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Preface
When something can be read without effort, great effort has gone into its writing.

Enrique Jardiel Poncela

This edition of Digital Image Processing is a major revision of the book. As in 
the 1977 and 1987 editions by Gonzalez and Wintz, and the 1992, 2002, and 2008  
editions by Gonzalez and Woods, this sixth-generation edition was prepared 
with students and instructors in mind. The principal objectives of the book 
continue to be to provide an introduction to basic concepts and methodologies 
applicable to digital image processing, and to develop a foundation that can 
be used as the basis for further study and research in this field. To achieve 
these objectives, we focused again on material that we believe is fundamental 
and whose scope of application is not limited to the solution of specialized 
problems. The mathematical complexity of the book remains at a level well 
within the grasp of college seniors and first-year graduate students who have 
introductory preparation in mathematical analysis, vectors, matrices, probability, 
statistics, linear systems, and computer programming. The book website pro-
vides tutorials to support readers needing a review of this background material.  

One of the principal reasons this book has been the world leader in its field for 
40 years is the level of attention we pay to the changing educational needs of our 
readers. The present edition is based on an extensive survey that involved faculty, 
students, and independent readers of the book in 150 institutions from 30 countries. 
The survey revealed a need for coverage of new material that has matured since the 
last edition of the book. The principal findings of the survey indicated a need for: 

• Expanded coverage of the fundamentals of spatial filtering.
• A more comprehensive and cohesive coverage of image transforms.
• A more complete presentation of finite differences, with a focus on edge detec-

tion.
• A discussion of clustering, superpixels, and their use in region segmentation. 
• Coverage of maximally stable extremal regions.
• Expanded coverage of feature extraction to include the Scale Invariant Feature 

Transform (SIFT).
• Expanded coverage of neural networks to include deep neural networks, back-

propagation, deep learning, and, especially, deep convolutional neural networks. 
• More homework exercises at the end of the chapters.

The new and reorganized material that resulted in the present edition is our 
attempt at providing a reasonable balance between rigor, clarity of presentation, 
and the findings of the survey. In addition to new material, earlier portions of the 
text were updated and clarified. This edition contains 241 new images, 72 new draw-
ings, and 135 new exercises.
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New to This Edition
The highlights of this edition are as follows.

Chapter 1: Some figures were updated, and parts of the text were rewritten to cor-
respond to changes in later chapters.

Chapter 2: Many of the sections and examples were rewritten for clarity. We 
added 14 new exercises. 

Chapter 3: Fundamental concepts of spatial filtering were rewritten to include a 
discussion on separable filter kernels, expanded coverage of the properties of low-
pass Gaussian kernels, and expanded coverage of highpass, bandreject, and band-
pass filters, including numerous new examples that illustrate their use. In addition to 
revisions in the text, including 6 new examples, the chapter has 59 new images, 2 new 
line drawings, and 15 new exercises.

Chapter 4: Several of the sections of this chapter were revised to improve the clar-
ity of presentation. We replaced dated graphical material with 35 new images and 4 
new line drawings. We added 21 new exercises. 

Chapter 5: Revisions to this chapter were limited to clarifications and a few cor-
rections in notation. We added 6 new images and 14 new exercises, 

Chapter 6: Several sections were clarified, and the explanation of the CMY and 
CMYK color models was expanded, including 2 new images.

Chapter 7: This is a new chapter that brings together wavelets, several new trans-
forms, and many of the image transforms that were scattered throughout the book. 
The emphasis of this new chapter is on the presentation of these transforms from a 
unified point of view.  We added 24 new images, 20 new drawings, and 25 new exer-
cises. 

Chapter 8: The material was revised with numerous clarifications and several 
improvements to the presentation.

Chapter 9: Revisions of this chapter included a complete rewrite of several sec-
tions, including redrafting of several line drawings. We added 16 new exercises

Chapter 10: Several of the sections were rewritten for clarity. We updated the 
chapter by adding coverage of finite differences, K-means clustering, superpixels, 
and graph cuts. The new topics are illustrated with 4 new examples. In total, we 
added 29 new images, 3 new drawings, and 6 new exercises.

Chapter 11: The chapter was updated with numerous topics, beginning with a more 
detailed classification of feature types and their uses. In addition to improvements in 
the clarity of presentation, we added coverage of slope change codes, expanded the 
explanation of skeletons, medial axes, and the distance transform, and added sev-
eral new basic descriptors of compactness, circularity, and eccentricity. New mate-
rial includes coverage of the Harris-Stephens corner detector, and a presentation of 
maximally stable extremal regions. A major addition to the chapter is a comprehen-
sive discussion dealing with the Scale-Invariant Feature Transform (SIFT). The new 
material is complemented by 65 new images, 15 new drawings, and 12 new exercises.
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Preface    11

Chapter 12: This chapter underwent a major revision to include an extensive 
rewrite of neural networks and deep learning, an area that has grown significantly 
since the last edition of the book. We added a comprehensive discussion on fully 
connected, deep neural networks that includes derivation of backpropagation start-
ing from basic principles. The equations of backpropagation were expressed in “tra-
ditional” scalar terms, and then generalized into a compact set of matrix equations 
ideally suited for implementation of deep neural nets. The effectiveness of fully con-
nected networks was demonstrated with several examples that included a compari-
son with the Bayes classifier. One of the most-requested topics in the survey was 
coverage of deep convolutional neural networks. We added an extensive section on 
this, following the same blueprint we used for deep, fully connected nets. That is, we 
derived the equations of backpropagation for convolutional nets, and showed how 
they are different from “traditional” backpropagation. We then illustrated the use of 
convolutional networks with simple images, and applied them to large image data-
bases of numerals and natural scenes.  The written material is complemented by 23 
new images, 28 new drawings, and 12 new exercises.

Also for the first time, we have created student and faculty support packages that 
can be downloaded from the book website. The Student Support Package contains 
many of the original images in the book and answers to selected exercises The Fac-
ulty Support Package contains solutions to all exercises, teaching suggestions, and all 
the art in the book in the form of modifiable PowerPoint slides. One support pack-
age is made available with every new book, free of charge. 

The book website, established during the launch of the 2002 edition, continues to 
be a success, attracting more than 25,000 visitors each month. The site was upgraded 
for the launch of this edition. For more details on site features and content, see The 
Book Website, following the Acknowledgments section.

This edition of Digital Image Processing is a reflection of how the educational 
needs of our readers have changed since 2008. As is usual in an endeavor such as 
this, progress in the field continues after work on the manuscript stops. One of the 
reasons why this book has been so well accepted since it first appeared in 1977 is its 
continued emphasis on fundamental concepts that retain their relevance over time. 
This approach, among other things, attempts to provide a measure of stability in a 
rapidly evolving body of knowledge. We have tried to follow the same principle in 
preparing this edition of the book.

R.C.G.
R.E.W.
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ion website offers additional support in a number of important areas.

For the Student or Independent Reader the site contains
• Reviews in areas such as probability, statistics, vectors, and matrices.
• A Tutorials section containing dozens of tutorials on topics relevant to the mate-

rial in the book.
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image databases.

For the Instructor the site contains
• An Instructor’s Manual with complete solutions to all the problems.
• Classroom presentation materials in modifiable PowerPoint format.
• Material removed from previous editions, downloadable in convenient PDF 

format.
• Numerous links to other educational resources.

For the Practitioner the site contains additional specialized topics such as
• Links to commercial sites.
• Selected new references.
• Links to commercial image databases.

The website is an ideal tool for keeping the book current between editions by includ-
ing new topics, digital images, and other relevant material that has appeared after 
the book was published. Although considerable care was taken in the production 
of the book, the website is also a convenient repository for any errors discovered 
between printings. 

The DIP4E Support Packages
In this edition, we created support packages for students and faculty to organize 
all the classroom support materials available for the new edition of the book into 
one easy download. The Student Support Package contains many of the original 
images in the book, and answers to selected exercises, The Faculty Support Package 
contains solutions to all exercises, teaching suggestions, and all the art in the book 
in modifiable PowerPoint slides. One support package is made available with every 
new book, free of charge. Applications for the support packages are submitted at 
the book website.
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17

1 Introduction

One picture is worth more than ten thousand words.
Anonymous

Preview
Interest in digital image processing methods stems from two principal application areas: improvement 
of pictorial information for human interpretation, and processing of image data for tasks such as storage, 
transmission, and extraction of pictorial information. This chapter has several objectives: (1) to define 
the scope of the field that we call image processing; (2) to give a historical perspective of the origins of 
this field; (3) to present an overview of the state of the art in image processing by examining some of 
the principal areas in which it is applied; (4) to discuss briefly the principal approaches used in digital 
image processing; (5) to give an overview of the components contained in a typical, general-purpose 
image processing system; and (6) to provide direction to the literature where image processing work is 
reported. The material in this chapter is extensively illustrated with a range of images that are represen-
tative of the images we will be using throughout the book.

Upon completion of this chapter, readers should:

 Understand the concept of a digital image.

 Have a broad overview of the historical under-
pinnings of the field of digital image process-
ing.

 Understand the definition and scope of digi-
tal image processing.

 Know the fundamentals of the electromag-
netic spectrum and its relationship to image 
generation.

 Be aware of the different fields in which digi-
tal image processing methods are applied.

 Be familiar with the basic processes involved 
in image processing.

 Be familiar with the components that make 
up a general-purpose digital image process-
ing system.

 Be familiar with the scope of the literature 
where image processing work is reported.
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18    Chapter 1  Introduction

1.1 WHAT IS DIGITAL IMAGE PROCESSING?  

An image may be defined as a two-dimensional function, f x y( , ), where x and y are 
spatial (plane) coordinates, and the amplitude of f at any pair of coordinates ( , )x y  
is called the intensity or gray level of the image at that point. When x, y, and the 
intensity values of f are all finite, discrete quantities, we call the image a digital image. 
The field of digital image processing refers to processing digital images by means of 
a digital computer. Note that a digital image is composed of a finite number of ele-
ments, each of which has a particular location and value. These elements are called 
picture elements, image elements, pels, and pixels. Pixel is the term used most widely 
to denote the elements of a digital image. We will consider these definitions in more 
formal terms in Chapter 2.

Vision is the most advanced of our senses, so it is not surprising that images 
play the single most important role in human perception. However, unlike humans, 
who are limited to the visual band of the electromagnetic (EM) spectrum, imaging 
machines cover almost the entire EM spectrum, ranging from gamma to radio waves. 
They can operate on images generated by sources that humans are not accustomed 
to associating with images. These include ultrasound, electron microscopy, and com-
puter-generated images. Thus, digital image processing encompasses a wide and var-
ied field of applications.

There is no general agreement among authors regarding where image process-
ing stops and other related areas, such as image analysis and computer vision, start. 
Sometimes, a distinction is made by defining image processing as a discipline in 
which both the input and output of a process are images. We believe this to be a 
limiting and somewhat artificial boundary. For example, under this definition, even 
the trivial task of computing the average intensity of an image (which yields a sin-
gle number) would not be considered an image processing operation. On the other 
hand, there are fields such as computer vision whose ultimate goal is to use comput-
ers to emulate human vision, including learning and being able to make inferences 
and take actions based on visual inputs. This area itself is a branch of artificial intel-
ligence (AI) whose objective is to emulate human intelligence. The field of AI is in its 
earliest stages of infancy in terms of development, with progress having been much 
slower than originally anticipated. The area of image analysis (also called image 
understanding) is in between image processing and computer vision.

There are no clear-cut boundaries in the continuum from image processing at 
one end to computer vision at the other. However, one useful paradigm is to con-
sider three types of computerized processes in this continuum: low-, mid-, and high-
level processes. Low-level processes involve primitive operations such as image 
preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-
level process is characterized by the fact that both its inputs and outputs are images. 
Mid-level processing of images involves tasks such as segmentation (partitioning 
an image into regions or objects), description of those objects to reduce them to a 
form suitable for computer processing, and classification (recognition) of individual 
objects. A mid-level process is characterized by the fact that its inputs generally 
are images, but its outputs are attributes extracted from those images (e.g., edges, 
contours, and the identity of individual objects). Finally, higher-level processing 
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involves “making sense” of an ensemble of recognized objects, as in image analysis, 
and, at the far end of the continuum, performing the cognitive functions normally 
associated with human vision.

Based on the preceding comments, we see that a logical place of overlap between 
image processing and image analysis is the area of recognition of individual regions 
or objects in an image. Thus, what we call in this book digital image processing encom-
passes processes whose inputs and outputs are images and, in addition, includes pro-
cesses that extract attributes from images up to, and including, the recognition of 
individual objects. As an illustration to clarify these concepts, consider the area of 
automated analysis of text. The processes of acquiring an image of the area con-
taining the text, preprocessing that image, extracting (segmenting) the individual 
characters, describing the characters in a form suitable for computer processing, and 
recognizing those individual characters are in the scope of what we call digital image 
processing in this book. Making sense of the content of the page may be viewed as 
being in the domain of image analysis and even computer vision, depending on the 
level of complexity implied by the statement “making sense of.” As will become 
evident shortly, digital image processing, as we have defined it, is used routinely in a 
broad range of areas of exceptional social and economic value. The concepts devel-
oped in the following chapters are the foundation for the methods used in those 
application areas.

1.2 THE ORIGINS OF DIGITAL IMAGE PROCESSING  

One of the earliest applications of digital images was in the newspaper industry, 
when pictures were first sent by submarine cable between London and New York. 
Introduction of the Bartlane cable picture transmission system in the early 1920s 
reduced the time required to transport a picture across the Atlantic from more than 
a week to less than three hours. Specialized printing equipment coded pictures for 
cable transmission, then reconstructed them at the receiving end. Figure 1.1 was 
transmitted in this way and reproduced on a telegraph printer fitted with typefaces 
simulating a halftone pattern. 

Some of the initial problems in improving the visual quality of these early digital 
pictures were related to the selection of printing procedures and the distribution of 
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FIGURE 1.1  A digital picture produced in 1921 from a coded tape by a telegraph printer with 
special typefaces. (McFarlane.) [References in the bibliography at the end of the book are 
listed in alphabetical order by authors’ last names.]
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intensity levels. The printing method used to obtain Fig. 1.1 was abandoned toward 
the end of 1921 in favor of a technique based on photographic reproduction made 
from tapes perforated at the telegraph receiving terminal. Figure 1.2 shows an image 
obtained using this method. The improvements over Fig. 1.1 are evident, both in 
tonal quality and in resolution.

The early Bartlane systems were capable of coding images in five distinct levels 
of gray. This capability was increased to 15 levels in 1929. Figure 1.3 is typical of the 
type of images that could be obtained using the 15-tone equipment. During this 
period, introduction of a system for developing a film plate via light beams that were 
modulated by the coded picture tape improved the reproduction process consider-
ably.

Although the examples just cited involve digital images, they are not considered 
digital image processing results in the context of our definition, because digital com-
puters were not used in their creation. Thus, the history of digital image processing 
is intimately tied to the development of the digital computer. In fact, digital images 
require so much storage and computational power that progress in the field of digi-
tal image processing has been dependent on the development of digital computers 
and of supporting technologies that include data storage, display, and transmission.

FIGURE 1.2
A digital picture 
made in 1922 
from a tape 
punched after 
the signals had 
crossed the  
Atlantic twice. 
(McFarlane.)

FIGURE 1.3
Unretouched 
cable picture of 
Generals Pershing 
(right) and Foch,  
transmitted in 
1929 from  
London to New 
York by 15-tone 
equipment. 
(McFarlane.)
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The concept of a computer dates back to the invention of the abacus in Asia 
Minor, more than 5000 years ago. More recently, there have been developments 
in the past two centuries that are the foundation of what we call a computer today. 
However, the basis for what we call a modern digital computer dates back to only 
the 1940s, with the introduction by John von Neumann of two key concepts: (1) a 
memory to hold a stored program and data, and (2) conditional branching. These 
two ideas are the foundation of a central processing unit (CPU), which is at the heart 
of computers today. Starting with von Neumann, there were a series of key advanc-
es that led to computers powerful enough to be used for digital image processing. 
Briefly, these advances may be summarized as follows: (1) the invention of the tran-
sistor at Bell Laboratories in 1948; (2) the development in the 1950s and 1960s of 
the high-level programming languages COBOL (Common Business-Oriented Lan-
guage) and FORTRAN (Formula Translator); (3) the invention of the integrated 
circuit (IC) at Texas Instruments in 1958; (4) the development of operating systems 
in the early 1960s; (5) the development of the microprocessor (a single chip consist-
ing of a CPU, memory, and input and output controls) by Intel in the early 1970s; 
(6) the introduction by IBM of the personal computer in 1981; and (7) progressive 
miniaturization of components, starting with large-scale integration (LI) in the late 
1970s, then very-large-scale integration (VLSI) in the 1980s, to the present use of 
ultra-large-scale integration (ULSI) and experimental nonotechnologies. Concur-
rent with these advances were developments in the areas of mass storage and display 
systems, both of which are fundamental requirements for digital image processing.

The first computers powerful enough to carry out meaningful image processing 
tasks appeared in the early 1960s. The birth of what we call digital image processing 
today can be traced to the availability of those machines, and to the onset of the 
space program during that period. It took the combination of those two develop-
ments to bring into focus the potential of digital image processing for solving prob-
lems of practical significance. Work on using computer techniques for improving 
images from a space probe began at the Jet Propulsion Laboratory (Pasadena, Cali-
fornia) in 1964, when pictures of the moon transmitted by Ranger 7 were processed 
by a computer to correct various types of image distortion inherent in the on-board 
television camera. Figure 1.4 shows the first image of the moon taken by Ranger 
7 on July 31, 1964 at 9:09 A.M. Eastern Daylight Time (EDT), about 17 minutes 
before impacting the lunar surface (the markers, called reseau marks, are used for 
geometric corrections, as discussed in Chapter 2).This also is the first image of the 
moon taken by a U.S. spacecraft. The imaging lessons learned with Ranger 7 served 
as the basis for improved methods used to enhance and restore images from the Sur-
veyor missions to the moon, the Mariner series of flyby missions to Mars, the Apollo 
manned flights to the moon, and others.

In parallel with space applications, digital image processing techniques began in 
the late 1960s and early 1970s to be used in medical imaging, remote Earth resourc-
es observations, and astronomy. The invention in the early 1970s of computerized 
axial tomography (CAT), also called computerized tomography (CT) for short, is 
one of the most important events in the application of image processing in medical 
diagnosis. Computerized axial tomography is a process in which a ring of detectors 
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encircles an object (or patient) and an X-ray source, concentric with the detector 
ring, rotates about the object. The X-rays pass through the object and are collected 
at the opposite end by the corresponding detectors in the ring. This procedure is 
repeated the source rotates. Tomography consists of algorithms that use the sensed 
data to construct an image that represents a “slice” through the object. Motion of 
the object in a direction perpendicular to the ring of detectors produces a set of 
such slices, which constitute a three-dimensional (3-D) rendition of the inside of the 
object. Tomography was invented independently by Sir Godfrey N. Hounsfield and 
Professor Allan M. Cormack, who shared the 1979 Nobel Prize in Medicine for their 
invention. It is interesting to note that X-rays were discovered in 1895 by Wilhelm 
Conrad Roentgen, for which he received the 1901 Nobel Prize for Physics. These two 
inventions, nearly 100 years apart, led to some of the most important applications of 
image processing today.

From the 1960s until the present, the field of image processing has grown vigor-
ously. In addition to applications in medicine and the space program, digital image 
processing techniques are now used in a broad range of applications. Computer pro-
cedures are used to enhance the contrast or code the intensity levels into color for 
easier interpretation of X-rays and other images used in industry, medicine, and the 
biological sciences. Geographers use the same or similar techniques to study pollu-
tion patterns from aerial and satellite imagery. Image enhancement and restoration 
procedures are used to process degraded images of unrecoverable objects, or experi-
mental results too expensive to duplicate. In archeology, image processing meth-
ods have successfully restored blurred pictures that were the only available records 
of rare artifacts lost or damaged after being photographed. In physics and related 
fields, computer techniques routinely enhance images of experiments in areas such 
as high-energy plasmas and electron microscopy. Similarly successful applications 
of image processing concepts can be found in astronomy, biology, nuclear medicine, 
law enforcement, defense, and industry.

FIGURE 1.4
The first picture 
of the moon by 
a U.S. spacecraft. 
Ranger 7 took 
this image on 
July 31, 1964 at 
9:09 A.M. EDT, 
about 17 minutes 
before impacting 
the lunar surface. 
(Courtesy of 
NASA.) 
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These examples illustrate processing results intended for human interpretation. 
The second major area of application of digital image processing techniques men-
tioned at the beginning of this chapter is in solving problems dealing with machine 
perception. In this case, interest is on procedures for extracting information from 
an image, in a form suitable for computer processing. Often, this information bears 
little resemblance to visual features that humans use in interpreting the content 
of an image. Examples of the type of information used in machine perception are 
statistical moments, Fourier transform coefficients, and multidimensional distance 
measures. Typical problems in machine perception that routinely utilize image pro-
cessing techniques are automatic character recognition, industrial machine vision 
for product assembly and inspection, military recognizance, automatic processing of 
fingerprints, screening of X-rays and blood samples, and machine processing of aer-
ial and satellite imagery for weather prediction and environmental assessment. The 
continuing decline in the ratio of computer price to performance, and the expansion 
of networking and communication bandwidth via the internet, have created unprec-
edented opportunities for continued growth of digital image processing. Some of 
these application areas will be illustrated in the following section.

1.3 EXAMPLES OF FIELDS THAT USE DIGITAL IMAGE PROCESSING  

Today, there is almost no area of technical endeavor that is not impacted in some 
way by digital image processing. We can cover only a few of these applications in the 
context and space of the current discussion. However, limited as it is, the material 
presented in this section will leave no doubt in your mind regarding the breadth and 
importance of digital image processing. We show in this section numerous areas of 
application, each of which routinely utilizes the digital image processing techniques 
developed in the following chapters. Many of the images shown in this section are 
used later in one or more of the examples given in the book. Most images shown are 
digital images. 

The areas of application of digital image processing are so varied that some form 
of organization is desirable in attempting to capture the breadth of this field. One 
of the simplest ways to develop a basic understanding of the extent of image pro-
cessing applications is to categorize images according to their source (e.g., X-ray, 
visual, infrared, and so on).The principal energy source for images in use today is 
the electromagnetic energy spectrum. Other important sources of energy include 
acoustic, ultrasonic, and electronic (in the form of electron beams used in electron 
microscopy). Synthetic images, used for modeling and visualization, are generated 
by computer. In this section we will discuss briefly how images are generated in 
these various categories, and the areas in which they are applied. Methods for con-
verting images into digital form will be discussed in the next chapter.

Images based on radiation from the EM spectrum are the most familiar, espe-
cially images in the X-ray and visual bands of the spectrum. Electromagnetic waves 
can be conceptualized as propagating sinusoidal waves of varying wavelengths, or 
they can be thought of as a stream of massless particles, each traveling in a wavelike 
pattern and moving at the speed of light. Each massless particle contains a certain 
amount (or bundle) of energy. Each bundle of energy is called a photon. If spectral 
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bands are grouped according to energy per photon, we obtain the spectrum shown 
in Fig. 1.5, ranging from gamma rays (highest energy) at one end to radio waves 
(lowest energy) at the other. The bands are shown shaded to convey the fact that 
bands of the EM spectrum are not distinct, but rather transition smoothly from one 
to the other.

GAMMA-RAY IMAGING

Major uses of imaging based on gamma rays include nuclear medicine and astro-
nomical observations. In nuclear medicine, the approach is to inject a patient with a 
radioactive isotope that emits gamma rays as it decays. Images are produced from 
the emissions collected by gamma-ray detectors. Figure 1.6(a) shows an image of a 
complete bone scan obtained by using gamma-ray imaging. Images of this sort are 
used to locate sites of bone pathology, such as infections or tumors. Figure 1.6(b) 
shows another major modality of nuclear imaging called positron emission tomogra-
phy (PET). The principle is the same as with X-ray tomography, mentioned briefly 
in Section 1.2. However, instead of using an external source of X-ray energy, the 
patient is given a radioactive isotope that emits positrons as it decays. When a pos-
itron meets an electron, both are annihilated and two gamma rays are given off. 
These are detected and a tomographic image is created using the basic principles of 
tomography. The image shown in Fig. 1.6(b) is one sample of a sequence that con-
stitutes a 3-D rendition of the patient. This image shows a tumor in the brain and 
another in the lung, easily visible as small white masses.

A star in the constellation of Cygnus exploded about 15,000 years ago, generat-
ing a superheated, stationary gas cloud (known as the Cygnus Loop) that glows in 
a spectacular array of colors. Figure 1.6(c) shows an image of the Cygnus Loop in 
the gamma-ray band. Unlike the two examples in Figs. 1.6(a) and (b), this image was 
obtained using the natural radiation of the object being imaged. Finally, Fig. 1.6(d) 
shows an image of gamma radiation from a valve in a nuclear reactor. An area of 
strong radiation is seen in the lower left side of the image.

X-RAY IMAGING

X-rays are among the oldest sources of EM radiation used for imaging. The best 
known use of X-rays is medical diagnostics, but they are also used extensively in 
industry and other areas, such as astronomy. X-rays for medical and industrial imag-
ing are generated using an X-ray tube, which is a vacuum tube with a cathode and 
anode. The cathode is heated, causing free electrons to be released. These electrons 
flow at high speed to the positively charged anode. When the electrons strike a 

10�910�810�710�610�510�410�310�2100 10�1101102103104105106

Energy of one photon (electron volts)

Gamma rays X-rays Ultraviolet Visible Infrared Microwaves Radio waves

FIGURE 1.5  The electromagnetic spectrum arranged according to energy per photon.
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nucleus, energy is released in the form of X-ray radiation. The energy (penetrat-
ing power) of X-rays is controlled by a voltage applied across the anode, and by a 
current applied to the filament in the cathode. Figure 1.7(a) shows a familiar chest 
X-ray generated simply by placing the patient between an X-ray source and a film 
sensitive to X-ray energy. The intensity of the X-rays is modified by absorption as 
they pass through the patient, and the resulting energy falling on the film develops it, 
much in the same way that light develops photographic film. In digital radiography, 
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FIGURE 1.6
Examples of 
gamma-ray  
imaging.  
(a) Bone scan.  
(b) PET image. 
(c) Cygnus Loop. 
(d) Gamma radia-
tion (bright spot) 
from a reactor 
valve.  
(Images  
courtesy of  
(a) G.E. Medical 
Systems; (b) Dr. 
Michael E. Casey, 
CTI PET Systems; 
(c) NASA;  
(d) Professors 
Zhong He and 
David K. Wehe,  
University of 
Michigan.) 
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digital images are obtained by one of two methods: (1) by digitizing X-ray films; or; 
(2) by having the X-rays that pass through the patient fall directly onto devices (such 
as a phosphor screen) that convert X-rays to light. The light signal in turn is captured 
by a light-sensitive digitizing system. We will discuss digitization in more detail in 
Chapters 2 and 4.

b
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FIGURE 1.7
Examples of 
X-ray imaging.  
(a) Chest X-ray. 
(b) Aortic  
angiogram.  
(c) Head CT.  
(d) Circuit boards. 
(e) Cygnus Loop. 
(Images courtesy 
of (a) and (c) Dr. 
David R. Pickens, 
Dept. of  
Radiology & 
Radiological  
Sciences,  
Vanderbilt  
University  
Medical Center; 
(b) Dr. Thomas 
R. Gest, Division 
of Anatomical 
Sciences, Univ. of 
Michigan Medical 
School;  
(d) Mr. Joseph 
E. Pascente, Lixi, 
Inc.; and  
(e) NASA.) 
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Angiography is another major application in an area called contrast enhancement 
radiography. This procedure is used to obtain images of blood vessels, called angio-
grams. A catheter (a small, flexible, hollow tube) is inserted, for example, into an 
artery or vein in the groin. The catheter is threaded into the blood vessel and guided 
to the area to be studied. When the catheter reaches the site under investigation, 
an X-ray contrast medium is injected through the tube. This enhances the contrast 
of the blood vessels and enables a radiologist to see any irregularities or blockages. 
Figure 1.7(b) shows an example of an aortic angiogram. The catheter can be seen 
being inserted into the large blood vessel on the lower left of the picture. Note the 
high contrast of the large vessel as the contrast medium flows up in the direction of 
the kidneys, which are also visible in the image. As we will discuss further in Chapter 2, 
angiography is a major area of digital image processing, where image subtraction is 
used to further enhance the blood vessels being studied.

Another important use of X-rays in medical imaging is computerized axial tomog-
raphy (CAT). Due to their resolution and 3-D capabilities, CAT scans revolution-
ized medicine from the moment they first became available in the early 1970s. As 
noted in Section 1.2, each CAT image is a “slice” taken perpendicularly through 
the patient. Numerous slices are generated as the patient is moved in a longitudinal 
direction. The ensemble of such images constitutes a 3-D rendition of the inside of 
the body, with the longitudinal resolution being proportional to the number of slice 
images taken. Figure 1.7(c) shows a typical CAT slice image of a human head.

Techniques similar to the ones just discussed, but generally involving higher 
energy X-rays, are applicable in industrial processes. Figure 1.7(d) shows an X-ray 
image of an electronic circuit board. Such images, representative of literally hundreds 
of industrial applications of X-rays, are used to examine circuit boards for flaws in 
manufacturing, such as missing components or broken traces. Industrial CAT scans 
are useful when the parts can be penetrated by X-rays, such as in plastic assemblies, 
and even large bodies, such as solid-propellant rocket motors. Figure 1.7(e) shows an 
example of X-ray imaging in astronomy. This image is the Cygnus Loop of Fig. 1.6(c), 
but imaged in the X-ray band.

IMAGING IN THE ULTRAVIOLET BAND

Applications of ultraviolet “light” are varied. They include lithography, industrial 
inspection, microscopy, lasers, biological imaging, and astronomical observations. 
We illustrate imaging in this band with examples from microscopy and astronomy.

Ultraviolet light is used in fluorescence microscopy, one of the fastest growing 
areas of microscopy. Fluorescence is a phenomenon discovered in the middle of the 
nineteenth century, when it was first observed that the mineral fluorspar fluoresces 
when ultraviolet light is directed upon it. The ultraviolet light itself is not visible, but 
when a photon of ultraviolet radiation collides with an electron in an atom of a fluo-
rescent material, it elevates the electron to a higher energy level. Subsequently, the 
excited electron relaxes to a lower level and emits light in the form of a lower-energy 
photon in the visible (red) light region. Important tasks performed with a fluores-
cence microscope are to use an excitation light to irradiate a prepared specimen, 
and then to separate the much weaker radiating fluorescent light from the brighter 
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excitation light. Thus, only the emission light reaches the eye or other detector. The 
resulting fluorescing areas shine against a dark background with sufficient contrast 
to permit detection. The darker the background of the nonfluorescing material, the 
more efficient the instrument.

Fluorescence microscopy is an excellent method for studying materials that can be 
made to fluoresce, either in their natural form (primary fluorescence) or when treat-
ed with chemicals capable of fluorescing (secondary fluorescence). Figures 1.8(a) 
and (b) show results typical of the capability of fluorescence microscopy. Figure 
1.8(a) shows a fluorescence microscope image of normal corn, and Fig. 1.8(b) shows 
corn infected by “smut,” a disease of cereals, corn, grasses, onions, and sorghum that 
can be caused by any one of more than 700 species of parasitic fungi. Corn smut is 
particularly harmful because corn is one of the principal food sources in the world. 
As another illustration, Fig. 1.8(c) shows the Cygnus Loop imaged in the high-energy 
region of the ultraviolet band.

IMAGING IN THE VISIBLE AND INFRARED BANDS
Considering that the visual band of the electromagnetic spectrum is the most famil-
iar in all our activities, it is not surprising that imaging in this band outweighs by far 
all the others in terms of breadth of application. The infrared band often is used in 
conjunction with visual imaging, so we have grouped the visible and infrared bands 
in this section for the purpose of illustration. We consider in the following discus-
sion applications in light microscopy, astronomy, remote sensing, industry, and law 
enforcement.

Figure 1.9 shows several examples of images obtained with a light microscope. 
The examples range from pharmaceuticals and microinspection to materials char-
acterization. Even in microscopy alone, the application areas are too numerous to 
detail here. It is not difficult to conceptualize the types of processes one might apply 
to these images, ranging from enhancement to measurements.

ba c

FIGURE 1.8  Examples of ultraviolet imaging. (a) Normal corn. (b) Corn infected by smut. (c) Cygnus Loop. (Images 
(a) and (b) courtesy of Dr. Michael W. Davidson, Florida State University, (c) NASA.) 
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Another major area of visual processing is remote sensing, which usually includes 
several bands in the visual and infrared regions of the spectrum. Table 1.1 shows the 
so-called thematic bands in NASA’s LANDSAT satellites. The primary function of 
LANDSAT is to obtain and transmit images of the Earth from space, for purposes 
of monitoring environmental conditions on the planet. The bands are expressed in 
terms of wavelength, with 1mm  being equal to 10 6−  m (we will discuss the wave-
length regions of the electromagnetic spectrum in more detail in Chapter 2). Note 
the characteristics and uses of each band in Table 1.1.

In order to develop a basic appreciation for the power of this type of multispec-
tral imaging, consider Fig. 1.10, which shows one image for each of the spectral bands 
in Table 1.1. The area imaged is Washington D.C., which includes features such as 
buildings, roads, vegetation, and a major river (the Potomac) going though the city. 
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FIGURE 1.9
Examples of light  
microscopy images.  
(a) Taxol (antican-
cer agent), magni-
fied 250 ×. 
(b) Cholesterol—
40 ×.  
(c) Microproces-
sor—60 ×.  
(d) Nickel oxide 
thin film—600 ×.  
(e) Surface of audio 
CD—1750 ×.   
(f) Organic super-
conductor— 450 ×.  
(Images courtesy of 
Dr. Michael W.  
Davidson, Florida 
State University.) 
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Images of population centers are used over time to assess population growth and 
shift patterns, pollution, and other factors affecting the environment. The differenc-
es between visual and infrared image features are quite noticeable in these images. 
Observe, for example, how well defined the river is from its surroundings in Bands 
4 and 5.

Weather observation and prediction also are major applications of multispectral 
imaging from satellites. For example, Fig. 1.11 is an image of Hurricane Katrina, one 
of the most devastating storms in recent memory in the Western Hemisphere. This 
image was taken by a National Oceanographic and Atmospheric Administration 
(NOAA) satellite using sensors in the visible and infrared bands. The eye of the hur-
ricane is clearly visible in this image.

Band No. Name
Wavelength 

(Mm)
Characteristics and Uses

1 Visible blue 0.45– 0.52 Maximum water penetration

2 Visible green 0.53– 0.61 Measures plant vigor

3 Visible red 0.63– 0.69 Vegetation discrimination

4 Near infrared 0.78– 0.90 Biomass and shoreline mapping

5 Middle infrared 1.55–1.75 Moisture content: soil/vegetation

6 Thermal infrared 10.4–12.5 Soil moisture; thermal mapping

7 Short-wave infrared 2.09–2.35 Mineral mapping

TABLE 1.1
Thematic bands 
of NASA’s 
LANDSAT  
satellite.

1 2 3

4 5 6 7

FIGURE 1.10 LANDSAT satellite images of the Washington, D.C. area. The numbers refer to the thematic bands in 
Table 1.1. (Images courtesy of NASA.)
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Figures 1.12 and 1.13 show an application of infrared imaging. These images are 
part of the Nighttime Lights of the World data set, which provides a global inventory 
of human settlements. The images were generated by an infrared imaging system 
mounted on a NOAA/DMSP (Defense Meteorological Satellite Program) satel-
lite. The infrared system operates in the band 10.0 to 13.4 mm, and has the unique 
capability to observe faint sources of visible, near infrared emissions present on the  
Earth’s surface, including cities, towns, villages, gas flares, and fires. Even without 
formal training in image processing, it is not difficult to imagine writing a computer 
program that would use these images to estimate the relative percent of total electri-
cal energy used by various regions of the world.

A major area of imaging in the visible spectrum is in automated visual inspection 
of manufactured goods. Figure 1.14 shows some examples. Figure 1.14(a) is a con-
troller board for a CD-ROM drive. A typical image processing task with products 
such as this is to inspect them for missing parts (the black square on the top, right 
quadrant of the image is an example of a missing component).

Figure 1.14(b) is an imaged pill container. The objective here is to have a machine 
look for missing, incomplete, or deformed pills. Figure 1.14(c) shows an application 
in which image processing is used to look for bottles that are not filled up to an 
acceptable level. Figure 1.14(d) shows a clear plastic part with an unacceptable num-
ber of air pockets in it. Detecting anomalies like these is a major theme of industrial 
inspection that includes other products, such as wood and cloth. Figure 1.14(e) shows 
a batch of cereal during inspection for color and the presence of anomalies such as 
burned flakes. Finally, Fig. 1.14(f) shows an image of an intraocular implant (replace-
ment lens for the human eye). A “structured light” illumination technique was used 
to highlight deformations toward the center of the lens, and other imperfections. For 
example, the markings at 1 o’clock and 5 o’clock are tweezer damage. Most of the 
other small speckle detail is debris. The objective in this type of inspection is to find 
damaged or incorrectly manufactured implants automatically, prior to packaging.

FIGURE 1.11
Satellite image of 
Hurricane Katrina 
taken on August 
29, 2005.  
(Courtesy of 
NOAA.)
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Figure 1.15 illustrates some additional examples of image processing in the vis-
ible spectrum. Figure 1.15(a) shows a thumb print. Images of fingerprints are rou-
tinely processed by computer, either to enhance them or to find features that aid 
in the automated search of a database for potential matches. Figure 1.15(b) shows 
an image of paper currency. Applications of digital image processing in this area 

FIGURE 1.12
Infrared  
satellite images of 
the Americas. The 
small shaded map 
is provided for  
reference.  
(Courtesy of 
NOAA.) 
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include automated counting and, in law enforcement, the reading of the serial num-
ber for the purpose of tracking and identifying currency bills. The two vehicle images 
shown in Figs. 1.15(c) and (d) are examples of automated license plate reading. The 
light rectangles indicate the area in which the imaging system detected the plate. 
The black rectangles show the results of automatically reading the plate content by 
the system. License plate and other applications of character recognition are used 
extensively for traffic monitoring and surveillance.

IMAGING IN THE MICROWAVE BAND
The principal application of imaging in the microwave band is radar. The unique 
feature of imaging radar is its ability to collect data over virtually any region at any 
time, regardless of weather or ambient lighting conditions. Some radar waves can 
penetrate clouds, and under certain conditions, can also see through vegetation, ice, 
and dry sand. In many cases, radar is the only way to explore inaccessible regions of 
the Earth’s surface. An imaging radar works like a flash camera in that it provides 
its own illumination (microwave pulses) to illuminate an area on the ground and 

FIGURE 1.13
Infrared  
satellite images 
of the remaining 
populated parts 
of the world. The 
small shaded map 
is provided for 
reference.  
(Courtesy of 
NOAA.) 
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take a snapshot image. Instead of a camera lens, a radar uses an antenna and digital 
computer processing to record its images. In a radar image, one can see only the 
microwave energy that was reflected back toward the radar antenna.

Figure 1.16 shows a spaceborne radar image covering a rugged mountainous area 
of southeast Tibet, about 90 km east of the city of Lhasa. In the lower right cor-
ner is a wide valley of the Lhasa River, which is populated by Tibetan farmers and 
yak herders, and includes the village of Menba. Mountains in this area reach about 
5800 m (19,000 ft) above sea level, while the valley floors lie about 4300 m (14,000 ft) 
above sea level. Note the clarity and detail of the image, unencumbered by clouds or 
other atmospheric conditions that normally interfere with images in the visual band.

IMAGING IN THE RADIO BAND

As in the case of imaging at the other end of the spectrum (gamma rays), the major 
applications of imaging in the radio band are in medicine and astronomy. In medicine, 
radio waves are used in magnetic resonance imaging (MRI). This technique places a 
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FIGURE 1.14 Some examples of manufactured goods checked using digital image processing. (a) Circuit board con-
troller. (b) Packaged pills. (c) Bottles. (d) Air bubbles in a clear plastic product. (e) Cereal. (f) Image of intraocular 
implant. (Figure (f) courtesy of Mr. Pete Sites, Perceptics Corporation.) 
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patient in a powerful magnet and passes radio waves through the individual’s body 
in short pulses. Each pulse causes a responding pulse of radio waves to be emitted 
by the patient’s tissues. The location from which these signals originate and their 
strength are determined by a computer, which produces a two-dimensional image 
of a section of the patient. MRI can produce images in any plane. Figure 1.17 shows 
MRI images of a human knee and spine.

The rightmost image in Fig. 1.18 is an image of the Crab Pulsar in the radio band. 
Also shown for an interesting comparison are images of the same region, but taken 
in most of the bands discussed earlier. Observe that each image gives a totally dif-
ferent “view” of the pulsar.

OTHER IMAGING MODALITIES

Although imaging in the electromagnetic spectrum is dominant by far, there are a 
number of other imaging modalities that are also important. Specifically, we discuss 
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FIGURE 1.15
Some additional 
examples of  
imaging in the  
visible spectrum. 
(a) Thumb print. 
(b) Paper  
currency.  
(c) and (d) Auto-
mated license 
plate reading.  
(Figure (a) 
courtesy of the 
National  
Institute of  
Standards and 
Technology.  
Figures (c) and 
(d) courtesy of 
Dr. Juan  
Herrera,  
Perceptics  
Corporation.) 
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in this section acoustic imaging, electron microscopy, and synthetic (computer-gen-
erated) imaging. 

Imaging using “sound” finds application in geological exploration, industry, and 
medicine. Geological applications use sound in the low end of the sound spectrum 
(hundreds of Hz) while imaging in other areas use ultrasound (millions of Hz). The 
most important commercial applications of image processing in geology are in min-
eral and oil exploration. For image acquisition over land, one of the main approaches 
is to use a large truck and a large flat steel plate. The plate is pressed on the ground by 

FIGURE 1.16
Spaceborne radar 
image of  
mountainous 
region in  
southeast Tibet. 
(Courtesy of 
NASA.)
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FIGURE 1.17  MRI images of a human (a) knee, and (b) spine. (Figure (a) courtesy of Dr. Thom-
as R. Gest, Division of Anatomical Sciences, University of Michigan Medical School, and 
(b) courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, 
Vanderbilt University Medical Center.)
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the truck, and the truck is vibrated through a frequency spectrum up to 100 Hz. The 
strength and speed of the returning sound waves are determined by the composi-
tion of the Earth below the surface. These are analyzed by computer, and images are 
generated from the resulting analysis.

For marine image acquisition, the energy source consists usually of two air guns 
towed behind a ship. Returning sound waves are detected by hydrophones placed 
in cables that are either towed behind the ship, laid on the bottom of the ocean, 
or hung from buoys (vertical cables). The two air guns are alternately pressurized  
to ~2000 psi and then set off. The constant motion of the ship provides a transversal 
direction of motion that, together with the returning sound waves, is used to gener-
ate a 3-D map of the composition of the Earth below the bottom of the ocean.

Figure 1.19 shows a cross-sectional image of a well-known 3-D model against 
which the performance of seismic imaging algorithms is tested. The arrow points to a 
hydrocarbon (oil and/or gas) trap. This target is brighter than the surrounding layers 
because the change in density in the target region is larger. Seismic interpreters look 
for these “bright spots” to find oil and gas. The layers above also are bright, but their 
brightness does not vary as strongly across the layers. Many seismic reconstruction 
algorithms have difficulty imaging this target because of the faults above it.

Although ultrasound imaging is used routinely in manufacturing, the best known 
applications of this technique are in medicine, especially in obstetrics, where fetuses 
are imaged to determine the health of their development. A byproduct of this 

Gamma X-ray Optical Infrared Radio

FIGURE 1.18 Images of the Crab Pulsar (in the center of each image) covering the electromagnetic spectrum. (Cour-
tesy of NASA.)

FIGURE 1.19
Cross-sectional 
image of a  
seismic model. 
The arrow points 
to a hydrocarbon 
(oil and/or gas) 
trap. (Courtesy of 
Dr. Curtis Ober, 
Sandia National 
Laboratories.)
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examination is determining the sex of the baby. Ultrasound images are generated 
using the following basic procedure:

1. The ultrasound system (a computer, ultrasound probe consisting of a source, a 
receiver, and a display) transmits high-frequency (1 to 5 MHz) sound pulses 
into the body.

2. The sound waves travel into the body and hit a boundary between tissues (e.g., 
between fluid and soft tissue, soft tissue and bone). Some of the sound waves 
are reflected back to the probe, while some travel on further until they reach 
another boundary and are reflected.

3. The reflected waves are picked up by the probe and relayed to the computer.
4. The machine calculates the distance from the probe to the tissue or organ bound-

aries using the speed of sound in tissue (1540 m/s) and the time of each echo’s 
return.

5. The system displays the distances and intensities of the echoes on the screen, 
forming a two-dimensional image.

In a typical ultrasound image, millions of pulses and echoes are sent and received 
each second. The probe can be moved along the surface of the body and angled to 
obtain various views. Figure 1.20 shows several examples of medical uses of ultra-
sound. 

We continue the discussion on imaging modalities with some examples of elec-
tron microscopy. Electron microscopes function as their optical counterparts, except 
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FIGURE 1.20
Examples of 
ultrasound  
imaging. (a) A 
fetus. (b) Another 
view of the fetus.  
(c) Thyroids.  
(d) Muscle layers 
showing lesion. 
(Courtesy of 
Siemens  
Medical Systems, 
Inc., Ultrasound 
Group.)

DIP4E_GLOBAL_Print_Ready.indb   38 6/16/2017   2:02:01 PM



1.3  Examples of Fields that Use Digital Image Processing    39

that they use a focused beam of electrons instead of light to image a specimen. The 
operation of electron microscopes involves the following basic steps: A stream 
of electrons is produced by an electron source and accelerated toward the speci-
men using a positive electrical potential. This stream is confined and focused using 
metal apertures and magnetic lenses into a thin, monochromatic beam. This beam is 
focused onto the sample using a magnetic lens. Interactions occur inside the irradi-
ated sample, affecting the electron beam. These interactions and effects are detected 
and transformed into an image, much in the same way that light is reflected from, 
or absorbed by, objects in a scene. These basic steps are carried out in all electron 
microscopes.

A transmission electron microscope (TEM) works much like a slide projector. A 
projector transmits a beam of light through a slide; as the light passes through the 
slide, it is modulated by the contents of the slide. This transmitted beam is then 
projected onto the viewing screen, forming an enlarged image of the slide. TEMs 
work in the same way, except that they shine a beam of electrons through a spec-
imen (analogous to the slide). The fraction of the beam transmitted through the 
specimen is projected onto a phosphor screen. The interaction of the electrons with 
the phosphor produces light and, therefore, a viewable image. A scanning electron 
microscope (SEM), on the other hand, actually scans the electron beam and records 
the interaction of beam and sample at each location. This produces one dot on a 
phosphor screen. A complete image is formed by a raster scan of the beam through 
the sample, much like a TV camera. The electrons interact with a phosphor screen 
and produce light. SEMs are suitable for “bulky” samples, while TEMs require very 
thin samples.

Electron microscopes are capable of very high magnification. While light micros-
copy is limited to magnifications on the order of 1000 ×, electron microscopes can 
achieve magnification of 10 000, × or more. Figure 1.21 shows two SEM images of 
specimen failures due to thermal overload.

We conclude the discussion of imaging modalities by looking briefly at images 
that are not obtained from physical objects. Instead, they are generated by computer. 
Fractals are striking examples of computer-generated images. Basically, a fractal is 
nothing more than an iterative reproduction of a basic pattern according to some 
mathematical rules. For instance, tiling is one of the simplest ways to generate a frac-
tal image. A square can be subdivided into four square subregions, each of which can 
be further subdivided into four smaller square regions, and so on. Depending on the 
complexity of the rules for filling each subsquare, some beautiful tile images can be 
generated using this method. Of course, the geometry can be arbitrary. For instance, 
the fractal image could be grown radially out of a center point. Figure 1.22(a) shows 
a fractal grown in this way. Figure 1.22(b) shows another fractal (a “moonscape”) 
that provides an interesting analogy to the images of space used as illustrations in 
some of the preceding sections.

A more structured approach to image generation by computer lies in 3-D model-
ing. This is an area that provides an important intersection between image process-
ing and computer graphics, and is the basis for many 3-D visualization systems (e.g., 
flight simulators). Figures 1.22(c) and (d) show examples of computer-generated 
images. Because the original object is created in 3-D, images can be generated in any 
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perspective from plane projections of the 3-D volume. Images of this type can be 
used for medical training and for a host of other applications, such as criminal foren-
sics and special effects.

ba

FIGURE 1.21 (a) 250 ×  SEM image of a tungsten filament following thermal failure (note the 
shattered pieces on the lower left). (b) 2500 × SEM image of a damaged integrated circuit. 
The white fibers are oxides resulting from thermal destruction. (Figure (a) courtesy of Mr. 
Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene; (b) cour-
tesy of Dr. J. M. Hudak, McMaster University, Hamilton, Ontario, Canada.) 
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FIGURE 1.22
(a) and (b) Fractal 
images.  
(c) and (d) Images 
generated from 
3-D computer 
models of the 
objects shown. 
(Figures (a) and 
(b) courtesy of 
Ms. Melissa D. 
Binde,  
Swarthmore 
College; (c) and 
(d) courtesy of 
NASA.)
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1.4 FUNDAMENTAL STEPS IN DIGITAL IMAGE PROCESSING  

It is helpful to divide the material covered in the following chapters into the two 
broad categories defined in Section 1.1: methods whose input and output are images, 
and methods whose inputs may be images, but whose outputs are attributes extract-
ed from those images. This organization is summarized in Fig. 1.23. The diagram 
does not imply that every process is applied to an image. Rather, the intention is to 
convey an idea of all the methodologies that can be applied to images for different 
purposes, and possibly with different objectives. The discussion in this section may 
be viewed as a brief overview of the material in the remainder of the book. 

Image acquisition is the first process in Fig. 1.23. The discussion in Section 1.3 
gave some hints regarding the origin of digital images. This topic will be considered 
in much more detail in Chapter 2, where we also introduce a number of basic digital 
image concepts that are used throughout the book. Acquisition could be as simple as 
being given an image that is already in digital form. Generally, the image acquisition 
stage involves preprocessing, such as scaling.

Image enhancement is the process of manipulating an image so the result is more 
suitable than the original for a specific application. The word specific is important 
here, because it establishes at the outset that enhancement techniques are problem 
oriented. Thus, for example, a method that is quite useful for enhancing X-ray images 
may not be the best approach for enhancing satellite images taken in the infrared 
band of the electromagnetic spectrum.

There is no general “theory” of image enhancement. When an image is processed 
for visual interpretation, the viewer is the ultimate judge of how well a particular 
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method works. Enhancement techniques are so varied, and use so many different 
image processing approaches, that it is difficult to assemble a meaningful body of 
techniques suitable for enhancement in one chapter without extensive background 
development. For this reason, and also because beginners in the field of image pro-
cessing generally find enhancement applications visually appealing, interesting, and 
relatively simple to understand, we will use image enhancement as examples when 
introducing new concepts in parts of Chapter 2 and in Chapters 3 and 4. The mate-
rial in the latter two chapters span many of the methods used traditionally for image 
enhancement. Therefore, using examples from image enhancement to introduce new 
image processing methods developed in these early chapters not only saves having 
an extra chapter in the book dealing with image enhancement but, more importantly, 
is an effective approach for introducing newcomers to the details of processing tech-
niques early in the book. However, as you will see in progressing through the rest 
of the book, the material developed in Chapters 3 and 4 is applicable to a much 
broader class of problems than just image enhancement.

Image restoration is an area that also deals with improving the appearance of 
an image. However, unlike enhancement, which is subjective, image restoration 
is objective, in the sense that restoration techniques tend to be based on mathe-
matical or probabilistic models of image degradation. Enhancement, on the other 
hand, is based on human subjective preferences regarding what constitutes a “good” 
enhancement result.

Color image processing is an area that has been gaining in importance because of 
the significant increase in the use of digital images over the internet. Chapter 6 cov-
ers a number of fundamental concepts in color models and basic color processing 
in a digital domain. Color is used also as the basis for extracting features of interest 
in an image.

Wavelets are the foundation for representing images in various degrees of reso-
lution. In particular, this material is used in the book for image data compression 
and for pyramidal representation, in which images are subdivided successively into 
smaller regions. The material in Chapters 4 and 5 is based mostly on the Fourier 
transform. In addition to wavelets, we will also discuss in Chapter 7 a number of 
other transforms that are used routinely in image processing.

Compression, as the name implies, deals with techniques for reducing the storage 
required to save an image, or the bandwidth required to transmit it. Although stor-
age technology has improved significantly over the past decade, the same cannot be 
said for transmission capacity. This is true particularly in uses of the internet, which 
are characterized by significant pictorial content. Image compression is familiar 
(perhaps inadvertently) to most users of computers in the form of image file exten-
sions, such as the jpg file extension used in the JPEG (Joint Photographic Experts 
Group) image compression standard.

Morphological processing deals with tools for extracting image components that 
are useful in the representation and description of shape. The material in this chap-
ter begins a transition from processes that output images to processes that output 
image attributes, as indicated in Section 1.1.

Segmentation partitions an image into its constituent parts or objects. In gen-
eral, autonomous segmentation is one of the most difficult tasks in digital image 
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processing. A rugged segmentation procedure brings the process a long way toward 
successful solution of imaging problems that require objects to be identified indi-
vidually. On the other hand, weak or erratic segmentation algorithms almost always 
guarantee eventual failure. In general, the more accurate the segmentation, the 
more likely automated object classification is to succeed.

Feature extraction almost always follows the output of a segmentation stage, which 
usually is raw pixel data, constituting either the boundary of a region (i.e., the set 
of pixels separating one image region from another) or all the points in the region 
itself. Feature extraction consists of feature detection and feature description. Fea-
ture detection refers to finding the features in an image, region, or boundary. Feature 
description assigns quantitative attributes to the detected features. For example, we 
might detect corners in a region, and describe those corners by their orientation 
and location; both of these descriptors are quantitative attributes. Feature process-
ing methods discussed in this chapter are subdivided into three principal categories, 
depending on whether they are applicable to boundaries, regions, or whole images. 
Some features are applicable to more than one category. Feature descriptors should 
be as insensitive as possible to variations in parameters such as scale, translation, 
rotation, illumination, and viewpoint. 

Image pattern classification is the process that assigns a label (e.g., “vehicle”) to an 
object based on its feature descriptors. In the last chapter of the book, we will discuss  
methods of image pattern classification ranging from “classical” approaches such as 
minimum-distance, correlation, and Bayes classifiers, to more modern approaches 
implemented using deep neural networks. In particular, we will discuss in detail deep 
convolutional neural networks, which are ideally suited for image processing work.

So far, we have said nothing about the need for prior knowledge or about the 
interaction between the knowledge base and the processing modules in Fig. 1.23. 
Knowledge about a problem domain is coded into an image processing system in the 
form of a knowledge database. This knowledge may be as simple as detailing regions 
of an image where the information of interest is known to be located, thus limiting 
the search that has to be conducted in seeking that information. The knowledge base 
can also be quite complex, such as an interrelated list of all major possible defects 
in a materials inspection problem, or an image database containing high-resolution 
satellite images of a region in connection with change-detection applications. In 
addition to guiding the operation of each processing module, the knowledge base 
also controls the interaction between modules. This distinction is made in Fig. 1.23 
by the use of double-headed arrows between the processing modules and the knowl-
edge base, as opposed to single-headed arrows linking the processing modules.

Although we do not discuss image display explicitly at this point, it is important to 
keep in mind that viewing the results of image processing can take place at the out-
put of any stage in Fig. 1.23. We also note that not all image processing applications 
require the complexity of interactions implied by Fig. 1.23. In fact, not even all those 
modules are needed in many cases. For example, image enhancement for human 
visual interpretation seldom requires use of any of the other stages in Fig. 1.23. In 
general, however, as the complexity of an image processing task increases, so does 
the number of processes required to solve the problem.
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1.5 COMPONENTS OF AN IMAGE PROCESSING SYSTEM  

As recently as the mid-1980s, numerous models of image processing systems being 
sold throughout the world were rather substantial peripheral devices that attached 
to equally substantial host computers. Late in the 1980s and early in the 1990s, the 
market shifted to image processing hardware in the form of single boards designed 
to be compatible with industry standard buses and to fit into engineering work-
station cabinets and personal computers. In the late 1990s and early 2000s, a new 
class of add-on boards, called graphics processing units (GPUs) were introduced for 
work on 3-D applications, such as games and other 3-D graphics applications. It was 
not long before GPUs found their way into image processing applications involving 
large-scale matrix implementations, such as training deep convolutional networks. 
In addition to lowering costs, the market shift from substantial peripheral devices to 
add-on processing boards also served as a catalyst for a significant number of new 
companies specializing in the development of software written specifically for image 
processing. 

The trend continues toward miniaturizing and blending of general-purpose small 
computers with specialized image processing hardware and software. Figure 1.24 
shows the basic components comprising a typical general-purpose system used for 
digital image processing. The function of each component will be discussed in the 
following paragraphs, starting with image sensing.

Two subsystems are required to acquire digital images. The first is a physical sen-
sor that responds to the energy radiated by the object we wish to image. The second, 
called a digitizer, is a device for converting the output of the physical sensing device 
into digital form. For instance, in a digital video camera, the sensors (CCD chips) 
produce an electrical output proportional to light intensity. The digitizer converts 
these outputs to digital data. These topics will be covered in Chapter 2.

Specialized image processing hardware usually consists of the digitizer just men-
tioned, plus hardware that performs other primitive operations, such as an arithme-
tic logic unit (ALU), that performs arithmetic and logical operations in parallel on 
entire images. One example of how an ALU is used is in averaging images as quickly 
as they are digitized, for the purpose of noise reduction. This type of hardware some-
times is called a front-end subsystem, and its most distinguishing characteristic is 
speed. In other words, this unit performs functions that require fast data through-
puts (e.g., digitizing and averaging video images at 30 frames/s) that the typical main 
computer cannot handle. One or more GPUs (see above) also are common in image 
processing systems that perform intensive matrix operations.

The computer in an image processing system is a general-purpose computer and 
can range from a PC to a supercomputer. In dedicated applications, sometimes cus-
tom computers are used to achieve a required level of performance, but our interest 
here is on general-purpose image processing systems. In these systems, almost any 
well-equipped PC-type machine is suitable for off-line image processing tasks.

Software for image processing consists of specialized modules that perform 
specific tasks. A well-designed package also includes the capability for the user to 
write code that, as a minimum, utilizes the specialized modules. More sophisticated 
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software packages allow the integration of those modules and general-purpose 
software commands from at least one computer language. Commercially available 
image processing software, such as the well-known MATLAB® Image Processing 
Toolbox, is also common in a well-equipped image processing system. 

Mass storage is a must in image processing applications. An image of size 1024 1024×
pixels, in which the intensity of each pixel is an 8-bit quantity,  requires one megabyte  
of storage space if the image is not compressed. When dealing with image databases 
that contain thousands, or even millions, of images, providing adequate storage in 
an image processing system can be a challenge. Digital storage for image processing 
applications falls into three principal categories: (1) short-term storage for use dur-
ing processing; (2) on-line storage for relatively fast recall; and (3) archival storage, 
characterized by infrequent access. Storage is measured in bytes (eight bits), Kbytes 
(103 bytes), Mbytes (106 bytes), Gbytes (109 bytes), and Tbytes (1012 bytes).
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Components of a 
general-purpose 
image processing 
system. 
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One method of providing short-term storage is computer memory. Another is by 
specialized boards, called frame buffers, that store one or more images and can be 
accessed rapidly, usually at video rates (e.g., at 30 complete images per second). The 
latter method allows virtually instantaneous image zoom, as well as scroll (vertical 
shifts) and pan (horizontal shifts). Frame buffers usually are housed in the special-
ized image processing hardware unit in Fig. 1.24. On-line storage generally takes 
the form of magnetic disks or optical-media storage. The key factor characterizing 
on-line storage is frequent access to the stored data. Finally, archival storage is char-
acterized by massive storage requirements but infrequent need for access. Magnetic 
tapes and optical disks housed in “jukeboxes” are the usual media for archival appli-
cations.

Image displays in use today are mainly color, flat screen monitors. Monitors are 
driven by the outputs of image and graphics display cards that are an integral part of 
the computer system. Seldom are there requirements for image display applications 
that cannot be met by display cards and GPUs available commercially as part of the 
computer system. In some cases, it is necessary to have stereo displays, and these are 
implemented in the form of headgear containing two small displays embedded in 
goggles worn by the user.

Hardcopy devices for recording images include laser printers, film cameras, heat-
sensitive devices, ink-jet units, and digital units, such as optical and CD-ROM disks. 
Film provides the highest possible resolution, but paper is the obvious medium of 
choice for written material. For presentations, images are displayed on film trans-
parencies or in a digital medium if image projection equipment is used. The latter 
approach is gaining acceptance as the standard for image presentations.

Networking and cloud communication are almost default functions in any com-
puter system in use today. Because of the large amount of data inherent in image 
processing applications, the key consideration in image transmission is bandwidth. In 
dedicated networks, this typically is not a problem, but communications with remote 
sites via the internet are not always as efficient. Fortunately, transmission bandwidth 
is improving quickly as a result of optical fiber and other broadband technologies. 
Image data compression continues to play a major role in the transmission of large 
amounts of image data.

Summary, References, and Further Reading  
The main purpose of the material presented in this chapter is to provide a sense of perspective about the origins 
of digital image processing and, more important, about current and future areas of application of this technology. 
Although the coverage of these topics in this chapter was necessarily incomplete due to space limitations, it should 
have left you with a clear impression of the breadth and practical scope of digital image processing. As we proceed 
in the following chapters with the development of image processing theory and applications, numerous examples 
are provided to keep a clear focus on the utility and promise of these techniques. Upon concluding the study of the 
final chapter, a reader of this book will have arrived at a level of understanding that is the foundation for most of 
the work currently underway in this field. 

In past editions, we have provided a long list of journals and books to give readers an idea of the breadth of the 
image processing literature, and where this literature is reported. The list has been updated, and it has become so 
extensive that it is more practical to include it in the book website: www.ImageProcessingPlace.com, in the section 
entitled Publications.
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2 Digital Image Fundamentals

Preview
This chapter is an introduction to a number of basic concepts in digital image processing that are used 
throughout the book. Section 2.1 summarizes some important aspects of the human visual system, includ-
ing image formation in the eye and its capabilities for brightness adaptation and discrimination. Section 
2.2 discusses light, other components of the electromagnetic spectrum, and their imaging characteristics. 
Section 2.3 discusses imaging sensors and how they are used to generate digital images. Section 2.4 intro-
duces the concepts of uniform image sampling and intensity quantization. Additional topics discussed 
in that section include digital image representation, the effects of varying the number of samples and 
intensity levels in an image, the concepts of spatial and intensity resolution, and the principles of image 
interpolation. Section 2.5 deals with a variety of basic relationships between pixels. Finally, Section 2.6 
is an introduction to the principal mathematical tools we use throughout the book. A second objective 
of that section is to help you begin developing a “feel” for how these tools are used in a variety of basic 
image processing tasks. 

Upon completion of this chapter, readers should:
 Have an understanding of some important 

functions and limitations of human vision.

 Be familiar with the electromagnetic energy 
spectrum, including basic properties of light.

 Know how digital images are generated and 
represented.

 Understand the basics of image sampling and 
quantization.

 Be familiar with spatial and intensity resolu-
tion and their effects on image appearance.

 Have an understanding of basic geometric 
relationships between image pixels.

 Be familiar with the principal mathematical 
tools used in digital image processing.

 Be able to apply a variety of introductory dig-
ital image processing techniques.

Those who wish to succeed must ask the right preliminary 
questions.

Aristotle
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48 Chapter 2  Digital Image Fundamentals

2.1 ELEMENTS OF VISUAL PERCEPTION  

Although the field of digital image processing is built on a foundation of mathemat-
ics, human intuition and analysis often play a role in the choice of one technique 
versus another, and this choice often is made based on subjective, visual judgments. 
Thus, developing an understanding of basic characteristics of human visual percep-
tion as a first step in our journey through this book is appropriate. In particular, our 
interest is in the elementary mechanics of how images are formed and perceived 
by humans. We are interested in learning the physical limitations of human vision 
in terms of factors that also are used in our work with digital images. Factors such 
as how human and electronic imaging devices compare in terms of resolution and 
ability to adapt to changes in illumination are not only interesting, they are also 
important from a practical point of view.

STRUCTURE OF THE HUMAN EYE

Figure 2.1 shows a simplified cross section of the human eye. The eye is nearly a 
sphere (with a diameter of about 20 mm) enclosed by three membranes: the cornea 
and sclera outer cover; the choroid; and the retina. The cornea is a tough, transparent 
tissue that covers the anterior surface of the eye. Continuous with the cornea, the 
sclera is an opaque membrane that encloses the remainder of the optic globe.

The choroid lies directly below the sclera. This membrane contains a network of 
blood vessels that serve as the major source of nutrition to the eye. Even superficial 

2.1

Retina

Blind spot
Sclera

Choroid

Nerve & sheath

Fovea

Vitreous humor

Visual axis

Ciliary fibers

Ciliary muscle

Iris

Cornea

Lens

Anterior chamber

Cili
ar

y b
ody

FIGURE 2.1
Simplified  
diagram of a  
cross section of 
the human eye.

DIP4E_GLOBAL_Print_Ready.indb   48 6/16/2017   2:02:02 PM



2.1  Elements of Visual Perception    49

injury to the choroid can lead to severe eye damage as a result of inflammation that 
restricts blood flow. The choroid coat is heavily pigmented, which helps reduce the 
amount of extraneous light entering the eye and the backscatter within the optic 
globe. At its anterior extreme, the choroid is divided into the ciliary body and the 
iris. The latter contracts or expands to control the amount of light that enters the eye. 
The central opening of the iris (the pupil) varies in diameter from approximately 2 
to 8 mm. The front of the iris contains the visible pigment of the eye, whereas the 
back contains a black pigment.

The lens consists of concentric layers of fibrous cells and is suspended by fibers 
that attach to the ciliary body. It is composed of 60% to 70% water, about 6% fat, 
and more protein than any other tissue in the eye. The lens is colored by a slightly 
yellow pigmentation that increases with age. In extreme cases, excessive clouding of 
the lens, referred to as cataracts, can lead to poor color discrimination and loss of 
clear vision. The lens absorbs approximately 8% of the visible light spectrum, with 
higher absorption at shorter wavelengths. Both infrared and ultraviolet light are 
absorbed by proteins within the lens and, in excessive amounts, can damage the eye.

The innermost membrane of the eye is the retina, which lines the inside of the 
wall’s entire posterior portion. When the eye is focused, light from an object is 
imaged on the retina. Pattern vision is afforded by discrete light receptors distrib-
uted over the surface of the retina. There are two types of receptors: cones and rods. 
There are between 6 and 7 million cones in each eye. They are located primarily in 
the central portion of the retina, called the fovea, and are highly sensitive to color. 
Humans can resolve fine details because each cone is connected to its own nerve end. 
Muscles rotate the eye until the image of a region of interest falls on the fovea. Cone 
vision is called photopic or bright-light vision.

The number of rods is much larger: Some 75 to 150 million are distributed over 
the retina. The larger area of distribution, and the fact that several rods are connect-
ed to a single nerve ending, reduces the amount of detail discernible by these recep-
tors. Rods capture an overall image of the field of view. They are not involved in 
color vision, and are sensitive to low levels of illumination. For example, objects that 
appear brightly colored in daylight appear as colorless forms in moonlight because 
only the rods are stimulated. This phenomenon is known as scotopic or dim-light 
vision.

Figure 2.2 shows the density of rods and cones for a cross section of the right eye, 
passing through the region where the optic nerve emerges from the eye. The absence 
of receptors in this area causes the so-called blind spot (see Fig. 2.1). Except for this 
region, the distribution of receptors is radially symmetric about the fovea. Receptor 
density is measured in degrees from the visual axis. Note in Fig. 2.2 that cones are 
most dense in the center area of the fovea, and that rods increase in density from 
the center out to approximately 20° off axis. Then, their density decreases out to the 
periphery of the retina.

The fovea itself is a circular indentation in the retina of about 1.5 mm in diameter, 
so it has an area of approximately 1.77 mm2. As Fig. 2.2 shows, the density of cones 
in that area of the retina is on the order of 150,000 elements per mm2. Based on 
these figures, the number of cones in the fovea, which is the region of highest acuity 
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50    Chapter 2  Digital Image Fundamentals

in the eye, is about 265,000 elements. Modern electronic imaging chips exceed this 
number by a large factor. While the ability of humans to integrate intelligence and 
experience with vision makes purely quantitative comparisons somewhat superficial, 
keep in mind for future discussions that electronic imaging sensors can easily exceed 
the capability of the eye in resolving image detail.

IMAGE FORMATION IN THE EYE
In an ordinary photographic camera, the lens has a fixed focal length. Focusing at 
various distances is achieved by varying the distance between the lens and the imag-
ing plane, where the film (or imaging chip in the case of a digital camera) is located. 
In the human eye, the converse is true; the distance between the center of the lens 
and the imaging sensor (the retina) is fixed, and the focal length needed to achieve 
proper focus is obtained by varying the shape of the lens. The fibers in the ciliary 
body accomplish this by flattening or thickening the lens for distant or near ob-
jects, respectively. The distance between the center of the lens and the retina along 
the visual axis is approximately 17 mm. The range of focal lengths is approximately 
14 mm to 17 mm, the latter taking place when the eye is relaxed and focused at dis-
tances greater than about 3 m. The geometry in Fig. 2.3 illustrates how to obtain the 
dimensions of an image formed on the retina. For example, suppose that a person 
is looking at a tree 15 m high at a distance of 100 m. Letting h denote the height 
of that object in the retinal image, the geometry of Fig. 2.3 yields 15 100 17= h  or 
h = 2 5.  mm. As indicated earlier in this section, the retinal image is focused primar-
ily on the region of the fovea. Perception then takes place by the relative excitation 
of light receptors, which transform radiant energy into electrical impulses that ulti-
mately are decoded by the brain.

BRIGHTNESS ADAPTATION AND DISCRIMINATION

Because digital images are displayed as sets of discrete intensities, the eye’s abil-
ity to discriminate between different intensity levels is an important consideration 
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2.1  Elements of Visual Perception 51

in presenting image processing results. The range of light intensity levels to which 
the human visual system can adapt is enormous—on the order of 1010— from the 
scotopic threshold to the glare limit. Experimental evidence indicates that subjec-
tive brightness (intensity as perceived by the human visual system) is a logarithmic 
function of the light intensity incident on the eye. Figure 2.4, a plot of light inten-
sity versus subjective brightness, illustrates this characteristic. The long solid curve 
represents the range of intensities to which the visual system can adapt. In photopic 
vision alone, the range is about 106. The transition from scotopic to photopic vision 
is gradual over the approximate range from 0.001 to 0.1 millilambert (−3 to −1 mL 
in the log scale), as the double branches of the adaptation curve in this range show.

The key point in interpreting the impressive dynamic range depicted in Fig. 2.4 
is that the visual system cannot operate over such a range simultaneously. Rather, it 
accomplishes this large variation by changing its overall sensitivity, a phenomenon 
known as brightness adaptation. The total range of distinct intensity levels the eye 
can discriminate simultaneously is rather small when compared with the total adap-
tation range. For a given set of conditions, the current sensitivity level of the visual 
system is called the brightness adaptation level, which may correspond, for example, 
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52    Chapter 2  Digital Image Fundamentals

to brightness Ba  in Fig. 2.4. The short intersecting curve represents the range of sub-
jective brightness that the eye can perceive when adapted to this level. This range is 
rather restricted, having a level Bb at, and below which, all stimuli are perceived as 
indistinguishable blacks. The upper portion of the curve is not actually restricted but, 
if extended too far, loses its meaning because much higher intensities would simply 
raise the adaptation level higher than Ba.

The ability of the eye to discriminate between changes in light intensity at any 
specific adaptation level is of considerable interest. A classic experiment used to 
determine the capability of the human visual system for brightness discrimination 
consists of having a subject look at a flat, uniformly illuminated area large enough to 
occupy the entire field of view. This area typically is a diffuser, such as opaque glass, 
illuminated from behind by a light source, I, with variable intensity. To this field is 
added an increment of illumination, �I , in the form of a short-duration flash that 
appears as a circle in the center of the uniformly illuminated field, as Fig. 2.5 shows.

If �I  is not bright enough, the subject says “no,” indicating no perceivable change. 
As �I  gets stronger, the subject may give a positive response of “yes,” indicating a 
perceived change. Finally, when �I  is strong enough, the subject will give a response 
of “yes” all the time. The quantity �I Ic , where �Ic  is the increment of illumination 
discriminable 50% of the time with background illumination I, is called the Weber 
ratio. A small value of �I Ic  means that a small percentage change in intensity is 
discriminable. This represents “good” brightness discrimination. Conversely, a large 
value of �I Ic  means that a large percentage change in intensity is required for the 
eye to detect the change. This represents “poor” brightness discrimination.

A plot of �I Ic  as a function of log I  has the characteristic shape shown in Fig. 2.6. 
This curve shows that brightness discrimination is poor (the Weber ratio is large) at 
low levels of illumination, and it improves significantly (the Weber ratio decreases) 
as background illumination increases. The two branches in the curve reflect the fact 
that at low levels of illumination vision is carried out by the rods, whereas, at high 
levels, vision is a function of cones.

If the background illumination is held constant and the intensity of the other 
source, instead of flashing, is now allowed to vary incrementally from never being 
perceived to always being perceived, the typical observer can discern a total of one 
to two dozen different intensity changes. Roughly, this result is related to the num-
ber of different intensities a person can see at any one point or small area in a mono-
chrome image. This does not mean that an image can be represented by such a small 
number of intensity values because, as the eye roams about the image, the average 
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2.1  Elements of Visual Perception    53

background changes, thus allowing a different set of incremental changes to be detect-
ed at each new adaptation level. The net result is that the eye is capable of a broader 
range of overall intensity discrimination. In fact, as we will show in Section 2.4, the eye 
is capable of detecting objectionable effects in monochrome images whose overall 
intensity is represented by fewer than approximately two dozen levels.

Two phenomena demonstrate that perceived brightness is not a simple function 
of intensity. The first is based on the fact that the visual system tends to undershoot 
or overshoot around the boundary of regions of different intensities. Figure 2.7(a) 
shows a striking example of this phenomenon. Although the intensity of the stripes 
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54    Chapter 2  Digital Image Fundamentals

is constant [see Fig. 2.7(b)], we actually perceive a brightness pattern that is strongly 
scalloped near the boundaries, as Fig. 2.7(c) shows. These perceived scalloped bands 
are called Mach bands after Ernst Mach, who first described the phenomenon in 1865.

The second phenomenon, called simultaneous contrast, is that a region’s per-
ceived brightness does not depend only on its intensity, as Fig. 2.8 demonstrates. All 
the center squares have exactly the same intensity, but each appears to the eye to 
become darker as the background gets lighter. A more familiar example is a piece of 
paper that looks white when lying on a desk, but can appear totally black when used 
to shield the eyes while looking directly at a bright sky.

Other examples of human perception phenomena are optical illusions, in which 
the eye fills in nonexisting details or wrongly perceives geometrical properties of 
objects. Figure 2.9 shows some examples. In Fig. 2.9(a), the outline of a square is 
seen clearly, despite the fact that no lines defining such a figure are part of the image. 
The same effect, this time with a circle, can be seen in Fig. 2.9(b); note how just a few 
lines are sufficient to give the illusion of a complete circle. The two horizontal line 
segments in Fig. 2.9(c) are of the same length, but one appears shorter than the other. 
Finally, all long lines in Fig. 2.9(d) are equidistant and parallel. Yet, the crosshatching 
creates the illusion that those lines are far from being parallel.

2.2 LIGHT AND THE ELECTROMAGNETIC SPECTRUM  

The electromagnetic spectrum was introduced in Section 1.3. We now consider this 
topic in more detail. In 1666, Sir Isaac Newton discovered that when a beam of 
sunlight passes through a glass prism, the emerging beam of light is not white but 
consists instead of a continuous spectrum of colors ranging from violet at one end 
to red at the other. As Fig. 2.10 shows, the range of colors we perceive in visible light 
is a small portion of the electromagnetic spectrum. On one end of the spectrum are 
radio waves with wavelengths billions of times longer than those of visible light. On 
the other end of the spectrum are gamma rays with wavelengths millions of times 
smaller than those of visible light. We showed examples in Section 1.3 of images in 
most of the bands in the EM spectrum.

2.2

ba c

FIGURE 2.8  Examples of simultaneous contrast. All the inner squares have the same intensity, 
but they appear progressively darker as the background becomes lighter.
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2.2  Light and the Electromagnetic Spectrum    55

The electromagnetic spectrum can be expressed in terms of wavelength, frequency, 
or energy. Wavelength (l) and frequency (n) are related by the expression 

 l
n

= c
 (2-1)

where c is the speed of light (2 998 108. *  m/s). Figure 2.11 shows a schematic repre-
sentation of one wavelength. 

The energy of the various components of the electromagnetic spectrum is given 
by the expression

 E h= n  (2-2)

where h is Planck’s constant. The units of wavelength are meters, with the terms 
microns (denoted mm and equal to 10 6−  m) and nanometers (denoted nm and equal 
to 10 9−  m) being used just as frequently. Frequency is measured in Hertz (Hz), with 
one Hz being equal to one cycle of a sinusoidal wave per second. A commonly used 
unit of energy is the electron-volt.

Electromagnetic waves can be visualized as propagating sinusoidal waves with 
wavelength l  (Fig. 2.11), or they can be thought of as a stream of massless particles, 
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each traveling in a wavelike pattern and moving at the speed of light. Each mass-
less particle contains a certain amount (or bundle) of energy, called a photon. We 
see from Eq. (2-2) that energy is proportional to frequency, so the higher-frequency 
(shorter wavelength) electromagnetic phenomena carry more energy per photon. 
Thus, radio waves have photons with low energies, microwaves have more energy 
than radio waves, infrared still more, then visible, ultraviolet, X-rays, and finally 
gamma rays, the most energetic of all. High-energy electromagnetic radiation, espe-
cially in the X-ray and gamma ray bands, is particularly harmful to living organisms. 

Light is a type of electromagnetic radiation that can be sensed by the eye. The 
visible (color) spectrum is shown expanded in Fig. 2.10 for the purpose of discussion 
(we will discuss color in detail in Chapter 6). The visible band of the electromag-
netic spectrum spans the range from approximately 0.43 mm (violet) to about 0.79 
mm (red). For convenience, the color spectrum is divided into six broad regions: 
violet, blue, green, yellow, orange, and red. No color (or other component of the 
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FIGURE 2.10  The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanations, but note 
that it encompasses a very narrow range of the total EM spectrum.
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2.3  Image Sensing and Acquisition    57

electromagnetic spectrum) ends abruptly; rather, each range blends smoothly into 
the next, as Fig. 2.10 shows.

The colors perceived in an object are determined by the nature of the light reflect-
ed by the object. A body that reflects light relatively balanced in all visible wave-
lengths appears white to the observer. However, a body that favors reflectance in 
a limited range of the visible spectrum exhibits some shades of color. For example, 
green objects reflect light with wavelengths primarily in the 500 to 570 nm range, 
while absorbing most of the energy at other wavelengths.

Light that is void of color is called monochromatic (or achromatic) light. The 
only attribute of monochromatic light is its intensity. Because the intensity of mono-
chromatic light is perceived to vary from black to grays and finally to white, the 
term gray level is used commonly to denote monochromatic intensity (we use the 
terms intensity and gray level interchangeably in subsequent discussions). The range 
of values of monochromatic light from black to white is usually called the gray scale, 
and monochromatic images are frequently referred to as grayscale images.

Chromatic (color) light spans the electromagnetic energy spectrum from approxi-
mately 0.43 to 0.79 mm, as noted previously. In addition to frequency, three other 
quantities are used to describe a chromatic light source: radiance, luminance, and 
brightness. Radiance is the total amount of energy that flows from the light source, 
and it is usually measured in watts (W). Luminance, measured in lumens (lm), gives 
a measure of the amount of energy an observer perceives from a light source. For 
example, light emitted from a source operating in the far infrared region of the 
spectrum could have significant energy (radiance), but an observer would hardly 
perceive it; its luminance would be almost zero. Finally, as discussed in Section 2.1, 
brightness is a subjective descriptor of light perception that is practically impossible 
to measure. It embodies the achromatic notion of intensity and is one of the key fac-
tors in describing color sensation.

In principle, if a sensor can be developed that is capable of detecting energy 
radiated in a band of the electromagnetic spectrum, we can image events of inter-
est in that band. Note, however, that the wavelength of an electromagnetic wave 
required to “see” an object must be of the same size as, or smaller than, the object. 
For example, a water molecule has a diameter on the order of 10 10−  m. Thus, to study 
these molecules, we would need a source capable of emitting energy in the far (high-
energy) ultraviolet band or soft (low-energy) X-ray bands. 

Although imaging is based predominantly on energy from electromagnetic wave 
radiation, this is not the only method for generating images. For example, we saw in 
Section 1.3 that sound reflected from objects can be used to form ultrasonic images. 
Other sources of digital images are electron beams for electron microscopy, and 
software for generating synthetic images used in graphics and visualization.

2.3 IMAGE SENSING AND ACQUISITION  

Most of the images in which we are interested are generated by the combination of 
an “illumination” source and the reflection or absorption of energy from that source 
by the elements of the “scene” being imaged. We enclose illumination and scene 
in quotes to emphasize the fact that they are considerably more general than the 

2.3
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familiar situation in which a visible light source illuminates a familiar 3-D scene. For 
example, the illumination may originate from a source of electromagnetic energy, 
such as a radar, infrared, or X-ray system. But, as noted earlier, it could originate 
from less traditional sources, such as ultrasound or even a computer-generated illu-
mination pattern. Similarly, the scene elements could be familiar objects, but they 
can just as easily be molecules, buried rock formations, or a human brain. Depend-
ing on the nature of the source, illumination energy is reflected from, or transmitted 
through, objects. An example in the first category is light reflected from a planar 
surface. An example in the second category is when X-rays pass through a patient’s 
body for the purpose of generating a diagnostic X-ray image. In some applications, 
the reflected or transmitted energy is focused onto a photo converter (e.g., a phos-
phor screen) that converts the energy into visible light. Electron microscopy and 
some applications of gamma imaging use this approach. 

Figure 2.12 shows the three principal sensor arrangements used to transform inci-
dent energy into digital images. The idea is simple: Incoming energy is transformed 
into a voltage by a combination of the input electrical power and sensor material 
that is responsive to the type of energy being detected. The output voltage wave-
form is the response of the sensor, and a digital quantity is obtained by digitizing that 
response. In this section, we look at the principal modalities for image sensing and 
generation. We will discuss image digitizing in Section 2.4.

IMAGE ACQUISITION USING A SINGLE SENSING ELEMENT
Figure 2.12(a) shows the components of a single sensing element. A familiar sensor 
of this type is the photodiode, which is constructed of silicon materials and whose 
output is a voltage proportional to light intensity. Using a filter in front of a sensor 
improves its selectivity. For example, an optical green-transmission filter favors light 
in the green band of the color spectrum. As a consequence, the sensor output would 
be stronger for green light than for other visible light components.

In order to generate a 2-D image using a single sensing element, there has to 
be relative displacements in both the x- and y-directions between the sensor and 
the area to be imaged. Figure 2.13 shows an arrangement used in high-precision 
scanning, where a film negative is mounted onto a drum whose mechanical rotation 
provides displacement in one dimension. The sensor is mounted on a lead screw 
that provides motion in the perpendicular direction. A light source is contained 
inside the drum. As the light passes through the film, its intensity is modified by 
the film density before it is captured by the sensor. This "modulation" of the light 
intensity causes corresponding variations in the sensor voltage, which are ultimately 
converted to image intensity levels by digitization. 

This method is an inexpensive way to obtain high-resolution images because 
mechanical motion can be controlled with high precision. The main disadvantages 
of this method are that it is slow and not readily portable. Other similar mechanical 
arrangements use a flat imaging bed, with the sensor moving in two linear direc-
tions. These types of mechanical digitizers sometimes are referred to as transmission 
microdensitometers. Systems in which light is reflected from the medium, instead 
of passing through it, are called reflection microdensitometers. Another example 
of imaging with a single sensing element places a laser source coincident with the 
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FIGURE 2.12
(a) Single sensing 
element. 
(b) Line sensor.  
(c) Array sensor.
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FIGURE 2.13
Combining a 
single sensing 
element with 
mechanical  
motion to  
generate a 2-D 
image.
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60 Chapter 2  Digital Image Fundamentals

sensor. Moving mirrors are used to control the outgoing beam in a scanning pattern 
and to direct the reflected laser signal onto the sensor. 

IMAGE ACQUISITION USING SENSOR STRIPS

A geometry used more frequently than single sensors is an in-line sensor strip, as in 
Fig. 2.12(b). The strip provides imaging elements in one direction. Motion perpen-
dicular to the strip provides imaging in the other direction, as shown in Fig. 2.14(a). 
This arrangement is used in most flat bed scanners. Sensing devices with 4000 or 
more in-line sensors are possible. In-line sensors are used routinely in airborne 
imaging applications, in which the imaging system is mounted on an aircraft that 
flies at a constant altitude and speed over the geographical area to be imaged. One-
dimensional imaging sensor strips that respond to various bands of the electromag-
netic spectrum are mounted perpendicular to the direction of flight. An imaging 
strip gives one line of an image at a time, and the motion of the strip relative to 
the scene completes the other dimension of a 2-D image. Lenses or other focusing 
schemes are used to project the area to be scanned onto the sensors.

Sensor strips in a ring configuration are used in medical and industrial imaging 
to obtain cross-sectional (“slice”) images of 3-D objects, as Fig. 2.14(b) shows. A 
rotating X-ray source provides illumination, and X-ray sensitive sensors opposite 
the source collect the energy that passes through the object. This is the basis for 
medical and industrial computerized axial tomography (CAT) imaging, as indicated 
in Sections 1.2 and 1.3. The output of the sensors is processed by reconstruction 
algorithms whose objective is to transform the sensed data into meaningful cross-
sectional images (see Section 5.11). In other words, images are not obtained directly 

Sensor strip

Linear 
motionImaged area

One image line out per
increment of linear motion

Image
reconstruction

3-D object

Linear m
otio

n

Sensor ring

X-ray source

Cross-sectional images
of 3-D object

Source
rotation

ba

FIGURE 2.14
(a) Image  
acquisition using 
a linear sensor 
strip. (b) Image 
acquisition using 
a circular sensor 
strip.
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from the sensors by motion alone; they also require extensive computer process-
ing. A 3-D digital volume consisting of stacked images is generated as the object is 
moved in a direction perpendicular to the sensor ring. Other modalities of imaging 
based on the CAT principle include magnetic resonance imaging (MRI) and posi-
tron emission tomography (PET). The illumination sources, sensors, and types of 
images are different, but conceptually their applications are very similar to the basic 
imaging approach shown in Fig. 2.14(b).

IMAGE ACQUISITION USING SENSOR ARRAYS
Figure 2.12(c) shows individual sensing elements arranged in the form of a 2-D array. 
Electromagnetic and ultrasonic sensing devices frequently are arranged in this man-
ner. This is also the predominant arrangement found in digital cameras. A typical 
sensor for these cameras is a CCD (charge-coupled device) array, which can be 
manufactured with a broad range of sensing properties and can be packaged in rug-
ged arrays of 4000 4000*  elements or more. CCD sensors are used widely in digital 
cameras and other light-sensing instruments. The response of each sensor is pro-
portional to the integral of the light energy projected onto the surface of the sensor, 
a property that is used in astronomical and other applications requiring low noise 
images. Noise reduction is achieved by letting the sensor integrate the input light 
signal over minutes or even hours. Because the sensor array in Fig. 2.12(c) is two-
dimensional, its key advantage is that a complete image can be obtained by focusing 
the energy pattern onto the surface of the array. Motion obviously is not necessary, 
as is the case with the sensor arrangements discussed in the preceding two sections.

Figure 2.15 shows the principal manner in which array sensors are used. This 
figure shows the energy from an illumination source being reflected from a scene 
(as mentioned at the beginning of this section, the energy also could be transmit-
ted through the scene). The first function performed by the imaging system in Fig. 
2.15(c) is to collect the incoming energy and focus it onto an image plane. If the illu-
mination is light, the front end of the imaging system is an optical lens that projects 
the viewed scene onto the focal plane of the lens, as Fig. 2.15(d) shows. The sensor 
array, which is coincident with the focal plane, produces outputs proportional to the 
integral of the light received at each sensor. Digital and analog circuitry sweep these 
outputs and convert them to an analog signal, which is then digitized by another sec-
tion of the imaging system. The output is a digital image, as shown diagrammatically 
in Fig. 2.15(e). Converting images into digital form is the topic of Section 2.4.

A SIMPLE IMAGE FORMATION MODEL
As introduced in Section 1.1, we denote images by two-dimensional functions of the 
form f x y( , ). The value of f at spatial coordinates ( , )x y  is a scalar quantity whose 
physical meaning is determined by the source of the image, and whose values are 
proportional to energy radiated by a physical source (e.g., electromagnetic waves). 
As a consequence, f x y( , ) must be nonnegative† and finite; that is,

†  Image intensities can become negative during processing, or as a result of interpretation. For example, in radar 
images, objects moving toward the radar often are interpreted as having negative velocities while objects moving 
away are interpreted as having positive velocities. Thus, a velocity image might be coded as having both positive 
and negative values. When storing and displaying images, we normally scale the intensities so that the smallest 
negative value becomes 0 (see Section 2.6 regarding intensity scaling).

In some cases, the source 
is imaged directly, as 
in obtaining images of 
the sun.
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62 Chapter 2  Digital Image Fundamentals

 0 ≤ <f x y( , ) �  (2-3)

Function f x y( , ) is characterized by two components: (1) the amount of source illu-
mination incident on the scene being viewed, and (2) the amount of illumination 
reflected by the objects in the scene. Appropriately, these are called the illumination 
and reflectance components, and are denoted by i x y( , ) and r x y( , ), respectively. The 
two functions combine as a product to form f x y( , ):

 f x y i x y r x y( , ) ( , ) ( , )=  (2-4)

where

 0 ≤ <i x y( , ) �  (2-5)

and

 0 1≤ ≤r x y( , )  (2-6)

Thus, reflectance is bounded by 0 (total absorption) and 1 (total reflectance). The 
nature of i x y( , ) is determined by the illumination source, and r x y( , ) is determined 
by the characteristics of the imaged objects. These expressions are applicable also 
to images formed via transmission of the illumination through a medium, such as a 

Illumination (energy)
source

Imaging system

(Internal) image plane

Output (digitized) image

Scene

b
a dc e

FIGURE 2.15  An example of digital image acquisition. (a) Illumination (energy) source. (b) A scene. (c) Imaging 
system. (d) Projection of the scene onto the image plane. (e) Digitized image.
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2.4  Image Sampling and Quantization    63

chest X-ray. In this case, we would deal with a transmissivity instead of a reflectivity 
function, but the limits would be the same as in Eq. (2-6), and the image function 
formed would be modeled as the product in Eq. (2-4).

EXAMPLE 2.1 :  Some typical values of illumination and reflectance.

The following numerical quantities illustrate some typical values of illumination and reflectance for 
visible light. On a clear day, the sun may produce in excess of 90 000,  lm/m2 of illumination on the sur-
face of the earth. This value decreases to less than 10 000,  lm/m2 on a cloudy day. On a clear evening, a 
full moon yields about 0 1.  lm/m2 of illumination. The typical illumination level in a commercial office 
is about 1 000,  lm/m2. Similarly, the following are typical values of r x y( , ): 0.01 for black velvet, 0.65 for 
stainless steel, 0.80 for flat-white wall paint, 0.90 for silver-plated metal, and 0.93 for snow. 

Let the intensity (gray level) of a monochrome image at any coordinates ( , )x y  
be denoted by 

 / = f x y( , )  (2-7)

From Eqs. (2-4) through (2-6) it is evident that /  lies in the range

 L Lmin max≤ ≤/  (2-8)

In theory, the requirement on Lmin  is that it be nonnegative, and on Lmax that it 
be finite. In practice, L i rmin min min=  and L i rmax max max= . From Example 2.1, using 
average office illumination and reflectance values as guidelines, we may expect 
Lmin ≈ 10 and Lmax ≈ 1000  to be typical indoor values in the absence of additional 
illumination. The units of these quantities are lum/m2. However, actual units sel-
dom are of interest, except in cases where photometric measurements are being 
performed.

The interval [ , ]min maxL L  is called the intensity (or gray) scale. Common practice is 
to shift this interval numerically to the interval [ , ],0 1  or [ , ],0 C  where / = 0 is consid-
ered black and / = 1 (or )C  is considered white on the scale. All intermediate values 
are shades of gray varying from black to white.

2.4  IMAGE SAMPLING AND QUANTIZATION  

As discussed in the previous section, there are numerous ways to acquire images, but 
our objective in all is the same: to generate digital images from sensed data. The out-
put of most sensors is a continuous voltage waveform whose amplitude and spatial 
behavior are related to the physical phenomenon being sensed. To create a digital 
image, we need to convert the continuous sensed data into a digital format. This 
requires two processes: sampling and quantization.

BASIC CONCEPTS IN SAMPLING AND QUANTIZATION

Figure 2.16(a) shows a continuous image f that we want to convert to digital form. 
An image may be continuous with respect to the x- and y-coordinates, and also in 

2.4

The discussion of sam-
pling in this section is of 
an intuitive nature. We 
will discuss this topic in 
depth in Chapter 4.
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64    Chapter 2  Digital Image Fundamentals

amplitude. To digitize it, we have to sample the function in both coordinates and 
also in amplitude. Digitizing the coordinate values is called sampling. Digitizing the 
amplitude values is called quantization.

The one-dimensional function in Fig. 2.16(b) is a plot of amplitude (intensity 
level) values of the continuous image along the line segment AB in Fig. 2.16(a). The 
random variations are due to image noise. To sample this function, we take equally 
spaced samples along line AB, as shown in Fig. 2.16(c). The samples are shown as 
small dark squares superimposed on the function, and their (discrete) spatial loca-
tions are indicated by corresponding tick marks in the bottom of the figure. The set 
of dark squares constitute the sampled function. However, the values of the sam-
ples still span (vertically) a continuous range of intensity values. In order to form a 
digital function, the intensity values also must be converted (quantized) into discrete 
quantities. The vertical gray bar in Fig. 2.16(c) depicts the intensity scale divided 
into eight discrete intervals, ranging from black to white. The vertical tick marks 
indicate the specific value assigned to each of the eight intensity intervals. The con-
tinuous intensity levels are quantized by assigning one of the eight values to each 
sample, depending on the vertical proximity of a sample to a vertical tick mark. The 
digital samples resulting from both sampling and quantization are shown as white 
squares in Fig. 2.16(d). Starting at the top of the continuous image and carrying out 
this procedure downward, line by line, produces a two-dimensional digital image. 
It is implied in Fig. 2.16 that, in addition to the number of discrete levels used, the 
accuracy achieved in quantization is highly dependent on the noise content of the 
sampled signal. 
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FIGURE 2.16
(a) Continuous 
image. (b) A 
scan line show-
ing intensity 
variations along 
line AB in the 
continuous image. 
(c) Sampling and 
quantization.  
(d) Digital scan 
line. (The black 
border in (a) is 
included for  
clarity. It is not 
part of the image).
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In practice, the method of sampling is determined by the sensor arrangement 
used to generate the image. When an image is generated by a single sensing element 
combined with mechanical motion, as in Fig. 2.13, the output of the sensor is quan-
tized in the manner described above. However, spatial sampling is accomplished by 
selecting the number of individual mechanical increments at which we activate the 
sensor to collect data. Mechanical motion can be very exact so, in principle, there is 
almost no limit on how fine we can sample an image using this approach. In practice, 
limits on sampling accuracy are determined by other factors, such as the quality of 
the optical components used in the system.

When a sensing strip is used for image acquisition, the number of sensors in the 
strip establishes the samples in the resulting image in one direction, and mechanical 
motion establishes the number of samples in the other. Quantization of the sensor 
outputs completes the process of generating a digital image.

When a sensing array is used for image acquisition, no motion is required. The 
number of sensors in the array establishes the limits of sampling in both directions. 
Quantization of the sensor outputs is as explained above. Figure 2.17 illustrates this 
concept. Figure 2.17(a) shows a continuous image projected onto the plane of a 2-D 
sensor. Figure 2.17(b) shows the image after sampling and quantization. The quality 
of a digital image is determined to a large degree by the number of samples and dis-
crete intensity levels used in sampling and quantization. However, as we will show 
later in this section, image content also plays a role in the choice of these parameters.

REPRESENTING DIGITAL IMAGES

Let f s t( , ) represent a continuous image function of two continuous variables, s and 
t. We convert this function into a digital image by sampling and quantization, as 
explained in the previous section. Suppose that we sample the continuous image 
into a digital image, f x y( , ), containing M rows and N columns, where ( , )x y  are 
discrete coordinates. For notational clarity and convenience, we use integer values 
for these discrete coordinates: x M= −0 1 2 1, , , ,…  and y N= −0 1 2 1, , , ,… . Thus, 
for example, the value of the digital image at the origin is f ( , )0 0 , and its value at 
the next coordinates along the first row is f ( , )0 1 . Here, the notation (0, 1) is used 

ba

FIGURE 2.17
(a) Continuous 
image projected 
onto a sensor 
array. (b) Result 
of image sampling 
and quantization.
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66    Chapter 2  Digital Image Fundamentals

to denote the second sample along the first row. It does not mean that these are 
the values of the physical coordinates when the image was sampled. In general, the 
value of a digital image at any coordinates ( , )x y  is denoted f x y( , ), where x and y 
are integers. When we need to refer to specific coordinates ( , )i j , we use the notation 
f i j( , ), where the arguments are integers. The section of the real plane spanned by 
the coordinates of an image is called the spatial domain, with x and y being referred 
to as spatial variables or spatial coordinates.

Figure 2.18 shows three ways of representing f x y( , ). Figure 2.18(a) is a plot of 
the function, with two axes determining spatial location and the third axis being the 
values of f as a function of x and y. This representation is useful when working with 
grayscale sets whose elements are expressed as triplets of the form ( , , )x y z , where 
x and y are spatial coordinates and z is the value of f at coordinates ( , ).x y  We will 
work with this representation briefly in Section 2.6.

The representation in Fig. 2.18(b) is more common, and it shows f x y( , ) as it would 
appear on a computer display or photograph. Here, the intensity of each point in the 
display is proportional to the value of f at that point. In this figure, there are only 
three equally spaced intensity values. If the intensity is normalized to the interval 
[ , ],0 1  then each point in the image has the value 0, 0.5, or 1. A monitor or printer con-
verts these three values to black, gray, or white, respectively, as in Fig. 2.18(b). This 
type of representation includes color images, and allows us to view results at a glance.

As Fig. 2.18(c) shows, the third representation is an array (matrix) composed of 
the numerical values of f x y( , ). This is the representation used for computer process-
ing. In equation form, we write the representation of an M N*  numerical array as

 f x y

f f f N

f f f N

f M

( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( ,

=

−
−

−

0 0 0 1 0 1

1 0 1 1 1 1

1

�
�

� � �
00 1 1 1 1) ( , ) ( , )f M f M N− − −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥�

 (2-9)

The right side of this equation is a digital image represented as an array of real 
numbers. Each element of this array is called an image element, picture element, pixel, 
or pel. We use the terms image and pixel throughout the book to denote a digital 
image and its elements. Figure 2.19 shows a graphical representation of an image 
array, where the x- and y-axis are used to denote the rows and columns of the array. 
Specific pixels are values of the array at a fixed pair of coordinates. As mentioned 
earlier, we generally use f i j( , ) when referring to a pixel with coordinates ( , ).i j

We can also represent a digital image in a traditional matrix form:

 A =

⎡

⎣

−

−

− − − −

a a a

a a a

a a a

N

N

M M M N

0 0 0 1 0 1
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�

⎢⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (2-10)

Clearly, a f i jij = ( , ), so Eqs. (2-9) and (2-10) denote identical arrays.
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As Fig. 2.19 shows, we define the origin of an image at the top left corner. This is 
a convention based on the fact that many image displays (e.g., TV monitors) sweep 
an image starting at the top left and moving to the right, one row at a time. More 
important is the fact that the first element of a matrix is by convention at the top 
left of the array. Choosing the origin of f x y( , ) at that point makes sense mathemati-
cally because digital images in reality are matrices. In fact, as you will see, sometimes 
we use x and y interchangeably in equations with the rows (r) and columns (c) of a 
matrix.

It is important to note that the representation in Fig. 2.19, in which the positive 
x-axis extends downward and the positive y-axis extends to the right, is precisely the 
right-handed Cartesian coordinate system with which you are familiar,† but shown 
rotated by 90°  so that the origin appears on the top, left.

† Recall that a right-handed coordinate system is such that, when the index of the right hand points in the direc-
tion of the positive x-axis and the middle finger points in the (perpendicular) direction of the positive y-axis, the 
thumb points up. As Figs. 2.18 and 2.19 show, this indeed is the case in our image coordinate system. In practice, 
you will also find implementations based on a left-handed system, in which the x- and y-axis are interchanged 
from the way we show them in Figs. 2.18 and 2.19. For example, MATLAB uses a left-handed system for image 
processing. Both systems are perfectly valid, provided they are used consistently.
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FIGURE 2.18
(a) Image plotted 
as a surface.  
(b) Image displayed 
as a visual intensity 
array. (c) Image 
shown as a 2-D nu-
merical array. (The 
numbers 0, .5, and 
1 represent black, 
gray, and white, 
respectively.)
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The center of an M N×  digital image with origin at ( , )0 0  and range to ( , )M N− −1 1
is obtained by dividing M and N by 2 and rounding down to the nearest integer. 
This operation sometimes is denoted using the floor operator, J Ki , as shown in Fig. 
2.19. This holds true for M and N even or odd. For example, the center of an image 
of size 1023 1024×  is at ( , ).511 512  Some programming languages (e.g., MATLAB) 
start indexing at 1 instead of at 0. The center of an image in that case is found at 
( , ) ( ) , ( ) .x y M Nc c = + +( )floor floor2 1 2 1

To express sampling and quantization in more formal mathematical terms, let 
Z and R denote the set of integers and the set of real numbers, respectively. The 
sampling process may be viewed as partitioning the xy-plane into a grid, with the 
coordinates of the center of each cell in the grid being a pair of elements from the 
Cartesian product Z2 (also denoted Z Z× ) which, as you may recall, is the set of 
all ordered pairs of elements ( , )z zi j  with zi and zj  being integers from set Z. Hence, 
f x y( , ) is a digital image if ( , )x y  are integers from Z2 and f is a function that assigns 
an intensity value (that is, a real number from the set of real numbers, R) to each 
distinct pair of coordinates ( , )x y . This functional assignment is the quantization pro-
cess described earlier. If the intensity levels also are integers, then R Z= , and a 
digital image becomes a 2-D function whose coordinates and amplitude values are 
integers. This is the representation we use in the book.

Image digitization requires that decisions be made regarding the values for M, N, 
and for the number, L, of discrete intensity levels. There are no restrictions placed 
on M and N, other than they have to be positive integers. However, digital storage 
and quantizing hardware considerations usually lead to the number of intensity lev-
els, L, being an integer power of two; that is

L k= 2 (2-11)

where k is an integer. We assume that the discrete levels are equally spaced and that 
they are integers in the range [ , ]0 1L − . 

The floor of z, sometimes 
denoted JzK, is the largest 
integer that is less than 
or equal to z. The ceiling 
of z, denoted LzM, is the 
smallest integer that is 
greater than or equal 
to z.

See Eq. (2-41) in  
Section 2.6 for a formal 
definition of the  
Cartesian product.

FIGURE 2.19
Coordinate  
convention used 
to represent digital 
images. Because 
coordinate values 
are integers, there 
is a one-to-one 
correspondence 
between x and y 
and the rows (r) 
and columns (c) of 
a matrix.
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Sometimes, the range of values spanned by the gray scale is referred to as the 
dynamic range, a term used in different ways in different fields. Here, we define the 
dynamic range of an imaging system to be the ratio of the maximum measurable 
intensity to the minimum detectable intensity level in the system. As a rule, the 
upper limit is determined by saturation and the lower limit by noise, although noise 
can be present also in lighter intensities. Figure 2.20 shows examples of saturation 
and slight visible noise. Because the darker regions are composed primarily of pixels 
with the minimum detectable intensity, the background in Fig. 2.20 is the noisiest 
part of the image; however, dark background noise typically is much harder to see. 

The dynamic range establishes the lowest and highest intensity levels that a system 
can represent and, consequently, that an image can have. Closely associated with this 
concept is image contrast, which we define as the difference in intensity between 
the highest and lowest intensity levels in an image. The contrast ratio is the ratio of 
these two quantities. When an appreciable number of pixels in an image have a high 
dynamic range, we can expect the image to have high contrast. Conversely, an image 
with low dynamic range typically has a dull, washed-out gray look. We will discuss 
these concepts in more detail in Chapter 3.

The number, b, of bits required to store a digital image is

 b M N k= * *  (2-12)

When M N= , this equation becomes

 b N k= 2  (2-13)

Noise

Saturation

FIGURE 2.20
An image exhibit-
ing saturation and 
noise. Saturation 
is the highest val-
ue beyond which 
all intensity values 
are clipped (note 
how the entire 
saturated area has 
a high, constant 
intensity level). 
Visible noise in 
this case appears 
as a grainy texture 
pattern. The dark 
background is 
noisier, but the 
noise is difficult 
to see.
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70    Chapter 2  Digital Image Fundamentals

Figure 2.21 shows the number of megabytes required to store square images for 
various values of N and k (as usual, one byte equals 8 bits and a megabyte equals 
106 bytes). 

When an image can have 2k possible intensity levels, it is common practice to 
refer to it as a “k-bit image,” (e,g., a 256-level image is called an 8-bit image). Note 
that storage requirements for large 8-bit images (e.g., 10 000 10 000, ,*  pixels) are 
not insignificant.

LINEAR VS. COORDINATE INDEXING

The convention discussed in the previous section, in which the location of a pixel is 
given by its 2-D coordinates, is referred to as coordinate indexing, or subscript index-
ing. Another type of indexing used extensively in programming image processing 
algorithms is linear indexing, which consists of a 1-D string of nonnegative integers 
based on computing offsets from coordinates ( , )0 0 . There are two principal types of 
linear indexing, one is based on a row scan of an image, and the other on a column scan.

Figure 2.22 illustrates the principle of linear indexing based on a column scan. 
The idea is to scan an image column by column, starting at the origin and proceeding 
down and then to the right. The linear index is based on counting pixels as we scan 
the image in the manner shown in Fig. 2.22. Thus, a scan of the first (leftmost) column 
yields linear indices 0 through M − 1. A scan of the second column yields indices M  
through 2 1M − , and so on, until the last pixel in the last column is assigned the linear 
index value MN − 1. Thus, a linear index, denoted by a , has one of MN possible 
values: 0 1 2 1, , , ,… MN − , as Fig. 2.22 shows. The important thing to notice here is 
that each pixel is assigned a linear index value that identifies it uniquely.

The formula for generating linear indices based on a column scan is straightfor-
ward and can be determined by inspection. For any pair of coordinates ( , )x y , the 
corresponding linear index value is

 a = +My x  (2-14)

N

* 103

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

k = 8

7

6

5

4

3

2

1

0
0

M
eg

ab
yt

es
 (

   
   

   
   

   
 )

*
b 8

10
6

FIGURE 2.21
Number of  
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required to store 
images for  
various values of 
N and k.
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Conversely, the coordinate indices for a given linear index value a  are given by the 
equations†

x M= a mod (2-15)

and

 y x M= ( )a - (2-16)

Recall that a mod M  means “the remainder of the division of a  by M.” This is a 
formal way of stating that row numbers repeat themselves at the start of every col-
umn. Thus, when a = 0, the remainder of the division of 0 by M is 0, so x = 0. When 
a = 1, the remainder is 1, and so x = 1. You can see that x will continue to be equal 
to a  until a = −M 1. When a = M  (which is at the beginning of the second column), 
the remainder is 0, and thus x = 0 again, and it increases by 1 until the next column 
is reached, when the pattern repeats itself. Similar comments apply to Eq. (2-16). See 
Problem 2.11 for a derivation of the preceding two equations.

SPATIAL AND INTENSITY RESOLUTION

Intuitively, spatial resolution is a measure of the smallest discernible detail in an 
image. Quantitatively, spatial resolution can be stated in several ways, with line 
pairs per unit distance, and dots (pixels) per unit distance being common measures. 
Suppose that we construct a chart with alternating black and white vertical lines, 
each of width W units (W can be less than 1). The width of a line pair is thus 2W, and 
there are W 2 line pairs per unit distance. For example, if the width of a line is 0.1 mm, 
there are 5 line pairs per unit distance (i.e., per mm). A widely used definition of 
image resolution is the largest number of discernible line pairs per unit distance (e.g., 
100 line pairs per mm). Dots per unit distance is a measure of image resolution used 
in the printing and publishing industry. In the U.S., this measure usually is expressed 
as dots per inch (dpi). To give you an idea of quality, newspapers are printed with a 

†When working with modular number systems, it is more accurate to write x M≡ a mod , where the symbol ≡
means congruence. However, our interest here is just on converting from linear to coordinate indexing, so we 
use the more familiar equal sign.

x

y

Image f(x, y)

(0, 0)  α = 0

(M - 1, 0)  α = M - 1 (M - 1, N - 1)  α = MN - 1

(0, 1)  α = M
(0, 2)  α = 2M

(M - 1, 1)  α = 2M - 1

Image f(ff x, y)

FIGURE 2.22
Illustration of  
column scanning 
for generating  
linear indices. 
Shown are several 
2-D coordinates (in 
parentheses) and 
their corresponding 
linear indices.
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resolution of 75 dpi, magazines at 133 dpi, glossy brochures at 175 dpi, and the book 
page at which you are presently looking was printed at 2400 dpi. 

To be meaningful, measures of spatial resolution must be stated with respect to 
spatial units. Image size by itself does not tell the complete story. For example, to say 
that an image has a resolution of 1024 1024*  pixels is not a meaningful statement 
without stating the spatial dimensions encompassed by the image. Size by itself is 
helpful only in making comparisons between imaging capabilities. For instance, a 
digital camera with a 20-megapixel CCD imaging chip can be expected to have a 
higher capability to resolve detail than an 8-megapixel camera, assuming that both 
cameras are equipped with comparable lenses and the comparison images are taken 
at the same distance.

Intensity resolution similarly refers to the smallest discernible change in inten-
sity level. We have considerable discretion regarding the number of spatial samples 
(pixels) used to generate a digital image, but this is not true regarding the number 
of intensity levels. Based on hardware considerations, the number of intensity levels 
usually is an integer power of two, as we mentioned when discussing Eq. (2-11). The 
most common number is 8 bits, with 16 bits being used in some applications in which 
enhancement of specific intensity ranges is necessary. Intensity quantization using 
32 bits is rare. Sometimes one finds systems that can digitize the intensity levels of 
an image using 10 or 12 bits, but these are not as common. 

Unlike spatial resolution, which must be based on a per-unit-of-distance basis to 
be meaningful, it is common practice to refer to the number of bits used to quan-
tize intensity as the “intensity resolution.” For example, it is common to say that an 
image whose intensity is quantized into 256 levels has 8 bits of intensity resolution. 
However, keep in mind that discernible changes in intensity are influenced also by 
noise and saturation values, and by the capabilities of human perception to analyze 
and interpret details in the context of an entire scene (see Section 2.1). The following 
two examples illustrate the effects of spatial and intensity resolution on discernible 
detail. Later in this section, we will discuss how these two parameters interact in 
determining perceived image quality.

EXAMPLE 2.2 : Effects of reducing the spatial resolution of a digital image.

Figure 2.23 shows the effects of reducing the spatial resolution of an image. The images in Figs. 2.23(a) 
through (d) have resolutions of 930, 300, 150, and 72 dpi, respectively. Naturally, the lower resolution 
images are smaller than the original image in (a). For example, the original image is of size 2136 2140*  
pixels, but the 72 dpi image is an array of only 165 166*  pixels. In order to facilitate comparisons, all the 
smaller images were zoomed back to the original size (the method used for zooming will be discussed 
later in this section). This is somewhat equivalent to “getting closer” to the smaller images so that we can 
make comparable statements about visible details. 

There are some small visual differences between Figs. 2.23(a) and (b), the most notable being a slight 
distortion in the seconds marker pointing to 60 on the right side of the chronometer. For the most part, 
however, Fig. 2.23(b) is quite acceptable. In fact, 300 dpi is the typical minimum image spatial resolution 
used for book publishing, so one would not expect to see much difference between these two images. 
Figure 2.23(c) begins to show visible degradation (see, for example, the outer edges of the chronometer 
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case and compare the seconds marker with the previous two images). The numbers also show visible 
degradation. Figure 2.23(d) shows degradation that is visible in most features of the image. When print-
ing at such low resolutions, the printing and publishing industry uses a number of techniques (such as 
locally varying the pixel size) to produce much better results than those in Fig. 2.23(d). Also, as we will 
show later in this section, it is possible to improve on the results of Fig. 2.23 by the choice of interpola-
tion method used.

EXAMPLE 2.3 :  Effects of varying the number of intensity levels in a digital image.

Figure 2.24(a) is a 774 640×  CT projection image, displayed using 256 intensity levels (see Chapter 1 
regarding CT images). The objective of this example is to reduce the number of intensities of the image 
from 256 to 2 in integer powers of 2, while keeping the spatial resolution constant. Figures 2.24(b) 
through (d) were obtained by reducing the number of intensity levels to 128, 64, and 32, respectively (we 
will discuss in Chapter 3 how to reduce the number of levels). 

ba
dc

FIGURE 2.23
Effects of  
reducing spatial 
resolution. The 
images shown 
are at:  
(a) 930 dpi,  
(b) 300 dpi,  
(c) 150 dpi, and 
(d) 72 dpi.
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The 128- and 64-level images are visually identical for all practical purposes. However, the 32-level image 
in Fig. 2.24(d) has a set of almost imperceptible, very fine ridge-like structures in areas of constant inten-
sity. These structures are clearly visible in the 16-level image in Fig. 2.24(e). This effect, caused by using 
an insufficient number of intensity levels in smooth areas of a digital image, is called false contouring, so 
named because the ridges resemble topographic contours in a map. False contouring generally is quite 
objectionable in images displayed using 16 or fewer uniformly spaced intensity levels, as the images in 
Figs. 2.24(e)-(h) show. 

As a very rough guideline, and assuming integer powers of 2 for convenience, images of size 256 256*  
pixels with 64 intensity levels, and printed on a size format on the order of 5 5*  cm, are about the lowest 
spatial and intensity resolution images that can be expected to be reasonably free of objectionable sam-
pling distortions and false contouring.

ba
dc

FIGURE 2.24
(a) 774 × 640, 
256-level image. 
(b)-(d) Image  
displayed in 128, 
64, and 32 inten-
sity levels, while  
keeping the  
spatial resolution  
constant.  
(Original image 
courtesy of the 
Dr. David R.  
Pickens,  
Department of 
Radiology & 
Radiological  
Sciences,  
Vanderbilt  
University  
Medical Center.)
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The results in Examples 2.2 and 2.3 illustrate the effects produced on image qual-
ity by varying spatial and intensity resolution independently. However, these results 
did not consider any relationships that might exist between these two parameters. 
An early study by Huang [1965] attempted to quantify experimentally the effects on 
image quality produced by the interaction of these two variables. The experiment 
consisted of a set of subjective tests. Images similar to those shown in Fig. 2.25 were 
used. The woman’s face represents an image with relatively little detail; the picture 
of the cameraman contains an intermediate amount of detail; and the crowd picture 
contains, by comparison, a large amount of detail. 

Sets of these three types of images of various sizes and intensity resolution were 
generated by varying N and k [see Eq. (2-13)]. Observers were then asked to rank 

fe
hg

FIGURE 2.24
(Continued) 
(e)-(h) Image 
displayed in 16, 8, 
4, and 2 intensity 
levels. 
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them according to their subjective quality. Results were summarized in the form of 
so-called isopreference curves in the Nk-plane. (Figure 2.26 shows average isopref-
erence curves representative of the types of images in Fig. 2.25.) Each point in the 
Nk-plane represents an image having values of N and k equal to the coordinates 
of that point. Points lying on an isopreference curve correspond to images of equal 
subjective quality. It was found in the course of the experiments that the isoprefer-
ence curves tended to shift right and upward, but their shapes in each of the three 
image categories were similar to those in Fig. 2.26. These results were not unexpect-
ed, because a shift up and right in the curves simply means larger values for N and k, 
which implies better picture quality.

ba c

FIGURE 2.25 (a) Image with a low level of detail. (b) Image with a medium level of detail. (c) Image with a relatively 
large amount of detail. (Image (b) courtesy of the Massachusetts Institute of Technology.)

Face

2561286432

4

5

k

N

Crowd

Cameraman

FIGURE 2.26
Representative  
isopreference 
curves for the 
three types of  
images in  
Fig. 2.25.

DIP4E_GLOBAL_Print_Ready.indb   76 6/16/2017   2:02:22 PM



2.4  Image Sampling and Quantization    77

Observe that isopreference curves tend to become more vertical as the detail in 
the image increases. This result suggests that for images with a large amount of detail 
only a few intensity levels may be needed. For example, the isopreference curve in 
Fig. 2.26 corresponding to the crowd is nearly vertical. This indicates that, for a fixed 
value of N, the perceived quality for this type of image is nearly independent of the 
number of intensity levels used (for the range of intensity levels shown in Fig. 2.26). 
The perceived quality in the other two image categories remained the same in some 
intervals in which the number of samples was increased, but the number of intensity 
levels actually decreased. The most likely reason for this result is that a decrease in k 
tends to increase the apparent contrast, a visual effect often perceived as improved 
image quality.

IMAGE INTERPOLATION

Interpolation is used in tasks such as zooming, shrinking, rotating, and geometrically 
correcting digital images. Our principal objective in this section is to introduce inter-
polation and apply it to image resizing (shrinking and zooming), which are basically 
image resampling methods. Uses of interpolation in applications such as rotation 
and geometric corrections will be discussed in Section 2.6.

Interpolation is the process of using known data to estimate values at unknown 
locations. We begin the discussion of this topic with a short example. Suppose that 
an image of size 500 500*  pixels has to be enlarged 1.5 times to 750 750*  pixels. A 
simple way to visualize zooming is to create an imaginary 750 750*  grid with the 
same pixel spacing as the original image, then shrink it so that it exactly overlays the 
original image. Obviously, the pixel spacing in the shrunken 750 750*  grid will be 
less than the pixel spacing in the original image. To assign an intensity value to any 
point in the overlay, we look for its closest pixel in the underlying original image and 
assign the intensity of that pixel to the new pixel in the 750 750*  grid. When intensi-
ties have been assigned to all the points in the overlay grid, we expand it back to the 
specified size to obtain the resized image.

The method just discussed is called nearest neighbor interpolation because it 
assigns to each new location the intensity of its nearest neighbor in the original 
image (see Section 2.5 regarding neighborhoods). This approach is simple but, it has 
the tendency to produce undesirable artifacts, such as severe distortion of straight 
edges. A more suitable approach is bilinear interpolation, in which we use the four 
nearest neighbors to estimate the intensity at a given location. Let ( , )x y  denote the 
coordinates of the location to which we want to assign an intensity value (think of 
it as a point of the grid described previously), and let v( , )x y  denote that intensity 
value. For bilinear interpolation, the assigned value is obtained using the equation

 v( , )x y ax by cxy d= + + +  (2-17)

where the four coefficients are determined from the four equations in four 
unknowns that can be written using the four nearest neighbors of point ( , )x y . 
Bilinear interpolation gives much better results than nearest neighbor interpolation, 
with a modest increase in computational burden.

Contrary to what the 
name suggests, bilinear 
interpolation is not a 
linear operation because 
it involves multiplication 
of coordinates (which is 
not a linear operation). 
See Eq. (2-17).
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The next level of complexity is bicubic interpolation, which involves the sixteen 
nearest neighbors of a point. The intensity value assigned to point ( , )x y  is obtained 
using the equation

 v( , )x y a x yij
i j

ji

=
==
∑∑

0

3

0

3

  (2-18)

The sixteen coefficients are determined from the sixteen equations with six-
teen unknowns that can be written using the sixteen nearest neighbors of point 
( , )x y  . Observe that Eq. (2-18) reduces in form to Eq. (2-17) if the limits of both 
summations in the former equation are 0 to 1. Generally, bicubic interpolation does 
a better job of preserving fine detail than its bilinear counterpart. Bicubic interpola-
tion is the standard used in commercial image editing applications, such as Adobe 
Photoshop and Corel Photopaint.

Although images are displayed with integer coordinates, it is possible during pro-
cessing to work with subpixel accuracy by increasing the size of the image using 
interpolation to “fill the gaps” between pixels in the original image.

EXAMPLE 2.4 :  Comparison of interpolation approaches for image shrinking and zooming.

Figure 2.27(a) is the same as Fig. 2.23(d), which was obtained by reducing the resolution of the 930 dpi 
image in Fig. 2.23(a) to 72 dpi (the size shrank from 2136 2140*  to 165 166*  pixels) and then zooming 
the reduced image back to its original size. To generate Fig. 2.23(d) we used nearest neighbor interpola-
tion both to shrink and zoom the image. As noted earlier, the result in Fig. 2.27(a) is rather poor. Figures 
2.27(b) and (c) are the results of repeating the same procedure but using, respectively, bilinear and bicu-
bic interpolation for both shrinking and zooming. The result obtained by using bilinear interpolation is a 
significant improvement over nearest neighbor interpolation, but the resulting image is blurred slightly. 
Much sharper results can be obtained using bicubic interpolation, as Fig. 2.27(c) shows. 

 
FIGURE 2.27 (a) Image reduced to 72 dpi and zoomed back to its original 930 dpi using nearest neighbor interpolation. 
This figure is the same as Fig. 2.23(d). (b) Image reduced to 72 dpi and zoomed using bilinear interpolation. (c) Same 
as (b) but using bicubic interpolation.

ba c
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It is possible to use more neighbors in interpolation, and there are more complex 
techniques, such as using splines or wavelets, that in some instances can yield better 
results than the methods just discussed. While preserving fine detail is an exception-
ally important consideration in image generation for 3-D graphics (for example, see 
Hughes and Andries [2013]), the extra computational burden seldom is justifiable 
for general-purpose digital image processing, where bilinear or bicubic interpola-
tion typically are the methods of choice.

2.5 SOME BASIC RELATIONSHIPS BETWEEN PIXELS  

In this section, we discuss several important relationships between pixels in a digital 
image. When referring in the following discussion to particular pixels, we use lower-
case letters, such as p and q.

NEIGHBORS OF A PIXEL

A pixel p at coordinates ( , )x y  has two horizontal and two vertical neighbors with 
coordinates

 ( , ), ( , ), ( , ), ( , )x y x y x y x y+ − + −1 1 1 1

This set of pixels, called the 4-neighbors of p, is denoted N p4( ).
The four diagonal neighbors of p have coordinates

 ( , ), ( , ), ( , ), ( , )x y x y x y x y+ + + − − + − −1 1 1 1 1 1 1 1

and are denoted N pD( ). These neighbors, together with the 4-neighbors, are called 
the 8-neighbors of p, denoted by N p8( ). The set of image locations of the neighbors 
of a point p is called the neighborhood of p. The neighborhood is said to be closed if 
it contains p. Otherwise, the neighborhood is said to be open.

ADJACENCY, CONNECTIVITY, REGIONS, AND BOUNDARIES

Let V be the set of intensity values used to define adjacency. In a binary image, 
V = { }1  if we are referring to adjacency of pixels with value 1. In a grayscale image, 
the idea is the same, but set V typically contains more elements. For example, if we 
are dealing with the adjacency of pixels whose values are in the range 0 to 255, set V 
could be any subset of these 256 values. We consider three types of adjacency:

1. 4-adjacency. Two pixels p and q with values from V are 4-adjacent if q is in the 
set N p4( ).

2. 8-adjacency. Two pixels p and q with values from V are 8-adjacent if q is in the 
set N p8( ).

3. m-adjacency (also called mixed adjacency). Two pixels p and q with values from 
V are m-adjacent if

2.5
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(a) q is in N p4( ), or
(b) q is in N pD( ) and the set N p N q4 4( ) ( )¨  has no pixels whose values are 

from V.

Mixed adjacency is a modification of 8-adjacency, and is introduced to eliminate the 
ambiguities that may result from using 8-adjacency. For example, consider the pixel 
arrangement in Fig. 2.28(a) and let V = { }1 . The three pixels at the top of Fig. 2.28(b) 
show multiple (ambiguous) 8-adjacency, as indicated by the dashed lines. This ambi-
guity is removed by using m-adjacency, as in Fig. 2.28(c). In other words, the center 
and upper-right diagonal pixels are not m-adjacent because they do not satisfy con-
dition (b).

A digital path (or curve) from pixel p with coordinates ( , )x y0 0  to pixel q with 
coordinates ( , )x yn n  is a sequence of distinct pixels with coordinates

 ( , ), ( , ), , ( , )x y x y x yn n0 0 1 1 …

where points ( , )x yi i  and ( , )x yi i− −1 1  are adjacent for 1 ≤ ≤i n. In this case, n is the 
length of the path. If ( , ) ( , )x y x yn n0 0 =  the path is a closed path. We can define 4-, 8-, 
or m-paths, depending on the type of adjacency specified. For example, the paths in 
Fig. 2.28(b) between the top right and bottom right points are 8-paths, and the path 
in Fig. 2.28(c) is an m-path.

Let S represent a subset of pixels in an image. Two pixels p and q are said to be 
connected in S if there exists a path between them consisting entirely of pixels in S. 
For any pixel p in S, the set of pixels that are connected to it in S is called a connected 
component of S. If it only has one component, and that component is connected, 
then S is called a connected set.

Let R represent a subset of pixels in an image. We call R a region of the image if R 
is a connected set. Two regions, Ri  and Rj  are said to be adjacent if their union forms 
a connected set. Regions that are not adjacent are said to be disjoint. We consider 4- 
and 8-adjacency when referring to regions. For our definition to make sense, the type 
of adjacency used must be specified. For example, the two regions of 1’s in Fig. 2.28(d) 
are adjacent only if 8-adjacency is used (according to the definition in the previous 

We use the symbols 
¨ and ´ to denote set 
intersection and union, 
respectively. Given sets 
A and B, recall that 
their intersection is the 
set of elements that 
are members of both 
A and B. The union of 
these two sets is the set 
of elements that are 
members of A, of B, or 
of both. We will discuss 
sets in more detail in 
Section 2.6.
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FIGURE 2.28 (a) An arrangement of pixels. (b) Pixels that are 8-adjacent (adjacency is shown by dashed lines).  
(c) m-adjacency. (d) Two regions (of 1’s) that are 8-adjacent. (e) The circled point is on the boundary of the 1-valued 
pixels only if 8-adjacency between the region and background is used. (f) The inner boundary of the 1-valued region 
does not form a closed path, but its outer boundary does.
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paragraph, a 4-path between the two regions does not exist, so their union is not a 
connected set).

Suppose an image contains K disjoint regions, R k Kk , , , , ,=1 2 …  none of which 
touches the image border.† Let Ru  denote the union of all the K regions, and let 
Ru

c( )  denote its complement (recall that the complement of a set A is the set of 
points that are not in A). We call all the points in Ru  the foreground, and all the 
points in Ru

c( )  the background of the image.
The boundary (also called the border or contour) of a region R is the set of pixels in 

R that are adjacent to pixels in the complement of R. Stated another way, the border 
of a region is the set of pixels in the region that have at least one background neigh-
bor. Here again, we must specify the connectivity being used to define adjacency. For 
example, the point circled in Fig. 2.28(e) is not a member of the border of the 1-val-
ued region if 4-connectivity is used between the region and its background, because 
the only possible connection between that point and the background is diagonal. 
As a rule, adjacency between points in a region and its background is defined using 
8-connectivity to handle situations such as this.

The preceding definition sometimes is referred to as the inner border of the 
region to distinguish it from its outer border, which is the corresponding border in 
the background. This distinction is important in the development of border-follow-
ing algorithms. Such algorithms usually are formulated to follow the outer boundary 
in order to guarantee that the result will form a closed path. For instance, the inner 
border of the 1-valued region in Fig. 2.28(f) is the region itself. This border does not 
satisfy the definition of a closed path. On the other hand, the outer border of the 
region does form a closed path around the region.

If R happens to be an entire image, then its boundary (or border) is defined as the 
set of pixels in the first and last rows and columns of the image. This extra definition 
is required because an image has no neighbors beyond its border. Normally, when 
we refer to a region, we are referring to a subset of an image, and any pixels in the 
boundary of the region that happen to coincide with the border of the image are 
included implicitly as part of the region boundary.

The concept of an edge is found frequently in discussions dealing with regions 
and boundaries. However, there is a key difference between these two concepts. The 
boundary of a finite region forms a closed path and is thus a “global” concept. As we 
will discuss in detail in Chapter 10, edges are formed from pixels with derivative val-
ues that exceed a preset threshold. Thus, an edge is a “local” concept that is based on 
a measure of intensity-level discontinuity at a point. It is possible to link edge points 
into edge segments, and sometimes these segments are linked in such a way that 
they correspond to boundaries, but this is not always the case. The one exception in 
which edges and boundaries correspond is in binary images. Depending on the type 
of connectivity and edge operators used (we will discuss these in Chapter 10), the 
edge extracted from a binary region will be the same as the region boundary. This is 

†  We make this assumption to avoid having to deal with special cases. This can be done without loss of generality 
because if one or more regions touch the border of an image, we can simply pad the image with a 1-pixel-wide 
border of background values.
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intuitive. Conceptually, until we arrive at Chapter 10, it is helpful to think of edges 
as intensity discontinuities, and of boundaries as closed paths.

DISTANCE MEASURES

For pixels p, q, and s, with coordinates ( , )x y , ( , )u v , and ( , ),w z  respectively, D
is a distance function or metric if

(a) D p q D p q p q( , ) ( ( , ) )≥ 0 0= =iff ,
(b) D p q D q p( , ) ( , )= , and
(c) D p s D p q D q s( , ) ( , ) ( , ).≤ +

The Euclidean distance between p and q is defined as

 D p q x ye( , ) ( ) ( )= − + −⎡⎣ ⎤⎦u v2 2
1
2  (2-19)

For this distance measure, the pixels having a distance less than or equal to some 
value r from ( , )x y  are the points contained in a disk of radius r centered at ( , )x y .

The D4 distance, (called the city-block distance) between p and q is defined as

 D p q x y4( , ) = − −u v+  (2-20)

In this case, pixels having a D4 distance from ( , )x y  that is less than or equal to some 
value d form a diamond centered at ( , )x y . For example, the pixels with D4 distance ≤ 2 
from ( , )x y  (the center point) form the following contours of constant distance:

 

2

2 1 2

2 1 0 1 2

2 1 2

2

The pixels with D4 1=  are the 4-neighbors of ( , )x y .
The D8 distance (called the chessboard distance) between p and q is defined as

 D p q x y8( , ) max( , )= − −u v  (2-21)

In this case, the pixels with D8 distance from ( , )x y  less than or equal to some value d 
form a square centered at ( , )x y . For example, the pixels with D8 distance ≤ 2 form 
the following contours of constant distance:

 

2 2 2 2 2

2 1 1 1 2

2 1 0 1 2

2 1 1 1 2

2 2 2 2 2

The pixels with D8 1=  are the 8-neighbors of the pixel at ( , )x y .
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Note that the D4  and D8 distances between p and q are independent of any paths 
that might exist between these points because these distances involve only the coor-
dinates of the points. In the case of m-adjacency, however, the Dm distance between 
two points is defined as the shortest m-path between the points. In this case, the 
distance between two pixels will depend on the values of the pixels along the path, 
as well as the values of their neighbors. For instance, consider the following arrange-
ment of pixels and assume that p, p2 , and p4  have a value of 1, and that p1  and p3 
can be 0 or 1:

 

p p

p p

p

3 4

1 2

Suppose that we consider adjacency of pixels valued 1 (i.e.,V = { }1 ). If p1 and p3 are 0, 
the length of the shortest m-path (the Dm distance) between p and p4  is 2. If p1  is 1, 
then p2  and p will no longer be m-adjacent (see the definition of m-adjacency given 
earlier) and the length of the shortest m-path becomes 3 (the path goes through the 
points pp p p1 2 4 ). Similar comments apply if p3 is 1 (and p1  is 0); in this case, the 
length of the shortest m-path also is 3. Finally, if both p1  and p3 are 1, the length of 
the shortest m-path between p and p4  is 4. In this case, the path goes through the 
sequence of points pp p p p1 2 3 4.

2.6 INTRODUCTION TO THE BASIC MATHEMATICAL TOOLS USED IN 
DIGITAL IMAGE PROCESSING 

This section has two principal objectives: (1) to introduce various mathematical 
tools we use throughout the book; and (2) to help you begin developing a “feel” for 
how these tools are used by applying them to a variety of basic image-processing 
tasks, some of which will be used numerous times in subsequent discussions. 

ELEMENTWISE VERSUS MATRIX OPERATIONS

An elementwise operation involving one or more images is carried out on a pixel-by-
pixel basis. We mentioned earlier in this chapter that images can be viewed equiva-
lently as matrices. In fact, as you will see later in this section, there are many situ-
ations in which operations between images are carried out using matrix theory. It 
is for this reason that a clear distinction must be made between elementwise and 
matrix operations. For example, consider the following 2 2*  images (matrices):

 
a a

a a

b b

b b
11 12

21 22

11 12

21 22

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥and

The elementwise product (often denoted using the symbol }  or z ) of these two 
images is

 
a a

a a

b b

b b

a b a b

a b a
11 12

21 22

11 12

21 22

11 11 12 12

21 21 2

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =}

22 22b
⎡

⎣
⎢

⎤

⎦
⎥

2.6

You may find it helpful 
to download and study 
the review material 
dealing with probability, 
vectors, linear algebra, 
and linear systems. The 
review is available in the 
Tutorials section of the 
book website. 

The elementwise product 
of two matrices is also 
called the Hadamard 
product of the matrices.

The symbol | is often 
used to denote element-
wise division.
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That is, the elementwise product is obtained by multiplying pairs of corresponding 
pixels. On the other hand, the matrix product of the images is formed using the rules 
of matrix multiplication:

 
a a

a a

b b

b b

a b a b a b a11 12

21 22

11 12

21 22

11 11 12 21 11 12⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

+ + 112 22

21 11 22 21 21 12 22 22

b

a b a b a b a b+ +
⎡

⎣
⎢

⎤

⎦
⎥

We assume elementwise operations throughout the book, unless stated otherwise. 
For example, when we refer to raising an image to a power, we mean that each indi-
vidual pixel is raised to that power; when we refer to dividing an image by another, 
we mean that the division is between corresponding pixel pairs, and so on. The terms 
elementwise addition and subtraction of two images are redundant because these are 
elementwise operations by definition. However, you may see them used sometimes 
to clarify notational ambiguities. 

LINEAR VERSUS NONLINEAR OPERATIONS

One of the most important classifications of an image processing method is whether 
it is linear or nonlinear. Consider a general operator, �,  that produces an output 
image, g x y( , ), from a given input image, f x y( , ):

 � f x y g x y( , ) ( , )[ ] =  (2-22)

Given two arbitrary constants, a and b, and two arbitrary images f x y1( , ) and f x y2( , ),
�  is said to be a linear operator if

 
� � �a f x y b f x y a f x y b f x y

ag x y bg
1 2 1 2

1 2

( , ) ( , ) ( , ) ( , )

( , ) (

+[ ] = [ ] + [ ]
= + xx y, )

 (2-23)

This equation indicates that the output of a linear operation applied to the sum of 
two inputs is the same as performing the operation individually on the inputs and 
then summing the results. In addition, the output of a linear operation on a con-
stant multiplied by an input is the same as the output of the operation due to the 
original input multiplied by that constant. The first property is called the property 
of additivity, and the second is called the property of homogeneity. By definition, an 
operator that fails to satisfy Eq. (2-23) is said to be nonlinear.

As an example, suppose that �  is the sum operator, Σ. The function performed 
by this operator is simply to sum its inputs. To test for linearity, we start with the left 
side of Eq. (2-23) and attempt to prove that it is equal to the right side:

 

a f x y b f x y a f x y b f x y

a f x y b f x y

1 2 1 2

1 2

( , ) ( , ) ( , ) ( , )

( , ) ( , )

+[ ] = +

= +
∑ ∑∑

∑∑∑
= +ag x y bg x y1 2( , ) ( , )

 

where the first step follows from the fact that summation is distributive. So, an 
expansion of the left side is equal to the right side of Eq. (2-23), and we conclude 
that the sum operator is linear.

These are image  
summations, not the 
sums of all the elements 
of an image. 
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On the other hand, suppose that we are working with the max operation, whose 
function is to find the maximum value of the pixels in an image. For our purposes 
here, the simplest way to prove that this operator is nonlinear is to find an example 
that fails the test in Eq. (2-23). Consider the following two images

 f f1 2

0 2

2 3

6 5

4 7
=

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥and

and suppose that we let a = 1 and b = −1. To test for linearity, we again start with the 
left side of Eq. (2-23):

 
max ( ) ( ) max1

0 2

2 3
1

6 5

4 7

6 3

2 4
⎡

⎣
⎢

⎤

⎦
⎥ + −

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

=
− −
− −

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫⎫
⎬
⎭

= −2

Working next with the right side, we obtain

 ( )max ( )max ( )1
0 2

2 3
1

6 5

4 7
3 1 7 4

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

+ −
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

= + − = −

The left and right sides of Eq. (2-23) are not equal in this case, so we have proved 
that the max operator is nonlinear.

As you will see in the next three chapters, linear operations are exceptionally impor-
tant because they encompass a large body of theoretical and practical results that are 
applicable to image processing. The scope of nonlinear operations is considerably 
more limited. However, you will encounter in the following chapters several nonlin-
ear image processing operations whose performance far exceeds what is achievable 
by their linear counterparts.

ARITHMETIC OPERATIONS

Arithmetic operations between two images f x y( , ) and g x y( , ) are denoted as

 

s x y f x y g x y

d x y f x y g x y

p x y f x y g x

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( ,

= +
= −
= × yy

x y f x y g x y

)

( , ) ( , ) ( , )v = ÷

 (2-24)

These are elementwise operations which, as noted earlier in this section, means 
that they are performed between corresponding pixel pairs in f and g for 
x M= −0 1 2 1, , , ,…  and y N= −0 1 2 1, , , , .…  As usual, M and N are the row and 
column sizes of the images. Clearly, s, d, p, and v  are images of size M N×  also. 
Note that image arithmetic in the manner just defined involves images of the same 
size. The following examples illustrate the important role of arithmetic operations 
in digital image processing.
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EXAMPLE 2.5 :  Using image addition (averaging) for noise reduction.

Suppose that g x y( , ) is a corrupted image formed by the addition of noise, h( , )x y , to a noiseless image 
f x y( , ) ; that is,

 g x y f x y x y( , ) ( , ) ( , )= + h  (2-25)

where the assumption is that at every pair of coordinates ( , )x y  the noise is uncorrelated† and has 
zero average value. We assume also that the noise and image values are uncorrelated (this is a typical 
assumption for additive noise). The objective of the following procedure is to reduce the noise content 
of the output image by adding a set of noisy input images, g x yi( , ) .{ }  This is a technique used frequently 
for image enhancement.

If the noise satisfies the constraints just stated, it can be shown (Problem 2.26) that if an image g x y( , ) 
is formed by averaging K different noisy images,

 g x y
K

g x yi
i

K

( , ) ( , )=
=
∑1

1

 (2-26)

then it follows that 

 E g x y f x y( , ) ( , ){ } =  (2-27)

and

 s shg x y x yK( , ) ( , )
2 21=  (2-28)

where E g x y( , ){ } is the expected value of g x y( , ), and sg x y( , )
2  and sh( , )x y

2  are the variances of g x y( , ) and 
h( , )x y , respectively, all at coordinates ( , )x y . These variances are arrays of the same size as the input 
image, and there is a scalar variance value for each pixel location. 

The standard deviation (square root of the variance) at any point ( , )x y  in the average image is

 s shg x y x y
K

( , ) ( , )= 1
 (2-29)

As K increases, Eqs. (2-28) and (2-29) indicate that the variability (as measured by the variance or the 
standard deviation) of the pixel values at each location ( , )x y  decreases. Because E g x y f x y( , ) ( , ),{ } =  
this means that g x y( , ) approaches the noiseless image f x y( , ) as the number of noisy images used in the 
averaging process increases. In order to avoid blurring and other artifacts in the output (average) image, 
it is necessary that the images g x yi( , ) be registered (i.e., spatially aligned).

An important application of image averaging is in the field of astronomy, where imaging under 
very low light levels often cause sensor noise to render individual images virtually useless for analysis 
(lowering the temperature of the sensor helps reduce noise). Figure 2.29(a) shows an 8-bit image of the 
Galaxy Pair NGC 3314, in which noise corruption was simulated by adding to it Gaussian noise with 
zero mean and a standard deviation of 64 intensity levels. This image, which is representative of noisy 
astronomical images taken under low light conditions, is useless for all practical purposes. Figures 
2.29(b) through (f) show the results of averaging 5, 10, 20, 50, and 100 images, respectively. We see from 
Fig. 2.29(b) that an average of only 10 images resulted in some visible improvement. According to Eq. 

† The variance of a random variable z with mean z  is defined as E z z{( ) }− 2 , where E{ }�  is the expected value of the argument. The covari-
ance of two random variables zi  and zj  is defined as E z z z zi i j j{( )( )}.− −  If the variables are uncorrelated, their covariance is 0, and vice 
versa. (Do not confuse correlation and statistical independence. If two random variables are statistically independent, their correlation is 
zero. However, the converse is not true in general.)
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(2-29), the standard deviation of the noise in Fig. 2.29(b) is less than half ( . )1 5 0 45=  the standard 
deviation of the noise in Fig. 2.29(a), or ( . )( )0 45 64 29≈  intensity levels. Similarly, the standard devia-
tions of the noise in Figs. 2.29(c) through (f) are 0.32, 0.22, 0.14, and 0.10 of the original, which translates 
approximately into 20, 14, 9, and 6 intensity levels, respectively. We see in these images a progression 
of more visible detail as the standard deviation of the noise decreases. The last two images are visually 
identical for all practical purposes. This is not unexpected, as the difference between the standard devia-
tions of their noise level is only about 3 intensity levels According to the discussion in connection with 
Fig. 2.5, this difference is below what a human generally is able to detect.

EXAMPLE 2.6 :  Comparing images using subtraction.

Image subtraction is used routinely for enhancing differences between images. For example, the image 
in Fig. 2.30(b) was obtained by setting to zero the least-significant bit of every pixel in Fig. 2.30(a). 
Visually, these images are indistinguishable. However, as Fig. 2.30(c) shows, subtracting one image from 

ba c
ed f

FIGURE 2.29 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)-(f) Result of averaging 
5, 10, 20, 50, and 1,00 noisy images, respectively. All images are of size 566 598×  pixels, and all were scaled so that 
their intensities would span the full [0, 255] intensity scale. (Original image courtesy of NASA.)
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the other clearly shows their differences. Black (0) values in the difference image indicate locations 
where there is no difference between the images in Figs. 2.30(a) and (b). 

