	X	Yosemite,	it
looks	like	this:

#!/bin/sh

#

#	%CopyrightBegin%

#

#	Copyright	Ericsson	AB	1996-2012.	All	Rights	Reserved.

#

#	Licensed	under	the	Apache	License,	Version	2.0	(the	"License");

#	you	may	not	use	this	file	except	in	compliance	with	the	License.

#	You	may	obtain	a	copy	of	the	License	at

#

#					http://www.apache.org/licenses/LICENSE-2.0

#

#	Unless	required	by	applicable	law	or	agreed	to	in	writing,	software

#	distributed	under	the	License	is	distributed	on	an	"AS	IS"	BASIS,

#	WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,	either	express	or	implied.

#	See	the	License	for	the	specific	language	governing	permissions	and

#	limitations	under	the	License.

#

#	%CopyrightEnd%

#

ROOTDIR="/usr/local/lib/erlang"

BINDIR=$ROOTDIR/erts-7.2/bin

EMU=beam

PROGNAME=`echo	$0	|	sed	's/.*\///'`

export	EMU

export	ROOTDIR

export	BINDIR

export	PROGNAME

exec	"$BINDIR/erlexec"	${1+"$@"}

ROOTDIR	and	BINDIR,	along	with	other	environment	variables,	are	set	when
installing	or	upgrading	Erlang.	Note	how	BINDIR	points	to	the	$ROOTDIR/erts-
7.2/bin	directory	we	inspected	at	the	beginning	of	this	section	and	ends	up
executing	erlexec.	Look	in	the	erts-7.2/bin	directory	for	erl.src	and	you	will	find
the	source	file	used	to	create	the	erl	script.	Similar	source	files	exist	for	start_erl
and	start.	We	cover	.src	files	in	“Creating	a	Release”.

If	you	enter	the	releases	directory,	also	located	in	the	Erlang	root	directory,	you
will	find	a	subdirectory	for	every	release	you’ve	installed	on	your	machine.
There	should	be	a	one-to-one	mapping	to	the	erts	directories,	because	most	new
releases	come	with	a	new	version	of	the	runtime	system.	Inspect	the	contents	of
any	of	the	start_erl.data	files	and	you	will	see	two	numbers,	the	first	referring	to
the	emulator	version	used	in	the	current	installation	of	Erlang	and	the	second
referring	to	the	directory	of	the	OTP	release	being	used:

$	cd	releases

$	ls

17	 18	 RELEASES	 RELEASES.src	 start_erl.data

$	cat	start_erl.data

7.2	18

$	ls	18

OTP_VERSION																					start.boot														start_sasl.boot

installed_application_versions		start.script												start_sasl.rel

no_dot_erlang.boot														start_all_example.rel			start_sasl.script

no_dot_erlang.rel															start_clean.boot

no_dot_erlang.script												start_clean.rel

If	you	list	the	contents	of	the	directory	specified	in	start_erl.data	—	we’ve
picked	version	18	in	our	example	—	you	will	find	files	with	.rel,	.script,	and
.boot	extensions.	Files	with	the	.rel	suffix	list	the	versions	of	the	applications	and
runtime	system	for	a	particular	release.	The	.boot	file	is	a	binary	representation
of	the	.script	file,	which	contains	commands	to	load	and	start	applications	when

the	system	is	first	started.	Enter	the	subdirectory	of	the	latest	release	and	look	at
any	of	the	.rel	and	.script	files	to	get	a	feel	for	what	they	might	do.	We	create	our
own	scripts	in	an	upcoming	section.

You	can	override	the	default	location	of	the	releases	directory	by	setting	the	sasl
application	configuration	variable	releases_dir	or	the	OS	environment	variable
RELDIR.	The	Erlang	runtime	system	must	have	write	permissions	to	this	directory
for	upgrades	to	work,	as	it	updates	the	RELEASES	file	in	conjunction	with
upgrades.

Release	Resource	Files
All	your	project’s	OTP	applications,	including	those	that	come	as	part	of	the
standard	distribution,	and	proprietary	as	well	as	open	source	applications,	are
bundled	up	in	a	release	specification	containing	their	versions.	This	specification
also	includes	the	system	release	version	and	name,	together	with	the	version	of
the	runtime	system.	The	build	system	uses	this	information	to	do	sanity	checks,
create	the	boot	files,	and	create	the	target	directory	structure.

The	minimal	(and	default)	release	consists	of	the	kernel	and	stdlib	applications,
but	most	releases	also	include	and	start	sasl	because	it	contains	all	of	the	tools
required	for	a	software	upgrade.	You	might	not	think	about	upgrades	when
creating	your	first	release,	but	you’ll	probably	need	to	do	so	at	a	later	date.	You
are	given	the	option	of	including	sasl	by	default	when	installing	Erlang	from
source,	but	if	you	are	using	third-party	binaries,	this	choice	will	have	already
been	made	for	you.

Let’s	look	at	the	rel	files	more	closely.	If,	from	the	Erlang	root	directory,	you
enter	into	the	releases	directory	and	from	there	move	into	any	of	the
subdirectories,	you	will	find	at	least	one	file	with	the	.rel	suffix.	As	an	example,
we’ve	picked	the	releases/18/start_sasl.rel	file,	stripping	out	the	comments:

{release,	{"Erlang/OTP","18"},	{erts,	"7.2"},

	[{kernel,"4.1.1"},

		{stdlib,"2.7"},

		{sasl,	"2.6.1"}]}.

As	we	can	see,	this	release	will	run	emulator	version	7.2,	starting	kernel	version
4.1.1,	stdlib	version	2.7,	and	sasl	version	2.6.1.	The	name	of	the	release	is
“Erlang/OTP”	and	its	version	is	“18.”	Other	examples	and	versions	of	the	rel
files	and	corresponding	boot	and	script	files	in	the	directory	specify	how	other
systems	are	grouped	together.

WHAT	APPLICATIONS	DO	YOU	INCLUDE	IN	A	STANDARD	RELEASE?

In	our	base	station	release	file,	we	kept	it	simple	and	included	only	the	bsc	application.	Production
systems	often	include	monitoring,	logging,	and	debugging	applications	that	will	not	affect	the	code	of
your	base	applications,	but	provide	insight	and	visibility	when	you	are	troubleshooting	a	live	system.
We	have	already	seen	a	basic	form	of	logging	and	alarming	in	the	sasl	application.	The	os_mon
application	provides	the	ability	to	inspect	the	underlying	operating	system,	including	disk	and	memory

supervision	along	with	CPU	load	and	utilization.

The	runtime_tools	application	is	often	overlooked	and	omitted.	It	includes	the	dbg	debugger	and	the
system_information	module,	as	well	as	other	tools	needed	for	real-time	profiling	of	the	virtual
machine.	You	never	know	when	these	tools	and	the	visibility	they	bring	with	them	will	come	in	handy
(especially	dbg),	so	we	recommend	you	include	them.

Let’s	create	a	release	file	named	basestation.rel	to	use	in	our	base	station
controller	example.	The	release	name	is	“basestation”	and	we’ve	given	it	version
“1.0.”	Along	with	the	standard	included	applications,	we’ll	include	version	1.0
of	bsc.	The	file	is	fairly	straightforward	and	differs	very	little	from	the	previous
example:

{release,

	{"basestation","1.0"},

	{erts,	"7.2"},

	[{kernel,	"4.1.1"},

		{stdlib,	"2.7"},

		{sasl,	"2.6.1"},

		{bsc,	"1.0"}]}.

The	resource	file	is	by	convention	named	ReleaseName.rel.	Following	this
convention	is	not	mandatory,	but	doing	so	makes	life	easier	for	those	supporting
and	maintaining	your	code.	The	resource	file	contains	a	tuple	with	four
elements:	the	release	atom,	a	tuple	of	the	format	{ReleaseName,	RelVersion},
a	tuple	of	the	format	{erts,	ErtsVersion},	and	a	list	of	tuples	containing
information	about	the	applications	and	their	versions.	The	application	tuples
we’ve	seen	so	far	were	of	the	format	{Application,	AppVersion},	but	as	the
following	shows,	other	formats	exist	as	well:

{release,

	{ReleaseName,	RelVersion},

	{erts,	ErtsVersion},

	[{Application,	AppVersion},

		{Application,	AppVersion,	Type},

		{Application,	AppVersion,	IncludedAppList},

		{Application,	AppVersion,	Type,	IncludedAppList}]

}.

All	of	the	version	fields	for	the	various	elements	in	the	tuple	are	strings.	In	your
application	tuple,	you	can	also	add	an	application	Type.	You	can	include	the
types	we	covered	in	“Application	Types	and	Termination	Strategies”,	as	well	as
load	and	none:

load

Loads	the	application	but	does	not	start	it.

none

Loads	the	modules	in	the	application,	but	not	the	application	itself.

permanent

Shuts	down	the	node	when	the	top-level	supervisor	terminates.	When	the
application	terminates,	all	other	applications	are	cleanly	taken	down	with	it.
This	is	the	default	chosen	if	no	restart	type	is	specified.

transient

Shuts	down	the	node	when	the	top-level	supervisor	terminates	with	a	non-
normal	reason.	This	is	useful	only	for	library	applications	that	do	not	start
their	own	supervision	trees,	because	top-level	supervisors	will	always
terminate	with	the	non-normal	reason	shutdown,	yielding	the	same	outcome
as	a	permanent	application.

temporary

Applications	that	terminate,	normally	or	abnormally,	are	reported	in	the
SASL	logs,	but	do	not	affect	other	applications	in	the	release.

Finally,	you	can	specify	a	list	of	included	applications	in	IncludedAppList.	The
list	must	be	a	subset	of	the	applications	specified	in	the	application	app	file.

RELEASE	AND	APPLICATION	VERSIONS

An	OTP	version	is	a	set	of	specific	application	versions	listed	in	the	rel	file	that	have	been	tested
together	with	an	emulator	version.	But	this	does	not	mean	you	cannot	swap	and	change	application
and	emulator	versions;	all	it	says	is	that	they	have	not	been	tested	together.	As	the	test	cases	for	OTP
releases	are	part	of	its	source	repository,	there	is	nothing	stopping	you	from	running	them	yourself
with	your	proprietary	applications	as	part	of	your	development	process.	An	application	version	is	a	set
of	module	versions	and	resources,	listed	in	the	app	file	or	contained	in	the	priv	directory.			

Starting	with	OTP	17,	application	and	OTP	versions	share	the	same	numbering	scheme.		They	consist
of	three	integers	of	the	format	<Major>.<Minor>.<Patch>,	where	major	releases	include	substantial,
possibly	non–backwards-compatible	changes,	minor	releases	are	incremented	when	new	functionality
is	added,	and	the	patch	number	is	incremented	as	a	result	of	bug	fixes.	Incrementing	the	version	of	a
major	release	will	set	the	minor	and	patch	levels	to	0,	while	incrementing	a	minor	release	will	reset	the
patch	level	to	0.	Trailing	0s	are	usually	removed	from	the	version	number,	so	a	version	17.1.0	is
equivalent	to	version	17.1.		

Higher	versions,	starting	with	major	releases,	include	features	and	bug	fixes	from	minor	and	patch
releases.	Aside	from	backward-incompatible	changes	and	features	that	might	have	been	removed,	you

can	assume	that	higher	versions	contain	all	of	the	bug	fixes	and	enhancements	of	the	lower	versions.

Versions	can	have	more	than	three	parts.	This	allows	one	to	specify	branches	of	a	particular	release
created	in	order	to	deliver	compatible	patches	in	older	releases.	There	is	no	limit	to	how	many
branched	versions	you	can	have.	As	an	example,	fixes	in	application	or	release	version	17.1.3.1	are	not
guaranteed	to	be	included	in	17.2,	as	17.2	might	have	been	released	before	17.1.3.1.	Prereleases,	also
known	as	release	candidates,	will	have	the	–rcVsn	suffix,	e.g.,	17-rc1.

If	you	are	not	sure	what	OTP	release	you	are	using,	you	can	find	out	by	using	the
erlang:system_info(otp_release)	BIF.		In	the	releases	directory	for	the	release	you	are	running,
you	will	find	the	OTP_VERSION	file	that	contains	the	OTP	version	number.	You	will	find	this	file
only	in	your	development	environment.	If	you	look	for	it	in	your	target	installation,	you	will	not	find	it
unless	you	have	put	it	there	yourself.				

Creating	a	Release
Having	defined	what	is	included	in	our	release,	the	time	has	come	to	create	it	in
a	few	simple	steps,	as	shown	in	Figure	11-2:

1.	 Start	by	creating	a	binary	boot	file,	which	contains	the	commands
required	to	load	modules	and	start	applications.

2.	 With	your	boot	file	in	place,	create	a	directory	structure	that	includes	all
application	directories,	release	directories,	and,	if	required,	the
emulator.	This	package	is	target	independent,	but	could	be	OS	and
hardware	specific.	Your	directory	structure	must	follow	the	directives
described	in	“Release	Directory	Structure”,	making	it	compatible	with
the	boot	file	you	created.

3.	 Create	a	start	script	defining	your	configurations,	system	limits,	code
search	paths,	and	other	system-specific	environment	variables,
including	a	pointer	to	the	boot	file.	Your	script	will	be	based	on	the	.src
files	you	saw	in	the	bin	directory	of	the	emulator.	The	script	will	depend
on	the	directory	structure	you	have	created	and	how	you	want	your
target	system	to	behave.

4.	 With	the	start	script	in	place,	create	a	deployment	package	specific	to
your	target	environment.	It	could	be	a	tar	file,	a	Debian	or	Solaris
package,	a	container,	or	any	other	instance	that	you	can	configure	and
deploy	with	tools	of	your	choice	or	the	hype	of	the	moment.

Figure	11-2.	Creating	an	OTP	release

In	our	example,	we	keep	it	simple	by	creating	and	deploying	a	tar	file	using	the
systools	library	that	comes	as	part	of	the	SASL	application	in	the	OTP
distribution.	The	typical	target	directory	structure	includes	all	of	the	applications
listed	in	the	release	file	and,	in	the	majority	of	cases,	the	Erlang	runtime	system.
Once	we’ve	created	our	tar	file,	we	will	want	to	untar	it	and	fix	scripts,
configuration	files,	and	other	target-specific	environment	variables	before
creating	the	final	package.	This	step	could	be	done	manually	or	as	part	of	your
automated	build	process.	It	could	be	done	locally	on	your	computer	or	in	your
target	environment.	How	you	do	it	depends	on	the	development	and	target
environments	as	well	as	the	tools	you	pick.	There	never	has	been,	and	never	will
be,	a	“one	size	fits	all”	approach.

Creating	the	Boot	File
Let’s	start	by	creating	our	boot	file.	To	do	this,	we	need	the
systools:make_script/2	library	function.	This	function	creates	a	binary	boot
file	used	by	a	start	script	to	boot	Erlang	and	your	system.	To	get	the
start_script/2	function	to	work,	we	need	to	copy	the	bsc	application	example,
ensuring	it	follows	the	directory	structure	we	covered	in	“The	Application
Structure”.	The	structure	is	available	in	this	chapter’s	directory	of	the	GitHub
repository.	If	you	download	it	and	recreate	the	example	on	your	computer,	don’t
forget	to	compile	the	Erlang	files	and	place	them	into	the	ebin	directory.

The	script	starts	off	by	looking	for	the	application	versions	specified	in	the
basestation.rel	file.	It	does	so	using	the	code	search	path,	and	any	other	paths
you	might	have	included	in	your	{path,	PathList}	environment	variable.	In
our	example,	assuming	we	started	Erlang	in	the	same	directory	as	the	bsc
directory,	we	would	use	the	[{path,	["bsc/ebin"]}]	option	or	start	Erlang
using	erl	-pa	bsc/ebin.	Remember,	PathList	is	a	list	of	lists,	so	even	if	you
have	only	one	directory,	the	directory	must	be	defined	in	a	list:	[Dir].	Let’s	try	it
out:

$	erl	-pa	bsc/ebin/

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

1>	systools:make_script("basestation",	[{path,	["bsc/ebin"]}]).

Duplicated	register	names:

								overload	registered	in	sasl	and	bsc

error

ok

Oops,	systools	detected	a	problem	when	building	the	script.	Remember	how,	in
your	app	file,	you	specified	a	list	of	registered	processes?	Apparently,	there	is
another	process	defined	in	the	sasl	app	file	with	the	name	overload.	We	actually
introduced	freq_overload	in	Chapter	7,	and	before	changing	it,	had	it	registered
with	the	name	overload	in	Chapter	8.	When	creating	the	first	app	file,	we	ended
up	using	the	wrong	name.

If	you	are	running	the	script	on	your	laptop,	you	might	get	errors	informing	you
that	the	script	was	unable	to	find	a	certain	version	of	the	app	file,	an	error	that	is

easily	reproducible	if	you	change	any	of	the	versions	in	basestation.rel.	This	is
where	version	control	becomes	important.	You	need	to	know	exactly	which
module,	application,	and	release	versions	you	are	running	in	production,	because
your	system	may	be	running	for	years	on	end	and	is	likely	to	be	managed	by
other	people.	Should	you	get	called	in	to	support	someone	else’s	mess,	at	least
you’ll	know	what	version	of	the	mess	you	have	to	deal	with.

When	creating	your	boot	file,	sanity	checks	are	run	to:
Check	the	consistency	and	dependencies	of	all	applications	defined	in	the
rel	files.	Do	all	the	applications	exist,	and	are	there	no	circular
dependencies?	Ensure	that	the	versions	defined	in	the	app	files	match	those
specified	in	the	rel	files.

Ensure	that	the	kernel	and	stdlib	applications	of	type	permanent	are	part	of
the	release.	Warnings	will	be	raised	if	sasl	is	not	part	of	the	release,	but	the
script	and	boot	file	generation	will	not	fail.	You	can	suppress	these
warnings	by	passing	no_warn_sasl	as	one	of	the	options	when	creating	the
boot	file.

Detect	clashes	in	the	registered	process	names	defined	in	the	application
app	files,	ensuring	that	no	two	processes	are	registered	with	the	same	name.

Ensure	that	all	modules	defined	in	the	app	files	have	corresponding	beam
files	in	the	ebin	directory.	While	doing	so,	the	sanity	check	detects	any
module	name	clashes,	where	the	same	module	(or	module	name)	is
included	in	more	than	one	application.	If	you	want	to	ensure	that	the	beam
files	match	the	latest	version	of	the	source	code,	include	src_tests	in	the
options.

As	we	look	at	our	release,	we	see	that	the	registered	process	name	clash	arises	as
an	error	in	our	app	file.	Changing	overload	to	freq_overload	in	the	registered
process	names	of	the	bsc.app	file	fixes	the	problem.

When	viewing	the	resulting	contents	of	the	directory	as	shown	in	the	following
example,	we	discover	two	new	files,	basestation.script	and	basestation.boot.
Before	investigating	them	further,	let’s	use	the	boot	file	to	start	the	base	station
release:

1>	systools:make_script("basestation",	[{path,	["bsc/ebin"]}]).

ok

2>	q().

ok

$	ls

basestation.boot	 basestation.rel		 basestation.script	 bsc

$	erl	-pa	bsc/ebin	-boot	basestation

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

=PROGRESS	REPORT====	25-Dec-2015::20:37:46	===

										supervisor:	{local,sasl_safe_sup}

													started:	[{pid,<0.35.0>},

																							{id,alarm_handler},

																							{mfargs,{alarm_handler,start_link,[]}},

																							{restart_type,permanent},

																							{shutdown,2000},

																							{child_type,worker}]

...<snip>...

=PROGRESS	REPORT====	25-Dec-2015::20:37:46	===

										supervisor:	{local,bsc}

													started:	[{pid,<0.43.0>},

																							{id,freq_overload},

																							{mfargs,{freq_overload,start_link,[]}},

																							{restart_type,permanent},

																							{shutdown,2000},

																							{child_type,worker}]

=PROGRESS	REPORT====	25-Dec-2015::20:37:46	===

										supervisor:	{local,bsc}

													started:	[{pid,<0.44.0>},

																							{id,frequency},

																							{mfargs,{frequency,start_link,[]}},

																							{restart_type,permanent},

																							{shutdown,2000},

																							{child_type,worker}]

=PROGRESS	REPORT====	25-Dec-2015::20:37:46	===

										supervisor:	{local,bsc}

													started:	[{pid,<0.45.0>},

																							{id,simple_phone_sup},

																							{mfargs,{simple_phone_sup,start_link,[]}},

																							{restart_type,permanent},

																							{shutdown,2000},

																							{child_type,worker}]

=PROGRESS	REPORT====	25-Dec-2015::20:37:46	===

									application:	bsc

										started_at:	nonode@nohost

Eshell	V7.2		(abort	with	^G)

1>	observer:start().

ok

Because	the	bsc	application	was	not	placed	in	the	lib	directory,	we	have	to
provide	the	code	search	path	to	the	.app	and	.beam	files	using	the	-pa	directive
to	the	erl	command.	Note	all	the	progress	reports	that	start	appearing	as	soon	as
sasl	is	started	(we’ve	removed	a	few	in	our	example).	Just	to	be	completely	sure

that	the	supervision	tree	has	started,	start	the	observer	tool,	select	the
Applications	tab	(Figure	11-3),	and	have	a	look	at	the	bsc	supervision	tree.

Figure	11-3.	The	observer	Applications	tab

This	is	how	we	start	OTP-compliant	simple	target	systems.	Simple	target
systems	are	used	by	several	popular	open	source	projects,	are	more	robust	than
basic	target	systems,	and	represent	a	step	in	the	right	direction.	But	we	can	(and
will)	do	better!	Before	discovering	how,	let’s	review	in	more	detail	the	contents
of	the	files	we’ve	generated	and	the	parameters	we	can	pass	to
systools:make_script/2.

Script	files
Figure	11-4	shows	the	basic	relationships	between	files	used	to	build	a	release.
The	basestation.boot	file	is	a	binary	file	containing	all	of	the	commands
executed	by	the	Erlang	runtime	system	and	needed	to	start	the	release.	Unlike
other	files	we	look	at,	the	boot	file	has	to	be	a	binary	because	it	contains	the
commands	that	load	the	modules	that	allow	the	runtime	system	to	parse	and
interpret	text	files.	You	can	find	the	textual	representation	of	the	boot	file’s
commands	in	basestation.script.	And	even	better,	for	those	of	you	who	like	to
tinker,	you	can	edit	the	file	or	write	your	own.	(Do	this	while	sparing	a	thought
for	those	using	OTP	R1	back	in	1996,	when	make_script/2	had	not	yet	been
written.)

Figure	11-4.	Creating	boot	and	release	files

Have	a	look	at	the	contents	of	a	script	file.	It	is	a	file	containing	an	Erlang	term
of	the	format	{script,	{ReleaseName,	ReleaseVsn},	Actions}:

{script,

				{"basestation","1.0"},

				[{preLoaded,

									[erl_prim_loader,erlang,erts_internal,init,otp_ring0,prim_eval,

										prim_file,prim_inet,prim_zip,zlib]},

					{progress,preloaded},

					{path,["$ROOT/lib/kernel-4.1.1/ebin","$ROOT/lib/stdlib-2.7/ebin"]},

					{primLoad,[error_handler]},

					{kernel_load_completed},

					{progress,kernel_load_completed},

					{path,["$ROOT/lib/kernel-4.1.1/ebin"]},

					{primLoad,	KernelModuleList},		%%

					{path,["$ROOT/lib/stdlib-2.7/ebin"]},

					{primLoad,	StdLibModuleList},

					{path,["$ROOT/lib/sasl-2.6.1/ebin"]},

					{primLoad,	SASLModuleList},

					{path,["$ROOT/lib/bsc-1.0/ebin"]},

					{primLoad,	BscModuleList},

					{progress,modules_loaded},

					{path,

									["$ROOT/lib/kernel-4.1.1/ebin","$ROOT/lib/stdlib-2.7/ebin",

										"$ROOT/lib/sasl-2.6.1/ebin","$ROOT/lib/bsc-1.0/ebin"]},

					{kernelProcess,heart,{heart,start,[]}},

					{kernelProcess,error_logger,{error_logger,start_link,[]}},

					{kernelProcess,application_controller,

									{application_controller,start,	KernelAppFile}}

					{progress,init_kernel_started},

					{apply,	{application,load,	StdLibAppFile}},

					{apply,	{application,load,	SASLAppFile}},

					{apply,	{application,load,	BscAppFile}},

					{progress,applications_loaded},

					{apply,{application,start_boot,[kernel,permanent]}},

					{apply,{application,start_boot,[stdlib,permanent]}},

					{apply,{application,start_boot,[sasl,permanent]}},

					{apply,{application,start_boot,[bsc,permanent]}},

					{apply,{c,erlangrc,[]}},

					{progress,started}]}.

We	replaced	the	kernel,	stdlib,	sasl,	and	bsc	applications’	module	lists	and	app
file	contents	with	variables	shown	in	italics	to	make	the	file	more	book-friendly
and	readable.	The	script	file	starts	off	by	defining	any	modules	that	have	to	be
preloaded	before	any	processes	are	spawned.	Let’s	step	through	these	commands
one	at	a	time.	Although	you	need	not	understand	what	they	all	mean	if	all	you
need	to	do	is	get	a	system	up	and	running,	having	knowledge	of	the	various	steps
helps	when	you	have	to	dive	into	the	internals	of	the	kernel	or	need	to
troubleshoot	why	your	system	is	not	starting	(or	even	more	worrisome,	not
restarting):

preLoaded

Contains	the	list	of	Erlang	modules	that	have	to	be	loaded	before	any
processes	are	allowed	to	start.	You	can	find	them	in	the	erts	application
located	in	the	lib	directory.	Of	relevance	to	this	section	are	the	init
module,	which	contains	the	code	that	interprets	your	boot	file,	and	the
erl_prim_loader	module,	which	contains	information	on	how	to	fetch	and
load	the	modules.

progress

Lets	you	report	the	progress	state	of	your	initialization	program.	The
progress	state	can	be	retrieved	at	any	time	by	calling	the	function
init:get_status/0.	The	function	returns	a	tuple	of	the	format
{InternalState,	ProgressState},	where	InternalState	is	starting,
started,	or	stopping.	ProgressState	is	set	to	the	last	value	executed	by
the	script.	In	our	example,	the	only	progress	state	that	matters	to	the	startup
procedure	is	the	last	one,	{progress,	started},	which	changes
InternalState	from	starting	to	started.	All	other	phases	have	no	use
other	than	for	debugging	purposes.

kernel_load_completed

Indicates	a	successful	load	of	all	the	modules	that	are	required	before
starting	any	processes.	This	variable	is	ignored	in	embedded	mode,	where
loading	of	the	modules	happens	before	starting	the	system.	We	discuss	the
embedded	and	interactive	modes	in	more	detail	later	in	this	chapter.

path

A	list	of	directories,	represented	as	strings.	They	can	be	absolute	paths	or
start	with	the	$ROOT	environment	variable.	These	directories	are	added	to
the	code	search	path	(together	with	directories	supplied	as	command-line
arguments	using	-pa,	-pz,	and	-path)	and	used	to	load	modules	defined	in
primLoad	entries.	Note	how	the	generated	paths	—	specifically,	the	one	in
the	bsc	application	—	assume	that	the	beam	files	of	the	target	environment
are	located	in	$ROOT/lib/bsc-1.0/ebin	and	not	bsc/ebin.	Note	also	how	the
application	version	numbers	in	the	start	scripts	have	been	added	to	the	path,
assuming	a	standard	OTP	directory	structure.

primLoad

Provides	a	list	of	modules	loaded	by	calling	the
erl_prim_loader:get_file/1	function.	If	loading	a	module	fails,	the	start
script	terminates	and	the	node	is	not	started.	Modules	may	fail	to	be	loaded
when	the	beam	files	are	missing,	are	corrupt,	or	were	compiled	by	a	wrong
version	of	the	compiler,	or	when	the	code	search	path	is	incorrect	(e.g.,	if
you	forgot	to	add	your	application	to	the	lib	directory	or	have	omitted	the
directory	version	number).	In	various	places	throughout	this	chapter	we
explain	how	to	troubleshoot	startup	errors.

{kernelProcess,	Name,	{M,	F,	A}}

Starts	a	kernel	process	by	calling	apply(M,	F,	A).	In	our	file,
kernelProcess	is	used	for	three	modules:	heart,	error_logger,	and
application_controller.	You	already	know	what	the	error	logger	and	the
application	controller	do.	We	look	at	heart	in	more	detail	in	“Heart”.	Once
started,	the	kernel	process	is	monitored,	and	if	anything	abnormal	happens
to	it	the	node	is	shut	down.

{apply,	{M,	F,	A}}

Causes	the	process	initializing	the	system	to	execute	the	apply(M,	F,	A)
BIF,	where	the	first	argument	is	the	module,	the	second	is	the	function,	and
the	third	is	a	list	of	arguments	for	the	function.	If	this	function	exits

abnormally,	the	startup	procedure	is	aborted	and	the	system	terminates.	A
function	started	in	this	manner	may	not	hang	and	has	to	return,	because
starting	the	node	is	a	synchronous	procedure.	If	an	apply	does	not	return,
the	next	command	will	not	be	executed.

Now	that	we	are	enlightened	about	each	line	of	the	script	file,	we	can	follow
what	is	happening	in	our	start	script:

1.	 We	start	off	by	preloading	all	of	the	modules	in	the	erts	application,
together	with	the	error_handler	in	the	kernel	application.	Once	they
load,	we	inform	the	script	interpreter	with	{kernel_load_completed}
and	issue	a	progress	report.

2.	 For	all	applications	listed	in	the	release	file,	we	add	the	path	to	the	end
of	the	code	search	path	and	use	primLoad	to	load	all	of	the	modules
listed	in	the	respective	application	app	files.	We	then	issue	a
modules_loaded	progress	report.

3.	 We	start	all	of	the	kernel	processes,	starting	with	heart,	the
error_logger,	and	the	application_controller	(you	already	know
about	the	latter	two).	We	issue	an	init_kernel_started	progress
report.

4.	 We	call	application:load(AppFile)	to	load	all	the	applications	that
are	part	of	this	release.	This	loads	the	four	applications	listed	in	our	rel
file:	kernel,	stdlib,	sasl,	and	bsc.	When	complete,	we	issue	an
applications_loaded	progress	report.

5.	 Now	that	we’ve	started	the	kernel	processes	and	loaded	all	of	the
applications,	it	is	time	to	start	them.	Note	how,	instead	of	calling
application:start/1	in	the	{apply,	{M,	F,	A}}	tuple,	we	are	calling
application:start_boot/2.	This	is	an	undocumented	function	that,
unlike	application:start/2,	assumes	that	the	application	has	already
been	loaded	and	asks	the	application	controller	to	start	it.

6.	 Before	issuing	the	final	started	progress	report,	we	call	c:erlangrc().
This	function	is	not	documented,	but	reads	and	executes	the	.erlang	file
in	your	home	or	Erlang	root	directory.	This	is	a	useful	place	to	set	code
paths	and	execute	other	functions.

Be	very	careful	of	the	code	search	paths	in	your	target	environment.	The	only
reason	our	example	can	start	the	bsc	application	is	that	we	provide	the	path	to
the	beam	files	using	-pa	in	the	command-line	prompt	when	starting	Erlang.	Our
base	station	script	expects	them	to	be	in	$ROOT/lib/bsc-1.0/ebin.	When
generating	the	start	script	for	the	target	environment,	all	applications	are
assumed	to	be	in	the	directory	AppName-version	within	the	root	directory
$ROOT/lib/.	This	will	become	evident	when	we	generate	the	target	directory
structure	and	files.

The	make_script	parameters
Let’s	look	in	more	detail	at	all	the	options	we	can	pass	to	the	make_script/2
call.	We	already	know	that	Name	is	the	name	of	the	release	file:

systools:make_script(Name,	OptionsList).

Options	include:

src_tests

By	default,	systools	assumes	that	the	beam	files	are	up	to	date	and
represent	the	latest	version	of	the	source	code.	This	flag	causes	it	to	instead
verify	that	the	beam	files	are	newer	than	their	corresponding	source	files
and	that	no	source	files	are	missing,	and	issue	warnings	otherwise.

{path,DirList}

Adds	paths	listed	in	DirList	to	the	code	search	path.	This	option	can	be
used	along	with	passing	the	-pa	and	-pz	parameters	when	starting	the
Erlang	VM	that	executes	the	systools	functions.	You	can	include
wildcards	in	your	path,	so	"lib/*/ebin"	expands	to	contain	all	of	the
subdirectories	in	lib	containing	an	ebin	directory.

local

Places	local	paths	instead	of	absolute	paths	in	the	start	script.	This	flag	is
ideal	for	testing	boot	scripts	using	your	code	and	the	Erlang	runtime	system
on	your	local	machine.

{variables,[{Prefix,	Var}]}

Replaces	path	prefixes	with	variables.	This	allows	you	to	specify	alternative
target	paths	for	some	or	all	of	your	applications.	Defining	a	prefix	such	as

{"$BSC",	"/usr/basestation/"}	results	in	the	path	$BSC/lib/bsc-
1.0/ebin,	if	the	app	and	beam	files	are	found	in
/usr/basestation/lib/bsc/ebin.	Similarly,	it	results	in	the	path
$BSC/ernie/lib/bsc-1.0/ebin	if	the	local	path	is
/usr/basestation/ernie/lib/bsc/ebin.

{outdir,	Dir}

Puts	the	boot	and	script	files	in	Dir.

exref	and	{exref,	AppList}
Tests	the	release	with	the	Xref	cross-reference	tool,	which	looks	for	calls	to
undefined	and	deprecated	functions.

silent

Returns	a	tuple	of	the	format	{ok,	ReleaseScript,	Module,	Warnings}
or	{error,	Module,	Error}	instead	of	printing	results	to	I/O.	Use	this
option	when	calling	systools	functions	from	scripts	or	integrating	the	call
in	your	build	process	where	you	need	to	handle	errors.

no_dot_erlang

Removes	the	instructions	that	load	and	execute	the	expressions	in	the
.erlang	file.

no_warn_sasl

Can	be	used	if	you	are	not	including	sasl	as	one	of	your	default	applications
and	are	not	interested	in	the	warnings	that	are	generated.

warnings_as_errors

Treats	warnings	as	errors	and	refuses	to	generate	the	script	and	boot	files	if
warnings	occur.

ALTERNATIVE	BOOT	FILES

If	you	look	in	the	releases	directory	of	the	standard	Erlang/OTP	distribution	you	are	currently	running,
you	will	find	four	boot	files	and	three	rel	files.	They	start	and	load	different	applications.	They
include:

start_clean.boot
Starts	the	kernel	and	stdlib	applications	as	defined	in	the	start_clean.rel	file.

start_sasl.boot
Starts	the	kernel,	stdlib,	and	sasl	applications	as	defined	in	the	start_sasl.rel	file.

no_dot_erlang.boot
Starts	the	kernel	and	stdlib	applications	but	does	not	execute	commands	in	the	.erlang	file.	This
is	useful	when	determinism	is	important,	because	it	does	not	allow	the	code	search	paths	to	be
manipulated	and	other	user	preferences	to	be	modified.

The	fourth	file,	start.boot,	is	a	copy	of	whichever	of	the	preceding	files	was	selected	as	the	default
when	installing	Erlang.	You	can	rename	any	of	the	three	files	in	the	list	to	start.boot	yourself	in	the
releases	directory,	should	you	wish	to	try	them	out.

You	can	write	your	own	script	files,	generate	them	with
systools:make_script/2,	or	change	existing	ones.	If	you	need	to	generate	a
release	boot	file	from	a	script	file,	use	the	systools:script2boot(File)
function.

Changing	script	files	was	a	necessity	in	the	good	old	days	when	debugging
startup	issues.	In	order	to	pinpoint	exactly	where	the	problems	occurred,	we	had
to	add	progress	reports	after	every	operation.	When	working	with	projects	with
thousands	of	modules,	if	one	of	the	beam	files	installed	on	the	target	machine	got
corrupted	during	the	build	or	transfer	process,	the	only	way	to	find	it	was	by
adding	progress	reports	after	every	primLoad	command	in	the	boot	file.	It	told	us
in	which	application	directory	we	had	a	problem,	after	which	we	loaded	all	of
the	modules	individually,	finding	the	culprit.

Today,	you	can	turn	on	the	startup	trace	functionality	by	passing	the	-
init_debug	flag	to	the	erl	command.	It	makes	the	startup	phases	much	more
visible.	When	users	are	unaware	of	this	option,	debugging	startup	errors	can	end
up	being	worse	than	looking	for	a	needle	in	a	haystack.	But	there	are	still	reasons
for	manipulating	and	writing	your	own	release	files:	to	reduce	startup	times	by
loading	only	specific	modules	and	starting	specific	applications,	or	to	change
their	start	order.

Creating	a	Release	Package
Now	that	we	know	the	ins	and	outs	of	creating	and	starting	a	simple	target
system	and	have	a	boot	file	at	hand,	let’s	have	a	look	at	how	the	experts	package,
deploy,	and	start	their	releases.	The	most	solid	and	flexible	way	of	deploying	an
Erlang	node	is	as	an	embedded	target	system.	Unfortunately	Erlang/OTP	uses	the
term	“embedded”	in	several	contexts,	which	we	explain	in	this	chapter,	so	please
don’t	assume	it	means	the	same	thing	each	time	we	use	it.	Here,	by	embedded
we	mean	our	target	system	becomes	part	of	a	larger	package	running	on	the
underlying	operating	system	and	hardware.	It	is	capable	of	executing	as	a
daemon	job	in	the	background,	without	the	need	to	start	an	interactive	shell	or
keep	it	open	all	the	time,	and	it	typically	starts	when	the	operating	system	is
booted.	To	communicate	without	a	shell,	an	embedded	target	system	streams	all
I/O	through	pipes.

Because	target	environments	differ	based	on	design	and	operational	choices,
there	is	no	“one	size	fits	all”	solution.	The	basic	steps	when	creating	a	release
package	are	as	follows,	but	in	practice	you	will	often	find	the	need	to	tweak
them	based	on	the	details	of	what	you	are	trying	to	achieve:

1.	 Create	a	target	directory	and	release	file.

2.	 Create	the	lib	directory	with	the	application	versions	specified	in	the	rel
file.

3.	 Create	the	release	directory	with	the	boot	scripts	and	the	application
configuration	file.

4.	 Copy	the	erts	executable	and	binaries	to	the	target	directory.

5.	 Create	a	bin	directory	and	copy	the	configuration	files	and	the	start
scripts	to	it.

These	steps	are,	at	least	in	part,	usually	integrated	in	an	automated	build	system
and	the	install	scripts	executed	on	the	target	machine	or	run	by	one	of	the	many
available	tools.	Because	OTP	originally	did	not	ship	with	tools	to	create	target
releases,	and	eventually	included	a	complex	tool	focused	on	batch	handling,	the
boundary	for	what	is	done	by	the	build	environment	and	what	is	done	by	the

installation	scripts	on	the	target	host	varies	among	users.	What	also	vary	are	the
manual	versus	the	automated	steps.	If	you	are	doing	your	build	on	the	same
hardware	and	operating	system	as	your	target	environment,	you	might	be	better
off	getting	everything	ready	in	one	place.	If	you	do	not	have	this	luxury,	do	not
know	where	(or	on	what	target	machine)	your	deployment	will	be	running,	or
need	other	target-specific	configuration	files	created	on	the	fly,	parts	of	the
procedure	may	have	to	be	performed	on	the	target	environment.

Now	we	make	our	way	through	the	steps	required	to	manually	create	a	target
system,	assuming	that	our	development	and	target	environments	are	the	same.
Based	on	how	you	are	used	to	building,	deploying,	and	configuring	your	target
systems,	it	should	be	straightforward	to	understand	where	you	should	be	drawing
the	boundary	between	what	you	do	in	your	build	process	and	what	you	do	on	the
target	host.	We	also	cover	some	tools	that	can	be	used	to	automate	this	process.

We	start	off	by	creating	the	target	directory,	which	we	are	going	to	call	ernie,1
and	adding	the	releases	and	lib	directories	to	it.	Along	with	standard	Unix
commands,	we	use	the	systools:make_tar/2	library	function.	We	start	in	the
same	directory	as	the	bsc	application	directory.	The	make_tar	call	also	expects
the	system	release	and	boot	files	to	be	located	here,	alongside	a	config	file.

The	configuration	file	is	optional	at	this	stage.	You	might	want	to	generate
target-specific	values	at	install	time,	overriding	those	specified	in	the	app	files.	If
you	choose	to	omit	it	at	this	stage,	you	must	not	forget	to	add	it	when	installing
the	system,	as	otherwise	your	system	will	not	start.	The	configuration	file	must
be	named	sys.config,	although	you	can	change	the	name	by	tweaking	the
arguments	you	pass	to	the	emulator	when	starting	it.

We	create	our	ernie	target	directory,	rename	the	configuration	file	sys.config,	and
place	it	in	the	same	directory	as	the	bsc	application	and	the	rel	and	boot	files.
When	done,	we	can	create	our	tar	file:

$	mkdir	ernie

$	cp	bsc.config	sys.config

$	erl

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

1>	systools:make_tar("basestation",

																						[{erts,	"/usr/local/lib/erlang/"},

																							{path,	["bsc/ebin"]},	{outdir,	"ernie"}]).

ok

2>	q().

ok

3>

$	cd	ernie

$	ls

basestation.tar.gz

$	tar	xf	basestation.tar.gz

$	ls

basestation.tar.gz						lib

erts-7.2																releases

$	ls	lib/

bsc-1.0									kernel-4.1.1				sasl-2.6.1						stdlib-2.7

$	ls	releases/

1.0													basestation.rel

$	ls	releases/1.0/

basestation.rel	start.boot						sys.config

$	ls	erts-7.2/bin/

beam										dialyzer				erl.src					heart											start.src

beam.smp						dyn_erl					erlc								inet_gethost				start_erl.src

child_setup			epmd								erlexec					run_erl									to_erl

ct_run								erl									escript					start											typer

$	rm	basestation.tar.gz

Our	call	to	systools:make_tar(Name,	OptionsList)	generates	the
basestation.tar.gz	package.	Name	is	the	name	of	the	release	and	OptionsList
accepts	all	of	the	options	make_script	takes,	together	with	the	{erts,	Dir}
directive.	We	give	this	directive	if	we	wish	to	include	the	runtime	system
binaries,	resulting	in	the	erts-7.2	directory.	That	is	not	always	the	case,	because
the	runtime	system	binaries	might	already	be	installed	on	the	target	machine,	or
a	single	version	of	Erlang	might	be	used	to	run	multiple	nodes.	Also	note	that	the
sys.config	file	is	included	in	the	releases/1.0	directory.	If	it	is	in	a	different
directory	from	the	rel	file,	you	have	to	copy	it	in	a	later	stage	of	the	installation.

You	could	deploy	basestation.tar.gz	to	your	target	machine	and	run	your	local
configuration	scripts	when	you	install	the	node,	or	do	it	in	your	build
environment	and	create	a	single	tar	file	for	all	deployments	of	this	particular
node.	Keep	in	mind	that	your	node	might	run	in	tens	of	thousands	of
independent	installations	—	one	for	every	base	station	controller	your	company
sells	—	or,	if	hosted,	in	multiple	occurrences	of	the	node,	all	in	a	single
installation.	Your	configuration	parameters	will	depend	on	your	needs	and	the
type	of	installation;	they	might	be	the	same	across	all	tens	of	thousands	of
deployments,	or	may	have	to	be	individually	customized	when	installing	the
software	on	each	target	environment.	Often,	it	is	a	combination	of	both.
Configuration	scripts	could	be	proprietary	to	your	system	and	be	included	in	the
tar	file,	or	be	managed	by	third-party	deployment	and	configuration	tools	such	as
Chef,	Puppet,	or	Capistrano.

In	our	example,	we	untar	the	basestation.tar.gz	file	manually.	The	remaining
steps	could	run	either	on	the	target	or	in	our	build	environment.	When	untarring
the	file,	we	find	three	new	directories:	the	lib	directory	containing	all	of	the
application	directories	(including	their	version	numbers),	the	releases	directory,
and	the	erts	directory.	The	erts	directory	is	there	because	we	included	the	{erts,
Dir}	directive	in	the	sys_tools:make_tar/2	call.

We	already	know	that	Name	is	the	name	of	the	release	file:

systools:make_tar(Name,	OptionsList).

OptionsList	is	a	list	that	can	be	empty	or	can	contain	some	combination	of	the
following	elements:

{dirs,	IncDirList}

Copies	the	specified	directories	(in	addition	to	the	defaults	priv	and	ebin)
to	the	application	subdirectories.	Thus,	to	add	tests,	src,	and	examples	to
the	release,	set	the	IncDirList	to	[tests,	src,	examples].

{path,	DirList}

Adds	paths	to	the	code	search	path.	This	option	can	be	used	along	with	the
-pa	and	-pz	parameters	passed	when	starting	the	Erlang	VM	that	runs	the
system.	You	can	include	wildcards	in	your	path.	For	instance,
["lib/*/ebin"]	will	expand	to	contain	all	of	the	subdirectories	in	lib	that
contain	an	ebin	directory.

{erts,	Dir}

Includes	the	binaries	of	the	Erlang	runtime	system	found	in	directory	Dir	in
the	target	tar	file.	The	version	of	the	runtime	system	is	extracted	from	the
rel	file.	Make	sure	that	the	binaries	have	been	compiled	and	tested	on	your
target	operating	system	and	hardware	platform.

{outdir,	Dir}

Puts	the	tar	file	in	directory	Dir.	If	omitted,	the	default	directory	is	the	same
directory	as	that	of	the	rel	file.

exref	and	{exref,	AppList}
Tests	the	release	with	the	Xref	cross-reference	tool,	which	looks	for	calls	to
undefined	and	deprecated	functions.	This	is	the	same	test	executed	by	the

systools:make_script/2	call	when	passing	the	same	option.

src_tests

Issues	a	warning	if	there	are	discrepancies	between	the	source	code	and	the
beam	files.	This	is	the	same	test	executed	by	the	systools:make_script/2
call	when	passing	the	same	option.

silent

Returns	a	tuple	of	the	format	{ok,	ReleaseScript,	Module,	Warnings}
or	{error,	Module,	Error}	instead	of	printing	the	results	to	I/O.	You	can
get	formatted	errors	and	warnings	by	calling	Module:format_error(Error)
and	Module:format(Warning),	respectively.	Use	this	option	if	you	are
integrating	systools	in	your	build	process;	it	works	in	the	same	way	for
this	as	for	the	systools:make_script/2	call.

Two	additional	options,	{variables,[{Prefix,	Var}]}	and
{var_tar,VarTar},	allow	you	to	change	and	manipulate	the	way	target	libraries
and	packages	are	created.	Use	them	when	deviating	from	the	standard	Erlang
way	of	doing	things;	for	example,	if	you	prefer	to	deploy	your	release	as	deb,
pkg,	rpm,	or	other	packages	or	containers.	They	allow	you	to	override	the
application	installation	directory	(by	default	set	to	lib)	and	influence	where	and
how	the	packages	are	stored.	We	do	not	cover	these	options	in	this	chapter;	for
more	information	and	some	examples,	read	the	systools	reference	manual	page.

Start	Scripts	and	Configuring	on	the	Target
Now	that	we	have	our	target	files	in	place,	we	need	to	configure	our	start	scripts.
Here	we	go	through	these	steps	manually,	later	introducing	tools	that	automate
the	process:

1.	 In	the	target	directory	(ernie,	in	our	case),	create	a	bin	directory	in
which	to	place	and	edit	the	start	scripts	that	will	boot	our	system.

2.	 Create	the	log	directory,	to	which	all	debug	output	from	the	start	scripts
is	sent.	It	will	be	one	of	the	first	points	of	call	when	the	system	fails	to
start.

3.	 Create	a	file	called	start_erl.data	in	the	releases	directory	containing
the	versions	of	the	Erlang	runtime	system	and	its	release.

4.	 If	the	original	tar	file	did	not	contain	a	sys.config	file,	create	one
(possibly	empty)	and	place	it	in	the	release	version	directory.

At	this	point,	fingers	crossed,	everything	will	start.	Let’s	go	through	these	steps
in	more	detail,	adding	and	editing	files	as	we	go	along.	All	of	this	is	in	the	ernie
directory:

$	mkdir	bin

$	cp	erts-7.2/bin/start.src	bin/start

$	cp	erts-7.2/bin/start_erl.src	bin/start_erl

$	cp	erts-7.2/bin/run_erl	bin

$	cp	erts-7.2/bin/to_erl	bin

$	mkdir	log

In	our	example,	we	create	the	bin	directory	and	copy	start.src	and	start_erl.src	to
it,	renaming	them	start	and	start_erl,	respectively.	We	also	copy	over	run_erl,
which	the	start	scripts	expect	to	be	available	locally,	and	to_erl,	which	we	will
use	to	connect	to	an	embedded	Erlang	shell.	The	start	script	initializes	the
environment	for	the	embedded	system,	after	which	it	calls	start_erl,	which	in
turn	starts	Erlang	via	the	run_erl	script.

Think	of	start_erl	as	an	embedded	version	of	erl	and	start	as	a	script	you	can	use
and	customize	as	you	please.	Depending	on	your	needs	and	requirements,	you
might	also	want	your	own	version	of	the	erl	and	heart	scripts	and,	if	running

distributed	Erlang,	the	epmd	binary.	All	of	these	can	be	copied	from	the	bin
directory	of	the	runtime	system.

Now	that	the	files	and	binaries	are	in	place,	we	need	to	edit	them	accordingly.
We	modify	the	start	file,	replacing	%FINAL_ROOTDIR%	with	the	absolute	path	to
the	new	Erlang	root	directory.	In	our	case,	this	directory	is	ernie,	and	we	change
the	file	using	perl	with	its	-i	in-place	modification	option,	using	the	value	of
our	shell’s	PWD	variable	for	the	replacement	text.	We	then	show	you	the	before
and	after	versions	using	the	diff	command:

$	pwd

/Users/francescoc/ernie

$	perl	-i	-pe	"s#%FINAL_ROOTDIR%#$PWD#"	bin/start

$	diff	erts-7.2/bin/start.src	bin/start

27c27

<	ROOTDIR=%FINAL_ROOTDIR%

>	ROOTDIR=/Users/francescoc/ernie

$	echo	'7.2	1.0'	>	releases/start_erl.data

$	bin/start

$	bin/to_erl	/tmp/

Attaching	to	/tmp/erlang.pipe.1	(^D	to	exit)

1>	application:which_applications().

[{bsc,"Base	Station	Controller","1.0"},

	{sasl,"SASL		CXC	138	11","2.6.1"},

	{stdlib,"ERTS		CXC	138	10","2.7"},

	{kernel,"ERTS		CXC	138	10","4.1.1"}]

2>	[Quit]

$	ls	/tmp/erlang.*

/tmp/erlang.pipe.1.r	 /tmp/erlang.pipe.1.w

Having	modified	the	start	file,	we	create	the	start_erl.data	file	in	the	releases
directory.	It	contains	the	version	of	the	Erlang	runtime	system	and	the	release
directory	containing	all	the	boot	scripts	and	configuration	files	for	the	release.
These	two	items,	in	our	example	both	numbers,	are	separated	by	a	space.

We	are	now	able	to	boot	our	system	with	the	start	command.	Notice	how,	unlike
when	using	the	erl	command,	this	release	starts	as	a	background	job.	To	connect
to	the	Erlang	shell,	we	use	the	to_erl	command,	passing	it	the	/tmp	directory
where	the	read	and	write	pipes	reside.

WARNING
When	running	an	embedded	Erlang	system,	you	might	out	of	habit	exit	the	shell	using	Ctrl-c
a.	Ctrl-c	invokes	the	virtual	machine	break	handler,	after	which	you	can	execute	one	of	the

following	commands:

BREAK:	(a)bort	(c)ontinue	(p)roc	info	(i)nfo	(l)oaded

							(v)ersion	(k)ill	(D)b-tables	(d)istribution

As	indicated,	the	a	terminates	the	Erlang	node.

To	avoid	termination,	be	careful	to	exit	the	shell	using	Ctrl-d.	If	you	type	q(),	halt(),	or
Ctrl-c	a	out	of	habit,	you	will	kill	the	whole	background	job.	By	using	Ctrl-d,	you	exit	the
to_erl	shell	while	keeping	the	Erlang	VM	alive	running	in	the	background.

If	you	are	trying	to	connect	to	the	pipes	on	your	computer	and	get	an	error	of	the
form	No	running	Erlang	on	pipe	/tmp/erlang.pipe:	No	such	file	or	directory,
look	in	the	log	directory	to	find	out	why	your	Erlang	node	failed	to	start.	All
start	errors	in	your	scripts	will	be	recorded	there.	Problems	might	include	wrong
paths,	missing	sys.config	files,	a	corrupt	boot	file,	or	an	incorrectly	named
binary.

It	is	good	practice	to	always	include	the	erl	command	in	the	bin	directory	of
your	target	system.	This	will	come	as	a	blessing	when,	after	a	failure	of	some
sort,	you	are	unable	to	restart	your	node.	Your	first	point	of	call	in	these
situations	will	be	the	SASL	report	logs,	where	crash	and	error	reports	will	in
most	cases	tell	you	what	triggered	the	chain	of	errors	that	caused	the	node	to	fail.
The	last	thing	you	want	to	do	is	to	have	to	move	the	SASL	logs	to	a	remote
computer	every	time	you	want	to	view	them	just	because	your	Erlang	nodes	will
not	start.	Be	safe	and	always	generate	a	second	boot	file	similar	to
start_sasl.boot	that	contains	the	same	application	versions	of	kernel,	stdlib,	and
sasl	as	your	system.

In	our	example,	we	used	the	/tmp	directory	for	the	read	and	write	pipes,	as	it	is
the	default	directory	used	by	our	scripts.	If	you	plan	on	running	multiple
embedded	nodes	on	the	same	machine,	though,	this	will	cause	a	problem.	A
good	practice	is	to	redirect	your	pipes	to	a	subdirectory	of	your	Erlang	root
directory	in	your	target	structure.	This	allows	multiple	node	instances	to	run	on
the	same	computer,	a	common	practice	in	many	systems.	If	you	look	at	the	last
line	of	the	start	script,	you	will	see	where	to	replace	/tmp/	with	the	absolute	path
of	your	new	pipes	in	the	root	directory.	You	can	also	redirect	all	of	the	logs
elsewhere:

$ROOTDIR/bin/run_erl	-daemon	/tmp/	$ROOTDIR/log	"exec	..."

Arguments	and	Flags
So	far,	so	good.	But	what	if	we	want	to	start	a	distributed	Erlang	node	or	add	a
patches	directory	to	the	code	search	path?	Or	maybe	we	have	developed	a
dislike	for	the	sys.config	filename	and	want	to	retain	the	original	bsc.config	file.
Or,	even	more	importantly,	are	there	flags	we	can	pass	to	the	emulator	that	will
disable	the	ability	to	kill	the	node	via	Ctrl-c	a?

When	starting	Erlang,	we	can	pass	three	different	types	of	arguments	to	the
runtime	system.	They	are	emulator	flags,	flags,	and	plain	arguments.	You	can
recognize	emulator	flags	by	their	initial	+	character.	They	control	the	behavior	of
the	virtual	machine,	allowing	you	to	configure	system	limits,	memory
management	options,	scheduler	options,	and	other	items	specific	to	the	emulator.

Flags	start	with	-	and	are	passed	to	the	Erlang	part	of	the	runtime	system.	They
include	code	search	paths,	configuration	files,	environment	variables,	distributed
Erlang	settings,	and	more.

Plain	arguments	are	user-defined	and	not	interpreted	by	the	runtime	system.	You
first	came	across	them	in	“Environment	Variables”	to	override	application
environment	variables	in	app	and	configuration	files	from	the	command	line.
You	can	use	plain	arguments	in	your	application	business	logic.

The	following	sample	command	uses	several	different	arguments:

erl	-pa	patches	-boot	basestation	-config	bsc	-init_debug	+Bc

This	starts	Erlang	with	the	patches	directory	added	to	the	beginning	of	the	code
search	path.	It	also	uses	the	basestation.boot	and	bsc.config	files	to	start	the
system,	and	sets	the	init_debug	flag,	increasing	the	number	of	debug	messages
at	startup.	The	+Bc	emulator	flag	disables	the	shell	break	handler,	so	when	you
press	the	sequence	Ctrl-c	a,	instead	of	terminating	the	virtual	machine	you
terminate	just	the	shell	process	and	restart	it.

Let’s	look	at	some	of	the	emulator	flags	in	more	detail.	We’ve	picked	high-level
flags	and	system	limit	flags	that	do	not	deal	with	memory	management,
multicore	architectures,	ports	and	sockets,	low-level	tracing,	or	other	internal
optimizations.	The	internal	optimizations	are	outside	the	scope	of	this	book	and

should	be	used	with	care,	only	if	you	are	sure	of	what	you	are	doing.	You	can
read	more	about	the	arguments	we	cover	(and	those	we	don’t)	in	the	manual
pages	for	erl.	The	ones	we	list	are	those	we	have	used	ourselves	in	some	shape
or	form	before	the	need	to	optimize	our	target	systems:

+Bc

It	is	dangerous	to	keep	the	break	handler	enabled	in	live	systems,	as	your
fingers	are	often	faster	than	your	mind	(especially	if	this	is	a	support	call	in
the	middle	of	the	night	when	your	mind	is	still	fast	asleep).	If	you	are	used
to	terminating	the	shell	that	way,	you	will	be	inclined	to	do	it	on	production
systems	as	well.	Using	the	+Bc	flag	makes	Ctrl-c	a	terminate	the	current
shell	and	start	a	new	one	without	affecting	your	system.	This	is	the	option
to	enable	for	all	your	live	systems.

+Bd

This	allows	you	to	terminate	the	Erlang	node	using	simply	Ctrl-c,
bypassing	the	break	handler	altogether.

+Bi

This	makes	the	emulator	ignore	Ctrl-c,	in	which	case	the	only	way	to
terminate	your	Erlang	virtual	machine	is	using	the	shell	command	q()	or
the	halt()	BIFs.	This	option	is	dangerous	because	it	does	not	allow	you	to
recover	should	an	interactive	call	fail	to	return,	thereby	hanging	the	shell.

+e	Num
This	sets	the	maximum	number	of	ETS	tables,	which	defaults	to	2,053.
With	Erlang/OTP	R16B03	or	newer,	you	can	obtain	the	value	of	the
maximum	number	of	ETS	tables	at	runtime	by	calling
erlang:system_info(ets_limit).

+P	Num
This	changes	the	system	limit	on	the	maximum	number	of	processes
allowed	to	exist	simultaneously.	The	limit	by	default	is	262,144,	but	it	can
range	from	1,024	to	134,217,727.

+Q	Num
This	changes	the	maximum	number	of	ports	allowed	in	the	system,	set	by
default	to	65,536.	The	allowable	range	is	1,024	to	134,217,727.

+t	Num
This	allows	you	to	change	the	maximum	number	of	allowed	atoms,	set	by
default	to	1,048,576.	These	limits	are	specific	to	Erlang	17	or	newer	and	to
Unix-based	OSs.	Default	values	might	differ	on	other	operating	systems.

+R	Rel
This	allows	your	Erlang	node	to	connect	using	distributed	Erlang	to	other
nodes	running	an	older,	potentially	non–backward-compatible	version	of
the	distribution	protocol.

Regular	flags	are	defined	at	startup,	retrieved	in	the	Erlang	side	of	the	runtime
system,	and	used	by	standard	and	user-defined	OTP	applications	alike.
Remember	that	large	parts	of	the	Erlang	kernel	and	runtime	system	are	written	in
Erlang,	so	how	you	define	and	retrieve	flags	in	your	application	is	identical	to
how	Erlang	defines	and	retrieves	them	in	its	runtime.	Here	are	the	main	flags:

-Application	Key	Value

Sets	Application’s	environment	variable	Key	to	Value.	We	covered	this
option	in	“Environment	Variables”.

-args_file	FileName
Allows	you	to	list	all	of	the	flags,	emulator	flags,	and	plain	arguments	in	a
separate	configuration	file	named	FileName,	which	is	read	at	startup.	The
file	can	also	contain	comments	that	start	with	a	#	character	and	continue
until	the	end	of	the	line.	Using	an	arguments	file	is	the	recommended
approach,	so	as	to	avoid	the	need	to	mess	with	the	start	scripts	to	set	or
change	arguments.	This	approach	can	also	allow	you	keep	the	arguments
file	under	version	control	with	the	rest	of	your	code.

-async_shell_start

Allows	the	shell	to	start	in	parallel	with	other	parts	of	the	system,	rather
than	the	default	of	not	processing	what	you	type	in	the	shell	until	the	system
has	been	completely	booted.	This	is	useful	when	you	are	trying	to	debug
startup	issues	or	figure	out	where	timeouts	are	occurring.

-boot	filename
Sets	the	name	of	the	boot	file	to	filename.boot.	If	you	do	not	include	an
absolute	path,	the	emulator	assumes	the	boot	file	is	in	the	$ROOT/bin

directory.

-config	filename
Sets	the	location	and	name	of	the	configuration	file	to	filename.config.

-connect_all	false

Stops	the	global	subsystem	from	maintaining	a	fully	connected	network	of
distributed	Erlang	nodes,	in	effect	disabling	the	subsystem.

-detached

Starts	the	Erlang	runtime	system	in	a	manner	detached	from	the	system
console.	You	need	this	option	when	running	daemons	and	background
processes.	The	-detached	option	implies	-noinput,	which	basically	starts
the	Erlang	node	but	not	the	shell	process	that	runs	the	read-evaluate	loop
interpreting	all	the	commands	you	type.	The	-noinput	option	in	turn
implies	the	-noshell	command,	which	starts	the	Erlang	runtime	system
without	a	shell,	potentially	making	it	a	component	in	a	series	of	Unix	pipes.

-emu_args

Prints,	at	startup,	all	of	the	arguments	passed	to	the	emulator.	Keep	this	on
all	the	time	in	your	production	systems,	as	you	never	know	when	you	will
need	access	to	the	information.

-init_debug

Provides	you	with	detailed	debug	information	at	startup,	outlining	every
step	executed	in	the	boot	script.	The	overheads	of	using	-init_debug	and	-
emu_args	are	negligible,	but	the	information	they	provide	is	priceless	when
troubleshooting.

-env	Variable	Value
An	alternate	(and	convenient)	way	to	set	host	operating	system	environment
variables.	It	is	mainly	used	for	testing,	but	is	also	useful	when	dealing	with
Erlang-specific	values.

-eval

Parses	and	executes	an	Erlang	expression	as	part	of	the	node’s	initialization
procedure.	If	the	parsing	or	execution	fails,	the	node	shuts	down.

-hidden

When	using	distributed	Erlang,	starts	the	Erlang	runtime	system	as	a	hidden

node,	publishing	neither	its	existence	nor	the	existence	of	the	nodes	to
which	it	is	connected.

-heart

Starts	the	external	monitoring	of	the	Erlang	runtime	system.	If	the
monitored	virtual	machine	terminates,	a	script	that	can	restart	it	is	invoked.
We	cover	heart	in	detail	in	“Heart”.

-mode	Mode
Establishes	how	code	is	loaded	in	the	system.	If	Mode	is	interactive,	calls
to	modules	that	have	not	been	loaded	are	automatically	searched	for	in	the
code	search	path.	Your	target	systems	should	run	in	embedded	mode,	where
all	modules	should	be	loaded	at	startup	by	the	boot	file,	and	calls	to
nonexisting	modules	should	result	in	a	crash.	You	can	still	load	modules	in
embedded	mode	using	the	l(Module)	or	code:load_file(Module)	calls
from	the	shell.
Running	in	embedded	mode	is	recommended	for	all	production	systems.	It
ensures	that	in	the	middle	of	a	critical	call,	you	do	not	pause	the	process
while	traversing	the	code	search	path	looking	for	a	module	that	has	not
been	loaded.

-nostick

Disables	a	feature	that	prevents	loading	and	overriding	modules	located	in
sticky	directories.	By	default,	the	ebin	directories	of	the	kernel,	compiler,
and	stdlib	applications	are	sticky,	a	measure	intended	to	prevent	key
elements	of	the	system	from	being	accidentally	corrupted.

-pa	and	-pz
Add	directories	containing	beam	files	to	the	beginning	and	end	of	the	code
search	path,	respectively.	One	common	use	is	to	add	-pa	patches	to	point
to	a	directory	used	to	store	temporary	patches	in	between	releases.

-remsh	node
Starts	a	shell	connected	to	a	remote	node	using	distributed	Erlang.	This	is
useful	when	running	nodes	with	no	shells	or	when	you	need	to	remotely
connect	to	a	node.

-shutdown_time	Time

Specifies	the	number	of	milliseconds	the	system	is	allowed	to	spend
shutting	down	the	supervision	trees.	It	is	by	default	set	to	infinity.	Use	this
option	with	care,	though,	because	it	overrides	the	shutdown	values	specified
in	the	behavior	child	specifications.

-name	name	and	-sname	name
When	working	with	distributed	Erlang,	these	start	distributed	nodes	with
long	or	short	names,	respectively.	If	nodes	are	to	communicate	with	each
other,	they	must	share	a	cookie,	which	can	be	set	using	the	-setcookie
directive,	and	all	have	either	long	or	short	names.	Nodes	with	short	and
long	names	cannot	communicate	with	each	other.

-s	module,	-s	module	function,	-s	module	function	args
The	first	of	these	forms	executes,	at	startup,	module:start().	The	second
executes	module:function().	The	third	is	like	the	second	but	includes	the
argument	list	to	the	function.	All	args	are	passed	as	atoms.	The	-run	option
works	similarly,	except	that	if	arguments	are	defined,	they	are	passed	as	a
list	of	strings	to	module:function/1.	Functions	executed	by	-run	and	-s
must	return,	or	the	startup	procedure	will	hang.	If	they	terminate
abnormally,	they	will	cause	the	node	to	terminate	as	well,	aborting	the
startup	procedure.

When	troubleshooting	systems,	you	can	connect	to	a	remote	node	using
distributed	Erlang.	For	instance,	assume	you	want	to	connect	to	node
foo@ramone,	which	has	cookie	abc123.	You	would	do	so	by	starting	an	Erlang
VM	with	the	–remsh	flag:		

$	erl	-sname	bar	-remsh	foo@ramone	-setcookie	abc123

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

(foo@ramone)1>	node().

foo@ramone

(foo@ramone)2>	nodes().

[bar@ramone]

(foo@ramone)3>

BREAK:	(a)bort	(c)ontinue	(p)roc	info	(i)nfo	(l)oaded

							(v)ersion	(k)ill	(D)b-tables	(d)istribution

a

$

All	commands	will	be	executed	remotely	in	foo,	with	the	results	displayed

locally.	Be	careful	of	how	you	exit	the	local	shell.	Using	halt()	and	q()	will
terminate	the	remote	node.	Always	use	Ctrl-c	a.

Let’s	now	try	using	-s,	-eval,	and	-run	in	the	shell	to	get	a	feel	for	how	they
work:

$	erl	-s	observer

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

1>	q().

ok

$	erl	-noshell	\

-eval	'Average	=	(1+2+3)/3,	io:format("~p~n",[Average]),	erlang:halt()'

2.0

$	erl	-run	io	format	1	2	3

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

123Eshell	V7.2		(abort	with	^G)

1>	q().

ok

$	erl	-s	io	format	1	2	3

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

{"init	terminating	in	do_boot",

	{badarg,[{io,format,[<0.24.0>,['1','2','3'],[]],[]},

										{init,start_it,1,[]},{init,start_em,1,[]}]}}

Crash	dump	is	being	written	to:	erl_crash.dump...done

init	terminating	in	do_boot	()

We	successfully	use	erl	-s	observer	to	call	observer:start().	You	do	not
see	it	in	the	shell	output	shown	here,	but	it	opens	up	an	observer	wxWidgets
window.	This	is	an	efficient	way	to	start	debugging	tools	when	starting	the
emulator.	We	then	use	the	-eval	flag	to	calculate	the	average	of	three	integers,
print	out	the	result,	and	stop	the	emulator,	all	without	starting	the	Erlang	shell.	In
our	third	and	fourth	examples,	we	use	-run	io	format	1	2	3	to	call
io:format(["1","2","3"])	and	-s	io	format	1	2	3	to	call
io:format(['1','2','3']).	The	latter	crashes	because	it	attempts	to	call
io:format/1	with	a	list	of	atoms,	when	it	is	expecting	a	string.

When	using	the	-run	and	-s	flags,	beware	of	calling	functions	such	as
spawn_link	and	start_link	that	link	themselves	to	the	initialization	process,
because	the	process	is	there	to	initialize	the	system	and	not	act	as	a	parent.
Although	the	process	currently	continues	running	after	executing	the
initialization	calls,	you	should	not	depend	on	that	behavior	because	it	is	not

documented	and	might	change	in	a	future	release.

Applications	can	use	the	init:get_arguments()	and
init:get_argument(Flag)	functions	to	retrieve	flags.	Flag	can	be	one	of	the
predefined	flags	root,	progname,	and	home,	together	with	all	other	command-line
user-defined	flags.

Plain	arguments	include	all	arguments	specified	before	emulator	flags	and
regular	flags,	after	the	-extra	flag,	and	in	between	the	--	directive	and	the	next
flag.	We	can	retrieve	plain	arguments	using	the	init:get_plain_arguments/0
call:

$	erl	one	-two	three	-pa	bin/bsc	--	four	five	-extra	6	7	eight

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

1>	init:get_plain_arguments().

["one","four","five","6","7","eight"]

2>	init:get_argument(two).

{ok,[["three"]]}

3>	init:get_argument(pa).

{ok,[["bin/bsc"]]}

4>	init:get_argument(progname).

{ok,[["erl"]]}

5>	init:get_argument(root).

{ok,[["/usr/local/lib/erlang"]]}

6>	init:get_argument(home).

{ok,[["/Users/francescoc"]]}

Heart
It	is	customary	to	run	your	embedded	Erlang	systems	as	daemon	jobs,
automatically	starting	them	when	the	computer	they	are	supposed	to	run	on	is
booted.	This	means	if	there	is	a	power	outage	or	any	other	failure,	or	a
maintenance	procedure	is	performed	that	requires	a	reboot,	your	system	will	start
automatically.	But	what	happens	if	only	the	Erlang	node	itself	crashes	or	stops
responding?	It	could	be	an	unexpected	memory	spike,	a	top-level	supervisor
terminating,	a	dodgy	NIF	causing	a	segmentation	fault	in	the	virtual	machine,	or
even	a	rare	bug	in	the	virtual	machine	that	causes	the	system	to	hang.	This	is
why	you	need	to	enable	heart.	Heart	can	be	seen	as	the	supervisor	of	the	node
itself.

Heart	is	an	external	program	that	monitors	the	virtual	machine,	receiving	regular
heartbeats	sent	by	an	Erlang	process	through	a	port.	If	the	external	program	fails
to	receive	a	heartbeat	within	a	predefined	interval,	it	attempts	to	terminate	the

virtual	machine	and	invokes	a	user-defined	command	to	restart	the	runtime
system.

Let’s	write	a	very	simple	script,	bsc_heart,	that	simply	calls	the	bin/start
command.	We	could	just	set	start	as	the	heart	command,	but	real-world
scenarios	tend	to	be	too	complex	for	a	blind	restart	and	so	a	restart	script	is
typically	used.	We	could,	after	failed	restart	attempts,	come	to	the	conclusion
that	this	is	a	cyclic	restart	from	which	we	cannot	recover,	and	opt	to	cease
attempting	to	restart	the	node.	Or,	after	a	certain	number	of	restart	attempts,
allowed	only	at	variable	(but	increasing)	time	intervals,	we	could	reboot	the
operating	system.	Or	we	could	trigger	other	autodiagnostic	scripts	that	would	run
sanity	tests	on	the	surrounding	environment.	The	options	are	many,	typically
depending	on	your	deployment	environment	and	monitoring/alerting	facilities,
so	restart	scripts	can	be	as	simple	or	as	complex	as	you	want	them	to	be.	Let’s
use	the	following	bsc_heart	script,	which	we	place	in	the	bin	directory	of	our
target	installation:

#!/bin/sh

#Basic	Heart	Script	for	the	Base	Station	Controller

ROOTDIR=/Users/francescoc/ernie

$ROOTDIR/bin/start

We	then	set	the	HEART_COMMAND	environment	variable	to	call	this	script,	edit	the
start_erl	script	to	include	-heart,	and	then	start	the	base	station	controller.	We
then	kill	it	in	a	variety	of	different	ways.	Despite	killing	the	system,	every	time
we	connect	to	the	I/O	pipes,	it’s	up	and	running:

$	$	cp	bsc_heart	ernie/bin/.

$	export	HEART_COMMAND=/Users/francescoc/ernie/bin/bsc_heart

$	vim	bin/start_erl

$	diff	erts-7.2/bin/start_erl.src	bin/start_erl

47c47

<	exec	$BINDIR/erlexec	...	-config	$RELDIR/$VSN/sys	${1+"$@"}

>	exec	$BINDIR/erlexec	...	-config	$RELDIR/$VSN/sys	${1+"$@"}	-heart

$	bin/start

$	bin/to_erl	/tmp/

Attaching	to	/tmp/erlang.pipe.5	(^D	to	exit)

1>	halt().

heart:	Sat	Aug	23	12:49:47	2014:	Erlang	has	closed.

[End]

$	bin/to_erl	/tmp/

Attaching	to	/tmp/erlang.pipe.5	(^D	to	exit)

1>

BREAK:	(a)bort	(c)ontinue	(p)roc	info	(i)nfo	(l)oaded

							(v)ersion	(k)ill	(D)b-tables	(d)istribution

a

[End]

$	bin/to_erl	/tmp/

Attaching	to	/tmp/erlang.pipe.5	(^D	to	exit)

1>

We	see	that	using	halt()	or	Ctrl-c	a	kills	the	node,	because	every	time	we
connect,	the	command	prompt	is	1	again.	The	heart	system	immediately	restarts
the	process.

The	following	OS	environment	variables,	all	optional,	can	be	set	either	in	the
start	scripts,	when	booting	your	system	using	the	-env	flag,	or	wherever	else	you
might	choose	to	configure	such	variables:

HEART_COMMAND

The	name	of	the	script	triggered	when	the	timeout	occurs.	If	this	variable	is
not	set,	a	timeout	will	trigger	a	warning	indicating	the	system	would	have
been	rebooted,	and	the	system	will	not	be	restarted.

HEART_BEAT_TIMEOUT

The	number	of	seconds	heart	waits	for	a	heartbeat	before	terminating	the
virtual	machine	and	invoking	the	heart	command.	In	Erlang	17	or	newer,	it
can	be	a	value	greater	than	10	and	less	than	or	equal	to	65,535.	Omitting
this	setting	defaults	the	timeout	to	60	seconds.

ERL_CRASH_DUMP_SECONDS

How	long	the	virtual	machine	is	allowed	to	spend	writing	the	crash	dump
file	before	being	killed	and	restarted.	Because	crash	dump	files	can	be
substantial,	the	virtual	machine	can	take	its	time	writing	them	to	disk.	The
default	setting	when	using	heart	and	not	setting	this	variable	is	0,	meaning
that	no	crash	dump	file	is	written;	the	virtual	machine	is	immediately	killed
and	the	heart	command	is	immediately	invoked.	Setting	the	value	to	-1	(or
any	other	negative	number)	allows	the	virtual	machine	to	complete	writing
the	crash	dump	file	no	matter	how	long	it	takes.	Any	other	positive	integer
denotes	the	number	of	seconds	allowed	to	the	virtual	machine	to	write	the
crash	dump	file	before	it	terminates	and	is	restarted.

In	our	example,	we	decided	to	set	the	environment	variables	in	the	Unix	shell,
but	we	could	just	as	easily	have	edited	the	start_erl	file	or	passed	them	as	flags

to	erl	using	the	-env	variable	value	argument:

erl	-heart	-env	HEART_BEAT_TIMEOUT	10	-env	HEART_COMMAND	boot_bsc

WARNING
Race	conditions	between	heart,	heartbeats,	and	restarts	can	occur.	If	you	do	not	anticipate	and
check	for	these	race	conditions,	they	will	leave	you	scratching	your	head	when	you	are	trying
to	figure	out	what	went	wrong.	There	have	been	cases	where	an	Erlang	virtual	machine	was
chugging	away	under	extreme	heavy	load,	but	the	heartbeat	never	reached	heart	because	of
underlying	OS	issues,	perhaps	as	a	result	of	I/O	starvation	together	with	a	low
HEART_BEAT_TIMEOUT	value.	The	lack	of	heartbeat	caused	heart	to	terminate	the	Erlang	VM
and	restart	it.	No	crash	dump	was	generated	because	heart,	at	least	on	Unix-like	systems,
terminates	its	target	with	extreme	prejudice	via	SIGKILL,	which	the	target	cannot	catch.	Killing
the	Erlang	VM	(and	possibly	rebooting	the	OS	itself)	might	have	been	the	solution	to	the
problem,	but	it	was	not	of	any	help	to	the	poor	developers	who	were	looking	for	an	Erlang-
related	VM	crash,	trying	to	figure	out	why	there	was	no	crash	dump	file.

Heart	works	on	most	operating	systems.	Discussing	how	it	executes	on
Windows	and	other	non-Unix-based	OSs	is	beyond	the	scope	of	this	book,	as	is
exploring	the	ability	to	connect	and	configure	it	to	work	with	the	Solaris
hardware	watchdog	timer.	For	more	information,	read	the	manual	page	for	heart
that	comes	with	the	standard	Erlang	distribution.

HOW	DOES	YAWS	USE	HEART?

As	an	example	of	heart	usage,	let’s	consider	the	Yaws	web	server,	originally	developed	by	Claes
“Klacke”	Wikström	and	available	from	both	the	Yaws	website	and	GitHub.	Yaws	includes	the	ability
to	use	heart	in	an	interesting	way:	to	get	around	heart’s	stubborn	habit	of	endlessly	attempting	to
restart	its	target,	the	Yaws	restart	script	keeps	track	of	how	many	times	it	has	been	restarted	within	a
specified	time	period,	much	like	supervisor	child	restart	counts	in	OTP.	To	accomplish	this,	Yaws	sets
HEART_COMMAND	as	shown	here:

HEART_COMMAND="$ENV_PGM	\

				HEART=true	\

				YAWS_HEART_RESTARTS=$restarts	\

				YAWS_HEART_START=$starttime	\

				$program"

As	you	can	see,	the	Yaws	HEART_COMMAND	value	includes	the	setting	of	several	other	variables	that	its
restart	shell	script	examines	when	it	executes	due	to	a	heart	restart:

HEART	environment	variable

http://yaws.hyber.org
https://github.com/klacke/yaws

Set	to	true	so	that	Yaws	knows	heart	is	controlling	it

YAWS_HEART_RESTARTS	environment	variable
Tracks	how	many	times	Yaws	has	been	restarted

YAWS_HEART_START	environment	variable
Tracks	the	start	time	based	on	the	Unix	epoch	(the	number	of	seconds	since	January	1,	1970)

$restarts	and	$starttime	shell	variables
Help	Yaws	calculate	new	settings	for	HEART_COMMAND	based	on	the	values	of
YAWS_HEART_RESTARTS	and	YAWS_HEART_START	set	for	the	previous	restart

When	you	run	Yaws,	you	specify	via	command-line	arguments	the	maximum	number	of	restarts
allowed	in	a	given	period.	If	the	Yaws	shell	script	detects	through	these	environment	variables	that	it
has	restarted	too	many	times	in	the	specified	period,	it	emits	an	error	message	and	refuses	to	restart.
For	more	details,	see	the	source	code	for	the	Yaws	start	script.

The	Erlang	loader
You	might	sometimes	run	a	release	on	embedded	devices	with	little	or	no	disk
space	and	want	to	change	the	method	the	runtime	system	uses	to	load	modules.
Instead	of	reading	them	from	a	file,	you	might	want	to	load	them	from	a
database	or	from	another	node	across	the	network.	The	-loader	argument
specifies	how	the	erl_prim_loader	fetches	the	modules.	The	default	loader,
efile,	retrieves	the	modules	from	the	local	filesystem.	If	you	want	to	use	the
boot	server	on	another	machine,	you	must	specify	the	inet	loader.	When	using
inet,	you	must	include	the	name	of	the	remote	node	where	the	boot	server	is
running	through	the	-id	name	argument,	where	name	comes	from	the	-name	or	-
sname	flags	issued	when	starting	the	remote	node.	You	must	also	include	the	IP
address	of	that	machine	using	the	-hosts	address	flag,	where	address	is	a
string	IP	address,	such	as	one	consisting	of	four	integers	separated	by	periods.
An	example	is	-id	foo	-hosts	"127.0.0.1",	which	specifies	that	the	boot
server	is	running	in	the	foo	Erlang	virtual	machine	on	the	local	host.

To	see	loading	in	action,	we	first	generate	a	basestation.boot	file	using	the	local
option	to	systools:make_script/2.	The	local	option	is	critical,	as	it	ensures
that	our	local	copies	of	the	bsc	beam	files	can	be	found	without	us	having	to
install	them	into	the	lib	directory	of	the	official	release.	It	basically	adds	the	local
path	to	the	bsc	application	into	the	boot	server’s	load	path	so	that	generating	the
basestation.boot	file	succeeds:

http://bit.ly/yaws-start

$	erl	-pa	bsc/ebin

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

1>	systools:make_script("basestation",	[local]).

ok

Next,	we	start	the	boot	server:

$	erl	-name	foo@127.0.0.1	-setcookie	cookie

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

(foo@127.0.0.1)1>	erl_boot_server:start([{127,0,0,1}]).

{ok,<0.42.0>}

With	the	boot	server	started	and	ready	to	serve	requests,	we	can	start	our	bar
node:

$	erl	-name	bar@127.0.0.1	-id	foo	-hosts	127.0.0.1	\

					-loader	inet	-setcookie	cookie	\

					-init_debug	-emu_args	-boot	basestation

Executing:	/usr/local/lib/erlang/erts-7.2/bin/beam.smp

				/usr/local/lib/erlang/erts-7.2/bin/beam.smp	--

				-root		/usr/local/lib/erlang	-progname	erl	--

				-home	/Users/francescoc	--

				-name	bar@127.0.0.1	-id	foo	-hosts	127.0.0.1

				-loader	inet	-setcookie	cookie

				-init_debug	-boot	basestation

{progress,preloaded}

{progress,kernel_load_completed}

{progress,modules_loaded}

{start,heart}

{start,error_logger}

{start,application_controller}

{progress,init_kernel_started}

...<snip>....

=PROGRESS	REPORT====	26-Dec-2015::12:59:05	===

										supervisor:	{local,bsc}

													started:	[{pid,<0.50.0>},

																							{id,simple_phone_sup},

																							{mfargs,{simple_phone_sup,start_link,[]}},

																							{restart_type,permanent},

																							{shutdown,2000},

																							{child_type,worker}]

{apply,{c,erlangrc,[]}}

=PROGRESS	REPORT====	26-Dec-2015::12:59:05	===

									application:	bsc

										started_at:	'bar@127.0.0.1'

{progress,started}

Eshell	V7.2		(abort	with	^G)

(bar@127.0.0.1)1>	application:which_applications().

[{bsc,"Base	Station	Controller","1.0"},

	{sasl,"SASL		CXC	138	11","2.6.1"},

	{stdlib,"ERTS		CXC	138	10","2.7"},

	{kernel,"ERTS		CXC	138	10","4.1.1"}]

As	the	output	shows,	our	node	was	able	to	boot	by	loading	from	the	remote	boot
server.	Although	our	example	uses	the	local	host	(127.0.0.1),	thus	making	one
wonder	whether	loading	is	occurring	over	the	network	or	from	the	local
filesystem,	you	can	try	this	on	your	own	network	on	two	different	hosts	and	see
for	yourself	that	the	necessary	files	are	loaded	from	the	remote	boot	server.

The	init	Module
The	init	module	is	preloaded	in	the	Erlang	runtime	system.	It	manages
arguments	and	the	startup	and	shutdown	procedures	of	your	release.	At	startup,	it
executes	all	the	commands	in	the	boot	file.	Of	interest	to	us	is	the	ability	the
module	gives	us	to	restart	the	system,	cleanly	shut	down	all	applications,	and
stop	the	node,	as	well	as	the	ability	to	reboot	the	virtual	machine.	Here	is	a	list	of
common	uses	for	the	module:

init:restart/0

Restarts	the	system	in	the	Erlang	node	without	restarting	the	emulator.
Applications	are	taken	down	smoothly,	modules	are	unloaded,	and	ports	are
closed,	after	which	the	boot	file	is	executed	again,	using	the	same	boot
arguments	originally	provided.	You	can	use	the	-shutdown_time	flag	to
limit	the	amount	of	time	spent	taking	down	the	applications.

init:reboot/0

Like	restart,	except	that	the	emulator	is	also	shut	down	and	restarted.
Heart,	if	used,	will	attempt	to	restart	the	system,	causing	a	potential	race
condition	that	will	resolve	itself	when	it	kills	the	emulator	and	restarts	it.
Timeout	values	set	with	the	-shutdown_time	flag	will	be	followed.

init:stop/0

Takes	the	system	down	smoothly	and	stops	the	emulator.	If	running,	heart
is	also	stopped	before	any	attempts	to	restart	the	node	are	made.	This	is	the
correct	way	to	stop	running	nodes,	because	it	allows	the	applications	to
terminate	and	clean	up	after	themselves	and	properly	shut	down.	Calling
init:stop(Status)	has	the	same	effect	as	calling	halt(Status).	Timeout
values	set	with	the	-shutdown_time	flag	will	be	followed.

init:get_status()

Determines	whether	the	system	is	being	started,	is	stopped,	or	is	currently
running.	It	returns	a	tuple	of	the	format	{InternalStatus,
ProvidedStatus},	where	InternalStatus	is	one	of	starting,	started,	or
stopping.	When	starting	the	system,	ProvidedStatus	indicates	what	part
of	the	boot	script	init	is	currently	running.	It	gets	Info	status	from	the	last
{progress,	Info}	term	interpreted	by	the	boot.

We	have	already	covered	other	useful	functions	in	the	init	module,	including
get_arguments/0,	get_argument/1,	and	get_plain_arguments/0,	in
“Arguments	and	Flags”.

Rebar3
Many	of	the	manual	tasks	we	have	gone	through	in	this	chapter	are	automated	by
various	tools.	Automation	is	required	to	generate	templates,	build	the	release,
and	generate	the	target	structure.	Because	there	have	been	no	standards	or
comprehensive	ways	of	shipping	releases	developed	to	date	—	just	preferred	or
recommended	approaches	—	tools	that	are	now	shipped	with	Erlang/OTP	are
complemented	by	tools	developed	by	the	community,	and	sometimes	they
overlap	in	functionality.	In	the	remainder	of	this	chapter,	we	cover	rebar3,	a
general	build	tool	that	also	manages	releases	and	dependencies.

The	rebar3	tool	is	the	second	generation	of	rebar,	one	of	the	most	widely	used
Erlang	build	tools	and	one	that	originated	in	the	Erlang	community.	Rebar3	is	a
comprehensive	tool	that	addresses	a	number	of	project	management	needs,
including	dependency	management,	compilation,	and	release	generation.	You
can	also	enhance	or	extend	its	functionality	via	plug-ins.

To	obtain	rebar3,	you	can	either	download	a	prebuilt	version	from	its	website:

$	curl	-LO	https://s3.amazonaws.com/rebar3/rebar3

or	clone	the	rebar3	Git	repository	and	build	it	from	source:

$	git	clone	https://github.com/erlang/rebar3.git

$	cd	rebar3

$./bootstrap

===>	Updating	package	registry...

...<snip>...

===>	Compiling	rebar

===>	Building	escript...

Some	Erlang	projects	that	have	been	around	for	a	few	years	still	include	their
own	first-generation	rebar	executables	in	their	source	repositories.	This	was
originally	done	to	make	it	easier	for	users	to	build	projects	without	forcing	them
to	first	build	rebar,	but	given	how	widespread	rebar	became,	following	that
outdated	tradition	and	including	your	own	copy	of	rebar3	in	your	project	is	not
necessary.	A	user	need	only	place	a	copy	of	rebar3	somewhere	in	the	shell	path,
such	as	/usr/local/bin,	and	use	it	from	there.

Running	rebar3	with	no	arguments	provides	information	about	how	to	use	it.

Here	is	part	of	its	output:

$	rebar3

Rebar3	is	a	tool	for	working	with	Erlang	projects.

Usage:	rebar	[-h]	[-v]	[<task>]

		-h,	--help					Print	this	help.

		-v,	--version		Show	version	information.

		<task>									Task	to	run.

Several	tasks	are	available:

...<snip>...

Run	'rebar3	help	<TASK>'	for	details.

Elided	from	this	output	is	the	list	of	tasks	that	rebar3	supports.	That	list	is	too
long	to	show	here	in	its	entirety,	but	in	general,	rebar3	tasks	fall	into	the
following	categories:

Build	commands
Support	compilation	of	Erlang	and	non-Erlang	sources	and	cleaning	of
build	artifacts

Project	creation	commands
Generate	skeleton	projects	based	on	templates

Dependency	management	commands
Support	the	retrieval,	building,	updating,	cleaning,	and	removal	of	project
dependencies

Release	generation	commands
Support	the	creation	of	releases	and	upgrades

Test	commands
Support	running	unit	tests,	common_test	suites,	and	property-based	tests

Rebar3	also	provides	other	miscellaneous	commands	that	support	project
activities	such	as	documentation,	generating	escript	archives,	and	starting	an
Erlang	shell	with	all	project	files	and	dependencies	on	the	load	path.

Generating	a	Rebar3	Release	Project
You	can	use	rebar3	together	with	an	appropriate	project	template	to	generate	a
project	skeleton	for	a	system	like	our	base	station	controller	example.	Although
our	example	uses	only	a	single	user-defined	application,	bsc,	we	use	an	approach
that	can	accommodate	multiple	apps,	since	that	is	typical	of	most	projects.

First,	let’s	create	a	new	directory,	ernie2,	and	within	it	use	rebar3	to	generate	a
new	bsc	release	project:

$	mkdir	ernie2

$	cd	ernie2

$	rebar3	new	release	bsc	desc="Base	Station	Controller"

===>	Writing	bsc/apps/bsc/src/bsc_app.erl

===>	Writing	bsc/apps/bsc/src/bsc_sup.erl

===>	Writing	bsc/apps/bsc/src/bsc.app.src

===>	Writing	bsc/rebar.config

===>	Writing	bsc/config/sys.config

===>	Writing	bsc/config/vm.args

===>	Writing	bsc/.gitignore

===>	Writing	bsc/LICENSE

===>	Writing	bsc/README.md

As	the	output	shows,	rebar3	generates	a	number	of	directories	and	files	for	our
release,	including	skeleton	source	files	under	the	apps/bsc/src	directory,	a
sys.config	file	under	the	config	directory,	and	a	rebar.config	file.	The	latter
provides	directives	that	supply	rebar3	with	project-specific	details	such	as
compiler	flags,	release	information,	and	dependencies.	Here’s	the	basic
rebar.config	that	rebar3	generated	for	our	bsc	release	project:

$	cd	bsc

$	cat	rebar.config

{erl_opts,	[debug_info]}.

{deps,	[]}.

{relx,	[{release,	{'bsc',	"0.1.0"},

									['bsc',

										sasl]},

								{sys_config,	"./config/sys.config"},

								{vm_args,	"./config/vm.args"},

								{dev_mode,	true},

								{include_erts,	false},

								{extended_start_script,	true}]

}.

{profiles,	[{prod,	[{relx,	[{dev_mode,	false},

																												{include_erts,	true}]}]

												}]

}.

This	particular	rebar.config	file	contains	four	tuples,	each	described	in	the
following	list.	You	can	modify	any	of	these	settings	or	add	others	as	required	for
your	project:

The	erl_opts	tuple	provides	compiler	options	for	the	erlc	compiler.

The	deps	tuple	declares	dependencies	for	the	project.	Fortunately,	bsc
depends	on	nothing	outside	of	standard	Erlang/OTP.

The	relx	tuple	provides	settings	for	release	generation.	Rebar3	uses	the
relx	tool	to	generate	releases.	Because	our	goal	in	this	section	is	to	use
rebar3	to	generate	a	bsc	release,	we	investigate	these	settings	in	detail	later.

The	profiles	tuple	provides	a	way	of	having	different	settings	for	different
development	tasks	or	roles.	The	prod	profile	generated	here	is,	as	its	name
implies,	intended	to	provide	settings	for	generating	a	production	release.

Among	the	generated	source	file	skeletons,	take	special	note	of	the	application
resource	file	skeleton,	apps/bsc/src/bsc.app.src.	Rebar3	generates	this	file	rather
than	creating	an	actual	application	resource	file	because	later,	as	part	of	its
compilation	process,	it	takes	the	bsc.app.src	skeleton,	automatically	fills	in	its
modules	definition	with	the	names	of	all	the	application	source	modules,	and
generates	the	bsc.app	application	resource	file	from	that.	We	can	see	this	by
compiling	our	newly	generated	files,	after	first	changing	the	"0.1.0"	version
numbers	rebar3	generated	in	the	bsc.app.src	file	and	rebar.config	to	the	correct
"1.0"	bsc	version	(any	text-filtering	tool	can	be	used	for	this	purpose;	we’ve
entered	a	Perl	one-liner	here):

$	perl	-i	-pe	's/0\.1\.0/1.0/'	./apps/bsc/src/bsc.app.src	./rebar.config

$	rebar3	compile

===>	Verifying	dependencies...

===>	Compiling	bsc

and	then	looking	at	the	_build/default/lib/bsc/ebin/bsc.app	file	generated	by	the
compilation	process:

$	cat	_build/default/lib/bsc/ebin/bsc.app

{application,bsc,

													[{description,"Base	Station	Controller"},

														{vsn,"1.0"},

														{registered,[]},

														{mod,{bsc_app,[]}},

														{applications,[kernel,stdlib]},

														{env,[]},

														{modules,[bsc_app,bsc_sup]},

														{contributors,[]},

														{licenses,[]},

														{links,[]}]}.

As	the	file	contents	show,	rebar3	created	the	modules	definition	for	us	based	on
the	Erlang	modules	present	in	the	src	directory.	When	we	add	more	modules,
rebar3	automatically	adds	them	to	the	application	resource	file	for	us	during	its
compilation	phase,	which	is	much	easier	than	manually	editing	the	resource	file
ourselves.	The	only	tricky	part	is	that	if	you	want	to	modify	other	fields	of	the
application	resource	file,	you	have	to	remember	to	edit	the	bsc.app.src	file	rather
than	the	generated	bsc.app	file.

To	run	the	skeleton	application,	we	can	just	start	a	rebar3	shell,	which	ensures
that	all	the	appropriate	project	paths	are	on	the	Erlang	load	path.	When	the	shell
starts,	it	also	starts	our	application:

$	rebar3	shell

===>	Verifying	dependencies...

===>	Compiling	bsc

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:0]	[kernel-poll:false]

===>	Booted	bsc

===>	Booted	sasl

...<snip>...

=PROGRESS	REPORT====	26-Dec-2015::21:58:36	===

									application:	sasl

										started_at:	nonode@nohost

Eshell	V7.2		(abort	with	^G)

1>	application:which_applications().

[{sasl,"SASL		CXC	138	11","2.6.1"},

	{bsc,"Base	Station	Controller","1.0"},

	{inets,"INETS		CXC	138	49","6.1"},

	{ssl,"Erlang/OTP	SSL	application","7.2"},

	{public_key,"Public	key	infrastructure","1.1"},

	{asn1,"The	Erlang	ASN1	compiler	version	4.0.1","4.0.1"},

	{crypto,"CRYPTO","3.6.2"},

	{stdlib,"ERTS		CXC	138	10","2.7"},

	{kernel,"ERTS		CXC	138	10","4.1.1"}]

Our	generated	skeleton	application	contains	no	actual	code,	but	still,	it	starts	and
runs	correctly.	Note	that	a	rebar3	shell	starts	some	other	applications	bsc	doesn’t
need,	such	as	inets	and	ssl;	if	we	were	to	start	our	application	manually,	these

would	not	be	present.

To	fill	out	our	project	we	can	retrieve	our	original	sources	by	copying	our	bsc
example	code,	which	is	available	in	this	chapter’s	directory	of	the	book’s	GitHub
repository:

$	cp	-v	<path-to-bsc-example-dir>/src/*.erl	apps/bsc/src

<path-to-bsc-example-dir>/src/bsc.erl	->	apps/bsc/src/bsc.erl

...

When	that’s	complete,	we	can	again	use	rebar3	to	clean	and	compile	the	project:

$	rebar3	do	clean,	compile

===>	Cleaning	out	bsc...

===>	Verifying	dependencies...

===>	Compiling	bsc

If	we	again	start	a	rebar3	shell,	we	can	see	that	our	application	runs	as	expected:

$	rebar3	shell

...<snip>...

1>	application:which_applications().

[{sasl,"SASL		CXC	138	11","2.6.1"},

	{bsc,"Base	Station	Controller","1.0"},

	{inets,"INETS		CXC	138	49","6.1"},

	{ssl,"Erlang/OTP	SSL	application","7.2"},

	{public_key,"Public	key	infrastructure","1.1"},

	{asn1,"The	Erlang	ASN1	compiler	version	4.0.1","4.0.1"},

	{crypto,"CRYPTO","3.6.2"},

	{stdlib,"ERTS		CXC	138	10","2.7"},

	{kernel,"ERTS		CXC	138	10","4.1.1"}]

Creating	a	Release	with	Rebar3
The	rebar3	tool	uses	relx,	rather	than	the	standard	Erlang/OTP	reltool	facility,	in
an	effort	to	make	it	easier	for	developers	to	create	releases,	due	to	reltool	being
widely	viewed	as	being	difficult	to	configure	and	use	correctly.

Creating	a	release	with	rebar3	is	straightforward:

$	rebar3	release

===>	Verifying	dependencies...

===>	Compiling	bsc

===>	Starting	relx	build	process	...

===>	Resolving	OTP	Applications	from	directories:

										/Users/francescoc/ernie2/bsc/_build/default/lib

										/Users/francescoc/ernie2/bsc/apps

										/usr/local/lib/erlang/lib

===>	Resolved	bsc-1.0

===>	Dev	mode	enabled,	release	will	be	symlinked

===>	release	successfully	created!

Once	we’ve	generated	the	release,	we	can	verify	that	it	works	as	expected:

$	_build/default/rel/bsc/bin/bsc	console

Exec:	/usr/local/lib/erlang/erts-7.2/bin/erlexec	-boot	...

Root:	/Users/francescoc/ernie2/bsc/_build/default/rel/bsc

/Users/francescoc/ernie2/bsc/_build/default/rel/bsc

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:30]	[kernel-poll:true]

=PROGRESS	REPORT====	27-Dec-2015::11:37:56	===

										supervisor:	{local,sasl_safe_sup}

													started:	[{pid,<0.49.0>},

																							{id,alarm_handler},

																							{mfargs,{alarm_handler,start_link,[]}},

																							{restart_type,permanent},

																							{shutdown,2000},

																							{child_type,worker}]

...<snip>...

=PROGRESS	REPORT====	27-Dec-2015::11:37:56	===

									application:	sasl

										started_at:	bsc@francescoc

Eshell	V7.2		(abort	with	^G)

(bsc@francescoc)1>	application:which_applications().

[{sasl,"SASL		CXC	138	11","2.6.1"},

	{bsc,"Base	Station	Controller","1.0"},

	{stdlib,"ERTS		CXC	138	10","2.7"},

	{kernel,"ERTS		CXC	138	10","4.1.1"}]

Instead	of	the	console	argument	to	_build/default/rel/bsc/bin/bsc	shown
in	this	example,	which	starts	the	application	and	gives	us	an	Erlang	shell,	you

can	instead	specify	start	to	start	the	release	in	the	background,	attach	to	get	a
shell	attached	to	an	already-started	release,	or	stop	to	stop	an	already-started
release.	Run	the	command	_build/default/rel/bsc/bin/bsc	with	no
arguments	to	see	a	list	of	all	its	arguments	and	options.

Because	of	the	default	release	settings	in	the	relx	tuple	in	rebar.config,	this
generated	release	is	intended	for	development,	not	production.	The	default
configuration	sets	dev_mode	to	true,	which	means	application	source	files	used
to	create	the	release	are	links	to	sources	under	the	apps/bsc/src	directory.	The
dev_mode	setting	also	sets	include_erts	to	false,	which	keeps	the	Erlang
runtime	from	being	included	in	the	release.	These	settings	are	handy	for
development	because	they	allow	developers	to	edit	their	files	under	the	apps	area
and	have	those	changes	instantly	available	for	either	building	into	a	release	or
recompiling	and	reloading	into	an	already-running	release.	The	settings	also
allow	developers	to	use	the	Erlang	installation	on	the	system	rather	than	having
to	build	one	into	each	release,	which	enables	quick	testing	of	the	release	against
multiple	runtime	versions.

Fortunately,	though,	building	a	production	release	is	easy,	even	with	these
default	settings	in	place,	thanks	to	rebar3	profiles.	The	profiles	tuple	in
rebar.config	includes	a	profile	named	prod	that	sets	dev_mode	to	false	and
include_erts	to	true.	To	use	the	prod	profile,	we	just	specify	it	using	the
rebar3	as	directive	on	the	command	line:

$	rebar3	as	prod	release

===>	Verifying	dependencies...

===>	Compiling	bsc

===>	Starting	relx	build	process	...

===>	Resolving	OTP	Applications	from	directories:

										/Users/francescoc/ernie2/bsc/_build/default/lib

										/Users/francescoc/ernie2/bsc/apps

										/usr/local/lib/erlang/lib

===>	Resolved	bsc-1.0

===>	Including	Erts	from	/usr/local/lib/erlang

===>	release	successfully	created!

The	as	directive	instructs	rebar3	to	run	the	specified	commands	using	the	given
profile.	Pay	particular	attention	to	the	text	in	bold	near	the	bottom	of	this
example;	it	shows	that	relx	includes	the	Erlang	runtime	system	this	time,	as
directed	by	the	prod	profile.	And	because	the	prod	profile	sets	dev_mode	to

false,	if	you	look	under	_build/prod/rel/bsc/lib/bsc-1.0/src	you’ll	see	that	the
source	files	have	been	copied	into	the	release,	rather	than	linked	back	to	the	apps
source	area	as	with	the	default	release.

The	rebar3	tar	directive	makes	it	trivial	to	create	a	tar	file	containing	a	release:

$	rebar3	as	prod	tar

===>	Verifying	dependencies...

===>	Compiling	bsc

===>	Starting	relx	build	process	...

===>	Resolving	OTP	Applications	from	directories:

										/Users/francescoc/ernie2/bsc/_build/prod/lib

										/Users/francescoc/ernie2/bsc/apps

										/usr/local/lib/erlang/lib

										/Users/francescoc/ernie2/bsc/_build/prod/rel

===>	Resolved	bsc-1.0

===>	Including	Erts	from	/usr/local/lib/erlang

===>	release	successfully	created!

===>	Starting	relx	build	process	...

===>	Resolving	OTP	Applications	from	directories:

										/Users/francescoc/ernie2/bsc/_build/prod/lib

										/Users/francescoc/ernie2/bsc/apps

										/usr/local/lib/erlang/lib

										/Users/francescoc/ernie2/bsc/_build/prod/rel

===>	Resolved	bsc-1.0

===>	tarball	/Users/francescoc/ernie2/bsc/_build/prod/rel/bsc/bsc-1.0.tar.gz

									successfully	created!

Rebar3	Releases	with	Project	Dependencies
So	far	our	rebar3	example	has	been	limited	to	including	only	a	single
application,	bsc,	which	has	no	dependencies,	but	in	practice	Erlang	applications
often	depend	on	other	applications.	Fortunately,	rebar3	is	able	to	fetch	such
dependencies	and	compile	them	together	with	the	application	that	depends	on
them.

Let’s	assume	we	decide	to	change	bsc	logging	using	the	popular	open	source
lager	framework	so	that	our	logfiles	can	work	with	existing	log	rotation	tools,
and	so	that	we	can	count	on	lager	to	protect	our	application	from	running	out	of
memory	should	it	attempt	to	emit	a	storm	of	log	messages	because	of	some
unexpected	persistent	error	condition.	Adding	a	dependency	on	lager	to	the	bsc
application	is	easy	—	we	just	specify	it	in	the	deps	tuple	in	the	rebar.config	file:

{deps,	[{lager,	{git,	"git://github.com/basho/lager.git",

																						{tag,	"3.0.2"}}}]}.

This	directive	tells	rebar3	that	lager	is	a	source	dependency,	with	the	git	tuple
telling	rebar3	the	location	from	which	it	can	fetch	the	lager	source	code	and	the
tag	tuple	indicating	the	version	of	lager	on	which	the	bsc	application	depends.

With	this	directive	in	place,	we	can	ask	rebar3	what	our	dependencies	are:

$	rebar3	deps

lager*	(git	source)

Asking	rebar3	to	compile	causes	it	to	fetch	the	source	for	the	lager	dependency
as	well	as	the	sources	for	any	dependencies	lager	itself	has:

$	rebar3	compile

===>	Verifying	dependencies...

===>	Fetching	lager	({git,"git://github.com/basho/lager.git",

																																	{tag,"3.0.2"}})

===>	Fetching	goldrush	({git,"git://github.com/DeadZen/goldrush.git",

																																				{tag,"0.1.7"}})

===>	Compiling	goldrush

===>	Compiling	lager

===>	Compiling	bsc

This	compilation	occurs	under	the	default	profile,	so	if	we	look	under
_build/default/lib	after	it	completes,	we	see	directories	for	bsc,	for	lager,	and

also	for	goldrush,	a	dependency	of	lager:

$	ls	_build/default/lib

bsc	 	 goldrush	 lager

To	build	a	release	including	lager,	we	first	need	to	modify
apps/bsc/src/bsc.app.src	to	add	lager	into	the	applications	list,	following
kernel	and	stdlib.	With	these	changes	in	place,	we	can	build	a	release	under
the	default	profile:

$	rebar3	release

===>	Verifying	dependencies...

===>	Compiling	bsc

===>	Starting	relx	build	process	...

===>	Resolving	OTP	Applications	from	directories:

										/Users/francescoc/ernie2/bsc/_build/default/lib

										/Users/francescoc/ernie2/bsc/apps

										/usr/local/lib/erlang/lib

										/Users/francescoc/ernie2/bsc/_build/default/rel

===>	Resolved	bsc-1.0

===>	Dev	mode	enabled,	release	will	be	symlinked

===>	release	successfully	created!

If	we	look	at	the	contents	of	the	_build/default/rel/bsc/lib	directory,	we	can	see
that	rebar3	built	all	the	applications	necessary	to	include	in	the	release:

$	ls	_build/default/rel/bsc/lib

bsc-1.0		 goldrush-0.1.7	 lager-3.0.2

We	can	then	run	our	application	and	see	that	all	the	applications	we	expect	to	see
are	indeed	running:

$	_build/default/rel/bsc/bin/bsc	console

...<snip>....

(bsc@francescoc)1>	application:which_applications().

[{sasl,"SASL		CXC	138	11","2.6.1"},

	{bsc,"Base	Station	Controller","1.0"},

	{lager,"Erlang	logging	framework","3.0.2"},

	{goldrush,"Erlang	event	stream	processor","0.1.7"},

	{compiler,"ERTS		CXC	138	10","6.0.2"},

	{syntax_tools,"Syntax	tools","1.7"},

	{stdlib,"ERTS		CXC	138	10","2.7"},

	{kernel,"ERTS		CXC	138	10","4.1.1"}]

Not	only	are	bsc,	lager,	and	goldrush	running,	but	the	standard	compiler	and
syntax_tools	applications	were	started	as	well	because	goldrush	uses	them,
which	you	can	see	by	examining	the	applications	list	in	the

_build/default/lib/goldrush/src/goldrush.app.src	file.

There	is	much	more	to	rebar3	than	what	our	bsc	application	requires.	It	has	a
plug-in	system	that	makes	it	extensible	and	customizable,	ties	into	Erlang’s
common-test,	dialyzer,	and	eunit	facilities	to	support	testing	and	code	coverage
and	analysis,	and	supports	publishing	packages	into	the	Erlang/Elixir	hex
package	management	system.	And	as	we	show	next,	in	Chapter	12,	rebar3	also
supports	release	upgrades.

Wrapping	Up
You’ve	got	to	agree	that	everything	we	presented	here	is	a	mouthful,	and
probably	more	detail	than	what	you	had	originally	bargained	for	when	you
started	reading	this	chapter!	Having	said	that,	the	steps	involved	in	bundling	up
your	OTP	applications	in	a	release	and	starting	them	as	one	unit	are	not	many
and	are	relatively	straightforward.	The	reason	we’ve	gone	into	so	much	detail	is
that	we	want	to	explain	not	just	how,	but	also	why.	You	will	thank	us	when	you
need	to	integrate	Erlang/OTP	releases	in	your	build	system	or	troubleshoot	why
a	node	that	was	running	for	years	on	end	is	refusing	to	start.	You	can’t	even
begin	to	imagine	how	many	systems	we’ve	reviewed	that,	despite	being
responsible	for	tens	of	thousands	of	transactions	per	day,	hour,	or	minute	(and	in
many	cases	even	seconds!)	are	started	using	erl	-s	Module,	are	not	OTP
compliant,	do	not	have	heart	configured,	or	are	not	set	up	as	embedded	target
systems	running	as	daemons.	Start	by	creating	a	proper	OTP	release,	integrating
the	process	in	your	build	system,	and	the	rest	will	follow.

The	preferred	way	to	deploy	your	Erlang	nodes	that	must	run	for	years	on	end
and	be	available	24/7	is	as	embedded	target	systems.	You	must	be	strict	with
revision	control	and	be	aware	of	the	exact	versions	of	your	modules,
applications,	and	configuration	files.	You	will	want	to	access	the	Erlang	shell
through	I/O	streams	sent	to	a	directory	in	your	Erlang	root	directory	(not	/tmp),
allowing	you	to	run	multiple	embedded	nodes	on	that	host.

Start	your	Erlang	system	as	a	daemon	job,	ensuring	it	is	automatically	started
every	time	your	computer	or	image	is	rebooted.	Always	ensure	that	you	have	the
erl	command	at	hand	with	a	boot	file	that	starts	kernel,	stdlib,	and	sasl,	giving
you	access	to	the	SASL	logs	on	your	local	machine	when	your	nodes	have
crashed	and	are	refusing	to	start.	And	don’t	forget	to	set	your	emulator	flags,
normal	flags,	and	plain	arguments,	adapting	them	to	your	internal	operational
requirements.	Do	you	want	to	disable	the	break	handler	using	+Bc	but	still	allow
the	user	to	kill	the	shell?	What	about	printing	out	the	arguments	passed	to	the
emulator	using	-emu_args	and	printing	startup	trace	reports	using	the	-
init_debug	flag?	And	how	do	you	want	to	implement	and	configure	your	heart
script	to	handle	emulator	crashes?	The	combinations	are	many,	and	getting	the

right	configuration	in	place	that	works	for	you	and	your	organization	can	take
years	of	operational	experience	and	firefighting.	You	will	eventually	get	there,
but	hopefully,	taking	into	consideration	all	that	we	have	covered	in	this	chapter,
the	pager	calls	will	be	few	and	far	apart,	and	never	in	the	middle	of	the	night.

Having	said	that,	we	know	that	not	all	systems	are	mission	critical	and	require
this	level	of	supervision,	complexity,	and	professionalism.	Simple	target	systems
can	be	both	acceptable	and	respectable	if	they	do	their	job	and	fulfill	your
requirements.	If	running	many	nodes	on	a	single	machine	sharing	the	same
Erlang	installation	works	for	you,	there	is	no	need	to	ship	every	release	with	its
own	Erlang	virtual	machine.	You	will	not	be	able	to	individually	upgrade
applications	and	emulators,	but	then	again,	you	might	not	care!	The	type	of
release	that	works	for	you,	your	organization,	and	the	types	of	systems	you	are
deploying	is	for	you	to	judge.	It	can	be	as	simple	or	as	complicated	as	you	need
it	to	be.	What	is	important	is	that	you	understand	the	tradeoffs	involved	in	your
choices,	and	do	things	without	cutting	corners,	otherwise	you	will	end	up	paying
for	it	at	a	later	date.

The	process	we	have	covered	in	this	chapter,	automated	using	libraries	or	tools,
includes	the	following	steps:

1.	 Create	a	release	resource	file	for	your	node,	defining	what	will	be
included	in	your	release.
The	rel	file	will	contain	all	of	the	applications	and	their	respective
versions,	together	with	the	version	of	the	emulator	to	be	used	in	the
target	deployment.

2.	 Create	a	boot	file	containing	all	of	the	commands	required	to	start	your
node.

3.	 Create	the	file	structure	you	will	deploy	to	your	target	system.
It	will	contain	the	lib,	releases,	and	bin	directories	and,	if	you	plan	to
ship	it	with	its	own	emulator,	the	erts	directory.

4.	 Specific	to	your	deployment	(and	possibly	on	the	target	host),	configure
your	start	scripts.
This	will	include	your	start_erl.data	file	and	config	files	containing
deployment-specific	configurations,	as	well	as	any	target-specific
configuration	scripts.

You	can	find	an	additional	example	of	these	steps	in	“Creating	a	Release
Upgrade”,	where	we	create	a	release	of	the	coffee	FSM	example	described	in
Chapter	6,	preparing	it	for	a	software	upgrade.	But	if	you	are	too	lazy	to	do	these
chores	every	time	(we	are)	and	do	not	need	to	integrate	in	existing	build	and
release	infrastructure,	use	existing	tools	and	libraries	for	the	bulk	of	the	work
and	automate	the	rest.	Rebar3	simplifies	all	of	this	a	great	deal.

So	far	in	this	book,	you	have	come	across	many	different	file	types,	all	held
together	in	a	release.	We’ve	listed	them	in	Table	11-1,	as	there	is	no	better	time
than	now	to	review	them.

Table	11-1.	Erlang/OTP	file	types

File	type File
extension

Description

Erlang	module .erl File	containing	the	Erlang	source	code

Compiled	module .beam Compiled	Erlang	source	code	file	for	the	BEAM	emulator

Application	resource
file

.app File	containing	application	resource	and	configuration	data

Application	upgrade	file appup File	containing	application	upgrade	data

Release	file .rel File	containing	release-specific	application	and	emulator
versions

Release	upgrade	file relup File	containing	release	upgrade	information

Start	script .script Text-based	version	of	the	script	used	to	boot	the	system

Binary	start	script .boot Binary	version	of	the	script	used	to	boot	the	system

Configuration	file .config File	containing	application-specific	environment	variables

We	cover	.appup	and	relup	files	in	Chapter	12.	They	are	used	for	live	upgrades
of	the	applications	and	regular	upgrades	of	the	emulator.

If	you	haven’t	had	enough	and	want	to	read	more	about	creating	releases,	head
straight	to	the	documentation	that	ships	with	Erlang/OTP.	The	OTP	Design
Principles	User’s	Guide	will	tell	you	more	about	releases	and	release	handling,
going	as	far	as	creating	the	first	release	package	ready	for	deployment	in	your
target	environment.	The	OTP	System	Principles	User’s	Guide	has	sections	that
cover	the	starting,	restarting,	and	stopping	of	systems,	as	well	as	describing	in
more	detail	the	difference	between	the	embedded	versus	interactive	code-loading
strategies.	It	overlaps	with	the	OTP	Design	Principles	User’s	Guide,	which	also

covers	the	creation	and	configuration	of	target	systems.	In	doing	so,	the	user’s
guide	introduces	the	target_system.erl	module	shipped	in	the	sasl	application’s
examples	directory	as	well	as	in	this	chapter’s	directory	in	the	book’s	GitHub
repository.	It	is	an	example	that	automates	many	of	the	steps	we	covered
manually	when	explaining	how	to	build	a	release	and	target	system,	a	necessity
prior	to	the	existence	of	rebar	and	rebar3,	relx,	and	reltool.	Have	a	look	at	it,	as
it	has	for	many	years	been	a	good	source	of	inspiration	for	those	integrating
Erlang	into	their	existing	build	systems.

The	user’s	guides	are	complemented	by	reference	manual	pages,	of	which	the
following	are	relevant	to	what	we	have	just	covered	and	so	are	worth
mentioning:

If	you	need	more	information	on	the	rel	file,	look	up	the	rel	reference
manual	page.	Given	a	rel	file,	systools	describes	the	functions	you	need	to
create	script,	boot,	and	target	tar	files.	The	contents	of	the	binary	boot	file
and	its	script	text	counterpart	are	described	in	more	detail	in	the	script
reference	manual	page.	To	find	out	more	on	how	they	are	executed,	review
the	init	user	manual	pages.

There	might	be	times	when	you	need	to	automate	tasks	on	the	target
machine	and	integrate	the	release	process	with	other	tools	you	might	be
using	(possibly	for	non-Erlang	parts	of	your	system).	If	that	is	the	case,	read
the	release_handler	manual	page.	It	describes	functions	that	allow	you	to
unpack	and	install	the	tar	file	created	by	the	systools	calls.	However,	it
does	assume	an	installation	of	Erlang	is	already	running	on	the	target	host,
which	might	not	always	be	the	case.	We	cover	this	library	in	more	detail	in
the	next	chapter	when	looking	at	live	upgrades.

If	you	need	to	load	code	remotely	and	the	example	in	this	chapter	is	not
enough,	the	erl_boot_server,	erl_prim_loader,	and	init	user	manual
pages	will	help	you.

The	erl	and	init	manual	pages	describe	most	of	the	emulator	flags	and
command-line	flags,	some	of	which	we	have	not	covered	in	this	chapter.
For	plain	arguments,	you	will	have	to	refer	to	the	user	manual	pages	of	the
modules	and	applications	using	those	arguments.

The	heart	manual	page	is	the	place	to	look	for	more	information	on
automated	restarts,	including	configuration	details	and	required

environment	variables	when	implementing	your	script.	You	will	find	the
environment	variables	described	in	the	erl	manual	page.

If	you	are	running	on	Windows,	read	the	start_erl	manual	page.	It	is	the
equivalent	of	the	start	command	we	have	been	using	in	this	chapter,
allowing	you	to	start	your	embedded	system	in	Windows	environments.

Reltool,	which	we	did	not	cover,	has	both	a	user’s	guide	and	reference	manual
pages	you	will	have	to	study	in	detail	in	the	unlikely	event	your	system	requires
the	configuration	complexity	not	handled	by	rebar3,	which	you	can	find	at
https://www.rebar3.org,	or	relx,	which	you	can	get	either	with	rebar3	or	from
GitHub.

If	all	this	seems	intimidating,	the	best	thing	to	do	is	to	simply	use	rebar3.	It	can
build	and	create	releases	for	a	wide	variety	of	project	types,	can	be	extended	for
special	cases	through	its	plug-in	system,	and	can	download	and	help	manage
dependencies	on	other	projects,	and	it	works	with	the	hex	package	management
system	for	publishing	your	system	so	others	in	the	Erlang	community	can	use	it.
For	more	information	about	rebar3	and	hex,	see	the	rebar3	documentation.

https://www.rebar3.org
https://github.com/erlware/relx
https://www.rebar3.org/docs/hex-package-management

What’s	Next?
Erlang	has	been	called	the	language	of	the	system.	It	is	not	just	a	language
suitable	for	solving	a	particular	type	of	problem,	but	rather	a	language	and	a	set
of	tools	that	allow	you	to	develop,	deploy,	and	monitor	predictable	and
maintainable	systems.	While	in	this	chapter	we	have	covered	how	to	package
and	deploy	your	first	target	systems,	that	is	just	the	beginning	of	your	adventure.
What	we	cover	next	is	how	to	manage	bug	fixes	and	deploy	new	functionality	by
doing	live	upgrades.	We	do	so	by	introducing	the	upgrade	tools	and	functionality
that	come	as	part	of	OTP	and	its	behaviors.	You’ve	heard	about	Erlang	achieving
five-nines	availability,	software	maintenance	and	upgrades	included?	Continue
on	to	find	out	how	we	do	it.

Ernie	is	the	username	of	the	account	where	the	AXD301	ATM	switch	runs	its	Erlang	nodes	—	a	trip
down	memory	lane	for	those	who	contributed	to	Erlang	in	some	shape	or	form	in	the	early	days,
including	many	of	the	reviewers	of	this	book.

1

Chapter	12.	Release	Upgrades

After	your	system	goes	live,	it	churns	away	in	the	background	handling	requests
day	in	and	day	out.	It	self-heals	when	issues	occur	and	restarts	automatically
after	power	outages	or	system	reboots.	But	as	with	any	piece	of	software,	you
are	bound	to	continue	optimizing	it,	fixing	bugs	as	they	are	reported	and	adding
new	features.	Irrespective	of	having	thousands	of	instances	of	your	coffee
machine	running	on	dedicated	hardware	monitored	through	a	wireless	link,	or
any	other	system	whose	requirements	state	that	it	must	service	its	requests	with
100%	availability,	upgrades	included,	then	Erlang/OTP’s	software	upgrade
capabilities	are	something	to	study	carefully.	Imagine	you	not	being	able	to	have
your	morning	coffee	because	of	an	ongoing	firmware	upgrade	of	your	office
coffee	machine!

The	built-in	functionality	in	the	Erlang	VM	that	allows	dynamic	module	loading
might	work	for	simple	patches	where	the	upgrade	is	backward-compatible.	But
have	you	thought	of	the	cases	where	you’ve	changed	the	functional	API?	Or
where	a	process	running	a	call	to	completion	with	an	old	version	of	the	code
cannot	communicate	with	a	process	running	a	new	version	because	of	a	change
in	the	protocol?	How	do	you	handle	state	changes	in	your	loop	data	between
releases	or	database	schema	changes?	And	even	more	importantly,	what	if	an
upgrade	fails	and	you	need	to	downgrade?

Complex	systems	need	to	be	upgraded	in	a	coordinated	and	controlled	manner.
The	built-in	functionality	used	to	dynamically	load	new	modules,	like	everything
else,	of	Erlang	and	OTP	provides	the	foundations	used	to	build	the	tools	that
coordinate	and	control	these	upgrades,	greatly	reducing	and	even	hiding	their
complexity.	Before	introducing	the	tools	themselves,	let’s	review	the	semantics,
terminology,	and	most	commonly	used	functions	relevant	to	our	example	to
ensure	we	are	all	on	the	same	page.

Software	Upgrades
We	cover	module	upgrades	in	“Upgrading	Modules”.	If	you’ve	already	read	it,
you	might	recall	that	you	can	load	a	new	module	in	the	Erlang	runtime
environment	by	using	the	shell	command	l(Module),	calling
code:load_file(Module),	or	compiling	the	source	code	using	c(Module)	or
make:files(ModuleList,[load]).	At	any	one	time,	your	runtime	environment
can	have	two	versions	of	code	for	the	same	module	loaded.	We	refer	to	them	as
the	old	and	current	versions.	A	process	running	the	old	module	version	will
continue	doing	so	until	it	issues	a	fully	qualified	function	call;	i.e.,	a	call	of	the
format	Module:Function(...),	where	the	module	name	is	used	as	a	prefix	to	the
function.

When	a	fully	qualified	function	call	occurs,	the	runtime	checks	to	ensure	that	the
process	is	running	the	current	version	of	the	code.	If	it	is,	the	call	continues
using	the	current	code.	But	if	the	process	is	still	running	the	old	version,	the
pointer	to	the	code	is	switched	to	the	current	version	before	the	call	is	made.

Calls	to	library	modules	have	to	be	fully	qualified	because	you	are	calling
another	module,	so	such	a	call	will	automatically	use	the	current	version.
Recursive	calls	controlling	process	receive-evaluate	loops,	however,	tend	to
recurse	locally	without	a	fully	qualified	call.	We	need	to	either	change	these
local	calls	to	be	fully	qualified,	or	add	a	new	message	that	triggers	a	fully
qualified	function	call	in	the	receive-evaluate	loop.	Depending	on	the
complexity	of	the	upgrade,	this	function	could	either	call	the	loop	function	in	the
new	module	or	call	a	hook	in	the	new	module	that	handles	any	change	of	the
process	state,	including	loop	data,	ETS	tables,	and	database	schemas,	before
returning	into	the	loop.

When	not	executing	a	fully	qualified	call,	a	process	running	the	current	version
of	a	module	will	continue	running	it	even	after	a	new	version	is	loaded	in	the
system.	If	a	process	is	already	running	the	old	version	of	a	module	—	not	the
current	version	—	when	a	version	newer	than	the	current	one	is	loaded,	that
process	will	be	unconditionally	terminated.	Processes	will	also	be
unconditionally	terminated	if	they	are	running	an	old	module	version	forcefully
removed	using	the	code:purge(Module)	call.

TWO-MODULE	LIMIT

The	two-module	version	limit	is	legacy	debt	from	a	design	decision	taken	to	simplify	the	JAM	virtual
machine	(the	most-used	VM	at	the	time)	and	to	preserve	memory	in	an	architecture	where	memory
was	scarce.	Today,	the	right	design	decision	would	be	to	allow	an	unlimited	number	of	module
versions	in	the	runtime,	and	garbage	collect	them	when	they’re	no	longer	in	use.	In	the	JAM,	in	order
to	garbage	collect	code,	you	had	to	go	through	the	stack	of	each	process	and	look	at	the	return
addresses	of	each	function	call	to	work	out	which	module	version	a	process	was	using.	This	was	a
very	time-consuming	activity	the	developers	preferred	to	avoid,	so	they	simplified	it	with	the	two-
module	limitation.

With	two	versions	of	the	code	allowed	in	the	runtime	system,	we	need	a	way	to
determine	the	current	version	of	the	module.	The	-vsn(Version).	module
attribute	helps	us	achieve	exactly	that.	Version	can	be	any	Erlang	term,	but	it	is
most	commonly	a	string,	number,	or	atom.	More	often	than	not,	it	is	set	by	a
script	triggered	by	the	revision	control	system	when	committing	the	code	to	the
repository	(for	example,	if	you	use	Git	for	source	control,	you	could	set	Version
to	a	string	containing	the	output	of	git	describe	--long,	which	provides	the
most	recent	Git	tag,	the	number	of	commits	made	since	that	tag,	and	the	current
commit	hash).	Placing	the	vsn	attribute	at	the	beginning	of	the	module	with	the
other	attributes	gives	us	the	ability	to	determine	the	version	of	the	code	we	are
upgrading	from,	using	it	to	control	changes	to	the	state,	database	schemas,
protocols,	and	other	non–backward-compatible	internal	data	formats.	You	can
find	the	version	of	the	current	module	using	the	Mod:module_info/0,1	call.

The	vsn	attribute	is	not	mandatory.	If	omitted,	the	compiler	generates	it	at
compile	time	using	the	beam_lib:md5/1	call	to	generate	a	128-bit	md5	digest	of
the	module.	The	md5	digest	is	based	on	properties	of	the	module,	but	excludes
compile	date	and	other	attributes	that	are	irrelevant	to	the	code,	since	they	may
change	without	the	code	itself	changing.	This	guarantees	that	a	version	will	be
tagged	with	the	same	128-bit	key	regardless	of	compilation	time,	spaces,
carriage	returns,	or	comments	in	the	code.

Remember	the	example	FSM	we	looked	at	in	“Coffee	FSM”?	Let’s	dust	off	the
Erlang	version	and	compile	it	to	better	understand	how	the	vsn	module	attribute
works.	If	you	are	using	modules	from	the	book’s	GitHub	repository,	the	module
we	are	using	is	under	ch12/erlang/coffee.erl.original.	Don’t	forget	to	change	its
filename	to	coffee.erl.	You	can	then	compile	it	as	follows:

1>	c(coffee).

{ok,coffee}

2>	coffee:module_info(attributes).

[{vsn,[293551046745957884913825426256179654413]}]

3>	{ok,	{coffee,	MD5Digest}}	=	beam_lib:md5(coffee).

{ok,{coffee,<<220,215,224,7,110,247,231,148,86,224,44,

														74,197,2,111,13>>}}

4>	<<Int:128/integer>>	=	MD5Digest,	Int.

293551046745957884913825426256179654413

In	shell	command	2,	a	call	to	coffee:module_info/1	returns	the	md5	digest	in
the	vsn	module	attributes,	something	we	confirm	in	shell	commands	3	and	4	by
getting	the	digest	from	the	module	and	reversing	the	digest	process.	Let’s	now
add	the	-vsn	directive	manually	in	our	module	and	recompile:

-module(coffee).

-export(...).

-vsn(1.0).

...

This	ensures	the	compiler	will	not	override	the	version	with	the	md5	digest	and
sets	it	instead	to	1.0:

5>	c(coffee).

{ok,coffee}

6>	coffee:module_info(attributes).

[{vsn,[1.0]}]

Let’s	continue	working	with	the	Erlang	version	of	the	coffee	machine	FSM,
adding	a	new	upgrade	message	that	triggers	a	fully	qualified	function	call.	This
will	allow	us	to	upgrade	the	server	in	a	controlled	way,	understanding	the	how
and	why	of	all	the	steps	involved	in	the	process.	After	that,	we	explore	how	it	is
done	using	OTP.

The	First	Version	of	the	Coffee	FSM
You	might	recall	that	the	Erlang	version	of	the	coffee	FSM	consisted	of	three
states,	selection,	payment,	and	remove	(Figure	12-1).	In	our	software	upgrade
example,	we	add	a	new	state	called	service,	which	allows	us	to	open	the	cabinet
door	and	service	the	coffee	maker.	But	before	going	there,	let’s	add	some	generic
code	that	executes	the	fully	qualified	call,	giving	us	a	baseline	we	can	use	to
perform	the	upgrade	itself.	We	can	do	this	either	by	fully	qualifying	every	call	to
the	receive-evaluate	loop,	or	by	sending	the	process	a	message	that	triggers	a
fully	qualified	call.

Figure	12-1.	Coffee	FSM

The	recommended	approach	to	upgrading	your	code	is	to	separate	the	loading	of
the	new	module	from	each	process’s	trigger	of	the	upgrade.	In	our	generic
upgrade	code,	we	load	the	module	using	module:load_file/2.	We	then	inform
the	processes	that	have	to	trigger	an	upgrade	through	a	fully	qualified	call	by
sending	them	the	{upgrade,	Data}	message.

Data	is	an	opaque	data	type	containing	upgrade-specific	information	used	by	the
new	module.	It	is	there	to	act	as	a	placeholder	and	to	future-proof	the	code,

allowing	us	to	manipulate	the	process	state	in	conjunction	with	the	transition	to
the	new	module.	As	an	example,	pretend	we	are	upgrading	our	frequency	server
and	want	to	add	more	frequencies.	We	could	use	Data	to	pass	the	new
frequencies	to	the	server	during	the	upgrade.	A	process	that	receives	the	upgrade
message	and	its	data	then	issues	a	fully	qualified	function	call	to	code_change/2,
where	the	first	argument	is	the	process	state	and	the	second	is	Data.	In	this
function,	we	could	append	the	new	frequencies	to	the	list	of	available	ones,
entering	the	receive-evaluate	loop	in	the	new	module	with	the	newly	updated
loop	data.

Let’s	have	a	look	at	what	the	generic	upgrade	code	for	the	coffee	FSM	looks
like.	Notice	that	we	have	added	a	version	number	to	the	module:

-module(coffee).

-export(...).

-export([...,	code_change/2]).

-vsn(1.0).

...

%%	State:	drink	selection

selection()	->

				receive

								...

								{upgrade,	Data}	->

												?MODULE:code_change(fun	selection/0,	Data);

								...

				end.

%%	State:	payment

payment(Type,	Price,	Paid)	->

				receive

								...

								{upgrade,	Extra}	->

												?MODULE:code_change({payment,	Type,

																																	Price,	Paid},	Extra);

								...

				end.

%%	State:	remove	cup

remove()	->

				receive

								...

								{upgrade,	Data}	->

												?MODULE:code_change(fun	remove/0,	Data);

								...

				end.

code_change({payment,	Type,	Price,	Paid},	_)	->

				payment(Type,	Price,	Paid);

code_change(State,	_)	->

				State().

Note	how	we	need	to	handle	the	{upgrade,	Extra}	message	in	all	states.	Upon
receiving	it,	we	do	a	fully	qualified	function	call	to	code_change/2,	where	the
first	argument	is	the	FSM	state	and	loop	data	and	the	second	is	Extra,	which	we
transparently	pass	to	the	call.	The	code_change/2	function	in	the	new	module
provides	a	place	to	change	the	old	process	state	to	one	compatible	with	the	new
code	base,	possibly	using	Extra.	Changes	in	the	process	state	could	include
adaptations	to	the	loop	data	format	and	contents,	database	schema	changes,
synchronization	with	other	processes,	changing	process	flags,	or	even	going	as
far	as	manipulating	messages	in	the	mailbox.

Once	done,	code_change/2	yields	control	by	calling	the	tail-recursive	function
returning	the	process	to	its	new	receive-evaluate	loop.	In	our	example,	these
functions	are	the	FSM	state	functions	selection/0,	payment/3,	and	remove/0.
This	is	the	first	version	of	the	module,	so	we	do	not	expect	the	code_change/2
clauses	we’ve	added	to	do	anything;	they	simply	return	to	the	state	from	which
the	call	originated.	Adding	these	clauses	avoids	the	undefined	function	runtime
error	that	we	explained	will	result	if	you	attempt	an	upgrade	and	a	process	is
running	an	old	version	of	the	coffee	module.

This	is	our	baseline	code.	If	you	are	using	the	code	in	the	book’s	repository,	you
will	find	it	in	the	erlang	directory	for	this	chapter.	Let’s	compile	it,	start	the
Erlang	VM,	and	get	our	coffee	FSM	up	and	running,	making	sure	it	works
before	creating	a	new	version	of	the	module	and	doing	a	software	upgrade:

$	cd	erlang

$	cp	coffee.erl.1.0	coffee.erl

$	erl	-make

Recompile:	coffee

Recompile:	hw

$	erl	-pa	patches

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

1>	coffee:start_link().

Machine:Rebooted	Hardware

Display:Make	Your	Selection

{ok,<0.36.0>}

2>	coffee:module_info(attributes).

[{vsn,[1.0]}]

3>	coffee	!	{upgrade,	{}}.

{upgrade,{}}

4>	coffee:module_info(attributes).

[{vsn,[1.0]}]

Note	how	in	shell	command	3	we	trigger	an	upgrade	without	having	loaded	a
new	version	of	the	FSM.	This	results	in	an	execution	of	the	code_change/2	call
in	the	current	version	of	the	module.

Adding	a	State
Let’s	add	a	state	for	servicing	the	coffee	FSM.	It	gets	triggered	when	the	coffee
FSM	is	in	the	selection	state	and	the	cabinet	door	is	opened.	In	any	other	state,
the	open	door	event	is	ignored.	As	we	can	see	in	Figure	12-2,	closing	the	cabinet
door	triggers	a	reboot	of	the	hardware	and	a	transition	back	to	the	selection	state.
The	closing	door	event	is	ignored	in	all	other	states.