We saw in Fig. 2.23 that detail was lost as the resolution was reduced in the chronometer image 
shown in Fig. 2.23(a). A vivid indication of image change as a function of resolution can be obtained 
by displaying the differences between the original image and its various lower-resolution counterparts. 
Figure 2.31(a) shows the difference between the 930 dpi and 72 dpi images. As you can see, the dif-
ferences are quite noticeable. The intensity at any point in the difference image is proportional to the 
magnitude of the numerical difference between the two images at that point. Therefore, we can analyze 
which areas of the original image are affected the most when resolution is reduced. The next two images 
in Fig. 2.31 show proportionally less overall intensities, indicating smaller differences between the 930 dpi 
image and 150 dpi and 300 dpi images, as expected. 

ba c

FIGURE 2.30 (a) Infrared image of the Washington, D.C. area. (b) Image resulting from setting to zero the least 
significant bit of every pixel in (a). (c) Difference of the two images, scaled to the range [0, 255] for clarity. (Original 
image courtesy of NASA.)

ba c

FIGURE 2.31 (a) Difference between the 930 dpi and 72 dpi images in Fig. 2.23. (b) Difference between the 930 dpi and 
150 dpi images. (c) Difference between the 930 dpi and 300 dpi images.
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As a final illustration, we discuss briefly an area of medical imaging called mask mode radiography, a 
commercially successful and highly beneficial use of image subtraction. Consider image differences of 
the form

 g x y f x y h x y( , ) ( , ) ( , )= −  (2-30)

In this case h x y( , ), the mask, is an X-ray image of a region of a patient’s body captured by an intensified 
TV camera (instead of traditional X-ray film) located opposite an X-ray source. The procedure consists 
of injecting an X-ray contrast medium into the patient’s bloodstream, taking a series of images called 
live images [samples of which are denoted as f x y( , )] of the same anatomical region as h x y( , ), and sub-
tracting the mask from the series of incoming live images after injection of the contrast medium. The net 
effect of subtracting the mask from each sample live image is that the areas that are different between 
f x y( , ) and h x y( , ) appear in the output image, g x y( , ), as enhanced detail. Because images can be cap-
tured at TV rates, this procedure outputs a video showing how the contrast medium propagates through 
the various arteries in the area being observed.

Figure 2.32(a) shows a mask X-ray image of the top of a patient’s head prior to injection of an iodine 
medium into the bloodstream, and Fig. 2.32(b) is a sample of a live image taken after the medium was 

ba
dc

FIGURE 2.32  
Digital  
subtraction  
angiography.  
(a) Mask image. 
(b) A live image. 
(c) Difference 
between (a) and 
(b). (d) Enhanced 
difference image. 
(Figures (a) and 
(b) courtesy of 
the Image  
Sciences  
Institute,  
University 
Medical Center, 
Utrecht, The 
Netherlands.)
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injected. Figure 2.32(c) is the difference between (a) and (b). Some fine blood vessel structures are vis-
ible in this image. The difference is clear in Fig. 2.32(d), which was obtained by sharpening the image and 
enhancing its contrast (we will discuss these techniques in the next chapter). Figure 2.32(d) is a “snap-
shot” of how the medium is propagating through the blood vessels in the subject’s brain.

EXAMPLE 2.7 :  Using image multiplication and division for shading correction and for masking.

An important application of image multiplication (and division) is shading correction. Suppose that an 
imaging sensor produces images that can be modeled as the product of a “perfect image,” denoted by 
f x y( , ), times a shading function, h x y( , ); that is, g x y f x y h x y( , ) ( , ) ( , )= . If h x y( , ) is known or can be 
estimated, we can obtain f x y( , ) (or an estimate of it) by multiplying the sensed image by the inverse of 
h x y( , ) (i.e., dividing g by h using elementwise division). If access to the imaging system is possible, we 
can obtain a good approximation to the shading function by imaging a target of constant intensity. When 
the sensor is not available, we often can estimate the shading pattern directly from a shaded image using 
the approaches discussed in Sections 3.5 and 9.8. Figure 2.33 shows an example of shading correction 
using an estimate of the shading pattern. The corrected image is not perfect because of errors in the 
shading pattern (this is typical), but the result definitely is an improvement over the shaded image in Fig. 
2.33 (a). See Section 3.5 for a discussion of how we estimated Fig. 2.33 (b). Another use of image mul-
tiplication is in masking, also called region of interest (ROI), operations. As Fig. 2.34 shows, the process 
consists of multiplying a given image by a mask image that has 1’s in the ROI and 0’s elsewhere. There 
can be more than one ROI in the mask image, and the shape of the ROI can be arbitrary.

A few comments about implementing image arithmetic operations are in order 
before we leave this section. In practice, most images are displayed using 8 bits (even 
24-bit color images consist of three separate 8-bit channels). Thus, we expect image 
values to be in the range from 0 to 255. When images are saved in a standard image 
format, such as TIFF or JPEG, conversion to this range is automatic. When image 
values exceed the allowed range, clipping or scaling becomes necessary. For example, 
the values in the difference of two 8-bit images can range from a minimum of −255 

ba c

FIGURE 2.33 Shading correction. (a) Shaded test pattern. (b) Estimated shading pattern. (c) Product of (a) by the 
reciprocal of (b). (See Section 3.5 for a discussion of how (b) was estimated.)
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to a maximum of 255, and the values of the sum of two such images can range from 0 
to 510. When converting images to eight bits, many software applications simply set 
all negative values to 0 and set to 255 all values that exceed this limit. Given a digital 
image g resulting from one or more arithmetic (or other) operations, an approach 
guaranteeing that the full range of a values is “captured” into a fixed number of bits 
is as follows. First, we perform the operation

 g g gm = − min( )  (2-31)

which creates an image whose minimum value is 0. Then, we perform the operation

 g K g gs m m= [ ]max( )  (2-32)

which creates a scaled image, gs , whose values are in the range [0, K]. When working 
with 8-bit images, setting K = 255 gives us a scaled image whose intensities span the 
full 8-bit scale from 0 to 255.  Similar comments apply to 16-bit images or higher. This 
approach can be used for all arithmetic operations. When performing division, we 
have the extra requirement that a small number should be added to the pixels of the 
divisor image to avoid division by 0.

SET AND LOGICAL OPERATIONS

In this section, we discuss the basics of set theory. We also introduce and illustrate 
some important set and logical operations.

Basic Set Operations

A set is a collection of distinct objects. If a is an element of set A, then we write

 a A∈   (2-33)

Similarly, if a is not an element of A we write

 a Ax  (2-34)

The set with no elements is called the null or empty set, and is denoted by ∅ .

These are elementwise 
subtraction and division.

ba c

FIGURE 2.34 (a) Digital dental X-ray image. (b) ROI mask for isolating teeth with fillings (white corresponds to 1 and 
black corresponds to 0). (c) Product of (a) and (b).
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A set is denoted by the contents of two braces: { }.i  For example, the expression

 C c c d d D= ={ }- H,

means that C is the set of elements, c, such that c is formed by multiplying each of 
the elements of set D by −1. 

If every element of a set A is also an element of a set B, then A is said to be a 
subset of B, denoted as

 A B8  (2-35)

The union of two sets A and B, denoted as

 C A B= ´  (2-36)

is a set C consisting of elements belonging either to A, to B, or to both. Similarly, the 
intersection of two sets A and B, denoted by

 D A B= ¨  (2-37)

is a set D consisting of elements belonging to both A and B. Sets A and B are said to 
be disjoint or mutually exclusive if they have no elements in common, in which case,

 A B¨ = ∅  (2-38)

The sample space, Æ, (also called the set universe) is the set of all possible set 
elements in a given application. By definition, these set elements are members of 
the sample space for that application. For example, if you are working with the set 
of real numbers, then the sample space is the real line, which contains all the real 
numbers. In image processing, we typically define Æ  to be the rectangle containing 
all the pixels in an image.

The complement of a set A is the set of elements that are not in A:

 A Ac = { }w w x  (2-39)

The difference of two sets A and B, denoted A B− , is defined as

 A B A B A Bc− = { } =w w wH x ¨,  (2-40)

This is the set of elements that belong to A, but not to B. We can define Ac  in terms 
of Æ  and the set difference operation; that is, A Ac = −Æ . Table 2.1 shows several 
important set properties and relationships.

Figure 2.35 shows diagrammatically (in so-called Venn diagrams) some of the set 
relationships in Table 2.1. The shaded areas in the various figures correspond to the 
set operation indicated above or below the figure. Figure 2.35(a) shows the sample 
set, Æ. As no earlier, this is the set of all possible elements in a given application. Fig-
ure 2.35(b) shows that the complement of a set A is the set of all elements in Æ  that 
are not in A, which agrees with our earlier definition. Observe that Figs. 2.35(e) and 
(g) are identical, which proves the validity of Eq. (2-40) using Venn diagrams. This 

DIP4E_GLOBAL_Print_Ready.indb   92 6/16/2017   2:02:38 PM



2.6  Introduction to the Basic Mathematical Tools Used in Digital Image Processing    93

is an example of the usefulness of Venn diagrams for proving equivalences between 
set relationships. 

When applying the concepts just discussed to image processing, we let sets repre-
sent objects (regions) in a binary image, and the elements of the sets are the ( , )x y  
coordinates of those objects. For example, if we want to know whether two objects, 
A and B, of a binary image overlap, all we have to do is compute A B¨ . If the result 
is not the empty set, we know that some of the elements of the two objects overlap. 
Keep in mind that the only way that the operations illustrated in Fig. 2.35 can make 
sense in the context of image processing is if the images containing the sets are 
binary, in which case we can talk about set membership based on coordinates, the 
assumption being that all members of the sets have the same intensity value (typi-
cally denoted by 1). We will discuss set operations involving binary images in more 
detail in the following section and in Chapter 9.

The preceding concepts are not applicable when dealing with grayscale images, 
because we have not defined yet a mechanism for assigning intensity values to the 
pixels resulting from a set operation. In Sections 3.8 and 9.6 we will define the union 
and intersection operations for grayscale values as the maximum and minimum of 
corresponding pixel pairs, respectively. We define the complement of a grayscale 
image as the pairwise differences between a constant and the intensity of every pixel 
in the image. The fact that we deal with corresponding pixel pairs tells us that gray-
scale set operations are elementwise operations, as defined earlier. The following 
example is a brief illustration of set operations involving grayscale images. We will 
discuss these concepts further in the two sections just mentioned.

Description Expressions

Operations between the 
sample space and null sets

Æ Æ Æ´ Æ Æ ¨c c= ∅ ∅ = ∅ = ∅ = ∅; ; ;

Union and intersection with 
the null and sample space sets

A A A A A A´ ¨ ´ Æ Æ ¨ Æ∅ = ∅ = ∅ = =; ; ;

Union and intersection of a 
set with itself

A A A A A A´ ¨= =;

Union and intersection of a 
set with its complement

A A A Ac c´ Æ ¨= = ∅;

Commutative laws A B B A
A B B A

´ ´
¨ ¨

=
=

Associative laws ( ) ( )
( ) ( )
A B C A B C
A B C A B C

´ ´ ´ ´
¨ ¨ ¨ ¨

=
=

Distributive laws ( ) ( ) ( )
( ) ( ) ( )
A B C A C B C
A B C A C B C

´ ¨ ¨ ´ ¨
¨ ´ ´ ¨ ´

=
=

DeMorgan’s laws  
( )
( )
A B A B
A B A B

c c c

c c c
´ ¨
¨ ´

=
=

TABLE 2.1
Some important 
set operations 
and relationships.
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94 Chapter 2  Digital Image Fundamentals

EXAMPLE 2.8 :  Illustration of set operations involving grayscale images.

Let the elements of a grayscale image be represented by a set A whose elements are triplets of the form 
( , , )x y z , where x and y are spatial coordinates, and z denotes intensity values. We define the complement 
of A as the set 

 A x y K z x y z Ac = −{ }( , , ) ( , , ) H  

which is the set of pixels of A whose intensities have been subtracted from a constant K. This constant 
is equal to the maximum intensity value in the image, 2 1k − , where k is the number of bits used to 
represent z. Let A denote the 8-bit grayscale image in Fig. 2.36(a), and suppose that we want to form 
the negative of A using grayscale set operations. The negative is the set complement, and this is an 8-bit 
image, so all we have to do is let K = 255 in the set defined above:

 A x y z x y z Ac = −{ }( , , ) ( , , )255 H

Figure 2.36(b) shows the result. We show this only for illustrative purposes. Image negatives generally 
are computed using an intensity transformation function, as discussed later in this section.

A
c

A B¨

A A

B

A B− Bc

B

C

A

A Bc¨ A B C¨ ´( )

´A BΩ

B

ba dc
f he g

FIGURE 2.35 Venn diagrams corresponding to some of the set operations in Table 2.1. The results of the operations, 
such as Ac ,  are shown shaded. Figures (e) and (g) are the same, proving via Venn diagrams that A B A Bc− = ¨
[see Eq. (2-40)].
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The union of two grayscale sets A and B with the same number of elements is defined as the set

 A B a b a A b B
z

´ H H= { }max( , ) ,

where it is understood that the max operation is applied to pairs of corresponding elements. If A and B 
are grayscale images of the same size, we see that their the union is an array formed from the maximum 
intensity between pairs of spatially corresponding elements. As an illustration, suppose that A again 
represents the image in Fig. 2.36(a), and let B denote a rectangular array of the same size as A, but in 
which all values of z are equal to 3 times the mean intensity, z, of the elements of A. Figure 2.36(c) shows 
the result of performing the set union, in which all values exceeding 3z  appear as values from A and all 
other pixels have value 3z, which is a mid-gray value.

Before leaving the discussion of sets, we introduce some additional concepts that 
are used later in the book. The Cartesian product of two sets X and Y, denoted 
X Y× , is the set of all possible ordered pairs whose first component is a member of 
X and whose second component is a member of Y. In other words,

 X Y x y x X y Y* = H H( , ) and{ }  (2-41)

For example, if X is a set of M equally spaced values on the x-axis and Y is a set of N 
equally spaced values on the y-axis, we see that the Cartesian product of these two 
sets define the coordinates of an M-by-N rectangular array (i.e., the coordinates of 
an image). As another example, if X and Y denote the specific x- and y-coordinates 
of a group of 8-connected, 1-valued pixels in a binary image, then set X Y×  repre-
sents the region (object) comprised of those pixels.

We follow convention 
in using the symbol × 
to denote the Cartesian 
product. This is not to 
be confused with our 
use of the same symbol 
throughout the book 
to denote the size of 
an M-by-N image (i.e., 
M × N).

ba c

FIGURE 2.36
Set operations  
involving grayscale 
images. (a) Original  
image. (b) Image 
negative obtained 
using grayscale set  
complementation. 
(c) The union of 
image (a) and a 
constant image. 
(Original image 
courtesy of G.E. 
Medical Systems.)
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96    Chapter 2  Digital Image Fundamentals

A relation (or, more precisely, a binary relation) on a set A is a collection of 
ordered pairs of elements from A. That is, a binary relation is a subset of the Carte-
sian product A A× . A binary relation between two sets, A and B, is a subset of A B× .

A partial order on a set S is a relation  on S such that  is:

(a) reflexive: for any a SH , a a;
(b) transitive: for any a b c S, , H , a b and b c implies that a c;
(c) antisymmetric: for any a b S, ,H  a b and b a implies that a b= .

where, for example, a b reads “a is related to b.” This means that a and b are in set 
, which itself is a subset of S S×  according to the preceding definition of a relation. 

A set with a partial order is called a partially ordered set.
Let the symbol  denote an ordering relation. An expression of the form

 a a a an1 2 3 �

reads: a1 precedes a2  or is the same as a2 , a2  precedes a3  or is the same as a3 , and so on. 
When working with numbers, the symbol  typically is replaced by more traditional 
symbols. For example, the set of real numbers ordered by the relation “less than or 
equal to” (denoted by ≤ ) is a partially ordered set (see Problem 2.33). Similarly, the 
set of natural numbers, paired with the relation “divisible by” (denoted by ÷), is a 
partially ordered set.

Of more interest to us later in the book are strict orderings. A strict ordering on a 
set S is a relation  on S, such that  is:

(a) antireflexive: for any a S a aH , ;¬
(b) transitive: for any a b c S, , ,H  a b and b c  implies that a c.

where ¬a a  means that a is not related to a. Let the symbol  denote a strict 
ordering relation. An expression of the form

 a a a an1 2 3 �

reads a1 precedes a2 , a2  precedes a3, and so on. A set with a strict ordering is called 
a strict-ordered set. 

As an example, consider the set composed of the English alphabet of lowercase 
letters, S a b c z= { }, , , ,� . Based on the preceding definition, the ordering

 a b c z�

is strict because no member of the set can precede itself (antireflexivity) and, for any 
three letters in S, if the first precedes the second, and the second precedes the third, 
then the first precedes the third (transitivity). Similarly, the set of integers paired 
with the relation “less than (<)” is a strict-ordered set. 

Logical Operations
Logical operations deal with TRUE (typically denoted by 1) and FALSE (typically 
denoted by 0) variables and expressions. For our purposes, this means binary images 
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2.6  Introduction to the Basic Mathematical Tools Used in Digital Image Processing    97

composed of foreground (1-valued) pixels, and a background composed of 0-valued 
pixels. 

We work with set and logical operators on binary images using one of two basic 
approaches: (1) we can use the coordinates of individual regions of foreground pix-
els in a single image as sets, or (2) we can work with one or more images of the same 
size and perform logical operations between corresponding pixels in those arrays.

In the first category, a binary image can be viewed as a Venn diagram in which 
the coordinates of individual regions of 1-valued pixels are treated as sets. The 
union of these sets with the set composed of 0-valued pixels comprises the set uni-
verse, Æ. In this representation, we work with single images using all the set opera-
tions defined in the previous section. For example, given a binary image with two 
1-valued regions, R1 and R2 , we can determine if the regions overlap (i.e., if they 
have at least one pair of coordinates in common) by performing the set intersec-
tion operation R R1 2¨  (see Fig. 2.35). In the second approach, we perform logical 
operations on the pixels of one binary image, or on the corresponding pixels of two 
or more binary images of the same size. 

Logical operators can be defined in terms of truth tables, as Table 2.2 shows for 
two logical variables a and b. The logical AND operation (also denoted ¿) yields a 1 
(TRUE) only when both a and b are 1. Otherwise, it yields 0 (FALSE). Similarly, 
the logical OR (¡) yields 1 when both a or b or both are 1, and 0 otherwise. The 
NOT ( )�  operator is self explanatory. When applied to two binary images, AND 
and OR operate on pairs of corresponding pixels between the images. That is, they 
are elementwise operators (see the definition of elementwise operators given earlier 
in this chapter) in this context. The operators AND, OR, and NOT are functionally 
complete, in the sense that they can be used as the basis for constructing any other 
logical operator. 

Figure 2.37 illustrates the logical operations defined in Table 2.2 using the second 
approach discussed above. The NOT of binary image B1 is an array obtained by 
changing all 1-valued pixels to 0, and vice versa. The AND of B1 and B2  contains a 
1 at all spatial locations where the corresponding elements of B1 and B2  are 1; the 
operation yields 0’s elsewhere. Similarly, the OR of these two images is an array 
that contains a 1 in locations where the corresponding elements of B1, or B2 , or 
both, are 1. The array contains 0’s elsewhere. The result in the fourth row of Fig. 2.37 
corresponds to the set of 1-valued pixels in B1 but not in B2. The last row in the 
figure is the XOR (exclusive OR) operation, which yields 1 in the locations where 
the corresponding elements of B1 or B2 , (but not both) are 1. Note that the logical 

a b a bAND a bOR NOT(a)

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

TABLE 2.2
Truth table  
defining the 
logical operators 
AND( ),¿   
OR( ),¡  and  
NOT( ).�
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98 Chapter 2  Digital Image Fundamentals

expressions in the last two rows of Fig. 2.37 were constructed using operators from 
Table 2.2; these are examples of the functionally complete nature of these operators.

We can arrive at the same results in Fig. 2.37 using the first approach discussed 
above. To do this, we begin by labeling the individual 1-valued regions in each of 
the two images (in this case there is only one such region in each image). Let A 
and B denote the set of coordinates of all the 1-valued pixels in images B1 and B2 ,
respectively. Then we form a single array by ORing the two images, while keeping 
the labels A and B. The result would look like the array B B1 2OR  in Fig. 2.37, but 
with the two white regions labeled A and B. In other words, the resulting array 
would look like a Venn diagram. With reference to the Venn diagrams and set opera-
tions defined in the previous section, we obtain the results in the rightmost column 
of Fig. 2.37 using set operations as follows: A Bc = NOT( ),1  A B B B¨ = 1 2AND ,
A B B B´ = 1 2OR , and similarly for the other results in Fig. 2.37. We will make 
extensive use in Chapter 9 of the concepts developed in this section.

SPATIAL OPERATIONS

Spatial operations are performed directly on the pixels of an image. We classify 
spatial operations into three broad categories: (1) single-pixel operations, (2) neigh-
borhood operations, and (3) geometric spatial transformations.

FIGURE 2.37
Illustration of 
logical operations 
involving  
foreground 
(white) pixels. 
Black represents 
binary 0’s and 
white binary 1’s. 
The dashed lines 
are shown for  
reference only. 
They are not part 
of the result. 

NOT

NOT(B1)

B1 AND B2

B1 OR B2

B1 AND [NOT (B2)]

B1 XOR B2

AND

B1

B1 B2

OR

XOR

AND-
NOT
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Single-Pixel Operations

The simplest operation we perform on a digital image is to alter the intensity of its 
pixels individually using a transformation function, T, of the form:

 s T z= ( )  (2-42)

where z is the intensity of a pixel in the original image and s is the (mapped) inten-
sity of the corresponding pixel in the processed image. For example, Fig. 2.38 shows 
the transformation used to obtain the negative (sometimes called the complement) 
of an 8-bit image. This transformation could be used, for example, to obtain the 
negative image in Fig. 2.36, instead of using sets. 

Neighborhood Operations

Let Sxy  denote the set of coordinates of a neighborhood (see Section 2.5 regarding 
neighborhoods) centered on an arbitrary point ( , )x y  in an image, f. Neighborhood 
processing generates a corresponding pixel at the same coordinates in an output 
(processed) image, g, such that the value of that pixel is determined by a specified 
operation on the neighborhood of pixels in the input image with coordinates in the 
set Sxy . For example, suppose that the specified operation is to compute the average 
value of the pixels in a rectangular neighborhood of size m n×  centered on ( , )x y  . 
The coordinates of pixels in this region are the elements of set Sxy . Figures 2.39(a) 
and (b) illustrate the process. We can express this averaging operation as

 g x y
mn

f r c
r c Sxy

( , ) ( , )
( , )

= ∑1

H
 (2-43)

where r and c are the row and column coordinates of the pixels whose coordinates 
are in the set Sxy . Image g is created by varying the coordinates ( , )x y  so that the 
center of the neighborhood moves from pixel to pixel in image f, and then repeat-
ing the neighborhood operation at each new location. For instance, the image in 
Fig. 2.39(d) was created in this manner using a neighborhood of size 41 41× . The 

Our use of the word 
“negative” in this context 
refers to the digital 
equivalent of a  
photographic negative, 
not to the numerical 
negative of the pixels in 
the image.

s � T(z)

z

s0

0 255z0

255

FIGURE 2.38
Intensity  
transformation 
function used to 
obtain the digital 
equivalent of 
photographic 
negative of an 
8-bit image..
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100    Chapter 2  Digital Image Fundamentals

net effect is to perform local blurring in the original image. This type of process is 
used, for example, to eliminate small details and thus render “blobs” correspond-
ing to the largest regions of an image. We will discuss neighborhood processing in 
Chapters 3 and 5, and in several other places in the book. 

Geometric Transformations

We use geometric transformations modify the spatial arrangement of pixels in an 
image. These transformations are called rubber-sheet transformations because they 
may be viewed as analogous to “printing” an image on a rubber sheet, then stretch-
ing or shrinking the sheet according to a predefined set of rules. Geometric transfor-
mations of digital images consist of two basic operations: 

The value of this pixel
is the average value of the
pixels in Sxy

Image f Image g

(x, y)(x, y)

Sxy

m

n
ba
dc

FIGURE 2.39
Local averaging  
using neighbor-
hood processing. 
The procedure is  
illustrated in (a) 
and (b) for a  
rectangular  
neighborhood.  
(c) An aortic  
angiogram (see  
Section 1.3).  
(d) The result of  
using Eq. (2-43) 
with m n= = 41. 
The images are 
of size 790 686×  
pixels. (Original  
image courtesy 
of Dr. Thomas R. 
Gest, Division of  
Anatomical  
Sciences,  
University of 
Michigan Medical 
School.)
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1. Spatial transformation of coordinates. 
2. Intensity interpolation that assigns intensity values to the spatially transformed 

pixels. 

The transformation of coordinates may be expressed as

 
′
′

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

x

y

x

y

t t

t t

x

y
T 11 12

21 22

 (2-44)

where ( , )x y  are pixel coordinates in the original image and ( , )′ ′x y  are the 
corresponding pixel coordinates of the transformed image. For example, the 
transformation ( , ) ( , )′ ′ =x y x y2 2  shrinks the original image to half its size in both 
spatial directions. 

Our interest is in so-called affine transformations, which include scaling, translation, 
rotation, and shearing. The key characteristic of an affine transformation in 2-D is 
that it preserves points, straight lines, and planes. Equation (2-44) can be used to 
express the transformations just mentioned, except translation, which would require 
that a constant 2-D vector be added to the right side of the equation. However, it is 
possible to use homogeneous coordinates to express all four affine transformations 
using a single 3 3×  matrix in the following general form: 

 

′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤x

y

x

y

a a a

a a a

1 1 0 0 1

11 12 13

21 22 23A

⎦⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x

y

1

 (2-45)

This transformation can scale, rotate, translate, or sheer an image, depending on the 
values chosen for the elements of matrix A. Table 2.3 shows the matrix values used 
to implement these transformations. A significant advantage of being able to per-
form all transformations using the unified representation in Eq. (2-45) is that it pro-
vides the framework for concatenating a sequence of operations. For example, if we 
want to resize an image, rotate it, and move the result to some location, we simply 
form a 3 3×  matrix equal to the product of the scaling, rotation, and translation 
matrices from Table 2.3 (see Problems 2.36 and 2.37).

The preceding transformation moves the coordinates of pixels in an image to new 
locations. To complete the process, we have to assign intensity values to those loca-
tions. This task is accomplished using intensity interpolation. We already discussed 
this topic in Section 2.4. We began that discussion with an example of zooming an 
image and discussed the issue of intensity assignment to new pixel locations. Zoom-
ing is simply scaling, as detailed in the second row of Table 2.3, and an analysis simi-
lar to the one we developed for zooming is applicable to the problem of assigning 
intensity values to the relocated pixels resulting from the other transformations in 
Table 2.3. As in Section 2.4, we consider nearest neighbor, bilinear, and bicubic inter-
polation techniques when working with these transformations.

We can use Eq. (2-45) in two basic ways. The first, is a forward mapping, which 
consists of scanning the pixels of the input image and, at each location ( , ),x y  com-
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puting the spatial location ( , )′ ′x y  of the corresponding pixel in the output image 
using Eq. (2-45) directly. A problem with the forward mapping approach is that two 
or more pixels in the input image can be transformed to the same location in the 
output image, raising the question of how to combine multiple output values into a 
single output pixel value. In addition, it is possible that some output locations may 
not be assigned a pixel at all. The second approach, called inverse mapping, scans 
the output pixel locations and, at each location ( , ),′ ′x y  computes the corresponding 
location in the input image using ( , ) ( , ).x y = ′ ′−A x y1  It then interpolates (using one 
of the techniques discussed in Section 2.4) among the nearest input pixels to deter-
mine the intensity of the output pixel value. Inverse mappings are more efficient to 
implement than forward mappings, and are used in numerous commercial imple-
mentations of spatial transformations (for example, MATLAB uses this approach).

Transformation
Name Affine Matrix, A Coordinate

Equations Example

Identity 1

0

0

0

1

0

0

0

1
x′

y′
x x=′
y y=′

Translation

yy y t= +′
xx x t= +′1 0

0 1

0 0 1

x

y

t

t
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Shear (vertical) 1 0

0 1 0

0 0 1

s⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

v

y y=′
x x s y= +′ v

Shear (horizontal) 1 0 0

1 0

0 0 1
hs

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x x=′
hy s x y= +′

Scaling/Reflection
(For reflection, set one 
scaling factor to −1
and the other to 0)

cx

0

0

0

cy

0

0

0

1

xx c x=′
yy c y=′

Rotation (about the
origin)

0cos u �sin u

sin u cos u 0

0 0 1

cos sinx x y= −′ u u

sin cosy x y= +′ u u

x′

y′

x′

x′

x′

x′

y′

y′

y′

y′

TABLE 2.3
Affine  
transformations 
based on  
Eq. (2-45).
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EXAMPLE 2.9 :  Image rotation and intensity interpolation.

The objective of this example is to illustrate image rotation using an affine transform. Figure 2.40(a) 
shows a simple image and Figs. 2.40(b)–(d) are the results (using inverse mapping) of rotating the 
original image by −21° (in Table 2.3, clockwise angles of rotation are negative). Intensity assignments 
were computed using nearest neighbor, bilinear, and bicubic interpolation, respectively. A key issue in 
image rotation is the preservation of straight-line features. As you can see in the enlarged edge sections 
in Figs. 2.40(f) through (h), nearest neighbor interpolation produced the most jagged edges and, as in 
Section 2.4, bilinear interpolation yielded significantly improved results. As before, using bicubic inter-
polation produced slightly better results. In fact, if you compare the progression of enlarged detail in 
Figs. 2.40(f) to (h), you can see that the transition from white (255) to black (0) is smoother in the last 
figure because the edge region has more values, and the distribution of those values is better balanced. 
Although the small intensity differences resulting from bilinear and bicubic interpolation are not always 
noticeable in human visual analysis, they can be important in processing image data, such as in auto-
mated edge following in rotated images.

The size of the spatial rectangle needed to contain a rotated image is larger than the rectangle of the 
original image, as Figs. 2.41(a) and (b) illustrate. We have two options for dealing with this: (1) we can 
crop the rotated image so that its size is equal to the size of the original image, as in Fig. 2.41(c), or we 
can keep the larger image containing the full rotated original, an Fig. 2.41(d). We used the first option in 
Fig. 2.40 because the rotation did not cause the object of interest to lie outside the bounds of the original 
rectangle. The areas in the rotated image that do not contain image data must be filled with some value, 0 
(black) being the most common. Note that counterclockwise angles of rotation are considered positive. 
This is a result of the way in which our image coordinate system is set up (see Fig. 2.19), and the way in 
which rotation is defined in Table 2.3.

Image Registration

Image registration is an important application of digital image processing used to 
align two or more images of the same scene. In image registration, we have avail-
able an input image and a reference image. The objective is to transform the input 
image geometrically to produce an output image that is aligned (registered) with the 
reference image. Unlike the discussion in the previous section where transformation 
functions are known, the geometric transformation needed to produce the output, 
registered image generally is not known, and must be estimated.

Examples of image registration include aligning two or more images taken at 
approximately the same time, but using different imaging systems, such as an MRI 
(magnetic resonance imaging) scanner and a PET (positron emission tomography) 
scanner. Or, perhaps the images were taken at different times using the same instru-
ments, such as satellite images of a given location taken several days, months, or even 
years apart. In either case, combining the images or performing quantitative analysis 
and comparisons between them requires compensating for geometric distortions 
caused by differences in viewing angle, distance, orientation, sensor resolution, shifts 
in object location, and other factors. 
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One of the principal approaches for solving the problem just discussed is to use tie 
points (also called control points). These are corresponding points whose locations 
are known precisely in the input and reference images. Approaches for selecting tie 
points range from selecting them interactively to using algorithms that detect these 
points automatically. Some imaging systems have physical artifacts (such as small 
metallic objects) embedded in the imaging sensors. These produce a set of known 
points (called reseau marks or fiducial marks) directly on all images captured by the 
system. These known points can then be used as guides for establishing tie points.

The problem of estimating the transformation function is one of modeling. For 
example, suppose that we have a set of four tie points each in an input and a refer-
ence image. A simple model based on a bilinear approximation is given by

 x c c c c= + + +1 2 3 4v w vw  (2-46)

and

ba dc
f he g

FIGURE 2.40 (a) A 541 421×  image of the letter T. (b) Image rotated −21° using nearest-neighbor interpolation for 
intensity assignments. (c) Image rotated −21° using bilinear interpolation. (d) Image rotated −21° using bicubic 
interpolation. (e)-(h) Zoomed sections (each square is one pixel, and the numbers shown are intensity values).
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x ¿

y ¿ y ¿

x ¿

y ¿

x ¿

y

x

Origin  

Image f(x, y)

Positive
angle of
rotation

Positive
angle of
rotation

ba
dc

FIGURE 2.41
(a) A digital  
image.  
(b) Rotated image 
(note the  
counterclockwise 
direction for a 
positive angle of 
rotation).  
(c) Rotated image 
cropped to fit the 
same area as the 
original image.  
(d) Image  
enlarged to  
accommodate 
the entire rotated 
image.

y c c c c= + + +5 6 7 8v w vw  (2-47)

During the estimation phase, ( , )v w  and ( , )x y  are the coordinates of tie points in the 
input and reference images, respectively. If we have four pairs of corresponding tie 
points in both images, we can write eight equations using Eqs. (2-46) and (2-47) and 
use them to solve for the eight unknown coefficients, c1 through c8. 

Once we have the coefficients, Eqs. (2-46) and (2-47) become our vehicle for trans-
forming all the pixels in the input image. The result is the desired registered image. 
After the coefficients have been computed, we let (v,w) denote the coordinates of 
each pixel in the input image, and ( , )x y  become the corresponding coordinates of the 
output image. The same set of coefficients, c1 through c8, are used in computing all 
coordinates ( , )x y ; we just step through all ( , )v w  in the input image to generate the 
corresponding ( , )x y  in the output, registered image. If the tie points were selected 
correctly, this new image should be registered with the reference image, within the 
accuracy of the bilinear approximation model.

In situations where four tie points are insufficient to obtain satisfactory regis-
tration, an approach used frequently is to select a larger number of tie points and 
then treat the quadrilaterals formed by groups of four tie points as subimages. The 
subimages are processed as above, with all the pixels within a quadrilateral being 
transformed using the coefficients determined from the tie points corresponding 
to that quadrilateral. Then we move to another set of four tie points and repeat the 
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procedure until all quadrilateral regions have been processed. It is possible to use 
more complex regions than quadrilaterals, and to employ more complex models, 
such as polynomials fitted by least squares algorithms. The number of control points 
and sophistication of the model required to solve a problem is dependent on the 
severity of the geometric distortion. Finally, keep in mind that the transformations 
defined by Eqs. (2-46) and (2-47), or any other model for that matter, only map the 
spatial coordinates of the pixels in the input image. We still need to perform inten-
sity interpolation using any of the methods discussed previously to assign intensity 
values to the transformed pixels.

EXAMPLE 2.10 :  Image registration.

Figure 2.42(a) shows a reference image and Fig. 2.42(b) shows the same image, but distorted geometri-
cally by vertical and horizontal shear. Our objective is to use the reference image to obtain tie points 
and then use them to register the images. The tie points we selected (manually) are shown as small white 
squares near the corners of the images (we needed only four tie points because the distortion is linear 
shear in both directions). Figure 2.42(c) shows the registration result obtained using these tie points in 
the procedure discussed in the preceding paragraphs. Observe that registration was not perfect, as is 
evident by the black edges in Fig. 2.42(c). The difference image in Fig. 2.42(d) shows more clearly the 
slight lack of registration between the reference and corrected images. The reason for the discrepancies 
is error in the manual selection of the tie points. It is difficult to achieve perfect matches for tie points 
when distortion is so severe.

VECTOR AND MATRIX OPERATIONS

Multispectral image processing is a typical area in which vector and matrix opera-
tions are used routinely. For example, you will learn in Chapter 6 that color images 
are formed in RGB color space by using red, green, and blue component images, as 
Fig. 2.43 illustrates. Here we see that each pixel of an RGB image has three compo-
nents, which can be organized in the form of a column vector

 z =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

z

z

z

1

2

3

 (2-48)

where z1 is the intensity of the pixel in the red image, and z2 and z3 are the corre-
sponding pixel intensities in the green and blue images, respectively. Thus, an RGB 
color image of size M N×  can be represented by three component images of this 
size, or by a total of MN vectors of size 3 1× . A general multispectral case involving 
n component images (e.g., see Fig. 1.10) will result in n-dimensional vectors:

 z =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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z

z
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1

2

�
 (2-49)

Recall that an 
n-dimensional vector 
can be thought of as a 
point in n-dimensional 
Euclidean space.
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 We will use this type of vector representation throughout the book.
The inner product (also called the dot product) of two n-dimensional column vec-

tors a and b is defined as

 

a b a bi �
�

T

n n

i i
i

n

a b a b a b

a b

= + + +

=
=
∑

1 1 2 2

1

 (2-50)

where T indicates the transpose. The Euclidean vector norm, denoted by z , is 
defined as the square root of the inner product:

 z z z= ( )T
1
2  (2-51)

The product abT is called 
the outer product of a 
and b. It is a matrix of 
size n × n. 
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FIGURE 2.42
Image  
registration. 
(a) Reference 
image. (b) Input 
(geometrically 
distorted image). 
Corresponding tie 
points are shown 
as small white 
squares near the 
corners.  
(c) Registered 
(output) image 
(note the errors 
in the border). 
(d) Difference 
between (a) and 
(c), showing more 
registration errors.
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Component image 3 (Blue)

Component image 2 (Green)

Component image 1 (Red)

z �
z1
z2
z3

FIGURE 2.43
Forming a vector 
from  
corresponding 
pixel values in 
three RGB  
component  
images.

We recognize this expression as the length of vector z.
We can use vector notation to express several of the concepts discussed earlier. 

For example, the Euclidean distance, D( , )z a , between points (vectors) z and a in 
n-dimensional space is defined as the Euclidean vector norm: 

 
D

z a z a z a

T

n n

( , )

( ) ( ) ( )

z a z a z a z a= − = −( ) −( )⎡
⎣

⎤
⎦

= − − −⎡

1
2

1 1
2

2 2
2 2+ + +�⎣⎣ ⎤⎦

1
2

 (2-52)

This is a generalization of the 2-D Euclidean distance defined in Eq. (2-19). 
Another advantage of pixel vectors is in linear transformations, represented as

 w A z a= −( ) (2-53)

where A is a matrix of size m n× , and z and a are column vectors of size n × 1.
As noted in Eq. (2-10), entire images can be treated as matrices (or, equivalently, 

as vectors), a fact that has important implication in the solution of numerous image 
processing problems. For example, we can express an image of size M N×  as a col-
umn vector of dimension MN × 1 by letting the first M elements of the vector equal 
the first column of the image, the next M elements equal the second column, and 
so on. With images formed in this manner, we can express a broad range of linear 
processes applied to an image by using the notation

 g Hf n= +  (2-54)

where f is an MN × 1 vector representing an input image, n is an MN × 1 vector rep-
resenting an M N×  noise pattern, g is an MN × 1 vector representing a processed 
image, and H is an MN MN×  matrix representing a linear process applied to the 
input image (see the discussion earlier in this chapter regarding linear processes). 
It is possible, for example, to develop an entire body of generalized techniques for 
image restoration starting with Eq. (2-54), as we discuss in Section 5.9. We will men-
tion the use of matrices again in the following section, and show other uses of matri-
ces for image processing in numerous chapters in the book.
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IMAGE TRANSFORMS

All the image processing approaches discussed thus far operate directly on the pixels 
of an input image; that is, they work directly in the spatial domain. In some cases, 
image processing tasks are best formulated by transforming the input images, carry-
ing the specified task in a transform domain, and applying the inverse transform to 
return to the spatial domain. You will encounter a number of different transforms 
as you proceed through the book. A particularly important class of 2-D linear trans-
forms, denoted T( , )u v , can be expressed in the general form

 T f x y r x y
y

N

x

M

( , ) ( , ) ( , , , )u v u v=
==

∑∑
0

1

0

1 --
 (2-55)

where f x y( , ) is an input image, r x y( , , , )u v  is called a forward transformation ker-
nel, and Eq. (2-55) is evaluated for u = −0 1 2 1, , , ,… M  and v = −0 1 2 1, , , ,… N  . As 
before, x and y are spatial variables, while M and N are the row and column dimen-
sions of f. Variables u and v  are called the transform variables. T( , )u v  is called the 
forward transform of f x y( , ). Given T( , ),u v  we can recover f x y( , ) using the inverse 
transform of T( , ):u v

 f x y T s x y
NM

( , ) ( , ) ( , , , )=
==
∑∑ u v u v
vu 0

1

0

1 --
 (2-56)

for x M= −0 1 2 1, , , ,…  and y N= −0 1 2 1, , , ,… , where s x y( , , , )u v  is called an inverse 
transformation kernel. Together, Eqs. (2-55) and (2-56) are called a transform pair.

Figure 2.44 shows the basic steps for performing image processing in the linear 
transform domain. First, the input image is transformed, the transform is then modi-
fied by a predefined operation and, finally, the output image is obtained by computing 
the inverse of the modified transform. Thus, we see that the process goes from the 
spatial domain to the transform domain, and then back to the spatial domain.

The forward transformation kernel is said to be separable if

 r x y r y( , , , ) ( , )u v)=r (x, u v1 2  (2-57)

In addition, the kernel is said to be symmetric if r x1( , )u  is functionally equal to 
r y2( , )v  , so that

 r x y r x r y( , , , ) ( , ) ( , )u v u v= 1 1  (2-58)

Identical comments apply to the inverse kernel.
The nature of a transform is determined by its kernel. A transform of particular 

importance in digital image processing is the Fourier transform, which has the fol-
lowing forward and inverse kernels:

 r x y e j ux M y N( , , , ) ( )u v v= − +2p  (2-59)

and

 s x y
MN

ej ux M y N( , , , ) ( )u v v= +1 2p  (2-60)
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respectively, where j = −1, so these kernels are complex functions. Substituting the 
preceding kernels into the general transform formulations in Eqs. (2-55) and (2-56) 
gives us the discrete Fourier transform pair:

 T f x y e j ux M y N

y

N

x

M

( , ) ( , ) ( )u v v= − +

==
∑∑ 2

0

1

0

1
p

--
(2-61)

and

 f x y
MN

T ej ux M y N
NM

( , ) ( , ) ( )= +

==
∑∑1 2

0

1

0

1

u v v

vu

p
--

 (2-62)

It can be shown that the Fourier kernels are separable and symmetric (Problem 2.39), 
and that separable and symmetric kernels allow 2-D transforms to be computed using 
1-D transforms (see Problem 2.40). The preceding two equations are of fundamental 
importance in digital image processing, as you will see in Chapters 4 and 5.

EXAMPLE 2.11 :  Image processing in the transform domain.

Figure 2.45(a) shows an image corrupted by periodic (sinusoidal) interference. This type of interference 
can be caused, for example, by a malfunctioning imaging system; we will discuss it in Chapter 5. In the 
spatial domain, the interference appears as waves of intensity. In the frequency domain, the interference 
manifests itself as bright bursts of intensity, whose location is determined by the frequency of the sinu-
soidal interference (we will discuss these concepts in much more detail in Chapters 4 and 5). Typi-
cally, the bursts are easily observable in an image of the magnitude of the Fourier transform, T( , ) .u v  
With reference to the diagram in Fig. 2.44, the corrupted image is f x y( , ), the transform in the leftmost 
box is the Fourier transform, and Fig. 2.45(b) is T( , )u v  displayed as an image. The bright dots shown 
are the bursts of intensity mentioned above. Figure 2.45(c) shows a mask image (called a filter) with 
white and black representing 1 and 0, respectively. For this example, the operation in the second box of 
Fig. 2.44 is to multiply the filter by the transform to remove the bursts associated with the interference. 
Figure 2.45(d) shows the final result, obtained by computing the inverse of the modified transform. The 
interference is no longer visible, and previously unseen image detail is now made quite clear. Observe, 
for example, the fiducial marks (faint crosses) that are used for image registration, as discussed earlier.

When the forward and inverse kernels of a transform are separable and sym-
metric, and f x y( , ) is a square image of size M M× , Eqs. (2-55) and (2-56) can be 
expressed in matrix form:

The exponential terms 
in the Fourier transform 
kernels can be expanded 
as sines and cosines of 
various frequencies. As 
a result, the domain of 
the Fourier transform 
is called the frequency 
domain.

T(u, v)
Transform

Operation
R

Inverse
transform

Transform domain

R[T(u, v)]
f(x, y) g(x, y)

Spatial
domain

Spatial
domain

FIGURE 2.44
General approach 
for working in the 
linear transform 
domain.
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 T AFA=  (2-63)  

where F is an M M×  matrix containing the elements of f x y( , ) [see Eq. (2-9)], A is 
an M M×  matrix with elements a r i jij = 1( , ), and T is an M M×  transform matrix 
with elements T( , ),u v  for u,v = −0 1 2 1, , , , .… M

To obtain the inverse transform, we pre- and post-multiply Eq. (2-63) by an 
inverse transformation matrix B:

 BTB BAFAB=  (2-64)

If B A= −1,

 F BTB=  (2-65)

indicating that F or, equivalently, f x y( , ), can be recovered completely from its 
forward transform. If B is not equal to A−1, Eq. (2-65) yields an approximation:

 F̂ BAFAB=  (2-66)

In addition to the Fourier transform, a number of important transforms, including 
the Walsh, Hadamard, discrete cosine, Haar, and slant transforms, can be expressed 
in the form of Eqs. (2-55) and (2-56), or, equivalently, in the form of Eqs. (2-63) and 
(2-65). We will discuss these and other types of image transforms in later chapters. 

ba
dc

FIGURE 2.45
(a) Image  
corrupted by  
sinusoidal  
interference.  
(b) Magnitude of 
the Fourier  
transform  
showing the 
bursts of energy 
caused by the 
interference 
(the bursts were 
enlarged for 
display purposes). 
(c) Mask used 
to eliminate the 
energy bursts.  
(d) Result of  
computing the 
inverse of the 
modified Fourier 
transform.  
(Original  
image courtesy of 
NASA.) 
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IMAGE INTENSITIES AS RANDOM VARIABLES

We treat image intensities as random quantities in numerous places in the book. For 
example, let z i Li , , , , , ,= −0 1 2 1…  denote the values of all possible intensities in an 
M N×  digital image. The probability, p zk( ), of intensity level zk occurring in the im-
age is estimated as

 p z
n

MNk
k( ) =  (2-67)

where nk is the number of times that intensity zk occurs in the image and MN is the 
total number of pixels. Clearly,

 p zk
k

L

( )
=

−

∑ =
0

1

1  (2-68)

Once we have p zk( ), we can determine a number of important image characteristics. 
For example, the mean (average) intensity is given by

 m z p zk k
k

L

=
=

−

∑ ( )
0

1

 (2-69)

Similarly, the variance of the intensities is

 s2 2

0

1

= −
=

−

∑ ( ) ( )z m p zk k
k

L

 (2-70)

The variance is a measure of the spread of the values of z about the mean, so it is 
a useful measure of image contrast. In general, the nth central moment of random 
variable z about the mean is defined as

 mn k
n

k
k

L

z z m p z( ) ( ) ( )= −
=

−

∑
0

1

 (2-71)

We see that m0 1( ) ,z =  m1 0( ) ,z =  and m s2
2( ) .z =  Whereas the mean and variance 

have an immediately obvious relationship to visual properties of an image, higher-
order moments are more subtle. For example, a positive third moment indicates 
that the intensities are biased to values higher than the mean, a negative third mo-
ment would indicate the opposite condition, and a zero third moment would tell us 
that the intensities are distributed approximately equally on both sides of the mean. 
These features are useful for computational purposes, but they do not tell us much 
about the appearance of an image in general.

As you will see in subsequent chapters, concepts from probability play a central 
role in a broad range of image processing applications. For example, Eq. (2-67) is 
utilized in Chapter 3 as the basis for image enhancement techniques based on his-
tograms. In Chapter 5, we use probability to develop image restoration algorithms, 
in Chapter 10 we use probability for image segmentation, in Chapter 11 we use it 
to describe texture, and in Chapter 12 we use probability as the basis for deriving 
optimum pattern recognition algorithms.

You may find it useful 
to  consult the tutorials 
section in the book 
website for a brief review 
of probability.
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Problems 

Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book 
website: www.ImageProcessingPlace.com).

2.1 If you use a sheet of white paper to shield your 
eyes when looking directly at the sun, the side of 
the sheet facing you appears black. Which of the 
visual processes discussed in Section 2.1 is respon-
sible for this?

2.2 * Using the background information provided in 
Section 2.1, and thinking purely in geometrical 
terms, estimate the diameter of the smallest 
printed dot that the eye can discern if the page 
on which the dot is printed is 0.2 m away from the 
eyes. Assume for simplicity that the visual system 
ceases to detect the dot when the image of the dot 
on the fovea becomes smaller than the diameter 
of one receptor (cone) in that area of the retina. 
Assume further that the fovea can be modeled as 
a square array of dimension 1 5. mm  on the side, 
and that the cones and spaces between the cones 
are distributed uniformly throughout this array.

2.3 Although it is not shown in Fig. 2.10, alternating 
current is part of the electromagnetic spectrum. 
Commercial alternating current in the United 
States has a frequency of 60 Hz. What is the wave-
length in kilometers of this component of the 
spectrum?

2.4 You are hired to design the front end of an imag-
ing system for studying the shapes of cells, bacteria, 
viruses, and proteins. The front end consists in 
this case of the illumination source(s) and cor-
responding imaging camera(s).The diameters of 
circles required to fully enclose individual speci-
mens in each of these categories are 50, 1, 0.1, and 
0 01. mm, respectively. In order to perform auto-
mated analysis, the smallest detail discernible on a 
specimen must be 0 001. mm. 

(a) * Can you solve the imaging aspects of this 
problem with a single sensor and camera? 
If your answer is yes, specify the illumina-
tion wavelength band and the type of camera 
needed. By “type,” we mean the band of the 
electromagnetic spectrum to which the cam-
era is most sensitive (e.g., infrared).

(b) If your answer in (a) is no, what type of illu-
mination sources and corresponding imaging 
sensors would you recommend? Specify the 
light sources and cameras as requested in 
part (a). Use the minimum number of illumi-
nation sources and cameras needed to solve 
the problem. (Hint: From the discussion in 

Summary, References, and Further Reading 
The material in this chapter is the foundation for the remainder of the book. For additional reading on visual per-
ception, see Snowden et al. [2012], and the classic book by Cornsweet [1970]. Born and Wolf [1999] discuss light in 
terms of electromagnetic theory. A basic source for further reading on image sensing is Trussell and Vrhel [2008]. 
The image formation model discussed in Section 2.3 is from Oppenheim et al. [1968]. The IES Lighting Handbook 
[2011] is a reference for the illumination and reflectance values used in that section. The concepts of image sampling 
introduced in Section 2.4 will be covered in detail in Chapter 4. The discussion on experiments dealing with the 
relationship between image quality and sampling is based on results from Huang [1965]. For further reading on the 
topics discussed in Section 2.5, see Rosenfeld and Kak [1982], and Klette and Rosenfeld [2004].

See Castleman [1996] for additional reading on linear systems in the context of image processing. The method of 
noise reduction by image averaging was first proposed by Kohler and Howell [1963]. See Ross [2014] regarding the 
expected value of the mean and variance of the sum of random variables. See Schröder [2010] for additional read-
ing on logic and sets. For additional reading on geometric spatial transformations see Wolberg [1990] and Hughes 
and Andries [2013]. For further reading on image registration see Goshtasby [2012]. Bronson and Costa [2009] is a 
good reference for additional reading on vectors and matrices. See Chapter 4 for a detailed treatment of the Fourier 
transform, and Chapters 7, 8, and 11 for details on other image transforms. For details on the software aspects of 
many of the examples in this chapter, see Gonzalez, Woods, and Eddins [2009]. 
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Section 2.2, the illumination required to “see” 
an object must have a wavelength the same 
size or smaller than the object.)

2.5 You are preparing a report and have to insert in it 
an image of size 2048 2048×  pixels.

(a) * Assuming no limitations on the printer, what 
would the resolution in line pairs per mm 
have to be for the image to fit in a space of 
size 5 5×  cm?

(b) What would the resolution have to be in dpi 
for the image to fit in 2 2×  inches?

2.6 * A CCD camera chip of dimensions 7 7×  mm and 
1024 1024×  sensing elements, is focused on a 
square, flat area, located 0.5 m away. The camera 
is equipped with a 35-mm lens. How many line 
pairs per mm will this camera be able to resolve? 
(Hint: Model the imaging process as in Fig. 2.3, 
with the focal length of the camera lens substitut-
ing for the focal length of the eye.)

2.7 An automobile manufacturer is automating the 
placement of certain components on the bumpers 
of a limited-edition line of sports cars. The com-
ponents are color-coordinated, so the assembly  
robots need to know the color of each car in order 
to select the appropriate bumper component. 
Models come in only four colors: blue, green, red, 
and white. You are hired to propose a solution 
based on imaging. How would you solve the prob-
lem of determining the color of each car, keeping 
in mind that cost is the most important consider-
ation in your choice of components?

2.8 * Suppose that a given automated imaging applica-
tion requires a minimum resolution of 5 line pairs 
per mm to be able to detect features of interest 
in objects viewed by the camera. The distance 
between the focal center of the camera lens and 
the area to be imaged is 1 m. The area being 
imaged is 0 5 5. × 0.  m. You have available a 200 
mm lens, and your job is to pick an appropriate 
CCD imaging chip. What is the minimum number 
of sensing elements and square size, d d× ,  of the 
CCD chip that will meet the requirements of this 
application? (Hint: Model the imaging process 
as in Fig. 2.3, and assume for simplicity that the 
imaged area is square.)

2.9 A common measure of transmission for digital 
data is the baud rate, defined as symbols (bits in 
our case) per second. As a minimum, transmission 
is accomplished in packets consisting of a start 
bit, a byte (8 bits) of information, and a stop bit. 
Using these facts, answer the following:

(a) * How many seconds would it take to transmit 
a sequence of 500 images of size 1024 1024×  
pixels with 256 intensity levels using a 3 
M-baud (106 bits/sec) baud modem? (This 
is a representative medium speed for a DSL 
(Digital Subscriber Line) residential line.

(b) What would the time be using a 30 G-baud 
(109 bits/sec) modem? (This is a represen-
tative medium speed for a commercial line.)

2.10 * High-definition television (HDTV) generates 
images with 1125 horizontal TV lines interlaced 
(i.e., where every other line is “painted” on the 
screen in each of two fields, each field being 
1 60th of a second in duration). The width-to-
height aspect ratio of the images is 16:9. The 
fact that the number of horizontal lines is fixed 
determines the vertical resolution of the images. 
A company has designed a system that extracts 
digital images from HDTV video. The resolution 
of each horizontal line in their system is propor-
tional to vertical resolution of HDTV, with the 
proportion being the width-to-height ratio of the 
images. Each pixel in the color image has 24 bits 
of intensity, 8 bits each for a red, a green, and a 
blue component image. These three “primary” 
images form a color image. How many bits would 
it take to store the images extracted from a two-
hour HDTV movie?

2.11 When discussing linear indexing in Section 2.4, 
we arrived at the linear index in Eq. (2-14) by 
inspection. The same argument used there can be 
extended to a 3-D array with coordinates x, y, and 
z, and corresponding dimensions M, N, and P. The 
linear index for any ( , , )x y z  is

s x M y Nz= + +( )

Start with this expression and

(a) * Derive Eq. (2-15).

(b) Derive Eq. (2-16).

2.12 * Suppose that a flat area with center at ( , )x y0 0  is 
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illuminated by a light source with intensity distri-
bution

 i x y Ke x x y y( , ) [( ) ( ) ]= − − + −0
2

0
2

Assume for simplicity that the reflectance of 
the area is constant and equal to 1.0, and let 
K = 255. If the intensity of the resulting image is 
quantized using k bits, and the eye can detect an 
abrupt change of eight intensity levels between 
adjacent pixels, what is the highest value of k that 
will cause visible false contouring?

2.13 Sketch the image in Problem 2.12 for k = 2.

2.14 Consider the two image subsets, S1  and S2  in the 
following figure. With reference to Section 2.5, 
and assuming that V = { }1 , determine whether 
these two subsets are:

(a) *  4-adjacent.

(b)  8-adjacent. 

(c) m-adjacent. 

1S
2S

0 0000000 11

1 1100100 00

1 0110100 00

0 0001110 00

0 1001110 11

2.15 * Develop an algorithm for converting a one-pixel-
thick 8-path to a 4-path.

2.16 Develop an algorithm for converting a one-pixel-
thick m-path to a 4-path.

2.17 Refer to the discussion toward the end of Sec-
tion 2.5, where we defined the background of an 
image as ( ) ,Ru

c  the complement of the union of 
all the regions in the image. In some applications, 
it is advantageous to define the background as the 
subset of pixels of ( )Ru

c  that are not hole pixels 
(informally, think of holes as sets of background 
pixels surrounded by foreground pixels). How 
would you modify the definition to exclude hole 
pixels from ( )Ru

c? An answer such as “the back-
ground is the subset of pixels of ( )Ru

c  that are not 
hole pixels” is not acceptable. (Hint: Use the con-
cept of connectivity.)

2.18 Consider the image segment shown in the figure 
that follows.

(a) * As in Section 2.5, let V = { , }0 1  be the set 
of intensity values used to define adjacency. 
Compute the lengths of the shortest 4-, 8-, 
and m-path between p and q in the follow-
ing image. If a particular path does not exist 
between these two points, explain why.

3 1 2 1

2 2 0 2

1 2 1 1

1 0 1 2(p)

(q)

(b) Repeat (a) but using V = { , }.1 2

2.19 Consider two points p and q.

(a) * State the condition(s) under which the D4 
distance between p and q is equal to the 
shortest 4-path between these points.

(b) Is this path unique?

2.20 Repeat problem 2.19 for the D8  distance.

2.21 Consider two one-dimensional images f and g of 
the same size. What has to be true about the ori-
entation of these images for the elementwise and 
matrix products discussed in Section 2.6 to make 
sense? Either of the two images can be first in 
forming the product.

2.22 * In the next chapter, we will deal with operators 
whose function is to compute the sum of pixel val-
ues in a small subimage area, Sxy ,  as in Eq. (2-43). 
Show that these are linear operators.

2.23 Refer to Eq. (2-24) in answering the following: 

(a) * Show that image summation is a linear opera-
tion.

(b) Show that image subtraction is a linear oper-
ation.

(c) * Show that image multiplication in a nonlinear 
operation.

(d) Show that image division is a nonlinear opera-
tion.

2.24 The median, z,  of a set of numbers is such that 
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half the values in the set are below z  and the oth-
er half are above it. For example, the median of 
the set of values { , , , , , , }2 3 8 20 21 25 31  is 20. Show 
that an operator that computes the median of a 
subimage area, S, is nonlinear. (Hint: It is suffi-
cient to show that z  fails the linearity test for a 
simple numerical example.)

2.25 * Show that image averaging can be done recur-
sively. That is, show that if a k( )is the average of 
k images, then the average of k + 1 images can 
be obtained from the already-computed average, 
a k( ), and the new image, fk+1 . 

2.26 With reference to Example 2.5:

(a) * Prove the validity of Eq. (2-27).

(b) Prove the validity of Eq. (2-28).

For part (b) you will need the following facts from 
probability: (1) the variance of a constant times a 
random variable is equal to the constant squared 
times the variance of the random variable. (2) The 
variance of the sum of uncorrelated random vari-
ables is equal to the sum of the variances of the 
individual random variables.

2.27 Consider two 8-bit images whose intensity levels 
span the full range from 0 to 255.

(a) * Discuss the limiting effect of repeatedly sub-
tracting image (2) from image (1). Assume 
that the results have to be represented also 
in eight bits.

(b) Would reversing the order of the images 
yield a different result?

2.28 * Image subtraction is used often in industrial appli-
cations for detecting missing components in prod-
uct assembly. The approach is to store a “golden” 
image that corresponds to a correct assembly; this 
image is then subtracted from incoming images of 
the same product. Ideally, the differences would 
be zero if the new products are assembled cor-
rectly. Difference images for products with miss-
ing components would be nonzero in the area 
where they differ from the golden image. What 
conditions do you think have to be met in prac-
tice for this method to work?

2.29 With reference to Eq. (2-32),

(a) * Give a general formula for the value of K 
as a function of the number of bits, k, in an 

image, such that K results in a scaled image 
whose intensities span the full k-bit range.

(b) Find K for 16- and 32-bit images. 

2.30 Give Venn diagrams for the following expres-
sions:

(a) * ( ) ( ).A C A B C¨ ¨ ¨−

(b) ( ) ( ).A C B C¨ ´ ¨
(c) B A B A B C− −[ ]( ) ( )¨ ¨ ¨
(d) B B A C A C− = ∅¨ ´ ¨( ); .Given that 

2.31 Use Venn diagrams to prove the validity of the 
following expressions:

(a) * ( ) ( ) ( )A B A C A B C A B C¨ ´ ¨ ¨ ¨ ¨ ´−[ ] =

(b) ( )A B C A B Cc c c c´ ´ ¨ ¨=

(c) ( ) ( )A C B B A Cc´ ¨ = − −

(d) ( )A B C A B Cc c c c¨ ¨ ´ ´=
2.32 Give expressions (in terms of sets A, B, and C) 

for the sets shown shaded in the following figures. 
The shaded areas in each figure constitute one set, 
so give only one expression for each of the four 
figures.

(a)* (b) (c) (d)

A

B

C

2.33 With reference to the discussion on sets in Section 
2.6, do the following:

(a) * Let S be a set of real numbers ordered by the 
relation “less than or equal to” ( ).≤  Show 
that S is a partially ordered set; that is, show 
that the reflexive, transitive, and antisymmet-
ric properties hold.

(b) * Show that changing the relation “less than or 
equal to” to “less than” ( )<  produces a strict 
ordered set.

(c) Now let S be the set of lower-case letters in 
the English alphabet. Show that, under ( ),<
S is a strict ordered set.

2.34 For any nonzero integers m and n, we say that m 
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is divisible by n, written m n, if there exists an 
integer k such that kn m= . For example, 42 (m) 
is divisible by 7 (n) because there exists an inte-
ger k = 6 such that kn m= . Show that the set of 
positive integers is a partially ordered set under 
the relation “divisible by.” In other words, do the 
following:

(a) * Show that the property of reflectivity holds 
under this relation.

(b) Show that the property of transitivity holds.

(c) Show that anti symmetry holds.

2.35 In general, what would the resulting image, g x y( , ),  
look like if we modified Eq. (2-43), as follows:

g x y
mn

T f r c
r c Sxy

( , ) ( , )
( , )

= [ ]∑1

H

where T is the intensity transformation function 
in Fig. 2.38(b)?

2.36 With reference to Table 2.3, provide single, com-
posite transformation functions for performing 
the following operations:

(a) * Scaling and translation.

(b) * Scaling, translation, and rotation.

(c) Vertical shear, scaling, translation, and rota-
tion.

(d) Does the order of multiplication of the indi-
vidual matrices to produce a single transfor-
mations make a difference? Give an example 
based on a scaling/translation transforma-
tion to support your answer.

2.37 We know from Eq. (2-45) that an affine transfor-
mation of coordinates is given by 

′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤x

y

x

y

a a a

a a a

1 1 0 0 1

11 12 13

21 22 23A

⎦⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x

y

1

where ( , )′ ′x y  are the transformed coordinates, 
( , )x y  are the original coordinates, and the ele-
ments of A are given in Table 2.3 for various 
types of transformations. The inverse transforma-
tion, A−1,  to go from the transformed back to the 
original coordinates is just as important for per-
forming inverse mappings.

(a) * Find the inverse scaling transformation.

(b) Find the inverse translation transformation.

(c) Find the inverse vertical and horizontal 
shearing transformations.

(d) * Find the inverse rotation transformation.

(e) * Show a composite inverse translation/rota-
tion transformation.

2.38 What are the equations, analogous to Eqs. (2-46) 
and (2-47), that would result from using triangu-
lar instead of quadrilateral regions?

2.39 Do the following.

(a) * Prove that the Fourier kernel in Eq. (2-59) is 
separable and symmetric.

(b) Repeat (a) for the kernel in Eq. (2-60).

2.40 * Show that 2-D transforms with separable, sym-
metric kernels can be computed by: (1) comput-
ing 1-D transforms along the individual rows (col-
umns) of the input image; and (2) computing 1-D 
transforms along the columns (rows) of the result 
from step (1).

2.41 A plant produces miniature polymer squares that 
have to undergo 100% visual inspection. Inspec-
tion is semi-automated. At each inspection sta-
tion, a robot places each polymer square over an 
optical system that produces a magnified image 
of the square. The image completely fills a view-
ing screen of size 80 80×  mm. Defects appear as 
dark circular blobs, and the human inspector’s job 
is to look at the screen and reject any sample that 
has one or more dark blobs with a diameter of 0.8 
mm or greater, as measured on the scale of the 
screen. The manufacturing manager believes that 
if she can find a way to fully automate the process, 
profits will increase by 50%, and success in this 
project will aid her climb up the corporate ladder. 
After extensive investigation, the manager decides 
that the way to solve the problem is to view each 
inspection screen with a CCD TV camera and feed 
the output of the camera into an image processing 
system capable of detecting the blobs, measuring 
their diameter, and activating the accept/reject 
button previously operated by a human inspec-
tor. She is able to find a suitable system, provided 
that the smallest defect occupies an area of at 
least 2 2×  pixels in the digital image. The manager 
hires you to help her specify the camera and lens 
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system to satisfy this requirement, using off-the-
shelf components. Available off-the-shelf lenses 
have focal lengths that are integer multiples of 
25 mm or 35 mm, up to 200 mm. Available cam-
eras yield image sizes of 512 512× , 1024 1024× , 
or 2048 2048×  pixels. The individual imaging 
elements in these cameras are squares measuring 
8 8×  m,m  and the spaces between imaging ele-
ments are 2 m.m For this application, the cameras 

cost much more than the lenses, so you should use 
the lowest-resolution camera possible, consistent 
with a suitable lens. As a consultant, you have 
to provide a written recommendation, showing 
in reasonable detail the analysis that led to your 
choice of components. Use the imaging geometry 
suggested in Problem 2.6.
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3 Intensity Transformations and 
Spatial Filtering

Preview
The term spatial domain refers to the image plane itself, and image processing methods in this category 
are based on direct manipulation of pixels in an image. This is in contrast to image processing in a trans-
form domain which, as we will discuss in Chapters 4 and 6, involves first transforming an image into the 
transform domain, doing the processing there, and obtaining the inverse transform to bring the results 
back into the spatial domain. Two principal categories of spatial processing are intensity transforma-
tions and  spatial filtering. Intensity transformations operate on single pixels of an image for tasks such 
as contrast manipulation and image thresholding. Spatial filtering performs operations on the neighbor-
hood of every pixel in an image. Examples of spatial filtering include image smoothing and sharpening. 
In the sections that follow, we discuss a number of “classical” techniques for intensity transformations 
and spatial filtering.  

Upon completion of this chapter, readers should:
 Understand the meaning of spatial domain 

processing, and how it differs from transform 
domain processing.

 Be familiar with the principal techniques used 
for intensity transformations.

 Understand the physical meaning of image 
histograms and how they can be manipulated 
for image enhancement.

 Understand the mechanics of spatial filtering, 
and how spatial filters are formed.

 Understand the principles of spatial convolu-
tion and correlation.

 Be familiar with the principal types of spatial 
filters, and how they are applied.

 Be aware of the relationships between spatial 
filters, and the fundamental role of lowpass 
filters. 

 Understand how to use combinations of 
enhancement methods in cases where a single 
approach is insufficient.

It makes all the difference whether one sees darkness through 
the light or brightness through the shadows.

David Lindsay
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3.1 BACKGROUND 

All the image processing techniques discussed in this chapter are implemented in 
the spatial domain, which we know from the discussion in Section 2.4 is the plane 
containing the pixels of an image. Spatial domain techniques operate directly on the 
pixels of an image, as opposed, for example, to the frequency domain (the topic of 
Chapter 4) in which operations are performed on the Fourier transform of an image, 
rather than on the image itself. As you will learn in progressing through the book, 
some image processing tasks are easier or more meaningful to implement in the 
spatial domain, while others are best suited for other approaches. 

THE BASICS OF INTENSITY TRANSFORMATIONS AND SPATIAL  
FILTERING

The spatial domain processes we discuss in this chapter are based on the expression

 g x y T f x y( , ) ( , )= [ ]  (3-1)

where f x y( , ) is an input image, g x y( , ) is the output image, and T is an operator on f 
defined over a neighborhood of point ( , )x y . The operator can be applied to the pix-
els of a single image (our principal focus in this chapter) or to the pixels of a set of 
images, such as performing the elementwise sum of a sequence of images for noise 
reduction, as discussed in Section 2.6. Figure 3.1 shows the basic implementation of 
Eq. (3-1) on a single image. The point ( , )x y0 0  shown is an arbitrary location in the 
image, and the small region shown is a neighborhood of ( , ),x y0 0  as explained in Sec-
tion 2.6. Typically, the neighborhood is rectangular, centered on ( , )x y0 0 , and much 
smaller in size than the image.

The process that Fig. 3.1 illustrates consists of moving the center of the neighbor-
hood from pixel to pixel, and applying the operator T to the pixels in the neighbor-
hood to yield an output value at that location. Thus, for any specific location ( , ),x y0 0  

3.1

FIGURE 3.1
A 3 3×   
neighborhood 
about a point 
( , )x y0 0  in an image. 
The neighborhood 
is moved from 
pixel to pixel in the 
image to generate 
an output image.  
Recall from  
Chapter 2 that the 
value of a pixel at 
location ( , )x y0 0  is
f x y( , ),0 0  the value 
of the image at that 
location.

Origin

0 0

3 3 neighborhood 

of point ( , )x y

×

Image f

y 

x

x0

y0

0 0Pixel [its value is ( , )]f x y
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the value of the output image g at those coordinates is equal to the result of apply-
ing T to the neighborhood with origin at ( , )x y0 0  in f.  For example, suppose that 
the neighborhood is a square of size 3 3×  and that operator T is defined as “com-
pute the average intensity of the pixels in the neighborhood.” Consider an arbitrary 
location in an image, say ( , ).100 150  The result at that location in the output image, 
g( , ),100 150  is the sum of f ( , )100 150  and its 8-neighbors, divided by 9. The center of 
the neighborhood is then moved to the next adjacent location and the procedure 
is repeated to generate the next value of the output image g. Typically, the process 
starts at the top left of the input image and proceeds pixel by pixel in a horizontal 
(vertical) scan, one row (column) at a time. We will discuss this type of neighbor-
hood processing beginning in Section 3.4.

The smallest possible neighborhood is of size 1 1× . In this case, g depends only 
on the value of f at a single point ( , )x y  and T in Eq. (3-1) becomes an intensity (also 
called a gray-level, or mapping) transformation function of the form

 s T r= ( )  (3-2)

where, for simplicity in notation, we use s and r to denote, respectively, the intensity 
of g and f at any point ( , ).x y  For example, if T r( ) has the form in Fig. 3.2(a), the 
result of applying the transformation to every pixel in f to generate the correspond-
ing pixels in g would be to produce an image of higher contrast than the original, by 
darkening the intensity levels below k and brightening the levels above k. In this 
technique, sometimes called contrast stretching (see Section 3.2), values of r lower 
than k reduce (darken) the values of s, toward black. The opposite is true for values 
of r higher than k. Observe how an intensity value r0  is mapped to obtain the cor-
responding value s0. In the limiting case shown in Fig. 3.2(b), T r( ) produces a two-
level (binary) image. A mapping of this form is called a thresholding function. Some 
fairly simple yet powerful processing approaches can be formulated with intensity 
transformation functions. In this chapter, we use intensity transformations princi-
pally for image enhancement. In Chapter 10, we will use them for image segmenta-
tion. Approaches whose results depend only on the intensity at a point sometimes 
are called point processing techniques, as opposed to the neighborhood processing 
techniques discussed in the previous paragraph.

Depending on the size 
of a neighborhood and 
its location, part of the 
neighborhood may lie 
outside the image. There 
are two solutions to this: 
(1) to ignore the values 
outside the image, or 
(2) to pad image, as 
discussed in Section 3.4.  
The second approach is 
preferred.

ba

FIGURE 3.2
Intensity  
transformation 
functions.  
(a) Contrast  
stretching  
function.  
(b) Thresholding 
function.
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ABOUT THE EXAMPLES IN THIS CHAPTER

Although intensity transformation and spatial filtering methods span a broad range 
of applications, most of the examples in this chapter are applications to image 
enhancement. Enhancement is the process of manipulating an image so that the 
result is more suitable than the original for a specific application. The word specific 
is important, because it establishes at the outset that enhancement techniques are 
problem-oriented. Thus, for example, a method that is quite useful for enhancing 
X-ray images may not be the best approach for enhancing infrared images. There is 
no general “theory” of image enhancement. When an image is processed for visual 
interpretation, the viewer is the ultimate judge of how well a particular method 
works. When dealing with machine perception, enhancement is easier to quantify. 
For example, in an automated character-recognition system, the most appropriate 
enhancement method is the one that results in the best recognition rate, leaving 
aside other considerations such as computational requirements of one method 
versus another. Regardless of the application or method used, image enhancement 
is one of the most visually appealing areas of image processing. Beginners in image 
processing generally find enhancement applications interesting and relatively sim-
ple to understand. Therefore, using examples from image enhancement to illustrate 
the spatial processing methods developed in this chapter not only saves having an 
extra chapter in the book dealing with image enhancement but, more importantly, is 
an effective approach for introducing newcomers to image processing techniques in 
the spatial domain. As you progress through the remainder of the book, you will find 
that the material developed in this chapter has a scope that is much broader than 
just image enhancement.

3.2 SOME BASIC INTENSITY TRANSFORMATION FUNCTIONS 

Intensity transformations are among the simplest of all image processing techniques. 
As noted in the previous section, we denote the values of pixels, before and after 
processing, by r and s, respectively. These values are related by a transformation T, 
as given in Eq. (3-2), that maps a pixel value r into a pixel value s. Because we deal 
with digital quantities, values of an intensity transformation function typically are 
stored in a table, and the mappings from r to s are implemented via table lookups. 
For an 8-bit image, a lookup table containing the values of T will have 256 entries.

As an introduction to intensity transformations, consider Fig. 3.3, which shows 
three basic types of functions used frequently in image processing: linear (negative 
and identity transformations), logarithmic (log and inverse-log transformations), 
and power-law (nth power and nth root transformations). The identity function is 
the trivial case in which the input and output intensities are identical.

IMAGE NEGATIVES 

The negative of an image with intensity levels in the range [ , ]0 1L −  is obtained by 
using the negative transformation function shown in Fig. 3.3, which has the form:

 s L r= − −1  (3-3)

3.2
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Reversing the intensity levels of a digital image in this manner produces the 
equivalent of a photographic negative. This type of processing is used, for example, 
in enhancing white or gray detail embedded in dark regions of an image, especially 
when the black areas are dominant in size. Figure 3.4 shows an example. The origi-
nal image is a digital mammogram showing a small lesion. Despite the fact that the 
visual content is the same in both images, some viewers find it easier to analyze the 
fine details of the breast tissue using the negative image.

Identity

0 L/4 L/2 3L/4 L � 1

Input intensity levels, r

0

L/4

L/2

3L/4

L � 1

O
ut

pu
t i

nt
en

si
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, s

Log

Negative

nth power

nth root

Inverse log
(exponential)

FIGURE 3.3
Some basic  
intensity  
transformation  
functions. Each 
curve was scaled  
independently so 
that all curves 
would fit in the 
same graph. Our  
interest here is 
on the shapes of 
the curves, not 
on their relative 
values. 

ba

FIGURE 3.4
(a) A  
digital  
mammogram.  
(b) Negative 
image obtained 
using Eq. (3-3). 
(Image (a)  
Courtesy of 
General Electric 
Medical Systems.)
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LOG TRANSFORMATIONS

The general form of the log transformation in Fig. 3.3 is

 s c r= +log( )1  (3-4)

where c is a constant and it is assumed that r ≥ 0. The shape of the log curve in Fig. 3.3 
shows that this transformation maps a narrow range of low intensity values in the 
input into a wider range of output levels. For example, note how input levels in the 
range [ , ]0 4L  map to output levels to the range [ , ].0 3 4L  Conversely, higher values 
of input levels are mapped to a narrower range in the output. We use a transformation 
of this type to expand the values of dark pixels in an image, while compressing the 
higher-level values. The opposite is true of the inverse log (exponential) transformation.

Any curve having the general shape of the log function shown in Fig. 3.3 would 
accomplish this spreading/compressing of intensity levels in an image, but the pow-
er-law transformations discussed in the next section are much more versatile for 
this purpose. The log function has the important characteristic that it compresses 
the dynamic range of pixel values. An example in which pixel values have a large 
dynamic range is the Fourier spectrum, which we will discuss in Chapter 4. It is not 
unusual to encounter spectrum values that range from 0 to 106 or higher. Processing 
numbers such as these presents no problems for a computer, but image displays can-
not reproduce faithfully such a wide range of values. The net effect is that intensity 
detail can be lost in the display of a typical Fourier spectrum.

Figure 3.5(a) shows a Fourier spectrum with values in the range 0 to 1 5 106. .×  
When these values are scaled linearly for display in an 8-bit system, the brightest 
pixels dominate the display, at the expense of lower (and just as important) values 
of the spectrum. The effect of this dominance is illustrated vividly by the relatively 
small area of the image in Fig. 3.5(a) that is not perceived as black. If, instead of 
displaying the values in this manner, we first apply Eq. (3-4) (with c = 1 in this case) 
to the spectrum values, then the range of values of the result becomes 0 to 6.2. Trans-
forming values in this way enables a greater range of intensities to be shown on the 
display. Figure 3.5(b) shows the result of scaling the intensity range linearly to the 

ba

FIGURE 3.5
(a) Fourier  
spectrum  
displayed as a  
grayscale image. 
(b) Result of  
applying the log 
transformation 
in Eq. (3-4) with 
c = 1. Both images 
are scaled to the 
range [0, 255].
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interval [ , ]0 255  and showing the spectrum in the same 8-bit display. The level of 
detail visible in this image as compared to an unmodified display of the spectrum 
is evident from these two images. Most of the Fourier spectra in image processing 
publications, including this book, have been scaled in this manner.

POWER-LAW (GAMMA) TRANSFORMATIONS

Power-law transformations have the form

 s cr= g  (3-5)

where c and g are positive constants. Sometimes Eq. (3-5) is written as s c r= +( )e g  
to account for offsets (that is, a measurable output when the input is zero). However, 
offsets typically are an issue of display calibration, and as a result they are normally 
ignored in Eq. (3-5). Figure 3.6 shows plots of s as a function of r for various values 
of g. As with log transformations, power-law curves with fractional values of g map 
a narrow range of dark input values into a wider range of output values, with the 
opposite being true for higher values of input levels. Note also in Fig. 3.6 that a fam-
ily of transformations can be obtained simply by varying g. Curves generated with 
values of g > 1 have exactly the opposite effect as those generated with values of 
g < 1. When c = =g 1 Eq. (3-5) reduces to the identity transformation.

The response of many devices used for image capture, printing, and display obey 
a power law. By convention, the exponent in a power-law equation is referred to as 
gamma [hence our use of this symbol in Eq. (3-5)]. The process used to correct these 
power-law response phenomena is called gamma correction or gamma encoding. 
For example, cathode ray tube (CRT) devices have an intensity-to-voltage response 
that is a power function, with exponents varying from approximately 1.8 to 2.5. As 
the curve for g = 2 5.  in Fig. 3.6 shows, such display systems would tend to produce 
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FIGURE 3.6
Plots of the  
gamma equation 
s cr= g  for various 
values of g (c = 1 
in all cases). Each 
curve was scaled  
independently so 
that all curves 
would fit in the 
same graph. Our  
interest here is 
on the shapes of 
the curves, not 
on their relative 
values.
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126    Chapter 3  Intensity Transformations and Spatial Filtering

images that are darker than intended. Figure 3.7 illustrates this effect. Figure 3.7(a) 
is an image of an intensity ramp displayed in a monitor with a gamma of 2.5. As 
expected, the output of the monitor appears darker than the input, as Fig. 3.7(b) 
shows.

In this case, gamma correction consists of using the transformation s r r= =1 2 5 0 4. .  
to preprocess the image before inputting it into the monitor. Figure 3.7(c) is the result. 
When input into the same monitor, the gamma-corrected image produces an output 
that is close in appearance to the original image, as Fig. 3.7(d) shows. A similar analysis 
as above would apply to other imaging devices, such as scanners and printers, the dif-
ference being the device-dependent value of gamma (Poynton [1996]).

EXAMPLE 3.1 : Contrast enhancement using power-law intensity transformations.

In addition to gamma correction, power-law transformations are useful for general-purpose contrast 
manipulation. Figure 3.8(a) shows a magnetic resonance image (MRI) of a human upper thoracic spine 
with a fracture dislocation. The fracture is visible in the region highlighted by the circle. Because the 
image is predominantly dark, an expansion of intensity levels is desirable. This can be accomplished 
using a power-law transformation with a fractional exponent. The other images shown in the figure were 
obtained by processing Fig. 3.8(a) with the power-law transformation function of Eq. (3-5). The values 

Sometimes, a higher 
gamma makes the  
displayed image look 
better to viewers than 
the original because of 
an increase in contrast. 
However, the objective 
of gamma correction is to 
produce a faithful display 
of an input image.

ba
dc

FIGURE 3.7
(a) Intensity ramp 
image. (b) Image 
as viewed on a 
simulated monitor 
with a gamma of 
2.5. (c) Gamma- 
corrected image. 
(d) Corrected 
image as viewed 
on the same 
monitor. Compare 
(d) and (a).

Original image as viewed on a monitor with
a gamma of 2.5

Original image Gamma Correction

Gamma-corrected image Gamma-corrected image as viewed on the
same monitor
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3.2  Some Basic Intensity Transformation Functions    127

of gamma corresponding to images (b) through (d) are 0.6, 0.4, and 0.3, respectively (c = 1 in all cases). 
Observe that as gamma decreased from 0.6 to 0.4, more detail became visible. A further decrease of 
gamma to 0.3 enhanced a little more detail in the background, but began to reduce contrast to the point 
where the image started to have a very slight “washed-out” appearance, especially in the background. 
The best enhancement in terms of contrast and discernible detail was obtained with g = 0 4. . A value of 
g = 0 3.  is an approximate limit below which contrast in this particular image would be reduced to an 
unacceptable level.

EXAMPLE 3.2 : Another illustration of power-law transformations.

Figure 3.9(a) shows the opposite problem of that presented in Fig. 3.8(a). The image to be processed 

ba
dc

FIGURE 3.8
(a) Magnetic 
resonance  
image (MRI) of a 
fractured human 
spine (the region 
of the fracture is 
enclosed by the 
circle).  
(b)–(d) Results of  
applying the  
transformation  
in Eq. (3-5) 
with c = 1 and 
g = 0 6. , 0.4, and 
0.3, respectively. 
(Original image 
courtesy of Dr. 
David R. Pickens, 
Department of 
Radiology and 
Radiological  
Sciences,  
Vanderbilt  
University  
Medical Center.)
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ba
dc

FIGURE 3.9
(a) Aerial image. 
(b)–(d) Results 
of applying the 
transformation 
in Eq. (3-5) with 
g = 3 0. , 4.0, and 
5.0, respectively. 
(c = 1 in all cases.)  
(Original image 
courtesy of 
NASA.)

now has a washed-out appearance, indicating that a compression of intensity levels is desirable. This can 
be accomplished with Eq. (3-5) using values of g greater than 1. The results of processing Fig. 3.9(a) with 
g = 3 0. , 4.0, and 5.0 are shown in Figs. 3.9(b) through (d), respectively. Suitable results were obtained 
using gamma values of 3.0 and 4.0. The latter result has a slightly more appealing appearance because it 
has higher contrast. This is true also of the result obtained with g = 5 0. . For example, the airport runways 
near the middle of the image appears clearer in Fig. 3.9(d) than in any of the other three images. 

PIECEWISE LINEAR TRANSFORMATION FUNCTIONS

An approach complementary to the methods discussed in the previous three sec-
tions is to use piecewise linear functions. The advantage of these functions over those 
discussed thus far is that the form of piecewise functions can be arbitrarily complex. 
In fact, as you will see shortly, a practical implementation of some important trans-
formations can be formulated only as piecewise linear functions. The main disadvan-
tage of these functions is that their specification requires considerable user input.
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3.2  Some Basic Intensity Transformation Functions    129

Contrast Stretching

Low-contrast images can result from poor illumination, lack of dynamic range in the 
imaging sensor, or even the wrong setting of a lens aperture during image acquisi-
tion. Contrast stretching expands the range of intensity levels in an image so that it 
spans the ideal full intensity range of the recording medium or display device.

Figure 3.10(a) shows a typical transformation used for contrast stretching. The 
locations of points ( , )r s1 1  and ( , )r s2 2  control the shape of the transformation function. 
If r s1 1=  and r s2 2=  the transformation is a linear function that produces no changes 
in intensity. If r r1 2= , s1 0= , and s L2 1= −  the transformation becomes a threshold-
ing function that creates a binary image [see Fig. 3.2(b)]. Intermediate values of ( , )r s1 1  
and ( , )s r2 2  produce various degrees of spread in the intensity levels of the output 
image, thus affecting its contrast. In general, r r1 2≤  and s s1 2≤  is assumed so that 
the function is single valued and monotonically increasing. This preserves the order 
of intensity levels, thus preventing the creation of intensity artifacts. Figure 3.10(b) 
shows an 8-bit image with low contrast. Figure 3.10(c) shows the result of contrast 
stretching, obtained by setting ( , ) ( , )minr s r1 1 0=  and ( , ) ( , ),maxr s r L2 2 1= −  where 
rmin and rmax denote the minimum and maximum intensity levels in the input image, 
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FIGURE 3.10
Contrast stretching.  
(a) Piecewise linear 
transformation 
function. (b) A low-
contrast electron 
microscope image 
of pollen, magnified 
700 times.  
(c) Result of  
contrast stretching. 
(d) Result of  
thresholding.  
(Original image 
courtesy of Dr.  
Roger Heady, 
Research School of 
Biological Sciences, 
Australian National 
University,  
Canberra,  
Australia.)
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130    Chapter 3  Intensity Transformations and Spatial Filtering

respectively. The transformation stretched the intensity levels linearly to the full 
intensity range, [ , ].0 1L −  Finally, Fig. 3.10(d) shows the result of using the thresh-
olding function, with ( , ) ( , )r s m1 1 0=  and ( , ) ( , ),r s m L2 2 1= −  where m is the mean 
intensity level in the image. 

Intensity-Level Slicing

There are applications in which it is of interest to highlight a specific range of inten-
sities in an image. Some of these applications include enhancing features in satellite 
imagery, such as masses of water, and enhancing flaws in X-ray images. The method, 
called intensity-level slicing, can be implemented in several ways, but most are varia-
tions of two basic themes. One approach is to display in one value (say, white) all the 
values in the range of interest and in another (say, black) all other intensities. This 
transformation, shown in Fig. 3.11(a), produces a binary image. The second approach, 
based on the transformation in Fig. 3.11(b), brightens (or darkens) the desired range 
of intensities, but leaves all other intensity levels in the image unchanged.

EXAMPLE 3.3 : Intensity-level slicing.

Figure 3.12(a) is an aortic angiogram near the kidney area (see Section 1.3 for details on this image). The 
objective of this example is to use intensity-level slicing to enhance the major blood vessels that appear 
lighter than the background, as a result of an injected contrast medium. Figure 3.12(b) shows the result 
of using a transformation of the form in Fig. 3.11(a). The selected band was near the top of the intensity 
scale because the range of interest is brighter than the background. The net result of this transformation 
is that the blood vessel and parts of the kidneys appear white, while all other intensities are black. This 
type of enhancement produces a binary image, and is useful for studying the shape characteristics of the 
flow of the contrast medium (to detect blockages, for example).

If interest lies in the actual intensity values of the region of interest, we can use the transformation of 
the form shown in Fig. 3.11(b). Figure 3.12(c) shows the result of using such a transformation in which 
a band of intensities in the mid-gray region around the mean intensity was set to black, while all other 
intensities were left unchanged. Here, we see that the gray-level tonality of the major blood vessels and 
part of the kidney area were left intact. Such a result might be useful when interest lies in measuring the 
actual flow of the contrast medium as a function of time in a sequence of images.

T(r) T(r)

0 A B

 L � 1 L � 1

s s 

r r 
L � 1 0 A B L � 1 

ba

FIGURE 3.11
(a) This transfor-
mation function 
highlights range 
[ , ]A B  and reduces 
all other intensities 
to a lower level. 
(b) This function 
highlights range 
[ , ]A B  and leaves 
other intensities 
unchanged.
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Bit-Plane Slicing

Pixel values are integers composed of bits. For example, values in a 256-level gray-
scale image are composed of 8 bits (one byte). Instead of highlighting intensity-level 
ranges, as 3.3, we could highlight the contribution made to total image appearance 
by specific bits. As Fig. 3.13 illustrates, an 8-bit image may be considered as being 
composed of eight one-bit planes, with plane 1 containing the lowest-order bit of all 
pixels in the image, and plane 8 all the highest-order bits.

Figure 3.14(a) shows an 8-bit grayscale image and Figs. 3.14(b) through (i) are 
its eight one-bit planes, with Fig. 3.14(b) corresponding to the highest-order bit. 
Observe that the four higher-order bit planes, especially the first two, contain a sig-
nificant amount of the visually-significant data. The lower-order planes contribute 
to more  subtle  intensity details  in the image. The original  image has a gray border 
whose intensity is 194. Notice that the corresponding borders of some of the bit 

ba c

FIGURE 3.12  (a) Aortic angiogram. (b) Result of using a slicing transformation of the type illustrated in Fig. 3.11(a), 
with the range of intensities of interest selected in the upper end of the gray scale. (c) Result of using the transfor-
mation in Fig. 3.11(b), with the selected range set near black, so that the grays in the area of the blood vessels and 
kidneys were preserved. (Original image courtesy of Dr. Thomas R. Gest, University of Michigan Medical School.) 

One 8-bit byte Bit plane 8
(most significant)

Bit plane 1
(least significant)

FIGURE 3.13
Bit-planes of an 
8-bit image.
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132    Chapter 3  Intensity Transformations and Spatial Filtering

planes are black (0), while others are white (1). To see why, consider a pixel in, say, 
the middle  of the lower border of Fig. 3.14(a). The corresponding pixels in the bit 
planes, starting with the highest-order plane, have values 1 1 0 0 0 0 1 0, which is the 
binary representation of decimal 194. The value of any pixel in the original image  
can be similarly reconstructed from its corresponding binary-valued pixels in the bit 
planes by converting an 8-bit binary sequence to decimal.

The binary image for the 8th bit plane of an 8-bit image can be obtained by thresh-
olding the input image with a transformation function that maps to 0 intensity values 
between 0 and 127, and maps to 1 values between 128 and 255. The binary image in 
Fig. 3.14(b) was obtained in this manner. It is left as an exercise (see Problem 3.3) to 
obtain the transformation functions for generating the other bit planes.

Decomposing an image into its bit planes is useful for analyzing the relative 
importance of each bit in the image, a process that aids in determining the adequacy 
of the number of bits used to quantize the image. Also, this type of decomposition 
is useful for image compression (the topic of Chapter 8), in which fewer than all 
planes are used in reconstructing an image. For example, Fig. 3.15(a) shows an image 
reconstructed using bit planes 8 and 7 of the preceding decomposition. The recon-
struction is done by multiplying the pixels of the nth plane by the constant 2 1n− . This 
converts the nth significant binary bit to decimal. Each bit plane is multiplied by the 
corresponding constant, and all resulting planes are added to obtain the grayscale 
image. Thus, to obtain Fig. 3.15(a), we multiplied bit plane 8 by 128, bit plane 7 by 64, 
and added the two planes. Although the main features of the original image were 
restored, the reconstructed image appears flat, especially in the background. This 

ba c
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hg i

FIGURE 3.14 (a) An 8-bit gray-scale image of size 550 1192×  pixels. (b) through (i) Bit planes 8 through 1, with bit 
plane 1 corresponding to the least significant bit. Each bit plane is a binary image..
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3.3  Histogram Processing    133

is not surprising, because two planes can produce only four distinct intensity  lev-
els. Adding plane 6 to the reconstruction helped the situation, as Fig. 3.15(b) shows. 
Note that the background of this image has perceptible false contouring. This effect 
is reduced significantly by adding the 5th plane to the reconstruction, as Fig. 3.15(c) 
illustrates. Using more planes in the reconstruction would not contribute significant-
ly to the appearance of this image. Thus, we conclude that, in this example, storing 
the four highest-order bit planes would allow us to reconstruct the original image 
in acceptable detail. Storing these four planes instead of the original image requires 
50% less storage.

3.3 HISTOGRAM PROCESSING 

Let rk , fork L= −0 1 2 1, , , , ,…  denote the intensities of an L-level digital image, 
f x y( , ). The unnormalized histogram of f is defined as

 h r n k Lk k( ) , , , ,= = −for 0 1 2 1…  (3-6)

where nk is the number of pixels in f with intensity rk , and the subdivisions of the 
intensity scale are called histogram bins. Similarly, the normalized histogram of f is 
defined as

 p r
h r
MN

n
MNk

k k( )
( )= =  (3-7)

where, as usual, M and N are the number of image rows and columns, respectively. 
Mostly, we work with normalized histograms, which we refer to simply as histograms 
or image histograms. The sum of p rk( ) for all values of k is always 1. The components 
of p rk( ) are estimates of the probabilities of intensity levels occurring in an image. 
As you will learn in this section, histogram manipulation is a fundamental tool in 
image processing. Histograms are simple to compute and are also suitable for fast 
hardware implementations, thus making histogram-based techniques a popular tool 
for real-time image processing. 

Histogram shape is related to image appearance. For example, Fig. 3.16 shows 
images with four basic intensity characteristics: dark, light, low contrast, and high 
contrast; the image histograms are also shown. We note in the dark image that the 
most populated histogram bins are concentrated on the lower (dark) end of the 
intensity scale. Similarly, the most populated bins of the light image are biased 
toward the higher end of the scale. An image with low contrast has a narrow histo-

3.3

ba c FIGURE 3.15 Image  reconstructed from bit planes: (a) 8 and 7; (b) 8, 7, and 6; (c) 8, 7, 6, and 5.
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134    Chapter 3  Intensity Transformations and Spatial Filtering

gram located typically toward the middle of the intensity scale, as Fig. 3.16(c) shows. 
For a monochrome image, this implies a dull, washed-out gray look. Finally, we see 
that the components of the histogram of the high-contrast image cover a wide range 
of the intensity scale, and the distribution of pixels is not too far from uniform, with 
few bins being much higher than the others. Intuitively, it is reasonable to conclude 
that an image whose pixels tend to occupy the entire range of possible intensity lev-
els and, in addition, tend to be distributed uniformly, will have an appearance of high 
contrast and will exhibit a large variety of gray tones. The net effect will be an image 
that shows a great deal of gray-level detail and has a high dynamic range. As you will 
see shortly, it is possible to develop a transformation function that can achieve this 
effect automatically, using only the histogram of an input image.

HISTOGRAM EQUALIZATION

Assuming initially continuous intensity values, let the variable r denote the intensi-
ties of an image to be processed. As usual, we assume that r is in the range [ , ],0 1L −  
with r = 0 representing black and r L= − 1 representing white. For r satisfying these 
conditions, we focus attention on transformations (intensity mappings) of the form

 s T r r L= −( ) 0 1≤ ≤  (3-8)

Histogram of 
high-contrast image

Histogram of 
low-contrast image

Histogram of 
dark image

Histogram of 
light image

ba c d

FIGURE 3.16 Four image types and their corresponding histograms. (a) dark; (b) light; (c) low contrast; (d) high con-
trast. The horizontal axis of the histograms are values of rk  and the vertical axis are values of p rk( ).
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that produce an output intensity value, s, for a given intensity value r in the input 
image. We assume that 

(a) T r( ) is a monotonic† increasing function in the interval 0 1≤ ≤r L − ; and
(b) 0 1≤ ≤T r L( ) −  for 0 1≤ ≤r L − .

In some formulations to be discussed shortly, we use the inverse transformation

 r T s s L= −−1 0 1( ) ≤ ≤  (3-9)

in which case we change condition (a) to:

(a�) T r( ) is a strictly monotonic increasing function in the interval 0 1≤ ≤r L − .

The condition in (a) that T r( ) be monotonically increasing guarantees that output 
intensity values will never be less than corresponding input values, thus preventing 
artifacts created by reversals of intensity. Condition (b) guarantees that the range of 
output intensities is the same as the input. Finally, condition (a )�  guarantees that the 
mappings from s back to r will be one-to-one, thus preventing ambiguities. 

Figure 3.17(a) shows a function that satisfies conditions (a) and (b). Here, we see 
that it is possible for multiple input values to map to a single output value and still 
satisfy these two conditions. That is, a monotonic transformation function performs 
a one-to-one or many-to-one mapping. This is perfectly fine when mapping from r 
to s. However, Fig. 3.17(a) presents a problem if we wanted to recover the values of 
r uniquely from the mapped values (inverse mapping can be visualized by revers-
ing the direction of the arrows). This would be possible for the inverse mapping 
of sk  in Fig. 3.17(a), but the inverse mapping of sq  is a range of values, which, of 
course, prevents us in general from recovering the original value of r that resulted 

† A function T r( )  is a monotonic increasing function if T r T r( ) ( )2 1≥  for r r2 1> . T r( )  is a strictly monotonic increas-
ing function if T r T r( ) ( )2 1>  for r r2 1> . Similar definitions apply to a monotonic decreasing function.

Single
value, sk

rk

skSingle
value, sq

Single
value

Multiple
values

r 

T(r)

T(r)
T(r)

0

L � 1

L � 1 0 L � 1

L � 1

r 

T(r)

. . .

ba

FIGURE 3.17
(a) Monotonic  
increasing function, 
showing how  
multiple values can 
map to a single  
value. (b) Strictly  
monotonic increas-
ing function. This is 
a one-to-one map-
ping, both ways.
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in sq. As Fig. 3.17(b) shows, requiring that T r( ) be strictly monotonic guarantees 
that the inverse mappings will be single valued (i.e., the mapping is one-to-one in 
both directions).This is a theoretical requirement that will allow us to derive some 
important histogram processing techniques later in this chapter. Because images are 
stored using integer intensity values, we are forced to round all results to their near-
est integer values. This often results in strict monotonicity not being satisfied, which 
implies inverse transformations that may not be unique. Fortunately, this problem is 
not difficult to handle in the discrete case, as Example 3.7 in this section illustrates.

The intensity of an image may be viewed as a random variable in the interval 
[ , ].0 1L −  Let p rr ( ) and p ss( ) denote the PDFs of intensity values r and s in two dif-
ferent images. The subscripts on p indicate that pr  and ps  are different functions. A 
fundamental result from probability theory is that if p rr ( ) and T r( ) are known, and 
T r( ) is continuous and differentiable over the range of values of interest, then the 
PDF of the transformed (mapped) variable s can be obtained as

 p s p r
dr
dss r( ) ( )=  (3-10)

Thus, we see that the PDF of the output intensity variable, s, is determined by the 
PDF of the input intensities and the transformation function used [recall that r and 
s are related by T r( )]. 

A transformation function of particular importance in image processing is

 s T r L p d
r

r= = −( ) ( ) ( )1
02 w w  (3-11)

where w  is a dummy variable of integration. The integral on the right side is the 
cumulative distribution function (CDF) of random variable r. Because PDFs always 
are positive, and the integral of a function is the area under the function, it follows 
that the transformation function of Eq. (3-11) satisfies condition (a). This is because 
the area under the function cannot decrease as r increases. When the upper limit in 
this equation is r L= −( )1  the integral evaluates to 1, as it must for a PDF.  Thus, the 
maximum value of s is L − 1, and condition (b) is satisfied also.

We use Eq. (3-10) to find the p ss( ) corresponding to the transformation just dis-
cussed. We know from Leibniz’s rule in calculus that the derivative of a definite 
integral with respect to its upper limit is the integrand evaluated at the limit. That is,

 

ds
dr

dT r
dr

L
d
dr

p d

L p r

r

r

r

=

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
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= −

( )

( ) ( )

( ) ( )

1

1

02 w w   (3-12)
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Substituting this result for dr ds  in Eq. (3-10), and noting that all probability values 
are positive, gives the result

 

p s p r
dr
ds

p r
L p r

L
s L

s r

r
r

( ) ( )

( )
( ) ( )

=

=
−

=
−

−

1
1

1
1

0 1≤ ≤

  (3-13)

We recognize the form of p ss( ) in the last line of this equation as a uniform prob-
ability density function. Thus, performing the intensity transformation in Eq. (3-11) 
yields a random variable, s, characterized by a uniform PDF. What is important is 
that p ss( ) in Eq. (3-13) will always be uniform, independently of the form of p rr ( ). 
Figure 3.18 and the following example illustrate these concepts.

EXAMPLE 3.4 : Illustration of Eqs. (3-11) and (3-13).

Suppose that the (continuous) intensity values in an image have the PDF

 p r

r

L
r L

r ( ) ( )= −
−⎧

⎨
⎪

⎩⎪

2
1

0 1

0

2 for 

otherwise

≤ ≤

From Eq. (3-11) 

 s T r L p d
L

d
r

L

r r

r= = − =
−
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−

( ) ( ) ( )1
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1 10 0

2

2 2w w w w

Eq. (3-11)
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L � 1
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0 L � 1
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FIGURE 3.18  (a) An arbitrary PDF. (b) Result of applying Eq. (3-11) to the input PDF. The 
resulting PDF is always uniform, independently of the shape of the input.
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Suppose that we form a new image with intensities, s, obtained using this transformation; that is, the s 
values are formed by squaring the corresponding intensity values of the input image, then dividing them 
by L − 1. We can verify that the PDF of the intensities in the new image, p ss( ), is uniform by substituting 
p rr ( ) into Eq. (3-13), and using the fact that s r L= −2 1( ); that is,

 

p s p r
dr
ds

r

L

ds
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The last step follows because r is nonnegative and L > 1. As expected, the result is a uniform PDF.

For discrete values, we work with probabilities and summations instead of prob-
ability density functions and integrals (but the requirement of monotonicity stated 
earlier still applies). Recall that the probability of occurrence of intensity level rk  in 
a digital image is approximated by

 p r
n

MNr k
k( ) =  (3-14)

where MN is the total number of pixels in the image, and nk denotes the number of 
pixels that have intensity rk . As noted in the beginning of this section, p rr k( ), with 
r Lk ∈ −[ , ],0 1  is commonly referred to as a normalized image histogram.

The discrete form of the transformation in Eq. (3-11) is

 s T r L p r k Lk k r j
j

k

= = − = −
=
∑( ) ( ) ( ) , , , ,1 0 1 2 1

0

…  (3-15)

where, as before, L is the number of possible intensity levels in the image (e.g., 256 
for an 8-bit image). Thus, a processed (output) image is obtained by using Eq. (3-15) 
to map each pixel in the input image with intensity rk  into a corresponding pixel with 
level sk  in the output image, This is called a histogram equalization or histogram 
linearization transformation. It is not difficult to show (see Problem 3.9) that this 
transformation satisfies conditions (a) and (b) stated previously in this section.

EXAMPLE 3.5 : Illustration of the mechanics of histogram equalization.

It will be helpful to work through a simple example. Suppose that a 3-bit image ( )L = 8  of size 64 64×  
pixels ( )MN = 4096  has the intensity distribution in Table 3.1, where the intensity levels are integers in 
the range [ , ] [ , ].0 1 0 7L − =  The histogram of this image is sketched in Fig. 3.19(a).Values of the histo-
gram equalization transformation function are obtained using Eq. (3-15). For instance,

 s T r p r p rr j r
j

0 0 0
0

0

7 7 1 33= = = =
=
∑( ) ( ) ( ) .
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Similarly, s T r1 1 3 08= =( ) . , s2 4 55= . , s3 5 67= . , s4 6 23= . , s5 6 65= . , s6 6 86= . , and s7 7 00= . . This trans-
formation function has the staircase shape shown in Fig. 3.19(b).

At this point, the s values are fractional because they were generated by summing probability values, 
so we round them to their nearest integer values in the range [ , ] :0 7

 
s s s s

s s s
0 2 4 6

1 3 5

1 33 1 4 55 5 6 23 6 6 86 7

3 08 3 5 67 6 6

= → = → = → = →
= → = → =

. . . .

. . .. .65 7 7 00 77→ = →s

These are the values of the equalized histogram. Observe that the transformation yielded only five 
distinct intensity levels. Because r0 0=  was mapped to s0 1= , there are 790 pixels in the histogram 
equalized image with this value (see Table 3.1). Also, there are 1023 pixels with a value of s1 3=  and 850 
pixels with a value of s2 5= . However, both r3  and r4  were mapped to the same value, 6, so there are 
( )656 329 985+ =  pixels in the equalized image with this value. Similarly, there are ( )245 122 81 448+ + =  
pixels with a value of 7 in the histogram equalized image. Dividing these numbers by MN = 4096  yield-
ed the equalized histogram in Fig. 3.19(c).

Because a histogram is an approximation to a PDF, and no new allowed intensity levels are created 
in the process, perfectly flat histograms are rare in practical applications of histogram equalization using 
the method just discussed. Thus, unlike its continuous counterpart, it cannot be proved in general that 
discrete histogram equalization using Eq. (3-15) results in a uniform histogram (we will introduce later in 

rk nk p r n MNr k k( ) =

r0 0= 790 0.19

r1 1= 1023 0.25

r2 2= 850 0.21

r3 3= 656 0.16

r4 4= 329 0.08

r5 5= 245 0.06

r6 6= 122 0.03

r7 7= 81 0.02

TABLE 3.1
Intensity  
distribution and 
histogram values 
for a 3-bit, 64 64×  
digital image.

rk 

pr(rk)

.05

.10

.15

.20

.25

1.4

2.8

4.2

7.0

5.6

.05

.10

.15

.25

.20

0 1 2 3 4 5 6 7 sk 

ps(sk)

0 1 2 3 4 5 6 7rk 

sk

0 1 2 3 4 5 6 7

T(r)

ba c

FIGURE 3.19
Histogram  
equalization.  
(a) Original  
histogram.  
(b) Transformation 
function.  
(c) Equalized  
histogram.
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this section an approach for removing this limitation). However, as you will see shortly, using Eq. (3-15) 
has the general tendency to spread the histogram of the input image so that the intensity levels of the 
equalized image span a wider range of the intensity scale. The net result is contrast enhancement.

We discussed earlier the advantages of having intensity values that span the entire 
gray scale. The method just derived produces intensities that have this tendency, and 
also has the advantage that it is fully automatic. In other words, the process of his-
togram equalization consists entirely of implementing Eq. (3-15), which is based on 
information that can be extracted directly from a given image, without the need for 
any parameter specifications. This automatic, “hands-off” characteristic is important.

The inverse transformation from s back to r is denoted by

 r T sk k= −1( )   (3-16)

It can be shown (see Problem 3.9) that this inverse transformation satisfies conditions 
(a�) and (b) defined earlier only if all intensity levels are present in the input image. 
This implies that none of the bins of the image histogram are empty. Although the 
inverse transformation is not used in histogram equalization, it plays a central role 
in the histogram-matching scheme developed after the following example.

EXAMPLE 3.6 : Histogram equalization.

The left column in Fig. 3.20 shows the four images from Fig. 3.16, and the center column shows the result 
of performing histogram equalization on each of these images. The first three results from top to bottom 
show significant improvement. As expected, histogram equalization did not have much effect on the 
fourth image because its intensities span almost the full scale already. Figure 3.21 shows the transforma-
tion functions used to generate the equalized images in Fig. 3.20. These functions were generated using 
Eq. (3-15). Observe that transformation (4) is nearly linear, indicating that the inputs were mapped to 
nearly equal outputs. Shown is the mapping of an input value rk  to a corresponding output value sk . In 
this case, the mapping was for image 1 (on the top left of Fig. 3.21), and indicates that a dark value was 
mapped to a much lighter one, thus contributing to the brightness of the output image.

The third column in Fig. 3.20 shows the histograms of the equalized images. While all the histograms 
are different, the histogram-equalized images themselves are visually very similar. This is not totally 
unexpected because the basic difference between the images on the left column is one of contrast, not 
content. Because the images have the same content, the increase in contrast resulting from histogram 
equalization was enough to render any intensity differences between the equalized images visually 
indistinguishable. Given the significant range of contrast differences in the original images, this example 
illustrates the power of histogram equalization as an adaptive, autonomous contrast-enhancement tool.

HISTOGRAM MATCHING (SPECIFICATION)
As explained in the last section, histogram equalization produces a transformation 
function that seeks to generate an output image with a uniform histogram. When 
automatic enhancement is desired, this is a good approach to consider because the 
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FIGURE 3.20 Left column: Images from Fig. 3.16. Center column: Corresponding histogram-equalized images. Right 
column: histograms of the images in the center column (compare with the histograms in Fig. 3.16). 
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FIGURE 3.21
Transformation 
functions for histo-
gram equalization. 
Transformations (1) 
through (4) were 
obtained using  
Eq. (3-15) and the  
histograms of the 
images on the left 
column of Fig. 3.20. 
Mapping of one 
intensity value rk  in 
image 1 to its cor-
responding value sk  
is shown.

results from this technique are predictable and the method is simple to implement. 
However, there are applications in which histogram equalization is not suitable. In 
particular, it is useful sometimes to be able to specify the shape of the histogram that 
we wish the processed image to have. The method used to generate images that have 
a specified histogram is called histogram matching or histogram specification.

Consider for a moment continuous intensities r and z which, as before, we treat 
as random variables with PDFs p rr ( ) and p zz( ), respectively. Here, r and z denote 
the intensity levels of the input and output (processed) images, respectively. We can 
estimate p rr ( ) from the given input image, and p zz( ) is the specified PDF that we 
wish the output image to have.

Let s be a random variable with the property

 s T r L p d
r

r= = −( ) ( ) ( )1
02 w w  (3-17)

where w  is dummy variable of integration. This is the same as Eq. (3-11), which we 
repeat here for convenience.

Define a function G on variable z with the property

 G z L p d
z

z( ) ( ) ( )= − 1
02 v v=s  (3-18)

where v  is a dummy variable of integration. It follows from the preceding two equa-
tions that G z s T r( ) ( )= =  and, therefore, that z must satisfy the condition

 z G s G T r= = [ ]− −1 1( ) ( )  (3-19)
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The transformation function T r( ) can be obtained using Eq. (3-17) after p rr ( ) has  
been  estimated using the input image. Similarly, function G z( ) can be obtained from 
Eq. (3-18) because p zz( ) is given.

Equations (3-17) through (3-19) imply that an image whose intensity levels have 
a specified PDF can be obtained using the following procedure:

1. Obtain p rr ( ) from the input image to use in Eq. (3-17).
2. Use the specified PDF, p zz( ), in Eq. (3-18) to obtain the function G z( ).
3. Compute the inverse transformation z G s= −1( ); this is a mapping from s to z, 

the latter being the values that have the specified PDF.
4. Obtain the output image by first equalizing the input image using Eq. (3-17); the 

pixel values in this image are the s values. For each pixel with value s in the equal-
ized image, perform the inverse mapping z G s= −1( ) to obtain the corresponding 
pixel in the output image. When all pixels have been processed with this trans-
formation, the PDF of the output image, p zz( ), will be equal to the specified PDF. 

Because s is related to r by T r( ), it is possible for the mapping that yields z from s 
to be expressed directly in terms of r. In general, however, finding analytical expres-
sions for G−1  is not a trivial task. Fortunately, this is not a problem when working 
with discrete quantities, as you will see shortly.

As before, we have to convert the continuous result just derived into a discrete 
form. This means that we work with histograms instead of PDFs. As in histogram 
equalization, we lose in the conversion the ability to be able to guarantee a result that 
will have the exact specified histogram. Despite this, some very useful results can be 
obtained even with approximations.

The discrete formulation of Eq. (3-17) is the histogram equalization transforma-
tion in Eq. (3-15), which we repeat here for convenience:

 s T r L p r k Lk k r j
j

k

= = − = −
=
∑( ) ( ) ( ) , , , ,1 0 1 2 1

0

…  (3-20)

where the components of this equation are as before. Similarly, given a specific value 
of sk , the discrete formulation of Eq. (3-18) involves computing the transformation 
function

 G z L p zq z i
i

q

( ) ( ) ( )= −
=
∑1

0

 (3-21)

for a value of q so that

 G z sq k( ) =  (3-22)

where p zz i( ) is the ith value of the specified histogram. Finally, we obtain the desired 
value zq  from the inverse transformation:
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144    Chapter 3  Intensity Transformations and Spatial Filtering

 z G sq k= −1( )  (3-23)

When performed over all pixels, this is a mapping from the s values in the histogram-
equalized image to the corresponding z values in the output image.

In practice, there is no need to compute the inverse of G. Because we deal with 
intensity levels that are integers, it is a simple matter to compute all the possible 
values of G using Eq. (3-21) for q L= −0 1 2 1, , , , .…  These values are rounded to their 
nearest integer values spanning the range [ , ]0 1L −  and stored in a lookup table. 
Then, given a particular value of sk , we look for the closest match in the table. For 
example, if the 27th entry in the table is the closest value to sk , then q = 26 (recall 
that we start counting intensities at 0) and z26  is the best solution to Eq. (3-23). 
Thus, the given value sk  would map to z26. Because the z’s are integers in the range 
[ , ],0 1L −  it follows that z0 0= , z LL− = −1 1, and, in general, z qq = . Therefore, z26  
would equal intensity value 26. We repeat this procedure to find the mapping from 
each value sk  to the value zq  that is its closest match in the table. These mappings are 
the solution to the histogram-specification problem.

Given an input image, a specified histogram, p zz i( ), i L= −0 1 2 1, , , , ,…  and recall-
ing that the s sk’  are the values resulting from Eq. (3-20), we may summarize the 
procedure for discrete histogram specification as follows:

1. Compute the histogram, p rr ( ), of the input image, and use it in Eq. (3-20) to map 
the intensities in the input image to the intensities in the histogram-equalized 
image. Round the resulting values, sk , to the integer range [ , ].0 1L −

2. Compute all values of function G zq( ) using the Eq. (3-21) for q L= −0 1 2 1, , , , ,…  
where p zz i( ) are the values of the specified histogram. Round the values of G to 
integers in the range [ , ].0 1L −  Store the rounded values of G in a lookup table.

3. For every value of s k Lk , , , , , ,= −0 1 2 1…  use the stored values of G from Step 2 
to find the corresponding value of zq  so that G zq( ) is closest to sk . Store these 
mappings from s to z. When more than one value of zq  gives the same match 
(i.e., the mapping is not unique), choose the smallest value by convention.

4. Form the histogram-specified image by mapping every equalized pixel with val-
ue sk  to the corresponding pixel with value zq  in the histogram-specified image, 
using the mappings found in Step 3. 

As in the continuous case, the intermediate step of equalizing the input image is 
conceptual. It can be skipped by combining the two transformation functions, T and 
G −1, as Example 3.7 below shows.

We mentioned at the beginning of the discussion on histogram equalization that, 
in addition to condition (b), inverse functions (G−1  in the present discussion) have to 
be strictly monotonic to satisfy condition (a�). In terms of Eq. (3-21), this means that 
none of the values p zz i( ) in the specified histogram can be zero (see Problem 3.9). 
When this condition is not satisfied, we use the “work-around” procedure in Step 3. 
The following example illustrates this numerically.

DIP4E_GLOBAL_Print_Ready.indb   144 6/16/2017   2:03:25 PM



3.3  Histogram Processing    145

EXAMPLE 3.7 : Illustration of the mechanics of histogram specification.

Consider the 64 64×  hypothetical image from Example 3.5, whose histogram is repeated in Fig. 3.22(a). 
It is desired to transform this histogram so that it will have the values specified in the second column of 
Table 3.2. Figure 3.22(b) shows this histogram.

The first step is to obtain the histogram-equalized values, which we did in Example 3.5:

 s s s s s s s s0 1 2 3 4 5 6 71 3 5 6 6 7 7 7= = = = = = = =; ; ; ; ; ; ;

In the next step, we compute the values of G zq( ) using the values of p zz q( ) from Table 3.2 in Eq. (3-21): 

 
G z G z G z G z

G z G z

( ) . ( ) . ( ) . ( ) .

( ) . ( ) .
0 2 4 6

1 3

0 00 0 00 2 45 5 95

0 00 1

= = = =
= = 005 4 55 7 005 7G z G z( ) . ( ) .= =

As in Example 3.5, these fractional values are rounded to integers in the range [ , ] :0 7

 

G z G z

G z G z

G z

( ) . ( ) .

( ) . ( ) .

( ) .

0 4

1 5

2

0 00 0 2 45 2

0 00 0 4 55 5

0 00

= → = →
= → = →
= →→ = →
= → = →

0 5 95 6

1 05 1 7 00 7
6

3 7

G z

G z G z

( ) .

( ) . ( ) .

These results are summarized in Table 3.3. The transformation function, G zq( ), is sketched in Fig. 3.23(c). 
Because its first three values are equal, G is not strictly monotonic, so condition (a�) is violated. Therefore, 
we use the approach outlined in Step 3 of the algorithm to handle this situation. According to this step, 
we find the smallest value of zq  so that the value G zq( ) is the closest to sk . We do this for every value of 
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FIGURE 3.22
(a) Histogram of a 
3-bit image.  
(b) Specified  
histogram.  
(c) Transformation 
function obtained 
from the specified 
histogram.  
(d) Result of  
histogram  
specification.  
Compare the 
histograms in (b) 
and (d).
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TABLE 3.3
Rounded values 
of the  
transformation 
function G zq( ). 

zq G zq( )

z0 0= 0

z1 1= 0

z2 2= 0

z3 3= 1

z4 4= 2

z5 5= 5

z6 6= 6

z7 7= 7

sk  to create the required mappings from s to z. For example, s0 1= , and we see that G z( ) ,3 1=  which is 
a perfect match in this case, so we have the correspondence s z0 3→ . Every pixel whose value is 1 in the 
histogram equalized image would map to a pixel valued 3 in the histogram-specified image. Continuing 
in this manner, we arrive at the mappings in Table 3.4.

In the final step of the procedure, we use the mappings in Table 3.4 to map every pixel in the his-
togram equalized image into a corresponding pixel in the newly created histogram-specified image. 
The values of the resulting histogram are listed in the third column of Table 3.2, and the histogram is 
shown in Fig. 3.22(d). The values of p zz q( ) were obtained using the same procedure as in Example 3.5. 
For instance, we see in Table 3.4 that sk = 1 maps to zq = 3, and there are 790 pixels in the histogram-
equalized image with a value of 1. Therefore, p zz( ) . .3 790 4096 0 19= =

Although the final result in Fig. 3.22(d) does not match the specified histogram exactly, the gen-
eral trend of moving the intensities toward the high end of the intensity scale definitely was achieved. 
As mentioned earlier, obtaining the histogram-equalized image as an intermediate step is useful for 

zq

Specified
p zz q( )

Actual
p zz q( )

z0 0= 0.00 0.00

z1 1= 0.00 0.00

z2 2= 0.00 0.00

z3 3= 0.15 0.19

z4 4= 0.20 0.25

z5 5= 0.30 0.21

z6 6= 0.20 0.24

z7 7= 0.15 0.11

TABLE 3.2
Specified and 
actual histograms 
(the values in 
the third column 
are computed in 
Example 3.7).
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explaining the procedure, but this is not necessary. Instead, we could list the mappings from the r’s to 
the s’s and from the s’s to the z’s in a three-column table. Then, we would use those mappings to map 
the original pixels directly into the pixels of the histogram-specified image.

EXAMPLE 3.8 : Comparison between histogram equalization and histogram specification.

Figure 3.23(a) shows an image of the Mars moon, Phobos, taken by NASA’s Mars Global Surveyor. 
Figure 3.23(b) shows the histogram of Fig. 3.23(a). The image is dominated by large, dark areas, result-
ing in a histogram characterized by a large concentration of pixels in the dark end of the gray scale. At 
first glance, one might conclude that histogram equalization would be a good approach to enhance this 
image, so that details in the dark areas become more visible. It is demonstrated in the following discus-
sion that this is not so.

Figure 3.24(a) shows the histogram equalization transformation [Eq. (3-20)] obtained using the histo-
gram in Fig. 3.23(b). The most relevant characteristic of this transformation function is how fast it rises 
from intensity level 0 to a level near 190. This is caused by the large concentration of pixels in the input 
histogram having levels near 0. When this transformation is applied to the levels of the input image to 
obtain a histogram-equalized result, the net effect is to map a very narrow interval of dark pixels into the 

TABLE 3.4
Mapping of  
values sk  into  
corresponding 
values zq.

s zk q→

1 3→

3 4→

5 5→

6 6→

7 7→
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FIGURE 3.23
(a) An image, and 
(b) its histogram.
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FIGURE 3.24
(a) Histogram 
equalization 
transformation 
obtained using 
the histogram 
in Fig. 3.23(b). 
(b) Histogram 
equalized image. 
(c) Histogram of 
equalized image.

upper end of the gray scale of the output image. Because numerous pixels in the input image have levels 
precisely in this interval, we would expect the result to be an image with a light, washed-out appearance. 
As Fig. 3.24(b) shows, this is indeed the case. The histogram of this image is shown in Fig. 3.24(c). Note 
how all the intensity levels are biased toward the upper one-half of the gray scale.

Because the problem with the transformation function in Fig. 3.24(a) was caused by a large con-
centration of pixels in the original image with levels near 0, a reasonable approach is to modify the 
histogram of that image so that it does not have this property. Figure 3.25(a) shows a manually speci-
fied function that preserves the general shape of the original histogram, but has a smoother transition 
of levels in the dark region of the gray scale. Sampling this function into 256 equally spaced discrete 
values produced the desired specified histogram. The transformation function, G zq( ), obtained from this 
histogram using Eq. (3-21) is labeled transformation (1) in Fig. 3.25(b). Similarly, the inverse transfor-
mation G sk

−1( ), from Eq. (3-23) (obtained using the step-by-step procedure discussed earlier) is labeled 
transformation (2) in Fig. 3.25(b). The enhanced image in Fig. 3.25(c) was obtained by applying trans-
formation (2) to the pixels of the histogram-equalized image in Fig. 3.24(b). The improvement of the 
histogram-specified image over the result obtained by histogram equalization is evident by comparing 
these two images. It is of interest to note that a rather modest change in the original histogram was all 
that was required to obtain a significant improvement in appearance. Figure 3.25(d) shows the histo-
gram of Fig. 3.25(c). The most distinguishing feature of this histogram is how its low end has shifted right 
toward the lighter region of the gray scale (but not excessively so), as desired.
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LOCAL HISTOGRAM PROCESSING

The histogram processing methods discussed thus far are global, in the sense that 
pixels are modified by a transformation function based on the intensity distribution 
of an entire image. This global approach is suitable for overall enhancement, but 
generally fails when the objective is to enhance details over small areas in an image. 
This is because the number of pixels in small areas have negligible influence on 
the computation of global transformations. The solution is to devise transformation 
functions based on the intensity distribution of pixel neighborhoods.

The histogram processing techniques previously described can be adapted to local 
enhancement. The procedure is to define a neighborhood and move its center from 
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FIGURE 3.25
Histogram  
specification.  
(a) Specified histo-
gram.  
(b) Transformation 
G zq( ), labeled (1), 
and G sk

−1( ),  
labeled (2).  
(c) Result of  
histogram  
specification.  
(d) Histogram of 
image (c).
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pixel to pixel in a horizontal or vertical direction. At each location, the histogram of 
the points in the neighborhood is computed, and either a histogram equalization or 
histogram specification transformation function is obtained. This function is used to 
map the intensity of the pixel centered in the neighborhood. The center of the neigh-
borhood is then moved to an adjacent pixel location and the procedure is repeated. 
Because only one row or column of the neighborhood changes in a one-pixel trans-
lation of the neighborhood, updating the histogram obtained in the previous loca-
tion with the new data introduced at each motion step is possible (see Problem 3.14). 
This approach has obvious advantages over repeatedly computing the histogram of 
all pixels in the neighborhood region each time the region is moved one pixel loca-
tion. Another approach used sometimes to reduce computation is to utilize nonover-
lapping regions, but this method usually produces an undesirable “blocky” effect.

EXAMPLE 3.9 : Local histogram equalization.

Figure 3.26(a) is an 8-bit, 512 512×  image consisting of five black squares on a light gray background. 
The image is slightly noisy, but the noise is imperceptible. There are objects embedded in the dark 
squares, but they are invisible for all practical purposes. Figure 3.26(b) is the result of global histogram 
equalization. As is often the case with histogram equalization of smooth, noisy regions, this image shows 
significant enhancement of the noise. However, other than the noise, Fig. 3.26(b) does not reveal any 
new significant details from the original. Figure 3.26(c) was obtained using local histogram equaliza-
tion of Fig. 3.26(a) with a neighborhood of size 3 3× . Here, we see significant detail within all the dark 
squares. The intensity values of these objects are too close to the intensity of the dark squares, and their 
sizes are too small, to influence global histogram equalization significantly enough to show this level of 
intensity detail.

USING HISTOGRAM STATISTICS FOR IMAGE ENHANCEMENT

Statistics obtained directly from an image histogram can be used for image enhance-
ment. Let r denote a discrete random variable representing intensity values in the range 
[ , ]0 1L − , and let p ri( ) denote the normalized histogram component corresponding to 
intensity value ri . As indicated earlier, we may view p ri( ) as an estimate of the prob-
ability that intensity ri  occurs in the image from which the histogram was obtained.

ba c

FIGURE 3.26
(a) Original  
image. (b) Result 
of global  
histogram  
equalization.  
(c) Result of local 
histogram  
equalization.
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For an image with intensity levels in the range [ , ],0 1L −  the nth moment of r 
about its mean, m, is defined as

 mn i
n

i
i

L

r m p r= −
=

−

∑ ( ) ( )
0

1

 (3-24)

where m is given by 

 m r p ri i
i

L

=
=

−

∑ ( )
0

1

 (3-25)

The mean is a measure of average intensity and the variance (or standard deviation, 
s ), given by

 s m2
2

2

0

1

= = −
=

−

∑ ( ) ( )r m p ri i
i

L

 (3-26)

is a measure of image contrast.
We consider two uses of the mean and variance for enhancement purposes. The 

global mean and variance [Eqs. (3-25) and (3-26)] are computed over an entire 
image and are useful for gross adjustments in overall intensity and contrast. A more 
powerful use of these parameters is in local enhancement, where the local mean and 
variance are used as the basis for making changes that depend on image character-
istics in a neighborhood about each pixel in an image.

Let ( , )x y  denote the coordinates of any pixel in a given image, and let Sxy  denote 
a neighborhood of specified size, centered on ( , ).x y  The mean value of the pixels in 
this neighborhood is given by the expression

 m r p rS i S i
i

L

xy xy
=

=

−

∑ ( )
0

1

 (3-27)

where pSxy
 is the histogram of the pixels in region Sxy. This histogram has L bins, 

corresponding to the L possible intensity values in the input image. However, many 
of the bins will have 0 counts, depending on the size of Sxy. For example, if the neigh-
borhood is of size 3 3×  and L = 256, only between 1 and 9 of the 256 bins of the 
histogram of the neighborhood will be nonzero (the maximum number of possible 
different intensities in a 3 3×  region is 9, and the minimum is 1). These non-zero 
values will correspond to the number of different intensities in Sxy  .

The variance of the pixels in the neighborhood is similarly given by

 sS i S S i
i

L

xy xy xy
r m p r2 2

0

1

= −
=

−

∑ ( ) ( )  (3-28)

As before, the local mean is a measure of average intensity in neighborhood Sxy , and 
the local variance (or standard deviation) is a measure of intensity contrast in that 
neighborhood.

See the tutorials section 
in the book website for a 
review of probability.

We follow convention 
in using m for the mean 
value. Do not confuse it 
with our use of the same 
symbol to denote the 
number of rows in an  
m � n neighborhood.

DIP4E_GLOBAL_Print_Ready.indb   151 6/16/2017   2:03:31 PM



152    Chapter 3  Intensity Transformations and Spatial Filtering

As the following example illustrates, an important aspect of image processing 
using the local mean and variance is the flexibility these parameters afford in devel-
oping simple, yet powerful enhancement rules based on statistical measures that 
have a close, predictable correspondence with image appearance.

EXAMPLE 3.10 :  Local enhancement using histogram statistics.

Figure 3.27(a) is the same image as Fig. 3.26(a), which we enhanced using local histogram equalization. 
As noted before, the dark squares contain embedded symbols that are almost invisible. As before, we 
want to enhance the image to bring out these hidden features. 

We can use the concepts presented in this section to formulate an approach for enhancing low-con-
trast details embedded in a background of similar intensity. The problem at hand is to enhance the low-
contrast detail in the dark areas of the image, while leaving the light background unchanged. 

A method used to determine whether an area is relatively light or dark at a point ( , )x y  is to com-
pare the average local intensity, mSxy

, to the average image intensity (the global mean), denoted by 
mG. We obtain mG  using Eq. (3-25) with the histogram of the entire image. Thus, we have the first ele-
ment of our enhancement scheme: We will consider the pixel at ( , )x y  as a candidate for processing if 
k m m k mG S Gxy0 1≤ ≤ , where k0  and k1 are nonnegative constants and k k0 1< . For example, if our focus is 
on areas that are darker than one-quarter of the mean intensity, we would choose k0 0=  and k1 0 25= . .

Because we are interested in enhancing areas that have low contrast, we also need a measure to 
determine whether the contrast of an area makes it a candidate for enhancement. We consider the 
pixel at ( , )x y  as a candidate if k kG S Gxy2 3s s s≤ ≤ , where sG is the global standard deviation obtained 
with Eq. (3-26) using the histogram of the entire image, and k2 and k3 are nonnegative constants, with 
k k2 3< . For example, to enhance a dark area of low contrast, we might choose k2 0=  and k3 0 1= . . A 
pixel that meets all the preceding conditions for local enhancement is processed by multiplying it by a 
specified constant, C, to increase (or decrease) the value of its intensity level relative to the rest of the 
image. Pixels that do not meet the enhancement conditions are not changed.

We summarize the preceding approach as follows. Let f x y( , ) denote the value of an image at any 
image coordinates ( , ),x y  and let g x y( , ) be the corresponding value in the enhanced image at those 
coordinates. Then,

 g x y
C f x y k m m k m k k

f x y

G S G G S Gxy xy

( , )
( , )

( , )
=

if  AND  

ot

20 1 3≤ ≤ ≤ ≤s s s

hherwise

⎧
⎨
⎪

⎩⎪
 (3-29)

ba

FIGURE 3.27
(a) Original  
image. (b) Result 
of local  
enhancement 
based on local  
histogram  
statistics.  
Compare (b) with 
Fig. 3.26(c).
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for x M= −0 1 2 1, , , ,…  and y N= −0 1 2 1, , , , ,…  where, as indicated above, C, k0 , k1, k2 , and k3 are 
specified constants, mG  is the global mean of the input image, and sG is its standard deviation. Param-
eters mSxy

 and sSxy
 are the local mean and standard deviation, respectively, which change for every loca-

tion ( , ).x y  As usual, M and N are the number of rows and columns in the input image.
Factors such as the values of the global mean and variance relative to values in the areas to be 

enhanced play a key role in selecting the parameters in Eq. (3-29), as does the range of differences 
between the intensities of the areas to be enhanced and their background. In the case of Fig. 3.27(a), 
mG = 161, sG = 103, the maximum intensity values of the image and areas to be enhanced are 228 and 
10, respectively, and the minimum values are 0 in both cases.

We would like for the maximum value of the enhanced features to be the same as the maximum value 
of the image, so we select C = 22 8. . The areas to be enhanced are quite dark relative to the rest of the 
image, and they occupy less than a third of the image area; thus, we expect the mean intensity in the 
dark areas to be much less than the global mean. Based on this, we let k0 0=  and k1 0 1= . . Because the 
areas to be enhanced are of very low contrast, we let k2 0= . For the upper limit of acceptable values 
of standard deviation we set k3 0 1= . , which gives us one-tenth of the global standard deviation. Figure 
3.27(b) is the result of using Eq. (3-29) with these parameters. By comparing this figure with Fig. 3.26(c), 
we see that the method based on local statistics detected the same hidden features as local histogram 
equalization. But the present approach extracted significantly more detail. For example, we see that all 
the objects are solid, but only the boundaries were detected by local histogram equalization. In addition, 
note that the intensities of the objects are not the same, with the objects in the top-left and bottom-right 
being brighter than the others. Also, the horizontal rectangles in the lower left square evidently are of 
different intensities. Finally, note that the background in both the image and dark squares in Fig. 3.27(b) 
is nearly the same as in the original image; by comparison, the same regions in Fig. 3.26(c) exhibit more 
visible noise and have lost their gray-level content. Thus, the additional complexity required to use local 
statistics yielded results in this case that are superior to local histogram equalization.

3.4 FUNDAMENTALS OF SPATIAL FILTERING  

In this section, we discuss the use of spatial filters for image processing. Spatial filter-
ing is used in a broad spectrum of image processing applications, so a solid under-
standing of filtering principles is important. As mentioned at the beginning of this 
chapter, the filtering examples in this section deal mostly with image enhancement. 
Other applications of spatial filtering are discussed in later chapters. 

The name filter is borrowed from frequency domain processing (the topic of 
Chapter 4) where “filtering” refers to passing, modifying, or rejecting specified fre-
quency components of an image. For example, a filter that passes low frequencies 
is called a lowpass filter. The net effect produced by a lowpass filter is to smooth an 
image by blurring it. We can accomplish similar smoothing directly on the image 
itself by using spatial filters. 

Spatial filtering modifies an image by replacing the value of each pixel by a func-
tion of the values of the pixel and its neighbors. If the operation performed on the 
image pixels is linear, then the filter is called a linear spatial filter. Otherwise, the 
filter is a nonlinear spatial filter. We will focus attention first on linear filters and then 
introduce some basic nonlinear filters. Section 5.3 contains a more comprehensive 
list of nonlinear filters and their application.

3.4

See Section 2.6 regarding 
linearity.
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THE MECHANICS OF LINEAR SPATIAL FILTERING

A linear spatial filter performs a sum-of-products operation between an image f and a 
filter kernel, w.  The kernel is an array whose size defines the neighborhood of opera-
tion, and whose coefficients determine the nature of the filter. Other terms used to 
refer to a spatial filter kernel are mask, template, and window. We use the term filter 
kernel or simply kernel.

Figure 3.28 illustrates the mechanics of linear spatial filtering using a 3 3×  ker-
nel. At any point ( , )x y  in the image, the response, g x y( , ), of the filter is the sum of 
products of the kernel coefficients and the image pixels encompassed by the kernel:

 
g x y f x y f x y

f x y

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , )

= − − − − + − − +
+ +

w w

w

1 1 1 1 1 0 1

0 0

…
… ++ + +w( , ) ( , )1 1 1 1f x y

 (3-30)

As coordinates x and y are varied, the center of the kernel moves from pixel to pixel, 
generating the filtered image, g, in the process.†

Observe that the center coefficient of the kernel, w( , )0 0 , aligns with the pixel at 
location ( , ).x y  For a kernel of size m n× , we assume that m a= +2 1 and n b= +2 1,
where a and b are nonnegative integers. This means that our focus is on kernels of 
odd size in both coordinate directions. In general, linear spatial filtering of an image 
of size M N×  with a kernel of size m n×  is given by the expression

 g x y s t f x s y t
t b

b

s a

a

( , ) ( , ) ( , )= + +
= −= −
∑∑ w  (3-31)

where x and y are varied so that the center (origin) of the kernel visits every pixel in 
f once. For a fixed value of ( , ),x y  Eq. (3-31) implements the sum of products of the 
form shown in Eq. (3-30), but for a kernel of arbitrary odd size. As you will learn in 
the following section, this equation is a central tool in linear filtering.

SPATIAL CORRELATION AND CONVOLUTION

Spatial correlation is illustrated graphically in Fig. 3.28, and it is described mathemati-
cally by Eq. (3-31). Correlation consists of moving the center of a kernel over an 
image, and computing the sum of products at each location. The mechanics of spatial 
convolution are the same, except that the correlation kernel is rotated by 180°. Thus, 
when the values of a kernel are symmetric about its center, correlation and convolu-
tion yield the same result. The reason for rotating the kernel will become clear in 
the following discussion. The best way to explain the differences between the two 
concepts is by example. 

We begin with a 1-D illustration, in which case Eq. (3-31) becomes

 g x s f x s
s a

a

( ) ( ) ( )= +
= −
∑ w  (3-32)

†  A filtered pixel value typically is assigned to a corresponding location in a new image created to hold the results 
of filtering. It is seldom the case that filtered pixels replace the values of the corresponding location in the origi-
nal image, as this would change the content of the image while filtering is being performed.

It certainly is possible 
to work with kernels of 
even size, or mixed even 
and odd sizes. However, 
working with odd sizes 
simplifies indexing and 
is also more intuitive 
because the kernels have 
centers falling on integer 
values, and they are 
spatially symmetric.
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Figure 3.29(a) shows a 1-D function, f, and a kernel, w.  The kernel is of size 1 5× , so 
a = 2 and b = 0  in this case. Figure 3.29(b) shows the starting position used to per-
form correlation, in which w  is positioned so that its center coefficient is coincident 
with the origin of f. 

The first thing we notice is that part of w  lies outside f, so the summation is 
undefined in that area. A solution to this problem is to pad function f with enough 
0’s on either side. In general, if the kernel is of size 1 × m, we need ( )m − 1 2 zeros 
on either side of f in order to handle the beginning and ending configurations of w  
with respect to f. Figure 3.29(c) shows a properly padded function. In this starting 
configuration, all coefficients of the kernel overlap valid values. 

Zero padding is not the 
only padding option, as 
we will discuss in detail 
later in this chapter.

Pixel values under kernel 
when it is centered on (x, y)

f(x � 1, y � 1) f(x � 1, y 	 1)f(x � 1, y)

f(x 	 1, y 	 1)f(x 	 1, y � 1) f(x 	 1, y)

f(x, y � 1) f(x, y 	 1)f(x, y)

w(�1,�1)

w(0,�1)

w(�1,0) w(�1,1)

w(0,1)

w(1,1)

w(0,0)

w(1,0)w(1,�1)

Kernel coefficients

x

Image f

y

Image origin

Filter kernel,

Magnified view showing filter kernel
coefficients and corresponding pixels
in the image

Filter kernel

Kernel origin

Image pixels

w(s, t)

FIGURE 3.28
The mechanics 
of linear spatial 
filtering  
using a 3 3×   
kernel. The pixels 
are shown as 
squares to sim-
plify the graph-
ics. Note that 
the origin of the 
image is at the top 
left, but the origin 
of the kernel is at 
its center. Placing 
the origin at the 
center of spatially 
symmetric kernels 
simplifies writing 
expressions for 
linear filtering.
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The first correlation value is the sum of products in this initial position, computed 
using Eq. (3-32) with x = 0 :

  g s f s
s

( ) ( ) ( )0 0 0
2

2

= + =
= −
∑ w  

This value is in the leftmost location of the correlation result in Fig. 3.29(g). 
To obtain the second value of correlation, we shift the relative positions of w  and 

f one pixel location to the right [i.e., we let x = 1 in Eq. (3-32)] and compute the sum 
of products again. The result is g( ) ,1 8=  as shown in the leftmost, nonzero location 
in Fig. 3.29(g). When x = 2, we obtain g( ) .2 2=  When x = 3, we get g( )3 4=  [see Fig. 
3.29(e)]. Proceeding in this manner by varying x one shift at a time, we “build” the 
correlation result in Fig. 3.29(g). Note that it took 8 values of x (i.e., x = 0 1 2 7, , , ,… ) 
to fully shift w  past f so the center coefficient in w visited every pixel in f. Sometimes, 
it is useful to have every element of w  visit every pixel in f. For this, we have to start 

(i)

( j)

(k)

(l)

(m)

(n)

(a)

(b)

(c)

(d)

(e)

(f)

0 0 0 1 0 0 0 0 0 0 1 0 0 0 00
1 2 4 2 8 8 2 4 2 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00
1 2 4 2 8 8 2 4 2 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00
1 2 4 2 8 8 2 4 2 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00
1 2 4 2 8 8 2 4 2 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00
1 2 4 2 8 8 2 4 2 1

Correlation Convolution

Starting position alignment

Position after 1 shift

Final position

(h) 0 0 0 8 2 4 2 1 0 0 00

Extended (full) correlation result

(p)0 0 0 1 2 4 2 8 0 0 0 0

Extended (full) convolution result

(g) 0 8 2 4 2 1 00

        Correlation result

(o)0 1 2 4 2 8 0 0

        Convolution result

0 0 0 1 0 0 0 0
Origin f

8 2 4 2 1
w rotated 180�

0 0 0 1 0 0 0 0
Origin f

2 4 2 81
w

Position after 3 shifts

Zero padding

Starting position

Zero padding

Starting position

Starting position alignment

Position after 1 shift

Position after 3 shifts

Final position

FIGURE 3.29
Illustration of 1-D 
correlation and 
convolution of a 
kernel, w,  with a 
function f  
consisting of a  
discrete unit 
impulse. Note that 
correlation and 
convolution are 
functions of the 
variable x, which 
acts to displace 
one function with 
respect to the 
other. For the 
extended  
correlation and 
convolution 
results, the  
starting  
configuration 
places the right-
most element of 
the kernel to be 
coincident with 
the origin of f. 
Additional  
padding must be 
used.
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with the rightmost element of w  coincident with the origin of f, and end with the 
leftmost element of w  being coincident the last element of f (additional padding 
would be required). Figure Fig. 3.29(h) shows the result of this extended, or full, cor-
relation. As Fig. 3.29(g) shows, we can obtain the “standard” correlation by cropping 
the full correlation in Fig. 3.29(h).

There are two important points to note from the preceding discussion. First, cor-
relation is a function of displacement of the filter kernel relative to the image. In 
other words, the first value of correlation corresponds to zero displacement of the 
kernel, the second corresponds to one unit displacement, and so on.† The second 
thing to notice is that correlating a kernel w with a function that contains all 0’s and 
a single 1 yields a copy of w, but rotated by 180°. A function that contains a single 1 
with the rest being 0’s is called a discrete unit impulse. Correlating a kernel with a dis-
crete unit impulse yields a rotated version of the kernel at the location of the impulse. 

The right side of Fig. 3.29 shows the sequence of steps for performing convolution 
(we will give the equation for convolution shortly). The only difference here is that 
the kernel is pre-rotated by 180° prior to performing the shifting/sum of products 
operations. As the convolution in Fig. 3.29(o) shows, the result of pre-rotating the 
kernel is that now we have an exact copy of the kernel at the location of the unit 
impulse. In fact, a foundation of linear system theory is that convolving a function 
with an impulse yields a copy of the function at the location of the impulse. We will 
use this property extensively in Chapter 4.

The 1-D concepts just discussed extend easily to images, as Fig. 3.30 shows. For a 
kernel of size m n× , we pad the image with a minimum of ( )m − 1 2 rows of 0’s at 
the top and bottom and ( )n − 1 2 columns of 0’s on the left and right. In this case, 
m and n are equal to 3, so we pad f with one row of 0’s above and below and one 
column of 0’s to the left and right, as Fig. 3.30(b) shows. Figure 3.30(c) shows the 
initial position of the kernel for performing correlation, and Fig. 3.30(d) shows the 
final result after  the center of w  visits every pixel in f, computing a sum of products 
at each location. As before, the result is a copy of the kernel, rotated by 180°. We will 
discuss the extended correlation result shortly.

For convolution, we pre-rotate the kernel as before and repeat the sliding sum of 
products just explained. Figures 3.30(f) through (h) show the result. You see again 
that convolution of a function with an impulse copies the function to the location 
of the impulse. As noted earlier, correlation and convolution yield the same result if 
the kernel values are symmetric about the center. 

The concept of an impulse is fundamental in linear system theory, and is used in 
numerous places throughout the book. A discrete impulse of strength (amplitude) A 
located at coordinates ( , )x y0 0  is defined as

 d( , )x x y y
A x x y y

− − =
= =⎧

⎨
⎪

⎩⎪
0 0

0 0

0

if  and 

otherwise
 (3-33)

†  In reality, we are shifting f to the left of w every time we increment x in Eq. (3-32). However, it is more intuitive 
to think of the smaller kernel moving right over the larger array f. The motion of the two is relative, so either 
way of looking at the motion is acceptable. The reason we increment f and not w  is that indexing the equations 
for correlation and convolution is much easier (and clearer) this way, especially when working with 2-D arrays.

Rotating a 1-D kernel 
by 180° is equivalent to 
flipping the kernel about 
its axis. 

In 2-D, rotation by 180° 
is equivalent to flipping 
the kernel about one axis 
and then the other.
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For example, the unit impulse in Fig. 3.29(a) is given by d( )x − 3  in the 1-D version of 
the preceding equation.  Similarly, the impulse in Fig. 3.30(a) is given by d( , )x y− −2 2  
[remember, the origin is at ( , )0 0 ].

 Summarizing the preceding discussion in equation form, the correlation of a 
kernel w  of size m n×  with an image f x y( , ), denoted as (w � f x y)( , ), is given by 
Eq. (3-31), which we repeat here for convenience:

 (w w� f x y s t f x s y t
t b

b

s a

a

)( , ) ( , ) ( , )= + +
= −= −
∑∑  (3-34)

Because our kernels do not depend on ( , ),x y  we will sometimes make this fact explic-
it by writing the left side of the preceding equation as w � f x y( , ).  Equation (3-34) is 
evaluated for all values of the displacement variables x and y so that the center point 
of w  visits every pixel in f,† where we assume that f has been padded appropriately. 

†  As we mentioned earlier, the minimum number of required padding elements for a 2-D correlation is ( )m − 1 2  
rows above and below f, and ( )n − 1 2  columns on the left and right. With this padding, and assuming that f 
is of size M N× ,  the values of x and y required to obtain a complete correlation are x M= −0 1 2 1, , , ,…  and 
y N= −0 1 2 1, , , , .…  This assumes that the starting configuration is such that the center of the kernel coincides 
with the origin of the image, which we have defined to be at the top, left (see Fig. 2.19). 

Recall that A = 1 for a 
unit impulse.
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0 0 0 0 0 0 0
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Full convolution result

(d)

(g) (h)(f)

(e)(c)

4 5 6
7 8 9

1 2 3
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3 2 1

9 8 7

Initial position for w

f

FIGURE 3.30
Correlation 
(middle row) and 
convolution (last 
row) of a 2-D 
kernel with an 
image consisting 
of a discrete unit 
impulse. The 0’s 
are shown in gray 
to simplify visual 
analysis. Note that 
correlation and 
convolution are 
functions of x and 
y. As these  
variable change,  
they  
displace one  
function with  
respect to the 
other. See the 
discussion of Eqs. 
(3-36) and (3-37) 
regarding full 
correlation and 
convolution.
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As explained earlier, a m= −( ) ,1 2  b n= −( ) ,1 2  and we assume that m and n are 
odd integers. 

In a similar manner, the convolution of a kernel w  of size m n×  with an image 
f x y( , ), denoted by (w � f x y)( , ), is defined as

 (w w� f x y s t f x s y t
t b

b

s a

a

)( , ) ( , ) ( , )= − −
= −= −
∑∑  (3-35)

where the minus signs align the coordinates of f and w  when one of the functions is 
rotated by 180° (see Problem 3.17). This equation implements the sum of products 
process to which we refer throughout the book as linear spatial filtering. That is, lin-
ear spatial filtering and spatial convolution are synonymous.

Because convolution is commutative (see Table 3.5), it is immaterial whether w  
or f is rotated, but rotation of the kernel is used by convention. Our kernels do not 
depend on ( , ),x y  a fact that we sometimes make explicit by writing the left side 
of Eq. (3-35) as w � f x y( , ). When the meaning is clear, we let the dependence of 
the previous two equations on x and y be implied, and use the simplified notation 
w � f  and w � f .  As with correlation, Eq. (3-35) is evaluated for all values of the 
displacement variables x and y so that the center of w  visits every pixel in f, which 
we assume has been padded. The values of x and y needed to obtain a full convolu-
tion are x M= −0 1 2 1, , , ,…  and y N= −0 1 2 1, , , , .…  The size of the result is M N× .

We can define correlation and convolution so that every element of w (instead of 
just its center) visits every pixel in f. This requires that the starting configuration be 
such that the right, lower corner of the kernel coincides with the origin of the image. 
Similarly, the ending configuration will be with the top left corner of the kernel coin-
ciding with the lower right corner of the image. If the kernel and image are of sizes 
m n×  and M N× , respectively, the padding would have to increase to ( )m − 1  pad-
ding elements above and below the image, and ( )n − 1  elements to the left and right. 
Under these conditions, the size of the resulting full correlation or convolution array 
will be of size S Sv h× , where (see Figs. 3.30(e) and (h), and Problem 3.19),

 S m Mv = + − 1  (3-36)

and

 S n Nh = + − 1  (3-37)

Often, spatial filtering algorithms are based on correlation and thus implement 
Eq. (3-34) instead. To use the algorithm for correlation, we input w  into it; for con-
volution, we input w  rotated by 180°. The opposite is true for an algorithm that 
implements Eq. (3-35). Thus, either Eq. (3-34) or Eq. (3-35) can be made to perform 
the function of the other by rotating the filter kernel. Keep in mind, however, that 
the order of the functions input into a correlation algorithm does make a difference, 
because correlation is neither commutative nor associative (see Table 3.5). 
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160    Chapter 3  Intensity Transformations and Spatial Filtering

Figure 3.31 shows two kernels used for smoothing the intensities of an image. To 
filter an image using one of these kernels, we perform a convolution of the kernel 
with the image in the manner just described. When talking about filtering and ker-
nels, you are likely to encounter the terms convolution filter, convolution mask, or 
convolution kernel to denote filter kernels of the type we have been discussing. Typi-
cally, these terms are used in the literature to denote a spatial filter kernel, and not 
to imply necessarily that the kernel is used for convolution. Similarly, “convolving a 
kernel with an image” often is used to denote the sliding, sum-of-products process 
we just explained, and does not necessarily differentiate between correlation and 
convolution. Rather, it is used generically to denote either of the two operations. 
This imprecise terminology is a frequent source of confusion. In this book, when we 
use the term linear spatial filtering, we mean convolving a kernel with an image.

Sometimes an image is filtered (i.e., convolved) sequentially, in stages, using a dif-
ferent kernel in each stage. For example, suppose than an image f is filtered with a 
kernel w1, the result filtered with kernel w2 ,  that result filtered with a third kernel, 
and so on, for Q stages. Because of the commutative property of convolution, this 
multistage filtering can be done in a single filtering operation, w � f ,  where

 w w w w w= 1 2 3� � � �� Q  (3-38)

The size of w  is obtained from the sizes of the individual kernels by successive 
applications of Eqs. (3-36) and (3-37). If all the individual kernels are of size m n× , 
it follows from these equations that w  will be of size W Wv h× , where

 W Q m mv = − +× ( )1  (3-39)

and

 W Q n nh = − +× ( )1  (3-40)

These equations assume that every value of a kernel visits every value of the array 
resulting from the convolution in the previous step. That is, the initial and ending 
configurations, are as described in connection with Eqs. (3-36) and (3-37).

Because the values of 
these kernels are sym-
metric about the center, 
no rotation is required 
before convolution.

We could not write a 
similar equation for  
correlation because it is 
not commutative.

11

1 1

11

1

1

1

1
9

� 1.0000

0.3679 0.6065

0.3679

0.3679

0.3679

0.6065 0.6065

0.6065

�
4.8976

1

ba

FIGURE 3.31
Examples of 
smoothing kernels: 
(a) is a box kernel; 
(b) is a Gaussian 
kernel.

Property Convolution Correlation

Commutative f g g f� �= —

Associative f g f g hh� � � �( ) = ( ) —

Distributive f g h f g f h� � �+( ) = ( ) + ( ) f g h f g f h� � �+( ) = ( ) + ( )

TABLE 3.5
Some fundamen-
tal properties of 
convolution and 
correlation. A 
dash means that 
the property does 
not hold.
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SEPARABLE FILTER KERNELS

As noted in Section 2.6, a 2-D function G x y( , ) is said to be separable if it can be written 
as the product of two 1-D functions, G x1( ) and G x2( ); that is, G x y G x G y( , ) ( ) ( ).= 1 2  
A spatial filter kernel is a matrix, and a separable kernel is a matrix that can be 
expressed as the outer product of two vectors. For example, the 2 3*  kernel

 w =
⎡

⎣
⎢

⎤

⎦
⎥

1 1 1

1 1 1

is separable because it can be expressed as the outer product of the vectors

 c r= =
1

1

1

1

1

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and

That is,

 c rT = = =
1

1
1 1 1

1 1 1

1 1 1
⎡

⎣
⎢

⎤

⎦
⎥ [ ] ⎡

⎣
⎢

⎤

⎦
⎥ w  

A separable kernel of size m n×  can be expressed as the outer product of two vec-
tors, v and w:

 w = vwT  (3-41)

where v and w are vectors of size m × 1 and n × 1, respectively. For a square kernel 
of size m m× , we write

 w = vvT  (3-42)

It turns out that the product of a column vector and a row vector is the same as the 
2-D convolution of the vectors (see Problem 3.24). 

The importance of separable kernels lies in the computational advantages that 
result from the associative property of convolution. If we have a kernel w  that can 
be decomposed into two simpler kernels, such that w w w1 2= � ,  then it follows 
from the commutative and associative properties in Table 3.5 that 

     w f w w w w w w w w� � � � � � � � �= = = =( ) ( ) ) )( (1 2 2 1 2 1 1 2f f f f  (3-43)

This equation says that convolving a separable kernel with an image is the same as 
convolving w1  with f  first, and then convolving the result with w2. 

For an image of size M N×  and a kernel of size m n× , implementation of Eq. 
(3-35) requires on the order of MNmn multiplications and additions. This is because 
it follows directly from that equation that each pixel in the output (filtered) image 
depends on all the coefficients in the filter kernel. But, if the kernel is separable and 
we use Eq. (3-43), then the first convolution, w1 � f ,  requires on the order of MNm 

To be strictly consistent 
in notation, we should 
use uppercase, bold  
symbols for kernels when 
we refer to them as  
matrices. However,  
kernels are mostly 
treated in the book as 
2-D functions, which we 
denote in italics. To avoid 
confusion, we continue 
to use italics for kernels 
in this short section, with 
the understanding that 
the two notations are 
intended to be equivalent 
in this case.

We assume that the 
values of M and N 
include any padding of 
f prior to performing 
convolution.
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162    Chapter 3  Intensity Transformations and Spatial Filtering

multiplications and additions because w1  is of size m × 1. The result is of size M N× , 
so the convolution of w2  with the result requires MNn such operations, for a total of 
MN m n( )+  multiplication and addition operations. Thus, the computational advan-
tage of performing convolution with a separable, as opposed to a nonseparable, ker-
nel is defined as

 C
MNmn

MN m n
mn

m n
=

+
=

+( )  (3-44)

For a kernel of modest size, say 11 11× , the computational advantage (and thus exe-
cution-time advantage) is a respectable 5.2. For kernels with hundreds of elements, 
execution times can be reduced by a factor of a hundred or more, which is significant. 
We will illustrate the use of such large kernels in Example 3.16.

We know from matrix theory that a matrix resulting from the product of a column 
vector and a row vector always has a rank of 1. By definition, a separable kernel is 
formed by such a product. Therefore, to determine if a kernel is separable, all we 
have to do is determine if its rank is 1. Typically, we find the rank of a matrix using a 
pre-programmed function in the computer language being used. For example, if you 
use MATLAB, function rank will do the job.

Once you have determined that the rank of a kernel matrix is 1, it is not difficult 
to find two vectors v and w such that their outer product, vwT, is equal to the kernel. 
The approach consists of only three steps:

1. Find any nonzero element in the kernel and let E denote its value.
2. Form vectors c and r equal, respectively, to the column and row in the kernel 

containing the element found in Step 1.
3. With reference to Eq. (3-41), let v c=  and w rT E= .

The reason why this simple three-step method works is that the rows and columns 
of a matrix whose rank is 1 are linearly dependent. That is, the rows differ only by a 
constant multiplier, and similarly for the columns. It is instructive to work through 
the mechanics of this procedure using a small kernel (see Problems 3.20 and 3.22).

As we explained above, the objective is to find two 1-D kernels, w1  and w2 ,  in 
order to implement 1-D convolution. In terms of the preceding notation, w1 = =c v  
and w2 = =r wE T.  For circularly symmetric kernels, the column through the center 
of the kernel describes the entire kernel; that is, w = vvT c ,  where c is the value of 
the center coefficient. Then, the 1-D components are w1 = v  and w2 = vT c .  

SOME IMPORTANT COMPARISONS BETWEEN FILTERING IN THE  
SPATIAL AND FREQUENCY DOMAINS

Although filtering in the frequency domain is the topic of Chapter 4, we introduce 
at this junction some important concepts from the frequency domain that will help 
you master the material that follows. 

The tie between spatial- and frequency-domain processing is the Fourier trans-
form. We use the Fourier transform to go from the spatial to the frequency domain; 

As we will discuss later 
in this chapter, the only 
kernels that are sepa-
rable and whose values 
are circularly symmetric 
about the center are 
Gaussian kernels, which 
have a nonzero center 
coefficient (i.e., c > 0 for 
these kernels).
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to return to the spatial domain we use the inverse Fourier transform. This will be 
covered in detail in Chapter 4. The focus here is on two fundamental properties 
relating the spatial and frequency domains:

1. Convolution, which is the basis for filtering in the spatial domain, is equivalent 
to multiplication in the frequency domain, and vice versa.

2. An impulse of strength A in the spatial domain is a constant of value A in the 
frequency domain, and vice versa. 

As explained in Chapter 4, a function (e.g., an image) satisfying some mild condi-
tions can be expressed as the sum of sinusoids of different frequencies and ampli-
tudes. Thus, the appearance of an image depends on the frequencies of its sinusoidal 
components—change the frequencies of those components, and you will change the 
appearance of the image. What makes this a powerful concept is that it is possible to 
associate certain frequency bands with image characteristics. For example, regions 
of an image with intensities that vary slowly (e.g., the walls in an image of a room) 
are characterized by sinusoids of low frequencies. Similarly, edges and other sharp 
intensity transitions are characterized by high frequencies. Thus, reducing the high-
frequency components of an image will tend to blur it.

Linear filtering is concerned with finding suitable ways to modify the frequency 
content of an image. In the spatial domain we do this via convolution filtering. In 
the frequency domain we do it with multiplicative filters. The latter is a much more 
intuitive approach, which is one of the reasons why it is virtually impossible to truly 
understand spatial filtering without having at least some rudimentary knowledge of 
the frequency domain. 

An example will help clarify these ideas. For simplicity, consider a 1-D func-
tion (such as an intensity scan line through an image) and suppose that we want to 
eliminate all its frequencies above a cutoff value, u0 , while “passing” all frequen-
cies below that value. Figure 3.32(a) shows a frequency-domain filter function for 
doing this. (The term filter transfer function is used to denote filter functions in the 
frequency domain—this is analogous to our use of the term “filter kernel” in the 
spatial domain.) Appropriately, the function in Fig. 3.32(a) is called a lowpass filter 
transfer function. In fact, this is an ideal lowpass filter function because it eliminates 
all frequencies above u0 , while passing all frequencies below this value.† That is, the 

† All the frequency domain filters in which we are interested are symmetrical about the origin and encompass 
both positive and negative frequencies, as we will explain in Section 4.3 (see Fig. 4.8). For the moment, we show 
only the right side (positive frequencies) of 1-D filters for simplicity in this short explanation. 

See the explanation of 
Eq. (3-33) regarding 
impulses. 

As we did earlier with 
spatial filters, when the 
meaning is clear we use 
the term filter inter-
changeably with filter 
transfer function when 
working in the frequency 
domain.

0u
u

Passband

frequency

Stopband

Frequency domain

1

x

Spatial domain

0uba

FIGURE 3.32
(a) Ideal 1-D low-
pass filter transfer 
function in the  
frequency domain. 
(b) Corresponding 
filter kernel in the 
spatial domain.
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164    Chapter 3  Intensity Transformations and Spatial Filtering

transition of the filter between low and high frequencies is instantaneous. Such filter 
functions are not realizable with physical components, and have issues with “ringing” 
when implemented digitally. However, ideal filters are very useful for illustrating 
numerous filtering phenomena, as you will learn in Chapter 4.

To lowpass-filter a spatial signal in the frequency domain, we first convert it to the 
frequency domain by computing its Fourier transform, and then multiply the result 
by the filter transfer function in Fig. 3.32(a) to eliminate frequency components with 
values higher than u0. To return to the spatial domain, we take the inverse Fourier 
transform of the filtered signal. The result will be a blurred spatial domain function.

Because of the duality between the spatial and frequency domains, we can obtain 
the same result in the spatial domain by convolving the equivalent spatial domain 
filter kernel with the input spatial function. The equivalent spatial filter kernel 
is the inverse Fourier transform of the frequency-domain filter transfer function. 
Figure 3.32(b) shows the spatial filter kernel corresponding to the frequency domain 
filter transfer function in Fig. 3.32(a). The ringing characteristics of the kernel are 
evident in the figure. A central theme of digital filter design theory is obtaining faith-
ful (and practical) approximations to the sharp cut off of ideal frequency domain 
filters while reducing their ringing characteristics.

A WORD ABOUT HOW SPATIAL FILTER KERNELS ARE CONSTRUCTED

We consider three basic approaches for constructing spatial filters in the following 
sections of this chapter. One approach is based on formulating filters based on 
mathematical properties. For example, a filter that computes the average of pixels 
in a neighborhood blurs an image. Computing an average is analogous to integra-
tion. Conversely, a filter that computes the local derivative of an image sharpens the 
image. We give numerous examples of this approach in the following sections.

A second approach is based on sampling a 2-D spatial function whose shape has 
a desired property. For example, we will show in the next section that samples from 
a Gaussian function can be used to construct a weighted-average (lowpass) filter. 
These 2-D spatial functions sometimes are generated as the inverse Fourier trans-
form of 2-D filters specified in the frequency domain. We will give several examples 
of this approach in this and the next chapter. 

A third approach is to design a spatial filter with a specified frequency response. 
This approach is based on the concepts discussed in the previous section, and falls 
in the area of digital filter design. A 1-D spatial filter with the desired response is 
obtained (typically using filter design software). The 1-D filter values can be expressed 
as a vector v, and a 2-D separable kernel can then be obtained using Eq. (3-42). Or the 
1-D filter can be rotated about its center to generate a 2-D kernel that approximates a 
circularly symmetric function. We will illustrate these techniques in Section 3.7.

3.5 SMOOTHING (LOWPASS) SPATIAL FILTERS  

Smoothing (also called averaging) spatial filters are used to reduce sharp transi-
tions in intensity. Because random noise typically consists of sharp transitions in 

3.5
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intensity, an obvious application of smoothing is noise reduction. Smoothing prior 
to image resampling to reduce aliasing, as will be discussed in Section 4.5, is also 
a common application. Smoothing is used to reduce irrelevant detail in an image, 
where “irrelevant” refers to pixel regions that are small with respect to the size of 
the filter kernel. Another application is for smoothing the false contours that result 
from using an insufficient number of intensity levels in an image, as discussed in Sec-
tion 2.4. Smoothing filters are used in combination with other techniques for image 
enhancement, such as the histogram processing techniques discussed in Section 3.3, 
and unsharp masking, as discussed later in this chapter. We begin the discussion 
of smoothing filters by considering linear smoothing filters in some detail. We will 
introduce nonlinear smoothing filters later in this section.

As we discussed in Section 3.4, linear spatial filtering consists of convolving an 
image with a filter kernel. Convolving a smoothing kernel with an image blurs the 
image, with the degree of blurring being determined by the size of the kernel and 
the values of its coefficients. In addition to being useful in countless applications of 
image processing, lowpass filters are fundamental, in the sense that other impor-
tant filters, including sharpening (highpass), bandpass, and bandreject filters, can be 
derived from lowpass filters, as we will show in Section 3.7.

We discuss in this section lowpass filters based on box and Gaussian kernels, 
both of which are separable. Most of the discussion will center on Gaussian kernels 
because of their numerous useful properties and breadth of applicability. We will 
introduce other smoothing filters in Chapters 4 and 5.

BOX FILTER KERNELS

The simplest, separable lowpass filter kernel is the box kernel, whose coefficients 
have the same value (typically 1). The name “box kernel” comes from a constant 
kernel resembling a box when viewed in 3-D. We showed a 3 3×  box filter in Fig. 
3.31(a). An m n×  box filter is an m n×  array of 1’s, with a normalizing constant in 
front, whose value is 1 divided by the sum of the values of the coefficients (i.e.,  1 mn 
when all the coefficients are 1’s). This normalization, which we apply to all lowpass 
kernels, has two purposes. First, the average value of an area of constant intensity 
would equal that intensity in the filtered image, as it should. Second, normalizing 
the kernel in this way prevents introducing a bias during filtering; that is, the sum 
of the pixels in the original and filtered images will be the same (see Problem 3.31). 
Because in a box kernel all rows and columns are identical, the rank of these kernels 
is 1, which, as we discussed earlier, means that they are separable.

EXAMPLE 3.11 :  Lowpass filtering with a box kernel.

Figure 3.33(a) shows a test pattern image of size 1024 1024×  pixels. Figures 3.33(b)-(d) are the results 
obtained using box filters of size m m×  with m = 3 11, , and 21, respectively. For m = 3, we note a slight 
overall blurring of the image, with the image features whose sizes are comparable to the size of the 
kernel being affected significantly more. Such features include the thinner lines in the image and the 
noise pixels contained in the boxes on the right side of the image. The filtered image also has a thin gray 
border, the result of zero-padding the image prior to filtering. As indicated earlier, padding extends the 
boundaries of an image to avoid undefined operations when parts of a kernel lie outside the border of 
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166    Chapter 3  Intensity Transformations and Spatial Filtering

the image during filtering. When zero (black) padding is used, the net result of smoothing at or near the 
border is a dark gray border that arises from including black pixels in the averaging process. Using the 
11 11×  kernel resulted in more pronounced blurring throughout the image, including a more prominent 
dark border. The result with the 21 21×  kernel shows significant blurring of all components of the image, 
including the loss of the characteristic shape of some components, including, for example, the small 
square on the top left and the small character on the bottom left. The dark border resulting from zero 
padding is proportionally thicker than before. We used zero padding here, and will use it a few more 
times, so that you can become familiar with its effects. In Example 3.14 we discuss two other approaches 
to padding that eliminate the dark-border artifact that usually results from zero padding. 

LOWPASS GAUSSIAN FILTER KERNELS

Because of their simplicity, box filters are suitable for quick experimentation and 
they often yield smoothing results that are visually acceptable. They are useful also 
when it is desired to reduce the effect of smoothing on edges (see Example 3.13). 
However, box filters have limitations that make them poor choices in many appli-
cations. For example, a defocused lens is often modeled as a lowpass filter, but 
box filters are poor approximations to the blurring characteristics of lenses (see 
Problem 3.33). Another limitation is the fact that box filters favor blurring along 
perpendicular directions. In applications involving images with a high level of detail, 

ba
dc

FIGURE 3.33
(a) Test pattern of 
size 1024 1024×  
pixels.  
(b)-(d) Results of 
lowpass filtering 
with box kernels 
of sizes 3 3× ,  
11 11× ,  
and 21 21× ,   
respectively.
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or with strong geometrical components, the directionality of box filters often pro-
duces undesirable results. (Example 3.13 illustrates this issue.) These are but two 
applications in which box filters are not suitable.

The kernels of choice in applications such as those just mentioned are circularly 
symmetric (also called isotropic, meaning their response is independent of orienta-
tion). As it turns out, Gaussian kernels of the form

 w( , ) ( , )s t G s t Ke
s t

= =
− +2 2

22s  (3-45)

are the only circularly symmetric kernels that are also separable (Sahoo [1990]). 
Thus, because Gaussian kernels of this form are separable, Gaussian filters enjoy the 
same computational advantages as box filters, but have a host of additional proper-
ties that make them ideal for image processing, as you will learn in the following 
discussion. Variables s and t in Eq. (3-45), are real (typically discrete) numbers. 

By letting r s t= +[ ]2 2 1 2 we can write Eq. (3-45) as

 G r Ke
r

( ) =
−

2

22s (3-46)

This equivalent form simplifies derivation of expressions later in this section. This 
form also reminds us that the function is circularly symmetric. Variable r is the dis-
tance from the center to any point on function G. Figure 3.34 shows values of r for 
several kernel sizes using integer values for s and t. Because we work generally with 
odd kernel sizes, the centers of such kernels fall on integer values, and it follows that 
all values of r2 are integers also. You can see this by squaring the values in Fig. 3.34 

Our interest here is 
strictly on the bell shape 
of the Gaussian function; 
thus, we dispense with 
the traditional multiplier 
of the Gaussian PDF and 
use a general constant, 
K, instead. Recall that s 
controls the “spread” of a 
Gaussian function about 
its mean.

FIGURE 3.34
Distances from 
the center for  
various sizes of 
square kernels.
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(for a formal proof, see Padfield [2011]). Note in particular that the distance squared 
to the corner points for a kernel of size m m×  is

 r
m m

max

( ) ( )2
2 21

2
2

1
2

= ⎡
⎣⎢

⎤
⎦⎥

=- -
 (3-47)

The kernel in Fig. 3.31(b) was obtained by sampling Eq. (3-45) (with K = 1 and 
s = 1). Figure 3.35(a) shows a perspective plot of a Gaussian function, and illustrates 
that the samples used to generate that kernel were obtained by specifying values of 
s and t, then “reading” the values of the function at those coordinates. These values 
are the coefficients of the kernel. Normalizing the kernel by dividing its coefficients 
by the sum of the coefficients completes the specification of the kernel. The reasons 
for normalizing the kernel are as discussed in connection with box kernels. Because 
Gaussian kernels are separable, we could simply take samples along a cross section 
through the center and use the samples to form vector v in Eq. (3-42), from which 
we obtain the 2-D kernel.

Separability is one of many fundamental properties of circularly symmetric 
Gaussian kernels. For example, we know that the values of a Gaussian function at a 
distance larger than 3s  from the mean are small enough that they can be ignored. 
This means that if we select the size of a Gaussian kernel to be L M L M6 6s s×  (the nota-
tion L Mc  is used to denote the ceiling of c; that is, the smallest integer not less than 
c), we are assured of getting essentially the same result as if we had used an arbi-
trarily large Gaussian kernel. Viewed another way, this property tells us that there 
is nothing to be gained by using a Gaussian kernel larger than L M L M6 6s s×  for image 
processing. Because typically we work with kernels of odd dimensions, we would use 
the smallest odd integer that satisfies this condition (e.g., a 43 43×  kernel if s = 7). 

Two other fundamental properties of Gaussian functions are that the product 
and convolution of two Gaussians are Gaussian functions also. Table 3.6 shows the 
mean and standard deviation of the product and convolution of two 1-D Gaussian 
functions, f and g (remember, because of separability, we only need a 1-D Gauss-
ian to form a circularly symmetric 2-D function). The mean and standard deviation 

Small Gaussian kernels 
cannot capture the char-
acteristic Gaussian bell 
shape, and thus behave 
more like box kernels. As 
we discuss below, a prac-
tical size for Gaussian 
kernels is on the order of 
6s�6s.

As we explained in 
Section 2.6, the symbols 
<⋅= and :⋅; denote the 
ceiling and floor func-
tions. That is, the ceiling 
and floor functions map 
a real number to the 
smallest following, or the 
largest previous, integer, 
respectively.

Proofs of the results in 
Table 3.6 are simplified 
by working with the  
Fourier transform and 
the frequency domain, 
both of which are topics 
in Chapter 4.
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1.00000.6065 0.6065
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FIGURE 3.35
(a) Sampling a  
Gaussian function 
to obtain a discrete  
Gaussian kernel. 
The values shown 
are for K = 1 and 
s = 1. (b) Resulting 
3 3×  kernel [this 
is the same as Fig. 
3.31(b)]. 
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completely define a Gaussian, so the parameters in Table 3.6 tell us all there is to 
know about the functions resulting from multiplication and convolution of Gauss-
ians. As indicated by Eqs. (3-45) and (3-46), Gaussian kernels have zero mean, so our 
interest here is in the standard deviations. 

The convolution result is of particular importance in filtering. For example, we 
mentioned in connection with Eq. (3-43) that filtering sometimes is done in succes-
sive stages, and that the same result can be obtained by one stage of filtering with a 
composite kernel formed as the convolution of the individual kernels. If the kernels 
are Gaussian, we can use the result in Table 3.6 (which, as noted, generalizes directly 
to more than two functions) to compute the standard deviation of the composite 
kernel (and thus completely define it) without actually having to perform the con-
volution of all the individual kernels.

EXAMPLE 3.12 :  Lowpass filtering with a Gaussian kernel.

To compare Gaussian and box kernel filtering, we repeat Example 3.11 using a Gaussian kernel.  Gauss-
ian kernels have to be larger than box filters to achieve the same degree of blurring. This is because, 
whereas a box kernel assigns the same weight to all pixels, the values of Gaussian kernel coefficients 
(and hence their effect) decreases as a function of distance from the kernel center. As explained earlier, 
we use a size equal to the closest odd integer to L M L M6 6s s× .  Thus, for a Gaussian kernel of size 21 21× , 
which is the size of the kernel we used to generate Fig. 3.33(d), we need s = 3 5. . Figure 3.36(b) shows the 
result of lowpass filtering the test pattern with this kernel. Comparing this result with Fig. 3.33(d), we see 
that the Gaussian kernel resulted in significantly less blurring. A little experimentation would show that 
we need s = 7 to obtain comparable results. This implies a Gaussian kernel of size 43 43× . Figure 3.36(c) 
shows the results of filtering the test pattern with this kernel. Comparing it with Fig. 3.33(d), we see that 
the results indeed are very close. 

We mentioned earlier that there is little to be gained by using a Gaussian kernel larger than L M L M6 6s s× .  
To demonstrate this, we filtered the test pattern in Fig. 3.36(a) using a Gaussian kernel with s = 7 again, 
but of size 85 85× . Figure 3.37(a) is the same as Fig. 3.36(c), which we generated using the smallest 
odd kernel satisfying the L M L M6 6×  condition (43 43× , for s = 7). Figure 3.37(b) is the result of using the 
85 85×  kernel, which is double the size of the other kernel. As you can see, not discernible additional 

f g f g× f g�

Mean

Standard deviation sf sg

mf mg m
m m

f g
f g g f

f g
× =

+
+

s s

s s

2 2

2 2 m m mf g f g� = +

s
s s

s s
f g

f g

f g
× =

+

2 2

2 2 s s sf g f g� = +2 2

TABLE 3.6 Mean and standard deviation of the product ( )×  and convolution ( )�  of two 1-D Gaussian functions, f 
and g. These results generalize directly to the product and convolution of more than two 1-D Gaussian functions 
(see Problem 3.25).
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170    Chapter 3  Intensity Transformations and Spatial Filtering

blurring occurred. In fact, the difference image in Fig 3.37(c) indicates that the two images are nearly 
identical, their maximum difference being 0.75, which is less than one level out of 256 (these are 8-bit 
images). 

 EXAMPLE 3.13 :  Comparison of Gaussian and box filter smoothing characteristics.

The results in Examples 3.11 and 3.12 showed little visual difference in blurring. Despite this, there are 
some subtle differences that are not apparent at first glance. For example, compare the large letter “a” 
in Figs. 3.33(d) and 3.36(c); the latter is much smoother around the edges. Figure 3.38 shows this type 
of different behavior between box and Gaussian kernels more clearly. The image of the rectangle was 

ba c  
FIGURE 3.36  (a)A test pattern of size 1024 1024× . (b) Result of lowpass filtering the pattern with a Gaussian kernel 
of size 21 21× ,  with standard deviations s = 3 5. . (c) Result of using a kernel of size 43 43× ,  with s = 7. This result 
is comparable to Fig. 3.33(d). We used K = 1 in all cases.

ba c

FIGURE 3.37 (a) Result of filtering Fig. 3.36(a) using a Gaussian kernels of size 43 43× ,  with s = 7. (b) Result of using 
a kernel of 85 85× ,  with the same value of s.  (c) Difference image.
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smoothed using a box and a Gaussian kernel with the sizes and parameters listed in the figure. These 
parameters were selected to give blurred rectangles of approximately the same width and height, in 
order to show the effects of the filters on a comparable basis. As the intensity profiles show, the box filter 
produced linear smoothing, with the transition from black to white (i.e., at an edge) having the shape 
of a ramp. The important features here are hard transitions at the onset and end of the ramp. We would 
use this type of filter when less smoothing of edges is desired. Conversely, the Gaussian filter yielded 
significantly smoother results around the edge transitions. We would use this type of filter when gener-
ally uniform smoothing is desired.

As the results in Examples 3.11, 3.12, and 3.13 show, zero padding an image intro-
duces dark borders in the filtered result, with the thickness of the borders depending 
on the size and type of the filter kernel used. Earlier, when discussing correlation 
and convolution, we mentioned two other methods of image padding: mirror (also 
called symmetric) padding, in which values outside the boundary of the image are 
obtained by mirror-reflecting the image across its border; and replicate padding, in 
which values outside the boundary are set equal to the nearest image border value. 
The latter padding is useful when the areas near the border of the image are con-
stant. Conversely, mirror padding is more applicable when the areas near the border 
contain image details. In other words, these two types of padding attempt to “extend” 
the characteristics of an image past its borders. 

Figure 3.39 illustrates these padding methods, and also shows the effects of more 
aggressive smoothing. Figures 3.39(a) through 3.39(c) show the results of filtering 
Fig. 3.36(a) with a Gaussian kernel of size 187 187×  elements with K = 1 and s = 31, 
using zero, mirror, and replicate padding, respectively. The differences between the 
borders of the results with the zero-padded image and the other two are obvious, 

ba c  
FIGURE 3.38 (a) Image of a white rectangle on a black background, and a horizontal intensity profile along the scan 
line shown dotted. (b) Result of smoothing this image with a box kernel of size 71 71× ,  and corresponding intensity 
profile. (c) Result of smoothing the image using a Gaussian kernel of size 151 151× , with K = 1 and s = 25. Note 
the smoothness of the profile in (c) compared to (b). The image and rectangle are of sizes 1024 1024×  and 768 128×  
pixels, respectively.
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and indicate that mirror and replicate padding yield more visually appealing results 
by eliminating the dark borders resulting from zero padding.

EXAMPLE 3.14 :  Smoothing performance as a function of kernel and image size.

The amount of relative blurring produced by a smoothing kernel of a given size depends directly on 
image size. To illustrate, Fig. 3.40(a) shows the same test pattern used earlier, but of size 4096 4096×  
pixels, four times larger in each dimension than before. Figure 3.40(b) shows the result of filtering this 
image with the same Gaussian kernel and padding used in Fig. 3.39(b). By comparison, the former 
image shows considerably less blurring for the same size filter. In fact, Fig. 3.40(b) looks more like the 

ba c

FIGURE 3.39 Result of filtering the test pattern in Fig. 3.36(a) using (a) zero padding, (b) mirror padding, and (c) rep-
licate padding. A Gaussian kernel of size 187 187× , with K = 1 and s = 31 was used in all three cases.

ba c

FIGURE 3.40 (a) Test pattern of size 4096 4096×  pixels. (b) Result of filtering the test pattern with the same Gaussian 
kernel used in Fig. 3.39. (c) Result of filtering the pattern using a Gaussian kernel of size 745 745×  elements, with 
K = 1 and s = 124. Mirror padding was used throughout. 
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image in Fig. 3.36(d), which was filtered using a 43 43×  Gaussian kernel. In order to obtain results that 
are comparable to Fig. 3.39(b) we have to increase the size and standard deviation of the Gaussian 
kernel by four, the same factor as the increase in image dimensions. This gives a kernel of (odd) size 
745 745×  (with K = 1 and s = 124). Figure 3.40(c) shows the result of using this kernel with mirror pad-
ding. This result is quite similar to Fig. 3.39(b). After the fact, this may seem like a trivial observation, but 
you would be surprised at how frequently not understanding the relationship between kernel size and 
the size of objects in an image can lead to ineffective performance of spatial filtering algorithms. 

EXAMPLE 3.15 :  Using lowpass filtering and thresholding for region extraction.

Figure 3.41(a) is a 2566 2758×  Hubble Telescope image of the Hickson Compact Group (see figure 
caption), whose intensities were scaled to the range [ , ].0 1  Our objective is to illustrate lowpass filtering 
combined with intensity thresholding for eliminating irrelevant detail in this image. In the present con-
text, “irrelevant” refers to pixel regions that are small compared to kernel size.

Figure 3.41(b) is the result of filtering the original image with a Gaussian kernel of size 151 151×  
(approximately 6% of the image width) and standard deviation s = 25. We chose these parameter val-
ues in order generate a sharper, more selective Gaussian kernel shape than we used in earlier examples. 
The filtered image shows four predominantly bright regions. We wish to extract only those regions from 
the image. Figure 3.41(c) is the result of thresholding the filtered image with a threshold T = 0 4.  (we will 
discuss threshold selection in Chapter 10). As the figure shows, this approach effectively extracted the 
four regions of interest, and eliminated details deemed irrelevant in this application.

EXAMPLE 3.16 :  Shading correction using lowpass filtering.

One of the principal causes of image shading is nonuniform illumination. Shading correction (also 
called flat-field correction) is important because shading is a common cause of erroneous measurements, 
degraded performance of automated image analysis algorithms, and difficulty of image interpretation 

ba c

FIGURE 3.41 (a) A 2566 2758×  Hubble Telescope image of the Hickson Compact Group. (b) Result of lowpass filter-
ing with a Gaussian kernel. (c) Result of thresholding the filtered image (intensities were scaled to the range [0, 1]). 
The Hickson Compact Group contains dwarf galaxies that have come together, setting off thousands of new star 
clusters. (Original image courtesy of NASA.)
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by humans. We introduced shading correction in Example 2.7, where we corrected a shaded image by 
dividing it by the shading pattern. In that example, the shading pattern was given. Often, that is not the 
case in practice, and we are faced with having to estimate the pattern directly from available samples of 
shaded images. Lowpass filtering is a rugged, simple method for estimating shading patterns.

Consider the 2048 2048×  checkerboard image in Fig. 3.42(a), whose inner squares are of size 128 128×  
pixels. Figure 3.42(b) is the result of lowpass filtering the image with a 512 512×  Gaussian kernel (four 
times the size of the squares), K = 1, and s = 128 (equal to the size of the squares). This kernel is just 
large enough to blur-out the squares (a kernel three times the size of the squares is too small to blur 
them out sufficiently). This result is a good approximation to the shading pattern visible in Fig. 3.42(a). 
Finally, Fig. 3.42(c) is the result of dividing (a) by (b). Although the result is not perfectly flat, it definitely 
is an improvement over the shaded image. 

In the discussion of separable kernels in Section 3.4, we pointed out that the computational advan-
tage of separable kernels can be significant for large kernels. It follows from Eq. (3-44) that the compu-
tational advantage of the kernel used in this example (which of course is separable) is 262 to 1. Thinking 
of computation time, if it took 30 sec to process a set of images similar to Fig. 3.42(b) using the two 1-D 
separable components of the Gaussian kernel, it would have taken 2.2 hrs to achieve the same result 
using a nonseparable lowpass kernel, or if we had used the 2-D Gaussian kernel directly, without decom-
posing it into its separable parts.

ORDER-STATISTIC (NONLINEAR) FILTERS

Order-statistic filters are nonlinear spatial filters whose response is based on ordering 
(ranking) the pixels contained in the region encompassed by the filter. Smoothing is 
achieved by replacing the value of the center pixel with the value determined by the 
ranking result. The best-known filter in this category is the median filter, which, as 
its name implies, replaces the value of the center pixel by the median of the intensity 
values in the neighborhood of that pixel (the value of the center pixel is included 

ba c

FIGURE 3.42 (a) Image shaded by a shading pattern oriented in the −45° direction. (b) Estimate of the shading 
patterns obtained using lowpass filtering. (c) Result of dividing (a) by (b). (See Section 9.8 for a morphological 
approach to shading correction).
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in computing the median). Median filters provide excellent noise reduction capa-
bilities for certain types of random noise, with considerably less blurring than lin-
ear smoothing filters of similar size. Median filters are particularly effective in the 
presence of impulse noise (sometimes called salt-and-pepper noise, when it manis-
fests itself as white and black dots superimposed on an image).

The median, j, of a set of values is such that half the values in the set are less than 
or equal to j  and half are greater than or equal to j. In order to perform median 
filtering at a point in an image, we first sort the values of the pixels in the neighbor-
hood, determine their median, and assign that value to the pixel in the filtered image 
corresponding to the center of the neighborhood. For example, in a 3 3×  neighbor-
hood the median is the 5th largest value, in a 5 5×  neighborhood it is the 13th largest 
value, and so on. When several values in a neighborhood are the same, all equal val-
ues are grouped. For example, suppose that a 3 3×  neighborhood has values (10, 20, 
20, 20, 15, 20, 20, 25, 100). These values are sorted as (10, 15, 20, 20, 20, 20, 20, 25, 100), 
which results in a median of 20. Thus, the principal function of median filters is to 
force points to be more like their neighbors. Isolated clusters of pixels that are light 
or dark with respect to their neighbors, and whose area is less than m2 2 (one-half 
the filter area), are forced by an m m×  median filter to have the value of the median 
intensity of the pixels in the neighborhood (see Problem 3.36).

The median filter is by far the most useful order-statistic filter in image processing, 
but is not the only one. The median represents the 50th percentile of a ranked set 
of numbers, but ranking lends itself to many other possibilities. For example, using 
the 100th percentile results in the so-called max filter, which is useful for finding the 
brightest points in an image or for eroding dark areas adjacent to light regions. The 
response of a 3 3×  max filter is given by R z kk= ={ }max , , , , .1 2 3 9…  The 0th per-
centile filter is the min filter, used for the opposite purpose. Median, max, min, and 
several other nonlinear filters will be considered in more detail in Section 5.3.

EXAMPLE 3.17 :  Median filtering.

Figure 3.43(a) shows an X-ray image of a circuit board heavily corrupted by salt-and-pepper noise. To 
illustrate the superiority of median filtering over lowpass filtering in situations such as this, we show in 
Fig. 3.43(b) the result of filtering the noisy image with a Gaussian lowpass filter, and in Fig. 3.43(c) the 
result of using a median filter. The lowpass filter blurred the image and its noise reduction performance 
was poor. The superiority in all respects of median over lowpass filtering in this case is evident.

3.6 SHARPENING (HIGHPASS) SPATIAL FILTERS  

Sharpening highlights transitions in intensity. Uses of image sharpening range from 
electronic printing and medical imaging to industrial inspection and autonomous 
guidance in military systems. In Section 3.5, we saw that image blurring could be 
accomplished in the spatial domain by pixel averaging (smoothing) in a neighbor-
hood. Because averaging is analogous to integration, it is logical to conclude that 
sharpening can be accomplished by spatial differentiation. In fact, this is the case, 
and the following discussion deals with various ways of defining and implementing 
operators for sharpening by digital differentiation. The strength of the response of 

3.6
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a derivative operator is proportional to the magnitude of the intensity discontinuity 
at the point at which the operator is applied. Thus, image differentiation enhances 
edges and other discontinuities (such as noise) and de-emphasizes areas with slowly 
varying intensities. As noted in Section 3.5, smoothing is often referred to as lowpass 
filtering, a term borrowed from frequency domain processing. In a similar manner, 
sharpening is often referred to as highpass filtering. In this case, high frequencies 
(which are responsible for fine details) are passed, while low frequencies are attenu-
ated or rejected.

FOUNDATION

In the two sections that follow, we will consider in some detail sharpening filters that 
are based on first- and second-order derivatives, respectively. Before proceeding 
with that discussion, however, we stop to look at some of the fundamental properties 
of these derivatives in a digital context. To simplify the explanation, we focus atten-
tion initially on one-dimensional derivatives. In particular, we are interested in the 
behavior of these derivatives in areas of constant intensity, at the onset and end of 
discontinuities (step and ramp discontinuities), and along intensity ramps. As you will 
see in Chapter 10, these types of discontinuities can be used to model noise points, 
lines, and edges in an image.

Derivatives of a digital function are defined in terms of differences. There are 
various ways to define these differences. However, we require that any definition we 
use for a first derivative: 

1. Must be zero in areas of constant intensity.
2. Must be nonzero at the onset of an intensity step or ramp. 
3. Must be nonzero along intensity ramps. 

Similarly, any definition of a second derivative 

ba c

FIGURE 3.43 (a) X-ray image of a circuit board, corrupted by salt-and-pepper noise. (b) Noise reduction using a 
19 19×  Gaussian lowpass filter kernel with s = 3. (c) Noise reduction using a 7 7×  median filter. (Original image 
courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)
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1. Must be zero in areas of constant intensity. 
2. Must be nonzero at the onset and end of an intensity step or ramp.
3. Must be zero along intensity ramps. 

We are dealing with digital quantities whose values are finite. Therefore, the maxi-
mum possible intensity change also is finite, and the shortest distance over which 
that change can occur is between adjacent pixels. 

A basic definition of the first-order derivative of a one-dimensional function f x( ) 
is the difference

 
∂
∂

= + −f
x

f x f x( ) ( )1  (3-48)

We used a partial derivative here in order to keep the notation consistent when we 
consider an image function of two variables, f x y( , ), at which time we will be deal-
ing with partial derivatives along the two spatial axes. Clearly, ∂ ∂ =f x df dx  when 
there is only one variable in the function; the same is true for the second derivative.

We define the second-order derivative of f x( ) as the difference

 
∂
∂

= + + − −
2

2 1 1 2
f

x
f x f x f x( ) ( ) ( )  (3-49)

These two definitions satisfy the conditions stated above, as we illustrate in Fig. 3.44, 
where we also examine the similarities and differences between first- and second-
order derivatives of a digital function.

The values denoted by the small squares in Fig. 3.44(a) are the intensity values 
along a horizontal intensity profile (the dashed line connecting the squares is includ-
ed to aid visualization). The actual numerical values of the scan line are shown inside 
the small boxes in 3.44(b). As Fig. 3.44(a) shows, the scan line contains three sections 
of constant intensity, an intensity ramp, and an intensity step. The circles indicate the 
onset or end of intensity transitions. The first- and second-order derivatives, com-
puted using the two preceding definitions, are shown below the scan line values in 
Fig. 3.44(b), and are plotted in Fig. 3.44(c).When computing the first derivative at a 
location x, we subtract the value of the function at that location from the next point, 
as indicated in Eq. (3-48), so this is a “look-ahead” operation. Similarly, to compute 
the second derivative at x, we use the previous and the next points in the computa-
tion, as indicated in Eq. (3-49). To avoid a situation in which the previous or next 
points are outside the range of the scan line, we show derivative computations in Fig. 
3.44 from the second through the penultimate points in the sequence.

As we traverse the profile from left to right we encounter first an area of constant 
intensity and, as Figs. 3.44(b) and (c) show, both derivatives are zero there, so condi-
tion (1) is satisfied by both. Next, we encounter an intensity ramp followed by a step, 
and we note that the first-order derivative is nonzero at the onset of the ramp and 
the step; similarly, the second derivative is nonzero at the onset and end of both the 
ramp and the step; therefore, property (2) is satisfied by both derivatives. Finally, we 

We will return to Eq. 
(3-48) in Section 10.2 and 
show how it follows from 
a Taylor series expansion. 
For now, we accept it as a 
definition.
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see that property (3) is satisfied also by both derivatives because the first derivative 
is nonzero and the second is zero along the ramp. Note that the sign of the second 
derivative changes at the onset and end of a step or ramp. In fact, we see in Fig. 
3.44(c) that in a step transition a line joining these two values crosses the horizontal 
axis midway between the two extremes. This zero crossing property is quite useful 
for locating edges, as you will see in Chapter 10. 

Edges in digital images often are ramp-like transitions in intensity, in which case 
the first derivative of the image would result in thick edges because the derivative 
is nonzero along a ramp. On the other hand, the second derivative would produce a 
double edge one pixel thick, separated by zeros. From this, we conclude that the sec-
ond derivative enhances fine detail much better than the first derivative, a property 
ideally suited for sharpening images. Also, second derivatives require fewer opera-
tions to implement than first derivatives, so our initial attention is on the former. 

USING THE SECOND DERIVATIVE FOR IMAGE SHARPENING—THE 
LAPLACIAN

In this section we discuss the implementation of 2-D, second-order derivatives and 
their use for image sharpening. The approach consists of defining a discrete formu-
lation of the second-order derivative and then constructing a filter kernel based on 

We will return to the 
second derivative in 
Chapter 10, where we use 
it extensively for image 
segmentation.

b
a

c

FIGURE 3.44
(a) A section of a  
horizontal scan 
line from an 
image, showing 
ramp and step 
edges, as well as 
constant  
segments. 
(b)Values of the 
scan line and its 
derivatives. 
(c) Plot of the 
derivatives, show-
ing a zero cross-
ing. In (a) and (c) 
points were joined 
by dashed lines as 
a visual aid.
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that formulation. As in the case of Gaussian lowpass kernels in Section 3.5, we are 
interested here in isotropic kernels, whose response is independent of the direction 
of intensity discontinuities in the image to which the filter is applied. 

It can be shown (Rosenfeld and Kak [1982]) that the simplest isotropic deriva-
tive operator (kernel) is the Laplacian, which, for a function (image) f x y( , ) of two 
variables, is defined as

 
2
2

2

2

2f
f

x

f

y
= ∂

∂
+ ∂

∂
 (3-50)

Because derivatives of any order are linear operations, the Laplacian is a linear oper-
ator. To express this equation in discrete form, we use the definition in Eq. (3-49), 
keeping in mind that we now have a second variable. In the x-direction, we have

 
∂
∂

= + + − −
2

2 1 1 2
f

x
f x y f x y f x y( , ) ( , ) ( , )  (3-51)

and, similarly, in the y-direction, we have

 
∂
∂

= + + − −
2

2 1 1 2
f

y
f x y f x y f x y( , ) ( , ) ( , )   (3-52)

It follows from the preceding three equations that the discrete Laplacian of two 
variables is

    
2 1 1 1 1 4f x y f x y f x y f x y f x y f x y( , ) ( , ) ( , ) ( , ) ( , ) ( , )= + + − + + + − −  (3-53)

This equation can be implemented using convolution with the kernel in Fig. 3.45(a); 
thus, the filtering mechanics for image sharpening are as described in Section 3.5 for 
lowpass filtering; we are simply using different coefficients here.

The kernel in Fig. 3.45(a) is isotropic for rotations in increments of 90° with respect 
to the x- and y-axes. The diagonal directions can be incorporated in the definition of 
the digital Laplacian by adding four more terms to Eq. (3-53). Because each diagonal 
term would contains a −2 f x y( , ) term, the total subtracted from the difference terms 

ba c d

FIGURE 3.45  (a) Laplacian kernel used to implement Eq. (3-53). (b) Kernel used to implement 
an extension of this equation that includes the diagonal terms. (c) and (d) Two other Lapla-
cian kernels.
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180    Chapter 3  Intensity Transformations and Spatial Filtering

now would be −8 f x y( , ). Figure 3.45(b) shows the kernel used to implement this 
new definition. This kernel yields isotropic results in increments of 45°. The kernels 
in Figs. 3.45(c) and (d) also are used to compute the Laplacian. They are obtained 
from definitions of the second derivatives that are the negatives of the ones we used 
here. They yield equivalent results, but the difference in sign must be kept in mind 
when combining a Laplacian-filtered image with another image.

Because the Laplacian is a derivative operator, it highlights sharp intensity tran-
sitions in an image and de-emphasizes regions of slowly varying intensities. This 
will tend to produce images that have grayish edge lines and other discontinuities, 
all superimposed on a dark, featureless background. Background features can be 

“recovered” while still preserving the sharpening effect of the Laplacian by adding 
the Laplacian image to the original. As noted in the previous paragraph, it is impor-
tant to keep in mind which definition of the Laplacian is used. If the definition used 
has a negative center coefficient, then we subtract the Laplacian image from the 
original to obtain a sharpened result. Thus, the basic way in which we use the Lapla-
cian for image sharpening is

 g x y f x y c f x y( , ) ( , ) ( , )= + ⎡⎣ ⎤⎦
2  (3-54)

where f x y( , ) and g x y( , ) are the input and sharpened images, respectively. We let 
c = −1 if the Laplacian kernels in Fig. 3.45(a) or (b) is used, and c = 1 if either of the 
other two kernels is used.

EXAMPLE 3.18 :  Image sharpening using the Laplacian.

Figure 3.46(a) shows a slightly blurred image of the North Pole of the moon, and Fig. 3.46(b) is the result 
of filtering this image with the Laplacian kernel in Fig. 3.45(a) directly. Large sections of this image are 
black because the Laplacian image contains both positive and negative values, and all negative values 
are clipped at 0 by the display. 

Figure 3.46(c) shows the result obtained using Eq. (3-54), with c = −1, because we used the kernel in 
Fig. 3.45(a) to compute the Laplacian. The detail in this image is unmistakably clearer and sharper than 
in the original image. Adding the Laplacian to the original image restored the overall intensity varia-
tions in the image. Adding the Laplacian increased the contrast at the locations of intensity discontinui-
ties. The net result is an image in which small details were enhanced and the background tonality was 
reasonably preserved. Finally, Fig. 3.46(d) shows the result of repeating the same procedure but using 
the kernel in Fig. 3.45(b). Here, we note a significant improvement in sharpness over Fig. 3.46(c). This is 
not unexpected because using the kernel in Fig. 3.45(b) provides additional differentiation (sharpening) 
in the diagonal directions. Results such as those in Figs. 3.46(c) and (d) have made the Laplacian a tool 
of choice for sharpening digital images.

Because Laplacian images tend to be dark and featureless, a typical way to scale these images for dis-
play is to use Eqs. (2-31) and (2-32). This brings the most negative value to 0 and displays the full range 
of intensities. Figure 3.47 is the result of processing Fig. 3.46(b) in this manner. The dominant features of 
the image are edges and sharp intensity discontinuities. The background, previously black, is now gray as 
a result of scaling. This grayish appearance is typical of Laplacian images that have been scaled properly.
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3.6  Sharpening (Highpass) Spatial Filters    181

Observe in Fig. 3.45 that the coefficients of each kernel sum to zero. Convolution-
based filtering implements a sum of products, so when a derivative kernel encom-
passes a constant region in a image, the result of convolution in that location must be 
zero. Using kernels whose coefficients sum to zero accomplishes this. 

In Section 3.5, we normalized smoothing kernels so that the sum of their coef-
ficients would be one. Constant areas in images filtered with these kernels would 
be constant also in the filtered image. We also found that the sum of the pixels in 
the original and filtered images were the same, thus preventing a bias from being 
introduced by filtering (see Problem 3.31). When convolving an image with a kernel 
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FIGURE 3.46
(a) Blurred  
image of the 
North Pole of the 
moon.  
(b) Laplacian  
image obtained 
using the kernel 
in Fig. 3.45(a).  
(c) Image  
sharpened  
using Eq. (3-54) 
with c = −1. 
(d) Image  
sharpened using 
the same  
procedure, but 
with the kernel 
in Fig. 3.45(b). 
(Original  
image courtesy of 
NASA.)
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182    Chapter 3  Intensity Transformations and Spatial Filtering

whose coefficients sum to zero, it turns out that the pixels of the filtered image will 
sum to zero also (see Problem 3.32). This implies that images filtered with such ker-
nels will have negative values, and sometimes will require additional processing to 
obtain suitable visual results. Adding the filtered image to the original, as we did in 
Eq. (3-54), is an example of such additional processing. 

UNSHARP MASKING AND HIGHBOOST FILTERING

Subtracting an unsharp (smoothed) version of an image from the original image is 
process that has been used since the 1930s by the printing and publishing industry to 
sharpen images. This process, called unsharp masking, consists of the following steps:

1. Blur the original image.

2. Subtract the blurred image from the original (the resulting difference is called 
the mask.)

3. Add the mask to the original.

Letting f x y( , ) denote the blurred image, the mask in equation form is given by:

 g x y f x y f x ymask( , ) ( , ) ( , )= −  (3-55)

Then we add a weighted portion of the mask back to the original image:

 g x y f x y kg x y( , ) ( , ) ( , )= + mask  (3-56)

The photographic pro-
cess of unsharp masking 
is based on creating a 
blurred positive and 
using it along with the 
original negative to 
create a sharper image. 
Our interest is in the 
digital equivalent of this 
process.

FIGURE 3.47
The Laplacian  
image from  
Fig. 3.46(b), scaled 
to the full [0, 255] 
range of intensity 
values. Black pixels 
correspond to the 
most negative  
value in the  
unscaled  
Laplacian image, 
grays are inter-
mediate values, 
and white pixels 
corresponds to the 
highest positive 
value.
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where we included a weight, k k( ),≥ 0  for generality. When k = 1 we have unsharp 
masking, as defined above. When k > 1, the process is referred to as highboost filter-
ing. Choosing k < 1 reduces the contribution of the unsharp mask.

Figure 3.48 illustrates the mechanics of unsharp masking. Part (a) is a horizontal 
intensity profile across a vertical ramp edge that transitions from dark to light. Fig-
ure 3.48(b) shows the blurred scan line superimposed on the original signal (shown 
dashed). Figure 3.48(c) is the mask, obtained by subtracting the blurred signal from 
the original. By comparing this result with the section of Fig. 3.44(c) corresponding 
to the ramp in Fig. 3.44(a), we note that the unsharp mask in Fig. 3.48(c) is similar 
to what we would obtain using a second-order derivative. Figure 3.48(d) is the final 
sharpened result, obtained by adding the mask to the original signal. The points 
at which a change of slope occurs in the signal are now emphasized (sharpened). 
Observe that negative values were added to the original. Thus, it is possible for the 
final result to have negative intensities if the original image has any zero values, or if 
the value of k is chosen large enough to emphasize the peaks of the mask to a level 
larger than the minimum value in the original signal. Negative values cause dark 
halos around edges that can become objectionable if k is too large. 

EXAMPLE 3.19 :  Unsharp masking and highboost filtering.

Figure 3.49(a) shows a slightly blurred image of white text on a dark gray background. Figure 3.49(b) 
was obtained using a Gaussian smoothing filter of size 31 31×  with s = 5. As explained in our earlier 
discussion of Gaussian lowpass kernels, the size of the kernel we used here is the smallest odd integer 
no less than 6 6s s× . Figure 3.49(c) is the unsharp mask, obtained using Eq. (3-55). To obtain the im-

Original signal

Blurred signal

Unsharp mask

Sharpened signal

b
a

c
d

FIGURE 3.48
1-D illustration of 
the mechanics of 
unsharp masking.  
(a) Original 
signal. (b) Blurred 
signal with original 
shown dashed for 
reference.  
(c) Unsharp mask. 
(d) Sharpened  
signal, obtained by 
adding (c) to (a).
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184    Chapter 3  Intensity Transformations and Spatial Filtering

age in Fig. 3.49(d) was used the unsharp masking expression room Eq. (3-56) with k = 1. This image is 
significantly sharper than the original image in Fig. 3.49(a), but we can do better, as we show in the fol-
lowing paragraph. 

Figure 3.49(e) shows the result of using Eq. (3-56) with k = 4 5. . This value is almost at the extreme of 
what we can use without introducing some serious artifacts in the image. The artifacts are dark, almost 
black, halos around the border of the characters. This is caused by the lower “blip” in Fig. 3.48(d) be-
coming negative, as we explained earlier. When scaling the image so that it only has positive values for 
display, the negative values are either clipped at 0, or scaled so that the most negative values become 0, 
depending on the scaling method used. In either case, the blips will be the darkest values in the image.

The results in Figs. 3.49(d) and 3.49(e) would be difficult to generate using the traditional film pho-
tography explained earlier, and it illustrates the power and versatility of image processing in the context 
of digital photography.

USING FIRST-ORDER DERIVATIVES FOR IMAGE SHARPENING—THE 
GRADIENT

First derivatives in image processing are implemented using the magnitude of the 
gradient. The gradient of an image f at coordinates ( , )x y  is defined as the two-
dimensional column vector
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grad( )  (3-57)

We will discuss the  
gradient in more detail 
in Section 10.2. Here, 
we are interested only 
in using it for image 
sharpening.
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FIGURE 3.49 (a) Original image of size 600 259×  pixels. (b) Image blurred using a 31 31×  Gaussian lowpass filter with 
s = 5. (c) Mask. (d) Result of unsharp masking using Eq. (3-56) with k = 1.  (e) Result of highboost filtering with 
k = 4 5. .  
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This vector has the important geometrical property that it points in the direction of 
the greatest rate of change of f at location ( , ).x y  

The magnitude (length) of vector 
f , denoted as M x y( , ) (the vector norm nota-
tion 
f  is also used frequently), where

 M x y f f g gx y( , ) = ( ) = +
 
= mag 2 2  (3-58)

is the value at ( , )x y  of the rate of change in the direction of the gradient vector. Note 
that M x y( , ) is an image of the same size as the original, created when x and y are 
allowed to vary over all pixel locations in f. It is common practice to refer to this 
image as the gradient image (or simply as the gradient when the meaning is clear).

Because the components of the gradient vector are derivatives, they are linear 
operators. However, the magnitude of this vector is not, because of the squaring and 
square root operations. On the other hand, the partial derivatives in Eq. (3-57) are 
not rotation invariant, but the magnitude of the gradient vector is. 

In some implementations, it is more suitable computationally to approximate the 
squares and square root operations by absolute values:

 M x y g gx y( , ) ≈ +@ @ @ @  (3-59)

This expression still preserves the relative changes in intensity, but the isotropic 
property is lost in general. However, as in the case of the Laplacian, the isotropic 
properties of the discrete gradient defined in the following paragraph are preserved 
only for a limited number of rotational increments that depend on the kernels used 
to approximate the derivatives. As it turns out, the most popular kernels used to 
approximate the gradient are isotropic at multiples of 90°. These results are inde-
pendent of whether we use Eq. (3-58) or (3-59), so nothing of significance is lost in 
using the latter equation if we choose to do so.

As in the case of the Laplacian, we now define discrete approximations to the 
preceding equations, and from these formulate the appropriate kernels. In order 
to simplify the discussion that follows, we will use the notation in Fig. 3.50(a) to 
denote the intensities of pixels in a 3 3×  region. For example, the value of the center 
point, z5, denotes the value of f x y( , ) at an arbitrary location, ( , );x y  z1 denotes the 
value of f x y( , );− −1 1  and so on. As indicated in Eq. (3-48), the simplest approxi-
mations to a first-order derivative that satisfy the conditions stated at the beginning 
of this section are g z zx = −( )8 5  and g z zy = −( ).6 5  Two other definitions, proposed 
by Roberts [1965] in the early development of digital image processing, use cross 
differences:

 g z z g z zx y= − = −( ) ( )9 5 8 6and  (3-60)

If we use Eqs. (3-58) and (3-60), we compute the gradient image as

 M x y z z z z( , ) ( ) ( )= − + −⎡⎣ ⎤⎦9 5
2

8 6
2 1 2

 (3-61)

The vertical bars denote 
absolute values. 
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186    Chapter 3  Intensity Transformations and Spatial Filtering

If we use Eqs. (3-59) and (3-60), then

 M x y z z z z( , ) ≈ − + −@ @ @ @9 5 8 6  (3-62)

where it is understood that x and y vary over the dimensions of the image in the 
manner described earlier. The difference terms needed in Eq. (3-60) can be imple-
mented using the two kernels in Figs. 3.50(b) and (c). These kernels are referred to 
as the Roberts cross-gradient operators. 

As noted earlier, we prefer to use kernels of odd sizes because they have a unique, 
(integer) center of spatial symmetry. The smallest kernels in which we are interested 
are of size 3 3× . Approximations to gx  and gy  using a 3 3×  neighborhood centered 
on z5 are as follows:

 g
f
x

z z z z z zx = ∂
∂

= + + − + +( ) ( )7 8 9 1 2 32 2  (3-63)

and

 g
f
y

z z z z z zy = ∂
∂

= + + − + +( ) ( )3 6 9 1 4 72 2  (3-64)

These equations can be implemented using the kernels in Figs. 3.50(d) and (e). The 
difference between the third and first rows of the 3 3×  image region approximates the 
partial derivative in the x-direction, and is implemented using the kernel in Fig. 3.50(d). 
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FIGURE 3.50
(a) A 3 3×  region 
of an image, 
where the zs are 
intensity values.  
(b)–(c) Roberts 
cross-gradient 
operators.  
(d)–(e) Sobel 
operators. All the 
kernel  
coefficients sum 
to zero, as expect-
ed of a derivative 
operator. 
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The difference between the third and first columns approximates the partial deriva-
tive in the y-direction and is implemented using the kernel in Fig. 3.50(e). The partial 
derivatives at all points in an image are obtained by convolving the image with these 
kernels. We then obtain the magnitude of the gradient as before. For example, substitut-
ing gx  and gy  into Eq. (3-59) yields

 
M x y g g z z z z z z

z z

x y( , ) ( ) ( )

(

= +⎡⎣ ⎤⎦ = + + − + +[ ]⎡
⎣

+ + +

2 2
1
2

7 8 9 1 2 3
2

3 6

2 2

2 zz z z z9 1 4 7
2

1
22) ( )− + +[ ] ⎤

⎦

 (3-65)

This equation indicates that the value of M at any image coordinates ( , )x y  is given 
by squaring values of the convolution of the two kernels with image f at those coor-
dinates, summing the two results, and taking the square root. 

The kernels in Figs. 3.50(d) and (e) are called the Sobel operators. The idea behind 
using a weight value of 2 in the center coefficient is to achieve some smoothing by 
giving more importance to the center point (we will discuss this in more detail in 
Chapter 10). The coefficients in all the kernels in Fig. 3.50 sum to zero, so they would 
give a response of zero in areas of constant intensity, as expected of a derivative 
operator. As noted earlier, when an image is convolved with a kernel whose coef-
ficients sum to zero, the elements of the resulting filtered image sum to zero also, so 
images convolved with the kernels in Fig. 3.50 will have negative values in general.

The computations of gx  and gy  are linear operations and are implemented using 
convolution, as noted above. The nonlinear aspect of sharpening with the gradient is 
the computation of M x y( , ) involving squaring and square roots, or the use of abso-
lute values, all of which are nonlinear operations. These operations are performed 
after the linear process (convolution) that yields gx  and gy.

EXAMPLE 3.20 :  Using the gradient for edge enhancement.

The gradient is used frequently in industrial inspection, either to aid humans in the detection of defects 
or, what is more common, as a preprocessing step in automated inspection. We will have more to say 
about this in Chapter 10. However, it will be instructive now to consider a simple example to illustrate 
how the gradient can be used to enhance defects and eliminate slowly changing background features. 

Figure 3.51(a) is an optical image of a contact lens, illuminated by a lighting arrangement designed 
to highlight imperfections, such as the two edge defects in the lens boundary seen at 4 and 5 o’clock. 
Figure 3.51(b) shows the gradient obtained using Eq. (3-65) with the two Sobel kernels in Figs. 3.50(d) 
and (e). The edge defects are also quite visible in this image, but with the added advantage that constant 
or slowly varying shades of gray have been eliminated, thus simplifying considerably the computational 
task required for automated inspection. The gradient can be used also to highlight small specs that may 
not be readily visible in a gray-scale image (specs like these can be foreign matter, air pockets in a sup-
porting solution, or miniscule imperfections in the lens). The ability to enhance small discontinuities in 
an otherwise flat gray field is another important feature of the gradient.
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188    Chapter 3  Intensity Transformations and Spatial Filtering

3.7 HIGHPASS, BANDREJECT, AND BANDPASS FILTERS FROM LOW-
PASS FILTERS  

Spatial and frequency-domain linear filters are classified into four broad categories: 
lowpass and highpass filters, which we introduced in Sections 3.5 and 3.6, and band-
pass and bandreject filters, which we introduce in this section. We mentioned at the 
beginning of Section 3.5 that the other three types of filters can be constructed from 
lowpass filters. In this section we explore methods for doing this. Also, we illustrate 
the third approach discussed at the end of Section 3.4 for obtaining spatial filter ker-
nels. That is, we use a filter design software package to generate 1-D filter functions. 
Then, we use these to generate 2-D separable filters functions either via Eq.(3-42), 
or by rotating the 1-D functions about their centers to generate 2-D kernels. The 
rotated versions are approximations of circularly symmetric (isotropic) functions.

Figure 3.52(a) shows the transfer function of a 1-D ideal lowpass filter in the 
frequency domain [this is the same as Fig. 3.32(a)]. We know from earlier discus-
sions in this chapter that lowpass filters attenuate or delete high frequencies, while 
passing low frequencies. A highpass filter behaves in exactly the opposite manner. 
As Fig. 3.52(b) shows, a highpass filter deletes or attenuates all frequencies below a 
cut-off value, u0 , and passes all frequencies above this value. Comparing Figs. 3.52(a) 
and (b), we see that a highpass filter transfer function is obtained by subtracting a 
lowpass function from 1. This operation is in the frequency domain. As you know 
from Section 3.4, a constant in the frequency domain is an impulse in the spatial 
domain. Thus, we obtain a highpass filter kernel in the spatial domain by subtracting 
a lowpass filter kernel from a unit impulse with the same center as the kernel. An 
image filtered with this kernel is the same as an image obtained by subtracting a low-
pass-filtered image from the original image. The unsharp mask defined by Eq. (3-55) 
is precisely this operation. Therefore, Eqs. (3-54) and (3-56) implement equivalent 
operations (see Problem 3.42).

Figure 3.52(c) shows the transfer function of a bandreject filter. This transfer 
function can be constructed from the sum of a lowpass and a highpass function with 

3.7

Recall from the discus-
sion of Eq. (3-33) that a 
unit impulse is an array 
of 0’s with a single 1.

ba

FIGURE 3.51
(a) Image of a 
contact lens (note 
defects on the 
boundary at 4 and 
5 o’clock).  
(b) Sobel gradient. 
(Original image 
courtesy of  
Perceptics  
Corporation.) 
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3.7  Highpass, Bandreject, and Bandpass Filters from Lowpass Filters    189

different cut-off frequencies (the highpass function can be constructed from a dif-
ferent lowpass function). The bandpass filter transfer function in Fig. 3.52(d) can be 
obtained by subtracting the bandreject function from 1 (a unit impulse in the spatial 
domain). Bandreject filters are also referred to as notch filters, but the latter tend 
to be more locally oriented, as we will show in Chapter 4. Table 3.7 summarizes the 
preceding discussion. 

The key point in Fig. 3.52 and Table 3.7 is that all transfer functions shown can 
be obtained starting with a lowpass filter transfer function. This is important. It is 
important also to realize that we arrived at this conclusion via simple graphical 
interpretations in the frequency domain. To arrive at the same conclusion based on 
convolution in the spatial domain would be a much harder task.

EXAMPLE 3.21 :  Lowpass, highpass, bandreject, and bandpass filtering.

In this example we illustrate how we can start with a 1-D lowpass filter transfer function generated 
using a software package, and then use that transfer function to generate spatial filter kernels based on 
the concepts introduced in this section. We also examine the spatial filtering properties of these kernels.
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FIGURE 3.52
Transfer functions 
of ideal 1-D filters 
in the frequency 
domain (u denotes 
frequency). 
(a) Lowpass filter. 
(b) Highpass filter.  
(c) Bandreject filter.  
(d) Bandpass filter. 
(As before, we 
show only positive 
frequencies for 
simplicity.)

Filter type Spatial kernel in terms of lowpass kernel, lp

Lowpass lp x y( , )

Highpass hp x y x y lp x y( , ) ( , ) ( , )= −d

Bandreject br x y lp x y hp x y

lp x y x y lp x y

( , ) ( , ) ( , )

( , ) ( , ) ( , )

= +
= + −[ ]

1 2

1 2d

Bandpass bp x y x y br x y

x y lp x y x y lp x y

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

= −

= − + −[ ]⎡

d

d d1 2⎣⎣ ⎤⎦

TABLE 3.7
Summary of the 
four principal  
spatial filter types 
expressed in 
terms of low-
pass filters. The 
centers of the 
unit impulse and 
the filter kernels 
coincide.
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Figure 3.53 shows a so-called zone plate image that is used frequently for testing the characteristics of 
filtering approaches. There are various versions of zone plates; the one in Fig. 3.53 was generated using 
the equation

 z x y x y( , ) cos= + +( )⎡
⎣

⎤
⎦

1
2

1 2 2  (3-66)

with x and y varying in the range [ . , . ],−8 2 8 2  in increments of 0.0275. This resulted in an image of size 
597 597×  pixels. The bordering black region was generated by setting to 0 all pixels with distance great-
er than 8.2 from the image center. The key characteristic of a zone plate is that its spatial frequency 
increases as a function of distance from the center, as you can see by noting that the rings get narrower 
the further they are from the center. This property makes a zone plate an ideal image for illustrating the 
behavior of the four filter types just discussed. 

Figure 3.54(a) shows a 1-D, 128-element spatial lowpass filter function designed using MATLAB 
[compare with Fig. 3.32(b)]. As discussed earlier, we can use this 1-D function to construct a 2-D, separa-
ble lowpass filter kernel based on Eq. (3-42), or we can rotate it about its center to generate a 2-D, isotro-
pic kernel. The kernel in Fig. 3.54(b) was obtained using the latter approach. Figures 3.55(a) and (b) are 
the results of filtering the image in Fig. 3.53 with the separable and isotropic kernels, respectively. Both 
filters passed the low frequencies of the zone plate while attenuating the high frequencies significantly. 
Observe, however, that the separable filter kernel produced a “squarish” (non-radially symmetric) result 
in the passed frequencies. This is a consequence of filtering the image in perpendicular directions with 
a separable kernel that is not isotropic. Using the isotropic kernel yielded a result that is uniform in all 
radial directions. This is as expected, because both the filter and the image are isotropic. 

FIGURE 3.53
A zone plate 
image of size 
597 597×  pixels.

0

0.04

0.06

0.12

-0.02
0 32 64 96 128
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FIGURE 3.54
(a) A 1-D spatial 
lowpass filter 
function. (b) 2-D 
kernel obtained 
by rotating the 
1-D profile about 
its center.
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Figure 3.56 shows the results of filtering the zone plate with the four filters described in Table 3.7. We 
used the 2-D lowpass kernel in Fig. 3.54(b) as the basis for the highpass filter, and similar lowpass ker-
nels for the bandreject filter. Figure 3.56(a) is the same as Fig. 3.55(b), which we repeat for convenience. 
Figure 3.56(b) is the highpass-filtered result. Note how effectively the low frequencies were filtered out. 
As is true of highpass-filtered images, the black areas were caused by negative values being clipped at 0 
by the display. Figure 3.56(c) shows the same image scaled using Eqs. (2-31) and (2-32). Here we see 
clearly that only high frequencies were passed by the filter. Because the highpass kernel was constructed 
using the same lowpass kernel that we used to generate Fig. 3.56(a), it is evident by comparing the two 
results that the highpass filter passed the frequencies that were attenuated by the lowpass filter.

Figure 3.56(d) shows the bandreject-filtered image, in which the attenuation of the mid-band of 
frequencies is evident. Finally, Fig. 33.56(e) shows the result of bandpass filtering. This image also has 
negative values, so it is shown scaled in Fig. 3.56(f). Because the bandpass kernel was constructed by 
subtracting the bandreject kernel from a unit impulse, we see that the bandpass filter passed the fre-
quencies that were attenuated by the bandreject filter. We will give additional examples of bandpass and 
bandreject filtering in Chapter 4.

3.8 COMBINING SPATIAL ENHANCEMENT METHODS  

With a few exceptions, such as combining blurring with thresholding (Fig. 3.41), we 
have focused attention thus far on individual spatial-domain processing approaches. 
Frequently, a given task will require application of several complementary tech-
niques in order to achieve an acceptable result. In this section, we illustrate how to 
combine several of the approaches developed thus far in this chapter to address a 
difficult image enhancement task.

The image in Fig. 3.57(a) is a nuclear whole body bone scan, used to detect dis-
eases such as bone infections and tumors. Our objective is to enhance this image by 
sharpening it and by bringing out more of the skeletal detail. The narrow dynamic 
range of the intensity levels and high noise content make this image difficult to 
enhance. The strategy we will follow is to utilize the Laplacian to highlight fine detail, 
and the gradient to enhance prominent edges. For reasons that will be explained 
shortly, a smoothed version of the gradient image will be used to mask the Laplacian 

3.8

In this context, masking 
refers to multiplying two 
images, as in Fig. 2.34. 
This is not be confused 
with the mask used in 
unsharp masking.

ba

FIGURE 3.55
(a) Zone plate  
image filtered 
with a separable 
lowpass kernel. 
(b) Image filtered 
with the isotropic 
lowpass kernel in 
Fig. 3.54(b).
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image. Finally, we will attempt to increase the dynamic range of the intensity levels 
by using an intensity transformation.

Figure 3.57(b) shows the Laplacian of the original image, obtained using the 
kernel in Fig. 3.45(d). This image was scaled (for display only) using the same 
technique as in Fig. 3.47. We can obtain a sharpened image at this point simply by 
adding Figs. 3.57(a) and (b), according to Eq. (3-54). Just by looking at the noise 
level in Fig. 3.57(b), we would expect a rather noisy sharpened image if we added 
Figs. 3.57(a) and (b). This is confirmed by the result in Fig. 3.57(c). One way that 
comes immediately to mind to reduce the noise is to use a median filter. However, 
median filtering is an aggressive nonlinear process capable of removing image fea-
tures. This is unacceptable in medical image processing.

An alternate approach is to use a mask formed from a smoothed version of the 
gradient of the original image. The approach is based on the properties of first- and 

ba c
ed f

FIGURE 3.56
Spatial filtering of the zone plate image. (a) Lowpass result; this is the same as Fig. 3.55(b). (b) Highpass result. 
(c) Image (b) with intensities scaled. (d) Bandreject result. (e) Bandpass result. (f) Image (e) with intensities scaled. 
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ba
dc

FIGURE 3.57
(a) Image of whole 
body bone scan.  
(b) Laplacian of (a). 
(c) Sharpened image 
obtained by adding 
(a) and (b).  
(d) Sobel gradient of 
image  (a). (Original 
image courtesy of 
G.E. Medical Sys-
tems.)
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second-order derivatives we discussed when explaining Fig. 3.44. The Laplacian, is 
a second-order derivative operator and has the definite advantage that it is superior 
for enhancing fine detail. However, this causes it to produce noisier results than 
the gradient. This noise is most objectionable in smooth areas, where it tends to be 
more visible. The gradient has a stronger response in areas of significant intensity 
transitions (ramps and steps) than does the Laplacian. The response of the gradient 
to noise and fine detail is lower than the Laplacian’s and can be lowered further by 
smoothing the gradient with a lowpass filter. The idea, then, is to smooth the gradient 
and multiply it by the Laplacian image. In this context, we may view the smoothed 
gradient as a mask image. The product will preserve details in the strong areas, while 
reducing noise in the relatively flat areas. This process can be interpreted roughly as 
combining the best features of the Laplacian and the gradient. The result is added to 
the original to obtain a final sharpened image.

Figure 3.57(d) shows the Sobel gradient of the original image, computed using 
Eq. (3-59). Components gx  and gy  were obtained using the kernels in Figs. 3.50(d) 
and (e), respectively. As expected, the edges are much more dominant in this image 
than in the Laplacian image. The smoothed gradient image in Fig. 3.57(e) was 
obtained by using a box filter of size 5 5× . The fact that Figs. 3.57(d) and (e) are 
much brighter than Fig. 3.57(b) is further evidence that the gradient of an image 
with significant edge content has values that are higher in general than in a Lapla-
cian image.

Figure 3.57(f) shows the product of the Laplacian and smoothed gradient image. 
Note the dominance of the strong edges and the relative lack of visible noise, which 
is the reason for masking the Laplacian with a smoothed gradient image. Adding the 
product image to the original resulted in the sharpened image in Fig. 3.57(g). The 
increase in sharpness of detail in this image over the original is evident in most parts 
of the image, including the ribs, spinal cord, pelvis, and skull. This type of improve-
ment would not have been possible by using the Laplacian or the gradient alone.

The sharpening procedure just discussed did not affect in an appreciable way the 
dynamic range of the intensity levels in an image. Thus, the final step in our enhance-
ment task is to increase the dynamic range of the sharpened image. As we discussed 
in some detail in Sections 3.2 and 3.3, there are several intensity transformation 
functions that can accomplish this objective. Histogram processing is not a good 
approach on images whose histograms are characterized by dark and light compo-
nents, which is the case here. The dark characteristics of the images with which we 
are dealing lend themselves much better to a power-law transformation. Because 
we wish to spread the intensity levels, the value of g in Eq. (3-5) has to be less than 1. 
After a few trials with this equation, we arrived at the result in Fig. 3.57(h), obtained 
with g = 0 5.  and c = 1. Comparing this image with Fig. 3.57(g), we note that signifi-
cant new detail is visible in Fig. 3.57(h). The areas around the wrists, hands, ankles, 
and feet are good examples of this. The skeletal bone structure also is much more 
pronounced, including the arm and leg bones. Note the faint definition of the outline 
of the body, and of body tissue. Bringing out detail of this nature by expanding the 
dynamic range of the intensity levels also enhanced noise, but Fig. 3.57(h) is a signifi-
cant visual improvement over the original image.
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fe
hg

FIGURE 3.57
(Continued) 
(e) Sobel image 
smoothed with a 
5 5×  box filter.  
(f) Mask image 
formed by the 
product of (b)  
and (e).  
(g) Sharpened 
image obtained 
by the adding 
images (a) and (f). 
(h) Final result 
obtained by  
applying a power-
law transformation 
to (g). Compare 
images (g) and (h) 
with (a). (Original 
image courtesy 
of G.E. Medical 
Systems.) 
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Summary, References, and Further Reading  
The material in this chapter is representative of current techniques used for intensity transformations and spatial 
filtering. The topics were selected for their value as fundamental material that would serve as a foundation in an 
evolving field. Although most of the examples used in this chapter deal with image enhancement, the techniques 
presented are perfectly general, and you will encounter many of them again throughout the remaining chapters in 
contexts unrelated to enhancement.

The material in Section 3.1 is from Gonzalez [1986]. For additional reading on the material in Section 3.2, see 
Schowengerdt [2006] and Poyton [1996]. Early references on histogram processing (Section 3.3) are Gonzalez and 
Fittes [1977], and Woods and Gonzalez [1981]. Stark [2000] gives some interesting generalizations of histogram 
equalization for adaptive contrast enhancement. 

For complementary reading on linear spatial filtering (Sections 3.4-3.7), see Jain [1989], Rosenfeld and Kak 
[1982], Schowengerdt [2006], Castleman [1996], and Umbaugh [2010]. For an interesting approach for generating 
Gaussian kernels with integer coefficients see Padfield [2011]. The book by Pitas and Venetsanopoulos [1990] is a 
good source for additional reading on median and other nonlinear spatial filters.

For details on the software aspects of many of the examples in this chapter, see Gonzalez, Woods, and Eddins 
[2009].

Problems  
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book 
website: www.ImageProcessingPlace.com). 

3.1 Give a single intensity transformation function 
for spreading the intensities of an image so the 
lowest intensity is 0 and the highest is L − 1.

3.2 Do the following:

(a) * Give a continuous function for implement-
ing the contrast stretching transformation in 
Fig. 3.2(a). In addition to m, your function 
must include a parameter, E, for control-
ling the slope of the function as it transi-
tions from low to high intensity values. Your 
function should be normalized so that its 
minimum and maximum values are 0 and 1, 
respectively.

(b) Sketch a family of transformations as a 
function of parameter E, for a fixed value 
m L= 2, where L is the number of intensity 
levels in the image..

3.3 Do the following:

(a) * Propose a set of intensity-slicing transforma-
tion functions capable of producing all the 
individual bit planes of an 8-bit monochrome 
image. For example, applying to an image a 
transformation function with the property 
T r( ) = 0 if r is 0 or even, and T r( ) = 1 if r is 
odd, produces an image of the least signifi-

cant bit plane (see Fig. 3.13). (Hint: Use an 
8-bit truth table to determine the form of 
each transformation function.)

(b) How many intensity transformation functions 
would there be for 16-bit images?

(c) Is the basic approach in (a) limited to images 
in which the number of intensity levels is an 
integer power of 2, or is the method general 
for any number of integer intensity levels?

(d) If the method is general, how would it be dif-
ferent from your solution in (a)?

3.4 Do the following:

(a) Propose a method for extracting the bit planes 
of an image based on converting the value of 
its pixels to binary. 

(b) Find all the bit planes of the following 4-bit 
image:

 

0 1 8 6

2 2 1 1

1 15 14 12

3 6 9 10

3.5 In general:

(a) * What effect would setting to zero the lower-
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order bit planes have on the histogram of an 
image?

(b) What would be the effect on the histogram 
if we set to zero the higher-order bit planes 
instead?

3.6 Explain why the discrete histogram equalization 
technique does not yield a flat histogram in gen-
eral.

3.7 Suppose that a digital image is subjected to histo-
gram equalization. Show that a second pass of his-
togram equalization (on the histogram-equalized 
image) will produce exactly the same result as the 
first pass.

3.8 Assuming continuous values, show by an exam-
ple that it is possible to have a case in which the 
transformation function given in Eq. (3-11) satis-
fies conditions (a) and (b) discussed in Section 3.3, 
but its inverse may fail condition (a�).

3.9 Do the following:

(a) Show that the discrete transformation func-
tion given in Eq. (3-15) for histogram equal-
ization satisfies conditions (a) and (b) stated 
at the beginning of Section 3.3.

(b) * Show that the inverse discrete transforma-
tion in Eq. (3-16) satisfies conditions (a�) 
and (b) in Section 3.3 only if none of the 
intensity levels rk ,  k L= −0 1 2 1, , , , ,…  are 
missing in the original image.

3.10 Two images, f x y( , ) and g x y( , ) have unnormalized 
histograms hf  and hg .  Give the conditions (on the 
values of the pixels in f and g) under which you 
can determine the histograms of images formed 
as follows:

(a) * f x y g x y( , ) ( , )+

(b) f x y g x y( , ) ( , )−

(c) f x y g x y( , ) ( , )×

(d) f x y g x y( , ) ( , )÷

Show how the histograms would be formed in 
each case. The arithmetic operations are element-
wise operations, as defined in Section 2.6.

3.11 Assume continuous intensity values, and sup-
pose that the intensity values of an image have 
the PDF p r r Lr ( ) ( )= −2 1 2 for 0 1≤ ≤r L − ,  and 
p rr ( ) = 0 for other values of r. 

(a) * Find the transformation function that will 
map the input intensity values, r, into values, 
s, of a histogram-equalized image.

(b) * Find the transformation function that (when 
applied to the histogram-equalized intensi-
ties, s) will produce an image whose intensity 
PDF is p z z Lz( ) ( )= −3 12 3  for 0 1≤ ≤z L −  
and p zz( ) = 0 for other values of z.

(c) Express the transformation function from (b) 
directly in terms of r, the intensities of the 
input image.

3.12 An image with intensities in the range [ , ]0 1  has 
the PDF, p rr ( ), shown in the following figure. It 
is desired to transform the intensity levels of this 
image so that they will have the specified p zz( ) 
shown in the figure. Assume continuous quantities, 
and find the transformation (expressed in terms 
of r and z) that will accomplish this.

2

1

2

1

pr(r) pz(z)

r z

3.13 * In Fig. 3.25(b), the transformation function labeled (2) 
[G sk

−1( ) from Eq. (3-23)] is the mirror image of 
(1) [G zq( ) in Eq. (3-21)] about a line joining the 
two end points. Does this property always hold 
for these two transformation functions? Explain.

3.14 * The local histogram processing method discussed 
in Section 3.3 requires that a histogram be com-
puted at each neighborhood location. Propose 
a method for updating the histogram from one 
neighborhood to the next, rather than computing 
a new histogram each time.

3.15 What is the behavior of Eq. (3-35) when a b= = 0? 
Explain.

3.16 You are given a computer chip that is capable of 
performing linear filtering in real time, but you 
are not told whether the chip performs correla-
tion or convolution. Give the details of a test you 
would perform to determine which of the two 
operations the chip performs.

3.17 * We mentioned in Section 3.4 that to perform con-
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198    Chapter 3  Intensity Transformations and Spatial Filtering

volution we rotate the kernel by 180°.  The rota-
tion is “built” into Eq. (3-35). Figure 3.28 corre-
sponds to correlation. Draw the part of the figure 
enclosed by the large ellipse, but with w  rotated   
180°.  Expand Eq. (3-35) for a general 3 3×  kernel 
and show that the result of your expansion corre-
sponds to your figure. This shows graphically that 
convolution and correlation differ by the rotation 
of the kernel.

3.18 You are given the following kernel and image:

w =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

1 2 1

2 4 2

1 2 1

0 0 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 0 0

f

⎥⎥
⎥
⎥
⎥
⎥
⎥

(a) * Give a sketch of the area encircled by the 
large ellipse in Fig. 3.28 when the kernel is 
centered at point ( , )2 3  (2nd row, 3rd col) of 
the image shown above. Show specific values 
of w  and f.

(b) * Compute the convolution w� f  using the 
minimum zero padding needed. Show the 
details of your computations when the ker-
nel is centered on point ( , )2 3  of f; and then 
show the final full convolution result.

(c) Repeat (b), but for correlation, w� f .

3.19 * Prove the validity of Eqs. (3-36) and (3-37).

3.20 The kernel, w,  in Problem 3.18 is separable.

(a) * By inspection, find two kernels, w1 and w2 so 
that w w w= 1 2� .

(b) Using the image in Problem 3.18, compute 
w1 � f  using the minimum zero padding (see 
Fig. 3.30). Show the details of your compu-
tation when the kernel is centered at point 
( , )2 3  (2nd row, 3rd col) of f and then show 
the full convolution.

(c) Compute the convolution of w2  with the 
result from (b). Show the details of your 
computation when the kernel is centered at 
point ( , )3 3  of the result from (b), and then 
show the full convolution. Compare with the 
result in Problem 3.18(b).

3.21 Given the following kernel and image:

w =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

1 2 1

2 4 2

1 2 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

f

⎥⎥
⎥
⎥
⎥
⎥
⎥

(a) Give the convolution of the two.

(b) Does your result have a bias?

3.22 Answer the following:

(a) * If v = [ ]1 2 1 T  and wT = [ ]2 1 1 3 , is the 
kernel formed by vwT  separable?

(b) The following kernel is separable. Find w1  
and w2  such that w w w= 1 2� .

w =
⎡

⎣
⎢

⎤

⎦
⎥

1 3 1

2 6 2

3.23 Do the following:

(a) * Show that the Gaussian kernel, G s t( , ), in 
Eq. (3-45) is separable. (Hint: Read the first 
paragraph in the discussion of separable fil-
ter kernels in Section 3.4.)

(b) Because G is separable and circularly sym-
metric, it can be expressed in the form 
G T= vv .  Assume that the kernel form in 
Eq. (3-46) is used, and that the function is 
sampled to yield an m m×  kernel. What is v 
in this case?

3.24 * Show that the product of a column vector with a 
row vector is equivalent to the 2-D convolution 
of the two vectors. The vectors do not have to 
be of the same length. You may use a graphical 
approach (as in Fig. 3.30) to support the explana-
tion of your proof.

3.25 Given K, 1-D Gaussian kernels, g g gK1 2, , , ,…  with 
arbitrary means and standard deviations:

(a) * Determine what the entries in the third col-
umn of Table 3.6 would be for the product 
g g gK1 2× × ×� . 

(b) What would the fourth column look like for 
the convolution g g gK1 2� � �� ?

(Hint: It is easier to work with the variance; the 
standard deviation is just the square root of your 
result.)
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3.26 The two images shown in the following figure are 
quite different, but their histograms are the same. 
Suppose that each image is blurred using a 3 3×  
box kernel.

(a) * Would the histograms of the blurred images 
still be equal? Explain.

(b) If your answer is no, either sketch the two 
histograms or give two tables detailing the 
histogram components.

3.27 An image is filtered four times using a Gaussian 
kernel of size 3 3×  with a standard deviation of 
1.0. Because of the associative property of con-
volution, we know that equivalent results can be 
obtained using a single Gaussian kernel formed 
by convolving the individual kernels.

(a) * What is the size of the single Gaussian ker-
nel?

(b) What is its standard deviation?

3.28 An image is filtered with three Gaussian lowpass 
kernels of sizes 3 3× ,  5 5× ,  and 7 7× , and stan-
dard deviations 1.5, 2, and 4, respectively. A com-
posite filter, w,  is formed as the convolution of 
these three filters.

(a) * Is the resulting filter Gaussian? Explain.

(b) What is its standard deviation?

(c) What is its size?

3.29 * Discuss the limiting effect of repeatedly filtering 
an image with a 3 3×  lowpass filter kernel. You 
may ignore border effects.

3.30 In Fig. 3.42(b) the corners of the estimated shad-
ing pattern appear darker or lighter than their 
surrounding areas. Explain the reason for this.

3.31 * An image is filtered with a kernel whose coeffi-
cients sum to 1. Show that the sum of the pixel 
values in the original and filtered images is the 
same.

3.32 An image is filtered with a kernel whose coeffi-

cients sum to 0. Show that the sum of the pixel 
values in the filtered image also is 0.

3.33 A single point of light can be modeled by a digital 
image consisting of all 0’s, with a 1 in the location 
of the point of light. If you view a single point of 
light through a defocused lens, it will appear as a 
fuzzy blob whose size depends on the amount by 
which the lens is defocused. We mentioned in Sec-
tion 3.5 that filtering an image with a box kernel 
is a poor model for a defocused lens, and that a 
better approximation is obtained with a Gauss-
ian kernel. Using the single-point-of-light analogy, 
explain why this is so.

3.34 In the original image used to generate the three 
blurred images shown, the vertical bars are 5 pix-
els wide, 100 pixels high, and their separation is 
20 pixels. The image was blurred using square box 
kernels of sizes 23, 25, and 45 elements on the side, 
respectively. The vertical bars on the left, lower 
part of (a) and (c) are blurred, but a clear separa-
tion exists between them. 

(a) (b)

(c)

However, the bars have merged in image (b), de-
spite the fact that the kernel used to generate this 
image is much smaller than the kernel that pro-
duced image (c). Explain the reason for this.

3.35 Consider an application such as in Fig. 3.41, in 
which it is desired to eliminate objects smaller 
than those enclosed by a square of size q q×  pix-
els. Suppose that we want to reduce the average 
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intensity of those objects to one-tenth of their 
original average value. In this way, their intensity 
will be closer to the intensity of the background 
and they can be eliminated by thresholding. Give 
the (odd) size of the smallest box kernel that will 
yield the desired reduction in average intensity in 
only one pass of the kernel over the image. 

3.36 With reference to order-statistic filters (see Sec-
tion 3.5):

(a) * We mentioned that isolated clusters of dark 
or light (with respect to the background) pix-
els whose area is less than one-half the area 
of a median filter are forced to the median 
value of the neighbors by the filter. Assume 
a filter of size n n×  (n odd) and explain why 
this is so.

(b) Consider an image having various sets of 
pixel clusters. Assume that all points in a 
cluster are lighter or darker than the back-
ground (but not both simultaneously in the 
same cluster), and that the area of each clus-
ter is less than or equal to n2 2. In terms of 
n, under what condition would one or more 
of these clusters cease to be isolated in the 
sense described in part (a)?

3.37 Do the following:

(a) * Develop a procedure for computing the median 
of an n n×  neighborhood.

(b) Propose a technique for updating the median 
as the center of the neighborhood is moved 
from pixel to pixel. 

3.38 In a given application, a smoothing kernel is 
applied to input images to reduce noise, then a 
Laplacian kernel is applied to enhance fine details. 
Would the result be the same if the order of these 
operations is reversed?

3.39 * Show that the Laplacian defined in Eq. (3-50) is 
isotropic (invariant to rotation). Assume continu-
ous quantities. From Table 2.3, coordinate rota-
tion by an angle u is given by 

   x x y y x y� �= − = +cos sin sin cosu u u u  and  

where ( , )x y  and ( , )x y� �  are the unrotated and 
rotated coordinates, respectively.

3.40 * You saw in Fig. 3.46 that the Laplacian with a −8 

in the center yields sharper results than the one 
with a −4 in the center. Explain the reason why.

3.41 * Give a 3 3×  kernel for performing unsharp mask-
ing in a single pass through an image. Assume that 
the average image is obtained using a box filter of 
size 3 3× .

3.42 Show that subtracting the Laplacian from an im-
age gives a result that is proportional to the un-
sharp mask in Eq. (3-55). Use the definition for 
the Laplacian given in Eq. (3-53).

3.43 Do the following:

(a) * Show that the magnitude of the gradient giv-
en in Eq. (3-58) is an isotropic operation (see 
the statement of Problem 3.39).

(b) Show that the isotropic property is lost in 
general if the gradient is computed using 
Eq. (3-59).

3.44 Are any of the following highpass (sharpening)
kernels separable? For those that are, find vectors 
v and w such that vwT equals the kernel(s).

(a) The Laplacian kernels in Figs. 3.45(a) and (b).

(b) The Roberts cross-gradient kernels shown in 
Figs. 3.50(b) and (c).

(c) * The Sobel kernels in Figs. 3.50(d) and (e).

3.45 In a character recognition application, text pages 
are reduced to binary using a thresholding trans-
formation function of the form in Fig. 3.2(b). This 
is followed by a procedure that thins the charac-
ters until they become strings of binary 1’s on a 
background of 0’s. Due to noise, binarization and 
thinning result in broken strings of characters 
with gaps ranging from 1 to 3 pixels. One way 
to “repair” the gaps is to run a smoothing kernel 
over the binary image to blur it, and thus create 
bridges of nonzero pixels between gaps.

(a) * Give the (odd) size of the smallest box ker-
nel capable of performing this task.

(b) After bridging the gaps, the image is thresh-
olded to convert it back to binary form. For 
your answer in (a), what is the minimum val-
ue of the threshold required to accomplish 
this, without causing the segments to break 
up again?
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3.46 A manufacturing company purchased an imag-
ing system whose function is to either smooth 
or sharpen images. The results of using the sys-
tem on the manufacturing floor have been poor, 
and the plant manager suspects that the system 
is not smoothing and sharpening images the way 
it should. You are hired as a consultant to deter-
mine if the system is performing these functions 
properly. How would you determine if the system 
is working correctly? (Hint: Study the statements 
of Problems 3.31 and 3.32).

3.47 A CCD TV camera is used to perform a long-term 
study by observing the same area 24 hours a day, for 
30 days. Digital images are captured and transmit-
ted to a central location every 5 minutes. The illu-

mination of the scene changes from natural day-
light to artificial lighting. At no time is the scene 
without illumination, so it is always possible to 
obtain an acceptable image. Because the range of 
illumination is such that it is always in the linear 
operating range of the camera, it is decided not 
to employ any compensating mechanisms on the 
camera itself. Rather, it is decided to use image 
processing techniques to post-process, and thus 
normalize, the images to the equivalent of con-
stant illumination. Propose a method to do this. 
You are at liberty to use any method you wish, 
but state clearly all the assumptions you made in 
arriving at your design. 
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203

4 Filtering in the Frequency 
Domain

Preview
After a brief historical introduction to the Fourier transform and its importance in image processing, we 
start from basic principles of function sampling, and proceed step-by-step to derive the one- and two-
dimensional discrete Fourier transforms. Together with convolution, the Fourier transform is a staple of 
frequency-domain processing. During this development, we also touch upon several important aspects 
of sampling, such as aliasing, whose treatment requires an understanding of the frequency domain and 
thus are best covered in this chapter. This material is followed by a formulation of filtering in the fre-
quency domain, paralleling the spatial filtering techniques discussed in Chapter 3. We conclude the 
chapter with a derivation of the equations underlying the fast Fourier transform (FFT), and discuss its 
computational advantages. These advantages make frequency-domain filtering practical and, in many 
instances, superior to filtering in the spatial domain.

Upon completion of this chapter, readers should:
 Understand the meaning of frequency domain 

filtering, and how it differs from filtering in the 
spatial domain.

 Be familiar with the concepts of sampling,  func- 
tion reconstruction, and aliasing.

 Understand convolution in the frequency 
domain, and how it is related to filtering.

 Know how to obtain frequency domain filter 
functions from spatial kernels, and vice versa.

 Be able to construct filter transfer functions 
directly in the frequency domain.

 Understand why image padding is important.

 Know the steps required to perform filtering 
in the frequency domain.

 Understand when frequency domain filtering 
is superior to filtering in the spatial domain.

 Be familiar with other filtering techniques in 
the frequency domain, such as unsharp mask-
ing and homomorphic filtering.

 Understand the origin and mechanics of the 
fast Fourier transform, and how to use it effec- 
tively in image processing. 

Filter: A device or material for suppressing or minimizing waves or 
oscillations of certain frequencies.

Frequency: The number of times that a periodic function repeats 
the same sequence of values during a unit variation of the  
independent variable.

Webster’s New Collegiate Dictionary
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204    Chapter 4  Filtering in the Frequency Domain

4.1 BACKGROUND  

We begin the discussion with a brief outline of the origins of the Fourier transform 
and its impact on countless branches of mathematics, science, and engineering.

A BRIEF HISTORY OF THE FOURIER SERIES AND TRANSFORM

The French mathematician Jean Baptiste Joseph Fourier was born in 1768 in the 
town of Auxerre, about midway between Paris and Dijon. The contribution for 
which he is most remembered was outlined in a memoir in 1807, and later pub-
lished in 1822 in his book, La Théorie Analitique de la Chaleur (The Analytic Theory 
of Heat). This book was translated into English 55 years later by Freeman (see 
Freeman [1878]). Basically, Fourier’s contribution in this field states that any peri-
odic function can be expressed as the sum of sines and/or cosines of different fre-
quencies, each multiplied by a different coefficient (we now call this sum a Fourier 
series). It does not matter how complicated the function is; if it is periodic and satis-
fies some mild mathematical conditions, it can be represented by such a sum. This 
is taken for granted now but, at the time it first appeared, the concept that compli-
cated functions could be represented as a sum of simple sines and cosines was not 
at all intuitive (see Fig. 4.1). Thus, it is not surprising that Fourier’s ideas were met 
initially with skepticism.

Functions that are not periodic (but whose area under the curve is finite) can be 
expressed as the integral of sines and/or cosines multiplied by a weighting function. 
The formulation in this case is the Fourier transform, and its utility is even greater 
than the Fourier series in many theoretical and applied disciplines. Both representa-
tions share the important characteristic that a function, expressed in either a Fourier 
series or transform, can be reconstructed (recovered) completely via an inverse pro-
cess, with no loss of information. This is one of the most important characteristics of 
these representations because it allows us to work in the Fourier domain (generally 
called the frequency domain) and then return to the original domain of the function 
without losing any information. Ultimately, it is the utility of the Fourier series and 
transform in solving practical problems that makes them widely studied and used as 
fundamental tools. 

The initial application of Fourier’s ideas was in the field of heat diffusion, where 
they allowed formulation of differential equations representing heat flow in such 
a way that solutions could be obtained for the first time. During the past century, 
and especially in the past 60 years, entire industries and academic disciplines have 
flourished as a result of Fourier’s initial ideas. The advent of digital computers and 
the “discovery” of a fast Fourier transform (FFT) algorithm in the early 1960s revo-
lutionized the field of signal processing. These two core technologies allowed for the 
first time practical processing of a host of signals of exceptional importance, ranging 
from medical monitors and scanners to modern electronic communications.

As you learned in Section 3.4, it takes on the order of MNmn operations (multi-
plications and additions) to filter an M N×  image with a kernel of size m n×  ele-
ments. If the kernel is separable, the number of operations is reduced to MN m n( ).+  
In Section 4.11, you will learn that it takes on the order of 2 2MN MNlog  operations 
to perform the equivalent filtering process in the frequency domain, where the 2 in 
front arises from the fact that we have to compute a forward and an inverse FFT. 

4.1
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4.1  Background    205

To get an idea of the relative computational advantages of filtering in the frequency  
versus the spatial domain, consider square images and kernels, of sizes M M×  and 
m m× , respectively. The computational advantage (as a function of kernel size) of 
filtering one such image with the FFT as opposed to using a nonseparable kernel is 
defined as

 

C m
M m

M M

m
M

n( )
log

log

=

=

2 2

2
2

2

2

2

2

4

 (4-1)

If the kernel is separable, the advantage becomes

 
C m

M m

M M

m
M

s( )
log

log

=

=

2
2

2

2

2
2

2

2

 (4-2)

In either case, when C m( ) > 1 the advantage (in terms of fewer computations) 
belongs to the FFT approach; otherwise the advantage favors spatial filtering.

FIGURE 4.1
The function at 
the bottom is the 
sum of the four 
functions above it. 
Fourier’s idea in 
1807 that periodic 
functions could be 
represented as a 
weighted sum of 
sines and cosines 
was met with 
skepticism. 
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206    Chapter 4  Filtering in the Frequency Domain

Figure 4.2(a) shows a plot of C mn( ) as a function of m for an image of intermedi-
ate size ( ).M = 2048  The inset table shows a more detailed look for smaller kernel 
sizes. As you can see, the FFT has the advantage for kernels of sizes 7 7×  and larger. 
The advantage grows rapidly as a function of m, being over 200 for m = 101, and 
close to 1000 for m = 201. To give you a feel for the meaning of this advantage, if 
filtering a bank of images of size 2048 2048×  takes 1 minute with the FFT, it would 
take on the order of 17 hours to filter the same set of images with a nonseparable 
kernel of size 201 201×  elements. This is a significant difference, and is a clear indica-
tor of the importance of frequency-domain processing using the FFT.

In the case of separable kernels, the computational advantage is not as dramatic, 
but it is still meaningful. The “cross over” point now is around m = 27, and when 
m = 101 the difference between frequency- and spatial-domain filtering is still man-
ageable. However, you can see that with m = 201 the advantage of using the FFT 
approaches a factor of 10, which begins to be significant. Note in both graphs that 
the FFT is an overwhelming favorite for large spatial kernels. 

Our focus in the sections that follow is on the Fourier transform and its properties. 
As we progress through this chapter, it will become evident that Fourier techniques 
are useful in a broad range of image processing applications. We conclude the chap-
ter with a discussion of the FFT.

ABOUT THE EXAMPLES IN THIS CHAPTER

As in Chapter 3, most of the image filtering examples in this chapter deal with image 
enhancement. For example, smoothing and sharpening are traditionally associated 
with image enhancement, as are techniques for contrast manipulation. By its very 
nature, beginners in digital image processing find enhancement to be interesting 
and relatively simple to understand. Therefore, using examples from image enhance-
ment in this chapter not only saves having an extra chapter in the book but, more 
importantly, is an effective tool for introducing newcomers to filtering techniques in 
the frequency domain. We will use frequency domain processing methods for other 
applications in Chapters 5, 7, 8, 10, and 11.

The computational 
advantages given by Eqs. 
(4-1) and (4-2) do not 
take into account the fact 
that the FFT performs 
operations between 
complex numbers, and 
other secondary (but 
small in comparison) 
computations discussed 
later in the chapter. Thus, 
comparisons should be 
interpreted only as  
guidelines,
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FIGURE 4.2
(a) Computational 
advantage of the 
FFT over non-
separable spatial 
kernels.  
(b) Advantage over 
separable kernels. 
The numbers for 
C m( ) in the inset 
tables are not to be 
multiplied by the 
factors of 10 shown 
for the curves.
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4.2 PRELIMINARY CONCEPTS  

We pause briefly to introduce several of the basic concepts that underlie the mate-
rial in later sections. 

COMPLEX NUMBERS

A complex number, C, is defined as 

 C R jI= +  (4-3)

where R and I are real numbers and j = −1. Here, R denotes the real part of the 
complex number and I its imaginary part. Real numbers are a subset of complex 
numbers in which I = 0. The conjugate of a complex number C, denoted C*, is 
defined as

 C R jI* = −  (4-4)

Complex numbers can be viewed geometrically as points on a plane (called the com-
plex plane) whose abscissa is the real axis (values of R) and whose ordinate is the 
imaginary axis (values of I). That is, the complex number R jI+  is point ( , )R I  in the 
coordinate system of the complex plane.

Sometimes it is useful to represent complex numbers in polar coordinates,

 C C j= +(cos sin )u u  (4-5)

where C R I= +2 2  is the length of the vector extending from the origin of the 
complex plane to point ( , ),R I  and u is the angle between the vector and the real axis. 
Drawing a diagram of the real and complex axes with the vector in the first quadrant 
will show that tan ( )u = I R  or u = arctan( ).I R  The arctan function returns angles 
in the range [ , ].−p p2 2  But, because I and R can be positive and negative inde-
pendently, we need to be able to obtain angles in the full range [ , ].−p p  We do this 
by keeping track of the sign of I and R when computing u. Many programming 
languages do this automatically via so called four-quadrant arctangent functions. For 
example, MATLAB provides the function atan2(Imag, Real) for this purpose.

Using Euler’s formula,

 e jju u u= +cos sin  (4-6)

where e = 2 71828. ..., gives the following familiar representation of complex num-
bers in polar coordinates,

 C C ej= u  (4-7)

where C  and u are as defined above. For example, the polar representation of the 
complex number 1 2+ j  is 5eju , where u = 63 4. ° or 1.1 radians. The preceding equa-
tions are applicable also to complex functions. A complex function, F( ),u  of a real 
variable u, can be expressed as the sum F R jI( ) ( ) (u u u),= +  where R u( ) and I u( ) are 
the real and imaginary component functions of F u( ). As previously noted, the com-
plex conjugate is F u R u jI u*( ) ( ) ( ),= −  the magnitude is F u R u I u( ) [ ( ) ( ) ] ,= +2 2 1 2  

4.2
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208    Chapter 4  Filtering in the Frequency Domain

and the angle is u( ) arctan[ ( ) ( )].u I u R u=  We will return to complex functions sev-
eral times in the course of this and the next chapter.

FOURIER SERIES

As indicated in the previous section, a function f t( ) of a continuous variable, t, 
that is periodic with a period, T, can be expressed as the sum of sines and cosines 
multiplied by appropriate coefficients. This sum, known as a Fourier series, has the 
form

 f t c en

j
n

T
t

n

( ) =
= −
∑

2p

�

�

 (4-8)

where

 c
T

f t e dt nn

j
n

T
t

T

T

= =
−

−1
0 1 2

2

2 2

2 ( ) , , , . . .
p

for ± ±  (4-9)

are the coefficients. The fact that Eq. (4-8) is an expansion of sines and cosines fol-
lows from Euler’s formula, Eq. (4-6).

IMPULSES AND THEIR SIFTING PROPERTIES

Central to the study of linear systems and the Fourier transform is the concept of an 
impulse and its sifting property. A unit impulse of a continuous variable t, located at 
t = 0, and denoted d( ),t  is defined as

 d( )t
t

t
=

=⎧
⎨
⎩

� if 

if 

0

0 0≠
 (4-10)

and is constrained to satisfy the identity

 
-�

�

2 d( )t dt = 1  (4-11)

Physically, if we interpret t as time, an impulse may be viewed as a spike of infinity 
amplitude and zero duration, having unit area. An impulse has the so-called sifting 
property with respect to integration,

 
-�

�

2 f t t dt f( ) ( ) ( )d = 0  (4-12)

provided that f t( ) is continuous at t = 0, a condition typically satisfied in practice. 
Sifting simply yields the value of the function f t( ) at the location of the impulse (i.e., 
at t = 0 in the previous equation). A more general statement of the sifting property 
involves an impulse located at an arbitrary point, t0 , denoted as, d( ).t t− 0  In this case, 

 
-�

�

2 f t t t dt f t( ) ( ) ( )d − =0 0  (4-13)

An impulse is not a 
function in the usual 
sense. A more accurate 
name is a distribution 
or generalized function. 
However, one often 
finds in the literature the 
names impulse function, 
delta function, and Dirac 
delta function, despite the 
misnomer.

To sift means literally to 
separate, or to separate 
out, by putting something 
through a sieve.
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which simply gives the value of the function at the location of the impulse. For 
example, if f t t( ) cos( ),=  using the impulse d p( )t −  in Eq. (4-13) yields the result 
f ( ) cos( ) .p p= = −1  The power of the sifting concept will become evident shortly.

Of particular interest later in this section is an impulse train, s tT� ( ), defined as the 
sum of infinitely many impulses �T  units apart:

 s t t k TT
k

�
�

�

�( ) ( )= −
= −
∑ d  (4-14)

Figure 4.3(a) shows a single impulse located at t t= 0 , and Fig. 4.3(b) shows an 
impulse train. Impulses for continuous variables are denoted by up-pointing arrows 
to simulate infinite height and zero width. For discrete variables the height is finite, 
as we will show next.

Let x represent a discrete variable. As you learned in Chapter 3, the unit discrete 
impulse, d( ),x  serves the same purposes in the context of discrete systems as the 
impulse d( )t  does when working with continuous variables. It is defined as

 d( )x
x

x
=

=⎧
⎨
⎩

1 0

0 0

if 

if ≠
 (4-15)

Clearly, this definition satisfies the discrete equivalent of Eq. (4-11):

 d( )x
x

=
= −
∑ 1

�

�

 (4-16)

The sifting property for discrete variables has the form

 f x x f
x

( ) ( ) ( )d =
= −
∑ 0

�

�

 (4-17)

ba
dc

FIGURE 4.3
(a) Continuous 
impulse located 
at t t= 0 .  (b) An 
impulse train 
consisting of  
continuous  
impulses. (c) Unit 
discrete impulse 
located at x x= 0 . 
(d) An impulse 
train consisting 
of discrete unit 
impulses.
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210    Chapter 4  Filtering in the Frequency Domain

or, more generally using a discrete impulse located at x x= 0 (see Eq. 3-33),

 f x x x f x
x

( ) ( ) ( )d − =
= −
∑ 0 0

�

�

 (4-18)

As before, we see that the sifting property yields the value of the function at the 
location of the impulse. Figure 4.3(c) shows the unit discrete impulse diagrammati-
cally, and Fig. 4.3(d) shows a train of discrete unit impulses, Unlike its continuous 
counterpart, the discrete impulse is an ordinary function.

THE FOURIER TRANSFORM OF FUNCTIONS OF ONE CONTINUOUS 
VARIABLE

The Fourier transform of a continuous function f t( ) of a continuous variable, t, 
denoted � f t( ) ,{ }  is defined by the equation

 � f t f t e dtj t( ) ( ){ } = −

-�

�

2
2pm  (4-19)

where m  is a continuous variable also.† Because t is integrated out, � f t( ){ } is a func-
tion only of m. That is � f t F( ) ( );{ } = m  therefore, we write the Fourier transform of 
f t( ) as 

 
F f t e dtj t( ) ( )m pm= −

-�

�

2
2

 (4-20)

Conversely, given F( ),m  we can obtain f t( ) back using the inverse Fourier transform, 
written as

 f t F e dj t( ) ( )=
-�

�

2 m mpm2  (4-21)

where we made use of the fact that variable m  is integrated out in the inverse 
transform and wrote simply f t( ), rather than the more cumbersome notation 
f t F( ) ( ) .= { }−� 1 m  Equations (4-20) and (4-21) comprise the so-called Fourier 
transform pair, often denoted as f t F( ) ( ).⇔ m  The double arrow indicates that the 
expression on the right is obtained by taking the forward Fourier transform of the 
expression on the left, while the expression on the left is obtained by taking the 
inverse Fourier transform of the expression on the right.

Using Euler’s formula, we can write Eq. (4-20) as

 F f t t j t dt( ) ( ) cos( ) sin( )m pm pm= −[ ]
-�

�

2 2 2  (4-22)

† Conditions for the existence of the Fourier transform are complicated to state in general (Champeney [1987]), 
but a sufficient condition for its existence is that the integral of the absolute value of f t( ),  or the integral of the 
square of f t( ),  be finite. Existence is seldom an issue in practice, except for idealized signals, such as sinusoids 
that extend forever. These are handled using generalized impulses. Our primary interest is in the discrete Fourier 
transform pair which, as you will see shortly, is guaranteed to exist for all finite functions. 

Equation (4-21) indicates 
the important fact men-
tioned in Section 4.1 that 
a function can be recov-
ered from its transform.

Because t is integrated 
out in this equation, the 
only variable left is m, 
which is the frequency of 
the sine and cosine terms.
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If f t( ) is real, we see that its transform in general is complex. Note that the Fourier 
transform is an expansion of f t( ) multiplied by sinusoidal terms whose frequencies 
are determined by the values of m. Thus, because the only variable left after integra-
tion is frequency, we say that the domain of the Fourier transform is the frequency 
domain. We will discuss the frequency domain and its properties in more detail later 
in this chapter. In our discussion, t can represent any continuous variable, and the 
units of the frequency variable m  depend on the units of t. For example, if t repre-
sents time in seconds, the units of m  are cycles/sec or Hertz (Hz). If t represents 
distance in meters, then the units of m  are cycles/meter, and so on. In other words, 
the units of the frequency domain are cycles per unit of the independent variable of 
the input function.

EXAMPLE 4.1 :  Obtaining the Fourier transform of a simple continuous function.

The Fourier transform of the function in Fig. 4.4(a) follows from Eq. (4-20):
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FIGURE 4.4  (a) A box function, (b) its Fourier transform, and (c) its spectrum. All functions extend to infinity in both 
directions. Note the inverse relationship between the width, W, of the function and the zeros of the transform.
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212    Chapter 4  Filtering in the Frequency Domain

where we used the trigonometric identity sin ( ) .u u u= − −e e jj j 2  In this case, the complex terms of the 
Fourier transform combined nicely into a real sine function. The result in the last step of the preceding 
expression is known as the sinc function, which has the general form

 sinc( )
sin( )

( )
m

m
m

= p

p
 (4-23)

where sinc( )0 1=  and sinc( )m = 0  for all other integer values of m. Figure 4.4(b) shows a plot of F( ).m

In general, the Fourier transform contains complex terms, and it is customary for display purposes to 
work with the magnitude of the transform (a real quantity), which is called the Fourier spectrum or the 
frequency spectrum:

 F AW
W

W
( )

sin( )
( )

m
pm

pm
=

Figure 4.4(c) shows a plot of F( )m  as a function of frequency. The key properties to note are (1) that 
the locations of the zeros of both F( )m  and F( )m  are inversely proportional to the width,W, of the “box” 
function; (2) that the height of the lobes decreases as a function of distance from the origin; and (3) that 
the function extends to infinity for both positive and negative values of m. As you will see later, these 
properties are quite helpful in interpreting the spectra of two dimensional Fourier transforms of images.

EXAMPLE 4.2 :  Fourier transform of an impulse and an impulse train.

The Fourier transform of a unit impulse located at the origin follows from Eq. (4-20):

 � d m d dpm pm pm( ) ( ) ( ) ( )t F t e dt e t dt ej t j t j{ } = = = =− − −

- -�

�

�

�

2 2
2 2 2

where we used the sifting property from Eq. (4-12). Thus, we see that the Fourier transform of an 
impulse located at the origin of the spatial domain is a constant in the frequency domain (we discussed 
this briefly in Section 3.4 in connection with Fig. 3.30). 

Similarly, the Fourier transform of an impulse located at t t= 0 is

 � d m d dpm pm( ) ( ) ( ) ( )t t F t t e dt e t t dtj t j t−{ } = = − = − =− −
0 0

2 2
0

- -�

�

�

�

2 2 ee j t− 2 0pm  

where we used the sifting property from Eq. (4-13). The term e j t− 2 0pm  represents a unit circle centered on 
the origin of the complex plane, as you can easily see by using Euler’s formula to expand the exponential 
into its sine and cosine components.

In Section 4.3, we will use the Fourier transform of a periodic impulse train. Obtaining this transform 
is not as straightforward as we just showed for individual impulses. However, understanding how to 
derive the transform of an impulse train is important, so we take the time to derive it here. We start by 
noting that the only basic difference in the form of Eqs. (4-20) and (4-21) is the sign of the exponential. 
Thus, if a function f t( ) has the Fourier transform F( ),m  then evaluating this function at t, F t( ), must 
have the transform f ( ).−m  Using this symmetry property and given, as we showed above, that the Fou-
rier transform of an impulse d( )t t− 0  is e j t− 2 0pm , it follows that the function e j t− 2 0pm  has the transform 
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d m( ).− − t0  By letting − =t a0 , it follows that the transform of e j at2p  is d m d m( ) ( ),− + = −a a  where the last 
step is true because d  is zero unless m = a, which is the same condition for either d m( )− + a  or d m( ).− a  

The impulse train s tT� ( ) in Eq. (4-14) is periodic with period �T, so it can be expressed as a Fourier 
series:

 s t c eT n

j
n

T
t

n
�

�

�

�

( ) =
= −
∑

2p

where

 c
T

s t e dtn T

j
n

T
t

T

T

=
−

1

2

2 2

� �

�

�
�

2 ( )
− p

With reference to Fig. 4.3(b), we see that the integral in the interval [ , ]−� �T T2 2  encompasses only 
the impulse located at the origin. Therefore, the preceding equation becomes

 c
T

t e dt
T

e
Tn

j
n

T
t

T

T

= = =
−

−1 1 1

2

2 2
0

� � ��

�

�

2 d

p

( )

where we used the sifting property of d( ).t  The Fourier series then becomes

 s t
T

eT

j
n

T
t

n
�

�

�

�

�
( ) =

= −
∑1 2p

Our objective is to obtain the Fourier transform of this expression. Because summation is a linear pro-
cess, obtaining the Fourier transform of a sum is the same as obtaining the sum of the transforms of the 
individual components of the sum. These components are exponentials, and we established earlier in 
this example that

 �U Ve
n
T

j
n

T
t

2p
d m�

�
= −Q R

So, S( ),m  the Fourier transform of the periodic impulse train, is

 S s t
T

e
T

eT
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n
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t

n
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n

T
t

n

( ) ( )m
p p

= { } = = =
= − = −
∑ ∑� � �� �

�

�

�

�

�

� �
U V U V1 1 12 2

�� ��

�

T
n
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d mQ R−
= −
∑

This fundamental result tells us that the Fourier transform of an impulse train with period �T  is also 
an impulse train, whose period is 1 �T . This inverse proportionality between the periods of s tT� ( ) and 
S( )m  is analogous to what we found in Fig. 4.4 in connection with a box function and its transform. This 
inverse relationship plays a fundamental role in the remainder of this chapter.

CONVOLUTION

We showed in Section 3.4 that convolution of two functions involves flipping (rotat-
ing by 180°) one function about its origin and sliding it past the other. At each dis-
placement in the sliding process, we perform a computation, which, for discrete 
variables, is a sum of products [see Eq. (3-35)]. In the present discussion, we are 

As in Section 3.4, the 
fact that convolution of a 
function with an impulse 
shifts the origin of the 
function to the location of 
the impulse is also true for 
continuous convolution. 
(See Figs. 3.29 and 3.30.)
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214    Chapter 4  Filtering in the Frequency Domain

interested in the convolution of two continuous functions, f t( ) and h t( ), of one con-
tinuous variable, t, so we have to use integration instead of a summation. The con-
volution of these two functions, denoted as before by the operator �, is defined as

 ( )( ) ( ) ( )f h t f h t d� = −
-�

�

2 t t t  (4-24)

where the minus sign accounts for the flipping just mentioned, t is the displacement 
needed to slide one function past the other, and t  is a dummy variable that is inte-
grated out. We assume for now that the functions extend from −�  to � .

We illustrated the basic mechanics of convolution in Section 3.4, and we will do 
so again later in this chapter and in Chapter 5. At the moment, we are interested in 
finding the Fourier transform of Eq. (4-24). We start with Eq. (4-19):

 

� ( )( ) ( ) ( )

( )

f h t f h t d e dt

f

j t
�{ } = −

⎡

⎣
⎢
⎢

⎤

⎦
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=

−

- -
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2 2

2

t t t
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--�

�

2 h t e dt dj t( )−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−t tpm2

The term inside the brackets is the Fourier transform of h t( ).− t  We will show later 
in this chapter that � h t H e j( ) ( ) ,−{ } = −t m pmt2  where H( )m  is the Fourier transform 
of h t( ). Using this in the preceding equation gives us

 

� ( )( ) ( ) ( )

( ) ( )

f h t f H e d

H f e d

j

j

�{ } = ⎡⎣ ⎤⎦

=

−

−
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�

�

�

�
2

2

t m t

m t

pmt

pmt

2

2 tt

m m

m

=
=

H F

H F

( ) ( )

( )( )i

where “ i ” indicates multiplication. As noted earlier, if we refer to the domain of t 
as the spatial domain, and the domain of m  as the frequency domain, the preceding 
equation tells us that the Fourier transform of the convolution of two functions in 
the spatial domain is equal to the product in the frequency domain of the Fourier 
transforms of the two functions. Conversely, if we have the product of the two trans-
forms, we can obtain the convolution in the spatial domain by computing the inverse 
Fourier transform. In other words, f h�  and H Fi  are a Fourier transform pair. This 
result is one-half of the convolution theorem and is written as

 ( )( ) ( )( )f h t H F� ⇔ i m  (4-25)

As noted earlier, the double arrow indicates that the expression on the right is 
obtained by taking the forward Fourier transform of the expression on the left, while 

Remember, convolution 
is commutative, so the 
order of the functions in 
convolution expressions 
does not matter. 
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4.3  Sampling and the Fourier Transform of Sampled  Functions    215

the expression on the left is obtained by taking the inverse Fourier transform of the 
expression on the right.

Following a similar development would result in the other half of the convolution 
theorem:

 ( )( ) ( )( )f h t H Fi ⇔ � m  (4-26)

which states that convolution in the frequency domain is analogous to multiplica-
tion in the spatial domain, the two being related by the forward and inverse Fourier 
transforms, respectively. As you will see later in this chapter, the convolution theo-
rem is the foundation for filtering in the frequency domain.

4.3 SAMPLING AND THE FOURIER TRANSFORM OF SAMPLED  
FUNCTIONS  

In this section, we use the concepts from Section 4.2 to formulate a basis for express-
ing sampling mathematically. Starting from basic principles, this will lead us to the 
Fourier transform of sampled functions. That is, the discrete Fourier transform.

SAMPLING

Continuous functions have to be converted into a sequence of discrete values before 
they can be processed in a computer. This requires sampling and quantization, as 
introduced in Section 2.4. In the following discussion, we examine sampling in more 
detail.

Consider a continuous function, f t( ), that we wish to sample at uniform intervals, 
�T, of the independent variable t (see Fig. 4.5). We assume initially that the function 
extends from −�  to �  with respect to t. One way to model sampling is to multiply 
f t( ) by a sampling function equal to a train of impulses �T  units apart. That is,

 �f t f t s t f t t n TT
n

( ) ( ) ( ) ( ) ( )= = −
= −
∑�

�

�

�d  (4-27)

where �f t( ) denotes the sampled function. Each component of this summation is an 
impulse weighted by the value of f t( ) at the location of the impulse, as Fig. 4.5(c) 
shows. The value of each sample is given by the “strength” of the weighted impulse, 
which we obtain by integration. That is, the value, fk , of an arbitrary sample in the 
sampled sequence is given by

 
f f t t k T dt

f k T

k = −

=
-�

�

�

�

2 ( ) ( )

( )

d
 (4-28)

where we used the sifting property of d  in Eq. (4-13). Equation (4-28) holds for any 
integer value k = − −. . . , , , , , , . . . .2 1 0 1 2  Figure 4.5(d) shows the result, which con-
sists of equally spaced samples of the original function.

These two expressions 
also hold for discrete 
variables, with the 
exception that the right 
side of Eq. (4-26) is 
multiplied by (1/M), 
where M is the number 
of discrete samples (see 
Problem 4.18).

4.3

Taking samples ΔΤ units 
apart implies a sampling 
rate equal to 1/ΔΤ. If the 
units of ΔΤ are seconds, 
then the sampling rate is 
in samples/s. If the units 
of ΔΤ are meters, then 
the sampling rate is in 
samples/m, and so on.
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216    Chapter 4  Filtering in the Frequency Domain

THE FOURIER TRANSFORM OF SAMPLED FUNCTIONS

Let F( )m  denote the Fourier transform of a continuous function f t( ). As discussed 
in the previous section, the corresponding sampled function, �f t( ), is the product of 
f t( ) and an impulse train. We know from the convolution theorem that the Fourier 
transform of the product of two functions in the spatial domain is the convolution 
of the transforms of the two functions in the frequency domain. Thus, the Fourier 
transform of the sampled function is:

 
� �F f t f t s t

F S

T( ) ( ) ( ) ( )

( )( )

m

m

= { } = { }
=

� � �

�
 (4-29)

where, from Example 4.2,

 S
T

n
Tn

( )m d m= −
= −
∑1

� ��

�

Q R  (4-30)

t
0

f(t)

t

s�T (t)

. . . . . .

. . .
. . .

0 . . .. . . �T��T�2�T 2�T

t

f(t)s�T(t)

. . . . . .

0 . . .. . . �T��T�2�T 2�T

k

fk � f(k�T)

. . . . . .

0 . . .. . . 1�1�2 2

. .

. . 

b
a

c
d

FIGURE 4.5
(a) A continuous 
function. (b) Train 
of impulses used to 
model sampling.  
(c) Sampled  
function formed as 
the product of (a) 
and (b). (d) Sample 
values obtained by 
integration and  
using the sifting 
property of  
impulses. (The 
dashed line in (c) is 
shown for refer-
ence. It is not part 
of the data.)
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4.3  Sampling and the Fourier Transform of Sampled Functions    217

is the Fourier transform of the impulse train s tT� ( ). We obtain the convolution of 
F( )m  and S( )m  directly from the 1-D definition of convolution in Eq. (4-24):

 

�F F S F S d
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n
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( ) ( )( ) ( ) ( )
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-2 ( ) Q R
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 (4-31)

where the final step follows from the sifting property of the impulse, Eq. (4-13).
The summation in the last line of Eq. (4-31) shows that the Fourier transform 
�F( )m  of the sampled function �f t( ) is an infinite, periodic sequence of copies of the 
transform of the original, continuous function. The separation between copies is 
determined by the value of 1 �T. Observe that although �f t( ) is a sampled function, 
its transform, �F( ),m  is continuous because it consists of copies of F( ),m  which is a 
continuous function.

Figure 4.6 is a graphical summary of the preceding results.† Figure 4.6(a) is a 
sketch of the Fourier transform, F( ),m  of a function f t( ), and Fig. 4.6(b) shows the 
transform, �F( ),m  of the sampled function, �f t( ). As mentioned in the previous sec-
tion, the quantity 1 �T  is the sampling rate used to generate the sampled function. 
So, in Fig. 4.6(b) the sampling rate was high enough to provide sufficient separation 
between the periods, and thus preserve the integrity (i.e., perfect copies) of F( ).m  In 
Fig. 4.6(c), the sampling rate was just enough to preserve F( ),m  but in Fig. 4.6(d), the 
sampling rate was below the minimum required to maintain distinct copies of F( ),m  
and thus failed to preserve the original transform. Figure 4.6(b) is the result of an 
over-sampled signal, while Figs. 4.6(c) and (d) are the results of critically sampling 
and under-sampling the signal, respectively. These concepts are the basis that will 
help you grasp the fundamentals of the sampling theorem, which we discuss next.

THE SAMPLING THEOREM

We introduced the idea of sampling intuitively in Section 2.4. Now we consider sam-
pling formally, and establish the conditions under which a continuous function can 
be recovered uniquely from a set of its samples.

A function f t( ) whose Fourier transform is zero for values of frequencies outside 
a finite interval (band) [ , ]max max−m m  about the origin is called a band-limited func-
tion. Figure 4.7(a), which is a magnified section of Fig. 4.6(a), is such a function. Simi-
larly, Fig. 4.7(b) is a more detailed view of the transform of the critically sampled 

†  For the sake of clarity in sketches of Fourier transforms in Fig. 4.6, and other similar figures in this chapter, we 
ignore the fact that Fourier transforms typically are complex functions. Our interest here is on concepts.
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218    Chapter 4  Filtering in the Frequency Domain

function [see Fig. 4.6(c)]. A higher value of �T  would cause the periods in �F( )m  to 
merge; a lower value would provide a clean separation between the periods.

We can recover f t( ) from its samples if we can isolate a single copy of F( )m  from 
the periodic sequence of copies of this function contained in �F( ),m  the transform of 
the sampled function �f t( ). Recall from the discussion in the previous section that 
�F( )m  is a continuous, periodic function with period 1 �T. Therefore, all we need is 
one complete period to characterize the entire transform. In other words, we can 
recover f t( ) from that single period by taking its inverse Fourier transform.

Extracting from �F( )m  a single period that is equal to F( )m  is possible if the sepa-
ration between copies is sufficient (see Fig. 4.6). In terms of Fig. 4.7(b), sufficient 
separation is guaranteed if 1 2�T > mmax  or

 
1

2
�T

> mmax  (4-32)

This equation indicates that a continuous, band-limited function can be recovered 
completely from a set of its samples if the samples are acquired at a rate exceeding 

Remember, the sampling 
rate is the number of 
samples taken per unit of 
the independent variable. 

. . . . . .

. . . . . .
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m
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~

F(m)
~

F(m)
~

m

m

m

. . . . . .

0

0

0

1/�T�1/�T

�1/�T

�2/�T

�2/�T

�3/�T �1/�T�2/�T

2/�T

1/�T 2/�T

3/�T1/�T 2/�T

. . . . . .

b
a

c
d

FIGURE 4.6
(a) Illustrative 
sketch of the 
Fourier transform 
of a band-limited 
function.  
(b)–(d) Trans-
forms of the 
corresponding 
sampled functions 
under the  
conditions of 
over-sampling, 
critically  
sampling, and 
under-sampling, 
respectively. 
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4.3  Sampling and the Fourier Transform of Sampled Functions    219

twice the highest frequency content of the function. This exceptionally important 
result is known as the sampling theorem.† We can say based on this result that no 
information is lost if a continuous, band-limited function is represented by samples 
acquired at a rate greater than twice the highest frequency content of the function. 
Conversely, we can say that the maximum frequency that can be “captured” by sam-
pling a signal at a rate 1 �T  is mmax .= 1 2�T  A sampling rate exactly equal to twice 
the highest frequency is called the Nyquist rate. Sampling at exactly the Nyquist rate 
sometimes is sufficient for perfect function recovery, but there are cases in which 
this leads to difficulties, as we will illustrate later in Example 4.3. This is the reason 
why the sampling theorem specifies that sampling must exceed the Nyquist rate. 

Figure 4.8 illustrates the procedure for recovering F( )m  from �F( )m  when a function 
is sampled at a rate higher than the Nyquist rate. The function in Fig. 4.8(b) is defined 
by the equation

 H
T

( ) max max
m

m m m
=

−⎧
⎨
⎩

� ≤ ≤
0 otherwise

 (4-33)

When multiplied by the periodic sequence in Fig. 4.8(a), this function isolates the 
period centered on the origin. Then, as Fig. 4.8(c) shows, we obtain F( )m  by multiply-
ing �F( )m  by H( ) :m

†  The sampling theorem is a cornerstone of digital signal processing theory. It was first formulated in 1928 by 
Harry Nyquist, a Bell Laboratories scientist and engineer. Claude E. Shannon, also from Bell Labs, proved the 
theorem formally in 1949. The renewed interest in the sampling theorem in the late 1940s was motivated by the 
emergence of early digital computing systems and modern communications, which created a need for methods 
dealing with digital (sampled) data.

The ΔΤ in Eq. (4-33) 
cancels out the 1/ΔΤ in 
Eq. (4-31).

0

F(m)

m

0

F(m)

m

mmax

mmax

�mmax

�mmax . . .. . .

1

2�T
–––

� 1

�T
––

1

2�T
–––

~

. . . . . .

b
a

FIGURE 4.7
(a) Illustrative 
sketch of the 
Fourier  
transform of a 
band-limited 
function.  
(b) Transform 
resulting from 
critically sampling 
that band-limited  
function. 
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220    Chapter 4  Filtering in the Frequency Domain

 F H F( ) ( ) ( )m m m= �  (4-34)

Once we have F( ),m  we can recover f t( ) using the inverse Fourier transform:

 f t F e dj t( ) ( )=
-�

�

2 m mpm2  (4-35)

Equations (4-33) through (4-35) prove that, theoretically, it is possible to recover a 
band-limited function from samples obtained at a rate exceeding twice the highest 
frequency content of the function. As we will discuss in the following section, the 
requirement that f t( ) must be band-limited implies in general that f t( ) must extend 
from −�  to � , a condition that cannot be met in practice. As you will see shortly, 
having to limit the duration of a function prevents perfect recovery of the function 
from its samples, except in some special cases.

Function H( )m  is called a lowpass filter because it passes frequencies in the low 
end of the frequency range, but it eliminates (filters out) higher frequencies. It is 
called also an ideal lowpass filter because of its instantaneous transitions in ampli-
tude (between 0 and �T  at location −mmax and the reverse at mmax), a characteristic 
that cannot be implemented physically in hardware. We can simulate ideal filters 
in software, but even then there are limitations (see Section 4.8). Because they are 
instrumental in recovering (reconstructing) the original function from its samples, 
filters used for the purpose just discussed are also called reconstruction filters.

In Fig. 3.32 we sketched 
the radial cross sections 
of filter transfer functions 
using only positive fre-
quencies, for simplicity. 
Now you can see that 
frequency domain filter 
functions encompass 
both positive and nega-
tive frequencies. 
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. . . . . .
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~
F(m) � H(m)F(m)

m
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mmax
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�mmax
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. . . . . .

. . . . . .

b
a

c

FIGURE 4.8
(a) Fourier 
transform of a 
sampled,  
band-limited  
function.  
(b) Ideal lowpass 
filter transfer 
function.  
(c) The product 
of (b) and (a), 
used to extract 
one period of the 
infinitely periodic 
sequence in (a). 
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4.3  Sampling and the Fourier Transform of Sampled Functions    221

ALIASING

Literally, the word alias means “a false identity.” In the field of signal processing, 
aliasing refers to sampling phenomena that cause different signals to become indis-
tinguishable from one another after sampling; or, viewed another way, for one signal 
to “masquerade” as another. 

Conceptually, the relationship between sampling and aliasing is not difficult to 
grasp. The foundation of aliasing phenomena as it relates to sampling is that we 
can describe a digitized function only by the values of its samples. This means that 
it is possible for two (or more) totally different continuous functions to coincide at 
the values of their respective samples, but we would have no way of knowing the 
characteristics of the functions between those samples. To illustrate, Fig. 4.9 shows 
two completely different sine functions sampled at the same rate. As you can see 
in Figs. 4.9(a) and (c), there are numerous places where the sampled values are the 
same in the two functions, resulting in identical sampled functions, as Figs. 4.9(b) 
and (d) show. 

Two continuous functions having the characteristics just described are called an 
aliased pair, and such pairs are indistinguishable after sampling. Note that the reason 
these functions are aliased is because we used a sampling rate that is too coarse. That 
is, the functions were under-sampled. It is intuitively obvious that if sampling were 
refined, more and more of the differences between the two continuous functions 
would be revealed in the sampled signals. The principal objective of the following 
discussion is to answer the question: What is the minimum sampling rate required 
to avoid (or reduce) aliasing? This question has both a theoretical and a practical 
answer and, in the process of arriving at the answers, we will establish the conditions 
under which aliasing occurs.

We can use the tools developed earlier in this section to formally answer the 
question we just posed. All we have to do is ask it in a different form: What happens 

Although we show 
sinusoidal functions for 
simplicity, aliasing occurs 
between any arbitrary 
signals whose values are 
the same at the sample 
points.

ba
dc

FIGURE 4.9
The functions in 
(a) and (c) are 
totally different, 
but their digi-
tized versions in 
(b) and (d) are 
identical. Aliasing 
occurs when the 
samples of two or 
more functions 
coincide, but the 
functions are dif-
ferent elsewhere. 
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222    Chapter 4  Filtering in the Frequency Domain

if a band-limited function is sampled at less than the Nyquist rate (i.e., at less than 
twice its highest frequency)? This is precisely the under-sampled situation discussed 
earlier in this section and mentioned in the previous paragraph. 

Figure 4.10(a) is the same as Fig. 4.6(d); it shows schematically the Fourier trans-
form of an under-sampled, band-limited function. This figure illustrates that the net 
effect of lowering the sampling rate below the Nyquist rate is that the periods of the 
Fourier transform now overlap, and it becomes impossible to isolate a single period 
of the transform, regardless of the filter used. For instance, using the ideal lowpass 
filter in Fig. 4.10(b) would result in a transform that is corrupted by frequencies from 
adjacent periods, as Fig. 4.10(c) shows. The inverse transform would then yield a 
function, f ta( ), different from the original. That is, f ta( ) would be an aliased function 
because it would contain frequency components not present in the original. Using 
our earlier terminology, f ta( ) would masquerade as a different function. It is pos-
sible for aliased functions to bear no resemblance whatsoever to the functions from 
which they originated.

Unfortunately, except in some special cases mentioned below, aliasing is always 
present in sampled signals. This is because, even if the original sampled function is 
band-limited, infinite frequency components are introduced the moment we limit 
the duration of the function, which we always have to do in practice. As an illustra-
tion, suppose that we want to limit the duration of a band-limited function, f t( ), to a 
finite interval, say [ , ].0 T  We can do this by multiplying f t( ) by the function

 h t
t T

( ) =
⎧
⎨
⎩

1 0

0

≤ ≤
otherwise

 (4-36)

This function has the same basic shape as Fig. 4.4(a), whose Fourier transform, H( ),m  
has frequency components extending to infinity in both directions, as Fig. 4.4(b) shows. 
From the convolution theorem, we know that the transform of the product h t f t( ) ( ) 
is the convolution in the frequency domain of the transforms F( )m  and H( ).m  Even 
if F( )m  is band-limited, convolving it with H( )m  , which involves sliding one function 
across the other, will yield a result with frequency components extending to infinity 
in both directions (see Problem 4.12). From this we conclude that no function of 
finite duration can be band-limited. Conversely, a function that is band-limited must 
extend from −�  to �.† 

Although aliasing is an inevitable fact of working with sampled records of finite 
length, the effects of aliasing can be reduced by smoothing (lowpass filtering) the 
input function to attenuate its higher frequencies. This process, called anti-aliasing, 
has to be done before the function is sampled because aliasing is a sampling issue 
that cannot be “undone after the fact” using computational techniques.

† An important special case is when a function that extends from −�  to �  is band-limited and periodic. In this 
case, the function can be truncated and still be band-limited, provided that the truncation encompasses exactly 
an integral number of periods. A single truncated period (and thus the function) can be represented by a set of 
discrete samples satisfying the sampling theorem, taken over the truncated interval.

If we cannot isolate one 
period of the transform, 
we cannot recover the 
signal without aliasing,
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4.3  Sampling and the Fourier Transform of Sampled Functions    223

EXAMPLE 4.3 : Aliasing.