Figure	12-2.	Service	state

We’ve	opted	to	keep	the	example	simple,	but	could	have	easily	inserted	locks	in
the	hardware	by	upgrading	hw.erl	to	add	the	functions	hw:lock()	and
hw:unlock().	These	would	represent	safeguards	that	would	ensure	that	the
coffee	machine	door	could	be	opened	only	in	the	selection	state	and	would	keep
it	locked	when	the	machine	is	in	other	states.

Let’s	look	at	the	new	module,	where	we’ve	highlighted	the	changes	from	version
1.0.	The	major	differences	are	the	addition	of	the	service	state,	the	open	and
close	events,	and	actions	executed	in	the	code_change/2	function	clauses.

First,	we	see	the	client	functions	open/0	and	close/0,	which	respectively
generate	an	event	when	the	coffee	machine	door	is	opened	and	closed.	In	state
selection,	upon	receiving	the	open	event,	we	show	Open	in	the	display	and
transition	to	the	service	state.

The	service	state	ignores	all	events	except	for	users	inserting	coins	and	the
closing	of	the	coffee	machine	door.	Upon	closing	the	door,	the	hardware	is
rebooted	and	the	display	instructs	the	customer	to	make	a	selection.	The	open
and	close	events	are	ignored	in	all	other	states:

-module(coffee).

-export([tea/0,	espresso/0,	americano/0,	cappuccino/0,

									pay/1,	cup_removed/0,	cancel/0,	open/0,	close/0]).

-export([start_link/0,	init/0,	code_change/2]).

-vsn(1.1).

start_link()	->

					...

open()	->	?MODULE	!	open.

close()	->	?MODULE	!	close.

					...

selection()	->

				receive

								{selection,	Type,	Price}	->

												hw:display("Please	pay:~w",[Price]),

												payment(Type,	Price,	0);

								{pay,	Coin}	->

												hw:return_change(Coin),

												selection();

								{upgrade,	Extra}	->

												?MODULE:code_change(fun	selection/0,	Extra);

								open	->

												hw:display("Open",	[]),

												service();

								_Other	->			%	cancel

												selection()

				end.

...

service()	->

				receive

								close	->

												hw:reboot(),

												hw:display("Make	Your	Selection",	[]),

												service();

								{pay,	Coin}	->

												hw:return_change(Coin),

												service();

								_Other	->

												service()

				end.

...

code_change({payment,	_Type,	_Price,	Paid},		_Extra)	->

				hw:return_change(Paid),

				hw:display("Make	Your	Selection",	[]),

				selection();

code_change(State,	_)	->

				State().

In	our	code_change	function,	if	a	user	has	selected	a	drink	and	is	in	the	process
of	paying	for	it,	we	return	whatever	amount	has	been	paid	and	transition	to	the
selection	state.	For	all	other	states,	we	transition	back	to	the	state	we	were	in
prior	to	the	upgrade.	In	our	example,	we	don’t	need	Extra,	but	as	we	are
preparing	the	code	for	potential	upgrades	without	knowing	what	these	upgrades
will	be,	the	argument	is	worth	including	to	future-proof	our	code	and	allow	us	to
pass	the	variable	and	use	it	to	change	the	process	state	in	a	later	upgrade.

We	place	version	1.1	of	the	source	code	in	the	patches	directory	and	compile	it.
Note	how	we	started	the	Erlang	runtime	system	with	the	-pa	patches	directive.
When	we	first	start	the	coffee	FSM,	this	directory	is	empty.	As	we	find	and	fix
bugs,	we	place	the	new	beam	files	here.	Because	this	directory	appears	first	in
the	code	search	path,	beam	files	we	put	here	will	override	beam	files	of	the	same
module	appearing	later	in	the	code	search	path.	In	another	shell,	type:

$	cd	erlang/patches/

$	erl	-make

Recompile:	coffee

Using	the	same	Erlang	node	where	we	started	version	1.0	of	the	coffee	FSM,	we
load	the	new	version	of	the	module	by	calling	code:load_file/1.	The	code
server	looks	for	the	first	version	of	the	coffee	beam	file	in	its	code	search	path,
and	because	the	patches	directory	is	at	the	top	of	list,	the	version	we	just
compiled	is	chosen.	The	success	of	the	operation	is	confirmed	in	shell	command
6,	showing	us	that	the	version	attribute	is	now	set	to	1.1:

5>	l(coffee).

{module,coffee}

6>	coffee:module_info(attributes).

[{vsn,[1.1]}]

At	this	point,	we	have	two	versions	of	the	coffee	module	loaded	in	the	runtime
system:	the	current	one	we	just	loaded	and	the	old	one	used	by	the	FSM	process.
When	we	order	an	espresso	in	shell	command	7	and	start	paying	for	it	in	the
subsequent	command,	the	shell	does	a	fully	qualified	call	using	the	current
version	of	the	code	—	namely,	the	one	we	just	loaded.	The	FSM	process,
however,	is	still	using	the	old	version	of	the	coffee	module.

If	we	were	to	load	another	version	of	the	coffee	module	at	this	point,	even	1.0,

the	coffee	FSM	process	would	be	terminated	because	it	is	running	the	now
deleted	old	version	of	the	code.	The	current	version	would	become	the	old
version,	while	the	newly	loaded	module	would	become	the	current	one.	We	are
not	doing	it	in	our	example,	but	try	it	out	yourself	if	you’ve	compiled	the	code
and	are	following	along.

In	shell	command	9,	we	trigger	an	upgrade.	This	causes	the	coffee	machine
FSM,	currently	in	state	payment,	to	call	code_change/2	in	the	new	module.	It
returns	the	change	and,	thanks	to	the	new	state	service,	now	allows	us	to	open
and	close	the	machine	door	so	we	can	service	it:

7>	coffee:espresso().

Display:Please	pay:150

{selection,espresso,150}

8>	coffee:pay(100).

Display:Please	pay:50

{pay,100}

9>	coffee	!	{upgrade,	{}}.

Machine:Returned	100	in	change

Display:Make	Your	Selection

{upgrade,{}}

10>	coffee:open().

Display:Open

open

11>	coffee:espresso().

{selection,espresso,150}

12>	coffee:close().

Machine:Rebooted	Hardware

Display:Make	Your	Selection

close

This	is	how	basic	Erlang	can	handle	upgrades.	The	generic	code	is	the	handling
of	the	{upgrade,	Extra}	message	and	the	calling	of	code_change/2,	which
does	a	fully	qualified	call	back	to	the	receive-evaluate	loop.	This	will	be	the
same	across	all	processes.	What	will	differ	among	processes	is	what	we	do	in
code_change/2	depending	on	the	loop	data,	the	process	state,	and	the	contents	of
Extra	itself.	Using	these	foundations,	let’s	read	on	and	see	how	we	do	it	with
OTP.

Creating	a	Release	Upgrade
To	upgrade	releases	using	the	tools	and	design	principles	provided	by	OTP,	we
have	to	start	with	a	baseline	consisting	of	a	properly	packaged	and	deployed
OTP	release	following	the	principles	covered	in	Chapter	11.	We	also	need:

One	or	more	new	versions	of	existing	applications

Zero	or	more	new	applications

An	application	upgrade	file	for	each	application	that	has	been	changed

Release	resource	and	release	upgrade	files

The	modules	containing	the	bug	fixes	and	new	features	are	packaged	into	new	or
existing	applications,	where	their	version	numbers	are	bumped	up.	Application
upgrade	files	contain	commands	that	tell	us	how	to	upgrade	or	downgrade	from
one	application	version	to	another.	The	release	resource	file,	covered	in	“Release
Resource	Files”,	is	the	file	containing	the	emulator	and	application	versions	that
make	up	the	new	release.	Together	with	the	application	upgrade	files	and	the
release	file	of	the	baseline	system	we	are	upgrading	from,	the	new	release	file	is
used	to	generate	the	release	upgrade	file.	This	file	contains	all	the	commands
that	have	to	be	executed	during	the	upgrade	itself.	After	having	installed	the	new
code	on	the	target	machine,	we	run	the	instructions	in	the	release	upgrade	file.	If
anything	fails,	the	system	is	restarted	using	the	old	release.	Through	tests	and
observations,	you	have	to	determine	if	the	system	is	stable.	If	so,	it	is	made
permanent.	Restarting	the	system	prior	to	it	being	made	permanent	will	result	in
the	old	release	being	restarted.	Let’s	do	an	upgrade	and	see	how	the	different
steps	and	components	all	work	together.

In	this	chapter’s	section	of	the	book’s	code	repository,	you	will	find	the	files
used	to	create	our	first	deployment.	We’ve	taken	the	coffee_fsm.erl	example	and
created	an	OTP	application	out	of	it,	supervisor	and	application	behavior	files
included.	We	also	created	the	coffee.app	file	and	placed	it	in	the	ebin	directory.
Download	it,	compile	it,	and	make	sure	you	can	get	it	up	and	running:

$	cd	coffee-1.0/src	;	erl	-make	;	mv	*.beam	../ebin	;	cd	../..

Recompile:	coffee_app

Recompile:	coffee_fsm

coffee_fsm.erl:2:	Warning:	undefined	callback	function

																													code_change/4	(behaviour	'gen_fsm')

coffee_fsm.erl:2:	Warning:	undefined	callback	function

																													handle_event/3	(behaviour	'gen_fsm')

coffee_fsm.erl:2:	Warning:	undefined	callback	function

																													handle_info/3	(behaviour	'gen_fsm')

coffee_fsm.erl:2:	Warning:	undefined	callback	function

																													handle_sync_event/4	(behaviour	'gen_fsm')

Recompile:	coffee_sup

Recompile:	hw

$	erl	-pa	coffee-1.0/ebin

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

1>	application:start(sasl),	application:start(coffee).

...<snip>...

=PROGRESS	REPORT====	10-Jan-2016::21:27:28	===

									application:	coffee

										started_at:	nonode@nohost

ok

2>	coffee_fsm:module_info(attributes).

[{behaviour,[gen_fsm]},{vsn,['1.0']}]

Even	if	the	coffee	application	directory	is	not	in	the	lib	directory	(yet),	we’ve
given	it	a	version	number	for	the	sake	of	clarity.	Note	how,	when	compiling	the
code,	we	get	the	following	warning:

Warning:	undefined	callback	function

											code_change/4	(behaviour	'gen_fsm')

Up	to	now,	we	asked	you	to	patiently	bear	with	us	and	ignore	this	warning
message,	but	no	more.	You	should	by	now	understand	what	it	is	for	and	have
figured	out	how	we	are	going	to	use	it	when	we	upgrade	the	coffee_fsm
module.	Note	also	how,	when	retrieving	the	module	attributes	in	shell	command
2,	we	get	both	the	behavior	type	and	the	current	module	version	number.

With	our	application	running,	let’s	create	the	boot	file,	a	release	file,	and	the
target	directory	structure.	We	use	the	empty	sys.config	and	coffee-1.0.rel	files	in
the	book’s	code	repository.	If	you	are	typing	along	as	you	are	reading	this,
getting	your	own	version	up	and	running,	don’t	forget	to	update	the	standard
OTP	application	and	erts	versions	in	the	rel	file	to	the	Erlang	release	you	are
currently	using.	If	you	are	not	typing	along,	or	do	not	have	access	to	the	code,
we’ve	included	the	contents	of	the	sys.config	and	coffee-1.0.rel	files	for	your
convenience.	If	you	are	running	the	tests,	based	on	the	version	of	Erlang	you	are
using,	you	might	have	to	modify	the	standard	OTP	application	version	numbers:

$	cat	sys.config

[].

$	cat	coffee-1.0.rel

{release,

	{"coffee","1.0"},

	{erts,	"7.2"},

	[{kernel,	"4.1.1"},

		{stdlib,	"2.7"},

		{sasl,	"2.6.1"},

		{coffee,	"1.0"}]}.

$	mkdir	ernie

$	erl

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

Eshell	V7.2		(abort	with	^G)

1>	systools:make_script("coffee-1.0",	[{path,	["coffee-1.0/ebin"]}]).

ok

2>	systools:make_tar("coffee-1.0",[{erts,	"/usr/local/lib/erlang/"},

																																				{path,	["coffee-1.0/ebin"]},

																																				{outdir,	"ernie"}]).

ok

3>	halt().

$	cd	ernie;	tar	xf	coffee-1.0.tar.gz;	rm	coffee-1.0.tar.gz	

$	mkdir	bin;	mkdir	log

$	cp	erts-7.2/bin/run_erl	bin/.;	cp	erts-7.2/bin/to_erl	bin/.

$	cp	erts-7.2/bin/start.src	bin/start

$	cp	erts-7.2/bin/start_erl.src	bin/start_erl

$	perl	-i	-pe	"s#%FINAL_ROOTDIR%#$PWD#"	bin/start

$	diff	erts-7.2/bin/start.src	bin/start

27c27,28

<	ROOTDIR=%FINAL_ROOTDIR%

>	ROOTDIR=/Users/francescoc/ernie

$	echo	'7.2	1.0'	>	releases/start_erl.data

Hello	Joe,	coffee	machine	working?	Seems	to	be.	We	now	need	to	create	the
releases/RELEASES	file,	required	for	upgrading	and	downgrading	releases.	We
got	away	without	it	in	the	previous	chapter,	as	it	is	only	really	required	when
downgrading	to	this	release	after	a	failed	upgrade.	When	we	do	an	upgrade	and
this	file	is	not	present,	a	new	one	is	created,	but	it	contains	only	information	for
the	upgraded	release.	This	is	fine	if	the	upgrade	is	successful,	because	when	we
upgrade	a	second	time,	we	should	be	able	to	downgrade	to	the	first	upgraded
version.	The	downside	is	that	if	the	first	upgrade	fails,	we	are	unable	to
downgrade	to	the	original	version	once	we’ve	made	the	upgrade	permanent,	and
we’ll	have	to	reinstall	the	node	instead.	Create	the	file	as	follows:

$	bin/start

$	bin/to_erl	/tmp/

Attaching	to	/tmp/erlang.pipe.1	(^D	to	exit)

1>	application:which_applications().

[{coffee,[],"1.0"},

	{sasl,"SASL		CXC	138	11","2.6.1"},

	{stdlib,"ERTS		CXC	138	10","2.7"},

	{kernel,"ERTS		CXC	138	10","4.1.1"}]

2>	RootDir	=	code:root_dir().

"/Users/francescoc/ernie"

3>	Releases	=	RootDir	++	"/releases".

"/Users/francescoc/ernie/releases"

4>	RelFile	=	Releases	++	"/coffee-1.0.rel".

"/Users/francescoc/ernie/releases/coffee-1.0.rel"

5>	release_handler:create_RELEASES(RootDir,	Releases,	RelFile,	[]).

ok

The	RELEASES	file	contains	a	list	with	an	entry	for	every	release	that	has	been
installed.	Every	entry	has	information	similar	to	that	found	in	the	rel	file,
including	release	and	erts	versions.	Together	with	the	application	names	and
versions,	however,	an	absolute	path	to	the	application	directory	is	also	included.
While	the	first	version	of	the	RELEASES	file	will	contain	a	single	entry	on	the
first	release,	subsequent	upgrades	will	result	in	multiple	entries:

%%	File:releases/RELEASES

[{release,"coffee","1.0","7.2",

										[{kernel,"4.1.1",

																			"/Users/francescoc/ernie/lib/kernel-4.1.1"},

											{stdlib,"2.7",

																			"/Users/francescoc/ernie/lib/stdlib-2.7"},

											{sasl,"2.6.1",

																	"/Users/francescoc/ernie/lib/sasl-2.6.1"},

											{coffee,"1.0",

																			"/Users/francescoc/ernie/lib/coffee-1.0"}],

										permanent}].

The	Code	to	Upgrade
Now	that	we	have	our	first	OTP-compliant	release	up	and	running,	let’s	create
the	new	version	of	the	coffee_fsm	module,	adding	the	new	service	state	and	its
client	functions.	We	start	by	bumping	up	the	version	attribute	to	1.1.	It	might	not
mean	much	now,	but	if	you	have	kept	the	discipline	of	bumping	up	the	version
(or	doing	it	automatically	through	a	script	when	tagging	your	code	or	building
your	release),	payback	time	will	come	many	upgrades	later,	in	the	early	hours	of
the	morning,	when	you	are	figuring	out	why	the	version	of	the	code	you	think	is
running	in	production	is	actually	not	the	one	that	should	be	running.1

We	export	the	state	functions	service/2	and	service/3	(you	might	recall	that
the	gen_fsm	callback	State/2	handles	asynchronous	events	and	State/3	handles
synchronous	ones).	We	also	export	two	client	functions,	open/0	and	close/0,
which	asynchronously	send	the	coffee	machine	door	open	and	close	events	to
the	FSM.	And	finally,	we	export	code_change/4,	a	behavior	callback	used	to
update	the	state	of	the	behavior.	All	these	should	be	familiar	from	reading
“Adding	a	State”:

-module(coffee_fsm).

-behavior(gen_fsm).

-vsn('1.1').

-export([start_link/0,	init/1]).

-export([selection/2,	payment/2,	remove/2,	service/2]).

-export([americano/0,	cappuccino/0,	tea/0,	espresso/0,

									pay/1,	cancel/0,	cup_removed/0,	open/0,	close/0]).

-export([stop/0,	selection/3,	payment/3,	remove/3,	service/3]).

-export([terminate/3,	code_change/4]).

start_link()	->

				gen_fsm:start_link({local,	?MODULE},	?MODULE,	[],	[]).

...

cup_removed()	->	gen_fsm:send_event(?MODULE,cup_removed).

open()								->	gen_fsm:send_event(?MODULE,open).

close()							->	gen_fsm:send_event(?MODULE,close).

...

In	state	selection,	we	handle	the	open	event.	This	is	the	only	state/event
combination	in	which	the	transition	to	our	new	service	state	is	allowed.	In	the
service	state,	upon	receiving	the	close	event,	we	transition	back	to	the	selection
state.	In	all	other	states,	open	and	close	events	are	ignored.	The	service/3	state

callback	function	also	handles	the	synchronous	stop	event,	which	stops	the	FSM
and	triggers	a	call	to	terminate/3:

%%	State:	drink	selection

selection({selection,	Type,	Price},	LoopData)	->

				hw:display("Please	pay:~w",[Price]),

				{next_state,	payment,	{Type,	Price,	0}};

selection({pay,	Coin},	LoopData)	->

				hw:return_change(Coin),

				{next_state,	selection,	LoopData};

selection(open,	LoopData)	->

				hw:display("Open",	[]),

				{next_state,	service,	LoopData};

selection(_Other,	LoopData)	->

				{next_state,	selection,	LoopData}.

%%	State:	service

service(close,	LoopData)	->

				hw:reboot(),

				hw:display("Make	Your	Selection",	[]),

				{next_state,	selection,	LoopData};

service({pay,	Coin},	LoopData)	->

				hw:return_change(Coin),

				{next_state,	service,	LoopData};

service(_Other,	LoopData)	->

				{next_state,	service,	LoopData).

...

service(stop,	_From,	LoopData)	->

				{stop,	normal,	ok,	LoopData}.

...

We	now	need	to	implement	our	new	code_change/4	callback	function.	This
callback	takes	three	arguments	when	called	within	an	event	handler	or	a	generic
server,	and	four	when	called	from	within	an	FSM:

Mod:code_change(Vsn,	State,	LoopData,	Extra)	->

					{ok,	NewState,	NewLoopData}	|	%Finite	State	Machines

					{error,	Reason}

Mod:code_change(Vsn,	LoopData,	Extra)	->

					{ok,	NewLoopData}	|			%Generic	Servers

					{error,	Reason}

Mod:code_change(Vsn,	LoopData,	Extra)	->

					{ok,	NewLoopData}	|			%Event	Handler

					{error,	Reason}

The	first	argument,	Vsn,	is	the	version	of	the	old	module	you	are	upgrading	from,
or	the	version	you’re	going	to	when	downgrading	back	to	the	old	module.	In	this
example	it	is	1.0,	and	it	could	also	be	{down,	1.0}	when	downgrading	to	a
previous	version.	When	a	module	does	not	have	a	version	directive,	use	the	md5

module	checksum,	and	when	versions	do	not	matter	at	all,	use	wildcards.

State	is	passed	only	to	FSMs,	and	contains	the	state	the	FSM	was	in	when	the
upgrade	was	triggered.

The	final	two	arguments	include	the	loop	data	and	any	extra	arguments	passed	in
the	upgrade	instructions	specific	for	this	module.	In	our	example,	we	don’t	do
anything	with	the	_Extra	arguments,	nor	do	we	manipulate	the	loop	data.

The	code_change/4	callback,	when	successful,	has	to	return	{ok,	NewState,
NewLoopData}.	Returning	{error,	Reason}	will	cause	the	upgrade	to	fail	and
the	node	to	restart	the	previous	version	when	dealing	with	generic	servers	or
FSMs.	In	the	case	of	event	handlers,	returning	anything	other	than	{ok,
NewLoopData}	or	terminating	abnormally	will	cause	the	handler	to	be	removed
from	the	event	manager,	but	the	node	will	not	revert	to	its	previous	version	and
be	restarted.

This	is	what	our	coffee	FSM’s	code_change/4	OTP	callback	function	looks	like:

code_change('1.0',	State,	LoopData,	_Extra)	->

				{ok,	State,	LoopData};

code_change({down,	'1.0'},	service,	LoopData,	_Extra)	->

				hw:reboot(),

				hw:display("Make	Your	Selection",	[]),

				{ok,	selection,	LoopData};

code_change({down,	'1.0'},	payment,	{_Type,	_Price,	Paid},	_Extra)	->

				hw:return_change(Paid),

				hw:display("Make	Your	Selection",	[]),

				{ok,	selection,	{}};

code_change({down,	'1.0'},	State,	LoopData,	_Extra)	->

				{ok,	State,	LoopData}.

We’ve	changed	the	behavior	slightly	from	the	Erlang	example.	Regardless	of	the
state	we	are	in,	payment	included,	we	do	not	change	the	loop	data	and	remain	in
the	state	we	were	originally	in.	This	is	normal	in	cases	where	we	simply	add
functionality	or	a	state.	If	we	were	to	change	the	state	or	loop	data	as	part	of	the
upgrade,	it	would	occur	here.

If	an	upgrade	failure	triggers	a	downgrade	and	we	are	in	the	service	state,	we
reboot	the	hardware	and	return	to	the	selection	state,	because	the	service	state
does	not	exist	in	version	1.0.	If	the	user	is	in	the	process	of	paying	for	a	coffee,
we	return	whatever	amount	the	user	has	paid	and	move	back	to	the	selection
state.	Downgrades,	as	we	will	see,	will	cause	the	system	to	reboot	and	start	the

old	version	from	scratch.	So	if	your	old	version	is	dependent	on	some	persistent
values	that	were	set	at	startup	and	later	changed,	make	sure	your	code_change
reverts	to	the	correct	values.

When	we	are	done	implementing	the	new	modules,	we	package	them	in	an
application,	bumping	up	the	version.	In	our	case,	our	new	coffee	application
version	is	“1.1,”	whereas	the	versions	of	the	hw,	coffee_app,	and	coffee_sup
modules	are	the	same	as	in	the	application	version.	The	version	of	the
coffee_fsm	module	is	now	also	1.1.

UPGRADING	RECORDS

The	BEAM	virtual	machine	does	not	have	a	data	structure	to	specifically	represent	a	record	in	a
database	sense.	Instead,	records	are	represented	as	tuples	where	the	first	element	is	an	atom
representing	the	record	name	and	the	other	fields	are	tuple	entries	in	the	same	order	as	they	are
defined.	If	your	record	format	changes	during	a	live	software	upgrade,	the	only	way	to	update	the
format	is	using	the	tuple	representation	of	records.	This	problem	does	not	occur	if	you	use	maps
instead	of	tuples.	We’ll	show	you	how	to	change	a	record	if	you	must	represent	it	as	a	tuple.

Imagine	a	record	for	our	frequency	server	of	the	format:

–record(freq,	{free,	allocated})

After	initialization,	in	its	tuple	representation,	it	would	look	like	this:

{freq,	[5,6,7,8],	[]}

Assume	that	in	our	upgrade,	we	want	to	add	a	new	field	for	frequencies	that	are	blocked,	making	them
unavailable	while	not	being	allocated.	Our	new	record	could	look	like	this:

–record(freq,	{free,	allocated,	blocked})

The	code_change/3	function	in	the	new	module	would	handle	the	upgrade	and	downgrade	of	the
different	record	versions	as	follows:

code_change('1.0',	{freq,	Free,	Alloc},	_Extra)	->

			{ok,	{freq,	Free,	Alloc,	[]}};

code_change({down,	'1.0'},	{freq,	Free,	Alloc,	Blocked},	_Extra)	->

			{ok,	{freq,	Free++Blocked,	Alloc}}.

When	you	need	to	change	the	record	format	in	the	Mnesia	table,	use	the	mnesia:
transform_table/3,4	functions.	They	will	atomically	apply	a	fun	to	all	objects	in	the	table	that	does
the	transformation,	allowing	you	to	also	change	the	record	name	(not	the	table	name)	and	update	the
attributes.

Application	Upgrade	Files
Now	that	we	have	the	new	version	of	our	coffee	machine	FSM	up	and	running,
we	need	an	application	upgrade	file	containing	a	set	of	actions	to	be	executed
when	upgrading	or	downgrading	to	other	versions	of	the	same	application.
Application	upgrade	files	are	similar	in	concept	to	app	files,	because	they	are
used	by	systools	to	create	the	upgrade	script.	They	have	the	name	of	the
application	with	the	.appup	suffix	and	are	placed	in	the	ebin	directory,	alongside
the	app	file.

Go	into	the	Erlang	root	directory	of	your	installation	and	type	ls
lib/*/ebin/*.appup.	The	call	will	return	all	application	upgrade	files	installed
as	part	of	your	Erlang	release.	Starting	with	Erlang/OTP	version	17,	.appup	files
are	included	in	every	application.	Prior	to	that,	you	could	upgrade	only	some
core	applications,	as	not	all	applications	provided	an	.appup	file.	Let’s	have	a
look	at	the	sasl.appup	file	for	its	version	2.6.1:

{"2.6.1",

	%%	Up	from	-	max	one	major	revision	back

	[{<<"2\\.[5-6](\\.[0-9]+)*">>,[restart_new_emulator]},	%	OTP-18.*

		{<<"2\\.4(\\.[0-9]+)*">>,[restart_new_emulator]}],				%	OTP-17

	%%	Down	to	-	max	one	major	revision	back

	[{<<"2\\.[5-6](\\.[0-9]+)*">>,[restart_new_emulator]},	%	OTP-18.*

		{<<"2\\.4(\\.[0-9]+)*">>,[restart_new_emulator]}]					%	OTP-17

}.

Based	on	its	contents,	we	should	be	able	to	figure	out	what	happens	when
application	version	2.6.1	is	upgrading	or	downgrading	between	OTP	versions	17
and	18.	When	upgrading	from	application	version	2.4.X,	2.5.X,	or	2.6,	or
downgrading	to	2.6,	2.5.X,	or	2.4.X	(where	X	is	the	patch	release	number),	we
need	to	restart	the	emulator.	Notice	how	regular	expressions,	placed	in	binaries,
create	a	range	of	subreleases	and	point	to	a	list	of	upgrade	and	downgrade
instructions.	Instead	of	regular	expressions,	you	can	also	use	strings	defining
specific	versions,	e.g.,	“2.4.5.”

Inspect	any	other	.appup	files	in	the	release	you	have	installed	and	you	will
notice	they	all	follow	this	format:

{Vsn,

		[{UpFromV1,	InstructionsU1},	...,	{ UpFromVK,	InstructionsUK}],

		[{DownToV1,	InstructionsD1},	...,	{ DownToVK,	InstructionsDK}]}.

Vsn	is	the	application	version	to	which	you	are	upgrading.	UpFromV<N>	are	the
application	versions	from	which	you	will	be	upgrading.	In	case	something	goes
wrong,	DownToV<N>	are	the	application	versions	to	which	you	will	be	able	to
downgrade	Vsn.	Vsn	can	be	either	a	string	with	the	exact	version	numbers,	or	a
binary	containing	a	regular	expression	allowing	you	to	describe	multiple
application	versions	on	which	to	execute	upgrade	and	downgrade	instructions.	If
you	have	installed	OTP	version	17	or	later,	look	at	the	various	.appup	files	and
you	will	notice	that	OTP	standard	applications	usually	allow	you	to	upgrade	or
downgrade	by	two	revisions.

If	you	plan	on	using	regular	expressions,	the	following	constructs	will	be	more
than	enough	to	denote	ranges	of	versions:

A	period	(.)	matches	any	character,	so	the	expression	1.3	will	match	any
combination	of	characters	starting	with	1	and	ending	with	3.

An	asterisk	(*)	matches	the	preceding	element	zero	or	more	times.

A	plus	sign	(+)	matches	the	preceding	element	one	or	more	times.

A	question	mark	(?)	matches	the	preceding	element	zero	or	one	times.

The	range	[0-9]	matches	the	elements	between	0	and	9.

The	sequence	\\.	returns	a	period.	You	need	to	escape	the	backslash
because	Erlang	itself	uses	the	backslash	to	escape	characters.

A	caret	(^)	at	the	beginning	of	the	regular	expression	anchors	the	match	to
the	beginning	of	the	version	string.

A	dollar	sign	($)	at	the	end	of	the	regular	expression	anchors	the	match	to
the	end	of	the	version	string.

As	an	example,	<<"^1\\.[0-9]+$">>	matches	all	versions	of	1.X,	<<"^1\\.0\\.
[0-9]+$">>	matches	all	versions	of	1.0.X,	and	<<"^1\\.([0-9]+\\.)?\\.[0-
9]+$">>	will	match	versions	1.X	or	1.X.X,	where	X	is	an	integer.

If	you	are	not	sure	of	your	regular	expressions,	test	them	using	re:run(Vsn,
RegExp),	which	returns	nomatch	if	the	match	fails	and	{match,	MatchData}

otherwise.	You	can	read	more	about	the	format	of	regular	expressions	in	the
manual	pages	for	the	re	module.

Browsing	the	.appup	files,	you	should	have	come	across	lists	of	actions
associated	with	different	versions.	They	include	elements	such	as
restart_new_emulator	(used	only	when	upgrading	the	erts,	kernel,	stdlib,	and
sasl	applications),	load_module,	apply,	restart_application,	and	update.	In
some	cases,	when	no	actions	have	to	be	taken,	you	will	find	a	tuple	{Vsn,	[],
[]}	with	two	empty	lists.	Actions	are	divided	into	high-level	instructions	and
low-level	ones.	High-level	instructions	are	translated	to	low-level	ones	when
creating	the	release	upgrade	script.

Let’s	go	back	to	our	example,	where	we	are	going	to	upgrade	the	coffee	FSM
application	from	version	1.0	to	1.1.	It	will	not	be	a	complicated	upgrade	because
no	drivers	or	NIFs	are	involved,	no	new	applications	or	modules	are	added	to	the
release,	and	there	are	no	interprocess	and	intermodule	dependencies	to	worry
about,	let	alone	internal	state	or	loop	data	changes.	Behind	the	scenes,	all	we
need	to	do	is	suspend	all	behavior	processes	with	a	dependency	on	the	module
coffee_fsm,	load	the	new	version	of	the	module,	purge	the	old	one,	call
code_change,	and	resume	the	processes	(Figure	12-3).

Figure	12-3.	Coffee	FSM	version	transitions

Our	coffee.appup	file	contains	a	tuple	containing	the	version	we	are	upgrading	to
along	with	the	high-level	upgrade	and	downgrade	instructions.	In	our	case,
update	loads	the	new	module	and	{advanced,	{}}	triggers	the	code_change/4
call,	passing	{}	as	the	last	argument:

%%	File:coffee.appup

{"1.1",		%	Current	version

	[{"1.0",	[{update,	coffee_fsm,	{advanced,	{}}}]}],	%	Upgrade	from

	[{"1.0",	[{update,	coffee_fsm,	{advanced,	{}}}]}]		%	Downgrade	to

}.

During	both	an	upgrade	and	a	downgrade,	the	update	high-level	instruction	will
translate	to	the	following	set	of	low-level	instructions:

1.	 Search	for	the	object	code	for	the	module,	load	it	from	file,	and	cache	it.
This	ensures	that	time-consuming	file	operations	are	done	prior	to
suspending	the	processes.

2.	 Suspend	any	process	that	specified	the	module	as	a	dependency	in	its
child	specification,	using	sys:suspend/1.

3.	 Purge	any	old	version	of	the	module	being	upgraded.

4.	 Load	the	new	version	of	the	module,	making	the	current	version	the	old
one.

5.	 Purge	any	old	version	of	the	module,	which	prior	to	step	4	was	the
current	version.

6.	 Call	Mod:code_change/4.

7.	 Resume	the	suspended	processes	with	sys:resume/1,	allowing	them	to
continue	handling	new	requests.

So	far,	so	good,	but	how	do	we	associate	a	module	dependency	with	a	behavior
process?	Remember	that	in	the	supervisor	child	specification,	you	had	to	list	the
modules	that	implement	the	behavior:

{coffee_fsm,	{coffee_fsm,	start_link,	[]},

		permanent,	5000,	worker,	[coffee_fsm]}

We	have	to	list	them	because	this	is	where,	during	an	upgrade	or	downgrade,
systools	tells	the	supervisors	to	suspend	a	particular	process	when	upgrading
one	or	more	of	its	core	modules.	In	behaviors	such	as	event	handlers	and	other
special	processes	where	the	modules	are	not	known	at	compile	time,	we	would
replace	the	module	list	with	the	term	dynamic	and	query	the	process	prior	to	an

upgrade.

OTP	needs	to	distinguish	between	dynamic	and	static	module	sets	for	scalability
reasons.	There	is	no	point	in	asking	millions	of	behaviors	what	modules	they	are
running	every	time	we	do	a	software	upgrade,	only	to	discover	they	do	not
include	the	one	being	upgraded.	Processes	with	dynamic	modules	are	few	and
far	apart,	and	rarely	have	an	impact	on	performance	when	doing	an	upgrade.	If
you	have	dynamic	children	where	you	know	millions	of	instances	will	coexist
concurrently	and	the	modules	are	not	known	at	compile	time,	pick	an	upgrade
strategy	that	scales	or	do	not	upgrade	at	all.

High-Level	Instructions
Actions	in	our	.appup	file	are	grouped	into	high-level	and	low-level	instructions,
with	high-level	instructions	being	mapped	to	low-level	ones	when	the	upgrade
scripts	are	generated.	For	the	sake	of	simplicity	(and	your	sanity),	you	are
encouraged	to	use	high-level	instructions	and	avoid	low-level	ones	where
possible,	even	though	they	can	be	mixed	together.	Let’s	look	at	the	high-level
instructions	in	more	detail:

{update,	Mod}

This	instruction,	and	all	of	its	variants,	is	used	for	synchronized	code
replacements	where	all	processes	dependent	on	Mod	have	to	be	suspended
before	loading	the	new	version	of	the	module.	When	it	is	loaded	and	its	old
version	is	purged,	the	suspended	processes	are	resumed.	This	is	the	simplest
variant	of	a	module	update	command,	as	the	code_change/3,4	behavior
callbacks	are	not	invoked.	You	will	want	to	synchronize	and	suspend	all
processes	with	a	dependency	on	Mod	when	you	want	all	processes	to
consistently	display	the	same	properties	toward	other	processes	that
interface	with	them.	If	you	don’t	suspend	them	all	prior	to	loading	the	new
module,	some	processes	might	display	the	old	behavior	while	others	display
the	new	one.

{update,	Mod,	supervisor}

You	will	want	to	use	this	high-level	instruction	if	Mod	is	a	supervisor
callback	module	and	you	are	changing	the	supervisor	specification	returned
by	the	init/1	callback	function.	Any	change	in	the	supervision	tree	needs
to	be	handled	using	the	supervisor:start_child/2	function	if	you	are
adding	children.	Use	supervisor:terminate_child/2	and
supervisor:delete_child/2	if	you	are	removing	children.	We	covered
these	functions	in	“Dynamic	Children”.	The	update	becomes	even	more
complicated	if	you	are	changing	the	order	in	which	you	start	the	children
because	of	rest_for_one	dependencies.	You	will	have	to	terminate
children	and	restart	them	in	the	order	specified	in	your	init/1	callback
function.

{update,	Mod,	{advanced,Extra}},	{update,	Mod,	DepMods},	{update,
Mod,	{advanced,Extra},	DepMods}

If	we	include	the	{advanced,Extra}	tuple,	the	upgrade	script	invokes	the
Mod:code_change/3,4	callback	function,	passing	Extra	as	the	last
argument.	You	will	need	this	option	when	the	upgrade	requires	a	change	of
your	behavior	state	and	loop	data.	For	this	and	all	other	update	instructions,
you	can	omit	{advanced,Extra}	or	replace	it	with	soft,	both	of	which
result	in	code_change	not	being	called.	DepMods	is	a	module	list	on	which
Mod	depends.	Behaviors	using	these	modules	will	also	be	suspended.

{update,	Mod,	{advanced,Extra},	PrePurge,	PostPurge,	DepMods}

PrePurge	and	PostPurge	are	by	default	set	to	brutal_purge.	Use	this
option	when	you	want	processes	running	the	old	version	of	Mod	to	be
unconditionally	terminated	before	the	updated	module	is	loaded	and	after
the	module	upgrade	when	the	release	is	made	permanent.	You	can	override
this	behavior	by	setting	PrePurge	to	soft_purge.	If	some	processes	are	still
running	a	version	of	the	old	code,	release_handler:install_release/1,
which	triggers	the	execution	of	the	relup	file,	returns	{error,
{old_processes,Mod}}.	If	PostPurge	is	set	to	soft_purge,	the	release
handler	will	purge	Mod	only	after	the	processes	executing	the	old	version
have	terminated	their	calls.

{update,	Mod,	Timeout,	{advanced,Extra},	PrePurge,	PostPurge,

DepMods}

Remember	that	behaviors	are	implemented	as	callback	functions,	so	for	a
purge	to	fail,	they	must	be	executing	in	a	callback	for	an	unusually	long
amount	of	time	or	have	an	unusually	long	message	queue.	The	default
timeout	value	when	trying	to	suspend	a	process	is	5	seconds,	but	this	can	be
overridden	by	setting	the	Timeout	field	to	an	integer	in	milliseconds	or	the
atom	infinity.	If	a	behavior	does	not	respond	to	the	sys:suspend/1	call
and	the	timeout	is	triggered,	the	process	is	ignored.	It	might	later	be
terminated	if	the	module	it	is	executing	is	purged,	or	as	the	result	of	a
runtime	error	when	it	starts	running	the	new	version	of	the	module	without
properly	going	through	the	upgrade	procedure.	Use	the	Timeout	option
when,	after	testing	your	upgrades	under	heavy	load,	you	see	there	is	a	need
to	increase	the	value.

{update,	Mod,	ModType,	Timeout,	{advanced,Extra},	PrePurge,

PostPurge,	DepMods}

By	default,	one	of	the	code_change/3,4	callback	functions	is	executed	after

loading	the	new	module.	In	the	case	of	a	downgrade,	code_change/3,4	is
called	before	loading	the	module.	You	can	override	this	by	setting	ModType
to	static,	which	loads	the	module	and	calls	code_change/3,4	before	an
upgrade	or	downgrade.	If	not	specified,	or	if	you	want	the	default	behavior,
set	ModType	to	dynamic.

{load_module,	Mod},	{load_module,	Mod,	DepMods},	{load_module,	Mod,
PrePurge,	PostPurge,	DepMods}

You	want	to	use	this	low-level	instruction	for	upgrades	where	you	do	not
need	to	suspend	the	process.	We	refer	to	these	upgrades	as	simple	code
replacements.	The	same	applies	to	the	instructions	used	for	adding	and
deleting	modules.	DepMods	lists	all	the	modules	that	should	be	loaded
before	Mod.	This	argument	is	an	empty	list	by	default.	PrePurge	and
PostPurge	can	be	set	to	either	soft_purge	or	brutal_purge	(the	default).
They	work	the	same	way	as	they	do	with	the	update	command.	Use	this
instruction	when	dealing	with	library	modules	or	extending	functionality
that	does	not	affect	running	processes.

{add_module,	Mod},	{delete_module,	Mod}
These	commands	translate	to	low-level	instructions	that	add	and	delete
modules	between	releases.

{add_application,	Application},	{add_application,	Application,	Type}
This	instruction	will	add	a	new	application	to	a	release,	including	loading
all	of	the	modules	defined	in	the	app	file	and,	where	applicable,	starting	the
supervision	tree.	The	application	types,	covered	in	Chapter	9,	defaults	to
permanent,	but	Type	can	also	be	set	to	transient,	temporary,	load,	or
none.

{remove_application,	Application},	{restart_application,
Application}

You	will	want	to	use	these	commands	when	removing	or	restarting	an
application.	Removing	an	application	shuts	down	the	supervision	tree,
deletes	the	modules	from	memory,	and	stops	the	application.	If	the	upgrade
or	downgrade	requires	an	application	restart,	this	high-level	command	will
translate	to	commands	that	stop	and	start	the	application	and	its	supervision
tree.	You	usually	find	application	restarts	in	.appup	files	belonging	to
noncore	OTP	applications	such	as	tools	and	libraries	that	can	be	restarted

without	affecting	traffic	in	the	live	system.
You	can	mix	high-	and	low-level	instructions	in	the	same	.appup	file,	but	for	the
vast	majority	of	use	cases,	high-level	instructions	will	be	enough	as	most	of	your
actions	can	be	completed	with	them.	We	cover	low-level	instructions	in	the	next
section,	as	soon	as	we’ve	done	our	first	upgrade.

Release	Upgrade	Files
Now	that	we	have	our	coffee.appup	file	and	understand	what	the	high-level
instructions	do,	let’s	use	this	knowledge	to	generate	an	upgrade	package.	The
first	step	is	to	create	a	new	boot	file	using	systools:make_script/2.	It	is	not
used	for	the	upgrade	itself,	but	is	part	of	the	package	we	deploy	in	case	the
upgraded	node	has	to	be	rebooted	(for	whatever	reason)	after	the	upgrade.	In	the
second	shell	command,	we	create	a	release	upgrade	file	called	relup,	which	is
placed	in	the	current	working	directory.	This	file	is	generated	using	the	emulator
and	application	versions	specified	in	the	rel	and	.appup	files,	using	them	to
retrieve	and	map	high-	and	low-level	instructions	in	the	.appup	files	to	a
sequence	of	low-level	ones.	Compile	all	the	code	in	your	coffee-1.1	application
directory,	and	run	the	following	commands:

1>	systools:make_script("coffee-1.1",	[{path,	["coffee-1.1/ebin"]}]).

ok

2>	systools:make_relup("coffee-1.1",	["coffee-1.0"],["coffee-1.0"],

																								[{path,	["coffee*/ebin"]}]).

ok

3>	systools:make_tar("coffee-1.1",

																						[{path,	["coffee-1.1/ebin"]},

																							{outdir,	"ernie/releases"}]).

ok

In	our	third	shell	command,	we	create	the	tar	file	coffee-1.1.tar.gz.	It	contains	the
lib	and	releases	directories	specified	in	coffee-1.1.rel.	Calling	make_tar/2	picks
up	the	relup,	start.boot,	and	sys.config	files	automatically	and	creates	a	version
1.1	directory	under	releases.	Note	that,	unlike	in	our	first	installation,	we	did	not
include	the	erts	option.	We	are	going	to	use	the	one	already	installed.

Let’s	look	at	the	relup	file	more	closely	now	that	the	low-level	instructions	have
been	generated.	We	explain	them	all	in	“Low-Level	Instructions”,	but	even
without	having	covered	them,	you	should	get	a	good	idea	of	what	is	going	on:

{"1.1",

	[{"1.0",[],

			[{load_object_code,{coffee,"1.1",[coffee_fsm]}},

				point_of_no_return,

				{suspend,[coffee_fsm]},

				{load,{coffee_fsm,brutal_purge,brutal_purge}},

				{code_change,up,[{coffee_fsm,{}}]},

				{resume,[coffee_fsm]}]}],

	[{"1.0",[],

			[{load_object_code,{coffee,"1.0",[coffee_fsm]}},

				point_of_no_return,

				{suspend,[coffee_fsm]},

				{code_change,down,[{coffee_fsm,{}}]},

				{load,{coffee_fsm,brutal_purge,brutal_purge}},

				{resume,[coffee_fsm]}]}]}.

Before	covering	the	low-level	commands	in	more	detail,	let’s	look	at	the
systools:make_relup/3,4	call	we	used	to	generate	the	file	itself:

systools:make_relup(RelName,	UpFromList,	DownToList,	[Options])	->

					ok	|	error	|	{ok,Relup,Module,Warnings}	|	{error,Module,Error}

The	call	takes	RelName,	the	name	of	a	release	to	which	we	are	upgrading	or
downgrading.	This	points	to	the	RelName.rel	file,	used	to	determine	the	version
of	the	Erlang	runtime	system	and	the	versions	of	the	various	applications.
RelName	can	also	be	a	tuple	{RelName,	Descr},	where	Descr	is	a	term	that	is
included	in	the	upgrade	and	downgrade	instructions,	returned	by	the	function
installing	the	release	on	the	target	machine.

The	second	and	third	arguments,	UpFromList	and	DownToList,	include	the	list	of
releases	we	want	to	upgrade	from	or	downgrade	to,	respectively.	They	are	all
names	that	point	to	a	specific	version	of	a	rel	file	used	to	determine	which
applications	need	to	be	added,	removed,	or	upgraded.	Using	their	respective	.app
and	.appup	files,	the	call	also	determines	the	sequence	of	commands	that	need	to
be	executed.	The	fourth,	optional,	argument	is	a	list	of	options	that	may	include:

{path,	DirList}

Adds	paths	listed	in	DirList	to	the	code	search	path.	You	can	include
wildcards	in	your	path,	so	the	asterisk	in	"lib/*/ebin"	will	expand	to
contain	all	of	the	subdirectories	in	lib	containing	an	ebin	directory.	The
code	search	path	of	the	node	creating	the	relup	file	must	have	paths	to	the
old	and	the	new	versions	of	the	.rel	and	.app	files,	as	well	as	a	path	to	the
new	.appup	and	.beam	files.

{outdir,	Dir}

Puts	the	relup	file	in	Dir	instead	of	the	current	working	directory.

restart_emulator

Generates	low-level	instructions	that	reboot	the	node	after	an	upgrade	or
downgrade.

silent

Returns	a	tuple	of	the	format	{ok,	Relup,	Module,	Warnings}	or	{error,
Module,	Error}	instead	of	printing	results	to	I/O.	Use	this	option	when
calling	systools	functions	from	scripts	or	integrating	the	call	in	your	build
process	where	you	need	to	handle	errors.

noexec

Returns	the	same	values	as	the	silent	option,	but	without	generating	a
relup	file.

warnings_as_errors

Treats	warnings	as	errors	and	refuses	to	generate	the	relup	script	if
warnings	occur.

The	format	of	the	relup	file	itself	is	similar	to	the	.appup	file:

{Vsn,

		[{UpFromV1,	Descr,	InstructionsU1},	...,	{ UpFromVK,	Descr,	InstructionsUK}],

		[{DownToV1,	Descr,	InstructionsD1},	...,	{ DownToVK,	Descr,	InstructionsDK}]}.

The	Descr	term	contains	a	term	passed	in	the	{RelName,	Descr}	tuple	of	the
systools:make_relup/3,4	call.	If	Descr	was	omitted	from	the	call,	it	defaults	to
an	empty	list.	You	will	notice	this	in	our	example,	as	we	left	it	out	for	the	coffee
machine	relup	example.	Descr	becomes	relevant	when	automating	the
installation	of	the	upgrade	on	the	target	machine,	as	its	values	can	be	used	by	the
programs	or	scripts	installing	the	upgrade.

Low-Level	Instructions
Relup	files	consist	of	low-level	instruction	sets	generated	from	the	.appup	files.
For	complex	upgrades,	you	can	write	your	files	using	low-level	instructions	or
edit	generated	ones	by	hand.	Low-level	instructions	consist	of	the	following:

{load_object_code,	{Application,	Vsn,	ModuleList}}

Reads	all	the	modules	from	the	Application	ebin	directory,	but	does	not
load	them	into	the	runtime	system.	This	instruction	is	executed	prior	to
suspending	the	behaviors	and	special	processes.	This	differs	from	the	high-
level	instruction	load	that	not	only	loads	the	module,	but	also	makes	it
available	to	the	runtime.

point_of_no_return

This	instruction	should	appear	once	in	the	relup	script	and	should	be	placed
where	the	system	cannot	recover	after	failing	to	execute	one	or	more	of	the
instructions	in	the	relup	file.	Crashes	occurring	after	this	instruction	will
result	in	the	old	version	of	the	system	being	restarted.	It	is	usually	placed
after	the	load_object_code	instruction.

{load,	{Module,	PrePurge,	PostPurge}}

Makes	a	module	that	has	been	loaded	using	load_object_code	the	current
version.	PrePurge	and	PostPurge	can	be	set	to	soft_purge	or
brutal_purge	(the	default).

{apply,	{Mod,	Func,	ArgList}}

Calls	apply(Mod,	Func,	ArgList).	If	the	apply	is	executed	before	the
point	of	no	return	and	fails	or	returns	(or	throws)	{error,Error},	the	call	to
release_handler:install_release/1	returns	{error,{'EXIT',Reason}}
or	{error,Error},	respectively.	If	it’s	executed	after	the	point	of	no	return
and	fails,	the	system	is	restarted	with	the	old	version	of	the	release.	This
instruction	could	be	used	instead	of	the	code_change/3,4	callback
function.

{remove,	{Module,	PrePurge,	PostPurge}}

Used	together	with	load	and	purge.	This	instruction	makes	the	current
version	of	Module	old.

{purge,	ModuleList}

Purges	the	old	versions	of	all	modules	in	ModuleList.	Behaviors	and
special	processes	executing	the	old	version	of	the	code	being	purged	are
terminated.

{suspend,	[Module	|	{Module,	Timeout}]}

Suspends	behaviors	that	depend	on	the	Module	list.	Timeout	is	an	integer	in
milliseconds	or	the	atoms	default	(set	to	5	seconds)	or	infinity.	If	the
call	to	sys:suspend/1	does	not	return	within	Timeout,	the	process	is
ignored	but	not	terminated.

{resume,	ModuleList}

Resumes	suspended	processes	that	depend	on	modules	listed	in
ModuleList.

{code_change,	[{Module,	Extra}]},	{code_change,	Mode,	[{Module,
Extra}]}

Triggers	the	Module:code_change/3,4	call,	passing	Extra	in	all	behavior
processes	running	Module.	Mode	is	up	or	down,	defining	the	call	as	either	an
upgrade	or	a	downgrade.	If	omitted,	Mode	defaults	to	up.

{stop,	ModuleList}

This	instruction	results	in	the	supervisor:terminate_child/2	call	for	all
behaviors	with	a	dependency	on	one	of	the	modules	specified	in
ModuleList.

{start,	ModuleList}

Starts	all	stopped	processes	with	a	dependency	on	a	module	in	ModuleList
by	calling	supervisor:restart_child/2.

restart_new_emulator

This	instruction	is	used	when	upgrading	the	emulator	or	the	kernel,	stdlib,
and	sasl	core	applications.	The	emulator	needs	to	be	restarted	right	after
upgrading	these	applications,	but	before	executing	the	remainder	of	the
relup	file.	All	other	applications	will	be	restarted	with	their	old	versions
running	in	the	new	emulator	and	upgraded	when	running	the	remainder	of
the	relup	file	in	the	new	emulator.	When	different	processes	end	up	running
different	application	versions	in	this	manner,	non–backward-compatibility

clashes	between	them	can	occur,	so	ensure	all	possible	scenarios	in	your
upgrade	procedure	have	been	properly	tested	before	using	this	technique.	If
you	are	worried	about	the	order	of	your	low-level	instructions,	use	high-
level	ones	and	let	systools:make_relup/3,4	generate	the	relup	file.	This
instruction	should	be	executed	only	once	during	the	upgrade.

restart_emulator

This	instruction	is	used	when	an	emulator	restart	is	required	as	part	of	an
upgrade	that	does	not	involve	the	core	applications	or	an	emulator	upgrade.
It	may	appear	only	once	in	the	relup	file	and	has	to	be	the	last	instruction.

Installing	an	Upgrade
Let’s	go	back	to	the	coffee-1.1.tar.gz	file	we	generated	and	use	it	for	our	live
upgrade.	We	assume	that	it	has	been	placed	in	the	releases	directory	of	the	target
environment.	From	the	ernie	root	directory,	we	connect	to	the	coffee_fsm	node
that	we	left	running	version	1.0.	If	it	is	not	running,	start	it	with	bin/start.	We
unpack	the	new	release	using	the	release_handler:unpack_release/1	call,
uncompressing	all	the	files,	adding	the	coffee-1.1	application	to	the	lib	directory,
and	creating	the	version	1.1	directory	in	the	releases	directory.	We	can	see	in
shell	commands	2	and	3	that	after	unpacking	the	new	release	it	resides	alongside
1.0,	and	that	1.0	is	still	running:

$	bin/to_erl	/tmp/

Attaching	to	/tmp/erlang.pipe.1	(^D	to	exit)

1>	release_handler:unpack_release("coffee-1.1").

{ok,	"1.1"}

2>	release_handler:which_releases().

[{"coffee","1.1",

		["kernel-4.1.1","stdlib-2.7","sasl-2.6.1","coffee-1.1"],

		unpacked},

	{"coffee","1.0",

		["kernel-4.1.1","stdlib-2.7","sasl-2.6.1","coffee-1.0"],

		permanent}]

3>	application:which_applications().

[{coffee,"Coffee	Machine	Controller","1.0"},

	{sasl,"SASL		CXC	138	11","2.6.1"},

	{stdlib,"ERTS		CXC	138	10","2.7"},

	{kernel,"ERTS		CXC	138	10","4.1.1"}]

4>	coffee_fsm:espresso().

Display:Please	pay:150

ok

5>	coffee_fsm:pay(100).

Display:Please	pay:50

ok

6>	release_handler:install_release("1.1").

{ok,"1.0",[]}

7>	coffee_fsm:cancel().

Display:Make	Your	Selection

ok

Machine:Returned	100	in	change

8>	coffee_fsm:open().

ok

Display:Open

9>	coffee_fsm:close().

Machine:Rebooted	Hardware

Display:Make	Your	Selection

ok

10>	application:which_applications().

[{coffee,"Coffee	Machine	Controller","1.1"},

	{sasl,"SASL		CXC	138	11","2.6.1"},

	{stdlib,"ERTS		CXC	138	10","2.7"},

	{kernel,"ERTS		CXC	138	10","4.1.1"}]

11>	init:restart().

ok

12>

Erlang/OTP	18	[erts-7.2]	[smp:8:8]	[async-threads:10]	[kernel-poll:false]

...<snip>...

Eshell	V7.2		(abort	with	^G)

1>	application:which_applications().

[{coffee,"Coffee	Machine	Controller","1.0"},

	{sasl,"SASL		CXC	138	11","2.6.1"},

	{stdlib,"ERTS		CXC	138	10","2.7"},

	{kernel,"ERTS		CXC	138	10","4.1.1"}]

Next,	we	upgrade	the	release	by	executing	the
release_handler:install_release/1	call.	If	issues	arise	and	a	restart	is
triggered,	the	system	will	reboot	and	revert	to	the	old	version.	If	the	system	is
stable,	the	current	(new)	version	is	made	permanent	by	calling
release_handler:make_permanent/1.

We	then	use	the	new	client	functions	we’ve	added	to	test	the	transition	to	and
from	state	service	before	rebooting	the	node	in	shell	command	11.	Because	we
never	made	the	release	permanent,	the	node	restarts	version	1.0.

Next,	in	shell	commands	2	and	3,	we	reinstall	the	release	and	make	it	permanent.
At	this	point,	we	do	not	need	files	specific	to	1.0	anymore.	Unused	releases	can
be	removed	from	the	system	using	the	release_handler:remove_release/1
call.	The	call	removes	the	applications	that	are	only	part	of	that	release	from	the
lib	directory,	removes	the	directory	from	releases,	and	updates	the	RELEASES
file	there.	To	revert	back	to	the	old	version	we	have	to	reinstall	it,	covering	all
the	steps	we’ve	just	described,	including	creating	an	.appup	file	for	version	1.0
of	the	coffee	application,	a	relup	file,	and	a	tar	file:

2>	release_handler:install_release("1.1").

{ok,"1.0",[]}

3>	release_handler:make_permanent("1.1").

ok

4>	release_handler:remove_release("1.0").

ok

5>	release_handler:which_releases().

[{"coffee","1.1",

		["kernel-4.1.1","stdlib-2.7","sasl-2.6.1","coffee-1.1"],

		permanent}]

6>	halt().

[End]

$	ls	lib/

coffee-1.1	 kernel-4.1.1	 sasl-2.6.1	 stdlib-2.7

That’s	it!	A	software	upgrade	during	runtime,	with	the	ability	to	fall	back	to	old
releases	when	issues	occur	or	remove	them	when	they	are	no	longer	needed.

WARNING
The	release	handler	is	intended	to	work	with	embedded	target	systems.	If	you	use	it	with
simple	target	systems,	you	need	to	ensure	the	correct	boot	and	config	files	are	used	in	the	case
of	a	restart.	How	you	do	it	is	entirely	up	to	you.	You	could	replace	existing	files	or	have	OS
environment	variables	pointing	to	the	correct	ones.

The	Release	Handler
We	introduced	the	SASL	application	in	Chapter	9.	It	is	one	of	the	core	OTP
applications	that	has	to	be	part	of	every	release	because	it	contains	tools	required
to	build,	install,	and	upgrade	the	release	itself.	If	you	looked	at	SASL’s
supervision	tree	(Figure	12-4),	you	might	have	noticed	the	release	handler
process.	It	is	responsible	for	unpacking,	installing,	and	upgrading	releases
locally	on	each	node.	It	also	removes	them	and	makes	them	permanent.	We	used
the	release	handler	and	went	through	these	phases	in	our	example.

Figure	12-4.	The	release	handler	process

The	release	handler	assumes	a	release	tar	file,	created	using
systools:make_tar/1,2	and	placed	in	the	releases	directory.	Each	release
version	can	be	in	one	of	the	following	states,	as	seen	in	Figure	12-5:	unpacked,
current,	permanent,	and	old.	State	transitions	occur	when	functions	in	the
release_handler	module	are	called	or	a	release	that	has	not	been	made
permanent	fails,	triggering	a	system	restart.	At	any	one	time,	there	is	always	a
release	that	is	either	current	or	permanent.	Let’s	look	at	the	functions	exported
by	the	release_handler	module,	including	those	that	trigger	the	transition	more
closely.

Figure	12-5.	Managing	a	release

When	dealing	with	your	first	target	installation,	the	release	handler	becomes
relevant	only	if	Erlang	is	already	installed	on	the	target	machine.	As	it	wasn’t
when	we	created	the	first	coffee_fsm	release,	everything	had	to	be	done
manually.	If	you	follow	the	steps,	you	will	notice	that	the	first	call	we	did	once
version	1.0	of	the	system	was	up	and	running	was	to	create	the	RELEASES	file:

release_handler:create_RELEASES(Root,	RelDir,	RelFile,	AppDirs)	->

					ok	|	{error,	Reason}

This	call	creates	the	first	version	of	the	RELEASES	file,	stored	in	the	releases
directory.	It	contains	the	persistent	state	of	the	release	handler,	which	includes
the	release	applications,	their	versions,	and	their	absolute	paths.	The	Erlang	VM
executing	this	function	must	have	permission	to	write	to	the	releases	directory.
Root	is	the	Erlang	root	directory,	while	RelDir	is	the	path	pointing	to	the
releases	directory.	The	releases	directory	is	often	located	in	the	Erlang	root
directory,	but	you	can	override	this	by	setting	the	OS	or	OTP	environment
variables	described	in	“Release	Directory	Structure”.	RelFile	points	to	the
release	file	located	in	the	releases	directory,	while	AppDirs	is	a	list	of	{App,
Vsn,	Dir}	tuples	used	to	override	the	applications	stored	in	lib.	It	is	most

commonly	used	when	distributing	Erlang	in	OS-specific	packages	and	not	OTP
ones.	This	function	unpacks	the	Name.tar.gz	file	located	in	the	releases
directory:

release_handler:unpack_release(Name)	->

				{ok,	Vsn}	|	{error,	Reason}

It	checks	that	all	mandatory	files	and	directories	are	present,	adding	the
applications	in	the	lib	and	release	directories	under	releases.	It	fails	if	the	string
Name	is	an	existing	release,	or	if	there	are	issues	unpacking	or	reading	the
mandatory	files	and	directories.	When	we	have	unpacked	the	release,
install_release/1,2	triggers	the	software	upgrade	(or	downgrade),	executing
the	instructions	specified	in	the	relup	file:

release_handler:install_release(Vsn)

release_handler:install_release(Vsn,	OptList)	->

				{ok,	OtherVsn,	Descr}	|	{error,	Reason}	|

				{continue_after_restart,	OtherVsn,	Descr}

OptList	is	a	list	of	options	that	allow	us	to	override	some	of	the	default	settings.
They	include:

{error_action,	restart	|	reboot}	to	specify	if	the	runtime	system	is
rebooted	(init:reboot())	or	restarted	(init:restart())	as	the	result	of	an
upgrade	failure.

{suspend_timeout,	Timeout}	to	override	the	default	(5-second)	timeout
for	the	sys:suspend/1	call,	used	to	suspend	a	process	prior	to	upgrading
the	code.

{code_change_timeout,	Timeout}	to	override	the	default	(5-second)
timeout	for	the	sys:change_code/4	call,	used	to	tell	a	suspended	process	to
upgrade	the	code.

{update_paths,	Bool},	used	when	overriding	the	default	lib/App-Vsn
directory	provided	in	the	AppDirs	argument	in	the	create_RELEASES/4	call.
Setting	Bool	to	true	will	cause	all	code	paths	of	the	applications	in	AppDirs
to	be	changed,	including	applications	that	are	not	being	upgraded.	Setting	it
to	its	default	value	of	false	will	cause	only	the	paths	of	the	upgraded
applications	to	be	changed.

You	might	recall	that	the	relup	file	contains	tuples	of	the	format	{Vsn,	Descr,
Instructions}.	Descr	is	part	of	the	return	value	when	the	upgrade	or
downgrade	was	successful.	If	{continue_after_restart,	OtherVsn,	Descr}
is	returned,	the	runtime	system	and	the	core	applications	are	being	upgraded,
requiring	an	emulator	restart	before	the	remainder	of	the	script	is	executed.

If	errors	we	can	recover	from	have	occurred,	{error,	Reason}	is	returned.
Recoverable	errors	include	Vsn	already	being	the	permanent	release	or	the	relup
file	missing,	along	with	others	that	will	result	in	the	installation	of	the	release
failing,	but	not	requiring	a	node	restart.	If	the	upgrade	fails	due	to	an
unrecoverable	error,	the	node	is	restarted	or	rebooted.

Installing	releases	and	upgrading	code	can	be	a	risky	and	time-consuming
operation.	This	function	mitigates	risks	of	issues	happening,	checking	if	Vsn	can
be	installed,	ensuring	that	all	mandatory	files	are	available	and	accessible,	as
well	as	evaluating	all	low-level	instructions	in	the	relup	file	prior	to	the
point_of_no_return:

release_handler:check_install_release(Vsn)

release_handler:check_install_release(Vsn,Options)	->

				ok	|	{error,	Reason}

Options	is	a	list	containing	[purge],	which	soft	purges	the	code	when	doing	the
checks.	This	will	speed	up	the	installation	of	the	release	itself,	as	all	modules	are
soft	purged	prior	to	the	upgrade	itself.

When	we	have	installed	a	new	release	and	executed	the	instructions	in	the	relup
file,	we	keep	the	nodes	under	observation,	possibly	running	diagnostic	tests.	If
there	are	issues,	restarting	the	node	will	use	the	old	boot	file	and	cause	a	restart
of	the	old	version.	Calling	make_permanent/1,	makes	the	boot	script	that	points
to	the	upgraded	release	be	the	one	used	when	rebooting	or	restarting	the	node.
This	call	can	fail	for	a	variety	of	reasons,	including	Vsn	not	being	the	current
version	or	not	being	a	release	at	all:

release_handler:make_permanent(Vsn)	->	ok	|	{error,	Reason}

If	a	release	has	been	made	permanent,	files	specific	to	old	releases	can	be
removed.	Calling	remove_release/1	will	delete	old	applications	no	longer	in

use,	with	the	Vsn	directory	containing	the	.rel,	.boot,	and	sys.config	files	in	the
releases/Vsn	directory.	This	call	also	upgrades	the	available	releases	in	the
RELEASES	file.	It	fails	if	Vsn	is	a	permanent	or	nonexisting	release:

release_handler:remove_release(Vsn)	->	ok	|	{error,	Reason}

Houston,	we	have	a	problem.	If	your	current	release	is	not	operating	as	expected
and	you	need	to	revert	to	an	old	release	(which	you	have	not	removed),	this	call
reboots	the	runtime	system	with	the	old	boot	file,	making	it	the	new,	permanent
version:

release_handler:reboot_old_release(Vsn)	->	ok	|	{error,	Reason}

This	call	uses	the	RELEASES	file	and	returns	all	the	releases	known	to	the
release	handler.	Status	is	one	of	unpacked,	current,	permanent,	or	old:

release_handler:which_releases(Status)

release_handler:which_releases()	->	[{Name,	Vsn,	Apps,	Status}]

The	release_handler	module	exports	functions	that	make	it	possible	to	upgrade
and	downgrade	single	applications,	creating	a	release	upgrade	script	on	the	fly
and	evaluating	it.	These	functions	(which	we	are	not	covering	in	this	book)	are
meant	to	facilitate	and	automate	testing	of	application	upgrades.	They	should	not
be	used	in	production	systems,	as	the	changes	are	not	persistent	in	the	case	of
system	restarts.

It	is	possible	to	install	upgrades	without	the	release	handler	while	keeping	its
view	consistent	and	up	to	date.	This	functionality	comes	in	handy	when	dealing
with	OS-specific	packages,	when	you	do	deployments	and	upgrades	with	other
tools,	or	even	when	you	write	your	own.	There	are	functions	that	allow	us	to
inform	the	release	handler	process	of	the	addition	and	removal	of	releases	and
release-specific	files.	You	can	read	about	these	functions	as	well	as	the	ability	to
upgrade	and	downgrade	single	applications	in	the	release_handler	manual
pages	that	come	with	the	standard	Erlang	distribution.

Upgrading	Environment	Variables
When	upgrading	your	release,	the	new	package	will	include	the	new	(and
mandatory)	sys.config.	It	will	also	contain	a	new	app	file	for	every	new	and
upgraded	application.	These	files	might	contain	new	or	updated	application
environment	variables,	or	if	the	files	are	no	longer	needed,	they	will	have	been
omitted	altogether.	During	the	upgrade,	the	application	controller	will	compare
old	environment	variables	with	their	current	counterparts	in	the	start	scripts	(set
with	the	-application	key	value	flag),	config	files,	and	app	files,	updating	any
differences	accordingly.	When	done,	the	following	callback	function	is	called	in
the	new	application	callback	module,	prior	to	resuming	the	processes:

Module:config_change(Updated,	New,	Deleted)

Updated,	New,	and	Deleted	are	lists	of	{Key,	Value}	tuples,	where	each	key	is
an	environment	variable	and	the	value	is	what	you	want	the	variable	set	to.	This
is	an	optional	callback	that	can	be	omitted,	but	is	useful	when	process	states
depend	on	environment	variables	read	at	startup.