Figure 4.11 shows a classic illustration of aliasing. A pure sine wave extending infinitely in both direc-
tions has a single frequency so, obviously, it is band-limited. Suppose that the sine wave in the figure 
(ignore the large dots for now) has the equation f t t( ) sin( ),= p  and that the horizontal axis corresponds 
to time, t, in seconds. The function crosses the axis at t = 0 1 2, , , .± ± …

Recall that a function f t( ) is periodic with period P if f t P f t( ) ( )+ =  for all values of t. The period 
is the number (including fractions) of units of the independent variable that it takes for the function 
to complete one cycle. The frequency of a periodic function is the number of periods (cycles) that the 
function completes in one unit of the independent variable. Thus, the frequency of a periodic function 
is the reciprocal of the period. As before, the sampling rate is the number of samples taken per unit of 
the independent variable.

 In the present example, the independent variable is time, and its units are seconds. The period, P, 
of sin( )pt  is 2 s, and its frequency is 1 P , or 1 2 cycles/s. According to the sampling theorem, we can 
recover this signal from a set of its samples if the sampling rate exceeds twice the highest frequency 
of the signal. This means that a sampling rate greater than 1 sample/s ( )2 1 2 1× =  is required to 

. . . . . .

m 
0�3/�T �1/�T�2/�T 3/�T1/�T 2/�T

F(m)
~

0

H(m)

m 
0

~
F(m) � H(m)F(m)

m 
0

mmax

mmax

�mmax

�mmax

. . . . . .

. . .. . .

�T

b
a

c

FIGURE 4.10 (a) Fourier transform of an under-sampled, band-limited function. (Interference between adjacent peri-
ods is shown dashed). (b) The same ideal lowpass filter used in Fig. 4.8. (c) The product of (a) and (b).The interfer-
ence from adjacent periods results in aliasing that prevents perfect recovery of F( )m  and, consequently, of f t( ). 
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224    Chapter 4  Filtering in the Frequency Domain

recover the signal. Viewed another way, the separation, �T, between samples has to be less than 1 s. 
Observe that sampling this signal at exactly twice the frequency (1 sample/s), with samples taken at 
t = 0 1 2, , , ,± ± …  results in … …sin( ), sin( ), sin( ) ,−p p0  all of which are 0. This illustrates the reason 
why the sampling theorem requires a sampling rate that exceeds twice the highest frequency of the 
function, as mentioned earlier.

The large dots in Fig. 4.11 are samples taken uniformly at a rate below the required 1 sample/s (i.e., 
the samples are taken more than 1 s apart; in fact, the separation between samples exceeds 2 s). The 
sampled signal looks like a sine wave, but its frequency is about one-tenth the frequency of the original 
function. This sampled signal, having a frequency well below anything present in the original continu-
ous function, is an example of aliasing. If the signal had been sampled at a rate slightly exceeding the 
Nyquist rate, the samples would not look like a sine wave at all (see Problem 4.6).

Figure 4.11 also illustrates how aliasing can be extremely problematic in musical recordings by intro-
ducing frequencies not present in the original sound. In order to mitigate this, signals with frequencies 
above half the sampling rate must be filtered out to reduce the effect of aliased signals introduced into 
digital recordings. This is the reason why digital recording equipment contains lowpass filters specifically 
designed to remove frequency components above half the sampling rate used by the equipment. 

If we were given just the samples in Fig. 4.11, another issue illustrating the seriousness of aliasing is 
that we would have no way of knowing that these samples are not a true representation of the original 
function. As you will see later in this chapter, aliasing in images can produce similarly misleading results.

FUNCTION RECONSTRUCTION (RECOVERY) FROM SAMPLED DATA

In this section, we show that reconstructing a function from a set of its samples 
reduces in practice to interpolating between the samples. Even the simple act of 
displaying an image requires reconstruction of the image from its samples by the dis-
play medium. Therefore, it is important to understand the fundamentals of sampled 
data reconstruction. Convolution is central to developing this understanding, dem-
onstrating again the importance of this concept.

The discussion of Fig. 4.8 and Eq. (4-34) outlines the procedure for perfect recov-
ery of a band-limited function from its samples using frequency domain methods. 

. . .

. . .

t 

�T

0 4 . . .1 2 3 5. . .

FIGURE 4.11 Illustration of aliasing. The under-sampled function (dots) looks like a sine wave having a frequency 
much lower than the frequency of the continuous signal. The period of the sine wave is 2 s, so the zero crossings of 
the horizontal axis occur every second. �T  is the separation between samples. 
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Using the convolution theorem, we can obtain the equivalent result in the spatial 
domain. From Eq. (4-34), F H F( ) ( ) ( ),m m m= �  so it follows that

 

f t F

H F

h t f t

( ) ( )

( ) ( )

( ) ( )

= { }
= { }
=

−

−

�

�

1

1

m

m m�

��

 (4-37)

where, as before, �f t( ) denotes the sampled function, and the last step follows from 
the convolution theorem, Eq. (4-25). It can be shown (see Problem 4.13), that sub-
stituting Eq. (4-27) for �f t( ) into Eq. (4-37), and then using Eq. (4-24), leads to the 
following spatial domain expression for f t( ):

 f t f n T t n T T
n

( ) ( ) ( )= −[ ]
= −
∑ � � �

�

�

sinc  (4-38)

where the sinc function is defined in Eq. (4-23). This result is not unexpected because 
the inverse Fourier transform of the ideal (box) filter, H( ),m  is a sinc function (see 
Example 4.1). Equation (4-38) shows that the perfectly reconstructed function, f t( ), 
is an infinite sum of sinc functions weighted by the sample values. It has the impor-
tant property that the reconstructed function is identically equal to the sample val-
ues at multiple integer increments of �T. That is, for any t k T= � , where k is an inte-
ger, f t( ) is equal to the kth sample, f k T( ).�  This follows from Eq. (4-38) because 
sinc( )0 1=  and sinc( )m = 0  for any other integer value of m. Between sample points, 
values of f t( ) are interpolations formed by the sum of the sinc functions. 

Equation (4-38) requires an infinite number of terms for the interpolations 
between samples. In practice, this implies that we have to look for approximations 
that are finite interpolations between the samples. As we discussed in Section 2.6, the 
principal interpolation approaches used in image processing are nearest-neighbor, 
bilinear, and bicubic interpolation. We will discuss the effects of interpolation on 
images in Section 4.5.

4.4 THE DISCRETE FOURIER TRANSFORM OF ONE VARIABLE  

One of the principal goals of this chapter is the derivation of the discrete Fourier 
transform (DFT) starting from basic principles. The material up to this point may 
be viewed as the foundation of those basic principles, so now we have in place the 
necessary tools to derive the DFT.

OBTAINING THE DFT FROM THE CONTINUOUS TRANSFORM OF A 
SAMPLED FUNCTION

As we discussed in Section 4.3, the Fourier transform of a sampled, band-limited func-
tion extending from −�  to �  is a continuous, periodic function that also extends from 
−�  to �. In practice, we work with a finite number of samples, and the objective of 
this section is to derive the DFT of such finite sample sets.

Equation (4-31) gives the transform, �F( ),m  of sampled data in terms of the trans-
form of the original function, but it does not give us an expression for �F( )m  in terms 

See Section 2.4 regard-
ing interpolation.

4.4
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226    Chapter 4  Filtering in the Frequency Domain

of the sampled function �f t( ) itself. We find that expression directly from the defini-
tion of the Fourier transform in Eq. (4-19):

 � �F f t e dtj t( ) ( )m pm= −

-�

�

2
2  (4-39)

By substituting Eq. (4-27) for �f t( ), we obtain

 

� �F f t e dt f t t n T e dtj t j t

n

( ) ( ) ( ) ( )m dpm pm= = −

=

− −

= −
∑

- -

-

�

�

�

�

�
�

�

2 2
2 2

��

�

�

�

�

�

�

�2n

j t

n
j n T

n

f t t n T e dt

f e

= −

−

−

= −

∑

∑

−

=

( ) ( )d pm

pm

2

2

 (4-40)

The last step follows from Eq. (4-28) and the sifting property of the impulse. 
Although fn  is a discrete function, its Fourier transform, �F( ),m  is continuous and 
infinitely periodic with period 1 �T, as we know from Eq. (4-31). Therefore, all we 
need to characterize �F( )m  is one period, and sampling one period of this function is 
the basis for the DFT.

Suppose that we want to obtain M equally spaced samples of �F( )m  taken over the 
one period interval from m = 0 to m = 1 �T  (see Fig. 4.8). This is accomplished by 
taking the samples at the following frequencies:

 m = = −m
M T

m M
�

0 1 2 1, , , ,…  (4-41)

Substituting this result for m  into Eq. (4-40) and letting Fm  denote the result yields

 F f e m Mm n
n

M
j mn M= = −

=

−
−∑

0

1
2 0 1 2 1p , , , ,…  (4-42)

This expression is the discrete Fourier transform we are seeking.† Given a set { }fm  
consisting of M samples of f t( ), Eq. (4-42) yields a set { }Fm  of M complex values 
corresponding to the discrete Fourier transform of the input sample set. Conversely, 

† Referring back to Fig. 4.6(b), note that the interval [ , ]0 1 �T  over which we sampled one period of �F( )m  covers 
two adjacent half periods of the transform (but with the lowest half of period appearing at higher frequencies). 
This means that the data in Fm  requires re-ordering to obtain samples that are ordered from the lowest to the 
highest frequency of the period. This is the price paid for the notational convenience of taking the samples at 
m M= −0 1 2 1, , , , ,…  instead of using samples on either side of the origin, which would require the use of nega-
tive notation. The procedure used to order the transform data will be discussed in Section 4.6.  
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4.4  The Discrete Fourier Transform of One Variable    227

given { },Fm  we can recover the sample set { }fm  by using the inverse discrete Fourier 
transform (IDFT)

 f
M

F e n Mn m
m

M
j mn M= = −

=

−

∑1
0 1 2 1

0

1
2p , , , ,…  (4-43)

It is not difficult to show (see Problem 4.15) that substituting Eq. (4-43) for fn  into 
Eq. (4-42) gives the identity F Fm m≡ . Similarly, substituting Eq. (4-42) into Eq. (4-43) 
for Fm  yields f fn n≡ . This implies that Eqs. (4-42) and (4-43) constitute a discrete 
Fourier transform pair. Furthermore, these identities indicate that the forward and 
inverse Fourier transforms exist for any set of samples whose values are finite. Note 
that neither expression depends explicitly on the sampling interval �T, nor on the 
frequency intervals of Eq. (4-41). Therefore, the DFT pair is applicable to any finite 
set of discrete samples taken uniformly.

We used m and n in the preceding development to denote discrete variables 
because it is typical to do so for derivations. However, it is more intuitive, especially 
in two dimensions, to use the notation x and y for image coordinate variables and 
u and v  for frequency variables, where these are understood to be integers.† Then, 
Eqs. (4-42) and (4-43) become 

 F u f x e u Mj ux M

x

M

( ) ( ) , , , ,= = −−

=

−

∑ 2

0

1

0 1 2 1p …  (4-44)

and

 f x
M

F u e x Mj ux M

u

M

( ) ( ) , , , ,= = −
=

−

∑1
0 1 2 12

0

1
p …  (4-45)

where we used functional notation instead of subscripts for simplicity. Comparing 
Eqs. (4-42) through (4-45), you can see that F u Fm( ) ≡  and f x fn( ) .≡  From this point 
on, we use Eqs. (4-44) and (4-45) to denote the 1-D DFT pair. As in the continuous 
case, we often refer to Eq. (4-44) as the forward DFT of f x( ), and to Eq. (4-45) as 
the inverse DFT of F u( ). As before, we use the notation f x F u( ) ( )⇔  to denote a 
Fourier transform pair. Sometimes you will encounter in the literature the 1 M  term 
in front of Eq. (4-44) instead. That does not affect the proof that the two equations 
form a Fourier transform pair (see Problem 4.15). 

Knowledge that f x( ) and F u( ) are a transform pair is useful in proving relation-
ships between functions and their transforms. For example, you are asked in Prob-
lem 4.17 to show that f x x F u e j ux M( ) ( )− ⇔ −

0
2 0p  is a Fourier transform pair. That is, 

you have to show that the DFT of f x x( )− 0  is F u e j ux M( ) − 2 0p  and, conversely, that 
the inverse DFT of F u e j ux M( ) − 2 0p  is f x x( ).− 0  Because this is done by substituting 

†  We have been careful in using t for continuous spatial variables and m  for the corresponding continuous fre-
quency variables. From this point on, we will use x and u to denote 1-D discrete spatial and frequency variables, 
respectively. When working in 2-D, we will use ( , )t z , and ( , ),m n  to denote continuous spatial and frequency 
domain variables, respectively. Similarly, we will use ( , )x y  and ( , )u v  to denote their discrete counterparts. 

DIP4E_GLOBAL_Print_Ready.indb   227 6/16/2017   2:04:47 PM



228    Chapter 4  Filtering in the Frequency Domain

directly into Eqs. (4-44) and (4-45), and you will have proved already that these two 
equations constitute a Fourier transform pair (Problem 4.15), if you prove that one 
side of “⇔” is the DFT (IDFT) of the other, then it must be true the other side is the 
IDFT (DFT) of the side you just proved. It turns out that having the option to prove 
one side or the other often simplifies proofs significantly. This is true also of the 1-D 
continuous and 2-D continuous and discrete Fourier transform pairs.

It can be shown (see Problem 4.16) that both the forward and inverse discrete 
transforms are infinitely periodic, with period M. That is,

 F u F u kM( ) ( )= +  (4-46)

and

 f x f x kM( ) ( )= +  (4-47)

where k is an integer.
The discrete equivalent of the 1-D convolution in Eq. (4-24) is

 f x f m h x m x Mh x
m

M

( ) ( ) ( ) , , , ,( )� = − = −
=

−

∑
0

1

0 1 2 1…  (4-48)

Because in the preceding formulations the functions are periodic, their convolu-
tion also is periodic. Equation (4-48) gives one period of the periodic convolution. 
For this reason, this equation often is referred to as circular convolution. This is a 
direct result of the periodicity of the DFT and its inverse. This is in contrast with the 
convolution you studied in Section 3.4, in which values of the displacement, x, were 
determined by the requirement of sliding one function completely past the other, 
and were not fixed to the range [ , ]0 1M −  as in circular convolution. We will discuss 
this difference and its significance in Section 4.6 and in Fig. 4.27.

Finally, we point out that the convolution theorem given in Eqs. (4-25) and (4-26) 
is applicable also to discrete variables, with the exception that the right side of 
Eq. (4-26) is multiplied by 1 M  (Problem 4.18).

RELATIONSHIP BETWEEN THE SAMPLING AND FREQUENCY  
INTERVALS

If f x( ) consists of M samples of a function f t( ) taken �T  units apart, the length of 
the record comprising the set f x x M( ) , , , , , ,{ } = −0 1 2 1…  is

 T M T= �  (4-49)

The corresponding spacing, �u, in the frequency domain follows from Eq. (4-41):

 �
�

u = =1 1
M T T

 (4-50)
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The entire frequency range spanned by the M components of the DFT is then

 R M u
T

= =�
�

1
 (4-51)

Thus, we see from Eqs. (4-50) and (4-51) that the resolution in frequency, �u, of 
the DFT depends inversely on the length (duration, if t is time) of the record, T, 
over which the continuous function, f t( ), is sampled; and the range of frequencies 
spanned by the DFT depends on the sampling interval �T. Keep in mind these 
inverse relationships between �u and �T.

EXAMPLE 4.4 :  The mechanics of computing the DFT.

Figure 4.12(a) shows four samples of a continuous function, f t( ), taken �T  units apart. Figure 4.12(b) 
shows the samples in the x-domain. The values of x are 0, 1, 2, and 3, which refer to the number of the 
samples in sequence, counting up from 0. For example, f f t T( ) ( ),2 20= + �  the third sample of f t( ).

From Eq. (4-44), the first value of F u( ) [i.e., F( )]0  is

 F f x f f f f
x

( ) ( ) ( ) ( ) ( ) ( )0 0 1 2 3 1 2 4 4 11
0

3

= = + + +[ ] = + + + =
=

∑

The next value of F u( ) is

 F f x e e e e e jj x

x

j j j( ) ( ) ( )1 1 2 4 4 3 22 1 4

0

3
0 2 3 2= = + + + = − +−

=

− − −∑ p p p p

Similarly, F j( ) ( )2 1 0= − +  and F j( ) ( ).3 3 2= − +  Observe that all values of f x( ) are used in computing 
each value of F u( ).

If we were given F u( ) instead, and were asked to compute its inverse, we would proceed in the same 
manner, but using the inverse Fourier transform. For instance, 

 f F u e F u j jj u

u u

( ) ( ) ( )( )0
1
4

1
4

1
4

11 3 2 1 3 2
1
4

2 0

0

3

0

3

= = = − + − − −[ ] =
= =

∑ ∑p [[ ]4 1=

which agrees with Fig. 4.12(b). The other values of f x( ) are obtained in a similar manner.

10 2 3
t

f(t)

0

1

2

3

4

5

f(x)

0

1

2

3

4

5

x 
t0 t0 	 �T t0 	 2�T t0 	 3�T0

ba

FIGURE 4.12
(a) A continuous 
function sampled 
�T  units apart. 
(b) Samples in the 
x-domain.  
Variable t is  
continuous, while 
x is discrete.
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230    Chapter 4  Filtering in the Frequency Domain

4.5 EXTENSIONS TO FUNCTIONS OF TWO VARIABLES  

In the following discussion we extend to two variables the concepts introduced in 
the previous sections of this chapter.

THE 2-D IMPULSE AND ITS SIFTING PROPERTY

The impulse, d( , ),t z  of two continuous variables, t and z, is defined as before:

 d( , )t z
t z

=
= =⎧

⎨
⎩

1 0

0

if 

otherwise
 (4-52)

and

 
- -�

�

�

�

2 2 d( , )t z dtdz = 1  (4-53)

As in the 1-D case, the 2-D impulse exhibits the sifting property under integration,

 
- -�

�

�

�

2 2 f t z t z dtdz f( , ) ( , ) ( , )d = 0 0  (4-54)

or. more generally for an impulse located at ( , ),t z0 0

 
- -�

�

�

�

2 2 f t z t t z z dtdz f t z( , ) ( , ) ( , )d − − =0 0 0 0  (4-55)

As before, we see that the sifting property yields the value of the function at the 
location of the impulse.

For discrete variables x and y, the 2-D discrete unit impulse is defined as

 d( , )x y
x y

=
= =⎧

⎨
⎩

1 0

0

if 

otherwise
 (4-56)

and its sifting property is

 f x y x y f
yx

( , ) ( , ) ( , )d =
= −= −
∑∑ 0 0

�

�

�

�

 (4-57)

where f x y( , ) is a function of discrete variables x and y. For an impulse located at 
coordinates ( , )x y0 0  (see Fig. 4.13) the sifting property is

 f x y x x y y f x y
yx

( , ) ( , ) ( , )d − − =
= −= −
∑∑ 0 0 0 0

�

�

�

�

 (4-58)

When working with an image of finite dimensions, the limits in the two preceding 
equations are replaced by the dimensions of the image.

4.5
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4.5  Extensions to Functions of Two Variables    231

THE 2-D CONTINUOUS FOURIER TRANSFORM PAIR

Let f t z( , ) be a continuous function of two continuous variables, t and z. The two-
dimensional, continuous Fourier transform pair is given by the expressions

 F f t z e dt dzj t z( , ) ( , ) ( )m n p m n= − +

- -�

�

�

�

2 2
2  (4-59)

and

 f t z F e d dj t z( , ) ( , ) ( )= +

- -�

�

�

�

2 2 m n m np m n2  (4-60)

where m  and n are the frequency variables. When referring to images, t and z are 
interpreted to be continuous spatial variables. As in the 1-D case, the domain of the 
variables m  and n defines the continuous frequency domain.

EXAMPLE 4.5 :  Obtaining the Fourier transform of a 2-D box function.

Figure 4.14(a) shows the 2-D equivalent of the 1-D box function in Example 4.1. Following a procedure 
similar to the one used in that example gives the result 

 

F f t z e dt dz Aej t z j

T

T

Z

Z

( , ) ( , ) ( ) (m n p m n p m= =− + −

− −- -�

�

�

�

2 2 2 2
2 2

2

2

2

2
tt z dt dz

ATZ
T

T
Z

Z

+

=
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

n

pm

pm

pn

pn

)

sin( )
( )

sin( )
( )

Figure 4.14(b) shows a portion of the spectrum about the origin. As in the 1-D case, the locations of the 
zeros in the spectrum are inversely proportional to the values of T and Z. In this example, T is larger 
than Z, so the spectrum is the more “contracted” along the m-axis. 

2-D SAMPLING AND THE 2-D SAMPLING THEOREM

In a manner similar to the 1-D case, sampling in two dimensions can be modeled 
using a sampling function (i.e., a 2-D impulse train):

x0
y0 x

d(x � x0, y � y0)

y 

1

dFIGURE 4.13
2-D unit discrete  
impulse. Variables 
x and y are  
discrete, and d is 
zero everywhere 
except at  
coordinates 
( , ),x y0 0  where its 
value is 1.
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 s t z t m T z n ZT Z
nm

� �
�

�

�

�

� �( , ) ( , )= − −
= −= −
∑∑ d  (4-61)

where �T  and �Z  are the separations between samples along the t- and z-axis of 
the continuous function f t z( , ). Equation (4-61) describes a set of periodic impulses 
extending infinitely along the two axes (see Fig. 4.15). As in the 1-D case illustrated 
in Fig. 4.5, multiplying f t z( , ) by s t zT Z� � ( , ) yields the sampled function. 

Function f t z( , ) is said to be band limited if its Fourier transform is 0 outside a 
rectangle established in the frequency domain by the intervals m m−[ ]max max,  and 

n n−[ ]max max, ; that is,

 F( , ) max maxm n m m n n= 0 for    and  ≥ ≥  (4-62)

The two-dimensional sampling theorem states that a continuous, band-limited func-
tion f t z( , ) can be recovered with no error from a set of its samples if the sampling 
intervals are

 �T < 1
2mmax

 (4-63)

and

 �Z < 1
2nmax

 (4-64)

or, expressed in terms of the sampling rate, if

ZT

T/2 Z/2 t

f(t, z)

z m n

ATZ

�F(m, n)�

A

ba

FIGURE 4.14
(a) A 2-D function 
and (b) a section 
of its spectrum. 
The box is longer 
along the t-axis, 
so the spectrum is 
more contracted 
along the m-axis.

  t

�Z �T

s�T�Z(t, z)

. . .

. . . . . .

. . .

z 

FIGURE 4.15
2-D impulse train.
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1
2

�T
> mmax (4-65)

and

 
1

2
�Z

> nmax (4-66)

Stated another way, we say that no information is lost if a 2-D, band-limited, con-
tinuous function is represented by samples acquired at rates greater than twice the 
highest frequency content of the function in both the m- and n-directions.

Figure 4.16 shows the 2-D equivalents of Figs. 4.6(b) and (d). A 2-D ideal fil-
ter transfer function has the form illustrated in Fig. 4.14(a) (but in the frequency 
domain). The dashed portion of Fig. 4.16(a) shows the location of the filter function 
to achieve the necessary isolation of a single period of the transform for recon-
struction of a band-limited function from its samples, as in Fig. 4.8. From Fig 4.10, 
we know that if the function is under-sampled, the periods overlap, and it becomes 
impossible to isolate a single period, as Fig. 4.16(b) shows. Aliasing would result 
under such conditions.

ALIASING IN IMAGES

In this section, we extend the concept of aliasing to images, and discuss in detail sev-
eral aspects of aliasing related to image sampling and resampling.

Extensions from 1-D Aliasing

As in the 1-D case, a continuous function f t z( , ) of two continuous variables, t and z, 
can be band-limited in general only if it extends infinitely in both coordinate direc-
tions. The very act of limiting the spatial duration of the function (e.g., by multiply-
ing it by a box function) introduces corrupting frequency components extending to 
infinity in the frequency domain, as explained in Section 4.3 (see also Problem 4.12). 
Because we cannot sample a function infinitely, aliasing is always present in digital 
images, just as it is present in sampled 1-D functions. There are two principal mani-
festations of aliasing in images: spatial aliasing and temporal aliasing. Spatial aliasing 
is caused by under-sampling, as discussed in Section 4.3, and tends to be more visible 

m m

v

vmax

v

mmax

Footprint of a
2-D ideal lowpass
(box) filter

ba

FIGURE 4.16
Two-dimensional 
Fourier  
transforms of (a) an 
over-sampled, and 
(b) an under-sam-
pled, band-limited 
function. 
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234    Chapter 4  Filtering in the Frequency Domain

(and objectionable) in images with repetitive patterns. Temporal aliasing is related 
to time intervals between images of a sequence of dynamic images. One of the most 
common examples of temporal aliasing is the “wagon wheel” effect, in which wheels 
with spokes in a sequence of images (for example, in a movie) appear to be rotating 
backwards. This is caused by the frame rate being too low with respect to the speed 
of wheel rotation in the sequence, and is similar to the phenomenon described in 
Fig. 4.11, in which under sampling produced a signal that appeared to be of much 
lower frequency than the original. 

Our focus in this chapter is on spatial aliasing. The key concerns with spatial alias-
ing in images are the introduction of artifacts such as jaggedness in line features, spu-
rious highlights, and the appearance of frequency patterns not present in the original 
image. Just as we used Fig. 4.9 to explain aliasing in 1-D functions, we can develop 
an intuitive grasp of the nature of aliasing in images using some simple graphics. The 
sampling grid in the center section of Fig. 4.17 is a 2-D representation of the impulse 
train in Fig. 4.15. In the grid, the little white squares correspond to the location of the 
impulses (where the image is sampled) and black represents the separation between 
samples. Superimposing the sampling grid on an image is analogous to multiplying 
the image by an impulse train, so the same sampling concepts we discussed in con-
nection with the impulse train in Fig. 4.15 are applicable here. The focus now is to 
analyze graphically the interaction between sampling rate (the separation of the 
sampling points in the grid) and the frequency of the 2-D signals being sampled.

Figure 4.17 shows a sampling grid partially overlapping three 2-D signals (regions 
of an image) of low, mid, and high spatial frequencies (relative to the separation 
between sampling cells in the grid). Note that the level of spatial “detail” in the 
regions is proportional to frequency (i.e., higher-frequency signals contain more 
bars). The sections of the regions inside the sampling grip are rough manifestations 
of how they would appear after sampling. As expected, all three digitized regions 

Sampling grid

Low frequency

Mid frequency

High frequency

FIGURE 4.17
Various aliasing 
effects resulting 
from the  
interaction  
between the 
frequency of 2-D 
signals and the 
sampling rate 
used to digitize 
them. The regions 
outside the 
sampling grid are 
continuous and 
free of aliasing.
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exhibit aliasing to some degree, but the effects are dramatically different, worsening 
as the discrepancy between detail (frequency) and sampling rate increases. The low-
frequency region is rendered reasonably well, with some mild jaggedness around 
the edges. The jaggedness increases as the frequency of the region increases to the 
mid-range because the sampling rate is the same. This edge distortion (appropriately 
called jaggies) is common in images with strong line and/or edge content.

The digitized high-frequency region in the top right of Fig. 4.17 exhibits totally 
different and somewhat surprising behavior. Additional stripes (of lower frequen-
cy) appear in the digitized section, and these stripes are rotated significantly with 
respect to the direction of the stripes in the continuous region. These stripes are an 
alias of a totally different signal. As the following example shows, this type of behav-
ior can result in images that appear “normal” and yet bear no relation to the original.

EXAMPLE 4.6 :  Aliasing in images.

Consider an imaging system that is perfect, in the sense that it is noiseless and produces an exact digi-
tal image of what it sees, but the number of samples it can take is fixed at 96 96×  pixels. For simplicity, 
assume that pixels are little squares of unit width and length. We want to use this system to digitize 
checkerboard images of alternating black and white squares. Checkerboard images can be interpreted 
as periodic, extending infinitely in both dimensions, where one period is equal to adjacent black/white 
pairs. If we specify “valid” digitized images as being those extracted from an infinite sequence in such 
a way that the image contains an integer multiple of periods, then, based on our earlier comments, we 
know that properly sampled periodic images will be free of aliasing. In the present example, this means 
that the sizes of the squares must be such that dividing 96 by the size yields an even number. This will 
give an integer number of periods (pairs of black/white squares). The smallest size of squares under the 
stated conditions is 1 pixel.

The principal objective of this example is to examine what happens when checkerboard images with 
squares of sizes less than 1 pixel on the side are presented to the system. This will correspond to the 
undersampled case discussed earlier, which will result in aliasing. A horizontal or vertical scan line of the 
checkerboard images results in a 1-D square wave, so we can focus the analysis on 1-D signals.

To understand the capabilities of our imaging system in terms of sampling, recall from the discussion 
of the 1-D sampling theorem that, given the sampling rate, the maximum frequency allowed before 
aliasing occurs in the sampled signal has to be less than one-half the sampling rate. Our sampling rate is 
fixed, at one sample per unit of the independent variable (the units are pixels). Therefore, the maximum 
frequency our signal can have in order to avoid aliasing is 1/2 cycle/pixel. 

We can arrive at the same conclusion by noting that the most demanding image our system can 
handle is when the squares are 1 unit (pixel) wide, in which case the period (cycle) is two pixels. The 
frequency is the reciprocal of the period, or 1/2 cycle/pixel, as in the previous paragraph. 

Figures 4.18(a) and (b) show the result of sampling checkerboard images whose squares are of sizes 
16 16×  and 6 6×  pixels, respectively. The frequencies of scan lines in either direction of these two images 
are 1/32 and 1/6 cycles/pixel. These are well below the 1/2 cycles/pixel allowed for our system. Because, as 
mentioned earlier, the images are perfectly registered in the field of view of the system, the results are free 
of aliasing, as expected.

When the size of the squares is reduced to slightly less than one pixel, a severely aliased image results, 
as Fig. 4.18(c) shows (the squares used were approximately of size 0 95 0 95. .×  pixels). Finally, reducing 
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236    Chapter 4  Filtering in the Frequency Domain

the size of the squares to slightly less than 0.5 pixels on the side yielded the image in Fig. 4.18(d). In 
this case, the aliased result looks like a normal checkerboard pattern. In fact, this image would result 
from sampling a checkerboard image whose squares are 12 pixels on the side. This last image is a good 
reminder that aliasing can create results that may be visually quite misleading. 

The effects of aliasing can be reduced by slightly defocusing the image to be digi-
tized so that high frequencies are attenuated. As explained in Section 4.3, anti-alias-
ing filtering has to be done at the “front-end,” before the image is sampled. There 
are no such things as after-the-fact software anti-aliasing filters that can be used to 
reduce the effects of aliasing caused by violations of the sampling theorem. Most 
commercial digital image manipulation packages do have a feature called “anti-
aliasing.” However, as illustrated in Example 4.8 below, this term is related to blur-
ring a digital image to reduce additional aliasing artifacts caused by resampling. The 
term does not apply to reducing aliasing in the original sampled image. A significant 
number of commercial digital cameras have true anti-aliasing filtering built in, either 
in the lens or on the surface of the sensor itself. Even nature uses this approach to 
reduce the effects of aliasing in the human eye, as the following example shows.

EXAMPLE 4.7 :  Nature obeys the limits of the sampling theorem.

When discussing Figs. 2.1 and 2.2, we mentioned that cones are the sensors responsible for sharp vision. 
Cones are concentrated in the fovea, in line with the visual axis of the lens, and their concentration is 
measured in degrees off that axis. A standard test of visual acuity (the ability to resolve fine detail) in 
humans is to place a pattern of alternating black and white stripes in one degree of the visual field. If the 
total number of stripes exceeds 120 (i.e., a frequency of 60 cycles/degree), experimental evidence shows 
that the observer will perceive the image as a single gray mass. That is, the lens in the eye automatically 
lowpass filters spatial frequencies higher than 60 cycles/degree. Sampling in the eye is done by the cones, 
so, based on the sampling theorem, we would expect the eye to have on the order of 120 cones/degree 
in order to avoid the effects of aliasing. As it turns out, that is exactly what we have! 

ba
dc

FIGURE 4.18
Aliasing. In (a) and 
(b) the squares are 
of sizes 16 and 6 
pixels on the side. 
In (c) and (d) the 
squares are of sizes 
0.95 and 0.48 pixels, 
respectively. Each 
small square in (c) 
is one pixel. Both 
(c) and (d) are 
aliased. Note how 
(d) masquerades as 
a “normal” image.
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Image Resampling and Interpolation

As in the 1-D case, perfect reconstruction of a band-limited image function from a set 
of its samples requires 2-D convolution in the spatial domain with a sinc function.  As 
explained in Section 4.3, this theoretically perfect reconstruction requires interpola-
tion using infinite summations which, in practice, forces us to look for approximate 
interpolation methods. One of the most common applications of 2-D interpolation 
in image processing is in image resizing (zooming and shrinking). Zooming may 
be viewed as over-sampling, while shrinking may be viewed as under-sampling. The 
key difference between these two operations and the sampling concepts discussed 
in previous sections is that we are applying zooming and shrinking to digital images.

We introduced interpolation in Section 2.4. Our interest there was to illustrate the 
performance of nearest neighbor, bilinear, and bicubic interpolation. In this section, 
the focus is on sampling and anti-aliasing issues. Aliasing generally is introduced 
when an image is scaled, either by zooming or by shrinking. For example, a special 
case of nearest neighbor interpolation is zooming by pixel replication, which we use 
to increase the size of an image an integer number of times. To double the size of 
an image, we duplicate each column. This doubles the image size in the horizontal 
direction. Then, we duplicate each row of the enlarged image to double the size in 
the vertical direction. The same procedure is used to enlarge the image any integer 
number of times. The intensity level assignment of each pixel is predetermined by 
the fact that new locations are exact duplicates of old locations. In this crude method 
of enlargement, one of the principal aliasing effects is the introduction of jaggies 
on straight lines that are not horizontal or vertical. The effects of aliasing in image 
enlargement often are reduced significantly by using more sophisticated interpola-
tion, as we discussed in Section 2.4. We show in the following example that aliasing 
can also be a serious problem in image shrinking. 

EXAMPLE 4.8 :  Illustration of aliasing in resampled natural images.

The effects of aliasing generally are worsened when the size of a digital image is reduced. Figure 4.19(a) 
is an image containing regions purposely selected to illustrate the effects of aliasing (note the thinly 
spaced parallel lines in all garments worn by the subject). There are no objectionable aliasing artifacts 
in Fig. 4.19(a), indicating that the sampling rate used initially was sufficient to mitigate visible aliasing. 

In Fig. 4.19(b), the image was reduced to 33% of its original size using row/column deletion. The 
effects of aliasing are quite visible in this image (see, for example, the areas around scarf and the sub-
ject’s knees). Images (a) and (b) are shown in the same size because the reduced image was brought 
back to its original size by pixel replication (the replication did not alter appreciably the effects of alias-
ing just discussed. 

The digital “equivalent” of the defocusing of continuous images mentioned earlier for reducing alias-
ing, is to attenuate the high frequencies of a digital image by smoothing it with a lowpass filter before 
resampling. Figure 4.19(c) was processed in the same manner as Fig. 4.19(b), but the original image was 
smoothed using a 5 5×  spatial averaging filter (see Section 3.5) before reducing its size. The improve-
ment over Fig. 4.19(b) is evident. The image is slightly more blurred than (a) and (b), but aliasing is no 
longer objectionable.
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238    Chapter 4  Filtering in the Frequency Domain

Aliasing and Moiré Patterns

In optics, a moiré pattern is a secondary, visual phenomenon produced, for example, 
by superimposing two gratings of approximately equal spacing. These patterns are 
common, everyday occurrences. For instance, we see them in overlapping insect win-
dow screens and on the interference between TV raster lines and striped or high-
ly textured materials in the background, or worn by individuals. In digital image 
processing, moiré-like patterns arise routinely when sampling media print, such as 
newspapers and magazines, or in images with periodic components whose spacing 
is comparable to the spacing between samples. It is important to note that moiré 
patterns are more general than sampling artifacts. For instance, Fig. 4.20 shows the 
moiré effect using vector drawings that have not been digitized. Separately, the pat-
terns are clean and void of interference. However, the simple acts of superimposing 
one pattern on the other creates a pattern with frequencies not present in either of 
the original patterns. Note in particular the moiré effect produced by two patterns 
of dots, as this is the effect of interest in the following discussion.

EXAMPLE 4.9 :  Sampling printed media.

Newspapers and other printed materials use so called halftone dots, which are black dots or ellipses 
whose sizes and various grouping schemes are used to simulate gray tones. As a rule, the following num-
bers are typical: newspapers are printed using 75 halftone dots per inch (dpi), magazines use 133 dpi, and 

The term moiré is a 
French word (not the 
name of a person) that 
appears to have  
originated with weavers, 
who first noticed what 
appeared to be interfer-
ence patterns visible on 
some fabrics. The root 
of the word is from the 
word mohair, a cloth 
made from Angora goat 
hairs.

ba c

FIGURE 4.19 Illustration of aliasing on resampled natural images. (a) A digital image of size 772 548×  pixels with visu-
ally negligible aliasing. (b) Result of resizing the image to 33% of its original size by pixel deletion and then restor-
ing it to its original size by pixel replication. Aliasing is clearly visible. (c) Result of blurring the image in (a) with an 
averaging filter prior to resizing. The image is slightly more blurred than (b), but aliasing is not longer objectionable. 
(Original image courtesy of the Signal Compression Laboratory, University of California, Santa Barbara.) 
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ba c
ed f

FIGURE 4.20
Examples of the 
moiré effect. 
These are vector 
drawings, not 
digitized patterns. 
Superimposing 
one pattern on the 
other is analogous 
to multiplying the 
patterns. 

high-quality brochures use 175 dpi. Figure 4.21 shows what happens when a newspaper image is (under) 
sampled at 75 dpi. The sampling lattice (which is oriented vertically and horizontally) and dot patterns 
on the newspaper image (oriented at ± °45 ) interact to create a uniform moiré-like pattern that makes 
the image look blotchy. (We will discuss a technique in Section 4.10 for reducing the effects of moiré 
patterns in under-sampled print media.)

FIGURE 4.21
A newspaper 
image digitized at 
75 dpi. Note the 
moiré-like pattern 
resulting from 
the interaction 
between the ± °45  
orientation of the 
half-tone dots and 
the north-south 
orientation of the 
sampling elements 
used to digitized 
the image.
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THE 2-D DISCRETE FOURIER TRANSFORM AND ITS INVERSE

A development similar to the material in Sections 4.3 and 4.4 would yield the follow-
ing 2-D discrete Fourier transform (DFT):

 F f x y e j x M y N

y

N

x

M

( , ) ( , ) ( )u v u v= − +

=

−

=

−

∑∑ 2

0

1

0

1
p  (4-67)

where f x y( , ) is a digital image of size M N× . As in the 1-D case, Eq. (4-67) must be 
evaluated for values of the discrete variables u and v  in the ranges u = −0 1 2 1, , , ,… M  
and v = −0 1 2 1, , , , .… N †

 Given the transform F( , ),u v  we can obtain f x y( , ) by using the inverse discrete 
Fourier transform (IDFT):

 f x y
MN

F u e j ux M y N
NM

( , ) ( , ) ( )= +

=

−

=

−

∑∑1 2

0

1

0

1

v v

vu

p  (4-68)

for x M= −0 1 2 1, , , ,…  and y N= −0 1 2 1, , , , .…  As in the 1-D case, [Eqs. (4-44) 
and (4-45)], Eqs. (4-67) and (4-68) constitute a 2-D discrete Fourier transform pair, 
f x y F( , ) ( , ).⇔ u v  (The proof is a straightforward extension of the 1-D case in Prob-
lem 4.15.) The rest of this chapter is based on properties of these two equations and 
their use for image filtering in the frequency domain. The comments made in con-
nection with Eqs. (4-44) and (4-45) are applicable to Eqs. (4-67) and (4-68); that is, 
knowing that f x y( , ) and F( , )u v  are a Fourier transform pair can be quite useful in 
proving relationships between functions and their transforms. 

4.6 SOME PROPERTIES OF THE 2-D DFT AND IDFT 

In this section, we introduce several properties of the 2-D discrete Fourier transform 
and its inverse.

RELATIONSHIPS BETWEEN SPATIAL AND FREQUENCY INTERVALS

The relationships between spatial sampling and the corresponding frequency 
domain intervals are as explained in Section 4.4. Suppose that a continuous func-
tion f t z( , ) is sampled to form a digital image, f x y( , ), consisting of M N×  samples 
taken in the t- and z-directions, respectively. Let �T  and �Z  denote the separations 
between samples (see Fig. 4.15). Then, the separations between the corresponding 
discrete, frequency domain variables are given by 

 �
�

u = 1
M T

 (4-69)

† As mentioned in Section 4.4, keep in mind that in this chapter we use ( , )t z  and ( , )m n  to denote 2-D continuous 
spatial and frequency-domain variables. In the 2-D discrete case, we use ( , )x y  for spatial variables and ( , )u v  for 
frequency-domain variables, all of which are discrete.

Sometimes you will find 
in the literature the  
1�MN constant in front 
of the DFT instead of 
the IDFT. At times, 
the square root of this 
constant is included in 
front of the forward 
and inverse transforms, 
thus creating a more 
symmetrical pair. Any 
of these formulations is 
correct, provided they 
are used consistently.

4.6
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and

 �
�

v = 1
N Z

 (4-70)

respectively. Note the important property that the separations between samples in 
the frequency domain are inversely proportional both to the spacing between spa-
tial samples and to the number of samples.

TRANSLATION AND ROTATION

The validity of the following Fourier transform pairs can be demonstrated by direct 
substitution into Eqs. (4-67) and (4-68) (see Problem 4.27):

 f x y e F u uj x M y N( , ) ( , )( )2
0 0

0 0p u v v v+ ⇔ − −  (4-71)

and

 f x x y y F e j x M y N( , ) ( , ) ( )− − ⇔ − +
0 0

2 0 0u v u vp  (4-72)

That is, multiplying f x y( , ) by the exponential shown shifts the origin of the DFT to 
( , )u v0 0  and, conversely, multiplying F( , )u v  by the negative of that exponential shifts 
the origin of f x y( , ) to ( , ).x y0 0  As we illustrate in Example 4.13, translation has no 
effect on the magnitude (spectrum) of F( , ).u v

Using the polar coordinates

 x r y r u= = = =cos sin cos sinu u v w v wv  

results in the following transform pair:

 f r F( , ) ( , )u u v w u+ ⇔ +0 0  (4-73)

which indicates that rotating f x y( , ) by an angle u0  rotates F( , )u v  by the same angle. 
Conversely, rotating F( , )u v  rotates f x y( , ) by the same angle.

PERIODICITY

As in the 1-D case, the 2-D Fourier transform and its inverse are infinitely periodic
in the u and v  directions; that is,

 F F k M F k N F k M k N( , ) ( , ) ( , ) ( , )u v u v u v u v= + = + = + +1 2 1 2  (4-74)

and

 f x y f x k M y f x y k N f x k M y k N( , ) ( , ) ( , ) ( , )= + = + = + +1 2 1 2  (4-75)

where k1 and k2 are integers.
The periodicities of the transform and its inverse are important issues in the 

implementation of DFT-based algorithms. Consider the 1-D spectrum in Fig. 4.22(a). 
As explained in Section 4.4 [see the footnote to Eq. (4-42)], the transform data in the 
interval from 0 to M − 1 consists of two half periods meeting at point M 2, but with 

Recall that we use the 
symbol “⇔” to denote 
Fourier transform pairs. 
That is, the term on the 
right is the transform 
of the term on the left, 
and the term on the left 
is the inverse Fourier 
transform of the term on 
the right.
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the lower part of the period appearing at higher frequencies. For display and filter-
ing purposes, it is more convenient to have in this interval a complete period of the 
transform in which the data are contiguous and ordered properly, as in Fig. 4.22(b). 
It follows from Eq. (4-71) that

f x e F u uj u x M( ) ( )( )2 0p ⇔ − 0

In other words, multiplying f x( ) by the exponential term shown shifts the transform 
data so that the origin, F( ),0  is moved to u0. If we let u M0 2= , the exponential 
term becomes e j xp , which is equal to ( )−1 x  because x is an integer. In this case,

b
a

dc

FIGURE 4.22
Centering the 
Fourier transform. 
(a) A 1-D DFT 
showing an infinite 
number of peri-
ods. (b) Shifted 
DFT obtained 
by multiplying 
f x( ) by ( )−1 x  
before computing 
F u( ). (c) A 2-D 
DFT showing an 
infinite number of 
periods. The area 
within the dashed 
rectangle is the 
data array, F( , ),u v  
obtained with 
Eq. (4-67) with 
an image f x y( , ) 
as the input. This 
array consists of 
four quarter peri-
ods. (d) Shifted 
array obtained 
by multiplying 
f x y( , ) by ( )− +1 x y  
before computing 
F( , ).u v  The data 
now contains one 
complete, centered 
period, as in (b). 

�M/2 M/2 � 10

0

M/2

M/2

M � 1

M � 1

M

Two adjacent half 
periods meet here.

F(u)

F(u)

u

u

Two adjacent half
periods meet here.

One period (M samples)

M/2

M � 1

(0, 0) N/2 N � 1

u

vv

u

N/2 N � 1

M/2

 M � 1

(0, 0)

� M � N data array computed by the DFT with             as input ( , )f x y

� M � N data array computed by the DFT with                         as input ( , )( 1)x yf x y +−
= Periods of the DFT

Four adjacent quarter
periods meet here

(0,0)F
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 f x F u Mx( )( ) ( / )− ⇔ −1 2

That is, multiplying f x( ) by ( )−1 x  shifts the data so that F u( ) is centered on the inter-
val [ , ],0 1M −  which corresponds to Fig. 4.22(b), as desired. 

In 2-D the situation is more difficult to graph, but the principle is the same, as 
Fig. 4.22(c) shows. Instead of two half periods, there are now four quarter periods 
meeting at the point ( , ).M N2 2  As in the 1-D case, we want to shift the data so 
that F( , )0 0  is at ( , ).M N2 2  Letting ( , ) ( , )u M N0 0 2 2v =  in Eq. (4-71) results in 
the expression

 f x y F u M Nx y( , )( ) ( , )− ⇔ − −+1 2 2v  (4-76)

Using this equation shifts the data so that F( , )0 0  is moved to the center of 
the frequency rectangle (i.e., the rectangle defined by the intervals [ , ]0 1M −  and 
[ , ]0 1N −  in the frequency domain). Figure 4.22(d) shows the result. 

Keep in mind that in all our discussions, coordinate values in both the spatial and 
frequency domains are integers. As we explained in Section 2.4 (see Fig. 2.19) if, as 
in our case), the origin of an M N×  image or transform is at ( , ),0 0  then the center of 
that image or transform is at floor floor( ), ( ) .M N2 2( )  This expression is applicable 
to both even and odd values of M and N. For example, the center of an array of size 
20 15×  is at point ( , ).10 7  Because we start counting from 0, these are the 11th and 
8th points in the first and second coordinate axes of the array, respectively.

SYMMETRY PROPERTIES

An important result from functional analysis is that any real or complex function, 
w( , ),x y  can be expressed as the sum of an even and an odd part, each of which can 
be real or complex:

 w w w( , ) ( , ) ( , )x y x y x ye o= +  (4-77)

where the even and odd parts are defined as

 w
w w

e x y
x y x y

( , )
( , ) ( , )

�
+ − −

2
 (4-78)

and

 w
w w

o x y
x y x y

( , )
( , ) ( , )

�
− − −

2
 (4-79)

for all valid values of x and y. Substituting Eqs. (4-78) and (4-79) into Eq. (4-77) gives 
the identity w w( , ) ( , ),x y x y≡  thus proving the validity of the latter equation. It fol-
lows from the preceding definitions that

 w we ex y x y( , ) ( , )= − −  (4-80)

and
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 w wo ox y x y( , ) ( , )= − − −  (4-81)

Even functions are said to be symmetric and odd functions antisymmetric. Because 
all indices in the DFT and IDFT are nonnegative integers, when we talk about sym-
metry (antisymmetry) we are referring to symmetry (antisymmetry) about the cen-
ter point of a sequence, in which case the definitions of even and odd become:

 w we ex y M x N y( , ) ( , )= − −  (4-82)

and

 w wo ox y M x N y( , ) ( , )= − − −  (4-83)

for x M= −0 1 2 1, , , ,…  and y N= −0 1 2 1, , , , .…  As usual, M and N are the number 
of rows and columns of a 2-D array.

We know from elementary mathematical analysis that the product of two even or 
two odd functions is even, and that the product of an even and an odd function is 
odd. In addition, the only way that a discrete function can be odd is if all its samples 
sum to zero. These properties lead to the important result that

 w we o
y

N

x

M

x y x y( , ) ( , ) =
=

−

=

−

∑∑ 0
0

1

0

1

 (4-84)

for any two discrete even and odd functions we  and wo.  In other words, because the 
argument of Eq. (4-84) is odd, the result of the summations is 0. The functions can 
be real or complex.

EXAMPLE 4.10 :  Even and odd functions.

Although evenness and oddness are visualized easily for continuous functions, these concepts are not as 
intuitive when dealing with discrete sequences. The following illustrations will help clarify the preceding 
ideas. Consider the 1-D sequence 

 f f f f f= { } = { }( ), ( ), ( ), ( ) , , ,0 1 2 3 2 1 1 1

in which M = 4. To test for evenness, the condition f x f x( ) ( )= −4  must be satisfied for x = 0 1 2 3, , , . 
That is, we require that

 f f f f f f f f( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )0 4 1 3 2 2 3 1= = = =

Because f ( )4  is outside the range being examined and can be any value, the value of f ( )0  is immaterial 
in the test for evenness. We see that the next three conditions are satisfied by the values in the array, so 
the sequence is even. In fact, we conclude that any 4-point even sequence has to have the form

 a b c b, , ,{ }  

That is, only the second and last points must be equal in a 4-point even sequence. In general, when M 
is an even number, a 1-D even sequence has the property that the points at locations 0 and M 2 have 

In the context of this dis-
cussion, the locations of 
elements in a sequence 
are denoted by integers. 
Therefore, the same 
observations made a few 
paragraphs back about 
the centers of arrays of 
even and odd sizes are 
applicable to sequences. 
But, do not confuse the 
concepts of even/odd 
numbers and even/odd 
functions.

To convince yourself that 
the samples of an odd 
function sum to zero, 
sketch one period of 
a 1-D sine wave about 
the origin or any other 
interval spanning one 
period.
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arbitrary values. When M is odd, the first point of an even sequence is still arbitrary, but the others form 
pairs with equal values.

Odd sequences have the interesting property that their first term, wo( , ),0 0  is always 0, a fact that fol-
lows directly from Eq. (4-79). Consider the 1-D sequence

 g g g g g= { } = −{ }( ), ( ), ( ), ( ) , , ,0 1 2 3 0 1 0 1

We can confirm that this is an odd sequence by noting that the terms in the sequence satisfy the condi-
tion g x g x( ) ( )= − −4  for x = 1 2 3, , . All we have to do for x = 0 is to check that g( ) .0 0=  We check the 
other terms using the definition. For example, g g( ) ( ).1 3= −  Any 4-point odd sequence has the form

 0 0, , ,−{ }b b

In general, when M is an even number, a 1-D odd sequence has the property that the points at locations 
0 and M 2 are always zero. When M is odd, the first term still has to be 0, but the remaining terms form 
pairs with equal value but opposite signs.

The preceding discussion indicates that evenness and oddness of sequences depend also on the length 
of the sequences. For example, we showed already that the sequence 0 1 0 1, , ,−{ }  is odd. However, the 
sequence 0 1 0 1 0, , , ,−{ }  is neither odd nor even, although the “basic” structure appears to be odd. This 
is an important issue in interpreting DFT results. We will show later in this section that the DFTs of even 
and odd functions have some very important characteristics. Thus, it often is the case that understanding 
when a function is odd or even plays a key role in our ability to interpret image results based on DFTs.

The same basic considerations hold in 2-D. For example, the 6 6×  2-D array with center at location 
( , ),3 3  shown bold in the figure [remember, we start counting at ( , )],0 0

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 1 0

0 0 2 2 0

0 0 1 0 1 0

0 0 0 0 0 0

−
−
−

0

is odd, as you can prove using Eq. (4-83). However, adding another row or column of 0’s would give 
a result that is neither odd nor even. In general, inserting a 2-D array of even dimensions into a larger 
array of zeros, also of even dimensions, preserves the symmetry of the smaller array, provided that the 
centers coincide. Similarly, a 2-D array of odd dimensions can be inserted into a larger array of zeros of 
odd dimensions without affecting the symmetry. Note that the inner structure of the preceding array is 
a Sobel kernel (see Fig. 3.50). We return to this kernel in Example 4.15, where we embed it in a larger 
array of zeros for filtering purposes.

Armed with the preceding concepts, we can establish a number of important sym-
metry properties of the DFT and its inverse. A property used frequently is that the 
Fourier transform of a real function, f x y( , ), is conjugate symmetric:

Conjugate symmetry 
is also called hermitian 
symmetry. The term 
antihermitian is used 
sometimes to refer to 
conjugate antisymmetry.
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 F F*( , ) ( , )u v u v= − −  (4-85)

We show the validity of this equation as follows:
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where the third step follows from the fact that f x y( , ) is real. A similar approach 
can be used to prove that, if f x y( , ) is imaginary, its Fourier transform is conjugate 
antisymmetric; that is, F F*( , ) ( , ).− − = −u v u v  

Table 4.1 lists symmetries and related properties of the DFT that are useful in 
digital image processing. Recall that the double arrows indicate Fourier transform 
pairs; that is, for any row in the table, the properties on the right are satisfied by the 
Fourier transform of the function having the properties listed on the left, and vice 
versa. For example, entry 5 reads: The DFT of a real function f x y( , ), in which ( , )x y  

Spatial Domain† Frequency Domain†

1) f x y( , ) real ⇔ F F*( , ) ( , )u v u v= − −

2) f x y( , ) imaginary ⇔ F F*( , ) ( , )− − = −u v u v

3) f x y( , ) real ⇔ R I u( , ) ( , )u v v even;  odd

4) f x y( , ) imaginary ⇔ R I u( , ) ( , )u v v odd;  even

5) f x y( , )− −  real ⇔ F *( , )u v  complex

6) f x y( , )− −  complex ⇔ F( , )− −u v  complex

7) f x y*( , ) complex ⇔ F *( , )− −u v  complex

8) f x y( , ) real and even ⇔ F( , )u v  real and even

9) f x y( , ) real and odd ⇔ F( , )u v  imaginary and odd

10) f x y( , ) imaginary and even ⇔ F( , )u v  imaginary and even

11) f x y( , ) imaginary and odd ⇔ F( , )u v  real and odd

12) f x y( , ) complex and even ⇔ F( , )u v  complex and even

13) f x y( , ) complex and odd ⇔ F( , )u v  complex and odd

TABLE 4.1
Some symmetry 
properties of the 
2-D DFT and its 
inverse. R( , )u v  
and I( , )u v  are 
the real and 
imaginary parts of 
F( , ),u v   
respectively. 
Use of the word 
complex indicates 
that a function 
has nonzero real 
and imaginary 
parts. 

†Recall that x, y, u, and v  are discrete (integer) variables, with x and u in the range [ , ],0 1M −  and y and v  in 
the range [ , ].0 1N −  To say that a complex function is even means that its real and imaginary parts are even, and 
similarly for an odd complex function. As before, “⇔” indicates a Fourier transform pair.
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is replaced by ( , ),− −x y  is F *( , ),u v  the complex conjugate of the DFT of f x y( , ). 
Conversely, the IDFT of F *( , )u v  is f x y( , ).− −

EXAMPLE 4.11 :  1-D illustrations of the properties in Table 4.1.

The 1-D sequences (functions) and their transforms in Table 4.2 are short examples of the properties 
listed in Table 4.1. For example, in property 3 we see that a real function with elements 1 2 3 4, , ,{ }  has a 
Fourier transform whose real part, 10 2 2 2, , , ,− − −{ }  is even and whose imaginary part, 0 2 0 2, , , ,−{ }  is 
odd. Property 8 tells us that a real even function has a transform that is real and even also. Property 12 
shows that an even complex function has a transform that is also complex and even. The other listings 
in the table are analyzed in a similar manner.

EXAMPLE 4.12 :  Proving some of the DFT symmetry properties from Table 4.1.

In this example, we prove several of the properties in Table 4.1 to help you develop familiarity with 
manipulating these important properties, and to establish a basis for solving some of the problems at 
the end of the chapter. We prove only the properties on the right given the properties on the left. The 
converse is proved in a manner similar to the proofs we give here. 

Consider property 3, which reads: If f x y( , ) is a real function, the real part of its DFT is even and the 
imaginary part is odd. We prove this property as follows: F( , )u v  is complex in general,  so it can be expressed 
as the sum of a real and an imaginary part: F R jI( , ) ( , ) ( , ).u v u v u v= +  Then, F R jI*( , ) ( , ) ( , ).u v u v u v= −  
Also, F R jI( , ) ( , ) ( , ).− − = − − + − −u v u v u v  But, as we proved earlier for Eq. (4-85), if f x y( , ) is real then 
F F*( , ) ( , ),u v u v= − −  which, based on the preceding two equations, means that R R( , ) ( , )u v u v= − −  and 
I I( , ) ( , ).u v u v= − − −  In view of the definitions in Eqs. (4-80) and (4-81), this proves that R is an even 
function and that I is an odd function.

Next, we prove property 8. If f x y( , ) is real, we know from property 3 that the real part of F( , )u v  is 
even, so to prove property 8 all we have to do is show that if f x y( , ) is real and even then the imaginary 
part of F( , )u v  is 0 (i.e., F is real). The steps are as follows:

Property f(x) F(u)

3 1 2 3 4, , ,{ } ⇔ 10 0 2 2 2 0 2 2+( ) − +( ) − +( ) − −( ){ }j j j j, , ,

4 1 2 3 4j j j j, , ,{ } ⇔ 0 2 5 5 5 0 5 5 5+( ) −( ) −( ) − −( ){ }. , . . , . , . .j j j j

8 2 1 1 1, , ,{ } ⇔ 5 1 1 1, , ,{ }
9 0 1 0 1, , ,−{ } ⇔ 0 0 0 2 0 0 0 2+( ) +( ) +( ) −( ){ }j j j j, , ,

10 2 1 1 1j j j j, , ,{ } ⇔ 5 j j j j, , ,{ }
11 0 1 0 1j j j j, , ,−{ } ⇔ 0 2 0 2, , ,−{ }
12 4 4 3 2 0 2 3 2+( ) +( ) +( ) +( ){ }j j j j, , , ⇔ 10 10 4 2 2 2 4 2+( ) +( ) − +( ) +( ){ }j j j j, , ,

13 0 0 1 1 0 0 1+( ) +( ) +( ) − −( ){ }j j j j, , , ⇔ 0 0 2 2 0 0 2 2+( ) −( ) +( ) − +( ){ }j j j j, , ,

TABLE 4.2
1-D examples of 
some of the prop-
erties in Table 4.1.
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We can expand the last line of this expression in terms of even and odd parts
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real.

The first step follows from Euler’s equation, and the fact that the cos and sin are even and odd functions, 
respectively. We also know from property 8 that, in addition to being real, f x y( , ) is an even function. 
The only term in the penultimate line containing imaginary components is the second term, which is 0 
according to Eq. (4-84). Therefore, if f x y( , ) is real and even, then F( , )u v  is real. As noted earlier, F( , )u v  
is even also because f x y( , ) is real. This concludes the proof.

Finally, we demonstrate the validity of property 6. From the definition of the DFT,

 ℑ − −{ } = − −
=

−

=

−
− +∑∑f x y f x y e

y
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x

M
j ux M y N( , ) ( , ) ( )

0

1

0

1
2p v

We are not making a change of variable here. We are evaluating the DFT of f x y( , ),− −  so we sim-
ply insert this function into the equation, as we would any other function. Because of periodicity, 
f x y f M x N y( , ) ( , ).− − = − −  If we now define m M x= −  and n N y= − , then

 ℑ − −{ } =
=

−

=
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− − + −∑∑f x y f m n e
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To convince yourself that the summations are correct, try a 1-D transform and expand a few terms by 
hand. Because exp[ ( )] ,− =j2 1p integer  it follows that

 ℑ − −{ } = = − −
=

−
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−
+∑∑f x y f m n e F u
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M
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This concludes the proof.
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FOURIER SPECTRUM AND PHASE ANGLE

Because the 2-D DFT is complex in general, it can be expressed in polar form:
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v u v u v
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= +

= f
 (4-86)

where the magnitude

 F u R u I u( , ) ( , ) ( , )
/

v v v= +⎡⎣ ⎤⎦
2 2 1 2

 (4-87)

is called the Fourier (or frequency) spectrum, and

 f( , ) arctan
( , )
( , )

u
I u
R u

v
v

v
=

⎡

⎣
⎢

⎤

⎦
⎥  (4-88)

is the phase angle or phase spectrum. Recall from the discussion in Section 4.2 that 
the arctan must be computed using a four-quadrant arctangent function, such as 
MATLAB’s atan2(Imag, Real) function.

Finally, the power spectrum is defined as

 
P u F u

R u I u
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=

= +

2

2 2
 (4-89)

As before, R and I are the real and imaginary parts of F( , ),u v  and all computations  
are carried out for the discrete variables u = −0 1 2 1, , , ,… M  and v = −0 1 2 1, , , , .… N  
Therefore, F( , ) ,u v  f( , ),u v  and P( , )u v  are arrays of size M N× .

The Fourier transform of a real function is conjugate symmetric [see Eq. (4-85)], 
which implies that the spectrum has even symmetry about the origin:

 F u F u( , ) ( , )v v= − −  (4-90)

The phase angle exhibits odd symmetry about the origin:

 f f( , ) ( , )u uv v= − − −  (4-91)

It follows from Eq. (4-67) that
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which indicates that the zero-frequency term of the DFT is proportional to the aver-
age of f x y( , ). That is, 
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where f  (a scalar) denotes the average value of f x y( , ). Then, 

 F MN f( , )0 0 =  (4-93)

Because the proportionality constant MN usually is large, F( , )0 0  typically is the 
largest component of the spectrum by a factor that can be several orders of magni-
tude larger than other terms. Because frequency components u and v  are zero at the 
origin, F( , )0 0  sometimes is called the dc component of the transform. This terminol-
ogy is from electrical engineering, where “dc” signifies direct current (i.e., current of 
zero frequency).

EXAMPLE 4.13 :  The spectrum of a rectangle.

Figure 4.23(a) shows an image of a rectangle and Fig. 4.23(b) shows its spectrum, whose values were 
scaled to the range [ , ]0 255  and displayed in image form. The origins of both the spatial and frequency 
domains are at the top left. This is the right-handed coordinate system convention we defined in Fig. 2.19. 
Two things are apparent in Fig. 4.23(b). As expected, the area around the origin of the transform con-
tains the highest values (and thus appears brighter in the image). However, note that the four corners 

x u

u u

y

v

v

v

ba
dc

FIGURE 4.23
(a) Image.  
(b) Spectrum, 
showing small, 
bright areas in the 
four corners (you 
have to look care-
fully to see them).  
(c) Centered  
spectrum.  
(d) Result after a 
log transformation. 
The zero crossings 
of the spectrum 
are closer in the 
vertical direction 
because the rectan-
gle in (a) is longer 
in that direction. 
The right-handed  
coordinate  
convention used in 
the book places the 
origin of the spatial 
and frequency 
domains at the top 
left (see Fig. 2.19). 
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of the spectrum contain similarly high values. The reason is the periodicity property discussed in the 
previous section. To center the spectrum, we simply multiply the image in (a) by ( )− +1 x y  before comput-
ing the DFT, as indicated in Eq. (4-76). Figure 4.23(c) shows the result, which clearly is much easier to 
visualize (note the symmetry about the center point). Because the dc term dominates the values of the 
spectrum, the dynamic range of other intensities in the displayed image are compressed. To bring out 
those details, we used the log transformation defined in Eq. (3-4) with c = 1. Figure 4.23(d) shows the 
display of log( ( , ) ).1 + F u v  The increased rendition of detail is evident. Most spectra shown in this and 
subsequent chapters are scaled in this manner. 

It follows from Eqs. (4-72) and (4-73) that the spectrum is insensitive to image translation (the abso-
lute value of the exponential term is 1), but it rotates by the same angle of a rotated image. Figure 
4.24 illustrates these properties. The spectrum in Fig. 4.24(b) is identical to the spectrum in Fig. 4.23(d). 

ba
dc

FIGURE 4.24
(a) The rectangle 
in Fig. 4.23(a) 
translated.  
(b) Corresponding  
spectrum.  
(c) Rotated  
rectangle.  
(d) Corresponding 
 spectrum. 
The spectrum of 
the translated  
rectangle is 
identical to the 
spectrum of the 
original image in 
Fig. 4.23(a). 

ba c

FIGURE 4.25
Phase angle  
images of  
(a) centered,  
(b) translated, 
and (c) rotated 
rectangles.
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Clearly, the images in Figs. 4.23(a) and 4.24(a) are different so, if their Fourier spectra are the same, 
then, based on Eq. (4-86), their phase angles must be different. Figure 4.25 confirms this. Figures 4.25(a) 
and (b) are the phase angle arrays (shown as images) of the DFTs of Figs. 4.23(a) and 4.24(a). Note the 
lack of similarity between the phase images, in spite of the fact that the only differences between their 
corresponding images is simple translation. In general, visual analysis of phase angle images yields little 
intuitive information. For instance, because of its 45° orientation, one would expect intuitively that the 
phase angle in Fig. 4.25(a) should correspond to the rotated image in Fig. 4.24(c), rather than to the 
image in Fig. 4.23(a). In fact, as Fig. 4.25(c) shows, the phase angle of the rotated image has a strong 
orientation that is much less than 45°.

The components of the spectrum of the DFT determine the amplitudes of the 
sinusoids that combine to form an image. At any given frequency in the DFT of 
an image, a large amplitude implies a greater prominence of a sinusoid of that fre-
quency in the image. Conversely, a small amplitude implies that less of that sinu-
soid is present in the image. Although, as Fig. 4.25 shows, the contribution of the 
phase components is less intuitive, it is just as important. The phase is a measure of 
displacement of the various sinusoids with respect to their origin. Thus, while the 
magnitude of the 2-D DFT is an array whose components determine the intensities 
in the image, the corresponding phase is an array of angles that carry much of the 
information about where discernible objects are located in the image. The following 
example illustrates these ideas in more detail. 

EXAMPLE 4.14 :  Contributions of the spectrum and phase angle to image formation.

Figure 4.26(b) shows as an image the phase-angle array, f( , ),u v  of the DFT of Fig. 4.26(a), computed 
using Eq. (4-88). Although there is no detail in this array that would lead us by visual analysis to associ-
ate it with the structure of its corresponding image, the information in this array is crucial in determin-
ing shape features of the image. To illustrate this, we reconstructed the boy’s image using only its phase 
angle. The reconstruction consisted of computing the inverse DFT of Eq. (4-86) using f( , ),u v  but setting 
F( , ) .u v = 1  Figure Fig. 4.26(c) shows the result (the original result had much less contrast than is shown; 
to bring out details important in this discussion, we scaled the result using Eqs. (2-31) and (2-32), and 
then enhanced it using histogram equalization). However, even after enhancement, it is evident that 
much of the intensity information has been lost (remember, that information is carried by the spectrum, 
which we did not use in the reconstruction). However, the shape features in 4.26(c) are unmistakably 
from Fig. 4.26(a). This illustrates vividly the importance of the phase angle in determining shape char-
acteristics in an image. 

Figure 4.26(d) was obtained by computing the inverse DFT Eq. (4-86), but using only the spectrum. 
This means setting the exponential term to 1, which in turn implies setting the phase angle to 0. The 
result is not unexpected. It contains only intensity information, with the dc term being the most domi-
nant. There is no shape information in the image because the phase was set to zero.

Finally, Figs. 4.26(e) and (f) show yet again the dominance of the phase in determining the spatial 
feature content of an image. Figure 4.26(e) was obtained by computing the inverse DFT of Eq. (4-86) 
using the spectrum of the rectangle from Fig. 4.23(a) and the phase angle from the boy’s image. The 
boy’s features clearly dominate this result. Conversely, the rectangle dominates Fig. 4.26(f), which was 
computed using the spectrum of the boy’s image and the phase angle of the rectangle.
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THE 2-D DISCRETE CONVOLUTION THEOREM

Extending Eq. (4-48) to two variables results in the following expression for 2-D 
circular convolution:

 ( )( , ) ( , ) ( , )f h x y f m n h x m y n
n

N

m

M

� = − −
=

−

=

−

∑∑
0

1

0

1

 (4-94)

for x M= −0 1 2 1, , , ,…  and y N= −0 1 2 1, , , , .…  As in Eq. (4-48), Eq. (4-94) gives 
one period of a 2-D periodic sequence. The 2-D convolution theorem is give by

 ( )( , ) ( )( , )f h x y F H u� ⇔ i v  (4-95)

You will find it helpful 
to review Eq. (4-48), 
and the comments made 
there regarding circular 
convolution, as opposed 
to the convolution we 
studied in Section 3.4.

ba c
ed f

FIGURE 4.26 (a) Boy image. (b) Phase angle. (c) Boy image reconstructed using only its phase angle (all shape features 
are there, but the intensity information is missing because the spectrum was not used in the reconstruction). (d) Boy 
image reconstructed using only its spectrum. (e) Boy image reconstructed using its phase angle and the spectrum of 
the rectangle in Fig. 4.23(a). (f) Rectangle image reconstructed using its phase and the spectrum of the boy’s image. 
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254    Chapter 4  Filtering in the Frequency Domain

and, conversely,

 ( )( , ) ( )( , )f h x y
MN

F Hi ⇔ 1
� u v  (4-96)

where F and H are the Fourier transforms of f and h, respectively, obtained using 
Eq. (4-67). As before, the double arrow is used to indicate that the left and right sides 
of the expressions constitute a Fourier transform pair. Our interest in the remainder 
of this chapter is in Eq. (4-95), which states that the Fourier transform of the spatial 
convolution of f and h, is the product of their transforms. Similarly, the inverse DFT 
of the product ( )( , )F Hi u v  yields ( )( , ).f h x y�  

Equation (4-95) is the foundation of linear filtering in the frequency domain and, 
as we will explain in Section 4.7, is the basis for all the filtering techniques discussed 
in this chapter. As you will recall from Chapter 3, spatial convolution is the foun-
dation for spatial filtering, so Eq. (4-95) is the tie that establishes the equivalence 
between spatial and frequency-domain filtering, as we have mentioned several times 
before. 

Ultimately, we are interested in the results of convolution in the spatial domain, 
where we analyze images. However, the convolution theorem tell us that we have 
two ways of computing the spatial convolution of two functions. We can do it directly 
in the spatial domain with Eq. (3-35), using the approach described in Section 3.4 
or, according to Eq. (4-95), we can compute the Fourier transform of each function, 
multiply the transforms, and compute the inverse Fourier transform. Because we are 
dealing with discrete quantities, computation of the Fourier transforms is carried 
out using a DFT algorithm. This automatically implies periodicity, which means that 
when we take the inverse Fourier transform of the product of the two transforms we 
would get a circular (i.e., periodic) convolution, one period of which is given by Eq. 
(4-94). The question is: under what conditions will the direct spatial approach and 
the inverse Fourier transform method yield the same result? We arrive at the answer 
by looking at a 1-D example first, and then extending the results to two variables.

The left column of Fig. 4.27 implements convolution of two functions, f and h, 
using the 1-D equivalent of Eq. (3-35), which, because the two functions are of same 
size, is written as

 ( )( ) ( ) ( )f f x h x mh x
m

� =
=

∑ −
0

399

Recall from our explanation of Figs. 3.29 and 3.30 that the procedure consists of (1) 
rotating (flipping) h by 180°, [see Fig. 4.27(c)], (2) translating the resulting function 
by an amount x [Fig. 4.27(d)], and (3) for each value x of translation, computing the 
entire sum of products in the right side of the equation. In terms of Fig. 4.27, this 
means multiplying the function in Fig. 4.27(a) by the function in Fig. 4.27(d) for each 
value of x. The displacement x ranges over all values required to completely slide h 
across f. Figure 4.27(e) shows the convolution of these two functions. As you know, 
convolution is a function of the displacement variable, x, and the range of x required 
in this example to completely slide h past f is from 0 to 799.

The function products 
are elementwise products, 
as defined in Section 2.6. 

We will discuss efficient 
ways for computing the 
DFT in Section 4.11.
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If we use the DFT and the convolution theorem to try to obtain the same result 
as in the left column of Fig. 4.27, we must take into account the periodicity inher-
ent in the expression for the DFT. This is equivalent to convolving the two periodic 
functions in Figs. 4.27(f) and (g) (i.e., as Eqs. (4-46) and (4-47) indicate, the func-
tions their transforms have implied periodicity). The convolution procedure is the 
same as we just discussed, but the two functions now are periodic. Proceeding with 
these two functions as in the previous paragraph would yield the result in Fig. 4.27(j), 
which obviously is incorrect. Because we are convolving two periodic functions, the 
convolution itself is periodic. The closeness of the periods in Fig. 4.27 is such that 

f(m)

m m

33

200 4000 0 200 400

f(m)

2

m m
200 4000

2

0 200 400

h(m) h(m)

m m
200 4000 0 200 400

h(�m) h(�m)

m m
200 4000 0 200 400

xx

h(x � m) h(x � m)

x x

Range of
Fourier transform

computation

200 400 600 8000

600

1200

600

1200

0 200 400

( )( )gf x�( )( )gf x�

b
a

c

e
d

f

h
g

i
j

FIGURE 4.27
Left column:  
Spatial  
convolution 
computed with 
Eq. (3-35), using 
the approach 
discussed in  
Section 3.4.  
Right column: 
Circular  
convolution. The 
solid line in (j) 
is the result we 
would obtain 
using the DFT, 
or, equivalently, 
Eq. (4-48). This 
erroneous result 
can be remedied 
by using zero  
padding.

DIP4E_GLOBAL_Print_Ready.indb   255 6/16/2017   2:05:29 PM



256    Chapter 4  Filtering in the Frequency Domain

they interfere with each other to cause what is commonly referred to as wraparound 
error. According to the convolution theorem, if we had computed the DFT of the 
two 400-point functions, f and h, multiplied the two transforms, and then computed 
the inverse DFT, we would have obtained the erroneous 400-point segment of the 
periodic convolution shown as a solid line in Fig. 4.27(j) (remember the limits of the 
1-D DFT are u = −0 1 2 1, , , , ).… M  This is also the result we would obtain if we used 
Eq. (4-48) [the 1-D equivalent of Eq. (4-94)] to compute one period of the circular 
convolution.

Fortunately, the solution to the wraparound error problem is simple. Consider 
two functions, f x( ) and h x( ) composed of A and B samples, respectively. It can be 
shown (Brigham [1988]) that if we append zeros to both functions so that they have 
the same length, denoted by P, then wraparound is avoided by choosing

 P A B≥ + − 1  (4-97)

In our example, each function has 400 points, so the minimum value we could use is 
P = 799, which implies that we would append 399 zeros to the trailing edge of each 
function. This procedure is called zero padding, as we discussed in Section 3.4. As 
an exercise, you should convince yourself that if the periods of the functions in Figs. 
4.27(f) and (g) were lengthened by appending to each period at least 399 zeros, the 
result would be a periodic convolution in which each period is identical to the cor-
rect result in Fig. 4.27(e). Using the DFT via the convolution theorem would result 
in a 799-point spatial function identical to Fig. 4.27(e). The conclusion, then, is that 
to obtain the same convolution result between the “straight” representation of the 
convolution equation approach in Chapter 3, and the DFT approach, functions in 
the latter must be padded prior to computing their transforms.

Visualizing a similar example in 2-D is more difficult, but we would arrive at the 
same conclusion regarding wraparound error and the need for appending zeros to 
the functions. Let f x y( , ) and h x y( , ) be two image arrays of sizes A B×  and C D×  
pixels, respectively. Wraparound error in their circular convolution can be avoided 
by padding these functions with zeros, as follows:

 f x y
f x y x A y B

A x P B y Qp( , )
( , )

=
≤ ≤ − ≤ ≤ −
≤ ≤ ≤ ≤

⎧
⎨
⎩

0 1 0 1

0

  and  

  or  
 (4-98)

and

 h x y
h x y x C y D

C x P D y Qp( , )
( , )

=
≤ ≤ − ≤ ≤ −
≤ ≤ ≤ ≤

⎧
⎨
⎩

0 1 0 1

0

  and  

  or  
 (4-99)

with

 P A C≥ + − 1  (4-100)

and

The padding zeros could 
be appended also at 
the beginning of the 
functions, or they could 
be divided between the 
beginning and end of the 
functions. It is simpler to 
append them at the end.

We use zero-padding 
here for simplicity. Recall 
from the discussion of 
Fig. 3.39 that replicate 
and mirror padding 
generally yield better 
results.
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 Q B D≥ + − 1  (4-101)

The resulting padded images are of size P Q× . If both arrays are of the same size, 
M N× , then we require that P M≥ −2 1 and Q N≥ −2 1. As a rule, DFT algorithms 
tend to execute faster with arrays of even size, so it is good practice to select P and 
Q as the smallest even integers that satisfy the preceding equations. If the two arrays 
are of the same size, this means that P and Q are selected as:

 P M= 2  (4-102)

and

 Q N= 2  (4-103)

Figure 4.31 in the next section illustrates the effects of wraparound error on images. 
The two functions in Figs. 4.27(a) and (b) conveniently become zero before the 

end of the sampling interval. If one or both of the functions were not zero at the end 
of the interval, then a discontinuity would be created when zeros were appended 
to the function to eliminate wraparound error. This is analogous to multiplying a 
function by a box, which in the frequency domain would imply convolution of the 
original transform with a sinc function (see Example 4.1). This, in turn, would create 
so-called frequency leakage, caused by the high-frequency components of the sinc 
function. Leakage produces a blocky effect on images. Although leakage can never 
be totally eliminated, it can be reduced significantly by multiplying the sampled 
function by another function that tapers smoothly to near zero at both ends of the 
sampled record. This idea is to dampen the sharp transitions (and thus the high fre-
quency components) of the box. This approach, called windowing or apodizing, is an 
important consideration when fidelity in image reconstruction (as in high-definition 
graphics) is desired. 

SUMMARY OF 2-D DISCRETE FOURIER TRANSFORM PROPERTIES

Table 4.3 summarizes the principal DFT definitions introduced in this chapter. We 
will discuss the separability property in Section 4.11, where we also show how to 
obtain the inverse DFT using a forward transform algorithm. Correlation will be 
discussed in detail Chapter 12.

Table 4.4 summarizes some important DFT pairs. Although our focus is on dis-
crete functions, the last two entries in the table are Fourier transform pairs that can 
be derived only for continuous variables (note the use of continuous variable nota-
tion).We include them here because, with proper interpretation, they are quite use-
ful in digital image processing. The differentiation pair can be used to derive the fre-
quency-domain equivalent of the Laplacian defined in Eq. (3-50) (see Problem 4.52). 
The Gaussian pair is discussed in Section 4.7. Tables 4.1, 4.3 and 4.4 provide a sum-
mary of properties useful when working with the DFT. Many of these properties 
are key elements in the development of the material in the rest of this chapter, and 
some are used in subsequent chapters.

A simple apodizing 
function is a triangle, cen-
tered on the data record, 
which tapers to 0 at both 
ends of the record. This is 
called a Bartlett window. 
Other common windows 
are the Gaussian, the 
Hamming and the Hann 
windows. 
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Name Expression(s)

1) Discrete Fourier 
transform (DFT) of
f x y( , )

F f x y e j ux M y N

y

N

x

M

( , ) ( , ) ( )u v v= − +

=

−

=

−

∑∑ 2

0

1

0

1
p

2) Inverse discrete  
Fourier transform  
(IDFT) of F( , )u v

f x y
MN

F e j ux M y N
NM

( , ) ( , ) ( )= +

=

−

=

−

∑∑1 2

0

1

0

1

u v v

vu

p

3) Spectrum F R I R F I F( , ) ( , ) ( , ) ( ); ( )u v u v u v= +⎡⎣ ⎤⎦ = =2 2 1 2
Real  Imag

4) Phase angle f( , ) tan
( , )
( , )

u v
u v

u v
=

⎡

⎣
⎢

⎤

⎦
⎥

−1 I
R

5) Polar representation F F e j( , ) ( , ) ( , )u v u v u v= f

6) Power spectrum P F( , ) ( , )u v u v= 2

7) Average value f
MN

f x y
MN

F
y

N

x

M

= =
=

−

=

−

∑∑1 1
0 0

0

1

0

1

( , ) ( , )

8) Periodicity (k1 and  
k2  are integers)

F F k M F k N

F k k N

f x y f x k M y

( , ) ( , ) ( , )

( , )

( , ) ( ,

u v u v u v

u v

= + = +
= + +
= +

1 2

1 2

1 )) ( , )

( , )

= +
= + +

f x y k N

f x k M y k N
2

1 2

9) Convolution ( ( , ) ( , ))( , )f f m n h x m y nh x y
n

N

m

M

� = − −
=

−

=

−

∑∑
0

1

0

1

10) Correlation ( ( , ) ( , ))( , ) *f f m n h x m y nh x y
n

N

m

M

� = + +
=

−

=

−

∑∑
0

1

0

1

11) Separability The 2-D DFT can be computed by computing 1-D DFT 
transforms along the rows (columns) of the image, followed 
by 1-D transforms along the columns (rows) of the result. 
See Section 4.11.

12) Obtaining the IDFT 
using a DFT  
algorithm

MNf x y F e j ux M y N
NM

* * ( )( , ) ( , )= − +

=

−

=

−

∑∑ u v v

vu

2

0

1

0

1
p

 
This equation indicates that inputting F *( , )u v  into an 
algorithm that computes the forward transform (right side 
of above equation) yields MNf x y*( , ). Taking the complex 
conjugate and dividing by MN gives the desired inverse. See 
Section 4.11.

TABLE 4.3
Summary of DFT 
definitions and 
corresponding 
expressions. 
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TABLE 4.4
Summmary of 
DFT pairs. The  
closed-form 
expressions in 12 
and 13 are valid 
only for  
continuous  
variables. They 
can be used with 
discrete variables 
by sampling the  
continuous  
expressions. 

Name DFT Pairs

1) Symmetry 
properties

See Table 4.1

2) Linearity a f x y b f x y aF bF1 2 1 2( , ) ( , ) ( , ) ( , )+ ⇔ +u v u v

3) Translation 
(general)

f x y e F u u

f x x y y F e

j u x M y N

j

( , ) ( , )

( , ) ( , )

( )2
0 0

0 0
2

0p

p

+

−

⇔ − −

− − ⇔

v0 v v

u v (( )ux M y N0 + v 0

4) Translation 
to center of 
the frequency 
rectangle, 
( , )M N2 2

f x y F M N

f x M N F

x y( , )( ) ( , )

( , ) ( , )( )

− ⇔ − −

− − ⇔ −

+

+

1 2 2

2 2 1

u v

y u v u v

5) Rotation f r F

r x y y x

( , ) ( , )

tan ( ) tan ( )

u u v w u

u v w

+ ⇔ +

= + = = + =− −

0 0

2 2 1 2 2 1u v v u

6) Convolution 
theorem†

f F H

f h x y MN F H

h x y�

�

)( , )

( ) (

( )( , )

( )( , ) )( , )

⇔

⇔ [ ]
i

i

u v

u v1

7) Correlation 
theorem†

( )( , ) ( )( , )

( )( , ) ( ) ( )( , )

*

*

f h x y F H

f h x y MN F H

�

�

⇔

⇔ [ ]
i

i

u v

u v1

8) Discrete unit 
impulse

d( , )x y ⇔ 1
1 ⇔ MNd( , )u v

9) Rectangle rec a b ab
a

a
b

b
e j a b,

sin( )
( )

sin( )
( )

( )[ ] ⇔ − +p

p

p

p

pu

u

v

v
u v

10) Sine sin( ) ( , ) ( , )2 2
20 0 0 0 0 0p p d du v u u v v u u v vx M y N

jMN+ ⇔ + + − − −[ ]

11) Cosine cos( ) ( , ) ( , )2 2
1
20 0 0 0 0 0p p d du v u u v v u u v vx M y N+ ⇔ + + + − −[ ]

The following Fourier transform pairs are derivable only for continuous variables, denoted 
as before by t and z for spatial variables and by m  and n for frequency variables. These 
results can be used for DFT work by sampling the continuous forms.

12) Differentiation 
(the expressions 
on the right 
assume that 
f ( , ) .± ±� � = 0

a b a b∂
∂

∂
∂

⇔

∂
∂

⇔

t z
f t z j j F

f t z

t
j

m n
m n

m

m
m

( , ) ( ) ( ) ( , )

( , )
( )

2 2

2

pm pn m n

pm FF
f t z

z
j F

n

m
n( , );

( , )
( ) ( , )m n pn m n

∂
∂

⇔ 2

13) Gaussian A e Ae At z2 2 2 22 2 2 2 2 2 2

ps p s m n s− + − +⇔( ) ( ) (  is a constant)

† Assumes that f x y( , ) and h x y( , )  have been properly padded. Convolution is associative, commutative, and 
distributive. Correlation is distributive (see Table 3.5). The products are elementwise products (see Section 2.6).
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4.7 THE BASICS OF FILTERING IN THE FREQUENCY DOMAIN  

In this section, we lay the groundwork for all the filtering techniques discussed in the 
remainder of the chapter. 

ADDITIONAL CHARACTERISTICS OF THE FREQUENCY DOMAIN

We begin by observing in Eq. (4-67) that each term of F( , )u v  contains all values of 
f x y( , ), modified by the values of the exponential terms. Thus, with the exception 
of trivial cases, it is usually impossible to make direct associations between specific 
components of an image and its transform. However, some general statements can 
be made about the relationship between the frequency components of the Fourier 
transform and spatial features of an image. For instance, because frequency is direct-
ly related to spatial rates of change, it is not difficult intuitively to associate frequen-
cies in the Fourier transform with patterns of intensity variations in an image. We 
showed in Section 4.6 that the slowest varying frequency component ( )u v= = 0  
is proportional to the average intensity of an image. As we move away from the 
origin of the transform, the low frequencies correspond to the slowly varying inten-
sity components of an image. In an image of a room, for example, these might cor-
respond to smooth intensity variations on the walls and floor. As we move further 
away from the origin, the higher frequencies begin to correspond to faster and faster 
intensity changes in the image. These are the edges of objects and other components 
of an image characterized by abrupt changes in intensity.

Filtering techniques in the frequency domain are based on modifying the Fourier 
transform to achieve a specific objective, and then computing the inverse DFT to get 
us back to the spatial domain, as introduced in Section 2.6. It follows from Eq. (4-87) 
that the two components of the transform to which we have access are the transform 
magnitude (spectrum) and the phase angle. We learned in Section 4.6 that visual 
analysis of the phase component generally is not very useful. The spectrum, however, 
provides some useful guidelines as to the gross intensity characteristics of the image 
from which the spectrum was generated. For example, consider Fig. 4.28(a), which 
is a scanning electron microscope image of an integrated circuit, magnified approxi-
mately 2500 times. 

Aside from the interesting construction of the device itself, we note two principal 
features in this image: strong edges that run approximately at ± °,45  and two white, 
oxide protrusions resulting from thermally induced failure. The Fourier spectrum 
in Fig. 4.28(b) shows prominent components along the ± °45  directions that corre-
spond to the edges just mentioned. Looking carefully along the vertical axis in Fig. 
4.28(b), we see a vertical component of the transform that is off-axis, slightly to the 
left. This component was caused by the edges of the oxide protrusions. Note how the 
angle of the frequency component with respect to the vertical axis corresponds to 
the inclination (with respect to the horizontal axis of the image) of the long white 
element. Note also the zeros in the vertical frequency component, corresponding to 
the narrow vertical span of the oxide protrusions.

These are typical of the types of associations we can make in general between 
the frequency and spatial domains. As we will show later in this chapter, even these 
types of gross associations, coupled with the relationships mentioned previously 

4.7
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between frequency content and rate of change of intensity levels in an image, can 
lead to some very useful results. We will show in Section 4.8 the effects of modifying 
various frequency ranges in the transform of Fig. 4.28(a). 

FREQUENCY DOMAIN FILTERING FUNDAMENTALS

Filtering in the frequency domain consists of modifying the Fourier transform of an 
image, then computing the inverse transform to obtain the spatial domain represen-
tation of the processed result. Thus, given (a padded) digital image, f x y( , ), of size 
P Q×  pixels, the basic filtering equation in which we are interested has the form:

 g x y H F( , ) ( , ) ( , )= [ ]{ }−Real � 1 u v u v  (4-104)

where �−1  is the IDFT, F( , )u v  is the DFT of the input image, f x y( , ), H( , )u v  is a 
filter transfer function (which we often call just a filter or filter function), and g x y( , ) 
is the filtered (output) image. Functions F, H, and g are arrays of size P Q× , the same 
as the padded input image. The product H F( , ) ( , )u v u v  is formed using elementwise 
multiplication, as defined in Section 2.6. The filter transfer function modifies the 
transform of the input image to yield the processed output, g x y( , ). The task of speci-
fying H( , )u v  is simplified considerably by using functions that are symmetric about 
their center, which requires that F( , )u v  be centered also. As explained in Section 4.6, 
this is accomplished by multiplying the input image by ( )− +1 x y  prior to computing 
its transform.†

† Some software implementations of the 2-D DFT (e.g., MATLAB) do not center the transform. This implies 
that filter functions must be arranged to correspond to the same data format as the uncentered transform (i.e., 
with the origin at the top left). The net result is that filter transfer functions are more difficult to generate and 
display. We use centering in our discussions to aid in visualization, which is crucial in developing a clear under-
standing of filtering concepts. Either method can be used in practice, provided that consistency is maintained. 

If H is real and  
symmetric and f is real 
(as is typically the case), 
then the IDFT in Eq. 
(4-104) should yield 
real quantities in theory. 
In practice, the inverse 
often contains para-
sitic complex terms from 
roundoff error and other 
computational inaccura-
cies. Thus, it is customary 
to take the real part of 
the IDFT to form g.

ba

FIGURE 4.28 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of (a).  
(Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materials Research, 
McMaster University, Hamilton, Ontario, Canada.) 
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We are now in a position to consider filtering in  detail. One of the simplest filter 
transfer functions we can construct is a function H( , )u v  that is 0 at the center of 
the (centered) transform, and 1’s elsewhere. This filter would reject the dc term and 

“pass” (i.e., leave unchanged) all other terms of F( , )u v  when we form the product 
H F( , ) ( , ).u v u v  We know from property 7 in Table 4.3 that the dc term is responsible 
for the average intensity of an image, so setting it to zero will reduce the average 
intensity of the output image to zero. Figure 4.29 shows the result of this operation 
using Eq. (4-104). As expected, the image became much darker. An average of zero 
implies the existence of negative intensities. Therefore, although it illustrates the 
principle, Fig. 4.29 is not a true representation of the original, as all negative intensi-
ties were clipped (set to 0) by the display.

As noted earlier, low frequencies in the transform are related to slowly varying 
intensity components in an image, such as the walls of a room or a cloudless sky in 
an outdoor scene. On the other hand, high frequencies are caused by sharp transi-
tions in intensity, such as edges and noise. Therefore, we would expect that a func-
tion H( , )u v  that attenuates high frequencies while passing low frequencies (called a 
lowpass filter, as noted before) would blur an image, while a filter with the opposite 
property (called a highpass filter) would enhance sharp detail, but cause a reduction 
in contrast in the image. Figure 4.30 illustrates these effects. For example, the first 
column of this figure shows a lowpass filter transfer function and the corresponding 
filtered image. The second column shows similar results for a highpass filter. Note 
the similarity between Figs. 4.30(e) and Fig. 4.29. The reason is that the highpass 
filter function shown eliminates the dc term, resulting in the same basic effect that 
led to Fig. 4.29. As illustrated in the third column, adding a small constant to the 
filter does not affect sharpening appreciably, but it does prevent elimination of the 
dc term and thus preserves tonality.

Equation (4-104) involves the product of two functions in the frequency domain 
which, by the convolution theorem, implies convolution in the spatial domain. We 
know from the discussion in Section 4.6 that we can expect wraparound error if 
the functions in question are not padded. Figure 4.31 shows what happens when 

FIGURE 4.29
Result of filter-
ing the image in 
Fig. 4.28(a) with 
a filter transfer 
function that sets 
to 0 the dc term, 
F P Q( , ),2 2  
in the centered 
Fourier transform, 
while leaving all 
other transform 
terms unchanged.
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FIGURE 4.30 Top row: Frequency domain filter transfer functions of (a) a lowpass filter, (b) a highpass filter, and (c) 
an offset highpass filter. Bottom row: Corresponding filtered images obtained using Eq. (4-104). The offset in (c) is 
a = 0 85. , and the height of H( , )u v  is 1. Compare (f) with Fig. 4.28(a). 

ba c

FIGURE 4.31 (a) A simple image. (b) Result of blurring with a Gaussian lowpass filter without padding. (c) Result of 
lowpass filtering with zero padding. Compare the vertical edges in (b) and (c). 
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ba

FIGURE 4.32 (a) Image periodicity without image padding. (b) Periodicity after padding with 0’s (black). The dashed 
areas in the center correspond to the image in Fig. 4.31(a). Periodicity is inherent when using the DFT. (The thin 
white lines in both images are superimposed for clarity; they are not part of the data.) 

we apply Eq. (4-104) without padding. Figure 4.31(a) shows a simple image, and 
Fig. 4.31(b) is the result of lowpass filtering the image with a Gaussian lowpass filter 
of the form shown in Fig. 4.30(a). As expected, the image is blurred. However, the 
blurring is not uniform; the top white edge is blurred, but the sides are not. Pad-
ding the input image with zeros according to Eqs. (4-98) and (4-99) before applying 
Eq. (4-104) resulted in the filtered image in Fig. 4.31(c). This result is as expected, 
with a uniform dark border resulting from zero padding (see Fig. 3.33 for an expla-
nation of this effect).

Figure 4.32 illustrates the reason for the discrepancy between Figs. 4.31(b) and (c). 
The dashed area in Fig. 4.32(a) corresponds to the image in Fig. 4.31(a). The other 
copies of the image are due to the implied periodicity of the image (and its trans-
form) implicit when we use the DFT, as explained in Section 4.6. Imagine convolving 
the spatial representation of the blurring filter (i.e., the corresponding spatial ker-
nel) with this image. When the kernel is centered on the top of the dashed image, it 
will encompass part of the image and also part of the bottom of the periodic image 
immediately above it. When a dark and a light region reside under the filter, the 
result is a mid-gray, blurred output. However, when the kernel is centered on the top 
right side of the image, it will encompass only light areas in the image and its right 
region. Because the average of a constant value is that same value, filtering will have 
no effect in this area, giving the result in Fig. 4.31(b). Padding the image with 0’s cre-
ates a uniform border around each image of the periodic sequence, as Fig. 4.32(b) 
shows. Convolving the blurring kernel with the padded “mosaic” of Fig. 4.32(b) gives 
the correct result in Fig. 4.31(c). You can see from this example that failure to pad an 
image prior to filtering can lead to unexpected results. 

Thus far, the discussion has centered on padding the input image. However, 
Eq. (4-104) also involves a filter transfer function that can be specified either in the 
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spatial or in the frequency domain. But padding is done in the spatial domain, which 
raises an important question about the relationship between spatial padding and 
filter functions specified directly in the frequency domain.

It would be reasonable to conclude that the way to handle padding of a frequency 
domain transfer function is to construct the function the same size as the unpad-
ded image, compute the IDFT of the function to obtain the corresponding spatial 
representation, pad that representation in the spatial domain, and then compute its 
DFT to return to the frequency domain. The 1-D example in Fig. 4.33 illustrates the 
pitfalls in this approach. 

Figure 4.33(a) shows a 1-D ideal lowpass filter transfer function in the frequency 
domain. The function is real and has even symmetry, so we know from property 8 
in Table 4.1 that its IDFT will be real and symmetric also. Figure 4.33(b) shows the 
result of multiplying the elements of the transfer function by ( )−1 u  and computing 
its IDFT to obtain the corresponding spatial filter kernel. The result is shown in 
Fig. 4.33(b). It is evident in this figure that the extremes of this spatial function are 
not zero. Zero-padding the function would create two discontinuities, as Fig. 4.33(c) 
shows. To return to the frequency domain, we compute the forward DFT of the 
spatial, padded function. As Fig. 4.33(d) shows, the discontinuities in the padded 
function caused ringing in its frequency domain counterpart. 

Padding the two ends of 
a function is the same 
as padding one end, 
provided that the total 
number of zeros is the 
same.
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FIGURE 4.33
(a) Filter transfer 
function specified in 
the (centered)  
frequency domain. 
(b) Spatial  
representation (filter 
kernel) obtained by  
computing the IDFT 
of (a).  
(c) Result of  
padding (b) to twice 
its length (note the 
discontinuities).  
(d) Corresponding 
filter in the frequen-
cy domain obtained 
by computing the 
DFT of (c). Note the 
ringing caused by 
the discontinuities 
in (c). Part (b) of the 
figure is below (a), 
and (d) is below (c).
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The preceding results tell us that we cannot pad the spatial representation of a 
frequency domain transfer function in order to avoid wraparound error. Our objec-
tive is to work with specified filter shapes in the frequency domain without having to 
be concerned with truncation issues. An alternative is to pad images and then create 
the desired filter transfer function directly in the frequency domain, this function 
being of the same size as the padded images (remember, images and filter transfer 
functions must be of the same size when using the DFT). Of course, this will result 
in wraparound error because no padding is used for the filter transfer function, but 
this error is mitigated significantly by the separation provided by padding the image, 
and it is preferable to ringing. Smooth transfer functions (such as those in Fig. 4.30) 
present even less of a problem. Specifically, then, the approach we will follow in this 
chapter is to pad images to size P Q×  and construct filter transfer functions of the 
same dimensions directly in the frequency domain. As explained earlier, P and Q 
are given by Eqs. (4-100) and (4-101).

We conclude this section by analyzing the phase angle of filtered images. We can 
express the DFT in terms of its real and imaginary parts: F R jI( , ) ( , ) ( , ).u v u v u v= +  
Equation (4-104) then becomes

 g x y H R jH I( , ) ( , ) ( , ) ( , ) ( , )= +[ ]−� 1 u v u v u v u v  (4-105)

The phase angle is computed as the arctangent of the ratio of the imaginary and the 
real parts of a complex number [see Eq. (4-88)]. Because H( , )u v  multiplies both 
R and I, it will cancel out when this ratio is formed. Filters that affect the real and 
imaginary parts equally, and thus have no effect on the phase angle, are appropri-
ately called zero-phase-shift filters. These are the only types of filters considered in 
this chapter. 

The importance of the phase angle in determining the spatial structure of an 
image was vividly illustrated in Fig. 4.26. Thus, it should be no surprise that even 
small changes in the phase angle can have dramatic (and usually undesirable) effects 
on the filtered output. Figures 4.34(b) and (c) illustrate the effect of changing the 
phase angle array of the DFT of Fig. 4.34(a) (the F( , )u v  term was not changed in 
either case). Figure 4.34(b) was obtained by multiplying the phase angle, f( , ),u v  in 
Eq. (4-86) by −1 and computing the IDFT.  The net result is a reflection of every pixel 
in the image about both coordinate axes. Figure 4.34(c) was obtained by multiply-
ing the phase term by 0.25 and computing the IDFT. Even a scale change rendered 
the image almost unrecognizable. These two results illustrate the advantage of using 
frequency-domain filters that do not alter the phase angle.

SUMMARY OF STEPS FOR FILTERING IN THE FREQUENCY DOMAIN

The process of filtering in the frequency domain can be summarized as follows:

1. Given an input image f x y( , ) of size M N× , obtain the padding sizes P and Q 
using Eqs. (4-102) and (4-103); that is, P M= 2  and Q N= 2 .
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2. Form a padded† image f x yp( , ) of size P Q×  using zero-, mirror-, or replicate 
padding (see Fig. 3.39 for a comparison of padding methods).

3. Multiply f x yp( , ) by ( )−1 x y+  to center the Fourier transform on the P Q×  fre-
quency rectangle.

4. Compute the DFT, F( , ),u v  of the image from Step 3.

5. Construct a real, symmetric filter transfer function, H( , ),u v  of size P Q×  with 
center at ( , ).P Q2 2

6. Form the product G H F( , ) ( , ) ( , )u v u v u v=  using elementwise multiplication; that 
is, G i k H i k F i k( , ) ( , ) ( , )=  for i M= −0 1 2 1, , , ,…  and k = −0 1 2 1, , , , .… N

7. Obtain the filtered image (of size P Q× ) by computing the IDFT of G( , ) :u v

 g x y Gp
x y( , ) ( , ) ( )= { }⎡⎣ ⎤⎦ −− +Q Rreal � 1 1u v

8. Obtain the final filtered result, g x y( , ), of the same size as the input image, by 
extracting the M N×  region from the top, left quadrant of g x yp( , ). 

We will discuss the construction of filter transfer functions (Step 5) in the following 
sections of this chapter. In theory, the IDFT in Step 7 should be real because f x y( , ) 
is real and H( , )u v  is real and symmetric. However, parasitic complex terms in the 
IDFT resulting from computational inaccuracies are not uncommon. Taking the real 
part of the result takes care of that. Multiplication by ( )− +1 x y  cancels out the multi-
plication by this factor in Step 3.

†  Sometimes we omit padding when doing “quick” experiments to get an idea of filter performance, or when 
trying to determine quantitative relationships between spatial features and their effect on frequency domain 
components, particularly in band and notch filtering, as explained later in Section 4.10 and in Chapter 5. 

See Section 2.6 for a 
definition of elementwise 
operations.

ba c

FIGURE 4.34 (a) Original image. (b) Image obtained by multiplying the phase angle array by −1 in Eq. (4-86) and 
computing the IDFT. (c) Result of multiplying the phase angle by 0.25 and computing the IDFT. The magnitude of 
the transform, F( , ) ,u v  used in (b) and (c) was the same.
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268    Chapter 4  Filtering in the Frequency Domain

Figure 4.35 illustrates the preceding steps using zero padding. The figure legend 
explains the source of each image. If enlarged, Fig. 4.35(c) would show black dots 
interleaved in the image because negative intensities, resulting from the multiplica-
tion of fp by ( ) ,− +1 x y  are clipped at 0 by the display. Note in Fig. 4.35(h) the charac-
teristic dark border of  by lowpass filtered images obtained using zero padding.

CORRESPONDENCE BETWEEN FILTERING IN THE SPATIAL AND  
FREQUENCY DOMAINS 

As mentioned several times before, the link between filtering in the spatial and fre-
quency domains is the convolution theorem. Earlier in this section, we defined fil-
tering in the frequency domain as the elementwise product of a filter transfer func-
tion, H( , ),u v  and F( , ),u v  the Fourier transform of the input image. Given H( , ),u v  
suppose that we want to find its equivalent kernel in the spatial domain. If we let 
f x y x y( , ) ( , ),= d  it follows from Table 4.4 that F( , ) .u v = 1  Then, from Eq. (4-104), 
the filtered output is �− { }1 H( , ) .u v  This expression as the inverse transform of the 
frequency domain filter transfer function, which is the corresponding kernel in the 

See Section 2.6 for a 
definition of elementwise 
operations.

ba c
ed f
hg

FIGURE 4.35
(a) An M N×  
image, f .  
(b) Padded image, 
fp  of size P Q× . 
(c) Result of 
multiplying fp  by 
( ) .− +1 x y  
(d) Spectrum of 
F . (e) Centered 
Gaussian lowpass 
filter transfer 
function, H, of size 
P Q× .  
(f) Spectrum of 
the product HF .  
(g) Image gp ,  the 
real part of the 
IDFT of HF, mul-
tiplied by ( ) .− +1 x y   
(h) Final result, 
g, obtained by 
extracting the first 
M rows and N 
columns of gp.
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spatial domain. Conversely, it follows from a similar analysis and the convolution 
theorem that, given a spatial filter kernel, we obtain its frequency domain repre-
sentation by taking the forward Fourier transform of the kernel. Therefore, the two 
filters form a Fourier transform pair:

 h x y H( , ) ( , )⇔ u v  (4-106)

where h x y( , ) is the spatial kernel. Because this kernel can be obtained from the 
response of a frequency domain filter to an impulse, h x y( , ) sometimes is referred to 
as the impulse response of H( , ).u v  Also, because all quantities in a discrete imple-
mentation of Eq. (4-106) are finite, such filters are called finite impulse response 
(FIR) filters. These are the only types of linear spatial filters considered in this book.

We discussed spatial convolution in Section 3.4, and its implementation in 
Eq. (3-35), which involved convolving functions of different sizes. When we use the 
DFT to compute the transforms used in the convolution theorem, it is implied that 
we are convolving periodic functions of the same size, as explained in Fig. 4.27. For 
this reason, as explained earlier, Eq. (4-94) is referred to as circular convolution.

When computational speed, cost, and size are important parameters, spatial con-
volution filtering using Eq. (3-35) is well suited for small kernels using hardware 
and/or firmware, as explained in Section 4.1. However, when working with general-
purpose machines, frequency-domain methods in which the DFT is computed using 
a fast Fourier transform (FFT) algorithm can be hundreds of times faster than using 
spatial convolution, depending on the size of the kernels used, as you saw in Fig. 4.2. 
We will discuss the FFT and its computational advantages in Section 4.11.

Filtering concepts are more intuitive in the frequency domain, and filter design 
often is easier there. One way to take advantage of the properties of both domains 
is to specify a filter in the frequency domain, compute its IDFT, and then use the 
properties of the resulting, full-size spatial kernel as a guide for constructing smaller 
kernels. This is illustrated next (keep in mind that the Fourier transform and its 
inverse are linear processes (see Problem 4.24), so the discussion is limited to linear 
filtering). In Example 4.15, we illustrate the converse, in which a spatial kernel is 
given, and we obtain its full-size frequency domain representation. This approach is 
useful for analyzing the behavior of small spatial kernels in the frequency domain. 

Frequency domain filters can be used as guides for specifying the coefficients of 
some of the small kernels we discussed in Chapter 3. Filters based on Gaussian func-
tions are of particular interest because, as noted in Table 4.4, both the forward and 
inverse Fourier transforms of a Gaussian function are real Gaussian functions. We 
limit the discussion to 1-D to illustrate the underlying principles. Two-dimensional 
Gaussian transfer functions are discussed later in this chapter.

Let H u( ) denote the 1-D frequency domain Gaussian transfer function

 H u Ae u( ) = − 2 22s  (4-107)

where s  is the standard deviation of the Gaussian curve. The kernel in the spatial 
domain is obtained by taking the inverse DFT of H u( ) (see Problem 4.48):

 h x Ae x( ) = −2 2 2 2 2

ps p s  (4-108)

As mentioned in Table 
4.4, the forward and 
inverse Fourier trans-
forms of Gaussians are 
valid only for continuous 
variables. To use discrete 
formulations, we sample 
the continuous forms.
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These two equations are important for two reasons: (1) They are a Fourier trans-
form pair, both components of which are Gaussian and real. This facilitates analysis 
because we do not have to be concerned with complex numbers. In addition, Gauss-
ian curves are intuitive and easy to manipulate. (2) The functions behave recipro-
cally. When H u( ) has a broad profile (large value of s), h x( ) has a narrow profile, 
and vice versa. In fact, as s  approaches infinity, H u( ) tends toward a constant func-
tion and h x( ) tends toward an impulse, which implies no filtering in either domain.

Figures 4.36(a) and (b) show plots of a Gaussian lowpass filter transfer function 
in the frequency domain and the corresponding function in the spatial domain. Sup-
pose that we want to use the shape of h x( ) in Fig. 4.36(b) as a guide for specifying 
the coefficients of a small kernel in the spatial domain. The key characteristic of the 
function in Fig. 4.36(b) is that all its values are positive. Thus, we conclude that we 
can implement lowpass filtering in the spatial domain by using a kernel with all posi-
tive coefficients (as we did in Section 3.5). For reference, Fig. 4.36(b) also shows two 
of the kernels discussed in that section. Note the reciprocal relationship between 
the width of the Gaussian functions, as discussed in the previous paragraph. The nar-
rower the frequency domain function, the more it will attenuate the low frequencies, 
resulting in increased blurring. In the spatial domain, this means that a larger kernel 
must be used to increase blurring, as we illustrated in Example 3.11.

As you know from Section 3.7, we can construct a highpass filter from a lowpass 
filter by subtracting a lowpass function from a constant. We working with Gauss-
ian functions, we can gain a little more control over filter function shape by using 
a so-called difference of Gaussians, which involves two lowpass functions. In the 
frequency domain, this becomes

 H u Ae Beu u( ) / /= −− −2
1
2 2

2
22 2s s  (4-109)

with A B≥  and s s1 2> . The corresponding function in the spatial domain is
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FIGURE 4.36
(a) A 1-D Gaussian 
lowpass transfer 
function in the 
frequency domain. 
(b) Corresponding 
kernel in the spatial 
domain. (c) Gauss-
ian highpass trans-
fer function in the 
frequency domain. 
(d) Corresponding 
kernel. The small 
2-D kernels shown 
are kernels we used 
in Chapter 3. 
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 h x Ae Bex x( ) = −− −2 21
2

2
22

1
2 2 2

2
2 2

ps psp s p s  (4-110)

Figures 4.36(c) and (d) show plots of these two equations. We note again the reci-
procity in width, but the most important feature here is that h x( ) has a positive cen-
ter term with negative terms on either side. The small kernels shown in Fig. 4.36(d), 
which we used in Chapter 3 for sharpening, “capture” this property, and thus illus-
trate how knowledge of frequency domain filtering can be used as the basis for 
choosing coefficients of spatial kernels.

Although we have gone through significant effort to get here, be assured that it is 
impossible to truly understand filtering in the frequency domain without the foun-
dation we have just established. In practice, the frequency domain can be viewed as 
a “laboratory” in which we take advantage of the correspondence between frequen-
cy content and image appearance. As will be demonstrated numerous times later in 
this chapter, some tasks that would be exceptionally difficult to formulate direct-
ly in the spatial domain become almost trivial in the frequency domain. Once we 
have selected a specific filter transfer function via experimentation in the frequency 
domain, we have the option of implementing the filter directly in that domain using 
the FFT, or we can take the IDFT of the transfer function to obtain the equivalent 
spatial domain function. As we showed in Fig. 4.36, one approach is to specify a 
small spatial kernel that attempts to capture the “essence” of the full filter function 
in the spatial domain. A more formal approach is to design a 2-D digital filter by 
using approximations based on mathematical or statistical criteria, as we discussed 
in Section 3.7. 

EXAMPLE 4.15 :  Obtaining a frequency domain transfer function from a spatial kernel.

In this example, we start with a spatial kernel and show how to generate its corresponding filter trans-
fer function in the frequency domain. Then, we compare the filtering results obtained using frequency 
domain and spatial techniques. This type of analysis is useful when one wishes to compare the perfor-
mance of a given kernel against one or more “full” filter candidates in the frequency domain, or to gain a 
deeper understanding about the performance of a kernel in the spatial domain. To keep matters simple, 
we use the 3 3×  vertical Sobel kernel from Fig. 3.50(e). Figure 4.37(a) shows a 600 600× -pixel  image, 
f x y( , ), that we wish to filter, and Fig. 4.37(b) shows its spectrum.

Figure 4.38(a) shows the Sobel kernel, h x y( , ) (the perspective plot is explained below). Because 
the input image is of size 600 600×  pixels and the kernel is of size 3 3× , we avoid wraparound error in 
the frequency domain by padding f and h with zeros to size 602 602×  pixels, according to Eqs. (4-100) 
and (4-101). At first glance, the Sobel kernel appears to exhibit odd symmetry. However, its first element 
is not 0, as required by Eq. (4-81). To convert the kernel to the smallest size that will satisfy Eq. (4-83), 
we have to add to it a leading row and column of 0’s, which turns it into an array of size 4 4× . We can 
embed this array into a larger array of zeros and still maintain its odd symmetry if the larger array is of 
even dimensions (as is the 4 4×  kernel) and their centers coincide, as explained in Example 4.10. The 
preceding comments are an important aspect of filter generation. If we preserve the odd symmetry with 
respect to the padded array in forming h x yp( , ), we know from property 9 in Table 4.1 that H( , )u v  will 
be purely imaginary. As we show at the end of this example, this will yield results that are identical to 
filtering the image spatially using the original kernel h x y( , ). If the symmetry were not preserved, the 
results would no longer be the same.
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The procedure used to generate H( , )u v  is: (1) multiply h x yp( , ) by ( )− +1 x y  to center the frequency 
domain filter; (2) compute the forward DFT of the result in (1) to generate H( , );u v  (3) set the real 
part of H( , )u v  to 0 to account for parasitic real parts (we know that H  has to be purely imaginary 
because hp is real and odd); and (4) multiply the result by ( ) .− +1 u v  This last step reverses the multiplica-
tion of H( , )u v  by ( ) ,− +1 u v  which is implicit when h x y( , ) was manually placed in the center of h x yp( , ). 
Figure 4.38(a) shows a perspective plot of H( , ),u v  and Fig. 4.38(b) shows H( , )u v  as an image. Note 
the antisymmetry in this image about its center, a result of H( , )u v  being odd. Function H( , )u v  is used 
as any other frequency domain filter transfer function. Figure 4.38(c) is the result of using the filter 
transfer function just obtained to filter the image in Fig. 4.37(a) in the frequency domain, using the step-
by-step filtering procedure outlined earlier. As expected from a derivative filter, edges were enhanced 
and all the constant intensity areas were reduced to zero (the grayish tone is due to scaling for display). 
Figure 4.38(d) shows the result of filtering the same image in the spatial domain with the Sobel kernel 
h x y( , ), using the procedure discussed in Section 3.6. The results are identical.

4.8  IMAGE SMOOTHING USING LOWPASS FREQUENCY DOMAIN  
FILTERS  

The remainder of this chapter deals with various filtering techniques in the frequency 
domain, beginning with lowpass filters. Edges and other sharp intensity transitions 
(such as noise) in an image contribute significantly to the high frequency content 
of its Fourier transform. Hence, smoothing (blurring) is achieved in the frequency 
domain by high-frequency attenuation; that is, by lowpass filtering. In this section, 
we consider three types of lowpass filters: ideal, Butterworth, and Gaussian. These 
three categories cover the range from very sharp (ideal) to very smooth (Gaussian) 
filtering. The shape of a Butterworth filter is controlled by a parameter called the 
filter order. For large values of this parameter, the Butterworth filter approaches 
the ideal filter. For lower values, the Butterworth filter is more like a Gaussian filter. 
Thus, the Butterworth filter provides a transition between two “extremes.” All filter-
ing in this section follows the procedure outlined in the previous section, so all filter 
transfer functions, H( , ),u v  are understood to be of size P Q× ; that is, the discrete 

4.8
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FIGURE 4.37
(a) Image of a 
building, and  
(b) its Fourier 
spectrum.
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FIGURE 4.38
(a) A spatial 
kernel and per-
spective plot of 
its corresponding 
frequency domain 
filter transfer 
function.  
(b) Transfer  
function shown as 
an image.  
(c) Result of  
filtering 
Fig. 4.37(a) in the 
frequency domain 
with the transfer 
function in (b).  
(d) Result of 
filtering the same 
image in the  
spatial domain 
with the kernel 
in (a). The results 
are identical. 

frequency variables are in the range u = −0 1 2 1, , , ,… P  and v = −0 1 2 1, , , , ,… Q  
where P and Q are the padded sizes given by Eqs. (4-100) and (4-101).

IDEAL LOWPASS FILTERS

A 2-D lowpass filter that passes without attenuation all frequencies within a circle of 
radius from the origin, and “cuts off” all frequencies outside this, circle is called an 
ideal lowpass filter (ILPF); it is specified by the transfer function

 H
D D

D D
( , )

( , )

( , )
u v

u v

u v
=

⎧
⎨
⎩

1

0
0

0

if 

if 

≤
>

 (4-111)

where D0 is a positive constant, and D( , )u v  is the distance between a point ( , )u v  in 
the frequency domain and the center of the P Q×  frequency rectangle; that is,

 D u P Q( , )
/

u v v= −( ) + −( )⎡
⎣

⎤
⎦2 22 2 1 2

 (4-112)
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274    Chapter 4  Filtering in the Frequency Domain

where, as before, P and Q are the padded sizes from Eqs. (4-102) and (4-103). 
Figure 4.39(a) shows a perspective plot of transfer function H( , )u v  and Fig. 4.39(b) 
shows it displayed as an image. As mentioned in Section 4.3, the name ideal indicates 
that all frequencies on or inside a circle of radius D0 are passed without attenuation, 
whereas all frequencies outside the circle are completely attenuated (filtered out). 
The ideal lowpass filter transfer function is radially symmetric about the origin. This 
means that it is defined completely by a radial cross section, as Fig. 4.39(c) shows. A 
2-D representation of the filter is obtained by rotating the cross section 360°.

For an ILPF cross section, the point of transition between the values H( , )u v = 1 
and H( , )u v = 0 is called the cutoff frequency. In Fig. 4.39, the cutoff frequency is D0. 
The sharp cutoff frequency of an ILPF cannot be realized with electronic compo-
nents, although they certainly can be simulated in a computer (subject to the con-
strain that the fastest possible transition is limited by the distance between pixels). 

The lowpass filters in this chapter are compared by studying their behavior as a 
function of the same cutoff frequencies. One way to establish standard cutoff fre-
quency loci using circles that enclose specified amounts of total image power PT , 
which we obtain by summing the components of the power spectrum of the padded 
images at each point ( , ),u v  for u = −0 1 2 1, , , ,… P  and v = −0 1 2 1, , , , ;… Q  that is,

 P PT

Q

u

P

=
=

−

=

−

∑∑ ( , )u v
v 0

1

0

1

 (4-113)

where P( , )u v  is given by Eq. (4-89). If the DFT has been centered, a circle of radius 
D0 with origin at the center of the frequency rectangle encloses a  percent of the 
power, where

 a = ⎡
⎣
⎢

⎤
⎦
⎥∑∑100 P PT

u

( , )u v
v

 (4-114)

and the summation is over values of ( , )u v  that lie inside the circle or on its boundary.
Figures 4.40(a) and (b) show a test pattern image and its spectrum. The cir-

cles superimposed on the spectrum have radii of 10, 30, 60, 160, and 460 pixels, 

v

u

H(u, v)

D(u, v)
D0

1

H(u, v)

u
v

ba c

FIGURE 4.39 (a) Perspective plot of an ideal lowpass-filter transfer function. (b) Function displayed as an image.  
(c) Radial cross section. 

DIP4E_GLOBAL_Print_Ready.indb   274 6/16/2017   2:06:04 PM



4.8  Image Smoothing Using Lowpass Frequency Domain Filters    275

respectively, and enclosed the percentages of total power listed in the figure caption. 
The spectrum falls off rapidly, with close to 87% of the total power being enclosed 
by a relatively small circle of radius 10. The significance of this will become evident 
in the following example.

EXAMPLE 4.16 :  Image smoothing in the frequency domain using lowpass filters.

Figure 4.41 shows the results of applying ILPFs with cutoff frequencies at the radii shown in Fig. 4.40(b). 
Figure 4.41(b) is useless for all practical purposes, unless the objective of blurring is to eliminate all 
detail in the image, except the “blobs” representing the largest objects. The severe blurring in this image 
is a clear indication that most of the sharp detail information in the image is contained in the 13% power 
removed by the filter. As the filter radius increases, less and less power is removed, resulting in less blur-
ring. Note that the images in Figs. 4.41(c) through (e) contain significant “ringing,” which becomes finer 
in texture as the amount of high frequency content removed decreases. Ringing is visible even in the 
image in which only 2% of the total power was removed [Fig. 4.41(e)]. This ringing behavior is a char-
acteristic of ideal filters, as we have mentioned several times before. Finally, the result for a = 99 4. % in 
Fig. 4.41(f) shows very slight blurring and almost imperceptible ringing but, for the most part, this image 
is close to the original. This indicates that little edge information is contained in the upper 0.6% of the 
spectrum power removed by the ILPF.

It is clear from this example that ideal lowpass filtering is not practical. However, it is useful to study 
the behavior of ILPFs as part of our development of filtering concepts. Also, as shown in the discussion 
that follows, some interesting insight is gained by attempting to explain the ringing property of ILPFs 
in the spatial domain.

ba

FIGURE 4.40 (a) Test pattern of size 688 688×  pixels, and (b) its spectrum. The spectrum is dou-
ble the image size as a result of padding, but is shown half size to fit. The circles have radii of 
10, 30, 60, 160, and 460 pixels with respect to the full-size spectrum. The radii enclose 86.9, 92.8, 
95.1, 97.6, and 99.4% of the padded image power, respectively.
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276    Chapter 4  Filtering in the Frequency Domain

The blurring and ringing properties of ILPFs can be explained using the convolu-
tion theorem. Figure 4.42(a) shows an image of a frequency-domain ILPF transfer 
function of radius 15 and size 1000 1000×  pixels. Figure 4.42(b) is the spatial repre-
sentation, h x y( , ), of the ILPF, obtained by taking the IDFT of (a) (note the ringing). 
Figure 4.42(c) shows the intensity profile of a line passing through the center of (b).
This profile resembles a sinc function.† Filtering in the spatial domain is done by 
convolving the function in Fig. 4.42(b) with an image. Imagine each pixel in an image 
as being a discrete impulse whose strength is proportional to the intensity of the 
image at that location. Convolving this sinc-like function with an impulse copies (i.e., 
shifts the origin of) the function to the location of the impulse. That is, convolution 

† Although this profile resembles a sinc function, the transform of an ILPF is actually a Bessel function whose 
derivation is beyond the scope of this discussion. The important point to keep in mind is that the inverse propor-
tionality between the “width” of the filter function in the frequency domain, and the “spread” of the width of the 
lobes in the spatial function, still holds. 

ba c
ed f

FIGURE 4.41 (a) Original image of size 688 688×  pixels. (b)–(f) Results of filtering using ILPFs with cutoff frequencies 
set at radii values 10, 30, 60, 160, and 460, as shown in Fig. 4.40(b). The power removed by these filters was 13.1, 7.2, 
4.9, 2.4, and 0.6% of the total, respectively. We used mirror padding to avoid the black borders characteristic of zero 
padding, as illustrated in Fig. 4.31(c).
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makes a copy of the function in Fig. 4.42(b) centered on each pixel location in the 
image. The center lobe of this spatial function is the principal cause of blurring, while 
the outer, smaller lobes are mainly responsible for ringing. Because the “spread” of 
the spatial function is inversely proportional to the radius of H( , ),u v  the larger D0 
becomes (i,e, the more frequencies that are passed), the more the spatial function 
approaches an impulse which, in the limit, causes no blurring at all when convolved 
with the image. The converse happens as D0 becomes smaller. This type of recipro-
cal behavior should be routine to you by now. In the next two sections, we show that 
it is possible to achieve blurring with little or no ringing, an important objective in 
lowpass filtering. 

GAUSSIAN LOWPASS FILTERS

Gaussian lowpass filter (GLPF) transfer functions have the form

 H e D( , ) ( , )/u v u v= − 2 22s  (4-115)

where, as in Eq. (4-112), D( , )u v  is the distance from the center of the P Q×  fre-
quency rectangle to any point, ( , )u v , contained by the rectangle. Unlike our earlier 
expressions for Gaussian functions, we do not use a multiplying constant here in 
order to be consistent with the filters discussed in this and later sections, whose 
highest value is 1. As before, s  is a measure of spread about the center. By letting 
s = D0 , we can express the Gaussian transfer function in the same notation as other 
functions in this section:

 H e D D( , ) ( , )/u v u v= − 2
0
22  (4-116)

where D0 is the cutoff frequency. When D D( , ) ,u v = 0  the GLPF transfer function is 
down to 0.607 of its maximum value of 1.0.

From Table 4.4, we know that the inverse Fourier transform of a frequency-
domain Gaussian function is Gaussian also. This means that a spatial Gaussian filter 
kernel, obtained by computing the IDFT of Eq. (4-115) or (4-116), will have no 
ringing. As property 13 of Table 4.4 shows, the same inverse relationship explained 
earlier for ILPFs is true also of GLPFs. Narrow Gaussian transfer functions in the 
frequency domain imply broader kernel functions in the spatial domain, and vice 

ba c

FIGURE 4.42  
(a) Frequency  
domain ILPF 
transfer function. 
(b) Corresponding 
spatial domain  
kernel function.  
(c) Intensity profile 
of a horizontal line 
through the center 
of (b).
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278    Chapter 4  Filtering in the Frequency Domain

versa. Figure 4.43 shows a perspective plot, image display, and radial cross sections 
of a GLPF transfer function.

EXAMPLE 4.17 :  Image smoothing in the frequency domain using Gaussian lowpass filters.

Figure 4.44 shows the results of applying the GLPF of Eq. (4-116) to Fig. 4.44(a), with D0 equal to the five 
radii in Fig. 4.40(b). Compared to the results obtained with an ILPF (Fig. 4.41), we note a smooth transi-
tion in blurring as a function of increasing cutoff frequency. The GLPF achieved slightly less smoothing 
than the ILPF. The key difference is that we are assured of no ringing when using a GLPF. This is an 
important consideration in practice, especially in situations in which any type of artifact is unacceptable, 
as in medical imaging. In cases where more control of the transition between low and high frequencies 
about the cutoff frequency are needed, the Butterworth lowpass filter discussed next presents a more 
suitable choice. The price of this additional control over the filter profile is the possibility of ringing, as 
you will see shortly.

BUTTERWORTH LOWPASS FILTERS

The transfer function of a Butterworth lowpass filter (BLPF) of order n, with cutoff 
frequency at a distance D0 from the center of the frequency rectangle, is defined as

 H
D D

n( , )
( , )

u v
u v

=
+ [ ]

1

1 0
2  (4-117)

where D( , )u v  is given by Eq. (4-112). Figure 4.45 shows a perspective plot, image 
display, and radial cross sections of the BLPF function. Comparing the cross section 
plots in Figs. 4.39, 4.43, and 4.45, we see that the BLPF function can be controlled to 
approach the characteristics of the ILPF using higher values of n, and the GLPF for 
lower values of n, while providing a smooth transition in from low to high frequen-
cies. Thus, we can use a BLPF to approach the sharpness of an ILPF function with 
considerably less ringing. 

u

v
1.0

0.607
D0 � 10

D0 � 20

D0 � 40

D0 � 60

H(u, v)

D(u, v)

v
u

H(u, v)

0
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FIGURE 4.43 (a) Perspective plot of a GLPF transfer function. (b) Function displayed as an image. (c) Radial cross 
sections for various values of D0 .
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FIGURE 4.44 (a) Original image of size 688 688×  pixels. (b)–(f) Results of filtering using GLPFs with cutoff frequen-
cies at the radii shown in Fig. 4.40. Compare with Fig. 4.41. We used mirror padding to avoid the black borders 
characteristic of zero padding.
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D(u, v)

v
u

H(u, v)

u
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FIGURE 4.45 (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Function displayed as an image. 
(c) Radial cross sections of BLPFs of orders 1 through 4. 
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FIGURE 4.46 (a) Original image of size 688 688×  pixels. (b)–(f) Results of filtering using BLPFs with cutoff frequen-
cies at the radii shown in Fig. 4.40 and n = 2 25. . Compare with Figs. 4.41 and 4.44. We used mirror padding to avoid 
the black borders characteristic of zero padding.

EXAMPLE 4.18 :  Image smoothing using a Butterworth lowpass filter.

Figures 4.46(b)-(f) show the results of applying the BLPF of Eq. (4-117) to Fig. 4.46(a), with cutoff 
frequencies equal to the five radii in Fig. 4.40(b), and with n = 2 25. . The results in terms of blurring are 
between the results obtained with using ILPFs and GLPFs. For example, compare Fig. 4.46(b), with 
Figs. 4.41(b) and 4.44(b). The degree of blurring with the BLPF was less than with the ILPF, but more 
than with the GLPF. 

The spatial domain kernel obtainable from a BLPF of order 1 has no ringing. 
Generally, ringing is imperceptible in filters of order 2 or 3, but can become sig-
nificant in filters of higher orders. Figure 4.47 shows a comparison between the spa-
tial representation (i.e., spatial kernels) corresponding to BLPFs of various orders 
(using a cutoff frequency of 5 in all cases). Shown also is the intensity profile along 

The kernels in Figs. 4.47(a)  
through (d) were obtained 
using the procedure out-
lined in the explanation of 
Fig. 4.42.
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FIGURE 4.47 (a)–(d) Spatial representations (i.e., spatial kernels) corresponding to BLPF transfer functions of size 
1000 1000×  pixels, cut-off frequency of 5, and order 1, 2, 5, and 20, respectively. (e)–(h) Corresponding intensity 
profiles through the center of the filter functions. 

a horizontal scan line through the center of each spatial kernel. The kernel corre-
sponding to the BLPF of order 1 [see Fig. 4.47(a)] has neither ringing nor negative 
values. The kernel corresponding to a BLPF of order 2 does show mild ringing and 
small negative values, but they certainly are less pronounced than would be the case 
for an ILPF. As the remaining images show, ringing becomes significant for higher-
order filters. A BLPF of order 20 has a spatial kernel that exhibits ringing charac-
teristics similar to those of the ILPF (in the limit, both filters are identical). BLPFs 
of orders 2 to 3 are a good compromise between effective lowpass filtering and 
acceptable spatial-domain ringing. Table 4.5 summarizes the lowpass filter transfer 
functions discussed in this section.

ADDITIONAL EXAMPLES OF LOWPASS FILTERING

In the following discussion, we show several practical applications of lowpass filter-
ing in the frequency domain. The first example is from the field of machine per-
ception with application to character recognition; the second is from the printing 
and publishing industry; and the third is related to processing satellite and aerial 
images. Similar results can be obtained using the lowpass spatial filtering techniques 
discussed in Section 3.5. We use GLPFs in all examples for consistency, but simi-
lar results can be obtained using BLPFs. Keep in mind that images are padded to 
double size for filtering, as indicated by Eqs. (4-102) and (4-103), and filter transfer 
functions have to match padded-image size. The values of D0 used in the following 
examples reflect this doubled filter size.
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Ideal Gaussian Butterworth
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TABLE 4.5
Lowpass filter transfer functions. D0  is the cutoff frequency, and n is the order of the Butterworth filter.

Figure 4.48 shows a sample of text of low resolution. One encounters text like 
this, for example, in fax transmissions, duplicated material, and historical records. 
This particular sample is free of additional difficulties like smudges, creases, and 
torn sections. The magnified section in Fig. 4.48(a) shows that the characters in this 
document have distorted shapes due to lack of resolution, and many of the charac-
ters are broken. Although humans fill these gaps visually without difficulty, machine 
recognition systems have real difficulties reading broken characters. One approach 
for handling this problem is to bridge small gaps in the input image by blurring 
it. Figure 4.48(b) shows how well characters can be “repaired” by this simple pro-
cess using a Gaussian lowpass filter with D0 120= . It is typical to follow the type of 

“repair” just described with additional processing, such as thresholding and thinning, 
to yield cleaner characters. We will discuss thinning in Chapter 9 and thresholding 
in Chapter 10.

Lowpass filtering is a staple in the printing and publishing industry, where it is 
used for numerous preprocessing functions, including unsharp masking, as discussed 
in Section 3.6. “Cosmetic” processing is another use of lowpass filtering prior to print-
ing. Figure 4.49 shows an application of lowpass filtering for producing a smoother, 
softer-looking result from a sharp original. For human faces, the typical objective is 
to reduce the sharpness of fine skin lines and small blemishes. The magnified sec-
tions in Figs. 4.49(b) and (c) clearly show a significant reduction in fine skin lines 
around the subject’s eyes. In fact, the smoothed images look quite soft and pleasing.

Figure 4.50 shows two applications of lowpass filtering on the same image, but 
with totally different objectives. Figure 4.50(a) is an 808 754×  segment of a very high 

We will cover unsharp 
masking in the frequency 
domain in Section 4.9.

ba

FIGURE 4.48
(a) Sample text 
of low resolution 
(note the broken 
characters in the  
magnified view). 
(b) Result of 
filtering with a 
GLPF,  
showing that gaps 
in the broken 
characters were 
joined. 
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FIGURE 4.49 (a) Original 785 732×  image. (b) Result of filtering using a GLPF with D0 150= . (c) Result of filtering 
using a GLPF with D0 130= . Note the reduction in fine skin lines in the magnified sections in (b) and (c). 

resolution radiometer (VHRR) image showing part of the Gulf of Mexico (dark) 
and Florida (light) (note the horizontal sensor scan lines). The boundaries between 
bodies of water were caused by loop currents. This image is illustrative of remotely 
sensed images in which sensors have the tendency to produce pronounced scan lines 
along the direction in which the scene is being scanned. (See Example 4.24 for an 

ba c

FIGURE 4.50 (a) 808 754×  satellite image showing prominent horizontal scan lines. (b) Result of filtering using a 
GLPF with D0 50= . (c) Result of using a GLPF with D0 20= . (Original image courtesy of NOAA.) 
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illustration of imaging conditions that can lead for such degradations.) Lowpass fil-
tering is a crude (but simple) way to reduce the effect of these lines, as Fig. 4.50(b) 
shows (we consider more effective approaches in Sections 4.10 and 5.4). This image 
was obtained using a GLFP with D0 50= . The reduction in the effect of the scan 
lines in the smoothed image can simplify the detection of macro features, such as the 
interface boundaries between ocean currents.

Figure 4.50(c) shows the result of significantly more aggressive Gaussian lowpass 
filtering with D0 20= . Here, the objective is to blur out as much detail as possible 
while leaving large features recognizable. For instance, this type of filtering could be 
part of a preprocessing stage for an image analysis system that searches for features 
in an image bank. An example of such features could be lakes of a given size, such 
as Lake Okeechobee in the lower eastern region of Florida, shown in Fig. 4.50(c) as 
a nearly round dark region surrounded by a lighter region. Lowpass filtering helps 
to simplify the analysis by averaging out features smaller than the ones of interest.

4.9 IMAGE SHARPENING USING HIGHPASS FILTERS  

We showed in the previous section that an image can be smoothed by attenuating 
the high-frequency components of its Fourier transform. Because edges and other 
abrupt changes in intensities are associated with high-frequency components, image 
sharpening can be achieved in the frequency domain by highpass filtering, which 
attenuates low-frequencies components without disturbing high-frequencies in the 
Fourier transform. As in Section 4.8, we consider only zero-phase-shift filters that 
are radially symmetric. All filtering in this section is based on the procedure outlined 
in Section 4.7, so all images are assumed be padded to size P Q×  [see Eqs. (4-102) 
and (4-103)], and filter transfer functions, H( , ),u v  are understood to be centered, 
discrete functions of size P Q× . 

IDEAL, GAUSSIAN, AND BUTTERWORTH HIGHPASS FILTERS FROM 
LOWPASS FILTERS

As was the case with kernels in the spatial domain (see Section 3.7), subtracting a 
lowpass filter transfer function from 1 yields the corresponding highpass filter trans-
fer function in the frequency domain:

 H HHP LP( , ) ( , )u v u v= −1  (4-118)

where HLP( , )u v  is the transfer function of a lowpass filter. Thus, it follows from 
Eq. (4-111) that an ideal highpass filter (IHPF) transfer function is given by

 H
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0
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0
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where, as before, D( , )u v  is the distance from the center of the P Q×  frequency rect-
angle, as given in Eq. (4-112). Similarly, it follows from Eq. (4-116) that the transfer 
function of a Gaussian highpass filter (GHPF) transfer function is given by

4.9

In some applications of 
highpass filtering, it is 
advantageous to enhance 
the high-frequencies of 
the Fourier transform.
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  H e D D( , ) ( , )u v u v= − −1
2

0
22  (4-120)

and, from Eq. (4-117), that the transfer function of a Butterworth highpass filter 
(BHPF) is

 H
D D

n( , )
( , )

u v
u v

=
+ [ ]

1

1 0
2  (4-121)

Figure 4.51 shows 3-D plots, image representations, and radial cross sections for 
the preceding transfer functions. As before, we see that the BHPF transfer function 
in the third row of the figure represents a transition between the sharpness of the 
IHPF and the broad smoothness of the GHPF transfer function.

It follows from Eq. (4-118) that the spatial kernel corresponding to a highpass 
filter transfer function in the frequency domain is given by
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FIGURE 4.51
Top row:  
Perspective plot, 
image, and, radial 
cross section of 
an IHPF transfer 
function. Middle 
and bottom 
rows: The same 
sequence for 
GHPF and BHPF 
transfer functions. 
(The thin image 
borders were 
added for clarity. 
They are not part 
of the data.)
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where we used the fact that the IDFT of 1 in the frequency domain is a unit impulse 
in the spatial domain (see Table 4.4). This equation is precisely the foundation for 
the discussion in Section 3.7, in which we showed how to construct a highpass kernel 
by subtracting a lowpass kernel from a unit impulse.

Figure 4.52 shows highpass spatial kernels constructed in just this manner, using 
Eq. (4-122) with ILPF, GLPF, and BLPF transfer functions (the values of M, N, and 
D0 used in this figure are the same as those we used for Fig. 4.42, and the BLPF is of 
order 2). Figure 4.52(a) shows the resulting ideal highpass kernel obtained using Eq. 
(4-122), and Fig. 4.52(b) is a horizontal intensity profile through the center of the ker-
nel. The center element of the profile is a unit impulse, visible as a bright dot in the 
center of Fig. 4.52(a). Note that this highpass kernel has the same ringing properties 
illustrated in Fig. 4.42(b) for its corresponding lowpass counterpart. As you will see 
shortly, ringing is just as objectionable as before, but this time in images sharpened 
with ideal highpass filters. The other images and profiles in Fig. 4.52 are for Gaussian 
and Butterworth kernels. We know from Fig. 4.51 that GHPF transfer functions in 
the frequency domain tend to have a broader “skirt” than Butterworth functions of 
comparable size and cutoff frequency. Thus, we would expect Butterworth spatial 

Recall that a unit impulse 
in the spatial domain is 
an array of 0’s with a 1 in 
the center.

ba c
ed f

FIGURE 4.52 (a)–(c): Ideal, Gaussian, and Butterworth highpass spatial kernels obtained from 
IHPF, GHPF, and BHPF frequency-domain transfer functions. (The thin image borders are 
not part of the data.) (d)–(f): Horizontal intensity profiles through the centers of the kernels.
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kernels to be “broader” than comparable Gaussian kernels, a fact that is confirmed 
by the images and their profiles in Figs. 4.52. Table 4.6 summarizes the three highpass 
filter transfer functions discussed in the preceding paragraphs.

EXAMPLE 4.19 :  Highpass filtering of the character test pattern.

The first row of Fig. 4.53 shows the result of filtering the test pattern in Fig. 4.37(a) using IHPF, GHPF, and 
BHPF transfer functions with D0 60=  [see Fig. 4.37(b)] and n = 2 for the Butterworth filter. We know 
from Chapter 3 that highpass filtering produces images with negative values. The images in Fig.  4.53 are 
not scaled, so the negative values are clipped by the display at 0 (black). The key objective of highpass 
filtering is to sharpen. Also, because the highpass filters used here set the DC term to zero, the images 
have essentially no tonality, as explained earlier in connection with Fig. 4.30.

Our main objective in this example is to compare the behavior of the three highpass filters. As 
Fig. 4.53(a) shows, the ideal highpass filter produced results with severe distortions caused by ringing. 
For example, the blotches inside the strokes of the large letter “a” are ringing artifacts. By comparison, 
neither Figs. 4.53(b) or (c) have such distortions. With reference to Fig. 4.37(b), the filters removed or 
attenuated approximately 95% of the image energy. As you know, removing the lower frequencies of an 
image reduces its gray-level content significantly, leaving mostly edges and other sharp transitions, as is 
evident in Fig. 4.53. The details you see in the first row of the figure are contained in only the upper 5% 
of the image energy.

The second row, obtained with D0 160= , is more interesting. The remaining energy of those images 
is about 2.5%, or half, the energy of the images in the first row. However, the difference in fine detail 
is striking. See, for example, how much cleaner the boundary of the large “a” is now, especially in the 
Gaussian and Butterworth results. The same is true for all other details, down to the smallest objects. 
This is the type of result that is considered acceptable when detection of edges and boundaries is impor-
tant.

Figure 4.54 shows the images in the second row of Fig. 4.53, scaled using Eqs. (2-31) and (2-32) to 
display the full intensity range of both positive and negative intensities. The ringing in Fig. 4.54(a) shows 
the inadequacy of ideal highpass filters. In contrast, notice the smoothness of the background on the 
other two images, and the crispness of their edges.

EXAMPLE 4.20 :  Using highpass filtering and thresholding for image enhancement.

Figure 4.55(a) is a 962 1026×  image of a thumbprint in which smudges (a typical problem) are evident. 
A key step in automated fingerprint recognition is enhancement of print ridges and the reduction of 
smudges. In this example, we use highpass filtering to enhance the ridges and reduce the effects of 
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TABLE 4.6
Highpass filter transfer functions. D0  is the cutoff frequency and n is the order of the Butterworth transfer function.
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ba c
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FIGURE 4.53 Top row: The image from Fig. 4.40(a) filtered with IHPF, GHPF, and BHPF transfer functions using 
D0 60=  in all cases (n = 2 for the BHPF). Second row: Same sequence, but using D0 160= .

ba c

FIGURE 4.54 The images from the second row of Fig. 4.53 scaled using Eqs. (2-31) and (2-32) to show both positive 
and negative values.
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smudging. Enhancement of the ridges is accomplished by the fact that their boundaries are character-
ized by high frequencies, which are unchanged by a highpass filter. On the other hand, the filter reduces 
low frequency components, which correspond to slowly varying intensities in the image, such as the 
background and smudges. Thus, enhancement is achieved by reducing the effect of all features except 
those with high frequencies, which are the features of interest in this case.

Figure 4.55(b) is the result of using a Butterworth highpass filter of order 4 with a cutoff frequency 
of 50. A fourth-order filter provides a sharp (but smooth) transition from low to high frequencies, with 
filtering characteristics between an ideal and a Gaussian filter. The cutoff frequency chosen is about 5% 
of the long dimension of the image. The idea is for D0 to be close to the origin so that low frequencies are 
attenuated but not completely eliminated, except for the DC term which is set to 0, so that tonality dif-
ferences between the ridges and background are not lost completely. Choosing a value for D0 between 
5% and 10% of the long dimension of the image is a good starting point. Choosing a large value of 
D0 would highlight fine detail to such an extent that the definition of the ridges would be affected. As 
expected, the highpass filtered image has negative values, which are shown as black by the display.

A simple approach for highlighting sharp features in a highpass-filtered image is to threshold it by set-
ting to black (0) all negative values and to white (1) the remaining values. Figure 4.55(c) shows the result 
of this operation. Note how the ridges are clear, and how the effect of the smudges has been reduced 
considerably. In fact, ridges that are barely visible in the top, right section of the image in Fig. 4.55(a) are 
nicely enhanced in Fig. 4.55(c). An automated algorithm would find it much easier to follow the ridges 
on this image than it would on the original. 

THE LAPLACIAN IN THE FREQUENCY DOMAIN

In Section 3.6, we used the Laplacian for image sharpening in the spatial domain. In 
this section, we revisit the Laplacian and show that it yields equivalent results using 
frequency domain techniques. It can be shown (see Problem 4.52) that the Laplacian 
can be implemented in the frequency domain using the filter transfer function

 H u( , ) ( )u v v= − +4 2 2 2p  (4-123)

ba c

FIGURE 4.55 (a) Smudged thumbprint. (b) Result of highpass filtering (a). (c) Result of thresholding (b). (Original 
image courtesy of the U.S. National Institute of Standards and Technology.) 
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or, with respect to the center of the frequency rectangle, using the transfer function
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= −

4 2 2

4

2 2 2

2 2

p

p

 (4-124)

where D( , )u v  is the distance function defined in Eq. (4-112). Using this transfer 
function, the Laplacian of an image, f x y( , ), is obtained in the familiar manner:

 
2 1f x y H F( , ) ( , ) ( , )= [ ]−� u v u v  (4-125)

where F( , )u v  is the DFT of f x y( , ). As in Eq. (3-54), enhancement is implemented 
using the equation 

 g x y f x y c f x y( , ) ( , ) ( , )= + ∇2  (4-126)

Here, c = −1 because H( , )u v  is negative. In Chapter 3, f x y( , ) and 
2 f x y( , ) had 
comparable values. However, computing 
2 f x y( , ) with Eq. (4-125) introduces DFT 
scaling factors that can be several orders of magnitude larger than the maximum 
value of f. Thus, the differences between f and its Laplacian must be brought into 
comparable ranges. The easiest way to handle this problem is to normalize the val-
ues of f x y( , ) to the range [ , ]0 1  (before computing its DFT) and divide 
2 f x y( , ) by 
its maximum value, which will bring it to the approximate range [ , ].−1 1  (Remember, 
the Laplacian has negative values.) Equation (4-126) can then be used.

We can write Eq. (4-126) directly in the frequency domain as

  

g x y F H F

H F

( , ) ( , ) ( , ) ( , )

( , ) ( , )

= −{ }
= −[ ]{ }
=

−

−

−

�
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1

1

1

1

1

u v u v u v

u v u v

++⎡⎣ ⎤⎦{ }4 2 2p D F( , ) ( , )u v u v

 (4-127)

Although this result is elegant, it has the same scaling issues just mentioned, com-
pounded by the fact that the normalizing factor is not as easily computed. For this 
reason, Eq. (4-126) is the preferred implementation in the frequency domain, with 

2 f x y( , ) computed using Eq. (4-125) and scaled using the approach mentioned in 
the previous paragraph.

EXAMPLE 4.21 :  Image sharpening in the frequency domain using the Laplacian.

Figure 4.56(a) is the same as Fig. 3.46(a), and Fig. 4.56(b) shows the result of using Eq. (4-126), in which 
the Laplacian was computed in the frequency domain using Eq. (4-125). Scaling was done as described 
in connection with Eq. (4-126). We see by comparing Figs. 4.56(b) and 3.46(d) that the frequency-domain 
result is superior. The image in Fig. 4.56(b) is much sharper, and shows details that are barely visible in 
3.46(d), which was obtained using the Laplacian kernel in Fig. 3.45(b), with a −8 in the center. The sig-
nificant improvement achieved in the frequency domain is not unexpected. The spatial Laplacian kernel 
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encompasses a very small neighborhood, while the formulation in Eqs. (4-125) and (4-126) encompasses 
the entire image.

UNSHARP MASKING, HIGH-BOOST FILTERING, AND HIGH- 
FREQUENCY-EMPHASIS FILTERING

In this section, we discuss frequency domain formulations of the unsharp mask-
ing and high-boost filtering image sharpening techniques introduced in Section 3.6. 
Using frequency domain methods, the mask defined in Eq. (3-55) is given by 

 g x y f x y f x ymask LP( , ) ( , ) ( , )= −  (4-128)

with

 f x y H FLP LP( , ) ( , ) ( , )= [ ]−� 1 u v u v  (4-129)

where HLP( , )u v  is a lowpass filter transfer function, and F( , )u v  is the DFT of f x y( , ). 
Here, f x yLP( , ) is a smoothed image analogous to f x y( , ) in Eq. (3-55). Then, as in 
Eq. (3-56),

 g x y f x y kg x y( , ) ( , ) ( , )= + mask  (4-130)

This expression defines unsharp masking when k = 1 and high-boost filtering when 
k > 1. Using the preceding results, we can express Eq. (4-130) entirely in terms of 
frequency domain computations involving a lowpass filter:

 g x y k H F( , ) ( , ) ( , )= + −[ ]{ }−� 1 1 1Q RLP u v u v  (4-131)

ba

FIGURE 4.56
(a) Original, 
blurry image.  
(b) Image 
enhanced using 
the Laplacian in 
the frequency  
domain.  
Compare with 
Fig. 3.46(d). 
(Original image 
courtesy of 
NASA.)

DIP4E_GLOBAL_Print_Ready.indb   291 6/16/2017   2:06:22 PM



292    Chapter 4  Filtering in the Frequency Domain

We can express this result in terms of a highpass filter using Eq. (4-118):

 g x y kH FP( , ) ( , ) ( , )= +[ ]{ }−� 1 1 H u v u v  (4-132)

The expression contained within the square brackets is called a high-frequency-
emphasis filter transfer function. As noted earlier, highpass filters set the dc term 
to zero, thus reducing the average intensity in the filtered image to 0. The high-fre-
quency-emphasis filter does not have this problem because of the 1 that is added to 
the highpass filter transfer function. Constant k gives control over the proportion of 
high frequencies that influences the final result. A slightly more general formulation 
of high-frequency-emphasis filtering is the expression

 g x y k k H F( , ) ( , ) ( , )= +[ ]{ }−� 1
1 2 HP u v u v  (4-133)

where k1 0≥  offsets the value the transfer function so as not to zero-out the dc term 
[see Fig. 4.30(c)], and k2 0>  controls the contribution of high frequencies.

EXAMPLE 4.22 :  Image enhancement using high-frequency-emphasis filtering.

Figure 4.57(a) shows a 503 720× -pixel  chest X-ray image with a narrow range of intensity levels. The 
objective of this example is to enhance the image using high-frequency-emphasis filtering. X-rays can-
not be focused in the same manner that optical lenses can, and the resulting images generally tend to be 
slightly blurred. Because the intensities in this particular image are biased toward the dark end of the 

ba
dc

FIGURE 4.57
(a) A chest X-ray.
(b) Result of  
filtering with a 
GHPF function.  
(c) Result of 
high-frequency-
emphasis filtering 
using the same 
GHPF. (d) Result 
of performing  
histogram  
equalization on (c). 
(Original image 
courtesy of Dr. 
Thomas R. Gest, 
Division of  
Anatomical  
Sciences,  
University of 
Michigan Medical 
School.)
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gray scale, we also take this opportunity to give an example of how spatial domain processing can be 
used to complement frequency-domain filtering.

Image artifacts, such as ringing, are unacceptable in medical image processing, so we use a Gaussian 
highpass filter transfer function. Because the spatial representation of a GHPF function is Gaussian also, 
we know that ringing will not be an issue. The value chosen for D0 should provide enough filtering to 
sharpen boundaries while at the same time not over-sharpening minute details (such as noise). We used 
D0 70= , approximately 10% of the long image dimension, but other similar values would work also. 
Figure 4.57(b) is the result of highpass filtering the original image (scaled as the images in Fig. 4.54). As 
expected, the image is rather featureless, but the important boundaries (e.g., the edges of the ribs) are 
clearly delineated. Figure 4.57(c) shows the advantage of high-frequency-emphasis filtering, where we 
used Eq. (4-133) with k1 0 5= .  and k2 0 75= . . Although the image is still dark, the gray-level tonality has 
been restored, with the added advantage of sharper features. 

As we discussed in Section 3.3, an image characterized by intensity levels in a narrow range of the 
gray scale is an ideal candidate for histogram equalization. As Fig. 4.57(d) shows, this was indeed an 
appropriate method to further enhance the image. Note the clarity of the bone structure and other 
details that simply are not visible in any of the other three images. The final enhanced image is a little 
noisy, but this is typical of X-ray images when their gray scale is expanded. The result obtained using a 
combination of high-frequency-emphasis and histogram equalization is superior to the result that would 
be obtained by using either method alone.

HOMOMORPHIC FILTERING

The illumination-reflectance model introduced in Section 2.3 can be used to develop 
a frequency domain procedure for improving the appearance of an image by simul-
taneous intensity range compression and contrast enhancement. From the discus-
sion in that section, an image f x y( , ) can be expressed as the product of its illumina-
tion, i x y( , ), and reflectance, r x y( , ), components:

 f x y i x y r x y( , ) ( , ) ( , )=  (4-134)

This equation cannot be used directly to operate on the frequency components of 
illumination and reflectance because the Fourier transform of a product is not the 
product of the transforms:

 � � �f x y i x y r x y( , ) ( , ) ( , )[ ] [ ] [ ]≠  (4-135)

However, suppose that we define

 
z x y f x y

i x y r x y

( , ) ln ( , )

ln ( , ) ln ( , )

=
= +

 (4-136)

Then,

 
� �

� �

z x y f x y

i x y r x y

( , ) ln ( , )

ln ( , ) ln ( , )

[ ] = [ ]
= [ ] + [ ]

 (4-137)

If f(x, y) has any zero 
values, a 1 must be added 
to the image to avoid 
having to deal with ln(0). 
The 1 is then subtracted 
from the final result.
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or

 Z F Fi r( , ) ( , ) ( , )u v u v u v= +  (4-138)

where Fi( , )u v  and Fr ( , )u v  are the Fourier transforms of ln ( , )i x y  and ln ( , ),r x y  
respectively.

We can filter Z( , )u v  using a filter transfer function H( , )u v  so that

 
S H Z

H F H Fi r

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

u v u v u v

u v u v u v u v

=
= +

 (4-139)

The filtered image in the spatial domain is then

 
s x y S
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( , ) ( , )
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 (4-140)

By defining

 ′ = [ ]−i x y H Fi( , ) ( , ) ( , )� 1 u v u v  (4-141)

and

 ′ = [ ]−r x y H Fr( , ) ( , ) ( , )� 1 u v u v  (4-142)

we can express Eq. (4-140) in the form

 s x y i x y r x y( , ) ( , ) ( , )= ′ + ′  (4-143)

Finally, because z x y( , ) was formed by taking the natural logarithm of the input 
image, we reverse the process by taking the exponential of the filtered result to form 
the output image:

 

g x y e

e e

i x y r x y

s x y

i x y r x y

( , )

( , ) ( , )

( , )

( , ) ( , )

=

=
=

′ ′

0 0

 (4-144)

where

 i x y ei x y
0( , ) ( , )= ′  (4-145)

and

 r x y er x y
0( , ) ( , )= ′  (4-146)

are the illumination and reflectance components of the output (processed) image.
Figure 4.58 is a summary of the filtering approach just derived. This method is 

based on a special case of a class of systems known as homomorphic systems. In this 
particular application, the key to the approach is the separation of the illumination 
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and reflectance components achieved in the form shown in Eq. (4-138). The homo-
morphic filter transfer function, H( , ),u v  then can operate on these components sepa-
rately, as indicated by Eq. (4-139).

The illumination component of an image generally is characterized by slow spa-
tial variations, while the reflectance component tends to vary abruptly, particularly 
at the junctions of dissimilar objects. These characteristics lead to associating the low 
frequencies of the Fourier transform of the logarithm of an image with illumination, 
and the high frequencies with reflectance. Although these associations are rough 
approximations, they can be used to advantage in image filtering, as illustrated in 
Example 4.23.

A good deal of control can be gained over the illumination and reflectance com-
ponents with a homomorphic filter. This control requires specification of a filter 
transfer function H( , )u v  that affects the low- and high-frequency components of 
the Fourier transform in different, controllable ways. Figure 4.59 shows a cross sec-
tion of such a function. If the parameters gL and gH  are chosen so that gL < 1 and 
gH ≥ 1, the filter function in Fig. 4.59 will attenuate the contribution made by the 
low frequencies (illumination) and amplify the contribution made by high frequen-
cies (reflectance). The net result is simultaneous dynamic range compression and 
contrast enhancement.

The shape of the function in Fig. 4.59 can be approximated using a highpass filter 
transfer function. For example, using a slightly modified form of the GHPF function 
yields the homomorphic function

H eH L
cD D

L( , ) ( , )u v u v= −( ) −⎡
⎣

⎤
⎦ +−g g g1

2
0
2

(4-147)

where D( , )u v  is defined in Eq. (4-112) and constant c controls the sharpness of the 
slope of the function as it transitions between gL and gH . This filter transfer function 
is similar to the high-frequency-emphasis function discussed in the previous section.

A BHPF function would 
work well too, with the 
added advantage of more 
control over the sharp-
ness of the transition 
between gL and gH. The 
disadvantage is the  
possibility of ringing for 
high values of n.

ln expDFT (DFT)�1H(u, v) g(x, y)f(x, y)

FIGURE 4.58
Summary of steps 
in homomorphic 
filtering.

gH

gL

( , )D u v

( , )H u vFIGURE 4.59
Radial cross  
section of a  
homomorphic 
filter transfer 
function..
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EXAMPLE 4.23 :  Homomorphic filtering.

Figure 4.60(a) shows a full body PET (Positron Emission Tomography) scan of size 1162 746×  pixels. 
The image is slightly blurred and many of its low-intensity features are obscured by the high intensity of 
the “hot spots” dominating the dynamic range of the display. (These hot spots were caused by a tumor in 
the brain and one in the lungs.) Figure 4.60(b) was obtained by homomorphic filtering Fig. 4.60(a) using 
the filter transfer function in Eq. (4-147) with gL = 0 4. , gH = 3 0. , c = 5, and D0 20= . A radial cross sec-
tion of this function looks just like Fig. 4.59, but with a much sharper slope, and the transition between 
low and high frequencies much closer to the origin.

Note in Fig. 4.60(b) how much sharper the hot spots, the brain, and the skeleton are in the processed 
image, and how much more detail is visible in this image, including, for example, some of the organs, the 
shoulders, and the pelvis region. By reducing the effects of the dominant illumination components (the 
hot spots), it became possible for the dynamic range of the display to allow lower intensities to become 
more visible. Similarly, because the high frequencies are enhanced by homomorphic filtering, the reflec-
tance components of the image (edge information) were sharpened considerably. The enhanced image 
in Fig. 4.60(b) is a significant improvement over the original. 

4.10  SELECTIVE FILTERING  

The filters discussed in the previous two sections operate over the entire frequency 
rectangle. There are applications in which it is of interest to process specific bands of 
frequencies or small regions of the frequency rectangle. Filters in the first category 

4.10

ba

FIGURE 4.60
(a) Full body PET 
scan. (b) Image 
enhanced using 
homomorphic 
filtering. (Original 
image courtesy 
of Dr. Michael E. 
Casey, CTI Pet 
Systems.)
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are called band filters. If frequencies in the band are filtered out, the band filter is 
called a bandreject filter; similarly, if the frequencies are passed, the filter is called 
a bandpass filter. Filters in the second category are called notch filters. These filters 
are further qualified as being notch reject or notch pass filters, depending on whether 
frequencies in the notch areas are rejected or passed.

BANDREJECT AND BANDPASS FILTERS

As you learned in Section 3.7, bandpass and bandreject filter transfer functions in 
the frequency domain can be constructed by combining lowpass and highpass filter 
transfer functions, with the latter also being derivable from lowpass functions (see 
Fig. 3.52). In other words, lowpass filter transfer functions are the basis for forming 
highpass, bandreject, and bandpass filter functions. Furthermore, a bandpass filter 
transfer function is obtained from a bandreject function in the same manner that we 
obtained a highpass from a lowpass transfer function:

 H HBP BR( , ) ( , )u v u v= −1  (4-148)

Figure 4.61(a) shows how to construct an ideal bandreject filter (IBRF) transfer 
function. It consists of an ILPF and an IHPF function with different cutoff frequen-
cies. When dealing with bandpass functions, the parameters of interest are the width, 
W, and the center, C0 , of the band. An equation for the IBRF function is easily 
obtained by inspection from Fig, 4.61(a), as the leftmost entry in Table 4.7 shows. 
The key requirements of a bandpass transfer function are: (1) the values of the func-
tion must be in the range [ , ];0 1  (2) the value of the function must be zero at a dis-
tance C0  from the origin (center) of the function; and (3) we must be able to specify 
a value for W. Clearly, the IBRF function just developed satisfies these requirements.

Adding lowpass and highpass transfer functions to form Gaussian and Butter-
worth bandreject functions presents some difficulties. For example, Fig. 4.61(b) 
shows a bandpass function formed as the sum of lowpass and highpass Gaussian 
functions with different cutoff points. Two problems are immediately obvious: we 
have no direct control over W, and the value of H( , )u v  is not 0 at C0. We could 
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( , )D u v
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( , )H u v

( , )D u v

1.0

0C

( , )H u v
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FIGURE 4.61 Radial cross sections. (a) Ideal bandreject filter transfer function. (b) Bandreject transfer function formed 
by the sum of Gaussian lowpass and highpass filter functions. (The minimum is not 0 and does not align with C0 .)  
(c) Radial plot of Eq. (4-149). (The minimum is 0 and is properly aligned with C0 ,  but the value at the origin is 
not 1.) (d) Radial plot of Eq. (4-150); this Gaussian-shape plot meets all the requirements of a bandreject filter 
transfer function.
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offset the function and scale it so that values fall in the range [ , ],0 1  but finding an 
analytical solution for the point where the lowpass and highpass Gaussian functions 
intersect is impossible, and this intersection would be required to solve for the cutoff 
points in terms of C0. The only alternatives are trial-and-error or numerical methods.

Fortunately, instead of adding lowpass and highpass transfer function, an alterna-
tive is to modify the expressions for the Gaussian and Butterworth highpass transfer 
functions so that they will satisfy the three requirements stated earlier. We illustrate 
the procedure for a Gaussian function. In this case, we begin by changing the point 
at which H( , )u v = 0 from D( , )u v = 0 to D C( , )u v = 0 in Eq. (4-120):

 H e

D C

W
( , )

( , )

u v

u v

= −
−

−( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

0
2

2

 (4-149)

A plot of this function [Fig. 4.61(c)] shows that, below C0 , the function behaves as a 
lowpass Gaussian function, at C0  the function will always be 0, and for values higher 
than C0  the function behaves as a highpass Gaussian function. Parameter W is pro-
portional to the standard deviation and thus controls the “width” of the band. The 
only problem remaining is that the function is not always 1 at the origin. A simple 
modification of Eq. (4-149) removes this shortcoming:

 H e

D C
D W( , )

( , )
( , )

u v

u v

u v= −
− −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥1

2
0
2 2

 (4-150)

Now, the exponent is infinite when D( , ) ,u v = 0  which makes the exponential term go 
to zero and H( , )u v = 1 at the origin, as desired. In this modification of Eq. (4-149), 
the basic Gaussian shape is preserved and the three requirements stated earlier are 
satisfied. Figure 4.61(d) shows a plot of Eq. (4-150). A similar analysis leads to the 
form of a Butterworth bandreject filter transfer function shown in Table 4.7. 

Figure 4.62 shows perspective plots of the filter transfer functions just discussed. 
At first glance the Gaussian and Butterworth functions appear to be about the same, 
but, as before, the behavior of the Butterworth function is between the ideal and 
Gaussian functions. As Fig. 4.63 shows, this is easier to see by viewing the three filter 

The overall ratio in this 
equation is squared so 
that, as the distance 
increases, Eqs. (4-149) 
and (4-150) behave  
approximately the same.
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1 2
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TABLE 4.7
Bandreject filter transfer functions. C0  is the center of the band, W is the width of the band, and D( , )u v  is the dis-
tance from the center of the transfer function to a point ( , )u v  in the frequency rectangle.
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functions as images. Increasing the order of the Butterworth function would bring it 
closer to the ideal bandreject transfer function. 

NOTCH FILTERS

Notch filters are the most useful of the selective filters. A notch filter rejects (or 
passes) frequencies in a predefined neighborhood of the frequency rectangle. Zero-
phase-shift filters must be symmetric about the origin (center of the frequency 
rectangle), so a notch filter transfer function with center at ( , )u v0 0  must have a 
corresponding notch at location ( , ).− −u v0 0  Notch reject filter transfer functions are 
constructed as products of highpass filter transfer functions whose centers have 
been translated to the centers of the notches. The general form is:

 H H Hk
k

Q

kNR( , ) ( , ) ( , )u v u v u v=
=

−∏
1

 (4-151)

where Hk( , )u v  and H k− ( , )u v  are highpass filter transfer functions whose centers are 
at ( , )u vk k  and ( , ),− −u vk k  respectively. These centers are specified with respect to 
the center of the frequency rectangle, M N2 2, ,( )  where, as usual, M and N are the 

ba c

FIGURE 4.62 Perspective plots of (a) ideal, (b) modified Gaussian, and (c) modified Butterworth (of order 1) bandre-
ject filter transfer functions from Table 4.7. All transfer functions are of size 512 512×  elements, with C0 128=  and 
W = 60.

u
v

( , )H u v

u
v

H u v

u
v

( , )H u v ( , )

ba c

FIGURE 4.63
(a) The ideal,  
(b) Gaussian, and 
(c) Butterworth 
bandpass transfer 
functions from 
Fig. 4.62, shown 
as images. (The 
thin border lines 
are not part of the 
image data.) 
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number of rows and columns in the input image. Thus, the distance computations for 
each filter transfer function are given by

 D u M u Nk k k( , ) ( ) ( )
/

u v v v= − − + − −⎡⎣ ⎤⎦2 22 2 1 2
 (4-152)

and

 D u M u Nk k k− = − + + − +⎡⎣ ⎤⎦( , ) ( ) ( )
/

u v v v2 22 2 1 2
 (4-153)

For example, the following is a Butterworth notch reject filter transfer function of 
order n, containing three notch pairs:
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 (4-154)

where Dk( , )u v  and D k− ( , )u v  are given by Eqs. (4-152) and (4-153). The constant D k0  
is the same for each pair of notches, but it can be different for different pairs. Other 
notch reject filter functions are constructed in the same manner, depending on the 
highpass filter function chosen. As with the filters discussed earlier, a notch pass 
filter transfer function is obtained from a notch reject function using the expression

 H HNP NR( , ) ( , )u v u v= −1  (4-155)

As the next two examples show, one of the principal applications of notch filter-
ing is for selectively modifying local regions of the DFT. Often, this type of pro-
cessing is done interactively, working directly with DFTs obtained without padding. 
The advantages of working interactively with actual DFTs (as opposed to having to 

“translate” from padded to actual frequency values) generally outweigh any wrap-
around errors that may result from not using padding in the filtering process. If nec-
essary, after an acceptable solution is obtained, a final result using padding can be 
generated by adjusting all filter parameters to compensate for the padded DFT size. 
The following two examples were done without padding. To get an idea of how DFT 
values change as a function of padding, see Problem 4.42. 

EXAMPLE 4.24 :  Using notch filtering to remove moiré patterns from digitized printed media images.

Figure 4.64(a) is the scanned newspaper image used in Fig. 4.21, showing a prominent moiré pattern, and 
Fig. 4.64(b) is its spectrum. The Fourier transform of a pure sine, which is a periodic function, is a pair of 
conjugate symmetric impulses (see Table 4.4). The symmetric “impulse-like” bursts in Fig. 4.64(b) are a 
result of the near periodicity of the moiré pattern. We can attenuate these bursts by using notch filtering. 

Figure 4.64(c) shows the result of multiplying the DFT of Fig. 4.64(a) by a Butterworth notch reject 
transfer function with D0 9=  and n = 4 for all notch pairs (the centers of the notches are coincide with 
the centers of the black circular regions in the figure). The value of the radius was selected (by visual 
inspection of the spectrum) to encompass the energy bursts completely, and the value of n was selected 
to produce notches with sharp transitions. The locations of the center of the notches were determined 
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interactively from the spectrum. Figure 4.64(d) shows the result obtained with this filter transfer func-
tion, using the filtering procedure outlined in Section 4.7. The improvement is significant, considering 
the low resolution and degree of degradation of the original image. 

ba
dc

FIGURE 4.64
 (a) Sampled 
newspaper  
image showing a 
moiré pattern.  
(b) Spectrum.  
(c) Fourier  
transform 
multiplied by 
a Butterworth 
notch reject filter 
transfer function. 
(d) Filtered image. 
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EXAMPLE 4.25 :  Using notch filtering to remove periodic interference.

Figure 4.65(a) shows an image of part of the rings surrounding the planet Saturn. This image was cap-
tured by Cassini, the first spacecraft to enter the planet’s orbit. The nearly sinusoidal pattern visible in 
the image was caused by an AC signal superimposed on the camera video signal just prior to digitizing 
the image. This was an unexpected problem that corrupted some images from the mission. Fortunately, 
this type of interference is fairly easy to correct by postprocessing. One approach is to use notch filtering. 

Figure 4.65(b) shows the DFT spectrum. Careful analysis of the vertical axis reveals a series of 
small bursts of energy near the origin which correspond to the nearly sinusoidal interference. A simple 
approach is to use a narrow notch rectangle filter starting with the lowest frequency burst, and extending 
for the remainder of the vertical axis. Figure 4.65(c) shows the transfer function of such a filter (white 
represents 1 and black 0). Figure 4.65(d) shows the result of processing the corrupted image with this 
filter. This result is a significant improvement over the original image.

To obtain and image of just the interference pattern, we isolated the frequencies in the vertical axis 
using a notch pass transfer function, obtained by subtracting the notch reject function from 1 [see 
Fig. 4.66(a)]. Then, as Fig. 4.66(b) shows, the IDFT of the filtered image is the spatial interference pattern.

ba
dc

FIGURE 4.65
(a) Image of  
Saturn rings 
showing nearly 
periodic  
interference.  
(b) Spectrum. 
(The bursts of 
energy in the  
vertical axis 
near the origin 
correspond to 
the interference 
pattern).  
(c) A vertical 
notch reject filter 
transfer function.  
(d) Result of 
filtering.  
(The thin black 
border in (c) is 
not part of the 
data.) (Original 
image courtesy 
of Dr. Robert A. 
West, NASA/
JPL.) 
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4.11 THE FAST FOURIER TRANSFORM 

We have focused attention thus far on theoretical concepts and on examples of fil-
tering in the frequency domain. One thing that should be clear by now is that com-
putational requirements in this area of image processing are not trivial. Thus, it is 
important to develop a basic understanding of methods by which Fourier transform 
computations can be simplified and speeded up. This section deals with these issues. 

SEPARABILITY OF THE 2-D DFT

As mentioned in Table 4.3, the 2-D DFT is separable into 1-D transforms. We can 
write Eq. (4-67) as

 

F e f x y e
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=

−

=
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=
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∑
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 (4-156)

where

 F x f x y e
y

N
j y N( , ) ( , )v v=

=

−
−∑

0

1
2p  (4-157)

For one value of x, and for v = −0 1 2 1, , , , ,… N  we see that F x( , )v  is the 1-D DFT of 
one row of f x y( , ). By varying x from 0 to M − 1 in Eq. (4-157), we compute a set of 
1-D DFTs for all rows of f x y( , ). The computations in Eq. (4-156) similarly are 1-D 
transforms of the columns of F x( , ).v  Thus, we conclude that the 2-D DFT of f x y( , ) 
can be obtained by computing the 1-D transform of each row of f x y( , ) and then 
computing the 1-D transform along each column of the result. This is an important 
simplification because we have to deal only with one variable at a time. A similar 
development applies to computing the 2-D IDFT using the 1-D IDFT. However, 
as we show in the following section, we can compute the IDFT using an algorithm 

4.11

We could have formu-
lated the preceding 
two equations to show 
that a 2-D DFT can be 
obtained by computing 
the 1-D DFT of each 
column of the input 
image followed by 1-D 
computations on the 
rows of the result. 

ba

FIGURE 4.66
(a) Notch pass 
filter function 
used to isolate 
the vertical axis 
of the DFT of Fig. 
4.65(a).  
(b) Spatial pattern 
obtained by  
computing the 
IDFT of (a). 
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designed to compute the forward DFT, so all 2-D Fourier transform computations 
are reduced to multiple passes of a 1-D algorithm designed for computing the 1-D 
DFT.

COMPUTING THE IDFT USING A DFT ALGORITHM

Taking the complex conjugate of both sides of Eq. (4-68) and multiplying the results 
by MN yields

 MNf x y F e j ux M y N
N

u

M
* * ( )( , ) ( , )= − +

=

−

=

−

∑∑ u v v

v

2

0

1

0

1
p  (4-158)

But, we recognize the form of the right side of this result as the DFT of F *( , ).u v  There-
fore, Eq. (4-158) indicates that if we substitute F *( , )u v  into an algorithm designed to 
compute the 2-D forward Fourier transform, the result will be MNf x y*( , ). Taking 
the complex conjugate and dividing this result by MN yields f x y( , ), which is the 
inverse of F( , ).u v  

Computing the 2-D inverse from a 2-D forward DFT algorithm that is based on 
successive passes of 1-D transforms (as in the previous section) is a frequent source 
of confusion involving the complex conjugates and multiplication by a constant, nei-
ther of which is done in the 1-D algorithms. The key concept to keep in mind is that 
we simply input F *( , )u v  into whatever forward algorithm we have. The result will be 
MNf x y*( , ). All we have to do with this result to obtain f x y( , ) is to take its complex 
conjugate and divide it by the constant MN. Of course, when f x y( , ) is real, as typi-
cally is the case, then f x y f x y*( , ) ( , ).=

THE FAST FOURIER TRANSFORM (FFT)

Work in the frequency domain would not be practical if we had to implement 
Eqs. (4-67) and (4-68) directly. Brute-force implementation of these equations 
requires on the order of MN( )2  multiplications and additions. For images of moder-
ate size (say, 2048 2048×  pixels), this means on the order of 17 trillion multiplica-
tions and additions for just one 2-D DFT, excluding the exponentials, which could be 
computed once and stored in a look-up table. Without the discovery of the fast Fou-
rier transform (FFT), which reduces computations to the order of MN MNlog2  mul-
tiplications and additions, it is safe to say that the material presented in this chapter 
would be of little practical value. The computational reductions afforded by the FFT 
are impressive indeed. For example, computing the 2-D FFT of a 2048 2048×  image 
would require on the order of 92 million multiplication and additions, which is a 
significant reduction from the one trillion computations mentioned above.

Although the FFT is a topic covered extensively in the literature on signal pro-
cessing, this subject matter is of such significance in our work that this chapter would 
be incomplete if we did not provide an introduction explaining why the FFT works 
as it does. The algorithm we selected to accomplish this objective is the so-called 
successive-doubling method, which was the original algorithm that led to the birth 
of an entire industry. This particular algorithm assumes that the number of samples 
is an integer power of 2, but this is not a general requirement of other approaches 
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(Brigham [1988]).We know from the previous section that 2-D DFTs can be imple-
mented by successive passes of the 1-D transform, so we need to focus only on the 
FFT of one variable.

In derivations of the FFT, it is customary to express Eq. (4-44) in the form

 F u f x WM
ux

x

M

( ) = ( )
=

−

∑
0

1

 (4-159)

for u = −0 1 2 1, , , , ,… M  where

 W eM
j M= − 2p  (4-160)

and M is assumed to be of the form

 M p= 2  (4-161)

where p is a positive integer. Then it follows that M can be expressed as

 M K= 2  (4-162)

with K being a positive integer also. Substituting Eq. (4-162) into Eq. (4-159) yields
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 (4-163)

However, it can be shown using Eq. (4-160) that W WK
ux

K
ux

2
2 = , so Eq. (4-163) can be 

written as
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 (4-164)

Defining

 F u f x WK
ux

x

K

even( ) ( )=
=

−

∑ 2
0

1

 (4-165)

for u = −0 1 2 1, , , , ,… K  and

 F u f x WK
ux

x

K

odd( ) ( )= +
=

−

∑ 2 1
0

1

 (4-166)

for u = −0 1 2 1, , , , ,… K  reduces Eq. (4-164) to

 F u F u F u W K
u( ) ( ) ( )= +even odd 2  (4-167)
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Also, because W WM
u K

K
u+ =  and W WK

u K
K

u
2 2

+ = − , it follows that

 F u K F u F u W K
u( ) ( ) ( )+ = −even odd 2  (4-168)

Analysis of Eqs. (4-165) through (4-168) reveals some important (and surprising) 
properties of these expressions. An M-point DFT can be computed by dividing the 
original expression into two parts, as indicated in Eqs. (4-167) and (4-168). Comput-
ing the first half of F u( ) requires evaluation of the two ( )M 2 -point transforms giv-
en in Eqs. (4-165) and (4-166). The resulting values of F ueven( ) and F uodd( ) are then 
substituted into Eq. (4-167) to obtain F u( ) for u = −0 1 2 2 1, , , , ( ).… M  The other 
half then follows directly from Eq. (4-168) without additional transform evaluations.

 It is of interest to examine the computational implications of the preceding pro-
cedure. Let �( )p  and �( )p  represent the number of complex multiplications and 
additions, respectively, required to implement the method. As before, the number 
of samples is 2p, where p is a positive integer. Suppose first that p = 1 so that the 
number of samples is two. A two-point transform requires the evaluation of F( );0  
then F( )1  follows from Eq. (4-168). To obtain F( )0  requires computing Feven( )0  and 
Fodd( ).0  In this case K = 1 and Eqs. (4-165) and (4-166) are one-point transforms. 
However, because the DFT of a single sample point is the sample itself, no multipli-
cations or additions are required to obtain Feven( )0  and Fodd( ).0  One multiplication 
of Fodd( )0  by W2

0  and one addition yields F( )0  from Eq. (4-167). Then F( )1  follows 
from Eq. (4-168) with one more addition (subtraction is considered to be the same 
as addition). Because F Wodd( )0 2

0  has been computed already, the total number of 
operations required for a two-point transform consists of �( )1 1=  multiplication 
and �( )1 2=  additions.

The next allowed value for p is 2. According to the preceding development, a four-
point transform can be divided into two parts. The first half of F u( ) requires evaluation 
of two, two-point transforms, as given in Eqs. (4-165) and (4-166) for K = 2. A two-point 
transform requires �( )1  multiplications and �( )1  additions. Therefore, evaluation of 
these two equations requires a total of 2 1�( ) multiplications and 2 1�( ) additions. Two 
further multiplications and additions are necessary to obtain F( )0  and F( )1  from Eq. 
(4-167). Because F u W K

u
odd( ) 2  has been computed already for u = { }0 1, , two more 

additions give F( )2  and F( ).3  The total is then � �( ) ( )2 2 1 2= +  and � �( ) ( ) .2 2 1 4= +
When p is equal to 3, two four-point transforms are needed to evaluate F ueven( ) 

and F uodd( ). They require 2 2�( ) multiplications and 2 2�( ) additions. Four more 
multiplications and eight more additions yield the complete transform. The total 
then is then � �( ) ( )3 2 2 4= +  multiplication and � �( ) ( )3 2 2 8= +  additions.

Continuing this argument for any positive integer p leads to recursive expressions 
for the number of multiplications and additions required to implement the FFT:

 � �( ) ( )p p pp= − + −2 1 2 11 ≥  (4-169)

and
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 � �( ) ( )p p pp= − +2 1 2 1≥  (4-170)

where �( )0 0=  and �( )0 0=  because the transform of a single point does not 
require any multiplication or additions.

The method just developed is called the successive doubling FFT algorithm 
because it is based on computing a two-point transform from two one-point trans-
forms, a four-point transform from two two-point transforms, and so on, for any M 
equal to an integer power of 2. It is left as an exercise (see Problem 4.63) to show 
that

 �( ) logp M M= 1
2 2  (4-171)

and

 �( ) logn M M= 2  (4-172)

where M p= 2 .
The computational advantage of the FFT over a direct implementation of the 1-D 

DFT is defined as

 
C M

M
M M

M
M

( )
log

log

=

=

2

2

2

 (4-173)

where M2 is the number of operations required for a “brute force” implementation 
of the 1-D DFT. Because it is assumed that M p= 2 , we can write Eq. (4-173) in 
terms of p:

 C p
p

p

( ) = 2
 (4-174)

A plot of this function (Fig. 4.67) shows that the computational advantage increases 
rapidly as a function of p. For example, when p = 15 (32,768 points), the FFT has 
nearly a 2,200 to 1 advantage over a brute-force implementation of the DFT. Thus, 
we would expect that the FFT can be computed nearly 2,200 times faster than the 
DFT on the same machine. As you learned in Section 4.1, the FFT also offers signifi-
cant computational advantages over spatial filtering, with the cross-over between 
the two approaches being for relatively small kernels.

There are many excellent sources that cover details of the FFT so we will not 
dwell on this topic further (see, for example, Brigham [1988]). Most comprehensive 
signal and image processing software packages contain generalized implementa-
tions of the FFT that do not require the number of points to be an integer power 
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FIGURE 4.67
Computational 
advantage of the 
FFT over a direct 
implementation 
of the 1-D DFT. 
The number of 
samples is M p= 2 . 
The computational 
advantage increases 
rapidly as a  
function of p. 

of 2 (at the expense of slightly less efficient computation). Free FFT programs also 
are readily available, principally over the internet.

Summary, References, and Further Reading 
The material in this chapter is a progression from sampling to the Fourier transform, and then to filtering in the 
frequency domain. Some of the concepts, such as the sampling theorem, make very little sense if not explained in 
the context of the frequency domain. The same is true of effects such as aliasing. Thus, the material developed in 
the preceding sections is a solid foundation for understanding the fundamentals of 2-D digital signal processing. We 
took special care to develop the material starting with basic principles, so that any reader with a modest mathemati-
cal background would be in a position not only to absorb the material, but also to apply it.

For complementary reading on the 1-D and 2-D continuous Fourier transforms, see the books by Bracewell 
[1995, 2003]. These two books, together with Castleman [1996], Petrou and Petrou [2010], Brigham [1988], and 
Smith [2003], provide additional background for the material in Sections 4.2 through 4.6. Sampling phenomena 
such as aliasing and moiré patterns are topics amply illustrated in books on computer graphics, as exemplified by 
Hughes and Andries [2013]. For additional general background on the material in Sections 4.7 through 4.11 see 
Hall [1979], Jain [1989], Castleman [1996], and Pratt [2014]. For details on the software aspects of many of the ex-
amples in this chapter, see Gonzalez, Woods, and Eddins [2009].

Problems 
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book 
website: www.ImageProcessingPlace.com)

4.1 Answer the following:

(a) * Give an equation similar to Eq. (4-10), but 
for an impulse located at t t= 0 .

(b) Repeat for Eq. (4-15).

(c) * Is it correct to say that d d( ) ( )t a a t− = −  in 
general? Explain.

4.2 Repeat Example 4.1, but using the function 

f t A( ) =  for 0 ≤ <t T  and f t( ) = 0 for all other 
values of t. Explain the reason for any differences 
between your results and the results in the exam-
ple.

4.3 What is the convolution of two, 1-D impulses: 

(a) * d( )t  and d( )?t t− 0

(b) d( )t t− 0  and d( )?t t+ 0
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4.4 * Use the sifting property of the impulse to show 
that convolving a 1-D continuous function, f t( ), 
with an impulse located at t0  shifts the function 
so that its origin is moved to the location of the 
impulse (if the impulse is at the origin, the func-
tion is not shifted).

4.5 * With reference to Fig. 4.9, give a graphical illustra-
tion of an aliased pair of functions that are not 
periodic.

4.6 With reference to Fig. 4.11:

(a) * Redraw the figure, showing what the dots 
would look like for a sampling rate that 
exceeds the Nyquist rate slightly.

(b) What is the approximate sampling rate repre-
sented by the large dots in Fig. 4.11?

(c) Approximately, what would be the lowest 
sampling rate that you would use so that (1) 
the Nyquist rate is satisfied, and (2) the sam-
ples look like a sine wave?

4.7 A function, f t( ), is formed by the sum of three 
functions, f t A t1( ) sin( ),= p  f t B t2 4( ) sin( ),= p  
and f t C t3 8( ) cos( ).= p

(a) Assuming that the functions extend to infin-
ity in both directions, what is the highest fre-
quency of f t( )? (Hint: Start by finding the 
period of the sum of the three functions.)

(b) * What is the Nyquist rate corresponding to 
your result in (a)? (Give a numerical answer.)

(c) At what rate would you sample f t( ) so that 
perfect recovery of the function from its 
samples is possible?

4.8 * Show that �{ } ( ),e tj t t2
0

0p d m= −  where t0  is a con-
stant. (Hint: Study Example 4.2.) 

4.9 Show that the following expressions are true. 
(Hint: Make use of the solution to Problem 4.8):

(a) * � cos( ) ( ) ( )2
1
20 0 0pm d m m d m mt{ } = − + +[ ]

(b) � sin( ) ( ) ( )2
1
20 0 0pm d m m d m mt

j
{ } = − − +[ ]

4.10 Consider the function f t nt( ) sin( ),= 2p  where 
n is an integer. Its Fourier transform, F( ),m  is 
purely imaginary (see Problem 4.9). Because the 
transform, �F( ),m  of sampled data consists of peri-
odic copies of F( ),m  it follows that �F( )m  will also 
be purely imaginary. Draw a diagram similar to 

Fig. 4.6, and answer the following questions based 
on your diagram (assume that sampling starts at 
t = 0).

(a) * What is the period of f t( )?

(b) * What is the frequency of f t( )?

(c) * What would the sampled function and its 
Fourier transform look like in general if f t( ) 
is sampled at a rate higher than the Nyquist 
rate?

(d) What would the sampled function look like 
in general if f t( ) is sampled at a rate lower 
than the Nyquist rate?

(e) What would the sampled function look like 
if f t( ) is sampled at the Nyquist rate, with 
samples taken at t T T= 0 2, , ,± ±� � …  ?

4.11 * Prove the validity of the convolution theorem of 
one continuous variable, as given in Eqs. (4-25) 
and (4-26).

4.12 We explained in the paragraph after Eq. (4-36) that 
arbitrarily limiting the duration of a band-limit-
ed function by multiplying it by a box function 
would cause the function to cease being band 
limited. Show graphically why this is so by limit-
ing the duration of the function f t t( ) cos( )= 2 0pm  
[the Fourier transform of this function is given in 
Problem 4.9(a)]. (Hint: The transform of a box 
function is given in Example 4.1. Use that result 
in your solution, and also the fact that convolu-
tion of a function with an impulse shifts the func-
tion to the location of the impulse, in the sense 
discussed in the solution of Problem 4.4.)

4.13 * Complete the steps that led from Eq. (4-37) to 
Eq. (4-38).

4.14 Show that �F( )m  in Eq. (4-40) is infinitely periodic 
in both directions, with period 1 �T .

4.15 Do the following:

(a) Show that Eqs. (4-42) and (4-43) are a Fou-
rier transform pair: f Fn m⇔ .

(b) * Show that Eqs. (4-44) and (4-45) also are a 
Fourier transform pair: f x F u( ) ( ).⇔

You will need the following orthogonality prop-
erty in both parts of this problem:

 e e
M r uj rx M

x

M
j ux M2

0

1
2

0
p p

=

−
−∑ =

=⎧
⎨
⎩

if 

otherwise
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4.16 Show that both F u( ) and f x( ) in Eqs. (4-44) and 
(4-45) are infinitely periodic with period M; that is, 
F u F u kM( ) ( )= +  and f x f x M( ) ( ),= +  where k 
is an integer. [See Eqs. (4-46) and (4-47).]

4.17 Demonstrate the validity of the translation (shift) 
properties of the following 1-D, discrete Fourier 
transform pairs. (Hint: It is easier in part (b) to 
work with the IDFT.)

(a) * f x e F u uj u x M( ) ( )2
0

0p ⇔ −

(b) f x x F u e j ux M( ) ( )− ⇔ −
0

2 0p

4.18 Show that the 1-D convolution theorem given in 
Eqs. (4-25) and (4-26) also holds for discrete vari-
ables, but with the right side of Eq. (4-26) multi-
plied by 1 M. That is, show that

(a) *  ( )( ) ( )( ),f h x F H u� ⇔ i  and

(b) ( )( ) ( )( )f h x
M

F H ui ⇔ 1
�  

4.19 * Extend the expression for 1-D convolution [see 
Eq. (4-24)] to two continuous variables. Use t and 
z for the variables on the left side of the expression 
and a  and b for the variables in the 2-D integral. 

4.20 Use the sifting property of the 2-D impulse to 
show that convolution of a 2-D continuous func-
tion, f t z( , ), with an impulse shifts the function 
so that its origin is located at the location of the 
impulse. (If the impulse is at the origin, the func-
tion is copied exactly as it was.) (Hint: Study the 
solution to Problem 4.4).

4.21 The image on the left in the figure below consists 
of alternating stripes of black/white, each stripe 

being two pixels wide. The image on the right 
is the Fourier spectrum of the image on the left, 
showing the dc term and the frequency terms cor-
responding to the stripes. (Remember, the spec-
trum is symmetric so all components, other than 
the dc term, appear in two symmetric locations.)

(a) * Suppose that the stripes of an image of the 

same size are four pixels wide. Sketch what 
the spectrum of the image would look like, 
including only the dc term and the two high-
est-value frequency terms, which correspond 
to the two spikes in the spectrum above.

(b) Why are the components of the spectrum 
limited to the horizontal axis?

(c) What would the spectrum look like for an 
image of the same size but having stripes that 
are one pixel wide? Explain the reason for 
your answer.

(d) Are the dc terms in (a) and (c) the same, or 
are they different? Explain.

4.22 A high-technology company specializes in devel-
oping imaging systems for digitizing images of 
commercial cloth. The company has a new order 
for 1,000 systems for digitizing cloth consisting of 
repeating black and white vertical stripes, each 
of width 2 cm. Optical and mechanical engineers 
have already designed the front-end optics and 
mechanical positioning mechanisms so that you 
are guaranteed that every image your system digi-
tizes starts with a complete black vertical stripe 
and ends with a complete white stripe. Every 
image acquired will contain exactly 250 vertical 
stripes. Noise and optical distortions are negligi-
ble. Having learned of your success in taking an 
image processing course, the company employs 
you to specify the resolution of the imaging chip 
to be used in the new system. The optics can be 
adjusted to project the field of view accurately 
onto the area defined by the size of the chip you 
specify. Your design will be implemented in hun-
dreds of locations, so cost is an important consid-
eration. What resolution chip (in terms of number 
of imaging elements per horizontal line) would 
you specify to avoid aliasing? 

4.23 * We know from the discussion in Section 4.5 that 
zooming or shrinking a digital image generally 
causes aliasing. Give an example of an image that 
would be free of aliasing if it were zoomed by 
pixel replication.

4.24 With reference to the discussion on linearity in 
Section 2.6, demonstrate that

(a) * The 2-D continuous Fourier transform is a 
linear operator.

(b) The 2-D DFT is a linear operator also.
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4.25 With reference to Eqs. (4-59) and (4-60), show the 
validity of the following translation (shift) prop-
erties of 2-D, continuous Fourier transform pairs. 
(Hint: Study the solutions to Problem 4.11.)

(a) * f t z e Fj t z( , ) ( , )( )2
0 0

0 0p m n m m n n+ ⇔ − −

(b) f t t z z F e j t z( , ) ( , ) ( )− − ⇔ − +
0 0

2 0 0m n p m n

4.26 Show the validity of the following 2-D continuous 
Fourier transform pairs.

(a) * d( , )t z ⇔ 1

(b) * 1 ⇔ d m n( , )

(c) * d p m n( , ) ( )t t z z e j t z− − ⇔ − +
0 0

2 0 0

(d) e t zj t t z z2
0 0

0 0p d m n( ) ( , )+ ⇔ − −

(e) * cos( )2 20 0pm pnt z+ ⇔

( ) ( , ) ( , )1 2 0 0 0 0d m m n n d m m n n− − + + +[ ]
(f) sin( )2 20 0pm pnt z+ ⇔

( ) ( , ) ( , )1 2 0 0 0 0j d m m n n d m m n n− − − + +[ ]
4.27 With reference to Eqs. (4-71) and (4-72), dem-

onstrate the validity of the following translation 
(shifting) properties of 2-D, discrete Fourier trans-
form pairs from Table 4.4. (Hint: Study the solu-
tions to Problem 4.17.) 

(a) f x y e F u uj x M y N( , ) ( , )( )2
0 0

0 0p u v v v+ ⇔ − −

(b) * f x x y y F e j x M y N( , ) ( , ) ( )− − ⇔ − +
0 0

2 0 0u v u vp

4.28 Show the validity of the following 2-D discrete 
Fourier transform pairs from Table 4.4: 

(a) * d( , )x y ⇔ 1

(b) * 1 ⇔ MNd( , )u v

(c) d p( , ) ( )x x y y e j ux M y N− − ⇔ − +
0 0

2 0 0v

(d) * e MN u uj u x M y N2
0 0

0p d( ) ( , )+ ⇔ − −v0 v v

(e) cos( )2 20 0pm pnx M y N+ ⇔

( ) ( , ) ( , )MN u u u2 0 0 0 0d m d+ + + − −[ ]v v v v

(f) * sin( )2 20 0pm pnx M y N+ ⇔

( ) ( , ) ( , )jMN u u u2 0 0 0 0d m d+ + − − −[ ]v v v v

4.29 You are given a “canned” program that computes 
the 2-D, DFT pair. However, it is not known 
in which of the two equations the 1 MN  term 
is included or if it was split as two constants, 
1 MN ,  in front of both the forward and inverse 
transforms. How can you find where the term(s) 
is (are) included if this information is not avail-
able in the documentation?

4.30 What is period and frequency of each of following 
digital sequences (Hint: Think of these as square 
waves.)

(a) * 0 1 0 1 0 1 0 1 . . .

(b) 0 0 1 0 0 1 0 0 1 . . . .

(c) 0 0 1 1 0 0 1 1 0 0 1 1 . . .

4.31 With reference to the 1-D sequences in Example 
4.10:

(a) * When M is even, why is the point at M 2  in 
an even sequence always arbitrary?

(b) When M is even, why is the point at M 2  in 
an odd sequence always 0?

4.32 We mentioned in Example 4.10 that embedding a 
2-D array of even (odd) dimensions into a larger 
array of zeros of even (odd) dimensions keeps the 
symmetry of the original array, provided that the 
centers coincide. Show that this is true also for 
the following 1-D arrays (i.e., show that the larger 
arrays have the same symmetry as the smaller 
arrays). For arrays of even length, use arrays of 
0’s ten elements long. For arrays of odd lengths, 
use arrays of 0’s nine elements long.

(a) * a b c c b, , , ,{ }
(b) 0 0, , , , ,− −{ }b c c b

(c) a b c d c b, , , , ,{ }
(d) 0, , , ,− −{ }b c c b

4.33 In Example 4.10 we showed a Sobel kernel 
embedded in a field of zeros. The kernel is of size 
3 3×  and its structure appears to be odd. However, 
its first element is −1, and we know that in order 
to be odd, the first (top, left) element a 2-D array 
must be zero. Show the smallest field of zeros in 
which you can embed the Sobel kernel so that it 
satisfies the condition of oddness.

4.34 Do the following:

(a) * Show that the 6 6×  array in Example 4.10 is 
odd.

(b) What would happen if the minus signs are 
changed to pluses?

(c) Explain why, as stated at the end of the exam-
ple, adding to the array another row of 0’s on 
the top and column of 0’s to the left would 
give a result that is neither even nor odd.

(d) Suppose that the row is added to the bot-
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tom and the column to the right? Would that 
change your answer in (c)?

4.35 The following problems are related to the proper-
ties in Table 4.1.

(a) * Demonstrate the validity of property 2.

(b) * Demonstrate the validity of property 4.

(c) Demonstrate the validity of property 5.

(d) * Demonstrate the validity of property 7.

(e) Demonstrate the validity of property 9.

4.36 You know from Table 4.3 that the dc term, F( , ),0 0  
of a DFT is proportional to the average value of 
its corresponding spatial image. Assume that the 
image is of size M N× .  Suppose that you pad the 
image with zeros to size P Q× , where P and Q 
are given in Eqs. (4-102) and (4-103). Let Fp( , )0 0  
denote the dc term of the DFT of the padded 
function.

(a) * What is the ratio of the average values of the 
original and padded images?

(b) Is F Fp( , ) ( , )?0 0 0 0=  Support your answer 
mathematically.

4.37 Demonstrate the validity of the periodicity prop-
erties (entry 8) in Table 4.3. 

4.38 With reference to the 2-D discrete convolution 
theorem in Eqs. (4-95) and (4-96) (entry 6 in 
Table 4.4), show that

(a)  ( ( )( , ))( , )f F Hh x y� ⇔ i u v

(b) *  ( )( , ) ( ) ( )( , )f h x y MN F Hi ⇔ [ ]1 � u v

(Hint: Study the solution to Problem 4.18.)

4.39 With reference to the 2-D discrete correlation 
theorem (entry 7 in Table 4.4), show that

(a) *  ( ( )( , ))( , ) *f F Hh x y� ⇔ i u v

(b)  ( )( , ) ( ) ( )( , )*f h x y MN F Hi ⇔ [ ]1 � u v

4.40 * Demonstrate validity of the differentiation pairs 
in entry 12 of Table 4.4. 

4.41 We discussed in Section 4.6 the need for image 
padding when filtering in the frequency domain. 
We showed in that section that images could be 
padded by appending zeros to the ends of rows 
and columns in the image (see the following 
image, on the left). Do you think it would make a 
difference if we centered the image and surround-

ed it by a border of zeros instead (see image on 
the right), but without changing the total number 
of zeros used? Explain.

4.42 * The two Fourier spectra shown are of the same 
image. The spectrum on the left corresponds to 
the original image, and the spectrum on the right 
was obtained after the image was padded with 
zeros. Explain the significant increase in signal 
strength along the vertical and horizontal axes of 
the spectrum shown on the right.

4.43 Consider the images shown. The image on the 
right was obtained by: (a) multiplying the image 
on the left by ( ) ;− +1 x y  (b) computing the DFT; (c) 
taking the complex conjugate of the transform; 
(d) computing the inverse DFT; and (e) multiply-
ing the real part of the result by ( ) .− +1 x y  Explain 
(mathematically) why the image on the right 
appears as it does.
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4.44 * The image in Fig. 4.34(b) was obtained by mul-
tiplying by −1 the phase angle of the image in 
Fig. 4.34(a), and then computing the IDFT. With 
reference to Eq. (4-86) and entry 5 in Table 4.1, 
explain why this operation caused the image to be 
reflected about both coordinate axes.

4.45 In Fig. 4.34(b) we saw that multiplying the phase 
angle by −1 flipped the image with respect to both 
coordinate axes. Suppose that instead we multi-
plied the magnitude of the transform by −1 and 
then took the inverse DFT using the equation: 
g x y F ej( , ) ( , ) .( , )= −{ }−� 1 u v u vf

(a) * What would be the difference between the 
two images g x y( , ) and f x y( , )? [Remember, 
F( , )u v  is the DFT of f x y( , ).]

(b) Assuming that they are both 8-bit images, 
what would g x y( , ) look like in terms of 
f x y( , ) if we scaled the intensity values of 
g x y( , ) using Eqs. (2-31) and (2-32), with 
K = 255?

4.46 What is the source of the nearly periodic bright 
spots on the horizontal axis of Fig. 4.40(b)?

4.47 * Consider a 3 3×  spatial kernel that averages 
the four closest neighbors of a point ( , ),x y  but 
excludes the point itself from the average.

(a) Find the equivalent filter transfer function, 
H( , ),u v  in the frequency domain.

(b) Show that your result is a lowpass filter trans-
fer function.

4.48 * A continuous Gaussian lowpass filter in the con-
tinuous frequency domain has the transfer func-
tion

H Ae( , ) ( )m n m n s= − +2 2 22

Show that the corresponding filter kernel in the 
continuous spatial domain is

h t z A e t z( , ) ( )= − +2 2 2 2 2 2 2

ps p s

4.49 Given an image of size M N× , you are asked to 
perform an experiment that consists of repeat-
edly lowpass filtering the image in the frequency 
domain using a Gaussian lowpass filter transfer 
function with a cutoff frequency, D0 .  You may 
ignore computational round-off errors. 

(a) * Let K denote the number of applications of 

the filter. Can you predict (without doing the 
experiment) what the result (image) will be 
for a sufficiently large value of K? If so, what 
is that result?

(b) Let cmin denote the smallest positive num-
ber representable in the machine in which 
the proposed experiment will be conducted 
(any number < cmin is automatically set to 0). 
Derive an expression (in terms of cmin ) for 
the minimum value of K that will guarantee 
the result that you predicted in (a). 

4.50 As explained in Section 3.6, first-order deriva-
tives can be approximated by the spatial differ-
ences g f x y x f x y f x yx = ∂ ∂ = + −( , ) ( , ) ( , )1  and 
g f x y y f x y f x yy = ∂ ∂ = + −( , ) ( , ) ( , ).1

(a) Find the equivalent filter transfer func-
tions Hx( , )u v  and Hy( , )u v  in the frequency 
domain.

(b) Show that these are highpass filter transfer 
functions.

(Hint: Study the solution to Problem 4.47.)

4.51 Find the equivalent frequency-domain filter 
transfer function for the Laplacian kernel shown 
in Fig. 3.45(a). Show that your result behaves as a 
highpass filter transfer function. (Hint: Study the 
solution to Problem 4.47.)

4.52 Do the following:

(a) Show that the Laplacian of a continuous 
function f t z( , ) of two continuous variables, 
t and z, satisfies the following Fourier trans-
form pair:


2 2 2 24f t z F( , ) ( ) ( , )⇔ − +p m n m n

(Hint: See Eq. (3-50) and study entry 12 in 
Table 4.4.)

(b) * The result in (a) is valid only for continuous 
variables. How would you implement the 
continuous frequency domain transfer func-
tion H( , ) ( )m n p m n= − +4 2 2 2  for discrete 
variables?

(c) As you saw in Example 4.21, the Laplacian 
result in the frequency domain was similar to 
the result in Fig. 3.46(d), which was obtained 
using a spatial kernel with a center coeffi-
cient equal to −8. Explain why the frequency 
domain result was not similar instead to the 
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result in Fig. 3.46(c), which was obtained 
using a kernel with a center coefficient of −4.

4.53 * Can you think of a way to use the Fourier trans-
form to compute (or partially compute) the 
magnitude of the gradient [Eq. (3-58)] for use in 
image differentiation? If your answer is yes, give 
a method to do it. If your answer is no, explain 
why.

4.54 As explained in Eq. (4-118), it is possible to obtain 
the transfer function of a highpass filter from the 
transfer function of a lowpass filter by subtract-
ing the latter from 1. What is the highpass spatial 
kernel corresponding to the lowpass Gaussian 
transfer function given in Problem 4.48?

4.55 Each spatial highpass kernel in Fig. 4.52 has a 
strong spike in the center. Explain the source of 
this spikes.

4.56 * Show how the Butterworth highpass filter trans-
fer function in Eq. (4-121) follows from its low-
pass counterpart in Eq. (4-117).

4.57 Consider the hand X-ray images shown below. 
The image on the right was obtained by lowpass

(Original image courtesy of Dr. Thomas R. Gest, Division 
of Anatomical Sciences, University of Michigan Medical 
School.) 

filtering the image on the left with a Gaussian 
lowpass filter, and then highpass filtering the 
result with a Gaussian highpass filter. The images 
are of size 420 344×  pixels and D0 25=  was used 
for both filter transfer functions.

(a) * Explain why the center part of the finger ring 
in the figure on the right appears so bright 
and solid, considering that the dominant 
characteristic of the filtered image consists 
of edges of the fingers and wrist bones, with 
darker areas in between. In other words, 
would you not expect the highpass filter to 
render the constant area inside the ring as 

dark, since a highpass filter eliminates the dc 
term and reduces low frequencies?

(b)  Do you think the result would have been dif-
ferent if the order of the filtering process had 
been reversed?

4.58 Consider the sequence of images shown below. 
The image on the top left is a segment of an X-ray 
image of a commercial printed circuit board. The 
images following it are, respectively, the results of 
subjecting the image to 1, 10, and 100 passes of a 
Gaussian highpass filter with D0 30= . The images 
are of size 330 334×  pixels, with each pixel being 
represented by 8 bits of gray. The images were 
scaled for display, but this has no effect on the 
problem statement.

(Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

(a) It appears from the images that changes will 
cease to take place after a finite number of 
passes. Show whether or not this is the case. 
You may ignore computational round-off 
errors. Let cmin denote the smallest positive 
number representable in the machine in 
which the computations are conducted. 

(b) If you determined in (a) that changes would 
cease after a finite number of iterations, 
determine the minimum value of that num-
ber.

(Hint: Study the solution to Problem 4.49.)

4.59 As illustrated in Fig. 4.57, combining high-fre-
quency emphasis and histogram equalization is 
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an effective method for achieving edge sharpen-
ing and contrast enhancement.

(a) * Show whether or not it matters which pro-
cess is applied first.

(b) If the order does matter, give a rationale for 
using one or the other method first.

4.60 Use a Butterworth highpass filter to construct a 
homomorphic filter transfer function that has the 
same general shape as the function in Fig. 4.59.

4.61 Suppose that you are given a set of images gener-
ated by an experiment dealing with the analysis of 
stellar events. Each image contains a set of bright, 
widely scattered dots corresponding to stars in 
a sparsely occupied region of the universe. The 
problem is that the stars are barely visible as a 
result of superimposed illumination from atmo-
spheric dispersion. If these images are modeled as 
the product of a constant illumination component 
with a set of impulses, give an enhancement pro-
cedure based on homomorphic filtering designed 
to bring out the image components due to the 
stars themselves.

4.62 How would you generate an image of only the 
interference pattern visible in Fig. 4.64(a)?

4.63 * Show the validity of Eqs. (4-171) and (4-172). 
(Hint: Use proof by induction.)

4.64 A skilled medical technician is assigned the job of 
inspecting a set of images generated by an elec-
tron microscope experiment. In order to simplify 
the inspection task, the technician decides to use 
digital image enhancement and, to this end, exam-
ines a set of representative images and finds the 
following problems: (1) bright, isolated dots that 
are of no interest; (2) lack of sharpness; (3) not 
enough contrast in some images; and (4) shifts 
in the average intensity to values other than A0 ,  
which is the average value required to perform 
correctly certain intensity measurements. The 
technician wants to correct these problems and 
then display in white all intensities in a band 
between intensities I1  and I2 , while keeping nor-
mal tonality in the remaining intensities. Propose 
a sequence of processing steps that the technician 
can follow to achieve the desired goal. You may 
use techniques from both Chapters 3 and 4.
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5 Image Restoration 
and Reconstruction

Preview
As in image enhancement, the principal goal of restoration techniques is to improve an image in some 
predefined sense. Although there are areas of overlap, image enhancement is largely a subjective pro-
cess, while image restoration is for the most part an objective process. Restoration attempts to recover 
an image that has been degraded by using a priori knowledge of the degradation phenomenon. Thus, 
restoration techniques are oriented toward modeling the degradation and applying the inverse process 
in order to recover the original image. In this chapter, we consider linear, space invariant restoration 
models that are applicable in a variety of restoration situations. We also discuss fundamental tech-
niques of image reconstruction from projections, and their application to computed tomography (CT), 
one of the most important commercial applications of image processing, especially in health care.

Upon completion of this chapter, readers should:
 Be familiar with the characteristics of various 

noise models used in image processing, and 
how to estimate from image data the param-
eters that define those models.

 Be familiar with linear, nonlinear, and adap-
tive spatial filters used to restore (denoise) 
images that have been degraded only by noise.

 Know how to apply notch filtering in the fre-
quency domain for removing periodic noise 
in an image.

 Understand the foundation of linear, space 
invariant system concepts, and how they can 

be applied in formulating image restoration 
solutions in the frequency domain.

 Be familiar with direct inverse filtering and its 
limitations.

 Understand minimum mean-square-error (Wie-
ner) filtering and its advantages over direct 
inverse filtering.

 Understand constrained, least-squares filter-
ing.

 Be familiar with the fundamentals of image 
reconstruction from projections, and their 
application to computed tomography.

Things which we see are not themselves what we see . . .  
It remains completely unknown to us what the objects may be 
by themselves and apart from the receptivity of our senses. 
We know only but our manner of perceiving them.

Immanuel Kant
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5.1 A MODEL OF THE IMAGE DEGRADATION/RESTORATION  
PROCESS  

In this chapter, we model image degradation as an operator �  that, together with an 
additive noise term, operates on an input image f x y( , ) to produce a degraded image 
g x y( , ) (see Fig. 5.1). Given g x y( , ), some knowledge about �,  and some knowledge 
about the additive noise term h( , ),x y  the objective of restoration is to obtain an 
estimate ˆ( , )f x y  of the original image. We want the estimate to be as close as possible 
to the original image and, in general, the more we know about �  and h, the closer 
ˆ( , )f x y  will be to f x y( , ). 

We will show in Section 5.5 that, if �  is a linear, position-invariant operator, then 
the degraded image is given in the spatial domain by

 g x y h f x y x y( , ) ( )( , ) ( , )= +� h  (5-1)

where h x y( , ) is the spatial representation of the degradation function. As in Chapters 
3 and 4, the symbol “�” indicates convolution. It follows from the convolution theorem 
that the equivalent of Eq. (5-1) in the frequency domain is

 G H F N( , ) ( , ) ( , ) ( , )u v u v u v u v= +  (5-2)

where the terms in capital letters are the Fourier transforms of the corresponding 
terms in Eq. (5-1). These two equations are the foundation for most of the restora-
tion material in this chapter.

In the following three sections, we work only with degradations caused by noise. 
Beginning in Section 5.5 we look at several methods for image restoration in the 
presence of both �  and h.

5.2 NOISE MODELS  

The principal sources of noise in digital images arise during image acquisition and/or 
transmission. The performance of imaging sensors is affected by a variety of environ-
mental factors during image acquisition, and by the quality of the sensing elements 
themselves. For instance, in acquiring images with a CCD camera, light levels and 
sensor temperature are major factors affecting the amount of noise in the resulting 
image. Images are corrupted during transmission principally by interference in the 
transmission channel. For example, an image transmitted using a wireless network 
might be corrupted by lightning or other atmospheric disturbance. 

5.1

5.2

Degradation

DEGRADATION RESTORATION

Restoration
filter(s)

f(x, y)

g(x, y)

f(x, y)ˆ

Noise
h(x, y)

	�

FIGURE 5.1
A model of the 
image  
degradation/ 
restoration  
process. 
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SPATIAL AND FREQUENCY PROPERTIES OF NOISE

Relevant to our discussion are parameters that define the spatial characteristics of 
noise, and whether the noise is correlated with the image. Frequency properties refer 
to the frequency content of noise in the Fourier (frequency) domain discussed in 
detail in Chapter 4. For example, when the Fourier spectrum of noise is constant, the 
noise is called white noise. This terminology is a carryover from the physical prop-
erties of white light, which contains all frequencies in the visible spectrum in equal 
proportions.

With the exception of spatially periodic noise, we assume in this chapter that 
noise is independent of spatial coordinates, and that it is uncorrelated with respect 
to the image itself (that is, there is no correlation between pixel values and the values 
of noise components). Although these assumptions are at least partially invalid in 
some applications (quantum-limited imaging, such as in X-ray and nuclear-medicine 
imaging, is a good example), the complexities of dealing with spatially dependent 
and correlated noise are beyond the scope of our discussion.

SOME IMPORTANT NOISE PROBABILITY DENSITY FUNCTIONS

In the discussion that follows, we shall be concerned with the statistical behavior of 
the intensity values in the noise component of the model in Fig. 5.1. These may be 
considered random variables, characterized by a probability density function (PDF), 
as noted briefly as noted earlier. The noise component of the model in Fig. 5.1 is an 
image, h( , ),x y  of the same size as the input image. We create a noise image for simu-
lation purposes by generating an array whose intensity values are random numbers 
with a specified probability density function. This approach is true for all the PDFs 
to be discussed shortly, with the exception of salt-and-pepper noise, which is applied 
differently. The following are among the most common noise PDFs found in image 
processing applications.

Gaussian Noise

Because of its mathematical tractability in both the spatial and frequency domains, 
Gaussian noise models are used frequently in practice. In fact, this tractability is so 
convenient that it often results in Gaussian models being used in situations in which 
they are marginally applicable at best. 

The PDF of a Gaussian random variable, z, is defined by the following familiar 
expression:

 p z e z
z z

( )
( )

= −
− −

1

2

2

22

ps
s � �< <  (5-3)

where z represents intensity, z  is the mean (average) value of z, and s  is its standard 
deviation. Figure 5.2(a) shows a plot of this function. We know that for a Gaussian 
random variable, the probability that values of z are in the range z ± s  is approxi-
mately 0.68; the probability is about 0.95 that the values of z are in the range z ± 2s.

You may find it helpful 
to take a look at the 
Tutorials section of the 
book website for a brief 
review of probability.
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Rayleigh Noise

The PDF of Rayleigh noise is given by

 p z b
z a e z a

z a

z a b

( )
( ) ( )

=
−⎧

⎨
⎪

⎩⎪

− −2

0

2

≥

<
 (5-4)

The mean and variance of z when this random variable is characterized by a Ray-
leigh PDF are

 z a b= + p 4  (5-5)

and

 s
p2 4

4
=

−( )b
 (5-6)

Figure 5.2(b) shows a plot of the Rayleigh density. Note the displacement from the 
origin, and the fact that the basic shape of the density is skewed to the right. The 
Rayleigh density can be quite useful for modeling the shape of skewed histograms.

z

Rayleigh

p(z)

K
Erlang (Gamma)

z(b � 1)/a

z

p(z)

z

a
Exponential

p(z)

Pp

Salt-and-
pepper

p(z)

1
2ps

0.607
2ps

_
z � s

_
z 	 s

_
z

p(z)

2
b

0.607

za b
2

a 	

a(b � 1)b�1

(b � 1)!
K � e�(b�1)

Uniform

za b

p(z)

1
b � a

Gaussian

Ps

0 2 1k −V

1 ( )s pP P− +
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FIGURE 5.2  Some important probability density functions.
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Erlang (Gamma) Noise

The PDF of Erlang noise is

 p z
a z
b

e z

z

b b
az

( ) ( )!= −
<

⎧

⎨
⎪

⎩
⎪

−
−

1

1
0

0 0

≥
 (5-7)

where the parameters are such that a b> , b is a positive integer, and “!” indicates 
factorial. The mean and variance of z are

 z
b
a

=  (5-8)

and

 s2
2= b

a
 (5-9)

Figure 5.2(c) shows a plot of this density. Although Eq. (5-9) often is referred to as 
the gamma density, strictly speaking this is correct only when the denominator is 
the gamma function, �( ).b  When the denominator is as shown, the density is more 
appropriately called the Erlang density.

Exponential Noise

The PDF of exponential noise is given by 

 p z
ae z

z

az

( ) =
<

⎧
⎨
⎪

⎩⎪

− ≥ 0

0 0
 (5-10)

where a > 0. The mean and variance of z are

 z
a

= 1
 (5-11)

and

 s2
2

1=
a

 (5-12)

Note that this PDF is a special case of the Erlang PDF with b = 1. Figure 5.2(d) 
shows a plot of the exponential density function.

Uniform Noise

The PDF of uniform noise is

 p z b a
a z b

( ) = −
⎧
⎨
⎪

⎩⎪

1

0

≤ ≤

otherwise
 (5-13)
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The mean and variance of z are

 z
a b= +

2
 (5-14)

and

 s2
2

12
= −( )b a

 (5-15)

Figure 5.2(e) shows a plot of the uniform density.

Salt-and-Pepper Noise

If k represents the number of bits used to represent the intensity values in a digital 
image, then the range of possible intensity values for that image is [ , ]0 2 1k −  (e.g., 
[ , ]0 255  for an 8-bit image). The PDF of salt-and-pepper noise is given by

 p z

P z

P z

P P z V

s
k

p

s p

( )

( )

=
= −
=

− + =

⎧

⎨
⎪

⎩
⎪

for 

for 

for 

2 1

0

1

 (5-16)

where V is any integer value in the range 0 2 1< < −V k .
Let h( , )x y  denote a salt-and-pepper noise image, whose intensity values satisfy 

Eq. (5-16). Given an image, f x y( , ), of the same size as h( , ),x y  we corrupt it with salt-
and-pepper noise by assigning a 0 to all locations in f where a 0 occurs in h. Similarly, 
we assign a value of 2 1k −  to all location in f where that value appears in h. Finally, 
we leave unchanged all location in f where V occurs in h.

If neither Ps nor Pp is zero, and especially if they are equal, noise values satisfy-
ing Eq. (5-16) will be white ( )2 1k −  or black (0), and will resemble salt and pepper 
granules distributed randomly over the image; hence the name of this type of noise. 
Other names you will find used in the literature are bipolar impulse noise (unipolar 
if either Ps or Pp is 0), data-drop-out noise, and spike noise. We use the terms impulse 
and salt-and-pepper noise interchangeably. 

The probability, P, that a pixel is corrupted by salt or pepper noise is P P Ps p= + . 
It is common terminology to refer to P as the noise density. If, for example, Ps = 0 02.  
and Pp = 0 01. , then P = 0 03.  and we say that approximately 2% of the pixels in an 
image are corrupted by salt noise, 1% are corrupted by pepper noise, and the noise 
density is 3%, meaning that approximately 3% of the pixels in the image are cor-
rupted by salt-and-pepper noise.

Although, as you have seen, salt-and-pepper noise is specified by the probability 
of each, and not by the mean and variance, we include the latter here for complete-
ness. The mean of salt-and-pepper noise is given by

 z P K P P Pp s p
k

s= + − − + −( ) ( ) ( )0 1 2 1  (5-17)

and the variance by

When image intensities 
are scaled to the range 
[0, 1], we replace by 1 the 
value of salt in this equa-
tion. V then becomes a 
fractional value in the 
open interval (0, 1). 
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 s2 2 2 20 1 2 1= − + − − − + −( ) ( ) ( ) ( )z P K z P P Pp s p
k

s  (5-18)

where we have included 0 as a value explicit in both equations to indicate that the 
value of pepper noise is assumed to be zero.

As a group, the preceding PDFs provide useful tools for modeling a broad range 
of noise corruption situations found in practice. For example, Gaussian noise arises 
in an image due to factors such as electronic circuit noise and sensor noise caused by 
poor illumination and/or high temperature. The Rayleigh density is helpful in char-
acterizing noise phenomena in range imaging. The exponential and gamma densities 
find application in laser imaging. Impulse noise is found in situations where quick 
transients, such as faulty switching, take place during imaging. The uniform density 
is perhaps the least descriptive of practical situations. However, the uniform density 
is quite useful as the basis for numerous random number generators that are used 
extensively in simulations (Gonzalez, Woods, and Eddins [2009]).

EXAMPLE 5.1 :  Noisy images and their histograms.

Figure 5.3 shows a test pattern used for illustrating the noise models just discussed. This is a suitable pat-
tern to use because it is composed of simple, constant areas that span the gray scale from black to near 
white in only three increments. This facilitates visual analysis of the characteristics of the various noise 
components added to an image. 

Figure 5.4 shows the test pattern after addition of the six types of noise in Fig. 5.2. Below each image 
is the histogram computed directly from that image. The parameters of the noise were chosen in each 
case so that the histogram corresponding to the three intensity levels in the test pattern would start to 
merge. This made the noise quite visible, without obscuring the basic structure of the underlying image.

We see a close correspondence in comparing the histograms in Fig. 5.4 with the PDFs in Fig. 5.2. 
The histogram for the salt-and-pepper example does not contain a specific peak for V because, as you 
will recall, V is used only during the creation of the noise image to leave values in the original image 
unchanged. Of course, in addition to the salt and pepper peaks, there are peaks for the other intensi-
ties in the image. With the exception of slightly different overall intensity, it is difficult to differentiate 

FIGURE 5.3
Test pattern used 
to illustrate the 
characteristics of 
the PDFs from 
Fig. 5.2.
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FIGURE 5.4  Images and histograms resulting from adding Gaussian, Rayleigh, and Erlanga noise to the image in 
Fig. 5.3.

visually between the first five images in Fig. 5.4, even though their histograms are significantly different. 
The salt-and-pepper appearance of the image in Fig. 5.4(i) is the only one that is visually indicative of 
the type of noise causing the degradation.

PERIODIC NOISE

Periodic noise in images typically arises from electrical or electromechanical inter-
ference during image acquisition. This is the only type of spatially dependent noise 
we will consider in this chapter. As we will discuss in Section 5.4, periodic noise can 
be reduced significantly via frequency domain filtering. For example, consider the 
image in Fig. 5.5(a). This image is corrupted by additive (spatial) sinusoidal noise. 
The Fourier transform of a pure sinusoid is a pair of conjugate impulses† located at 

†  Be careful not to confuse the term impulse in the frequency domain with the use of the same term in impulse 
noise discussed earlier, which is in the spatial domain.
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hg i
k lj

FIGURE 5.4 (continued) Images and histograms resulting from adding exponential, uniform, and salt-and-pepper noise 
to the image in Fig. 5.3. In the salt-and-pepper histogram, the peaks in the origin (zero intensity) and at the far end 
of the scale are shown displaced slightly so that they do not blend with the page background.

the conjugate frequencies of the sine wave (see Table 4.4). Thus, if the amplitude of 
a sine wave in the spatial domain is strong enough, we would expect to see in the 
spectrum of the image a pair of impulses for each sine wave in the image. As shown 
in Fig. 5.5(b), this is indeed the case. Eliminating or reducing these impulses in the 
frequency domain will eliminate or reduce the sinusoidal noise in the spatial domain. 
We will have much more to say in Section 5.4 about this and other examples of peri-
odic noise.

ESTIMATING NOISE PARAMETERS

The parameters of periodic noise typically are estimated by inspection of the Fourier 
spectrum. Periodic noise tends to produce frequency spikes that often can be detect-
ed even by visual analysis. Another approach is to attempt to infer the periodicity 
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ba

FIGURE 5.5
(a) Image  
corrupted by  
additive  
sinusoidal noise. 
(b) Spectrum 
showing two  
conjugate  
impulses caused 
by the sine wave.  
(Original  
image courtesy of 
NASA.) 

of noise components directly from the image, but this is possible only in simplis-
tic cases. Automated analysis is possible in situations in which the noise spikes are 
either exceptionally pronounced, or when knowledge is available about the general 
location of the frequency components of the interference (see Section 5.4).

The parameters of noise PDFs may be known partially from sensor specifications, 
but it is often necessary to estimate them for a particular imaging arrangement. If 
the imaging system is available, one simple way to study the characteristics of system 
noise is to capture a set of “flat” images. For example, in the case of an optical sen-
sor, this is as simple as imaging a solid gray board that is illuminated uniformly. The 
resulting images typically are good indicators of system noise.

When only images already generated by a sensor are available, it is often possible 
to estimate the parameters of the PDF from small patches of reasonably constant 
background intensity. For example, the vertical strips shown in Fig. 5.6 were cropped 
from the Gaussian, Rayleigh, and uniform images in Fig. 5.4. The histograms shown 
were calculated using image data from these small strips. The histograms in Fig. 5.4 
that correspond to the histograms in Fig. 5.6 are the ones in the middle of the group 
of three in Figs. 5.4(d), (e), and (k).We see that the shapes of these histograms cor-
respond quite closely to the shapes of the corresponding histograms in Fig. 5.6. Their 
heights are different due to scaling, but the shapes are unmistakably similar.

The simplest use of the data from the image strips is for calculating the mean and 
variance of intensity levels. Consider a strip (subimage) denoted by S, and let p zS i( ),
i L= −0 1 2 1, , , , ,…  denote the probability estimates (normalized histogram values) 
of the intensities of the pixels in S, where L is the number of possible intensities in 
the entire image (e.g., 256 for an 8-bit image). As in Eqs. (2-69) and (2-70), we esti-
mate the mean and variance of the pixel values in S as follows:

 z z p zi S i
i

L

=
=

−

∑ ( )
0

1

 (5-19)

and

DIP4E_GLOBAL_Print_Ready.indb   326 6/16/2017   2:07:03 PM



5.3  Restoration in the Presence of Noise Only—Spatial  Filtering    327

ba c

FIGURE 5.6  Histograms computed using small strips (shown as inserts) from (a) the Gaussian, (b) the Rayleigh, and 
(c) the uniform noisy images in Fig. 5.4.

 s2 2

0

1

= −
=

−

∑ ( ) ( )z z p zi S i
i

L

 (5-20)

The shape of the histogram identifies the closest PDF match. If the shape is approxi-
mately Gaussian, then the mean and variance are all we need because the Gaussian 
PDF is specified completely by these two parameters. For the other shapes discussed 
earlier, we use the mean and variance to solve for the parameters a and b. Impulse 
noise is handled differently because the estimate needed is of the actual probability 
of occurrence of white and black pixels. Obtaining this estimate requires that both 
black and white pixels be visible, so a mid-gray, relatively constant area is needed in 
the image in order to be able to compute a meaningful histogram of the noise. The 
heights of the peaks corresponding to black and white pixels are the estimates of Pa

and Pb in Eq. (5-16).

5.3  RESTORATION IN THE PRESENCE OF NOISE ONLY—SPATIAL  
FILTERING  

When an image is degraded only by additive noise, Eqs. (5-1) and (5-2) become

 g x y f x y x y( , ) ( , ) ( , )= + h  (5-21)

and

 G F N( , ) ( , ) ( , )u v u v u v= +  (5-22)

The noise terms generally are unknown, so subtracting them from g x y( , ) [ ( , )]G u v  
to obtain f x y( , ) [ ( , )]F u v  typically is not an option. In the case of periodic noise, 

5.3
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sometimes it is possible to estimate N( , )u v  from the spectrum of G( , ),u v  as noted 
in Section 5.2. In this case N( , )u v  can be subtracted from G( , )u v  to obtain an esti-
mate of the original image, but this type of knowledge is the exception, rather than 
the rule.

Spatial filtering is the method of choice for estimating f x y( , ) [i.e., denoising  
image g x y( , )] in situations when only additive random noise is present. Spatial fil-
tering was discussed in detail in Chapter 3. With the exception of the nature of the 
computation performed by a specific filter, the mechanics for implementing all the 
filters that follow are exactly as discussed in Sections 3.4 through 3.7.

MEAN FILTERS

In this section, we discuss briefly the noise-reduction capabilities of the spatial filters 
introduced in Section 3.5 and develop several other filters whose performance is in 
many cases superior to the filters discussed in that section.

Arithmetic Mean Filter

The arithmetic mean filter is the simplest of the mean filters (the arithmetic mean 
filter is the same as the box filter we discussed in Chapter 3). Let Sxy  represent the 
set of coordinates in a rectangular subimage window (neighborhood) of size m n× , 
centered on point ( , ).x y  The arithmetic mean filter computes the average value of 
the corrupted image, g x y( , ), in the area defined by Sxy. The value of the restored 
image f̂  at point ( , )x y  is the arithmetic mean computed using the pixels in the 
region defined by Sxy.In other words,

 ˆ( , ) ( , )
( , )

f x y
mn

g r c
r c Sxy

=
∈

∑1
 (5-23)

where, as in Eq. (2-43), r and c are the row and column coordinates of the pixels 
contained in the neighborhood Sxy. This operation can be implemented using a spa-
tial kernel of size m n×  in which all coefficients have value 1 mn. A mean filter 
smooths local variations in an image, and noise is reduced as a result of blurring.

Geometric Mean Filter

An image restored using a geometric mean filter is given by the expression

 ˆ( , ) ( , )
( , )

f x y g r c
r c S

mn

xy

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∈

∏
1

 (5-24)

where  indicates multiplication. Here, each restored pixel is given by the product of 
all the pixels in the subimage area, raised to the power 1 mn. As Example 5.2 below 
illustrates, a geometric mean filter achieves smoothing comparable to an arithmetic 
mean filter, but it tends to lose less image detail in the process.

We assume that m and 
n are odd integers. The 
size of a mean filter is 
the same as the size of 
neighborhood Sxy; that 
is, m � n. 
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Harmonic Mean Filter

The harmonic mean filtering operation is given by the expression

 ˆ( , )

( , )( , )

f x y
mn

g r cr c Sxy

=

∈
∑ 1

 (5-25)

The harmonic mean filter works well for salt noise, but fails for pepper noise. It does 
well also with other types of noise like Gaussian noise.

Contraharmonic Mean Filter

The contraharmonic mean filter yields a restored image based on the expression

 ˆ( , )

( , )

( , )
( , )

( , )

f x y

g r c

g r c

Q

r c S

Q

r c S

xy

xy

=

+

∈

∈

∑
∑

1

 (5-26)

where Q is called the order of the filter. This filter is well suited for reducing or vir-
tually eliminating the effects of salt-and-pepper noise. For positive values of Q, the 
filter eliminates pepper noise. For negative values of Q, it eliminates salt noise. It 
cannot do both simultaneously. Note that the contraharmonic filter reduces to the 
arithmetic mean filter if Q = 0, and to the harmonic mean filter if Q = −1.

EXAMPLE 5.2 :  Image denoising using spatial mean filters.

Figure 5.7(a) shows an 8-bit X-ray image of a circuit board, and Fig. 5.7(b) shows the same image, but 
corrupted with additive Gaussian noise of zero mean and variance of 400. For this type of image, this is 
a significant level of noise. Figures 5.7(c) and (d) show, respectively, the result of filtering the noisy image 
with an arithmetic mean filter of size 3 3×  and a geometric mean filter of the same size. Although both 
filters did a reasonable job of attenuating the contribution due to noise, the geometric mean filter did 
not blur the image as much as the arithmetic filter. For instance, the connector fingers at the top of the 
image are sharper in Fig. 5.7(d) than in (c). The same is true in other parts of the image.

Figure 5.8(a) shows the same circuit image, but corrupted now by pepper noise with probability of 
0.1. Similarly, Fig. 5.8(b) shows the image corrupted by salt noise with the same probability. Figure 5.8(c) 
shows the result of filtering Fig. 5.8(a) using a contraharmonic mean filter with Q = 1 5. , and Fig. 5.8(d) 
shows the result of filtering Fig. 5.8(b) with Q = −1 5. . Both filters did a good job of reducing the effect of 
the noise. The positive-order filter did a better job of cleaning the background, at the expense of slightly 
thinning and blurring the dark areas. The opposite was true of the negative order filter.

In general, the arithmetic and geometric mean filters (particularly the latter) are well suited for ran-
dom noise like Gaussian or uniform noise. The contraharmonic filter is well suited for impulse noise, but 
it has the disadvantage that it must be known whether the noise is dark or light in order to select the 
proper sign for Q. The results of choosing the wrong sign for Q can be disastrous, as Fig. 5.9 shows. Some 
of the filters discussed in the following sections eliminate this shortcoming.

DIP4E_GLOBAL_Print_Ready.indb   329 6/16/2017   2:07:06 PM



330    Chapter 5  Image Restoration and Reconstruction

ORDER-STATISTIC FILTERS

We introduced order-statistic filters in Section 3.6. We now expand the discussion 
in that section and introduce some additional order-statistic filters. As noted in Sec-
tion 3.6, order-statistic filters are spatial filters whose response is based on ordering 
(ranking) the values of the pixels contained in the neighborhood encompassed by 
the filter. The ranking result determines the response of the filter.

Median Filter

The best-known order-statistic filter in image processing is the median filter, which, 
as its name implies, replaces the value of a pixel by the median of the intensity levels 
in a predefined neighborhood of that pixel:

 ˆ( , ) ( , )
( , )

f x y g r c
r c Sxy

= { }
∈

median  (5-27)

where, as before, Sxy  is a subimage (neighborhood) centered on point ( , ).x y  The val-
ue of the pixel at ( , )x y  is included in the computation of the median. Median filters 

ba
dc

FIGURE 5.7
(a) X-ray image 
of circuit board. 
(b) Image  
corrupted by  
additive Gaussian 
noise. (c) Result 
of filtering with 
an arithmetic 
mean filter of size 
3 3× .  (d) Result 
of filtering with a 
geometric mean 
filter of the same 
size. (Original 
image courtesy of 
Mr. Joseph E.  
Pascente, Lixi, 
Inc.)
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FIGURE 5.8
(a) Image  
corrupted by 
pepper noise with 
a probability of 
0.1. (b) Image 
corrupted by salt 
noise with the 
same  
probability.  
(c) Result of  
filtering (a) with 
a 3 3×  contra-
harmonic filter 
Q = 1 5. . (d) Result 
of filtering (b) 
with Q = −1 5. . 

ba  
FIGURE 5.9
Results of  
selecting the 
wrong sign in  
contraharmonic 
filtering.  
(a) Result of 
filtering Fig. 5.8(a) 
with a  
contraharmonic 
filter of size 3 3×  
and Q = −1 5. .  
(b) Result of  
filtering Fig. 5.8(b) 
using Q = 1 5. . 
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are quite popular because, for certain types of random noise, they provide excellent 
noise-reduction capabilities, with considerably less blurring than linear smoothing 
filters of similar size. Median filters are particularly effective in the presence of both 
bipolar and unipolar impulse noise, as Example 5.3 below shows. Computation of 
the median and implementation of this filter are discussed in Section 3.6.

Max and Min Filters

Although the median filter is by far the order-statistic filter most used in image pro-
cessing, it is by no means the only one. The median represents the 50th percentile of 
a ranked set of numbers, but you will recall from basic statistics that ranking lends 
itself to many other possibilities. For example, using the 100th percentile results in 
the so-called max filter, given by

 ˆ( , ) max ( , )
( , )

f x y g r c
r c Sxy

= { }
∈

 (5-28)

This filter is useful for finding the brightest points in an image or for eroding dark 
regions adjacent to bright areas. Also, because pepper noise has very low values, it 
is reduced by this filter as a result of the max selection process in the subimage area 
Sxy.

The 0th percentile filter is the min filter:

 ˆ( , ) min ( , )
( , )

f x y g r c
r c Sxy

= { }
∈

 (5-29)

This filter is useful for finding the darkest points in an image or for eroding light 
regions adjacent to dark areas. Also, it reduces salt noise as a result of the min opera-
tion.

Midpoint Filter

The midpoint filter computes the midpoint between the maximum and minimum 
values in the area encompassed by the filter:

 ˆ( , ) max ( , ) min ( , )
( , ) ( , )

f x y g r c g r c
r c S r c Sxy xy

= { } + { }⎡
⎣⎢

⎤
⎦⎥∈ ∈

1
2

 (5-30)

Note that this filter combines order statistics and averaging. It works best for ran-
domly distributed noise, like Gaussian or uniform noise.

Alpha-Trimmed Mean Filter

Suppose that we delete the d 2 lowest and the d 2 highest intensity values of g r c( , ) 
in the neighborhood Sxy. Let g r cR( , ) represent the remaining mn d−  pixels in Sxy. 
A filter formed by averaging these remaining pixels is called an alpha-trimmed mean 
filter. The form of this filter is 
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 ˆ( , ) ( , )
( , )

f x y
mn d

g r cR
r c Sxy

=
− ∈

∑1
 (5-31)

where the value of d can range from 0 to mn − 1. When d = 0 the alpha-trimmed fil-
ter reduces to the arithmetic mean filter discussed earlier. If we choose d mn= − 1, 
the filter becomes a median filter. For other values of d, the alpha-trimmed filter is 
useful in situations involving multiple types of noise, such as a combination of salt-
and-pepper and Gaussian noise.

EXAMPLE 5.3 :  Image denoising using order-statistic filters.

Figure 5.10(a) shows the circuit board image corrupted by salt-and-pepper noise with probabilities 
P Ps p= = 0 1. . Figure 5.10(b) shows the result of median filtering with a filter of size 3 3× . The improve-
ment over Fig. 5.10(a) is significant, but several noise points still are visible. A second pass [on the im-
age in Fig. 5.10(b)] with the median filter removed most of these points, leaving only few, barely visible 
noise points. These were removed with a third pass of the filter. These results are good examples of the 
power of median filtering in handling impulse-like additive noise. Keep in mind that repeated passes 
of a median filter will blur the image, so it is desirable to keep the number of passes as low as possible. 

Figure 5.11(a) shows the result of applying the max filter to the pepper noise image of Fig. 5.8(a). The 
filter did a reasonable job of removing the pepper noise, but we note that it also removed (set to a light 
intensity level) some dark pixels from the borders of the dark objects. Figure 5.11(b) shows the result 
of applying the min filter to the image in Fig. 5.8(b). In this case, the min filter did a better job than the 
max filter on noise removal, but it removed some white points around the border of light objects. These 
made the light objects smaller and some of the dark objects larger (like the connector fingers in the top 
of the image) because white points around these objects were set to a dark level.

The alpha-trimmed filter is illustrated next. Figure 5.12(a) shows the circuit board image corrupted 
this time by additive, uniform noise of variance 800 and zero mean. This is a high level of noise corrup-
tion that is made worse by further addition of salt-and-pepper noise with P Ps p= = 0 1. , as Fig. 5.12(b) 
shows. The high level of noise in this image warrants use of larger filters. Figures 5.12(c) through (f) show 
the results, respectively, obtained using arithmetic mean, geometric mean, median, and alpha-trimmed 
mean (with d = 6) filters of size 5 5× . As expected, the arithmetic and geometric mean filters (especially 
the latter) did not do well because of the presence of impulse noise. The median and alpha-trimmed 
filters performed much better, with the alpha-trimmed filter giving slightly better noise reduction. For 
example, note in Fig. 5.12(f) that the fourth connector finger from the top left is slightly smoother in 
the alpha-trimmed result. This is not unexpected because, for a high value of d, the alpha-trimmed filter 
approaches the performance of the median filter, but still retains some smoothing capabilities.

ADAPTIVE FILTERS

Once selected, the filters discussed thus far are applied to an image without regard 
for how image characteristics vary from one point to another. In this section, we 
take a look at two adaptive filters whose behavior changes based on statistical char-
acteristics of the image inside the filter region defined by the m n×  rectangular 
neighborhood Sxy. As the following discussion shows, adaptive filters are capable 
of performance superior to that of the filters discussed thus far. The price paid for 

DIP4E_GLOBAL_Print_Ready.indb   333 6/16/2017   2:07:09 PM



334    Chapter 5  Image Restoration and Reconstruction

ba

FIGURE 5.11
(a) Result of 
filtering Fig. 5.8(a) 
with a max filter 
of size 3 3× .  
(b) Result of  
filtering Fig. 5.8(b) 
with a min filter of 
the same size. 
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FIGURE 5.10
(a) Image  
corrupted by salt-
and- pepper noise 
with probabilities 
P Ps p= = 0 1. . 
(b) Result of one 
pass with a medi-
an filter of size 
3 3× .  (c) Result 
of processing (b) 
with this filter.  
(d) Result of  
processing (c) 
with the same 
filter. 
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FIGURE 5.12
(a) Image  
corrupted by 
additive uniform 
noise. (b) Image 
additionally  
corrupted by 
additive salt-and-
pepper noise. 
(c)-(f) Image (b) 
filtered with a 
5 5× : 
(c) arithmetic 
mean filter;  
(d) geometric 
mean filter;  
(e) median filter; 
(f) alpha-trimmed 
mean filter, with 
d = 6. 
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improved filtering power is an increase in filter complexity. Keep in mind that we 
still are dealing with the case in which the degraded image is equal to the original 
image plus noise. No other types of degradations are being considered yet.

Adaptive, Local Noise Reduction Filter

The simplest statistical measures of a random variable are its mean and variance. 
These are reasonable parameters on which to base an adaptive filter because they 
are quantities closely related to the appearance of an image. The mean gives a mea-
sure of average intensity in the region over which the mean is computed, and the 
variance gives a measure of image contrast in that region.

Our filter is to operate on a neighborhood, Sxy , centered on coordinates ( , ).x y
The response of the filter at ( , )x y  is to be based on the following quantities: g x y( , ), 
the value of the noisy image at ( , );x y  sh

2 , the variance of the noise; zSxy
, the local 

average intensity of the pixels in Sxy ; and sSxy

2 , the local variance of the intensities of 
pixels in Sxy. We want the behavior of the filter to be as follows:

1. If sh
2  is zero, the filter should return simply the value of g at ( , ).x y  This is the 

trivial, zero-noise case in which g is equal to f at ( , ).x y

2. If the local variance sSxy

2  is high relative to sh
2 , the filter should return a value 

close to g at ( , ).x y  A high local variance typically is associated with edges, and 
these should be preserved.

3. If the two variances are equal, we want the filter to return the arithmetic mean 
value of the pixels in Sxy. This condition occurs when the local area has the same 
properties as the overall image, and local noise is to be reduced by averaging.

An adaptive expression for obtaining ˆ( , )f x y  based on these assumptions may be 
written as

 ˆ( , ) ( , ) ( , )f x y g x y g x y z
S

S

xy

xy
= − −⎡

⎣
⎤
⎦

s

s

h
2

2  (5-32)

The only quantity that needs to be known a priori is sh
2 , the variance of the noise 

corrupting image f x y( , ). This is a constant that can be estimated from sample noisy 
images using Eq. (3-26). The other parameters are computed from the pixels in 
neighborhood Sxy  using Eqs. (3-27) and (3-28).

An assumption in Eq. (5-32) is that the ratio of the two variances does not exceed 1, 
which implies that s sh

2 2≤ Sxy
. The noise in our model is additive and position indepen-

dent, so this is a reasonable assumption to make because Sxy  is a subset of g x y( , ). 
However, we seldom have exact knowledge of sh

2 . Therefore, it is possible for this 
condition to be violated in practice. For that reason, a test should be built into an 
implementation of Eq. (5-32) so that the ratio is set to 1 if the condition s sh

2 2> Sxy
 

occurs. This makes this filter nonlinear. However, it prevents nonsensical results (i.e., 
negative intensity levels, depending on the value of zSxy

) due to a potential lack of 
knowledge about the variance of the image noise. Another approach is to allow the 
negative values to occur, and then rescale the intensity values at the end. The result 
then would be a loss of dynamic range in the image.
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FIGURE 5.13
(a) Image  
corrupted by  
additive  
Gaussian noise of 
zero mean and a 
variance of 1000. 
(b) Result of 
arithmetic mean 
filtering.  
(c) Result of  
geometric mean 
filtering.  
(d) Result of 
adaptive noise- 
reduction filtering. 
All filters used 
were of size 7 7× . 

EXAMPLE 5.4 :  Image denoising using adaptive, local noise-reduction filtering.

Figure 5.13(a) shows the circuit-board image, corrupted this time by additive Gaussian noise of zero 
mean and a variance of 1000. This is a significant level of noise corruption, but it makes an ideal test bed 
on which to compare relative filter performance. Figure 5.13(b) is the result of processing the noisy im-
age with an arithmetic mean filter of size 7 7× . The noise was smoothed out, but at the cost of significant 
blurring. Similar comments apply to Fig. 5.13(c), which shows the result of processing the noisy image 
with a geometric mean filter, also of size 7 7× . The differences between these two filtered images are 
analogous to those we discussed in Example 5.2; only the degree of blurring is different. 

Figure 5.13(d) shows the result of using the adaptive filter of Eq. (5-32) with sh
2 1000= . The improve-

ments in this result compared with the two previous filters are significant. In terms of overall noise 
reduction, the adaptive filter achieved results similar to the arithmetic and geometric mean filters. How-
ever, the image filtered with the adaptive filter is much sharper. For example, the connector fingers at the 
top of the image are significantly sharper in Fig. 5.13(d). Other features, such as holes and the eight legs 
of the dark component on the lower left-hand side of the image, are much clearer in Fig. 5.13(d).These 
results are typical of what can be achieved with an adaptive filter. As mentioned earlier, the price paid 
for the improved performance is additional filter complexity.
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The preceding results used a value for sh
2  that matched the variance of the noise exactly. If this 

quantity is not known, and the estimate used is too low, the algorithm will return an image that closely 
resembles the original because the corrections will be smaller than they should be. Estimates that are 
too high will cause the ratio of the variances to be clipped at 1.0, and the algorithm will subtract the 
mean from the image more frequently than it would normally. If negative values are allowed and the 
image is rescaled at the end, the result will be a loss of dynamic range, as mentioned previously.

Adaptive Median Filter

The median filter in Eq. (5-27) performs well if the spatial density of the salt-and-
pepper noise is low (as a rule of thumb, Ps and Pp less than 0.2). We show in the fol-
lowing discussion that adaptive median filtering can handle noise with probabilities 
larger than these. An additional benefit of the adaptive median filter is that it seeks 
to preserve detail while simultaneously smoothing non-impulse noise, something 
that the “traditional” median filter does not do. As in all the filters discussed in the 
preceding sections, the adaptive median filter also works in a rectangular neighbor-
hood, Sxy. Unlike those filters, however, the adaptive median filter changes (increas-
es) the size of Sxy  during filtering, depending on certain conditions to be listed short-
ly. Keep in mind that the output of the filter is a single value used to replace the 
value of the pixel at ( , ),x y  the point on which region Sxy  is centered at a given time.

We use the following notation:

 

z S

z
xymin

max

=

=

minimum intensity value in 

maximum intensity vvalue in 

median of intensity values in 

int
med

S

z S

z

xy

xy

xy

=

= eensity at coordinates 

maximum allowed size of 

( , )

max

x y

S S= xxy

The adaptive median-filtering algorithm uses two processing levels, denoted level A
and level B, at each point ( , ) :x y

 

Level If  go to Level 

Else, increase the
medA z z z B: ,min max< <

  size of 

If , repeat level 

Else, output 
max

med

S

S S A

z

xy

xy ≤

.

LLevel If  output 

Else output med

B z z z z

z
xy xy: ,

.
min max< <

where Sxy  and Smax  are odd, positive integers greater than 1. Another option in the 
last step of level A is to output zxy instead of zmed. This produces a slightly less 
blurred result, but can fail to detect salt (pepper) noise embedded in a constant 
background having the same value as pepper (salt) noise.
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This algorithm has three principal objectives: to remove salt-and-pepper (impulse) 
noise, to provide smoothing of other noise that may not be impulsive, and to reduce 
distortion, such as excessive thinning or thickening of object boundaries. The values 
zmin  and zmax are considered statistically by the algorithm to be “impulse-like” noise 
components in region Sxy , even if these are not the lowest and highest possible pixel 
values in the image.

With these observations in mind, we see that the purpose of level A is to deter-
mine if the median filter output, zmed, is an impulse (salt or pepper) or not. If the 
condition z z zmin max< <med  holds, then zmed cannot be an impulse for the reason 
mentioned in the previous paragraph. In this case, we go to level B and test to see 
if the point in the center of the neighborhood is itself an impulse (recall that ( , )x y  
is the location of the point being processed, and zxy is its intensity). If the condition 
z z zxymin max< <  is true, then the pixel at zxy cannot be the intensity of an impulse for 
the same reason that zmed was not. In this case, the algorithm outputs the unchanged 
pixel value, zxy. By not changing these “intermediate-level” points, distortion is 
reduced in the filtered image. If the condition z z zxymin max< <  is false, then either 
z zxy = min or z zxy = max. In either case, the value of the pixel is an extreme value and 
the algorithm outputs the median value, zmed, which we know from level A is not a 
noise impulse. The last step is what the standard median filter does. The problem is 
that the standard median filter replaces every point in the image by the median of 
the corresponding neighborhood. This causes unnecessary loss of detail.

Continuing with the explanation, suppose that level A does find an impulse (i.e., 
it fails the test that would cause it to branch to level B). The algorithm then increas-
es the size of the neighborhood and repeats level A. This looping continues until 
the algorithm either finds a median value that is not an impulse (and branches to 
stage B), or the maximum neighborhood size is reached. If the maximum size is 
reached, the algorithm returns the value of zmed. Note that there is no guarantee 
that this value is not an impulse. The smaller the noise probabilities Pa and/or Pb are, 
or the larger Smax  is allowed to be, the less likely it is that a premature exit will occur. 
This is plausible. As the density of the noise impulses increases, it stands to reason 
that we would need a larger window to “clean up” the noise spikes.

Every time the algorithm outputs a value, the center of neighborhood Sxy  is 
moved to the next location in the image. The algorithm then is reinitialized and 
applied to the pixels in the new region encompassed by the neighborhood. As indi-
cated in Problem 3.37, the median value can be updated iteratively from one loca-
tion to the next, thus reducing computational load.

EXAMPLE 5.5 :  Image denoising using adaptive median filtering.

Figure 5.14(a) shows the circuit-board image corrupted by salt-and-pepper noise with probabilities 
P Ps p= = 0 25. , which is 2.5 times the noise level used in Fig. 5.10(a). Here the noise level is high enough 
to obscure most of the detail in the image. As a basis for comparison, the image was filtered first using a 
7 7×  median filter, the smallest filter required to remove most visible traces of impulse noise in this case. 
Figure 5.14(b) shows the result. Although the noise was effectively removed, the filter caused significant 
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loss of detail in the image. For instance, some of the connector fingers at the top of the image appear 
distorted or broken. Other image details are similarly distorted.

Figure 5.14(c) shows the result of using the adaptive median filter with Smax .= 7  Noise removal 
performance was similar to the median filter. However, the adaptive filter did a much better job of pre-
serving sharpness and detail. The connector fingers are less distorted, and some other features that were 
either obscured or distorted beyond recognition by the median filter appear sharper and better defined 
in Fig. 5.14(c). Two notable examples are the feed-through small white holes throughout the board, and 
the dark component with eight legs in the bottom, left quadrant of the image.

Considering the high level of noise in Fig. 5.14(a), the adaptive algorithm performed quite well. The 
choice of maximum allowed size for Sxy  depends on the application, but a reasonable starting value can 
be estimated by experimenting with various sizes of the standard median filter first. This will establish a 
visual baseline regarding expectations on the performance of the adaptive algorithm.

5.4 PERIODIC NOISE REDUCTION USING FREQUENCY DOMAIN  
FILTERING  

Periodic noise can be analyzed and filtered quite effectively using frequency domain 
techniques. The basic idea is that periodic noise appears as concentrated bursts of 
energy in the Fourier transform, at locations corresponding to the frequencies of 
the periodic interference. The approach is to use a selective filter (see Section 4.10) 
to isolate the noise. The three types of selective filters (bandreject, bandpass, and 
notch) were discussed in detail in Section 4.10. There is no difference between how 
these filters were used in Chapter 4, and the way they are used for image restora-
tion. In restoration of images corrupted by periodic interference, the tool of choice 
is a notch filter. In the following discussion we will expand on the notch filtering 
approach introduced in Section 4.10, and also develop a more powerful optimum 
notch filtering method. 

5.4

ba c

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities P Ps p= = 0 25. .  (b) Result of filtering 
with a 7 7×  median filter. (c) Result of adaptive median filtering with Smax .= 7  
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MORE ON NOTCH FILTERING

As explained in Section 4.10, notch reject filter transfer functions are constructed 
as products of highpass filter transfer functions whose centers have been translated 
to the centers of the notches. The general form of a notch filter transfer function is

 H H Hk
k

Q

kNR( , ) ( , ) ( , )u v u v u v=
=

−∏
1

 (5-33)

where Hk( , )u v  and H k− ( , )u v  are highpass filter transfer functions whose centers 
are at ( , )u vk k  and ( , ),− −u vk k  respectively.† These centers are specified with respect 
to the center of the frequency rectangle, floor( floorM N2 2), ( ) ,[ ]  where, as usual, 
M and N are the number of rows and columns in the input image. Thus, the distance 
computations for the filter transfer functions are given by

 D u M u Nk k k( , ) ( ) ( )
/

u v v v= − − + − −⎡⎣ ⎤⎦2 22 2 1 2
 (5-34)

and

 D u M u Nk k k− = − + + − +⎡⎣ ⎤⎦( , ) ( ) ( )
/

u v v v2 22 2 1 2
 (5-35)

For example, the following is a Butterworth notch reject filter transfer function of 
order n with three notch pairs:

 H
D D D Dk k

n
k k k

nNR( , )
( , ) ( , )

u v
u v u v

=
+ [ ]

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ + [ ]

⎡

⎣
⎢

= −
∏ 1

1

1

101

3

0⎢⎢

⎤

⎦
⎥
⎥

 (5-36)

Because notches are specified as symmetric pairs, the constant D k0  is the same for 
each pair. However, this constant can be different from one pair to another. Other 
notch reject filter functions are constructed in the same manner, depending on the 
highpass filter function chosen. As explained in Section 4.10, a notch pass filter 
transfer function is obtained from a notch reject function using the expression

 H HNP NR( , ) ( , )u v u v= −1  (5-37)

where HNP( , )u v  is the transfer function of the notch pass filter corresponding to 
the notch reject filter with transfer function HNR( , ).u v  Figure 5.15 shows perspec-
tive plots of the transfer functions of ideal, Gaussian, and Butterworth notch reject 
filters with one notch pair. As we discussed in Chapter 4, we see again that the shape 
of the Butterworth transfer function represents a transition between the sharpness 
of the ideal function and the broad, smooth shape of the Gaussian transfer function.

As we show in the second part of the following example, we are not limited to 
notch filter transfer functions of the form just discussed. We can construct notch 

† Remember, frequency domain transfer functions are symmetric about the center of the frequency rectangle, so 
the notches are specified as symmetric pairs. Also, recall from Section 4.10 that we use unpadded images when 
working with notch filters in order to simplify the specification of notch locations.
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filters of arbitrary shapes, provided that they are zero-phase-shift functions, as 
defined in Section 4.7.

EXAMPLE 5.6 :  Image denoising (interference reduction) using notch filtering.

Figure 5.16(a) is the same as Fig. 2.45(a), which we used in Section 2.6 to introduce the concept of filter-
ing in the frequency domain. We now look in more detail at the process of denoising this image, which is 
corrupted by a single, 2-D additive sine wave. You know from Table 4.4 that the Fourier transform of a 
pure sine wave is a pair of complex, conjugate impulses, so we would expect the spectrum to have a pair 
of bright dots at the frequencies of the sine wave. As Fig. 5.16(b) shows, this is indeed is the case. Because 
we can determine the location of these impulses accurately, eliminating them is a simple task, consisting 
of using a notch filter transfer function whose notches coincide with the location of the impulses. 

Figure 5.16(c) shows an ideal notch reject filter transfer function, which is an array of 1's (shown in 
white) and two small circular regions of 0's (shown in black). Figure 5.16(d) shows the result of filtering 
the noisy image this transfer function. The sinusoidal noise was virtually eliminated, and a number of 
details that were previously obscured by the interference are clearly visible in the filtered image (see, for 
example, the thin fiducial marks and the fine detail in the terrain and rock formations). As we showed 
in Example 4.25, obtaining an image of the interference pattern is straightforward. We simply turn the 
reject filter into a pass filter by subtracting it from 1, and filter the input image with it. Figure 5.17 shows 
the result.

Figure 5.18(a) shows the same image as Fig. 4.50(a), but covering a larger area (the interference 
pattern is the same). When we discussed lowpass filtering of that image in Chapter 4, we indicated that 
there were better ways to reduce the effect of the scan lines. The notch filtering approach that follows 
reduces the scan lines significantly, without introducing blurring. Unless blurring is desirable for reasons 
we discussed in Section 4.9, notch filtering generally gives much better results. 

Just by looking at the nearly horizontal lines of the noise pattern in Fig. 5.18(a), we expect its con-
tribution in the frequency domain to be concentrated along the vertical axis of the DFT. However, 
the noise is not dominant enough to have a clear pattern along this axis, as is evident in the spectrum 
shown in Fig. 5.18(b). The approach to follow in cases like this is to use a narrow, rectangular notch filter 
function that extends along the vertical axis, and thus eliminates all components of the interference 
along that axis. We do not filter near the origin to avoid eliminating the dc term and low frequencies, 

( , )H u v

u
v

( , )H u v

u
v

( , )H u v

u
v

Ideal Gaussian Butterworth

ba c

FIGURE 5.15 Perspective plots of (a) ideal, (b) Gaussian, and (c) Butterworth notch reject filter transfer functions.
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FIGURE 5.16
(a) Image cor-
rupted by sinusoi-
dal interference.  
(b) Spectrum  
showing the 
bursts of energy 
caused by the 
interference. (The 
bursts were  
enlarged for 
display purposes.) 
(c) Notch filter 
(the radius of the 
circles is 2 pixels) 
used to eliminate 
the energy bursts. 
(The thin borders 
are not part of the 
data.)  
(d) Result of  
notch reject  
filtering.  
(Original  
image courtesy of 
NASA.) 

FIGURE 5.17
Sinusoidal  
pattern extracted 
from the DFT  
of Fig. 5.16(a) 
using a notch pass 
filter.

which, as you know from Chapter 4, are responsible for the intensity differences between smooth areas. 
Figure 5.18(c) shows the filter transfer function we used, and Fig. 5.18(d) shows the filtered result. Most 
of the fine scan lines were eliminated or significantly attenuated. In order to get an image of the noise 
pattern, we proceed as before by converting the reject filter into a pass filter, and then filtering the input 
image with it. Figure 5.19 shows the result.
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FIGURE 5.19
Noise pattern  
extracted from 
Fig. 5.18(a) by 
notch pass  
filtering.

ba
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FIGURE 5.18
(a) Satellite image 
of Florida and the 
Gulf of Mexico. 
(Note horizontal 
sensor scan lines.) 
(b) Spectrum of 
(a). (c) Notch  
reject filter  
transfer  
function. (The 
thin black border 
is not part of the 
data.) (d) Filtered 
image. (Original 
image courtesy of 
NOAA.)  
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OPTIMUM NOTCH FILTERING

In the examples of notch filtering given thus far, the interference patterns have been 
simple to identify and characterize in the frequency domain, leading to the specifica-
tion of notch filter transfer functions that also are simple to define heuristically.

When several interference components are present, heuristic specifications of 
filter transfer functions are not always acceptable because they may remove too 
much image information in the filtering process (a highly undesirable feature when 
images are unique and/or expensive to acquire). In addition, the interference com-
ponents generally are not single-frequency bursts. Instead, they tend to have broad 
skirts that carry information about the interference pattern. These skirts are not 
always easily detectable from the normal transform background. Alternative filter-
ing methods that reduce the effect of these degradations are quite useful in practice. 
The method discussed next is optimum, in the sense that it minimizes local variances 
of the restored estimate ˆ( , ).f x y

The procedure consists of first isolating the principal contributions of the interfer-
ence pattern and then subtracting a variable, weighted portion of the pattern from 
the corrupted image. Although we develop the procedure in the context of a specific 
application, the basic approach is general and can be applied to other restoration 
tasks in which multiple periodic interference is a problem.

We begin by extracting the principal frequency components of the interfer-
ence pattern. As before, we do this by placing a notch pass filter transfer function, 
HNP( , ),u v  at the location of each spike. If the filter is constructed to pass only com-
ponents associated with the interference pattern, then the Fourier transform of the 
interference noise pattern is given by the expression

 N H G( , ) ( , ) ( , )u v u v u v= NP  (5-38)

where, as usual, G( , )u v  is the DFT of the corrupted image.
Specifying HNP( , )u v  requires considerable judgment about what is or is not an 

interference spike. For this reason, the notch pass filter generally is constructed inter-
actively by observing the spectrum of G( , )u v  on a display. After a particular filter 
function has been selected, the corresponding noise pattern in the spatial domain is 
obtained using the familiar expression

 h( , ) ( , ) ( , )x y H G= { }−� 1
NP u v u v  (5-39)

Because the corrupted image is assumed to be formed by the addition of the uncor-
rupted image f x y( , ) and the interference, h( , ),x y  if the latter were known com-
pletely, subtracting the pattern from g x y( , ) to obtain f x y( , ) would be a simple mat-
ter. The problem, of course, is that this filtering procedure usually yields only an 
approximation of the true noise pattern. The effect of incomplete components not 
present in the estimate of h( , )x y  can be minimized by subtracting from g x y( , ) a 
weighted portion of h( , )x y  to obtain an estimate of f x y( , ) :

 ˆ( , ) ( , ) ( , ) ( , )f x y g x y x y x y= − w h  (5-40)
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where, as before, ˆ( , )f x y  is the estimate of f x y( , ) and w( , )x y  is to be determined. 
This function is called a weighting or modulation function, and the objective of the 
procedure is to select w( , )x y  so that the result is optimized in some meaningful way. 
One approach is to select w( , )x y  so that the variance of ˆ( , )f x y  is minimized over a 
specified neighborhood of every point ( , ).x y  

Consider a neighborhood Sxy  of (odd) size m n× , centered on ( , ).x y  The “local” 
variance of ˆ( , )f x y  at point ( , )x y  can be estimated using the samples in Sxy , as fol-
lows:

 s2 21
( , ) [ ( , ) ]

_

( , )

x y
mn

f r c f
r c Sxy

= −
∈

∑ ^ ^  (5-41)

where f̂  is the average value of f̂  in neighborhood Sxy ; that is,

 ˆ ˆ( , )
( , )

f
mn

f r c
r c Sxy

=
∈

∑1
 (5-42)

Points on or near the edge of the image can be treated by considering partial neigh-
borhoods or by padding the border with 0's.

Substituting Eq. (5-40) into Eq. (5-41) we obtain

 s h h2 1
( , ) [ ( , ) ( , ) ( , )] [ ]

____

( , )

x y
mn

g r c r c r c g
r c Sxy

= − − −⎧
⎨
⎩

⎫
⎬
⎭∈

w w∑∑
2

 (5-43)

where g  and wh
____

 denote the average values of g and of the product wh  in neighbor-
hood Sxy , respectively.

If we assume that w  is approximately constant in Sxy  we can replace w( , )r c  by 
the value of w  at the center of the neighborhood:

 w w( , ) ( , )r c x y=  (5-44)

Because w( , )x y  is assumed to be constant in Sxy , it follows that w=w
__

( , )x y  and, 
therefore, that

 w wh h
____ __

( , )= x y  (5-45)

in Sxy , where h  is the average value of h in the neighborhood. Using these approxi-
mations, Eq. (5-43) becomes

s h h2 1
( , ) [ ( , ) ( , ) ( , )] [ ( , ) ]

__

( , )

x y
mn

g r c x y r c g x y
r c

= − − −⎧
⎨
⎩

⎫
⎬
⎭∈

w w
SSxy

∑
2

 (5-46)
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FIGURE 5.20
(a) Image of the 
Martian  
terrain taken by 
Mariner 6.  
(b) Fourier 
spectrum showing 
periodic  
interference. 
(Courtesy of 
NASA.) 

To minimize s2( , )x y  with respect to w( , )x y  we solve

 
∂
∂

=s2

0
( , )
( , )

x y
x yw

 (5-47)

for w( , ).x y  The result is (see Problem 5.17):

 w( , )
____

___ __x y
g g= −

−

h h

h h2 2
 (5-48)

To obtain the value of the restored image at point ( , )x y  we use this equation to com-
pute w( , )x y  and then substitute it into Eq. (5-40). To obtain the complete restored 
image, we perform this procedure at every point in the noisy image, g.

EXAMPLE 5.7 :  Denoising (interference removal) using optimum notch filtering.

Figure 5.20(a) shows a digital image of the Martian terrain taken by the Mariner 6 spacecraft. The image 
is corrupted by a semi-periodic interference pattern that is considerably more complex (and much more 
subtle) than those we have studied thus far. The Fourier spectrum of the image, shown in Fig. 5.20(b), 
has a number of “starlike” bursts of energy caused by the interference. As expected, these components 
are more difficult to detect than those we have seen before. Figure 5.21 shows the spectrum again, but 
without centering. This image offers a somewhat clearer view of the interference components because 
the more prominent dc term and low frequencies are “out of way,” in the top left of the spectrum.

Figure 5.22(a) shows the spectrum components that, in the judgement of an experienced image ana-
lyst, are associated with the interference. Applying a notch pass filter to these components and using 
Eq. (5-39) yielded the spatial noise pattern, h( , ),x y  shown in Fig. 5.22(b). Note the similarity between 
this pattern and the structure of the noise in Fig. 5.20(a).
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ba

FIGURE 5.22
(a) Fourier spec-
trum of N( , ),u v
and  
(b) corresponding 
spatial noise  
interference  
pattern, h( , ).x y
(Courtesy of 
NASA.) 

Finally, Fig. 5.23 shows the restored image, obtained using Eq. (5-40) with the interference pattern just 
discussed. Function w( , )x y  was computed using the procedure explained in the preceding paragraphs. 
As you can see, the periodic interference was virtually eliminated from the noisy image in Fig. 5.20(a).

5.5 LINEAR, POSITION-INVARIANT DEGRADATIONS  

The input-output relationship in Fig. 5.1 before the restoration stage is expressed as

 g x y f x y x y( , ) ( , ) ( , )= [ ] +� h  (5-49)

For the moment, let us assume that h( , )x y = 0 so that g x y f x y( , ) ( , ) .= [ ]�  Based on 
the discussion in Section 2.6, �  is linear if

5.5

FIGURE 5.21
Uncentered  
Fourier spectrum 
of the image 
in Fig. 5.20(a). 
(Courtesy of 
NASA.) 
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FIGURE 5.23
Restored image. 
(Courtesy of 
NASA.) 

 � � �af x y bf x y a f x y b f x y1 2 1 2( , ) ( , ) ( , ) ( , )+[ ] = [ ] + [ ]  (5-50)

where a and b are scalars and f x y1( , ) and f x y2( , ) are any two input images.
If a b= = 1, Eq. (5-50) becomes

 � � �f x y f x y f x y f x y1 2 1 2( , ) ( , ) ( , ) ( , )+[ ] = [ ] + [ ]  (5-51)

which is called the property of additivity. This property says that, if �  is a linear 
operator, the response to a sum of two inputs is equal to the sum of the two responses.

With f x y2 0( , ) ,=  Eq. (5-50) becomes

 � �af x y a f x y1 1( , ) ( , )[ ] = [ ]  (5-52)

which is called the property of homogeneity. It says that the response to a constant 
multiple of any input is equal to the response to that input multiplied by the same 
constant. Thus, a linear operator possesses both the property of additivity and the 
property of homogeneity. 

An operator having the input-output relationship g x y f x y( , ) ( , )= [ ]�  is said to 
be position (or space) invariant if

 � f x y g x y( , ) ( , )− −[ ] = − −a b a b  (5-53)

for any f x y( , ) and any two scalars a  and b. This definition indicates that the 
response at any point in the image depends only on the value of the input at that 
point, not on its position. 

Using the sifting property of the 2-D continuous impulse [see Eq. (4-55)], we can 
write f x y( , ) as
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 f x y f x y d d( , ) ( , ) ( , )= − −
- -�

�

�

�

2 2 a b d a b a b  (5-54)

Assuming again that h( , ) ,x y = 0  substituting this equation into Eq. (5-49) yields

 g x y f x y f x y d d( , ) ( , ) ( , ) ( , )= [ ] = − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� �
- -�

�

�

�

2 2 a b d a b a b  (5-55)

If �  is a linear operator and we extend the additivity property to integrals, then

 g x y f x y d d( , ) ( , ) ( , )= − −[ ]
- -�

�

�

�

2 2 � a b d a b a b  (5-56)

Because f ( , )a b  is independent of x and y, and using the homogeneity property, it 
follows that

 g x y f x y d d( , ) ( , ) ( , )= − −[ ]
- -�

�

�

�

2 2 a b d a b a b�  (5-57)

The term

 h x y x y( , , , ) ( , )a b d a b= − −[ ]�  (5-58)

is called the impulse response of �.  In other words, if h( , )x y = 0 in Eq. (5-49), then 
h x y( , , , )a b  is the response of �  to an impulse at coordinates ( , ).x y  In optics, the 
impulse becomes a point of light and h x y( , , , )a b  is commonly referred to as the 
point spread function (PSF). This name is based on the fact that all physical optical 
systems blur (spread) a point of light to some degree, with the amount of blurring 
being determined by the quality of the optical components.

Substituting Eq. (5-58) into Eq. (5-57) we obtain the expression

 g x y f h x y d d( , ) ( , ) ( , , , )=
- -�

�

�

�

2 2 a b a b a b  (5-59)

which is called the superposition (or Fredholm) integral of the first kind. This expres-
sion is a fundamental result that is at the core of linear system theory. It states that 
if the response of �  to an impulse is known, the response to any input f ( , )a b  can 
be calculated using Eq. (5-59). In other words, a linear system �  is characterized 
completely by its impulse response.

If �  is position invariant, then it follows from Eq. (5-53) that

 � d a b a b( , ) ( , )x y h x y− −[ ] = − −  (5-60)

In this case, Eq. (5-59) reduces to 

 g x y f h x y d d( , ) ( , ) ( , )= − −
- -�

�

�

�

2 2 a b a b a b  (5-61)
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This expression is the convolution integral introduced for one variable in Eq. (4-24) 
and extended to 2-D in Problem 4.19. Equation (5-61) tells us that the output of a 
linear, position invariant system to any input, is obtained by convolving the input 
and the system’s impulse response.

In the presence of additive noise, the expression of the linear degradation model 
[Eq. (5-59)] becomes

 g x y f h x y d d x y( , ) ( , ) ( , , , ) ( , )= +
- -�

�

�

�

2 2 a b a b a b h  (5-62)

If �  is position invariant, then this equation becomes

 g x y f h x y d d x y( , ) ( , ) ( , ) ( , )= − − +
- -�

�

�

�

2 2 a b a b a b h  (5-63)

The values of the noise term h( , )x y  are random, and are assumed to be independent 
of position. Using the familiar notation for convolution introduced in Chapters 3 
and 4, we can write Eq. (5-63) as

 g x y h x yf x y( , ) ( ( , ))( , )= +� h  (5-64)

or, using the convolution theorem, we write the equivalent result in the frequency 
domain as

 G H F N( , ) ( , ) ( , ) ( , )u v u v u v u v= +  (5-65)

These two expressions agree with Eqs. (5-1) and (5-2). Keep in mind that, for dis-
crete quantities, all products are elementwise products, as defined in Section 2.6. 

In summary, the preceding discussion indicates that a linear, spatially invariant 
degradation system with additive noise can be modeled in the spatial domain as 
the convolution of an image with the system’s degradation (point spread) function, 
followed by the addition of noise. Based on the convolution theorem, the same pro-
cess can be expressed in the frequency domain as the product of the transforms of 
the image and degradation, followed by the addition of the transform of the noise. 
When working in the frequency domain, we make use of an FFT algorithm. Howev-
er, unlike in Chapter 4, we do not use image padding in the implementation of any of 
the frequency domain restoration filters discussed in this chapter. The reason is that 
in restoration work we usually have access only to degraded images. For padding 
to be effective, it would have to be applied to images before they were degraded, a 
condition that obviously cannot be met in practice. If we had access to the original 
images, then restoration would be a mute point.

Many types of degradations can be approximated by linear, position-invariant 
processes. The advantage of this approach is that the extensive tools of linear sys-
tem theory then become available for the solution of image restoration problems. 
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Nonlinear and position-dependent techniques, although more general (and usually 
more accurate), introduce difficulties that often have no known solution or are very 
difficult to solve computationally. This chapter focuses on linear, space-invariant res-
toration techniques. Because degradations are modeled as being the result of convo-
lution, and restoration seeks to find filters that apply the process in reverse, the term 
image deconvolution is used frequently to signify linear image restoration. Similarly, 
the filters used in the restoration process often are called deconvolution filters.

5.6 ESTIMATING THE DEGRADATION FUNCTION  

There are three principal ways to estimate the degradation function for use in image 
restoration: (1) observation, (2) experimentation, and (3) mathematical modeling. 
These methods are discussed in the following sections. The process of restoring 
an image by using a degradation function that has been estimated by any of these 
approaches sometimes is called blind deconvolution, to emphasize the fact that the 
true degradation function is seldom known completely. 

ESTIMATION BY IMAGE OBSERVATION

Suppose that we are given a degraded image without any knowledge about the degra- 
dation function �.  Based on the assumption that the image was degraded by a lin-
ear, position-invariant process, one way to estimate �  is to gather information from 
the image itself. For example, if the image is blurred, we can look at a small rectan-
gular section of the image containing sample structures, like part of an object and 
the background. In order to reduce the effect of noise, we would look for an area in 
which the signal content is strong (e.g., an area of high contrast). The next step would 
be to process the subimage to arrive at a result that is as unblurred as possible. 

Let the observed subimage be denoted by g x ys( , ), and let the processed subimage 
(which in reality is our estimate of the original image in that area) be denoted by 
ˆ ( , ).f x ys  Then, assuming that the effect of noise is negligible because of our choice of 
a strong-signal area, it follows from Eq. (5-65) that

 H
G

F
s

s

s

( , )
( , )

( , )
u v

u v

u v
= ⁄  (5-66)

From the characteristics of this function, we then deduce the complete degradation 
function H( , )u v  based on our assumption of position invariance. For example, sup-
pose that a radial plot of Hs( , )u v  has the approximate shape of a Gaussian curve. We 
can use that information to construct a function H( , )u v  on a larger scale, but having 
the same basic shape. We then use H( , )u v  in one of the restoration approaches to 
be discussed in the following sections. Clearly, this is a laborious process used only in 
very specific circumstances, such as restoring an old photograph of historical value.

ESTIMATION BY EXPERIMENTATION

If equipment similar to the equipment used to acquire the degraded image is avail-
able, it is possible in principle to obtain an accurate estimate of the degradation. 
Images similar to the degraded image can be acquired with various system settings 

5.6
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FIGURE 5.24
Estimating a 
degradation by 
impulse  
characterization. 
(a) An impulse 
of light (shown 
magnified).  
(b) Imaged  
(degraded)  
impulse. 

until they are degraded as closely as possible to the image we wish to restore. Then 
the idea is to obtain the impulse response of the degradation by imaging an impulse 
(small dot of light) using the same system settings. As noted in Section 5.5, a linear, 
space-invariant system is characterized completely by its impulse response.

An impulse is simulated by a bright dot of light, as bright as possible to reduce the 
effect of noise to negligible values. Then, recalling that the Fourier transform of an 
impulse is a constant, it follows from Eq. (5-65) that

 H
G

A
( , )

( , )
u v

u v=  (5-67)

where, as before, G( , )u v  is the Fourier transform of the observed image, and A is a 
constant describing the strength of the impulse. Figure 5.24 shows an example.

ESTIMATION BY MODELING

Degradation modeling has been used for many years because of the insight it affords 
into the image restoration problem. In some cases, the model can even take into 
account environmental conditions that cause degradations. For example, a degrada-
tion model proposed by Hufnagel and Stanley [1964] is based on the physical char-
acteristics of atmospheric turbulence. This model has a familiar form:

 H e k u( , ) ( ) /

u v v= − +2 2 5 6

 (5-68)

where k is a constant that depends on the nature of the turbulence. With the excep-
tion of the 5 6 power in the exponent, this equation has the same form as the Gauss-
ian lowpass filter transfer function discussed in Section 4.8. In fact, the Gaussian 
LPF is used sometimes to model mild, uniform blurring. Figure 5.25 shows examples 
obtained by simulating blurring an image using Eq. (5-68) with values k = 0 0025.  
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FIGURE 5.25
Modeling  
turbulence.  
(a) No visible 
turbulence.  
(b) Severe  
turbulence, 
k = 0 0025. .  
(c) Mild  
turbulence, 
k = 0 001. .   
(d) Low  
turbulence, 
k = 0 00025. .  
All images are 
of size 480 480×  
pixels. 
(Original  
image courtesy of 
NASA.) 

(severe turbulence), k = 0 001.  (mild turbulence), and k = 0 00025.  (low turbulence). 
We restore these images using various methods later in this chapter.

Another approach used frequently in modeling is to derive a mathematical model 
starting from basic principles. We illustrate this procedure by treating in some detail 
the case in which an image has been blurred by uniform linear motion between 
the image and the sensor during image acquisition. Suppose that an image f x y( , ) 
undergoes planar motion and that x t0( ) and y t0( ) are the time-varying components 
of motion in the x- and y-directions, respectively. We obtain the total exposure at 
any point of the recording medium (say, film or digital memory) by integrating the 
instantaneous exposure over the time interval during which the imaging system 
shutter is open.

Assuming that shutter opening and closing takes place instantaneously, and that 
the optical imaging process is perfect, lets us isolate the effects due to image motion. 
Then, if T is the duration of the exposure, it follows that
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 g x y f x x t y y t dt
T

( , ) [ ( ), ( )]= − −
0

0 02  (5-69)

where g x y( , ) is the blurred image.
The continuous Fourier transform of this expression is

 G g x y e dxdyj ux y( , ) ( , ) ( )u v v= − +

- -�

�

�

�

2 2
2p  (5-70)

Substituting Eq. (5-69) into Eq. (5-70) yields

G f x x t y y t dt e
T

j ux y( , ) [ ( ), ( )] ( )u v v= − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− +

- -�

�

�

�

2 2 20 0 0
2p ddxdy  (5-71)

Reversing the order of integration results in the expression

G f x x t y y t e dxdy
T

j ux y( , ) [ ( ), ( )] ( )u v v= − −
⎡

⎣
⎢
⎢

⎤

⎦

− +

0
0 0

2

2 2 2- -�

�

�

�
p ⎥⎥

⎥
dt  (5-72)

The term inside the outer brackets is the Fourier transform of the displaced function 
f x x t y y t− −[ ]0 0( ), ( ) . Using entry 3 in Table 4.4 then yields the expression

 

G F dt

F

T

T

j ux t y t

j ux t

( , ) ( , )e

( , ) e

( ) ( )

(

u v u v

u v

v=

=

− +[ ]

−

0

0

2

2

0 0

0

2

2

p

p )) ( )+[ ]vy t dt0

 (5-73)

By defining

 H dt
T

j ux t y t( , ) e ( ) ( )u v v= − +[ ]
0

2 0 0

2
p  (5-74)

we can express Eq. (5-73) in the familiar form

 G H F( , ) ( , ) ( , )u v u v u v=  (5-75)

If the motion variables x t0( ) and y t0( ) are known, the transfer function H( , )u v  can 
be obtained directly from Eq. (5-74). As an illustration, suppose that the image in 
question undergoes uniform linear motion in the x-direction only (i.e., y t0 0( ) ),=  at 
a rate x t at T0( ) .=  When t T= , the image has been displaced by a total distance a. 
With y t0 0( ) ,=  Eq. (5-74) yields

 
H dt dt

T
ua

ua e

T T
j ux t j uat T

j ua

( , ) e e

sin( )

( )u v = =

=

− −

−

0 0

2 20

2 2
p p

p

p
p

 (5-76)
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FIGURE 5.26
(a) Original  
image. (b) Result 
of blurring using 
the function in 
Eq. (5-77) with 
a b= = 0 1.  and 
T = 1. 

If we allow the y-component to vary as well, with the motion given by y t bt T0( ) ,=  
then the degradation function becomes

 H
T

ua b
ua b e j ua b( , )

( )
sin ( ) ( )u v

v
v v=

+
+[ ] − +

p
p p  (5-77)

To generate a discrete filter transfer function of size M N× , we sample this equation 
for u = −0 1 2 1, , , ,… M  and v = −0 1 2 1, , , , .… N  

EXAMPLE 5.8 : Image blurring caused by motion.

Figure 5.26(b) is an image blurred by computing the Fourier transform of the image in Fig. 5.26(a), mul-
tiplying the transform by H( , )u v  from Eq. (5-77), and taking the inverse transform. The images are of 
size 688 688×  pixels, and we used a b= = 0 1.  and T = 1 in Eq. (5-77). As we will discuss in Sections 5.8 
and 5.9, recovery of the original image from its blurred counterpart presents some interesting challenges, 
particularly when noise is present in the degraded image. As mentioned at the end of Section 5.5, we 
perform all DFT computations without padding.

5.7 INVERSE FILTERING  

The material in this section is our first step in studying restoration of images degrad-
ed by a degradation function �,  which is given, or is obtained by a method such 
as those discussed in the previous section. The simplest approach to restoration is 
direct inverse filtering, where we compute an estimate, ˆ ( , ),F u v  of the transform of 
the original image by dividing the transform of the degraded image, G( , ),u v  by the 
degradation transfer function: 

 ˆ ( , )
( , )
( , )

F
G
H

u v
u v

u v
=  (5-78)

5.7
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The division is elementwise, as defined in Section 2.6 and in connection with Eq. 
(5-65). Substituting the right side of Eq. (5-2) for G( , )u v  in Eq. (5-78) yields

 ˆ ( , ) ( , )
( , )
( , )

F F
N
H

u v u v
u v

u v
= +  (5-79)

This is an interesting expression. It tells us that, even if we know the degradation 
function, we cannot recover the undegraded image [the inverse Fourier transform 
of F( , )u v ] exactly because N( , )u v  is not known. There is more bad news. If the deg-
radation function has zero or very small values, then the ratio N H( , ) ( , )u v u v  could 
easily dominate the term F( , ).u v  In fact, this is frequently the case, as you will see 
shortly.

One approach to get around the zero or small-value problem is to limit the filter 
frequencies to values near the origin. From the discussion of Eq. (4-92), we know 
that H( , )0 0  is usually the highest value of H( , )u v  in the frequency domain. Thus, 
by limiting the analysis to frequencies near the origin, we reduce the likelihood of 
encountering zero values. The following example illustrates this approach.

EXAMPLE 5.9 :  Image deblurring by inverse filtering.

The image in Fig. 5.25(b) was inverse filtered with Eq. (5-78) using the exact inverse of the degradation 
function that generated that image. That is, the degradation function used was

 H e k u M N
( , )

( ) ( )
/

u v
v= − + + −⎡⎣ ⎤⎦2 22 2

5 6

with k = 0 0025. . The M 2 and N 2  constants are offset values; they center the function so that it will 
correspond with the centered Fourier transform, as discussed in the previous chapter. (Remember, we 
do not use padding with these functions.) In this case, M N= = 480. We know that a Gaussian function 
has no zeros, so that will not be a concern here. However, despite this, the degradation values became so 
small that the result of full inverse filtering [Fig. 5.27(a)] is useless. The reasons for this poor result are 
as discussed in connection with Eq. (5-79). 

Figures 5.27(b) through (d) show the results of cutting off values of the ratio G H( , ) ( , )u v u v  outside 
a radius of 40, 70, and 85, respectively. The cut off was implemented by applying to the ratio a Butter-
worth lowpass function of order 10. This provided a sharp (but smooth) transition at the desired radius. 
Radii near 70 yielded the best visual results [Fig. 5.27(c)]. Radii below 70 resulted in blurred images, as 
in Fig. 5.27(b), which was obtained using a radius of 40. Values above 70 started to produce degraded 
images, as illustrated in Fig. 5.27(d), which was obtained using a radius of 85. The image content is almost 
visible in this image behind a “curtain” of noise, but the noise definitely dominates the result. Further 
increases in radius values produced images that looked more and more like Fig. 5.27(a).

The results in the preceding example are illustrative of the poor performance of 
direct inverse filtering in general. The basic theme of the three sections that follow is 
how to improve on direct inverse filtering.

DIP4E_GLOBAL_Print_Ready.indb   357 6/16/2017   2:07:38 PM



358    Chapter 5  Image Restoration and Reconstruction

5.8 MINIMUM MEAN SQUARE ERROR (WIENER) FILTERING  

The inverse filtering approach discussed in the previous section makes no explicit 
provision for handling noise. In this section, we discuss an approach that incorpo-
rates both the degradation function and statistical characteristics of noise into the 
restoration process. The method is founded on considering images and noise as ran-
dom variables, and the objective is to find an estimate f̂  of the uncorrupted image f 
such that the mean square error between them is minimized. This error measure is 
defined as

 
e E f f2 2= −⎧

⎨
⎩

⎫
⎬
⎭

( )
⁄

 (5-80)

where E i{ }  is the expected value of the argument. We assume that the noise and the 
image are uncorrelated, that one or the other has zero mean, and that the intensity 
levels in the estimate are a linear function of the levels in the degraded image. Based 

5.8

ba
dc

FIGURE 5.27
Restoring  
Fig. 5.25(b)  
using Eq. (5-78).  
(a) Result of using 
the full filter.  
(b) Result with H 
cut off outside a 
radius of 40.  
(c) Result with H 
cut off outside a 
radius of 70.  
(d) Result with H 
cut off outside a 
radius of 85.
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on these assumptions, the minimum of the error function in Eq. (5-80) is given in the 
frequency domain by the expression 

 

ˆ ( , )
( , ) ( , )

( , ) ( , ) ( , )
( , )

*

F
H u S u

S u H u S u v
G uf

f

u v
v v

v v
v=

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2

h

==
+

⎡
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⎥
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H u
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G u

H u

H u

f

*( , )

( , ) ( , ) ( , )
( , )

( , )

( ,
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2

1

h
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( , ) ( , ) ( , )
( , )

2

2H u S u S u
G u

fv v v
v

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥h

 (5-81)

where we used the fact that the product of a complex quantity with its conjugate 
is equal to the magnitude of the complex quantity squared. This result is known as 
the Wiener filter, after N. Wiener [1942], who first proposed the concept in the year 
shown. The filter, which consists of the terms inside the brackets, also is commonly 
referred to as the minimum mean square error filter or the least square error filter. 
We include references at the end of the chapter to sources containing detailed deri-
vations of the Wiener filter. Note from the first line in Eq. (5-81) that the Wiener 
filter does not have the same problem as the inverse filter with zeros in the degrada-
tion function, unless the entire denominator is zero for the same value(s) of u and v.

The terms in Eq. (5-81) are as follows:

1. ˆ ( , )F u v = Fourier transform of the estimate of the undegraded image.

2. G( , )u v =  Fourier transform of the degraded image.

3. H( , )u v  = degradation transfer function (Fourier transform of the spatial 
degradation).

4. H∗( , )u v  = complex conjugate of H( , )u v .

5. H H H( , ) ( , ) ( , )u v u v u v
2 = ∗ .

6. S Nh( , ) ( , )u v u v= =2  power spectrum of the noise [see Eq. (4-89)]†

7. S Ff ( , ) ( , )u v u v= =2  power spectrum of the undegraded image.

The restored image in the spatial domain is given by the inverse Fourier transform 
of the frequency-domain estimate ˆ ( , ).F u v  Note that if the noise is zero, then the 
noise power spectrum vanishes and the Wiener filter reduces to the inverse filter. 
Also, keep in mind the discussion at the end of Section 5.5 regarding the fact that all 
transform work in this chapter is done without padding.

†  The term N( , )u v
2 also is referred to as the autocorrelation of the noise. This term comes from the correlation 

theorem (first line of entry 7 in Table 4.4). When the two functions are the same, correlation becomes autocorrela-
tion and the right side of that entry becomes H H∗( , ) ( , ),u v u v  which is equal to H( , ) .u v

2  Similar comments apply 
to F( , ) ,u v

2  which is the autocorrelation of the image. We will discuss correlation in more detail in Chapter 12. 
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A number of useful measures are based on the power spectra of noise and of the 
undegraded image. One of the most important is the signal-to-noise ratio, approxi-
mated using frequency domain quantities such as

 SNR =
=

−

=

−

=

−

=

−

∑∑ ∑∑F N
N

u

M N

u

M

( , ) ( , )u v u v
v v

2

0

1

0

1
2

0

1

0

1

 (5-82)

This ratio gives a measure of the level of information-bearing signal power (i.e., of 
the original, undegraded image) to the level of noise power. An image with low 
noise would tend to have a high SNR and, conversely, the same image with a higher 
level of noise would have a lower SNR. This ratio is an important measure used in 
characterizing the performance of restoration algorithms.

The mean square error given in statistical form in Eq. (5-80) can be approximated 
also in terms of a summation involving the original and restored images:

 MSE = −[ ]
=

−

=

−

∑∑1

0

1

0

1 2

MN
f x y f x y

y

N

x

M

( , ) ( , )
⁄

 (5-83)

In fact, if one considers the restored image to be “signal” and the difference between 
this image and the original to be “noise,” we can define a signal-to-noise ratio in the 
spatial domain as

 SNR = ( ) −⎡⎣ ⎤⎦
=

−

=

−

=

−

=

−

∑∑ ∑ˆ , ( , ) ˆ( , )f x y f x y f x y
y

N

x

M

y

M

x

M
2

0

1

0

1 2

0

1

0

1

∑∑  (5-84)

The closer f and f̂  are, the larger this ratio will be. Sometimes the square root of the 
preceding two measures is used instead, in which case they are referred to as the 
root-mean-square-error and the root-mean-square-signal-to-noise ratio, respectively. 
As we have mentioned before, keep in mind that quantitative measures do not nec-
essarily relate well to perceived image quality.