Making	a	release	permanent	will	change	the	sys.config	file	pointed	to	by	the	start
scripts	to	the	new	version.	It	is	done	only	now	because	rebooting	a	node	with	a
release	that	is	not	permanent	reverts	back	to	the	previous	release.

Upgrading	Special	Processes
Upgrading	special	processes	is	no	different	from	upgrading	behaviors.	If	you	are
doing	a	simple	code	replacement,	load	the	new	module	through	the	add_module
instruction.	If	the	upgrade	has	to	be	a	synchronized	code	replacement,	use	the
same	update	high-level	instruction	you	would	use	for	OTP	behaviors.	Upon
receiving	a	message	of	the	format	{system,	From,	Msg},	the	special	process
invokes	proc_lib:handle_system_msg/6,	which	suspends	the	process.	(We
covered	system	messages	in	“System	Messages”.)	If	the	update	command	had
the	{advanced,Extra}	parameter	in	its	Change	field,	the	following	callback
function	is	called	in	the	special	process	callback	module:

Mod:system_code_change(LoopData,	Module,	Vsn,	Extra)	->

			{ok,	NewLoopData}

This	call	returns	the	tuple	{ok,	NewLoopData}.	Module	is	the	name	of	the
callback	module,	and	Vsn	is	either	the	version	to	which	you	are	upgrading	or,	in
the	case	of	a	downgrade,	{downgrade,	Vsn}.	Vsn	is	a	string	in	both	cases.

One	final	note:	remember	the	system	message	{get_modules,	From}	that
special	processes	have	to	handle	when	they	are	not	aware	of	their	dependent
modules?	Those	for	which	we	use	the	dynamic	atom	in	the	supervisor
specification,	covered	in	“Dynamic	Modules	and	Hibernating”?	When
upgrading,	all	processes	whose	child	specifications	in	the	supervisor	have
module	dependencies	set	to	dynamic	reply	to	such	a	message	with	From!
{modules,	ModuleList},	containing	the	list	of	modules	on	which	the	special
process	currently	depends.	This	will	inform	the	release	handler	coordinating
synchronized	upgrades	if	this	special	process	is	part	of	a	dependency	chain	and
should	be	suspended	during	the	upgrade	of	a	particular	module.

Upgrading	in	Distributed	Environments
Synchronized	software	upgrades	in	distributed	environments?	Is	that	possible?
Are	we	crazy	enough	to	try	it?	If	you	have	a	small	cluster,	trust	your	network,
and	have	dependencies	connected	to	your	upgrade	across	your	nodes,	then	why
not?	Remember	that	distributed	Erlang	was	originally	intended	for	clusters	that
ran	behind	firewalls	in	the	same	data	center,	and	more	often	than	not,	also	in	the
same	subrack.	If	you	were	upgrading	a	switch,	distributed	Erlang	often	ran	on
the	same	backplane	the	switch	was	controlling,	so	if	you	lost	your	network,	there
was	nothing	to	control	because	you	also	lost	your	switch.

In	a	small	cluster	with	a	few	nodes	running	in	the	same	subrack,	you	have	little
to	worry	about.	For	larger	clusters,	clusters	across	data	centers,	or	where
networks	are	unreliable,	devise	a	strategy	to	upgrade	a	node	without	the	need	to
synchronize.

Enough	warnings.	Let’s	drink	some	Red	Bull	and	get	on	with	it.	If	you	include
the	sync_nodes	low-level	instruction	in	your	.appup	file,	the	relup	script	that
gets	generated	will	synchronize	with	the	other	nodes	also	waiting	to	be	upgraded
and	upgrade	them	too	when	they	are	also	attempting	to	synchronize.

Synchronization	is	triggered	by	one	of	the	following	instructions:

{sync_nodes,	Id,	NodeList}

{sync_nodes,	Id,	{Mod,Func,ArgList}}

You	can	either	hardcode	NodeList	in	the	.appup	file,	as	in	the	first	instruction,	or
use	the	second	instruction	to	invoke	apply(Mod,	Func,	ArgList)	to	get	the	list
of	nodes	that	recognize	Id,	which	are	the	nodes	to	synchronize.	Id	can	be	any
valid	Erlang	term.	For	the	synchronization	to	be	successful,	remote	nodes	must
be	executing	the	same	instruction	with	the	same	Id.

If	you	lose	connectivity	toward	a	remote	node	with	which	you	are	attempting	to
synchronize,	either	because	of	a	network	partition	or	because	the	remote	node
crashed,	the	node	is	restarted	with	the	old	release.	There	is	no	timeout,	so	if	a
remote	node	is	not	being	upgraded	or	is	out	of	sync,	the	local	node	attempting	to
upgrade	will	hang	until	all	remote	nodes	have	executed	sync_nodes	or

connectivity	toward	one	of	the	nodes	is	lost.	This	is	why	the	technique	in	this
section	has	some	risks	for	nodes	distributed	across	a	wide-area	network.

If	you	have	not	synchronized	your	upgrades	properly,	your	cluster	will	hang
waiting	for	all	the	other	nodes.	And	if	there	are	issues	with	your	network
connectivity	or	the	upgrade	in	one	of	the	other	nodes	fails,	you	will	trigger	a
series	of	node	restarts	that	will	hopefully	recover	and	continuing	running	the	old
release.	But	in	the	worst	case,	this	technique	might	cause	a	cascading	failure
where	you	knock	out	one	node	after	another	when	they	fail	to	cope	with	the
restart.	You	have	been	warned!	Use	synchronized	distributed	upgrades	only
when	it	is	safe	and	the	use	case	motivates	it.	If	in	doubt,	perform	rolling
upgrades	across	your	cluster	instead,	one	node	at	a	time,	after	making	sure	that
nodes	running	the	new	release	are	interoperable	with	those	still	running	the	old.

Upgrading	the	Emulator	and	Core	Applications
You	upgrade	the	emulator	and	the	core	applications	by	providing	their	new
versions	in	the	new	release	file.	The	rest	is	taken	care	of	for	you	when	generating
the	relup	file.	Just	remember	to	include	the	erts	option	in	the
systools:make_tar/2	call	when	upgrading	the	Erlang	runtime	system,	as	it	will
include	the	emulator	in	the	new	tar	file.	If	you	think	it	sounds	simple,	it	is,	but
there	are	a	few	catches	of	which	you	need	to	be	aware.

Upgrading	the	emulator	and	core	applications	(erts,	kernel,	stdlib,	and	sasl)
requires	a	restart	of	the	virtual	machine,	usually	triggered	by	the
restart_new_emulator	instruction.	Unlike	with	other	upgrades,	this	will	be	the
first	instruction	executed	in	the	file,	starting	the	new	emulator	and	the	new	core
applications,	together	with	the	old	versions	of	the	remaining	applications.	This
two-phase	approach	allows	the	remaining	behaviors	and	special	processes	being
upgraded	to	call	code_change	as	part	of	their	upgrade,	using	new	versions	of	the
core	applications	while	doing	so.

If	you	are	not	happy	with	this	approach,	you	can	edit	the	relup	file	by	hand.
Replacing	restart_new_emulator	with	the	restart_emulator	instruction	will
restart	the	emulator	with	the	new	versions	for	all	applications.	A	restart	of	the
emulator	(which	is	not	the	new	emulator)	is	the	last	instruction	you	should	be
executing	in	your	relup	file,	as	all	it	does	is	restart	the	system	with	the	new	boot
file.	This	means	that	any	instructions	that	follow	restart_emulator	are	ignored,
while	any	instructions	before	it	are	executed	with	the	old	emulator.	A	helpful
instruction	you	have	to	add	manually	is	apply,	which	you	could	use	instead	of
code_change	if	opting	to	start	the	new	versions	of	the	applications	directly.

NON–BACKWARD-COMPATIBLE	UPGRADES	AND	DOWNGRADES

There	will	be	times	when,	as	a	result	of	the	restart_new_emulator	instruction,	you	restart	old
applications	that	you	plan	on	subsequently	upgrading	with	the	new	core	applications.	If	the	upgrade
spans	several	releases,	you	might	run	the	risk	of	your	noncore	applications	calling	deprecated
functions	in	the	core	applications	that	have	since	been	removed.	Deprecated	functions	are	kept	for	two
major	releases,	with	warnings	printed	out	when	you	compile	the	code	that	uses	them,	after	which	you
can	safely	remove	the	functions.	The	solution	is	to	replace	any	deprecated	functions	as	soon	as
possible,	and	upgrade	in	several	steps	while	testing	the	upgrades	to	ensure	that	all	applications	are

forward-compatible.

If	you	are	still	running	an	emulator	version	older	than	R15	(and	we	know	many	of	you	are),	you	might
run	into	problems	when	downgrading,	as	an	attempt	to	load	the	new	versions	of	the	beam	files	will	be
made	after	restarting	the	old	emulator.	If	you	are	affected,	compile	your	new	code	with	the	old
emulator	and	its	corresponding	version	of	the	compiler.

In	both	of	these	edge	cases,	testing	upgrades	and	downgrades	is	critical	and	will	at	a	very	early	stage
highlight	any	potential	issues	and	incompatibilities.

Upgrades	with	Rebar3
Now	that	you	understand	all	the	details	of	upgrades,	let’s	look	at	how	to	do	them
using	the	rebar3	tool	introduced	in	“Rebar3”.	First,	let’s	use	rebar3	to	build	a
release,	starting	again	with	the	code	from	coffee-1.0.	The	required	commands	are
similar	to	those	we	used	in	“Rebar3”:

$	mkdir	ernie

$	cd	ernie2

$	rebar3	new	release	coffee	desc="Coffee	Machine	Controller"

$	cd	coffee

$	perl	-i	-pe	's/0\.1\.0/1.0/'	./apps/coffee/src/coffee.app.src	./rebar.config

$	cp	<path-to-coffee-1.0>/coffee-1.0/src/*.erl	apps/coffee/src

$	rebar3	as	prod	compile

===>	Verifying	dependencies...

===>	Compiling	coffee

_build/default/lib/coffee/src/coffee_fsm.erl:2:

		Warning:	undefined	callback	function	code_change/4	(behaviour	'gen_fsm')

_build/default/lib/coffee/src/coffee_fsm.erl:2:

		Warning:	undefined	callback	function	handle_event/3	(behaviour	'gen_fsm')

_build/default/lib/coffee/src/coffee_fsm.erl:2:

		Warning:	undefined	callback	function	handle_info/3	(behaviour	'gen_fsm')

_build/default/lib/coffee/src/coffee_fsm.erl:2:

		Warning:	undefined	callback	function	handle_sync_event/4	(behaviour	'gen_fsm')

$	rebar3	as	prod	release

===>	Verifying	dependencies...

===>	Compiling	coffee

...<snip>....

===>	Starting	relx	build	process	...

===>	Resolving	OTP	Applications	from	directories:

										/Users/francescoc/ernie2/coffee/_build/prod/lib

										/Users/francescoc/ernie2/coffee/apps

										/usr/local/lib/erlang/lib

										/Users/francescoc/ernie2/coffee/_build/prod/rel

===>	Resolved	coffee-1.0

===>	Including	Erts	from	/usr/local/lib/erlang

===>	release	successfully	created!

We	use	the	rebar3	release	template	to	set	up	an	area	for	our	coffee	application,
change	the	version	number	to	1.0,	copy	our	coffee-1.0	sources	into	the	new
release	area,	run	rebar3	compile	to	verify	that	the	code	is	valid	(which,	as	we
saw	previously,	results	in	compilation	warnings	from	compiling	coffee_fsm.erl
due	to	missing	callback	functions),	and	then	build	a	release	using	the	prod
profile.	We	can	now	start	our	release	to	make	sure	it	runs	correctly:

$./_build/prod/rel/coffee/bin/coffee	console

...<snip>....

Machine:Rebooted	Hardware

Display:Make	Your	Selection

=PROGRESS	REPORT====	24-Jan-2016::16:06:10	===

										supervisor:	{local,sasl_safe_sup}

													started:	[{pid,<0.213.0>},

																							{id,alarm_handler},

																							{mfargs,{alarm_handler,start_link,[]}},

																							{restart_type,permanent},

																							{shutdown,2000},

																							{child_type,worker}]

...<snip>....

=PROGRESS	REPORT====	24-Jan-2016::16:06:10	===

									application:	sasl

										started_at:	coffee@francescoc

Eshell	V7.2		(abort	with	^G)

(coffee@francescoc)1>	application:which_applications().

[{sasl,"SASL		CXC	138	11","2.6.1"},

	{coffee,"Coffee	Machine	Controller","1.0"},

	{stdlib,"ERTS		CXC	138	10","2.7"},

	{kernel,"ERTS		CXC	138	10","4.1.1"}]

This	gives	us	a	release	for	coffee	version	1.0.	Next,	we	need	a	release	for	version
1.1,	so	we	copy	that	version	of	coffee_fsm.erl	into	our	source	directory,	bump
our	version	numbers,	and	then	generate	a	new	release:

$	cp	<path-to-coffee-1.1>/coffee-1.1/src/coffee_fsm.erl	apps/coffee/src

$	perl	-i	-pe	's/1\.0/1.1/'	./apps/coffee/src/coffee.app.src	./rebar.config

$	rebar3	as	prod	release

===>	Verifying	dependencies...

===>	Compiling	coffee

...<snip>....

===>	Resolved	coffee-1.1

===>	Including	Erts	from	/usr/local/lib/erlang

===>	release	successfully	created!

Before	we	can	generate	a	relup	file,	we	need	our	coffee.appup	file.	Because
rebar3	doesn’t	create	an	ebin	directory	in	the	usual	place,	we	create	one,	copy
the	coffee.appup	file	there,	and	then	use	the	rebar3	relup	command:

$	mkdir	apps/coffee/ebin

$	cp	<path-to-coffee-1.1>/coffee-1.1/ebin/coffee.appup	apps/coffee/ebin

$	rebar3	as	prod	relup

===>	Verifying	dependencies...

===>	Compiling	coffee

===>	Starting	relx	build	process	...

...<snip>....

===>	Resolved	coffee-1.1

===>	Including	Erts	from	/usr/local/lib/erlang

===>	release	successfully	created!

===>	Starting	relx	build	process	...

...<snip>....

===>	Resolved	coffee-1.1

===>	relup	successfully	created!

If	we	look	at	the	contents	of	the	generated	relup	file,	we	find	that	it’s	identical	to

that	generated	by	systools:make_relup/4	in	“Release	Upgrade	Files”:

$	cat	./_build/prod/rel/coffee/relup

{"1.1",

	[{"1.0",[],

			[{load_object_code,{coffee,"1.1",[coffee_fsm]}},

				point_of_no_return,

				{suspend,[coffee_fsm]},

				{load,{coffee_fsm,brutal_purge,brutal_purge}},

				{code_change,up,[{coffee_fsm,{}}]},

				{resume,[coffee_fsm]}]}],

	[{"1.0",[],

			[{load_object_code,{coffee,"1.0",[coffee_fsm]}},

				point_of_no_return,

				{suspend,[coffee_fsm]},

				{code_change,down,[{coffee_fsm,{}}]},

				{load,{coffee_fsm,brutal_purge,brutal_purge}},

				{resume,[coffee_fsm]}]}]}.

From	here,	you	can	create	a	tarball	with	rebar3	as	prod	tar	and	install	and
upgrade	as	shown	in	“Installing	an	Upgrade”.

Assuming	you	use	rebar3	as	your	build	and	release	tool,	it’s	worth	your	while	to
check	out	the	relflow	tool,	written	by	Richard	Jones.	It	is	purpose-built	for
systems	that	use	Git	for	version	control	and	rebar3	to	generate	releases	and
upgrades,	and	it	is	designed	to	address	all	the	tedious	parts	of	upgrades,	such	as
bumping	version	numbers	and	creating	.appup	files.

https://github.com/RJ/relflow

Summing	Up
As	with	most	things	we’ve	seen	in	this	book,	Erlang	provides	powerful	basic
language	constructs	that	OTP	uses	to	build	libraries	and	frameworks	that	hide
complexity,	simplifying	the	development,	deployment,	and	maintenance	of
Erlang-based	systems.	Starting	with	code:load_file/1,	which	handles	the
loading	of	a	module	in	your	runtime	system,	we	looked	at	how	to	manage	state
changes	in	processes,	database	schema	changes	together	with	synchronization	of
processes	and	their	dependencies,	and	dependencies	in	distributed	environments.

In	order	to	upgrade	a	target	system,	you	need	to	start	with	a	baseline	installation.
It	will	usually	be	the	first	release,	the	one	you	created	manually.	Unless	you	were
using	rebar3,	it	has	to	be	a	manual	task,	because	most	of	the	release-upgrade
tools	are	written	in	Erlang	and	will	not	run	without	your	baseline	system.	It’s	a
classic	chicken-and-egg	problem.

With	the	baseline	release	in	place,	you	need	to	follow	these	steps	to	successfully
upgrade	your	system.	Don’t	panic,	as	a	lot	of	these	steps	are	either	automated,
handled	by	existing	tools,	or	both:

Add	the	new	functionality,	package	it	into	the	respective	modules	and
applications,	and	bump	up	the	module	and	application	versions.

Create	the	new	rel	file	containing	new	and	upgraded	applications	while
omitting	the	deleted	ones.

Generate	your	start	scripts	and	new	sys.config	file,	ensuring	you	can	boot
the	new	release	on	its	own.

If	any	of	your	behaviors	or	special	processes	require	a	state	change	or	use	a
different	data	format	(including	database	schema	changes)	as	part	of	the
upgrade,	migrate	your	state	and	data	format	from	the	old	version	to	the	new
one	and	back	in	your	code_change	functions.

Write	an	.appup	file	for	each	application	you	are	upgrading.	Place	these
files	in	the	ebin	directory.

Create	a	relup	file	containing	all	the	low-level	instructions	executed	during

the	upgrade.

Create	a	package	that	you	can	deploy	in	the	releases	directory	of	the
installation	you	are	upgrading.

Unpack	the	release	and	install	it.

If	stable,	make	your	new	release	permanent.	If	unstable,	reboot	the	node,
restarting	the	old	release.

Once	the	release	is	unpacked,	a	number	of	transitions	can	take	place	on	the	node
being	upgraded.	When	you	install	a	release	and	the	upgrade	is	successful,	the
system	starts	running	the	new	version.	If	the	upgrade	fails	for	any	reason,	the
system	is	rebooted	and	reverts	to	the	previous	version.	When	running	the	new
version,	it	can	be	made	permanent.	When	this	happens,	any	subsequent	node
restart	will	restart	the	latest	version	(Figure	12-6).

Figure	12-6.	Upgrading	a	release

We	also	covered	upgrades	in	distributed	environments,	which	allow	you	to
synchronize	the	nodes.	This	happens	in	the	real	world,	but	only	for	very	small
clusters	where	the	network	is	reliable.	If	you	are	dealing	with	distributed	data
centers,	cloud	computing,	virtualization,	as	well	as	lots	of	other	layers	of
complexity	and	instability,	you	need	to	take	a	different	approach	to	upgrades.
Make	sure	that	old	and	new	nodes	are	backward-compatible	and	interoperable

with	each	other,	allowing	them	to	coexist	in	the	same	cluster.	Upgrade	a	few
nodes,	monitor	them	to	ensure	all	is	well,	and	keep	on	upgrading.	If	you	lose	a
few	machines	or	get	a	network	partition	or	upgrade	failures,	keep	on	trying	until
all	nodes	have	been	successfully	upgraded.

Let’s	take	this	argument	a	step	further.	For	clusters	where	you	have	no	single
point	of	failure	with	multiple	instances	of	the	nodes	running,	do	live	upgrades
really	make	sense?	If	you	are	able	to	do	a	rolling	upgrade,	cleanly	shutting	down
nodes	without	losing	any	requests	and	stopping	traffic,	isn’t	it	easier	to	shut
down	one	node	at	a	time,	upgrade	its	code,	then	restart	it	to	bring	it	back	into	the
cluster?	You	would	be	able	to	upgrade	your	code	without	showing	the
embarrassing	Our	system	is	down	for	maintenance,	bear	with	us,	we	are	doing
this	because	your	business	is	important	and	we	value	you	as	a	customer	screen
most	online	banks	show	us	a	little	too	frequently,	and	ensuring	that	you	do	not
lose	any	requests	as	a	result	of	the	upgrade.

How	you	do	your	upgrades	depends	entirely	on	the	size	of	your	cluster,	the
infrastructure	you	have	in	place	to	control	it,	your	redundant	capacity,	and	the
experience	and	size	of	your	team.	Software	upgrades	take	time	and	money	to
implement,	test,	and	deploy.	And	if	things	go	wrong,	most	of	the	time,	they	will
go	wrong	during	an	upgrade.	If	you	are	a	startup	that	does	not	have	to	provide
99.999%	availability,	no	one	will	care	whether	you	bounce	your	nodes	every
now	and	then.	If	you	are	upgrading	tens	of	thousands	of	switches,	however,
where	each	switch	handles	traffic	for	millions	of	subscribers	with	contractual
penalties	for	downtime	and	outages,	or	an	e-commerce	site	generating	thousands
of	dollars	in	revenue	every	minute,	users	will	care!

Software	upgrades	are	a	unique	and	powerful	feature	you	can	use	in	rare,	but
critical,	moments.	Use	them	where	the	extra	effort	makes	sense,	ensuring	you
test	your	upgrades	and	downgrades	under	heavy	load,	covering	as	many	failure
scenarios	as	possible.

If	this	chapter	is	not	enough,	the	user	guides	and	reference	manuals,	along	with
the	module	documentation	that	comes	with	the	standard	Erlang	distribution,
contain	scattered	but	detailed	information	on	release	upgrades.	You	should	start
with	the	section	on	“Creating	and	Upgrading	a	Target	System”	in	the	OTP
System	Principles	User’s	Guide.	Tools	are	covered	in	the	module	documentation
for	systools	and	release_handler.	Finally,	relup	and	.appup	files	both	have

manual	pages	that	describe	the	formats	of	the	files,	including	all	the	instructions
they	may	contain.	Don’t	miss	the	“Appup	Cookbook”	chapter	in	the	OTP	Design
Principles	User’s	Guide.	The	same	guide	also	contains	descriptions	of	the
code_change	functions	in	the	respective	sections	for	every	behavior	and	special
process.

At	the	end	of	the	day,	though,	our	advice	echoes	what	we	recommended	in	the
previous	chapter:	it’s	important	to	understand	the	underlying	concepts,	tools,	and
procedures,	but	unless	your	project	requires	extremely	special	considerations,
you’re	best	off	using	rebar3.	It	will	handle	many	of	the	tedious	tasks	associated
with	releases	and	upgrades,	can	be	extended	if	necessary,	and	has	community
support	that	you’ll	find	helpful	if	you	need	advice	or	assistance.

What’s	Next?
With	the	knowledge	provided	in	this	chapter	on	how	to	package	releases	and
perform	live	upgrades	without	affecting	traffic,	the	time	has	come	to	look	at	how
to	architect	a	system.	If	you	want	a	system	with	five-nines	availability,	what
basic	functionality	should	all	of	your	production	nodes	have?	What	distributed
architectural	patterns	should	you	be	applying	to	get	your	nodes	to	scale?	In	the
next	chapter,	we	look	at	what	it	takes.	So	what	are	you	waiting	for?	Turn	the
page	and	read	on!

Please	don’t	ask	us	about	this	one!1

Chapter	13.	Distributed	Architectures

Previous	chapters	have	described	the	implementation	of	a	single,	simple	node.	A
node	is	the	smallest	executable	standalone	unit	consisting	of	a	running	instance
of	the	Erlang	runtime	system.	In	this	chapter	we	start	to	show	how	to	expand
from	single	nodes	to	distributed	systems	comprising	multiple	nodes.	We	try	to
help	you	figure	out	how	to	achieve	availability,	scalability,	and	consistency
across	these	nodes.	These	qualities	go	hand	in	hand	with	reliability,	which
ensures	that	your	system	behaves	correctly	even	under	abnormal	circumstances
such	as	failure	or	extreme	load.

Each	node	consists	of	a	number	of	loosely	coupled	OTP	applications,	defined	in
its	OTP	release	file.	An	OTP	release	determines	the	services	the	node	provides
and	tasks	it	is	capable	of	handling.	Nodes	that	share	a	release	file	contain	the
same	set	of	OTP	applications	and	are	considered	to	be	nodes	of	the	same	type.

Nodes	of	one	type	can	interact	in	a	cluster	with	other	node	types	to	provide	the
system’s	end-to-end	functionality.	An	Erlang	system	can	comprise	just	one
standalone	node,	but	more	typically	consists	of	multiple	nodes	grouped	in	one	or
more	clusters.

Clusters	are	needed	for	a	variety	of	reasons.	You	might	be	implementing	a
microservices	architecture,	where	each	cluster	of	nodes	provides	a	set	of
services.	Or	you	might	use	clusters	for	scalability,	sharding	across	identical
clusters	to	increase	computing	power	and	availability.	When	dealing	with
distributed	Erlang	systems,	which	run	on	hybrid	target	environments	in
potentially	geographically	remote	data	centers,	there	is	no	single	solution	that
fits	all	contexts.	The	lack	of	a	single	solution	also	means	that	tools	and
frameworks	dealing	with	monitoring,	management,	and	orchestration	of	Erlang
nodes	have	to	cater	to	different	cluster	patterns.	Some	tools	might	be	ideal	when
dealing	with	deployments	on	Amazon	or	Rackspace,	but	they	will	not	work	on
Parallela	or	Raspberry	Pi	clusters.	Other	tools	will	work	best	when	deploying	on
bare	metal,	but	not	as	well	in	virtual	environments.

In	this	chapter	and	the	next	few,	we	cover	the	first	steps	involved	in	designing
your	distributed	architecture.	This	chapter	starts	by	looking	at	Erlang	node	types

and	describes	how	they	are	grouped	together	and	interact	with	each	other.	This
should	help	you	determine	how	to	split	up	your	system	into	standalone	nodes,
each	offering	specific	services.	We	describe	the	most	common	distributed
architectural	patterns	used	to	provide	these	services	and	introduce	some	of	the
most	popular	distributed	frameworks,	such	as	“Riak	Core”	and	“Scalable
Distributed	Erlang”.

Although	distributed	Erlang	will	work	out	of	the	box,	it	is	not	always	the	right
tool	for	the	job.	We	cover	other	networking	approaches	you	might	need	when
connecting	your	Erlang	and	non-Erlang	nodes	to	each	other.	We	conclude	by
giving	you	a	high-level	approach	on	how	to	start	defining	the	interfaces	and	data
models	of	the	individual	node	types.

Node	Types	and	Families
Until	recently,	there	were	no	common	definitions	covering	distributed	Erlang
systems.	OTP	did	a	great	job	defining	the	individual	components	of	a	single
node,	but	stopped	short	of	describing	how	nodes	are	grouped	together	and	how
they	interact	in	clusters.	Although	there	was	no	ambiguity	when	developers	in
remote	parts	of	the	world	spoke	about	generic	servers,	applications,	or	releases,
confusion	arose	when	trying	to	discuss	clusters,	the	roles	of	nodes	in	clusters,	or
scalability	patterns.	These	definitions	were	discussed	and	formalized1	as	part	of
the	RELEASE	project,	EU-funded	research	addressing	the	scalability	of	the
Erlang	VM	in	distributed,	many-core	architectures.	Before	we	start	talking	about
distributed	architectures,	let’s	define	our	terminology.

Imagine	a	system	consisting	of	three	Erlang	nodes.	The	first	node	runs	web
servers	that	keep	pools	of	TCP	connections	open	toward	the	clients.	Clients
could	be	mobile	apps	or	web	browsers.	This	receives	HTTP	requests,	parses
them	into	Erlang	terms,	and	forwards	them	to	a	second	node	that	handles	the
business	logic	of	the	system.

In	handling	the	requests,	the	second	node	might	interact	with	other	nodes,	each
providing	some	form	of	service.	For	the	sake	of	simplicity,	let’s	assume	it’s	a
database	node,	possibly	(but	not	necessarily)	written	in	Erlang.	To	the	end	user,
this	all	appears	as	a	single	system	accessed	as	a	black	box.	Erlang,	the	multiple
nodes,	and	the	distribution	layer	among	the	nodes	are	all	hidden	from	the	client
users.

Figure	13-1	is	an	example	of	three	semantic	node	types	that	classify	the
functionality	and	purpose	of	the	nodes	in	the	cluster.	Multiple	node	instances	of
the	same	type	could	be	running	different	versions	of	the	same	release.	We	run
multiple	instances	of	a	single	node	for	availability	and	scalability.	We	cover
these	topics	in	more	detail	in	Chapter	14	and	Chapter	15.

Figure	13-1.	Semantic	node	types

The	web	server	node	is	what	we	refer	to	as	a	front-end	node.	Front-end	nodes	are
responsible	for	providing	external	connectivity	to	clients	and	handling	all
incoming	requests.	They	act	as	gateways,	keeping	client	connections	open	as

needed,	formatting	inbound	requests	and	outbound	responses,	and	passing	the
requests	onward	to	the	nodes	handling	the	business	logic.	They	are	part	of	the
server-side	software,	serving,	but	not	running,	the	presentation	layer.

Logic	nodes,	also	commonly	referred	to	as	back-end	nodes,	implement	the
system’s	business	logic.	They	contain	all	of	the	code	needed	to	handle	client
requests	forwarded	from	the	front-end	nodes.	They	might	also	cache	session	data
and	access	external	services	in	other	nodes	when	handling	requests.

Finally,	we	have	service	nodes,	which	provide	a	service	to	the	logic	nodes.	Such
a	service	could	be	a	database,	an	authentication	server,	or	a	payment	gateway.
Service	nodes	could	themselves	provide	connectivity	toward	third-party	services
and	APIs.

Node	types	are	merely	a	way	for	us	to	describe	the	overall	responsibility	of	each
node.	A	single	node,	especially	in	small	or	simple	systems,	could	have	multiple
responsibilities	and	act	as	both	front-end	and	logic	node,	and	even	a	service
node,	all	in	one.	Think	of	a	node	that	runs	an	Erlang	web	server	(such	as	Yaws,
Webmachine,	or	Cowboy),	Erlang/OTP	glue	and	business	logic,	and	an	Erlang
database	(such	as	Mnesia,	CouchDB,	or	Riak)	all	in	the	same	virtual	machine.
Combining	all	such	applications	into	a	single	node	like	this	reduces	internode
I/O	and	networking	overhead	by	running	everything	in	the	same	memory	space,
but	it	also	produces	a	single	point	of	failure	and	an	architecture	that	might	not
scale.	In	contrast,	in	a	multinode	system,	the	responsibilities	of	the	node	types
are	spread	across	multiple	nodes	for	maintainability,	scalability,	and	availability.

When	splitting	your	functionality	into	node	types,	try	to	keep	memory-bound
and	CPU-bound	functionality	in	separate	nodes.	That	facilitates	the	fine-tuning
of	the	VM	and	gives	you	flexibility	in	choosing	the	underlying	hardware,
optimizing	for	cost	and	performance.	It	also	allows	you	to	minimize	the	risk	of	a
system	failure,	because	not	only	are	simple	nodes	easier	to	implement	and	test,
but	when	they	do	fail,	they	will	not	affect	the	other	nodes	to	the	same	extent	as	if
all	applications	were	running	in	the	same	node.	A	surge	in	simultaneous	requests
that	causes	a	node	to	run	out	of	memory	should	not	affect	the	user	database	or
the	client	connections.	(We	discuss	how	to	handle	surges	in	“Load	Regulation
and	Backpressure”.)

We	group	node	types	running	the	same	OTP	release	into	a	node	family.	This	is	a
way	of	managing	nodes	as	a	single	entity.	You	can	have	different	node	families

with	the	same	release,	but	grouped	together	based	on	criteria	such	as	data	center,
cloud	region,	or	even	release	version.	Node	families	are	then	grouped	into
clusters,	which	together	give	you	your	system.	Multiple	clusters	in	systems	are
used	to	increase	availability,	reliability,	and	scalability,	spreading	services
geographically	across	different	data	centers,	possibly	managed	by	different	cloud
or	infrastructure	providers.

To	better	understand	the	role	of	individual	nodes,	let’s	go	into	more	detail	using
the	example	that	we	started	looking	at	in	Figure	13-1:	an	Erlang	system	that
handles	HTTP	requests.	We	use	it	here	and	in	the	next	two	chapters	to	describe
various	concepts	and	tradeoffs	we	have	to	make	when	dealing	with	distributed
systems.

Picture	a	system	handling	the	back-end	services	of	an	e-commerce	application.
We	focus	on	the	login	request	originating	from	a	client	to	the	system.	The	client
sends	a	login	request	using	a	RESTful	API	with	data	transmitted	as	JSON	over
HTTP.	This	request	could	originate	from	a	mobile	app	or	a	web	browser.	The
request	is	received	by	a	web	server	running	on	the	front-end	nodes,	which	parses
it	into	Erlang	terms	and	forwards	them	to	the	logic	node.	The	terms	forwarded
include	the	login	request,	the	user	ID,	and	the	encrypted	password.

The	logic	node	checks	the	validity	of	the	request	and	authenticates	the	user	via
an	authentication	server.	If	successful,	a	session	ID	and	record	are	created	and
cached	locally	in	the	logic	node.	It	returns	the	session	ID	back	to	the	front-end
server,	which	encodes	it	and	returns	it	to	the	client	with	the	acknowledgment	that
the	login	request	was	successful.	The	client	uses	the	session	ID	in	all	subsequent
communication	for	the	duration	of	the	session,	and	in	each	subsequent	client
request	this	ID	is	passed	to	the	logic	node	and	used	to	retrieve	the	record.

Regardless	of	whether	you	are	using	the	three-layer	architecture	in	Figure	13-1
or	some	other	architectural	pattern,	the	logic	node	is	an	important	intermediary
and	checkpoint.	Avoid	having	front-end	nodes	communicating	directly	with
service	nodes.	Although	it’s	not	illegal,	it	often	leads	to	poor	system	structure
and	confusion	when	trying	to	understand	the	system	from	an	architectural	view.

We	add	multiple	instances	of	node	types	in	our	architecture	to	create	distributed
cluster	patterns,	also	known	as	system	blueprints.	If	you	are	happy	with	a	static
architecture	that	scales	by	adding	independent	instances	of	the	system	that	do	not
interact	with	each	other,	the	blueprint	is	easy.	If	your	system	scales	to	1,000,000

simultaneously	connected	users	executing	100,000	requests	per	second,	roll	out
one	per	country	and	route	user	requests	by	pairing	the	inbound	IP	address	to	a
geographical	location.	But	if	your	app	is	a	global	online	store	that	scales
dynamically	based	on	peaks	and	troughs,	elastically	adding	computing	capacity
in	the	run-up	to	events	such	as	payday,	Black	Friday,	and	Christmas	and	then
releasing	it	again	when	not	needed,	extra	thought	needs	to	be	put	into	the	system
from	the	start.

Both	static	and	dynamic	approaches	to	node	(and	hardware)	management	in	your
cluster	go	hand	in	hand	with	the	strategies	of	how	you	distribute	your	data	across
nodes,	node	families,	and	ultimately	clusters.	How	you	connect	your	nodes	and
clusters	together	also	becomes	important,	as	does	your	data	replication	strategy
across	them.	Users	are	logged	on	to	the	system	and	shopping	away.	Do	you	keep
copies	of	their	session	data	in	all	nodes	or	just	some	nodes?	And	every	time	a
customer	adds	an	item	to	a	shopping	basket,	how	are	the	changes	propagated	to
other	nodes?	What	happens	if	there	is	a	network	partition	or	failure?	Or	what
about	a	software	error	or	a	node	terminating?	We	cover	these	design	choices	in
Chapter	14.	They	boil	down	to	tradeoffs	between	availability,	reliability,
consistency,	and	scalability.	What	you	need	to	do	early	on	is	understand	the
compromises	that	fit	the	needs	of	the	system	you	are	architecting	and	the	end-
user	experience	you	want	to	provide.

Networking
So	far,	we’ve	been	talking	about	front-end	nodes	communicating	with	logic
nodes,	which	in	turn	send	requests	to	service	nodes.	We	haven’t	mentioned
distributed	Erlang,	because	while	it’s	ideal	for	smaller	clusters	within	the	same
data	center,	it	is	not	always	the	right	solution	when	multidata	center
deployments,	security,	availability,	and	massive	scalability	come	into	the	picture.
In	some	cases,	when	lots	of	data	needs	to	be	transferred,	a	single	socket	becomes
a	bottleneck	and	you	might	want	to	use	pools	of	connections	found	in	libraries
such	as	ranch	or	poolboy.	RESTful	APIs	give	you	platform	independence,	as	do
other	protocols	such	as	AMQP,	SNMP,	MQTT,	and	XMPP.	Distributed	Erlang
might	still	fit	your	needs,	but	rather	than	running	it	over	TCP	you	might	want	to
use	alternative	carriers	such	as	0MQ,	UDP,	SSL,	or	MPI.

In	some	systems,	the	network	topology	will	go	as	far	as	providing	different
networks	for	different	types	of	traffic.	Traffic	handling	monitoring,	billing,
configuration,	and	maintenance	would	go	through	an	operations	and
maintenance	(O&M	network),	while	traffic	such	as	setting	up	of	calls,	instant
messages,	SMSs,	or	telemetry	data	would	be	routed	through	a	data	network.	You
would	split	them,	as	the	data	network	would	have	higher	bandwidth	and
availability	requirements	than	the	O&M	one.	You	should	avoid	stopping	or
slowing	down	users	playing	a	massively	multiuser	online	game,	but	can	get
away	with	a	delay	in	moving	and	processing	billing	records.

Demonstrating	networking	choices	with	our	example	will	help	clarify	the
choices	you	have	to	make.	If	you	are	concerned	about	security	in	your	e-
commerce	site,	you	might	want	to	place	your	front-end	nodes	in	a	demilitarized
zone	(DMZ),	also	known	as	a	perimeter	network	(Figure	13-2).	This	is	a
physical	or	logical	part	of	the	network	that	exposes	your	nodes	to	an	untrusted
network	(i.e.,	the	Internet)	used	by	the	clients	to	access	your	services.	DMZs
were	traditionally	implemented	in	the	hardware	through	the	arrangement	of
managed	network	elements,	and	in	the	software	using	firewalls	and	other
security	measures.	In	cloud	computing	environments	you	do	not	get	the
hardware	component,	and	have	to	instead	mimic	it	through	network	connections
and	firewall	rules.	The	end	result,	however,	is	still	the	same.	By	creating	an
additional	layer	of	security	around	your	back-end	nodes,	you	reduce	the	risk	of

intrusion	in	your	logical	and	service	nodes	by	not	exposing	their	interfaces.

Figure	13-2.	Demilitarized	zones

If	you	were	to	use	distributed	Erlang,	access	to	your	front-end	nodes	would

pretty	much	also	mean	access	to	your	logic	and	service	nodes	as	well.	Gone	are
the	days	when	no	one	knew	about	Erlang	and	when	security	through	obscurity
was	enough	to	safeguard	you.	You	must	use	sockets,	possibly	even	encrypted
sockets,	between	the	web	server	and	the	nodes	running	the	business	logic,
authenticating	every	request	and	checking	its	validity.	Communication	between
the	nodes	running	your	business	logic	and	your	databases,	however,	takes	place
behind	a	firewall	in	what	is	considered	to	be	a	safe	environment.	The	nodes	can
communicate	transparently	with	each	other	using	distributed	Erlang.

FALLACIES	OF	DISTRIBUTED	COMPUTING

If	you	think	that	your	network	is	reliable	and	network	partitions	are	rare,	think	again!	Network	issues
occur	when	you	least	expect	them,	and	if	you	are	not	handling	all	possible	edge	cases,	the
consequences	and	side	effects	can	be	disastrous.	These	are	the	“fallacies	of	distributed	computing”
described	by	Peter	Deutsch	and	his	associates	decades	ago,	but	just	as	relevant	to	the	systems	we
design	today.

If	network	connectivity	to	a	remote	node	goes	down	or	gets	congested,	how	do	you	know	it	is	a
network	issue,	and	not	the	remote	node	that	has	crashed	or	is	slow	at	responding?	Do	you	send	back	an
error,	or	do	you	retry	executing	the	call	on	a	different	node?	And	if	you	retry	on	a	different	node,	how
can	you	be	sure	the	request	you	sent	to	the	first	node	didn’t	already	result	in	persistent	side	effects,
with	the	network	error	or	crash	occurring	before	the	node	could	send	you	back	a	reply?	It	is	impossible
to	differentiate	between	a	node	crash	and	a	slow	node.	Despite	this,	you	need	to	make	sure	you	have
mapped	all	errors	that	can	occur	in	every	workflow	associated	with	your	requests.

Also	keep	in	mind	that	operations	across	nodes	result	in	higher	CPU	and	I/O	usage	than	operations
executed	locally	as	you	have	serialization	costs,	virtualized	network	interfaces,	and	the	need	to	handle
the	protocols.	Bandwidth	is	not	unlimited	and	network	latency	affects	the	end-to-end	performance	of
your	requests.	Keep	all	of	this	in	mind	when	distributing	your	load,	stress-testing	your	system,	and
fine-tuning	it.	It	is	not	just	about	software;	the	behavior	of	your	hardware	and	infrastructure	is	just	as
critical.	Nodes	and	machines	come	and	go	during	the	lifetime	of	your	system,	something	your	program
needs	to	handle	effectively	along	with	network	topology	changes.

Finally,	remember	your	friendly	system	administrator,	because	there	are	administrators	who
sometimes	do	not	follow	procedures,	make	mistakes,	or	ignore	warnings.	The	original	fallacies	paper
makes	the	point	that	the	network	administrator	might	not	even	belong	to	the	same	organization.	It	is
not	just	about	the	risk	of	an	administrator	tripping	over	the	network	cables,	messing	up	configurations,
or	simply	having	different	views	on	and	strategies	for	how	topologies	should	be	managed.	The	basic
issue	is	how	your	software	handles	these	events	and	views	of	the	world.	Can	your	software	manage
twice	the	load	on	a	particular	node	resulting	from	a	load	balancer	or	firewall	misconfiguration?

Achieving	resilience	becomes	even	more	difficult	if	you	are	using	cloud	infrastructure	and	do	not
control	the	network	or	know	its	topology,	because	partitions	in	those	environments	can	be	hard	to
understand	and	troubleshoot.	Cloud	computing	typically	has	slower	instances	and	busier	networks,
making	the	task	even	harder.

Distributed	Erlang
There	are	two	approaches	to	implementing	your	architecture	using	distributed
Erlang.	A	static	cluster	has	a	fixed	number	of	known	parameters	with	fixed
identities	(hostnames,	IPs,	MAC	addresses,	etc.).	It	isn’t	provisioned	to	scale
dynamically.	In	a	dynamic	cluster,	the	number	of	identities	and	nodes	changes	at
runtime.	In	both	cases,	your	system	needs	to	be	implemented	with	transitive
connections	in	mind,	because	either	network	connectivity	or	the	nodes
themselves	can	fail	(and	restart).	The	only	difference	between	a	static	and	a
dynamic	system	is	that	in	the	latter,	alongside	failing,	nodes	are	started	and
stopped	in	a	more	controlled	way.	In	a	static	system,	they	don’t	stop	unless	they
fail.

Distributed	Erlang	clusters	that	are	fully	connected	(Figure	13-3)	are	ideal	for
systems	of	certain	size	and	requirements,	but	as	we	have	said	many	times	before,
there	is	no	“one	size	fits	all”	solution.	Based	on	your	node	configuration	and	the
size	and	frequency	of	messages	sent	across	nodes,	fully	meshed	Erlang	clusters
scale	at	the	time	of	writing	to	about	70	to	100	nodes	before	performance
degradation	starts	becoming	evident.	When	a	new	node	is	added	to	the	cluster,
information	on	all	visible	(nonhidden)	nodes	that	share	the	secret	cookie	gets
propagated	to	it,	connections	are	set	up,	and	monitoring	kicks	in.	So,	with	100
connected	nodes,	you	get	5,050	TCP	connections	(100+99+...+2+1)	and
heartbeats	across	them	all,	creating	overhead	in	both	the	node	and	the	network.
Other	single-process	bottlenecks	exist	as	well,	such	as	rex,	which	handles	Erlang
remote	procedure	calls	(RPCs),	or	the	net	kernel,	which	remotely	spawns
processes	and	deals	with	network	monitoring.

How	far	you	are	able	to	scale	your	fully	meshed	distributed	Erlang	cluster
depends	on	the	characteristics	of	your	system.	Hidden	nodes,	covered	in	“Node
Connections	and	Visibility”,	act	as	gateways	stopping	the	propagation	of
information	across	clusters	of	fully	meshed	nodes.	They	provide	you	with
isolation	and	scalability,	but	you	have	to	build	frameworks	that	sit	on	top	of
them.	You	might	be	better	off	looking	at	alternative	approaches	or	existing
frameworks	such	as	Riak	Core	and	SD	Erlang,	which	are	covered	in	the
following	subsections.

Finally,	you	can	create	a	special	build	that	uses	SSL	as	a	bearer	of	Erlang

distribution	instead	of	plain	TCP.	You	can	read	more	about	it	in	the	“Using	SSL
for	Erlang	Distribution”	section	of	the	Secure	Socket	Layer	User’s	Guide.

http://bit.ly/erlang-ssl

Figure	13-3.	Distributed	Erlang

USING	PIDS
If	you	are	using	process	IDs	instead	of	registered	names	across	distributed	Erlang	clusters,
keep	in	mind	that	if	the	remote	node	crashes	and	restarts,	the	pid	on	the	restarted	node	might
be	reused.	This	could	result	in	a	process	other	than	the	intended	one	receiving	your	message.
Always	monitor	remote	nodes	and	processes,	and	take	appropriate	action	if	failure	is	detected.
There	is	a	counter	for	process	IDs	across	nodes	that	gives	you	one	or	more	generations	of
restarts	with	reused	pids	to	avoid	the	problem,	at	least	as	long	as	the	Erlang	port	mapper
daemon	(epmd)	is	alive.

Riak	Core
Riak	Core	is	a	framework	that	provides	an	eventually	consistent	replicated	data
model	on	a	system	of	masterless	peer	nodes	providing	high	availability	and
helping	guarantee	no	single	point	of	failure.	It	is	built	on	top	of	distributed
Erlang	and	is	the	foundation	of	the	distributed	Riak	key-value	store,	based	on
ideas	from	the	2007	Dynamo	paper	from	Amazon.	It	is	an	ideal	framework	for
systems	that	require	high	availability	and	the	need	to	self-heal	after	node	or
network	failures.	Fully	explaining	all	the	details	of	Riak	Core	would	require	a
book	of	its	own,	so	we	cover	just	the	highlights	that	make	it	a	serious	contender
in	the	distributed	frameworks	space.

Riak	Core	runs	on	a	cluster	of	physical	nodes	overlaid	with	a	system	of	virtual
nodes,	also	known	as	vnodes.	The	number	of	vnodes	is	configurable,	but	a
typical	Riak	Core	cluster	includes	15–20	physical	nodes	that	collectively	host
256	vnodes.	Each	vnode	claims	a	range	of	the	160-bit	integer	space	of	the	SHA-
1	hash	function,	which	Riak	Core	uses	as	the	basis	of	its	consistent	hashing
system.	Consistent	hashing	spreads	key-value	data	evenly	across	the	cluster
while	minimizing	the	amount	of	data	relocation	required	as	physical	nodes	are
operationally	added	to	or	removed	from	the	cluster.

To	store	data	in	a	Riak	Core	cluster,	a	client	sends	a	write	request	including	both
key	and	value.	Riak	Core	hashes	the	key	to	obtain	its	hash	value,	then
determines	which	vnode	owns	the	range	of	160-bit	values	that	includes	that	hash
value.	Because	Riak	Core	replicates	each	write,	it	first	determines	the	replication
factor	for	the	request,	which	is	called	N	and	typically	defaults	to	3.	It	then	stores
N	copies	of	the	data,	one	in	that	primary	vnode	and	the	rest	in	the	vnodes	that

http://bit.ly/riak-dynamo

respectively	own	the	next	N–1	hash	ranges.	Riak	Core	considers	the	write
complete	when	the	number	of	written	copies	equals	the	write	factor,	W.	By
default,	W	is	N/2+1,	which	is	2	if	N	is	3.

To	read	data	from	a	cluster,	a	client	sends	a	request	including	the	key.	Riak	Core
first	hashes	the	key	to	determine	the	primary	vnode	that	should	be	holding	the
requested	value.	It	then	requests	the	value	from	that	vnode	and	the	N–1	next
consecutive	vnodes,	and	waits	for	the	read	factor,	called	R,	to	be	fulfilled.	Like	W,
by	default	R	is	N/2+1,	which	is	2	when	N	is	3.	Once	two	copies	of	the	value	are
successfully	read,	Riak	Core	returns	the	requested	value	to	the	client.

When	a	Riak	Core	cluster	is	first	created,	its	physical	nodes	claim	ownership	of
vnodes	such	that	adjacent	vnodes	are	not	stored	on	the	same	physical	node.
Thus,	by	storing	replicas	in	consecutive	vnodes,	and	assuming	the	cluster
comprises	at	least	the	minimum	recommended	five	physical	nodes,	Riak	Core
tries	its	best	to	guarantee	the	replicas	are	stored	on	different	nodes.	Should	any
physical	node	crash	or	become	unreachable,	the	other	replicas	can	still	respond
to	requests	for	reading	or	writing	that	data,	thus	providing	availability	even	if	the
cluster	is	partitioned.	The	arrangement	of	vnodes	on	physical	nodes	is	made
clear	in	Figure	13-4,	where,	when	looking	up	a	value,	the	hash	of	the	key	points
to	the	vnode,	which	in	turn	points	to	the	primary	Erlang	node	responsible	for	that
value.

Figure	13-4.	Vnodes

One	advantage	of	using	vnodes	and	consistent	hashing	pertains	to	the	reshuffling
that	takes	place	when	nodes	get	added	or	taken	out	of	service.	Assume	that	our

cluster	in	Figure	13-4	has	16	nodes	and	we	take	node	1	permanently	out	of
service.	Riak	Core	redistributes	vnodes	1,	17,	33,	and	49	across	existing	nodes
without	needing	to	reshuffle	all	of	the	data	across	all	nodes.	The	vnodes	that	are
on	the	nodes	still	in	service	stay	put.	And	if	a	new	node	is	put	into	production,
four	vnodes	will	be	moved	to	it	from	their	current	locations,	affecting	only	the
nodes	where	the	vnodes	are	located.

Riak	Core	nodes	are	peers,	and	there	is	no	master	node.	Nodes	use	a	gossip
protocol	to	communicate	shared	information	such	as	cluster	topology	changes
and	the	vnode	claims	to	other	randomly	selected	nodes.	If	updates	to	the	cluster
topology	were	missed	on	particular	nodes	for	whatever	reason,	the	gossip
protocol	forwards	these	changes,	ensuring	that	the	system	heals	itself.

Riak	Core	uses	hinted	handoffs	to	ensure	that	N	copies	of	the	data	are	stored,
even	if	the	primary	vnode	or	some	of	the	replica	vnodes	are	down	or	unreachable
because	of	a	network	partition.	In	such	a	case,	Riak	Core	stores	the	data	in	an
alternative	vnode	and	gives	that	vnode	a	hint	as	to	where	the	data	really	should
be	stored.	When	the	unreachable	vnodes	again	become	available,	the	alternative
vnodes	hand	the	data	off	to	them,	thereby	healing	the	system.	Hinted	handoffs
are	part	of	Riak	Core’s	sloppy	quorums.	Writes	require	W	acknowledgments	to	be
considered	successful,	and	similarly	reads	are	considered	successful	with	R
results,	but	Riak	doesn’t	care	whether	those	quorums	comprise	primary	or
alternative	vnodes	(hence	the	term	“sloppy”).	If	Riak	were	to	instead	use	strict
quorums,	which	consist	only	of	primary	vnodes,	the	result	would	be	diminished
system	availability	when	primaries	were	down	or	unreachable.

As	soon	as	we	start	distributing	data	and	states	across	replicas,	we	introduce
uncertainty.	How	do	we	know	an	operation	was	successfully	replicated	to	all
nodes?	What	if,	because	of	partitions	or	node,	network,	hardware,	or	software
failures,	data	becomes	inconsistent?

In	cases	where	nodes	return	different	values	without	achieving	a	quorum,	Riak
Core	tries	to	resolve	the	conflicting	values	using	dotted	version	vectors	(DVVs).
DVVs	provide	a	way	for	Riak	Core	to	identify	a	partial	ordering	of	write	events
for	a	given	value	that	can	help	determine	which	of	the	values	is	the	correct	one.
This	ordering	is	based	not	on	timestamps,	which	are	too	unreliable	and	too
difficult	to	keep	synchronized	across	a	cluster	of	nodes,	but	rather	on	logical
clocks	based	on	monotonically	increasing	counters	at	each	node	that	acts	on	the

value.	If	the	DVV	information	is	not	enough	to	resolve	the	conflict,	all
conflicting	values	of	the	state	are	returned	to	the	client	as	sibling	values,	and	the
conflict	must	then	be	resolved	by	the	client	application,	presumably	using
domain-specific	knowledge	to	make	its	decision.

So,	how	does	Riak	Core	help	us	implement	our	distributed	architecture?
Although	you	are	still	limited	to	a	maximum	of	a	hundred	nodes	in	your	core,
you	can	use	these	nodes	as	hubs	or	gateways	to	other	clusters,	as	shown	in
Figure	13-5.	Logic	nodes	running	Riak	Core	create	a	fully	meshed	ring	used	for
messaging,	job	scheduling,	and	routing	requests	to	service	nodes,	or	to	act	as
gateways	to	other	clusters.

Figure	13-5.	Riak	Core	patterns

Figure	13-6	uses	another	approach	for	massive	scalability:	a	star	architecture,
where	service	nodes	connected	to	each	other	can	be	used	for	storage	and
analytics	purposes,	increasing	and	decreasing	in	size	dynamically	based	on	load.
Both	patterns	serve	their	purpose	and	overcome	the	scalability	issues
encountered	with	fully	meshed	networks.	More	complex	patterns	are	available	as
well,	as	are	simpler	ones.	Some	include	running	multiple	Riak	Core	clusters
connected	to	each	other	via	hidden	nodes	acting	as	gateways.

Figure	13-6.	Riak	Core	star

If	consistent	hashing	and	Riak	Core	are	the	right	approach	for	the	problems
you’re	solving,	you	may	also	want	to	look	at	the	NkCLUSTER	application,	a
layer	on	top	of	Riak	Core	written	to	create	and	manage	clusters	of	Erlang	nodes
and	to	distribute	and	schedule	jobs	on	the	cluster.	NkDIST	is	a	library	that
evenly	distributes	processes,	automatically	moving	them	when	the	Riak	Core
cluster	is	rebalanced	through	the	addition	or	removal	of	nodes.	You	can	find
NkDIST	and	NkCLUSTER	documentation	in	their	respective	GitHub	pages	and
repositories.

For	further	reading	on	Riak	Core,	we	recommend	Mariano	Guerra’s	Little	Riak
Core	Book	on	GitHub.	You	can	read	the	official	documentation	on	Basho’s

https://github.com/NetComposer/nkclusterand
https://github.com/NetComposer/nkcluster
https://marianoguerra.github.io/little-riak-core-book/
http://docs.basho.com/

website	(Basho	is	the	company	that	created	and	maintains	Riak	Core).	A	web
search	will	also	reveal	many	talks	and	tutorials.	And	finally,	an	excellent
example	of	how	to	use	Riak	Core	is	Udon,	a	distributed	static	file	web	server	by
Mark	Allen.

Scalable	Distributed	Erlang
Scalable	Distributed	Erlang	(SD	Erlang)	takes	a	different	approach	from	that	of
Riak	Core.	SD	Erlang	emerged	from	the	RELEASE	research	project	at	the
University	of	Glasgow.	Although	at	the	time	of	writing	it	was	not	production-
ready,	the	ideas	behind	it	are	interesting	and	have	been	shown	to	allow	systems
to	scale	to	tens	of	thousands	of	nodes.	The	basic	approach	is	to	reduce	network
connectivity	and	the	namespace	through	a	small	extension	to	the	existing
distributed	Erlang.

SD	Erlang	defines	a	new	layer	called	an	s_group.	Nodes	can	belong	to	zero,	one,
or	more	s_groups,	and	nodes	that	belong	to	the	same	s_group	transitively	share
connections	and	a	namespace.	A	namespace	is	a	set	of	names	registered	using
the	global:register_name/2	function	in	distributed	Erlang	or	the
s_group:register_name/3	function	in	SD	Erlang.	Names	registered	in
distributed	Erlang	are	replicated	on	all	connected	normal	(not	hidden)	nodes.	In
SD	Erlang,	the	name	is	replicated	on	all	nodes	of	the	given	s_group.

Figure	13-7	shows	two	s_groups	named	G1	and	G2.	Each	contains	three	Erlang
nodes.	Because	node	C	is	shared	by	both	s_groups,	it	can	transmit	messages
between	nodes	in	different	s_groups.	Node	C	is	called	a	gateway.

https://github.com/mrallen1/udon

Figure	13-7.	SD	Erlang	groups

Using	the	SD	Erlang	concept	of	node	groups,	a	programmer	can	arrange	nodes
in	different	configurations,	e.g.,	clustering	nodes	and	connecting	them	via
gateways.

To	enable	SD	Erlang	applications	to	be	portable	and	scalable,	a	concept	of	semi-
explicit	placement	is	also	introduced.	This	controls	the	placement	of	new	nodes
based	on	communication	distances	to	other	nodes	and	on	node	attributes.	Node
attributes	are	hardware-,	software-,	and	programmer-defined	characteristics	of
nodes	that	enable	them	to	be	aware	of	their	unique	characteristics	and	their
neighboring	nodes.	Communication	distances	use	the	time	it	takes	to	transfer
data	from	one	node	to	another	as	a	metric.	Assuming	connections	with	equal
bandwidth,	shorter	transfer	times	correspond	to	smaller	communication
distances	between	nodes.

Documentation	about	SD	Erlang	is	available	on	the	University	of	Glasgow’s	site.
Lots	of	conference	talks	and	articles	about	it	are	also	available	online.

http://www.dcs.gla.ac.uk/research/sd-erlang/

Sockets	and	SSL
There	will	be	times	when	distributed	Erlang	is	not	enough.	On	extremely	high
volume	systems,	bottlenecks	can	occur	in	the	global	name	server,	rex,	or	the	net
kernel	—	not	to	mention	the	distributed	Erlang	port	itself,	which,	even	if	fast,	is
capable	of	handling	only	one	request	at	a	time,	as	it’s	designed	for	control
messages	rather	than	for	data	transfer.	Or,	as	we	saw	in	our	DMZ	example,	you
might	want	to	avoid	distributed	Erlang	for	security	reasons,	limiting	the
openness	the	fully	meshed	network	brings	to	the	table.	When	distributed	Erlang
is	not	the	right	tool	for	the	job,	adding	a	thin	layer	above	the	ssl	or	gen_tcp
libraries	starts	making	sense.	You	open	one	or	more	sockets	between	the	nodes,
controlling	the	flow	of	information	sent	and	received.

THE	SYSTEM	MONITOR

How	do	you	find	out	whether	your	distributed	Erlang	port	is	congested?	Hidden	deep	in	the
documentation	of	Erlang/OTP	is	a	BIF	that	allows	you	to	trigger	monitoring	events	associated	with
memory	management	and	the	scheduler.	A	call	to	erlang:system_monitor(Pid,	[busy_dist_port])
sets	up	monitoring.	A	trace	message	of	the	format	{monitor,	SusPid,	busy_dist_port,	Port}	will
be	sent	to	Pid	every	time	a	process	gets	suspended	because	it	is	trying	to	send	a	message	through	an
internode	communication	port	already	being	used	by	another	process.	SusPid	is	the	suspended
process.

Other	scheduler-related	items	that	you	can	monitor	include	busy_port	and	long_schedule.	Important
memory-related	monitors	you	can	turn	on	include	long_gc	and	large_heap,	triggered	if	a	process
spends	too	long	garbage	collecting	or	allocates	an	unusually	large	heap.

Be	careful	how	you	handle	system	messages	in	live	environments.	We’ve	seen	millions	of	them	being
generated	per	hour	in	badly	written	systems	under	heavy	load.	You	can	read	more	about	the
system_monitor	BIFs	on	the	erlang	manual	page.	We	will	also	cover	monitoring	in	more	detail	in
Chapter	16.

Bottlenecks	can	also	occur	when	moving	large	volumes	of	data	with	sockets.	As
an	example,	we	were	once	working	with	a	system	that	managed	instant
messages.	The	instant	messages	tended	to	be	short	and	bursty,	so	a	single	TCP
connection	from	our	DMZ	coped	well	under	extreme	load.	When	we	upgraded
the	same	system	to	also	manage	email,	queues	quickly	started	building	up	in	the
front-end	nodes	when	exposed	to	continuous	heavy	load.	This	had	to	do	with	the
sizes	of	the	messages	being	sent,	which	were	much	larger	than	the	instant
messages,	causing	the	TCP	socket	processes	to	back	up.	The	backup	eventually

http://erlang.org/doc/man/erlang.html#system_monitor-0

caused	the	virtual	machine	to	run	out	of	memory.	The	network	was	far	from
saturated,	so	adding	multiple	connections	between	the	front-end	and	logic	nodes
(Figure	13-8)	got	rid	of	the	bottleneck.

Figure	13-8.	Communication	bottlenecks

Typical	use	cases	where	we’ve	had	to	use	multiple	connections	across	nodes
include	the	transfer	of	images,	logs,	or	emails	and	email	attachments.	The
volumes	of	data	have	to	be	substantial	for	multiple	connections	to	pay	off,
though,	so	avoid	premature	optimization.	Start	with	a	single	connection	and	add
more	only	when	you	have	metrics	showing	you	have	a	problem	that	multiple
connections	can	fix.

This	is	a	common	approach	for	which	there	are	a	few	open	source	libraries.	The
gen_rpc	application	on	GitHub	has	been	benchmarked	doing	in	excess	of	60,000
RPC	requests	per	second.	If	you	need	simple	functionality,	you	can	also	write
your	own	connection	API.	In	its	simplest	guise,	such	an	API	would	be	a	thin
layer	consisting	of	a	few	dozen	lines	of	code	that	is	highly	optimized	for	the
traffic	and	security	requirements	of	your	applications.	That	said,	it	might	make
sense	to	base	your	socket	library	on	a	process	pool	library	such	as	Poolboy.

The	example	in	Figure	13-2	illustrates	the	security	rationale	for	not	always
relying	on	Erlang	to	distribute	processing.	We	would	not	want	the	front-end
nodes	communicating	with	the	logic	nodes	using	distributed	Erlang,	because	an
intruder	who	gained	access	to	the	stateless	client	nodes	would	also	gain	full
access	to	all	the	connected	nodes	and	be	able	to	execute	OS-level	commands	on
the	remote	machines.	Just	imagine	someone	obsessed	by	tidiness	executing
rpc:multicall(nodes(),	os,	cmd,	["rm	-rf	*"])	in	order	to	enjoy	the	peace
and	serenity	a	clean	hard	drive	brings.

Even	if	you	roll	out	your	own	TCP-	or	SSL-based	communication	library
between	the	front-end	and	logic	nodes,	you	can	still	use	distributed	Erlang	to	let
the	logic	nodes	communicate	with	each	other	and	share	data	through	Riak,
Mnesia,	or	simple	message	passing.	In	turn,	the	logic	nodes	might	use	RESTful
approaches	to	communicate	with	service	nodes.	When	your	system	starts	getting
complicated,	mixing	communication	methods	for	security,	performance,	and
scalability	purposes	becomes	common.	The	mix	could	be	between	nodes,	node
types,	or	node	families.

https://github.com/priestjim/gen_rpc
https://github.com/devinus/poolboy

Service	Orientation	and	Microservices
Another	pattern	for	creating	systems	that	scale	is	microservices	and	service-
oriented	architectures	(SOA).	Although	SOA	is	considered	heavyweight	and	old-
fashioned	by	some,	it	is	widely	used	in	enterprise	systems	and	its	ideas	are
fundamental	to	microservices.	Both	are	similar	in	concept	to	the	client-server
paradigm	where	processes	and	nodes	(or	node	families)	provide	services	to	other
nodes	and	processes.	These	services,	often	standalone	or	loosely	coupled,
together	provide	the	functionality	required	by	your	system.	They	are	often
expressed	in	terms	of	an	API,	where	each	service	(or	function)	implements	an
action	invoked	by	a	node	requesting	the	service.	The	services	provided	are	the
same	as	those	we	have	looked	at	already	in	this	book.	They	could	include	client
front-end	interfaces,	authentication	databases,	logging,	alarming,	logic	nodes,
and	other	service	nodes	(Figure	13-9).	Services	should	be	packaged	in	a	generic
enough	way	to	encourage	reusability	not	just	among	other	services,	but	also
across	systems.

Figure	13-9.	Service-oriented	architectures

Services	are	connected	together	by	a	service	bus.	They	use	a	protocol	that
describes	how	services	exchange	and	interpret	messages.	This	is	done	with
service	metadata,	which	describes	what	each	service	does	and	the	data	it

requires.	The	metadata	should	be	in	a	format	that	allows	nodes	to	dynamically
configure	and	publicize	their	services,	which	in	turn	allows	other	services	to
dynamically	discover	and	use	them.	The	messages	themselves	are	often	defined
using	JSON,	XML,	Protocol	Buffers,	Erlang	terms,	or	even	OMG	IDL.

The	service	bus	runs	over	a	network	and	allows	communication	following	a
particular	protocol.	Requests	can	be	sent	using	SOAP,	HTTP,	or	AMQP.	You
could	use	web	services,	Java	RMI,	Thrift	bindings,	or	even	Erlang-based	RPCs
and	message	passing.	Certain	message	buses	have	the	added	benefit	of	helping
throttle	requests	and	dealing	with	load	regulation	and	backpressure.	We	cover
these	concepts	in	more	detail	in	“Load	Regulation	and	Backpressure”.

The	advantage	of	standardized	protocols	is	that	they	allow	you	to	combine
ready-made	components	or	standalone	nodes,	possibly	implemented	in	multiple
programming	languages.	At	the	same	time,	they	force	you	to	package	your
services	in	a	way	that	encourages	reusability	across	systems.	This	does,	however,
come	at	the	cost	of	overhead	in	the	size	of	the	data	shared	across	nodes	as	well
as	the	encoding	and	parsing	of	the	requests	and	replies.

GPROC

Gproc	is	an	application	by	Ulf	Wiger	used	for	service	discovery.	It	provides	a	registry	where	you	can
store	metadata	that	describes	process	roles	and	characteristics.	It	allows	you	to	use	any	Erlang	term	to
register	a	process,	and	allows	multiple	aliases	to	a	single	process.	Nonunique	process	properties	can	be
stored	and	queried	using	match	specifications	and	query	list	comprehensions.	The	registry	is	global,
allowing	the	process	metadata	to	be	distributed	and	accessed	across	multiple	nodes.	You	can	find
gproc	and	its	documentation	on	GitHub.

https://github.com/uwiger/gproc

Peer	to	Peer
Peer-to-peer	(p2p)	architectures	are	probably	the	most	scalable	distributed
architectural	patterns	of	all,	as	they	are	completely	decentralized	and	consist	of
nodes	of	the	same	type	that	set	up	ad	hoc	connections	to	other	nodes.	Every	node
has	the	same	privileges,	capabilities,	and	responsibilities,	in	contrast	to	client-
server	architectural	patterns,	where	the	purpose	of	some	node	types	is	to	serve
other	node	types.