When dealing with white noise, the spectrum is a constant, which simplifies things 
considerably. However, the power spectrum of the undegraded image seldom is 
known. An approach frequently used when these quantities are not known, or can-
not be estimated, is to approximate Eq. (5-81) by the expression

 ˆ ( , )
( , )

( , )

( , )
( , )F

H

H

H K
Gu v

u v

u v

u v
u v=

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

2  (5-85)

where K is a specified constant that is added to all terms of H( , ) .u v
2  The following 

examples illustrate the use of this expression.
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FIGURE 5.28  Comparison of inverse and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b). (b) Radially 
limited inverse filter result. (c) Wiener filter result.

EXAMPLE 5.10 :  Comparison of deblurring by inverse and Wiener filtering.

Figure 5.28 illustrates the advantage of Wiener filtering over direct inverse filtering. Figure 5.28(a) is the 
full inverse-filtered result from Fig. 5.27(a). Similarly, Fig. 5.28(b) is the radially limited inverse filter result 
of Fig, 5.27(c). These images are duplicated here for convenience in making comparisons. Figure 5.28(c) 
shows the result obtained using Eq. (5-85) with the degradation function used in Example 5.9. The value 
of K was chosen interactively to yield the best visual results. The advantage of Wiener filtering over the 
direct inverse approach is evident in this example. By comparing Figs. 5.25(a) and 5.28(c), we see that 
the Wiener filter yielded a result very close in appearance to the original, undegraded image. 

EXAMPLE 5.11 :  More deblurring examples using Wiener filtering.

The first row of Fig. 5.29 shows, from left to right, the blurred image of Fig. 5.26(b) heavily corrupted by 
additive Gaussian noise of zero mean and variance of 650; the result of direct inverse filtering; and the 
result of Wiener filtering. The Wiener filter of Eq. (5-85) was used, with H( , )u v  from Example 5.8, and 
with K chosen interactively to give the best possible visual result. As expected, direct inverse filtering 
produced an unusable image. Note that the noise in the inverse filtered image is so strong that it masks 
completely the content of the image. The Wiener filter result is by no means perfect, but it does give us 
a hint as to image content. The text can be read with moderate effort. 

The second row of Fig. 5.29 shows the same sequence just discussed, but with the level of the noise 
variance reduced by one order of magnitude. This reduction had little effect on the inverse filter, but 
the Wiener results are considerably improved. For example, the text is much easier to read now. In the 
third row of Fig. 5.29, the noise variance was reduced more than five orders of magnitude from the first 
row. In fact, image in Fig. 5.29(g) has no visible noise. The inverse filter result is interesting in this case. 
The noise is still quite visible, but the text can be seen through a “curtain” of noise (see Problem 5.30). 
The Wiener filter result in Fig. 5.29(i) is excellent, being quite close visually to the original image in Fig. 
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FIGURE 5.29 (a) 8-bit image corrupted by motion blur and additive noise. (b) Result of inverse filtering. (c) Result of 
Wiener filtering. (d)–(f) Same sequence, but with noise variance one order of magnitude less. (g)–(i) Same sequence, 
but noise variance reduced by five orders of magnitude from (a). Note in (h) how the deblurred image is quite vis-
ible through a “curtain” of noise.  
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5.26(a). In practice, the results of restoration filtering are seldom this close to the original images. This 
example, and Example 5.12 in the next section, were idealized slightly to focus on the effects of noise 
on restoration algorithms. 

5.9 CONSTRAINED LEAST SQUARES FILTERING 

The problem of having to know something about the degradation function H is com-
mon to all methods discussed in this chapter. However, the Wiener filter presents 
an additional difficulty: the power spectra of the undegraded image and noise must 
be known also. We showed in the previous section that in some cases it is possible 
to achieve acceptable results using the approximation in Eq. (5-85), but a constant 
value for the ratio of the power spectra is not always a suitable solution. 

The method discussed in this section requires knowledge of only the mean and 
variance of the noise. As discussed in Section 5.2, these parameters generally can be 
calculated from a given degraded image, so this is an important advantage. Another 
difference is that the Wiener filter is based on minimizing a statistical criterion and, 
as such, it is optimal in an average sense. The algorithm presented in this section 
has the notable feature that it yields an optimal result for each image to which it 
is applied. Of course, it is important to keep in mind that these optimality criteria, 
although they are comforting from a theoretical point of view, are not related to 
the dynamics of visual perception. As a result, the choice of one algorithm over the 
other will almost always be determined by the perceived visual quality of the result-
ing images.

By using the definition of convolution given in Eq. (4-94), and as explained in 
Section 2.6, we can express Eq. (5-64) in vector-matrix form:

 g Hf= + H  (5-86)

For example, suppose that g x y( , ) is of size M N× . We can form the first N elements 
of vector g by using the image elements in the first row of g x y( , ), the next N ele-
ments from the second row, and so on. The dimensionality of the resulting vector will 
be MN × 1. These are also the dimensions of f and H,  as these vectors are formed in 
the same manner. Matrix H then has dimensions MN MN× . Its elements are given 
by the elements of the convolution in Eq. (4-94). 

It would be reasonable to arrive at the conclusion that the restoration problem 
can now be reduced to simple matrix manipulations. Unfortunately, this is not the 
case. For instance, suppose that we are working with images of medium size, say 
M N= = 512. Then the vectors in Eq. (5-86) would be of dimension 262 144 1, ×  
and matrix H would be of dimension 262 144 262 144, , .×  Manipulating vectors and 
matrices of such sizes is not a trivial task. The problem is complicated further by 
the fact that H is highly sensitive to noise (after the experiences we had with the 
effect of noise in the previous two sections, this should not be a surprise). The key 
advantage of formulating the restoration problem in matrix form is that it facilitates 
derivation of restoration algorithms.

Although we do not fully derive the method of constrained least squares that 
we are about to present, this method has its roots in a matrix formulation. We give 

5.9

See Gonzalez and Woods 
[1992] for an entire chap-
ter devoted to the topic 
of algebraic techniques 
for image restoration. 
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references at the end of the chapter to sources where derivations are covered in 
detail. Central to the method is the issue of the sensitivity of H to noise. One way 
to reduce the effects of noise sensitivity, is to base optimality of restoration on a 
measure of smoothness, such as the second derivative of an image (our old friend, 
the Laplacian). To be meaningful, the restoration must be constrained by the param-
eters of the problems at hand. Thus, what is desired is to find the minimum of a 
criterion function, C, defined as

 C f x y
y

N

x

M

= ⎡⎣ ⎤⎦
=

−

=

−

∑∑ 
2

0

1

0

1 2
( , )  (5-87)

subject to the constraint

 g Hf− =ˆ 2 2
H  (5-88)

where a a a2 � T  is the Euclidean norm (see Section 2.6), and f̂  is the estimate of the 
undegraded image. The Laplacian operator 
2 is defined in Eq. (3-50).

The frequency domain solution to this optimization problem is given by the 
expression

 

ˆ ( , )
( , )

( , ) ( , )
( , )F

H

H P
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u v

u v u v
u v=

+
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⎦
⎥
⎥

∗

2 2
g  (5-89)

where g is a parameter that must be adjusted so that the constraint in Eq. (5-88) is 
satisfied, and P( , )u v  is the Fourier transform of the function

 p x y( , ) =
−

− −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 1 0

1 4 1

0 1 0

 (5-90)

We recognize this function as a Laplacian kernel from Fig. 3.45. Note that Eq. (5-89) 
reduces to inverse filtering if g = 0.

Functions P( , )u v  and H( , )u v  must be of the same size. If H is of size M N× , this 
means that p x y( , ) must be embedded in the center of an M N×  array of zeros. In 
order to preserve the even symmetry of p x y( , ), M and N must be even integers, as 
explained in Examples 4.10 and 4.15. If a given degraded image from which H is 
obtained is not of even dimensions, then a row and/or column, as appropriate, must 
be deleted before computing H for use in Eq. (5-89).

EXAMPLE 5.12 :  Comparison of deblurring by Wiener and constrained least squares filtering.

Figure 5.30 shows the result of processing Figs. 5.29(a), (d), and (g) with constrained least squares fil-
ters, in which the values of g were selected manually to yield the best visual results. This is the same 
procedure we used to generate the Wiener filter results in Fig. 5.29(c), (f), and (i). By comparing the 
constrained least squares and Wiener results, we see that the former yielded better results (especially in 
terms of noise reduction) for the high- and medium-noise cases, with both filters generating essentially 

The quantity in brackets 
is the transfer function 
of the constrained least 
squares filter. Note that 
it reduces to the inverse 
filter transfer function 
when g = 0.
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FIGURE 5.30  Results of constrained least squares filtering. Compare (a), (b), and (c) with the Wiener filtering results 
in Figs. 5.29(c), (f), and (i), respectively. 

equal results for the low-noise case. This is not surprising because parameter g in Eq. (5-89) is a true 
scalar, whereas the value of K in Eq. (5-85) is a scalar approximation to the ratio of two unknown fre-
quency domain functions of size M N× . Thus, it stands to reason that a result based on manually select-
ing g would be a more accurate estimate of the undegraded image. As in Example 5.11, the results in 
this example are better than one normally finds in practice. Our focus here was on the effects of noise 
blurring on restoration. As noted earlier, you will encounter situations in which the restoration solutions 
are not quite as close to the original images as we have shown in these two examples.

As discussed in the preceding example, it is possible to adjust the parameter g 
interactively until acceptable results are achieved. However, if we are interested in 
mathematical optimality, then this parameter must be adjusted so that the constraint 
in Eq. (5-88) is satisfied. A procedure for computing g by iteration is as follows.

Define a “residual” vector r as

 r g Hf= − ˆ  (5-91)

From Eq. (5-89), we see that ˆ ( , )F u v  (and by implication f̂) is a function of g. Then 
it follows that r also is a function of this parameter. It can be shown (Hunt [1973], 
Gonzalez and Woods [1992]) that

 
f g( ) =

=

r r

r

T

2  (5-92)

is a monotonically increasing function of g. What we want to do is adjust g so that

 r 2 2= H ± α  (5-93)
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where a  is an accuracy factor. In view of Eq. (5-91), if r 2 2= H , the constraint in 
Eq. (5-88) will be strictly satisfied.

Because f g( ) is monotonic, finding the desired value of g is not difficult. One 
approach is to

1. Specify an initial value of g.

2. Compute r 2 .

3. Stop if Eq. (5-93) is satisfied; otherwise return to Step 2 after increasing g if 
r 2 2< ( )H a−  or decreasing g if r 2 2> ( ).H a+  Use the new value of g in 

Eq. (5-89) to recompute the optimum estimate ˆ ( , ).F u v  

Other procedures, such as a Newton–Raphson algorithm, can be used to improve 
the speed of convergence.

In order to use this algorithm, we need the quantities r 2 and H
2. To compute 

r 2, we note from Eq. (5-91) that

 R G H F( , ) ( , ) ( , ) ( , )u v u v u v u v= −  (5-94)

from which we obtain r x y( , ) by computing the inverse Fourier transform of R( , ).u v  
Then, from the definition of the Euclidean norm, it follows that

 r r r2 2

0

1

0

1

= =
=

−

=

−

∑∑T

y

N

x

M

r x y( , )  (5-95)

Computation of H
2 leads to an interesting result. First, consider the variance 

of the noise over the entire image, which we estimate from the samples using the 
expression

 s h hh
2 2
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where
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=

−

=

−

∑∑1

0

1

0

1

MN
x y

y

N

x

M

( , )  (5-97)

is the sample mean. With reference to the form of Eq. (5-95), we note that the dou-
ble summation in Eq. (5-96) is proportional to H

2. This leads to the expression

 H s hh

2 2 2= +⎡⎣ ⎤⎦MN  (5-98)

This is a most useful result. It tells us that we can estimate the unknown quantity 
H

2  by having knowledge of only the mean and variance of the noise. These quanti-
ties are not difficult to estimate (see Section 5.2), assuming that the noise and image 
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ba

FIGURE 5.31
(a) Iteratively 
determined 
constrained 
least squares 
restoration of 
Fig. 5.25(b), using 
correct noise 
parameters. (b) 
Result obtained 
with wrong noise 
parameters. 

intensity values are not correlated. This is an assumption of all the methods dis-
cussed in this chapter. 

EXAMPLE 5.13 :  Iterative estimation of the optimum constrained least squares filter. 

Figure 5.31(a) shows the result obtained using the algorithm just described to estimate the optimum 
filter for restoring Fig. 5.25(b). The initial value used for g was 10 5− , the correction factor for adjusting g 
was 10 6− , and the value for a  was 0.25. The noise parameters specified were the same used to generate 
Fig. 5.25(a): a noise variance of 10 5− , and zero mean. The restored result is comparable to Fig. 5.28(c), 
which was obtained by Wiener filtering with K manually specified for best visual results. Figure 5.31(b) 
shows what can happen if the wrong estimate of noise parameters are used. In this case, the noise vari-
ance specified was 10 2−  and the mean was left at 0. The result in this case is considerably more blurred. 

5.10  GEOMETRIC MEAN FILTER  

It is possible to generalize slightly the Wiener filter discussed in Section 5.8. The 
generalization is in the form of the so-called geometric mean filter: 
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where a  and b are nonnegative, real constants. The geometric mean filter transfer 
function consists of the two expressions in brackets raised to the powers a  and 1 − a, 
respectively.

When a = 1 the geometric mean filter reduces to the inverse filter. With a = 0 the 
filter becomes the so-called parametric Wiener filter, which reduces to the “standard” 

5.10
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Wiener filter when b = 1. If a = 1 2, the filter becomes a product of the two quanti-
ties raised to the same power, which is the definition of the geometric mean, thus 
giving the filter its name. With b = 1, as a  increases above 1 2, the filter performance 
will tend more toward the inverse filter. Similarly, when a  decreases below 1 2, the 
filter will behave more like a Wiener filter. When a = 1 2 and b = 1 the filter is com-
monly referred to as a spectrum equalization filter. Equation (5-99) is useful when 
implementing restoration filters because it represents a family of filters combined 
into a single expression.

5.11 IMAGE RECONSTRUCTION FROM PROJECTIONS  

In the previous sections of this chapter we discussed techniques for restoring degrad-
ed images. In this section, we examine the problem of reconstructing an image from 
a series of projections, with a focus on X-ray computed tomography (CT). This is the 
earliest and still the most-widely used type of CT, and is currently one of the princi-
pal applications of digital image processing in medicine.

INTRODUCTION

The reconstruction problem is simple in principle, and can be explained qualitatively 
in a straightforward, intuitive manner, without using equations (we will deal with the 
math later in this section. To begin, consider Fig. 5.32(a), which consists of a single 
object on a uniform background. In order to bring physical meaning to the following 
explanation, suppose that this image is a cross-section of a 3-D region of a human 
body. Assume also that the background in the image represents soft, uniform tissue, 
while the round object is a tumor, also uniform, but with higher X-ray absorption 
characteristics.

Suppose next that we pass a thin, flat beam of X-rays from left to right (through 
the plane of the image), as Fig. 5.32(b) shows, and assume that the energy of the 
beam is absorbed more by the object than by the background, as typically is the case. 
Using a strip of X-ray absorption detectors on the other side of the region will yield 
the signal (absorption profile) shown, whose amplitude (intensity) is proportional to 
absorption.† We may view any point in the signal as the sum of the absorption values 
across the single ray in the beam corresponding spatially to that point (such a sum 
often is referred to as a raysum). At this juncture, all the information we have about 
the object is this 1-D absorption signal.

We have no way of determining from a single projection whether we are dealing 
with a single object, or a multitude of objects along the path of the beam, but we 
begin the reconstruction by creating an image based only on this information. The 
approach is to project the 1-D signal back in the opposite direction from which the 
beam came, as Fig. 5.32(c) shows. The process of backprojecting a 1-D signal across a 
2-D area sometimes is referred to as smearing the projection back across the area. In 

† A treatment of the physics of X-ray sources and detectors is beyond the scope of our discussion, which focuses 
on the image processing aspects of CT. See Prince and Links [2006] for an excellent introduction to the physics 
of X-ray image formation.

5.11

As noted in Chapter 1, 
the term computerized 
axial tomography (CAT) 
is used interchangeably 
to denote CT.
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terms of digital images, this means duplicating the same 1-D signal across the image, 
perpendicularly to the direction of the beam. For example, Fig. 5.32(c) was created 
by duplicating the 1-D signal in all columns of the reconstructed image. For obvious 
reasons, the approach just described is called backprojection.

Next, suppose that we rotate the position of the source-detector pair by 90°, as 
in Fig. 5.32(d). Repeating the procedure explained in the previous paragraph yields 
a backprojection image in the vertical direction, as Fig. 5.32(e) shows. We continue 
the reconstruction by adding this result to the previous backprojection, resulting in 
Fig. 5.32(f). Now, we begin to suspect that the object of interest is contained in the 
square shown, whose amplitude is twice the amplitude of the individual backprojec-
tions because the signals were added. We should be able to learn more about the 
shape of the object in question by taking more views in the manner just described, 
as Fig. 5.33 shows. As the number of projections increases, the amplitude strength 
of non-intersecting backprojections decreases relative to the strength of regions in 
which multiple backprojections intersect. The net effect is that brighter regions will 
dominate the result, and backprojections with few or no intersections will fade into 
the background as the image is scaled for display.

Figure 5.33(f), which was formed from 32 backprojections, illustrates this concept. 
Note, however, that while this reconstructed image is a reasonably good approxi-
mation to the shape of the original object, the image is blurred by a “halo” effect, 
the formation of which can be seen in progressive stages in Fig. 5.33. For example, 
the halo in Fig. 5.33(e) appears as a “star” whose intensity is lower than that of the 

ba c
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FIGURE 5.32
(a) Flat region 
with a single 
object. (b) Parallel 
beam, detector 
strip, and profile of 
sensed 1-D  
absorption signal. 
(c) Result of back-
projecting the 
absorption profile. 
(d) Beam and 
detectors rotated 
by 90°.  
(e) Backprojection. 
(f) The sum of (c) 
and (e), inten-
sity-scaled. The 
intensity where the 
backprojections 
intersect is twice 
the intensity of the 
individual back-
projections. 

Absorption profile (signal)

Ray Detector strip
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object, but higher than the background. As the number of views increases, the shape 
of the halo becomes circular, as in Fig. 5.33(f). Blurring in CT reconstruction is an 
important issue, whose solution is addressed later in this section. Finally, we con-
clude from the discussion of Figs. 5.32 and 5.33 that backprojections 180° apart are 
mirror images of each other, so we have to consider only angle increments halfway 
around a circle in order to generate all the backprojections required for reconstruc-
tion.

EXAMPLE 5.14 :  Backprojections of a planar region containing two objects.

Figure 5.34 illustrates reconstruction using backprojections on a region that contains two objects with 
different absorption properties (the larger object has higher absorption). Figure 5.34(b) shows the result 
of using one backprojection. We note three principal features in this figure, from bottom to top: a thin 
horizontal gray band corresponding to the unoccluded portion of the small object, a brighter (more 
absorption) band above it corresponding to the area shared by both objects, and an upper band corre-
sponding to the rest of the elliptical object. Figures 5.34(c) and (d) show reconstruction using two pro-
jections 90° apart and four projections 45° apart, respectively. The explanation of these figures is similar 
to the discussion of Figs. 5.33(c) through (e). Figures 5.34(e) and (f) show more accurate reconstructions 
using 32 and 64 backprojections, respectively. The last two results are quite close visually, and they both 
show the blurring problem mentioned earlier.

PRINCIPLES OF X-RAY COMPUTED TOMOGRAPHY (CT)

As with the Fourier transform discussed in the last chapter, the basic mathematical 
concepts required for CT were in place many years before the availability of digital 

ba c
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FIGURE 5.33
(a) Same as  
Fig. 5.32(a).  
(b)-(e) Recon-
struction using 1,  
2, 3, and 4 back-
projections 45° 
apart.  
(f) Reconstruction 
with 32 backpro-
jections 5.625° 
apart (note the 
blurring).
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FIGURE 5.34
(a) Two objects 
with different 
absorption charac-
teristics.  
(b)–(d) Recon-
struction using 1, 2, 
and 4 backprojec-
tions, 45° apart.  
(e) Reconstruction 
with 32 backprojec-
tions, 5.625° apart. 
(f) Reconstruction 
with 64 backprojec-
tions, 2.8125° apart. 

computers made them practical. The theoretical foundation of CT dates back to 
Johann Radon, a mathematician from Vienna who derived a method in 1917 for 
projecting a 2-D object along parallel rays, as part of his work on line integrals (the 
method now is referred to as the Radon transform, a topic we will discuss shortly). 
Forty-five years later, Allan M. Cormack, a physicist at Tufts University, partially 

“rediscovered” these concepts and applied them to CT. Cormack published his initial 
findings in 1963 and 1964 and showed how his results could be used to reconstruct 
cross-sectional images of the body from X-ray images taken in different angular 
directions. He gave the mathematical formulae needed for the reconstruction and 
built a CT prototype to show the practicality of his ideas. Working independently, 
electrical engineer Godfrey N. Hounsfield and his colleagues at EMI in London 
formulated a similar solution and built the first medical CT machine. Cormack and 
Hounsfield shared the 1979 Nobel Prize in Medicine for their contributions to medi-
cal uses of tomography.

The goal of X-ray computed tomography is to obtain a 3-D representation of the 
internal structure of an object by X-raying the object from many different directions. 
Imagine a traditional chest X-ray, obtained by placing the subject against an X-ray 
sensitive plate and “illuminating” the individual with an X-ray beam in the form of 
a cone. The X-ray plate would produce an image whose intensity at a point would 
be proportional to the X-ray energy impinging on that point after it passed through 
the subject. This image is the 2-D equivalent of the projections we discussed in the 
previous section. We could back-project this entire image and create a 3-D volume. 
Repeating this process through many angles and adding the backprojections would 
result in 3-D rendition of the structure of the chest cavity. Computed tomography 
attempts to get that same information (or localized parts of it) by generating slices 
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Detector

Subject

Sourceba
dc

FIGURE 5.35
Four generations 
of CT scanners. 
The dotted arrow 
lines indicate 
incremental linear 
motion. The  
dotted arrow arcs 
indicate  
incremental 
rotation. The 
cross-mark on 
the subject’s 
head indicates 
linear motion 
perpendicular to 
the plane of the 
paper. The double 
arrows in (a) 
and (b) indicate 
that the source/
detector unit is 
translated and 
then brought back 
into its original 
position. 

through the body. A 3-D representation then can be obtained by stacking the slices. 
A CT implementation is much more economical because the number of detectors 
required to obtain a high resolution slice is much smaller than the number of detec-
tors needed to generate a complete 2-D projection of the same resolution. Compu-
tational burden and X-ray dosages are similarly reduced, making the 1-D projection 
CT a more practical approach.

First-generation (G1) CT scanners employ a “pencil” X-ray beam and a single 
detector, as Fig. 5.35(a) shows. For a given angle of rotation, the source/detector 
pair is translated incrementally along the linear direction shown. A projection (like 
the ones in Fig. 5.32), is generated by measuring the output of the detector at each 
increment of translation. After a complete linear translation, the source/detector 
assembly is rotated and the procedure is repeated to generate another projection 
at a different angle. The procedure is repeated for all desired angles in the range [0°, 
180°] to generate a complete set of projections images, from which one final cross-
sectional image (a slice through the 3-D object) is obtained, as explained in the 
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previous section. A set of cross sectional images (slices) is generated by moving the 
subject incrementally (after each complete scan) past the source/detector plane (the 
cross-mark on the head of the subject indicates motion in a direction perpendicular 
to the plane of the source/detector pair). Stacking these images computationally 
produces a 3-D volume of a section of the body. G1 scanners are no longer manu-
factured for medical imaging, but, because they produce a parallel-ray beam (as in 
Fig. 5.32), their geometry is the one used predominantly for introducing the funda-
mentals of CT imaging, and serves as the starting point for deriving the equations 
necessary to implement image reconstruction from projections.

Second-generation (G2) CT scanners [Fig. 5.35(b)] operate on the same principle 
as G1 scanners, but the beam used is in the shape of a fan. This allows the use of mul-
tiple detectors, thus requiring fewer translations of the source/detector pair. 

Third-generation (G3) scanners are a significant improvement over the earlier 
two generations of CT geometries. As Fig. 5.35(c) shows, G3 scanners employ a bank 
of detectors long enough (on the order of 1000 individual detectors) to cover the 
entire field of view of a wider beam. Consequently, each increment of angle pro-
duces an entire projection, eliminating the need to translate the source/detector pair, 
as in G1 and G2 scanners. 

Fourth-generation (G4) scanners go a step further. By employing a circular ring of 
detectors (on the order of 5000 individual detectors), only the source has to rotate. 
The key advantage of G3 and G4 scanners is speed; key disadvantages are cost and 
greater X-ray scatter. The latter implies higher X-ray doses than G1 and G2 scan-
ners to achieve comparable signal-to-noise characteristics.

Newer scanning modalities are beginning to be adopted. For example,  fifth-gener-
ation (G5) CT scanners, also known as electron beam computed tomography (EBCT) 
scanners, eliminate all mechanical motion by employing electron beams controlled 
electromagnetically. By striking tungsten anodes that encircle the patient, these 
beams generate X-rays that are then shaped into a fan beam that passes through the 
patient and excites a ring of detectors, as in G4 scanners.

The conventional manner in which CT images are obtained is to keep the patient 
stationary during the scanning time required to generate one image. Scanning is then 
halted while the position of the patient is incremented in the direction perpendicu-
lar to the imaging plane, using a motorized table. The next image is then obtained 
and the procedure is repeated for the number of increments required to cover a 
specified section of the body. Although an image may be obtained in less than one 
second, there are procedures (e.g., abdominal and chest scans) that require patient 
to hold their breath during image acquisition. Completing these procedures for, say, 
30 images, may require several minutes. An approach for which use is increasing is 
helical CT, sometimes referred to as sixth-generation (G6) CT. In this approach, a 
G3 or G4 scanner is configured using so-called slip rings that eliminate the need for 
electrical and signal cabling between the source/detectors and the processing unit. 
The source/detector pair then rotates continuously through 360° while the patient 
is moved at a constant speed along the axis perpendicular to the scan. The result is 
a continuous helical volume of data that is then processed to obtain individual slice 
images.
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FIGURE 5.36
Normal  
representation of 
a line.

Seventh-generation (G7) scanners (also called multislice CT scanners) are emerg-
ing in which “thick” fan beams are used in conjunction with parallel banks of detec-
tors to collect volumetric CT data simultaneously. That is, 3-D cross-sectional “slabs,” 
rather than single cross-sectional images are generated per X-ray burst. In addition 
to a significant increase in detail, this approach has the advantage that it utilizes 
X-ray tubes more economically, thus reducing cost and potentially reducing dosage.

In the following discussion, we develop the mathematical tools necessary for for-
mulating image projection and reconstruction algorithms. Our focus is on the image-
processing fundamentals that underpin all the CT approaches just discussed. Infor-
mation regarding the mechanical and source/detector characteristics of CT systems 
is provided in the references cited at the end of the chapter.

PROJECTIONS AND THE RADON TRANSFORM

Next, we develop in detail the mathematics needed for image reconstruction in the 
context of X-ray computed tomography. The same basic principles apply to other 
CT imaging modalities, such as SPECT (single photon emission tomography), PET 
(positron emission tomography), MRI (magnetic resonance imaging), and some 
modalities of ultrasound imaging.

A straight line in Cartesian coordinates can be described either by its slope-inter-
cept form, y ax b= + , or, as in Fig. 5.36, by its normal representation:

 x ycos sinu u r+ =  (5-100)

The projection of a parallel-ray beam can be modeled by a set of such lines, as 
Fig. 5.37 shows. An arbitrary point at coordinates ( , )r uj k  in the projection profile is 
given by the raysum along the line x yk k jcos sin .u u r+ =  Working with continuous 
quantities for the moment, the raysum is a line integral, given by

 g f x y x y dxdyj k k k j( , ) ( , ) ( cos sin )r u d u u r= + −
- -�

�

�

�

2 2  (5-101)

where we used the properties of the impulse, d, discussed in Section 4.5. In other 
words, the right side of Eq. (5-101) is zero unless the argument of d  is zero, indicating 

Throughout this section, 
we follow CT convention 
and place the origin 
of the xy-plane in the 
center, instead of at our 
customary top left corner 
(see Section 2.4). Both 
are right-handed coor-
dinate systems, the only 
difference being that our 
image coordinate system 
has no negative axes. 
We can account for the 
difference with a simple 
translation of the origin, 
so both representations 
are interchangeable. 
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that the integral is computed only along the line x yk k jcos sin .u u r+ =  If we con-
sider all values of r and u, the preceding equation generalizes to

 g f x y x y dxdy( , ) ( , ) ( cos sin )r u d u u r= + −
- -�

�

�

�

2 2  (5-102)

This equation, which gives the projection (line integral) of f x y( , ) along an arbi-
trary line in the xy-plane, is the Radon transform mentioned earlier. The notation 
� f x y( , ){ }  or � f{ }  is used sometimes in place of g( , )r u  in Eq. (5-102) to denote 
the Radon transform of f x y( , ), but the type of notation used in Eq. (5-102) is more 
customary. As will become evident in the discussion that follows, the Radon trans-
form is the cornerstone of reconstruction from projections, with computed tomogra-
phy being its principal application in the field of image processing.

In the discrete case,† the Radon transform of Eq. (5-102) becomes

 g f x y x y
y

N

x

M

( , ) ( , ) ( cos sin )r u d u u r= + −
=

−

=

−

∑∑
0

1

0

1

 (5-103)

where x, y, and are now discrete variables, and M and N are the dimensions of a 
rectangular area over which the transform is applied. If we fix u and allow r to 
vary, we see that (5-103) simply sums the pixels of f x y( , ) along the line defined by 
the specified values of these two parameters. Incrementing through all values of r 

†  In Chapter 4, we exercised great care in denoting continuous image coordinates by ( , )t z  and discrete coordi-
nates by ( , ).x y  At that time, the distinction was important because we were developing basic concepts to take us 
from continuous to sampled quantities. In the present discussion, we go back and forth so many times between 
continuous and discrete coordinates that adhering to this convention is likely to generate unnecessary confusion. 
For this reason, and also to follow the published literature in this field (e.g., see Prince and Links [2006]), we let 
the context determine whether coordinates ( , )x y  are continuous or discrete. When they are continuous, you will 
see integrals; otherwise, you will see summations.

FIGURE 5.37
Geometry of a 
parallel-ray beam.
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required to span the M N×  area (with u fixed) yields one projection. Changing u 
and repeating this procedure yields another projection, and so forth. This is precisely 
how the projections in Figs. 5.32-5.34 were generated.

EXAMPLE 5.15 :  Using the Radon transform to obtain the projection of a circular region.

Before proceeding, we illustrate how to use the Radon transform to obtain an analytical expression for 
the projection of the circular object in Fig. 5.38(a): 

 f x y
A x y r

( , ) =
+ ≤⎧

⎨
⎪

⎩⎪

2 2 2

0 otherwise
 

where A is a constant and r is the radius of the object. We assume that the circle is centered on the origin 
of the xy-plane. Because the object is circularly symmetric, its projections are the same for all angles, so 
all we have to do is obtain the projection for u = 0°. Equation (5-102) then becomes

 

g f x y x dxdy

f y dy

( , ) ( , ) ( )

( , )

r u d r

r

= −

=

- -

-

�

�

�

�

�

�
2 2

2
where the second expression follows from Eq. (4-13). As noted earlier, this is a line integral (along the 
line L( , )r 0  in this case). Also, note that g( , )r u = 0 when r > r. When r ≤ r  the integral is evaluated 
from y r= −−( )2 2 1 2

r  to y r= −( ) .2 2 1 2
r  Therefore,

y

0 r
r

g(r)

x

b
a

FIGURE 5.38
(a) A disk and,  
(b) a plot of its Radon 
transform, derived 
analytically. Here we 
were able to plot the 
transform because it  
depends only on one 
variable. When g 
depends on both r and 
u, the Radon transform 
becomes an image 
whose axes are r and 
u, and the intensity of 
a pixel is proportional 
to the value of g at the 
location of that pixel. 
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Carrying out the integration yields

 g g
A r r( , ) ( )r u r

r r= = −⎧
⎨
⎪

⎩⎪

2

0

2 2 ≤
otherwise

where we used the fact that g( , )r u = 0 when r > r. Figure 5.38(b) shows a plot of this result. Note that 
g g( , ) ( );r u r=  that is, g is independent of u because the object is symmetric about the origin.

When the Radon transform, g( , ),r u  is displayed as an image with r and u as recti-
linear coordinates, the result is called a sinogram, similar in concept to displaying the 
Fourier spectrum. Like the Fourier transform, a sinogram contains the data neces-
sary to reconstruct f x y( , ). Unlike the Fourier transform, however, g( , )r u  is always 
a real function. As is the case with displays of the Fourier spectrum, sinograms can 
be readily interpreted for simple regions, but become increasingly difficult to “read” 
as the region being projected becomes more complex. For example, Fig. 5.39(b) is 
the sinogram of the rectangle on the left. The vertical and horizontal axes corre-
spond to u and r, respectively. Thus, the bottom row is the projection of the rect-
angle in the horizontal direction (i.e., u = 0°), and the middle row is the projection 
in the vertical direction ((u = 90°). The fact that the nonzero portion of the bottom 
row is smaller than the nonzero portion of the middle row tells us that the object is 
narrower in the horizontal direction. The fact that the sinogram is symmetric in both 
directions about the center of the image tells us that we are dealing with an object 
that is symmetric and parallel to the x and y axes. Finally, the sinogram is smooth, 
indicating that the object has a uniform intensity. Other than these types of general 
observations, we cannot say much more about this sinogram.

Figure 5.39(c) is an image of the Shepp-Logan phantom (Shepp and Logan [1974]), 
a widely used synthetic image designed to simulate the absorption of major areas of 
the brain, including small tumors. The sinogram of this image is considerably more 
difficult to interpret, as Fig. 5.39(d) shows. We still can infer some symmetry prop-
erties, but that is about all we can say. Visual analyses of sinograms are of limited 
practical use, but they can be helpful in tasks such as algorithm development.

BACKPROJECTIONS

To obtain a formal expression for a backprojected image from the Radon transform, 
let us begin with a single point, g j k( , ),r u  of the complete projection, g k( , ),r u  for a 
fixed value of rotation, uk (see Fig. 5.37). Forming part of an image by backproject-
ing this single point is nothing more than copying the line L j k( , )r u  onto the image, 

To generate arrays with 
rows of the same size, 
the minimum dimen-
sion of the r-axis in 
sinograms corresponds 
to the largest dimension 
encountered during 
projection. For example, 
the minimum size of a 
sinogram of a square 
of size M × M obtained 
using increments of 1° is 
180 × Q where Q is the 
smallest integer greater 
than 2 M.
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where the value (intensity) of each point in that line is g j k( , ).r u  Repeating this pro-
cess of all values of rj  in the projected signal (but keeping the value of u fixed at uk ) 
results in the following expression:

 
f x y g

g x y
k k

k k k

u r u

u u u

( , ) ( , )

( cos sin , )

=

= +

for the image due to backprojecting the projection obtained with a fixed angle, uk , 
as in Fig. 5.32(b). This equation holds for an arbitrary value of uk , so we may write 
in general that the image formed from a single backprojection obtained at an angle 
u is given by

 f x y g x yu u u u( , ) ( cos sin , )= +  (5-104)

We form the final image by integrating over all the backprojected images:

 f x y f x y d( , ) ( , )=
0

p

u u2  (5-105)

In the discrete case, the integral becomes a sum of all the backprojected images:

180

135

90u

u

45

0

180

135

90

45

0

r

r

ba
dc

FIGURE 5.39
Two images and 
their sinograms 
(Radon  
transforms). Each 
row of a sinogram 
is a projection 
along the  
corresponding 
angle on the  
vertical axis. 
(Note that the 
horizontal axis 
of the sinograms 
are values of r.)
Image (c) is called 
the Shepp-Logan 
phantom. In its 
original form, the 
contrast of the 
phantom is quite 
low. It is shown 
enhanced here to 
facilitate viewing. 
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ba  
FIGURE 5.40
Backprojections 
of the sinograms 
in Fig. 5.39. 

 f x y f x y( , ) ( , )=
=
∑ u
u

p

0

 (5-106)

where, x, y, and u are now discrete quantities. As mentioned earlier, the projections 
at 0°  and 180° are mirror images of each other, so the summations are carried out 
to the last angle increment before 180°. For example, if 0 5. ° increments are being 
used, the summation is from 0°  to 179 5. °  in half-degree increments. A backpro-
jected image formed in the manner just described sometimes is referred to as a 
laminogram. It is understood implicitly that a laminogram is only an approximation 
to the image from which the projections were generated, a fact that is illustrated in 
the following example.

EXAMPLE 5.16 :  Obtaining backprojected images from sinograms. 

Equation (5-106) was used to generate the backprojected images in Figs. 5.32 through 5.34, from projec-
tions obtained with Eq. (5-103). Similarly, these equations were used to generate Figs. 5.40(a) and (b), 
which show the backprojected images corresponding to the sinograms in Figs. 5.39(b) and (d), respec-
tively. As with the earlier figures, we note a significant amount of blurring, so it is obvious that a straight 
use of Eqs. (5-103) and (5-106) will not yield acceptable results. Early, experimental CT systems were 
based on these equations. However, as you will see later in our discussion, significant improvements in 
reconstruction are possible by reformulating the backprojection approach. 

THE FOURIER-SLICE THEOREM

In this section, we derive a fundamental equation that establishes a relationship 
between the 1-D Fourier transform of a projection and the 2-D Fourier transform 
of the region from which the projection was obtained. This relationship is the basis 
for reconstruction methods capable of dealing with the blurring problems we have 
encountered thus far. 

The 1-D Fourier transform of a projection with respect to r is

 G g e dj( , ) ( , )v u r u rpvr= −

-�

�

2
2  (5-107)This equation has the 

same form as Eq. (4-20).
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where v is the frequency variable, and it is understood that this expression is based 
on a fixed value of u. Substituting Eq. (5-102) for g( , )r u  we obtain

G f x y x y e dxdydj( , ) ( , ) ( cos sin )v u d u u r rpvr= + −

=

−

- - -

-

�

�

�

�

�

�

�

�
2 2 2

2

22 2 2

2

- -

-

�

�

�

�

�

�

f x y x y e d dxdyj( , ) ( cos sin )d u u r rpvr+ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

− 2

--�

�

2 f x y e dxdyj x y( , ) ( cos sin )− +2pv u u

 (5-108)

where the last step follows from the sifting property of the impulse discussed in 
Chapter 4. By letting u = v ucos  and v = v usin ,  we can write Eq. (5-108) as

 G f x y e dxdyj ux y

u

( , ) ( , ) ( )

cos ; si

v u p

v u v

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− +

= =- -�

�

�

�

2 2
2 v

v nn u

 (5-109)

We recognize this expression as the 2-D Fourier transform of f x y( , ) [see Eq. (4-59)] 
evaluated at the values of u and v  indicated. That is,

 
G F u

F
u

( , ) ( , )

( cos , sin )
cos ; sin

v u

v u v u

v u v u
= [ ]
=

= =v
v  (5-110)

where, as usual, F( , )u v  denotes the 2-D Fourier transform of f x y( , ).
The result in Eq. (5-110) is known as the Fourier-slice theorem (or the projection-

slice theorem). It states that the Fourier transform of a projection is a slice of the 2-D 
Fourier transform of the region from which the projection was obtained. The reason 
for this terminology can be explained with the aid of Fig. 5.41. As this figure shows, 
the 1-D Fourier transform of an arbitrary projection is obtained by extracting the 
values of F( , )u v  along a line oriented at the same angle as the angle used in generat-
ing the projection. 

In principle, we could obtain f x y( , ) simply by obtaining the inverse Fourier trans-
form of F( , ).u v  However, this is expensive computationally, as it involves obtained 
the inverse of a 2-D transform. The approach discussed in the following section is 
much more efficient. 

RECONSTRUCTION USING PARALLEL-BEAM FILTERED  
BACKPROJECTIONS

As we saw in Figs. 5.33, 5.34, and 5.40, obtaining backprojections directly yields unac-
ceptably blurred results. Fortunately, there is a straightforward solution to this prob-
lem based simply on filtering the projections before computing the backprojections. 
From Eq. (4-60), the 2-D inverse Fourier transform of F( , )u v  is
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2-D Fourier
transform

1-D Fourier
transform

F(u, v)

f(x, y)

v

uu

ux

y

Projection

Slice of F(u, v) 

FIGURE 5.41
Illustration of 
the Fourier-slice 
theorem. The 1-D 
Fourier transform 
of a projection is 
a slice of the 2-D 
Fourier transform 
of the region from 
which the projec-
tion was obtained. 
Note the corre-
spondence of the 
angle u in the two 
figures. 

 f x y F e dudj ux y( , ) ( , ) ( )= +

- -�

�

�

�

2 2 u v vv2p  (5-111)

If, as in Eqs. (5-109) and (5-110), we let u = v ucos  and v = v usin ,  then the differen-
tials become dud d dv = v v u, and we can express Eq. (5-111) in polar coordinates:

 f x y F e d dj x y( , ) ( cos , sin ) ( cos sin )= +

0

2

0

2
p

v u v u v v upv u u

2 2
�

 (5-112)

Then, using the Fourier slice theorem,

 f x y G e d dj x y( , ) ( , ) ( cos sin )= +

0

2

0

2
p

v u v v upv u u

2 2
�

 (5-113)

By splitting this integral into two expressions, one for u in the range 0° to 180° and 
the other in the range 180° to 360°, and using the fact that G G( , ) ( , )v u v u+ = −180°  
(see Problem 5.46), we can express Eq. (5-113) as

 f x y G e d dj x y( , ) ( , ) ( cos sin )=
−

+

0

2
p

v v u v upv u u

2 2�

�

 (5-114)

The term x ycos sinu u+  is a constant with respect to v, and we recognize it as r 
from Eq. (5-100). Therefore, we can write Eq. (5-114) as

 f x y G e d dj

x y

( , ) ( , )
cos sin

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = +0

2
p

v v u v upvr

r u u
2 2-�

�

 (5-115)

The relationship  
dud d dv = v v u  is from 
basic integral calculus, 
where the Jacobian is 
used as the basis for a 
change of variables.
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The inner expression is in the form of an inverse 1-D Fourier transform [see 
Eq. (4-21)], with the added term v  which, based on the discussion in Section 4.7, 
we recognize as a 1-D filter transfer function. Observe that v  is a ramp function 
[see Fig. 5.42(a)]. This function is not integrable because its amplitude extends to +�  
in both directions, so the inverse Fourier transform is undefined. Theoretically, this 
is handled by methods such as using so-called generalized delta functions. In practice, 
the approach is to window the ramp so that it becomes zero outside of a defined 
frequency interval. That is, a window band-limits the ramp filter transfer function.

The simplest approach to band-limit a function is to use a box in the frequency 
domain. However, as we saw in Fig. 4.4, a box has undesirable ringing properties. 
This is demonstrated by Figs. 5.42(b) and (c). The former shows a plot of the ramp 
transfer function after it was band-limited by a box window, and the latter shows 
its spatial domain representation, obtained by computing its inverse Fourier trans-
form. As expected, the resulting windowed filter exhibits noticeable ringing in the 
spatial domain. We know from Chapter 4 that filtering in the frequency domain is 
equivalent to convolution in the spatial domain, so spatial filtering with a function 
that exhibits ringing will produce a result corrupted by ringing also. Windowing with 
a smooth function helps this situation. An M-point discrete window function used 
frequently for implementations with the 1-D FFT is given by

 H
c c

M
M

( )
( )cos ( )

v

pv
v

=
+ − −⎧

⎨
⎪

⎩⎪

1
2

0 1

0

≤ ≤

otherwise
 (5-116)

When c = 0 54. , this function is called the Hamming window (named after Richard 
Hamming) and, when c = 0 5.  it is called the Hann window (named after Julius von 
Hann). The key difference between the Hamming and Hann windows is that the 

The ramp filter often 
is referred to as the 
Ram-Lak filter, after 
Ramachandran and 
Lakshminarayanan 
[1971] who generally 
are credited with having 
been first to suggest it.

Sometimes the Hann 
window is referred to as 
the Hanning window in 
analogy to the Hamming 
window. However, this 
terminology is incorrect 
and is a frequent source 
of confusion.

Frequency
domain

Frequency
domain

Frequency
domain

Spatial
domain

Spatial
domain

Frequency
domain

ba c
ed f

FIGURE 5.42
(a) Frequency domain 
ramp filter transfer 
function. (b) Function 
after band-limiting 
it with a box filter. 
(c) Spatial domain 
representation.  
(d) Hamming 
windowing func-
tion. (e) Windowed 
ramp filter, formed 
as the product of (b) 
and (d). (f) Spatial 
representation of the 
product. (Note the 
decrease in ringing.) 
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end points are zero in the latter. The difference between the two generally is visually 
imperceptible in image processing applications.

Figure 5.42(d) is a plot of the Hamming window, and Fig. 5.42(e) shows the prod-
uct of this window and the band-limited ramp filter transfer function in Fig. 5.42(b). 
Figure 5.42(f) shows the representation of the product in the spatial domain, 
obtained as usual by computing the inverse FFT. It is evident by comparing this 
figure and Fig. 5.42(c) that ringing was reduced in the windowed ramp (the ratios of 
the peak to trough in Figs. 5.42(c) and (f) are 2.5 and 3.4, respectively). On the other 
hand, because the width of the central lobe in Fig. 5.42(f) is slightly wider than in 
Fig. 5.42(c), we would expect backprojections based on using a Hamming window to 
have less ringing, but be slightly more blurred. As Example 5.17 below shows, this is 
indeed the case.

Recall from Eq. (5-107) that G( , )v u  is the 1-D Fourier transform of g( , ),r u  which 
is a single projection obtained at a fixed angle, u. Equation (5-115) states that the 
complete, backprojected image f x y( , ) is obtained as follows:

1. Compute the 1-D Fourier transform of each projection.

2. Multiply each 1-D Fourier transform by the filter transfer function v  which, 
as explained above, has been multiplied by a suitable (e.g., Hamming) window.

3. Obtain the inverse 1-D Fourier transform of each resulting filtered transform.

4. Integrate (sum) all the 1-D inverse transforms from Step 3.

Because a filter function is used, this image reconstruction approach is appropri-
ately called filtered backprojection. In practice, the data are discrete, so all frequency 
domain computations are carried out using a 1-D FFT algorithm, and filtering is 
implemented using the same basic procedure explained in Chapter 4 for 2-D func-
tions. Alternatively, we can implement filtering in the spatial domain using convolu-
tion, as explained later.

 The preceding discussion addresses the windowing aspects of filtered backpro-
jections. As with any sampled data system, we also need to be concerned about 
sampling rates. We know from Chapter 4 that the selection of sampling rates has a 
profound influence on image processing results. In the present discussion, there are 
two sampling considerations. The first is the number of rays used, which determines 
the number of samples in each projection. The second is the number of rotation 
angle increments, which determines the number of reconstructed images (whose 
sum yields the final image). Under-sampling results in aliasing which, as we saw in 
Chapter 4, can manifest itself as artifacts in the image, such as streaks. We address 
CT sampling issues in more detail later in our discussion.

EXAMPLE 5.17 :  Image reconstruction using filtered backprojections. 

The focus of this example is to show reconstruction using filtered backprojections, first with a box-
limited ramp transfer function and then using a ramp limited by a Hamming window. These filtered 
backprojections are compared against the results of “raw” backprojections from Fig. 5.40. In order to 
focus on the difference due only to filtering, the results in this example were generated with 0.5° incre-
ments of rotation, the same we used to generate Fig. 5.40. The separation between rays was one pixel 
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384    Chapter 5  Image Restoration and Reconstruction

in both cases. The images in both examples are of size 600 600×  pixels, so the length of the diagonal 
is 2 600 849× ≈ .Consequently, 849 rays were used to provide coverage of the entire region when the 
angle of rotation was 45° and 135°.

Figure 5.43(a) shows the rectangle reconstructed using a ramp function band-limited by a box. The 
most vivid feature of this result is the absence of any visually detectable blurring. However, as expected, 
ringing is present, visible as faint lines, especially around the corners of the rectangle. These lines are 
more visible in the zoomed section in Fig. 5.43(c). Using a Hamming window on the ramp helped con-
siderably with the ringing problem, at the expense of slight blurring, as Figs. 5.43(b) and (d) show. The 
improvements (even with the box-windowed ramp) over Fig. 5.40(a) are evident. The phantom image 
does not have transitions that are as sharp and prominent as the rectangle so ringing, even with the 
box-windowed ramp, is imperceptible in this case, as you can see in Fig. 5.44(a). Using a Hamming 
window resulted in a slightly smoother image, as Fig. 5.44(b) shows. Both of these results are consider-
able improvements over Fig. 5.40(b), illustrating again the significant advantage inherent in the filtered 
backprojection approach.

In most applications of CT (especially in medicine), artifacts such as ringing are a serious concern, so 
significant effort is devoted to minimizing them. Tuning the filtering algorithms and, as explained earlier, 
using a large number of detectors are among the design considerations that help reduce these effects.

The preceding discussion is based on obtaining filtered backprojections via an 
FFT implementation. However, we know from the convolution theorem in Chapter 4 
that equivalent results can be obtained using spatial convolution. In particular, note 

ba
dc

FIGURE 5.43
Filtered backpro-
jections of the 
rectangle using 
(a) a ramp filter, 
and  
(b) a Hamming  
windowed ramp 
filter. The second 
row shows 
zoomed details of 
the images in the 
first row. Compare 
with Fig. 5.40(a). 
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ba

FIGURE 5.44
Filtered backpro-
jections of the 
head phantom 
using (a) a ramp 
filter, and (b) a 
Hamming  
windowed ramp 
filter. Compare 
with Fig. 5.40(b) 

that the term inside the brackets in Eq. (5-115) is the inverse Fourier transform of 
the product of two frequency domain functions which, according to the convolu-
tion theorem, we know to be equal to the convolution of the spatial representa-
tions (inverse Fourier transforms) of these two functions. In other words, letting s( )r  
denote the inverse Fourier transform of v ,† we write Eq. (5-115) as
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 (5-117)

where, as in Chapter 4, “�” denotes convolution. The second line follows from the 
first for the reasons explained in the previous paragraph. The third line (including 
the −r) follows from the definition of convolution in Eq. (4-24). 

The last two lines of Eq. (5-117) say the same thing: individual backprojections at 
an angle u can be obtained by convolving the corresponding projection, g( , ),r u  and 
the inverse Fourier transform of the ramp filter transfer function, s( ).r  As before, 
the complete backprojected image is obtained by integrating (summing) all the indi-
vidual backprojected images. With the exception of roundoff differences in compu-
tation, the results of using convolution will be identical to the results using the FFT. 
In actual CT implementations, convolution generally turns out to be more efficient 
computationally, so most modern CT systems use this approach. The Fourier trans-
form does play a central role in theoretical formulations and algorithm development 
(for example, CT image processing in MATLAB is based on the FFT). Also, we note 
that there is no need to store all the backprojected images during reconstruction. 

† If a windowing function, such as a Hamming window, is used, then the inverse Fourier transform is performed 
on the windowed ramp. 
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Instead, a single running sum is updated with the latest backprojected image. At the 
end of the procedure, the running sum will equal the sum total of all the backprojec-
tions.

Finally, we point out that, because the ramp filter (even when it is windowed) 
zeros the dc term in the frequency domain, each backprojection image will have 
zero average value (see Fig. 4.29). This means that the pixels in each backprojec-
tion image will have negative and positive values. When all the backprojections are 
added to form the final image, some negative locations may become positive and the 
average value may not be zero, but typically, the final image will still have negative 
pixels.

There are several ways to handle this problem. The simplest approach, when 
there is no knowledge regarding what the average values should be, is to accept the 
fact that negative values are inherent in the approach and scale the result using the 
procedure described in Eqs. (2-31) and (2-32). This is the approach followed in this 
section. When knowledge about what a “typical” average value should be is avail-
able, that value can be added to the filter transfer function in the frequency domain, 
thus offsetting the ramp and preventing zeroing the dc term [see Fig. 4.30(c)]. When 
working in the spatial domain with convolution, the very act of truncating the length 
of the spatial filter kernel (inverse Fourier transform of the ramp) prevents it from 
having a zero average value, thus avoiding the zeroing problem altogether.

RECONSTRUCTION USING FAN-BEAM FILTERED BACKPROJECTIONS

The discussion thus far has centered on parallel beams. Because of its simplicity and 
intuitiveness, this is the imaging geometry used traditionally to introduce computed 
tomography. However, more modern CT systems use a fan-beam geometry (see Fig. 
5.35), which is the topic of the following discussion.

Figure 5.45 shows a basic fan-beam imaging geometry in which the detectors are 
arranged on a circular arc and the angular increments of the source are assumed to 
be equal. Let p( , )a b  denote a fan-beam projection, where a  is the angular position 
of a particular detector measured with respect to the center ray, and b is the angular 
displacement of the source, measured with respect to the y-axis, as shown in the 
figure. We also note in Fig. 5.45 that a ray in the fan beam can be represented as a 
line, L( , ),r u  in normal form, which is the approach we used to represent a ray in the 
parallel-beam imaging geometry discussed earlier. This allows us to utilize parallel-
beam results as the starting point for deriving the corresponding equations for the 
fan-beam geometry. We proceed to show this by deriving the fan-beam filtered back-
projection based on convolution.†

We begin by noticing in Fig. 5.45 that the parameters of line L( , )r u  are related to 
the parameters of a fan-beam ray by

 u b a= +  (5-118)

† The Fourier-slice theorem was derived for a parallel-beam geometry and is not directly applicable to fan beams. 
However, Eqs. (5-118) and (5-119) provide the basis for converting a fan-beam geometry to a parallel-beam 
geometry, thus allowing us to use the filtered parallel backprojection approach developed in the previous section, 
for which the slice theorem is applicable. We will discuss this in more detail at the end of this section.  
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L(r, u)
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a

FIGURE 5.45
Basic fan-beam 
geometry. The line 
passing through 
the center of the 
source and the 
origin (assumed 
here to be the 
center of rotation 
of the source) is 
called the center 
ray. 

and

 r a= Dsin  (5-119)

where D is the distance from the center of the source to the origin of the xy-plane.
The convolution backprojection formula for the parallel-beam imaging geometry 

is given by Eq. (5-117). Without loss of generality, suppose that we focus attention 
on objects that are encompassed within a circular area of radius T about the origin 
of the xy-plane. Then g( , )r u = 0 for r > T  and Eq. (5-117) becomes

 f x y g s x y d d
T

T

( , ) ( , ) ( cos sin )= + −
−

1
2 0

2p

r u u u r r u2 2  (5-120)

where we used the fact mentioned earlier that projections 180° apart are mirror 
images of each other. In this way, the limits of the outer integral in Eq. (5-120) are 
made to span a full circle, as required by a fan-beam arrangement in which the 
detectors are arranged in a circle. 

We are interested in integrating with respect to a  and b. To do this, we change 
to polar coordinates, ( , ).r w  That is, we let x r= cosw  and y r= sin ,w  from which it 
follows that

 
x y r r

r

cos sin cos cos sin sin

cos( )

u u w u w u

u w

+ = +
= −

 (5-121)

Using this result we can express Eq. (5-120) as
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 f x y g s r d d
T

T

( , ) ( , ) cos( )= − −( )
−

1
2 0

2p

r u u w r r u2 2  (5-122)

This expression is nothing more than the parallel-beam reconstruction formula writ-
ten in polar coordinates. However, integration still is with respect to r and u. To 
integrate with respect to a  and b requires a transformation of coordinates using 
Eqs. (5-118) and (5-119):
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 (5-123)

where we used d d D d dr u a a b= cos  [see the explanation of Eq. (5-112)].
This equation can be simplified further. First, note that the limits −a  to 2p a−  

for variable b span the entire range of 360°. Because all functions of b are periodic 
with period 2p, the limits of the outer integral can be replaced by 0 and 2p, respec-
tively. The term sin ( )−1 T D  has a maximum value, am , corresponding to r > T, 
beyond which g = 0 (see Fig. 5.46), so we can replace the limits of the inner integral 
by −am  and am , respectively. Finally, consider the line L( , )r u  in Fig. 5.45. A raysum 
of a fan beam along this line must equal the raysum of a parallel beam along the 
same line. This follows from the fact that a raysum is a sum of all values along a 
line, so the result must be the same for a given ray, regardless of the coordinate sys-
tem is which it is expressed. This is true of any raysum for corresponding values of 
( , )a b  and ( , ).r u  Thus, letting p( , )a b  denote a fan-beam projection, it follows that 
p g( , ) ( , )a b r u=  and, from Eqs. (5-118) and (5-119), that p g D( , ) ( sin , ).a b a a b= +  
Incorporating these observations into Eq. (5-123) results in the expression

  f r p s r D D d d
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= + − −[ ]
−

1
2 0

2

2 2  (5-124)

This is the fundamental fan-beam reconstruction formula based on filtered backpro-
jections.

Equation (5-124) can be manipulated further to put it in a more familiar convolu-
tion form. With reference to Fig. 5.47, it can be shown (see Problem 5.47) that

 r D Rcos( ) sin sin( )b a w a a a+ − − = ′ −  (5-125)

where R is the distance from the source to an arbitrary point in a fan ray, and ′a  is 
the angle between this ray and the center ray. Note that R and ′a  are determined by 
the values of r, w, and b. Substituting Eq. (5-125) into Eq. (5-124) yields

 f r p s R D d d
m

m

( , ) ( , ) sin[ ] cosw a b a a a a b

p

a

a

= ′ −( )
−

1
2 0

2

2 2  (5-126)
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It can be shown (see Problem 5.48) that

 s R
R

s( sin )
sin

( )a
a

a
a= ⎡

⎣⎢
⎤
⎦⎥

2

 (5-127)

Using this expression, we can write Eq. (5-126) as

 f r
R

q h d d
m

m

( , ) ( , ) ( )w a b a a a b

p

a

a

= ′ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥−

1
2

1

0

2

22 2  (5-128)

where

 h s( )
sin

( )a
a

a
a= ⎡

⎣⎢
⎤
⎦⎥

1
2

2

 (5-129)

and

 q p D( , ) ( , ) cosa b a b a=  (5-130)

We recognize the inner integral in Eq. (5-128) as a convolution expression, thus 
showing that the image reconstruction formula in Eq. (5-124) can be implemented 
as the convolution of functions q( , )a b  and h( ).a  Unlike the reconstruction formula 
for parallel projections, reconstruction based on fan-beam projections involves a 
term 1 2R , which is a weighting factor inversely proportional to the distance from 
the source. The computational details of implementing Eq. (5-128) are beyond the 
scope of the present discussion (see Kak and Slaney [2001] for a detailed treatment 
of this subject). 
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Instead of implementing Eq. (5-128) directly, an approach used often, particularly 
in software simulations, is to: (1) convert a fan-beam geometry to a parallel-beam 
geometry using Eqs. (5-118) and (5-119), and (2) use the parallel-beam reconstruc-
tion approach developed earlier. We conclude this section with an example of how to 
do this. As noted earlier, a fan-beam projection, p, taken at angle b has a correspond-
ing parallel-beam projection, g, taken at a corresponding angle u and, therefore,

 
p g

g D

( , ) ( , )

( sin , )

a b r u

a a b

=
= +

 (5-131)

where the last line follows from Eqs. (5-118) and (5-119).
Let �b denote the angular increment between successive fan-beam projections, 

and let �a be the angular increment between rays, which determines the number of 
samples in each projection. We impose the restriction that

 � �b a g= =  (5-132)

Then, b g= m  and a g= n  for some integer values of m and n, and we can write 
Eq. (5-131) as

 p n m g D n m n( , ) sin , ( )g g g g= +( )  (5-133)

This equation indicates that the nth ray in the mth radial projection is equal to the 
nth ray in the ( )m n+ th  parallel projection. The D nsin g term on the right side of 
Eq. (5-133) implies that parallel projections converted from fan-beam projections 

x
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R

r
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w
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FIGURE 5.47
Polar  
representation of 
an arbitrary point 
on a ray of a fan 
beam.  
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dc

FIGURE 5.48
Reconstruction of 
the rectangle image 
from filtered fan 
backprojections.  
(a) 1° increments of 
a  and b. 
(b) 0.5° increments. 
(c) 0.25° increments. 
(d) 0.125° incre-
ments.  
Compare (d) with 
Fig. 5.43(b). 

are not sampled uniformly, an issue that can lead to blurring, ringing, and aliasing 
artifacts if the sampling intervals �a and �b are too coarse, as the following exam-
ple illustrates.

EXAMPLE 5.18 :  Image reconstruction using filtered fan backprojections.

Figure 5.48(a) shows the results of : (1) generating fan projections of the rectangle image with � �a b= = 1°, 
(2) converting each fan ray to the corresponding parallel ray using Eq. (5-133), and (3) using the filtered 
backprojection approach developed earlier for parallel rays. Figures 5.48(b) through (d) show the results 
using 0.5°, 0.25°, and 0.125° increments of �a and �b. A Hamming window was used in all cases. We used 
this variety of angle increments to illustrate the effects of under-sampling. 

The result in Fig. 5.48(a) is a clear indication that 1° increments are too coarse, as blurring and ring-
ing are quite evident. The result in Fig. 5.48(b) is interesting, in the sense that it compares poorly with 
Fig. 5.43(b), which we generated using the same angle increment of 0.5°. In fact, as Fig. 5.48(c) shows, 
even with angle increments of 0.25° the reconstruction still is not as good as in Fig. 5.43(b). We have to 
use angle increments on the order of 0.125° before the two results become comparable, as Fig. 5.48(d) 
shows. This angle increment results in projections with 180 1 0 125× ( ) = 1440.  samples, which is close to 
double the 849 rays used in the parallel projections of Example 5.17. Thus, it is not unexpected that the 
results are close in appearance when using �a = 0 125. .°  

Similar results were obtained with the head phantom, except that aliasing in this case is much more 
visible as sinusoidal interference. We see in Fig. 5.49(c) that even with � �a b= = 0 25. ° significant distor-
tion still is present, especially in the periphery of the ellipse. As with the rectangle, using increments of 
0.125° finally produced results that are comparable with the backprojected image of the head phantom 
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ba
dc

FIGURE 5.49
Reconstruction of 
the head phantom 
image from filtered 
fan backprojections.  
(a) 1° increments of 
a  and b. 
(b) 0.5° increments. 
(c) 0.25° increments. 
(d) 0.125° incre-
ments.  
Compare (d) with 
Fig. 5.44(b). 

in Fig. 5.44(b). These results illustrate one of the principal reasons why thousands of detectors have to 
be used in the fan-beam geometry of modern CT systems in order to reduce aliasing artifacts.

Summary, References, and Further Reading  
The restoration results in this chapter are based on the assumption that image degradation can be modeled as a lin-
ear, position invariant process followed by additive noise that is not correlated with image values. Even when these 
assumptions are not entirely valid, it is often possible to obtain useful results by using the methods developed in the 
preceding sections. Our treatment of image reconstruction from projections, though introductory, is the foundation 
for the image-processing aspects of this field. As noted in Section 5.11, computed tomography (CT) is the main ap-
plication area of image reconstruction from projections. Although we focused on X-ray tomography, the principles 
established in Section 5.11 are applicable in other CT imaging modalities, such as SPECT (single photon emission 
tomography), PET (positron emission tomography), MRI (magnetic resonance imaging), and some modalities of 
ultrasound imaging.

For additional reading on the material in Section 5.1 see Pratt [2014]. The books by Ross [2014], and by Mont-
gomery and Runger [2011], are good sources for a more in-depth discussion of probability density functions and 
their properties (Section 5.2). See Umbaugh [2010] for complementary reading on the material in Section 5.3, and 
Eng and Ma [2001, 2006] regarding adaptive median filtering. The filters in Section 5.4 are direct extensions of the 
material in Chapter 4. The material in Section 5.5 is fundamental linear system theory; for more advanced reading 
on this topic see Hespanha [2009]. The topic of estimating image degradation functions (Section 5.6) is fundamental 
in the field of image restoration. Some of the early techniques for estimating the degradation function are given in 
Andrews and Hunt [1977], Rosenfeld and Kak [1982]. More recent methods are discussed by Gunturk and Li [2013]. 
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Problems 
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book 
website: www.ImageProcessingPlace.com).

5.1 * The white bars in the test pattern shown are 7 
pixels wide and 210 pixels high. The separation 
between bars is 17 pixels. What would this image 
look like after application of

(a) A 3 3×  arithmetic mean filter?

(b) A 7 7×  arithmetic mean filter?

(c) A 9 9×  arithmetic mean filter?

Note: This problem and the ones that follow it, 
related to filtering this image, may seem a bit 
tedious. However, they are worth the effort, as 
they help develop a real understanding of how 
these filters work. After you understand how a 
particular filter affects the image, your answer 
can be a brief verbal description of the result. For 
example, “the resulting image will consist of ver-
tical bars 3 pixels wide and 206 pixels high.” Be 
sure to describe any deformation of the bars, such 
as rounded corners. You may ignore image bor-
der effects, in which the filter neighborhoods only 
partially contain image pixels.

5.2 Repeat Problem 5.1 using a geometric mean filter.

5.3 * Repeat Problem 5.1 using a harmonic mean filter.

5.4 Repeat Problem 5.1 using a contraharmonic 
mean filter with Q = 1.

5.5 * Repeat Problem 5.1 using a contraharmonic 
mean filter with Q = −1.

5.6 Repeat Problem 5.1 using a median filter.

5.7 * Repeat Problem 5.1 using a max filter.

5.8 Repeat Problem 5.1 using a min filter.

5.9 * Repeat Problem 5.1 using a midpoint filter.

5.10 In answering the following, refer to the contra-
harmonic filter in Eq. (5-26) :

(a) * Explain why the filter is effective in eliminat-
ing pepper noise when Q is positive.

(b) Explain why the filter is effective in eliminat-
ing salt noise when Q is negative.

(c) * Explain why the filter gives poor results 
(such as the results in Fig. 5.9) when the 
wrong polarity is chosen for Q.

(d) Discuss the expected behavior of the filter 
when Q = −1.

5.11 We mentioned when discussing Eq. (5-27)] that 
using median filters generally results in less blur-
ring than using linear smoothing filters (e.g., box 
lowpass filters) of the same size. Explain why this 
is so. (Hint: In order to focus on the key differ-
ence between the filters, assume that noise is neg-
ligible, and consider the behavior of these filters 
in the neighborhood of a binary edge.)

There are two major approaches to the methods developed in Sections 5.7–5.10. One is based on a general for-
mulation using matrix theory, as introduced by Andrews and Hunt [1977] and by Gonzalez and Woods [1992]. This 
approach is elegant and general, but it tends to be difficult for first-time readers. Approaches based on frequency 
domain filtering (the approach we followed in this chapter) are easier to follow by newcomers to image restoration, 
but lack the unifying mathematical rigor of the matrix approach. Both approaches arrive at the same results, but our 
experience in teaching this material in a variety of settings indicates that students first entering this field favor the 
latter approach by a significant margin. Complementary readings for our coverage of these filtering concepts are 
Castleman [1996], Umbaugh [2010], Petrou and Petrou [2010] and Gunturk and Li [2013]. For additional reading 
on the material in Section 5.11 see Kak and Slaney [2001], Prince and Links [2006], and Buzug [2008]. For details on 
the software aspects of many of the examples in this chapter, see Gonzalez, Woods, and Eddins [2009].
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5.12 With reference to the alpha-trimmed filter defined 
in Eq. (5-31)]:

(a) * Explain why setting d = 0 in the filter reduces 
it to an arithmetic mean filter.

(b) Explain why setting d mn= − 1 turns the fil-
ter into a median filter.

5.13 With reference to the bandreject filter transfer 
functions in Table 4.7, obtain equations for the 
transfer functions of:

(a) An ideal bandpass filter.

(b) * A Gaussian bandpass filter.

(c) A Butterworth bandpass filter.

5.14 With reference to Eq. (5-33), obtain equations for:

(a) * An ideal notch filter transfer function.

(b) A Gaussian notch filter transfer function.

(c) A Butterworth notch filter transfer function.

5.15 Show that the Fourier transform of the 2-D dis-
crete sine function

 f x y x M y N( , ) sin( )= +2 20 0pm pv

for x M= −0 1 2 1, , , ,…  and y N= −0 1 2 1, , , ,…  
is the pair of conjugate impulses

 
F

jMN
u u

u u

( , ) [ ( , )

( , )]

u v v v

v v

= + +

− − −
2 0 0

0 0

d

d

5.16 With reference to f x y( , ) in Problem 5.15, answer 
the following:

(a) * If v0 0= ,  and u0  and M are integers ( ),u M0 <  
what would a plot of f x y( , ) look like along 
the x-axis for x M= −0 1 2 1, , , , ?…

(b) * What would a plot of F( , )u v  look like for 
u = −0 1 2 1, , , , ?… M

(c) If v0 0= ,  M is the same integer as before, 
but u0  is no longer an integer ( ),u M0 <  how 
would a plot of f x y( , ) along the x-axis for 
x M= −0 1 2 1, , , ,…  be different from (a)?

5.17 * Start with Eq. (5-46) and derive Eq. (5-48).

5.18 An industrial plant manager has been promoted 
to a new position. His first responsibility is to 
characterize an image filtering system left by his 
predecessor. In reading the documentation, the 
manager discovers that his predecessor estab-
lished that the system is linear and position invari-

ant. Furthermore, he learns that experiments con-
ducted under negligible-noise conditions resulted 
in an impulse response that could be expressed 
analytically in the frequency domain as

 
H e

e

u

u

( , ) [ ]

[( ) ( ) ]

u v v

v

= +

−

− +

− − + −

2 2

2 2

150 150

50 150 50 150

1

The manager is not a technical person, so he 
employs you as a consultant to determine what, 
if anything, he needs to do to complete the char-
acterization of the system. He also wants to know 
the function that the system performs. What (if 
anything) does the manager need to do to com-
plete the characterization of his system? What fil-
tering function does the system perform?

5.19 A linear, space invariant system has the impulse 
response

h x y x a y b( , ) ( , )= − −d

where a and b are constants, and x and y are dis-
crete quantities. Answer the following, assuming 
negligible noise in each case.

(a) * What is the system transfer function in the 
frequency domain?

(b) * What would the spatial domain system response 
be to a constant input, f x y K( , ) ?=  

(c) What would the spatial domain system response 
be to an impulse input, f x y x y( , ) ( , )?= d

5.20 * Assuming now that x and y are continuous quanti-
ties, show how you would solve Problems 5.19(b) 
and (c) using Eq. (5-61) directly. [Hint: Take a 
look at the solution to Problem 4.1(c).]

5.21 * Consider a linear, position invariant image degra-
dation system with impulse response

h x y e
x y

( , )
( ) ( )= − − + −⎡⎣ ⎤⎦a b2 2

where x and y are continuous variables. Suppose 
that the input to the system is a binary image con-
sisting of a white vertical line of infinitesimal width 
located at x a= ,  on a black background. Such 
an image can be modeled as f x y x a( , ) ( ).= −d  
Assume negligible noise and use Eq. (5-61) to find 
the output image, g x y( , ).

5.22 How would you solve Problem 5.21 if x and y 
were discrete quantities? You do not need to 
solve the problem. All you have to do is list the 
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steps you would take to solve it. (Hint: Refer to 
entry 13 in Table 4.4.)

5.23 The image shown consists of two infinitesimally 
thin white lines on a black background, intersect-
ing at some point in the image. The image is input 
into a linear, position invariant system with the 
impulse response given in Problem 5.21. Assum-
ing continuous variables and negligible noise, find 
an expression for the output image, g x y( , ).  (Hint: 
Review linear operations in Section 2.6.)

5.24 Sketch (with arrow lines showing the direction of 
blur) what the image in Fig. 5.26(a) would look 
like if it were blurred using the transfer function 
in Eq. (5-77)

(a) * With a = − 0 1.  and b = 0 1. .

(b) With a = 0 and b = − 0 1. .

5.25 * During acquisition, an image undergoes uni-
form linear motion in the vertical direction for 
a time T1.  The direction of motion then switches 
to the horizontal direction for a time interval 
T2 . Assuming that the time it takes the image to 
change directions is negligible, and that shutter 
opening and closing times are negligible also, give 
an expression for the blurring function, H( , ).u v

5.26 During acquisition, an image undergoes uniform 
linear motion in the vertical direction for a time 
T. The direction of motion then switches 180°  in 
the opposite direction for a time T. Assume that 
the time it takes the image to change directions 
is negligible, and that shutter opening and clos-
ing times are negligible also. Is the final image 
blurred, or did the reversal in direction “undo” 
the first blur? Obtain the overall blurring func-
tion H( , )u v  first, and then use it as the basis for 
your answer.

5.27 * Consider image blurring caused by uniform accel-
eration in the x-direction. If the image is at rest at 
time t = 0 and accelerates with a uniform acceler-

ation x t at0
2 2( ) =  for a time T, find the blurring 

function H( , ).u v  You may assume that shutter 
opening and closing times are negligible.

5.28 A space probe is designed to transmit images 
of a planet as it approaches it for landing. Dur-
ing the last stages of landing, one of the control 
thrusters fails, resulting in rotation of the craft 
about its vertical axis. The images sent during the 
last two seconds prior to landing are blurred as 
a consequence of this circular motion. The cam-
era is located in the bottom of the probe, along its 
vertical axis, and pointing down. Fortunately, the 
rotation of the craft is also about its vertical axis, 
so the images are blurred by uniform rotational 
motion. During the acquisition time of each image, 
the craft rotation was p 8 radians. The image 
acquisition process can be modeled as an ideal 
shutter that is open only during the time the craft 
rotated p 8 radians. You may assume that the 
vertical motion was negligible during the image 
acquisition. Formulate a solution for restoring the 
images. You do not have to solve the problem, just 
give an outline of how you would solve it using 
the methods discussed in Section 5.6 through 5.9. 
(Hint: Consider using polar coordinates. The blur 
will then appear as one-dimensional, uniform 
motion blur along the u-axis.)

5.29 * The image that follows is a blurred, 2-D projection 
of a volumetric rendition of a heart. It is known 
that each of the cross hairs on the right bottom 
part of the image was (before blurring) 3 pixels 
wide, 30 pixels long, and had an intensity value of 
255. Provide a step-by-step procedure indicating 
how you would use the information just given to 
obtain the blurring function H( , ).u v

(Original image courtesy of GE Medical Systems.)
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5.30 The image in Fig. 5.29(h) was obtained by 
inverse-filtering the image in Fig. 5.29(g), which 
is a blurred image that, in addition, is corrupted 
by additive Gaussian noise. The blurring itself 
is corrected by the inverse filter, as is evident in 
Fig. 5.29(h). However, the restored image has a 
strong streak pattern that is not apparent in Fig. 
5.29(g) [for example, compare the area of con-
stant white in the top right of Fig. 5.29(g) with the 
corresponding are in Fig. 5.29(h)]. Explain how 
this pattern originated.

5.31 A certain X-ray imaging geometry produces a 
blurring degradation that can be modeled as the 
convolution of the sensed image with the spatial, 
circularly symmetric function

h x y
x y

e x y( , ) ( )= + − − +
2 2 2

4
22 2 2 2s

s

s

Assuming continuous variables, show that the 
degradation in the frequency domain is given by 
the expression

H u e u( , ) ( ) ( )u v v v= − + − +8 4 2 2 2 2 2 2 2 2

p s p s

(Hint: Refer to the discussion of the Laplacian 
in Section 4.9, entry 13 in Table 4.4, and review 
Problem 4.52.)

5.32 * Using the transfer function in Problem 5.31, give 
the expression for a Wiener filter transfer func-
tion, assuming that the ratio of power spectra of 
the noise and undegraded images is a constant.

5.33 Given p x y( , ) in Eq. (5-90), show that

P u M N( , ) cos( ) cos( )u v v= − −4 2 2 2 2p p

(Hint: Study the solution to Problem 4.47.)

5.34 Show how Eq. (5-98) follows from Eqs. (5-96) and 
(5-97).

5.35 Using the transfer function in Problem 5.31, give 
the resulting expression for the constrained least 
squares filter transfer function.

5.36 * Assume that the model in Fig. 5.1 is linear and 
position invariant, and that the noise and image 
are uncorrelated. Show that the power spectrum 
of the output is

G H F N( , ) ( , ) ( , ) ( , )u v u v u v u v
2 2 2 2= +

[Hint: Refer to Eqs. (5-65) and (4-89).]

5.37 Cannon [1974] suggested a restoration filter R( , )u v  
satisfying the condition

ˆ ( , ) ( , ) ( , )F R Gu v u v u v
2 2 2=

The restoration filter is based on the premise of 
forcing the power spectrum of the restored image, 
ˆ ( , ) ,F u v

2  to equal the spectrum of the original 
image, F( , ) .u v 2  Assume that the image and noise 
are uncorrelated,

(a) * Find R( , )u v  in terms of F( , ) ,u v
2  H( , ) ,u v

2  
and N( , ) .u v

2  (Hint: Take a look at Fig. 5.1, 
Eq. (5-65), and Problem 5.36.)

(b) Use your result from (a) to state a result in a 
form similar to the last line of Eq. (5-81), and 
using the same terms.

5.38 Show that, when a = 1 in Eq. (5-99), the geomet-
ric mean filter reduces to the inverse filter.

5.39 * A professor of archeology doing research on 
currency exchange practices during the Roman 
Empire recently became aware that four Roman 
coins crucial to his research are listed in the hold-
ings of the British Museum in London. Unfortu-
nately, he was told after arriving there that the 
coins had been recently stolen. Further research 
on his part revealed that the museum keeps pho-
tographs of every item for which it is responsible. 
Unfortunately, the photos of the coins in question 
are blurred to the point where the date and other 
small markings are not readable. The cause of the 
blurring was the camera being out of focus when 
the pictures were taken. As an image processing 
expert and friend of the professor, you are asked 
as a favor to determine whether computer pro-
cessing can be utilized to restore the images to the 
point where the professor can read the markings. 
You are told that the original camera used to take 
the photos is still available, as are other represen-
tative coins of the same era. Propose a step-by-
step solution to this problem.

5.40 An astronomer is working with an optical tele-
scope. The telescope lenses focus images onto 
a high-resolution, CCD imaging array, and the 
images are then converted by the telescope elec-
tronics into digital images. Working late one eve-
ning, the astronomer notices that her new images 
are noisy and blurry. The manufacturer tells the 
astronomer that the unit is operating within speci-
fications. Trying to improve the situation by con-
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ducting controlled lab experiments with the lens-
es and imaging sensors is not possible because of 
the size and weight of the telescope components. 
Having heard about your success in restoring the 
Roman coins, the astronomer calls you to help 
her formulate a digital image processing solu-
tion for sharpening her images. How would you 
go about solving this problem, given that the only 
images you can obtain are images of stellar bod-
ies? (Hint: A single, bright star that appears as a 
point of light in the field of view can be used to 
approximate an impulse.)

5.41 * Sketch the Radon transform of the M M×  binary 
image shown below, which consists of a single 
white pixel in the center of the image. Assume a 
parallel-beam geometry, and label quantitatively 
all the important elements of your sketch .

5.42 * A Sketch a cross section of the Radon transform 
of the following white disk image containing a 
smaller black disk in its center. (Hint: Take a look 
at Fig. 5.38.)

5.43 Show that the Radon transform [Eq. (5-102)] of 
the Gaussian shape f x y A x y( , ) exp( )= − −2 2  is 
given by g A( , ) exp( ).r u p r= − 2  (Hint: Refer to 
Example 5.15, where we used symmetry to sim-
plify integration.)

5.44 Do the following:

(a) * Show that the Radon transform [Eq. (5-102)] 
of the unit impulse d( , )x y  is a straight ver-
tical line passing through the origin of the 
ru-plane .

(b) Show that the radon transform of the 
impulse d( , )x x y y− −0 0  is a sinusoidal curve 
in the ru-plane.

5.45 Prove the validity of the following properties of 
the Radon transform [Eq. (5-102)]:

(a) * Linearity: The Radon transform is a linear 
operator. (See Section 2.6 regarding linear-
ity.)

(b) Translation property: The radon transform of 
f x x y y( , )− −0 0  is g x y( cos sin , ).r u u u− −0 0

(c) * Convolution property: The Radon transform 
of the convolution of two functions is equal 
to the convolution of the Radon transforms 
of the two functions.

5.46 Provide the steps that lead from Eq. (5-113) to   
Eq. (5-114). [Hint: G G( , ) ( , ).]v u v u+ = −180°

5.47 * Prove the validity of Eq. (5-125).

5.48 Prove the validity of Eq. (5-127).
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6 Color Image Processing

Preview
Using color in image processing is motivated by two principal factors. First, color is a powerful descrip-
tor that often simplifies object identification and extraction from a scene. Second, humans can discern 
thousands of color shades, compared to only about two dozen shades of gray. The latter factor is par-
ticularly important in manual image analysis. Color image processing is divided into two major areas: 
pseudo- and full-color processing. In the first category, the issue is one of assigning color(s) to a par-
ticular grayscale intensity or range of intensities. In the second, images typically are acquired using a 
full-color sensor, such as a digital camera, or color scanner. Until just a few years ago, most digital color 
image processing was done at the pseudo- or reduced-color level. However, because color sensors and 
processing hardware have become available at reasonable prices, full-color image processing techniques 
are now used in a broad range of applications. In the discussions that follow, it will become evident that 
some of the grayscale methods covered in previous chapters are applicable also to color images.

Upon completion of this chapter, readers should:
 Understand the fundamentals of color and 

the color spectrum.

 Be familiar with several of the color models 
used in digital image processing. 

 Know how to apply basic techniques in pseudo- 
color image processing, including intensity slic-
ing and intensity-to-color transformations.

 Be familiar with how to determine if a gray-
scale method is extendible to color images.

 Understand the basics of working with full-
color images, including color transformations, 
color complements, and tone/color corrections.

 Be familiar with the role of noise in color 
image processing.

 Know how to perform spatial filtering on col-
or images. 

 Understand the advantages of using color in 
image segmentation. 

It is only after years of preparation that the young artist should 
touch color—not color used descriptively, that is, but as a means of 
personal expression. Henri Matisse

For a long time I limited myself to one color—as a form of discipline.
Pablo Picasso
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400    Chapter 6  Color Image Processing

6.1 COLOR FUNDAMENTALS  

Although the process employed by the human brain in perceiving and interpreting 
color is a physiopsychological phenomenon that is not fully understood, the physical 
nature of color can be expressed on a formal basis supported by experimental and 
theoretical results.

In 1666, Sir Isaac Newton discovered that when a beam of sunlight passes through 
a glass prism, the emerging light is not white, but consists instead of a continuous 
spectrum of colors ranging from violet at one end to red at the other. As Fig. 6.1 
shows, the color spectrum may be divided into six broad regions: violet, blue, green, 
yellow, orange, and red. When viewed in full color (see Fig. 6.2), no color in the spec-
trum ends abruptly; rather, each color blends smoothly into the next.

Basically, the colors that humans and some other animals perceive in an object 
are determined by the nature of the light reflected from the object. As illustrated in 
Fig. 6.2, visible light is composed of a relatively narrow band of frequencies in the 
electromagnetic spectrum. A body that reflects light that is balanced in all visible 
wavelengths appears white to the observer. However, a body that favors reflectance 
in a limited range of the visible spectrum exhibits some shades of color. For example, 
green objects reflect light with wavelengths primarily in the 500 to 570 nm range, 
while absorbing most of the energy at other wavelengths.

Characterization of light is central to the science of color. If the light is achro-
matic (void of color), its only attribute is its intensity, or amount. Achromatic light 
is what you see on movie films made before the 1930s. As defined in Chapter 2, and 
used numerous times since, the term gray (or intensity) level refers to a scalar mea-
sure of intensity that ranges from black, to grays, and finally to white.

Chromatic light spans the electromagnetic spectrum from approximately 400 
to 700 nm. Three basic quantities used to describe the quality of a chromatic light 
source are: radiance, luminance, and brightness. Radiance is the total amount of 
energy that flows from the light source, and it is usually measured in watts (W). 
Luminance, measured in lumens (lm), is a measure of the amount of energy that 
an observer perceives from a light source. For example, light emitted from a source 
operating in the far infrared region of the spectrum could have significant energy 
(radiance), but an observer would hardly perceive it; its luminance would be almost 
zero. Finally, brightness is a subjective descriptor that is practically impossible to 
measure. It embodies the achromatic notion of intensity, and is one of the key fac-
tors in describing color sensation.

6.1

FIGURE 6.1
Color spectrum 
seen by passing 
white light through 
a prism.  
(Courtesy of the 
General Electric 
Co., Lighting  
Division.)
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6.1  Color Fundamentals    401

As noted in Section 2.1, cones are the sensors in the eye responsible for color 
vision. Detailed experimental evidence has established that the 6 to 7 million cones in 
the human eye can be divided into three principal sensing categories, corresponding 
roughly to red, green, and blue. Approximately 65% of all cones are sensitive to red 
light, 33% are sensitive to green light, and only about 2% are sensitive to blue. How-
ever, the blue cones are the most sensitive. Figure 6.3 shows average experimental 
curves detailing the absorption of light by the red, green, and blue cones in the eye. 
Because of these absorption characteristics, the human eye sees colors as variable 
combinations of the so-called primary colors: red (R), green (G), and blue (B). 

For the purpose of standardization, the CIE (Commission Internationale de 
l’Eclairage—the International Commission on Illumination) designated in 1931 the 
following specific wavelength values to the three primary colors: blue  nm,= 435 8.  
green  nm,= 546 1.  and red  nm.= 700  This standard was set before results such as 
those in Fig. 6.3 became available in 1965. Thus, the CIE standards correspond only 
approximately with experimental data. It is important to keep in mind that defining 
three specific primary color wavelengths for the purpose of standardization does 

FIGURE 6.2
Wavelengths compris-
ing the visible range 
of the electromagnetic 
spectrum. (Courtesy of 
the General Electric 
Co., Lighting Division.)

FIGURE 6.3
Absorption of 
light by the red, 
green, and blue 
cones in the 
human eye as a 
function of  
wavelength.
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402    Chapter 6  Color Image Processing

not mean that these three fixed RGB components acting alone can generate all 
spectrum colors. Use of the word primary has been widely misinterpreted to mean 
that the three standard primaries, when mixed in various intensity proportions, can 
produce all visible colors. As you will see shortly, this interpretation is not correct 
unless the wavelength also is allowed to vary, in which case we would no longer have 
three fixed primary colors.

The primary colors can be added together to produce the secondary colors of 
light—magenta (red plus blue), cyan (green plus blue), and yellow (red plus green). 
Mixing the three primaries, or a secondary with its opposite primary color, in the 
right intensities produces white light. This result is illustrated in Fig. 6.4(a), which 
shows also the three primary colors and their combinations to produce the second-
ary colors of light.

Differentiating between the primary colors of light and the primary colors of pig-
ments or colorants is important. In the latter, a primary color is defined as one that 
subtracts or absorbs a primary color of light, and reflects or transmits the other two. 
Therefore, the primary colors of pigments are magenta, cyan, and yellow, and the 
secondary colors are red, green, and blue. These colors are shown in Fig. 6.4(b). A 
proper combination of the three pigment primaries, or a secondary with its opposite 
primary, produces black.

Color television reception is an example of the additive nature of light colors. 
The interior of CRT (cathode ray tube) color TV screens used well into the 1990s is 
composed of a large array of triangular dot patterns of electron-sensitive phosphor. 
When excited, each dot in a triad produces light in one of the primary colors. The 

In practice, pigments 
seldom are pure. This 
results in a muddy brown 
instead of black when 
primaries, or primaries 
and secondaries, are 
combined. We will 
discuss this issue in  
Section 6.2

b
a

FIGURE 6.4
Primary and 
secondary colors 
of light and  
pigments.  
(Courtesy of the 
General Electric 
Co., Lighting  
Division.)
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6.1  Color Fundamentals    403

intensity of the red-emitting phosphor dots is modulated by an electron gun inside 
the tube, which generates pulses corresponding to the “red energy” seen by the TV 
camera. The green and blue phosphor dots in each triad are modulated in the same 
manner. The effect, viewed on the television receiver, is that the three primary colors 
from each phosphor triad are received and “added” together by the color-sensitive 
cones in the eye and perceived as a full-color image. Thirty successive image changes 
per second in all three colors complete the illusion of a continuous image display on 
the screen.

CRT displays started being replaced in the late 1990s by flat-panel digital tech-
nologies, such as liquid crystal displays (LCDs) and plasma devices. Although they 
are fundamentally different from CRTs, these and similar technologies use the same 
principle in the sense that they all require three subpixels (red, green, and blue) to 
generate a single color pixel. LCDs use properties of polarized light to block or pass 
light through the LCD screen and, in the case of active matrix display technologies, 
thin film transistors (TFTs) are used to provide the proper signals to address each 
pixel on the screen. Light filters are used to produce the three primary colors of light 
at each pixel triad location. In plasma units, pixels are tiny gas cells coated with phos-
phor to produce one of the three primary colors. The individual cells are addressed 
in a manner analogous to LCDs. This individual pixel triad coordinate addressing 
capability is the foundation of digital displays.

The characteristics generally used to distinguish one color from another are 
brightness, hue, and saturation. As indicated earlier in this section, brightness 
embodies the achromatic notion of intensity. Hue is an attribute associated with the 
dominant wavelength in a mixture of light waves. Hue represents dominant color as 
perceived by an observer. Thus, when we call an object red, orange, or yellow, we are 
referring to its hue. Saturation refers to the relative purity or the amount of white 
light mixed with a hue. The pure spectrum colors are fully saturated. Colors such 
as pink (red and white) and lavender (violet and white) are less saturated, with the 
degree of saturation being inversely proportional to the amount of white light added.

Hue and saturation taken together are called chromaticity and, therefore, a color 
may be characterized by its brightness and chromaticity. The amounts of red, green, 
and blue needed to form any particular color are called the tristimulus values, and 
are denoted, X, Y, and Z, respectively. A color is then specified by its trichromatic 
coefficients, defined as

 x
X

X Y Z
=

+ +
 (6-1)

 y
Y

X Y Z
=

+ +
 (6-2)

and

 z
Z

X Y Z
=

+ +
 (6-3)
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404    Chapter 6  Color Image Processing

We see from these equations that

 x y z+ + = 1  (6-4)

For any wavelength of light in the visible spectrum, the tristimulus values needed 
to produce the color corresponding to that wavelength can be obtained directly 
from curves or tables that have been compiled from extensive experimental results 
(Poynton [1996, 2012]).

Another approach for specifying colors is to use the CIE chromaticity diagram (see 
Fig. 6.5), which shows color composition as a function of x (red) and y (green). For 
any value of x and y, the corresponding value of z (blue) is obtained from Eq. (6-4) 
by noting that z x y= − +1 ( ). The point marked green in Fig. 6.5, for example, has 
approximately 62% green and 25% red content. It follows from Eq. (6-4) that the 
composition of blue is approximately 13%.

The positions of the various spectrum colors—from violet at 380 nm to red at 
780 nm—are indicated around the boundary of the tongue-shaped chromaticity dia-
gram. These are the pure colors shown in the spectrum of Fig. 6.2. Any point not 
actually on the boundary, but within the diagram, represents some mixture of the 
pure spectrum colors. The point of equal energy shown in Fig. 6.5 corresponds to 
equal fractions of the three primary colors; it represents the CIE standard for white 
light. Any point located on the boundary of the chromaticity chart is fully saturated. 
As a point leaves the boundary and approaches the point of equal energy, more 
white light is added to the color, and it becomes less saturated. The saturation at the 
point of equal energy is zero.

The chromaticity diagram is useful for color mixing because a straight-line seg-
ment joining any two points in the diagram defines all the different color variations 
that can be obtained by combining these two colors additively. Consider, for exam-
ple, a straight line drawn from the red to the green points shown in Fig. 6.5. If there is 
more red than green light, the exact point representing the new color will be on the 
line segment, but it will be closer to the red point than to the green point. Similarly, a 
line drawn from the point of equal energy to any point on the boundary of the chart 
will define all the shades of that particular spectrum color.

Extending this procedure to three colors is straightforward. To determine the 
range of colors that can be obtained from any three given colors in the chromatic-
ity diagram, we simply draw connecting lines to each of the three color points. The 
result is a triangle, and any color inside the triangle, or on its boundary, can be pro-
duced by various combinations of the three vertex colors. A triangle with vertices at 
any three fixed colors cannot enclose the entire color region in Fig. 6.5. This observa-
tion supports graphically the remark made earlier that not all colors can be obtained 
with three single, fixed primaries, because three colors form a triangle.

The triangle in Fig. 6.6 shows a representative range of colors (called the color 
gamut) produced by RGB monitors. The shaded region inside the triangle illustrates 
the color gamut of today’s high-quality color printing devices. The boundary of the 
color printing gamut is irregular because color printing is a combination of additive 
and subtractive color mixing, a process that is much more difficult to control than 

Our use of x, y, and z in 
this context follows con-
vention. These should not 
be confused with our use 
of (x, y) throughout the 
book to denote spatial 
coordinates.
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6.2  Color Models    405

that of displaying colors on a monitor, which is based on the addition of three highly 
controllable light primaries.

6.2 COLOR MODELS  

The purpose of a color model (also called a color space or color system) is to facilitate the 
specification of colors in some standard way. In essence, a color model is a specification 
of (1) a coordinate system, and (2) a subspace within that system, such that each color in 
the model is represented by a single point contained in that subspace.

Most color models in use today are oriented either toward hardware (such as for 
color monitors and printers) or toward applications, where color manipulation is 
a goal (the creation of color graphics for animation is an example of the latter). In 
terms of digital image processing, the hardware-oriented models most commonly 
used in practice are the RGB (red, green, blue) model for color monitors and a 

6.2

FIGURE 6.5
The CIE  
chromaticity 
diagram.  
(Courtesy of the 
General Electric 
Co., Lighting  
Division.)
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406    Chapter 6  Color Image Processing

broad class of color video cameras; the CMY (cyan, magenta, yellow) and CMYK 
(cyan, magenta, yellow, black) models for color printing; and the HSI (hue, satura-
tion, intensity) model, which corresponds closely with the way humans describe and 
interpret color. The HSI model also has the advantage that it decouples the color 
and gray-scale information in an image, making it suitable for many of the gray-scale 
techniques developed in this book. There are numerous color models in use today. 
This is a reflection of the fact that color science is a broad field that encompasses 
many areas of application. It is tempting to dwell on some of these models here, sim-
ply because they are interesting and useful. However, keeping to the task at hand, 
we focus attention on a few models that are representative of those used in image 
processing. Having mastered the material in this chapter, you will have no difficulty 
in understanding additional color models in use today.
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THE RGB COLOR MODEL

In the RGB model, each color appears in its primary spectral components of red, 
green, and blue. This model is based on a Cartesian coordinate system. The color 
subspace of interest is the cube shown in Fig. 6.7, in which RGB primary values are 
at three corners; the secondary colors cyan, magenta, and yellow are at three other 
corners; black is at the origin; and white is at the corner farthest from the origin. In 
this model, the grayscale (points of equal RGB values) extends from black to white 
along the line joining these two points. The different colors in this model are points 
on or inside the cube, and are defined by vectors extending from the origin. For con-
venience, the assumption is that all color values have been normalized so the cube 
in Fig. 6.7 is the unit cube. That is, all values of R, G, and B in this representation are 
assumed to be in the range [0, 1]. Note that the RGB primaries can be interpreted as 
unit vectors emanating from the origin of the cube. 

Images represented in the RGB color model consist of three component images, 
one for each primary color. When fed into an RGB monitor, these three images 
combine on the screen to produce a composite color image, as explained in Sec-
tion 6.1. The number of bits used to represent each pixel in RGB space is called the 
pixel depth. Consider an RGB image in which each of the red, green, and blue imag-
es is an 8-bit image. Under these conditions, each RGB color pixel [that is, a triplet of 
values (R, G, B)] has a depth of 24 bits (3 image planes times the number of bits per 
plane). The term full-color image is used often to denote a 24-bit RGB color image. 
The total number of possible colors in a 24-bit RGB image is ( ) , , .2 16 777 2168 3 =  
Figure 6.8 shows the 24-bit RGB color cube corresponding to the diagram in Fig. 6.7. 
Note also that for digital images, the range of values in the cube are scaled to the 

(1, 0, 0)
Red Yellow

Green
Black

White
Magenta

(0, 1, 0)

CyanBlue (0, 0, 1)

R

G

B

Grayscale

FIGURE 6.7
Schematic of the 
RGB color cube. 
Points along the 
main diagonal 
have gray values, 
from black at the 
origin to white at 
point (1, 1, 1).
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408    Chapter 6  Color Image Processing

numbers representable by the number bits in the images. If, as above, the primary 
images are 8-bit images, the limits of the cube along each axis becomes [ , ].0 255  
Then, for example, white would be at point [ , , ]255 255 255  in the cube.

EXAMPLE 6.1 :  Generating a cross-section of the RGB color cube and its thee hidden planes.

The cube in Fig. 6.8 is a solid, composed of the ( )28 3 colors mentioned in the preceding paragraph. A 
useful way to view these colors is to generate color planes (faces or cross sections of the cube). This is 
done by fixing one of the three colors and allowing the other two to vary. For instance, a cross-sectional 
plane through the center of the cube and parallel to the GB-plane in Fig. 6.8 is the plane (127, G, B) for 
G B, , , , , .= 0 1 2 255…  Figure 6.9(a) shows that an image of this cross-sectional plane is generated by feed-
ing the three individual component images into a color monitor. In the component images, 0 represents 
black and 255 represents white. Observe that each component image into the monitor is a grayscale 
image. The monitor does the job of combining the intensities of these images to generate an RGB image. 
Figure 6.9(b) shows the three hidden surface planes of the cube in Fig. 6.8, generated in a similar manner.

Acquiring a color image is the process shown in Fig. 6.9(a) in reverse. A color image can be acquired 
by using three filters, sensitive to red, green, and blue, respectively. When we view a color scene with a 
monochrome camera equipped with one of these filters, the result is a monochrome image whose inten-
sity is proportional to the response of that filter. Repeating this process with each filter produces three 
monochrome images that are the RGB component images of the color scene. In practice, RGB color 
image sensors usually integrate this process into a single device. Clearly, displaying these three RGB 
component images as in Fig. 6.9(a) would yield an RGB color rendition of the original color scene. 

THE CMY AND CMYK COLOR MODELS
As indicated in Section 6.1, cyan, magenta, and yellow are the secondary colors of 
light or, alternatively, they are the primary colors of pigments. For example, when 
a surface coated with cyan pigment is illuminated with white light, no red light is 
reflected from the surface. That is, cyan subtracts red light from reflected white light, 
which itself is composed of equal amounts of red, green, and blue light.

Most devices that deposit colored pigments on paper, such as color printers and 
copiers, require CMY data input or perform an RGB to CMY conversion internally. 
This conversion is performed using the simple operation

FIGURE 6.8
A 24-bit RGB 
color cube.

DIP4E_GLOBAL_Print_Ready.indb   408 6/16/2017   2:08:20 PM



6.2  Color Models    409

 

C

M

Y

R

G

B

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

1

1

 (6-5)

where the assumption is that all RGB color values have been normalized to the 
range [ , ].0 1  Equation (6-5) demonstrates that light reflected from a surface coated 
with pure cyan does not contain red (that is, C R= −1  in the equation). Similarly, 
pure magenta does not reflect green, and pure yellow does not reflect blue. Equa-
tion (6-5) also reveals that RGB values can be obtained easily from a set of CMY 
values by subtracting the individual CMY values from 1. 

According to Fig. 6.4, equal amounts of the pigment primaries, cyan, magenta, and 
yellow, should produce black. In practice, because C, M, and Y inks seldom are pure 
colors, combining these colors for printing black produces instead a muddy-looking 
brown. So, in order to produce true black (which is the predominant color in print-
ing), a fourth color, black, denoted by K, is added, giving rise to the CMYK color 
model. The black is added in just the proportions needed to produce true black. Thus, 

Equation (6-5), as well as 
all other equations in this 
section, are applied on a 
pixel-by-pixel basis.

Color
monitor

RGB

Red

(R � 0) (G � 0) (B � 0)

Green

Blue

b
a

FIGURE 6.9
(a) Generating 
the RGB image of 
the cross-sectional 
color plane  
(127, G, B).  
(b) The three  
hidden surface 
planes in the color 
cube of Fig. 6.8.
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when publishers talk about “four-color printing,” they are referring to the three 
CMY colors, plus a portion of black.

The conversion from CMY to CMYK begins by letting

 K C M Y= min( , , )  (6-6)

If K = 1, then we have pure black, with no color contributions, from which it follows 
that

 C = 0  (6-7)

 M = 0  (6-8)

 Y = 0  (6-9)

Otherwise,

 C C K K= − −( ) ( )1  (6-10)

 M M K K= − −( ) ( )1  (6-11)

 Y Y K K= − −( ) ( )1  (6-12)

where all values are assumed to be in the range [ , ].0 1  The conversions from CMYK 
back to CMY are:

 C C K K= − +* ( )1  (6-13)

 M M K K= − +* ( )1  (6-14)

 Y Y Y K= − +* ( )1  (6-15)

As noted at the beginning of this section, all operations in the preceding equations 
are performed on a pixel-by-pixel basis. Because we can use Eq. (6-5) to convert 
both ways between CMY and RGB, we can use that equation as a “bridge” to con-
vert between RGB and CMYK, and vice versa.

It is important to keep in mind that all the conversions just presented to go 
between RGB, CMY, and CMYK are based on the preceding relationships as a 
group. There are many other ways to convert between these color models, so you 
cannot mix approaches and expect to get meaningful results. Also, colors seen on 
monitors generally appear much different when printed, unless these devices are 
calibrated (see the discussion of a device-independent color model later in this 
section). The same holds true in general for colors converted from one model to 
another. However, our interest in this chapter is not on color fidelity; rather, we are 
interested in using the properties of color models to facilitate image processing tasks, 
such as region detection. 

The C, M, and Y on the 
right side of Eqs. (6-6)-
(6-12) are in the CMY 
color system. The C, 
M, and Y on the left of 
Eqs. (6-7)-(6-12) are in 
the CMYK system.

The C, M, Y, and K 
on the right side of 
Eqs. (6-13)-(6-15) are in 
the CMYK color system. 
The C, M, and Y on the 
left of these equations 
are in the CMY system.
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THE HSI COLOR MODEL

As we have seen, creating colors in the RGB, CMY, and CMYK models, and chang-
ing from one model to the other, is straightforward. These color systems are ideally 
suited for hardware implementations. In addition, the RGB system matches nicely 
with the fact that the human eye is strongly perceptive to red, green, and blue pri-
maries. Unfortunately, the RGB, CMY, and other similar color models are not well 
suited for describing colors in terms that are practical for human interpretation. For 
example, one does not refer to the color of an automobile by giving the percentage 
of each of the primaries composing its color. Furthermore, we do not think of color 
images as being composed of three primary images that combine to form a single 
image.

When humans view a color object, we describe it by its hue, saturation, and 
brightness. Recall from the discussion in Section 6.1 that hue is a color attribute 
that describes a pure color (pure yellow, orange, or red), whereas saturation gives 
a measure of the degree to which a pure color is diluted by white light. Brightness 
is a subjective descriptor that is practically impossible to measure. It embodies the 
achromatic notion of intensity and is one of the key factors in describing color sensa-
tion. We do know that intensity (gray level) is a most useful descriptor of achromatic 
images. This quantity definitely is measurable and easily interpretable. The mod-
el we are about to present, called the HSI (hue, saturation, intensity) color model, 
decouples the intensity component from the color-carrying information (hue and 
saturation) in a color image. As a result, the HSI model is a useful tool for develop-
ing image processing algorithms based on color descriptions that are natural and 
intuitive to humans, who, after all, are the developers and users of these algorithms. 
We can summarize by saying that RGB is ideal for image color generation (as in 
image capture by a color camera or image display on a monitor screen), but its use 
for color description is much more limited. The material that follows provides an 
effective way to do this.

We know from Example 6.1 that an RGB color image is composed three gray-
scale intensity images (representing red, green, and blue), so it should come as no 
surprise that we can to extract intensity from an RGB image. This becomes clear if 
we take the color cube from Fig. 6.7 and stand it on the black, ( , , ),0 0 0  vertex, with 
the white, (1, 1, 1), vertex directly above it [see Fig. 6.10(a)]. As noted in our discus-
sion of Fig. 6.7, the intensity (gray) scale is along the line joining these two vertices. 
In Figs. 6.10(a) and (b), the line (intensity axis) joining the black and white vertices is 
vertical. Thus, if we wanted to determine the intensity component of any color point 
in Fig. 6.10, we would simply define a plane that contains the color point and, at the 
same time, is perpendicular to the intensity axis. The intersection of the plane with 
the intensity axis would give us a point with intensity value in the range [0, 1]. A little 
thought would reveal that the saturation (purity) of a color increases as a function of 
distance from the intensity axis. In fact, the saturation of points on the intensity axis 
is zero, as evidenced by the fact that all points along this axis are gray.

Hue can be determined from an RGB value also. To see how, consider Fig. 6.10(b), 
which shows a plane defined by three points (black, white, and cyan). The fact that 
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the black and white points are contained in the plane tells us that the intensity axis 
also is contained in the plane. Furthermore, we see that all points contained in the 
plane segment defined by the intensity axis and the boundaries of the cube have the 
same hue (cyan in this case). We could arrive at the same conclusion by recalling 
from Section 6.1 that all colors generated by three colors lie in the triangle defined 
by those colors. If two of those points are black and white, and the third is a color 
point, all points on the triangle would have the same hue, because the black and 
white components cannot change the hue (of course, the intensity and saturation 
of points in this triangle would be different). By rotating the shaded plane about 
the vertical intensity axis, we would obtain different hues. From these concepts, we 
arrive at the conclusion that the hue, saturation, and intensity values required to 
form the HSI space can be obtained from the RGB color cube. That is, we can con-
vert any RGB point to a corresponding point in the HSI color space by working out 
the formulas that describe the reasoning outlined in the preceding discussion.

The key point regarding the cube arrangement in Fig. 6.10, and its corresponding 
HSI color space, is that the HSI space is represented by a vertical intensity axis, and 
the locus of color points that lie on planes perpendicular to that axis. As the planes 
move up and down the intensity axis, the boundaries defined by the intersection of 
each plane with the faces of the cube have either a triangular or a hexagonal shape. 
This can be visualized much more readily by looking at the cube straight down its 
grayscale axis, as shown in Fig. 6.11(a). We see that the primary colors are separated 
by 120°. The secondary colors are 60° from the primaries, which means that the angle 
between secondaries is 120° also. Figure 6.11(b) shows the same hexagonal shape 
and an arbitrary color point (shown as a dot). The hue of the point is determined by 
an angle from some reference point. Usually (but not always) an angle of 0° from 
the red axis designates 0 hue, and the hue increases counterclockwise from there. 
The saturation (distance from the vertical axis) is the length of the vector from the 
origin to the point. Note that the origin is defined by the intersection of the color 
plane with the vertical intensity axis. The important components of the HSI color 
space are the vertical intensity axis, the length of the vector to a color point, and the 
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FIGURE 6.11
Hue and saturation 
in the HSI color 
model. The dot is 
any color point. 
The angle from the 
red axis gives the 
hue. The length of 
the vector is the 
saturation. The 
intensity of all col-
ors in any of these 
planes is given by 
the position of the 
plane on the verti-
cal intensity axis.

angle this vector makes with the red axis. Therefore, it is not unusual to see the HSI 
planes defined in terms of the hexagon just discussed, a triangle, or even a circle, as 
Figs. 6.11(c) and (d) show. The shape chosen does not matter because any one of 
these shapes can be warped into one of the other two by a geometric transformation. 
Figure 6.12 shows the HSI model based on color triangles, and on circles.

Converting Colors from RGB to HSI

Given an image in RGB color format, the H component of each RGB pixel is 
obtained using the equation

 H
G

G
=

≤
− >

⎧
⎨
⎩

u

u

if

if

B
B360

 (6-16)

with†
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 (6-17)

The saturation component is given by

 S
R G B

R G B= −
+ +( ) ( )⎡⎣ ⎤⎦1

3
min , ,  (6-18)

†  It is good practice to add a small number in the denominator of this expression to avoid dividing by 0 when
R G B= = , in which case u  will be 90°. Note that when all RGB components are equal, Eq. (6-18) gives S = 0. 
In addition, the conversion from HSI back to RGB in Eqs. (6-20) through (6-30) will give R G B I= = = ,  as 
expected, because, when R G B= = , we are dealing with a grayscale image.

Computations from 
RGB to HSI and back 
are carried out on a 
pixel-by-pixel basis. We 
omitted the depen-
dence of the conversion 
equations on (x, y) for 
notational clarity. 
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Finally, the intensity component is obtained from the equation

 I R G B= + +( )1
3

 (6-19)

These equations assume that the RGB values have been normalized to the range 
[ , ],0 1  and that angle u is measured with respect to the red axis of the HSI space, as 
in Fig. 6.11. Hue can be normalized to the range [ , ]0 1  by dividing by 360° all values 
resulting from Eq. (6-16). The other two HSI components already are in this range if 
the given RGB values are in the interval [ , ].0 1

The results in Eqs. (6-16) through (6-19) can be derived from the geometry in 
Figs. 6.10 and 6.11. The derivation is tedious and would not add significantly to the 
present discussion. You can find the proof for these equations (and for the equations 
that follow for HSI to RGB conversion) in the Tutorials section of the book website.

Converting Colors from HSI to RGB

Given values of HSI in the interval [ , ],0 1  we now want to find the corresponding 
RGB values in the same range. The applicable equations depend on the values of H. 
There are three sectors of interest, corresponding to the 120° intervals in the separa-
tion of primaries (see Fig. 6.11). We begin by multiplying H by 360°, which returns 
the hue to its original range of [ , ].0 360° °

RG sector 0 120° ≤ < °( )H : When H is in this sector, the RGB components are given 
by the equations

 B I S= −( )1  (6-20)

 R I
S H

H
= +

° −( )
⎡

⎣
⎢

⎤

⎦
⎥1

60
cos

cos
 (6-21)

and

 G I R B= − +( )3  (6-22)

GB sector 120 240° ≤ < °( )H : If the given value of H is in this sector, we first sub-
tract 120° from it:

 H H= − °120  (6-23)

Then, the RGB components are

 R I S= −( )1  (6-24)

 G I
S H

H
= +

° −( )
⎡

⎣
⎢

⎤

⎦
⎥1

60
cos

cos
 (6-25)
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and

 B I R G= − +( )3  (6-26)

BR sector 240 360° ≤ ≤ °( )H : Finally, if H is in this range, we subtract 240°  from it:

 H H= − °240  (6-27)

Then, the RGB components are

 G I S= −( )1  (6-28)

 B I
S H

H
= +

° −( )
⎡

⎣
⎢

⎤

⎦
⎥1

60
cos

cos
 (6-29)

and

 R I G B= − +( )3  (6-30)

We discuss several uses of these equations in the following sections.

EXAMPLE 6.2 :  The HSI values corresponding to the image of the RGB color cube.

Figure 6.13 shows the hue, saturation, and intensity images for the RGB values in Fig. 6.8. Figure 6.13(a) 
is the hue image. Its most distinguishing feature is the discontinuity in value along a 45° line in the front 
(red) plane of the cube. To understand the reason for this discontinuity, refer to Fig. 6.8, draw a line from 
the red to the white vertices of the cube, and select a point in the middle of this line. Starting at that point, 
draw a path to the right, following the cube around until you return to the starting point. The major 
colors encountered in this path are yellow, green, cyan, blue, magenta, and back to red. According to 
Fig. 6.11, the values of hue along this path should increase from 0° to 360° (i.e., from the lowest to highest 

ba c

FIGURE 6.13 HSI components of the image in Fig. 6.8: (a) hue, (b) saturation, and (c) intensity images.
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possible values of hue). This is precisely what Fig. 6.13(a) shows, because the lowest value is represented 
as black and the highest value as white in the grayscale. In fact, the hue image was originally normalized 
to the range [0, 1] and then scaled to 8 bits; that is, we converted it to the range [0, 255], for display.

The saturation image in Fig. 6.13(b) shows progressively darker values toward the white vertex of the 
RGB cube, indicating that colors become less and less saturated as they approach white. Finally, every 
pixel in the intensity image shown in Fig. 6.13(c) is the average of the RGB values at the corresponding 
pixel in Fig. 6.8.

Manipulating HSI Component Images

In the following discussion, we take a look at some simple techniques for manipulating 
HSI component images. This will help you develop familiarity with these comonents, 
and deepen your understanding of the HSI color model. Figure 6.14(a) shows an 
image composed of the primary and secondary RGB colors. Figures 6.14(b) through 
(d) show the H, S, and I components of this image, generated using Eqs. (6-16) through 
(6-19). Recall from the discussion earlier in this section that the gray-level values in 
Fig. 6.14(b) correspond to angles; thus, for example, because red corresponds to 0°, 
the red region in Fig. 6.14(a) is mapped to a black region in the hue image. Similarly, 
the gray levels in Fig. 6.14(c) correspond to saturation (they were scaled to [0, 255] for 
display), and the gray levels in Fig. 6.14(d) are average intensities.

To change the individual color of any region in the RGB image, we change the 
values of the corresponding region in the hue image of Fig. 6.14(b). Then we convert 

ba
dc

FIGURE 6.14
(a) RGB image 
and the  
components of 
its corresponding 
HSI image:  
(b) hue,  
(c) saturation, and 
(d) intensity.
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the new H image, along with the unchanged S and I images, back to RGB using the 
procedure explained in Eqs. (6-20) through (6-30). To change the saturation (purity) 
of the color in any region, we follow the same procedure, except that we make the 
changes in the saturation image in HSI space. Similar comments apply to changing 
the average intensity of any region. Of course, these changes can be made simulta-
neously. For example, the image in Fig. 6.15(a) was obtained by changing to 0 the 
pixels corresponding to the blue and green regions in Fig. 6.14(b). In Fig. 6.15(b), 
we reduced by half the saturation of the cyan region in component image S from 
Fig. 6.14(c). In Fig. 6.15(c), we reduced by half the intensity of the central white 
region in the intensity image of Fig. 6.14(d). The result of converting this modified 
HSI image back to RGB is shown in Fig. 6.15(d). As expected, we see in this figure 
that the outer portions of all circles are now red; the purity of the cyan region was 
diminished, and the central region became gray rather than white. Although these 
results are simple, they clearly illustrate the power of the HSI color model in allow-
ing independent control over hue, saturation, and intensity. These are quantities with 
which humans are quite familiar when describing colors.

A DEVICE INDEPENDENT COLOR MODEL

As noted earlier, humans see a broad spectrum of colors and color shades. However, 
color perception differs between individuals. Not only that, but color across devices 
such as monitors and printers can vary significantly unless these devices are prop-
erly calibrated. 

ba
dc  

FIGURE 6.15
(a)-(c) Modified 
HSI component 
images.  
(d) Resulting RGB 
image. (See Fig. 
6.14 for the original 
HSI images.)

DIP4E_GLOBAL_Print_Ready.indb   418 6/16/2017   2:08:26 PM



6.2  Color Models    419

Color transformations can be performed on most desktop computers. In conjunc-
tion with digital cameras, flatbed scanners, and ink-jet printers, they turn a personal 
computer into a digital darkroom. Also, commercial devices exist that use a combi-
nation of spectrometer measurements and software to develop color profiles that 
can then be loaded on monitors and printers to calibrate their color responses. 

The effectiveness of the transformations examined in this section is judged ulti-
mately in print. Because these transformations are developed, refined, and evaluated 
on monitors, it is necessary to maintain a high degree of color consistency between 
the monitors used and the eventual output devices. This is best accomplished with 
a device-independent color model that relates the color gamuts (see Section 6.1) 
of the monitors and output devices, as well as any other devices being used, to one 
another. The success of this approach depends on the quality of the color profiles 
used to map each device to the model, as well as the model itself. The model of 
choice for many color management systems (CMS) is the CIE L a b* * * model, also 
called CIELAB (CIE [1978], Robertson [1977]). 

The L a b* * * color components are given by the following equations:

 L h
Y

YW

* = ⋅
⎛
⎝⎜

⎞
⎠⎟

−116 16  (6-31)
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and X YW W, , and ZW  are reference white tristimulus values—typically the white 
of a perfectly reflecting diffuser under CIE standard D65 illumination (defined by 
x = 0 3127.  and y = 0 3290.  in the CIE chromaticity diagram of Fig. 6.5). The L a b* * * 
color space is colorimetric (i.e., colors perceived as matching are encoded identically), 
perceptually uniform (i.e., color differences among various hues are perceived uni-
formly—see the classic paper by MacAdams [1942]), and device independent. While 
L a b* * *  colors are not directly displayable (conversion to another color space is 
required), the L a b* * *  gamut encompasses the entire visible spectrum and can 
represent accurately the colors of any display, print, or input device. Like the HSI 
system, the L a b* * * system is an excellent decoupler of intensity (represented by 
lightness L*)  and color (represented by a *  for red minus green and b *  for green 
minus blue), making it useful in both image manipulation (tone and contrast edit-
ing) and image compression applications. Studies indicate that the degree to which 
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the lightness information is separated from the color information in the L a b* * *  
system is greater than in any other color system (see Kasson and Plouffe [1972]).
The principal benefit of calibrated imaging systems is that they allow tonal and color 
imbalances to be corrected interactively and independently—that is, in two sequen-
tial operations. Before color irregularities, like over- and under-saturated colors, are 
resolved, problems involving the image’s tonal range are corrected. The tonal range 
of an image, also called its key type, refers to its general distribution of color intensi-
ties. Most of the information in high-key images is concentrated at high (or light) 
intensities; the colors of low-key images are located predominantly at low intensi-
ties; middle-key images lie in between. As in the monochrome case, it is often desir-
able to distribute the intensities of a color image equally between the highlights and 
the shadows.  In Section 6.4, we give  examples showing a variety of color transfor-
mations for the correction of tonal and color imbalances.

6.3 PSEUDOCOLOR IMAGE PROCESSING 

Pseudocolor (sometimes called false color) image processing consists of assigning 
colors to gray values based on a specified criterion. The term pseudo or false color is 
used to differentiate the process of assigning colors to achromatic images from the 
processes associated with true color images, a topic discussed starting in Section 6.4. 
The principal use of pseudocolor is for human visualization and interpretation of 
grayscale events in an image or sequence of images. As noted at the beginning of this 
chapter, one of the principal motivations for using color is the fact that humans can 
discern thousands of color shades and intensities, compared to less than two dozen 
shades of gray.

INTENSITY SLICING AND COLOR CODING

The techniques of intensity (sometimes called density) slicing and color coding are 
the simplest and earliest examples of pseudocolor processing of digital images. If an 
image is interpreted as a 3-D function [see Fig. 2.18(a)], the method can be viewed 
as one of placing planes parallel to the coordinate plane of the image; each plane 
then “slices” the function in the area of intersection. Figure 6.16 shows an example 
of using a plane at f x y li,( ) =  to slice the image intensity function into two levels.

If a different color is assigned to each side of the plane in Fig. 6.16, any pixel 
whose intensity level is above the plane will be coded with one color, and any pixel 
below the plane will be coded with the other. Levels that lie on the plane itself may 
be arbitrarily assigned one of the two colors, or they could be given a third color to 
highlight all the pixels at that level. The result is a two- (or three-) color image whose 
relative appearance can be controlled by moving the slicing plane up and down the 
intensity axis.

In general, the technique for multiple colors may be summarized as follows. Let 
[ , ]0 1L −  represent the grayscale, let level l0  represent black [ ( , ) ],f x y = 0  and level 
lL−1 represent white [ ( , ) ].f x y L= − 1  Suppose that P planes perpendicular to the 
intensity axis are defined at levels l l lP1 2, , , .…  Then, assuming that 0 1< < −P L , 
the P planes partition the grayscale into P + 1 intervals, I I IP1 2 1, , , .… +  Intensity to 
color assignments at each pixel location ( , )x y  are made according to the equation

6.3
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if  , let  f x y I f x y ck k( , ) ,∈ ( ) =  (6-35)

where ck is the color associated with the kth intensity interval Ik , defined by the 
planes at l k= − 1 and l k= .

Figure 6.16 is not the only way to visualize the method just described. Figure 6.17 
shows an equivalent approach. According to the mapping in this figure, any image 
intensity below level li  is assigned one color, and any level above is assigned another. 
When more partitioning levels are used, the mapping function takes on a staircase 
form.

EXAMPLE 6.3:  Intensity slicing and color coding.

A simple but practical use of intensity slicing is shown in Fig. 6.18. Figure 6.18(a) is a grayscale image of 
the Picker Thyroid Phantom (a radiation test pattern), and Fig. 6.18(b) is the result of intensity slicing 
this image into eight colors. Regions that appear of constant intensity in the grayscale image are actually 
quite variable, as shown by the various colors in the sliced image. For instance, the left lobe is a dull gray 
in the grayscale image, and picking out variations in intensity is difficult. By contrast, the color image 
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FIGURE 6.16
Graphical  
interpretation of 
the intensity- 
slicing technique.

FIGURE 6.17
An alternative 
representation of 
the intensity- 
slicing technique.
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clearly shows eight different regions of constant intensity, one for each of the colors used. By varying the 
number of colors and the span of the intensity intervals, one can quickly determine the characteristics 
of intensity variations in a grayscale image. This is particularly true in situations such as the one shown 
here, in which the object of interest has uniform texture with intensity variations that are difficult to 
analyze visually. This example also illustrates the comments made in Section 6.1 about the eye’s superior 
capability for detecting different color shades.

In the preceding simple example, the grayscale was divided into intervals and a different color was 
assigned to each, with no regard for the meaning of the gray levels in the image. Interest in that case was 
simply to view the different gray levels constituting the image. Intensity slicing assumes a much more 
meaningful and useful role when subdivision of the grayscale is based on physical characteristics of the 
image. For instance, Fig. 6.19(a) shows an X-ray image of a weld (the broad, horizontal dark region) 
containing several cracks and porosities (the bright streaks running horizontally through the middle of 
the image). When there is a porosity or crack in a weld, the full strength of the X-rays going through the 
object saturates the imaging sensor on the other side of the object. Thus, intensity values of 255 in an 
8-bit image coming from such a system automatically imply a problem with the weld. If human visual 
analysis is used to inspect welds (still a common procedure today), a simple color coding that assigns 
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FIGURE 6.19
(a) X-ray image 
of a weld.  
(b) Result of color 
coding. (Original 
image courtesy of 
X-TEK Systems, 
Ltd.)
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FIGURE 6.18
(a) Grayscale 
image of the  
Picker Thyroid 
Phantom.  
(b) Result of  
intensity slicing 
using eight colors.  
(Courtesy of Dr. 
J. L. Blankenship, 
Oak Ridge  
National  
Laboratory.)
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one color to level 255 and another to all other intensity levels can simplify the inspector’s job consider-
ably. Figure 6.19(b) shows the result. No explanation is required to arrive at the conclusion that human 
error rates would be lower if images were displayed in the form of Fig. 6.19(b), instead of the form in 
Fig. 6.19(a). In other words, if an intensity value, or range of values, one is looking for is known, intensity 
slicing is a simple but powerful aid in visualization, especially if numerous images have to be inspected 
on a routine basis. 

EXAMPLE 6.4 :  Use of color to highlight rainfall levels.

Measurement of rainfall levels, especially in the tropical regions of the Earth, is of interest in diverse 
applications dealing with the environment. Accurate measurements using ground-based sensors are 
difficult and expensive to acquire, and total rainfall figures are even more difficult to obtain because a 
significant portion of precipitation occurs over the ocean. One approach for obtaining rainfall figures 
remotely is to use satellites. The TRMM (Tropical Rainfall Measuring Mission) satellite utilizes, among 
others, three sensors specially designed to detect rain: a precipitation radar, a microwave imager, and a 
visible and infrared scanner (see Sections 1.3 and 2.3 regarding image sensing modalities).

The results from the various rain sensors are processed, resulting in estimates of average rainfall 
over a given time period in the area monitored by the sensors. From these estimates, it is not difficult to 
generate grayscale images whose intensity values correspond directly to rainfall, with each pixel repre-
senting a physical land area whose size depends on the resolution of the sensors. Such an intensity image 
is shown in Fig. 6.20(a), where the area monitored by the satellite is the horizontal band highlighted in 
the middle of the picture (these are tropical regions). In this particular example, the rainfall values are 
monthly averages (in inches) over a three-year period.

Visual examination of this picture for rainfall patterns is difficult and prone to error. However, sup-
pose that we code intensity levels from 0 to 255 using the colors shown in Fig. 6.20(b). In this mode of 
intensity slicing, each slice is one of the colors in the color band. Values toward the blues signify low val-
ues of rainfall, with the opposite being true for red. Note that the scale tops out at pure red for values of 
rainfall greater than 20 inches. Figure 6.20(c) shows the result of color coding the grayscale image with 
the color map just discussed. The results are much easier to interpret, as shown in this figure and in the 
zoomed area of Fig. 6.20(d). In addition to providing global coverage, this type of data allows meteorolo-
gists to calibrate ground-based rain monitoring systems with greater precision than ever before.

INTENSITY TO COLOR TRANSFORMATIONS

Other types of transformations are more general, and thus are capable of achieving 
a wider range of pseudocolor enhancement results than the simple slicing technique 
discussed in the preceding section. Figure 6.21 shows an approach that is particularly 
attractive. Basically, the idea underlying this approach is to perform three indepen-
dent transformations on the intensity of input pixels. The three results are then fed 
separately into the red, green, and blue channels of a color monitor. This method 
produces a composite image whose color content is modulated by the nature of the 
transformation functions. 

The method for intensity slicing discussed in the previous section is a special case 
of the technique just described. There, piecewise linear functions of the intensity 
levels (see Fig. 6.17) are used to generate colors. On the other hand, the method 
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Red
transformation

Green
transformation

Blue
transformation

fR(x, y)

fG(x, y)

fB(x, y)

f(x, y)

FIGURE 6.21
Functional block 
diagram for 
pseudocolor image 
processing. Images 
fR , fG ,and fB  are 
fed into the  
corresponding red, 
green, and blue 
inputs of an RGB 
color monitor.

ba
dc

FIGURE 6.20 (a) Grayscale image in which intensity (in the horizontal band shown) corresponds to average monthly 
rainfall. (b) Colors assigned to intensity values. (c) Color-coded image. (d) Zoom of the South American region. 
(Courtesy of NASA.)
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discussed in this section can be based on smooth, nonlinear functions, which gives 
the technique considerable flexibility.

EXAMPLE 6.5 :  Using pseudocolor to highlight explosives in X-ray images.

Figure 6.22(a) shows two monochrome images of luggage obtained from an airport X-ray scanning sys-
tem. The image on the left contains ordinary articles. The image on the right contains the same articles, 
as well as a block of simulated plastic explosives. The purpose of this example is to illustrate the use of 
intensity to color transformations to facilitate detection of the explosives.

Figure 6.23 shows the transformation functions used. These sinusoidal functions contain regions 
of relatively constant value around the peaks as well as regions that change rapidly near the valleys. 
Changing the phase and frequency of each sinusoid can emphasize (in color) ranges in the grayscale. For 
instance, if all three transformations have the same phase and frequency, the output will be a grayscale 
image. A small change in the phase between the three transformations produces little change in pixels 
whose intensities correspond to peaks in the sinusoids, especially if the sinusoids have broad profiles 
(low frequencies). Pixels with intensity values in the steep section of the sinusoids are assigned a much 
stronger color content as a result of significant differences between the amplitudes of the three sinu-
soids caused by the phase displacement between them.

The image in Fig. 6.22(b) was obtained using the transformation functions in Fig. 6.23(a), which shows 
the gray-level bands corresponding to the explosive, garment bag, and background, respectively. Note 
that the explosive and background have quite different intensity levels, but they were both coded with 
approximately the same color as a result of the periodicity of the sine waves. The image in Fig. 6.22(c) 
was obtained with the transformation functions in Fig. 6.23(b). In this case, the explosives and garment 
bag intensity bands were mapped by similar transformations, and thus received essentially the same 

b
a

c

FIGURE 6.22
Pseudocolor 
enhancement by 
using the gray 
level to color 
transformations in 
Fig. 6.23. (Original 
image courtesy of 
Dr. Mike Hurwitz, 
Westinghouse.)
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color assignments. Note that this mapping allows an observer to “see” through the explosives. The back-
ground mappings were about the same as those used for Fig. 6.22(b), producing almost identical color 
assignments for the two pseudocolor images.

The approach in Fig. 6.21 is based on a single grayscale image. Often, it is of 
interest to combine several grayscale images into a single color composite, as illus-
trated in Fig. 6.24. A frequent use of this approach is in multispectral image process-
ing, where different sensors produce individual grayscale images, each in a different 
spectral band (see Example 6.6 below). The types of additional processing shown in 
Fig. 6.24 can be techniques such as color balancing and spatial filtering, as discussed 
later in this chapter. When coupled with background knowledge about the physical 
characteristics of each band, color-coding in the manner just explained is a powerful 
aid for human visual analysis of complex multispectral images.

EXAMPLE 6.6 :  Color coding of multispectral images.

Figures 6.25(a) through (d) show four satellite images of the Washington, D.C., area, including part of 
the Potomac River. The first three images are in the visible red (R), green (G), and blue (B) bands, and 

Transformation T1

Additional
processing

Transformation T2

Transformation TKfK(x, y)

f1(x, y)

f2(x, y)

gK(x, y)

g1(x, y)

g2(x, y)

hR(x, y)

hG(x, y)

hB(x, y)

FIGURE 6.24
A pseudocolor 
coding approach 
using multiple 
grayscale images. 
The inputs are 
grayscale images. 
The outputs are 
the three  
components of an 
RGB composite 
image.

ba

FIGURE 6.23
Transformation 
functions used to 
obtain the  
pseudocolor 
images in  
Fig. 6.22.
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the fourth is in the near infrared (IR) band (see Table 1.1 and Fig. 1.10). The latter band is responsive 
to the biomass content of a scene, and we want to use this fact to create a composite RGB color image 
in which vegetation is emphasized and the other components of the scene are displayed in more muted 
tones. 

Figure 6.25(e) is an RGB composite obtained by replacing the red image by infrared. As you see, veg-
etation shows as a bright red, and the other components of the scene, which had a weaker response in 
the near-infrared band, show in pale shades of blue-green. Figure 6.25(f) is a similar image, but with the 
green replaced by infrared. Here, vegetation shows in a bright green color, and the other components of 
the scene show in purplish color shades, indicating that their major components are in the red and blue 
bands. Although the last two images do not introduce any new physical information, these images are 
much easier to interpret visually once it is known that the dominant component of the images are pixels 
of areas heavily populated by vegetation.

The type of processing just illustrated uses the physical characteristics of a single band in a multi-
spectral image to emphasize areas of interest. The same approach can help visualize events of interest 

ba c
ed f  

FIGURE 6.25 (a)–(d) Red (R), green (G), blue (B), and near-infrared (IR) components of a LANDSAT multispectral 
image of the Washington, D.C. area. (e) RGB color composite image obtained using the IR, G, and B component 
images. (f) RGB color composite image obtained using the R, IR, and B component images. (Original multispectral 
images courtesy of NASA.)
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in complex images in which the events are beyond human visual sensing capabilities. Figure 6.26 is an 
excellent illustration of this. These are images of the Jupiter moon Io, shown in pseudocolor by combin-
ing several of the sensor images from the Galileo spacecraft, some of which are in spectral regions not 
visible to the eye. However, by understanding the physical and chemical processes likely to affect sensor 
response, it is possible to combine the sensed images into a meaningful pseudocolor map. One way to 
combine the sensed image data is by how they show either differences in surface chemical composition 
or changes in the way the surface reflects sunlight. For example, in the pseudocolor image in Fig. 6.26(b), 
bright red depicts material newly ejected from an active volcano on Io, and the surrounding yellow 
materials are older sulfur deposits. This image conveys these characteristics much more readily than 
would be possible by analyzing the component images individually.

b
a

FIGURE 6.26
(a) Pseudocolor 
rendition of  
Jupiter Moon Io.  
(b) A close-up. 
(Courtesy of 
NASA.)
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6.4 BASICS OF FULL-COLOR IMAGE PROCESSING  

In this section, we begin the study of processing methods for full-color images. The 
techniques developed in the sections that follow are illustrative of how full-color 
images are handled for a variety of image processing tasks. Full-color image process-
ing approaches fall into two major categories. In the first category, we process each 
grayscale component image individually, then form a composite color image from 
the individually processed components. In the second category, we work with color 
pixels directly. Because full-color images have at least three components, color pix-
els are vectors. For example, in the RGB system, each color point can be interpreted 
as a vector extending from the origin to that point in the RGB coordinate system 
(see Fig. 6.7).

Let c represent an arbitrary vector in RGB color space:
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 (6-36)

This equation indicates that the components of c are the RGB components of a 
color image at a point. We take into account the fact that the colors of the pixels in 
an image are a function of spatial coordinates ( , )x y  by using the notation
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 (6-37)

For an image of size M N× , there are MN such vectors, c( , ),x y  for x M= −0 1 2 1, , , ,…  
and y N= −0 1 2 1, , , , .…

Equation (6-37) depicts a vector whose components are spatial variables x and 
y. This is a frequent source of confusion that can be avoided by focusing on the fact 
that our interest lies in spatial processes. That is, we are interested in image process-
ing techniques formulated in x and y. The fact that the pixels are now color pixels 
introduces a factor that, in its easiest formulation, allows us to process a color image 
by processing each of its component images separately, using standard grayscale 
image processing methods. However, the results of individual color component pro-
cessing are not always equivalent to direct processing in color vector space, in which 
case we must use approaches for processing the elements of color points directly. 
When these points have more than two components, we call them voxels. We use the 
terms vectors, points, and voxels interchangeably when the meaning is clear that we 
are referring to images composed of more than one 2-D image. 

In order for per-component-image and vector-based processing to be equivalent, 
two conditions have to be satisfied: first, the process has to be applicable to both 
vectors and scalars; second, the operation on each component of a vector (i.e., each 
voxel) must be independent of the other components. As an illustration, Fig. 6.27 
shows spatial neighborhood processing of grayscale and full-color images. Suppose 

6.4

Although an RGB image 
is composed of three 
grayscale component 
images, pixels in all three 
images are registered 
spatially. That is, a single 
pair of spatial  
coordinates, (x,  y), 
addresses the same 
pixel location in all three 
images, as illustrated in 
Fig. 6.27(b) below.
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430    Chapter 6  Color Image Processing

that the process is neighborhood averaging. In Fig. 6.27(a), averaging would be done 
by summing the intensities of all the pixels in the 2-D neighborhood, then dividing 
the result by the total number of pixels in the neighborhood. In Fig. 6.27(b), averag-
ing would be done by summing all the voxels in the 3-D neighborhood, then divid-
ing the result by the total number of voxels in the neighborhood. Each of the three 
component of the average voxel is the sum of the pixels in the single image neigh-
borhood centered on that location. But the same result would be obtained if the 
averaging were done on the pixels of each image, independently, and then the sum of 
the three values were added for each. Thus, spatial neighborhood averaging can be 
carried out on a per-component-image or directly on RGB image voxels. The results 
would be the same. In the following sections we develop methods for which the per-
component-image approach is suitable, and methods for which it is not.

6.5 COLOR TRANSFORMATIONS  

The techniques described in this section, collectively called color transformations, 
deal with processing the components of a color image within the context of a single 
color model, as opposed to color transformations between color models, as in Sec-
tion 6.2.

FORMULATION

As with the intensity transformation techniques of Chapter 3, we model color trans-
formations for multispectral images using the general expression

 s T r i ni i i= ( ) = 1 2, , ,…  (6-38)

where n is the total number of component images, ri  are the intensity values of the 
input component images, si  are the spatially corresponding intensities in the output 
component images, and Ti  are a set of transformation or color mapping functions 
that operate on ri  to produce si . Equation (6-38) is applied individually to all pixels 
in the input image. For example, in the case of RGB color images, n = 3, r r r1 2 3, ,  are 
the intensities values at a point in the input components images, and s s s1 2 3, ,  are 

6.5

(x, y)
(x, y)

RGB color imageGrayscale image

Pixel Voxel

3-D neighborhood2-D neighborhood

ba

FIGURE 6.27
Spatial  
neighborhoods 
for grayscale 
and RGB color 
images. Observe 
in (b) that a single 
pair of spatial 
coordinates, ( , ),x y  
addresses the 
same spatial  
location in all 
three images.
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the corresponding transformed pixels in the output image. The fact that i is also a 
subscript on T means that, in principle, we can implement a different transformation 
for each input component image. 

As an illustration, the first row of Fig. 6.28 shows a full color CMYK image of a 
simple scene, and the second row shows its four component images, all normalized 
to the range [ , ].0 1  We see that the strawberries are composed of large amounts of 
magenta and yellow because the images corresponding to these two CMYK compo-
nents are the brightest. Black is used sparingly and is generally confined to the cof-
fee and shadows within the bowl of strawberries. The fourth row shows the equiva-
lent RGB images obtained from the CMYK images using Eqs. (6-13)-(6-15). Here 
we see that the strawberries contain a large amount of red and very little (although 
some) green and blue. From the RGB images, we obtained the CMY images in 
the third row using Eq. (6-5). Note that these CMY images are slightly different 
from the CMY images in the row above them. This is because the CMY images 
in these two systems are different as a result of using K in one of them. The last 
row of Fig. 6.28 shows the HSI components, obtained from the RGB images using 
Eqs. (6-16)-(6-19). As expected, the intensity (I) component is a grayscale rendition 
of the full-color original. The saturation image (S) is as expected also. The strawber-
ries are relatively pure in color; as a result, they show the highest saturation (least 
dilution by white light) values of any of the other elements of the image. Finally, 
we note some difficulty in interpreting the values of the hue (H) component image. 
The problem is that (1) there is a discontinuity in the HSI model where 0° and 360° 
meet [see Fig. 6.13(a)], and (2) hue is undefined for a saturation of 0 (i.e., for white, 
black, and pure grays). The discontinuity of the model is most apparent around the 
strawberries, which are depicted in gray level values near both black (0) and white 
(1). The result is an unexpected mixture of highly contrasting gray levels to represent 
a single color—red.

We can apply Eq. (6-38) to any of the color-space component images in Fig. 6.28. 
In theory, any transformation can be performed in any color model. In practice, how-
ever, some operations are better suited to specific models. For a given transformation, 
the effects of converting between representations must be factored into the decision 
regarding the color space in which to implement it. For example, suppose that we 
wish to modify the intensity of the full-color image in the first row of Fig. 6.28 by a 
constant value, k in the range [ , ].0 1  In the HSI color space we need to modify only 
the intensity component image:

 s kr3 3=  (6-39)

and we let s r1 1=  and s r2 2= . In terms of our earlier discussion note that we are using 
two different transformation functions: T1  and T2  are identity transformations, and 
T3  is a constant transformation. 

In the RGB color space we need to modify all three components by the same 
constant transformation:

 s kr ii i= = 1 2 3, ,  (6-40)
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Full color image

Red Green Blue

Hue Saturation Intensity

Cyan Magenta Yellow Black

Cyan Magenta Yellow

FIGURE 6.28 A full-color image and its various color-space components. (Original image courtesy of MedData Interactive.)
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The CMY space requires a similar set of linear transformations (see Problem 6.16):

 s kr k ii i= + −( ) =1 1 2 3, ,  (6-41)

Similarly, the transformations required to change the intensity of the CMYK image 
is given by 

 s
r i

kr k ii
i
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=
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+ − =
⎧
⎨
⎩

1 2 3

1 4

, ,

( )
 (6-42)

This equation tells us that to change the intensity of a CMYK image, we only change 
the fourth (K) component.

Figure 6.29(b) shows the result of applying the transformations in Eqs. (6-39)
through (6-42) to the full-color image of Fig. 6.28, using k = 0 7. . The mapping func-
tions themselves are shown graphically in Figs. 6.29(c) through (h). Note that the 
mapping function for CMYK consist of two parts, as do the functions for HSI; one of 
the transformations handles one component, and the other does the rest. Although 
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FIGURE 6.29 Adjusting the intensity of an image using color transformations. (a) Original image. (b) Result of decreas-
ing its intensity by 30% (i.e., letting k = 0 7. ). (c) The required RGB mapping function. (d)–(e) The required CMYK 
mapping functions. (f) The required CMY mapping function. (g)–(h) The required HSI mapping functions. (Origi-
nal image courtesy of MedData Interactive.)
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we used several different transformations, the net result of changing the intensity of 
the color by a constant value was the same for all.

It is important to note that each transformation defined in Eqs. (6-39) through 
(6-42) depends only on one component within its color space. For example, the red 
output component, s1, in Eq. (6-40) is independent of the green ( )r2  and blue ( )r3  
inputs; it depends only on the red ( )r1  input. Transformations of this type are among 
the simplest and most frequently used color processing tools. They can be carried 
out on a per-color-component basis, as mentioned at the beginning of our discussion. 
In the remainder of this section, we will examine several such transformations and 
discuss a case in which the component transformation functions are dependent on 
all the color components of the input image and, therefore, cannot be done on an 
individual color-component basis.

COLOR COMPLEMENTS

The color circle (also called the color wheel) shown in Fig. 6.30 originated with Sir 
Isaac Newton, who in the seventeenth century created its first form by joining the 
ends of the color spectrum. The color circle is a visual representation of colors that 
are arranged according to the chromatic relationship between them. The circle is 
formed by placing the primary colors equidistant from each other. Then, the sec-
ondary colors are placed between the primaries, also in an equidistant arrangement. 
The net result is that hues directly opposite one another on the color circle are com-
plements. Our interest in complements stems from the fact that they are analogous 
to the grayscale negatives we studied in Section 3.2. As in the grayscale case, color 
complements are useful for enhancing detail that is embedded in dark regions of 
a color image—particularly when the regions are dominant in size. The following 
example illustrates some of these concepts.

Green Yellow

Red

MagentaBlue

Cyan
Complements

FIGURE 6.30
Color  
complements on 
the color circle.
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EXAMPLE 6.7 :  Computing color image complements.

Figures 6.31(a) and (c) show the full-color image from Fig. 6.28 and its color complement. The RGB 
transformations used to compute the complement are plotted in Fig. 6.31(b). They are identical to the 
grayscale negative transformation defined in Section 3.2. Note that the complement is reminiscent of 
conventional photographic color film negatives. Reds of the original image are replaced by cyans in the 
complement. When the original image is black, the complement is white, and so on. Each of the hues in 
the complement image can be predicted from the original image using the color circle of Fig. 6.30, and 
each of the RGB component transforms involved in the computation of the complement is a function 
of only the corresponding input color component.

Unlike the intensity transformations of Fig. 6.29, the RGB complement transformation functions 
used in this example do not have a straightforward HSI equivalent. It is left as an exercise (see Prob-
lem 6.19) to show that the saturation component of the complement cannot be computed from the satu-
ration component of the input image alone. Figure 6.31(d) shows an approximation of the complement 
using the hue, saturation, and intensity transformations in Fig. 6.31(b). The saturation component of the 
input image is unaltered; it is responsible for the visual differences between Figs. 6.31(c) and (d).
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FIGURE 6.31
Color  
complement 
transformations. 
(a) Original 
image.  
(b) Complement 
transformation 
functions.  
(c) Complement 
of (a) based on 
the RGB mapping 
functions. (d) An 
approximation of 
the RGB  
complement using 
HSI  
transformations.
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COLOR SLICING

Highlighting a specific range of colors in an image is useful for separating objects 
from their surroundings. The basic idea is either to: (1) display the colors of interest 
so that they stand out from the background; or (2) use the region defined by the 
colors as a mask for further processing. The most straightforward approach is to 
extend the intensity slicing techniques of Section 3.2. However, because a color pixel 
is an n-dimensional quantity, the resulting color transformation functions are more 
complicated than their grayscale counterparts in Fig. 3.11. In fact, the required trans-
formations are more complex than the color component transforms considered thus 
far. This is because all practical color-slicing approaches require each pixel’s trans-
formed color components to be a function of all n original pixel’s color components.