In	p2p	architectures,	every	node	is	both	a	client	and	a	server,	allowing	it	to	start	a
communication	session	in	a	decentralized	way.	Think	of	protocols	such	as
BitTorrent,	Gnutella,	Gossip,	and	Kazaa.	While	to	the	masses,	p2p	is
synonymous	with	file	sharing,	its	use	in	the	Erlang	world	is	more	associated	with
massively	parallel	computations,	distributed	file	storage,	and	big	data	analytics.
P2p	nodes	tend	to	form	connections	in	unpredictable	and	rapidly	changing	ways,
but	with	low	overhead	(Figure	13-10).	However,	passing	data	through	multiple
nodes	to	get	to	its	ultimate	destination	can	result	in	extra	overall	load	on	the
network.

Figure	13-10.	Peer-to-peer	architectures

Having	said	this,	there	is	nothing	stopping	you	from	using	p2p	nodes	to	act	as

communication	hubs,	with	clients	connecting	to	them	in	a	way	similar	to	the
architectural	patterns	described	with	Riak	Core.	Although	you	do	not	come
across	them	every	day,	these	patterns	are	ideal	for	systems	that	need	to	continue
executing	in	partitioned	networks	and	do	not	require	strong	consistency.

Interfaces
Once	you’ve	split	your	node	into	node	types	and	defined	what	services	they	will
provide	and	how	they	will	communicate	with	each	other,	the	time	comes	to
specify	the	interfaces	the	nodes	export.	Depending	on	the	size	and	complexity	of
the	system,	this	might	be	a	daunting	and	discouraging	task	if	you	don’t	know
where	to	start	or	how	to	break	it	down	into	smaller	tasks.	It’s	important,
however,	because	interfaces	are	not	only	used	by	other	nodes	when	sending
requests;	they	will	be	used	to	implement	the	business	logic,	to	test	the	nodes	on	a
standalone	basis,	and	to	run	end-to-end	tests	of	the	system.

Consider	what	you	expect	your	system	to	do	and	break	it	down	into	stories	and
features.	These	could	be	client	actions	or	actions	triggered	by	external	events.
Walk	through	these	actions	and	events,	and	in	doing	so,	determine:

The	function	to	call	when	accessing	the	node

The	arguments	you	need	to	pass	to	the	node	in	order	to	fulfill	the	request

The	data	model	of	the	tables	and	state	each	node	must	have	or	make
available	to	fulfill	this	request

Calls	to	other	nodes,	repeating	this	procedure	for	them

Any	destructive	operations	in	the	nodes,	including	table	updates	and	state
changes	resulting	from	the	call

The	return	values	of	the	call

The	key	to	success	is	abstracting	and	simplifying	everything	without	getting
stuck	in	the	details.	At	this	stage	of	your	architecture	design,	you	do	not	need	to
determine	every	single	item	that	can	go	wrong.	You	should	not	worry	about
complex	algorithms	or	optimization	strategies.	Just	think	of	positive	use	cases,
and	if	you	cover	any	errors,	make	sure	they	are	only	ones	defined	in	the	business
logic	of	your	system.

Let’s	walk	through	the	example	defined	in	“Node	Types	and	Families”,	where	a
client	sends	a	login	request	to	the	front-end	servers.	Breaking	down	the	story

into	smaller	steps,	this	is	what	our	line	of	thought	would	look	like:
The	front-end	server	receives	a	REST-based	login	request	with	a	UserId
and	an	encrypted	Password.	It	parses	the	request	and	corresponding	JSON
structure,	converting	the	data	to	Erlang	terms.	It	forwards	the	request	to	the
logic	node.

The	logic	node	receives	the	login	request	with	the	UserId	and	an	encrypted
Password.
It	checks	whether	an	ongoing	session	is	already	associated	with	the
UserId,	and	if	so,	it	reauthenticates	the	user	and	returns	the	existing
SessionId.

If	there	is	no	session,	the	logic	node	forwards	the	request	to	the
authentication	server,	authenticates	the	user,	and	returns	the	SessionId.

The	authentication	server	receives	an	auth	request	with	a	UserId	and	an
encrypted	Password.
If	the	authentication	is	successful,	the	account	is	active,	and	the	password
has	not	expired,	the	server	acknowledges	the	request	and	returns	the
UserData	associated	with	the	UserId.

If	the	authentication	fails,	the	authentication	server	returns	the	Reason	for
failure.	Reasons	could	be	unknown_user,	bad_password,	user_suspended,
or	password_expired.

The	logic	node	receives	the	result	from	the	authentication	server.
If	the	authentication	was	successful	and	no	session	existed	for	this	user,	it
creates	a	unique	SessionId	and	stores	it	in	a	session	table	together	with
the	UserData,	the	UserId,	and	a	TimeStamp.	It	returns	the	SessionId	to
the	front-end	node.

If	the	authentication	was	successful	and	a	session	existed	for	this	user,	it
returns	the	existing	SessionId	to	the	front-end	node.

If	the	authentication	failed,	the	logic	node	returns	login_failed,
user_suspended,	or	password_expired	to	the	front-end	node.

The	front-end	node	receives	the	responses	from	the	logic	nodes,	creates	a

JSON	structure,	and	replies	to	the	original	request.

We’ve	kept	everything	at	a	high	level,	worrying	only	about	function	calls	and
parameters	on	a	node	level	and	discussing	the	return	values	and	errors	that	can
occur	in	the	business	logic	of	our	system.	Forget	parse	errors,	processes,	nodes
crashing	and	being	unavailable,	or	network	connectivity	issues	for	now.	Note,
however,	that	if	there	is	a	failed	login,	the	logic	node	generalizes	the	error	cases
without	exposing	whether	it	is	the	UserId	or	Password	that	is	incorrect;	this	is	a
security	measure	that	makes	it	harder	for	attackers	to	determine	whether	a
particular	UserID	exists.

Along	with	definitions	of	the	interfaces,	we	make	a	first	run	of	the	data	and	state
that	are	needed	by	these	calls	and	expected	to	be	stored	in	tables	or	behavior
loop	data.	We	also	document	how	the	calls	change	this	data.	Having	gone
through	this	exercise,	Table	13-1	lists	what	we	would	expect	to	have	extracted.

Table	13-1.	Interfaces	and	tables
Web	front-end	node

login(UserId,	Password)	->	{ok,	SessionId}	|	{error,	login_failed}

No	tables	or	state

Logic	node

login(UserId,	Password)	->	{ok,	SessionId}	|	{error,	login_failed	|	user_suspended	|

password_expired}

SessionTable:	SessionId,	UserId,	TimeStamp,	UserData

UserTable:	UserId,	SessionId

Authentication	server

auth(UserId,	Password)	->	{ok,	UserData}	|	{error,	unknown_user	|	bad_password	|

user_suspended	|	password_expired}

UserTable:	UserId,	Password,	AccountState,	TimeStamp,	UserData

Doing	this	for	all	the	use	cases	and	stories	will	give	you	a	solid	foundation	that
you	can	use	to	design	the	individual	nodes,	as	well	as	other	stories	and	use	cases
you	might	have	missed.	If	many	users	were	involved	in	this	project	or	will	have
to	read	the	high-level	design	document,	providing	a	short	description	of	what	the

functions	do	will	also	help.	You	will	go	through	many	iterations	of	your	interface
as	you	design	your	system,	rearranging	your	tables,	moving	functionality
around,	and	reducing	duplication	of	your	data.	Don’t	think	you’ll	get	it	right	on
your	first	try.

Summing	Up
In	this	chapter,	we’ve	covered	the	first	steps	in	determining	the	distributed
architecture	of	your	system.	You	have	to	make	choices	at	some	point,	being
aware	that	these	choices	will	be	revisited	during	the	implementation	and
verification	phases.	There	is	a	lot	to	take	into	account,	so	be	careful	not	to	get
lost	in	the	details	and	overengineer	your	system.	If	you	need	to	handle	10,000
requests	per	second	dealing	with	small	volumes	of	data,	fully	connected
distributed	Erlang	will	probably	be	enough,	but	if	you	are	moving	high	volumes
of	data,	distributed	Erlang	alone	won’t	suffice.	Do	not	fall	into	the	trap	of
premature	optimization,	adding	complexity	that	will	slow	down	your	system,
decrease	reliability,	and	increase	maintenance	costs	without	any	added	benefits.
If	unsure,	start	your	project	with	a	proof	of	concept	ensuring	your	approach	is
the	right	one.	It	will	validate	your	ideas	and	stop	you	from	making	mistakes	in	a
production	system.

These	are	the	steps	we’ve	covered	in	this	chapter:
1.	 Split	up	your	system’s	functionality	into	manageable,	standalone	nodes.

During	this	task,	it	will	help	to	categorize	the	nodes	as	front-end,	logic,
or	service	nodes.	Try	to	keep	the	services	provided	by	your	nodes
simple,	and	remember	that	nodes	are	a	way	to	isolate	failure.	Losing	a
node	should	have	no	impact	on	any	requests	that	are	not	being	routed
through	it.

2.	 Choose	a	distributed	architectural	pattern.
When	deciding	on	a	pattern,	take	into	account	scalability,	availability,
and	reliability.	Will	a	static	number	of	nodes	be	enough,	or	do	you	need
dynamic	scaling?	Do	you	really	need	one	of	the	distributed	frameworks,
or	is	a	simple	cluster	running	fully	connected	distributed	Erlang	enough
for	your	needs?	Although	you	need	to	design	scalability	and	availability
into	your	system	from	the	start,	do	so	without	overengineering	your
system.	Always	start	simple,	and	add	complexity	when	you	know	you
need	it.	Just	because	you	can	use	Riak	Core	or	SD	Erlang	does	not
mean	you	have	to.	Ask	yourself	whether	the	problem	you	are	solving
falls	into	the	category	of	problems	they	solve.

3.	 Choose	the	network	protocols	your	nodes,	node	families,	and	clusters
will	use	when	communicating	with	each	other.
Although	most	systems	can	get	away	with	running	as	fully	connected
distributed	Erlang	clusters	behind	a	firewall,	there	will	be	cases	where
you	need	to	think	out	of	the	box	to	solve	specific	requirements	your
system	might	have.	Do	you	need	to	optimize	your	network	for
bandwidth,	speed,	or	both?	What	are	your	security	requirements?	And
most	importantly,	how	do	you	handle	network	unreliability?	You	need
to	choose	different	approaches	for	nodes	running	in	the	same	subrack
versus	being	located	in	geographically	remote	data	centers.	There	are
choices	you	might	want	to	make	up	front,	and	others	you	will	have	to
revisit	when	you	have	proper	benchmark	results	to	validate	your
choices.

4.	 Define	your	node	interfaces,	state,	and	data	model.
When	specifying	your	interfaces,	you	will	be	validating	the	choices	you
made	when	you	split	the	functionality	of	your	system	into	manageable,
standalone	nodes.	Getting	your	interfaces	and	data	model	right	is	also
an	iterative	process	that	will	require	revisiting	design	choices.	You	will
want	to	reduce	duplication	of	data	while	minimizing	the	size	and
number	of	arguments	you	send	in	requests	to	other	nodes.	You	will	want
to	standardize	your	APIs	across	nodes	while	catering	for	external
protocols	and	interfaces.

What’s	Next?
Now	that	we	have	covered	node	types,	system	blueprints,	and	node	and	node
family	connectivity,	the	time	has	come	to	look	at	failure	scenarios	and	how	to
mitigate	them.	The	next	chapter	covers	retry	strategies	when	requests	fail
because	of	software,	hardware,	or	networking	issues.	These	retry	strategies	go
hand	in	hand	with	the	partitioning	and	distribution	of	data	and	state	across	nodes
and	node	families.

“Distributed	Erlang	Component	Ontology,”	30	June	2013	by	Hoffmann,	Cesarini,	Fernandez,
Thompson	&	Chechina.

1

Chapter	14.	Systems	That	Never	Stop

You	need	at	least	two	computers	to	make	a	fault-tolerant	system.	Built-in	Erlang
distribution,	no	shared	memory,	and	asynchronous	message	passing	give	you	the
foundations	needed	for	replicating	data	across	these	computers,	so	if	one
computer	crashes,	the	other	can	take	over.	The	good	news	is	that	the	error-
handling	techniques,	fault	isolation,	and	self-healing	that	apply	to	single-node
systems	also	help	immensely	when	multiple	nodes	are	involved,	allowing	you	to
transparently	distribute	your	processes	across	clusters	and	use	the	same	failure
detection	techniques	you	use	on	a	single	node.	This	makes	the	creation	of	fault-
tolerant	systems	much	easier	and	more	predictable	than	having	to	write	your
own	libraries	to	handle	semantic	gaps,	which	is	typically	what’s	required	with
other	languages.	The	catch	is	that	Erlang	on	its	own	will	not	give	you	a	fault-
tolerant	system	out	of	the	box	—	but	its	programming	model	will,	and	at	a
fraction	of	the	effort	required	by	other	current	technologies.

In	this	chapter,	we	continue	explaining	approaches	to	distributed	programming
commonly	used	in	Erlang	systems.	We	focus	on	data	replication	and	retry
strategies	across	nodes	and	computers,	and	the	compromises	and	tradeoffs
needed	to	build	systems	that	never	stop.	These	approaches	affect	how	you
distribute	your	data,	and	how	you	retry	requests	if	they	have	failed	for	reasons
out	of	your	control.

Availability
Availability	defines	the	uptime	of	a	system	over	a	certain	period	of	time.	High
availability	refers	to	systems	with	very	low	downtime,	software	maintenance
and	upgrades	included.	While	some	claim	having	achieved	nine-nines
availability,1	these	claims	tend	not	to	be	long-lived.	Nine	nines	of	uptime	means
only	31.6	milliseconds	of	downtime	per	year!	It	will	take	you	10	times	longer	to
blink,	let	alone	figure	out	something	has	gone	wrong.	A	realistic	number	often
achieved	with	Erlang/OTP	is	99.999%	uptime,	equating	to	just	over	5	minutes	of
downtime	each	year,	upgrades	and	maintenance	included.

High	availability	is	the	result	of	your	system	having	no	single	point	of	failure,
and	being	fault-tolerant,	resilient,	and	reliable.	It	can	also	be	the	result	of	having
a	system	that	even	in	the	face	of	partial	failure	can	still	provide	some	degree	of
service,	albeit	reduced	from	normal	levels.	Let’s	look	in	detail	at	what	these
terms	entail	for	the	system	you	are	trying	to	build.

Fault	Tolerance
Fault	tolerance	refers	to	the	ability	of	a	system	to	act	predictably	under	failure.
Such	failure	could	be	due	to	a	software	fault,	where	a	process	crashes	because	of
a	bug	or	corrupt	state.	Or	it	could	be	due	to	a	network	or	hardware	fault,	or	the
result	of	a	node	crashing.	Acting	predictably	can	mean	looking	for	alternative
nodes	and	ensuring	that	requests	are	fulfilled,	or	just	returning	errors	back	to	the
callers.

In	the	example	in	Figure	14-1,	a	client	sends	a	request	to	the	front-end	node
running	the	web	servers.	The	request	is	parsed	and	forwarded	to	the	logic	node
(Figure	14-1,	part	1).	At	this	point,	the	logic	node,	or	a	process	in	the	logic	node,
crashes	(Figure	14-1,	part	2).	If	we	are	lucky,	the	front-end	node	detects	this
crash	and	receives	an	error.	If	we’re	unlucky,	an	internal	timeout	is	triggered.
When	the	error	or	timeout	is	received,	an	error	is	sent	back	to	the	client.

Figure	14-1.	Fault	tolerance

This	system	acts	in	a	predictable	way	and	is	considered	fault	tolerant	because	a
response	has	been	sent	back	to	the	client.	It	allows	the	client	to	act	in	a
predictable	way,	as	long	as	the	server,	the	type	of	request,	and	the	protocol	allow
for	it.	The	response	might	not	be	the	one	the	client	was	hoping	for,	but	it	was	a
valid	response.	It	is	now	up	to	the	client	to	decide	what	to	do	next.	It	might	retry
sending	the	request,	escalate	the	failure,	or	do	nothing.

The	hardest	part	in	this	use	case	is	knowing	whether	the	logic	node	actually
failed,	or	if	the	failure	is	in	the	network	between	the	nodes	—	or,	even	worse,	if
the	logic	node	is	just	incredibly	slow	in	responding,	triggering	a	timeout	in	the
front-end	node	while	actually	executing	the	request.	There	is	no	practical
difference	between	a	slow	node	and	a	dead	node.	Your	front-end	nodes	need	to
be	aware	of	all	these	conditions	and	handle	the	resulting	uncertainty.	This	is
done	through	unique	identifiers,	idempotence,	and	retry	attempts,	all	of	which
we	discuss	later	in	this	chapter.	It	might	even	require	audit	logs	and	human
intervention.	The	last	thing	you	want	is	for	your	purchase	request	to	time	out	and
for	the	client	to	keep	on	retrying	until	a	request	is	actually	acknowledged.	You
might	wake	to	discover	you	purchased	50	copies	of	the	same	book.

Erlang	has	dedicated,	asynchronous	error	channels	that	work	across	nodes.	It
does	not	matter	if	the	node	or	process	crashed,	or	if	the	crash	was	in	a	local	or
remote	node.	You	can	use	the	same	proven	error-handling	techniques,	such	as
monitors,	links,	and	exit	signals,	within	your	node	as	well	as	within	your
distributed	environment.	The	only	difference	will	be	latency	if	the	exit	signals
are	originating	in	remote	nodes,	something	already	taken	care	of	through
asynchronous	message	passing.	Make	sure	that	errors	are	propagated
accordingly	in	your	call	chain,	taking	actions	on	every	level	that	might	address
the	issue.	This	includes	the	handling	of	false	positives,	as	an	action	can	be
enacted,	but	crash	or	time	out	before	its	success	is	reported.	Or	it	can	time	out
due	to	network	issues,	but	succeed	asynchronously	after	the	time	out.	This	is	one
of	the	biggest	challenges	of	asynchronous	distributed	systems.

Resilience
Resilience	is	the	ability	of	a	system	to	recover	quickly	from	failure.	In	the
example	in	Figure	14-2,	the	client	sends	a	request	to	a	web	server	node	that
crashes	prior	to	handling	the	request	(Figure	14-2,	part	1).	This	might	be	caused
by	the	client	request,	by	a	request	from	another	client,	or	simply	as	the	result	of
the	Erlang	runtime	hitting	a	system	limit	such	as	running	out	of	memory.	The
node	could	have	failed	even	before	the	client	sent	its	request.	A	heartbeat	script
detects	the	node	failure	and,	depending	on	the	number	of	restarts	in	the	last	hour,
decides	whether	to	restart	the	process	or	reboot	the	machine	itself	(as	the	error
might	be	in	one	of	the	interfaces	and	could	be	eliminated	through	an	OS	restart).
The	client	keeps	on	sending	the	same	request,	which	repeatedly	fails	as	the	node
is	not	available.	But	once	the	machine	is	rebooted	or	the	node	restarted,	if	it	is
safe	to	do	so,	the	client	request	is	accepted	and	successfully	handled.	The	node
failed,	but	quickly	recovered	on	its	own	(Figure	14-2,	part	2),	minimizing
downtime.

Figure	14-2.	Resilience

As	we’ve	seen	in	many	of	the	previous	chapters	in	this	book,	the	trick	is	to
isolate	failure,	separating	the	business	logic	from	the	error	handling.	If	a	process
crashes,	its	dependencies	are	terminated	and	quickly	restarted.	If	a	node	goes
down,	a	heartbeat	script	triggers	an	immediate	restart.	If	a	network	or	hardware
outage	occurs,	the	redundant	network	is	used.	By	isolating	functionality	in
manageable	quantities	in	different	node	types,	isolating	failure	becomes	a
straightforward	and	easy	task.	If	you	have	a	node	that	does	too	much,	you
increase	the	possible	causes	of	a	node	crash	through	increased	complexity,	and
you	increase	the	recovery	time.

BACK-OFF	ALGORITHMS	IN	CLIENTS

If	you	have	a	client	that	automatically	tries	to	reconnect	and	send	a	request	after	a	failure,	make	sure	it
uses	a	back-off	algorithm	to	regulate	the	frequency	of	its	retries.	Picture	your	system	with	a	few
million	connected	devices	handling	a	couple	hundred	thousand	requests	per	second	experiencing	a	1-
minute	outage.	The	outage	will	result	in	all	the	devices	trying	to	reconnect	and	send	requests,	creating
a	surge	in	traffic.	This	surge	increases	for	every	second	of	downtime,	hitting	the	system	with	force	as
soon	as	it	becomes	operational	again.	If	not	handled	properly,	this	will	cause	more	front-end	nodes	to
terminate,	creating	an	even	larger	surge	on	the	remaining	ones	and	taking	out	the	next	batch	until	there
are	none	left.	This	is	what	we	call	a	cascading	failure,	something	you	need	to	guard	against	in	both
your	client	and	server.

The	easiest	variant	of	a	back-off	algorithm	in	a	client	is	based	on	Fibonacci,	where	the	interval
between	retries	increases	from	1	second	to	2,	3,	5,	8,	and	13	seconds,	respectively,	capped	at	a	large
number	such	as	89,	144,	or	more	seconds.	An	exponential	back-off	algorithm	is	one	that	increases	the
retry	interval	between	failed	requests	exponentially,	while	the	random	delays	created	by	a	random
back-off	algorithm	might	be	appropriate	so	that	multiple	nodes	issue	their	retries	at	different	times.
The	algorithm	that	best	suits	your	needs	will	control	the	surge	in	failed	retry	attempts	coming	at	the
same	time,	allowing	the	system	to	recover	and	continue	functioning	even	after	a	failure.

Reliability
The	reliability	of	a	system	is	its	ability	to	function	under	particular	predefined
conditions.	In	software	and	distributed	systems,	these	conditions	often	include
failure	and	inconsistency.	In	other	words,	the	system	has	to	continue	functioning
even	when	components	that	comprise	it	fail	themselves	or	when	data	becomes
inconsistent	because	it	fails	to	replicate	across	nodes.	When	looking	at	reliability,
you	need	to	start	thinking	of	the	redundancy	of	these	components.	When	we
mention	components,	we	do	not	mean	only	hardware	and	software.	We	also
mean	data	and	state,	which	need	to	be	replicated	and	consistent	across	nodes.

A	single	point	of	failure	means	that	if	a	particular	component	in	your	system
fails,	your	whole	system	fails.	That	component	could	be	a	process,	a	node,	a
computer,	or	even	the	network	tying	it	all	together.	This	means	that	in	order	for
your	system	to	have	no	single	point	of	failure,	you	need	to	have	at	least	two	of
everything.	At	least	two	computers	with	software	distributed	and	running	a
failover	strategy	across	them.	At	least	two	copies	of	your	data	and	state.	Two
routers,	gateways,	and	interfaces,	so	that	if	the	primary	one	fails,	the	secondary
takes	over.	Alternative	power	supplies	(or	battery	backups)	for	the	same	reason.
And	if	you	have	the	luxury,	place	the	two	computers	in	separate,	geographically
remote	data	centers.	You	should	also	keep	in	mind	that	having	only	two	of
everything	might	itself	be	a	problem	waiting	to	happen,	since	if	one	of
something	goes	down,	the	remaining	instance	automatically	becomes	a	single
point	of	failure.	For	this	reason,	using	three	or	more	instances	instead	of	just	two
is	normally	a	given	when	high	reliability	is	a	critical	requirement.	All	of	this
comes	at	a	higher	bandwidth	and	latency	cost.

EXTRAORDINARY	MEASURES

One	of	the	authors	arrived	at	a	customer	site	one	morning	to	find	a	digger	parked	in	the	driveway	and
a	bewildered	builder	holding	two	ends	of	a	broken	cable	while	doing	the	motion	of	trying	to	stick	them
back	together.	For	a	week,	the	site	lost	its	Internet	connection,	landline	phone	service,	and	even	mobile
connectivity,	because	the	antennas	on	the	roof	were	using	that	very	same	cable.	If	you	need	to	service
requests	after	a	natural	disaster	(or	a	clueless	builder),	make	sure	you	have	site	redundancy.

US	regulatory	agencies’	disaster	recovery	guidelines	for	financial	institutions	recommend	a	minimum
distance	of	200–300	miles	between	primary	and	secondary	data	centers.	European	telecommunication
recommendations	are	not	as	extreme,	but	they	do	guarantee	that	if	a	site	is	hit	by	a	nuclear	bomb,	or	a
bomb	is	dropped	anywhere	in	between	the	two	sites,	one	of	the	sites	will	be	distant	enough	to	be
unaffected!	That	is	the	price	you	have	to	pay	for	high	availability.

At	the	end	of	the	day,	availability	becomes	a	question	of	costs,	tradeoffs,	and	risks.	The	financial
damage	caused	by	a	network	outage	might	be	less	than	the	cost	of	installing	a	redundant	network	or
having	redundant	hardware,	turning	it	into	a	business	decision.	And	this	is	a	technical	book	about
software,	so	let’s	leave	the	bean	counters	alone	and	get	back	on	track.

What	does	having	two	or	three	of	everything	mean	for	your	software?	Your
request	hits	one	of	the	load	balancers,	which	forwards	it	to	one	of	the	front-end
nodes.	The	node	used	is	chosen	by	the	load	balancer	using	a	variety	of	strategies
—	random,	round	robin,	hashing,	or	sending	the	request	to	the	front-end	node
with	the	least	CPU	load	or	the	one	with	the	smallest	number	of	open	TCP
connections.	We	prefer	hashing	algorithms,	as	they	are	fast	and	give	you
predictability	and	consistency	with	low	overheads.	When	troubleshooting	what
is	going	(or	what	went)	wrong	with	a	request,	having	a	deterministic	route	across
nodes	makes	debugging	much	easier,	especially	if	you	have	hundreds	of	nodes
and	decentralized	logs.

Let’s	look	at	an	example	of	how	we	avoid	a	single	point	of	failure.	The	front-end
node	receives	the	request,	parses	it,	and	forwards	it	to	a	logic	node	(Figure	14-3,
part	1).	Soon	after	the	request	is	forwarded,	something	goes	wrong.	The	failure
could	have	occurred	anywhere,	and	we	are	unsure	of	the	state	of	the	request
itself.	We	do	not	know	whether	the	request	ever	reached	the	logic	node,	or
whether	the	logic	node	started	or	even	finished	handling	it.	It	could	have	been
this	very	request	that	caused	a	process	to	crash,	caused	a	synchronous	call	to
time	out,	or	caused	the	whole	node	to	crash.	Or	perhaps	the	node	might	not	have
crashed	at	all;	it	might	be	extremely	overloaded	and	slow	in	responding,	or
network	connectivity	might	have	failed.	We	should	be	able	to	distinguish
between	something	crashing	in	the	node	itself	and	the	node	not	responding.	But
beyond	that,	we	just	don’t	know.

What	we	do	know,	though,	is	that	we	have	a	client	waiting	for	a	reply.	So,	upon
detecting	the	error,	the	front-end	node	forwards	the	request	to	a	secondary	logic
node.	This	node	handles	the	request	(Figure	14-3,	part	2)	and	returns	the	reply	to
the	front-end	node,	which	formats	it	and	sends	it	back	to	the	client	(Figure	14-3,
part	3).	All	along,	the	client	has	no	idea	of	the	drama	happening	behind	the
scenes.	The	resilience	in	the	node	where	the	error	occurs	ensures	that	it	comes
up	again,	reconnects	to	the	front-end	nodes,	and	starts	handling	new	requests.
So,	despite	part	of	our	system	failing,	it	still	provided	100%	uptime	to	the	client
thanks	to	our	“no	single	point	of	failure”	strategy.

Figure	14-3.	Single	points	of	failure

At	most	once,	exactly	once,	and	at	least	once
When	handling	failure	strategies,	you	need	to	start	getting	clever	and	make	sure
you	have	all	edge	cases	covered.	There	are	three	approaches	you	can	take	for
every	request,	because	how	you	handle	requests	maps	to	message	delivery
semantics	across	nodes	in	distributed	systems.	In	our	example	in	Figure	14-3,	the
only	guarantee	you	have	is	that	your	request	has	been	executed	at	least	once.	If
you	are	logging	on	to	the	system	and	the	first	logic	node	is	so	slow	that	the	front-
end	node	tries	another	one	and	succeeds	with	it,	the	worst-case	scenario	is	that
you	log	on	twice	and	two	sessions	are	created,	one	of	which	will	eventually
expire.

Similarly,	if	you	are	sending	an	SMS	or	an	instant	message,	you	might	be	happy
with	the	at	most	once	approach.	If	your	system	sends	billions	of	messages	a	day,
the	loss	of	a	few	messages	is	acceptable	relative	to	the	load	and	the	cost
associated	with	guaranteed	delivery.	You	send	your	request	and	forget	about	it.
In	our	example	with	no	single	point	of	failure,	when	the	front-end	node	sends	the
request	to	the	logic	node,	it	also	immediately	sends	a	reply	back	to	the	client.

But	what	if	you	were	sending	money	or	a	premium	rate	SMS?	Losing	money,
making	the	transfer	more	than	once,	or	sending	and	charging	for	the	same

premium	SMS	multiple	times	because	of	an	error	will	not	make	you	popular.
Under	these	circumstances,	you	need	the	exactly	once	approach.	A	request	can
succeed	or	fail.	If	failure	is	in	your	business	logic,	such	as	where	a	user	is	not
allowed	to	receive	premium	rate	SMSs,	we	actually	consider	the	failed	request	to
be	successful,	as	it	falls	within	the	valid	return	values.	Errors	that	should	worry
us	are	timeouts,	software	bugs,	or	corrupt	state	causing	a	process	or	node	to
terminate	abnormally,	leaving	the	system	in	a	potentially	unknown	or	undefined
state.	As	long	as	you	use	the	exactly	once	approach	in	a	single	node,	abnormal
process	termination	can	be	detected.	As	soon	as	you	go	distributed,	however,	the
semantics	of	the	request	cannot	be	guaranteed.

The	successful	case	is	when	you	send	a	request	and	receive	a	response.	But	if
you	do	not	receive	a	response,	is	it	because	of	the	request	never	reaching	the
remote	node,	because	of	a	bug	in	the	remote	node,	or	because	the
acknowledgment	and	reply	of	the	successful	execution	got	lost	in	transit?	The
system	could	be	left	in	an	inconsistent	state	and	need	cleaning	up.	In	some
systems,	the	cleanup	is	executed	automatically	by	a	script	that	tries	to	determine
what	went	wrong	and	address	the	problem.	In	other	cases,	cleaning	up	might
require	human	intervention	because	of	the	complexity	of	the	code	or	seriousness
of	the	failed	transaction.	If	a	request	to	send	a	premium	rate	SMS	failed,	a	script
could	start	by	investigating	if	the	mobile	device	received	the	remote	SMS,	if	the
user	was	charged	for	it,	or	if	the	request	ever	made	it	to	the	system.	Having
comprehensive	logs,	as	we	show	in	“Logs”,	becomes	critical.

A	common	pattern	in	achieving	exactly	once	semantics	with	at	most	once	calls	is
to	use	unique	sequence	numbers	in	the	client	requests.	A	client	sends	a	request
that	gets	processed	correctly	(Figure	14-4,	part	1).	If	the	response	from	the	front-
end	node	is	lost	or	delayed,	a	timeout	in	the	client	is	triggered.	The	client	resends
the	request	with	the	same	identifier,	and	the	logic	node	identifies	it	as	a	duplicate
request	and	returns	the	original	reply,	possibly	tagging	it	as	a	duplicate
(Figure	14-4,	part	2).	You	are	still	not	guaranteed	success,	as	the	connectivity
between	the	client	and	the	server	might	not	come	up	again.	But	it	will	work	in
the	presence	of	transient	errors.

Figure	14-4.	Duplicate	requests

This	approach	relies	on	idempotence.	The	term	describes	an	operation	that	the
user	can	apply	multiple	times	with	the	same	effect	as	applying	it	once.	For
example,	if	a	request	changes	a	customer’s	shipping	address,	whether	the	system
performs	the	request	successfully	once	or	multiple	times	has	the	same	result,
assuming	the	shipping	address	is	the	same	in	each	request.	Such	a	request	can
actually	be	executed	multiple	times	because	the	side	effects	of	any	second	or
subsequent	executions	essentially	have	no	observable	effect.	With	our	request
identification	scheme,	though,	the	second	and	subsequent	executions	never
occur.

Imagine	a	billing	system	for	premium	rate	SMSs.	You	need	to	guarantee	that	if
you	charge	the	user,	you	will	do	so	exactly	once,	and	only	after	the	SMS	is
received.	An	approach	typically	taken	to	guarantee	this	result	is	reserving	the
funds	in	the	recipient	account	before	sending	the	SMS.	When	reserving	them,	
the	billing	system	returns	a	unique	identifier.	The	SMS	is	sent,	possibly	multiple

times.	The	charge	is	made	only	when	the	first	report	notifying	that	it	has	been
delivered	is	received	by	the	billing	system.	The	unique	identifier	is	then	used	to
execute	the	payment	and	charge	the	account.	Subsequent	attempts	to	use	the
same	identifier,	possibly	when	receiving	multiple	copies	of	the	same	delivery
report,	do	not	result	in	additional	charges.	And	if	the	SMS	never	reaches	its
recipient,	the	reserved	funds	are	eventually	released	after	timing	out.	The
timeout	also	invalidates	the	identifier.

At	most	once,	at	least	once,	and	exactly	once	approaches	all	have	advantages
and	tradeoffs.	While	deciding	what	strategy	to	use,	keep	in	mind	that	requests
and	the	messaging	infrastructure	that	underpins	them	are	unreliable.	This
unreliability	needs	to	be	managed	in	the	business	logic	and	semantics	of	every
request.	The	easiest	to	implement	and	least	memory-	and	CPU-intensive
approach	is	the	“at	most	once”	approach,	where	you	send	off	your	request	and
forget	about	it.	If	something	fails,	you	have	lost	the	request,	but	without	affecting
the	performance	of	all	of	the	other	requests	that	succeeded.	The	“at	least	once”
approach	is	more	expensive,	because	you	need	to	store	the	state	of	the	request,
monitor	it,	and	upon	receiving	timeouts	or	errors,	forward	it	to	a	different	node.
Along	with	higher	memory	and	CPU	usage,	it	can	generate	additional	network
traffic.	Theoreticians	will	argue	that	the	at	least	once	approach	cannot	be
guaranteed	to	be	successful,	as	all	nodes	receiving	the	request	can	be	down.
We’ll	leave	them	scratching	their	heads	and	figuring	out	what	double	and	triple
redundancy	are	all	about.	The	hardest	strategy	is	the	“exactly	once”	approach,
because	you	need	to	provide	guarantees	when	executing	what	is	in	effect	a
transaction.	The	request	can	succeed	or	fail,	but	nothing	in	between.

These	guarantees	are	impossible	with	distributed	systems,	since	failure	can	also
mean	a	request	being	successfully	executed	but	its	acknowledgment	and	reply
being	lost.	You	need	algorithms	that	try	to	retrace	the	call	through	the	logs	and
understand	where	a	failure	occurred	to	try	to	correct	it	or	compensate	for	it.	In
some	systems,	this	is	so	complex	or	the	stakes	are	so	high	that	human
intervention	is	required.

Until	now,	we’ve	said,	“Let	it	crash.”	Yes,	let	it	crash,	and	no	matter	which	of
the	three	strategies	you	pick,	put	your	effort	into	the	recovery,	ensuring	that	after
failure,	your	system	returns	to	a	consistent	state.	The	beauty	of	error	handling
and	recovery	in	Erlang	is	that	your	recovery	strategy	will	be	the	same	when
dealing	with	all	of	your	errors,	software,	hardware,	and	network	faults	included.

If	you	do	it	right,	there	will	be	no	need	to	duplicate	code	in	a	process	recreating
its	state	after	a	crash	or	recovering	after	a	network	partition	or	packet	loss.

Sharing	Data
When	you	are	thinking	about	your	strategies	for	avoiding	a	single	point	of
failure	and	for	recovery,	you	have	to	make	a	new	set	of	decisions	about	whether
and	how	you	are	going	to	replicate	data	across	your	nodes,	node	families,	and
clusters.	Your	decisions	will	affect	your	system’s	availability	(which	includes
fault	tolerance,	resilience,	and	reliability)	and,	ultimately,	also	scalability.
Luckily,	you	can	defer	some	of	these	decisions	to	when	you	stress	test	and
benchmark	your	system.	You	might	want	to	make	other	decisions	up	front	based
on	the	requirements	you	already	know	and	on	past	experiences	in	designing
similar	systems.	But	whatever	your	decision	is,	one	of	the	hardest	things	when
dealing	with	distributed	systems	is	accessing	and	moving	your	data;	it	can	be	the
cause	of	your	worst	bottlenecks.	For	every	table	and	state,	you	have	three
approaches	you	can	choose	from:	share	nothing,	share	something,	and	share
everything.	Choose	your	data	replication	strategy	wisely,	and	pick	the	one	that
most	closely	matches	the	level	of	scale	or	availability	for	which	you	are	aiming.

Share	nothing
The	share-nothing	architecture	is	where	no	data	or	state	is	shared.	This	could	be
specific	to	a	node,	a	node	family,	or	a	cluster.	Once	you	have	addressed	the
underlying	infrastructure,	such	as	hardware,	networks,	and	load	balancing,
share-nothing	architectures	can	result	in	linearly	scalable	systems.	Because	each
collection	of	nodes	has	an	independent	copy	of	its	own	data	and	state,	it	can
operate	on	its	own.	When	you	need	to	scale,	all	you	need	to	do	is	add	more
infrastructure	and	reconfigure	your	load	balancers.

Figure	14-5,	part	1	shows	two	front-end	and	two	logic	nodes.	Using	a	login
request,	Client1	and	Client2	send	their	credentials	to	initiate	a	session.	This
request	is	forwarded	to	one	of	the	two	front-end	nodes	using	the	load-balancing
strategy	configured	in	the	load	balancer.	In	our	example,	each	node	gets	a
request	that	it	forwards	to	its	primary	logic	node.	These	nodes	each	check	the
client	credentials	and	create	a	session,	storing	the	session	state	in	a	database.

Client1	now	sends	a	new	request	right	after	the	node	storing	its	session	data	has
crashed,	losing	everything	(Figure	14-5,	part	2).	The	front-end	node	forwards	it
to	its	standby	logic	node,	which	rejects	the	request	because	it	is	unaware	of	the

session.	The	client,	upon	receiving	an	unknown	session	error,	sends	a	new	login
request	that	is	forwarded	and	handled	by	the	second	logic	node.	All	future
requests	from	this	client	should	now	be	forwarded	to	the	logic	node	containing
the	session.	If	they	aren’t	and	the	node	that	crashed	comes	up	again,	the	client
will	have	to	log	on	again	(Figure	14-5,	part	3),	and	we	just	assume	that	the
session	in	the	standby	node	will	eventually	time	out	and	be	deleted.

Figure	14-5.	Share-nothing	architecture

As	we	don’t	have	to	copy	our	session	state	across	nodes,	we	get	better
scalability,	because	we	can	continue	adding	front-end	and	logic	nodes	as	the
number	of	simultaneously	connected	users	increases.	The	downside	of	this
strategy	is	that	if	you	lose	a	node,	you	lose	the	state	and	all	of	the	data	associated
with	it.	In	our	example,	all	sessions	are	lost,	forcing	users	to	log	on	again	and
establish	a	new	session	in	another	node.	You	also	need	to	choose	how	to	route
your	requests	across	nodes,	ensuring	that	each	request	is	routed	to	the	logic	node
that	stores	its	matching	session	data.	This	guarantees	continuity	after	a	node
failure	and	recovery.

Share	something
What	do	we	do	if	we	want	to	ensure	that	users	are	still	logged	on	and	have	a
valid	session	after	a	node	failure?	The	share-something	architecture,	where	you
duplicate	some	but	not	all	of	your	data,	might	address	some	of	your	concerns.	In
Figure	14-6,	we	copy	the	session	state	across	all	logic	nodes.	If	a	node
terminates,	is	slow,	or	can’t	be	reached,	requests	are	forwarded	to	logic	nodes

that	have	copies	of	the	session	data.	This	approach	ensures	that	the	client	does
not	have	to	go	though	a	login	procedure	when	switching	logic	nodes.	But	it
trades	off	some	scalability,	because	the	session	data	needs	to	be	copied	across
multiple	nodes	every	time	a	client	logs	in	and	deleted	when	the	session	is
terminated.	Things	get	even	more	expensive	whenever	a	node	is	added	to	the
cluster	or	restarts,	because	sessions	from	the	other	nodes	might	have	to	be	copied
to	it	and	kept	consistent.

Figure	14-6.	Share-something	architecture

The	strategy	just	described	is	called	share	something	because	it	is	a	compromise:
you	copy	some,	but	not	all	of	the	data	and	state	associated	with	each	session.
The	strategy	reduces	the	overhead	of	copying	while	increasing	the	level	of	fault
tolerance.	Let’s	return	to	our	e-commerce	site.	The	session	data	is	copied,	so	if	a
node	is	lost,	the	user	does	not	have	to	log	on	again.	However,	the	contents	of	the
shopping	cart	are	not	copied,	so	upon	losing	a	node,	the	users	unexpectedly	have
their	carts	emptied.	When	a	user	is	checking	out	and	paying	for	the	selected

items,	only	those	items	in	the	active	logic	node’s	shopping	cart	will	appear.

We	have	been	assuming	all	along	that	if	the	logic	node	crashed,	all	of	its	data
would	be	lost.	What	if	the	shopping	cart	were	stored	in	a	persistent	key-value
store	which,	upon	restart,	was	reread?	Or	what	if	a	network	partition	occurred,	or
the	node	was	just	slow	in	responding	and,	as	such,	presumed	dead?	When	the
node	becomes	available,	you	need	to	decide	on	your	routing	strategy	—	namely,
which	of	the	two	logic	nodes	receives	new	requests.	And	because	you	have	two
shopping	carts,	they	now	need	to	be	merged	(Figure	14-7,	part	1),	or	one	of	them
has	to	be	discarded.

How	is	this	done?	Do	you	join	all	of	the	items?	What	if	we	had	added	an	item	to
the	shopping	cart	in	the	second	node?	Will	we	end	up	with	one	or	two	copies	of
the	item?	Or	what	if	we	had	sent	a	delete	operation	to	the	second	node,	but	the
operation	failed	because	the	item	was	not	there?	How	you	solve	these	problems
depends	on	your	business	and	your	risks.	Some	distributed	databases,	such	as
Riak	and	Cassandra,	provide	you	with	options.	In	our	example,	the	node	that
crashed	becomes	the	primary	again,	and	we	move	the	contents	of	the	second
shopping	cart	to	it	(Figure	14-7,	part	2).

Figure	14-7.	Network	partitions	with	the	share-something	architecture

The	Dynamo	paper	discussed	in	“Riak	Core”	describes	the	Amazon	way	of

merging	its	shopping	cart	when	recovering	from	failures.	If,	during	the	merge,
there	is	uncertainty	over	the	deletion	of	an	item,	it	gets	included,	leaving	the
responsibility	to	the	shopper	to	either	remove	it	when	reviewing	the	final	order
or	return	it	for	a	refund	if	it	actually	gets	shipped.	How	many	times,	upon
checkout,	have	you	found	an	item	in	your	Amazon	shopping	cart	you	were	sure
you	had	deleted?	It	has	happened	to	us	a	few	times.

The	share-something	architecture	is	ideal	for	use	cases	where	you	are	allowed	to
lose	an	occasional	odd	request	but	need	to	retain	state	for	more	expensive
operations.	We	used	a	shopping	cart	example.	Think	of	an	instant	messaging
server	instead.	The	most	expensive	operation,	and	biggest	bottleneck,	is	users
logging	in	and	starting	a	session.	The	session	needs	to	access	an	authentication
server,	retrieve	the	user’s	contact	list,	and	send	everyone	a	status	update.
Imagine	a	server	handling	a	million	users.	The	last	thing	you	want	as	the	result
of	a	network	partition	or	a	node	crash	is	for	a	million	users	to	be	logging	back
on,	especially	when	the	system	is	still	recovering	from	having	sent	30	million
offline	status	updates	(assuming	60	contacts	per	user,	of	whom	half	are	online).

One	good	solution	is	to	distribute	the	session	record	across	multiple	nodes.	What
you	do	not	share,	however,	are	the	status	notifications	and	messages.	You	let
them	go	through	a	single	node	with	the	“at	most	once”	approach	for	sending
messages	in	order	to	preserve	speed.	You	assume	that	if	the	node	crashes	or	is
separated	from	the	rest	of	the	cluster	through	a	network	error,	you	either	delay
the	delivery	of	the	notifications	and	messages	or	lose	some	or	all	of	them.	How
many	times	have	you	sent	an	SMS	to	someone	close	to	you,	only	for	them	to
receive	it	hours	(or	days)	later,	or	never	at	all?

CONSISTENCY

When	dealing	with	distributed	systems,	there	are	multiple	forms	of	consistency	that	differ	due	to
varying	degrees	of	visibility,	ordering,	and	replica	coordination.	In	a	perfect	system,	all	nodes	would
see	all	updates	at	the	same	logical	time	and	in	the	same	order;	no	reads	would	ever	return	stale	data;
and	there	would	be	no	latency	anomalies,	crashed	nodes,	network	partitions,	or	lost	messages.	In	our
imperfect	world,	though,	these	guarantees	do	not	hold	and	these	problems	actually	do	occur,	and	so
systems	must	make	tradeoffs	between	consistency,	availability,	and	latency.

One	weak	form	of	consistency	is	eventual	consistency,	where	updates	at	different	replicas	can	occur	in
different	orders,	and	reads	can	return	stale	values.	While	this	consistency	model	sounds	like	it	might
do	more	harm	than	good,	in	practice	it	can	be	valuable	for	applications	requiring	read	and	write
availability	and	predictable	latency	even	when	the	system	is	operating	under	conditions	of	partial
failure,	as	long	as	those	applications	can	handle	occasionally	reading	stale	data.

Other	forms	of	consistency,	such	as	monotonic	read	and	monotonic	write,	have	to	do	with	guarantees
related	to	recency.	When	you	read	a	value	under	a	monotonic	read	model,	you	are	guaranteed	that	you
will	never	again	see	a	value	older	than	the	one	you	just	read.	Similarly,	with	the	monotonic	write
model	you	are	guaranteed	that	any	update	you	issue	for	a	value	will	finish	prior	to	any	further	updates
you	issue	for	the	same	value.	These	ordering	guarantees	come	at	a	cost	of	increased	coordination
across	the	distributed	system,	and	thus	potentially	increased	latencies	and	lower	availability.

Still	stronger	ordering	guarantees	are	provided	with	the	read	your	own	writes	consistency	level,	which
is	self-explanatory,	and	with	a	consistency	model	that’s	a	combination	of	monotonic	reads	and	writes
where	your	update	for	a	given	value	is	guaranteed	to	never	act	on	an	instance	older	than	your	most
recent	read	of	the	same	value.

Even	higher	degrees	of	consistency	can	be	achieved	using	consensus	protocols	such	as	Paxos,
Zookeeper	Atomic	Broadcast	(ZAB),	and	Raft,	where	a	majority	of	replicas	must	vote	and	agree	on
updates	for	a	given	value.	These	protocols	can	deliver	strong	consistency	guarantees,	but	to	achieve
them	they	require	a	high	degree	of	coordination	among	replicas	and	so	can	have	negative	impacts	on
latency	and	availability.	Even	so,	if	your	application	requires	this	level	of	consistency	guarantee,	you
are	far	better	off	using	an	implementation	of	a	proven	consensus	protocol	than	trying	to	invent	your
own.	For	example,	Riak	Ensemble	implements	Multi-Paxos,	an	optimized	version	of	basic	Paxos.

One	sometimes	confusing	point	about	these	distributed	system	consistency	levels	is	that	they	are
different	from	the	“C”	in	the	Atomicity,	Consistency,	Isolation,	and	Durability	(ACID)	properties	of
transactional	databases.	In	ACID,	consistency	means	that	effects	of	transactions	become	visible	upon
their	completion	and	that	no	transactions	violate	database	constraints.

Share	everything
Share-nothing	and	share-something	architectures	might	work	for	some	systems
and	data	sets,	but	what	if	you	want	to	make	your	system	as	fault	tolerant	and
resilient	as	possible?	While	it	is	not	possible	to	have	a	distributed	system	where
losing	requests	is	not	an	option,	you	might	be	dealing	with	money,	shares,	or
other	operations	where	inconsistency	or	the	risk	of	losing	a	request	is
unacceptable.	Each	transaction	must	execute	exactly	once,	its	data	has	to	be
strongly	consistent,	and	operations	on	it	must	either	succeed	or	fail	in	their
entirety.	Although	you	can	get	away	with	not	receiving	an	SMS	or	instant
message,	finding	an	equity	trade	you	thought	had	been	executed	missing	in	your
portfolio	or	money	missing	from	your	bank	account	is	indefensible.	This	is
where	the	share-everything	architecture	comes	into	the	picture.	All	your	data	is
shared	across	all	of	the	nodes,	any	of	which	might,	upon	hardware	or	software
failure,	take	over	the	requests.	If	there	is	any	uncertainty	over	the	outcome	of	a
request,	an	error	is	returned	to	the	user.	When	things	go	wrong,	they	have	to	be
reconciled	after	the	fact.	For	example,	if	you	try	to	withdraw	from	multiple
ATMs	more	funds	than	you	have	in	your	account,	you	get	the	money,	but	then
later	the	bank	penalizes	you	for	overdrawing	your	account.	But	with	no	single

https://github.com/basho/riak_ensemble

point	of	failure,	using	redundant	hardware	and	software,	the	risk	for	this	error
should	be	reduced	to	a	minimum.

In	Figure	14-8,	we	duplicate	the	sessions	and	shopping	cart	contents	in	two	logic
nodes,	each	handling	a	subset	of	clients	and	duplicating	the	session	state	and
shopping	cart	to	the	other	nodes.	If	a	node	terminates,	the	other	one	takes	over.
Should	the	node	recover,	it	will	not	accept	any	requests	until	all	of	the	data	from
the	active	node	has	been	copied	over	and	is	consistent	with	other	nodes.

Figure	14-8.	Share-everything	architecture

We	call	this	primary-primary	replication.	This	contrasts	with	primary-secondary
replication,	where	a	single	primary	node	is	responsible	for	the	data.	The
secondary	nodes	can	access	the	data,	but	must	coordinate	any	destructive
operations	such	as	inserts	or	deletes	with	the	primary	if	they	wish	to	modify	the
data.	If	the	primary	is	lost,	either	the	system	stops	working	entirely,	or	it
provides	a	degraded	service	level	where	writes	and	updates	are	not	allowed,	or
one	of	the	secondaries	takes	over	as	primary.

The	share-everything	architecture	is	the	most	reliable	of	all	data-sharing
strategies,	but	this	reliability	comes	at	the	cost	of	scalability.	It	tolerates	the	loss
of	nodes	without	impacting	consistency	of	data,	but	if	some	nodes	go	wrong,	it
also	loses	availability.	This	strategy	is	also	the	most	expensive	to	run	and
maintain,	because	every	operation	results	in	computational	overhead	and
multiple	requests	across	the	network	to	ensure	that	the	data	is	kept	replicated	and
consistent.	Upon	restarting,	nodes	must	connect	to	a	primary	and	retrieve	a	copy
the	data	to	bring	them	back	in	sync	with	the	primary	node,	ensuring	they	have	a
correct	and	current	view	of	the	state	and	the	data.

Although	share-everything	architectures	do	not	necessarily	require	distributed
transactions	across	nodes,	you	will	need	them	when	dealing	with	data	such	as
money	or	shares	you	cannot	afford	to	lose.	This	contrasts	with	the	requirements
we	saw	for	messaging,	where	duplicating	the	messages	through	eventual
consistency	will	greatly	reduce	the	risk	of	them	getting	lost	if	you	lose	a	node,
but	with	no	strong	guarantee	that	you	will	never	lose	a	message.

When	you	have	decided	on	your	data-sharing	strategy,	you	need	to	go	through
each	request	in	your	API,	trace	the	call,	and	try	to	map	everything	that	can	go
wrong.	Within	the	node	itself,	for	synchronous	calls,	you	need	to	consider
behavior	timeouts	and	abnormal	process	termination.	If	dealing	with
asynchronous	messaging,	ensure	that	message	loss	(when	the	receiving	process
has	terminated)	is	handled	correctly.	Across	nodes,	you	need	to	consider	network
errors,	partitions,	slow	nodes,	and	node	termination.	When	you’re	done,	pick	the
recovery	strategy	that	best	suits	the	particular	calls.	This	needs	to	be	done	for
every	external	call,	and	will	often	result	in	a	mixture	of	the	three	recovery
strategies,	depending	on	the	importance	of	the	state	change.

CAP	CONFUSION

The	CAP	theorem,	a	conjecture	originally	put	forward	in	2000	by	Eric	Brewer	and	formally	proven	in
2002	by	Seth	Gilbert	and	Nancy	Lynch,	states	that	in	any	distributed	system	it	is	impossible	to	fully
provide	consistency,	availability,	and	partition	tolerance	at	all	times.	For	the	purposes	of	CAP,	these
properties	are	defined	as	follows:

Consistency	guarantees	that	clients	get	correct	responses	to	all	requests.

Availability	guarantees	that	the	system	eventually	services	every	request	sent	to	it,	for	both	reads
and	updates.

Partition	tolerance	guarantees	continued	system	operation	even	when	the	network	or	nodes	fail
and	messages	are	delayed	or	lost.

The	CAP	theorem	essentially	states	in	a	different	way	some	issues	we’ve	already	known	about	for
decades,	yet	many	view	it	as	controversial	and	confusing.	This	stems	from	CAP	having	often	been
explained	as	requiring	you	to	“pick	two”	of	the	three	properties	when	designing	a	distributed	system.
Since	one	of	the	properties,	partition	tolerance,	is	inherent	in	the	definition	of	distributed	systems	and
is	thus	automatically	chosen	for	you,	the	only	realistic	choice	left	was	between	consistency	and
availability.	For	example,	some	have	claimed	that	Mnesia	is	a	CA	system,	but	clearly	they’ve	never
attempted	to	use	it	during	a	network	partition	(conditions	under	which	it	is	anything	but	available).

Real	distributed	systems	tradeoffs	are	never	as	simple	as	the	flawed	“pick	two”	CAP	dilemma.	In
1977,	decades	before	CAP,	Leslie	Lamport	introduced	the	notions	of	safety	and	liveness	for	analyzing
system	properties,	which	Lamport,	Bowen	Alpern,	Fred	B.	Schneider,	and	others	explored	and
explained	more	deeply	in	the	decades	that	followed.	Simply	put,	safety	means	that	as	a	distributed

system	operates,	nothing	bad	happens,	while	liveness	signifies	that	something	good	eventually
happens.	CAP	consistency	is	a	safety	property	because	it	implies	correctness,	whereas	availability	is	a
liveness	property	because	it	means	clients	always	get	valid	replies.

The	1980s	also	gave	us	the	Fischer-Lynch-Paterson	(FLP)	impossibility	result,	which	proved	that	there
is	no	distributed	algorithm	that	can	achieve	consensus	in	an	asynchronous	system	if	even	a	single	part
of	the	system	is	failing.	Both	this	theorem	and	the	“P”	in	CAP	indicate	that	delays	and	failure	are
inherent	in	distributed	computing	systems,	both	in	hardware	and	software,	and	thus	they	can	never	be
downplayed	or	ignored.	In	the	face	of	failure,	full	consensus	can’t	be	achieved	due	to	some	nodes
being	unreachable,	which	in	turn	means	agreement,	consistency,	and	validity	across	the	system	suffer
some	degree	of	degradation.	No	matter	how	you	analyze	it,	you	run	into	these	fundamental	truths	that
all	lead	to	the	same	conclusion:	achieving	full	safety	and	liveness	—	or	in	CAP	terms,	full	consistency
and	availability	—	is	impossible	in	any	practical	distributed	system.

In	real-life	systems,	not	only	do	the	choices	and	tradeoffs	between	consistency	and	availability	depend
highly	on	the	application,	but	different	parts	of	the	same	application	can	require	different	tradeoffs.
For	example,	a	popular	digital	device	at	the	time	of	writing	is	the	fitness	tracker.	Such	a	device,	worn
by	a	user,	collects	health-related	data,	such	as	pulse	rate,	duration	of	fitness	activities,	or	the	number	of
steps	taken	while	running	or	walking,	and	communicates	the	data	to	the	device	vendor.	The	vendor
then	makes	the	data	available	via	the	Web	and	mobile	apps	not	only	to	the	user,	but	perhaps	also	to	the
user’s	social	network	and	designated	health	care	providers	as	well.	Even	though	all	the	data	might	be
stored	in	a	single	database,	the	part	of	the	overall	application	that	handles	user	registration	requires
strong	consistency	to	ensure	two	users	don’t	register	with	the	same	username,	whereas	for	the	data
delivery	portions	of	the	application,	having	a	highly	available	data	store	is	more	important	than
providing	fully	consistent	updates	to	all	interested	parties.

Applications	such	as	these	explain	why	some	databases,	such	as	Riak,	can	simultaneously	support	both
strong	consistency	and	eventual	consistency,	letting	the	application	choose	what	it	needs.	And	modern
research,	such	as	the	work	of	Peter	Bailis,	has	analyzed	the	consistency-availability	spectrum	in	depth
to	show	that	applications	can	often	operate	correctly	with	less	consistency	and	coordination	than	were
previously	considered	necessary,	and	in	some	cases	can	even	correctly	accomplish	tasks	that	were
once	thought	to	work	only	with	full	distributed	transaction	support.

CAP,	safety	and	liveness,	and	other	related	approaches	are	all	ways	of	explaining	that	distributed
systems	involve	a	broad	spectrum	of	tradeoffs	and	choices.	Due	to	their	telephony	backgrounds,	the
designers	of	Erlang/OTP	were	aware	of	these	choices,	but	the	growth	of	the	Web	and	the	scale	of	large
websites	has	forced	a	much	larger	part	of	the	industry	to	try	to	come	to	grips	with	all	these	distributed
system	issues	because	at	scale,	they	all	show	up	whether	you	like	it	or	not,	and	typically	at	the	worst
possible	time.

Tradeoffs	Between	Consistency	and	Availability
We	were	refactoring	a	system	where	the	customer	claimed	they	had	never	had	an
outage,	servicing	all	requests	with	100%	availability,	software	upgrades
included,	for	years	on	end.	They	were	not	using	Erlang,	and	to	add	icing	on	the
cake,	were	running	everything	on	mainframes!	When	we	began	to	scratch	under
the	surface,	we	found	out	that	their	definition	of	availability	meant	that	the	front-
end	nodes	were	always	up,	accepting	and	acknowledging	requests.	In	the	case	of
errors	and	outages	in	their	logic	and	service	nodes,	however,	requests	were
logged	and	processed	manually!	We	could	argue	that	this	system	was	indeed
highly	available,	but	unreliable,	as	it	did	not	always	function	as	defined.	Getting
it	into	a	consistent	state	after	failure	required	manual	intervention.	The	choices
you	make	in	your	recovery	strategy	are	all	about	tradeoffs	between	consistency
and	availability,	while	your	data-sharing	strategy	is	about	tradeoffs	between
latency	and	consistency.

On	one	side,	you	have	the	exactly	once	approach,	ensuring	that	an	operation
executes	to	completion	or	fails.	However,	this	is	also	the	least	available	solution
(Figure	14-9,	part	1),	as	strong	consistency	requirements	mean	choosing
consistency	over	availability.	If	things	go	wrong,	the	system	might	under	certain
circumstances	become	unavailable	in	order	to	ensure	consistency.	On	the	other
end	of	the	spectrum	is	weak	consistency	with	high	availability.	By	accepting	the
loss	of	occasional	requests,	you	accept	an	inconsistent	view	of	the	state	or	data,
handling	this	inconsistency	in	the	semantics	of	your	system.	As	a	result,	you	can
continue	servicing	your	requests	even	under	network	partitions.	The	compromise
is	the	at	least	once	approach,	which	guarantees	that	a	request	has	successfully
executed	on	at	least	one	node.	It	is	then	up	to	the	semantics	of	the	system,	where
necessary,	to	handle	the	propagation	and	merging	of	this	state	change	to	other
nodes.

Figure	14-9.	Tradeoffs	between	consistency,	reliability,	and	availability

A	similar	argument	can	be	made	on	the	sharing	of	data	approach	(Figure	14-9,
part	2),	where	the	tradeoffs	are	between	availability	and	reliability.	Using	the
share-everything	approach	across	nodes,	you	make	your	system	more	reliable,	as
any	node	with	a	copy	of	the	data	and	state	can	take	over	the	request	correctly.
While	it	is	not	always	possible	to	guarantee	that	data	is	replicated,	it	is	a	safer
approach	than	the	share-something	or	share-nothing	architectures,	where	some
or	all	of	the	data	and	state	are	lost	in	the	event	of	failure.

Nirvana	would	be	reaching	the	top	right	of	both	graphs:	a	system	that	is
consistent,	reliable,	and	available.	If	you	lose	a	node,	the	state	is	guaranteed	to
be	replicated	on	at	least	one	other	node,	and	guaranteeing	that	your	requests	are
either	executed	exactly	once	or	fail	and	return	an	error	message	to	the	client	will
leave	your	system	in	a	consistent	state.	Alas,	having	it	all	is	not	possible.	If	it
were,	everyone	would	just	choose	to	do	it	this	way,	and	distributed	systems
wouldn’t	be	difficult	at	all!

Summing	Up
In	this	chapter,	we	introduced	the	concept	of	availability,	defined	as	the	uptime
of	a	system,	errors	and	maintenance	included.	Availability	is	a	term	that
encompasses	the	following	additional	concepts:

Fault	tolerance,	allowing	your	system	to	act	in	a	predictable	way	during
failure.	Failure	could	be	loss	of	processes,	nodes,	network	connectivity,	or
hardware.

Resilience,	allowing	your	system	to	quickly	recover	from	failure.	This
could	mean	a	node	restarting	after	a	crash	or	a	redundant	network	kicking
in	after	the	primary	one	fails.

Reliability,	where	under	particular,	predefined	conditions,	errors	included,
your	system	continues	to	function.	If	a	node	is	unresponsive	because	it	has
terminated,	is	slow,	or	got	separated	from	the	rest	of	the	system	in	a
network	partition,	your	business	logic	should	be	capable	of	redirecting	the
request	to	a	responsive	node.

Your	levels	of	fault	tolerance,	resilience,	and	reliability,	and	ultimately
availability,	are	the	result	of	correctly	applying	the	Erlang/OTP	programming
model	and	choices	you	make	in	your	data-sharing	and	recovery	strategies.	This
brings	us	to	the	next	steps	in	determining	our	distributed	architecture.	The	steps
we	covered	in	Chapter	13	included:

1.	 Split	up	your	system’s	functionality	into	manageable,	standalone	nodes.

2.	 Choose	a	distributed	architectural	pattern.

3.	 Choose	the	network	protocols	your	nodes,	node	families,	and	clusters
will	use	when	communicating	with	each	other.

4.	 Define	your	node	interfaces,	state,	and	data	model.
You	now	need	to	pick	your	retry	and	data-sharing	strategies:

5.	 For	every	interface	function	in	your	nodes,	you	need	to	pick	a	retry
strategy.	
Different	functions	will	require	different	retry	strategies.	When	deciding

if	you	want	to	use	the	at	most	once,	at	least	once,	or	exactly	once
approach,	you	need	to	examine	all	possible	failure	scenarios	in	the	call
chain,	software,	hardware,	and	network	included.	Take	particular	care	of
your	failure	scenarios	for	the	exactly	once	strategy.

6.	 For	all	your	data	and	state,	pick	your	sharing	strategy	across	node
families,	clusters,	and	types,	taking	into	consideration	the	needs	of	your
retry	strategy.
In	a	data-sharing	strategy,	for	both	state	and	data,	you	need	to	decide	if
you	want	to	share	nothing,	share	something,	or	share	everything	across
node	families,	clusters,	and	systems.	You	could	also	use	consistent
hashing	to	have	multiple	copies	of	the	data,	but	not	necessarily	on	all
nodes.

In	deciding	on	your	sharing	and	retry	strategies,	you	might	need	to	review	and
change	the	design	choices	you	made	in	steps	1–4.	You	mix	and	choose	a	variety
of	sharing	and	recovery	alternatives	specific	to	particular	data,	state,	and
requests.	Not	all	requests	have	to	be	executed	exactly	once,	and	not	all	the	data
needs	to	be	shared	across	all	nodes.	Guaranteed-delivery	share-everything
approaches	are	expensive,	so	use	them	only	for	the	subset	of	data	and	requests
that	require	them.	And	remember,	things	will	fail.	Try	to	isolate	state,	and	share
as	little	of	it	as	possible	among	processes,	nodes,	and	node	families.	Embrace
failure	and	embed	it	in	your	architecture.	Although	it	would	be	great	to	achieve
the	impossible	and	have	systems	that	share	everything	and	are	strongly
consistent,	reliable,	and	available,	in	practice	you	have	to	choose	your	tradeoffs
wisely	based	on	system	requirements,	guarantees	you	want	to	provide	to	your
customers,	and	the	cost	of	operations.

What’s	Next?
Having	covered	distributed	architectures	and	how	we	use	replication	of	data	and
retry	strategies	to	increase	availability,	the	time	has	come	to	look	at	scalability.
In	the	next	chapter,	we	cover	a	new	set	of	tradeoffs	required	for	scale.	We	look	at
load-testing	techniques,	load	regulation,	and	the	detection	of	bottlenecks	in	your
system.

British	Telecom	issued	a	press	release	claiming	nine-nines	availability	during	a	six-month	trial	of	an
AXD301	ATM	switch	network	that	carried	all	of	its	long-distance-traffic	calls.

1

Chapter	15.	Scaling	Out

Distributing	for	scale	and	replicating	for	availability	both	rely	on	multiple
instances	of	every	node	running	on	separate	computers.	But	as	computers	can
(and	will)	end	up	missing	in	action	and	connectivity	among	them	will	fail,
scaling	out	is	not	only	about	adding	computing	capacity.	Rather,	scaling	out	must
be	carefully	integrated	and	orchestrated	with	your	consistency	and	availability
models,	where	you	have	already	chosen	which	tradeoffs	to	make.	It’s	easy	to	say
that	you	need	to	write	a	system	that	scales	infinitely	without	losing	a	single
request,	but	delivering	it	is	never	simple,	and	it’s	often	the	case	that	such	an	ideal
implementation	is	unnecessary	in	practice	to	support	your	target	applications.
While	Erlang/OTP	systems	do	not	scale	magically,	using	OTP	and	making	the
right	tradeoffs	takes	a	large	part	of	the	pain	out	of	the	process.

In	this	chapter,	we	follow	on	from	the	distributed	programming	patterns	and
recovery	and	data-sharing	patterns	described	in	Chapter	13	and	Chapter	14,
focusing	on	the	scalability	tradeoffs	you	make	when	designing	your	architecture.
We	describe	the	tests	needed	to	understand	your	system’s	limitations	and	ensure
it	can	handle,	without	failing,	the	capacity	for	which	it	was	designed.	This	allows
you	to	put	safeguards	in	place,	ensuring	users	do	not	overflow	the	system	with
requests	it	can’t	handle.	The	last	thing	you	want	to	deal	with	when	under	heavy
load	is	a	node	crash,	the	degradation	of	throughput,	or	a	service	provider	or
third-party	API	not	responding	as	a	result	of	the	wrath	of	Erlang	being	unleashed
upon	it.

Horizontal	and	Vertical	Scaling
The	scalability	of	a	system	is	its	ability	to	handle	changes	in	demand	and	behave
predictably,	especially	under	spikes	or	sustained	heavy	loads.	Scalability	can	be
achieved	vertically,	by	throwing	more	powerful	computers	at	the	problem,	or
horizontally,	by	adding	more	nodes	and	hardware.

AMDAHL’S	LAW

Amdahl’s	Law	is	used	to	predict	the	maximum	speedup	of	your	parallel	program	when	adding	cores.
In	simple	terms,	it	tells	us	that	a	program	will	be	as	fast	as	its	slowest	component.	When	dealing	with
parallelism	and	concurrency,	the	slowest	component	is	your	sequential	code.	Amdahl’s	Law	states	that
S(N)	=	1/((1–P)	+	P/N),	where	S(N)	is	the	speedup	the	system	can	achieve	when	executing	with	N
cores,	and	P	is	the	proportion	of	the	program	that	can	be	made	parallel.	As	N	approaches	infinity,	the
maximum	speedup	becomes	S(N)	=	1/1–P.

You	can	throw	as	many	cores	as	you	want	at	your	parallel	code,	but	if	your	sequential	code	takes	100
ms	to	run,	no	matter	how	fast	your	parallel	code	runs,	you	will	not	be	able	to	run	faster	than	100	ms.
Another	way	of	looking	at	the	principle	is	this:	if	5%	of	your	code	base	is	sequential,	your	maximum
speedup	will	be	20	times,	and	if	50%	of	your	code	is	sequential,	your	maximum	speedup	will	be	2
times.	This	is	visible	in	Figure	15-1,	which	also	shows	the	law	of	diminishing	returns.

Figure	15-1.	Amdahl’s	Law

When	we	reach	a	certain	limit,	adding	more	cores	improves	performance	only	marginally.	This	is
where	it	makes	sense	to	scale	your	system	by	partitioning	your	data	set	and	operations	into	distributed
nodes,	running	them	in	parallel.

Vertical	scalability,	also	referred	to	as	scaling	up,	might	at	first	glance	appear	to
be	a	quick	win.	You	have	a	single	server	that	guarantees	strong	consistency	of
your	data.	You	just	add	larger	chips,	faster	clock	cycles,	more	cores	and	memory,
a	faster	disk,	and	more	network	interfaces.	Who	does	not	like	the	feeling	of
opening	a	box	containing	the	fastest,	shiniest,	highest	capacity,	yet	slimmest
computer	on	which	to	benchmark	your	software?

But	alas,	this	approach	is	dated,	because	servers	can	only	get	so	big,	and	the

bigger	they	get,	the	more	expensive	they	become.	And	you	need	at	least	two,
because	a	super	fast	computer	can	still	be	a	single	point	of	failure.

Another	argument	for	scaling	horizontally	is	multicore.	With	machines
supporting	thousands	of	cores,	no	matter	how	parallel	and	free	of	bottlenecks
your	program	might	be,	there	are	only	so	many	cores	a	single	VM	will	be	able	to
optimally	utilize.	You	need	to	also	keep	in	mind	that	Amdahl’s	Law	applies	not
only	to	your	Erlang	program,	but	to	the	sequential	code	in	the	Erlang	VM.	This
likely	means	that	in	order	to	fully	utilize	the	hardware,	you	have	to	run	multiple
distributed	VMs	on	a	single	computer.	If	you	need	to	deal	with	two	computers	or
computers	running	multiple	Erlang	nodes,	you	might	as	well	take	the	leap	and
scale	horizontally.

Scaling	horizontally,	also	known	as	scaling	out,	is	achieved	using	cloud
instances	and	commodity	hardware.	If	you	need	more	processing	power,	you	can
rent,	buy,	or	build	your	own	machines	and	deploy	extra	nodes	on	them.
Distributed	systems,	whether	you	want	them	or	not,	are	your	only	viable
approach.	They	will	scale	better,	are	much	more	cost-effective,	and	help	you
achieve	high	availability.	But	as	we	have	seen	in	the	previous	chapters,	this	will
require	rethinking	how	you	architect	your	applications.

In	small	clusters	running	distributed	Erlang,	Erlang/OTP	scales	vertically	or
horizontally	in	essentially	the	same	way.	In	both	cases,	scaling	is	achieved	using
the	location	transparency	of	processes,	meaning	they	act	the	same	way	whether
they	run	locally	or	remotely.	Processes	communicate	with	each	other	using
asynchronous	message	passing,	which	in	soft	real-time	systems	absorbs	at	the
cost	of	latency	across	nodes.	And	asynchronous	error	semantics	also	work	across
nodes.	As	a	result,	a	system	written	to	run	on	a	single	machine	can	easily	be
distributed	across	a	cluster	of	nodes.	This	also	facilitates	elasticity,	the	ability	to
add	and	remove	nodes	(and	computers)	at	runtime	so	you	can	cater	not	only	for
failure,	but	also	for	peak	loads	and	systems	with	a	growing	user	base.

SCALING	WITH	NATIVE	CODE

A	little-known	fact	about	Erlang/OTP	is	its	excellence	as	an	integration	platform.	It	supports	a	variety
of	standard	networking	protocols,	allowing	it	to	support	applications	that	communicate	with	disparate
components	and	bridge	them	together.	It	can	also	deal	easily	with	proprietary	protocols,	through
facilities	such	as	its	excellent	networking	socket	APIs.	Additionally,	Erlang/OTP	provides	ports,
which	allow	applications	to	call	and	exchange	data	with	external	programs.	Developers	have	used
these	and	other	Erlang/OTP	capabilities	to	successfully	build	database	drivers,	JSON	parsers,	special-

purpose	web	clients	and	servers,	and	other	integration-oriented	components	and	applications.

Scalable	systems	often	comprise	multiple	components	written	in	different	programming	languages
because	different	languages	have	complementary	strengths	and	weaknesses.	Sometimes,	for	example,
the	capabilities	built	into	Erlang/OTP	just	aren’t	enough.	Some	applications	require	heavy
mathematical	calculations,	and	Erlang	isn’t	well	suited	for	performing	those	quickly.	Other
applications	might	need	access	to	non-Erlang	libraries	that	would	be	difficult	or	prohibitively
expensive	to	rewrite	in	Erlang.

For	these	and	other	similar	reasons,	Erlang/OTP	provides	support	for	calling	non-Erlang	functions,
termed	native	implemented	functions	(NIFs),	directly	from	Erlang	code.	Some	parts	of	Erlang/OTP
itself	are	written	as	NIFs,	such	as	portions	of	the	lists,	maps,	ets,	and	crypto	standard	modules,
among	others.	To	other	Erlang	functions,	NIFs	look	like	regular	Erlang	functions.	They	accept	regular
Erlang	terms	as	arguments	and	return	regular	terms	as	well,	but	under	the	covers	these	functions	are
implemented	in	a	different	language,	typically	C	or	C++.	However,	they	execute	directly	within	the
Erlang	runtime.	When	the	runtime	loads	an	Erlang	module	containing	NIFs,	it	loads	along	with	it	a
shared	library	containing	the	native	function	implementations,	and	then	patches	the	module’s	BEAM
code	with	instructions	that	invoke	the	native	functions	instead.	The	runtime	provides	a	C	API	for	NIFs
allowing	them	to	access	and	create	Erlang	terms,	send	messages	to	other	processes,	raise	exceptions,
and	even	schedule	other	NIFs	for	future	execution.	For	a	complete	overview	of	the	NIF	API,	see	the
erl_nif	manual	page	that	comes	with	the	Erlang/OTP	distribution.

Should	you	measure	your	application	and	find	that	parts	of	it	are	worth	rewriting	as	NIFs	for
performance	reasons,	or	if	you	must	reuse	an	existing	C/C++	library	rather	than	reimplement	it	in
Erlang,	be	very	careful,	because	misbehaving	NIFs	can	wreak	havoc	on	the	Erlang	VM.	Forget	the	“let
it	crash”	philosophy	if	you’re	writing	a	NIF;	they	execute	directly	on	the	runtime’s	scheduler	threads,
so	if	a	NIF	crashes,	it	takes	the	entire	VM	down	with	it.	You	can	also	inflict	a	more	insidious	and
slower	death	on	the	VM	by	making	your	NIFs	run	for	more	than	1–2	milliseconds	at	a	time,	as	this
causes	the	NIF	to	hog	a	VM	scheduler	thread	and	disrupt	its	carefully	choreographed	interactions	with
other	scheduler	threads.	Over	time,	such	disruptions	can	eventually	lead	to	a	phenomenon	known	as
“scheduler	collapse”	where	schedulers	think	they	have	no	work	to	do	and	mistakenly	go	to	sleep,
leaving	just	one	scheduler	to	handle	the	entire	workload.

To	avoid	this,	either	make	sure	your	NIFs	execute	quickly,	or	write	them	to	break	their	work	into	short
chunks	that	can	be	scheduled	for	future	execution	using	the	enif_schedule_nif()	C	API	function.
Another	alternative	is	to	use	VM	“dirty	schedulers,”	which	are	pools	of	schedulers	that	do	not	have	the
same	set	of	constraints	as	normal	schedulers	and	are	specifically	designed	for	running	only	NIFs	and
native	code.	Dirty	schedulers	are	marked	experimental	in	Erlang	17	and	18,	though,	and	so	they	are
turned	off	by	default.	We	hope	that	by	Erlang	19,	they	will	be	a	regular	Erlang	runtime	feature
available	for	any	application	that	needs	them.

http://erlang.org/doc/man/erl_nif.html

Capacity	Planning
Understanding	what	resources	your	node	types	use	and	how	they	interact	with
each	other	allows	you	to	optimize	the	hardware	and	infrastructure	in	terms	of
both	efficiency	and	cost.	This	work	is	called	capacity	planning.	Its	purpose	is	to
try	to	guarantee	that	your	system	can	withstand	the	load	it	was	designed	to
handle,	and,	with	time,	scale	to	manage	increased	demand.

The	only	way	to	determine	the	load	and	resource	utilization	and	balance	the
required	number	of	different	nodes	working	together	is	to	simulate	high	loads,
testing	your	system	end	to	end.	This	ensures	the	nodes	are	able	to	work	together
under	extended	heavy	load,	handling	the	required	capacity	in	a	predictable
manner	without	any	bottlenecks.	It	also	allows	you	to	test	your	system’s
behavior	in	case	of	failure.

In	Chapter	13,	we	suggest	you	divide	your	system	functionality	into	node	types
and	families	and	connect	nodes	in	a	cluster.	Although	one	can	argue	that
grouping	the	different	applications	of	all	your	node	types	together	—	front-end,
business	logic,	and	service	functionality	in	the	same	node	—	will	run	fast
because	everything	is	running	in	the	same	memory	space,	this	solution	is	not
recommended	for	anything	other	than	simple	systems.	For	complex	systems,	it	is
easier	to	divide	and	conquer,	studying	and	optimizing	throughput	and	resource
utilization	on	nodes	that	are	limited	in	functionality.

Balancing	your	system	is	also	a	cost	optimization	exercise,	where	you	try	to
reduce	the	costs	of	hardware,	operations,	and	maintenance.	Imagine	front-end
nodes	that	parse	relatively	few	simultaneous	requests,	but	act	as	an	interface	to
clients	who	keep	millions	of	TCP	connections	open.	These	nodes	will	most
likely	be	memory-bound	and	need	a	different	type	of	hardware	specification
from	a	CPU-bound	front-end	node	that	has	fewer,	but	more	traffic-intensive,
connections	and	spends	most	of	its	time	parsing	and	generating	JSON	or	XML.
Logic	nodes	routing	requests	and	running	computationally	intensive	business
logic	will	need	more	cores	and	memory,	while	a	service	node	managing	a
database	will	probably	be	I/O-bound	and	need	a	fast	hard	disk.

An	often	overlooked	item	when	dealing	with	capacity	planning	is	ensuring	you
can	handle	the	designated	load	even	after	a	software,	hardware,	or	network

failure.	If	your	system	has	two	front-end	nodes	for	every	logic	node	and	both	run
at	100%	memory	or	CPU	capacity,	losing	a	front-end	node	means	you	will	now
be	able	to	handle	only	half	of	your	designated	load.	To	ensure	you	have	no	single
point	of	failure,	you	need	at	least	three	front-end	nodes	running	at	a	maximum
capacity	of	66%	CPU	each	and	two	back-end	nodes	averaging	50%	CPU	each.
This	way,	losing	any	machine	or	node	will	still	guarantee	you	can	handle	your
peak	load	requirements.	If	you	want	triple	redundancy,	you	will	have	to	throw
even	more	hardware	at	the	problem.

When	working	with	capacity	planning,	you	will	be	measuring	and	optimizing
your	system	in	terms	of	throughput	and	latency.	Throughput	refers	to	the	number
of	units	going	through	the	system.	Units	could	be	measured	in	number	of
requests	per	second	when	dealing	with	uniform	requests,	but	when	the	CPU	load
and	amount	of	memory	needed	to	process	the	requests	vary	in	size	(think	emails
or	email	attachments),	throughput	is	better	measured	in	kilobytes,	megabytes,	or
gigabytes	per	second.

Latency	is	the	time	it	takes	to	serve	a	particular	request.	Latency	might	vary
depending	on	the	load	of	your	system,	and	is	often	correlated	to	the	number	of
simultaneous	requests	going	through	it	at	any	point	in	time.	More	simultaneous
requests	often	means	higher	latency.

The	predictable	behavior	of	the	Erlang	runtime	system,	where	a	balanced	system
under	heavy	load	results	in	a	constant	throughput,	addresses	most	use	cases.	But
there	might	be	instances	where	extreme	usage	spikes	or	third-party	services	that
are	slow	in	responding	could	result	in	a	backlog	of	requests,	an	outage	caused	by
the	Erlang	VM	running	out	of	system	resources,	or	the	need	to	apply	load
regulation	so	latency	stays	within	predefined	intervals.

In	“Tradeoffs	Between	Consistency	and	Availability”,	we	discussed	the	tradeoffs
between	consistency	and	availability	based	on	your	recovery	and	data-sharing
strategies	and	distributed	architectural	patterns.	You	might	not	have	realized	it,
but	you	were	also	making	tradeoffs	with	scalability	(Figure	15-2).

Figure	15-2.	Scalability	tradeoffs

The	most	scalable	framework	is	SD	Erlang.	With	it,	you	effectively	share	data
within	an	s_group,	but	minimize	what	is	shared	across	s_groups.	Data	and
workflows	shared	among	s_groups	go	through	gateway	nodes.	By	controlling
the	size	of	s_groups	and	the	number	of	gateways,	you	can	have	strong
consistency	within	an	s_group	and	eventual	consistency	among	s_groups.

Riak	Core	comes	second,	and	despite	being	a	fully	meshed	Erlang	cluster,	it	can
scale	well	by	using	consistent	hashing	to	shard	your	data	and	load	balancing	jobs
across	the	cluster.	You	can	use	it	as	a	giant	switch	running	your	business	logic,
connecting	service	nodes	that	are	part	of	the	cluster,	but	not	fully	meshed	to	the
core	itself.	With	a	hundred	connected	nodes	in	the	core,	where	each	node
handles	thousands	of	requests	per	second,	most	seriously	scalable	event-driven
systems	should	fall	under	this	category.	Thanks	to	vnodes,	you	can	start	small
and	minimize	disruption	when	nodes	are	added	(or	removed).

Lastly,	a	distributed	Erlang	cluster	is	limited	in	scale	but	does	well	enough	to
cater	to	the	vast	majority	of	Erlang	systems.	Even	if	you	are	aiming	for	tens	of
thousands	of	requests	per	second,	you	will	often	find	it	is	more	than	enough.	Be
realistic	in	your	capacity	planning	and	add	complexity	only	when	you	need	it.

On	one	end	of	the	scale	are	the	exactly-once	and	share-everything	approaches,
which	lean	toward	consistency	and	reliability,	respectively.	They	are	also	the
most	expensive	in	terms	of	CPU	power	and	network	requirements,	and	as	such,
are	also	the	least	scalable.	If	you	want	a	truly	scalable	system,	you	need	to

reduce	the	amount	of	shared	data	to	a	minimum	and,	if	you	have	to	share	data,
use	eventual	consistency	wherever	appropriate.	Use	asynchronous	message
passing	across	nodes,	and	in	cases	where	you	need	strong	consistency,	minimize
it	in	as	few	nodes	as	possible,	placing	them	close	to	each	other	so	as	to	reduce
the	risk	of	network	failure.

Capacity	Testing
Capacity	testing	is	a	must	when	working	with	any	scalable	and	available	system
to	help	ensure	its	stability	and	understand	its	behavior	under	heavy	load.	This	is
true	regardless	of	what	programming	language	you	use	to	code	the	system.

What	is	your	system’s	maximum	throughput	before	it	breaks?	How	is	the	system
affected	by	increased	utilization	or	the	loss	of	a	computer	resulting	from	a
hardware	or	network	malfunction?	And	is	the	latency	of	these	requests	under
different	loads	acceptable?	You	need	to	ensure	your	system	remains	stable	under
extended	heavy	load,	recovers	from	spikes,	and	stays	within	its	allocated	system
limits.	Too	often,	systems	are	deployed	without	any	proper	stress	testing,	and
they	underperform	or	crash	under	minimal	load	because	of	misconfiguration	or
bottlenecks.	To	reduce	the	risk	of	running	into	these	issues	when	going	live,	you
will	have	to	apply	the	four	testing	strategies	shown	in	Figure	15-3.

Figure	15-3.	Capacity-testing	strategies

They	are:

Soak	testing
This	generates	a	consistent	load	over	time	to	ensure	that	your	system	can
keep	on	running	without	any	performance	degradation.	Soak	tests	can
continue	for	months	and	are	used	to	test	not	only	your	system,	but	the
whole	stack	and	infrastructure.

Spike	testing
This	ensures	you	can	handle	peak	loads	and	recover	from	them	quickly	and
painlessly.

Stress	testing
This	gradually	increases	the	load	you	are	generating	until	you	hit
bottlenecks	and	system	limits.	Bottlenecks	are	backlogs	in	your	system
whose	symptom	is	usually	long	message	queues.	System	limits	include
running	out	of	ports,	memory,	or	even	hard	disk	space.	When	you	have
found	a	bottleneck	and	removed	it,	rerun	the	stress	test	again	to	tackle	the
next	bottleneck	or	system	limit.

Load	testing
This	pushes	your	system	at	a	constant	rate	close	to	its	limits,	ensuring	it	is
stable	and	balanced.	Run	your	load	test	for	at	least	24	hours	to	ensure	there
is	no	degradation	in	throughput	and	latency.

Don’t	underestimate	the	time,	budget,	and	resources	it	takes	to	remove
bottlenecks	and	achieve	high	throughput	with	predictable	latency.	You	need
hardware	to	generate	the	load,	hardware	to	run	your	simulators,	and	hardware	to
run	multiple	tests	in	parallel.	With	crashes	that	take	days	to	generate,	running
parallel	tests	with	full	visibility	of	what	is	going	on	is	a	must.	It	will	at	times	feel
like	you	are	looking	for	a	needle	in	a	haystack	as	you	are	troubleshooting	and
optimizing	your	software	stack,	hardware,	and	network	settings.

Generating	load
How	you	generate	load	varies	across	systems	and	organizations.	You	can	use
existing	open	source	tools	and	frameworks	such	as	Basho	Bench,	MZBench,	and
Tsung;	commercial	products;	or	SaaS	load-testing	services.	Some	tools	allow
you	to	record	and	replay	live	traffic.	Or	if	you	want	to	simulate	complex
business	client	logic	or	test	simple	scenarios,	it	might	be	easier	to	write	your
own	tests.	You	will	soon	discover	that	to	test	an	Erlang	system,	you	will	most
likely	need	a	load	tool	written	in	Erlang.

If	you	are	connecting	to	third-party	services	or	want	to	test	node	types	on	a
stand-alone	basis,	you	will	need	to	write	simulators,	because	your	third	parties
will	most	likely	not	allow	you	to	test	against	live	systems.	Simulators	like	the
one	shown	in	Figure	15-4	are	often	standalone	Erlang	nodes	that	expose	the
external	API	and,	to	some	degree	of	intelligence,	replicate	their	behavior.	They
are	designed	to	handle	the	load	of	your	external	services,	but	often	go	far	beyond
that.

WARNING
Exercise	extreme	care	when	load	testing	the	final	instance	of	your	system	right	before	going
live,	and	make	sure	you	are	connected	to	your	simulators	and	have	throttling	in	place	toward
your	external	service	providers.	We	would	advise	against	you	discovering	the	hard	way	that
your	external	service	providers	do	not	have	any	load	control	in	place.	We	once	ran	load	tests
on	an	autodialer	we	were	writing,	forgetting	to	divert	the	requests	to	the	simulators.	The	error
caused	a	major	outage	of	the	IP	telephony	provider	we	were	planning	to	use.	They	were	not
too	happy.	Nor	were	we,	as	we	got	kicked	out	and	had	to	find	and	integrate	with	a	new
provider	days	before	going	live.

Figure	15-4.	An	Erlang	system	under	load

Balancing	Your	System
In	a	properly	balanced	Erlang	system	running	at	maximum	capacity,	the
throughput	should	remain	constant	while	latency	varies.	If	the	work	cost	per
request	is	constant	and	your	system	handles	a	peak	throughput	of	20,000
requests	per	second,	when	20,000	requests	are	going	through	the	system	at	any
one	time,	the	peak	latency	should	be	1	second.	If	40,000	requests	are	going
through	the	system	simultaneously,	it	will	take	the	system	2	seconds	to	service	a
request.	So,	while	throughput	remains	the	same	—	20,000	requests	per	second
—	the	latency	doubles.	The	BEAM	VM	is	one	of	the	few	virtual	machines	to
display	this	property,	providing	predictability	for	your	system	even	under
sustained	extreme	loads.

In	Figure	15-5	we	show	a	graph	where	the	y-axis	represents	the	throughput	of	a
typical	Erlang	system	before	being	optimized.	It	could	be	the	number	of	instant
messages	handled	per	second,	the	throughput	in	megabytes	of	data	sent	by	a	web
server,	or	the	number	of	log	entries	being	formatted	and	stored	to	file.	The	x-axis
shows	the	number	of	simultaneous	requests	going	through	the	system	at	any	one
time.	This	degradation	often	manifests	itself	after	hitting	high	CPU	loads.	At	that
point,	the	more	requests	there	are	going	through	the	system,	the	lower	the
throughput	and	higher	the	latency.	It	is	important	that	you	understand	this
behavior	of	the	BEAM	virtual	machine,	as	it	is	bound	to	affect	you.

Figure	15-5.	Degradation	of	an	Erlang	system	under	load

Line	2	in	Figure	15-6	shows	the	result	of	removing	bottlenecks	in	the	system.
You	should	get	a	constant	throughput	regardless	of	the	number	of	simultaneous
requests.	The	throughput	at	peak	load	might	go	down	a	little,	but	that	is	a	small
price	to	pay	for	a	system	that	will	behave	in	a	predictable	manner	irrespective	of
the	number	of	simultaneous	requests	going	through	it.	Most	other	languages	will
experience	degraded	throughput	because	processes	have	high	context-switching
costs.	Using	the	Erlang	virtual	machine,	highly	optimized	for	concurrency,
greatly	reduces	the	risk.	The	limit	on	how	much	a	node	can	scale	is	now
determined	by	system	limits	such	as	CPU	load,	available	memory,	or	I/O.	We
refer	to	nodes	hitting	these	limits	as	being	CPU-bound,	memory-bound,	or	I/O-
bound.	The	shared	area	shows	the	performance	degradation	of	a	badly	balanced
system.

Figure	15-6.	An	Erlang	system	tuned	to	handle	large	loads

To	find	the	bottlenecks	in	your	system,	start	off	testing	a	single	node.	Use
simulators,	but	be	wary	of	premature	optimizations.	Some	node	types	might	not
need	to	be	optimized,	as	they	might	never	be	subjected	to	heavy	loads.	And	you
might	end	up	with	nodes	that	are	super	fast,	but	continue	to	respond	too	slowly
because	service-level	agreements	with	external	APIs	now	become	your
bottleneck.	The	goals	of	your	various	capacity	testing	exercises	are	to	measure
and	record	how	latency,	throughput,	and	simultaneous	requests	going	through
the	system	affect	one	another.

In	some	cases,	bottlenecks	will	throttle	requests	that	surprisingly	keep	the
service	alive.	The	problem	is	that	they	tend	to	slow	it	down.	For	this	reason,	it
sometimes	makes	sense	to	test	your	system	on	different	hardware	and	VM
configurations.

Consider	your	system	stable	only	when	all	performance	bottlenecks	have	been
removed	or	optimized,	leaving	you	to	deal	with	issues	arising	from	your	external
dependencies	such	as	I/O,	your	filesystem,	or	network	or	external	third-party
services	not	being	able	to	handle	your	load.	These	items	are	often	out	of	your
control,	leaving	it	necessary	to	regulate	your	loads	instead	of	continuing	to	scale

up	or	out.

Finding	Bottlenecks
When	you	are	looking	for	bottlenecks	on	a	process	and	node	basis,	most	culprits
are	easily	found	by	monitoring	process	memory	usage	and	mailbox	queues.
Memory	usage	is	best	monitored	using	the	erlang:memory()	BIF,	which	returns
a	list	of	tuples	with	the	dynamic	memory	allocations	for	processes,	ETS	tables,
the	binary	heap,	atoms,	code,	and	other	things.

You	need	to	monitor	the	different	categories	of	memory	usage	throughout	your
load	testing,	ensuring	that	there	are	no	leaks	and	that	resource	usage	is	constant
for	long	runs.	If	you	see	the	atom	table	or	binary	heap	increasing	in	size	over
time	without	stabilizing,	you	might	run	into	problems	days,	weeks,	or	months
down	the	line.	At	some	point,	you	will	also	want	to	use	the	system	monitor,
described	in	“The	System	Monitor”,	to	ensure	that	process	memory	spikes	and
long	garbage	collections	are	optimized	or	removed.	Message	queues	can	be
monitored	using	the	i()	or	regs()	shell	commands.

If	using	the	shell	is	not	viable	because	you	are	working	with	millions	of
processes,	the	percept	and	etop	tools	will	often	work,	as	might	the	observer	tool.
Along	with	other	monitoring	tools,	we	discuss	collecting	system	metrics	in
“Metrics”.	If	you	are	collecting	system	metrics	and	feeding	them	into	your	OAM
infrastructure,	you	can	use	them	to	locate	and	gain	visibility	into	bottlenecks.

MULTICORE	ARCHITECTURES	AND	MEMORY	SPIKES

We	were	testing	our	first	high-throughput	system	running	on	a	multicore	architecture.	One	of	the
acceptance	tests	was	to	show	it	could	sustain	the	peak	load	it	was	designed	to	handle	over	a	period	of
24	hours.	Despite	all	of	the	nodes	running	at	50%	CPU	with	plenty	of	memory	to	spare,	one	of	the
nodes	managing	an	API	toward	a	third-party	service	provider	crashed,	on	average,	every	8	hours.	We
were	throttling	requests	based	on	the	service-level	agreement,	ensuring	there	were	no	more	than	a	few
hundred	simultaneous	requests.	We	polled	the	memory	every	10	seconds,	getting	readings	of	hundreds
of	megabytes	of	free	memory	right	before	each	crash.	We	rewrote	the	code	and	reduced	memory
consumption	and	CPU	load	by	50%,	but	that	only	delayed	the	problem,	rather	than	eliminating	it.	The
node	now	crashed	every	16–20	hours.

Eventually	we	turned	on	the	system	monitor	and	noted	that	a	few	seconds	before	the	crash,	an
unusually	high	number	of	long	garbage	collection	and	large	heap	trace	events	were	generated.	These
were	connected	to	the	creation	of	a	session,	where	an	XML	file	sent	back	to	us	with	session	data
caused	a	huge	memory	spike	when	parsed.	We	were	seeing	memory	spikes	when	plotting	our	graphs,
but	did	not	think	much	about	them	because	they	were	contained.	What	happened	in	the	run-up	to	every
crash	was	a	surge	in	session	initialization	requests,	causing	these	spikes	to	pool	together	and	create	a
monster	spike	that	caused	the	VM	to	run	out	of	memory.	We	eventually	discovered	that	using	more

cores	increased	the	probability	of	this	monster	spike	happening.	In	less	than	half	a	second,	this
memory	surge	used	up	all	available	memory	and	caused	the	node	to	crash.

The	solution?	We	created	a	separate	FIFO	queue	for	session	initialization,	throttling	the	number	of
simultaneous	requests	that	caused	the	memory	usage	to	spike.	Despite	our	controlling	the	problem	by
adding	a	bottleneck,	the	memory	graphs	became	flat,	throughput	was	not	affected,	and	the	system
passed	the	stress	tests.

The	biggest	challenge,	however,	is	often	not	finding	the	bottlenecks,	but	creating
enough	load	on	your	system	to	generate	them.	Multicore	architectures	have
made	this	more	difficult,	as	huge	loads	will	often	expose	issues	in	other	parts	of
the	stack	that	are	related	not	to	Erlang,	but	to	the	underlying	hardware,	operating
system,	and	infrastructure.	One	approach	to	detecting	some	of	your	bottlenecks
is	to	run	your	Erlang	virtual	machine	with	fewer	cores	using	the	erl	+S	flag,	or
stress	testing	the	node	on	less	powerful	hardware.

Synchronous	versus	asynchronous	calls
Most	commonly,	bottlenecks	manifest	themselves	through	long	message	queues.
Imagine	a	process	whose	task	is	to	format	and	store	logs	to	files.	Assume	that	for
every	processed	request	we	want	to	store	dozens	of	log	entries.	We	start	sending
our	log	requests	asynchronously	using	gen_server:cast	to	a	log	server	that
can’t	cope	with	the	load,	because	each	request	process	is	generating	log	entries
at	a	rate	faster	than	what	the	generic	server	process	can	handle.	Multiply	that	by
thousands	of	producers	and	slow	file	I/O,	and	you’ll	end	up	with	a	huge	message
queue	in	the	consumer’s	mailbox.	This	queue	is	the	manifestation	of	a	bottleneck
that	negatively	affects	the	behavior	of	your	system.	How	does	this	happen?

Every	operation	in	your	program	is	assigned	a	number	of	reductions	(covered	in
“Multicore,	Schedulers,	and	Reductions”),	each	of	which	is	roughly	equivalent
to	one	Erlang	function	call.	When	the	scheduler	dispatches	a	process,	it	is
assigned	a	number	of	reductions	it	is	allowed	to	execute,	and	for	every
operation,	it	reduces	the	reduction	count.	The	process	is	suspended	when	it
reaches	a	receive	clause	where	none	of	the	messages	in	the	mailbox	match,	or
the	reduction	count	reaches	zero.	When	process	mailboxes	grow	in	size,	the
Erlang	virtual	machine	penalizes	the	sender	process	by	increasing	the	number	of
reductions	it	costs	to	send	the	message.	It	does	so	in	an	attempt	to	control
producers	and	allow	the	consumer	to	catch	up.	It	is	designed	this	way	to	give	the
consumer	a	chance	to	catch	up	after	a	peak,	but	under	sustained	heavy	load,	it

will	have	an	adverse	effect	on	the	overall	throughput	of	the	system.	This
scenario,	however,	assumes	there	are	no	bottlenecks.	Penalizing	senders	with
added	reductions	is	not	adequate	to	prevent	overgrown	message	queues	for
overloaded	processes.

A	trick	to	regulate	the	load	and	control	the	flow,	so	as	to	get	rid	of	these
bottlenecks,	is	to	use	synchronous	calls	even	if	you	do	not	require	a	response
back	from	the	server.	When	you	use	a	synchronous	call,	a	producer	initiating	a
request	will	not	send	a	new	log	request	until	the	previous	one	has	been	received
and	acknowledged.	Synchronous	calls	block	the	producer	until	the	consumer	has
handled	previous	requests,	preventing	its	mailbox	from	being	flooded.	It	will
have	the	same	effect	described	in	Figure	15-6,	where,	at	the	expense	of
throughput,	you	get	a	stable	and	predictable	system.	When	using	this	approach,
remember	to	fine-tune	your	timeout	values,	never	taking	the	default	5-second
value	for	granted,	and	never	setting	it	to	infinity.

Another	strategy	for	reducing	bottlenecks	is	to	reduce	the	workload	in	the
consumers,	moving	it	where	possible	to	the	clients.	In	the	case	of	log	entries,	for
example,	you	could	process	them	in	batches,	flushing	a	couple	hundred	of	them
at	a	time	to	disk.	You	could	also	offload	work	to	the	requesting	process,	making
it	format	the	entries	instead	of	leaving	that	to	the	server.	After	all,	formatting	log
entries	can	be	done	concurrently,	whereas	writing	the	log	entries	to	disk	must
take	place	sequentially.

Now	that	you’ve	optimized	your	code,	learned	your	system’s	limits,	and
addressed	its	bottlenecks,	you	will	need	guarantees	that	your	system	will	not	fail
over	or	degrade	in	performance	if	you	hit	those	limits.

System	Blueprints
If	you	have	come	this	far,	the	time	has	come	to	formalize	all	your	design	choices
into	cluster	and	resource	blueprints,	combining	them	together	into	a	system
blueprint.	Your	resource	blueprint	specifies	the	available	resources	on	which	to
run	your	cluster.	It	includes	descriptions	of	hardware	specifications	or	cloud
instances,	routers,	load	balancers,	firewalls,	and	other	network	components.

Your	cluster	blueprint	is	derived	from	the	lessons	learned	from	your	capacity
planning.	It	is	a	logical	description	of	your	system,	specifying	node	families	and
the	connectivity	within	and	among	them.	You	also	define	the	ratios	of	different
node	types	you	need	to	have	a	balanced	system	capable	of	functioning	with	no
degradation	of	service.	This	blueprint	can	be	used	by	your	orchestration
programs	to	ensure	your	cluster	can	be	scaled	in	an	orderly	fashion,	without
creating	imbalances	among	your	nodes.	It	should	also	ensure	your	system	can
continue	running	after	failure,	with	no	degradation	of	service.	Cluster	blueprints
are	analogous	to	an	Amazon	autoscaling	group	on	Amazon	Web	Services,	but
are	more	detailed.	When	you	hit	an	upper	limit	in	one	of	your	clusters,	deploy	a
new	cluster.

Your	cluster	and	resource	blueprints	are	combined	in	what	we	call	a	system
blueprint.	With	the	system	blueprint	in	hand,	you	can	understand	both	how	your
distributed	system	is	structured	and	how	it	can	be	deployed	on	hardware	or	cloud
instances.

Load	Regulation	and	Backpressure
A	long,	long	time	ago,	on	New	Year’s	Eve,	in	a	country	far,	far	away,	everyone
picked	up	the	phone	and	called	to	wish	one	another	a	happy	and	prosperous	new
year.	Phone	trunks	were	jammed.	Calls	were	allowed	through	at	the	rate	the
various	trunks	were	configured	to	handle,	and	the	network	kept	on	operating
despite	the	surge.	It	behaved	predictably	for	the	maximum	capacity	it	was
designed	to	manage.

The	system	stayed	afloat	because	it	employed	backpressure	to	limit	the	number
of	connected	calls	made	through	a	trunk	at	any	point	in	time.	You	always	got	the
dial	tone	and	were	allowed	to	dial,	but	if	you	tried	to	access	an	international
trunk	with	no	available	lines,	your	call	was	rejected	with	a	busy	tone.	So	you
kept	on	trying	until	you	got	through.	Backpressure	is	the	approach	of	telling	the
sender	to	stop	sending	because	there’s	no	room	for	new	messages.

From	phone	calls,	the	world	moved	to	SMSs.	As	SMS	became	popular,	the	spike
on	New	Year’s	Eve	started	getting	larger,	as	did	the	delays	in	delivering	the
SMSs.	And	as	soon	as	mobile	phones	allowed	you	to	send	SMSs	in	bulk	to
dozens	of	users,	delays	got	even	worse,	with	messages	often	arriving	in	the	early
hours	of	the	morning	when	their	senders	(and	recipients)	had	long	since	gone	to
bed.	Rarely	were	SMSs	rejected	—	they	got	through,	but	with	major	delays.	The
mobile	operators	were	applying	a	technique	called	load	regulation,	where	the
flow	of	requests	was	diverted	to	a	queue	to	ensure	that	no	requests	were	lost.
Messages	were	retrieved	from	the	queue	and	sent	to	the	SMS	center	(SMSC)	as
fast	as	it	could	handle	them.

Calling	each	other	or	sending	SMSs	might	be	a	thing	of	the	past,	but	the
techniques	developed	and	used	in	the	telecom	space	still	remain	relevant	when
dealing	with	massive	scale.	Together,	load	regulation	and	backpressure	allow
you	to	keep	throughput	and	latency	predictable	while	ensuring	your	system	does
not	fail	as	a	result	of	overload.	The	difference	is	that	load	regulation	allows	you
to	keep	and	remember	requests	by	imposing	limits	on	the	number	of
simultaneous	connections	and	throttling	requests	using	queues,	while
backpressure	rejects	them.	If	you	are	using	load	regulation	toward	third-party
APIs	or	service	nodes,	remember	that	all	you	are	doing	is	smoothing	out	your

peaks	and	troughs,	ensuring	you	do	not	overflow	the	third	party	with	requests.	If
you	keep	on	receiving	requests	at	a	rate	faster	than	they	can	handle,	you	will
eventually	have	to	stop	queuing	and	start	rejecting.

LITTLE’S	LAW

Little’s	Law	is	an	equation	L	=	λW	stating	that	the	queue	length,	L,	is	equal	to	the	arrival	rate,	λ,
multiplied	by	the	response	time,	W.	In	most	Internet-connected	programs,	the	queue	length	is	the
number	of	client	requests	waiting	to	be	(and	currently	being)	serviced,	the	arrival	rate	is	the	number	of
client	requests	per	time	unit	being	accepted	into	and	serviced	by	the	system,	and	the	response	time	is
how	long	it	takes	to	service	one	client	request.	Reorganizing	the	parameters	in	the	equation,	we	get
response	time	=	queue	length	/	arrival	rate.	This	shows	that	if	the	queue	length	gets	longer	or	the
arrival	rate	—	or	perhaps	more	accurately,	the	throughput	—	decreases,	the	response	time	will	go	up.

In	a	live	system,	you	cannot	control	the	arrival	rate,	but	it	is	hopefully	constant,	even	under	heavy
load.	What	you	can	control,	though,	are	the	queue	length,	by	applying	backpressure,	and	the
throughput,	by	removing	bottlenecks	from	the	request-processing	path.	By	controlling	the	queue
length	and	keeping	the	arrival	rate	constant	throughout	a	balanced	system,	you	control	the	response
time.	The	key	to	getting	the	values	right	and	applying	backpressure	at	the	right	time	is	to	have	full
visibility	of	what	is	going	on	in	your	system	and	to	measure	it.

Let’s	use	our	New	Year’s	Eve	SMS	example.	If	the	gateway	is	receiving	more
texts	than	can	be	handled	by	the	SMSC	(which	forwards	texts	to	your	mobile
terminal),	it	queues	the	texts	in	your	load-regulation	application,	feeding	them
on	a	FIFO	basis	at	the	rate	the	SMSC	can	handle.	This	rate	is	called	the	service-
level	agreement.	If	the	SMSs	keep	on	coming	in	at	this	fast	rate	for	a	sustained
period	of	time,	the	queue	size	is	bound	to	hit	its	limit	and	overflow.	When	this
happens,	the	gateway	starts	rejecting	SMSs,	either	individually	in	the	logic
nodes	or	in	bulk	by	triggering	some	form	of	backpressure	in	the	front-end	nodes,
and	not	accepting	them	in	the	gateway	nodes.	This	scenario	is	illustrated	in
Figure	15-7.

Figure	15-7.	Load	regulation	and	backpressure

In	order	to	throttle	requests	and	apply	backpressure,	you	need	to	use	load-

regulation	frameworks.	These	could	be	embedded	into	your	Erlang	nodes,	or	be
found	at	the	edges	in	the	front-end	and	service	nodes.	Another	common	practice
to	control	load	is	through	load	balancers.	Software	and	hardware	load	balancers
will,	on	top	of	balancing	requests	across	front-end	nodes,	also	throttle	the
number	of	simultaneously	connected	users	and	control	the	rate	of	inbound
requests.	Sadly,	this	will	by	default	involve	stress	testing	the	load	balancers
themselves,	opening	a	new	can	of	worms.1	Whoever	said	it	was	easy	to	develop
scalable,	resilient	systems?

Keep	in	mind	that	load	regulation	comes	at	a	cost,	because	you	are	using	queues
and	a	dispatcher	can	become	a	potential	bottleneck	that	adds	overhead.	Start
controlling	load	only	if	you	have	to.	When	deploying	a	website	for	your	local
flower	shop,	what	is	the	risk	of	everyone	in	town	flocking	to	buy	flowers
simultaneously?	If,	however,	you	are	deploying	a	game	back	end	that	has	to
scale	to	millions	of	users,	load	regulation	and	backpressure	are	a	must.	They
give	you	the	ability	to	keep	the	latency	or	throughput	of	your	system	constant
despite	peak	loads,	and	ensure	your	system	does	not	degrade	in	performance	or
crash	as	a	result	of	hitting	system	limits.	There	are	two	widely	used	load-
regulation	applications	in	Erlang:	Jobs	and	Safetyvalve.

JOBS	AND	SAFETYVALVE

Jobs,	written	by	Ulf	Wiger,	is	a	scheduler	for	load	regulation	of	Erlang-based	systems.	It	provides	a
queuing	framework	where	each	queue	can	be	configured	for	throughput	rate,	job	type,	and	number	of
concurrent	requests.	You	can	add	and	modify	queues	at	runtime.	Queuing	jobs	delays	their	execution,
and	limits	the	number	of	simultaneous	processes.	The	Jobs	application	also	allows	you	to	configure
timeouts	for	jobs	in	the	queue,	provides	strategies	such	as	FIFO	and	LIFO	to	extract	jobs	from	the
queue,	and	provides	queue	limits.	Once	a	queue’s	limit	is	reached,	further	jobs	are	rejected	until	spaces
appear	again	on	the	queue.

The	Jobs	scheduler	follows	the	Erlang	way	of	submitting	to	load	regulation	by	spawning	a	job	process
that	asks	for	permission	to	execute.	When	permission	is	granted,	it	simply	completes	the	task	and
terminates.	Samples	of	the	underlying	memory	usage	and	Mnesia	load	are	taken	to	tell	the	scheduler	to
dampen	(reduce)	the	job	scheduling	rate	or	number	of	concurrent	requests	when	certain	thresholds	are
exceeded.	Sampling	is	done	through	a	plug-in,	so	you	can	write	your	own	plug-in	and	check	other
items,	such	as	memory.	Dampening	effects	are	removed	once	the	sampled	values	return	to	normal.	In
distributed	systems,	Jobs	will	propagate	the	load	status	across	multiple	nodes	so	they	can	also	take
appropriate	action.

Another	popular	load-regulation	framework	is	Safetyvalve.	It	was	inspired	by	Jobs,	but	is	much
simpler	in	scope,	focusing	on	queuing	mechanisms	to	protect	the	system	from	overloads	by	controlling
throughput	and	the	number	of	simultaneous	requests	allowed	to	execute.	Safetyvalve	allows	you	to
configure	multiple	queues.	For	every	queue,	you	can	set	the	queue	type,	queue	polling	frequency,	and
handling	of	bursts	using	the	token	bucket	algorithm.	You	add	tokens	to	a	bucket	every	time	you	poll

https://github.com/uwiger/jobs
https://github.com/jlouis/safetyvalve

the	system.	The	tokens	allow	you	to	execute	requests	in	a	burst	when	starting	the	system	or	after
periods	of	inactivity.	You	can	configure	the	rate	at	which	tokens	are	added	after	every	poll,	as	well	as
the	maximum	size	of	the	token	bucket,	limiting	the	size	of	the	burst.	You	can	also	configure	the	size	of
the	queue	as	well	as	the	maximum	number	of	concurrent	tasks	allowed	to	execute.

Summing	Up
In	this	chapter,	we’ve	covered	the	scalability	aspects	to	take	into	consideration	in
Erlang/OTP-based	systems.	The	key	to	the	scalability	of	your	system	is	ensuring
you	have	loosely	coupled	nodes	that	can	come	and	go.	This	provides	elasticity	to
add	computing	power	and	scale	on	demand.	You	often	want	strong	consistency
within	your	nodes	and	node	families	and	eventual	consistency	elsewhere.
Communication	should	be	asynchronous,	minimizing	guaranteed	delivery	to	the
subset	of	requests	that	really	require	it.

The	steps	to	architecting	your	system	covered	in	the	previous	two	chapters
included:

1.	 Split	up	your	system’s	functionality	into	manageable,	standalone	nodes.

2.	 Choose	a	distributed	architectural	pattern.

3.	 Choose	the	network	protocols	your	nodes,	node	families,	and	clusters
will	use	when	communicating	with	each	other.

4.	 Define	your	node	interfaces,	state,	and	data	model.

5.	 For	every	interface	function	in	your	nodes,	pick	a	retry	strategy.

6.	 For	all	your	data	and	state,	pick	your	sharing	strategy	across	node
families,	clusters,	and	types,	taking	into	consideration	the	needs	of	your
retry	strategy.
Iterate	through	all	these	steps	until	you	have	the	tradeoffs	that	best	suit
your	specification.	You	will	also	have	made	decisions	that	directly
impact	scalability,	resulting	in	tradeoffs	between	scalability,
consistency,	and	availability.	Now:

7.	 Design	your	system	blueprint,	looking	at	node	ratios	for	scaling	up	and
down.
To	define	your	cluster	and	resource	blueprints,	you	should	understand
how	you	are	going	to	balance	your	front-end,	logic,	and	service	nodes
based	on	your	choice	of	distributed	architectural	patterns	and	target
hardware.	You	need	to	remember	the	goal	of	no	single	point	of	failure,

ensuring	you	have	enough	capacity	to	handle	the	required	latency	and
throughput,	and	can	achieve	resilience	even	if	you	lose	one	of	each
node	type.	When	you’re	done,	combine	the	two	into	a	system	blueprint.
The	only	way	to	validate	your	system	blueprint	is	through	capacity
testing	on	target	hardware.	Write	your	simulators	and	run	soak,	stress,
spike,	and	load	tests	to	remove	bottlenecks	and	validate	your
assumptions.

8.	 Identify	where	to	apply	backpressure	and	load	regulation.	
When	capacity	testing	your	system,	you	should	strive	to	obtain	a	good
idea	of	the	system’s	limitations.	Understand	where	to	apply	load
regulation	and	backpressure,	protecting	your	system	from	degrading	in
performance	or	crashing	altogether.	How	many	simultaneous	requests
can	go	through	the	system	before	latency	becomes	too	high	or	some
nodes	run	out	of	memory?	Is	your	system	capable	of	handling	failure
with	no	degradation	of	service?	Also,	make	sure	you	do	not	crash	your
third-party	APIs	and	services,	maintaining	the	accepted	service-level
agreements.

Our	last	word	of	advice	is	not	to	overengineer	your	system.	Premature
optimizations	are	the	root	of	all	evil.	Do	not	assume	you	need	a	distributed
framework,	let	alone	use	one	just	because	it	is	there	or	because	you	can.	Even	if
you’ll	be	writing	the	engine	for	the	next	generation	of	MMOGs	or	building	the
next	WhatsApp,	start	small	and	ensure	you	get	something	that	works	end	to	end.
Be	prepared	to	use	these	frameworks,	but	hide	them	behind	thin	abstraction
layers	of	software	and	APIs,	allowing	you	to	change	your	strategy	at	a	later	date.
Then,	when	stress	testing	your	system,	recreate	error	scenarios.	Kill	nodes,	shut
down	computers,	pull	out	network	cables,	and	learn	how	your	system	behaves
and	recovers	from	failure.	During	this	stage	you	can	decide	what	tradeoffs	you
will	make	between	availability,	consistency,	and	scalability.	The	difference	in
infrastructure	cost	between	not	losing	any	requests	and	losing	the	occasional	one
could	mean	an	order	of	magnitude	or	more	in	hardware	capacity.	Do	you	really
need	10	times	more	hardware,	and	the	cost	and	complexity	associated	with	it,	for
a	service	no	one	is	paying	for,	and	which	very	rarely	fails	anyhow?

What’s	Next?
Now	that	you	have	a	system	that	you	believe	is	scalable,	available,	and	reliable,
you	need	to	ensure	your	DevOps	team	has	full	visibility	into	what	is	happening
on	the	system	after	it	has	gone	live.	In	the	next	chapter,	we	cover	metrics,	logs,
and	alarms,	which	allow	personnel	supporting	and	maintaining	the	system	to
monitor	it	and	take	actions	before	issues	escalate	and	get	out	of	hand.

The	sad	part	of	this	paragraph	is	that	we’ve	often	caused	load	balancers	to	crash	or	behave	abnormally
and	had	to	shut	them	down	when	load	testing,	because	they	weren’t	powerful	enough	to	withstand	the
load	we	were	generating.

1

Chapter	16.	Monitoring	and
Preemptive	Support

If	you	have	read	this	far,	you	must	really	be	out	to	impress	everyone	with	a
system	that	is	not	only	scalable	and	reliable,	but	also	highly	available.	With	the
right	tools	and	approach,	the	five	nines	once	reserved	for	telecom	systems	are
now	easily	attainable	in	whatever	other	vertical	for	which	you	might	be
developing	software.	But	implementing	everything	described	in	the	previous
chapters	is	not	enough.	Just	as	important	as	resilient	software,	redundant
hardware,	networks,	power	supplies,	and	multiple	data	centers,	your	secret	sauce
to	high	availability	is	achieving	a	high	level	of	visibility	into	what	is	going	on	in
your	system	and	the	ability	to	act	on	the	information	you	collect.

Your	DevOps	team	will	use	all	this	information	for	two	purposes:	preemptive
support	and	postmortem	debugging.	Monitoring	the	system	will	allow	them	to
pick	up	early	warning	signs	and	address	problems	before	they	get	out	of	control,
either	manually	or	through	automation.	Is	your	disk	filling	up?	Trigger	a	script
that	does	some	housekeeping	by	deleting	old	logs.	Has	your	load	been	increasing
steadily	over	the	past	months	as	a	result	of	an	increase	in	registered	users	and
concurrent	sessions?	Deploy	more	nodes	to	help	manage	the	load	before	running
out	of	capacity.

No	matter	how	much	of	an	optimist	you	might	be,	you	will	not	be	able	to	catch
all	problems	and	bugs	before	they	manifest	themselves.	Sometimes	things	go
wrong,	making	you	rely	on	higher	layers	of	fault	tolerance	to	manage	failure.
When	processes	or	nodes	are	restarted	automatically,	you	need	a	snapshot	of	the
state	of	the	system	prior	to	the	crash.	Together	with	your	historical	data,	the	state
snapshot	will	allow	you	to	quickly	and	effectively	deal	with	postmortem
debugging,	figure	out	what	caused	the	crash,	and	ensure	it	never	happens	again.

If	you	do	not	have	snapshots	of	the	system,	debugging	will	be	not	be	methodical
and	you	will	have	to	rely	on	guesswork.	Finding	a	needle	in	a	haystack	would	be
easier.	The	last	thing	you	want	to	count	on	is	for	errors	to	politely	manifest
themselves	when	you	are	sitting	in	front	of	the	computer	staring	at	the	screen.

They	won’t.	The	system	will	wait	for	your	lunch	or	coffee	break,	or	until	you’ve
gone	home,	before	crashing.	Ensuring	you	have	the	visibility	and	historical	data
will	be	time	well	spent	prior	to	launch,	paying	for	itself	many	times	over	when
you	are	determining	the	causes	of	errors,	fixing	bugs,	and	putting	in	place
preemptive	measures	to	ensure	the	problems	you	experience	do	not	happen
again.	In	this	chapter,	we	cover	approaches	to	monitoring	and	preemptive
support,	introducing	some	of	the	most	common	support	automation	approaches.

Monitoring
Anyone	can	see,	through	a	crash	dump	report,	that	a	virtual	machine	ran	out	of
memory.	But	what	type	of	memory	caused	the	crash?	Was	it	the	atom	table,	the
memory	taken	up	by	the	code,	the	process	memory,	the	binary	heap,	or	system
memory?	Maybe	the	system	had	a	surge	of	login	requests	that	in	turn	caused	the
memory	spike.	Or	the	latency	of	a	request	increased	because	of	a	slow	third-
party	API,	causing	processes	to	live	longer.	Or	a	particular	request	type	failed,
triggering	an	I/O-intensive	cleanup	procedure,	which	in	turn	triggered	a	lot	of
other	unexpected	events	or	timeouts.	Without	proper	visibility	in	place,	you	can
only	guess	the	current	state	of	your	system	and	are	unable	to	spot	trends	and
address	issues	before	they	escalate.	After	issues	have	escalated,	lack	of	historical
data	makes	troubleshooting	both	time-consuming	and	daunting.	This	is	why
systems	need	to	be	monitored,	and	information	stored	for	later	access.

Monitoring	is	done	using	a	combination	of	the	following	facilities:
Logs	record	state	changes	in	your	program.	A	state	change	could	be	part	of
your	business	logic,	such	as	a	user	logging	on	and	initiating	a	session,	or	a
system	state	change	such	as	a	node	joining	the	cluster.

Metrics	are	obtained	by	polling	a	value	at	a	particular	point	in	time.	You
could	be	monitoring	system	metrics	such	as	CPU	utilization	and	memory
usage,	ETS	table	size,	the	number	of	open	TCP	connections,	or	business
metrics	such	as	latency,	active	sessions,	or	the	number	of	login	requests	per
hour.

Alarms	are	a	form	of	event	associated	with	a	state.	They	are	raised	when
certain	criteria	are	met,	such	as	running	out	of	disk	space	or	hitting
concurrent	session	threshold	values.	Similarly,	they	are	cleared	when	these
criteria	are	no	longer	valid:	for	example,	after	files	are	compressed	or
deleted,	or	after	users	log	off.

Monitoring	should	be	developed	in	conjunction	with	the	configuration	and
management	functionality	of	your	system.	We	refer	to	this	functionality	as	the
operations,	administration,	and	maintenance	(OAM)	part,	or	O&M	if	it	does	not
allow	you	to	configure	and	manage	your	business	logic.	In	the	remainder	of	the

chapter,	we	focus	on	monitoring	and	use	the	term	OAM	to	mean	both.

In	many	Erlang	systems,	especially	those	designed	by	architects	who	have	never
had	to	support	a	live	system,	OAM	support	tends	to	be	missing,	incomplete,	or
bolted	on	as	an	afterthought.	If	you	come	across	systems	where	the	only	way	to
find	the	number	of	active	sessions	is	by	manually	adding	the	size	of	the	ETS
session	tables	across	all	nodes,	or	changing	live	configuration	is	achieved	by
calling	application:set_env,	they’ve	done	it	wrong.	All	systems	should	let	you
inspect,	manage,	and	do	basic	troubleshooting	without	any	knowledge	of	Erlang
or	need	to	access	the	Erlang	shell.

In	the	telecom	world,	this	noncritical	OAM	functionality	is	put	in	its	own	node
(or	node	pair	for	redundancy)	for	the	same	reasons	discussed	in	“Node	Types
and	Families”,	namely	reducing	the	overhead	on	the	front-end,	logic,	and	service
nodes	while	increasing	resilience.	The	OAM	node	should	be	designed	to	ensure
that	in	case	of	failure,	your	system	is	still	capable	of	servicing	requests.	This
means	that	only	critical	OAM	functionality	is	put	in	non-OAM	nodes,	usually
reduced	to	a	few	critical	alarms	and	the	ability	to	check	the	liveness	of	the	node.

OAM	nodes	can	be	used	to	handle	both	Erlang	and	non-Erlang	components	of
your	software.	They	act	as	a	hub	toward	the	wider	operations	and	maintenance
infrastructure	of	the	organization	where	you	deploy	your	software	(Figure	16-1).
This	wider	OAM	infrastructure	would	also	monitor	and	manage	your	network,
switches,	load	balancers,	firewalls,	hardware,	OS,	and	stack.	It	could	include
open	source	tools	such	as	Graphite,	Cacti,	Nagios,	Chef,	or	Capistrano;
proprietary	tools;	or	the	use	of	SaaS	providers	such	as	Splunk,	Loggly,	or
NewRelic.	Connectivity	could	be	one	of	many	standards	and	protocols,
including	SNMP	and	standard	management	information	bases	(MIBs),
YANG/NETCONF,	REST,	web	sockets,	or	whatever	the	flavor	of	the	month
might	be	(as	long	as	it	is	not	CORBA).

Figure	16-1.	Operations	and	maintenance	nodes

Logs
A	log	is	an	entry	in	a	file	or	database	that	records	an	event	that	can	be	used	as
part	of	an	audit	trail.	The	entry	could	reflect	a	system	event	in	the	Erlang	VM	or
operating	system,	or	an	event	that	triggers	a	state	change	in	your	business	logic.
Logs	are	used	for	a	variety	of	purposes,	including	tracing,	debugging,	auditing,
compliance	monitoring,	and	billing.	Different	log	entries	are	usually	tagged,
allowing	you	to	decide	the	level	of	granularity	of	what	is	stored	at	runtime.
Common	tags	include	debug,	info,	notice,	warning,	and	error.

The	different	ways	logs	are	used	by	different	people	with	varying	technical	skills
and	tool	sets	makes	it	hard	to	suggest	a	“one	size	fits	all”	approach.	What	is
important,	however,	is	to	have	logs	that	allow	those	using	them	to	uniquely
follow	the	flow	of	requests	across	nodes	in	order	to	locate	issues	or	gather
required	data.

Picture	our	e-commerce	example,	where	millions	of	requests	run	through	the
system	daily.	How	do	you	handle	a	complaint	from	a	customer	who	claims	they
never	received	their	package,	despite	their	credit	card	being	charged?	How	do
you	narrow	down	your	search	and	link	the	missing	message	to	process	crash
reports	or	networking	issues?	You	need	to	quickly	find	where	in	your	code	the
request	disappeared	and	admit	guilt,	or	prove	your	innocence	using	a	solid	audit
trail	as	evidence,	thereby	shifting	the	focus	for	finding	the	problem	to	your
warehouse	team	or	the	courier.

Can	you	then	use	the	same	logs	to	create	a	customer	profile	based	on	the	items
purchased?	Or	look	at	the	durations	of	user	sessions	to	understand	their	shopping
behavior?	Understand	how	many	users	fill	customers’	shopping	carts	but	never
check	out?	Or	add	up	the	total	number	of	sales	and,	for	revenue	assurance
purposes,	compare	it	with	the	figures	provided	by	the	bank	handling	the	credit
card	transactions?	That	is	the	level	of	granularity	to	aim	for.

We	saw	the	SASL	logs	that	you	get	for	free	when	using	OTP	in	“The	SASL
Application”.	If	configured	correctly,	you	get	binary	logs	with	supervisor,
progress,	error,	and	crash	reports.	You	can	also	add	your	own	handlers,
forwarding	crash	and	error	logs	to	a	central	location.	But	saving	the	information
is	just	the	start	to	finding	all	the	help	it	can	provide	when	mined	properly.
Imagine	a	system	with	hundreds	(or	even	thousands)	of	nodes,	elastically	scaling

up	and	down.	If	you	did	not	forward	them	to	a	central	log	repository,	you	would
have	to	SSH	onto	a	machine,	connect	to	the	Erlang	shell,	start	the	report
browser,	and	search	for	crash	reports,	hoping	they	had	not	been	rotated.	If	that
were	the	case,	how	would	you	ever	find	out	if	something	went	wrong?

At	one	site	we	ran	systems	where	processes	were	crashing	daily.	Since	they	were
being	automatically	restarted,	we	were	not	aware	of	the	issues,	and	the	system
was	perceived	as	running	normally,	when	in	fact,	a	very	small	fraction	of	the
requests	were	failing.	Failure	had	been	isolated	so	well,	we	had	no	idea	our
system	was	riddled	with	bugs.	That’s	not	cool.	If	you	want	high	availability,	you
need	to	automate	the	discovery	of	the	SASL	crash	and	error	reports,	and	then
ensure	any	faults	get	addressed.	Although	they	may	appear	to	be	small	in
number,	a	user	out	there	is	experiencing	each	fault.	And	if	many	of	these	issues
happen	in	quick	succession,	they	could	cause	the	supervisor	to	reach	its
maximum	number	of	restarts,	terminate,	and	escalate	the	issue,	possibly	taking
the	node	down.	Increasing	the	number	of	allowed	restarts	in	your	supervisor
specification	is	not	the	solution.	You	need	to	solve	the	root	problem	that	causes
the	crashes.

Users	have	often	added	their	own	log	entries	to	the	SASL	logs,	but	this	isn’t
recommended	because	it	mixes	logs	of	different	types	and	purposes	in	the	same
file.	It	might	work	for	smaller	systems	with	little	traffic,	but	as	soon	as	you	have
to	handle	tens	of	thousands	of	requests	per	second	or	more,	where	each	request
results	in	multiple	log	entries,	you	will	quickly	outgrow	the	capabilities	of	the
SASL	logs	and	will	definitely	want	separate	files	(and	possibly	formats)	for
every	log	type.

LAGER
Lager	is	one	of	the	most	popular	open	source	logging	frameworks	for	Erlang.	It	provides
highly	optimized	logging	capabilities	in	Erlang	systems	that	integrate	with	traditional	Unix
logging	tools	like	logrotate	and	syslog.	Log	levels	such	as	debug,	info,	notice,	warning,	error,
critical,	alert,	and	emergency	can	be	assigned	different	handlers,	allowing	you	to	decide	how
to	manage	the	information	provided.	Default	handlers	format	your	logs	for	offline	viewing,	for
terminal	output,	and	for	forwarding	to	SMS,	pagers,	and	other	service	providers.	Most	of	the
OTP	error	messages	are	reformatted	into	more	readable	ones.	Lager	also	has	overload
protection	and	throttling,	allowing	logs	being	sent	to	it	to	toggle	between	asynchronous	and
synchronous	calls	depending	on	the	mailbox	size.	It	also	introduces	the	notion	of	a	sink,
allowing	you	to	forward	only	the	most	critical	log	entries.

To	understand	what	business-specific	items	you	should	be	logging,	trace	the
functional	information	flow	of	each	request,	identifying	where	the	request	will
change	the	state	of	the	system,	and	then	log	items	that	will	get	the	user	to	select
different	branches.	Think	about	what	will	give	the	maintainers,	support
engineers,	DevOps	team,	accountants,	auditors,	marketing,	and	customer	service
representatives	a	good	overview	of	what	is	happening	or	has	happened.	Every
time	a	notable	change	in	state	occurs,	log	useful	information	that	was	not
previously	stored.

Ensure	that	you	can,	through	unique	identifiers,	link	together	the	various	log
entries,	recreating	the	functional	information	flow.	You	cannot	rely	on
timestamps	alone,	because	the	quantities	of	data	will	be	huge.	Nor	can	you	rely
on	the	session	ID,	user	ID,	or	phone	number,	as	they	will	not	be	unique	across
multiple	requests.	Assign	a	unique	ID	every	time	a	unique	request	is	received	by
an	external	client.	As	external	requests	might	consist	of	several	independent
requests	within	your	system	or	other	external	systems,	unique	identifiers	might
vary	from	one	log	to	another.	To	link	them	together,	you	must	ensure	they	are
available	in	the	function	call	where	you	invoke	the	log	and	store	them	together.
While	log	entries	can	be	added	later,	you	must	think	through	your	logging
strategy	before	you	start	coding,	as	the	logs	might	be	the	only	reason	for	using
unique	IDs	in	your	business	logic.	You	do	not	want	to	refactor	all	your	code
because	you’ve	realized	that	right	before	a	call	to	an	external	API,	you	do	not
have	the	request	ID	generated	elsewhere.	You	should	also	be	prepared	to	change
what	you	log	based	on	feedback	from	maintainers,	the	DevOps	team,	and	other

https://github.com/basho/lager

log	consumers.

Try	to	reduce	repetition	across	logs.	Store	information	only	once	and	link	it
together	with	other	logs	using	your	identifiers.	Using	a	single	log	to	store
everything	might	work	during	development,	but	when	tens	of	thousands	of
sustained	transactions	take	place	per	second,	it	will	be	hard	to	efficiently	extract
useful	data	out	of	the	file	and	it	could	become	a	potential	bottleneck.	Ideally,
your	logs	should	create	a	relational	model,	where	depending	on	the	flow,	a	log
entry	in	a	file	with	a	unique	ID	is	linked	to	an	entry	in	another	file.	This	unique
ID	could	be	a	session	ID,	which	links	items	browsed	by	a	user,	items	placed	in
and	removed	from	a	shopping	cart,	and	items	paid	for	on	checkout.	One	log	file
could	contain	all	the	items	browsed	by	a	user,	including	the	time	spent	viewing
an	item,	another	file	items	added	to	and	deleted	from	the	shopping	cart,	and	a
third	log	file	items	that	were	paid	for.	Items	that	were	paid	for	on	checkout	might
have	another	unique	ID	generated	by	the	payment	gateway,	linking	the	session	to
one	or	more	payments.	All	payment	logs,	in	turn,	would	not	have	to	store	the
session	ID,	as	the	link	between	the	two	would	be	made	from	the	checkout	log.

Another	way	to	view	the	logs	is	as	FSMs,	where	every	entry	is	a	state,	and
transitions	to	new	states	take	place	based	on	a	set	of	conditional	evaluations	in
your	business	logic.	Replaying	the	state	transitions	in	the	FSM	would	allow
DevOps	engineers	to	retrace	the	steps	taken	by	users	adding	items	to	their
shopping	baskets	and	paying	for	them.

Identify	the	different	levels	of	logging,	and	especially	what	is	useful	only	in
debug	mode,	so	as	to	not	overload	the	system	with	useless	logs.	As	a	minimum
requirement,	always	log	the	incoming	and	outgoing	requests	and	results	where
appropriate	so	you	are	later	able	to	identify	the	problematic	system	or
component.	As	an	example,	if	you	are	calling	an	external	API,	create	a	log	entry
with	the	request,	the	latency,	and	any	unique	request	ID	the	external	API	has
provided	you.	If	the	API	request	to	your	external	service	times	out,	just	replace
the	result	with	a	timeout	tag.	You	can	later	analyze	the	log	and	see	whether	you
need	to	increase	the	timeout	values.

You	will	have	to	log	system-specific	items	in	your	business-specific	logs
irrespective	of	what	the	node	or	system	does.	We	have	already	discussed	SASL
logs,	which	you	get	as	part	of	OTP.	Always	log	all	Erlang	shell	commands	and
interactions.	You	will	be	surprised	to	learn	how	many	outages	are	caused	by

operations	staff	who	are	not	used	to	working	in	the	shell.	Knowing	what	they
have	done	can	be	just	as	important	for	proving	that	your	code	was	working
correctly	as	it	is	for	restoring	the	service.	How	you	log	shell	commands	will
depend	on	your	target	architecture.	You	could	redirect	your	I/O,	use	bash
commands,	or	add	a	hook	to	log	the	entries	in	the	Erlang	VM	itself.