One of the simplest ways to “slice” a color image is to map the colors outside 
some range of interest into a nonprominent neutral color. If the colors of interest 
are enclosed by a cube (or hypercube for n > 3) of width W and centered at a pro-
totypical (e.g., average) color with components a a an1 2, , , ,…( )  the necessary set of 
transformations are given by
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These transformations highlight the colors around the prototype by forcing all 
other colors to the midpoint of the reference color space (this is an arbitrarily cho-
sen neutral point). For the RGB color space, for example, a suitable neutral point 
is middle gray or color (0.5, 0.5, 0.5).

If a sphere is used to specify the colors of interest, Eq. (6-43) becomes
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…  (6-44)

Here, R0  is the radius of the enclosing sphere (or hypersphere for n > 3) and 
a a an1 2, , ,…( )  are the components of its center (i.e., the prototypical color). Other 

useful variations of Eqs. (6-43) and (6-44) include implementing multiple color pro-
totypes and reducing the intensity of the colors outside the region of interest—rath-
er than setting them to a neutral constant.

EXAMPLE 6.8 :  Color slicing.

Equations (6-43) and (6-44) can be used to separate the strawberries in Fig. 6.29(a) from their sepals, cup, 
bowl, and other background elements. Figures 6.32(a) and (b) show the results of using both transfor-
mations. In each case, a prototype red with RGB color coordinate (0.6863, 0.1608, 0.1922) was selected 
from the most prominent strawberry. Parameters W and R0  were chosen so that the highlighted region 
would not expand to other portions of the image. The actual values used, W = 0 2549.  and R0 0 1765= . , 
were determined interactively. Note that the sphere-based transformation of Eq. (6-44) performed 
slightly better, in the sense that it includes more of the strawberries’ red areas. A sphere of radius 0.1765 
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does not completely enclose a cube of width 0.2549, but it is not small enough to be completely enclosed 
by the cube either. In Section 6.7, and later in Chapter 10, you will learn more advanced techniques for 
using color and other multispectral information to extract objects from their background.

TONE AND COLOR CORRECTIONS

Problems involving an image’s tonal range need to be corrected before color irregu-
larities, such as over- and under-saturated colors, can be resolved, The tonal range of 
an image, also called its key type, refers to its general distribution of color intensities. 
Most of the information in high-key images is concentrated at high (or light) intensi-
ties; the colors of low-key images are located predominantly at low intensities; and 
middle-key images lie in between. As in the grayscale case, it is often desirable to 
distribute the intensities of a color image equally between the highlights and the 
shadows. The following examples illustrate a variety of color transformations for the 
correction of tonal and color imbalances.

EXAMPLE 6.9 :  Tonal transformations.

Transformations for modifying image tones normally are selected interactively. The idea is to adjust 
experimentally the image’s brightness and contrast to provide maximum detail over a suitable range of 
intensities. The colors themselves are not changed. In the RGB and CMY(K) spaces, this means map-
ping all the color components, except K, with the same transformation function (see Fig. 6.29); in the 
HSI color space, only the intensity component is modified, as noted in the previous section.

Figure 6.33 shows typical RGB transformations used for correcting three common tonal imbalances—
flat, light, and dark images. The S-shaped curve in the first row of the figure is ideal for boosting contrast 

ba

FIGURE 6.32 Color-slicing transformations that detect (a) reds within an RGB cube of width 
W = 0 2549.  centered at (0.6863, 0.1608, 0.1922), and (b) reds within an RGB sphere of radius 
0.1765 centered at the same point. Pixels outside the cube and sphere were replaced by color 
(0.5, 0.5, 0.5).
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FIGURE 6.33  Tonal corrections for flat, light (high key), and dark (low key) color images. Adjusting the red, green, and 
blue components equally does not always alter the image hues significantly.
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[see Fig. 3.2(a)]. Its midpoint is anchored so that highlight and shadow areas can be lightened and dark-
ened, respectively. (The inverse of this curve can be used to correct excessive contrast.) The transforma-
tions in the second and third rows of the figure correct light and dark images, and are reminiscent of 
the power-law transformations in Fig. 3.6. Although the color components are discrete, as are the actual 
transformation functions, the transformation functions themselves are displayed and manipulated as 
continuous quantities—typically constructed from piecewise linear or higher order (for smoother map-
pings) polynomials. Note that the keys of the images in Fig. 6.33 are visually evident; they could also be 
determined using the histograms of the images’ color components.

EXAMPLE 6.10 :  Color balancing.

Any color imbalances are addressed after the tonal characteristics of an image have been corrected. 
Although color imbalances can be determined directly by analyzing a known color in an image with 
a color spectrometer, accurate visual assessments are possible when white areas, where the RGB or 
CMY(K) components should be equal, are present. As Fig. 6.34 shows, skin tones are excellent subjects 
for visual color assessments because humans are highly perceptive of proper skin color. Vivid colors, 
such as bright red objects, are of little value when it comes to visual color assessment.

There are a variety of ways to correct color imbalances. When adjusting the color components of an 
image, it is important to realize that every action affects its overall color balance. That is, the perception 
of one color is affected by its surrounding colors. The color wheel of Fig. 6.30 can be used to predict 
how one color component will affect others. Based on the color wheel, for example, the proportion of 
any color can be increased by decreasing the amount of the opposite (or complementary) color in the 
image. Similarly, it can be increased by raising the proportion of the two immediately adjacent colors 
or decreasing the percentage of the two colors adjacent to the complement. Suppose, for instance, that 
there is too much magenta in an RGB image. It can be decreased: (1) by removing both red and blue, or 
(2) by adding green.

Figure 6.34 shows the transformations used to correct simple CMYK output imbalances. Note that 
the transformations depicted are the functions required for correcting the images; the inverses of these 
functions were used to generate the associated color imbalances. Together, the images are analogous to 
a color ring-around print of a darkroom environment and are useful as a reference tool for identifying 
color printing problems. Note, for example, that too much red can be due to excessive magenta (per the 
bottom left image) or too little cyan (as shown in the rightmost image of the second row).

HISTOGRAM PROCESSING OF COLOR IMAGES
Unlike the interactive enhancement approaches of the previous section, the gray-
level histogram processing transformations of Section 3.3 can be applied to color 
images in an automated way. Recall that histogram equalization automatically 
determines a transformation that seeks to produce an image with a uniform histo-
gram of intensity values. We showed in Section 3.3 that histogram processing can be 
quite successful at handling low-, high-, and middle-key images (for example, see 
Fig. 3.20). As you might suspect, it is generally unwise to histogram equalize the 
component images of a color image independently. This results in erroneous color. A 
more logical approach is to spread the color intensities uniformly, leaving the colors 
themselves (e.g., hues) unchanged. The following example shows that the HSI color 
space is ideally suited to this type of approach.
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FIGURE 6.34 Color balancing a CMYK image.
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EXAMPLE 6.11 :  Histogram equalization in the HSI color space.

Figure 6.35(a) shows a color image of a caster stand containing cruets and shakers whose intensity com-
ponent spans the entire (normalized) range of possible values, [0, 1]. As can be seen in the histogram of 
its intensity component prior to processing [see Fig. 6.35(b)], the image contains a large number of dark 
colors that reduce the median intensity to 0.36. Histogram equalizing the intensity component, without 
altering the hue and saturation, resulted in the image shown in Fig. 6.35(c). Note that the overall image 
is significantly brighter, and that several moldings and the grain of the wooden table on which the caster 
is sitting are now visible. Figure 6.35(b) shows the intensity histogram of the new image, as well as the 
intensity transformation used to equalize the intensity component [see Eq. (3-15)].

Although intensity equalization did not alter the values of hue and saturation of the image, it did 
impact the overall color perception. Note, in particular, the loss of vibrancy in the oil and vinegar in the 
cruets. Figure 6.35(d) shows the result of partially correcting this by increasing the image’s saturation 
component, subsequent to histogram equalization, using the transformation in Fig. 6.35(b). This type of 
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0.5

1
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1

0 1

Histogram after processing
(median � 0.5)

Histogram before processing
(median � 0.36)
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FIGURE 6.35
Histogram  
equalization  
(followed by 
saturation  
adjustment) in the 
HSI color space.

DIP4E_GLOBAL_Print_Ready.indb   441 6/16/2017   2:08:42 PM



442    Chapter 6  Color Image Processing

adjustment is common when working with the intensity component in HSI space because changes in 
intensity usually affect the relative appearance of colors in an image.

6.6 COLOR IMAGE SMOOTHING AND SHARPENING  

The next step beyond transforming each pixel of a color image without regard to its 
neighbors (as in the previous section) is to modify its value based on the character-
istics of the surrounding pixels. In this section, the basics of this type of neighbor-
hood processing will be illustrated within the context of color image smoothing and 
sharpening.

COLOR IMAGE SMOOTHING

With reference to Fig. 6.27(a) and the discussion in Sections 3.4 and 3.5, grayscale 
image smoothing can be viewed as a spatial filtering operation in which the coef-
ficients of the filtering kernel have the same value. As the kernel is slid across the 
image to be smoothed, each pixel is replaced by the average of the pixels in the 
neighborhood encompassed by the kernel. As Fig. 6.27(b) shows, this concept is eas-
ily extended to the processing of full-color images. The principal difference is that 
instead of scalar intensity values, we must deal with component vectors of the form 
given in Eq. (6-37).

Let Sxy  denote the set of coordinates defining a neighborhood centered at ( , )x y  
in an RGB color image. The average of the RGB component vectors in this neigh-
borhood is

 c x y
K

s t
s t Sxy

, ,
,

( ) = ( )
( )∈

∑1 c  (6-45)

It follows from Eq. (6-37) and the properties of vector addition that
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 (6-46)

We recognize the components of this vector as the scalar images that would be 
obtained by independently smoothing each plane of the original RGB image using 
conventional grayscale neighborhood processing. Thus, we conclude that smoothing 
by neighborhood averaging can be carried out on a per-color-plane basis. The result 
is the same as when the averaging is performed using RGB color vectors.

6.6
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EXAMPLE 6.12 :  Color image smoothing by neighborhood averaging.

Consider the RGB color image in Fig. 6.36(a). Its three component images are shown in Figs. 6.36(b) 
through (d). Figures 6.37(a) through (c) show the HSI components of the image. Based on the discus-
sion in the previous paragraph, we smoothed each component image of the RGB image in Fig. 6.36 
independently using a 5 5×  averaging kernel. We then combined the individually smoothed images 
to form the smoothed, full-color RGB result in Fig. 6.38(a). Note that this image appears as we would 
expect from performing a spatial smoothing operation, as in the examples given in Section 3.5.

In Section 6.2, we mentioned that an important advantage of the HSI color model is that it decouples 
intensity and color information. This makes it suitable for many grayscale processing techniques and 
suggests that it might be more efficient to smooth only the intensity component of the HSI repre-
sentation in Fig. 6.37. To illustrate the merits and/or consequences of this approach, we next smooth 
only the intensity component (leaving the hue and saturation components unmodified) and convert the 
processed result to an RGB image for display. The smoothed color image is shown in Fig. 6.38(b). Note 

ba
dc

FIGURE 6.36
(a) RGB image. 
(b) Red  
component image.  
(c)Green  
component.  
(d) Blue  
component.
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ba c

FIGURE 6.38 Image smoothing with a 5 5×  averaging kernel. (a) Result of processing each RGB component image. 
(b) Result of processing the intensity component of the HSI image and converting to RGB. (c) Difference between 
the two results.  

ba c

FIGURE 6.37 HSI components of the RGB color image in Fig. 6.36(a). (a) Hue. (b) Saturation. (c) Intensity.

that it is similar to Fig. 6.38(a), but, as you can see from the difference image in Fig. 6.38(c), the two 
smoothed images are not identical. This is because in Fig. 6.38(a) the color of each pixel is the average 
color of the pixels in the neighborhood. On the other hand, by smoothing only the intensity component 
image in Fig. 6.38(b), the hue and saturation of each pixel was not affected and, therefore, the pixel 
colors did not change. It follows from this observation that the difference between the two smoothing 
approaches would become more pronounced as a function of increasing kernel size.

COLOR IMAGE SHARPENING

In this section we consider image sharpening using the Laplacian (see Section 3.6). 
From vector analysis, we know that the Laplacian of a vector is defined as a vector 
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whose components are equal to the Laplacian of the individual scalar components 
of the input vector. In the RGB color system, the Laplacian of vector c in Eq. (6-37) 
is

 ∇ ( )⎡⎣ ⎤⎦ =
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which, as in the previous section, tells us that we can compute the Laplacian of a 
full-color image by computing the Laplacian of each component image separately.

EXAMPLE 6.13 :  Image sharpening using the Laplacian.

Figure 6.39(a) was obtained using Eq. (3-54) and the kernel in Fig. 3.45(c) to compute the Laplacians of 
the RGB component images in Fig. 6.36. These results were combined to produce the sharpened full-
color result. Figure 6.39(b) shows a similarly sharpened image based on the HSI components in Fig. 6.37. 
This result was generated by combining the Laplacian of the intensity component with the unchanged 
hue and saturation components. The difference between the RGB and HSI sharpened images is shown 
in Fig. 6.39(c). The reason for the discrepancies between the two images is as in Example 6.12.

6.7 USING COLOR IN IMAGE SEGMENTATION  

Segmentation is a process that partitions an image into regions. Although segmenta-
tion is the topic of Chapters 10 and 11, we consider color segmentation briefly here 
for the sake of continuity. You will have no difficulty following the discussion.

6.7

ba c

FIGURE 6.39 Image sharpening using the Laplacian. (a) Result of processing each RGB channel. (b) Result of process-
ing the HSI intensity component and converting to RGB. (c) Difference between the two results.
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SEGMENTATION IN HSI COLOR SPACE

If we wish to segment an image based on color and, in addition, we want to carry out 
the process on individual planes, it is natural to think first of the HSI space because 
color is conveniently represented in the hue image. Typically, saturation is used as a 
masking image in order to isolate further regions of interest in the hue image. The 
intensity image is used less frequently for segmentation of color images because it 
carries no color information. The following example is typical of how segmentation 
is performed in the HSI color space.

EXAMPLE 6.14 :  Segmenting a color image in HSI color space.

Suppose that it is of interest to segment the reddish region in the lower left of the image in Fig. 6.40(a). 
Figures 6.40(b) through (d) are its HSI component images. Note by comparing Figs. 6.40(a) and (b) that 
the region in which we are interested has relatively high values of hue, indicating that the colors are on 
the blue-magenta side of red (see Fig. 6.11). Figure 6.40(e) shows a binary mask generated by threshold-
ing the saturation image with a threshold equal to 10% of the maximum value in that image. Any pixel 
value greater than the threshold was set to 1 (white). All others were set to 0 (black).

Figure 6.40(f) is the product of the mask with the hue image, and Fig. 6.40(g) is the histogram of the 
product image (note that the grayscale is in the range [0, 1]). We see in the histogram that high values 
(which are the values of interest) are grouped at the very high end of the grayscale, near 1.0. The result 
of thresholding the product image with threshold value of 0.9 resulted in the binary image in Fig. 6.40(h). 
The spatial location of the white points in this image identifies the points in the original image that 
have the reddish hue of interest. This was far from a perfect segmentation because there are points in 
the original image that we certainly would say have a reddish hue, but that were not identified by this 
segmentation method. However, it can be determined by experimentation that the regions shown in 
white in Fig. 6.40(h) are about the best this method can do in identifying the reddish components of the 
original image. The segmentation method discussed in the following section is capable of yielding better 
results.

SEGMENTATION IN RGB SPACE

Although working in HSI space is more intuitive in the sense of colors being repre-
sented in a more familiar format, segmentation is one area in which better results 
generally are obtained by using RGB color vectors (see Fig. 6.7). The approach is 
straightforward. Suppose that the objective is to segment objects of a specified color 
range in an RGB image. Given a set of sample color points representative of the col-
ors of interest, we obtain an estimate of the “average” color that we wish to segment. 
Let this average color be denoted by the RGB vector a. The objective of segmenta-
tion is to classify each RGB pixel in a given image as having a color in the specified 
range or not. In order to perform this comparison, it is necessary to have a measure 
of similarity. One of the simplest measures is the Euclidean distance. Let z denote 
an arbitrary point in RGB space. We say that z is similar to a if the distance between 
them is less than a specified threshold, D0. The Euclidean distance between z and a 
is given by
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FIGURE 6.40 Image segmentation in HSI space. (a) Original. (b) Hue. (c) Saturation.  
(d) Intensity. (e) Binary saturation mask (black = 0). (f) Product of (b) and (e). (g) His-
togram of (f). (h) Segmentation of red components from (a).
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where the subscripts R, G, and B denote the RGB components of vectors a and z. 
The locus of points such that D Dz a,( ) ≤ 0 is a solid sphere of radius D0 , as illustrated 
in Fig. 6.41(a). Points contained within the sphere satisfy the specified color crite-
rion; points outside the sphere do not. Coding these two sets of points in the image 
with, say, black and white, produces a binary segmented image.

A useful generalization of Eq. (6-48) is a distance measure of the form

 D Tz a z a C z a,( ) = −( ) −( )⎡
⎣

⎤
⎦

−1
1
2

 (6-49)

where C is the covariance matrix (see Section 11.5) of the samples chosen to be 
representative of the color range we wish to segment. The locus of points such that 
D Dz a,( ) ≤ 0 describes a solid 3-D elliptical body [Fig. 6.41(b)] with the important 
property that its principal axes are oriented in the direction of maximum data spread. 
When C I= ,  the 3 3×  identity matrix, Eq. (6-49) reduces to Eq. (6-48). Segmenta-
tion is as described in the preceding paragraph.

Because distances are positive and monotonic, we can work with the distance 
squared instead, thus avoiding square root computations. However, implementing 
Eq. (6-48) or (6-49) is computationally expensive for images of practical size, even 
if the square roots are not computed. A compromise is to use a bounding box, as 
illustrated in Fig. 6.41(c). In this approach, the box is centered on a, and its dimen-
sions along each of the color axes is chosen proportional to the standard deviation 
of the samples along each of the axis. We use the sample data to compute the stan-
dard deviations, which are the parameters used for segmentation with this approach. 
Given an arbitrary color point, we segment it by determining whether or not it is on 
the surface or inside the box, as with the distance formulations. However, determin-
ing whether a color point is inside or outside a box is much simpler computationally 

This equation is called 
the Mahalanobis dis-
tance. You are seeing it 
used here for multivariate 
thresholding (see  
Section 10.3 regarding 
thresholding). 
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FIGURE 6.41
Three approaches 
for enclosing data 
regions for RGB 
vector  
segmentation.
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when compared to a spherical or elliptical enclosure. Note that the preceding discus-
sion is a generalization of the color-slicing method introduced in Section 6.5.

EXAMPLE 6.15 :  Color segmentation in RGB color space.

The rectangular region shown Fig. 6.42(a) contains samples of reddish colors we wish to segment out 
of the color image. This is the same problem we considered in Example 6.14 using hue, but now we 
approach the problem using RGB color vectors. The approach followed was to compute the mean vec-
tor a using the color points contained within the rectangle in Fig. 6.42(a), and then to compute the 
standard deviation of the red, green, and blue values of those samples. A box was centered at a, and its 
dimensions along each of the RGB axes were selected as 1.25 times the standard deviation of the data 
along the corresponding axis. For example, let sR  denote the standard deviation of the red components 

b
a

FIGURE 6.42
Segmentation in 
RGB space.  
(a) Original image 
with colors of 
interest shown 
enclosed by a 
rectangle.  
(b) Result of 
segmentation 
in RGB vector 
space. Compare 
with Fig. 6.40(h).
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of the sample points. Then the dimensions of the box along the R-axis extended from aR R−( )1 25. s  to 
aR R+( )1 25. ,s  where aR  is the red component of average vector a. Figure 6.42(b) shows the result of 

coding each point in the color image as white if it was on the surface or inside the box, and as black 
otherwise. Note how the segmented region was generalized from the color samples enclosed by the 
rectangle. In fact, by comparing Figs. 6.42(b) and 6.40(h), we see that segmentation in the RGB vector 
space yielded results that are much more accurate, in the sense that they correspond much more closely 
with what we would define as “reddish” points in the original color image. This result is not unexpected, 
because in the RGB space we used three color variables, as opposed to just one in the HSI space. 

COLOR EDGE DETECTION

As we will discuss in Section 10.2, edge detection is an important tool for image 
segmentation. In this section, we are interested in the issue of computing edges on 
individual component images, as opposed to computing edges directly in color vec-
tor space. 

We introduced edge detection by gradient operators in Section 3.6, when discuss-
ing image sharpening. Unfortunately, the gradient discussed there is not defined for 
vector quantities. Thus, we know immediately that computing the gradient on indi-
vidual images and then using the results to form a color image will lead to erroneous 
results. A simple example will help illustrate the reason why.

Consider the two M M×  color images (M odd) in Figs. 6.43(d) and (h), com-
posed of the three component images in Figs. 6.43(a) through (c) and (e) through (g),  
respectively. If, for example, we compute the gradient image of each of the com-
ponent images using Eq. (3-58), then add the results to form the two correspond-
ing RGB gradient images, the value of the gradient at point ( ) , ( )M M+ +[ ]1 2 1 2  
would be the same in both cases. Intuitively, we would expect the gradient at that 
point to be stronger for the image in Fig. 6.43(d) because the edges of the R, G, 
and B images are in the same direction in that image, as opposed to the image 
in Fig. 6.43(h), in which only two of the edges are in the same direction. Thus we 
see from this simple example that processing the three individual planes to form 
a composite gradient image can yield erroneous results. If the problem is one of 
just detecting edges, then the individual-component approach can yield acceptable 
results. If accuracy is an issue, however, then obviously we need a new definition of 
the gradient applicable to vector quantities. We discuss next a method proposed by 
Di Zenzo [1986] for doing this.

The problem at hand is to define the gradient (magnitude and direction) of the 
vector c in Eq. (6-37) at any point ( , ).x y  As we just mentioned, the gradient we 
studied in Section 3.6 is applicable to a scalar function f x y( , ); it is not applicable 
to vector functions. The following is one of the various ways in which we can extend 
the concept of a gradient to vector functions. Recall that for a scalar function f x y( , ), 
the gradient is a vector pointing in the direction of maximum rate of change of f at 
coordinates ( , ).x y

Let r, g, and b be unit vectors along the R, G, and B axis of RGB color space (see 
Fig. 6.7), and define the vectors
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Let the quantities gxx , gyy , and gxy be defined in terms of the dot product of these 
vectors, as follows:
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FIGURE 6.43 (a)–(c) R, G, and B component images, and (d) resulting RGB color image. (e)–(g) R, G, and B compo-
nent images, and (h) resulting RGB color image.
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Keep in mind that R, G, and B, and consequently the g’s, are functions of x and y. 
Using this notation, it can be shown (Di Zenzo [1986]) that the direction of maxi-
mum rate of change of c( , )x y  is given by the angle

 u x y
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g g
xy

xx yy
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and that the value of the rate of change at ( , )x y  in the direction of u( , )x y  is given by
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Because tan tan ,a a p( ) = ±( )  if u0 is a solution to Eq. (6-55), so is u p0 2± . Fur-
thermore, F Fu u p= + , so F has to be computed only for values of u in the half-open 
interval [ , ).0 p  The fact that Eq. (6-55) gives two values 90° apart means that this 
equation associates with each point ( , )x y  a pair of orthogonal directions. Along one 
of those directions F is maximum, and it is minimum along the other. The deriva-
tion of these results is rather lengthy, and we would gain little in terms of the fun-
damental objective of our current discussion by detailing it here. Consult the paper 
by Di Zenzo [1986] for details. The Sobel operators discussed in Section 3.6 can 
be used to compute the partial derivatives required for implementing Eqs. (6-52)  
through (6-54).

EXAMPLE 6.16 :  Edge detection in RGB vector space.

Figure 6.44(b) is the gradient of the image in Fig. 6.44(a), obtained using the vector method just dis-
cussed. Figure 6.44(c) shows the image obtained by computing the gradient of each RGB component 
image and forming a composite gradient image by adding the corresponding values of the three com-
ponent images at each coordinate ( , ).x y  The edge detail of the vector gradient image is more complete 
than the detail in the individual-plane gradient image in Fig. 6.44(c); for example, see the detail around 
the subject’s right eye. The image in Fig. 6.44(d) shows the difference between the two gradient images 
at each point ( , ).x y  It is important to note that both approaches yielded reasonable results. Whether 
the extra detail in Fig. 6.44(b) is worth the added computational burden over the Sobel operator com-
putations can only be determined by the requirements of a given problem. Figure 6.45 shows the three 
component gradient images, which, when added and scaled, were used to obtain Fig. 6.44(c).

6.8 NOISE IN COLOR IMAGES  

The noise models discussed in Section 5.2 are applicable to color images. Usually, the 
noise content of a color image has the same characteristics in each color channel, but 
it is possible for color channels to be affected differently by noise. One possibility is 
for the electronics of a particular channel to malfunction. However, different noise 
levels are more likely caused by differences in the relative strength of illumination 
available to each of the color channels. For example, use of a red filter in a CCD 
camera will reduce the strength of illumination detected by the red sensing elements. 
CCD sensors are noisier at lower levels of illumination, so the resulting red com-

6.8
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FIGURE 6.44
(a) RGB image. 
(b) Gradient 
computed in RGB 
color vector space. 
(c) Gradient 
image formed by 
the elementwise 
sum of three 
individual  
gradient images, 
each computed 
using the Sobel 
operators.  
(d) Difference 
between (b) and 
(c).

ba c

FIGURE 6.45 Component gradient images of the color image in Fig. 6.44. (a) Red component, (b) green component, 
and (c) blue component. These three images were added and scaled to produce the image in Fig. 6.44(c).
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454    Chapter 6  Color Image Processing

ponent of an RGB image would tend to be noisier than the other two component 
images in this situation.

EXAMPLE 6.17 :  Illustration of the effects of noise when converting noisy RGB images to HSI.

In this example, we take a brief look at noise in color images and how noise carries over when convert-
ing from one color model to another. Figures 6.46(a) through (c) show the three color planes of an RGB 
image corrupted by additive Gaussian noise, and Fig. 6.46(d) is the composite RGB image. Note that 
fine grain noise such as this tends to be less visually noticeable in a color image than it is in a grayscale 
image. Figures 6.47(a) through (c) show the result of converting the RGB image in Fig. 6.46(d) to HSI. 
Compare these results with the HSI components of the original image (see Fig. 6.37) and note how sig-
nificantly degraded the hue and saturation components of the noisy image are. This was caused by the 
nonlinearity of the cos and min operations in Eqs. (6-17) and (6-18), respectively. On the other hand, 
the intensity component in Fig. 6.47(c) is slightly smoother than any of the three noisy RGB component 
images. This is because the intensity image is the average of the RGB images, as indicated in Eq. (6-19). 
(Recall the discussion in Section 2.6 regarding the fact that image averaging reduces random noise.)

ba
dc

FIGURE 6.46
(a)–(c) Red, 
green, and blue 
8-bit component  
images  
corrupted by 
additive  
Gaussian noise of 
mean 0 and stan-
dard deviation of 
28 intensity levels.  
(d) Resulting 
RGB image. 
[Compare (d) 
with Fig. 6.44(a).]
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In cases when, say, only one RGB channel is affected by noise, conversion to HSI spreads the noise to 
all HSI component images. Figure 6.48 shows an example. Figure 6.48(a) shows an RGB image whose 
green component image is corrupted by salt-and-pepper noise, with a probability of either salt or pepper 
equal to 0.05. The HSI component images in Figs. 6.48(b) through (d) show clearly how the noise spread 
from the green RGB channel to all the HSI images. Of course, this is not unexpected because computa-
tion of the HSI components makes use of all RGB components, as discussed in Section 6.2.

As is true of the processes we have discussed thus far, filtering of full-color images 
can be carried out on a per-image basis, or directly in color vector space, depending 
on the process. For example, noise reduction by using an averaging filter is the pro-
cess discussed in Section 6.6, which we know gives the same result in vector space as 
it does if the component images are processed independently. However, other filters 
cannot be formulated in this manner. Examples include the class of order statistics 
filters discussed in Section 5.3. For instance, to implement a median filter in color 
vector space it is necessary to find a scheme for ordering vectors in a way that the 
median makes sense. While this was a simple process when dealing with scalars, the 
process is considerably more complex when dealing with vectors. A discussion of 
vector ordering is beyond the scope of our discussion here, but the book by Platani-
otis and Venetsanopoulos [2000] is a good reference on vector ordering and some of 
the filters based on the concept of ordering.

6.9 COLOR IMAGE COMPRESSION  

Because the number of bits required to represent color is typically three to four 
times greater than the number employed in the representation of gray levels, data 
compression plays a central role in the storage and transmission of color images. 
With respect to the RGB, CMY(K), and HSI images of the previous sections, the 
data that are the object of any compression are the components of each color pixel 
(e.g., the red, green, and blue components of the pixels in an RGB image); they are 

6.9

ba c

FIGURE 6.47 HSI components of the noisy color image in Fig. 6.46(d). (a) Hue. (b) Saturation. (c) Intensity.
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the means by which the color information is conveyed. Compression is the process 
of reducing or eliminating redundant and/or irrelevant data. Although compression 
is the topic of Chapter 8, we illustrate the concept briefly in the following example 
using a color image.

EXAMPLE 6.18 :  An example of color image compression.

Figure 6.49(a) shows a 24-bit RGB full-color image of an iris, in which 8 bits each are used to represent 
the red, green, and blue components. Figure 6.49(b) was reconstructed from a compressed version of the 
image in (a) and is, in fact, a compressed and subsequently decompressed approximation of it. Although 
the compressed image is not directly displayable—it must be decompressed before input to a color 
monitor—the compressed image contains only 1 data bit (and thus 1 storage bit) for every 230 bits of 
data in the original image (you will learn about the origin of these numbers in Chapter 8). Suppose that 
the image is of size 2000 × 3000 = 6 106⋅  pixels. The image is 24 bits/pixel, so it storage size is 144 106⋅  bits. 

ba
dc

FIGURE 6.48
(a) RGB image 
with green plane 
corrupted by salt-
and-pepper noise. 
(b) Hue  
component of 
HSI image.  
(c) Saturation 
component.  
(d) Intensity  
component.
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FIGURE 6.49
Color image  
compression.  
(a) Original RGB 
image.  
(b) Result of  
compressing, then  
decompressing 
the image in (a).

Suppose that you are sitting at an airport waiting for your flight, and want to upload 100 such images 
using the airport’s public WiFi connection. At a (relatively high) upload speed of 10 106⋅  bits/sec, it 
would take you about 24 min to upload your images. In contrast, the compressed images would take 
about 6 sec to upload. Of course, the transmitted data would have to be decompressed at the other end 
for viewing, but the decompression can be done in a matter of seconds. Note that the reconstructed 
approximation image is slightly blurred. This is a characteristic of many lossy compression techniques; it 
can be reduced or eliminated by changing the level of compression. The JPEG 2000 compression algo-
rithm used to generate Fig. 6.49(b) is described in detail in Section 8.2.
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Problems  
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book 
website: www.ImageProcessingPlace.com).

6.1 Give the percentages of red (X), green (Y), and 
blue (Z) light required to generate the point labeled 

“warm white” in Fig. 6.5.

6.2 * Consider any two valid colors c1 and c2  with coor-
dinates ( , )x y1 1  and ( , )x y2 2  in the chromaticity 
diagram of Fig. 6.5. Derive the necessary general 
expression(s) for computing the relative percent-
ages of colors c1 and c2  composing any color that 
is known to lie on the straight line joining these two 
colors.

6.3 Consider any three valid colors c1, c2 ,  and c3  with 
coordinates ( , ),x y1 1  ( , ),x y2 2  and ( , ),x y3 3  in the 

chromaticity diagram of Fig. 6.5. Derive the nec-
essary general expression(s) for computing the 
relative percentages of c1, c2 ,  and c3  composing a 
color that is known to lie within the triangle whose 
vertices are at the coordinates of c1, c2 ,  and c3.

6.4 * In an automated assembly application, three types 
of parts are to be color-coded to simplify detection. 
However, only a monochrome TV camera is avail-
able to acquire digital images. Propose a technique 
for using this camera to detect the three different 
colors.

Summary, References, and Further Reading  
The material in this chapter is an introduction to color image processing and covers topics selected to provide a 
solid background in the techniques used in this branch of image processing. Our treatment of color fundamentals 
and color models was prepared as foundation material for a field that is wide in technical scope and areas of applica-
tion. In particular, we focused on color models that we felt are not only useful in digital image processing but pro-
vide also the tools necessary for further study in this area of image processing. The discussion of pseudocolor and 
full-color processing on an individual image basis provides a tie to techniques that were covered in some detail in 
Chapters 3 through 5. The material on color vector spaces is a departure from methods that we had studied before 
and highlights some important differences between grayscale and full-color processing. Our treatment of noise in 
color images also points out that the vector nature of the problem, along with the fact that color images are rou-
tinely transformed from one working space to another, has implications on the issue of how to reduce noise in these 
images. In some cases, noise filtering can be done on a per-image basis, but others, such as median filtering, require 
special treatment to reflect the fact that color pixels are vector quantities, as mentioned earlier. Although segmenta-
tion is the topic of Chapters 10 and 11, and image data compression is the topic of Chapter 8, we introduced them 
briefly in the context of color image processing. 

For a comprehensive reference on the science of color, see Malacara [2011]. Regarding the physiology of color, 
see Snowden et al. [2012]. These two references, together with the book by Kuehni [2012], provide ample supple-
mentary material for the discussion in Section 6.1. For further reading on color models (Section 6.2), see Fortner 
and Meyer [1997], Poynton [1996], and Fairchild [1998]. For a detailed derivation of the equations for the HSI 
model see the paper by Smith [1978] or consult the book website. The topic of pseudocolor (Section 6.3) is closely 
tied to the general area of image data visualization. Wolff and Yaeger [1993] is a good basic reference on the use of 
pseudocolor. See also Telea [2008]. For additional reading on the material in Sections 6.4 and 6.5, see Plataniotis and 
Venetsanopoulos [2000]. The material on color image filtering (Section 6.6) is based on the vector formulation intro-
duced in Section 6.4 and on our discussion of spatial filtering in Chapter 3. The area of color image segmentation 
(Section 6.7) is of significant current interest. For an overview of current trends in this field see the survey by Van-
taram and Saber [2012]. For more advanced color image processing techniques than those discussed in this chapter 
see Fernandez-Maloigne [2012]. The discussion in Section 6.8 is based on the noise models introduced in Section 5.2. 
References on color image compression (Section 6.9) are listed at the end of Chapter 8. For details of software 
implementation of many of the techniques discussed in this chapter, see Gonzalez, Woods, and Eddins [2009].
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6.5 The R, G, and B component images of an RGB 
image have the horizontal intensity profiles shown 
in the following diagram. What color would a per-
son see in the middle column of this image?
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6.6 * Sketch the RGB components of the following 
image as they would appear on a monochrome 
monitor. All colors are at maximum intensity and 
saturation. In working this problem, consider the 
gray border as part of the image.

B
la

ck

R
ed

Y
el

lo
w

G
re

en

C
ya

n

B
lu

e

M
ag

en
ta

W
hi

te

Gray (50% Black)

6.7 What is the maximum number of possible differ-
ent shades of gray in an RGB image whose three 
component images are 8-bit images?

6.8 Consider the RGB cube in Fig. 6.8 and answer 
each of the following questions.

(a) * Describe how the gray levels vary in each of 
the R, G, and B primary images that make 
up the front face of the color cube (this is the 
face closer to you). Assume that each com-
ponent image is an 8-bit image.

(b) Suppose that we replace every color in the 

RGB cube by its CMY color. This new cube 
is displayed on an RGB monitor. Label with 
a color name the eight vertices of the new 
cube that you would see on the screen.

(c) What can you say about the colors on the 
edges of the RGB color cube regarding satu-
ration?

6.9 Do the following.

(a) * Sketch the CMY components of the image 
in Problem 6.6 as they would appear on a 
monochrome monitor.

(b) If the CMY components sketched in (a) are 
fed into the red, green, and blue inputs of 
a color monitor, respectively, describe the 
appearance of the resulting image.

6.10 * Sketch the HSI components of the image in 
Problem 6.6 as they would appear on a mono-
chrome monitor.

6.11 Propose a method for generating a color band 
similar to the one shown in the zoomed section 
entitled Visible Spectrum in Fig. 6.2. Note that the 
band starts at a dark purple on the left and pro-
ceeds toward pure red on the right. (Hint: Use 
the HSI color model.)

6.12 * Propose a method for generating a color ver-
sion of the image shown diagrammatically in 
Fig. 6.11(c). Give your answer in the form of a 
flow chart. Assume that the intensity value is 
fixed and given. (Hint: Use the HSI color model.)

6.13 Consider the following image composed of solid 
color squares. For discussing your answer, choose 
a gray scale consisting of eight shades of gray, 0 
through 7, where 0 is black and 7 is white. Sup-
pose that the image is converted to HSI color 
space. In answering the following questions, use 
specific numbers for the gray shades if using 
numbers makes sense. Otherwise, the relation-
ships “same as,” “lighter than,” or “darker than” 
are sufficient. If you cannot assign a specific gray 
level or one of these relationships to the image 
you are discussing, give the reason.

(a) * Sketch the hue image.

(b) Sketch the saturation image.

(c) Sketch the intensity image.
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Black

Red Green Blue

Magenta Cyan Yellow

White

6.14 The following 8-bit images are the H, S, and I com-
ponent images from Fig. 6.14. The numbers indi-
cate gray-level values. Answer the following ques-
tions, explaining the basis for your answer in each. 
If it is not possible to answer a question based on 
the given information, state why you cannot do so.

(a) * Give the gray-level values of all regions in 
the hue image.

(b) Give the gray-level value of all regions in 
the saturation image.

(c) Give the gray-level values of all regions in 
the intensity image.

Hue Saturation

Intensity

6.15 * Compute the L a b* * * components of the image 
in Problem 6.6 assuming:
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Z
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This matrix equation defines the tristimulus 
values of the colors generated by the standard 
National Television System Committee (NTSC) 
color TV phosphors viewed under D65 standard 
illumination (Benson [1985]).

6.16 * Derive the CMY intensity mapping function 
of Eq. (6-41) from the RGB counterpart in 
Eq. (6-40). [Hint: Start with Eq. (6-5).]

6.17 Start with Eqs. (6-6)-(6-12) and derive Eq. (6-42). 
(Hint: The intensity of the CMYK image is 
changed by changing the K component only.)

6.18 Refer to Fig. 6.25 in answering the following:

(a) * Why does the image in Fig. 6.25(e) exhibit 
predominantly red tones?

(b) * Suggest an automated procedure for coding 
the water in Fig. 6.25 in a bright-blue color.

(c) Suggest an automated procedure for coding 
the predominantly man-made components 
in a bright yellow color. [Hint: Work with 
Fig. 6.25(e).]

6.19 * Show that the saturation component of the com-
plement of a color image cannot be computed 
from the saturation component of the input 
image alone.

6.20 Explain the shape of the hue transformation 
function for the image complement approxima-
tion in Fig. 6.31(b) using the HSI color model.

6.21 * Derive the CMY transformations to generate the 
complement of a color image.

6.22 Draw the general shape of the transformation 
functions used to correct excessive contrast in 
the RGB color space.

6.23 * Assume that the monitor and printer of an imag-
ing system are imperfectly calibrated. An image 
that looks balanced on the monitor appears yel-
lowish in print. Describe general transformations 
that might correct the imbalance. (Hints: Refer 
to the color wheel in Fig. 6.30 and the discussion 
of the L a b* * * color system in Section 6.2.)
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6.24 * Given an image in the RGB, CMY, or CMYK 
color system, how would you implement the col-
or equivalent of gray-scale histogram matching 
(specification) from Section 3.3?

6.25 Consider the following 500 500×  RGB image, in 
which the squares are fully saturated red, green, 
and blue, and each of the colors is at maximum 
intensity. An HSI image is generated from this 
image. Answer the following questions.

Green Red

Blue Green

(a) Describe the appearance of each HSI com-
ponent image.

(b) * The saturation component of the HSI image 
is smoothed using an averaging kernel of 
size 125 125× . Describe the appearance of 
the result. (You may ignore image border 
effects in the filtering operation.)

(c) Repeat (b) for the hue image.

6.26 Answer the following.

(a) * Refer to the discussion in Section 6.7 about 
segmentation in the RGB color space. Give 
a procedure (in flow chart form) for deter-

mining whether a color vector (point) z is 
inside a cube with sides W, centered at an 
average color vector a. Distance computa-
tions are not allowed.

(b) If the box is aligned with the axes this pro-
cess also can be implemented on an image-
by-image basis. Show how you would do it.

6.27 Show that Eq. (6-49) reduces to Eq. (6-48) when 
C I= , the identity matrix.

6.28 Sketch the surface in RGB space for the points 
that satisfy the equation

 D D
Tz,a z a C z a( ) = ( ) ( )⎡

⎣
⎤
⎦ =−− −1

0

1
2

where D0  is a positive constant. Assume that 
a 0= , and that

 C =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

8 0 0

0 1 0

0 0 1

6.29 Refer to the discussion on color edge detection 
in Section 6.7. One might think that a logical 
approach for defining the gradient of an RGB 
image at any point ( , )x y  would be to compute 
the gradient vector (see Section 3.6) of each com-
ponent image and then form a gradient vector for 
the color image by summing the three individual 
gradient vectors. Unfortunately, this method can 
at times yield erroneous results. Specifically, it is 
possible for a color image with clearly defined 
edges to have a zero gradient if this method were 
used. Give an example of such an image. (Hint: 
To simplify your analysis, set one of the color 
planes to a constant value.)
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463

7 Wavelet and Other Image 
Transforms

Preview
The discrete Fourier transform of Chapter 4 is a member of an important class of linear transforms that 
include the Hartley, sine, cosine, Walsh-Hadamard, Slant, Haar, and wavelet transforms. These trans-
forms, which are the subject of this chapter, decompose functions into weighted sums of orthogonal or 
biorthogonal basis functions, and can be studied using the tools of linear algebra and functional analysis. 
When approached from this point of view, images are vectors in the vector space of all images. Basis 
functions determine the nature and usefulness of image transforms. Transforms are the coefficients of 
linear expansions. And for a given image and transform (or set of basis functions), both the orthogo-
nality of the basis functions and the coefficients of the resulting transform are computed using inner 
products. All of an image’s transforms are equivalent in the sense that they contain the same informa-
tion and total energy. They are reversible and differ only in the way that the information and energy is 
distributed among the transform’s coefficients.

Upon competion of this chapter, readers should:
 Understand image transforms in the context 

of series expansions.

 Be familiar with a variety of important image 
transforms and transform basis functions.

 Know the difference between orthogonal and 
biorthogonal basis functions.

 Be able to construct the transformation 
matrices of the discrete Fourier, Hartley, 
sine, cosine, Walsh-Hadamard, Slant, and 
Haar transforms.

 Be able to compute traditional image trans-
forms, like the Fourier and Haar transforms, 
using elementary matrix operations.

 Understand the time-frequency plane and its 
relationship to wavelet transforms.

 Be able to compute 1-D and 2-D fast wavelet 
transforms (FWTs) using filter banks.

 Understand wavelet packet representations.

 Be familiar with the use of discrete orthogo-
nal transforms in image processing.

Do not conform any longer to the pattern of this world, but be  
transformed by the renewing of your mind.

Romans 12:2 
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7.1 PRELIMINARIES  

In linear algebra and functional analysis, a vector space (or more formally an abstract 
vector space) is a set of mathematical objects or entities, called vectors, that can be 
added together and multiplied by scalars. An inner product space is an abstract vec-
tor space over a field of numbers, together with an inner product function that maps 
two vectors of the vector space to a scalar of the number field such that 

(a) u v v u, , *=
(b) u v w u w v w+ +, , ,=
(c) a au v u v, ,=
(d) v v v v v, ,Ú 0 0 0 and  if and only if = =

where u, v, and w are vectors, a  is a scalar, and p  denotes the inner product opera-
tion. A simple example of a vector space is the set of directed line segments in two 
dimensions, where the line segments are represented mathematically as 2 1×  col-
umn vectors, and the addition of vectors is the arithmetic equivalent of combining 
the line segments in a head to tail manner. An example of an inner product space is 
the set of real numbers R combined with inner product function u v uv, ,=  where 
the “vectors” are real numbers, the inner product function is multiplication, and axi-
oms (a) through (d) above correspond to the commutative, distributive, associative, 
and “positivity of even powers” properties of multiplication, respectively.

Three inner product spaces are of particular interest in this chapter: 

1. Euclidean space RN over real number field R with dot or scalar inner product

 u v u v, = = + =− −
=
∑T

N N i i
i

N

u v u v u v u v0 0 1 1 1 1
0

1

+ +
−

…  (7-1)

where u and v are N × 1 column vectors.
2. Unitary space CN over complex number field C with inner product function

 u v u v v u, ,* * *= = =
=

−

∑T
i i

i

N

u v
0

1

 (7-2)

where * denotes the complex conjugate operation, and u and v are complex-
valued N × 1 column vectors.

3. Inner product space C([a, b]), where the vectors are continuous functions on the 
interval a x b≤ ≤  and the inner product function is the integral inner product

 f x g x f x g x dx
a

b

( ), ( ) ( ) ( )*= 2  (7-3)

In all three inner product spaces, the norm or length of vector z, denoted as z , is

 z z z= ,  (7-4)

7.1

Consult the Tutorials sec-
tion of the book website 
for a brief tutorial on 
vectors and matrices.

In Chapter 2, the inner 
product of two column  
vectors, u and v, is 
denoted u i v [see 
Eq. (2-50)]. In this 
chapter, u v,  is used to 
denote inner products 
within any inner product 
space satisfying condi-
tions (a)–(d), including 
the Euclidean inner 
product space and real-
valued column vectors of 
Chapter 2. 

Euclidean space RN is an 
infinite set containing all 
real N-tuples.

A complex vector space 
with an inner product is 
called a complex inner 
product space or unitary 
space.

The notation C[a, b} 
is also used in the 
literature.

Equations (7-4) through 
(7-15) are valid for all 
inner product spaces, 
including those defined 
by Eqs. (7-1) to (7-3).
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and the angle between two nonzero vectors z and w is

 u = cos
,−1 z w

z w
 (7-5)

If the norm of z is 1, z is said to be normalized. If z w, = 0 in Eq. (7-5), u = 90°  and 
z and w are said to be orthogonal. A natural consequence of these definitions is that 
a set of nonzero vectors w0, w1, w2, ... is mutually or pairwise orthogonal if and only if

 w w k lk l, = 0   for ≠  (7-6)

They are an orthogonal basis of the inner product space that they are said to span. If 
the basis vectors are normalized, they are an orthonormal basis and

 w w
k l

k lk l kl, = =
=

⎧
⎨
⎩

d
0

1

   for 

   for 

≠
 (7-7)

Similarly, a set of vectors w0, w1, w2, ...  and a complementary set of dual vectors 
w w w0 1 2
' ' ' p, , ,  are said to be biorthogonal and a biorthogonal basis of the vector 
space that they span if

 H Iw w k lk l
'

, = 0   for ≠  (7-8)

They are a biorthonormal basis if and only if

 H Iw w
k l

k lk l kl
'

, = =
≠
=

⎧
⎨
⎩

d
0

1

for 

for 
 (7-9)

As a mechanism for concisely describing an infinite set of vectors, the basis of 
an inner product space is one of the most useful concepts in linear algebra. The 
following derivation, which relies on the orthogonality of basis vectors, is founda-
tional to the matrix-based transforms of the next section. Let W w w w= { }0 1 2, , ,…  
be an orthogonal basis of inner product space V, and let z V∈ . Vector z can then be 
expressed as the following linear combination of basis vectors

 z w w w= + + +a a a0 0 1 1 2 2 …  (7-10)

whose inner product with basis vector wi is

 
w z w w w w

w w w w w w
i i

i i i i i

, ,

, , ,

= + + +
= + + + +

a a a

a a a

0 0 1 1 2 2

0 0 1 1

…
… …

 (7-11)

Since the wi are mutually orthogonal, the inner products on the right side of 
Eq. (7-11) are 0 unless the subscripts of the vectors whose inner products are being 

While you must always 
take the context into 
account, we generally 
use the word “vector” 
for vectors in an abstract 
sense. A vector can be 
an N * 1  matrix (i.e., 
column vector) or a 
continuous function.

Recall from linear 
algebra that a basis of a 
vector space is a set of 
linearly independent vec-
tors for which any vector 
in the space can be writ-
ten uniquely as a linear 
combination of basis 
vectors. The linear com-
binations are the span 
of the basis vectors. A 
set of vectors is linearly 
independent if no vector 
in the set can be written 
as a linear combination 
of the others.

While you must always 
take to the context into 
account, we often use 
the phrase “orthogonal 
basis” or “orthogonal 
transform” to refer to 
any basis or transform 
that is orthogonal, ortho-
normal, biorthogonal, or 
biorthonormal.
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466    Chapter 7  Wavelet and Other Image Transforms

computed match [see Eq. (7-7)]. Thus, the only nonzero term is ai i iw w, . Eliminat-
ing the zero terms and dividing both sides of the equation by w wi i,  gives

 ai
i

i i

w z

w w
=

,

,
 (7-12)

which reduces to

 ai iw z= ,  (7-13)

if the norms of the basis vectors are 1. A similar derivation, which is left as an exer-
cise for the reader, yields

 ai
i

i i

w z

w w
=
H I
H I

'
'

,

,
 (7-14)

and

 ai iw z= H I'
,  (7-15)

for biorthogonal and biorthonormal basis vectors, respectively. Note when a basis 
and its dual are identical, biorthogonality reduces to orthogonality.

EXAMPLE 7.1 :   Vector norms and angles.

The norm of vector f x x( ) cos=  of inner product space C 0 2, )p[ ]( )  is

 f x f x f x x dx x x( ) ( ), ( ) cos sin( )= =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= +
⎡

⎣
⎢
⎢

⎤

0

2
2

1
2

0

21
2

1
4

2
p p

2 ⎦⎦
⎥
⎥

=

1
2

p

The angle between vectors z = [ ]1 1 T  and w = [ ]1 0 T  of Euclidean inner product space R2 is

 u =
⎛

⎝⎜
⎞

⎠⎟
= ⎛

⎝⎜
⎞
⎠⎟

=cos
,

cos− − °1 1 1

2
45

z w

z w

These results follow from Eqs. (7-1), (7-3), (7-4) and (7-5).

7.2 MATRIX-BASED TRANSFORMS  

The 1-D discrete Fourier transform of Chapter 4 is one of a class of important trans-
forms that can be expressed in terms of the general relation

 T u f x r x u
x

N

( ) ( ) ( , )=
=

∑
0

1-
 (7-16)

7.2

In mathematics, the word 
transform is used to 
denote a change in form 
without an accompany-
ing change in value.
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where x is a spatial variable, T u( ) is the transform of f x( ), r x u( , ) is a forward trans-
formation kernel, and integer u is a transform variable with values in the range 
0 1 1, , , .p -N  Similarly, the inverse transform of T u( ) is

 f x T u s x u
u

N

( ) ( ) ( , )=
=
∑

0

1-
 (7-17)

where s x u( , ) is an inverse transformation kernel and x takes on values in the range 
0 1 1, , , .p -N  Transformation kernels r x u( , ) and s x u( , ) in Eqs. (7-16) and (7-17), 
which depend only on indices x and u and not on the values of f x( ) and T u( ),  deter-
mine the nature and usefulness of the transform pair that they define.

Equation (7-17) is depicted graphically in Fig. 7.1. Note that f x( ) is a weighted 
sum of N inverse kernel functions (i.e., s x u( , ) for u N= 0 1 1, , ,p - ) and that T u( ) 
for u N= 0 1 1, , ,p -  are the weights. All N s x u( , ) contribute to the value of f x( ) at 
every x. If we expand the right side of Eq. (7-17) to obtain

 f x T s x T s x T N s x N( ) ( ) ( , ) ( ) ( , ) ( ) ( , )= 0 0 1 1 1 1+ + p + - -  (7-18)

it is immediately apparent that the computation depicted in Fig. 7.1 is a linear expan-
sion like that of Eq. (7-10)—with the s x u( , ) and T u( ) in Eq. (7-18) taking the place 
of the wi (i.e., the basis vectors) and the ai  in Eq. (7-10). If we assume the s x u( , ) in 
Eq. (7-18) are orthonormal basis vectors of an inner product space, Eq. (7-13) tells 
us that

 T u s x u f x( ) ( , ), ( )=  (7-19)

and transform T u( ) for u N= 0 1 1, , ,p -  can be computed via inner products.

FIGURE 7.1
A graphical  
illustration of 
Eq. (7-18). f(x)

x
0

=

+

+

+
x

x

x
0

E

f x T s x T s x T N s x N( ) ( ) ( , ) ( ) ( , ) ( ) ( , )= 0 0 1 1 1 1+ + + − −…

s x N( , )− 1

N − 1

N − 1

× −T N( )1

× T( )1

× T( )0

s x( , )0

s x( , )1
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468    Chapter 7  Wavelet and Other Image Transforms

We are now ready to express Eqs. (7-16) and (7-17) in matrix form. We begin by 
defining functions f x( ), T u( ),  and s x u( , ) as column vectors

 f =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

f

f

f N

f

f

fN

( )

( )

( )

0

1

1

0

1

1

o
-

o

-

 (7-20)

 t =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

T

T

T N

t

t

tN

( )

( )

( )

0

1

1

0

1

1

o
-

o

-

 (7-21)

and

 su

u

u

u N

s u

s u

s N u

s

s

s

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

( , )

( , )

( , )

,

,

,

0

1

1

0

1

1

o
-

o

-

⎤⎤

⎦

⎥
⎥
⎥
⎥

=   for u N0 1 1, , ,… −  (7-22)

and using them to rewrite Eq. (7-19) as

 T u u Nu( ) , , , ,= =s f     for 0 1 1p -  (7-23)

Combining the N basis vectors of the transform in an N N*  transformation matrix

 A

s

s

s

s s s=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= [ ]
0

1

1

0 1 1

T

T

N
T

N
T

o
p

-

-  (7-24)

we can then substitute Eq. (7-23) into Eq. (7-21) and use Eq. (7-1) to get

 

t

s f

s f

s f

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

+ + +0

1

1

0 0 0 1 0 1 1 0 1,

,

,

, , ,

o

p

-

- -

N

N Ns f s f s f

ss f s f s f

s f s f s f

N N

N N N N N

0 1 0 1 1 1 1 1 1

0 1 0 1 1 1 1 1

, , ,

, , ,

+ + +

+ + +

p
o

p

- -

- - - - --

-

- -

- -

p

o

1

0 0 1 0 1 0

0 1 1 1

1 2

0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

s s s

s s

s

s s

N

N N

N N

, , ,

, ,

,

,

�

22 1 1 1

0

1

1, ,N N N Ns

f

f

f- - - -

o

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (7-25)

We will often use 
subscripts to denote the 
elements of a matrix or 
vector. Thus, f0 denotes 
the first element of 
column vector f, which is 
f(0), and s3,0 denotes the 
first element of column 
vector s3, which is s(0, 3).

By employing Eq. (7-1), 
we assume the most 
common case of real-
valued basis vectors. 
Equation (7-2) must be 
used for a complex inner 
product space.
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or

 t Af=  (7-26)

The inverse of this equation follows from the observation that

 

AA

s

s

s

s s s

s s s s s s

T

T

T

N
T

N

T T T
N

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

[ ]

=

0

1

1

0 1 1

0 0 0 1 0

o
p

p
-

-

--

- - -

o
o

p

1

1 0 1 1

1 0 1 1

0 0 0 1

s s s s

s s s s

s s s s

T T

N
T

N
T

N

�

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

, , pp
o

o
p

p

-

- - -

s s

s s s s

s s s s

0 1

1 0 1 1

1 0 1 1

1 0 0

,

, ,

, ,

N

N N N

�

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
00 1

0 1

o
o

p
�

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= I

 (7-27)

where the last two steps are a consequence of Eqs. (7-1) and (7-7), respectively. 
Since AAT = I, premultiplying Eq. (7-26) by AT and simplifying gives f = ATt. Thus, 
Eqs. (7-16) and (7-17) become the matrix-based transform pair

 t Af=  (7-28)

and

 f A t= T  (7-29)

It is important to remember that, in the derivation of Eqs. (7-28) and (7-29), we 
assumed the N transform basis vectors (i.e., the su for u N= 0 1 1, , ,… − ) of transfor-
mation matrix A are real and orthonormal. In accordance with Eq. (7-7),

 H Is s s sk l k
T

l kl

k l

k l
, = = =

≠
=

⎧
⎨
⎩

d
0

1
 (7-30)
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470    Chapter 7  Wavelet and Other Image Transforms

The assumed orthonormality allows forward transforms to be computed without 
explicit reference to a forward transformation kernel—that is, t = Af where A is a 
function of the inverse transformation kernal s x u( , ) alone. It is left as an exercise 
for the reader (see Problem 7.3) to show that for real orthonormal basis vectors, 
r x u s x u( , ) ( , ).=

Because the basis vectors of A are real and orthonormal, the transform defined 
in Eq. (7-28) is called an orthogonal transform. It preserves inner products—i.e., 
f f t t Af Af1 2 1 2 1 2, , ,= = —and thus the distances and angles between vectors 

before and after transformation. Both the rows and the columns of A are ortho-
normal bases and AA A A IT T= = , so A A-1 = T . The result is that Eqs. (7-28) and 
(7-29) are a reversible transform pair. Substituting Eq. (7-29) into (7-28) yields 
t Af AA t t= = =T , while substituting Eq. (7-28) into (7-29) gives f A t A AF f= = =T T .

For 2-D square arrays or images, Eqs. (7-16) and (7-17) become

 T u v f x y r x y u v
y

N

x

N

( , ) ( , ) ( , , , )=
==
∑∑

0

1

0

1 --

 (7-31)

and

 f x y T u v s x y u v
v

N

u

N

( , ) ( , ) ( , , , )=
==
∑∑

0

1

0

1 --
 (7-32)

where r x y u v( , , , ) and s x y u v( , , , ) are forward and inverse transformation ker-
nels, respectively. Transform T u v( , )  and inverse transformation kernel s x y u v( , , , ) 
again can be viewed as weighting coefficients and basis vectors, respectively, with 
Eq. (7-32) defining a linear expansion of f x y( , ). As was noted in Chapter 2, forward 
transformation kernel r x y u v( , , , ) is separable if

 r x y u v r x u r y v( , , , ) ( , ) ( , )= 1 2  (7-33)

and symmetric if r1 is functionally equal to r2  so

 r x y u v r x u r y v( , , , ) ( , ) ( , )= 1 1  (7-34)

If the transformation kernels are real and orthonormal, and both r and s are sepa-
rable and symmetric, the matrix equivalents of Eqs. (7-31) and (7-32) are

 T AFA= T  (7-35)

and

 F A TA= T  (7-36)

where F is an N N*  matrix containing the elements of f x y( , ), T is its N N*  trans-
form, and A is as previously defined in Eq. (7-24). The pre- and post-multiplications 
of F by A and AT in Eq. (7-35) compute the column and row transforms of F, respec-
tively. This, in effect, breaks the 2-D transform into two 1-D transforms, mirroring 
the process described in Section 4.11 for the 2-D DFT.

Equations (7-31) and 
(7-32) are simplified ver-
sions of Eqs. (2-55) and 
(2-56) with M = N.

Substitute s for r in 
Eqs. (7-33) and (7-34) for 
separable and separable 
symmetric inverse ker-
nals, respectively.
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EXAMPLE 7.2 :   A simple orthogonal transformation.

Consider the 2-element basis vectors

 s s0 1
1

2

1

1
1

2

1

1
=

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥   and   

-

 and note they are orthonormal in accordance with Eq. (7-30):

 

s s s s

s s s s

0 1 0 1

1 0 1 0

1
2

1 1
1

1
1
2

1 1 0

1
2

1 1
1

1

, ( )

,

= = [ ]⎡

⎣
⎢

⎤

⎦
⎥ = =

= = [ ]

T

T

-
-

- ⎡⎡

⎣
⎢

⎤

⎦
⎥ = =

= = [ ]⎡

⎣
⎢

⎤

⎦
⎥ = =

1
2

1 1 0

1
2

1 1
1

1
1
2

1 1 10 0 0 0

1 1

( )

, ( )

,

-

+s s s s

s s

T

== = [ ]⎡

⎣
⎢

⎤

⎦
⎥ = =s s1 1

1
2

1 1
1

1
1
2

1 1 1T -
-

+( )

Substitution of s0 and s1 into Eq. (7-24) with N = 2 yields transformation matrix

 A s s= [ ] =
⎡

⎣
⎢

⎤

⎦
⎥0 1

1

2

1 1

1 1
T

-
 (7-37)

and the transform of 2 2*  matrix

 F =
⎡

⎣
⎢

⎤

⎦
⎥

20 63

21 128

follows from Eq. (7-35):

 

T = ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

=

1

2

1 1

1 1

20 63

21 128

1 1

1 1

1
2

41 191

2

- -

-

T

11 65

1 1

1 1
1
2

232 150

66 64

116 75

33 32

- -
-

-

-
-

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢

⎤⎤

⎦
⎥

In accordance with Eq. (7-36), the inverse of transform T is

 F = ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

1

2

1 1

1 1

116 75

33 32

1 1

1 1
1
2

83 42

-
-

- -
-T 33

149 107

1 1

1 1

20 63

21 128- -
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥
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Finally, we note A is an orthogonal transformation matrix for which

 AA IT
T

=
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

1

2

1 1

1 1
1

2

1 1

1 1
1
2

2 0

0 2

1 0

0 1- -

and A-1 = AT. It is also interesting to note Eq. (7-37) is the transformation matrix of the discrete Fourier, 
Hartley, Cosine, Sin, Walsh-Hadamard, Slant, and Haar transforms for 1- and 2-D inputs of size  2 1×  and 
2 2× , respectively. These transforms are discussed in detail in Sections 7.6 through 7.9.

Although formulated for real orthonormal bases and square arrays, Eqs. (7-35) 
and (7-36) can be modified to accomodate a variety of situations, including rectan-
gular arrays, complex-valued basis vectors, and biorthonormal bases.

RECTANGULAR ARRAYS

When the arrays to be transformed are rectangular, as opposed to square, Eqs. (7-35) 
and (7-36) become

 T A FA= M N
T  (7-38)

and

 F A TA= M
T

N  (7-39)

where F, AM, and AN are of size M N* , M M* , and N N* , respectively. Both AM 
and AN are defined in accordance with Eq. (7-24).

EXAMPLE 7.3 :   Computing the transform of a rectangular array.

A simple transformation in which M and N are 2 and 3, respectively, is 

 

T A FA= =
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥2 3

1

2

1 1

1 1

5 100 44

6 103 40
1

3

1 1 1

1 0 366 1 366

1

T

-
-. .

--

- -
-

1 366 0 366

1

6

11 203 84

1 3 4

1 1 1

1 0 366 1 36

. .

. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

T

66

1 1 366 0 366

121 6580 12 0201 96 1657

0 3 0873 1
-

- -
-

. .

. . .

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
..8624

⎡

⎣
⎢

⎤

⎦
⎥

where matrices F, A2, and A3 are as defined in the first step of the computation. As would be expected, 
2 3*  output transform T is the same size as F. It is left as an exercise for the reader (see Problem 7.5) 
to show that A3 is an orthogonal transformation matrix, and that the transformation is reversable using 
Eq. (7-39). The orthonormality of A2 was established in Example 7.2.
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COMPLEX ORTHONORMAL BASIS VECTORS

Complex-valued basis vectors are orthonormal if and only if

 s s s s s sk l l k k
T

l kl

k l

k l
, ,

* *= = = =
≠
=

⎧
⎨
⎩

d
0

1
 (7-40)

where * denotes the complex conjugate operation. When basis vectors are complex, 
as opposed to real-valued, Eqs. (7-35) and (7-36) become

 T AFA= T  (7-41)

and

 F A TA= * *T  (7-42)

respectively. Transformation matrix A is then called a unitary matrix and Eqs. (7-41) 
and (7-42) are a unitary transform pair. An important and useful property of A is 
that A A AA A A A A I* * * * ,T T T T= = = =  so A A-1 = * .T  The 1-D counterparts of 
Eq. (7-41) and (7-42) are:

 t Af=   (7-43)

  f A t= *T  (7-44)

EXAMPLE 7.4 :   A transform with complex-valued basis vectors.

Unlike orthogonal transformation matrices, where the inverse of the transformation matrix is its trans-
pose, the inverse of unitary transformation matrix

 A =
⎡

⎣

⎢
⎢
⎢

1

3

1 1 1

1 0 5 0 866 0 5 0 866

1 0 5 0 866 0 5 0 866

- - - +
- + - -

. . . .

. . . .

j j

j j

⎤⎤

⎦

⎥
⎥
⎥

 (7-45)

is its conjugate transpose. Thus,

 

A A* . . . .

. . . .

T j j

j j

=
⎡

⎣

1

3

1 1 1

1 0 5 0 866 0 5 0 866

1 0 5 0 866 0 5 0 866

- - - +
- + - -

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

*

. . . .

. . .

T

j j

j j

1

3

1 1 1

1 0 5 0 866 0 5 0 866

1 0 5 0 866 0 5 0

- - - +
- + - - ..

. . . .

. .

866

1
3

1 1 1

1 0 5 0 866 0 5 0 866

1 0 5 0 866 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= - + - -
- - -

j j

j .. .

. . . .

. .5 0 866

1 1 1

1 0 5 0 866 0 5 0 866

1 0 5 0 866+
- - - +
- +j

j j

j

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ -- -0 5 0 866

1
3

3 0 0

0 3 0

0 0 3

. .j

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= I

where j = -1  and matrix A is a unitary matrix that can be used in Eqs. (7-41) through (7-44). It is easy 

Orthogonal transforms 
are a special case of 
unitary transforms in 
which the expansion 
functions are real-valued. 
Both transforms preserve 
inner products.
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to show (see Problem 7.4) that when A*TA = I, the basis vectors in A satisfy Eq. (7-40) and are thus 
orthonormal.

BIORTHONORMAL BASIS VECTORS

Expansion functions s s s0 1 1, , ,p -N  in Eq. (7-24) are biorthonormal if there exists a 
set of dual expansion functions s s s0 1 1

' ' p '
-, , , N  such that

 H Is sk l kl

k l

k l
'

, = =
≠
=

⎧
⎨
⎩

d
0

1
 (7-46)

Neither the expansion functions nor their duals need be orthonormal themselves. 
Given a set of biorthonormal expansion functions, Eqs. (7-35) and (7-36) become

 T A F A=
' ' T  (7-47)

and

 F A TA= T  (7-48)

Transformation matrix A remains as defined in Eq. (7-24); dual transformation 
matrix A s s s

' ' ' 'p -= [ ]0 1 1N
T  is an N N*  matrix whose rows are transposed dual 

expansion functions. When the expansion functions and their duals are identical—
that is, when s su u

' = —Eqs. (7-47) and (7-48) reduce to Eqs. (7-35) and (7-36), respec-
tively. The 1-D counterparts of Eqs. (7-47) and (7-48) are:

  t A f=
'

 (7-49)

 f A t= T   (7-50)

EXAMPLE 7.5 :   A biorthonormal transform.

Consider the real biorthonormal transformation matrices

 A =

0 5 0 5 0 5 0 5

1 1 1 1

0 5303 0 5303 0 1768 0 1768

0 1768 0 176

. . . .

. . . .

. .

- -
- -
- 88 0 5303 0 5303

0 5 0 5 0 5 0 5

0 25 0

-

- -'

. .

. . . .

.
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=   and   A
.. . .

. . . .

. . .

25 0 25 0 25

1 0607 1 0607 0 3536 0 3536

0 3536 0 3536 1 0607

- -
- - 11 0607.

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

It is left as an exercise for the reader (see Problem 7.16) to show that A and A
'

 are biorthonormal. The 
transform of 1-D column vector f = [ ]30 11 210 6 T  is

 t A f= =
' - -

- -

0 5 0 5 0 5 0 5

0 25 0 25 0 25 0 25

1 0607 1 0607 0 3536 0

. . . .

. . . .

. . . .33536

0 3536 0 3536 1 0607 1 0607

30

11

210

6. . . .- -

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

128 5

43 75

51 9723

209 6572

.

.

.

.-
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Since

 f f f f, ,= = [ ]
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=T 30 11 210 6

30

11

210

6

45 157

and t t t t, , ,= =T 65 084  which is not equal to f f, , the transformation does not preserve inner products. 
It is, however, reversable:

 f A t= =T

0 5 0 5 0 5 0 5

1 1 1 1

0 5303 0 5303 0 1768 0 1768

0 1768 0

. . . .

. . . .

.

- -
- -
- .. . .

.

.

.

.1768 0 5303 0 5303

128 5

43 75

51 9723

209 6572- -

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

T ⎡⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

30

11

210

6

Here, the forward and inverse transforms were computed using Eqs. (7-49) and (7-50), respectively.

Finally, we note the bulk of the concepts presented in this section can be general-
ized to continuous expansions of the form

 f x s xu u
u

( ) ( )=
-

a
=
∑

�

�

 (7-51)

where au and the s xu( ) for u = ± ±0 1 2, , , p  represent expansion coefficients and 
basis vectors of inner product space C([a, b]), respectively. For a given f x( ) and basis 
s xu( ) for u = ± ±0 1 2, , , ,p  the appropriate expansion coefficients can be computed 
from the definition of the integral inner product of C([a, b])—i.e., Eq. (7-3)—and 
the general properties of all inner product spaces—i.e, Eqs. (7-10) through (7-15). 
Thus, for example, if s xu( ) for u = ± ±0 1 2, , , p  are orthonormal basis vectors of 
C([a, b]),

 au us x f x= ( ), ( )  (7-52)

Here, we have simply replaced i, z, and wi in Eq. (7-13) with u, f x( ), and s xu( ). In 
the next example, Eq. (7-52) will be used in the derivation of the continuous Fourier 
series.

EXAMPLE 7.6 :   The Fourier series and discrete Fourier transform.

Consider the representation of a continuous periodic function of period T as a linear expansion of 
orthonormal basis vectors of the form

 s x
T

e uu
j ux T( ) , , ,= = ± ±

1
0 1 22p    for p  (7-53)
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In accordance with Eqs. (7-51) and (7-52),

 

f x
T

e

T
e

u
j ux T

u

u
j ux T

u

( ) =

=

-

-

a

a

p

p

1

1

2

2

⎡
⎣⎢

⎤
⎦⎥=

=

∑

∑

�

�

�

�
 (7-54)

and

 

a

p

u u

T

T
j ux T

T

T
j

s x f x

T
e f x dx

T
f x e

=

= ⎡
⎣⎢

⎤
⎦⎥

=

( ), ( )

( )

( )

*

-

-

-

2

2
2

2

2

1

1

2

2
22pux T dx

 (7-55)

With the exception of the variable names and normalization (i.e., the use of 1 T  in the above two 
equations as opposed to 1 T  in only one of them), Eqs. (7-54) and (7-55) are the familiar Fourier series 
of Eqs. (4-8) and (4-9) in Chapter 4. An almost identical derivation, which is left as an exercise for the 
reader (see Problem 7.22), yields the following discrete counterparts of Eqs. (7-53) through (7-55):

 s x u
N

e u Nj ux N( , ) , , ,= =
1

0 1 12p    for p -  (7-56)

 f x
N

T u e j ux N

u

N

( ) ( )=
=
∑1 2

0

1
p

−

 (7-57)

and

 T u
N

f x e j ux N

x

N

( ) ( )=
=

∑1 2

0

1
−

−
p  (7-58)

The discrete complex basis vectors of Eq. (7-56) are an orthonormal basis of inner product space CN. 
Equations (7-58) and (7-57), except for the variable names and normalization, are the familiar discrete 
Fourier transform of Eqs. (4-44) and (4-45) in Chapter 4.

Now consider the use of Eqs. (7-55) and (7-58) in the computation of both the Fourier series and 
discrete Fourier transform of f x x( ) sin( )= 2p  of period T = 1. In accordance with Eq. (7-55),

  

a p

p

p

p

1
1 2

1 2
2 1 1

1 2

1 2
2

1

1
2

2

= ⎡
⎣⎢

⎤
⎦⎥

=

-

-

-

2

2

e x dx

e x

j x

j x

( )
*

sin( )

sin( ) ddx x j x x dx

x j
x

= [ ]

=

-
-

- -

1 2

1 2

2

2 2 2

1
4

2
2

2 cos( ) sin( ) sin( )

sin ( )

p p p

p
p

11
8

4 0 5
1 2

1 2

p
psin( ) .x j⎡

⎣⎢
⎤
⎦⎥

=
-

-
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and, in the same way, a-1 0 5= j . . Since all other coefficients are zero, the resulting Fourier series is

f x j e j ej x j x( ) . .= 0 5 0 52 2- -p p (7-59)

Equation (7-58) with N = 8 and f x x( ) sin( )= 2p  for x = 0 1 7, , , ,…  on the other hand, yields

T u

j u

j u( )

.

.=
=
=

⎧
⎨
⎪

⎩⎪

−
+

1 414 1

1 414 7

0 otherwise

 (7-60)

Figure 7.2 depicts both computations as “matrix multiplications” in which continuous or discrete basis 
vectors (the rows of matrix A) are multiplied by a continuous or discrete function (column vector f) 
and integrated or summed to produce a set of discrete expansion or transform coefficients (column 
vector t). For the Fourier series, the expansion coefficients are integral inner products of sin( )2px  and 
one of a potentially infinite set of continuous basis vectors. For the DFT, each transform coefficient is a 
discrete inner product of f and one of eight discrete basis vectors using Eq. (7-2). Note since the DFT is 
based on complex orthonormal basis vectors, the transform can be computed as a matrix multiplication 
[in accordance with Eq. (7-43)]. Thus, the inner products that generate the elements of transform t are 
embedded in matrix multiplication Af. That is, each element of t is formed by multiplying one row of 
A—i.e., one discrete expansion function—element by element by f and summing the resulting products.

FIGURE 7.2  Depicting the continuous Fourier series and 8-point DFT of f x x( ) sin( )= 2p  as “matrix multiplications.” 
The real and imaginary parts of all complex quantities are shown in blue and black, respectively. Continuous 
and discrete functions are represented using lines and dots, respectively. Dashed lines are included to show that 
s s5 3= * ,  s s6 2= * , and s s7 1= *, effectively cutting the maximum frequency of the DFT in half. The negative indices to 
the left of t are for the Fourier series computation alone.

=

1 2 3 4 5 6 7x  =  0

1

2

3

4

5

6

7

u  =  0

1

2

3

4

5

6

7

x  =  0

1

2

3

4

-3 or 5

-2 or 6

-1 or 7

u  =  0

au T u⇔ ( ) or t f x f x( ) ( )⇔  or fs x s x u s s su
T( ) ( , ) [ ]⇔ = or A 0 1 7…
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478    Chapter 7  Wavelet and Other Image Transforms

7.3 CORRELATION  

Example 7.6 highlights the role of inner products in the computation of orthogo-
nal transform coefficients. In this section, we turn our attention to the relationship 
between those coefficients and correlation.

Given two continuous functions f x( ) and g x( ), the correlation of f and g, denoted 
f xg� ( ),�  is defined as

 
f x f x g x x dx

f x g x x

g� ( ) *( ) ( )

( ), (

� �

�

�

�

=

=
−2 +

+
 (7-61)

where the final step follows from Eq. (7-3) with a = -�  and b = �. Sometimes called 
the sliding inner product of f and g, correlation measures the similarity of f x( ) and 
g x( ) as a function of their relative displacement �x. If �x = 0,

 f f x g xg� ( ) ( ), ( )0 =  (7-62)

and Eq. (7-52), which defines the coefficients of the continuous orthonormal expan-
sion in Eq. (7-51), can be alternately written as

 au u uf s f s= =, ( )� 0  (7-63)

Thus, the expansion coefficients are single-point correlations in which the displace-
ment �x  is zero. Each au  measures the similarity of f x( ) and one s xu( ).

The discrete equivalents of Eqs. (7-61) through (7-63) are

 f g� ( ) *m f gn n m
x

=
=
∑ +

-�

�

 (7-64)

 f g f g� ( ) ,0 =  (7-65)

and

 T u u u( ) , ( )= =s f s f� 0  (7-66)

respectively. Comments similar to those made in regard to Eq. (7-63) and contin-
uous series expansions also can be made with respect to Eq. (7-66) and discrete 
orthogonal transforms. Each element of an orthogonal transform [i.e., transform 
coefficient T u( ) of Eq. (7-23)] is a single-point correlation that measures the similar-
ity of f and vector su . This powerful property of orthogonal transforms is the basis 
upon which the sinusoidal interference in Fig. 2.45(a) of Example 2.11 in Chapter 2 
and Fig. 4.65(a) of Example 4.25 in Chapter 4 was identified and eliminated.

7.3

To be precise, we should 
use the term cross-corre-
lation when f x g x( ) ( )≠
and auto-correlation 
when f x g x( ) ( ).=  Equa-
tion (7-61) is valid for 
both cases. 

As the name sliding inner 
product suggests, visual-
ize sliding one function 
over another, multiplying 
them together, and 
computing the area. 
As the area increases, 
the functions become 
increasingly similar.

The equation for 2-D dis-
crete correlation is given 
in Table 4.3. In Eq. (7-64), 
n and m are integers, fn 
denotes the nth element 
of f, and gn+m denotes the 
( )n m+ th  element of g. 
Equation (7-66) follows 
from Eqs. (7-65) 
and (7-23).
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EXAMPLE 7.7 :   Correlation in the DFT of Example 7.6.

Consider again the 8-point DFT in Example 7.6 and note, in accordance with Eq. (7-56), the basis vec-
tors are complex exponentials of the following harmonically related angular frequencies: 0, 2p, 4p, 6p, 
8p, 6p, 4p, and 2p (aliasing reduces the last three frequencies from 10p, 12p, and 14p, respectively). 
Since discrete input f x x( ) sin( )= 2p  is a single frequency sinusoid of angular frequency 2p, f should be 
highly correlated with basis vectors s1 and s7. As can be seen in Fig. 7.2, transform t does indeed reach its 
maximum at u = 1 and 7; it is nonzero at these two frequencies alone.

7.4 BASIS FUNCTIONS IN THE TIME-FREQUENCY PLANE  

Because transforms measure the degree to which a function resembles a selected 
set of basis vectors, we now turn our attention to the basis vectors themselves. In 
the following discussions, the terms basis vector and basis function are synonomous.

As can be seen in Fig. 7.3, where the basis vectors of some commonly encoun-
tered transforms are depicted, most orthogonal bases are mathematically related 
sets of sinusoids, square waves, ramps, and other small waves called wavelets. If h t( ) 
is a basis vector and g t( ) is the function being transformed, transform coefficient 
g h� ( ),0  as noted in the previous section, is a measure of the similarity of g and h. 
Large values of g h� ( )0  indicate that g and h share important characteristics in time 
and frequency (e.g., shape and bandwidth). Thus, if h is the ramp-shaped basis func-
tion at u = 1 in Fig. 7.3(d), transform coefficient g h� ( )0  can be used to detect linear 
brightness gradients across a row of an image. If h is a sinusoidal basis function like 
those of Fig. 7.3(a), on the other hand, g h� ( )0  can be used to spot sinusoidal inter-
ference patterns. Plots like those of Fig. 7.3, together with a similarity measure like 
g h� ( ),0  can reveal a great deal about the time and frequency characteristics of the 
function being transformed.

A purely objective descriptor of h, and thus of g for large values of g h� ( ),0  is the 
location of h on the time-frequency plane of Fig. 7.4(a). Let p t h t h th( ) ( ) ( )= 2 2  be 
a probability density function with mean

 mt
h t

t h t dt=
−

1
2

2

( )
( )

�

�

2  (7-67)

and variance

 s mt t
h t

t h t d t2
2

2 21
=

−( )
( ) ( )

�

�

2 -  (7-68)

and let p f H f H fH ( ) ( ) ( )= 2 2  be a probability density function with mean

 m f
H f

f H f df=
−

1
2

2

( )
( )

�

�

2  (7-69)

and variance

 s mf f
H f

f H f df2
2

2 21
=

−( )
( ) ( )

�

�

2 -  (7-70)

7.4

In our introduction to 
the time-frequency plane, 
independent variables t 
and f, rather than spatial 
variables x and u, are 
employed. Continuous 
functions g t( )  and h f( )  
take the place of f x( ) 
and s xu( )  in the previous 
sections. Though the 
concepts are presented 
using continuous func-
tions and variables, they 
are equally applicable 
to discrete functions and 
variables. 

In Eq. (7-67), each value 
of t is weighted by p th( )  
to compute a weighted 
mean with respect to 
coordinate t.
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u = 0

u = 1

u = 2

u = 3

u = 4

u = 5

u = 6

u = 7

u = 8

u = 9

u = 10

u = 11

u = 12

u = 13

u = 14

u = 15

u = 0

u = 1

u = 2

u = 3

u = 4

u = 5

u = 6

u = 7

u = 8

u = 9

u = 10

u = 11

u = 12
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DFT DCT SLTWHT

HAAR DB4 STDBIOR3.1

ba c
gf h

d
e

FIGURE 7.3
Basis vectors 
(for N = 16) of 
some commonly 
encountered 
transforms:  
(a) Fourier basis 
(real and imagi-
nary parts),  
(b) discrete  
Cosine basis,  
(c) Walsh-Had-
amard basis,  
(d) Slant basis,  
(e) Haar basis,  
(f) Daubechies 
basis,  
(g) Biorthogonal 
B-spline basis and 
its dual, and  
(h) the standard 
basis, which is 
included for refer-
ence only (i.e., not 
used as the basis 
of a transform).
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where f denotes frequency and H f( ) is the Fourier transform of h t( ). Then the 
energy† of basis function h, as illustrated in Fig. 7.4(a), is concentrated at ( , )m mt f

on the time-frequency plane. The majority of the energy falls in a rectangular region, 
called a Heisenberg box or cell, of area 4s st f  such that

s s
p

t f
2 2

2

1

16
Ú (7-71)

Since the support of a function can be defined as the set of points where the func-
tion is nonzero, Heisenberg’s uncertainity principle tells us that it is impossible for a 
function to have finite support in both time and frequency. Equation (7-71), called 
the Heisenberg-Gabor inequaltiy, places a lower bound on the area of the Heisen-
berg cell in Fig. 7.4(a), revealing that st  and s f  cannot both be arbitrarily small. 
Thus, while basis function d( )t t- 0  in Fig. 7.4(b) is perfectly localized in time [that is, 
st = 0 since the width of d( )t t- 0  is zero], its spectrum is nonzero on the entire f-axis. 
That is, since � d p( ) exp( )t t j ft- -0 02{ } =  and exp( )− =j ft2 10p  for all f,  s f = �.
The result is an infinitesimally narrow, infinitely high Heisenberg cell on the time-
frequency plane. Basis function exp( )2 0pf t  of Fig. 7.4(c), on the other hand, is essen-
tially nonzero on the entire time axis, but is perfectly localized in frequency. Because 
� exp( ) ( ),2 0 0p df t f f{ } = -  spectrum d( )f f- 0  is zero at all frequencies other than 
f = f0. The resulting Heisenberg cell is infinitely wide ( )st = �  and infinitesimally 
small in height ( ).s f = 0  As Figs. 7.4(b) and (c) illustrate, perfect localization in time 
is accompanied by a loss of localization in frequency and vice versa. 

Returning again to Fig. 7.3, note the DFT basis in Fig. 7.3(a) and the standard 
basis in Fig. 7.3(h) are discrete examples (for N = 16) of the impulse and complex 

† The energy of continuous function h t( ) is 
-�

�

2 h t dt( ) .2

The constant on the right 
side of Eq. (7-71) is ¼ if 
stated in terms of angular 
frequency v. Equality is 
possible, but only with a 
Gaussian basis function, 
whose transform is also a 
Gaussian function.

ba c

FIGURE 7.4  (a) Basis function localization in the time-frequency plane. (b) A standard basis function, its spectrum, 
and location in the time-frequency plane. (c) A complex sinusoidal basis function (with its real and imaginary parts 
shown as solid and dashed lines, respectively), its spectrum, and location in the time-frequency plane.
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482    Chapter 7  Wavelet and Other Image Transforms

exponential functions in Figs. 7.4(c) and (b), respectively. Every other basis in the 
top half of Fig. 7.3 is both frequency ordered on index u and of width or support 16. 
For a given u, their locations in the time-frequency plane are similar. This is particu-
larly evident when u is 8 and the basis functions are identical—as are their Heisen-
berg cells. For all other u, Heisenberg cell parameters mt , st , m f , and s f  are close 
in value, with small differences accounting for the distinctive shapes of the cosine, 
ramp, and square wave. In a similar manner, the basis functions in the bottom half of 
Fig. 7.3, with the exception of the standard basis already discussed, are also similar 
for a given u. These basis functions are scaled and shifted small waves, called wave-
lets, of the form

 c c tts
s st t, ( ) ( )= 2 22 -  (7-72)  

where s and t are integers and mother wavelet c( )t  is a real, square-integrable func-
tion with a bandpass-like spectrum. Parameter t determines the position of c ts t, ( ) on 
the t-axis, s determines its width—that is, how broad or narrow it is along the t-axis, 
and 2 2s  controls its amplitude.

In conjunction with a properly designed mother wavelet, Eq. (7-72) generates a 
basis that is characterized by the Heisenberg cells on the right side of Fig. 7.5. Let-
ting � f( ) be the Fourier transform of c( ),t  the transform of time-scaled wavelet 
c( )2s t  is

 � c( )2
1

2 2
s

s s
t

f{ } = ⎛
⎝⎜

⎞
⎠⎟

�  (7-73)

and for positive values of s, the spectrum is stretched—shifting each frequency 
component higher by a factor of 2s . As was the case for the rectangular pulse in 
Example 4.1, compressing time expands the spectrum. This is illustrated graphically 
in Figs. 7.5(b)–(d). Note the width of the basis function in Fig. 7.5(c) is half of that 
in (d), while the width of its spectrum is double that of (d). It is shifted higher in fre-
quency by a factor of two. The same can be said for the basis function and spectrum 
in Fig. 7.5(b) when compared to (c). This halving of support in time and doubling of 
support in frequency produces Heisenberg cells of differing widths and heights, but 
of equal area. Moreover, each row of cells on the right of Fig. 7.5 represents a unique 
scale s and range of frequencies. The cells within a row are shifted with respect to 
one another in time. In accordance with Eq. (4-71) and Table 4.4 of Chapter 4, if c( )t  
is shifted in time by t,

 � c t pt( )t e fj f- -{ } = ( )2 �  (7-74)

Thus, � c t( )t f-{ } = ( )�  and the spectra of the time-shifted wavelets are identical. 
This is demonstrated by the basis functions in Figs. 7.5(a) and (b). Note their Heisen-
berg cells are identical in size and differ only in position.

A principle consequence of the preceding comments is that each wavelet basis 
function is characterized by a unique spectrum and location in time. Thus, the 
transform coefficients of a wavelet-based transform, as inner products measuring 

The DFT basis func-
tions do not appear to 
be frequency ordered 
because of aliasing. See 
Example. 7.6.

As will be seen in  
Section 7.10, the func-
tions corresponding to 
u = 0 in Fig. 7.3 have 
lowpass spectra and are 
called scaling functions.

The proof of Eq. (7-73) 
is left as an exercise for 
the reader (see Prob-
lem 7.24).
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7.5  Basis Images    483

the similarity of the function being transformed and the associated wavelet basis 
functions, provide both frequency and temporal information. They furnish the 
equivalent of a musical score for the function being transformed, revealing not 
only what notes to play but also when to play them. This is true for all the wavelet 
bases depicted in the bottom half of Fig. 7.3. The bases in the top half of the figure 
provide only the notes; temporal information is lost in the transformation process or 
is difficult to extract from the transform coefficients (e.g., from the phase component 
of a Fourier transform).

7.5 BASIS IMAGES  

Since inverse transformation kernel s x y u v( , , , ) in Eq. (7-32) of Section 7.2 depends 
only on indices x, y, u, v, and not on the values of f x y( , ) or T u v( , ),  Eq. (7-32) can be 
alternately written as the matrix sum

 F S=
==
∑∑ T u v u v
v

N

u

N

( , ) ,
0

1

0

1 --
 (7-75)

where F is an N N*  matrix containing the elements of f x y( , ) and

 Su v

s u v s u v s N u v

s u v

,

( , , , ) ( , , , ) ( , , , )

( , , , )

=

0 0 0 1 0 1

1 0

p -
o p o

o o p o
o o p oo
o

- - p - -s N u v s N u v s N N u v( , , , ) ( , , , ) ( , , , )1 0 1 1 1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥

 (7-76)
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b
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d

FIGURE 7.5
Time and  
frequency  
localization 
of 128-point 
Daubechies basis 
functions.
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484    Chapter 7  Wavelet and Other Image Transforms

for u v N, , , , .= 0 1 1p -  F is then explicitly defined as a linear combination of N 2 
matrices of size N N* —that is, the Su v,  for u v N, , , , .= 0 1 1p -  If the underlying  
s x y u v( , , , ) are real-valued, separable, and symmetric,

 S s su v u v
T

, =  (7-77)

where su  and sv are as previously defined by Eq. (7-22). In the context of digital 
image processing, F is a 2-D image and the Su v,  are called basis images. They can be 
arranged in an N N*  array, as shown in Fig. 7.6(a), to provide a concise visual rep-
resentation of the 2-D basis functions they represent.

EXAMPLE 7.8 :   The basis images of the standard basis.

The basis in Fig. 7.3(h) is a specific instance (for N = 16) of standard basis e e e0 1 1, , , ,p -N{ }  where en 
is an N * 1 column vector whose nth element is 1 and all other elements are 0. Because it is real and 
orthonormal, the corresponding orthogonal transformation matrix [see Eq. (7-24)] is A = I, while the 
corresponding 2-D transform [see Eq. (7-35)] is T AFA IFI F= = =T T . That is, the transform of F with 
respect to the standard basis is F—a confirmation of the fact that when a discrete function is written in 
vector form, it is represented implicitly with respect to the standard basis.

Figure 7.6(b) shows the basis images of a 2-D standard basis of size 8 8* . Like the 1-D basis vectors 
in Fig. 7.3(h), which are nonzero at only one instant of time (or value of x), the basis images in Fig. 7.6(b) 
are nonzero at only one point on the xy-plane. This follows from Eq. (7-77), since S e e Eu v u v

T
u v, , ,= =  

where Eu,v is an N N*  matrix of zeros with a 1 in the uth row and vth column. In the same way, the DFT 
basis images in Fig. 7.7 follow from Eq. (7-77), Eq. (7-22), and the defining equation of the 1-D DFT 
expansion functions [i.e., Eq. (7-56)]. Note the DFT basis image of maximum frequency occurs when u 
and v are 4, just as the 1-D DFT basis function of maximum frequency occurred at u = 4 in Fig. 7.2.

7.6 FOURIER-RELATED TRANSFORMS  

As was noted in Chapter 4, the Fourier transform of a real function is complex-valued. 
In this section, we examine three Fourier-related transforms that are real rather 

7.6

ba

FIGURE 7.6
(a) Basis image 
organization and 
(b) a standard 
basis of size 8 8* .  
For clarity, a gray 
border has been 
added around 
each basis image. 
The origin of each 
basis image (i.e., 
x = y = 0) is at its 
top left.
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7.6  Fourier-Related Transforms    485

than complex-valued—the discrete Hartley transform, discrete cosine transform, and 
discrete sine transform. All three transforms avoid the computational complexity of 
complex numbers and can be implemented via fast FFT-like algorithms.

THE DISCRETE HARTLEY TRANSFORM

The transformation matrix of the discrete Hartley transform (DHT) is obtained by 
substituting the inverse transformation kernel

 

s x u
N

ux
N

N

ux
N

ux
N

( , )

cos sin

= ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢

1 2

1 2 2

cas
p

p p ⎤⎤
⎦
⎥

 (7-78)

whose separable 2-D counterpart is

 s x y u v
N

ux
N N

vy
N

( , , , ) = ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥

1 2 1 2
cas cas

p p
 (7-79)

into Eqs. (7-22) and (7-24). Since the resulting DHT transformation matrix—denoted 
AHY in Fig. 7.8—is real, orthogonal, and symmetric, A A AHY HY HY= =T -1  and AHY can 
be used in the computation of both forward and inverse transforms. For 1-D trans-
forms, AHY is used in conjunction with Eqs. (7-28) and (7-29) of Section 7.2; for 2-D 
transforms, Eqs. (7-35) and (7-36) are used. Since AHY is symmetric, the forward and 
inverse transforms are identical. 

Function cas, an acronym 
for the cosine-and-sin 
function, is defined as
cas( ) cos( ) sin( ).u u u= +

We will not consider 
the non-separable form   

s x y u v

N
ux vy

N

( , , , )

( )
.

=

⎛
⎝⎜

⎞
⎠⎟

1 2
cas

p +

1

1

1

1

1

1

1

1

1

1

v

-j

-jv

-1

-v

j

jv

1
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-1

j
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1
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FIGURE 7.7  (a) Tranformation matrix AF of the discrete Fourier transform for N = 8, where v p= e j- 2 8 or ( ) .1 2- j  
(b) and (c) The real and imaginary parts of the DFT basis images of size 8 8* .  For clarity,  a black border has been 
added around each basis image. For 1-D transforms, matrix AF is used in conjunction with Eqs. (7-43) and (7-44); 
for 2-D transforms, it is used with Eqs. (7-41) and (7-42).
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486    Chapter 7  Wavelet and Other Image Transforms

Note the similarity of the harmonically related DHT basis functions in Fig. 7.8(a) 
and the real part of the DFT basis functions in Fig. 7.2. It is easy to show that

 
A A A

A
HY F F

F

al ag

al

= { } { }
= { }

Re Im

Re ( )

-
+1 j

 (7-80)

where AF denotes the unitary transformation matrix of the DFT. Furthermore, since 
the real part of the DFT kernel [see Eq. (7-56)] is

 Re ( , ) Re coss x u
N

e
N

ux
N

j ux N
F{ } = ⎧

⎨
⎩

⎫
⎬
⎭

= ⎛
⎝⎜

⎞
⎠⎟

1 1 22p p
 (7-81)

and triginometric identity cas u u p( ) = ( )2 4cos -  can be used to rewrite the dis-
crete Hartley kernel [see Eq. (7-78)] as

 s x u
N

ux
NH ( , ) cos= ⎛

⎝⎜
⎞
⎠⎟

2 2
4

p p-  (7-82)

the basis functions of the discrete Fourier and Hartley transforms are scaled and 
shifted versions of one another—i.e., scaled by the 2  and shifted by p 4. The 
shift is clearly evident when comparing Figs. 7.2 and 7.8(a). Additionally, for a 
given value of N and sampling interal �T , the Fourier and Hartley transforms 
have the same frequency resolution � �u N T= 1 ( ), same range of frequencies 
0 5 0 5 1 1 2. . ( ) ( ),R T T= =� �  and are both undersampled when u N7 2. Compare 
Figs. 7.2 and 7.8(a) for u = 5 6 7, , . Finally, we note the 8 8*  basis images of the two 
transforms are also similar. As can be seen in Figs. 7.8(c) and 7.7(b), for example, the 
basis images of maximum frequency occur when u and v are N 2 or 4.

In Eqs. (7-81) and (7-82), 
subscripts HY and F are 
used to denote the  
Hartley and Fourier 
kernels, respectively. 

Aliasing reduces the 
frequency range to 0 5. ,R  
where R  is as defined by 
Eq. (4.51).

ba c

FIGURE 7.8  The transformation matrix and basis images of the discrete Hartley transform for N = 8: (a) Graphical 
representation of orthogonal transformation matrix AHY, (b) AHY rounded to two decimal places, and (c) 2-D basis 
images. For 1-D transforms, matrix AHY is used in conjunction with Eqs. (7-28) and (7-29); for 2-D transforms, it is 
used with Eqs. (7-35) and (7-36).

 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

 0.35 0.50 0.35 0 -0.35 -0.50 -0.35 0

 0.35 0.35 -0.35 -0.35 0.35 0.35 -0.35 -0.35

 0.35 0 -0.35 0.50 -0.35 0 0.35 -0.50

 0.35 -0.35 0.35 -0.35 0.35 -0.35 0.35 -0.35

 0.35 -0.50 0.35 0 -0.35 0.50 -0.35 0

 0.35 -0.35 -0.35 0.35 0.35 -0.35 -0.35 0.35

 0.35 0 -0.35 -0.50 -0.35 0 0.35 0.50
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7.6  Fourier-Related Transforms    487

EXAMPLE 7.9 :   DHT and DFT reconstruction.

Consider discrete function f = [ ]1 1 0 0 0 0 0 0 T  and its discrete Fourier transform

 tF = 0 71 0 6 0 25 0 35 0 35 0 1 0 25 0 0 1 0 25 0 35 0 35 0 6. . . . . . . . . . . .− − − + +j j j j j ++ j T0 25.[ ]

where t A fF F=  and A A AF Fr Fj= + j  is the 8 8×  unitary transformation matrix of Fig. 7.7(a). The real 
and imaginary parts of tF, denoted tFr and tFj, are

 
t

t

Fr

Fj

= [ ]
=

0 71 0 60 0 35 0 10 0 0 10 0 35 0 60

0 0 25 0 35 0 25 0 0

. . . . . . .

. . .

T

- - - .. . .25 0 35 0 25[ ]T

and discrete Hartley transform t A f A A f A f A f t tHY HY Fr Fj Fr Fj Fr Fj= = = =( )− − −  is

 tHY = [ ]0 71 0 85 0 71 0 35 0 0 15 0 0 35. . . . . .- T

In accordance with Eq. (7-17), f can be written as

 f x T u s x u x
u

( ) ( ) ( , ) , , ,= =
=
∑ HY HY    for 

0

7

0 1 7…

where f = [ ]f f f T( ) ( ) ( )0 1 7…  and tHY HY HY HY= [ ]T T T
T

( ) ( ) ( ) .0 1 7…  Thus, f can be recon-
structed from tHY as a sum of products involving the computed transform coefficients and correspond-
ing basis functions. In Fig. 6.9(a), such a reconstruction is done progressively, beginning with the average 
or DC value of f (for u = 0) at the top of the figure and converging to f (for u = 0, 1, …, 7) at the bottom 
of the figure. As higher frequency basis functions are included in the sum, the reconstructed function 
becomes a better approximation of f, with perfect reconstruction achieved when all eight weighted basis 
functions are summed to generate the equivalent of inverse discrete Hartley transform f A t= HY HY

T . A 
similar progression is shown in Fig. 7.9(b) for the DFT.

THE DISCRETE COSINE TRANSFORM

The transformation matrix of the most commonly encountered form of the discrete 
cosine transform (DCT) is obtained by substituting the inverse transformation 
kernal

 s x u u
x u

N
( , ) ( )cos

( )
= ⎛

⎝⎜
⎞
⎠⎟

a
p2 1

2
+

 (7-83)

where

 a( )

, , ,

u
N

u

N
u N

=
=

=

⎧

⎨
⎪⎪

⎩
⎪
⎪

1
0

2
1 2 1

for 

for … -
 (7-84)

There are eight standard 
DCT variants and they 
assume different sym-
metry conditions. For 
example, the input could 
be assumed to be even 
about a sample or about 
a point halfway between 
two samples.
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488    Chapter 7  Wavelet and Other Image Transforms

into Eqs. (7-22) and (7-24). The resulting transformation matrix, denoted as AC 
in Fig. 7.10, is real and orthogonal, but not symmetric. The underlying basis func-
tions are harmonically related cosines of frequency 0 to R N N T= [ ][ ]( ) ( ) ;- 1 1 2�  
the spacing between adjacent frequencies (i.e., the frequency resolution) is 
� �u N T= 1 2( ). A comparison of Fig. 7.10(a) to either Figs. 7.8(a) or 7.2 reveals 
that the spectrum of a discrete cosine transform has roughly the same frequency 
range as that of the Fourier and Hartley transforms, but twice the frequency resolu-
tion. If N = 4 and �T = 1, for example, the resulting DCT coefficients are at frequen-
cies 0 0 5 1 1 5, . , , . ,{ }  while the DFT spectral components correspond to frequencies 
0 1 2 1, , , .{ }  Figures 7.10(c) and 7.8(c) further illustrate the point. Note that the 

DCT basis image of maximum frequency occurs when u and v are 7, as opposed to 
4 for the DFT. Since 2-D DCTs are based on the separable inverse transformation 
kernel

 s x y u v u v
x u

N
y v

N
( , , , ) ( ) ( )cos

( )
cos

( )
= ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

a a
p p2 1

2
2 1

2
+ +

 (7-85)
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FIGURE 7.9
Reconstructions 
of a discrete 
function by the 
addition of pro-
gressively higher 
frequency com-
ponents: (a) DHT 
and (b) DFT.
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7.6  Fourier-Related Transforms    489

where a( )u  and a( )v  are defined in accordance with Eq. (7-84), transformation 
matrix AC can be used in the computation of both 1- and 2-D transforms (see the 
caption of Fig. 7.10 for the appropriate transform equations).

While sharing several attributes of the discrete Fourier transform, the discrete 
cosine transform imposes a entirely different set of assumptions on the functions 
being processed. Rather than N-point periodicity, the underlying assumption of the 
DFT, the discrete cosine transform assumes 2N-point periodicity and even sym-
metry. As can be seen in Fig. 7.11, while N-point periodicity can cause boundary 
discontinuities that introduce “artificial” high-frequency components into a trans-
form, 2N-point periodicity and even symmetry minimize discontinuity, as well as the 
accompanying high-frequency artifact. As will be seen in Chapter 8, this is an impor-
tant advantage of the DCT in image compression. In light of the above comments, it 
should come as no surprise that the DCT of N-point function f x( ) can be obtained 
from the DFT of a 2N-point symmetrically extended version of f x( ) :

1. Symmetrically extend N-point discrete function f x( ) to obtain

 g x
f x x N

f N x N x N
( )

( )

( )
=

− −
⎧
⎨
⎩

for 

for 

0

2 1 2

… 6
… 6

  (7-86)

where f = [ ]f f f N T( ) ( ) ( )0 1 1p -  and g = [ ]g g g N T( ) ( ) ( ) .0 1 2 1p -
2. Compute the 2N-point discrete Fourier transform of g:

 t A g
t

tF F= =
⎡

⎣
⎢

⎤

⎦
⎥

1

2

(7-87)

ba c

FIGURE 7.10  The transformation matrix and basis images of the discrete cosine transform for N = 8. (a) Graphical 
representation of orthogonal transformation matrix AC, (b) AC rounded to two decimal places, and (c) basis images.  
For 1-D transforms, matrix AC is used in conjunction with Eqs. (7-28) and (7-29); for 2-D transforms, it is used with 
Eqs. (7-35) and (7-36).

 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

 0.49 0.42 0.28 0.10 -0.10 -0.28 -0.42 -0.49

 0.46 0.19 -0.19 -0.46 -0.46 -0.19 0.19 0.46

 0.42 -0.10 -0.49 -0.28 0.28 0.49 0.10 -0.42

 0.35 -0.35 -0.35 0.35 0.35 -0.35 -0.35 0.35

 0.28 -0.49 0.10 0.42 -0.42 -0.10 0.49 -0.28

 0.19 -0.46 0.46 -0.19 -0.19 0.46 -0.46 0.19

 0.10 -0.28 0.42 -0.49 0.49 -0.42 0.28 -0.10
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490    Chapter 7  Wavelet and Other Image Transforms

where AF is the transformation matrix of the DFT and 2N-element transform tF 
is partitioned into two equal-length N-element column vectors, t1 and t2.

3. Let N-element column vector h = [ ]h h h N T( ) ( ) ( )0 1 1p -  where

  h u e u Nj u N( ) , , ,= =- p -p 2 0 1 1for  (7-88)

and let s = ⎡⎣ ⎤⎦1 2 1 1 1p
T
. 

4. The discrete cosine transform of f is then

 t s h tC = { }Re � � 1  (7-89)

where � denotes the Hadamard product, a matrix multiplication in which the 
corresponding elements of two vectors or matrices are multiplied together—for 
example, 3 0 5 2 6 6 3−[ ] [ ] = −[ ]. .°

EXAMPLE 7.10 :   Computing a 4-point DCT from a 8-point DFT.

In this example, we use Eqs. (7-86) through (7-89) to compute the discrete cosine transform of 1-D func-
tion f x x( ) = 2  for x = 0 1 2 3, , , .

1. Let f = [ ]0 1 4 9 T  and use Eq. (7-86) to create an 8-point extension of f with even symmetry. 
Extended function g = [ ]0 1 4 9 9 4 1 0 T  is one period of an even symmetric function like 
the one in Fig. 7.11(b).

2. Substituting the 8 8*  unitary transformation matrix from Fig. 7.7(a) into Eq. (7-87), the discrete 
Fourier transform of g is

 t A gF F= =

-
- -

+
- -

- +

9 9

6 18 2 56

1 41 1 41

0 18 0 44

0

0 18 0 44

1 4

.

. .

. .

. .

. .

.

j

j

j

j

11 1 41

6 18 2 56

9 9

6
1

-
- +

-
-

j

j

.

. .

.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= so t
.. .

. .

. .

.18 2 56

1 41 1 41

0 18 0 44

0

0 18
2

-
+

- -

- +j

j

j

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= and t
jj

j

j

0 44

1 41 1 41

6 18 2 56

.

. .

. .

-
- +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

3. In accordance with Eq. (7-88),

 h =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

1 1

0 92 0 38

0 71 0 71

0 3

4

2

3 4

e

e

e

j

j

j

j

j

-

-

-

-
-

p

p

p

. .

. .

. 88 0 92- j .

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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and s = ⎡⎣ ⎤⎦ = [ ]1 2 1 1 1 0 71 1 1 1
T T. .

4. The discrete cosine transform of f is then

 
t s h tC = { } =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Re Re

.

. .

. .
� � 1

0 71

1

1

1

1

0 92 0 38

0 71 0 71

0

°
-
-

j

j

.. .

.

. .

. .

. .38 0 92

9 9

6 18 2 56

1 41 1 41

0 18 0 4-

-
- -

+
- -j

j

j

j

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

°

44

7

6 69

2

0 48

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

-

-

.

.

To validate the result, we substitute Eq. (7-83) into Eqs. (7-22) and (7-24) with N = 4 and use the result-
ing 4 4*  DCT transformation matrix in Eq. (7-28) to obtain

 t A fC C

0.5 0.5 0.5 0.5

0.65 0.27 0.27 0.65

0.5 0.5 0.5 0.5

0.27 0.

= =
- -

- -
- 665 0.65 0.27-

-

-

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

0

1

4

9

7

6 69

2

0 48

.

.
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥

Figure 7.12 illustrates the reconstruction of f by the inverse discrete cosine transform. Like the recon-
structions in Fig. 7.9, the DC component at the top of the figure [i.e., Fig. 7.12(a)] is the average value of 
the discrete function—in this case, ( ) . .0 1 4 9 4 3 5+ + + =  It is an initial but crude approximation of f. As 
three additional cosines of increasing frequency are added in the (b), (c), and (d) parts of the figure, the 
accuracy of the approximation increases until a perfect reconstruction is achieved in (d). Note the x-axis 
has been extended to show that the resulting DCT expansion is indeed periodic with period 2N (in this 
case 8) and exhibits the even symmetry that is required of all discrete cosine transforms.

b
a

FIGURE 7.11
The periodicity 
implicit in the 1-D 
(a) DFT and  
(b) DCT.

Discontinuity

N

2N

Discontinuity
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492    Chapter 7  Wavelet and Other Image Transforms

THE DISCRETE SINE TRANSFORM

The transformation matrix of the discrete sine transform (DST) is obtained by sub-
stituting the inverse transformation kernal

 s x u
N

x u
N

( , ) sin
( )( )

= ⎛
⎝⎜

⎞
⎠⎟

2
1

1 1
1+ +

+ + p
 (7-90)

whose separable 2-D counterpart is

 s x y u v
N

x u
N

y v
N

( , , , ) sin
( )( )

sin
( )( )

= ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

2
1

1 1
1

1 1
1+ + +

+ + + +p p⎞⎞
⎠⎟  (7-91)

into Eqs. (7-22) and (7-24). The resulting transformation matrix, denoted as AS in 
Fig. 7.13, is real, orthogonal, and symmetric. As can be seen in the (a) part of the 
figure, the underlying basis functions are harmonically related sines of frequency 
1 2 2( )N T+ �[ ] to N N T2 2( ) ;+ �[ ]  the frequency resolution or the spacing 
between adjacent frequencies is � �u N T= [ ]1 2 2( ) .+  Like the DCT, the DST has 
roughly the same frequency range as the DFT, but twice the frequency resolution. 
If N = 4 and �T = 1, for example, the resulting DST coefficients are at frequencies 

0 4 0 8 1 2 1 6. , . , . , . .{ }  Note unlike both the DCT and DFT, the DST has no DC (at 
u = 0) component. This results from an underlying assumption that the function 
being transformed is 2 1( )N + -point periodic and odd symmetric, making its average 
value zero. In contrast to the DCT, where the function is assumed to be even, the 
odd symmetry that is imposed by the DST does not reduce boundary discontinuity. 
This is clear in Fig. 6.14, where the result of computing the forward and inverse 
DCT of  f x x( ) = 2  for x = 0 1 2 3, , ,  is shown. Note that the underlying continuous 

Like the DCT, there are 
eight variants and they 
assume different sym-
metry conditions—for 
instance, is the input odd 
about a sample or about 
a point halfway between 
two samples?

0 2 4 6 8 10 12 14 16

0
5

-5

10

0
5

-5

10

0

5

10

0

5

10
b
a

c
d

FIGURE 7.12
DCT recon-
struction of a 
discrete function 
by the addition 
of progressively 
higher frequency 
components. Note 
the 2N-point 
periodicity and 
even symmetry 
imposed by the 
DCT .
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ba c

FIGURE 7.13  The transformation matrix and basis images of the discrete sine transform for N = 8. (a) Graphical rep-
resentation of orthogonal transformation matrix AS, (b) AS rounded to two decimal places, and (c) basis images.  
For 1-D transforms, matrix AS is used in conjunction with Eqs. (7-28) and (7-29); for 2-D transforms, it is used with 
Eqs. (7-35) and (7-36).

 0.16 0.30 0.41 0.46 0.46 0.41 0.30 0.16

 0.30 0.46 0.41 0.16 -0.16 -0.41 -0.46 -0.30

 0.41 0.41 0.00 -0.41 -0.41 0.00 0.41 0.41

 0.46 0.16 -0.41 -0.30 0.30 0.41 -0.16 -0.46

 0.46 -0.16 -0.41 0.30 0.30 -0.41 -0.16 0.46

 0.41 -0.41 0.00 0.41 -0.41 -0.00 0.41 -0.41

 0.30 -0.46 0.41 -0.16 -0.16 0.41 -0.46 0.30

 0.16 -0.30 0.41 -0.46 0.46 -0.41 0.30 -0.16

reconstruction, which was obtained by the same process that led to Fig. 6.12(d), 
exhibits the aforementioned periodicity, odd symmetry, and boundary discontinuity.

The discrete sine transform of an N-point function f x( ) can be obtained from the 
DFT of a 2 1( )N + -point symmetrically extended version of f x( ) with odd symmetry:

1. Symmetrically extend N-point function f(x) to obtain

 g x

x

f x x N

x N

f N x N x

( )
( )

( )

=

=

=
−

0 0

1 1

0 1

2 2

for 

for 

for 

for 

− ≤ ≤
+

− + 1 + ≤ ≤ 22 2N +

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (7-92)

where f = [ ]f f f N T( ) ( ) ( )0 1 1p -  and g = [ ]g g g N T( ) ( ) ( ) .0 1 2p + 2
2. Compute the 2 1( )N + -point discrete Fourier transform of g:

 t A g
t

t

F F= =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0

0
1

2

 (7-93)

0 2 4 6 8 10 12 14 16

0

-10

10FIGURE 7.14
A reconstruction 
of the DST of the 
function defined 
in Example 6.10.
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494    Chapter 7  Wavelet and Other Image Transforms

where AF is the transformation matrix of the DFT and 2 1( )N + -element trans-
form tF is partitioned into two single-element zero vectors, 0 = [ ],0  and two 
N-element column vectors t1 and t2.

3. The discrete sine transform of f, denoted tS, is then

 t tS Imag= { }− 1  (7-94)

EXAMPLE 7.11 :   Computing a 4-point DST from a 10-point DFT.

In this example, we use Eqs. (7-92) through (7-94) to find the DST of f = [ ]0 1 4 9 T  from Example 7.10:

1. Create a 2 1( )N + -point extended version of f with odd symmetry. In accordance with Eq. (7-92), 
g = [ ]0 0 1 4 9 0 9 4 1 0− − − T.

2. Compute the discrete Fourier transform of g using Eq. (7-93). Matrix AF is a unitary DFT transfor-
mation matrix of size 10 10×  and the resulting transform is

 t A gF F= = [ ]0 6 35 6 53 3 56 1 54 0 6 35 6 53 3 56 1 54− − − −j j j j j j j j T. . . . . . . .

Note the real part of tF is zero and block t1 of tF is − −j j j j T6 35 6 53 3 56 1 54. . . . .[ ]
3. In accordance with Eq. (7-94), the DST of f  is then

 t tS Imag= − { } = [ ]1 6 35 6 53 3 56 1 54. . . .− − T  

Alternately, the DST can be computed directly as

 t A fS S

0.37 0.60 0.60 0.37

0.60 0.37 0.37 0.60

0.60 0.37 0.37 0.6
= =

- -
- - 00

0.37 0.60 0.60 0.37- -

-
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

0

1

4

9

6 35

6 53

.

.

33 56

1 54

.

.-

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

where AS is obtained by substituting Eq. (7-90) into Eqs. (7-22) and (7-24) with N = 4.

EXAMPLE 7.12 :   Ideal lowpass filtering with Fourier-related transforms.

Figure 7.15 shows the results of applying an ideal lowpass filter to the test image that was used in 
Example 4.16 with all of the Fourier-related transforms that have been covered in this chapter. As in the 
Chapter 4 example, the test image shown in Fig. 7.15(a) is of size 688 688×  and is padded to 1376 1376×  
before computing any transforms. For reference, the Fourier transform of the test image is shown in 
Fig. 7.15(b), where a blue overlay has been superimposed to show the lowpass filter function. Only the 
frequencies that are not shaded blue are passed by the filter. Since we are again using a cutoff frequency 
with a radius of 60, the filtered result in Fig. 7.15(c) is similar to that of Fig. 4.41(d), with any differences 
due to the use of zero padding rather than mirror padding. Note once more the blurring and ringing that 
was discussed in Example 4.16.

Figures 7.15(d)–(i) provide comparable results using the three Fourier-related transforms covered 
in this chapter. As was done for the Fourier transform in Fig. 6.15(b), Figs. 6.15(d)–(f) show the 
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ba c
ed f
hg i

FIGURE 7.15  (a) Original image of the 688 688×  test pattern from Fig. 4.41(a). (b) Discrete Fourier transform (DFT) 
of the test pattern in (a) after padding to size 1376 1376× . The blue overlay is an ideal lowpass filter (ILPF) with 
a radius of 60. (c) Result of Fourier filtering. (d)–(f) Discrete Hartley transform, discrete cosine transform (DCT), 
and discrete sine transform (DST) of the test pattern in (a) after padding. The blue overlay is the same ILPF in (b), 
but appears bigger in (e) and (f) because of the higher frequency resolution of the DCT and DST. (g)–(i) Results of 
filtering for the Hartley, cosine, and sine transforms, respectively.
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496    Chapter 7  Wavelet and Other Image Transforms

discrete Hartley, cosine, and sine transforms of the test image in Fig. 7.15(a) after zero-padding to size 
1376 1376× , respectively. Although the filter functions for the cosine and sine transforms, which are 
again superimposed in blue, appear to have twice the radii of the filters used with the Fourier and 
Hartley transforms, the same range of frequencies are passed by all filters. The apparent increase in size 
is due to the greater frequency resolution of the sine and cosine transforms, which has already been 
discussed. Note the spectra of these transforms do not need to be centered for easy interpretation, as 
is the case for the Fourier and Hartley spectra. Finally, we note for all practical purposes the filtered 
images in Figs. 7.15(g)–(i) are equivalent to the Fourier filtered result in Fig. 7.15(c).

To conclude the example, we note while Fourier-related transforms can be implemented in FFT-
like algorithms or computed from the FFT itself, we used the matrix implementations that have been 
presented in this section to compute both the forward and inverse transforms. Using MATLAB®, Win-
dows® 10, and a notebook PC with an Intel® i7-4600U processor at 2.1 GHz, the total times required to 
compute the Fourier-related transforms in this example were 2 to 5 times longer than the corresponding 
FFT computations. All computations, however, took less than a second.

7.7 WALSH-HADAMARD TRANSFORMS  

Walsh-Hadamard transforms (WHTs) are non-sinusoidal transformations that 
decompose a function into a linear combination of rectangular basis functions, called 
Walsh functions, of value + −1 1 and . The ordering of the basis functions within a 
Walsh-Hadamard transformation matrix determines the variant of the transform 
that is being computed. For Hadamard ordering (also called natural ordering), the 
transformation matrix is obtained by substituting the inverse transformation kernal

 s x u
N

b x b ui i
i

n

( , ) ( )
( ) ( )

=
∑
=1

1 0

1

−

−

 (7-95)

into Eqs. (7-22) and (7-24), where the summation in the exponent of Eq. (7-95) is 
performed in modulo 2 arithmetic,  N n= 2 , and b zk ( ) is the kth bit in the binary rep-
resentation of z. For example, if n = 3 and z = 6 (110 in binary), b z0 0( ) ,=  b z1 1( ) ,=  
and b z2 1( ) .=  If N = 2, the resulting Hadamard-ordered transformation matrix is

 AW =
⎡

⎣
⎢

⎤

⎦
⎥

1

2

1 1

1 1−
 (7-96)

where the matrix on the right (without the scalar multiplier) is called a Hadamard 
matrix of order 2. Letting HN denote the Hadamard matrix of order N, a simple 
recursive relationship for generating Hadamard-ordered transfomation matrices is

 A HW =
1

N
N  (7-97)

where

 H
H H

H H2N
N N

N N

=
⎡

⎣
⎢

⎤

⎦
⎥−

 (7-98)

7.7

AW is used to denote the 
transformation matrix 
of the Hadamard- or 
natural-ordered WHT. 
Although of size 2 2×  
here, it is more generally 
of size N N× ,  where N 
is the dimension of the 
discrete function being 
transformed.
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and

 H2

1 1

1 1
=

⎡

⎣
⎢

⎤

⎦
⎥−

 (7-99)

Thus, Eq. (7-96) follows from Eqs. (7-97) and (7-99). In the same way,

 

H
H H

H H4
2 2

2 2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

=
⎡

⎣
⎢

⎤

⎦
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−

− −
− −

− −

 (7-100)

and

 

H
H H

H H8
4 4

4 4

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1

=
⎡

⎣
⎢

⎤

⎦
⎥

=

−

− − − −
− − − −

− − −− −
− − − −

− − − −
− − − −

− − − −

1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

⎡

⎣

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (7-101)

The corresponding Hadamard-ordered transformation matrices are obtained by sub-
stituting H4 and H8 into Eq. (7-97).

The number of sign changes along a row of a Hadamard matrix is known as the 
sequency of the row. Like frequency, sequency measures the rate of change of a 
function, and like the sinusoidal basis functions of the Fourier transform, every 
Walsh function has a unique sequency. Since the elements of a Hadamard matrix are 
derived from inverse kernal values, the sequency concept applies to basis functions 
s x u( , ) for u N= 0 1 1, , ,… −  as well. For instance, the sequencies of the H4 basis vec-
tors in Eq. (7-100) are 0, 3, 1, 2; the sequencies of the H8 basis vectors in Eq. (7-101) 
are 0, 7, 3, 4, 1, 6, 2, and 5. This arrangement of sequencies is the defining character-
istic of a Hadamard-ordered Walsh-Hadamard transform.

Arranging the basis vectors of a Hadamard matrix so the sequency increases 
as a function of u is both desirable and common in signal and image processing 
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applications. The transformation matrix of the resulting sequency-ordered Walsh-
Hadamard transform is obtained by substituting the inverse transformation kernal

 s x u
N

b x p ui i
i

n

( , ) ( )
( ) ( )

=
∑
=1

1 0

1

−

−

 (7-102)

where

 

p u b u

p u b u b u

p u b u b u

p

n

n n

n n

n

0 1

1 1 2

2 2 3

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

=
=
=

−

− −

− −

+
+

�

−− +1 1 0( ) ( ) ( )u b u b u=

 (7-103)

into Eqs. (7-22) and (7-24). As before, the summations in Eqs. (7-102) and (7-103) 
are performed in modulo 2 arithmetic. Thus, for example,

 ′ =H8

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

− − − −
− − − −
− − − −

− − − −11 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

− − − −
− − − −
− − − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (7-104)

where the apostrophe ′( ) has been added to indicate sequency ordering as opposed 
to Hadamard ordering. Note the sequencies of the rows of ′H8  match their row num-
bers—i.e., 0, 1, 2, 3, 4, 5, 6, and 7. An alternate way to generate ′H8  is to rearrange the 
rows of Hadamard-ordered H8, noting that row s of ′H8  corresponds to the row of 
H8 that is the bit-reversed gray code of s. Since the n-bit gray code corresponding to 
( )s s s sn−1 2 1 0 2…  can be computed as 

 
g s s i n

g s i n
i i i

n n

=
=

{ +

− −

≤ ≤ −
= −

1

1 1

0 2

1

for 

for 
 (7-105)

where { denotes the exclusive OR operation, row s of ′H8  is the same as row  
( )g g g gn0 1 2 1 2… −  of H8. For example, row 4 or (100)2 of ′H8 , whose gray code is (110)2, 
comes from row (011)2 or 3 of H8. Note row 4 of ′H8  in Eq. (7-104) is indeed identical 
to row 3 of H8 in Eq. (7-101).

Figures 7.16(a) and (b) depict graphically and numerically the sequency-ordered 
WHT transformation matrix for the case of N = 8. Note the sequency of the discrete 

Recall that N = 2n, so 
n = log2 N.
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basis functions in Fig. 7.16(a) increase as u goes from 0 to 7, as does the sequency 
of the underlying square wave functions. Note also the transformation matrix in 
Fig. 7.16(b) is real, symmetric, and follows from Eqs. (7-105) and (7-97) as

 A H′ = ′W
1

8
N

 (7-106)

It is left as an exercise for the reader to show that it is orthogonal and that 
A A A′ ′ ′= =W W W

T −1 . Finally, note the similarity of the sequency-ordered basis images 
in Fig. 7.16(c), which are based on the separable 2-D inverse transformation kernal

s x y u v
N

b x p u b y p vi i i i
i

n

( , , , ) ( )
( ) ( ) ( ) ( )

=
∑ [ ]
=1

1 0

1

−
+

−

 (7-107)

to the basis images of the 2-D DCT in Fig. 7.10(c). Sequency increases as a function 
of both u and v, like frequency in the DCT basis images, but does not have as useful 
a physical interpretation.

EXAMPLE 7.13 :   A simple sequency-ordered Walsh-Hadamard transform.

To compute the sequency-ordered Walsh-Hadamard transform of the 1-D function f = [ ] ,2 3 4 5 T  we 
begin with the Hadamard-ordered Hadamard matrix H4 of Eq. (7-100) and use the procedure described 
in conjunction with Eq. (7-105) to reorder the basis vectors. The mapping of the Hadamard-ordered 
basis vectors of H4 to the sequency-ordered basis vectors of ′H4  is computed as follows:

 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

 0.35 0.35 0.35 0.35 -0.35 -0.35 -0.35 -0.35

 0.35 0.35 -0.35 -0.35 -0.35 -0.35 0.35 0.35

 0.35 0.35 -0.35 -0.35 0.35 0.35 -0.35 -0.35

 0.35 -0.35 -0.35 0.35 0.35 -0.35 -0.35 0.35

 0.35 -0.35 -0.35 0.35 -0.35 0.35 0.35 -0.35

 0.35 -0.35 0.35 -0.35 -0.35 0.35 -0.35 0.35

 0.35 -0.35 0.35 -0.35 0.35 -0.35 0.35 -0.35

ba c

FIGURE 7.16  The transformation matrix and basis images of the sequency-ordered Walsh-Hadamard transform for 
N = 8. (a) Graphical representation of orthogonal transformation matrix A ′W , (b) A ′W  rounded to two decimal 
places, and (c) basis images.  For 1-D transforms, matrix A ′W  is used in conjunction with Eqs. (7-28) and (7-29); for 
2-D transforms, it is used with Eqs. (7-35) and (7-36).
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Row of ′H4 Binary Code Gray Code
Bit-Reversed 
Gray Code

Row of H4

0 00 00 00 0

1 01 01 10 2

2 10 11 11 3

3 11 10 01 1

Thus, in accordance with Eqs. (7-106), the sequency-ordered Walsh-Hadamard transformation matrix 
of size 4 4×  is

 A H′ ′= =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

W W
1

4

1
2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

− −
− −
− −

and the sequency-ordered transform is t A f′ ′= =W W [ ] .7 2 0 1− − T

7.8 SLANT TRANSFORM  

Many monochrome images have large areas of uniform intensity and areas of lin-
early increasing or decreasing brightness. With the exception of the discrete sine 
transform, all of the transforms that we have presented to this point include a basis 
vector (at frequency or sequency u = 0) for representing efficiently constant gray 
level areas, but none has a basis function that is targeted specifically at the represen-
tation of linearly increasing or decreasing intensity values. The transform considered 
in this section, called the slant transform, includes such a basis function. The trans-
formation matrix of the slant transform of order N N×  where N n= 2  is generated 
recursively using

 A SSl =
1

N
N  (7-108)

where slant matrix

 S

0 0

0 I 0 I

0 0

0 I

N

N N N N

N N

N N N N

N

a b a b

b a b a

=

1 0 1 0

0 1 0 1
2 2 2 2

2 2

−

−

−

− −

−

( ) ( )

( ) 00 I

S 0

0 S

− −( )N

N

N

2 2

2

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

  (7-109)

7.8
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Here, IN is the identity matrix of order N N× ,

 S2

1 1

1 1
=

⎡

⎣
⎢

⎤

⎦
⎥−

 (7-110)

and coefficients aN and bN are

 a
N

NN =
⎡

⎣
⎢

⎤

⎦
⎥

3

4 1

2

2

1 2

( )−
 (7-111)

and

 b
N

NN =
⎡

⎣
⎢

⎤

⎦
⎥

2

2

1 2
4

4 1

−
−( )

 (7-112)

for N > 1. When N ≥ 8, matrix SN is not sequency ordered, but can be made so using 
the procedure demonstrated in Example 6.13 for the WHT. An example of the use 
of Eqs. (7-108) through (7-112) is Slant transformation matrix

 A SSl = =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1

4

1
2

1 1 1 1

3

5

1

5

1

5

3

5
1 1 1 1

1

5

3

5

3

5

1

5

4

− −

− −
− −

⎥⎥

 (7-113)

Since N = 4, the basis vectors of ASl (and the rows of slant matrix of S4) are sequency 
ordered.

EXAMPLE 7.14 :   A simple 1-D slant transform.

Using Eqs. (7-28) and (7-113), the slant transform of function f = [ ]2 3 4 5 T  from Example 7.13 is 
t A fSl Sl= = [ . ] .7 2 24 0 0− T  Note the transform contains only two nonzero terms, while the Walsh-Had-
amard transform in the previous example had three nonzero terms. The slant transform represents f 
more efficiently because f is a linearly increasing function—that is, f is highly correlated with the slant 
basis vector of sequency one.  Thus, there are fewer terms in a linear expansion using slant basis func-
tions as opposed to Walsh basis functions.

Figures 7.17(a) and (b) depict graphically and numerically the sequency-ordered 
slant transformation matrix for the case of N = 8. Just as apostrophes ′( ) were used 
to denote sequency ordering in Walsh-Hadamard transforms, ′S8 and ASl′  are used 
to denote sequency-ordered versions of Eqs. (7-108) and (7-109). Note the slant 
transformation matrix in Fig. 7.16(b) is real, but not symmetric. Thus, A ASl Sl′ ′=−1 T  
but A ASl Sl′ ′

T ≠ . Matrix ASl′  is also orthogonal and can be used in conjunction with 

Note I1 is a 1 1×  identity 
matrix 1[ ]  and I0 is the 
empty matrix of size 
0 0× .
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502    Chapter 7  Wavelet and Other Image Transforms

Eqs. (7-35) and (7-36) to implement 2-D separable slant transforms. Figure 6.17(c) 
shows the 2-D slant basis images of size 8 8× . Note for 4 5≤ ≤u  and 4 5≤ ≤v , they 
are identical to the corresponding basis images of the WHT in Fig. 7.16(c). This is 
also evident in Figs. 7.16(a) and 7.17(a) when 4 5≤ ≤u . In fact, all of the slant basis 
vectors bear a striking resemblance to the basis vectors of the Walsh-Hadamard 
transform. Finally, we note slant matrices have the necessary properties to allow 
implementation of a fast slant transform algorithm similar to the FFT.

7.9 HAAR TRANSFORM  

Discovered in 1910, the basis functions of the Haar transform (Haar [1910]) were 
later recognized to be the oldest and simplest orthonormal wavelets. We will look 
at Haar’s functions in the context of wavelets in the next section. In this section, we 
approach Haar’s transform as another matrix-based transformation that employs a 
set of rectangular-shaped basis functions.

The Haar transform is based on Haar functions, h xu( ), that are defined over the 
continuous, half-open interval x ∈[ )0 1, . Variable u is an integer that for u > 0 can be 
decomposed uniquely as

 u qp= 2 +  (7-114)

where p is the largest power of 2 contained in u and q is the remainder—that is, 
q up= −2 . The Haar basis functions are then

h x

u x

u q x q

u
u

p p p

p
( )

( . )
=

=

+

1 0 0 1

2 0 2 0 5 2

2 0

2

2

 and 

 and 

 and 

≤ <

> ≤ <

− > (( . ) ( )q x qp p+ +

⎧

⎨
⎪
⎪

⎩
⎪
⎪

0 5 2 1 2

0

≤ <
otherwise

 (7-115)

7.9

 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

 0.54 0.39 0.23 0.08 -0.08 -0.23 -0.39 -0.54

 0.47 0.16 -0.16 -0.47 -0.47 -0.16 0.16 0.47

 0.24 -0.04 -0.31 -0.59 0.59 0.31 0.04 -0.24

 0.35 -0.35 -0.35 0.35 0.35 -0.35 -0.35 0.35

 0.35 -0.35 -0.35 0.35 -0.35 0.35 0.35 -0.35

 0.16 -0.47 0.47 -0.16 -0.16 0.47 -0.47 0.16

 0.16 -0.47 0.47 -0.16 0.16 -0.47 0.47 -0.16

ba c

FIGURE 7.17  The transformation matrix and basis images of the slant transform for N = 8. (a) Graphical representa-
tion of orthogonal transformation matrix ASl′ ,  (b) ASl′  rounded to two decimal places, and (c) basis images.  For 
1-D transforms, matrix ASl′  is used in conjunction with Eqs. (7-28) and (7-29); for 2-D transforms, it is used with 
Eqs. (7-35) and (7-36).

DIP4E_GLOBAL_Print_Ready.indb   502 6/16/2017   2:09:42 PM



7.9  Haar Transform    503

When u is 0,  h x0 1( ) =  for all x; the first Haar function is independent of continu-
ous variable x. For all other values of u, h xu( ) = 0 except in the half-open intervals 
C Bq qp p2 0 5 2, ( . )+  and C B( . ) , ( ) ,q qp p+ +0 5 2 1 2  where it is a rectangular wave 
of magnitude 2 2p  and −2 2p , respectively. Parameter p determines the amplitude 
and width of both rectangular waves, while q determines their position along x. As 
u increases, the rectangular waves become narrower and the number of functions 
that can be represented as linear combinations of the Haar functions increases. Fig-
ure 7.18(a) shows the first eight Haar functions (i.e., the curves depicted in blue).

The transformation matrix of the discrete Haar transform can be obtained by sub-
stituting the inverse transformation kernal

 s x u
N

h x N x Nu( , ) ( ) , , ,= =
1

0 1 1    for … −  (7-116)

for u N= 0 1 1, , , ,… −  where N = 2n, into Eqs. (7-22) and (7-24). The resulting trans-
formation matrix, denoted AH, can be written as a function of the N N×  Haar matrix

 HN

N N

h N h N h N N

h N h N

h N h N N

=

0 0 0

1 1

1 1

0 1 1

0 1

0 1

( ) ( ) ( )

( ) ( )

( ) ( )

p -
o

o
p -- -

�

⎡⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (7-117)

as

 A HH =
1

N
N  (7-118)

For example, if N = 2,

 AH =
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

1

2

0 1 2

0 1 2
1

2

1 1

1 1
0 0

1 1

h h

h h

( ) ( )

( ) ( ) −
 (7-119)

In the computation of AH, x and u of Eq. (7-116) are 0 and 1, so Eqs. (7-114), 
(7-115), and (7-116) give s h( , ) ( ) ,0 0 0 2 1 20= =  s h( , ) ( . ) ,1 0 0 5 2 1 20= =  
s h( , ) ( ) ,0 1 0 2 1 21= = and s h( , ) ( . ) .1 1 0 5 2 1 21= = −  For N = 4,  u, q, and p of 
Eq. (7-114) assume the values

 

u p q

1 0 0

2 1 0

3 1 1

Variables p and q are 
analogous to s and t in 
Eq. (7-72).

Do not confuse the 
Haar matrix with the 
Hadamard matrix of Sec-
tion 7.7. Since the same 
variable is used for both, 
the proper matrix must 
be determined from the 
context of the discussion.

When u is 0, h xu( )  is 
independent of p and q.
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and the Haar transformation matrix of size 4 4×  becomes

 AH =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1
2

1 1 1 1

1 1 1 1

2 2 0 0

0 0 2 2

− −

−

−

 (7-120)

The transformation matrix for N = 8 is shown in Fig. 7.18(b). AH is real, orthogonal, 
and sequency ordered. An important property of the Haar transformation matrix 
is that it can be decomposed into products of matrices with fewer nonzero entries 
than the original matrix. This is true of all of the transforms we have discussed to this 
point. They can be implemented in FFT-like alogrithms of complexity O N N( log ).2
The Haar transformation matrix, however, has fewer nonzero entries before the 
decomposition process begins, making less complex algorithms on the order of O(N) 
possible. As can be seen in Fig. 7.18(c), the basis images of the separable 2-D Haar 
transform for images of size 8 8×  also have few nonzero entries.

7.10 WAVELET TRANSFORMS  

In 1987, wavelets were shown to be the foundation of a powerful new approach 
to signal processing and analysis called multiresolution theory (Mallat [1987]). 
Multiresolution theory incorporates and unifies techniques from a variety of 
disciplines, including subband coding from signal processing, quadrature mirror 
filtering from digital speech recognition, and pyramidal image processing. As its 
name implies, it is concerned with the representation and analysis of signals (or 
images) at more than one resolution. A scaling function is used to create a series of 
approximations of a function or image, each differing by a factor of 2 in resolution 

7.10

As was noted in Sec-
tion 7.1, wavelets are 
small waves with band-
pass spectra as defined in 
Eq. (7-72).

 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

 0.35 0.35 0.35 0.35 -0.35 -0.35 -0.35 -0.35

 0.50 0.50 -0.50 -0.50 0 0 0 0

 0 0 0 0 0.50 0.50 -0.50 -0.50

 0.71 -0.71 0 0 0 0 0 0

 0 0 0.71 -0.71 0 0 0 0

 0 0 0 0 0.71 -0.71 0 0

 0 0 0 0 0 0 0.71 -0.71

ba c

FIGURE 7.18  The transformation matrix and basis images of the discrete Haar transform for N = 8. (a) Graphical rep-
resentation of orthogonal transformation matrix AH, (b) AH rounded to two decimal places, and (c) basis images.  
For 1-D transforms, matrix AH is used in conjunction with Eqs. (7-28) and (7-29); for 2-D transforms, it is used with 
Eqs. (7-35) and (7-36).
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from its nearest neighboring approximations, and complementary functions, called 
wavelets, are used to encode the differences between adjacent approximations. The 
discrete wavelet transform (DWT) uses those wavelets, together with a single scaling 
function, to represent a function or image as a linear combination of the wavelets 
and scaling function. Thus, the wavelets and scaling function serve as an othonormal 
or biorthonormal basis of the DWT expansion. The Daubechies and Biorthogonal 
B-splines of Figs. 7.3(f) and (g) and the Haar basis functions of the previous section 
are but three of the many bases that can be used in DWTs.

In this section, we present a mathematical framework for the interpretation and 
application of discrete wavelet transforms. We use the discrete wavelet transform 
with respect to Haar basis functions to illustrate the concepts introduced. As you 
proceed through the material, remember that the discrete wavelet transform of a 
function with respect to Haar basis functions is not the Haar transform of the func-
tion (although the two are intimately related).

SCALING FUNCTIONS

Consider the set of basis functions composed of all integer translations and binary 
scalings of the real, square-integrable father scaling function w( )x —that is, the set of 
scaled and translated functions E Fw j k x j k, ( ) | , H Z  where 

 w wj k
j jx x k, ( ) ( )= 2 22 -  (7-121)

In this equation, integer translation k determines the position of w j k x, ( ) along the 
x-axis and scale j determines its shape—i.e., its width and amplitude. If we restrict j 
to some value, say j = j0, then E Fw j k k

0 , | H Z  is the basis of the function space spanned 
by the w j k x, ( ) for j = j0 and k = …, −1, 0, 1, 2, …, denoted Vj0

. Increasing j0 increases 
the number of representable functions in Vj0

, allowing functions with smaller varia-
tions and finer detail to be included in the space. As is demonstrated in Fig. 6.19 with 
Haar scaling functions, this is a consequence of the fact that as j0 increases, the scal-
ing functions used to represent the functions in Vj0

 become narrower and separated 
by smaller changes in x.

EXAMPLE 7.15 :   The Haar scaling function.

Consider the unit-height, unit-width scaling function

 w( )x
x

=
⎧
⎨
⎩

1 0 1

0

≤ <
otherwise

 (7-122)

and note it is the Haar basis function h x0 ( ) from Eq. (7-115). Figure 7.19 shows a few of the pulse-
shaped scaling functions that can be generated by substituting Eq. (7-122) into Eq. (7-121). Note when 
the scale is 1 [i.e., when j = 1 as in Figs. 7.19(d) and (e)], the scaling functions are half as wide as when 
the scale is 0  (i.e., when j = 0 as in Figs. 7.19(a) and (b)]. Moreover, for a given interval on x, there are 

The discrete wavelet 
transform, like all 
transforms considered in 
this chapter, generates 
linear expansions of 
functions with respect to 
sets of orthonormal or 
biorthonormal expansion 
functions.

The coefficients of a 1-D 
full-scale DWT with 
respect to Haar wavelets 
and a 1-D Haar trans-
form are the same.

Z is the set of integers.

Recall from Section 7.1 
that the span of a basis is 
the set of functions that 
can be represented as 
linear combinations of 
the basis functions.

DIP4E_GLOBAL_Print_Ready.indb   505 6/16/2017   2:09:45 PM
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twice as many scale 1 as scale 0 scaling functions. For example, two V1 scaling functions, w1 0,  and w1 1, , are 
located in interval 0 1≤ <x , while only one V0 scaling function, w0 0, , occupies the same interval.

Figure 7.19(f) shows a member of scaling space V1 that does not belong in V0 . The scaling func-
tions in Figs. 7.19(a) and (b) are too coarse to represent it. Higher-resolution functions, like those in 
Figs. 7.19(d) and (e), are required. They can be used, as is shown in Fig. 7.19(f), to represent the function 
as the three-term expansion f x x x x( ) = ( ) + ( ) ( )0 5 0 251 0 1 1 1 4. . ., , ,w w w−  In a similar manner, scaling func-
tion w0 0, , which is both a basis function and member of V0 , can be represented by a linear combination 
of V1 scaling functions [see Fig. 7.19(c)] as follows:

 w w w0 1 2 1 2 1
1

2

1

2
, , ,k k kx x x( ) = ( ) + ( )+

The Haar scaling function of the preceding example, like the scaling functions of 
all discrete wavelet transforms, obeys the four fundamental requirements of multi-
resolution analysis (Mallat [1989a]):

1. The scaling function is orthogonal to its integer tranlates.
2. The function spaces spanned by the scaling function at low scales are nested 

within those spanned at higher scales. That is, 

 V V V V V V− −� �( ( ( ( ( ( (… …1 0 1 2   (7-123)

where ( is used to denote “a subspace of.” The scaling functions satisfy the 
intuitive condition that if f x Vj( ) ,H  then f x Vj( ) .2 1H +

x

x

x

x

x

x0 1 2 3

0

1

0 1 2 3

0

1

0 1 2 3

0

1

0 1 2 3

0

1

0 1 2 3

0

1

0 1 2 3

0

1

0 5 1 0. ,w

−0 25 1 4. ,w

w w0 0, ( ) ( )x x= w w0 1 1, ( ) ( )x x= − w0 0 1, ( )x VH

w w1 0 2 2, ( ) ( )x x= w w1 1 2 2 1, ( ) ( )x x= − f x V( ) H 1

w1 0 2,

w1 1 2,

w1 1,

ba c
ed f

FIGURE 7.19  The Haar scaling function.
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3. The only function representable at every scale is f x( ) .= 0
4. All measureable, square-integrable functions can be represented as a linear 

combination of the scaling function as j → �. In other words,

 V L� = 2 ( )R  (7-124)

where L2(R) is the set of measureable, square-integrable, 1-D functions.

Under the above conditions,  w( )x  can be expressed as a linear combination of 
double-resolution copies of itself:

 w ww( ) ( ) ( )x h k x k
k

= ∑
H

-
Z

2 2  (7-125)

Called the refinement or dilation equation, Eq. (7-125) defines a series expan-
sion in which the expansion functions, in accordance with Eq. (7-121), are scal-
ing functions from one scale higher than w( )x  and the h kw( ) are expansion coef-
ficients. The expansion coefficients, which can be collected into an ordered set 
h k k h hw w w( ) , , , ( ), ( ), ,={ } = { }0 1 2 0 1… …  are commonly called scaling function coef-

ficients. For orthonormal scaling functions, it follows from Eqs. (7-51) and (7-52) that

 h k x x kw w w( ) ( ), ( )= −2 2  (7-126)

EXAMPLE 7.16 :   Haar scaling function coefficients.