Other	items	to	log	could	include	network	connectivity	and	memory	issues,	which
are	notifications	arising	from	the	system_monitor	BIF	described	in	“The	System
Monitor”.	Be	careful	with	the	latter,	as	we	have	caused	nodes	to	crash	after	they
ran	out	of	disk	space	as	a	result	of	logging	millions	of	distributed	Erlang	port
busy	notifications	in	a	24-hour	period.	The	same	applies	to	badly	written	code
that	caused	memory	spikes,	triggering	long	gc	and	large	heap	messages.	In	these
cases,	an	incremental	counter	that	bumped	up	every	time	such	a	message	was
generated	would	be	better	than	logging	the	messages	themselves.	You	can	build
in	the	ability	to	toggle	the	logging	of	the	messages,	so	that	you	can	switch	to
retrieving	details	when	you	need	to	debug	the	situation.

It	is	often	also	worth	logging	times	when	code	is	loaded	or	purged,	node	restarts,
and	the	successful	saving	(and	renaming)	of	crash	dumps.	Log	whatever	you
believe	will	make	your	life	easier	and	help	you	understand	and	correlate
abnormal	behavior	or	corrupt	system	state	to	a	series	of	events.

If	you	store	logs	locally,	use	append-only	files,	and	make	sure	your	data	is
organized	properly.	It	is	common	for	log	files	to	be	stored	offline,	in	databases,
or	with	SaaS	providers.	Disk	space	is	cheap.	Logs	could	be	stored	as	CSV	files
in	plain	text	and	fed	into	a	variety	of	systems	used	for	troubleshooting,	billing,
compliance,	and	revenue	assurance.	Logs	could	follow	a	standard	such	as	syslog,
or	have	a	proprietary	format.	Make	sure	the	data	is	accessible	in	a	friendly
format	for	those	who	need	it.	To	slightly	misuse	Pat	Helland’s	wise	words,	“a
database	is	a	cache	of	your	event	logs,”	if	your	database	(or	state)	gets	corrupted,
the	logs	should	tell	you	why.	If	it	is	not	corrupt,	they	will	tell	you	why	not.

WHERE	IS	MY	TEXT	MESSAGE?

We	once	received	a	support	call	where	a	very	angry	user	complained	he	had	received	SMS	goal
notifications	hours	after	the	soccer	(football	for	our	European	chums)	match	had	ended.	Equipped	with
his	number,	we	found	the	front-end	node	where	the	request	to	send	SMSs	to	this	number	reached	our
system.	In	our	logs,	we	found	that	three	SMSs	had	been	sent	to	that	number	that	day.	Each	SMS	had
been	assigned	a	unique	identifier	when	it	entered	the	system.

Based	on	the	timestamps	in	the	logs,	we	figured	out	that	two	SMSs	were	sent	during	the	match	in
conjunction	with	the	team	scoring,	and	the	third,	which	we	guessed	contained	the	final	score,	was	sent
after	the	match	had	ended.	When	an	SMS	reached	our	system,	we	created	a	log	entry	with	its
identifier,	along	with	information	such	as	the	SMS	type	and	the	cost	code	stating	how	much	the
operator	should	charge	the	user	to	deliver	it.	In	our	case,	we	used	the	identifier	and	the	fact	that	the
SMS	was	a	premium-rated	message	to	locate	the	next	log	entry.	Checks	in	this	part	of	the	business
logic	were	made	there	to	ensure	that	the	account	was	active,	that	it	was	allowed	to	receive	premium-
rated	SMSs,	and	in	the	case	of	prepay	subscriptions,	that	there	were	enough	funds	in	the	account	to
pay	for	the	message.	We	found	that	entry	in	seconds,	and	were	able	to	see	from	the	log	entry	that	all
checks	were	affirmative.	The	user	was	a	postpay	subscriber	(billed	monthly	based	on	use),	his	account
was	not	suspended,	and	he	was	allowed	to	receive	premium	rate	SMSs.	Using	the	unique	identifier,	we
checked	the	logs	in	the	service	node	that	sent	the	SMSs	to	the	SMSC	for	delivery	to	the	mobile
terminal.	The	SMSC	returned	its	own	unique	identifier,	which	was	logged	together	with	the	timestamp
at	which	the	request	was	acknowledged.	According	to	the	logs,	it	took	a	few	milliseconds	from	the
moment	the	system	received	the	request	in	the	front-end	nodes	for	the	message	to	work	its	way
through	all	of	the	checks	and	on	to	the	SMSC	via	the	service	node.

We	then	used	the	unique	identifier	from	the	SMSC	to	search	the	delivery	report	log	sent	to	our	system
from	the	SMSC.	Indeed,	at	30-minute	intervals	in	the	hours	that	followed,	we	got	terminal	detached
messages,	followed	by	a	final	delivery	report	that	the	SMS	had	been	successfully	delivered.	As	per	the
complaint,	it	was	a	few	hours	after	the	match	had	ended.	Looking	at	the	unique	identifiers	for	the	other
two	SMSs,	we	got	a	similar	story,	with	a	delivery	receipt	with	a	timestamp	similar	to	the	first	one.

Why	weren’t	the	messages	delivered,	since	our	system	handled	them	so	promptly?	The	answer	was	in
the	terminal	detached	messages,	telling	us	that	the	user	either	was	out	of	coverage	or	had	his	handset
switch	off.	It	took	us	a	couple	of	minutes	to	respond	to	this	request	and	prove	our	innocence.	We	could
not	have	done	it	without	precise	timestamps,	unique	identifiers,	and	detailed	information	allowing	us
to	link	the	different	logs	together.	With	this	in	mind,	think	of	systems	where	requests	disappear,	with
no	clue	about	what	went	wrong.	Good	luck	proving	your	innocence	there.

Metrics
Metrics	are	sets	of	numeric	data	collected	at	regular	intervals	and	organized	in
chronological	order.	Metrics	are	retrieved	from	all	levels	of	your	application
stack.	You	need	to	retrieve	data	on	the	OS	and	network	layers,	on	the
middleware	layer	(which	includes	the	Erlang	virtual	machine	and	many	of	the
libraries	described	in	this	book),	and	in	your	business	layer.	Metrics	can	be	used
in	many	parts	of	a	business	and	are	needed	for	many	reasons,	all	similar	to	the
reasons	you	need	alarms	and	logs:

Developers	use	metrics	to	improve	the	performance	and	reliability	of	the
system	and	troubleshoot	issues	after	they	have	occurred.

DevOps	engineers	monitor	the	system	to	detect	abnormal	behavior	and
prevent	failures.

Operations	staff	use	metrics	to	predict	trends	and	usage	spikes,	using	the
results	to	optimize	hardware	costs.

Marketing	uses	them	to	study	long-term	user	trends	and	user	experience.

To	visualize	metrics,	imagine	an	incremental	counter	called	login	that	is	bumped
up	every	time	someone	tries	to	log	on	to	the	system.	If	they	are	successful,
login_success	could	be	bumped	up,	or	upon	failure,	login_failure	incremented
instead.	We	could	take	this	further,	and	create	counters	for	different	failure	types
such	as	bad_password,	unknown_user,	user_suspended,	and	userdb_error.	Such
metrics	could	help	identify	attempts	to	hack	into	the	system,	help	monitor	fraud
attempts,	or	maybe	just	prove	a	poor	user	experience.	If	you	are	getting	hundreds
of	unknown	user	or	bad	password	errors	from	the	same	source,	you	might	want
to	ask	those	responsible	for	security	to	review	the	logs	and	determine	what	is
going	on.	Marketing	might	want	to	determine	how	many	users	who	fail	to	log	on
actually	retry	and	eventually	succeed.	This	would	also	be	determined	by
examining	the	logs,	but	metrics	would	provide	the	first	hint	that	something	is
wrong.

The	operations	team	might	want	to	make	sure	the	system	load	doesn’t	exceed
available	resources,	requesting	metrics	on	the	memory	usage	of	the	Erlang	VM.
You	can	poll	not	only	the	total	memory	usage,	but	also	how	much	memory	is

used	by	processes,	the	system,	the	atom	table,	ETS	tables,	binaries,	and	to	store
the	code.	You	could	even	take	it	a	step	further	and	differentiate	between	the
space	allocated	to	store	process	and	atom	memory	versus	the	memory	actually
used.

As	a	developer,	you	might	not	think	much	about	these	issues	as	you	rush	to
deliver	the	system,	but	once	you	have	gone	live	and	someone	who	does	not
speak	Erlang	has	to	figure	out	why	it	is	running	low	on	memory,	imagine	the
power	of	being	able	to	correlate	spikes	in	process	memory	usage	or	large
portions	of	time	spent	on	garbage	collecting	data	with	particular	user	operations
such	as	logging	in.

Figure	16-2	plots	the	different	types	of	memory	usage	in	the	Erlang	VM,
alongside	total	memory	consumption.	We	can	clearly	see	that	the	50%	increase
in	memory	is	due	to	an	increase	in	the	used	process	memory,	which	probably
correlates	either	to	increased	system	usage	or	to	a	buildup	of	processes	that
aren’t	being	properly	terminated.

Figure	16-2.	Memory	usage

Metrics	collected	take	on	different	values	and	formats	depending	on	their
purpose.	One	typical	value	is	an	amount,	a	discrete	or	continuous	value	with
incremental	and	decremental	capabilities.	A	common	form	of	amount	is
counters,	as	we	have	seen.

Gauges	are	a	form	of	counter	that	provide	a	value	at	a	particular	point	in	time.
Although	the	number	of	login	attempts	since	we	started	the	system	might	not
help	someone	in	operations,	the	number	of	ongoing	sessions	will.	Other	typical

examples	of	gauges	are	to	measure	memory	or	hard	disk	usage.

Time	is	another	common	measurement,	mainly	used	to	measure	latency	in	all
levels	of	the	stack.	Data	collectors	tend	to	group	time	readings	into	histograms,
collections	of	values	(not	necessarily	only	time-related)	that	have	had	some	form
of	statistical	analysis	applied	to	them.	Histograms	may	show	averages,	minimum
and	maximum	values,	or	percentiles.	As	examples,	what	was	the	latency	of	the
fastest	1%	of	the	requests?	And	the	slowest	1%?

The	third	type	of	metric	is	a	value	in	a	particular	unit	of	time.	These	are
commonly	called	meters,	which	provide	an	increment-only	counter	whose	values
are	evened	out	with	mean	rates	and	exponentially	weighted	moving	averages.
The	adjustments	ensure	you	do	not	see	spikes	and	troughs	that	might	occur.

A	spiral	is	a	form	of	meter	with	a	sliding	window	count,	showing	the	increment
of	a	counter	in	a	particular	time	frame.	If	you	are	showing	a	value	relative	to	the
last	minute,	the	sliding	count	could	drop	readings	older	than	1	minute	and
replace	them	with	new	ones,	each	second.	Values	you	could	show	include	the	bit
rate	per	second	and	operations	per	second,	such	as	the	number	of	initiated
sessions.

Metrics	have	a	timestamp	associated	with	them.	They	are	retrieved	and	stored	in
a	time	series	database	at	regular	intervals.	A	time	series	database	is	optimized	to
handle	data	indexed	by	timestamps,	allowing	you	to	access	data	in	chronological
order.	Metrics	are	often	aggregated	and	consolidated	over	time	to	provide
overviews	on	a	system	level.	You	might	want	to	collect	all	counters	from	a
particular	node	type	or	see	the	total	number	of	requests	for	all	nodes	in	the	last
15	minutes,	hour,	day,	or	month.

Look	at	the	counter	in	Figure	16-3,	which	shows	the	total	length	of	all	the
process	message	queues	over	a	12-hour	period.	It	was	plotted	based	on	data
collected	when	investigating	a	node	crash	that	occurred	at	3:34	AM.	The	node
crashed	after	running	out	of	memory.	The	metrics	not	only	allowed	us	to	identify
what	caused	the	crash,	but	provided	an	operational	insight:	had	someone	been
monitoring	the	process	message	queue	length,	there	was	a	3-hour	window	where
the	issue	could	have	been	noticed	and	addressed.

Figure	16-3.	Message	queue	length

In	Erlang,	ETS	tables	have	the	atomic	operation	ets:update_counter	that
allows	you	to	increment	and	decrement	counters.	They	can	be	used	for	speed,
but	beware	of	global	locks	and	bottlenecks	when	scaling	on	multicore
architectures.	Recommended	open	source	applications	that	focus	on	metrics
include	folsom	and	exometer.	They	offer	some	of	the	basic	system	metrics	you
expect	out	of	your	Erlang	VM,	and	let	you	create	your	own	metrics	on	a	per
node-basis.

EXOMETER
Exometer	consists	of	a	group	of	applications	providing	a	package	to	gather	and	export	metrics
in	individual	nodes.	It	provides	predefined	data	points	and	metric	types	that	can	be	sampled,	as
well	as	APIs	and	callback	functions	to	add	user-defined	metric	types.	When	a	state	needs	to
persist	between	sampling,	it	is	possible	to	implement	probes	that	run	in	their	own	process
space,	storing	state	and	using	it	to	gather	the	metrics.	Metrics	and	data	points	can	be	exported
to	third-party	tools	and	APIs,	including	Graphite,	OpenTSDB	(via	Telnet),	AMQP,	StatsD,	and
SNMP.	You	can	also	choose	to	develop	and	add	your	own	custom	reporters.	Exometer	operates
with	very	low	impact	on	memory,	CPU,	and	network	usage	so	as	to	minimize	its	effects	on
resources	required	by	the	applications	it’s	measuring	and	monitoring.

Alarms
Alarms	are	a	subset	of	events	associated	with	a	state.	While	an	event	will	tell
you	that	something	happened,	an	alarm	will	indicate	that	something	is	ongoing.
For	instance,	an	event	tells	you	that	a	socket	was	closed	abnormally,	but	an
alarm	warns	of	your	inability	to	create	any	socket	connections	toward	an
external	database.

An	alarm	is	raised	when	the	issue	you	are	monitoring	manifests	itself.	This
could	represent,	for	instance,	losing	the	last	socket	connection	toward	the
database	or	failing	to	create	a	connection	at	startup.	The	alarm	is	said	to	remain
active	until	the	issue	is	resolved	—	maybe	on	its	own	accord,	or	through
automatic	or	manual	intervention	—	and	the	state	reverts	back	to	normal.	This
could	happen	when	connectivity	toward	the	database	is	restored.	When	this
happens,	the	alarm	is	said	to	be	cleared.

Alarms	can	also	be	associated	with	a	severity.	Severities	include	cleared,
indeterminate,	critical,	major,	minor,	and	warning.	Each	alarm	severity	is
configured	individually	in	the	OAM	node	on	a	system-by-system	basis,	allowing
the	DevOps	teams	(and	automated	scripts)	to	react	differently	to	them.	For
example:

An	alarm	about	a	disk	that’s	80%	full	might	be	associated	with	a	minor
severity.	You	can	get	notified	about	it	during	office	hours	and	deal	with	it
after	the	coffee	break.

However,	if	the	disk	continues	filling	up	and	becomes	90%	full,	the	severity
might	rise	to	major.	You	can	get	called	about	that	during	office	hours,	out	of
office	hours,	and	on	weekends,	but	not	between	11	PM	and	7	AM.

If	the	disk	becomes	95%	full,	the	severity	might	then	go	to	critical;
regardless	of	when	this	occurs,	a	pager	call	alerts	someone,	perhaps	getting
them	out	of	bed,	to	investigate	and	address	the	cause	before	the	node	runs
out	of	space	and	crashes.

In	other	systems,	however,	where	nodes	can	crash	without	affecting	availability
and	reliability,	a	node	that	crashed	because	its	disk	is	full	could	be	handled	when
convenient	during	office	hours,	assuming	there	is	enough	redundancy	to

guarantee	the	system	can	still	handle	the	load.	There	is	no	one	size	fits	all
solution;	each	system	is	unique	and	must	be	managed	differently.

Alarms	can	originate	from	the	affected	node	or	in	the	OAM	node	itself.	They	can
be	based	on	thresholds	or	state	changes,	or	a	mixture	of	the	two.

In	threshold-based	alarms,	metrics	are	monitored	and	the	alarm	is	raised	if	a
limit	is	exceeded	in	one	of	the	metrics.	Depending	on	the	exceeded	value,	such
as	a	disk	full	alarm,	you	could	configure	and	apply	different	severities	based	on
the	requirements	of	your	system.	Other	examples	of	threshold-based	metrics
include	system	limits	such	as	memory,	number	of	sockets,	ports,	open	files,	or
ETS	tables.	If	you	are	monitoring	the	number	of	requests	that	went	through	your
system	using	an	incremental	counter,	and	this	counter	has	not	changed	in	the	last
minute,	there	is	probably	an	issue	and	you	will	want	to	have	someone
investigate.

Most	threshold-based	alarms	can	be	managed	in	the	OAM	node,	but	there	are
exceptions	created	by	the	frequency	at	which	you	transfer	the	data	and	the
volumes	you	are	willing	to	move.	As	an	example,	processes	with	very	long
message	queues	are	usually	a	symptom	of	issues	about	to	happen.	They	are	easy
to	monitor,	but	the	monitoring	and	raising	of	alarms	has	to	happen	on	the
managed	nodes,	as	it	is	not	feasible	to	send	the	message	queue	lengths	of	all
processes	to	the	OAM	node.	There	will	also	be	times	where	you	want	to	detect
these	issues	and	raise	an	alarm	immediately,	without	having	to	wait	for	the	OAM
node	to	receive	the	metrics	and	raise	a	threshold-based	alarm.

State-based	alarms	are	triggered	when	a	potentially	harmful	state	change	occurs.
They	include	alarms	highlighting	hardware	issues	such	as	a	cabinet	door	being
opened	or	a	cooling	fan	failing.	Other	examples	include	the	connectivity	toward
an	external	API	or	database	being	unresponsive	or	a	node	going	down.

It’s	up	to	you	to	decide	how	many	alarms	to	send	and	the	levels	of	detail	to
include	in	these	alarms.	You	might	want	to	do	sanity	checks	in	your	system.
What	happens	if	a	.beam,	.boot,	.app,	or	sys.config	file	gets	corrupted?	You	will
not	notice	until	the	node	is	restarted.	Although	a	node	can	take	a	few	seconds	to
restart,	marginally	affecting	your	uptime,	identifying	the	corrupt	file	is	enough	to
kiss	your	five	nines	goodbye.	Isolating	the	corrupt	file	and	fixing	it	is	not	easy
and	will	take	time,	drastically	increasing	your	downtime.	If	you	think	it	will	not
happen	to	you,	think	again,	because	it	has	happened	to	many	others,	us	included!

SASL	has	a	basic	alarm	handler,	which	we	cover	in	“The	SASL	Alarm	Handler”.
It	allows	you	to	raise	and	clear	alarms,	but	does	not	handle	severities	and
dependencies.	The	idea	behind	the	SASL	alarm	handler	is	to	manage	alarms	on
the	affected	nodes.	These	can	be	forwarded	to	more	complex	alarm	applications
in	your	OAM	node	or	external	tools.	But	if	you	do	write	your	own	OAM	node,
you	will	need	something	more	complex	and	configurable,	handling	alarm
duplication,	severities,	and	operator	interaction.

ELARM
The	elarm	application	is	the	de	facto	Erlang-based	alarm	manager	used	in	production	systems
to	manage	alarms.	It	allows	you	to	configure	severities	and	actions,	as	well	as	implement
handlers	that	forward	requests	via	email	or	SMS,	or	to	external	systems	such	as	Nagios	or
pager	duty.	Users	(or	the	system)	can	acknowledge	and	clear	alarms	as	well	as	add	notes	for
other	members	of	the	DevOps	team.	You	can	configure	alarms	to	provide	users	with	default
information	such	as	severity,	probable	cause,	and	repair	actions.	All	alarm	events	are	logged,
and	the	current	state	of	alarms	can	be	queried	and	filtered.	While	the	SASL	alarm	handler	is
ideal	for	basic	alarm	handling,	elarm	is	what	you	should	be	running	in	your	OAM	nodes,
making	it	the	focal	point	where	all	of	the	alarms	are	collected,	aggregated,	and	consolidated.
This	information	is	then	used	to	make	decisions	on	actions	and	escalation,	be	it	automated	or
manual.

No	two	systems	are	alike.	Based	on	their	functionality,	traffic	load,	and	user
behavioral	patterns,	they	will	need	to	be	managed	and	configured	differently.	A
critical	alarm	in	one	system	might	be	a	nonissue	or	a	warning	in	another.	Once
you’ve	gone	live,	you	will	need	to	configure	and	fine-tune	your	alarms.	This	is
commonly	done	when	you	handle	false	positives	and	false	negatives.	A	false
positive	is	an	alarm	generated	because	of	a	nonissue.	It	could	be	caused	by	an
overly	sensitive	threshold	or	even	paranoid	management	asking	you	to	monitor
too	much.	In	cases	where	disks	fill	up	slowly,	a	70%	disk	full	alarm	could	be
active	for	months	without	any	need	for	intervention.	But	in	systems	where	disks
fill	up	quickly,	such	an	alarm	might	warrant	waking	someone	up	in	the	middle	of
the	night,	as	it	might	be	a	warning	that	the	node	is	going	to	crash	within	the	hour.
It	is	important	to	fine-tune	your	system	and	eliminate	false	positives,	as	too
many	of	them	will	result	in	serious	alarms	being	ignored.

It	is	also	important	to	do	the	opposite:	namely,	manage	false	negatives.	A	false
negative	is	when	alarms	should	have	been	raised,	but	are	not.	This	could	be
because	of	threshold	configuration	or	lack	of	coverage	in	particular	parts	of	the
system.	After	every	failure	or	degradation	of	service,	review	which	alarms	could
have	been	raised	(if	any)	and	start	monitoring	events	that	might	indicate	that
failure	or	service	degradation	is	imminent.

We	see	alarms	in	systems	too	rarely,	and	when	they	do	exist,	they	have	often
been	added	as	an	afterthought.	The	majority	are	threshold-based,	with	the	only
state-based	alarms	being	based	on	external	probes	sending	requests	to	the

https://github.com/esl/elarm

system.	Alarms	play	a	critical	role	in	detecting	and	addressing	anomalies	before
they	escalate	and	have	been	a	must	in	the	telecoms	space	for	decades.	It	is	time
for	other	verticals	to	adopt	these	practices	widely	and	apply	the	lessons	learned
about	them.	It	will	greatly	facilitate	support	automation	(covered	in	the
following	section)	and	be	one	of	the	pillars	you	can	count	on	when	trying	to
achieve	five-nines	availability.

Preemptive	Support
Support	automation	is	the	building	of	a	knowledge	base	that	is	used	to	reduce
service	disruption	by	reacting	to	external	stimuli	and	resolving	problems	before
they	escalate.	If	you	are	allowed	only	minutes	of	downtime	per	year,	downtime
is	something	you	need	to	plan	for	when	designing	your	system.	It	is	no	good
detecting	something	has	gone	wrong	and	expecting	a	human	to	intervene	and
manually	run	a	script.	Being	allowed	a	few	minutes	of	downtime	per	year	means
running	that	script	through	automation.	Automation	is	achieved	through	the
collection	and	analysis	of	metrics,	events,	alarms,	and	configuration	data.	If
certain	patterns	are	detected	in	the	metrics	and	sequence	of	events,	a	set	of
predefined	actions	are	taken,	preemptively	trying	to	resolve	the	problem	before	it
occurs.	It	could	be	something	as	simple	as	deleting	files,	configuring	a	load
balancer,	or	deploying	a	new	node	to	increase	throughput	while	decreasing
latency.

You	need	to	keep	three	main	areas	of	support	automation	in	mind	when
designing	your	Erlang	system:

Proactive	support	automation	is	focused	on	reducing	downtime	using	end-
to-end	health	checks	and	diagnostic	procedures.	It	could	be	implemented
through	an	external	system	that	sends	requests	to	test	availability,	latency,
and	functionality.

Preemptive	support	automation	gathers	data	in	the	form	of	metrics,	events,
alarms,	and	logs	for	a	particular	application;	analyzes	the	data;	and	uses	the
results	to	predict	service	disruptions	before	they	occur.	An	example	is
noticing	an	increase	in	memory	usage,	which	predicts	that	the	system	might
run	out	of	memory	in	the	near	future	unless	appropriate	corrective	actions
are	taken.	These	actions	could	include	enabling	load	regulation	and
backpressure,	request	throttling,	starting	or	stopping	nodes,	and	migration
of	services	using	capability-based	deployment.

Self-support	automation	describes	the	tools	and	libraries	that	can	be	used	to
troubleshoot	solutions	and	to	diagnose	and	resolve	problems.	They	are
invoked	as	the	result	of	proactive	and	preemptive	support	automation.

An	example	of	proactive	support	automation	is	external	probes	that	simulate
users	sending	HTTP	requests,	monitoring	the	well-being	of	the	system	by
sending	requests	to	different	parts	of	it.	In	our	e-commerce	example,	probes
could	include	tests	to	ensure	that	the	product	database	is	returning	search	results,
that	users	can	log	on	and	start	a	session,	and	that	checkout	and	payment
procedures	are	successful.	There	is,	after	all,	no	point	in	having	a	shop	where
customers	can	browse	the	items,	but	not	buy	them!

You	want	to	know	about	issues	with	your	system	long	before	your	customers
find	out,	and	already	be	working	on	a	resolution	before	the	moaning	on	social
media	starts.	Make	sure	that	the	probes	run	outside	of	your	network.	We’ve	been
caught	out	as	a	result	of	a	defective	switch,	where	probes	within	the	firewalls
were	not	detecting	anomalies	but	customers	outside	the	perimeter	network	were
not	able	to	access	the	system.

In	the	case	of	preemptive	support,	if	you	know	what	needs	to	be	done	when	an
alarm	is	raised	or	the	thresholds	of	certain	metrics	are	met,	you	should	automate
actions.	In	the	disk	full	example	we	gave	in	“Alarms”,	upon	receiving	the	80%
disk	space	alarm,	you	could	start	compressing	logs.	If	compressing	logs	doesn’t
help	and	the	alarm	severity	is	raised	with	a	90%	disk	full	alarm,	you	could
change	the	wraparound	time	of	your	logs	and	shut	down	those	that	will	not	affect
service.	If	you	are	unfortunate	enough	to	get	a	100%	disk	full	alarm,	start
deleting	anything	not	required	and	not	critical	to	the	correct	functioning	of	the
system.

Other	examples	of	automated	preemptive	support	include	deploying	of	new
nodes	when	existing	system	capacity	is	not	enough,	reconfiguring	load
balancers,	and	changing	thresholds	used	to	trigger	load	regulation	and
backpressure.	As	an	example,	clients	using	lager	send	log	entries
asynchronously	for	speed,	but	as	soon	as	the	lager	mailbox	hits	a	certain	size,
the	asynchronous	calls	are	replaced	by	synchronous	ones	in	an	attempt	to	slow
down	the	producers	and	allow	lager	to	catch	up.

Preemptive	support	does	not	have	to	be	completely	automated.	Do	not
underestimate	the	value	of	having	your	DevOps	team	analyze	logs,	alarms,	and
metrics,	especially	under	peak	or	extended	heavy	load,	to	predict	and	avoid
outages	that	you	might	not	have	thought	of.

A	NEEDLE	IN	A	HAYSTACK

We	had	nodes	crashing	and	restarting	for	months	at	a	customer	site	without	noticing.	Refactoring	of
the	code	we	never	soak	tested	resulted	in	us	not	handling	the	EXIT	signal	from	the	ports	we	were	using
to	parse	inbound	XML.	Yaws	recycles	processes	by	default,	so	every	process	ended	up	having
thousands	of	EXIT	messages	from	previous	requests	that	had	to	be	traversed	every	time	a	new	request
was	received.	The	nodes	regularly	ran	out	of	memory	and	crashed.	When	restarted,	the	mailboxes
were	cleared,	and	the	buildup	to	the	next	crash	would	commence.

Customers	complained	that	at	times,	the	system	was	slow.	We	blamed	the	speed	problems	on	their
Windows	servers.	From	external	probe	testing,	we	occasionally	saw	system	availability	drop	from
100%	to	99.999%.	We	rarely	caught	this	issue	because	the	external	probes	sent	one	request	per	minute
and	took	a	few	hundred	milliseconds	to	process	it,	while	the	node	took	3	seconds	to	restart.	So,	we
blamed	this	drop	in	availability	on	the	operations	team	messing	with	firewall	configurations.

Even	with	triple	redundancy,	the	system	was	failing,	but	we	did	not	notice.	It	was	only	when	we
happened	to	be	logged	on	to	one	of	the	front-end	nodes	and	realized	that	it	was	running	at	100%	CPU
while	handling	only	10	requests	per	second	that	we	realized	we	had	a	problem	and	started
investigating.

Had	we	monitored	the	message	queues,	we	would	have	picked	up	this	issue	immediately	and
prevented	it	from	escalating.	Had	operations	viewed	CPU	utilization	and	request	latency	graphed	over
time,	they	would	have	noticed	something	was	wrong.	And	had	someone	looked	at	the	logs,	they	would
have	seen	that	the	nodes	were	crashing	and	restarting	regularly.	Armed	with	this	information,	even	if
we	had	not	been	able	to	fix	the	EXIT	signal	problem	immediately	we	could	have	at	least	reconfigured
Yaws	to	limit	its	process	recycling	to	temporarily	work	around	the	problem.

We	learned	our	lesson,	so	after	having	solved	this	issue,	we	started	monitoring	the	latency	of	the
requests.	It	paid	off,	as	we	noticed	that	every	hour,	exactly	on	the	hour,	latency	spiked	from	a	few
hundred	milliseconds	to	a	few	seconds!	Investigation	traced	the	issue	to	synchronous	calls	taking	place
when	the	log	files	were	being	rotated.	Flushing	the	file	to	disk	stopped	all	other	requests	because	of
the	synchronous	nature	of	the	calls	to	the	log	process.	We	ended	up	spawning	a	process	that	opened
the	new	file	and	took	care	of	all	new	log	entries,	allowing	the	old	file	to	be	flushed	in	the	background.

Summing	Up
Monitoring	systems	is	never	dull.	If	you	want	five-nines	availability,	do	not	take
anything	for	granted;	monitor	everything,	and	spend	the	time	necessary	to
regularly	review	alarms,	logs,	and	metrics.	The	reviews	should	be	both	manual
and	automated.	You	never	know	what	you	or	one	of	your	tools	is	going	to	find.
The	only	thing	you	can	be	sure	of	is	that	these	issues	will	manifest	themselves,
and	will	do	so	when	you	least	expect	it.

Just	because	you’ve	isolated	failure	on	a	function,	process,	application,	and	node
level	does	not	mean	allowing	processes	to	crash	is	acceptable.	The	“let	it	crash”
approach	gives	you	the	programming	model	you	need	to	reduce	crashes	through
simplicity.	Make	sure	you	are	aware	failure	is	occurring,	and	fix	the	issues	as
soon	as	you	detect	them.	You	need	to	be	aware	something	is	about	to	happen
with	enough	margin	to	allow	you	to	react	to	it	before	your	users	notice.

And	finally,	don’t	waste	time	looking	for	needles	in	a	haystack.	Have	all	the	data
at	hand	so	that	you	can	prove	your	innocence	(or	admit	guilt)	when	anomalies	do
manifest	themselves.

That’s	it!	Who	ever	said	designing	systems	that	are	scalable	and	highly	available
was	hard?	All	you	need	to	do	is	follow	our	10	easy	steps:

1.	 Split	up	your	system’s	functionality	into	manageable,	standalone	nodes.

2.	 Choose	a	distributed	architectural	pattern.

3.	 Choose	the	network	protocols	your	nodes,	node	families,	and	clusters
will	use	when	communicating	with	each	other.

4.	 Define	your	node	interfaces,	state,	and	data	model.

5.	 For	every	interface	function	in	your	nodes,	pick	a	retry	strategy.

6.	 For	all	your	data	and	state,	pick	your	sharing	strategy	across	node
families,	clusters,	and	types,	taking	into	consideration	the	needs	of	your
retry	strategy.

7.	 Design	your	system	blueprint,	looking	at	node	ratios	for	scaling	up	and

down.

8.	 Identify	where	to	apply	backpressure	and	load	regulation.

9.	 Define	your	OAM	approach,	defining	system	and	business	alarms,	logs,
and	metrics.

10.	 Identify	where	to	apply	support	automation.

And	finally,	when	all	of	these	pieces	are	in	place	and	running,	keep	on	revisiting
your	tradeoffs	and	assumptions	as	your	requirements	evolve.	Add	more
resilience	and	visibility	as	and	when	you	need	it.	Identify	the	reason	for	every
outage	and	put	in	place	the	early	warning	signals	in	your	monitoring	system,
along	with	resilience	in	your	software	and	infrastructure,	to	ensure	it	never
happens	again.

For	further	reading,	we	suggest	you	look	at	the	documentation	that	comes	with
lager,	elarm,	exometer,	and	folsom.	You	can	find	it	in	their	respective
repositories	on	GitHub.	Stuff	Goes	Bad,	Erlang	in	Anger	is	an	ebook	by	Fred
Hébert	we	warmly	recommend.	The	Erlang/OTP	system	documentation	also	has
a	user’s	guide	on	OAM	principles,	mainly	focusing	on	SNMP.	It	should	be	read
alongside	the	documentation	for	the	operations	and	maintenance	applications
os_mon,	otp_mibs,	and	snmp.

https://www.erlang-in-anger.com

What’s	Next?
This	is	the	last	chapter	we	are	planning	on	writing	—	at	least	for	a	while.	You
will	be	the	one	writing	the	next	chapter	when	applying	the	knowledge	from	this
book	in	designing	your	scalable	and	highly	available	systems	using	Erlang/OTP
and	its	programming	model.	In	doing	so,	keep	in	mind	the	words	spoken	by
Håkan	Millroth	at	one	of	the	very	first	Erlang	User	Conferences:	to	run	a
successful	project,	you	need	good	tools,	good	people,	and	a	little	bit	of
cleverness.	You’ve	discovered	the	good	tools,	and	you	have	the	cleverness,	and
hopefully	good	people.	We	are	now	looking	forward	to	hearing	all	about	your
success	stories!	Thank	you	for	reading	so	far,	and	good	luck!

Index

Symbols

+	character,	Arguments	and	Flags

++	list	operator,	List	Comprehensions:	Generate	and	Test

--	list	operator,	List	Comprehensions:	Generate	and	Test

:=	map	update	operator,	Maps

=>	map	insert/update	operator,	Maps

?	(question	mark),	Macros

A

abcast()	function,	Going	Global

abnormal	process	termination

about,	Links,	Process	Skeletons

cyclic	restarts	after,	Supervision	Trees

handling	errors	and	invalid	return	values,	Handling	Errors	and	Invalid
Return	Values

supervisors	and,	Testing	Your	Supervision	Strategy

ACID	acronym,	Share	something

add_handler()	function,	Adding	Event	Handlers

add_patha()	function,	Starting	an	Application

add_sup_handler()	function,	Handling	Errors	and	Invalid	Return	Values,
Wrapping	It	All	Up

administration	state,	Start	Phases

alarm	handlers,	The	SASL	Alarm	Handler-The	SASL	Alarm	Handler,
Alarms

alarming

about,	What	You’ll	Learn	in	This	Book,	Applications

monitoring	via,	Monitoring,	Alarms-Alarms

alarm_handler	module,	The	SASL	Alarm	Handler,	Summing	Up

Allen,	Mark,	Riak	Core

Alpern,	Bowen,	Share	everything

Amdahl's	law,	Horizontal	and	Vertical	Scaling

americano	coffee,	Asynchronous	events

amount	(metrics),	Metrics

anonymous	functions,	Functional	Influence-Fun	with	Anonymous	Functions

app	files

about,	The	Application	Structure,	The	Application	Structure,	Wrapping
Up

application	versions	and,	Release	Resource	Files

appup	files	and,	Application	Upgrade	Files

base	station	controller,	The	Base	Station	Controller	Application	File

ebin	directory	and,	The	Application	Structure

properties	supported,	Application	Resource	Files-The	Base	Station
Controller	Application	File

setting	environment	variables,	Environment	Variables

application	controller,	How	Applications	Run,	Script	files

-Application	flag,	Arguments	and	Flags,	Upgrading	Environment	Variables

application	master,	How	Applications	Run

application	module

about,	What	You’ll	Learn	in	This	Book,	The	Callback	Module

starting	applications,	Starting	and	Stopping	Applications,	Starting	an
Application-Starting	an	Application

stopping	applications,	Starting	and	Stopping	Applications-Starting	and
Stopping	Applications

application	resource	files	(see	app	files)

application:ensure_all_started()	function,	Starting	an	Application

application:get_all_env()	function,	Environment	Variables

application:get_application()	function,	Environment	Variables

application:get_env()	function,	Application	Resource	Files,	Environment
Variables

application:load()	function,	Starting	and	Stopping	Applications,	Script	files

application:set_env()	function,	Environment	Variables

application:start()	function,	The	SASL	Alarm	Handler,	Starting	and
Stopping	Applications,	Application	Types	and	Termination	Strategies,
Distributed	Applications

application:start_boot()	function,	Script	files

application:stop()	function,	Starting	and	Stopping	Applications,	Application
Types	and	Termination	Strategies

application:which_applications()	function,	Starting	and	Stopping
Applications,	Application	Resource	Files

applications

about,	How	Applications	Run-How	Applications	Run

callback	module,	The	Callback	Module-Starting	and	Stopping
Applications

combining	with	supervisors,	Combining	Supervisors	and	Applications

distributed,	Distributed	Applications-Distributed	Applications

environment	variables,	Environment	Variables-Environment	Variables

Erlang	nodes	and,	Erlang	Nodes

included,	Included	Applications

loading,	Starting	and	Stopping	Applications

resource	files,	Application	Resource	Files-The	Base	Station	Controller
Application	File

SASL,	The	SASL	Application-Supervisor	Reports

sources	for,	Applications

standard	releases	and,	Release	Resource	Files

start	phases,	Start	Phases-Start	Phases

starting,	How	Applications	Run,	Starting	and	Stopping	Applications,
Starting	an	Application-Starting	an	Application

stopping,	Starting	and	Stopping	Applications-Starting	and	Stopping
Applications

structural	overview,	The	Application	Structure-The	Application
Structure

termination	strategies,	Application	Types	and	Termination	Strategies

tools	supporting	Erlang,	Tools	and	Libraries-Tools	and	Libraries

types	of,	How	Applications	Run

upgrading,	Upgrading	the	Emulator	and	Core	Applications

version	considerations,	Release	Resource	Files

apply()	function,	Script	files

apply_after()	function,	Generic	Server	Timeouts

apply_interval()	function,	Generic	Server	Timeouts

appmon	(application	monitor),	Starting	an	Application

appup	files

about,	The	Application	Structure,	Wrapping	Up,	Creating	a	Release
Upgrade,	Application	Upgrade	Files-Application	Upgrade	Files

high-level	instructions,	High-Level	Instructions-High-Level	Instructions

low-level	instructions,	Low-Level	Instructions-Low-Level	Instructions

-args_file	flag,	Arguments	and	Flags

arguments,	passing	to	runtime	system,	Arguments	and	Flags-Arguments
and	Flags

Armstrong,	Joe,	Erlang,	Finite	State	Machines

ASN.1	program,	Tools	and	Libraries

asynchronous	events

coffee	machine	example,	The	events-The	remove	state

sending,	Sending	Events,	Sending	Synchronous	and	Asynchronous
Events-Sending	Synchronous	and	Asynchronous	Events

sending	to	all	states,	Asynchronous	events	to	all	states

asynchronous	message	passing,	Distribution,	Infrastructure,	and	Multicore,
Processes	and	Message	Passing,	Asynchronous	Message	Passing

-async_shell_start	flag,	Arguments	and	Flags

at	least	once	approach,	At	most	once,	exactly	once,	and	at	least	once,
Tradeoffs	Between	Consistency	and	Availability

at	most	once	approach,	At	most	once,	exactly	once,	and	at	least	once,
Tradeoffs	Between	Consistency	and	Availability

atomicity	(ACID),	Share	something

authentication,	Node	Types	and	Families,	Interfaces

availability	(see	high	availability)

B

back-end	nodes,	Node	Types	and	Families,	Node	Types	and	Families,
Interfaces

back-off	algorithms,	Resilience

backpressure,	load	regulation	and,	Load	Regulation	and	Backpressure-
Load	Regulation	and	Backpressure

Bailis,	Peter,	Share	everything

balancing	systems,	Capacity	Planning,	Balancing	Your	System-Balancing
Your	System

base	station	controller	example,	The	Base	Station	Controller	Application
File,	Release	Resource	Files

Basho	website,	Riak	Core

Basic	Operating	System	(BOS),	OTP

basic	target	systems,	System	Principles

+Bc	emulator	flag,	Arguments	and	Flags

+Bd	emulator	flag,	Arguments	and	Flags

beam	files,	The	Application	Structure,	Application	Resource	Files,
Wrapping	Up

BEAM	virtual	machine

about,	Erlang

balancing	systems,	Balancing	Your	System

garbage	collection	and,	Memory	Management	and	Garbage	Collection

schedulers	and,	Processes	and	Message	Passing

-behavior	directive

about,	Behavior	Directives

applications	and,	The	Callback	Module,	Combining	Supervisors	and
Applications

event	handlers	and,	Adding	Event	Handlers

FSMs	and,	Starting	the	FSM

spellings	recognized,	Behavior	Directives

supervisors	and,	Starting	the	Supervisor,	Combining	Supervisors	and
Applications

behavior	module,	Callback	Modules-Callback	Modules

behaviors

about,	System	Design	Principles

creating,	Rules	for	Creating	Behaviors

design	patterns	and,	Behaviors,	Design	Patterns-Callback	Modules

extracting	generic,	Extracting	Generic	Behaviors-Functions	Internal	to
the	Server

generic	FSM	example,	A	Behavior	Example-Termination

generic	server,	The	Generic	Server-The	Generic	Server

globally	registered,	Going	Global

hibernating,	Hibernating	Behaviors

implementing,	Your	Own	Behaviors-An	Example	Handling	TCP	Streams

linking,	Linking	Behaviors

message	passing,	Message	Passing:	Under	the	Hood-Message	Passing:
Under	the	Hood

monitoring,	Summing	Up

processes	and,	System	Design	Principles,	Behaviors-Process	Skeletons

spawn	options,	Spawn	Options-Timeouts

sys	module	support,	The	sys	Module-The	sys	Module	Recap

TCP	stream	example,	An	Example	Handling	TCP	Streams-An	Example
Handling	TCP	Streams

timeouts,	Timeouts

+Bi	emulator	flag,	Arguments	and	Flags

bidirectional	links,	Links

BIFs	(built-in	functions),	Tools	and	Libraries,	Processes	and	Message
Passing

bin	directory,	Release	Directory	Structure,	Start	Scripts	and	Configuring

on	the	Target

BINDIR	environment	variable,	Release	Directory	Structure

boot	file

about,	Wrapping	Up

alternative,	The	make_script	parameters

creating,	Creating	the	Boot	File-Creating	the	Boot	File

creating	releases,	Creating	a	Release

init	module,	The	init	Module

make_script	parameters,	The	make_script	parameters-The	make_script
parameters

script	files,	Script	files-Script	files

-boot	flag,	Arguments	and	Flags

BOS	(Basic	Operating	System),	OTP

bottlenecks

data	volume	and,	Sockets	and	SSL

distributed	Erlang	and,	Distributed	Erlang,	Sockets	and	SSL

finding,	Finding	Bottlenecks-Finding	Bottlenecks

message	queues	and,	Synchronous	versus	asynchronous	calls

remedies	for,	Networking

stress	testing,	Capacity	Testing

Brewer,	Eric,	Share	everything

British	Telecom,	Availability

built-in	functions	(BIFs),	Tools	and	Libraries,	Processes	and	Message
Passing

C

c:erlangrc()	function,	Script	files

call	timeouts,	Call	Timeouts-Deadlocks

call()	function

gen_event	module,	Retrieving	Data

gen_server	module,	Generic	Servers,	Synchronous	Message	Passing-
Synchronous	Message	Passing,	Call	Timeouts-Call	Timeouts

callback	functions

about,	Generic	Servers

behavior	example,	A	Behavior	Example-Termination

defining	states,	Defining	states-Defining	states

event	handlers	and,	Generic	Event	Managers	and	Handlers

callback	modules

about,	Callback	Modules-Callback	Modules,	Generic	Servers

applications,	The	Callback	Module-Starting	and	Stopping	Applications

directives	in,	Behavior	Directives,	Starting	the	FSM

event	handlers	and,	Generic	Event	Managers	and	Handlers

FSMs	and,	Generic	FSMs

CAP	theorem,	Share	everything

capacity	planning

about,	Capacity	Planning-Capacity	Planning

balancing	systems	and,	Balancing	Your	System-Balancing	Your	System

capacity	testing	and,	Capacity	Testing-Generating	load

finding	bottlenecks,	Finding	Bottlenecks-Synchronous	versus
asynchronous	calls

system	blueprints	and,	System	Blueprints

capacity	testing,	Capacity	Testing-Generating	load

case	expression,	Recursion	and	Pattern	Matching

cast()	function,	Generic	Servers,	Asynchronous	Message	Passing

catch-all	clauses,	Fail	Safe!-Fail	Safe!

change_code()	function,	The	Release	Handler

chaos	monkey	tool,	Testing	Your	Supervision	Strategy

check_childspecs()	function,	The	child	specification

check_install_release()	function,	The	Release	Handler

chess	board	list	comprehension,	List	Comprehensions:	Generate	and	Test

child	processes

about,	System	Design	Principles

dynamic,	Dynamic	Children-Gluing	it	all	together

starting,	Supervision	Trees

trapping	exits,	Supervision	Trees

child	specification	(supervisors)

dynamically	creating,	Dynamic	Children-Gluing	it	all	together

elements	of,	Supervision	Trees,	The	child	specification-The	child
specification

client	API,	The	Client	Functions-The	Client	Functions

cloud	computing	environments,	Networking

cluster	blueprints,	System	Blueprints

code:add_patha()	function,	Starting	an	Application

code:lib_dir()	function,	The	Application	Structure

code:load_file()	function,	Upgrading	Modules,	Arguments	and	Flags,
Software	Upgrades

code:purge()	function,	Upgrading	Modules,	Software	Upgrades

code:root_dir()	function,	System	Principles

code:soft_purge()	function,	Upgrading	Modules

code_change()	callback	function,	Behavior	Directives

coffee	machine	FSM	example

adding	states,	Adding	a	State-Adding	a	State

creating	release	upgrade,	Creating	a	Release	Upgrade-Upgrading
Environment	Variables

software	upgrades,	The	First	Version	of	the	Coffee	FSM-The	First
Version	of	the	Coffee	FSM

states	described,	Coffee	FSM-The	remove	state

stepping	through	behaviors,	A	Behavior	Example-Termination

supervisor	example,	Supervision	Trees

common_test	application,	Tools	and	Libraries

compile:file()	function,	Upgrading	Modules

-config	flag,	Arguments	and	Flags

configuration	files

about,	Wrapping	Up

distributed	applications	and,	Distributed	Applications

environment	variables	and,	Environment	Variables

-connect_all	flag,	Arguments	and	Flags

consensus	protocols,	Share	something

consistency

forms	of,	Share	something

in	ACID	acronym,	Share	something

in	CAP	theorem,	Share	everything

tradeoffs	with	availability,	Tradeoffs	Between	Consistency	and
Availability-Tradeoffs	Between	Consistency	and	Availability

consistent	hashing	system,	Riak	Core

counters	(metrics),	Metrics

count_children()	function,	The	child	specification

CPU-bound	nodes,	Balancing	Your	System

crash	reports	(SASL),	Crash	Reports

create_RELEASES()	function,	The	Release	Handler

CTRL-d,	Start	Scripts	and	Configuring	on	the	Target

CXC	product-numbering	scheme,	Starting	and	Stopping	Applications

cyclic	restarts,	Supervision	Trees

D

Däcker,	Bjarne,	OTP

data	networks,	Networking

data	sharing,	Sharing	Data-Share	everything

dbg	debugger,	Tools	and	Libraries,	Release	Resource	Files

deadlocks,	Deadlocks-Deadlocks

debugger	tool,	Tools	and	Libraries,	Release	Resource	Files

debug_options()	function,	Basic	template	for	starting	a	special	process,
System	Messages

delete()	function,	Retrieving	Data

delete_child()	function,	Dynamic	Children,	Simple	one	for	one,	High-Level
Instructions

delete_handler()	function,	Deleting	an	Event	Handler

demilitarized	zone	(DMZ),	Networking

demonitor()	function,	Monitors,	Message	Passing:	Under	the	Hood

-detached	flag,	Arguments	and	Flags

DETS	tables,	ETS:	Erlang	Term	Storage

Deutsch,	Peter,	Networking

dialyzer	tool,	Tools	and	Libraries,	Behavior	Directives,	Release	Directory
Structure

diameter	stack,	Tools	and	Libraries

directory	structure

applications,	The	Application	Structure-The	Application	Structure

releases,	Release	Directory	Structure-Release	Directory	Structure

disaster	recovery	guidelines,	Reliability

distributed	application	controller,	Distributed	Applications-Distributed
Applications

distributed	applications,	Distributed	Applications-Distributed	Applications

distributed	environments

about,	Distributed	Architectures

fallacies	of	distributed	computing,	Networking

interfaces	and,	Interfaces-Interfaces

networking	in,	Networking-Peer	to	Peer

node	types	and	families,	Node	Types	and	Families-Node	Types	and
Families

upgrading	in,	Upgrading	in	Distributed	Environments

distributed	Erlang

about,	Distributed	Erlang

Riak	Core	and,	Riak	Core-Riak	Core

scalable,	Scalable	Distributed	Erlang

distribution

about,	Defining	the	Problem,	Distribution,	Infrastructure,	and	Multicore-
Distribution,	Infrastructure,	and	Multicore

directory	structure,	The	Application	Structure

Erlang	nodes	and,	Distributed	Erlang-Node	Connections	and	Visibility

DMZ	(demilitarized	zone),	Networking

dotted	version	vectors	(DVVs),	Riak	Core

DTrace	probe,	Tools	and	Libraries

duplicate	requests,	At	most	once,	exactly	once,	and	at	least	once

durability	(ACID),	Share	something

DVVs	(dotted	version	vectors),	Riak	Core

dynamic	children,	Dynamic	Children

dynamic	clusters,	Distributed	Erlang

dynamic	modules,	Dynamic	Modules	and	Hibernating

E

+e	emulator	flag,	Arguments	and	Flags

ebin	directory

about,	The	Application	Structure

application	structure	and,	The	Application	Structure

beam	files	and,	The	Application	Structure,	Application	Resource	Files

releases	and,	Release	Directory	Structure

starting	applications	and,	Starting	an	Application

echo:go()	function,	Processes	and	Message	Passing

echo:loop()	function,	Processes	and	Message	Passing

ei	program,	Tools	and	Libraries

elarm	application,	Tools	and	Libraries,	Applications,	Alarms

elasticity,	Horizontal	and	Vertical	Scaling

eldap	application,	Tools	and	Libraries

element()	function,	Records

emacs	editor,	Tools	and	Libraries

embedded	mode,	What	You’ll	Learn	in	This	Book,	Script	files,	Arguments
and	Flags

embedded	target	systems,	Creating	a	Release	Package,	Arguments	and
Flags

emulator	flags,	passing	to	runtime	system,	Arguments	and	Flags-Arguments
and	Flags

emulator,	upgrading,	Upgrading	the	Emulator	and	Core	Applications

-emu_args	flag,	Arguments	and	Flags

enif_schedule_nif()	C	API	function,	Horizontal	and	Vertical	Scaling

ensure_all_started()	function,	Starting	an	Application

-env	flag,	Arguments	and	Flags,	Heart

environment	variables

applications	and,	Environment	Variables-Environment	Variables

distributed	applications	and,	Distributed	Applications

heart	and,	Heart

release	handling	and,	Release	Directory	Structure

upgrading,	Upgrading	Environment	Variables

epmd	daemon,	Release	Directory	Structure

epp	(Erlang	preprocessor),	Macros

Ericsson	Computer	Science	Laboratory,	Introduction,	OTP

erl	command

-s	flag,	System	Principles

about,	Recursion	and	Pattern	Matching,	System	Principles	and	Release
Handling,	Release	Directory	Structure

bin	directory	and,	Start	Scripts	and	Configuring	on	the	Target

erl	file	extension,	Wrapping	Up

Erlang	loader,	The	Erlang	loader-The	Erlang	loader

Erlang	nodes

about,	Erlang,	Erlang	Nodes,	Applications

connections	and	visibility,	Node	Connections	and	Visibility-Node
Connections	and	Visibility

distributed	environments	and,	Node	Types	and	Families-Node	Types	and
Families

distribution	and,	Distributed	Erlang-Node	Connections	and	Visibility

naming	and	communication,	Naming	and	Communication

startup	failures	and,	How	Applications	Run

Erlang	preprocessor	(epp),	Macros

Erlang	programming	language

about,	Erlang

catch-all	clauses,	Fail	Safe!-Fail	Safe!

defining	the	problem,	Defining	the	Problem-Defining	the	Problem

distribution,	Distribution,	Infrastructure,	and	Multicore-Distribution,
Infrastructure,	and	Multicore,	Distributed	Erlang-Node	Connections	and
Visibility

ETS	tables,	ETS:	Erlang	Term	Storage-ETS:	Erlang	Term	Storage

functional	influence,	Functional	Influence-List	Comprehensions:
Generate	and	Test

infrastructure,	Distribution,	Infrastructure,	and	Multicore

links	and	monitors	for	supervision,	Links	and	Monitors	for	Supervision-
Monitors

macro	facility,	Macros

maps,	Maps-Maps

message	passing,	Processes	and	Message	Passing-Processes	and	Message
Passing

multicore	systems,	Distribution,	Infrastructure,	and	Multicore,	Processes
and	Message	Passing

pattern	matching,	Recursion	and	Pattern	Matching-Recursion	and
Pattern	Matching

processes,	Processes	and	Message	Passing-Processes	and	Message	Passing

records,	Records-Records

recursion,	Recursion	and	Pattern	Matching-Recursion	and	Pattern

Matching

upgrading	modules,	Upgrading	Modules-Upgrading	Modules

Erlang	Syntax	Tools	modules,	Tools	and	Libraries

Erlang/OTP	(see	OTP	framework)

Erlang:	the	Movie,	Finite	State	Machines

erlang:apply()	function,	Script	files

erlang:demonitor()	function,	Monitors,	Message	Passing:	Under	the	Hood

erlang:element()	function,	Records

erlang:exit()	function,	Fail	Safe!,	Links

erlang:link()	function,	Links,	Naming	and	Communication

erlang:make_ref()	function,	Monitors,	Message	Passing:	Under	the	Hood

erlang:map_size()	function,	Maps

erlang:monitor()	function,	Monitors,	Message	Passing:	Under	the	Hood

erlang:monitor_node()	function,	Node	Connections	and	Visibility

erlang:node()	function,	Node	Connections	and	Visibility

erlang:nodes()	function,	Node	Connections	and	Visibility

erlang:process_flag()	function,	Links,	Other	Messages

erlang:register()	function,	Going	Global

erlang:self()	function,	Processes	and	Message	Passing,	Basic	template	for

starting	a	special	process

erlang:send_after()	function,	Generic	Server	Timeouts

erlang:set_cookie()	function,	Node	Connections	and	Visibility

erlang:spawn()	function,	Processes	and	Message	Passing,	Naming	and
Communication

erlang:spawn_link()	function,	Links,	Naming	and	Communication

erlang:spawn_opt()	function,	Spawn	Options-Spawn	Options	to	Avoid

erlang:system_info()	function,	Release	Resource	Files,	Arguments	and	Flags

erlang:system_monitor()	function,	Sockets	and	SSL,	Finding	Bottlenecks

erlang:unlink()	function,	Links

erlangrc()	function,	Script	files

erlc	program,	Release	Directory	Structure

erlexec	binary,	Release	Directory	Structure

ERL_CRASH_DUMP_SECONDS	environment	variable,	Heart

erl_interface,	Tools	and	Libraries

erl_prim_loader	module,	Script	files,	The	Erlang	loader

erl_prim_loader:get_file()	function,	Script	files

error	exception,	Fail	Safe!

error	reports	(SASL),	Error	Reports

error_logger	module,	Script	files

erts	directory

about,	Tools	and	Libraries

contents	of,	Release	Directory	Structure

mapping	to,	Release	Directory	Structure

escript	program,	Release	Directory	Structure

et	(event	tracer)	tool,	Tools	and	Libraries

etop	tool,	Finding	Bottlenecks

ETS	(Erlang	Term	Storage)	tables,	ETS:	Erlang	Term	Storage-ETS:	Erlang
Term	Storage,	Retrieving	Data,	Simple	one	for	one

ets:delete()	function,	Retrieving	Data

ets:give_away()	function,	Simple	one	for	one

ets:match()	function,	ETS:	Erlang	Term	Storage

ets:new()	function,	ETS:	Erlang	Term	Storage

ets:update_counter()	function,	Metrics

eunit	tool,	Tools	and	Libraries

-eval	flag,	Arguments	and	Flags,	Arguments	and	Flags

event	handlers

about,	System	Design	Principles,	Events

adding,	Adding	Event	Handlers-Adding	Event	Handlers

callback	modules	and,	Generic	Event	Managers	and	Handlers

deleting,	Deleting	an	Event	Handler

event	managers	and,	Generic	Event	Managers	and	Handlers

generic,	Generic	Event	Managers	and	Handlers-Wrapping	It	All	Up

gen_event	module	and,	What	You’ll	Learn	in	This	Book,	Generic	Event
Managers	and	Handlers

handling	errors	and	invalid	return	values,	Handling	Errors	and	Invalid
Return	Values-Handling	Errors	and	Invalid	Return	Values

retrieving	data,	Retrieving	Data-Retrieving	Data

SASL	alarm	handler,	The	SASL	Alarm	Handler-The	SASL	Alarm
Handler

sending	synchronous	and	asynchronous	events,	Sending	Synchronous	and
Asynchronous	Events-Sending	Synchronous	and	Asynchronous	Events

swapping,	Swapping	Event	Handlers-Swapping	Event	Handlers

event	managers

about,	System	Design	Principles,	Events

event	handlers	and,	Generic	Event	Managers	and	Handlers

generic,	Generic	Event	Managers	and	Handlers-Wrapping	It	All	Up

gen_event	module	and,	What	You’ll	Learn	in	This	Book,	Generic	Event
Managers	and	Handlers

handling	errors	and	invalid	return	values,	Handling	Errors	and	Invalid

Return	Values-Handling	Errors	and	Invalid	Return	Values

SASL	alarm	handler,	The	SASL	Alarm	Handler-The	SASL	Alarm
Handler

sending	synchronous	and	asynchronous	events,	Sending	Synchronous	and
Asynchronous	Events-Sending	Synchronous	and	Asynchronous	Events

starting	and	stopping,	Starting	and	Stopping	Event	Managers

events

about,	Finite	State	Machines	the	Erlang	Way,	Events-Events

asynchronous,	The	events-The	remove	state,	Sending	Events,
Asynchronous	events	to	all	states,	Sending	Synchronous	and
Asynchronous	Events-Sending	Synchronous	and	Asynchronous	Events

logging,	What	You’ll	Learn	in	This	Book

sending,	Sending	Events-Synchronous	events

synchronous,	Sending	Events,	Synchronous	events-Synchronous	events,
Sending	Synchronous	and	Asynchronous	Events-Sending	Synchronous
and	Asynchronous	Events

system	messages,	System	Messages

eventual	consistency,	Share	something

exactly	once	approach,	At	most	once,	exactly	once,	and	at	least	once,
Tradeoffs	Between	Consistency	and	Availability

exception	handling

authentication,	Interfaces

event	handlers	and,	Handling	Errors	and	Invalid	Return	Values-
Handling	Errors	and	Invalid	Return	Values

generic	supervisors	and,	Supervisors

negative	numbers	and,	Fail	Safe!-Fail	Safe!

unhandled	messages,	Unhandled	Messages

exit	exception,	Fail	Safe!

exit	signals,	Links,	Other	Messages,	Linking	Behaviors,	Preemptive	Support

exit()	function,	Fail	Safe!,	Links

exometer	application,	Tools	and	Libraries,	Applications,	Metrics

exponential	back-off	algorithms,	Resilience

-export	directive,	Starting	the	FSM

F

factorials,	computing	for	positive	numbers,	Recursion	and	Pattern
Matching

failovers,	Distributed	Applications

false	negatives,	Alarms

false	positives,	Alarms

fault	tolerance

about,	Defining	the	Problem,	Systems	That	Never	Stop,	Summing	Up

availability	and,	Fault	Tolerance-Fault	Tolerance

distribution	and,	Distribution,	Infrastructure,	and	Multicore-
Distribution,	Infrastructure,	and	Multicore

supervision	trees	and,	Supervision	Trees

Fibonacci,	Resilience

FIFO	queue	strategy,	Load	Regulation	and	Backpressure

file	extensions,	Wrapping	Up

file()	function,	Upgrading	Modules

filelib:wildcard()	function,	Records

finite	state	machines	(see	FSMs)

Fischer-Lynch-Paterson	(FLP)	Impossibility	result,	Share	everything

flags,	passing	to	runtime	system,	Arguments	and	Flags-Arguments	and
Flags

FLP	(Fischer-Lynch-Paterson)	Impossibility	result,	Share	everything

folsom	application,	Tools	and	Libraries,	Applications,	Metrics

format()	function,	Synchronizing	Clients,	Your	Own	Trace	Functions

frequency	allocator	example

differentiating	among	allocators,	Wrapping	It	All	Up

extracting	generic	behaviors,	Extracting	Generic	Behaviors-Functions
Internal	to	the	Server

message	passing,	Synchronous	Message	Passing

supervision	structure,	OTP	Supervisors,	The	restart	specification-The
restart	specification

tracing	and	logging,	Tracing	and	Logging-Tracing	and	Logging

front-end	nodes,	Node	Types	and	Families,	Node	Types	and	Families,
Interfaces

FSMs	(finite	state	machines),	Finite	State	Machines

(see	also	coffee	machine	FSM	example)

about,	System	Design	Principles,	What	You’ll	Learn	in	This	Book,	Finite
State	Machines-Finite	State	Machines	the	Erlang	Way

adding	states,	Adding	a	State-Adding	a	State

behavior	example,	A	Behavior	Example-Termination

defining	states,	Defining	states-Defining	states

generic	FSMs,	Generic	FSMs-Generic	FSMs

generic	servers	versus,	Finite	State	Machines	the	Erlang	Way

mutex	states	and,	The	Mutex

phone	controllers	example,	Get	Your	Hands	Dirty-Let’s	Test	It

sending	events,	Sending	Events-Synchronous	events

starting,	Starting	the	FSM-Starting	the	FSM

terminating,	Termination-Termination

full	sweep	garbage	collection,	Memory	Management	and	Garbage
Collection

function_clause	runtime	error,	Unhandled	Messages

G

garbage	collection,	Processes	and	Message	Passing,	Memory	Management
and	Garbage	Collection-Full	sweep	of	the	heap

gauges	(metrics),	Metrics

generic	behaviors

about,	Extracting	Generic	Behaviors-Extracting	Generic	Behaviors

client	functions,	The	Client	Functions-The	Client	Functions

functions	internal	to	server,	Functions	Internal	to	the	Server

server	loop,	The	Server	Loop-The	Server	Loop

starting	the	server,	Starting	the	Server-Starting	the	Server

generic	event	handlers

about,	Generic	Event	Managers	and	Handlers

adding,	Adding	Event	Handlers-Adding	Event	Handlers

deleting,	Deleting	an	Event	Handler

handling	errors	and	invalid	return	values,	Handling	Errors	and	Invalid
Return	Values-Handling	Errors	and	Invalid	Return	Values

retrieving	data,	Retrieving	Data-Retrieving	Data

SASL	alarm	handler,	The	SASL	Alarm	Handler-The	SASL	Alarm
Handler

sending	synchronous	and	asynchronous	events,	Sending	Synchronous	and

Asynchronous	Events-Sending	Synchronous	and	Asynchronous	Events

swapping,	Swapping	Event	Handlers-Swapping	Event	Handlers

generic	event	managers

about,	Generic	Event	Managers	and	Handlers

handling	errors	and	invalid	return	values,	Handling	Errors	and	Invalid
Return	Values-Handling	Errors	and	Invalid	Return	Values

SASL	alarm	handler,	The	SASL	Alarm	Handler-The	SASL	Alarm
Handler

sending	synchronous	and	asynchronous	events,	Sending	Synchronous	and
Asynchronous	Events-Sending	Synchronous	and	Asynchronous	Events

starting	and	stopping,	Starting	and	Stopping	Event	Managers

generic	FSMs

about,	Generic	FSMs-Generic	FSMs

behavior	example,	A	Behavior	Example-Termination

timeouts,	Starting	the	FSM,	Timeouts-Timeouts

generic	servers

about,	System	Design	Principles,	Generic	Servers

behavior	directives,	Behavior	Directives

call	timeouts,	Call	Timeouts-Deadlocks

deadlocks,	Deadlocks-Deadlocks

FSMs	versus,	Finite	State	Machines	the	Erlang	Way

globally	registered	processes,	Going	Global

linking	behaviors,	Linking	Behaviors

message	passing,	Message	Passing-Synchronizing	Clients

server	module	example,	The	Generic	Server-The	Generic	Server

starting	a	server,	Starting	a	Server-Starting	a	Server

terminating,	Termination-Termination

timeouts,	Generic	Server	Timeouts-Hibernating	Behaviors

gen_event	module

about,	What	You’ll	Learn	in	This	Book,	Generic	Event	Managers	and
Handlers

adding	event	handlers,	Adding	Event	Handlers-Adding	Event	Handlers

deleting	event	handlers,	Deleting	an	Event	Handler

handling	errors	and	invalid	return	values,	Handling	Errors	and	Invalid
Return	Values-Handling	Errors	and	Invalid	Return	Values

retrieving	data,	Retrieving	Data-Retrieving	Data

sending	synchronous	and	asynchronous	events,	Sending	Synchronous	and
Asynchronous	Events-Sending	Synchronous	and	Asynchronous	Events

starting	and	stopping	event	managers,	Starting	and	Stopping	Event
Managers

swapping	event	handlers,	Swapping	Event	Handlers-Swapping	Event
Handlers

gen_event:add_handler()	function,	Adding	Event	Handlers

gen_event:add_sup_handler()	function,	Handling	Errors	and	Invalid
Return	Values,	Wrapping	It	All	Up

gen_event:call()	function,	Retrieving	Data

gen_event:delete_handler()	function,	Deleting	an	Event	Handler

gen_event:notify()	function,	Sending	Synchronous	and	Asynchronous
Events

gen_event:start()	function,	Starting	and	Stopping	Event	Managers

gen_event:start_link()	function,	Starting	and	Stopping	Event	Managers

gen_event:stop()	function,	Starting	and	Stopping	Event	Managers,	Deleting
an	Event	Handler

gen_event:swap_handler()	function,	Swapping	Event	Handlers

gen_event:swap_sup_handler()	function,	Swapping	Event	Handlers

gen_event:sync_event()	function,	Retrieving	Data

gen_event:sync_notify()	function,	Sending	Synchronous	and	Asynchronous
Events

gen_fsm	module

about,	What	You’ll	Learn	in	This	Book,	The	Mutex

behavior	example,	A	Behavior	Example-Termination

selective	receives	and,	Asynchronous	events	to	all	states

sending	events,	Sending	Events-Synchronous	events

starting	the	FSM,	Starting	the	FSM-Starting	the	FSM

terminating,	Termination-Termination

gen_fsm:reply()	function,	Synchronous	events

gen_fsm:send_all_state_event()	function,	Asynchronous	events	to	all	states

gen_fsm:send_event()	function,	Asynchronous	events

gen_fsm:start()	function,	Starting	the	FSM

gen_fsm:start_link()	function,	Starting	the	FSM-Starting	the	FSM

gen_fsm:sync_send_all_state_event()	function,	Synchronous	events-
Synchronous	events

gen_fsm:sync_send_event()	function,	Synchronous	events-Termination

gen_rpc	application,	Sockets	and	SSL

gen_server	module

about,	What	You’ll	Learn	in	This	Book,	Generic	Servers

behavior	directives,	Behavior	Directives

call	timeouts,	Call	Timeouts-Deadlocks

deadlocks,	Deadlocks-Deadlocks

generic	server	timeouts,	Generic	Server	Timeouts-Hibernating	Behaviors

globally	registered	processes,	Going	Global

linking	behaviors,	Linking	Behaviors

message	passing,	Message	Passing-Synchronizing	Clients

starting	a	server,	Starting	a	Server-Starting	a	Server

system	messages,	System	Messages

terminating	generic	servers,	Termination-Termination

gen_server:abcast()	function,	Going	Global

gen_server:call()	function,	Generic	Servers,	Synchronous	Message	Passing-
Synchronous	Message	Passing,	Call	Timeouts-Call	Timeouts

gen_server:cast()	function,	Generic	Servers,	Asynchronous	Message	Passing

gen_server:multi_call()	function,	Going	Global

gen_server:reply()	function,	Synchronizing	Clients,	System	Messages

gen_server:start()	function,	Linking	Behaviors

gen_server:start_link()	function,	Generic	Servers,	Starting	a	Server-
Starting	a	Server

gen_tcp	module,	Sockets	and	SSL

get	flag	(sys	module),	Tracing	and	Logging,	The	sys	Module	Recap

gethostbyaddr()	function,	Records

gethostbyname()	function,	Records

get_all_env()	function,	Application	Resource	Files,	Environment	Variables

get_application()	function,	Environment	Variables

get_argument()	function,	Arguments	and	Flags

get_arguments()	function,	Arguments	and	Flags

get_env()	function,	Environment	Variables

get_file()	function,	Script	files

get_plain_arguments()	function,	Arguments	and	Flags

get_state()	function,	Statistics,	Status,	and	State,	The	sys	Module	Recap

get_status()	function

init	module,	Script	files,	The	init	Module

sys	module,	Statistics,	Status,	and	State,	The	sys	Module	Recap

give_away()	function,	Simple	one	for	one

global	module,	Going	Global,	Starting	the	FSM

global	name	server,	Sockets	and	SSL

global:register_name()	function,	Going	Global,	Scalable	Distributed	Erlang

global:send()	function,	Going	Global

global:unregister_name()	function,	Going	Global

global:whereis_name()	function,	Going	Global

go()	function,	Processes	and	Message	Passing

gossip	protocol,	Riak	Core

gproc	application,	Service	Orientation	and	Microservices

Guerra,	Mariano,	Riak	Core

H

halt()	shell	command,	Distributed	Applications,	Arguments	and	Flags

handle_call()	callback	function

gen_event	and,	Retrieving	Data

gen_server	and,	Generic	Servers,	Synchronous	Message	Passing-
Synchronous	Message	Passing,	Synchronizing	Clients,	Call	Timeouts

handle_cast()	callback	function,	Generic	Servers,	Asynchronous	Message
Passing

handle_debug()	function,	Trace	and	Log	Events,	Putting	It	Together

handle_event()	callback	function,	Sending	Synchronous	and	Asynchronous
Events

handle_info()	callback	function,	Sending	Synchronous	and	Asynchronous
Events

handle_sync_event()	callback	function,	Synchronous	events,	Termination

handle_system_message()	function,	System	Messages

handle_system_msg()	function,	Upgrading	Special	Processes

-heart	flag,	Arguments	and	Flags

heart	module

about,	What	You’ll	Learn	in	This	Book,	Release	Directory	Structure,
Heart-Heart

kernel	process	and,	Script	files

unhandled	messages	and,	Unhandled	Messages

VM	termination	and,	The	restart	specification

HEART_BEAT_TIMEOUT	environment	variable,	Heart

HEART_COMMAND	environment	variable,	Heart

Heriot-Watt	University	(Scotland),	How	Does	This	Compare?

hibernate()	function,	Dynamic	Modules	and	Hibernating

hibernating

behaviors,	Hibernating	Behaviors

special	processes,	Dynamic	Modules	and	Hibernating

-hidden	flag,	Node	Connections	and	Visibility,	Arguments	and	Flags

high	availability

about,	Defining	the	Problem,	Availability

fault	tolerance	and,	Fault	Tolerance

in	CAP	theorem,	Share	everything

reliability,	Reliability-At	most	once,	exactly	once,	and	at	least	once

resilience	and,	Resilience

sharing	data	and,	Sharing	Data-Share	everything

strategies	for,	What	You’ll	Learn	in	This	Book

tradeoffs	with	consistency,	Tradeoffs	Between	Consistency	and
Availability-Tradeoffs	Between	Consistency	and	Availability

higher-order	functions,	Fun	with	Anonymous	Functions

hinted	handoffs,	Riak	Core

histograms,	Metrics

horizontal	scaling,	Horizontal	and	Vertical	Scaling-Horizontal	and	Vertical
Scaling

I

i()	shell	command,	Finding	Bottlenecks

I/O-bound	nodes,	Balancing	Your	System

ic	(IDL	compiler),	Tools	and	Libraries

idempotence,	At	most	once,	exactly	once,	and	at	least	once

-include	directive,	The	Application	Structure

include	directory,	The	Application	Structure,	The	Application	Structure

included_applications	parameter,	Included	Applications-Start	Phases	in
Included	Applications

inet	module,	The	Erlang	loader

inet:gethostbyaddr()	function,	Records

inet:gethostbyname()	function,	Records

init	module,	Script	files,	The	init	Module

init()	callback	function

about,	Generic	Servers,	Behavior	Directives

gen_fsm	example,	Starting	the	FSM-Starting	the	FSM

gen_server	example,	Starting	a	Server-Starting	a	Server

supervisor	example,	Starting	the	Supervisor

supervisor_bridge	example,	Supervisor	bridges

synchronous	nature	of,	Synchronous	Starts	for	Determinism

init:get_argument()	function,	Arguments	and	Flags

init:get_arguments()	function,	Arguments	and	Flags

init:get_plain_arguments()	function,	Arguments	and	Flags

init:get_status()	function,	Script	files,	The	init	Module

init:reboot()	function,	The	init	Module,	The	Release	Handler

init:restart()	function,	The	init	Module,	The	Release	Handler

init:stop()	function,	The	init	Module

initializing	processes,	Process	Skeletons

init_ack()	function,	Basic	template	for	starting	a	special	process

init_debug	flag,	Arguments	and	Flags

-init_debug	flag,	Arguments	and	Flags

init_request()	callback	function,	An	Example	Handling	TCP	Streams

install()	function,	Your	Own	Trace	Functions,	The	sys	Module	Recap,	Trace
and	Log	Events

install_release()	function,	High-Level	Instructions,	Low-Level	Instructions,
The	Release	Handler

interactive	mode,	What	You’ll	Learn	in	This	Book,	Arguments	and	Flags

interfaces,	distributed	environments	and,	Interfaces-Interfaces

invalid	return	values,	Handling	Errors	and	Invalid	Return	Values-Handling
Errors	and	Invalid	Return	Values

io:format()	function,	Synchronizing	Clients,	Your	Own	Trace	Functions

isolation	(ACID),	Share	something

J

jinterface	program,	Tools	and	Libraries

jobs	regulation	application,	Tools	and	Libraries

Jobs	scheduler,	Load	Regulation	and	Backpressure

K

kernel	application

about,	Tools	and	Libraries

alternative	boot	files,	The	make_script	parameters

application	resource	files	and,	Application	Resource	Files

environment	variables	and,	Distributed	Applications

error_logger	service,	Script	files

release	resource	files	and,	Release	Resource	Files

kernel	process,	starting,	Script	files

kernel_load_completed	command	(script	file),	Script	files

L

lager	application,	Tools	and	Libraries,	Applications,	Logs

Lamport,	Leslie,	Share	everything

last	call	optimization,	Recursion	and	Pattern	Matching

latency,	Capacity	Planning,	Capacity	Testing,	Balancing	Your	System

LDAP	(Lightweight	Directory	Access	Protocol),	Tools	and	Libraries

leex	lexical	analyzer	generator,	Tools	and	Libraries

lib	directory,	The	Application	Structure,	Release	Directory	Structure

libraries	and	tools,	Tools	and	Libraries-Tools	and	Libraries

library	applications,	How	Applications	Run

lib_dir()	function,	The	Application	Structure

lifecycle	of	processes,	Process	Skeletons

LIFO	queue	strategy,	Load	Regulation	and	Backpressure

Lightweight	Directory	Access	Protocol	(LDAP),	Tools	and	Libraries

link()	function,	Links,	Naming	and	Communication

linking

behaviors,	Linking	Behaviors

processes,	Links-Links

list	comprehensions,	List	Comprehensions:	Generate	and	Test-List
Comprehensions:	Generate	and	Test

lists

generating	and	testing,	Functional	Influence,	List	Comprehensions:
Generate	and	Test-List	Comprehensions:	Generate	and	Test

printing	elements	of,	Recursion	and	Pattern	Matching

Little's	Law,	Load	Regulation	and	Backpressure

load	application	type,	Release	Resource	Files

load	regulation	and	backpressure,	Load	Regulation	and	Backpressure-Load
Regulation	and	Backpressure

load	testing,	Capacity	Testing

load()	function,	Starting	and	Stopping	Applications,	Script	files

load_file()	function,	Upgrading	Modules,	Arguments	and	Flags,	Software
Upgrades

log	directory,	Start	Scripts	and	Configuring	on	the	Target

log()	function,	Tracing	and	Logging,	The	sys	Module	Recap,	Trace	and	Log
Events

logger	callback	module,	Deleting	an	Event	Handler

logic	nodes,	Node	Types	and	Families,	Node	Types	and	Families,	Interfaces

logrotate	tool,	Logs

logs	and	logging

application	support,	Applications

monitoring	via,	Monitoring,	Logs-Logs

of	events,	What	You’ll	Learn	in	This	Book

SASL,	Supervisor	Reports

special	processes,	Trace	and	Log	Events

log_to_file()	function,	Tracing	and	Logging,	The	sys	Module	Recap

loop()	function,	Processes	and	Message	Passing

looping	behavior,	Recursion	and	Pattern	Matching

Lynch,	Nancy,	Share	everything

M

m(module)	command,	Starting	and	Stopping	Applications

macro	facility,	Macros

make:files()	function,	Software	Upgrades

make_permanent()	function,	Installing	an	Upgrade,	The	Release	Handler

make_ref()	function,	Monitors,	Message	Passing:	Under	the	Hood

make_relup()	function,	Release	Upgrade	Files

make_script()	function,	Creating	the	Boot	File-Creating	the	Boot	File,	The
make_script	parameters,	The	Erlang	loader,	Release	Upgrade	Files

make_tar()	function,	Creating	a	Release	Package,	Release	Upgrade	Files,

The	Release	Handler

map	collection	type,	Maps-Maps

map_size()	function,	Maps

match()	function,	ETS:	Erlang	Term	Storage

md5	digest,	Software	Upgrades

megaco	stack,	Tools	and	Libraries

memory	management,	Memory	Management	and	Garbage	Collection-Full
sweep	of	the	heap,	Sockets	and	SSL,	Finding	Bottlenecks

memory-bound	nodes,	Balancing	Your	System

message	passing

about,	Erlang

asynchronous,	Distribution,	Infrastructure,	and	Multicore,	Processes	and
Message	Passing,	Asynchronous	Message	Passing

behaviors	and,	Message	Passing:	Under	the	Hood-Message	Passing:
Under	the	Hood

generic	servers,	Message	Passing-Synchronizing	Clients

other	messages,	Other	Messages

processes	and,	Processes	and	Message	Passing-Processes	and	Message
Passing

synchronous,	Synchronizing	Clients

synchronous	message,	Synchronous	Message	Passing-Synchronous

Message	Passing

system	messages,	System	Messages,	Sockets	and	SSL

unhandled	messages,	Unhandled	Messages-Unhandled	Messages

meters	(metrics),	Metrics

metrics

application	support,	Applications

importance	of,	What	You’ll	Learn	in	This	Book

monitoring	via,	Monitoring,	Metrics

observer	tool	and,	Starting	an	Application

storing,	Retrieving	Data-Retrieving	Data

microservices,	Service	Orientation	and	Microservices

Millroth,	Håkan,	What’s	Next?

Mnesia	distributed	database,	Tools	and	Libraries,	Synchronous	Starts	for
Determinism,	Share	everything

mnesia:transform_table()	function,	The	Code	to	Upgrade

-mode	flag,	Arguments	and	Flags

-module	directive,	Starting	the	FSM

modules,	Callback	Modules

(see	also	callback	modules)

behavior,	Callback	Modules-Callback	Modules

missing	or	corrupt,	How	Applications	Run

storing	definitions	in,	Recursion	and	Pattern	Matching

two-module	version	limit,	Software	Upgrades

upgrading,	Upgrading	Modules-Upgrading	Modules

Modules	element	(child	specification),	The	child	specification

module_info()	callback	function,	Software	Upgrades

module_not_found	error,	Sending	Synchronous	and	Asynchronous	Events

MongooseIM	chat	server,	Applications

monitor()	function,	Monitors,	Message	Passing:	Under	the	Hood

monitoring

behaviors,	Summing	Up

observer	tool	and,	Starting	an	Application

processes,	Monitors-Monitors

purpose	of,	Monitoring	and	Preemptive	Support-Monitoring

via	alarms,	Monitoring,	Alarms-Alarms

via	logs	and	logging,	Monitoring,	Logs-Logs

via	metrics,	Monitoring,	Metrics

monitor_node()	function,	Node	Connections	and	Visibility

monotonic	read	model,	Share	something

monotonic	write	model,	Share	something

multicall()	function,	Sockets	and	SSL

multicore	systems

memory	spikes	and,	Finding	Bottlenecks

scaling	challenges,	Processes	and	Message	Passing,	Horizontal	and
Vertical	Scaling

SMP	and,	Distribution,	Infrastructure,	and	Multicore

multi_call()	function,	Going	Global

mutable	variables,	Recursion	and	Pattern	Matching

mutex	(mutual	exclusion)

about,	The	Mutex-The	Mutex

example,	Putting	It	Together-Putting	It	Together

states	supported,	The	Mutex	States

N

Name	element	(child	specification),	The	child	specification

-name	flag,	Naming	and	Communication,	Arguments	and	Flags,	The	Erlang
loader

namespaces,	Scalable	Distributed	Erlang

native	implemented	functions	(NIFs),	Horizontal	and	Vertical	Scaling

negative	numbers,	Fail	Safe!

net	kernel	process,	Distributed	Erlang,	Sockets	and	SSL

networking	in	distributed	environments

about,	Networking-Networking

distributed	Erlang,	Distributed	Erlang-Scalable	Distributed	Erlang

peer-to-peer	architectures	and,	Peer	to	Peer

service	orientation	and	microservices,	Service	Orientation	and
Microservices

sockets	and	SSL,	Sockets	and	SSL-Sockets	and	SSL

net_kernel	module,	Node	Connections	and	Visibility

new()	function,	ETS:	Erlang	Term	Storage

NIFs	(native	implemented	functions),	Horizontal	and	Vertical	Scaling

Nkcluster	application,	Riak	Core

Nkdist	library,	Riak	Core

node	attributes,	Scalable	Distributed	Erlang

node	families,	Node	Types	and	Families

node()	function,	Node	Connections	and	Visibility

nodes	(see	Erlang	nodes)

nodes()	function,	Node	Connections	and	Visibility

none	application	type,	Release	Resource	Files

normal	applications,	How	Applications	Run

normal	process	termination,	Links,	Process	Skeletons,	Testing	Your
Supervision	Strategy

-nostick	flag,	Arguments	and	Flags

notify()	function,	Sending	Synchronous	and	Asynchronous	Events

no_dot_erlang.boot	file,	The	make_script	parameters

O

O&M	networks,	Networking

OAM	(Operation,	Administration,	and	Maintenance),	Monitoring

Object	Request	Brokers,	Tools	and	Libraries

observer	tool,	Tools	and	Libraries,	Starting	an	Application,	Finding
Bottlenecks

observer:start()	function,	Starting	an	Application,	Arguments	and	Flags

odbc	interface,	Tools	and	Libraries

one_for_all	strategy,	The	restart	specification

one_for_one	strategy,	The	restart	specification

Operation,	Administration,	and	Maintenance	(OAM),	Monitoring

orber	broker,	Tools	and	Libraries

os_mon	application,	Tools	and	Libraries,	Release	Resource	Files

OTP	behaviors	(see	behaviors)

OTP	framework,	Erlang

(see	also	Erlang	programming	language)

about,	OTP-Erlang

defining	the	problem,	Defining	the	Problem-Defining	the	Problem

Erlang	nodes	(see	about)

name	origin,	OTP

scaling	and,	Horizontal	and	Vertical	Scaling

system	design	principles,	System	Design	Principles-System	Design
Principles

tools	and	libraries,	Tools	and	Libraries-Tools	and	Libraries

otp_mibs,	Tools	and	Libraries

P

+P	emulator	flag,	Arguments	and	Flags

p2p	(peer-to-peer)	architectures,	Peer	to	Peer

-pa	flag,	Arguments	and	Flags

paritition	tolerance	(CAP	theorem),	Share	everything

parsetools	application,	Tools	and	Libraries

path	command	(script	file),	Script	files

pattern	matching	and	recursion,	Recursion	and	Pattern	Matching-
Recursion	and	Pattern	Matching

Paxos	protocol,	Share	something

peer-to-peer	(p2)	architectures,	Peer	to	Peer

percept	tool,	Finding	Bottlenecks

perimeter	networks,	Networking

permanent	application	type,	Application	Types	and	Termination	Strategies,
Release	Resource	Files

phone	controllers	example,	The	Phone	Controllers-Let’s	Test	It,	Dynamic
Children-Dynamic	Children

pids	(process	identifiers),	Processes	and	Message	Passing

plain	arguments,	Arguments	and	Flags

plain_fsm	library,	Asynchronous	events	to	all	states

pman	(process	manager),	Starting	an	Application

point	of	failure,	Reliability-Reliability,	Horizontal	and	Vertical	Scaling

poolboy	library,	Networking,	Sockets	and	SSL

preemptive	support	automation,	Monitoring	and	Preemptive	Support,
Preemptive	Support-Preemptive	Support

preleases	(release	candidates),	Release	Resource	Files

preLoaded	command	(script	file),	Script	files

prep_stop()	callback	function,	Included	Applications

primary-primary	replication,	Share	everything

primary-secondary	replication,	Share	everything

primLoad	command	(script	file),	Script	files

print	flag,	Tracing	and	Logging,	The	sys	Module	Recap

printing	list	elements,	Recursion	and	Pattern	Matching

priv	directory,	The	Application	Structure,	The	Application	Structure,
Release	Resource	Files

proactive	support	automation,	Preemptive	Support

process	heap,	Process	heap

process	ID,	Distributed	Erlang

process	identifiers	(pids),	Processes	and	Message	Passing

processes

application	controller	and,	How	Applications	Run

behaviors	and,	System	Design	Principles,	Behaviors-Process	Skeletons

design	patterns	and,	Behaviors,	Design	Patterns-Callback	Modules

events	and,	Events

globally	registered,	Going	Global

initializing,	Process	Skeletons

lifecycle	of,	Process	Skeletons

links	and	monitors	for	supervision,	Links	and	Monitors	for	Supervision-
Monitors

memory	and,	Processes	and	Message	Passing

message	passing	and,	Processes	and	Message	Passing-Processes	and
Message	Passing

monitoring,	Monitors-Monitors

non-OTP-compliant,	Non-OTP-Compliant	Processes-Adding	non-OTP-
compliant	processes

restarting,	Supervision	Trees

short-lived,	Scalability	and	Short-Lived	Processes-Scalability	and	Short-
Lived	Processes

spawning,	Processes	and	Message	Passing,	Process	Skeletons,	Spawn
Options-Timeouts,	Supervision	Trees

special,	What	You’ll	Learn	in	This	Book,	Adding	non-OTP-compliant
processes,	Special	Processes	and	Your	Own	Behaviors-Dynamic	Modules
and	Hibernating,	Upgrading	Special	Processes

terminating,	Links,	Process	Skeletons,	Handling	Errors	and	Invalid
Return	Values-Handling	Errors	and	Invalid	Return	Values,	Supervision
Trees

ProcessType	element	(child	specification),	The	child	specification

process_flag()	function,	Links,	Other	Messages

proc_lib	module

adding	non-OTP-compliant	processes,	Adding	non-OTP-compliant
processes

starting	special	processes,	Special	Processes,	Starting	Special	Processes-

Asynchronously	starting	a	special	process

user-defined	behaviors	and,	Your	Own	Behaviors

proc_lib:handle_system_msg()	function,	Upgrading	Special	Processes

proc_lib:hibernate()	function,	Dynamic	Modules	and	Hibernating

proc_lib:init_ack()	function,	Basic	template	for	starting	a	special	process

proc_lib:spawn()	function,	Starting	Special	Processes

proc_lib:start()	function,	Starting	Special	Processes

proc_lib:start_link()	function,	Basic	template	for	starting	a	special	process

progress	reports	(SASL),	Progress	Reports

PropEr	tool,	Supervisors

public_key	module,	The	Application	Structure

purge()	function,	Upgrading	Modules,	Software	Upgrades

-pz	flag,	Arguments	and	Flags

Q

+Q	emulator	flag,	Arguments	and	Flags

q()	shell	command,	Arguments	and	Flags

question	mark	(?),	Macros

QuickCheck	tool,	Supervisors

R

+R	emulator	flag,	Arguments	and	Flags

RabbitMQ	message	broker,	Applications

race	conditions,	Heart

Raft	protocol,	Share	something

ranch	library,	Networking

random	back-off	algorithms,	Resilience

rb:start()	function,	Supervisor	Reports

read	your	own	writes	consistency	level,	Share	something

rebar3	tool

about,	Rebar3

creating	releases,	Creating	a	Release	with	Rebar3-Creating	a	Release
with	Rebar3

generating	a	release	project,	Generating	a	Rebar3	Release	Project-
Generating	a	Rebar3	Release	Project

releases	with	project	dependencies,	Rebar3	Releases	with	Project
Dependencies-Rebar3	Releases	with	Project	Dependencies

upgrades	with,	Upgrades	with	Rebar3-Upgrades	with	Rebar3

reboot()	function,	The	init	Module,	The	Release	Handler

reboot_old_release()	function,	The	Release	Handler

-record	directive,	Records

records

about,	Records-Records

correct	versions,	Records

upgrading,	The	Code	to	Upgrade

recursion	and	pattern	matching,	Recursion	and	Pattern	Matching-
Recursion	and	Pattern	Matching

reduction	count,	Processes	and	Message	Passing

register()	function,	Going	Global

register_name()	function,	Going	Global,	Scalable	Distributed	Erlang

regs()	shell	command,	Finding	Bottlenecks

regular	expressions,	special	characters	and,	Application	Upgrade	Files

rel	files,	Release	Directory	Structure,	Release	Resource	Files,	Wrapping	Up

RELDIR	environment	variable,	Release	Directory	Structure

release	candidates	(preleases),	Release	Resource	Files

release	handling

arguments	and	flags,	Arguments	and	Flags-The	Erlang	loader

configuring	on	target,	Start	Scripts	and	Configuring	on	the	Target-Start
Scripts	and	Configuring	on	the	Target

creating	release	packages,	Creating	a	Release	Package-Creating	a	Release
Package

creating	release	upgrades,	Creating	a	Release	Upgrade-Upgrading
Environment	Variables

creating	releases,	Creating	a	Release

init	module,	The	init	Module

rebar3	tool	and,	Rebar3-Rebar3	Releases	with	Project	Dependencies

release	and	application	versions,	Release	Resource	Files

release	directory	structure,	Release	Directory	Structure-Release
Directory	Structure

release	resource	files,	Release	Resource	Files-Release	Resource	Files

software	upgrades,	Software	Upgrades-Adding	a	State

start	scripts,	Start	Scripts	and	Configuring	on	the	Target-Start	Scripts
and	Configuring	on	the	Target

upgrading	modules,	Upgrading	Modules-Upgrading	Modules

RELEASE	project,	Node	Types	and	Families,	Scalable	Distributed	Erlang

release	upgrades

appup	files,	Application	Upgrade	Files-Application	Upgrade	Files

code	to	upgrade,	The	Code	to	Upgrade-The	Code	to	Upgrade

creating,	Creating	a	Release	Upgrade-Creating	a	Release	Upgrade

high-level	instructions,	High-Level	Instructions-High-Level	Instructions

installing,	Installing	an	Upgrade-Installing	an	Upgrade

low-level	instructions,	Low-Level	Instructions-Low-Level	Instructions

release_handler	module,	The	Release	Handler-The	Release	Handler

relup	files,	Release	Upgrade	Files-Release	Upgrade	Files

upgrading	environment	variables,	Upgrading	Environment	Variables

releases	directory,	The	make_script	parameters,	Installing	an	Upgrade,	The
Release	Handler

release_handler	module,	The	Release	Handler-The	Release	Handler

release_handler:check_install_release()	function,	The	Release	Handler

release_handler:create_RELEASES()	function,	The	Release	Handler

release_handler:install_release()	function,	High-Level	Instructions,	Low-
Level	Instructions,	The	Release	Handler

release_handler:make_permanent()	function,	Installing	an	Upgrade,	The
Release	Handler

release_handler:reboot_old_release()	function,	The	Release	Handler

release_handler:remove_release()	function,	Installing	an	Upgrade,	The
Release	Handler

release_handler:unpack_release()	function,	Installing	an	Upgrade,	The
Release	Handler

release_handler:which_releases()	function,	The	Release	Handler

reliability,	Distribution,	Infrastructure,	and	Multicore,	Reliability-At	most
once,	exactly	once,	and	at	least	once,	Summing	Up

reltool	(release	management	tool),	Tools	and	Libraries,	Creating	a	Release
with	Rebar3,	Wrapping	Up

relup	files,	Wrapping	Up,	Creating	a	Release	Upgrade,	Release	Upgrade
Files-Release	Upgrade	Files

relx	tool,	Creating	a	Release	with	Rebar3

remove()	function,	Your	Own	Trace	Functions,	The	sys	Module	Recap

remove_release()	function,	Installing	an	Upgrade,	The	Release	Handler

-remsh	flag,	Arguments	and	Flags

replace_state()	function,	Statistics,	Status,	and	State,	The	sys	Module	Recap

reply()	function

gen_fsm	module,	Synchronous	events

gen_server	module,	Synchronizing	Clients,	System	Messages

resilience,	Resilience,	Summing	Up

resource	blueprints,	System	Blueprints

resource	files

applications,	Application	Resource	Files-The	Base	Station	Controller
Application	File

releases,	Release	Resource	Files-Release	Resource	Files

restart	specification	(supervisors),	The	restart	specification-The	restart
specification

restart()	function,	The	init	Module,	The	Release	Handler

RestartType	element	(child	specification),	The	child	specification

restart_child()	function,	Simple	one	for	one

restart_new_emulator	instruction,	Upgrading	the	Emulator	and	Core
Applications

RESTful	APIs,	Networking

rest_for_one	strategy,	Starting	the	Supervisor,	The	restart	specification,
High-Level	Instructions

resume()	function,	Statistics,	Status,	and	State,	The	sys	Module	Recap

return	values,	invalid,	Handling	Errors	and	Invalid	Return	Values-
Handling	Errors	and	Invalid	Return	Values

rex	(RPC	server),	Distributed	Erlang,	Sockets	and	SSL

RFC	6733,	Tools	and	Libraries

Riak	Core	framework

about,	Tools	and	Libraries,	Distribution,	Infrastructure,	and	Multicore,
Applications

distributed	Erlang	and,	Riak	Core-Riak	Core

scalability	of,	Capacity	Planning

ROOT	environment	variable,	Script	files

ROOTDIR	environment	variable,	Release	Directory	Structure

root_dir()	function,	System	Principles

rpc:multicall()	function,	Sockets	and	SSL

rr	shell	command,	Records

-run	flag,	Arguments	and	Flags

runtime_tools	application,	Tools	and	Libraries,	The	Application	Structure,
Release	Resource	Files

run_erl	binary,	Release	Directory	Structure

S

-s	flag,	Arguments	and	Flags,	Arguments	and	Flags

Safetyvalve	framework,	Tools	and	Libraries,	Load	Regulation	and
Backpressure

sasl	application

about,	Tools	and	Libraries,	What	You’ll	Learn	in	This	Book,	Starting	and
Stopping	Applications

alarm	handler,	The	SASL	Alarm	Handler-The	SASL	Alarm	Handler,
Alarms

alternative	boot	files,	The	make_script	parameters

crash	reports,	Crash	Reports

error	reports,	Error	Reports

progress	reports,	Progress	Reports

release	resource	files	and,	Release	Resource	Files

services	supported,	The	SASL	Application-The	SASL	Application

supervisor	reports,	Supervisor	Reports

sasl	application	resource	file,	Application	Resource	Files-Application
Resource	Files

SASL	logs,	Supervisor	Reports

scalability

about,	Defining	the	Problem,	Scaling	Out

capacity	planning	and,	Capacity	Planning-System	Blueprints

distributed	Erlang	and,	Distributed	Erlang

distribution	and,	Distribution,	Infrastructure,	and	Multicore

horizontal	and	vertical,	Horizontal	and	Vertical	Scaling-Horizontal	and
Vertical	Scaling

load	regulation	and	backpressure,	Load	Regulation	and	Backpressure-
Load	Regulation	and	Backpressure

Riak	Core	and,	Riak	Core

short-lived	processes	and,	Scalability	and	Short-Lived	Processes-
Scalability	and	Short-Lived	Processes

strategies	for,	What	You’ll	Learn	in	This	Book

scaling	out,	Horizontal	and	Vertical	Scaling

scaling	up,	Horizontal	and	Vertical	Scaling

schedulers,	Processes	and	Message	Passing,	Load	Regulation	and
Backpressure

Schneider,	Fred	B.,	Share	everything

script	files,	Script	files-The	make_script	parameters,	Wrapping	Up

script2boot()	function,	The	make_script	parameters

SD	(Scalable	Distributed)	Erlang	framework

about,	Tools	and	Libraries,	Distribution,	Infrastructure,	and	Multicore,
Scalable	Distributed	Erlang

scalability	of,	Capacity	Planning

secret	cookies,	Node	Connections	and	Visibility

selective	receives,	Asynchronous	events	to	all	states

self()	function,	Processes	and	Message	Passing,	Basic	template	for	starting	a
special	process

self-support	automation,	Preemptive	Support

semantic	node	types,	Node	Types	and	Families

semi-explicit	placement,	Scalable	Distributed	Erlang

send()	function,	Going	Global

send_after()	function,	Generic	Server	Timeouts

send_all_state_event()	function,	Asynchronous	events	to	all	states

send_event()	function,	Asynchronous	events

send_interval()	function,	Generic	Server	Timeouts

server	module	example,	The	Generic	Server-The	Generic	Server

service	metadata,	Service	Orientation	and	Microservices

service	nodes,	Node	Types	and	Families,	Node	Types	and	Families,
Interfaces

service-level	agreements,	Load	Regulation	and	Backpressure

service-oriented	architecture	(SOA),	Distribution,	Infrastructure,	and
Multicore,	Service	Orientation	and	Microservices

session	ID,	Node	Types	and	Families

-setcookie	flag,	Node	Connections	and	Visibility,	Arguments	and	Flags

set_cookie()	function,	Node	Connections	and	Visibility

set_env()	function,	Environment	Variables

share-everything	architecture,	Share	everything-Share	everything

share-nothing	architecture,	Share	nothing-Share	nothing

share-something	architecture,	Share	something-Share	something

sharing	data,	Sharing	Data-Share	everything

shell,	exiting,	Start	Scripts	and	Configuring	on	the	Target

Short	Message	Service	Center	(SMSC),	Logs

ShutdownTime	element	(child	specification),	The	child	specification

-shutdown_time	flag,	Arguments	and	Flags,	The	init	Module

signal	event,	The	Mutex	States

simple	target	systems,	System	Principles

simple_one_for_one	strategy,	The	restart	specification,	Simple	one	for	one-

Simple	one	for	one,	Scalability	and	Short-Lived	Processes

single	point	of	failure,	Reliability-Reliability,	Horizontal	and	Vertical
Scaling

site	redundancy,	Reliability

sleep()	function,	Synchronizing	Clients,	Call	Timeouts

sloppy	quorums,	Riak	Core

SMP	(symmetric	multiprocessing),	Distribution,	Infrastructure,	and
Multicore

SMSC	(Short	Message	Service	Center),	Logs

-sname	flag,	Arguments	and	Flags,	The	Erlang	loader

snmp	agent,	Tools	and	Libraries

snmp	client,	Tools	and	Libraries

SOA	(service-oriented	architecture),	Distribution,	Infrastructure,	and
Multicore,	Service	Orientation	and	Microservices

soak	testing,	Capacity	Testing

soft	real-time,	Defining	the	Problem

software	upgrades

about,	Software	Upgrades-Software	Upgrades

adding	states,	Adding	a	State-Adding	a	State

coffee	machine	FSM	example,	The	First	Version	of	the	Coffee	FSM-The
First	Version	of	the	Coffee	FSM

soft_purge()	function,	Upgrading	Modules

spawn()	function

erlang	module,	Processes	and	Message	Passing,	Naming	and
Communication

proc_lib	module,	Starting	Special	Processes

spawning	processes

about,	Processes	and	Message	Passing,	Process	Skeletons

spawn	options,	Spawn	Options-Timeouts

supervision	trees	and,	Supervision	Trees

spawn_link()	function,	Links,	Naming	and	Communication

spawn_opt()	function,	Spawn	Options-Spawn	Options	to	Avoid

special	processes

about,	What	You’ll	Learn	in	This	Book,	Special	Processes	and	Your	Own
Behaviors

asynchronously	starting,	Asynchronously	starting	a	special	process

dynamic	modules	and	hibernating,	Dynamic	Modules	and	Hibernating

entire	mutex	example,	Putting	It	Together-Putting	It	Together

handling	exits,	Handling	Exits-Handling	Exits

mutex	states	and,	The	Mutex	States

mutexes	and,	The	Mutex-The	Mutex

proc_lib	module	and,	Adding	non-OTP-compliant	processes

starting,	Starting	Special	Processes-Asynchronously	starting	a	special
process

system	messages,	System	Messages

trace	and	log	events,	Trace	and	Log	Events

upgrading,	Upgrading	Special	Processes

spike	testing,	Capacity	Testing

spiral	(metrics),	Metrics

src	directory,	The	Application	Structure,	The	Application	Structure

SSL,	Distributed	Erlang

ssl	module,	Sockets	and	SSL-Sockets	and	SSL

St.	Laurent,	Simon,	What	You’ll	Learn	in	This	Book

stack	overflow,	Recursion	and	Pattern	Matching

start	phases	(applications)

about,	Start	Phases-Start	Phases

included	applications	and,	Start	Phases	in	Included	Applications-Start
Phases	in	Included	Applications

start	script,	Release	Directory	Structure,	Creating	a	Release

start()	function

application	module,	The	SASL	Alarm	Handler,	Starting	and	Stopping

Applications,	Application	Types	and	Termination	Strategies,	Distributed
Applications

gen_event	module,	Starting	and	Stopping	Event	Managers

gen_fsm	module,	Starting	the	FSM

gen_server	module,	Linking	Behaviors

observer	module,	Starting	an	Application,	Arguments	and	Flags

proc_lib	module,	Starting	Special	Processes

rb	module,	Supervisor	Reports

supervisor	module,	Starting	the	Supervisor

start.boot	file,	The	make_script	parameters

StartFunction	element	(child	specification),	The	child	specification

start_boot()	function,	Script	files

start_child()	function,	Dynamic	Children,	High-Level	Instructions

start_clean.boot	file,	The	make_script	parameters

start_erl	program,	Release	Directory	Structure,	Start	Scripts	and
Configuring	on	the	Target

start_link()	function

gen_event	module,	Starting	and	Stopping	Event	Managers

gen_fsm	module,	Starting	the	FSM-Starting	the	FSM

gen_server	module,	Generic	Servers,	Starting	a	Server-Starting	a	Server

proc_lib	module,	Basic	template	for	starting	a	special	process

supervisor	module,	Starting	the	Supervisor,	Starting	and	Stopping
Applications

supervisor_bridge	module,	Supervisor	bridges

start_sasl.boot	file,	The	make_script	parameters

state-based	alarms,	Alarms

states	(see	FSMs)

static	clusters,	Distributed	Erlang

statistics()	function,	Statistics,	Status,	and	State,	The	sys	Module	Recap

stdlib	application

about,	Tools	and	Libraries,	How	Applications	Run

alternative	boot	files,	The	make_script	parameters

application	resource	files	and,	Application	Resource	Files

release	resource	files	and,	Release	Resource	Files

stop()	function

application	module,	Starting	and	Stopping	Applications,	Application
Types	and	Termination	Strategies

gen_event	module,	Starting	and	Stopping	Event	Managers,	Deleting	an
Event	Handler

init	module,	The	init	Module

stress	testing,	Capacity	Testing

strict	quorums,	Riak	Core

supervision	trees

about,	System	Design	Principles,	Supervision	Trees-OTP	Supervisors

multiple	policies	and,	Scalability	and	Short-Lived	Processes

special	processes	and,	Special	Processes

starting	the	supervisor,	Starting	the	Supervisor-Starting	the	Supervisor

supervisor	bridges	and,	Supervisor	bridges-Supervisor	bridges

supervisor	specification,	The	Supervisor	Specification-The	child
specification

testing	strategy,	Testing	Your	Supervision	Strategy-Testing	Your
Supervision	Strategy

supervisor	bridges,	Supervisor	bridges-Supervisor	bridges

supervisor	module

about,	What	You’ll	Learn	in	This	Book,	The	Supervisor	Behavior

dynamic	children,	Dynamic	Children-Gluing	it	all	together

starting	the	supervisor,	Starting	the	Supervisor-Starting	the	Supervisor

supervisor	reports	(SASL),	Supervisor	Reports

supervisor	specification

about,	The	Supervisor	Specification

child	specification,	Supervision	Trees,	The	child	specification-Gluing	it	all
together

restart	specification,	The	restart	specification-The	restart	specification

supervisor:check_childspecs()	function,	The	child	specification

supervisor:count_children()	function,	The	child	specification

supervisor:delete_child()	function,	Dynamic	Children,	Simple	one	for	one,
High-Level	Instructions

supervisor:restart_child()	function,	Simple	one	for	one

supervisor:start()	function,	Starting	the	Supervisor

supervisor:start_child()	function,	Dynamic	Children,	High-Level
Instructions

supervisor:start_link()	function,	Starting	the	Supervisor,	Starting	and
Stopping	Applications

supervisor:terminate_child()	function,	Simple	one	for	one,	High-Level
Instructions

supervisor:which_children()	function,	The	child	specification,	Dynamic
Children

supervisors

about,	System	Design	Principles,	System	Design	Principles,	Supervision
Trees-OTP	Supervisors

application	master	and,	How	Applications	Run

combining	with	applications,	Combining	Supervisors	and	Applications

dynamic	children	and,	Dynamic	Children-Gluing	it	all	together

handling	errors,	Handling	Errors	and	Invalid	Return	Values-Handling
Errors	and	Invalid	Return	Values

links	and	monitors	for,	Links	and	Monitors	for	Supervision-Monitors

scalability	and	short-lived	processes,	Scalability	and	Short-Lived
Processes-Scalability	and	Short-Lived	Processes

starting,	Supervision	Trees,	Starting	the	Supervisor-Starting	the
Supervisor

supervisor	specification,	The	Supervisor	Specification-The	child
specification

synchronous	starts,	Synchronous	Starts	for	Determinism

terminating,	Supervision	Trees

supervisor_bridge:start_link()	function,	Supervisor	bridges

support	automation,	Preemptive	Support-Preemptive	Support

suspend()	function,	Statistics,	Status,	and	State,	The	sys	Module	Recap,
High-Level	Instructions

swap_handler()	function,	Swapping	Event	Handlers

swap_sup_handler()	function,	Swapping	Event	Handlers

symmetric	multiprocessing	(SMP),	Distribution,	Infrastructure,	and
Multicore

synchronous	events

sending,	Sending	Events,	Sending	Synchronous	and	Asynchronous
Events-Sending	Synchronous	and	Asynchronous	Events

sending	to	generic	FSM,	Synchronous	events-Synchronous	events

synchronous	message	passing,	Synchronous	Message	Passing-Synchronous
Message	Passing,	Synchronizing	Clients

sync_event()	function,	Retrieving	Data

sync_nodes	low-level	instruction,	Upgrading	in	Distributed	Environments

sync_notify()	function,	Sending	Synchronous	and	Asynchronous	Events

sync_send_all_state_event()	function,	Synchronous	events-Synchronous
events

sync_send_event()	function,	Synchronous	events-Termination

syntax_tools	modules,	Tools	and	Libraries

sys	module

about,	The	sys	Module

debug	options,	Supervisor	bridges

handling	system	messages,	System	Messages

implementing	trace	functions,	Your	Own	Trace	Functions-Your	Own
Trace	Functions

statistics,	status,	state,	Statistics,	Status,	and	State-Statistics,	Status,	and
State

system	messages,	System	Messages

tracing	and	logging,	Tracing	and	Logging-Tracing	and	Logging

user-defined	behaviors	and,	Your	Own	Behaviors

sys:change_code()	function,	The	Release	Handler

sys:debug_options()	function,	Basic	template	for	starting	a	special	process,
System	Messages

sys:get_state()	function,	Statistics,	Status,	and	State,	The	sys	Module	Recap

sys:get_status()	function,	Statistics,	Status,	and	State,	The	sys	Module
Recap

sys:handle_debug()	function,	Trace	and	Log	Events,	Putting	It	Together

sys:handle_system_message()	function,	System	Messages

sys:install()	function,	Your	Own	Trace	Functions,	The	sys	Module	Recap,
Trace	and	Log	Events

sys:log()	function,	Tracing	and	Logging,	The	sys	Module	Recap,	Trace	and
Log	Events

sys:log_to_file()	function,	Tracing	and	Logging,	The	sys	Module	Recap

sys:remove()	function,	Your	Own	Trace	Functions,	The	sys	Module	Recap

sys:replace_state()	function,	Statistics,	Status,	and	State,	The	sys	Module
Recap

sys:resume()	function,	Statistics,	Status,	and	State,	The	sys	Module	Recap

sys:statistics()	function,	Statistics,	Status,	and	State,	The	sys	Module	Recap

sys:suspend()	function,	Statistics,	Status,	and	State,	The	sys	Module	Recap,

High-Level	Instructions

sys:trace()	function,	Tracing	and	Logging,	The	sys	Module	Recap,	Trace
and	Log	Events

syslog	tool,	Logs

System	Application	Support	Libraries	(see	sasl	application)

system	blueprints,	Node	Types	and	Families,	System	Blueprints

system	messages,	System	Messages,	Sockets	and	SSL

system	principles

about,	System	Principles-System	Principles

design	principles,	System	Design	Principles-System	Design	Principles

release	handling,	Release	Directory	Structure-The	init	Module

SystemTap	probe,	Tools	and	Libraries

system_continue()	callback	function,	System	Messages,	Putting	It	Together

system_info()	function,	Release	Resource	Files,	Arguments	and	Flags

system_information	module,	Release	Resource	Files

system_monitor()	function,	Sockets	and	SSL,	Finding	Bottlenecks

system_terminate()	callback	function,	System	Messages,	Putting	It	Together

systools	module

about,	Creating	a	Release

appup	files	and,	Application	Upgrade	Files

creating	boot	file,	Creating	the	Boot	File-Creating	the	Boot	File

systools:make_relup()	function,	Release	Upgrade	Files

systools:make_script()	function,	Creating	the	Boot	File-Creating	the	Boot
File,	The	make_script	parameters,	The	Erlang	loader,	Release	Upgrade
Files

systools:make_tar()	function,	Creating	a	Release	Package,	Release	Upgrade
Files,	The	Release	Handler

systools:script2boot()	function,	The	make_script	parameters

s_groups,	Scalable	Distributed	Erlang

T

+t	emulator	flag,	Arguments	and	Flags

tail	recursive	functions,	Recursion	and	Pattern	Matching,	Finite	State
Machines	the	Erlang	Way

takeovers,	Distributed	Applications

target	systems

basic,	System	Principles

embedded,	Creating	a	Release	Package,	Arguments	and	Flags

simple,	System	Principles

TCP	stream	example,	An	Example	Handling	TCP	Streams-An	Example
Handling	TCP	Streams

temporary	application	type,	Application	Types	and	Termination	Strategies,
Release	Resource	Files

terminate()	callback	function

gen_event	and,	Deleting	an	Event	Handler,	Sending	Synchronous	and
Asynchronous	Events

gen_fsm	and,	Termination

gen_server	and,	Generic	Servers,	Behavior	Directives,	Termination-
Termination

special	processes	and,	Handling	Exits

supervisor	and,	The	child	specification,	Gluing	it	all	together

supervisor_bridge	and,	Supervisor	bridges

terminate_child()	function,	Simple	one	for	one,	High-Level	Instructions

terminating

applications,	Application	Types	and	Termination	Strategies

generic	FSMs,	Termination-Termination

generic	servers,	Termination-Termination

processes,	Links,	Process	Skeletons,	Handling	Errors	and	Invalid	Return
Values-Handling	Errors	and	Invalid	Return	Values,	Supervision	Trees

supervisors,	Supervision	Trees

Test	Server	framework,	Tools	and	Libraries

testing	capacity,	Capacity	Testing-Generating	load

test_server	application,	Tools	and	Libraries

text	messages,	Logs

threshold-based	alarms,	Alarms

throughput,	Capacity	Planning,	Capacity	Testing,	Balancing	Your	System

throw	exception,	Fail	Safe!

time	(metrics),	Metrics

timeouts

behavior,	Timeouts

call,	Call	Timeouts-Deadlocks

generic	FSMs,	Starting	the	FSM,	Timeouts-Timeouts

generic	servers,	Generic	Server	Timeouts-Hibernating	Behaviors

timer:apply_after()	function,	Generic	Server	Timeouts

timer:apply_interval()	function,	Generic	Server	Timeouts

timer:send_after()	function,	Generic	Server	Timeouts

timer:send_interval()	function,	Generic	Server	Timeouts

timer:sleep()	function,	Synchronizing	Clients,	Call	Timeouts

timestamps	(metrics),	Metrics

tools	and	libraries,	Tools	and	Libraries-Tools	and	Libraries

tools	application,	Tools	and	Libraries

to_erl	command,	Release	Directory	Structure,	Start	Scripts	and

Configuring	on	the	Target

trace()	function,	Tracing	and	Logging,	The	sys	Module	Recap,	Trace	and
Log	Events

transform_table()	function,	The	Code	to	Upgrade

transient	application	type,	Application	Types	and	Termination	Strategies,
Release	Resource	Files

trap_exit	flag,	Links,	Process	Skeletons,	Basic	template	for	starting	a	special
process

try-catch	expression,	Fail	Safe!,	Process	Skeletons

tv	(table	visualizer),	Starting	an	Application

two-module	version	limit,	Software	Upgrades

typer	application,	Release	Directory	Structure

U

Udon	web	server,	Riak	Core

undef	runtime	error,	Adding	Event	Handlers,	The	First	Version	of	the
Coffee	FSM

unhandled	messages,	Unhandled	Messages-Unhandled	Messages

unique	sequence	numbers,	At	most	once,	exactly	once,	and	at	least	once

units	of	time,	Metrics

University	of	Glasgow,	Scalable	Distributed	Erlang

unlink()	function,	Links

unpack_release()	function,	Installing	an	Upgrade,	The	Release	Handler

unregister_name()	function,	Going	Global

update_counter()	function,	Metrics

upgrades

emulator	and	core	applications,	Upgrading	the	Emulator	and	Core
Applications

environment	variables,	Upgrading	Environment	Variables

in	distributed	environments,	Upgrading	in	Distributed	Environments

module,	Upgrading	Modules-Upgrading	Modules

release,	Creating	a	Release	Upgrade-Upgrading	Environment	Variables

software,	Software	Upgrades-Adding	a	State

special	processes,	Upgrading	Special	Processes

to	records,	The	Code	to	Upgrade

with	rebar3	tool,	Upgrades	with	Rebar3-Upgrades	with	Rebar3

V

variables

environment,	Environment	Variables-Environment	Variables,	Distributed
Applications,	Release	Directory	Structure,	Upgrading	Environment
Variables

mutable,	Recursion	and	Pattern	Matching

pattern	matching	and,	Processes	and	Message	Passing

versions

release	and	application,	Release	Resource	Files

software,	Software	Upgrades

two-module	limit,	Software	Upgrades

vertical	scaling,	Horizontal	and	Vertical	Scaling-Horizontal	and	Vertical
Scaling

Virding,	Robert,	Finite	State	Machines

virtual	binary	heap,	Memory	Management	and	Garbage	Collection

vnodes,	Riak	Core

-vsn	module	attribute,	Behavior	Directives,	Software	Upgrades

W

wait	event,	The	Mutex	States

werl	program,	Release	Directory	Structure

whereis()	function,	The	SASL	Alarm	Handler

whereis_name()	function,	Going	Global

which_applications()	function,	Starting	and	Stopping	Applications,
Application	Resource	Files

which_children()	function,	The	child	specification,	Dynamic	Children

which_releases()	function,	The	Release	Handler

Wiger,	Ulf,	Asynchronous	events	to	all	states,	Service	Orientation	and
Microservices,	Load	Regulation	and	Backpressure

Wikström,	Claes	"Klacke",	Heart

wildcard()	function,	Records

Williams,	Mike,	Finite	State	Machines

worker	processes,	System	Design	Principles

wx	graphics	package,	Tools	and	Libraries

X

xmerl	(XML	parser),	Tools	and	Libraries

Y

Yaws	web	server,	Applications,	How	Applications	Run,	Heart

yecc	parse	generator,	Tools	and	Libraries

Z

Zookeeper	Atomic	Broadcast	(ZAB),	Share	something

About	the	Authors
Francesco	Cesarini	is	the	founder	and	technical	director	of	Erlang	Solutions.
He	has	used	Erlang	on	a	daily	basis	since	1995,	starting	his	career	as	an	intern	at
Ericsson’s	Computer	Science	Laboratory,	the	birthplace	of	Erlang.	He	then
moved	on	to	Ericsson’s	Erlang	Training	and	Consulting	arm,	where	he	worked
on	the	R1	release	of	OTP,	applying	it	to	turnkey	solutions	and	flagship	telecom
applications.	In	1999,	soon	after	Erlang	was	released	as	open	source,	he	founded
what	has	today	become	Erlang	Solutions.	With	offices	in	seven	countries	and	on
three	continents,	they	have	become	the	go-to	partners	for	scalable,	highly
available	end-to-end	solutions.	As	technical	director,	Francesco	is	leading	the
development	and	consulting	teams	at	Erlang	Solutions	and	is	responsible	for	the
product	and	research	strategies	of	the	company.	He	is	also	the	coauthor	of
Erlang	Programming,	a	book	published	by	O’Reilly.	He	lectured	at	the	IT
University	of	Gothenburg	for	over	a	decade,	and	since	2010	has	taught	the
concurrency-oriented	programming	course	at	Oxford	University.	You	can	find
him	rambling	on	Twitter	using	the	handle	@FrancescoC.

Steve	Vinoski	is	a	software	developer	at	Arista	Networks.	He	has	spent	most	of
his	software	development	career,	spanning	more	than	30	years,	working	in	the
areas	of	middleware	and	distributed	computing	systems.	He	discovered	Erlang	in
2006	after	nearly	20	years	of	developing	middleware	systems	primarily	in	C++
and	Java,	and	he’s	used	Erlang	as	his	primary	development	language	ever	since.
Steve	has	contributed	to	a	variety	of	Erlang	projects,	including	the	Riak	database
and	the	Yaws	web	server.	He’s	also	contributed	dozens	of	bug-fix	and	feature
patches	to	the	Erlang/OTP	code	base.

Steve	is	also	a	long-time	author,	having	written	or	coauthored	over	100
published	articles	and	papers	covering	middleware,	distributed	systems,	and	web
development,	as	well	as	a	couple	of	books.	He	wrote	“The	Functional	Web”
column	for	IEEE	Internet	Computing	(IC)	magazine	from	2008–2012,	and	prior
to	that,	from	2002–2008,	wrote	the	“Toward	Integration”	column	for	IC	as	well.
He	also	serves	on	the	magazine’s	editorial	board.	From	1995–2005,	Steve
coauthored	the	popular	“Object	Interconnections”	column	on	distributed	object
computing	for	the	C++	Report	and	later	the	C/C++	Users	Journal.	Over	the
years	Steve	has	also	given	hundreds	of	conference	and	workshop	presentations
and	tutorials	on	middleware,	distributed	systems,	web	development,	and
programming	languages,	and	has	served	as	chair	or	program	committee	member

http://www.erlang-solutions.com

for	many	dozens	of	conferences	and	workshops.

Colophon
The	animal	on	the	cover	of	Designing	for	Scalability	with	Erlang/OTP	is	the
European	plaice	(pleuronectes	platessa),	a	common	flatfish.	The	European
plaice	lives	off	the	coast	of	Europe,	as	far	north	as	the	Barents	Sea	and	as	far
south	as	the	Mediterranean.	They	are	found	at	depths	between	10	and	50	meters,
where	they	burrow	in	the	sandy	or	muddy	bottom.

The	European	plaice	has	dark	green	or	brown	colored	scales	and	are	covered
with	orange	spots.	Adults	can	grow	as	large	as	one	meter	in	length,	but	most
grow	to	about	half	that	size.	They	feed	on	marine	worms,	bivalves,	and
crustaceans.

The	European	plaice	is	a	common	staple	of	North	German	and	Danish	cooking,
and	is	commonly	caught	by	fishermen	throughout	Europe.	It	is	especially
popular	in	Denmark	when	fried	and	paired	with	french	fries	and	remoulade
sauce.	The	European	paice	was	overfished	in	the	1970s	and	1980s,	but	thanks	to
conservation	efforts,	its	population	is	increasing,	and	in	2012	the	population	was
measured	at	its	highest	level	since	1957.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are
important	to	the	world.	To	learn	more	about	how	you	can	help,	go	to
animals.oreilly.com.

The	cover	fonts	are	URW	Typewriter	and	Guardian	Sans.	The	text	font	is	Adobe
Minion	Pro;	the	heading	font	is	Adobe	Myriad	Condensed;	and	the	code	font	is
Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com

Preface
Francesco:	Why	This	Book?

Steve:	Why	This	Book?

Who	Should	Read	This	Book

How	To	Read	This	Book

Acknowledgments

Conventions	Used	in	This	Book

Using	Code	Examples

Safari®	Books	Online

How	to	Contact	Us

1.	Introduction
Defining	the	Problem

OTP
Erlang

Tools	and	Libraries

System	Design	Principles

Erlang	Nodes

Distribution,	Infrastructure,	and	Multicore

Summing	Up

What	You’ll	Learn	in	This	Book

2.	Introducing	Erlang
Recursion	and	Pattern	Matching

Functional	Influence
Fun	with	Anonymous	Functions

List	Comprehensions:	Generate	and	Test

Processes	and	Message	Passing

Fail	Safe!

Links	and	Monitors	for	Supervision
Links

Monitors

Records

Maps

Macros

Upgrading	Modules

ETS:	Erlang	Term	Storage

Distributed	Erlang
Naming	and	Communication

Node	Connections	and	Visibility

Summing	Up

What’s	Next?

3.	Behaviors
Process	Skeletons

Design	Patterns
Callback	Modules

Extracting	Generic	Behaviors
Starting	the	Server

The	Client	Functions

The	Server	Loop

Functions	Internal	to	the	Server

The	Generic	Server

Message	Passing:	Under	the	Hood

Summing	Up

What’s	Next?

4.	Generic	Servers
Generic	Servers

Behavior	Directives

Starting	a	Server

Message	Passing
Synchronous	Message	Passing

Asynchronous	Message	Passing

Other	Messages

Unhandled	Messages

Synchronizing	Clients

Termination

Call	Timeouts
Deadlocks

Generic	Server	Timeouts
Hibernating	Behaviors

Going	Global

Linking	Behaviors

Summing	Up

What’s	Next?

5.	Controlling	OTP	Behaviors
The	sys	Module

Tracing	and	Logging

System	Messages

Your	Own	Trace	Functions

Statistics,	Status,	and	State

The	sys	Module	Recap

Spawn	Options
Memory	Management	and	Garbage	Collection

Spawn	Options	to	Avoid

Timeouts

Summing	Up

What’s	Next?

6.	Finite	State	Machines
Finite	State	Machines	the	Erlang	Way

Coffee	FSM
The	Hardware	Stub

The	Erlang	Coffee	Machine

Generic	FSMs

A	Behavior	Example
Starting	the	FSM

Sending	Events

Termination

Summing	Up

Get	Your	Hands	Dirty
The	Phone	Controllers

Let’s	Test	It

What’s	Next?

7.	Event	Handlers
Events

Generic	Event	Managers	and	Handlers
Starting	and	Stopping	Event	Managers

Adding	Event	Handlers

Deleting	an	Event	Handler

Sending	Synchronous	and	Asynchronous	Events

Retrieving	Data

Handling	Errors	and	Invalid	Return	Values

Swapping	Event	Handlers

Wrapping	It	All	Up

The	SASL	Alarm	Handler

Summing	Up

What’s	Next?

8.	Supervisors
Supervision	Trees

OTP	Supervisors
The	Supervisor	Behavior

Starting	the	Supervisor

The	Supervisor	Specification

Dynamic	Children

Non-OTP-Compliant	Processes

Scalability	and	Short-Lived	Processes

Synchronous	Starts	for	Determinism

Testing	Your	Supervision	Strategy

How	Does	This	Compare?

Summing	Up

What’s	Next?

9.	Applications
How	Applications	Run

The	Application	Structure

The	Callback	Module
Starting	and	Stopping	Applications

Application	Resource	Files
The	Base	Station	Controller	Application	File

Starting	an	Application

Environment	Variables

Application	Types	and	Termination	Strategies

Distributed	Applications

Start	Phases

Included	Applications
Start	Phases	in	Included	Applications

Combining	Supervisors	and	Applications

The	SASL	Application
Progress	Reports

Error	Reports

Crash	Reports

Supervisor	Reports

Summing	Up

What’s	Next?

10.	Special	Processes	and	Your	Own	Behaviors
Special	Processes

The	Mutex

Starting	Special	Processes

The	Mutex	States

Handling	Exits

System	Messages

Trace	and	Log	Events

Putting	It	Together

Dynamic	Modules	and	Hibernating

Your	Own	Behaviors
Rules	for	Creating	Behaviors

An	Example	Handling	TCP	Streams

Summing	Up

What’s	Next?

11.	System	Principles	and	Release	Handling
System	Principles

Release	Directory	Structure

Release	Resource	Files

Creating	a	Release

Creating	the	Boot	File

Creating	a	Release	Package

Start	Scripts	and	Configuring	on	the	Target

Arguments	and	Flags

The	init	Module

Rebar3
Generating	a	Rebar3	Release	Project

Creating	a	Release	with	Rebar3

Rebar3	Releases	with	Project	Dependencies

Wrapping	Up

What’s	Next?

12.	Release	Upgrades
Software	Upgrades

The	First	Version	of	the	Coffee	FSM

Adding	a	State

Creating	a	Release	Upgrade
The	Code	to	Upgrade

Application	Upgrade	Files

High-Level	Instructions

Release	Upgrade	Files

Low-Level	Instructions

Installing	an	Upgrade

The	Release	Handler

Upgrading	Environment	Variables

Upgrading	Special	Processes

Upgrading	in	Distributed	Environments

Upgrading	the	Emulator	and	Core	Applications

Upgrades	with	Rebar3

Summing	Up

What’s	Next?

13.	Distributed	Architectures
Node	Types	and	Families

Networking
Distributed	Erlang

Sockets	and	SSL

Service	Orientation	and	Microservices

Peer	to	Peer

Interfaces

Summing	Up

What’s	Next?

14.	Systems	That	Never	Stop
Availability

Fault	Tolerance

Resilience

Reliability

Sharing	Data

Tradeoffs	Between	Consistency	and	Availability

Summing	Up

What’s	Next?

15.	Scaling	Out
Horizontal	and	Vertical	Scaling

Capacity	Planning
Capacity	Testing

Balancing	Your	System

Finding	Bottlenecks

System	Blueprints

Load	Regulation	and	Backpressure

Summing	Up

What’s	Next?

16.	Monitoring	and	Preemptive	Support
Monitoring

Logs

Metrics

Alarms

Preemptive	Support

Summing	Up

What’s	Next?

Index

	Preface
	Francesco: Why This Book?
	Steve: Why This Book?
	Who Should Read This Book
	How To Read This Book
	Acknowledgments
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	1. Introduction
	Defining the Problem
	OTP
	Erlang
	Tools and Libraries
	System Design Principles
	Erlang Nodes

	Distribution, Infrastructure, and Multicore
	Summing Up
	What You’ll Learn in This Book

	2. Introducing Erlang
	Recursion and Pattern Matching
	Functional Influence
	Fun with Anonymous Functions
	List Comprehensions: Generate and Test

	Processes and Message Passing
	Fail Safe!
	Links and Monitors for Supervision
	Links
	Monitors

	Records
	Maps
	Macros
	Upgrading Modules
	ETS: Erlang Term Storage
	Distributed Erlang
	Naming and Communication
	Node Connections and Visibility

	Summing Up
	What’s Next?

	3. Behaviors
	Process Skeletons
	Design Patterns
	Callback Modules

	Extracting Generic Behaviors
	Starting the Server
	The Client Functions
	The Server Loop
	Functions Internal to the Server

	The Generic Server
	Message Passing: Under the Hood
	Summing Up
	What’s Next?

	4. Generic Servers
	Generic Servers
	Behavior Directives
	Starting a Server
	Message Passing
	Synchronous Message Passing
	Asynchronous Message Passing
	Other Messages
	Unhandled Messages
	Synchronizing Clients

	Termination
	Call Timeouts
	Deadlocks

	Generic Server Timeouts
	Hibernating Behaviors

	Going Global
	Linking Behaviors
	Summing Up
	What’s Next?

	5. Controlling OTP Behaviors
	The sys Module
	Tracing and Logging
	System Messages
	Your Own Trace Functions
	Statistics, Status, and State
	The sys Module Recap

	Spawn Options
	Memory Management and Garbage Collection
	Process heap
	Virtual binary heap
	Full sweep of the heap

	Spawn Options to Avoid
	Timeouts

	Summing Up
	What’s Next?

	6. Finite State Machines
	Finite State Machines the Erlang Way
	Coffee FSM
	The Hardware Stub
	The Erlang Coffee Machine
	Starting
	The events
	The selection state
	The payment state
	The remove state

	Generic FSMs
	A Behavior Example
	Starting the FSM
	Sending Events
	Asynchronous events
	Defining states
	Timeouts
	Asynchronous events to all states
	Synchronous events

	Termination

	Summing Up
	Get Your Hands Dirty
	The Phone Controllers
	Let’s Test It

	What’s Next?

	7. Event Handlers
	Events
	Generic Event Managers and Handlers
	Starting and Stopping Event Managers
	Adding Event Handlers
	Deleting an Event Handler
	Sending Synchronous and Asynchronous Events
	Retrieving Data
	Handling Errors and Invalid Return Values
	Swapping Event Handlers
	Wrapping It All Up

	The SASL Alarm Handler
	Summing Up
	What’s Next?

	8. Supervisors
	Supervision Trees
	OTP Supervisors
	The Supervisor Behavior
	Starting the Supervisor
	The Supervisor Specification
	The restart specification
	The child specification

	Dynamic Children
	Simple one for one
	Gluing it all together

	Non-OTP-Compliant Processes
	Supervisor bridges
	Adding non-OTP-compliant processes

	Scalability and Short-Lived Processes
	Synchronous Starts for Determinism
	Testing Your Supervision Strategy

	How Does This Compare?
	Summing Up
	What’s Next?

	9. Applications
	How Applications Run
	The Application Structure
	The Callback Module
	Starting and Stopping Applications

	Application Resource Files
	The Base Station Controller Application File

	Starting an Application
	Environment Variables
	Application Types and Termination Strategies
	Distributed Applications
	Start Phases
	Included Applications
	Start Phases in Included Applications

	Combining Supervisors and Applications
	The SASL Application
	Progress Reports
	Error Reports
	Crash Reports
	Supervisor Reports

	Summing Up
	What’s Next?

	10. Special Processes and Your Own Behaviors
	Special Processes
	The Mutex
	Starting Special Processes
	Basic template for starting a special process
	Asynchronously starting a special process

	The Mutex States
	Handling Exits
	System Messages
	Trace and Log Events
	Putting It Together
	Dynamic Modules and Hibernating

	Your Own Behaviors
	Rules for Creating Behaviors
	An Example Handling TCP Streams

	Summing Up
	What’s Next?

	11. System Principles and Release Handling
	System Principles
	Release Directory Structure
	Release Resource Files
	Creating a Release
	Creating the Boot File
	Script files
	The make_script parameters

	Creating a Release Package
	Start Scripts and Configuring on the Target
	Arguments and Flags
	Heart
	The Erlang loader

	The init Module

	Rebar3
	Generating a Rebar3 Release Project
	Creating a Release with Rebar3
	Rebar3 Releases with Project Dependencies

	Wrapping Up
	What’s Next?

	12. Release Upgrades
	Software Upgrades
	The First Version of the Coffee FSM
	Adding a State

	Creating a Release Upgrade
	The Code to Upgrade
	Application Upgrade Files
	High-Level Instructions
	Release Upgrade Files
	Low-Level Instructions
	Installing an Upgrade
	The Release Handler
	Upgrading Environment Variables

	Upgrading Special Processes
	Upgrading in Distributed Environments
	Upgrading the Emulator and Core Applications
	Upgrades with Rebar3
	Summing Up
	What’s Next?

	13. Distributed Architectures
	Node Types and Families
	Networking
	Distributed Erlang
	Riak Core
	Scalable Distributed Erlang

	Sockets and SSL
	Service Orientation and Microservices
	Peer to Peer

	Interfaces
	Summing Up
	What’s Next?

	14. Systems That Never Stop
	Availability
	Fault Tolerance
	Resilience
	Reliability
	At most once, exactly once, and at least once

	Sharing Data
	Share nothing
	Share something
	Share everything

	Tradeoffs Between Consistency and Availability

	Summing Up
	What’s Next?

	15. Scaling Out
	Horizontal and Vertical Scaling
	Capacity Planning
	Capacity Testing
	Generating load

	Balancing Your System
	Finding Bottlenecks
	Synchronous versus asynchronous calls

	System Blueprints

	Load Regulation and Backpressure
	Summing Up
	What’s Next?

	16. Monitoring and Preemptive Support
	Monitoring
	Logs
	Metrics
	Alarms

	Preemptive Support
	Summing Up
	What’s Next?

	Index