The coefficients of the Haar scaling function [i.e., Eq. (7-122)] are h n nw( ) , , ,={ } = { }0 1 1 2 1 2  the 
first row of Haar matrix AH for N = 2 in Eq. (7-119). It is left as an exercise for the reader (see Prob-
lem 7.33) to compute these coefficients using Eq. (7-126). Equation (7-125) then yields

 
w w w

w w

x x x

x x

( ) = ( )⎡⎣ ⎤⎦ + ( )⎡⎣ ⎤⎦

= +

1

2
2 2

1

2
2 2 1

2 2 1

−

−( ) ( )
 

This expansion is illustrated graphically in Fig. 7.19(c), where the bracketed terms of the preceding 
expression are seen to be w1 0, ( )x  and w1 1, ( ).x

WAVELET FUNCTIONS

Given a father scaling function that meets the MRA requirements of the previous 
section, there exists a mother wavelet function c( )x  whose integer translations and 
binary scalings,

 c cj k
j jx x k, ( ) ( )= 2 22 -  (7-127)

for all j k, ,H Z  span the difference between any two adjacent scaling spaces. If we 
let Wj0

 denote the function space spanned by wavelet functions c j k k
0 , | ,H Z{ }  then

  V V Wj j j0 0 01+ = {  (7-128)

Recall that R is the set of 
real numbers.

Scaling function coef-
ficients can also be 
combined in a scaling 
vector.
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where { denotes the union of function spaces (like the union of sets). The orthogo-
nal complement of Vj0

 in Vj0 1+  is Wj0
, and the scaling functions that are the basis of 

Vj0
 are orthogonal to the wavelet functions that are the basis of Wj0

:

 w cj k j lx x k l
0 0

0, ,( ), ( ) = ≠   for  (7-129)

Figure 7.20 illustrates graphically the relationship between scaling and wavelet 
spaces. Each oval in the figure is a scaling space that, in accordance with Eq. (7-123), 
is nested or contained within the next higher resolution scaling space. The difference 
between adjacent scaling spaces is a wavelet space. Since wavelet space Wj  resides 
within scaling space Vj+1 and c j k j jx W V, ( ) ,H ( +1  wavelet function c( )x —like its scal-
ing function counterpart in Eq. (7-125)—can be written as a weighted sum of shifted, 
double-resolution scaling functions. That is, we can write

 c wc( ) ( ) ( )x h k x k
k

= ∑ 2 2 -  (7-130)

where the h kc( ) coefficients, called wavelet function coefficients, can be combined 
into the ordered set h k k h hc c c( ) , , , ( ), ( ), .={ } = { }0 1 2 0 1… …  Since integer wavelet 
translates are orthogonal to one another and to their complementary scaling func-
tions, it can be shown (see, for example, Burrus, Gopinath, and Guo [1998]) that the 
h kc( ) of Eq. (7-130) are related to the h kw( ) of Eq. (7-125) by

 h k h kk
c w( ) ( ) ( )= − −1 1  (7-131)

EXAMPLE 7.17 :   The Haar wavelet function and coefficients.

In the previous example, the Haar scaling coefficients were defined as h n nw( ) , , .={ } = { }0 1 1 2 1 2  
Using Eq. (7-131), the corresponding wavelet function coefficients are

 
h h

h h

c w

c w

( ) ( ) ( )

( ) ( ) ( )

0 1 1 0 1 2

1 1 1 1 1 2

0

1

= =

= =

− −

− − −

so h n nc( ) , , .={ } = { }0 1 1 2 1 2− These coefficients correspond to the second row of matrix AH for 

The orthogonal comple-
ment of vector space 
V WH  is the set of 
vectors in V that are 
orthogonal to every  
vector in W.

Wavelet function 
coefficients can also be 
combined in a wavelet 
vector.

FIGURE 7.20
The relationship 
between scaling 
and wavelet func-
tion spaces.

V0

V V W1 0 0= {

V V W V W W2 1 1 0 0 1= ={ { {

W0

W1
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7.10  Wavelet Transforms    509

N = 2 in Eq. (7-119). Substituting these values into Eq. (7-130), we get c w w( ) ( ) ( ),x x x= 2 2 1− −  which is 
plotted in Fig. 7.21(a). Thus, the Haar mother wavelet function is

 c( )

.

.x

x

x=
⎧
⎨
⎪

⎩⎪

1 0 0 5

1 0 5 1

0

≤ <
− ≤ <

elsewhere

 (7-132)

Note it is also the Haar basis function h x1( ) of Eq. (7-115). Using Eq. (7-127), we can now generate the 
universe of scaled and translated Haar wavelets. Two such wavelets, c0 2, ( )x  and c1 0, ( ),x  are plotted in 
Figs. 7.21(b) and (c), respectively. Note wavelet c1 0 1, ( )x WH  is narrower than c0 2 0, ( )x WH  and as such can 
be used to represent functions of finer detail.

Figure 7.21(d) shows a member of function space V1 that is not in V0 . This function was consid-
ered in Example 7.15 [see Fig. 7.19(f)]. Although the function cannot be represented accurately in V0 , 
Eq. (7-128) indicates that it can be written as a function of V0 and W0  scaling and wavelet functions. The 
resulting expansion is

 f x f x f xa d( ) ( ) ( )= +

where

 f x x xa( ) ( ) ( ), ,=
3 2

4
2

80 0 0 2w w−

and

 f x x xd ( ) ( ) ( ), ,=
−

−
2

4
2

80 0 0 2c c

0 1 2 3

0

1

−1

0 1 2 3

0

1

−1

0 1 2 3

0

1

−1

0 1 2 3

0

1

−1

0 1 2 3

0

1

−1

0 1 2 3

0

1

−1

x

x

x

x

x

x

f x V V W( ) H {1 0 0= f x Va( ) H 0 f x Wd( ) H 0

3 2 4 0 0w , ( )x

− 2 8 0 2w , ( )x

c c( ) ( ),x x= 0 0 c c0 2 0 0 2, ,( ) ( )x x= − c c1 0 2 2, ( ) ( )x x=

− 2 4 0 0c , ( )x

− 2 8 0 2c , ( )x

ba c
ed f

FIGURE 7.21  Haar wavelet functions.
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510    Chapter 7  Wavelet and Other Image Transforms

Here, f xa( ) is an approximation of f x( ) using V0 scaling functions, while f xd ( ) is difference f x f xa( ) ( )−  
as a sum of W0  wavelets. These approximations and differences, which are shown in Figs. 7.19(e)  
and (f), divide f x( ) in a manner similar to lowpass and highpass filtering. The low frequencies of f x( ) 
are captured in f xa( )—it assumes the average value of f x( ) in each integer interval—while the higher-
frequency details are encoded in f xd ( ).

WAVELET SERIES EXPANSION

Combining Eqs. (7-124) and (7-128), the space of all measureable, square-integra-
ble functions can be defined as L V W Wj j j

2
10 0 0

( ) ,R = +{ { { …  where j0 is an arbi-
trary starting scale. We can then define the wavelet series expansion of function 
f x L( ) ( )H 2 R  with respect to wavelet c( )x  and scaling function w( )x  as

 f x c k x d k xj
k

j k j j k
kj j

( ) = ( ) ( ) + ( ) ( )∑ ∑∑
=

∞

0 0

0

w c, ,  (7-133)

where cj0
 and dj  for j j≥ 0  are called approximation and detail coefficients, respec-

tively. Any measureable, square-integrable, 1-D function can be expressed as a 
weighted sum of Vj0

 scaling functions and Wj  wavelets for j j≥ 0 . The first sum in 
Eq. (7-133) produces an approximation of f x( ) from scale j0 scaling functions; each 
successive scale of the second sum provides increasing detail as a sum of higher-
resolution wavelets. If the scaling and wavlet functions are orthonormal,

  c f x xj j k0 0
= ( ), ( ),w  (7-134)

and
  d f x xj j k= ( ), ( ),c  (7-135)

Here, we have used Eq. (7-13). If they are part of a biorthogonal basis, the w  and c 
terms must be replaced by their dual functions, w

'
 and c

'
, respectively.

EXAMPLE 7.18 :   The Haar wavelet series expansion of y = x2.

Consider the simple function

 y
x x

=
⎧
⎨
⎪

⎩⎪

2 0 1

0

≤ ≤
otherwise

shown in Fig. 7.22(a). Using Haar wavelets—see Eqs. (7-122) and (7-132)—and starting scale j0 = 0, 
Eqs. (7-134) and (7-135) can be used to compute the following expansion coefficients:

 

c x x dx x dx
x

d x x dx

0
2

0 0
2

3

0

1

0
2

0 0

0
3

1
3

0

0

1

0

1

0

1

( ) = ( ) = = =

( ) = ( ) =

2 2

2

w

c

,

,
00

0 5

0 5

1
2 2 1

4

.

.2 2x dx x dx− −=
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d x x dx x dx x dx

d

1
2

1 0
2 2

1

0 2 2
2

32

1

0

1

0

0 25

0 25

0 5

0

( ) = ( ) = − =

( ) =

2 2 2c ,

.

.

.

−

11

0 5

0 75

0 75

1
2

1 1
2 22 2

3 2
322 2 2x x dx x dx x dxc ,

.

.

.
( ) = − = −

Substituting these values into Eq. (7-133), we get the wavelet series expansion

 y x x

V W

V V W

= ( ) + ( )⎡
⎣⎢

⎤
⎦⎥

= ⊕

1
3

1
40 0 0 0

0 0

1 0 0

w c, ,
� �	 
	 � �		 
		
� �				

−



				
� �					 
					

+ ( ) − ( )⎡

⎣
⎢

⎤

⎦
⎥

= ⊕

−
2

32
3 2
321 0 1 1

1

2 1

c c, ,x x

W

V V W11 0 0 1= ⊕ ⊕

+

V W W
� �											 
											

�

The first term in this expansion employs c0 0( ) to generate a V0 approximation of the function being 
expanded. This approximation is shown in Fig. 7.22(b) and is the average value of the original function. 
The second term uses d0 0( ) to refine the approximation by adding a level of detail from wavelet space 
W0 . The added detail and resulting V1 approximation are shown in Figs. 7.22(c) and (d), respectively. 
Another level of detail is formed from the products of d1 0( ) and d1 1( ) with the corresponding wavelets 
of W1. This additional detail is shown in Fig. 7.22(e), and the resulting V2 approximation is depicted 
in Fig. 7.22(f). Note the expansion is now beginning to resemble the original function. As higher scales 
(greater levels of detail) are added, the approximation becomes a more precise representation of the 
function, realizing it in the limit as j → �.

ba c
ed f

FIGURE 7.22  A wavelet series expansion of y = x2 using Haar wavelets.
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512    Chapter 7  Wavelet and Other Image Transforms

DISCRETE WAVELET TRANSFORM IN ONE DIMENSION

Like a Fourier series expansion, the wavelet series expansion of the previous section 
maps a function of a single continuous variable into a sequence of discrete coef-
ficients. If the function being expanded is discrete, the coefficients of the expansion 
are its discrete wavelet transform (DWT) and the expansion itself is the function’s 
inverse discrete wavelet transform. Letting j0 = 0 in Eqs. (7-133) through (7-135) and 
restricting attention to N-point discrete functions in which N is a power of 2 (i.e., 
N = 2J), we get

 f x
N

T x T j k xj k
kj

J j

( ) ( , ) ( ) ( , ) ( ),= +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥==

∑∑1
0 0

0

2 1

0

1

w cw c
−−

 (7-136)

where

 T f x x f x x
N

f x x
x

N

w w w w( , ) ( ), ( ) ( ), ( ) ( ) ( ),
*0 0

1
0 0

0

1

= = =
=

−

∑  (7-137)

and

 T j k f x x
N

f x xj k j k
x

N

c c c( , ) ( ), ( ) ( ) ( ), ,
*= =

=
∑1

0

1−

 (7-138)

for j J= 0 1 1, , ,… −  and k j= 0 1 2 1, , , .… −  The transform coefficients defined by 
Eqs. (7-137) and (7-138) are called approximation and detail coefficients, respec-
tively. They correspond to the c kj0

( ) and d kj ( ) of the wavelet series expansion in the 
previous section. Note the integrations of the series expansion have been replaced 
by summations in Eqs. (7-137) through (7-138). In the discrete case, inner products 
like those of Eqs. (7-1) and (7-2), as opposed to Eq. (7-3), are used. In addition, a 
1 N  normalizing factor, reminiscent of the DFT in Example 7.6, has been added 
to both the forward and inverse transforms. This factor alternately could be incor-
porated into the forward or inverse alone as 1 N . Finally, it should be remembered 
that Eqs. (7-137) through (7-138) are valid for orthonormal bases. If the scaling and 
wavelet functions are real-valued, the conjugations can be dropped. If the basis is 
biorthogonal, the w  and c terms in Eqs. (7-137) and (7-138) must be replaced by 
their duals, w

'
 and c

'
, respectively.

EXAMPLE 7.19 :   A 1-D discrete wavelet transform.

To illustrate the use of Eqs. (7-137) through (7-138), consider a discrete function of four points in which 
f ( ) ,0 1=  f ( ) ,1 4=  f ( ) ,2 3= −  and f ( ) .3 0=  Since N = 4,  J is 2 and the summations in Eqs. (7-136) through 
(7-138) are performed for x = 0, 1, 2, 3. When j is 0, k is 0; when j is 1, k is 0 or 1. If we use Haar scaling 
and wavelet functions and assume the four samples of f x( ) are distributed over the support of the scal-
ing function, which is 1, Eq. (7-137) gives

 T f x x
x

w w0 0
1
2

1
2

1 1 4 1 3 1 0 1
0

3

, ( ) ( )( ) = = ( )( ) + ( )( ) + ( )( ) + ( )( )⎡⎣ ⎤⎦
=

∑ − == 1

Remember that for 
discrete inputs, x is a 
discrete variable that 
takes on integer values 
between 0 and N − 1.

DIP4E_GLOBAL_Print_Ready.indb   512 6/16/2017   2:09:57 PM



7.10  Wavelet Transforms    513

Note we have employed uniformly spaced samples of the Haar scaling function for j = k = 0—i.e.,  
w( )x = 1 for x = 0, 1, 2, 3. The sampled values match the elements of the first row of Haar transformation 
matrix AH in Eq. (7-120) of Section 7.9. Using Eq. (7-138) and similarly spaced samples of c j k x, ( ), which 
are the elements of rows 2, 3, and 4 of AH, we get

 

T

T

c

c

0 0
1
2

1 1 4 1 3 1 0 1 4

1 0
1
2

1

,

,

( ) = ( )( ) + ( )( ) + ( )( ) + ( )( )⎡⎣ ⎤⎦ =

( ) = (

− − −

))( ) + ( )( ) ( )( ) + ( )( )⎡
⎣

⎤
⎦ =

( ) = ( )( ) + ( )

2 4 2 3 0 0 0 1 5 2

1 1
1
2

1 0 4

− + − − .

,Tc 00 3 2 0 2 1 5 2( ) + ( )( ) + ( )( )⎡
⎣

⎤
⎦ =− − − .

Thus, the discrete wavelet transform of our simple four-sample function relative to Haar scaling and 
wavelet functions is 1 4 1 5 2 1 5 2, , . , . .− −{ }  Since the transform coeffcients are a function of two vari-
ables—scale j and translation k—we combine them into an ordered set. The elements of this set turn out 
to be identical to the elements of the sequency-ordered Haar transform of the function:

 t A fH H= =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥1

2

1 1 1 1

1 1 1 1

2 2 0 0

0 0 2 2

1

4

3

0

− −

−

−

− ⎥⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1

4

1 5 2

1 5 2

−

−

.

.

Recall from the previous section that Haar transforms are a function of a single transform domain vari-
able, denoted u.

Equation (7-136) enables the reconstruction of the original function from its wavelet transform coef-
ficients. Expanding the summation, we get

 f x T x T x T x T( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ), ,= + + +
1
2

0 0 0 0 1 0 1 10 0 1 0 1w c c cw c c c ,, ( )1 x⎡⎣ ⎤⎦

for x = 0, 1, 2, 3. If x = 0, for instance,

 f 0
1
2

1 1 4 1 1 5 2 2 1 5 2 0 1( ) = ( )( ) + ( )( ) + ( )( ) ( )( )⎡
⎣

⎤
⎦ =− + −. .

As in the forward case, uniformly spaced samples of the scaling and wavelet functions are used in the 
computation of the inverse. 

The Fast Wavelet Transform

The multiresolution refinement equation and its wavelet counterpart, Eqs. (7-125) 
and (7-130), make it possible to define the scaling and wavelet functions at any scale 
as a function of shifted, double-resolution copies of the scaling functions at the next 
higher scale. In the same way, the expansion coefficients of the wavelet series expan-
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514    Chapter 7  Wavelet and Other Image Transforms

sion and discrete wavelet transform can be computed recursively (see Problem 7.35) 
using

 c k h n k c nj j
n

( ) ( ) ( )= +∑ w − 2 1  (7-139)  

 d k h n k c nj j
n

( ) ( ) ( )= +∑ c − 2 1  (7-140)

and 

 T j k h n k T j n
n

w w w( , ) ( ) ( , )= ∑ − +2 1  (7-141)

 T j k h n k T j n
n

c c w( , ) ( ) ( , )= ∑ − +2 1  (7-142)

respectively. In contrast to Eqs. (7-133) and (7-136), where the only scaling coef-
ficients that are needed in the computations are at scale j0, Eqs. (7-139) through 
(7-142) require the computation of all scaling coefficients up to the highest scale of 
interest. Comparing these equations to the equation defining discrete convolution 
[i.e., Eq. (4-48)], we see that n is a dummy variable of convolution and the remaining 
minus signs and 2k terms reverse the order of the hw  and hc coefficients and sample 
the convolution results at n = 0, 2, 4, ..., respectively. Thus, for the discrete wavelet 
transform, we can rewrite Eqs. (7-141) and (7-142) as

 T j k T j n h nw w w( , ) ( , ) ( )= + −1 �  (7-143)

 T j k T j n h nc w c( , ) ( , ) ( )= + −1 �  (7-144)

where the convolutions are evaluated at instants n j= 0 2 2 21, , , .… + −  As indicated 
in Fig. 7.23, evaluating convolutions at nonnegative, even indices is equivalent to 
filtering and downsampling by 2 (i.e., discarding every other convolved value). For 
a 1-D sequence of samples y n( ) for n = 0, 1, 2, …, downsampled sequence y n2↓ ( ) is 
defined as

 y n y n n2 2 0 1↓ = =( ) ( ) , ,    for …  (7-145)

Equations (7-143) and (7-144) are the defining equations of a computationally 
efficient form of the DWT called the fast wavelet transform (FWT). For an input 
sequence of length N = 2J, the number of mathematical operations involved is on 

Recall from Section 3.4 
that the use of  
correlation or  
convolution in spatial 
filtering is a matter of 
personal preference.

FIGURE 7.23
A FWT analysis 
filter bank for 
orthonormal 
filters. The � 
and 2 ↓ denote 
convolution and 
downsampling  
by 2, respectively.

2 ↓

2 ↓

T j kw( )+ ,1

T j kc( ),

T j kw( ),� h nw( )−

� h nc( )−
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7.10  Wavelet Transforms    515

the order of O(N). That is, the number of multiplications and additions is linear with 
respect to the length of the input sequence—because the number of multiplications 
and additions involved in the convolutions performed by the FWT filter bank in 
Fig. 7.23 is proportional to the length of the sequences being convolved. Thus, the 
FWT compares favorably with the FFT algorithm, which requires on the order of 
O N N( log )2  operations.

Figure 7.24(a) shows a three-scale filter bank in which the FWT analysis filter of 
Fig. 7.23 has been “iterated” three times to create a three-stage structure for com-
puting transform coefficients at scales J − 1, J − 2, and J − 3. Note the highest scale 
coefficients are assumed to be samples of the function itself.† Otherwise, the approx-
imation and detail coefficients at scale j are computed by convolving T j kw( , ),+ 1  
the scale j + 1 approximation coefficients, with the order-reversed scaling and wave-
let coefficients, h nw( )−  and h nc( ),−  and subsampling the results. If there are K scal-
ing and wavelet function coefficients, the order reversed scaling and wavelet coeffi-
cients are E Fh K m m Kw( ) | , , ,− − −1 0 1 1= …  and E Fh K m m Kc( ) | , , , ,− − −1 0 1 1= …  
respectively. For a discrete input of length N = 2J, the filter bank in Fig. 7.23 can 

† If function f x( ) is sampled above the Nyquist rate, as is usually the case, its samples are good approximations 
of the scaling coefficients at the sampling resolution and can be used as the starting high-resolution scaling 
coefficient inputs. In other words, no wavelet or detail coefficients are needed at the sampling scale. The highest-
resolution scaling functions act as unit discrete impulse functions in Eqs. (7-141) and (7-142), allowing f x( ) to 
be used as the scaling (approximation) input to the first two-band filter bank (Odegard, Gopinath, and Burrus 
[1992]).

A P-scale FWT employs 
P filter banks to generate 
a P-scale transform at 
scales J − 1,  J − 2,  …, 
J P− ,  where P J≤ .

b
a

FIGURE 7.24
(a) A three-stage 
or three-scale 
FWT analysis 
filter bank and  
(b) its frequency-
splitting  
characteristics. 
Because of sym-
metry in the DFT 
of the filter’s 
impulse response, 
it is common to 
display only the 
0,p[ ] region.

� h nw( )−

� h nc( )− 2 ↓

2 ↓
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� h nc( )− 2 ↓

2 ↓

� h nw( )−

� h nc( )− 2 ↓

2 ↓

T J kc( )− 3,

T J kc( )− 2,

T J kc( )− 1,

T J kw( )− 3,

T J kw( )− 2,
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516    Chapter 7  Wavelet and Other Image Transforms

be iterated up to J times. In operation, the leftmost filter bank of Fig. 7.24(a) splits 
the input function into a lowpass approximation component that corresponds to 
scaling coefficients T J kw( , )− 1  and a highpass detail component corresponding to 
coefficients T J kc( , ).− 1  This is illustrated graphically in Fig. 7.24(b), where scaling 
space VJ is split into wavelet space WJ −1 and scaling space VJ −1. The spectrum of 
the original function is split into two half-band components. The second filter bank 
in Fig. 7.24(a) splits the spectrum of scaling space VJ −1, the lower half-band of the 
first filter bank, into quarter-band spaces WJ −2 and VJ −2  and corresponding FWT 
coefficients T J kc( , )− 2  and T J kw( , ),− 2  respectively. Finally, the third filter bank 
generates eigth-band spaces WJ −3 and VJ −3 with FWT coefficients T J kc( , )− 3  and 
T J kw( , ).− 3  As was noted in connection with Eq. (7-73) of Section 7.4 and demon-
strated in Fig. 7.5, as the scale of the wavelet functions increases, the spectra of the 
wavelets are stretched (i.e., their bandwidth is doubled and shifted higher by a fac-
tor of two). In Fig. 7.24(b), this is evidenced by the fact that the bandwidth of WJ −1 
is p 2, while the bandwidths of WJ −2 and WJ −3 are p 4 and p 8, respectively. For 
higher-scale transforms, the spectra of the wavelets would continue to decrease in 
bandwidth, but would never reach radian frequency v = 0. A lowpass scaling func-
tion is always needed to capture the frequencies around DC.

EXAMPLE 7.20 :   Computing a 1-D fast wavelet transform.

To illustrate the preceding concepts, consider the discrete function f x( ) , , ,= { }1 4 3 0−  from Exam-
ple 7.19. As in that example, we will compute its wavelet transform with respect to Haar scaling and 
wavelet functions. Here, however, we will not use the Haar basis functions directly. Instead, we will use 
the corresponding scaling and wavelet coefficients from Examples 7.16 and 7.17:

 h n nw( ) , ,={ } = { }0 1 1 2 1 2  (7-146)

and

 h n nc( ) , ,={ } = { }0 1 1 2 1 2−  (7-147)

Since the transform computed in Example 7.19 was the ordered set E FT T T Tw c c c( , ), ( , ), ( , ), ( , ) ,0 0 0 0 1 0 1 1  
we will compute the corresponding two-scale FWT for scales j = { }0 1, . Recall from the previous exam-
ple that k = 0 when j = 0, while k is 0 and 1 when j = 1. The transform will be computed using a two-stage 
filter bank that parallels the three-stage filter bank of Fig. 7.24(a). Figure 7.25 shows the resulting filter 
bank and the sequences that follow from the required FWT convolutions and downsamplings. Note 
input function f x( ) serves as the scaling (or approximation) input to the left most filter bank. To com-
pute the T nc( , )1  coefficients that appear at the end of the upper branch of Fig. 7.25, we first convolve 
f x( ) with h nc( ).−  For Haar scaling and wavelet coefficients, K = 2 and the order reversed wavelet coef-
ficients are E F E F E Fh K m m K h m mc c( ) | , , , ( ) | , , .− − − − −1 0 1 1 1 0 1 1 2 1 2= = = =…  As explained 
in Section 3.4, convolution requires flipping one of the convolved functions about the origin, sliding it 
past the other, and computing the sum of the point-wise product of the two functions. Flipping order-
reversed wavelet coefficients E F−1 2 1 2,  to get E F1 2 1 2, −  and sliding them from left-to-right 
across input sequence 1 4 3 0, , , ,−{ }  we get

 − − −1 2 3 2 7 2 3 2 0, , , ,{ }
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where the first term corresponds to convolution index n = −1. In Fig. 7.25, convolution values that are 
associated with a negative dummy variable of convolution (i.e., n < 0) are denoted in blue. Since scale 
j = 1, the downsampled convolutions correspond to the even indices of n up to 2 21j+ − . Thus, n = 0 and 
2 and T nc 1 3 2 3 2, , .( ) = E F− −  The remaining convolutions and downsamplings are performed in a 
similar manner.

In digital signal processing (DSP), filters like those in Figs. 7.23 through 7.25 are 
known as finite impulse response (FIR) filters. Their response to a unit impulse is 
a finite sequence of outputs that assumes the values of the filter coefficients. Fig-
ure 7.26(a) shows one well-known arrangement of real-coefficient, FIR filters that 
has been studied extensively in the literature. Called a two-band subband coding 
and decoding system, it is composed of two analysis filters, h n0 ( ) and h n1( ), and two 
synthesis filters, g n0 ( ) and g n1( ). The analysis filters decompose the input into two 
half-length sequences f n0 ( ) and f n1( ). As can be seen in Fig. 7.26(a), filter h n0 ( ) 
is a lowpass filter whose output is an approximation of f x( ); filter h n1( ) is a high-
pass filter whose output is the difference between the lowpass approximation and 
f x( ). As Fig. 7.26(b) shows, the spectrum of the input sequence is split into two 
half-bands, H0 ( )v  and H1( ).v  Synthesis bank filters g n0 ( ) and g n1( ) are then used 
to reconstruct ˆ( )f x  from upsampled versions of f n0 ( ) and f n1( ). For a 1-D sequence 
of samples y n( ), upsampled sequence y n2↑ ( ) can be defined as

 y n
y n n

2

2

0↑ =
⎧
⎨
⎩

( )
( ) if  is even

otherwise
 (7-148)

where the upsampling is by a factor of 2. Upsampling by a factor of 2  can be thought 
of as inserting a 0 after every sample of y n( ).

The blocks containing  
a �  in Figs. 7.23  
through 7.25 are FIR 
filters. FIR filters are also 
discussed in Section 4.7. 

Note we use h n( )  for 
analysis or decomposi-
tion filters, which include 
one scaling filter and one 
wavelet filter, and g n( ) 
for synthesis or recon-
struction filters, which 
also include a scaling and 
wavelet filter. The scaling 
filters are sometimes 
called approximation or 
lowpass filters and have a 
subscript of 0 in Fig. 7.26, 
while the wavelet filters 
are called detail or high-
pass filters and have a 
subscript of 1.

Tw( , )0 0 1= { }

Tc( , )0 0 4= { }

T nc( , ) , ,1 3 2 3 2= { }− −

f x T n( ) ( , )

, , ,

=

= { }
w 2

1 4 3 0−

2 ↓

2 ↓

2 ↓

2 ↓

T nw( , ) ,1 5 2 3 2= { }−

� 1 2 1 2,{ }

� 1 2 1 2,{ }

� −1 2 1 2,{ }

� −1 2 1 2,{ }

− − −1 2 3 2 7 2 3 2 0, , , ,{ }

1 2 5 2 1 2 3 2 0, , , ,−{ }

− −2 5 4 1 5. , , .{ }

2 5 1 1 5. , , .−{ }
FIGURE 7.25  Computing a two-scale fast wavelet transform of sequence 1 4 3 0, , ,−{ } using Haar scaling and wavelet 
coefficients.
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518    Chapter 7  Wavelet and Other Image Transforms

The goal in subband coding is to choose the analysis and synthesis filters so 
ˆ( ) ( ).f x f x=  When this is accomplished, the system is said to employ perfect recon-
struction filters and the filters are, up to some constant factors, related as follows:

 g n h nn
0 1( ) ( ) ( )= −1  (7-149)

and

 g n h nn
1 0( ) ( ) ( )= −1  (7-150)

In these equations, ( )−1 n  changes the signs of the odd-indexed analysis filter coef-
ficients and is called modulation. Each synthesis filter is a modulated version of the 
analysis filter that opposes it diagonally in Fig. 7.26(a). Thus, the analysis and synthe-
sis filters are said to be cross-modulated. Their impulse responses are biorthogonal. 
If they are also orthonormal and of length K, where K is divisible by 2, they satisfy 
the additional constraints that

 

g n g K n

h n g K n

h n g K n

n
1 0

0 0

1 1

( ) = ( ) ( )
( ) = ( )
( ) = ( )

− − −

− −

− −

1 1

1

1

 
(7-151)

Noting the similarity between the FWT analysis filter bank in Fig. 7.23 and the 
subband analysis filter bank of Fig. 7.26(a), we can postulate the inverse FWT synthe-
sis filter bank of Fig. 7.27. For the case of orthonormal filters, Eq. (7-151) constrains 
the synthesis filters to be order-reversed versions of the analysis filters. Comparing 
the filters in Figs. 7.23 and 7.27, we see this is indeed the case. It must be remembered, 
however, that perfect reconstruction is also possible with biorthogonal analysis and 
synthesis filters, which are not order-reversed versions of one another. Biorthogonal 
analysis and synthesis filters are cross-modulated in accordance with Eqs. (7-149) 
and (7-150). Finally, we note the inverse filter bank of Fig. 7.27, like the forward FWT 

Equations (7-149) and 
(7-151) are described 
in detail in the filter 
bank literature (see, for 
example, Vetterli and 
Kovacevic [1995]).
For many biorthogonal 
filters, g0 and g1 are dif-
ferent in length, requir-
ing the shorter filter to 
be zero-padded. In causal 
filters, n ≥ 0  and the 
ouput depends only on 
current and past inputs.

ba

FIGURE 7.26
(a) A two-band 
digital filtering 
system for sub-
band coding and 
decoding and  
(b) its spectrum-
splitting  
properties.

2 ↓

2 ↓ 2 ↑

2 ↑

f x( ) +
Analysis

filter bank
Synthesis
filter bank

� h n0( )

� h n1( )

� g n0( )

� g n1( )

Low band High band

0

H1( )vH0( )v

v
pp 2

ˆ( )f x

f n1( )

f n0( )
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filter bank of Fig. 6.23, can be iterated for the computation of multiscale inverse 
FWTs. In the next example, a two-scale inverse FWT structure is considered. The 
coefficient combining process demonstrated there can be extended to any number 
of scales.

EXAMPLE 7.21 :   Computing a 1-D inverse fast wavelet transform.

Computation of the inverse fast wavelet transform mirrors its forward counterpart. Figure 7.28 illustrates 
the process for the sequence considered in Example 7.20. To begin the calculation, the level 0 approxi-
mation and detail coefficients are upsampled to yield 1 0,{ }  and 4 0, ,{ }  respectively. Convolution with 
filters h nw( ) ,= E F1 2 1 2  and h nc( ) ,= E F1 2 1 2−  produces E F1 2 1 2 0, ,  and E F4 2 4 2 0, , ,−  
which when added give T nw( , ) , .1 5 2 3 2= E F−  Thus, the level 1 approximation of Fig. 7.28, which 
matches the computed approximation in Fig. 7.25, is reconstructed. Continuing in this manner, f x( ) is 
formed at the right of the second synthesis filter bank.

2 ↑

2 ↑

+

� h nw( )

� h nc( )

T j kw( ),

T j kc( ),

T j kw( )+ ,1

FIGURE 7.27
An inverse FWT 
synthesis filter 
bank for ortho-
normal filters.

Tc( , )0 0 4= { }

Tw( , )0 0 1= { }

T nc( , ) , ,1 3 2 3 2= { }− −

f x T n( ) ( , )

, , ,

=

= { }
w 2

1 4 3 0−

2 ↑

2 ↑

2 ↑

2 ↑

T nw( , ) ,1 5 2 3 2= { }−

� 1 2 1 2,{ }

� 1 2 1 2,{ }

� 1 2 1 2,−{ }

� 1 2 1 2,−{ }

+

+

1 0,{ }

− −3 2 0 3 2 0, , ,{ }

5 2 0 3 2 0, , ,−{ }

4 0,{ }

4 2 4 2 0, ,−{ }

2 5 2 5 1 5 1 5 0. , . , . , . ,− −{ }

1 2 1 2 0, ,{ }

− −1 5 1 5 1 5 1 5 0. , . , . , . ,{ }

FIGURE 7.28  Computing a two-scale inverse fast wavelet transform of sequence 1 4 1 5 2 1 5 2, , . , .− −{ } with Haar 
scaling and wavelet functions.
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520    Chapter 7  Wavelet and Other Image Transforms

WAVELET TRANSFORMS IN TWO DIMENSIONS

The 1-D wavelet transform of the previous section is easily extended to 2-D func-
tions such as images. In two dimensions, a two-dimensional scaling function, w( , ),x y  
and three 2-D wavelets, cH ( , ),x y  cV ( , ),x y  and cD( , ),x y  are required. Each is the 
product of two 1-D functions. Excluding products that produce 1-D results, like 
w c( ) ( ),x x  the four remaining products produce the separable scaling function

 
f

1 �

2
 (7-152)

and separable, “directionally sensitive” wavelets

 c c wH ( , ) ( ) ( )x y x y=  (7-153)

 c w cV ( , ) ( ) ( )x y x y=  (7-154)

 c c cD( , ) ( ) ( )x y x y=  (7-155)

These wavelets measure functional variations—intensity changes in images—along 
different directions: cH measures variations along columns (for example, horizontal 
edges), cV responds to variations along rows (like vertical edges), and cD corre-
sponds to variations along diagonals. The directional sensitivity is a natural conse-
quence of the separability in Eqs. (7-153) to (7-155); it does not increase the compu-
tational complexity of the 2-D transform discussed in this section.

Like the 1-D discrete wavelet transform, the 2-D DWT can be implemented using 
digital filters and downsamplers. With separable 2-D scaling and wavelet functions, 
we simply take the 1-D FWT of the rows of f x y( , ), followed by the 1-D FWT of 
the resulting columns. Figure 7.29(a) shows the process in block diagram form. Note, 
like its 1-D counterpart in Fig. 7.23, the 2-D FWT “filters” the scale j + 1 approxima-
tion coefficients, denoted T j k lw( , , )+ 1  in the figure, to construct the scale j approxi-
mation and detail coefficients. In the 2-D case, however, we get three sets of detail 
coefficients—horizontal details T j k lc

H ( , , ), vertical details T j k lc
V ( , , ),  and diagonal 

details T j k lc
D( , , ).

The single-scale filter bank of Fig. 7.29(a) can be “iterated” (by tying the approxi-
mation output to the input of another filter bank) to produce a P J≤  scale trans-
form in which scale j is equal to J J J P− − −1 2, , , .…  As in the 1-D case, image 
f x y( , ) is used as the T J k lw( , , ) input. Convolving its rows with h nw( )−  and h nc( )−  
and downsampling its columns, we get two subimages whose horizontal resolutions 
are reduced by a factor of 2. The highpass or detail component characterizes the 
image’s high-frequency information with vertical orientation; the lowpass, approxi-
mation component contains its low-frequency, vertical information. Both subimages 
are then filtered columnwise and downsampled to yield four quarter-size output 
subimages—Tw ,  Tc

H,  Tc
V,  and Tc

D. These subimages, which are normally arranged as 
in Fig. 7.29(b), are the inner products of f x y( , ) and the two-dimensional scaling and 

DIP4E_GLOBAL_Print_Ready.indb   520 6/16/2017   2:10:10 PM



7.10  Wavelet Transforms    521

T j k lw( , , )+ 1

T j k lw( , , )

T j k lc
D( , , )

T j k lc
H( , , )

T j k lc
V( , , )

2 ↓

2 ↓

2 ↓

2 ↓

2 ↓

2 ↓

� h nc( )−

� h nw( )−

� h mc( )−

� h mc( )−

� h mw( )−

� h mw( )−
Columns
(along n)

Columns

Rows
(along m)

Rows

Rows

Rows

T j k lw( , , )

T j k lc
D( , , )

T j k lc
H( , , )

T j k lc
V( , , )

T j k lw( , , )+ 1

2 ↑

2 ↑

2 ↑

2 ↑

2 ↑

2 ↑ � h nw( )

� h nc( )

� h mc( )

� h mc( )

� h mw( )

� h mw( )

+

+

+

Columns
(along n)

Columns

Rows
(along m)

Rows

Rows

Rows

T j k lw( , , )+ 1

T j k lw( , , )

T j k lc
D( , , )T j k lc

V( , , )

T j k lc
H( , , )

b
a

c

FIGURE 7.29
The 2-D fast 
wavelet trans-
form: (a) the 
analysis filter 
bank; (b) the 
resulting decom-
position; and  
(c) the synthesis 
filter bank. 
 
Note m and n are 
dummy variables 
of convolution, 
while j, like in the 
1-D case, is scale, 
and k and l are 
translations.
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522    Chapter 7  Wavelet and Other Image Transforms

wavelet functions in Eqs. (7-152) through (7-155), followed by downsampling by two 
in each dimension.

Figure 7.29(c) shows the synthesis filter bank that reverses the process just 
described. As would be expected, the reconstruction algorithm is similar to the 1-D 
case. At each iteration, four-scale j approximation and detail subimages are upsam-
pled and convolved with two 1-D filters—one operating on the subimages’ columns 
and the other on its rows. Addition of the results yields the scale j + 1 approximation, 
and the process is repeated until the original image is reconstructed.

EXAMPLE 7.22 :   Computing 2-D fast wavelet transforms.

In this example, we compute a 2-D, multiscale FWT with respect to Haar basis functions and compare 
it to the traditional Haar transform of Section 7.9. Figures 7.30(a)–(d) show a 512 512×  monochrome 
image of a vase on a windowsill, its one- and two-scale discrete wavelet transforms with respect to Haar 
basis functions, and its Haar transform, respectively. The computation of the wavelet transforms will be 
discussed shortly. The Haar transform in Fig. 7.30(d) is computed using a 512 512×  Haar transformation 
matrix [see Eqs. (7-114) through (7-118)] and the matrix-based operations defined in Eq. (7-35). The 
detail coefficients in Figs. 7.30(b) and (c), as well as the Haar transform coefficients in Fig. 7.30(d), are 
scaled to make their underlying structure more visible. When the same area of any two transforms is 
shaded in blue, the corresponding pixels within those areas are identical in value.

To compute the one-scale FWT of Fig. 7.30(b), the image in Fig. 7.30(a) is used as the input to a filter 
bank like that of Fig. 7.29(a). Since J = =log2 512 9 and P = 1, T k l f x yw( , , ) ( , )9 =  and the four resulting 
quarter-size decomposition outputs [i.e., approximation T k lw( , , )8  and horizontal, vertical, and diagonal 
details T k lc

H ( , , ),8  T k lc
V ( , , ),8  and T k lc

D( , , )8 ] are then arranged in accordance with Fig. 7.29(b) to pro-
duce Fig. 7.30(b). A similar process is used to generate the two-scale transform in Fig. 7.30(c), but the 
input to the filter bank is a quarter-size approximation subimage T k lw( , , ),8  from the upper left-hand 
corner of Fig. 7.30(b). As can be seen in Fig. 7.30(c), the quarter-size approximation subimage is then 
replaced by the four quarter-size (now 1 16th of the size of the original image) decomposition results 
that were generated by the second filtering pass. Each pass through the filter bank produces four quar-
ter-size output images which are substituted for the input from which they were derived. The process is 
repeatable until P = J = 9, which produces a nine-scale transform.

Note the directional nature of the subimages associated with Tc
H,  Tc

V, and Tc
D in Figs. 7.30(b) and 

(c). The diagonal details in these images (i.e., the Tc
D areas shaded in blue) are identical to the corre-

spondingly shaded areas of the Haar transform in Fig. 7.30(d). In the 1-D case, as was demonstrated 
in Example 7.19, a J-scale 1-D FWT with respect to Haar basis functions is the same as its 1-D Haar 
transform counterpart. This is due to the fact that the basis functions of the two transforms are identical; 
both contain one scaling function and a series of scaled and translated wavelet functions. In the 2-D case, 
however, the basis images differ. The 2-D separable scaling and wavelet functions defined in Eqs. (7-153) 
through (7-155) introduce horizontal and vertical directionality that is not present in a traditional Haar 
transform. Figures 7.31(a) and (b), for example, are the basis images of an 8 8×  Haar transform and 
three-scale FWT with respect to Haar basis functions. Note the blue highlighted regions along the main 
diagonals in which the basis images match. The same pattern occurs in Fig. 7.30(b) through (d). If a nine-
scale wavelet transform of the vase were computed, it would match the Haar transform in Fig. 7.30(d) 
in all of its shaded areas.
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ba
dc

FIGURE 7.30
(a) A 512 512×  
image of a vase; 
(b) a one-scale 
FWT; (c) a two-
scale FWT; and 
(d) the Haar 
transform of the 
original image. 
All transforms 
have been scaled 
to highlight their 
underlying struc-
ture. When cor-
responding areas 
of two transforms 
are shaded in 
blue, the corre-
spondent pixels 
are identical.

ba

FIGURE 7.31
(a) Haar basis 
images of size 
8 8×  [from 
Fig. 7.18(c)] and 
(b) the basis 
images of a 
three-scale 8 8×  
discrete wavelet 
transform with 
respect to Haar 
basis functions.
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524    Chapter 7  Wavelet and Other Image Transforms

We conclude the section with a simple example that demonstrates the use of 
wavelets in image processing. As in the Fourier domain, the basic approach is to:

1. Compute the 2-D wavelet transform of an image with respect to a selected 
wavelet basis. Table 7.1 shows some representative bases, including their scal-
ing and wavelet functions and corrresponding filter coefficients. The filter coef-
ficients are given in the context of Fig. 7.26. For orthonormal wavelets, lowpass 
synthesis coefficients are specified; the remaining filters must be computed 
using Eq. (7-151). For biorthonormal wavelets, two analysis filters are given and 
the synthesis filters must be computed using Eqs. (7-149) and (7-150).

2. Alter the computed transform to take advantage of the DWT’s ability to  
(1) decorrelate image pixels, (2) reveal important frequency and temporal char-
acteristics, and/or (3) measure the image’s similarity to the transform’s basis 
images. Modifications designed for image smoothing, sharpening, noise reduc-
tion, edge detection, and compression (to name only a few) are possible.

3. Compute the inverse wavelet transform.

Since the discrete wavelet transform decomposes an image into a weighted sum of 
spatially limited, bandlimited basis images, most Fourier-based imaging techniques 
have an equivalent “wavelet domain” counterpart.

EXAMPLE 7.23 :   Wavelet-based edge detection.

Figure 7.32 provides a simple illustration of the preceding three steps. Figure 7.32(a) shows a 128 128×  
computer-generated image of 2-D sine-shaped pulses on a black background. Figure 7.32(b) is the two-
scale discrete wavelet transform of the image with respect to 4th-order symlets, short for “symmetrical 
wavelets.” Although they are not perfectly symmetrical, they are designed to have the least asymmetry 
and highest number of vanishing moments† for a given compact support (Daubechies [1992]). Row 4 of 
Table 7.1 shows the wavelet and scaling functions of the symlets, as well as the coefficients of the cor-
responding lowpass synthesis filter. The remaining filter coefficients are obtained using Eq. (7-151) with 
K, the number of filter coefficients, set to 8:

 

g n g nn
1 01 7 0 0758 0 0296 0 4976 0 8037 0 2979 0( ) ( ) ( ) . , . , . , . , . , .= − =− − − 00992 0 0126 0 0322

7 0 0758 0 0296 0 4970 0

, . , .

( ) ( ) . , . , .

− −
− −

{ }
= − =h n g n 66 0 8037 0 2979 0 0992 0 0126 0 0322

7 01 1

, . , . , . , . , .

( ) ( ) .

− −
−

{ }
= − =h n g n 00322 0 0126 0 0992 0 2979 0 8037 0 4976 0 0296 0 0758, . , . , . , . , . , . , .− − −{ }}

In Fig. 7.32(c), the approximation component of the discrete wavelet transform has been eliminated 
by setting its values to zero. As Fig. 7.32(d) shows, the net effect of computing the inverse transform 
using these modified coefficients is edge enhancement, reminiscent of the Fourier-based image sharpen-
ing results discussed in Section 4.9. Note how well the transitions between signal and background are 
delineated, despite the fact that they are relatively soft, sinusoidal transitions. By zeroing the horizontal 
details as well—see Figs. 7.32(e) and (f)—we can isolate vertical edges.

† The kth moment of wavelet c( )x  is m k x x dxk( ) ( ) .= ∫ c  Vanishing moments impact the smoothness of the scal-
ing and wavelet functions and our ability to represent them as polynomials. An order-N symlet has N vanishing 
moments.
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Wavelet Name or Family Scaling Function Wavelet Function Filter Coefficients

Haar

The oldest and simplest 
wavelets. Orthogonal and 
discontinuous.

10 1.2

1
1.2

0
10 1.2

1

0

1.5

−1
−1 5.

g n0 1 2 1 2( ) ,= { }

Daubechies family

Orthogonal with the most 
vanishing moments for a 
given support. Denoted 
dbN, where N is the num-
ber of vanishing moments; 
db2 and db4 shown; db1 is 
the Haar of the previous 
row.

1

1.4

0

−0 4.
10 32

20 6431 75

1
1.2

0

−0 4.

10 32

1

0

2

−1
−1 5.

1

0

1.5

−1
20 6431 75

g n0 0 482963

0 836516 0 224144

0 129410

( ) . ,

. , . ,

.

= {

}−

g n0 0 230372

0 714847 0 630881

0 027984 0 187035

0 03

( ) . ,

. , . ,

. , . ,

.

= {

− −
00841 0 032883

0 010597

, . ,

.− }

Symlet family

Orthogonal with the least 
asymmetry and most 
vanishing moments for a 
given support (sym4 or 
4th order shown).

1

0

1.4

−0 2.
20 6431 75 20 6431 75

1

0

2

−1
−1 5.

g n0 0 032231

0 012604 0 099220

0 297858 0 803739

0 49

( ) . ,

. , . ,

. , . ,

.

= {
− −

77619 0 029636

0 075766

, . ,

.

−
− }

Cohen-Daubechies- 
Feauveau 9/7

Biorthogonal B-spline 
used in the irreversable 
JPEG2000 compression 
standard (see Chapter 8).

1

1.4

0

−0 4.

1

0

2

−1
−1 5.

20 6431 75 8 9

1

0

1.4

−0 2.

1

0

2

−1
20 6431 75 8 9

h n0 0 026749

0 016864 0 078223

0 266864 0 602949

0 26

( ) . ,

. , . ,

. , . ,

.

= {
− −

66864 0 078223

0 016864 0 026749

0 091271

0 057
1

, . ,

. , .

( ) . ,

.

−
−

−
−

}

= {h n

5544 0 591272

1 115087 0 591272

0 057544 0 091271 0

, . ,

. , . ,

. , . ,

−
− }

TABLE 7.1
Some representative wavelets.
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WAVELET PACKETS

A fast wavelet transform decomposes a function into a sum of scaling and wavelet 
functions whose bandwidths are logarithmically related. That is, the low-frequency 
content of the function is represented using scaling and wavelet functions with nar-
row bandwidths, while the high-frequency content is represented using functions 
with wider bandwidths. This is apparent in Fig. 6.5. Each horizontal strip of constant 
height tiles, which are the basis functions of a single FWT scale, increases logarithmi-
cally in height as you move up the frequency axis. To obtain greater control over the 
partitioning of the time-frequency plane (e.g., to get smaller bandwidths for higher 
frequencies), the FWT must be generalized to yield a more flexible decomposition 

ba
dc
fe

FIGURE 7.32
Modifying a DWT 
for edge  
detection:  
(a) orginal image; 
(b) two-scale 
DWT with respect 
to 4th-order sym-
lets; (c) modified 
DWT with the 
approximation set 
to zero;  (d) the 
inverse DWT  
of (c); (e) modi-
fied DWT with 
the approximation 
and horizontal 
details set to zero; 
and (f) the inverse 
DWT of (e). 
(Note when the 
detail coefficients 
are zero, they 
are displayed as 
middle gray; when 
the approxima-
tion coefficients 
are zeroed, they 
display as black.)
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called a wavelet packet (Coifman and Wickerhauser [1992]). The cost of this gen-
eralization is an increase in computational complexity from O(N) for the FWT to 
O(N log2 N) for a wavelet packet.

Consider again the three-scale filter bank of Fig. 7.24(a), but imagine the decom-
position as a binary tree. Figure 7.33(a) details the structure of that tree, and links 
the appropriate FWT scaling and wavelet coefficients from Fig. 7.24(a) to the tree’s 
nodes. The root node is assigned the highest-scale approximation coefficients, which 
are samples of the function itself, while the leaves inherit the transform’s approxi-
mation and detail coefficient outputs. Two intermediate nodes, T J kw( , )− 1  and 
T J kw( , ),− 2  are filter-bank approximations that are subsequently filtered to become 
four additional leaf nodes. Note the coefficients of each node are the weights of a 
linear expansion that produces a bandlimited “piece” of root node f x( ). Because 
any such piece is an element of a known scaling or wavelet subspace, we can replace 
the generating coefficients in Fig. 7.33(a) by the corresponding subspace. The result 
is the subspace analysis tree of Fig. 7.33(b).

Analysis trees provide a compact and informative way of representing multiscale 
wavelet transforms. They are simple to draw, take less space than their correspond-
ing filter and subsampler-based block diagrams, and make it relatively easy to detect 
valid decompositions. The three-scale analysis tree of Fig. 7.33(b), for example, sug-
gests three possible expansion options:

 V V WJ J J= − −1 1{  (7-156)

 V V W WJ J J J= − − −2 2 1{ {  (7-157)

 V V W W WJ J J J J= − − − −3 3 2 1{ { {  (7-158)

They correspond to the one-, two-, and three-scale FWT decompositions of a 1-D 
function. A valid decomposition requires one approximation term (or scaling sub-
space) and enough detail components (or wavelet subspaces) to cover the spectrum 
of Fig. 7.24(b). In general, a P-scale FWT analysis tree supports P unique decompo-
sitions.

Analysis trees are also an efficient mechanism for representing wavelet packets, 
which are nothing more than conventional wavelet transforms with the details fil-
tered iteratively. Thus, the three-scale FWT analysis tree of Fig. 7.33(b) becomes the 

Recall that {  denotes 
the union of spaces (like 
the union of sets). Equa-
tions (7-156) through 
(7-158) can be derived by 
the repeated application 
of Eq. (7-128).

ba

FIGURE 7.33
An (a) coef-
ficient tree and 
(b) analysis tree 
for the two-scale 
FWT analysis 
bank of Fig. 7.24.

VJ

VJ −1 WJ −1

VJ −2 WJ −2

VJ −3 WJ −3

T J k f xw( , ) ( )=

T J kw( , )− 1 T J kc( , )− 1

T J kw( , )− 2 T J kc( , )− 2

T J kw( , )− 3 T J kc( , )− 3
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528    Chapter 7  Wavelet and Other Image Transforms

three-scale wavelet packet tree of Fig. 7.34. Note the additional subscripting that 
must be introduced. The first subscript of each double-subscripted node identifies 
the scale of the FWT parent node from which it is descended. The second, a variable 
length string of “A”s and “D”s, encodes the path from the parent node to the node 
being examined. An “A” designates approximation filtering, while a “D” indicates 
detail filtering. Subspace node WJ −1, ,DA  for example, is obtained by “filtering” the 
scale J − 1 FWT coefficients (i.e., parent WJ −1 in Fig. 7.34) through an additional 
detail filter (yielding WJ −1,D), followed by an approximation filter (giving WJ −1,DA).  
Figures 7.35(a) and (b) are the filter-bank and spectrum-splitting characteristics of 
the analysis tree in Fig. 7.34, respectively. Note the “naturally ordered” outputs of 
the filter bank in Fig. 7.35(a) have been reordered based on frequency content in 
Fig. 7.35(b) (see Problem 7.46 for more on “frequency ordered” wavelets).

The three-scale packet tree in Fig. 7.34 almost triples the number of decomposi-
tions (and associated time-frequency tilings) that are possible with the three-scale 
FWT tree. Recall that in a normal FWT, we split, filter, and downsample the lowpass 
bands alone. This creates a fixed logarithmic (base 2) relationship between the band-
widths of the scaling and wavelet spaces used in the representation of a function [see 
Figure 7.24(b)]. Thus, while the three-scale FWT analysis tree of Fig. 7.24(a) offers 
three possible decompositions—defined by Eqs. (7-156) to (7-158)—the wavelet 
packet tree of Fig. 7.34 supports 26 different decompositions. For instance, VJ and 
therefore function f x( ) can be expanded as

 
V V W W W W

W W W
J J J J J J

J J J

= − − − − −

− − −

3 3 2 2 1

1 1 1

{ { { {
{ { {

, , ,

, , ,

A D AA

AD DA DD

 (7-159)

whose spectrum is shown in Fig. 7.35(b), or as

 V V W W WJ J J J J= − − − −1 1 1 1{ { {, , ,A DA DD  (7-160)

whose spectrum is depicted in Fig. 7.36. Note the difference between this last spec-
trum and the full packet spectrum of Fig. 7.35(b), or the three-scale FWT spectrum 

Recall that {  denotes 
the union of spaces (like 
the union of sets). The 26 
decompositions associ-
ated with Fig. 7.34 are 
determined by various 
combinations of nodes 
(spaces) that can be 
combined to represent 
the root node (space) 
at the top of the tree. 
Eqs. (7-159) and (7-160) 
define two of them.

FIGURE 7.34
A three-scale 
wavelet packet 
analysis tree.

VJ

VJ −1 WJ −1

VJ −2 WJ −2

VJ −3 WJ −3

WJ −1,A WJ −1,D

WJ −2,A WJ −2,D WJ −1,AA WJ −1,AD WJ −1,DA WJ −1,DD
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of Fig. 7.24(b). In general, P-scale, 1-D wavelet packet transforms (and associated 
P + 1-level analysis trees) support

 D P D P( ) ( )+ = [ ] +1 12  (7-161)

unique decompositions, where D(1) = 1. With such a large number of valid expan-
sions, packet-based transforms provide improved control over the partitioning of the 

b
a

FIGURE 7.35
The (a) filter  
bank and  
(b) spectrum-
splitting char-
acteristics of a 
three-scale full 
wavelet packet 
analysis tree.
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FIGURE 7.36
The spectrum of 
the decomposition 
in Eq. (7-160).
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530    Chapter 7  Wavelet and Other Image Transforms

spectrum of the decomposed function. The cost of this control is an increase in com-
putational complexity. Compare the filter bank in Fig. 7.35(a) to that of Fig. 7.24(a).

Now consider the 2-D, four-band filter bank of Fig. 7.29(a). As was noted earlier, it 
splits approximation T j k lw( , , )+ 1  into outputs T j k lw( , , ),  T j k lc

H ( , , ), T j k lc
V ( , , ),  and 

T j k lc
D( , , ). As in the 1-D case, it can be “iterated” to generate P-scale transforms 

at scales j J J J P= − − −1 2, , , ,…  with T J k l f x yw( , , ) ( , ).=  The spectrum resulting 
from the first iteration, with j J+ =1  in Fig. 7.29(a), is shown in Fig. 7.37(a). Note it 
divides the frequency plane into four equal areas. The low-frequency quarter-band 
in the center of the plane coincides with transform coefficients T J k lw( , , )− 1  and 
scaling space VJ −1. This nomenclature is consistent with the 1-D case. To accom-
modate the 2-D nature of the input, however, we now have three (rather than one) 
wavelet subspaces. They are denoted WJ −1

H , WJ −1
V , and WJ −1

D  and correspond to coef-
ficients T J k lc

H ( , , ),− 1  T J k lc
V ( , , ),− 1  and T J k lc

D( , , ),− 1  respectively. Figure 7.37(b) 
shows the resulting four-band, single-scale quaternary FWT analysis tree. Note the 
superscripts that link the wavelet subspace designations to their transform coef-
ficient counterparts.

Figure 7.38 shows a portion of a three-scale, 2-D wavelet packet analysis tree. Like 
its 1-D counterpart in Fig. 6.34, the first subscript of every node that is a descendant 
of a conventional FWT detail node is the scale of the parent detail node. The second 
subscript, a variable length string of “A”s, “H”s, “V”s, and “D”s, encodes the path 
from the parent node to the node under consideration. The node labeled WJ −1, ,VD

H  
for example, is obtained by “row/column filtering” the scale J − 1 FWT horizontal 
detail coefficients (i.e., parent WJ −1

H  in Fig. 7.38) through an additional detail/approx-
imation filter (yielding WJ −1,V

H ), followed by a detail/detail filter (giving WJ −1,VD
H ). A 

P-scale, 2-D wavelet packet tree supports

 D P D P( ) ( )+ = [ ] +1 14  (7-162)

unique expansions, where D(1) = 1. Thus, the three-scale tree of Fig. 7.38 offers 
83,522 possible decompositions. The problem of selecting among them is the subject 
of the next example.

−p

−p

p

p

vhorizontal

vvertical

VJ

VJ −1 WJ −1
DWJ −1

H WJ −1
V

VJ −1WJ −1
H WJ −1

H

WJ −1
V

WJ −1
VWJ −1

D WJ −1
D

WJ −1
DWJ −1

D

ba

FIGURE 7.37
The first decom-
position of a 2-D 
FWT: (a) the 
spectrum and 
(b) the subspace 
analysis tree.
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7.10  Wavelet Transforms    531

EXAMPLE 7.24 :   Two-dimensional wavelet packet decompositions.

As noted in the above discussion, a single wavelet packet tree presents numerous decomposition options. 
In fact, the number of possible decompositions is often so large that it is impractical, if not impossible, 
to enumerate or examine them individually. An efficient algorithm for finding optimal decompositions 
with respect to application specific criteria is highly desirable. As will be seen, classical entropy- and 
energy-based cost functions are applicable in many situations and are well-suited for use in binary and 
quaternary tree searching algorithms.

Consider the problem of reducing the amount of data needed to represent the 400 480×  fingerprint 
image in Fig. 7.39(a). Image compression is discussed in detail in Chapter 8. In this example, we want to 
select the “best” three-scale wavelet packet decomposition as a starting point for the compression pro-
cess. Using three-scale wavelet packet trees, there are 83,522 [per Eq. (7-162)] potential decompositions. 
Figure 7.39(b) shows one of them—a full wavelet packet, 64-leaf decomposition like the analysis tree 
of Fig. 7.38. Note the leaves of the tree correspond to the subbands of the 8 8×  array of decomposed 
subimages in Fig. 7.39(b). The probability that this particular 64-leaf decomposition is in some way opti-
mal for the purpose of compression, however, is relatively low. In the absence of a suitable optimality 
criterion, we can neither confirm nor deny it.

One reasonable criterion for selecting a decomposition for the compression of the image of Fig. 7.39(a) 
is the additive cost function

 E f f x y
x y

( ) = ( )∑ ,
,

 (7-163)

This function provides one possible measure† of the energy content of 2-D function f. Under this mea-
sure, the energy of function f x y( , ) = 0 for all x and y is 0. High values of E on the other hand, are indica-
tive of functions with many nonzero values. Since most transform-based compression schemes work 
by truncating or thresholding the small coefficients to zero, a cost function that maximizes the number 
of near-zero values is a reasonable criterion for selecting a “good” decomposition from a compression 
point of view.

† Other possible energy measures include the sum of the squares of f x y( , ),  the sum of the log of the squares, etc. 
Problem 7.48 defines one possible entropy-based cost function. 

FIGURE 7.38  A three-scale, full wavelet packet decomposition tree. Only a portion of the tree is provided.
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H
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532    Chapter 7  Wavelet and Other Image Transforms

The cost function just described is both computationally simple and easily adapted to tree optimi-
zation routines. The optimization algorithm must use the function to minimize the “cost” of the leaf 
nodes in the decomposition tree. Minimal energy leaf nodes should be favored because they have more 
near-zero values, which leads to greater compression. Because the cost function of Eq. (7-163) is a local 
measure that uses only the information available at the node under consideration, an efficient algorithm 
for finding minimal energy solutions is easily constructed as follows:

For each node of the analysis tree, beginning with the root and proceeding level by level to the leaves:

1. Compute both the energy of the node, denoted EP (for parent energy), and the energy of its four 
offspring—denoted as EA, EH, EV, and ED. For two-dimensional wavelet packet decompositions, 
the parent is a two-dimensional array of approximation or detail coefficients; the offspring are the 
filtered approximation, horizontal, vertical, and diagonal details.

2. If the combined energy of the offspring is less than the energy of the parent (that is, EA + EH + EV 
+ ED < EP), include the offspring in the analysis tree. If the combined energy of the offspring is 
greater than or equal to that of the parent, prune the offspring, keeping only the parent. It is a leaf 
of the optimized analysis tree.

The preceding algorithm can be used to (1) prune wavelet packet trees or (2) design procedures for com-
puting optimal trees from scratch. In the latter case, nonessential siblings—descendants of nodes that 

ba

FIGURE 7.39  (a) A scanned fingerprint and (b) its three-scale, full wavelet packet decomposition. Although the 64 
subimages of the packet decomposition appear to be square (e.g., note the approximation subimage), this is merely 
an aberration of the program used to produce the result. (Original image courtesy of the National Institute of Stan-
dards and Technology.)
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would be eliminated in Step 2 of the algorithm—would not be computed. Figure 7.40 shows the opti-
mized decomposition that results from applying the algorithm just described to the image of Fig. 7.39(a) 
with the cost function of Eq. (7-163). Note many of the original full packet decomposition’s 64 subbands 
in Fig. 7.39(b) have been eliminated. In addition, the subimages that are not split (further decomposed) 
in Fig. 7.40 are relatively smooth and composed of pixels that are middle gray in value. Because all 
but the approximation subimage of this figure have been scaled so that gray level 128 indicates a zero-
valued coefficient, these subimages contain little energy. There would be no overall decrease in energy 
realized by splitting them.

The preceding example is based on a real-world problem that was solved through the use of wave-
lets. The Federal Bureau of Investigation (FBI) currently maintains a large database of fingerprints, 
and has established a wavelet-based national standard for the digitization and compression of finger-
print images (FBI [1993]). Using Cohen-Daubechies-Feauveau (CDF) biorthogonal wavelets (Cohen, 
Daubechies, and Feauveau [1992]), the standard achieves a typical compression ratio of 15:1. Table 7.2 
details the required analysis filter coefficients. Because the scaling and wavelet functions of the CDF 
family are symmetrical and have similar lengths, they are among the most widely used biorthogonal 
wavelets. The advantages of wavelet-based compression over the more traditional JPEG approach are 
examined in Chapter 8.

Summary, References, and Further Reading  
The material in this chapter establishes a solid mathematical foundation for understanding and accessing the role 
of image transforms, including the discrete wavelet transform, in image processing. We approach transforms as 
series expansions in which the transform coefficients are inner products of a set of orthonormal or biorthonormal 
basis functions and the images being transformed. For many transforms, these inner products can be implemented 

FIGURE 7.40
An optimal 
wavelet packet 
decomposition for 
the fingerprint of 
Fig. 7.39(a).
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534    Chapter 7  Wavelet and Other Image Transforms

as straightforward matrix operations. Further reading on the matrix formulation of image transforms is available in 
books like those of Andrews [1970] and Wang [2012], and in the original papers on the transforms themselves. See, 
for example, the original papers on the Haar transform (Haar [1910]), Walsh transform (Walsh [1923]), Hadamard 
transform (Hadamard [1893]), and the slant transform (Pratt, Chen, and Welch [1974]).

There are many good texts on wavelets and their application. Several complement our treatment and were relied 
upon during the development of the wavelet transform section of the chapter. Included among them are the books 
by Vetterli and Kovacevic [1995] and Burrus, Gopinath, and Guo [1998]. A partial listing of the imaging applica-
tions that have been approached from a wavelet point of view includes image matching, registration, segmentation, 
denoising, restoration, enhancement, compression (see Chapter 8), morphological filtering, and computed tomog-
raphy. The history of wavelet analysis is recorded in a book by Hubbard [1998]. The early predecessors of wavelets 
were developed simultaneously in different fields and unified in a paper by Mallat [1987]. It brought a mathematical 
framework to the field. Much of the history of wavelets can be traced through the works of Meyer [1987] [1990] 
[1992a, 1992b] [1993], Mallat [1987] [1989a–c] [1998], and Daubechies [1988] [1990] [1992] [1993] [1996]. Finally, 
there have been a number of special issues devoted to wavelets, including a special issue on wavelet transforms and 
multiresolution signal anaysis in the IEEE Transactions on Information Theory [1992], a special issue on wavelets 
and signal processing in the IEEE Transactions on Signal Processing [1993], and a special section on multiresolution 
representation in the IEEE Transactions on Pattern Analysis and Machine Intelligence [1989]. All of the examples in 
the chapter were done using MATLAB (see Gonzalez et al. [2004]).

Problems  
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book 
website: www.ImageProcessingPlace.com).

7.1 Given column vectors

 s s s0 1 2

1

2

1

1

0

1

1

1

1

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥-

-

(a) Prove that s0, s1, and s2 are orthogonal.

(b) * Are they orthonormal? If not, normalize 
them to create a transformation matrix of 

orthonormal vectors.

(c) Using the result of (b), write an orthogonal 
transformation matrix for s0, s1, and s2.

(d) Compute the transform of column vector 
f = [ ]3 6 5- .

(e) Compute the inverse transform of the result 
in (d).

n h0(n) h1(n) n h0(n) h1(n)

0 0 0 9 0.825923 0.417849

1 0.001909 0 10 0.420796 0.040368

2 −0 001914. 0 11 −0 094059. −0 078722.

3 −0 016991. 0.014427 12 −0 077263. −0 014468.

4 0.011935 −0 014468. 13 0.049733 0.0144263

5 0.049733 −0 078722. 14 0.011935 0

6 −0 077263. 0.040368 15 −0 016991. 0

7 −0 094059. 0.417849 16 −0 0019. 0

8 0.420796 −0 758908. 17 0.0019 0

TABLE 7.2
Biorthogonal  
Cohen-
Daubechies-
Feauveau recon-
struction and 
decomposition 
filter coefficients 
with 6 and 8 van-
ishing moments, 
respectively. 
(Cohen, 
Daubechies,  
and Feauveau 
[1992]).
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7.2 Prove Eq. (7-23).

7.3 * Prove that r x u s x u( , ) ( , )=  in Eqs. (7-16) and 
(7-17) for real, orthonormal basis vectors.

7.4 Prove that if A*TA = I, the associated expansion 
functions are orthonormal.

7.5 Prove that matrix A3 in Example 7.3 is an orthog-
onal transformation matrix.

7.6 Prove that orthogonal transformations preserve 
inner products.

7.7 Using Eqs. (7-4) and (7-5),

(a) Find the norm of f = [ ]3 2 1+ -j j
T .

(b) Find the norm of g = [ ]0 707 0 707. . .- T

(c) Find the angle between h = [ ]0 707 0 707. . T  
and g.

(d) * Find the norm of f x x( ) cos .=

(e) Find the angle between f from (d) and 
g x x( ) sin .=

(f) Are f and g orthogonal to one another?

(g) Are f and g orthonormal?

7.8 Using the results from Problem 7.1(c)–(e) and 
column vector g = [ ]2 7 1 :

(a) Compute the angle between f and g.

(b) Compute the distance between f and g. Hint: 
The distance between vectors f and g is

 d = f g f g- -,

(c) * Show that angles and distances are preserved 
by this orthogonal transform.

7.9 Compute the inverse transform of T in Exam-
ple 7.3.

7.10 Prove that the set of sinusoidal expansion func-
tions 1 2 2, cos , sin , cos , sin ,x x x x …{ } are orthog-
onal on the interval −[ ]p p, .

7.11 Compute the expansion coefficients of 2-tuple 
7 1[ ]T  and write the corresponding expansions 

for the following bases:

(a) * s s0 10 707 0 707 0 707 0 707= [ ] = [ ]. . , . .T T-  
on the set of real 2-tuples.

(b) s s0 11 0 1 1= [ ] = [ ]T T,  and the dual vectors 
s s0 11 1 0 1
' '-= [ ] = [ ]T T, .

7.12 Are expansion functions
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orthonormal? If so, write the corresponding 
orthogonal transformation matrix.

7.13 If f = [ ]4 3 2 1- T, find the transform of f using 
the transformation matrix of Problem 7.12. Then 
compute the inverse and show that the transform 
is reversable.

7.14 Given the 2-D matrix

 F =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

4 4 4 0 5

3 1 5 0 5

2 4 8 0 5

1 3 3 1 5

-
- -

- -
- -

.

.

.

.

(a) Compute the transform of F with respect to 
the transformation matrix of Problem 7.12.

(b) * Using the 1-D transform computed in Prob-
lem 7.13, explain how a 2-D transform is 
computed as two 1-D transforms.

(c) Compute the 2-D inverse transform of the 
result from (a).

7.15 Prove that expansion functions

 

u u

u u

0 1

0 1

2 2

2 2

1

0 5

2 3

2 2 3

2 3

2 3

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢

-

-' '

.

⎤⎤

⎦
⎥

are biorthonormal. Then show by example 
whether inner products, angles, and distances are 
preserved by the transform.

7.16 Prove that A and A
'

 in Example 7.5 are biortho-
normal.

(a) Using biorthonormal matrices A and A
'

 of 
Example 7.5, compute the transform of 4 4*  
array

 F =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1
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536    Chapter 7  Wavelet and Other Image Transforms

(b) Compute the inverse transform of the result 
in (a).

7.17 * Write a pair of 2-D transform matrix equations 
for rectangular arrays and complex orthonormal 
expansion functions.

7.18 Write a pair of 2-D transform matrix equations 
for complex biorthonormal expansion functions.

7.19 Show that Eq. (7-59) of Example 7.6 is equivalent 
to sin( ).2px

7.20 * Prove that the DFT expansion functions of 
Eq. (7-56) are orthonormal.

7.21 Prove Eq. (7-52).

7.22 Beginning with a series expansion of the expan-
sion functions defined in Eq. (7-56), derive an 
expression for the discrete Fourier transform.

7.23 Given standard basis vectors e0 1 0= [ ]T  and 
e1 0 1= [ ]T  of inner product space R2 and an 
arbitrary vector r of length r and angle u, compute 
the single-point cross-correlation of r with both 
e0 and e1. When does r resemble e0 more than e1 
and vice versa?

7.24 * Prove that the Fourier transform of time-scaled 
wavelet c( )2s t  is given by Eq. (7-73).

7.25 Prove Eq. (7-80).

7.26 Obtain the Hartley transfomation matrix for 
N = 4.

7.27 Write a pair of discrete cosine transform equa-
tions of the form given in Eqs. (7-57) and (7-58) 
for the discrete Fouier transform.

7.28 Because the 2-D discrete cosine transform is 
separable, the 2-D DCT of an image can be com-
puted by row and column passes with a 1-D DCT 
algorithm. In fact, an interesting property of the 
1-D DCT is that it can be computed by using the 
FFT algorithm. Show in detail how this computa-
tion can be made.

7.29 Do the following:

(a) Compute the Fourier, sine, cosine and Hart-
ley transformation matrices of size N = 6.

(b) Compute the Hartley transform of the  dis-
crete function f x( ) { , , , , , }= − − −2 5 3 1 0 3  
using Eq. (7-28).

(c) Compute the Hartley transform of the func-
tion in (b) from its discrete Fourier transform. 

Is it equal to the result in (b)?

(d) Use Eqs. (7-86) through (7-89) to compute 
the DCT of f(x) = [3, -6, 1].

(e) Use Eq. (7-28) to compute the DST of the 
function in (b).

7.30 Compute the basis images of the Haar transform 
for N = 2.

7.31 Create a table mapping the rows of Hadamard-
ordered transformation matrix H16 to sequency-
ordered Hadamard transformation matrix ′H16.

7.32 Obtain the slant transformation matrix for N = 8.

7.33 Derive the Haar scaling coefficients from 
Eqs. (7-122) and (7-126).

7.34 Show that scaling function

 w( )
. .

x
x

=
⎧
⎨
⎩

1 0 25 0 75

0

≤ <
elsewhere

does not satisfy the second requirement of a mul-
tiresolution analysis.

7.35 * Derive Eq. (7-140).

7.36 Write an expression for scaling space V3 as a 
function of scaling function w( ).x  Use the Haar 
scaling function definition of Eq. (7-122) to draw 
the Haar V3 scaling functions at translations 
k = { }0 1 2, , .

7.37 * Draw wavelet c3 3, ( )x  for the Haar wavelet func-
tion. Write an expression for c3 3, ( )x  in terms of 
Haar scaling functions.

7.38 Suppose function f x( ) is a member of Haar scal-
ing space V3—that is, f x V( ) .H 3  Use Eq. (7-128) to 
express V3 as a function of scaling space V0 and 
any required wavelet spaces. If f x( ) is 0 outside 
the interval [0, 1), sketch the scaling and wavelet 
functions required for a linear expansion of f x( ) 
based on your expression.

7.39 Compute the first four terms of the wavelet series 
expansion of the function used in Example 7.18 
with starting scale j0 1= . Write the resulting 
expansion in terms of the scaling and wavelet 
functions involved. How does your result com-
pare to the example, where the starting scale was 
j0 0= ?

7.40 The DWT in Eqs. (7-137) and (7-138) is for a 
starting scale j0 0= .
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(a) * Rewrite these equations for any starting 
scale j J0 ≤ .

(b) Recompute the 1-D DWT of function 
f x( ) , , ,= { }1 4 3 0−  for 0 3≤ ≤x  in Exam-
ple 7.19 with j0 1=  (rather than 0).

(c) Use the result from (b) to compute f ( )1  from 
the transform values.

7.41 * Draw the FWT filter bank required to compute 
the transform in Problem 7.40. Label all inputs 
and outputs with the appropriate sequences.

7.42 The computational complexity of an N-point fast 
wavelet transform is O(N). That is, the number of 
operations is proportional N. What determines 
the constant of proportionality?

7.43 Answer the following:

(a) * If the input to the three-scale FWT filter 
bank of Fig. 7.24(a) is the Haar scaling func-
tion w( )x = 1 for n = 0, 1, …, 7 and 0 else-
where, what is the resulting transform with 
respect to Haar wavelets?

(b) What is the transform if the input is the corre-
sponding Haar wavelet function c( ) , ,x = {1 1  
1 1 1 1 1 1, , , , ,− − − − } for n = 0, 1, …, 7?

(c) What input sequence produces transform  
1 0 0 0 0 0 0, , , , , , ,B{ } with nonzero coefficient 

T Bc( , )2 2 = ?

7.44 Compute the 2-D wavelet transform with respect 
to Haar wavelets of the 2 2×  image

3 1

6 2

−⎡

⎣
⎢

⎤

⎦
⎥

Draw the required filter bank and label all inputs 
and outputs with the proper arrays.

7.45 * In the Fourier domain

f x x y y F u v e ux M vy N( , ) ( , ) ( )− − −
0 0

2 0 0⇔ +p

and translation does not affect the display of 
F u v( , ) . Using the following sequence of images, 
explain the translation property of wavelet trans-
forms. The top left image contains two 32 32×  
white squares centered on a 128 28× 1  gray back-
ground. The top right image is its single-scale 
wavelet transform with respect to Haar wavelets. 

The bottom left image is the wavelet transform of 
the original image after shifting its 32 pixels to the 
right and downward, and the final (bottom right) 
image is the wavelet transform of the original 
image after it has been shifted one pixel to the 
right and downward.

7.46 The following table shows the Haar wavelet and 
scaling functions for a four-scale fast wavelet 
transform. Sketch the additional basis functions 
needed for a full three-scale packet decomposi-
tion. Give the mathematical expression or expres-
sions for determining them. Then order the basis 
functions according to frequency content and 
explain the results.

V0

W0V1

V2 W1

V3 W2 W2,D

W2,A

W1,A

W2,AA

W2,AD

W2,DA

W2,DD

W1,D

7.47 A wavelet packet decomposition of the vase from 
Fig. 7.30(a) is shown below.

(a) Draw the corresponding decomposition anal-

DIP4E_GLOBAL_Print_Ready.indb   537 6/16/2017   2:10:27 PM



538    Chapter 7  Wavelet and Other Image Transforms

ysis tree, labeling all nodes with the names of 
the proper scaling and wavelet spaces.

(b) Draw and label the decomposition’s fre-
quency spectrum.

7.48 Using the Haar wavelet, determine the minimum 
entropy packet decomposition for the function   
for f x( ) .= 0 25 for n = 0, 1, …, 15. Employ the 
nonnormalized Shannon entropy

 E f x f x f x
x

( ) ( )ln ( )[ ] = ⎡⎣ ⎤⎦∑ 2 2

as the minimization criterion. Draw the opti-
mal tree, labeling the nodes with the computed 
entropy values.
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8 Image Compression and 
Watermarking

Preview
Image compression, the art and science of reducing the amount of data required to represent an image, 
is one of the most useful and commercially successful technologies in the field of digital image process-
ing. The number of images that are compressed and decompressed daily is staggering, and the compres-
sions and decompressions themselves are virtually invisible to the user. Everyone who owns a digital 
camera, surfs the web, or streams the latest Hollywood movies over the Internet benefits from the algo-
rithms and standards that will be discussed in this chapter. The material, which is largely introductory in 
nature, is applicable to both still-image and video applications. We will introduce both theory and prac-
tice, examining the most frequently used compression techniques, and describing the industry standards 
that make them useful. The chapter concludes with an introduction to digital image watermarking, the 
process of inserting visible and invisible data (such as copyright information) into images.

Upon competion of this chapter, students should:
 Be able to measure the amount of informa-

tion in a digital image.

 Understand the main sources of data redun-
dancy in digital images.

 Know the difference between lossy and error-
free compression, and the amount of com-
pression that is possible with each.

 Be familiar with the popular image compres-
sion standards, such as JPEG and JPEG-2000, 
that are in use today.

 Understand the principal image compression 
methods, and how and why they work.

 Be able to compress and decompress grayscale, 
color, and video imagery.

 Know the difference between visible, invisible, 
robust, fragile, public, private, restricted-key,  
and unrestricted-key watermarks.

 Understand the basics of watermark insertion 
and extraction in both the spatial and trans-
form domain.

But life is short and information endless ... Abbreviation is a  
necessary evil and the abbreviator’s business is to make the best of 
a job which, although bad, is still better than nothing.

Aldous Huxley
The Titanic will protect itself.

Robert Ballard
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540    Chapter 8  Image Compression and Watermarking

8.1 FUNDAMENTALS  

The term data compression refers to the process of reducing the amount of data 
required to represent a given quantity of information. In this definition, data and 
information are not the same; data are the means by which information is conveyed. 
Because various amounts of data can be used to represent the same amount of infor-
mation, representations that contain irrelevant or repeated information are said to 
contain redundant data. If we let b and ′b  denote the number of bits (or information- 
carrying units) in two representations of the same information, the relative data 
redundancy, R, of the representation with b bits is

 R
C

= 1
1-  (8-1)

where C, commonly called the compression ratio, is defined as

 C
b
b

=
′

 (8-2)

If C = 10 (sometimes written 10:1), for instance, the larger representation has 10 
bits of data for every 1 bit of data in the smaller representation. The corresponding 
relative data redundancy of the larger representation is 0.9 (R = 0.9), indicating that 
90% of its data is redundant.

In the context of digital image compression, b in Eq. (8-2) usually is the number of 
bits needed to represent an image as a 2-D array of intensity values. The 2-D inten-
sity arrays introduced in Section 2.4 are the preferred formats for human viewing 
and interpretation—and the standard by which all other representations are judged. 
When it comes to compact image representation, however, these formats are far 
from optimal. Two-dimensional intensity arrays suffer from three principal types of 
data redundancies that can be identified and exploited:

1. Coding redundancy. A code is a system of symbols (letters, numbers, bits, and 
the like) used to represent a body of information or set of events. Each piece of 
information or event is assigned a sequence of code symbols, called a code word. 
The number of symbols in each code word is its length. The 8-bit codes that are 
used to represent the intensities in most 2-D intensity arrays contain more bits 
than are needed to represent the intensities.

2. Spatial and temporal redundancy. Because the pixels of most 2-D intensity 
arrays are correlated spatially (i.e., each pixel is similar to or dependent upon 
neighboring pixels), information is unnecessarily replicated in the representa-
tions of the correlated pixels. In a video sequence, temporally correlated pixels 
(i.e., those similar to or dependent upon pixels in nearby frames) also duplicate 
information.

3. Irrelevant information. Most 2-D intensity arrays contain information that is 
ignored by the human visual system and/or extraneous to the intended use of 
the image. It is redundant in the sense that it is not used.

8.1
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8.1  Fundamentals    541

The computer-generated images in Figs. 8.1(a) through (c) exhibit each of these fun-
damental redundancies. As will be seen in the next three sections, compression is 
achieved when one or more redundancy is reduced or eliminated.

CODING REDUNDANCY

In Chapter 3, we developed techniques for image enhancement by histogram pro-
cessing, assuming that the intensity values of an image are random quantities. In this 
section, we will use a similar formulation to introduce optimal information coding.

Assume that a discrete random variable rk in the interval 0 1,L -[ ]  is used to rep-
resent the intensities of an M N*  image, and that each rk occurs with probability 
p rr k( ). As in Section 3.3,

 p r
n

MN
k Lr k

k( ) , , , ,= = 0 1 2 1p -  (8-3)

where L is the number of intensity values, and nk is the number of times that the kth 
intensity appears in the image. If the number of bits used to represent each value of 
rk  is l rk( ), then the average number of bits required to represent each pixel is

 L l r p rk r k
k

L

avg =
=

∑ ( ) ( )
0

1-
 (8-4)

That is, the average length of the code words assigned to the various intensity val-
ues is found by summing the products of the number of bits used to represent each 
intensity and the probability that the intensity occurs. The total number of bits 
required to represent an M N*  image is MNLavg. If the intensities are represented 

ba c

FIGURE 8.1  Computer generated 256 256 8* *  bit images with (a) coding redundancy, (b) spatial redundancy, and 
(c) irrelevant information. (Each was designed to demonstrate one principal redundancy, but may exhibit others 
as well.)
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542    Chapter 8  Image Compression and Watermarking

using a natural m-bit fixed-length code,† the right-hand side of Eq. (8-4) reduces to 
m bits. That is, Lavg = m when m is substituted for l rk( ). The constant m can be taken 
outside the summation, leaving only the sum of the p rr k( ) for 0 1… … -k L , which, 
of course, equals 1.

EXAMPLE 8.1 :   A simple illustration of variable-length coding.

The computer-generated image in Fig. 8.1(a) has the intensity distribution shown in the second column 
of Table 8.1. If a natural 8-bit binary code (denoted as code 1 in Table 8.1) is used to represent its four 
possible intensities, Lavg (the average number of bits for code 1) is 8 bits, because l rk1 8( ) =  bits for all 
rk. On the other hand, if the scheme designated as code 2 in Table 8.1 is used, the average length of the 
encoded pixels is, in accordance with Eq. (8-4),

 Lavg  bits = =0 25 2 0 47 1 0 03 3 1 81. ( ) . ( ) . ( ) .+ +

The total number of bits needed to represent the entire image is MNLavg = 256 56 1 81* * . ,  or 118,621. 
From Eqs. (8-2) and (8-1), the resulting compression and corresponding relative redundancy are

 C = = ≈
256 256 8

118 621
8

1 81
4 42

* *
, .

.

and

 R = =1
1

4 42
0 774-

.
.

respectively. Thus, 77.4% of the data in the original 8-bit 2-D intensity array is redundant.
The compression achieved by code 2 results from assigning fewer bits to the more probable inten-

sity values than to the less probable ones. In the resulting variable-length code, r128 (the image’s most 
probable intensity) is assigned the 1-bit code word 1 [of length l2 128 1( ) = ],while r255 (its least probable 
occurring intensity) is assigned the 3-bit code word 001 [of length l2 255 3( ) = ]. Note that the best fixed-
length code that can be assigned to the intensities of the image in Fig. 8.1(a) is the natural 2-bit count-
ing sequence 00 01 10 11, , , ,{ }  but the resulting compression is only 8 2 or 4:1—about 10% less than the 
4.42:1 compression of the variable-length code.

As the preceding example shows, coding redundancy is present when the codes 
assigned to a set of events (such as intensity values) do not take full advantage of 
the probabilities of the events. Coding redundancy is almost always present when 
the intensities of an image are represented using a natural binary code. The reason 
is that most images are composed of objects that have a regular and somewhat pre-
dictable morphology (shape) and reflectance, and are sampled so the objects being 
depicted are much larger than the picture elements. The natural consequence is that, 

† A natural binary code is one in which each event or piece of information to be encoded (such as intensity value) 
is assigned one of 2m codes from an m-bit binary counting sequence.
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for most images, certain intensities are more probable than others (that is, the his-
tograms of most images are not uniform). A natural binary encoding assigns the 
same number of bits to both the most and least probable values, failing to minimize 
Eq. (8-4), and resulting in coding redundancy.

SPATIAL AND TEMPORAL REDUNDANCY

Consider the computer-generated collection of constant intensity lines in Fig. 8.1(b). 
In the corresponding 2-D intensity array:

1. All 256 intensities are equally probable. As Fig. 8.2 shows, the histogram of the 
image is uniform.

2. Because the intensity of each line was selected randomly, its pixels are indepen-
dent of one another in the vertical direction.

3. Because the pixels along each line are identical, they are maximally correlated 
(completely dependent on one another) in the horizontal direction.

The first observation tells us that the image in Fig. 8.1(b) (when represented as a 
conventional 8-bit intensity array) cannot be compressed by variable-length coding 
alone. Unlike the image of Fig. 8.1(a) and Example 8.1, whose histogram was not 
uniform, a fixed-length 8-bit code in this case minimizes Eq. (8-4). Observations 2 
and 3 reveal a significant spatial redundancy that can be eliminated by representing 
the image in Fig. 8.1(b) as a sequence of run-length pairs, where each run-length pair 
specifies the start of a new intensity and the number of consecutive pixels that have 
that intensity. A run-length based representation compresses the original 2-D, 8-bit 

rk pr(rk) Code 1 l1(rk) Code 2 l2(rk)

r87 = 87 0.25 01010111 8 01 2

r128 = 128 0.47 01010111 8 1 1

r186 = 186 0.25 01010111 8 000 3

r255 = 255 0.03 01010111 8 001 3

rk for k = 87, 128, 186, 255 0 — 8 — 0

TABLE 8.1
Example of 
variable-length 
coding.

FIGURE 8.2
The intensity  
histogram of the  
image in 
Fig. 8.1(b).

0
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544    Chapter 8  Image Compression and Watermarking

intensity array by ( ) [( ) ]256 256 8 256 256 8* * + *  or 128:1. Each 256-pixel line of 
the original representation is replaced by a single 8-bit intensity value and length 
256 in the run-length representation.

In most images, pixels are correlated spatially (in both x and y) and in time (when 
the image is part of a video sequence). Because most pixel intensities can be pre-
dicted reasonably well from neighboring intensities, the information carried by a sin-
gle pixel is small. Much of its visual contribution is redundant in the sense that it can 
be inferred from its neighbors. To reduce the redundancy associated with spatially 
and temporally correlated pixels, a 2-D intensity array must be transformed into a 
more efficient but usually “non-visual” representation. For example, run-lengths or 
the differences between adjacent pixels can be used. Transformations of this type 
are called mappings. A mapping is said to be reversible if the pixels of the original 
2-D intensity array can be reconstructed without error from the transformed data 
set; otherwise, the mapping is said to be irreversible.

IRRELEVANT INFORMATION

One of the simplest ways to compress a set of data is to remove superfluous data 
from the set. In the context of digital image compression, information that is ignored 
by the human visual system, or is extraneous to the intended use of an image, are 
obvious candidates for omission. Thus, the computer-generated image in Fig. 8.1(c), 
because it appears to be a homogeneous field of gray, can be represented by its 
average intensity alone—a single 8-bit value. The original 256 256 8* *  bit intensity 
array is reduced to a single byte, and the resulting compression is ( )256 256 8 8* *  
or 65,536:1. Of course, the original 256 256 8* *  bit image must be recreated to view 
and/or analyze it, but there would be little or no perceived decrease in reconstructed 
image quality.

Figure 8.3(a) shows the histogram of the image in Fig. 8.1(c). Note that there 
are several intensity values (125 through 131) actually present. The human visual 
system averages these intensities, perceives only the average value, then ignores the 
small changes in intensity that are present in this case. Figure 8.3(b), a histogram-
equalized version of the image in Fig. 8.1(c), makes the intensity changes visible and 
reveals two previously undetected regions of constant intensity—one oriented verti-
cally, and the other horizontally. If the image in Fig. 8.1(c) is represented by its aver-
age value alone, this “invisible” structure (i.e., the constant intensity regions) and the 
random intensity variations surrounding them (real information) is lost. Whether or 
not this information should be preserved is application dependent. If the informa-
tion is important, as it might be in a medical application like digital X-ray archival, it 
should not be omitted; otherwise, the information is redundant and can be excluded 
for the sake of compression performance.

We conclude this section by noting that the redundancy examined here is fun-
damentally different from the redundancies discussed in the previous two sections. 
Its elimination is possible because the information itself is not essential for nor-
mal visual processing and/or the intended use of the image. Because its omission 
results in a loss of quantitative information, its removal is commonly referred to as  
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quantization. This terminology is consistent with normal use of the word, which gen-
erally means the mapping of a broad range of input values to a limited number of 
output values (see Section 2.4). Because information is lost, quantization is an irre-
versible operation.

MEASURING IMAGE INFORMATION

In the previous sections, we introduced several ways to reduce the amount of data 
used to represent an image. The question that naturally arises is: How few bits are 
actually needed to represent the information in an image? That is, is there a mini-
mum amount of data that is sufficient to describe an image without losing infor-
mation? Information theory provides the mathematical framework to answer this 
and related questions. Its fundamental premise is that the generation of information 
can be modeled as a probabilistic process which can be measured in a manner that 
agrees with intuition. In accordance with this supposition, a random event E with 
probability P(E) is said to contain

 I E
P E

P E( ) log
( )

log ( )= =
1 -  (8-5)

units of information. If P(E) = 1 (that is , the event always occurs), I(E) = 0 and no 
information is attributed to it. Because no uncertainty is associated with the event, 
no information would be transferred by communicating that the event has occurred 
[it always occurs if P(E) = 1].

The base of the logarithm in Eq. (8-5) determines the unit used to measure infor-
mation. If the base m logarithm is used, the measurement is said to be in m-ary units. 
If the base 2 is selected, the unit of information is the bit. Note that if P(E) = ½, 
I E( ) log= - 2 ½ or 1 bit. That is, 1 bit is the amount of information conveyed when 
one of two possible equally likely events occurs. A simple example is flipping a coin 
and communicating the result.

Consult the book web-
site for a brief review of 
information and prob-
ability theory.

.

ba

FIGURE 8.3
(a) Histogram 
of the image in 
Fig. 8.1(c) and 
(b) a histogram 
equalized version 
of the image.
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Given a source of statistically independent random events from a discrete set of 
possible events a a aJ1 1, , ,p{ }  with associated probabilities P a P a P aJ( ), ( ), , ( ) ,1 1 p{ }  
the average information per source output, called the entropy of the source, is

 H P a P aj j
j

J

=
=
∑- ( ) log ( )

1

 (8-6)

The aj in this equation are called source symbols. Because they are statistically inde-
pendent, the source itself is called a zero-memory source.

If an image is considered to be the output of an imaginary zero-memory “inten-
sity source,” we can use the histogram of the observed image to estimate the symbol 
probabilities of the source. Then, the intensity source’s entropy becomes

 �H p r p rr k r k
k

L

=
=

∑-
-

( ) log ( )2
0

1

 (8-7)

where variables L, rk, and p rr k( ) are as defined earlier and in Section 3.3. Because 
the base 2 logarithm is used, Eq. (8-7) is the average information per intensity out-
put of the imaginary intensity source in bits. It is not possible to code the intensity 
values of the imaginary source (and thus the sample image) with fewer than �H  bits/
pixel.

EXAMPLE 8.2 :   Image entropy estimates.

The entropy of the image in Fig. 8.1(a) can be estimated by substituting the intensity probabilities from 
Table 8.1 into Eq. (8-7):

 

�H = [ ]- + + +
=

0 25 0 25 0 47 0 47 0 25 0 25 0 03 0 032 2 2 2. log . . log . . log . . log .

-- - + - + - + -0 25 2 0 47 1 09 0 25 2 0 03 5 06

1 6614

. ( ) . ( . ) . ( ) . ( . )

.
[ ]

≈  bits/ppixel

In a similar manner, the entropies of the images in Fig. 8.1(b) and (c) can be shown to be 8 bits/pixel and 
1.566 bits/pixel, respectively. Note that the image in Fig. 8.1(a) appears to have the most visual informa-
tion, but has almost the lowest computed entropy—1.66 bits/pixel. The image in Fig. 8.1(b) has almost 
five times the entropy of the image in (a), but appears to have about the same (or less) visual informa-
tion. The image in Fig. 8.1(c), which seems to have little or no information, has almost the same entropy 
as the image in (a). The obvious conclusion is that the amount of entropy, and thus information in an 
image, is far from intuitive.

Shannon’s First Theorem

Recall that the variable-length code in Example 8.1 was able to represent the inten-
sities of the image in Fig. 8.1(a) using only 1.81 bits/pixel. Although this is higher 
than the 1.6614 bits/pixel entropy estimate from Example 8.2, Shannon’s first theo-
rem, also called the noiseless coding theorem (Shannon [1948]), assures us that the 

Equation (8-6) is for 
zero-memory sources 
with J source symbols. 
Equation (8-7) uses 
probablitiy estimates 
for the L - 1  intensity 
values in an image.
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image in Fig. 8.1(a) can be represented with as few as 1.6614 bits/pixel. To prove 
it in a general way, Shannon looked at representing groups of consecutive source 
symbols with a single code word (rather than one code word per source symbol), 
and showed that

 lim ,

n

nL

n
H

→

⎡

⎣
⎢

⎤

⎦
⎥ =

�

avg  (8-8)

where Lavg, n is the average number of code symbols required to represent all n-sym-
bol groups. In the proof, he defined the nth extension of a zero-memory source to 
be the hypothetical source that produces n-symbol blocks† using the symbols of the 
original source, and computed Lavg, n by applying Eq. (8-4) to the code words used 
to represent the n-symbol blocks. Equation (8-8) tells us that L nnavg,  can be made 
arbitrarily close to H by encoding infinitely long extensions of the single-symbol 
source. That is, it is possible to represent the output of a zero-memory source with 
an average of H information units per source symbol.

If we now return to the idea that an image is a “sample” of the intensity source 
that produced it, a block of n source symbols corresponds to a group of n adjacent 
pixels. To construct a variable-length code for n-pixel blocks, the relative frequencies 
of the blocks must be computed. But the nth extension of a hypothetical intensity 
source with 256 intensity values has 256n possible n-pixel blocks. Even in the simple 
case of n = 2, a 65,536 element histogram and up to 65,536 variable-length code 
words must be generated. For n = 3, as many as 16,777,216 code words are needed. 
So even for small values of n, computational complexity limits the usefulness of the 
extension coding approach in practice.

Finally, we note that although Eq. (8-7) provides a lower bound on the compres-
sion that can be achieved when directly coding statistically independent pixels, it 
breaks down when the pixels of an image are correlated. Blocks of correlated pixels 
can be coded with fewer average bits per pixel than the equation predicts. Rather 
than using source extensions, less correlated descriptors (such as intensity run-
lengths) are normally selected and coded without extension. This was the approach 
used to compress Fig. 8.1(b) in the section on spatial and temporal redundancy. 
When the output of a source of information depends on a finite number of preced-
ing outputs, the source is called a Markov source or finite memory source.

FIDELITY CRITERIA

It was noted earlier that the removal of “irrelevant visual” information involves a 
loss of real or quantitative image information. Because information is lost, a means 
of quantifying the nature of the loss is needed. Two types of criteria can be used for 
such an assessment: (1) objective fidelity criteria, and (2) subjective fidelity criteria.

† The output of the nth extension is an n-tuple of symbols from the underlying single-symbol source. It was con-
sidered a block random variable in which the probability of each n-tuple is the product of the probabilities of 
its individual symbols. The entropy of the nth extension is then n times the entropy of the single-symbol source 
from which it is derived.
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When information loss can be expressed as a mathematical function of the input 
and output of a compression process, it is said to be based on an objective fidelity 
criterion. An example is the root-mean-squared (rms) error between two images. 
Let f x y( , ) be an input image, and ˆ( , )f x y  be an approximation of f x y( , ) that results 
from compressing and subsequently decompressing the input. For any value of x  
and y, the error e x y( , ) between f x y( , ) and ˆ( , )f x y  is

 e x y f x y f x y( , ) ( , ) ( , )= ˆ -  (8-9)

so that the total error between the two images is

 ˆ( , ) ( , )f x y f x y
y
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-- -

⎡
⎣

⎤
⎦

==
∑∑

0

1

0

1

 

where the images are of size M N* . The root-mean-squared error, erms, between 
f x y( , ) and ˆ( , )f x y  is then the square root of the squared error averaged over the 
M N*  array, or
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 (8-10)

If ˆ( , )f x y  is considered [by a simple rearrangement of the terms in Eq. (8-9)] to be 
the sum of the original image f x y( , ) and an error or “noise” signal e x y( , ), the mean-
squared signal-to-noise ratio of the output image, denoted SNRms, can be defined as 
in Section 5.8:

 SNRms =
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 (8-11)

The rms value of the signal-to-noise ratio, denoted SNRrms, is obtained by taking the 
square root of Eq. (8-11).

While objective fidelity criteria offer a simple and convenient way to evaluate 
information loss, decompressed images are often ultimately viewed by humans. 
So, measuring image quality by the subjective evaluations of people is often more 
appropriate. This can be done by presenting a decompressed image to a cross section 
of viewers and averaging their evaluations. The evaluations may be made using an 
absolute rating scale, or by means of side-by-side comparisons of f x y( , ) and ˆ( , ).f x y  
Table 8.2 shows one possible absolute rating scale. Side-by-side comparisons can be 
done with a scale such as - - -3 2 1 0 1 2 3, , , , , ,{ }  to represent the subjective evaluations 
much{  worse, worse, slightly worse, the same, slightly better, better, much better}, 

respectively. In either case, the evaluations are based on subjective fidelity criteria.
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EXAMPLE 8.3 :   Image quality comparisons.

Figure 8.4 shows three different approximations of the image in Fig. 8.1(a). Using Eq. (8-10) with 
Fig. 8.1(a) as f x y( , ) and Figs. 8.4(a) through (c) as ˆ( , ),f x y  the computed rms errors are 5.17, 15.67, 
and 14.17 intensity levels, respectively. In terms of rms error (an objective fidelity criterion), the images 
are ranked in order of decreasing quality as ( ), ( ), ( ) .a c b{ }  A subjective evaluation of the images using 
Table 8.2, however, might yield an excellent rating for (a), a marginal rating for (b), and an inferior or 
unusable rating for (c). Thus, using a subjective fidelity criteria, (b) is ranked ahead of (c).

IMAGE COMPRESSION MODELS

As Fig. 8.5 shows, an image compression system is composed of two distinct func-
tional components: an encoder and a decoder. The encoder performs compression, 
and the decoder performs the complementary operation of decompression. Both 
operations can be performed in software, as is the case in Web browsers and many 
commercial image-editing applications, or in a combination of hardware and firm-
ware, as in commercial DVD players. A codec is a device or program that is capable 
of both encoding and decoding.

Value Rating Description

1 Excellent An image of extremely high quality, as good as you could desire.

2 Fine An image of high quality, providing enjoyable viewing. Interfer-
ence is not objectionable.

3 Passable An image of acceptable quality. Interference is not objectionable.

4 Marginal An image of poor quality; you wish you could improve it. Interfer-
ence is somewhat objectionable.

5 Inferior A very poor image, but you could watch it. Objectionable interfer-
ence is definitely present.

6 Unusable An image so bad that you could not watch it.

TABLE 8.2
Rating scale of 
the Television 
Allocations Study 
Organization. 
(Frendendall and 
Behrend.)

ba c

FIGURE 8.4  Three approximations of the image in Fig. 8.1(a).
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Input image f x( , )p  is fed into the encoder, which creates a compressed repre-
sentation of the input. This representation is stored for later use, or transmitted for 
storage and use at a remote location. When the compressed representation is pre-
sented to its complementary decoder, a reconstructed output image ˆ( , )f x p  is gen-
erated. In still-image applications, the encoded input and decoder output are f x y( , ) 
and ˆ( , ),f x y  respectively. In video applications, they are f x y t( , , ) and ˆ( , , ),f x y t  where 
the discrete parameter t specifies time. In general, ˆ( , )f x p  may or may not be an 
exact replica of f x( , ).p  If it is, the compression system is called error free, lossless, 
or information preserving. If not, the reconstructed output image is distorted, and 
the compression system is referred to as lossy.

The Encoding or Compression Process

The encoder of Fig. 8.5 is designed to remove the redundancies described in the 
previous sections through a series of three independent operations. In the first stage 
of the encoding process, a mapper transforms f x( , )p  into a (usually nonvisual) for-
mat designed to reduce spatial and temporal redundancy. This operation generally is 
reversible, and may or may not directly reduce the amount of data required to repre-
sent the image. Run-length coding is an example of a mapping that normally yields 
compression in the first step of the encoding process. The mapping of an image into 
a set of less correlated transform coefficients (see Section 8.9) is an example of the 
opposite case (the coefficients must be further processed to achieve compression). 
In video applications, the mapper uses previous (and, in some cases, future) video 
frames to facilitate the removal of temporal redundancy.

The quantizer in Fig. 8.5 reduces the accuracy of the mapper’s output in accor-
dance with a pre-established fidelity criterion. The goal is to keep irrelevant infor-
mation out of the compressed representation. As noted earlier, this operation is 
irreversible. It must be omitted when error-free compression is desired. In video 
applications, the bit rate of the encoded output is often measured (in bits/second), 
and is used to adjust the operation of the quantizer so a predetermined average 
output rate is maintained. Thus, the visual quality of the output can vary from frame 
to frame as a function of image content.

Here, the notation 
f x( , )p  is used to denote 
both f x y( , ) and f x y t( , , ).

FIGURE 8.5
Functional block 
diagram of a 
general image 
compression 
system.

Compressed data
for storage
and transmissionEncoder

Decoder

Symbol
coderQuantizerMapper

Symbol
decoder

Inverse
mapper or

or
f(x, y)

f(x, y, t)

ˆ( , )f x y

ˆ( , , )f x y t
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In the third and final stage of the encoding process, the symbol coder of Fig. 8.5 
generates a fixed-length or variable-length code to represent the quantizer output, 
and maps the output in accordance with the code. In many cases, a variable-length 
code is used. The shortest code words are assigned to the most frequently occur-
ring quantizer output values, thus minimizing coding redundancy. This operation is 
reversible. Upon its completion, the input image has been processed for the removal 
of each of the three redundancies described in the previous sections.

The Decoding or Decompression Process

The decoder of Fig. 8.5 contains only two components: a symbol decoder and an 
inverse mapper. They perform, in reverse order, the inverse operations of the encod-
er’s symbol encoder and mapper. Because quantization results in irreversible infor-
mation loss, an inverse quantizer block is not included in the general decoder model. 
In video applications, decoded output frames are maintained in an internal frame 
store (not shown) and used to reinsert the temporal redundancy that was removed 
at the encoder.

IMAGE FORMATS, CONTAINERS, AND COMPRESSION STANDARDS

In the context of digital imaging, an image file format is a standard way to organize 
and store image data. It defines how the data is arranged and the type of compres-
sion (if any) that is used. An image container is similar to a file format, but han-
dles multiple types of image data. Image compression standards, on the other hand, 
define procedures for compressing and decompressing images—that is, for reducing 
the amount of data needed to represent an image. These standards are the underpin-
ning of the widespread acceptance of image compression technology.

Figure 8.6 lists the most important image compression standards, file formats, and 
containers in use today, grouped by the type of image handled. The entries in blue 
are international standards sanctioned by the International Standards Organization 
(ISO), the International Electrotechnical Commission (IEC), and/or the International 
Telecommunications Union (ITU-T)—a United Nations (UN) organization that was 
once called the Consultative Committee of the International Telephone and Telegraph 
(CCITT). Two video compression standards, VC-1 by the Society of Motion Pictures 
and Television Engineers (SMPTE) and AVS by the Chinese Ministry of Information 
Industry (MII), are also included. Note that they are shown in black, which is used 
in Fig. 8.6 to denote entries that are not sanctioned by an international standards 
organization.

Tables 8.3 through 8.5 summarize the standards, formats, and containers listed 
in Fig. 8.6. Responsible organizations, targeted applications, and key compression 
methods are identified. The compression methods themselves are the subject of Sec-
tions 8.2 through 8.11, where we will describe the principal lossy and error-free com-
pression methods in use today. The focus of these sections is on methods that have 
proven useful in mainstream binary, continuous-tone still-image, and video com-
pression standards. The standards themselves are used to demonstrate the methods 
presented. In Tables 8.3 through 8.5, forward references to the relevant sections in 
which the compression methods are described are enclosed in square brackets.
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Name Organization Description

Bi-Level Still Images

CCITT 
Group 3

ITU-T Designed as a facsimile (FAX) method for transmitting binary documents over 
telephone lines. Supports 1-D and 2-D run-length [8.6] and Huffman [8.2] coding.

CCITT 
Group 4

ITU-T A simplified and streamlined version of the CCITT Group 3 standard supporting 
2-D run-length coding only.

JBIG or 
JBIG1

ISO/IEC/
ITU-T

A Joint Bi-level Image Experts Group standard for progressive, lossless compres-
sion of bi-level images. Continuous-tone images of up to 6 bits/pixel can be coded 
on a bit-plane basis [8.8]. Context-sensitive arithmetic coding [8.4] is used and an 
initial low-resolution version of the image can be gradually enhanced with addi-
tional compressed data.

JBIG2 ISO/IEC/
ITU-T

A follow-on to JBIG1 for bi-level images in desktop, Internet, and FAX applica-
tions. The compression method used is content based, with dictionary-based meth-
ods [8.7] for text and halftone regions, and Huffman [8.2] or arithmetic coding [8.4] 
for other image content. It can be lossy or lossless.

Continuous-Tone Still Images

JPEG ISO/IEC/
ITU-T

A Joint Photographic Experts Group standard for images of photographic quality. 
Its lossy baseline coding system (most commonly implemented) uses quantized 
discrete cosine transforms (DCT) on image blocks [8.9], Huffman [8.2], and run-
length [8.6] coding. It is one of the most popular methods for compressing images 
on the Internet.

JPEG-LS ISO/IEC/
ITU-T

A lossless to near-lossless standard for continuous-tone images based on adaptive 
prediction [8.10], context modeling [8.4], and Golomb coding [8.3].

JPEG-
2000

ISO/IEC/
ITU-T

A follow-on to JPEG for increased compression of photographic quality images. 
Arithmetic coding [8.4] and quantized discrete wavelet transforms (DWT) [8.11] 
are used. The compression can be lossy or lossless.

TABLE 8.3
Internationally sanctioned image compression standards. The numbers in brackets refer to sections in this chapter.

FIGURE 8.6
Some popular 
image compres-
sion standards, 
file formats, 
and containers. 
Internationally 
sanctioned entries 
are shown in blue; 
all others are in 
black.

                   Binary

CCITT Group 3 TIFF
CCITT Group 4
JBIG (or JBIG1)
JBIG2

Still Image

Image Compression
Standards, Formats, and Containers

                         Video

DV AVS
H.261 HDV
H.262 M-JPEG
H.263 QuickTime
H.264 VC-1 (or WMV9)
HVEC/H.265 WebP VP8 
MPEG-1
MPEG-2
MPEG-4
MPEG-4 AVC

    Continuous Tone

JPEG BMP
JPEG-LS GIF
JPEG-2000 PDF
 PNG
 TIFF
 WebP
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8.2 HUFFMAN CODING  

One of the most popular techniques for removing coding redundancy is due to Huff-
man (Huffman [1952]). When coding the symbols of an information source individu-
ally, Huffman coding yields the smallest possible number of code symbols per source 
symbol. In terms of Shannon’s first theorem (see Section 8.1), the resulting code is 
optimal for a fixed value of n, subject to the constraint that the source symbols be 
coded one at a time. In practice, the source symbols may be either the intensities of 
an image or the output of an intensity mapping operation (pixel differences, run 
lengths, and so on).

8.2

With reference to 
Tables 8.3–8.5, Huffman 
codes are used in

• CCITT 
• JBIG2 
• JPEG 
• MPEG-1, 2, 4 
• H.261, H.262, 
• H.263, H.264

and other compression 
standards.

Name Organization Description

DV IEC Digital Video. A video standard tailored to home and semiprofessional video pro-
duction applications and equipment, such as electronic news gathering and cam-
corders. Frames are compressed independently for uncomplicated editing using a 
DCT-based approach [8.9] similar to JPEG.

H.261 ITU-T A two-way videoconferencing standard for ISDN (integrated services digital net-
work) lines. It supports non-interlaced 352 288*  and 176 144*  resolution images, 
called CIF (Common Intermediate Format) and QCIF (Quarter CIF), respectively. 
A DCT-based compression approach [8.9] similar to JPEG is used, with frame-to-
frame prediction differencing [8.10] to reduce temporal redundancy. A block-based 
technique is used to compensate for motion between frames.

H.262 ITU-T See MPEG-2 below.

H.263 ITU-T An enhanced version of H.261 designed for ordinary telephone modems (i.e., 
28.8 Kb/s) with additional resolutions: SQCIF (Sub-Quarter CIF 128 96* ), 4CIF 
( )704 576*  and 16CIF ( ).1408 512*

H.264 ITU-T An extension of H.261–H.263 for videoconferencing, streaming, and television. It 
supports prediction differences within frames [8.10], variable block size integer 
transforms (rather than the DCT), and context adaptive arithmetic coding [8.4].

H.265 
MPEG-H 
HEVC

ISO/IEC 
ITU-T

High Efficiency Video Coding (HVEC). An extension of H.264 that includes 
support for macroblock sizes up to 64 64*  and additional intraframe prediction 
modes, both useful in 4K video applications.

MPEG-1 ISO/IEC A Motion Pictures Expert Group standard for CD-ROM applications with non-
interlaced video at up to 1.5 Mb/s. It is similar to H.261 but frame predictions can 
be based on the previous frame, next frame, or an interpolation of both. It is sup-
ported by almost all computers and DVD players.

MPEG-2 ISO/IEC An extension of MPEG-1 designed for DVDs with transfer rates at up to 15 Mb/s. 
Supports interlaced video and HDTV. It is the most successful video standard to 
date.

MPEG-4 ISO/IEC An extension of MPEG-2 that supports variable block sizes and prediction differ-
encing [8.10] within frames.

MPEG-4 
AVC

ISO/IEC MPEG-4 Part 10 Advanced Video Coding (AVC). Identical to H.264.

TABLE 8.4
Internationally sanctioned video compresssion standards. The numbers in brackets refer to sections in this chapter.
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Name Organization Description

Continuous-Tone Still Images

BMP Microsoft Windows Bitmap. A file format used mainly for simple uncompressed images. 

GIF CompuServe Graphic Interchange Format. A file format that uses lossless LZW coding [8.5] for 
1- through 8-bit images. It is frequently used to make small animations and short 
low-resolution films for the Internet.

PDF Adobe 
Systems

Portable Document Format. A format for representing 2-D documents in a device 
and resolution independent way. It can function as a container for JPEG, JPEG-
2000, CCITT, and other compressed images. Some PDF versions have become ISO 
standards.

PNG World Wide 
Web Consor-
tium (W3C)

Portable Network Graphics. A file format that losslessly compresses full color 
images with transparency (up to 48 bits/pixel) by coding the difference between 
each pixel’s value and a predicted value based on past pixels [8.10].

TIFF Aldus Tagged Image File Format. A flexible file format supporting a variety of image 
compression standards, including JPEG, JPEG-LS, JPEG-2000, JBIG2, and others.

WebP Google WebP supports lossy compression via WebP VP8 intraframe video compression 
(see below) and lossless compression using spatial prediction [8.10] and a variant 
of LZW backward referencing [8.5] and Huffman entropy coding [8.2]. Transpar-
ency is also supported. 

Video

AVS MII Audio-Video Standard. Similar to H.264 but uses exponential Golomb coding [8.3]. 
Developed in China.

HDV Company 
consortium

High Definition Video. An extension of DV for HD television that uses compres-
sion similar to MPEG-2, including temporal redundancy removal by prediction 
differencing [8.10].

M-JPEG Various 
companies

Motion JPEG. A compression format in which each frame is compressed indepen-
dently using JPEG.

Quick-
Time

Apple 
Computer

A media container supporting DV, H.261, H.262, H.264, MPEG-1, MPEG-2, 
MPEG-4, and other video compression formats.

VC-1 
WMV9

SMPTE 
Microsoft

The most used video format on the Internet. Adopted for HD and Blu-ray high-
definition DVDs. It is similar to H.264/AVC, using an integer DCT with varying 
block sizes [8.9 and 8.10] and context-dependent variable-length code tables [8.2], 
but no predictions within frames.

WebP 
VP8

Google A file format based on block transform coding [8.9] prediction differences within 
frames and between frames [8.10]. The differences are entropy encoded using an 
adaptive arithmetic coder [8.4].

TABLE 8.5
Popular image and video compression standards, file formats, and containers not included in Tables 8.3 and 8.4. The 
numbers in brackets refer to sections in this chapter.

DIP4E_GLOBAL_Print_Ready.indb   554 6/16/2017   2:10:35 PM



8.2  Huffman Coding    555

The first step in Huffman’s approach is to create a series of source reductions 
by ordering the probabilities of the symbols under consideration, then combining 
the lowest probability symbols into a single symbol that replaces them in the next 
source reduction. Figure 8.7 illustrates this process for binary coding (K-ary Huff-
man codes also can be constructed). At the far left, a hypothetical set of source sym-
bols and their probabilities are ordered from top to bottom in terms of decreasing 
probability values. To form the first source reduction, the bottom two probabilities, 
0.06 and 0.04, are combined to form a “compound symbol” with probability 0.1. This 
compound symbol and its associated probability are placed in the first source reduc-
tion column so that the probabilities of the reduced source also are ordered from the 
most to the least probable. This process is then repeated until a reduced source with 
two symbols (at the far right) is reached.

The second step in Huffman’s procedure is to code each reduced source, start-
ing with the smallest source and working back to the original source. The minimal 
length binary code for a two-symbol source, of course, are the symbols 0 and 1. As 
Fig. 8.8 shows, these symbols are assigned to the two symbols on the right. (The 
assignment is arbitrary; reversing the order of the 0 and 1 would work just as well.) 
As the reduced source symbol with probability 0.6 was generated by combining two 
symbols in the reduced source to its left, the 0 used to code it is now assigned to both 
of these symbols, and a 0 and 1 are arbitrarily appended to each to distinguish them 
from each other. This operation is then repeated for each reduced source until the 
original source is reached. The final code appears at the far left in Fig. 8.8. The aver-
age length of this code is

 
Lavg = ( . )( ) ( . )( ) ( . )( ) ( . )( ) ( . )( ) ( . )(0 4 1 0 3 2 0 1 3 0 1 4 0 06 5 0 04+ + + + + 55

2 2

)

.=  bits/pixel

and the entropy of the source is 2.14 bits/symbol.
Huffman’s procedure creates the optimal code for a set of symbols and probabili-

ties subject to the constraint that the symbols be coded one at a time. After the code 
has been created, coding and/or error-free decoding is accomplished in a simple 
lookup table manner. The code itself is an instantaneous uniquely decodable block 
code. It is called a block code because each source symbol is mapped into a fixed 
sequence of code symbols. It is instantaneous because each code word in a string of 

FIGURE 8.7
Huffman source 
reductions.
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code symbols can be decoded without referencing succeeding symbols. It is uniquely 
decodable because any string of code symbols can be decoded in only one way. Thus, 
any string of Huffman encoded symbols can be decoded by examining the individual 
symbols of the string in a left-to-right manner. For the binary code of Fig. 8.8, a left-
to-right scan of the encoded string 010100111100 reveals that the first valid code 
word is 01010, which is the code for symbol a3. The next valid code is 011, which cor-
responds to symbol a1. Continuing in this manner reveals the completely decoded 
message to be a3 a1 a2 a2 a6.

EXAMPLE 8.4 :   Huffman Coding.

The 512 512*  8-bit monochrome image in Fig. 8.9(a) has the intensity histogram shown in Fig. 8.9(b). 
Because the intensities are not equally probable, a MATLAB implementation of Huffman’s procedure 
was used to encode them with 7.428 bits/pixel, including the Huffman code table that is required to 
reconstruct the original 8-bit image intensities. The compressed representation exceeds the estimated 
entropy of the image [7.3838 bits/pixel from Eq. (8-7)] by 512 7 428 7 38382 × −( . . ) or 11,587 bits—about 
0.6%. The resulting compression ratio and corresponding relative redundancy are C = =8 7 428 1 077. . , 
and R = =1 1 1 077 0 0715- ( . ) . , respectively. Thus 7.15% of the original 8-bit fixed-length intensity  
representation was removed as coding redundancy.

When a large number of symbols is to be coded, the construction of an optimal 
Huffman code is a nontrivial task. For the general case of J source symbols, J symbol 
probabilities, J − 2 source reductions, and J − 2 code assignments are required. When 
source symbol probabilities can be estimated in advance, “near optimal” coding can 
be achieved with pre-computed Huffman codes. Several popular image compression 
standards, including the JPEG and MPEG standards discussed in Sections 8.9 and 
8.10, specify default Huffman coding tables that have been pre-computed based on 
experimental data.

8.3 GOLOMB CODING  

In this section, we consider the coding of nonnegative integer inputs with exponen-
tially decaying probability distributions. Inputs of this type can be optimally encoded 
(in the sense of Shannon’s first theorem) using a family of codes that are computa-
tionally simpler than Huffman codes. The codes themselves were first proposed for 
the representation of nonnegative run lengths (Golomb [1966]). In the discussion 

8.3

With reference to 
Tables 8.3–8.5, Golomb 
codes are used in

• JPEG-LS 
• AVS

compression.

FIGURE 8.8
Huffman code  
assignment  
procedure.
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that follows, the notation x⎢⎣ ⎥⎦ denotes the largest integer less than or equal to x, x⎡⎢ ⎤⎥ 
means the smallest integer greater than or equal to x, and x ymod  is the remainder 
of x divided by y.

Given a nonnegative integer n and a positive integer divisor m 7 0, the Golomb 
code of n with respect to m, denoted G nm( ), is a combination of the unary code of 
quotient n m⎢⎣ ⎥⎦  and the binary representation of remainder n mmod . G nm( ) is con-
structed as follows:

1. Form the unary code of quotient n m⎢⎣ ⎥⎦ . (The unary code of an integer q is 
defined as q 1’s followed by a 0.)

2. Let k m= ⎡⎢ ⎤⎥log ,2  c mk= 2 - , r n m= mod , and compute truncated remainder 
′r  such that

 ′ =r
r k r c

r c k

 truncated to  bits

 truncated to  bits othe

- … 6
+

1 0

rrwise
⎧
⎨
⎩

 (8-12)

3. Concatenate the results of Steps 1 and 2.

To compute G4 9( ), for example, begin by determining the unary code of the quo-
tient 9 4 2 25 2⎢⎣ ⎥⎦ = ⎢⎣ ⎥⎦ =. , which is 110 (the result of Step 1). Then let k = ⎡⎢ ⎤⎥ =log ,2 4 2  
c = =2 4 02 - , and r = 9 4mod , which in binary is 1001 0100mod  or 0001. In accor-
dance with Eq. (8-12), ′r  is then r (i.e., 0001) truncated to 2 bits, which is 01 (the result 
of Step 2). Finally, concatenate 110 from Step 1 and 01 from Step 2 to get 11001, 
which is G4 9( ).

For the special case of m k= 2 , c = 0 and ′ = =r r n mmod  truncated to k bits in 
Eq. (8-12) for all n. The divisions required to generate the resulting Golomb codes 
become binary shift operations, and the computationally simpler codes are called 
Golomb-Rice or Rice codes (Rice [1975]). Columns 2, 3, and 4 of Table 8.6 list the 
G1, G2, and G4 codes of the first ten nonnegative integers. Because m is a power  
of 2 in each case (i.e., 1 20= , 2 21= , and 4 22= ), they are the first three Golomb-Rice 
codes as well. Moreover, G1 is the unary code of the nonnegative integers because 
n n1⎢⎣ ⎥⎦ =  and nmod1 0=  for all n.

ba

FIGURE 8.9
(a) A 512 512*  
8-bit image and 
(b) its histogram.
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558    Chapter 8  Image Compression and Watermarking

Keeping in mind that Golomb codes only can be used to represent nonnegative 
integers, and that there are many Golomb codes to choose from, a key step in their 
effective application is the selection of divisor m. When the integers to be repre-
sented are geometrically distributed with a probability mass function (PMF)†

 P n n( ) ( )= 1 - r r  (8-13)

for some 0 16 6r , Golomb codes can be shown to be optimal in the sense that 
G nm( ) provides the shortest average code length of all uniquely decipherable codes 
(Gallager and Voorhis [1975]) when

 m =
⎡

⎢
⎢

⎤

⎥
⎥

log ( )
log ( )

2

2

1
1
+ r

r
 (8-14)

Figure 8.10(a) plots Eq. (8-13) for three values of r and graphically illustrates the 
symbol probabilities that Golomb codes handle well (that is, code efficiently). As is 
shown in the figure, small integers are much more probable than large ones.

Because the probabilities of the intensities in an image [see, for example, the his-
togram of Fig. 8.9(b)] are unlikely to match the probabilities specified in Eq. (8-13) 
and shown in Fig. 8.10(a), Golomb codes are seldom used for the coding of intensi-
ties. When intensity differences are to be coded, however, the probabilities of the 
resulting “difference values” (see Section 8.10) (with the notable exception of the 
negative differences) often resemble those of Eq. (8-13) and Fig. 8.10(a). To handle 
negative differences in Golomb coding, which can only represent nonnegative inte-
gers, a mapping like

†A probability mass function (PMF) is a function that defines the probability that a discrete random variable is 
exactly equal to some value. A PMF differs from a PDF in that a PDF’s values are not probabilities; rather, the 
integral of a PDF over a specified interval is a probability.

n G n1( ) G n2( ) G n4( ) G nexp
0 ( )

0 0 00 000 0

1 10 01 001 100

2 110 100 010 101

3 1110 101 011 11000

4 11110 1100 1000 11001

5 111110 1101 1001 11010

6 1111110 11100 1010 11011

7 11111110 11101 1011 1110000

8 111111110 111100 11000 1110001

9 1111111110 111101 11001 1110010

TABLE 8.6
Several Golomb 
codes for the 
integers 0–9.
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 M n
n n

n n
( ) =

⎧
⎨
⎩

2 0

2 1 0

Ú
- 6

 (8-15)

is typically used. Using this mapping, for example, the two-sided PMF shown in 
Fig. 8.10(b) can be transformed into the one-sided PMF in Fig. 8.10(c). Its integers 
are reordered, alternating the negative and positive integers so the negative integers 
are mapped into the odd positive integer positions. If P n( ) is two-sided and centered 
at zero, P M n( )( ) will be one-sided. The mapped integers, M n( ), can then be effi-
ciently encoded using an appropriate Golomb-Rice code (Weinberger et al. [1996]).

EXAMPLE 8.5 :   Golomb-Rice coding.

Consider again the image from Fig. 8.1(c) and note that its histogram [see Fig. 8.3(a)] is similar to the 
two-sided distribution in Fig. 8.10(b) above. If we let n be some nonnegative integer intensity in the 
image, where 0 225≤ ≤n , and m  be the mean intensity, P n − m( ) is the two-sided distribution shown in 
Fig. 8.11(a). This plot was generated by normalizing the histogram in Fig. 8.3(a) by the total number of 
pixels in the image and shifting the normalized values to the left by 128 (which in effect subtracts the 
mean intensity from the image). In accordance with Eq. (8-15), P M n − m( )( ) is then the one-sided dis-
tribution shown in Fig. 8.11(b). If the reordered intensity values are Golomb coded using a MATLAB 
implementation of code G1 in column 2 of Table 8.6, the encoded representation is 4.5 times smaller 
than the original image (i.e., C = 4 5. ). The G1 code realizes 4 5 5 1. . , or 88% of the theoretical com-
pression possible with variable-length coding. [Based on the entropy calculated in Example (8-2), the 
maximum possible compression ratio through variable-length coding is C = ≈8 1 566 5 1. . .] Moreover, 
Golomb coding achieves 96% of the compression provided by a MATLAB implementation of Huff-
man’s approach, and doesn’t require the computation of a custom Huffman coding table.

Now consider the image in Fig. 8.9(a). If its intensities are Golomb coded using the same G1 code as 
above, C = 0 0922. . That is, there is data expansion. This is due to the fact that the probabilities of the 
intensities of the image in Fig. 8.9(a) are much different than the probabilities defined in Eq. (8-13). In 
a similar manner, Huffman codes can produce data expansion when used to encode symbols whose 
probabilities are different from those for which the code was computed. In practice, the further you 
depart from the input probability assumptions for which a code is designed, the greater the risk of poor 
compression performance and data expansion.

ba c

FIGURE 8.10
(a) Three one-
sided geometric 
distributions from 
Eq. (8-13); (b) a 
two-sided expo-
nentially decaying 
distribution; and 
(c) a reordered 
version of (b) 
using Eq. (8-15).
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560    Chapter 8  Image Compression and Watermarking

To conclude our coverage of Golomb codes, we note that Column 5 of Table 8.6 
contains the first 10 codes of the zeroth-order exponential Golomb code, denoted 
G nexp( ).0  Exponential-Golomb codes are useful for the encoding of run lengths, 
because both short and long runs are encoded efficiently. An order-k exponential-
Golomb code G nk

exp( ) is computed as follows:

1. Find an integer i ≥ 0 such that 

 2 2
00

1
j k j k

j

i

j

i

n+ +

==
≤ < ∑∑

−

 (8-16)

and form the unary code of i. If k = 0, i n= +( )⎢⎣ ⎥⎦log2 1  and the code is also 
known as the Elias gamma code.

2. Truncate the binary representation of

 n j k

j

i

−
−

2
0

1
+

=
∑  (8-17)

to k i+  least significant bits.
3. Concatenate the results of Steps 1 and 2.

To find Gexp( ),0 8  for example, we let i = ⎢⎣ ⎥⎦log2 9  or 3 in Step 1 because k = 0. Equa-
tion (8-16) is then satisfied because

 2 8 20

0

3 1
0

0

3
j

j

j

j

+
−

+≤ <
= =
∑ ∑

 2 8 2
0

2

0

3
j

j

j

j

≤ <
= =
∑ ∑

ba

FIGURE 8.11
(a) The probabil-
ity distribution 
of the image in 
Fig. 8.1(c) after 
subtracting the 
mean intensity 
from each pixel. 
(b) A mapped  
version of (a)  
using Eq. (8-15).
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2 2 2 8 2 2 2 2

7 8 15

0 1 2 0 1 2 3+ + + + +≤ <
≤ <

The unary code of 3 is 1110 and Eq. (8-17) of Step 2 yields

 8 2 8 2 8 2 2 2 8 7 1 00010 0 1 2

0

2

0

3 1

− − − + + −+
−

j j

jj

= = ( ) = = =
==
∑∑

which when truncated to its 3 0+  least significant bits becomes 001. The concatena-
tion of the results from Steps 1 and 2 then yields 1110001. Note that this is the entry 
in column 4 of Table 8.6 for n = 8. Finally, we note that like the Huffman codes of the 
last section, the Golomb codes of Table 8.6 are variable-length, instantaneous, and 
uniquely decodable block codes.

8.4 ARITHMETIC CODING  

Unlike the variable-length codes of the previous two sections, arithmetic coding gen-
erates nonblock codes. In arithmetic coding, which can be traced to the work of Elias 
(Abramson [1963]), a one-to-one correspondence between source symbols and code 
words does not exist. Instead, an entire sequence of source symbols (or message) is 
assigned a single arithmetic code word. The code word itself defines an interval of 
real numbers between 0 and 1. As the number of symbols in the message increases, 
the interval used to represent it becomes smaller, and the number of information 
units (say, bits) required to represent the interval becomes larger. Each symbol of 
the message reduces the size of the interval in accordance with its probability of 
occurrence. Because the technique does not require, as does Huffman’s approach, 
that each source symbol translate into an integral number of code symbols (that is, 
that the symbols be coded one at a time), it achieves (but only in theory) the bound 
established by Shannon’s first theorem of Section 8.1.

Figure 8.12 illustrates the basic arithmetic coding process. Here, a five-symbol 
sequence or message, a1a2a3a3a4, from a four-symbol source is coded. At the start of 
the coding process, the message is assumed to occupy the entire half-open interval 
[0, 1). As Table 8.7 shows, this interval is subdivided initially into four regions based 
on the probabilities of each source symbol. Symbol a1, for example, is associated with 
subinterval [0, 0.2). Because it is the first symbol of the message being coded, the 
message interval is initially narrowed to [0, 0.2). Thus, in Fig. 8.12, [0, 0.2) is expanded 
to the full height of the figure, and its end points labeled by the values of the nar-
rowed range. The narrowed range is then subdivided in accordance with the original 

8.4

With reference to 
Tables 8.3–8.5, arithmetic 
coding is used in

• JBIG1 
• JBIG2 
• JPEG-2000 
• H.264 
• MPEG-4 AVC

and other compression 
standards.

Source Symbol Probability Initial Subinterval

a1 0.2 [0.0, 0.2)

a2 0.2 [0.2, 0.4)

a3 0.4 [0.4, 0.8)

a4 0.2 [0.8, 1.0)

TABLE 8.7
Arithmetic coding 
example.
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562    Chapter 8  Image Compression and Watermarking

source symbol probabilities, and the process continues with the next message symbol. 
In this manner, symbol a2 narrows the subinterval to [0.04, 0.08), a3 further narrows 
it to [0.056, 0.072), and so on. The final message symbol, which must be reserved as a 
special end-of-message indicator, narrows the range to [0.06752, 0.0688). Of course, 
any number within this subinterval, for example, 0.068, can be used to represent the 
message. In the arithmetically coded message of Fig. 8.12, three decimal digits are 
used to represent the five-symbol message. This translates into 0.6 decimal digits per 
source symbol and compares favorably with the entropy of the source, which, from 
Eq. 8.6, is 0.58 decimal digits per source symbol. As the length of the sequence being 
coded increases, the resulting arithmetic code approaches the bound established by 
Shannon’s first theorem. In practice, two factors cause coding performance to fall 
short of the bound: (1) the addition of the end-of-message indicator that is needed 
to separate one message from another, and (2) the use of finite precision arithmetic. 
Practical implementations of arithmetic coding address the latter problem by intro-
ducing a scaling strategy and a rounding strategy (Langdon and Rissanen [1981]). 
The scaling strategy renormalizes each subinterval to the [0, 1) range before subdi-
viding it in accordance with the symbol probabilities. The rounding strategy guaran-
tees that the truncations associated with finite precision arithmetic do not prevent 
the coding subintervals from being accurately represented.

ADAPTIVE CONTEXT DEPENDENT PROBABILITY ESTIMATES

With accurate input symbol probability models, that is, models that provide the true 
probabilities of the symbols being coded, arithmetic coders are near optimal in the 
sense of minimizing the average number of code symbols required to represent the 
symbols being coded. As in both Huffman and Golomb coding, however, inaccu-
rate probability models can lead to non-optimal results. A simple way to improve 
the accuracy of the probabilities employed is to use an adaptive, context depen-
dent probability model. Adaptive probability models update symbol probabilities as  
symbols are coded or become known. Thus, the probabilities adapt to the local sta-
tistics of the symbols being coded. Context-dependent models provide probabilities 

FIGURE 8.12
Arithmetic coding 
procedure.
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that are based on a predefined neighborhood of pixels, called the context, around 
the symbols being coded. Normally, a causal context (one limited to symbols that 
have already been coded) is used. Both the Q-coder (Pennebaker et al. [1988]) and 
MQ-coder (ISO/IEC [2000]), two well-known arithmetic coding techniques that 
have been incorporated into the JBIG, JPEG-2000, and other important image 
compression standards, use probability models that are both adaptive and context 
dependent.The Q-coder dynamically updates symbol probabilities during the inter-
val renormalizations that are part of the arithmetic coding process. Adaptive con-
text dependent models also have been used in Golomb coding, for example, in the 
JPEG-LS compression standard.

Figure 8.13(a) diagrams the steps involved in adaptive, context-dependent arith-
metic coding of binary source symbols. Arithmetic coding often is used when binary 
symbols are to be coded. As each symbol (or bit) begins the coding process, its con-
text is formed in the Context determination block of Fig. 8.13(a). Figures 8.13(b) 
through (d) show three possible contexts that can be used: (1) the immediately pre-
ceding symbol, (2) a group of preceding symbols, and (3) some number of preceding 
symbols plus symbols on the previous scan line. For the three cases shown, the Prob-
ability estimation block must manage 21 (or 2), 28 (or 256), and 25 (or 32) contexts 
and their associated probabilities. For instance, if the context in Fig. 8.13(b) is used, 
conditional probabilities P a0 0=( ) (the probability that the symbol being coded is a 
0 given that the preceding symbol is a 0), P a1 0=( ), P a0 1=( ), and P a1 1=( ) must 
be tracked. The appropriate probabilities are then passed to the Arithmetic coding 
block as a function of the current context, and drive the generation of the arithmeti-
cally coded output sequence in accordance with the process illustrated in Fig. 8.12. 
The probabilities associated with the context involved in the current coding step are 
then updated to reflect the fact that another symbol within that context has been 
processed.

Finally, we note that a variety of arithmetic coding techniques are protected by 
United States patents (and may be protected in other jurisdictions as well). Because 
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FIGURE 8.13
(a) An adaptive, 
context-based 
arithmetic coding 
approach (often 
used for binary 
source symbols). 
(b)–(d) Three 
possible context 
models.
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564    Chapter 8  Image Compression and Watermarking

of these patents, and the possibility of unfavorable monetary judgments for their 
infringement, most implementations of the JPEG compression standard, which con-
tains options for both Huffman and arithmetic coding, typically support Huffman 
coding alone.

8.5 LZW CODING  

The techniques covered in Sections 8.2 through 8.4 are focused on the removal of cod-
ing redundancy. In this section, we consider an error-free compression approach that 
also addresses spatial redundancies in an image. The technique, called Lempel-Ziv- 
Welch (LZW) coding, assigns fixed-length code words to variable length sequences 
of source symbols. Recall from the earlier section on measuring image information 
that Shannon used the idea of coding sequences of source symbols, rather than indi-
vidual source symbols, in the proof of his first theorem. A key feature of LZW cod-
ing is that it requires no a priori knowledge of the probability of occurrence of the 
symbols to be encoded. Despite the fact that until recently it was protected under a 
United States patent, LZW compression has been integrated into a variety of main-
stream imaging file formats, including GIF, TIFF, and PDF. The PNG format was 
created to get around LZW licensing requirements.

EXAMPLE 8.6 :   LZW coding Fig. 8.9(a).

Consider again the 512 512× , 8-bit image from Fig. 8.9(a). Using Adobe Photoshop, an uncompressed 
TIFF version of this image requires 286,740 bytes of disk space—262,144 bytes for the 512 512×  8-bit 
pixels plus 24,596 bytes of overhead. Using TIFF’s LZW compression option, however, the resulting file 
is 224,420 bytes. The compression ratio is C = 1 28. . Recall that for the Huffman encoded representation 
of Fig. 8.9(a) in Example 8.4, C = 1 077. . The additional compression realized by the LZW approach is 
due the removal of some of the image’s spatial redundancy.

LZW coding is conceptually very simple (Welch [1984]). At the onset of the cod-
ing process, a codebook or dictionary containing the source symbols to be coded is 
constructed. For 8-bit monochrome images, the first 256 words of the dictionary are 
assigned to intensities 0, 1, 2, …, 255. As the encoder sequentially examines image 
pixels, intensity sequences that are not in the dictionary are placed in algorithmi-
cally determined (e.g., the next unused) locations. If the first two pixels of the image 
are white, for instance, sequence “255–255” might be assigned to location 256, the 
address following the locations reserved for intensity levels 0 through 255. The next 
time two consecutive white pixels are encountered, code word 256, the address of 
the location containing sequence 255–255, is used to represent them. If a 9-bit, 512-
word dictionary is employed in the coding process, the original ( )8 8+  bits that were 
used to represent the two pixels are replaced by a single 9-bit code word. Clearly, the 
size of the dictionary is an important system parameter. If it is too small, the detec-
tion of matching intensity-level sequences will be less likely; if it is too large, the size 
of the code words will adversely affect compression performance.

8.5

With reference to 
Tables 8.3–8.5, LZW cod-
ing is used in the

• GIF 
• TIFF 
• PDF

formats, but not in any 
of the internationally 
sanctioned compression 
standards.
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EXAMPLE 8.7 :   LZW coding.

Consider the following 4 4* , 8-bit image of a vertical edge:

 

39 39 126 126

39 39 126 126

39 39 126 126

39 39 126 126

Table 8.8 details the steps involved in coding its 16 pixels. A 512-word dictionary with the following start-
ing content is assumed:

Dictionary Location Entry

0 0

1 1

o o
255 255

256 —

o o
511 —

Locations 256 through 511 initially are unused.
The image is encoded by processing its pixels in a left-to-right, top-to-bottom manner. Each succes-

sive intensity value is concatenated with a variable, column 1 of Table 8.8, called the “currently recog-
nized sequence.” As can be seen, this variable is initially null or empty. The dictionary is searched for 
each concatenated sequence and if found, as was the case in the first row of the table, is replaced by the 
newly concatenated and recognized (i.e., located in the dictionary) sequence. This was done in column 
1 of row 2. No output codes are generated, nor is the dictionary altered. If the concatenated sequence 
is not found, however, the address of the currently recognized sequence is output as the next encoded 
value, the concatenated but unrecognized sequence is added to the dictionary, and the currently recog-
nized sequence is initialized to the current pixel value. This occurred in row 2 of the table. The last two 
columns detail the intensity sequences that are added to the dictionary when scanning the entire 128-bit 
image. Nine additional code words are defined. At the conclusion of coding, the dictionary contains 265 
code words and the LZW algorithm has successfully identified several repeating intensity sequences—
leveraging them to reduce the original 128-bit image to 90 bits (i.e., 10 9-bit codes). The encoded output 
is obtained by reading the third column from top to bottom. The resulting compression ratio is 1.42:1.

A unique feature of the LZW coding just demonstrated is that the coding dic-
tionary or code book is created while the data are being encoded. Remarkably, an 
LZW decoder builds an identical decompression dictionary as it simultaneously 
decodes the encoded data stream. It is left as an exercise to the reader (see Prob-
lem 8.20) to decode the output of the preceding example and reconstruct the code 
book. Although not needed in this example, most practical applications require a 
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strategy for handling dictionary overflow. A simple solution is to flush or reinitialize 
the dictionary when it becomes full and continue coding with a new initialized dic-
tionary. A more complex option is to monitor compression performance and flush 
the dictionary when it becomes poor or unacceptable. Alternatively, the least used 
dictionary entries can be tracked and replaced when necessary.

8.6 RUN-LENGTH CODING  

As was noted earlier, images with repeating intensities along their rows (or columns) 
can often be compressed by representing runs of identical intensities as run-length 
pairs, where each run-length pair specifies the start of a new intensity and the num-
ber of consecutive pixels that have that intensity. The technique, referred to as run-
length encoding (RLE), was developed in the 1950s and became, along with its 2-D 
extensions, the standard compression approach in facsimile (FAX) coding. Com-
pression is achieved by eliminating a simple form of spatial redundancy—groups of 
identical intensities. When there are few (or no) runs of identical pixels, run-length 
encoding results in data expansion.

EXAMPLE 8.8 :   RLE in the BMP file format.

The BMP file format uses a form of run-length encoding in which image data is represented in two dif-
ferent modes: encoded and absolute. Either mode can occur anywhere in the image. In encoded mode, a 

8.6

With reference to 
Tables 8.3–8.5, the coding 
of run-lengths is used in

• CCITT 
• JBIG2 
• JPEG 
• M-JPEG 
• MPEG-1,2,4 
• BMP

and other compres-
sion standards and file 
formats.

Currently 
Recognized 
Sequence

Pixel Being 
Processed

Encoded 
Output

Dictionary  
Location 

(Code Word)
Dictionary Entry

39

39 39 39 256 39–39

39 126 39 257 39–126

126 126 126 258 126–126

126 39 126 259 126–39

39 39

39–39 126 256 260 39–39–126

126 126

126–126 39 258 261 126–126–39

39 39

39-39 126

39–39–126 126 260 262 39–39–126–126

126 39

126-39 39 259 263 126–39–39

39 126

39-126 126 257 264 39–126–126

126 126

TABLE 8.8
LZW Coding 
example.
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two byte RLE representation is used. The first byte specifies the number of consecutive pixels that have 
the color index contained in the second byte. The 8-bit color index selects the run’s intensity (color or 
gray value) from a table of 256 possible intensities.

In absolute mode, the first byte is 0, and the second byte signals one of four possible conditions, as 
shown in Table 8.9. When the second byte is 0 or 1, the end of a line or the end of the image has been 
reached. If it is 2, the next two bytes contain unsigned horizontal and vertical offsets to a new spatial 
position (and pixel) in the image. If the second byte is between 3 and 255, it specifies the number of 
uncompressed pixels that follow with each subsequent byte containing the color index of one pixel. The 
total number of bytes must be aligned on a 16-bit word boundary.

An uncompressed BMP file (saved using Photoshop) of the 512 512 8× ×  bit image shown in Fig. 8.9(a) 
requires 263,244 bytes of memory. Compressed using BMP’s RLE option, the file expands to 267,706 
bytes, and the compression ratio is C = 0 98. . There are not enough equal intensity runs to make run-
length compression effective; a small amount of expansion occurs. For the image in Fig. 8.1(c), however, 
the BMP RLE option results in a compression ratio C = 1 35. . (Note that due to differences in overhead, 
the uncompressed BMP file is smaller than the uncompressed TIFF file in Example 8.6.)

Run-length encoding is particularly effective when compressing binary images. 
Because there are only two possible intensities (black and white), adjacent pixels 
are more likely to be identical. In addition, each image row can be represented by 
a sequence of lengths only, rather than length-intensity pairs as was used in Exam-
ple 8.8. The basic idea is to code each contiguous group (i.e., run) of 0’s or 1’s encoun-
tered in a left-to-right scan of a row by its length and to establish a convention for 
determining the value of the run. The most common conventions are (1) to specify 
the value of the first run of each row, or (2) to assume that each row begins with a 
white run, whose run length may in fact be zero.

Although run-length encoding is in itself an effective method of compressing 
binary images, additional compression can be achieved by variable-length coding 
the run lengths themselves. The black and white run lengths can be coded separately 
using variable-length codes that are specifically tailored to their own statistics. For 
example, letting symbol aj  represent a black run of length j, we can estimate the 
probability that symbol aj  was emitted by an imaginary black run-length source by 
dividing the number of black run lengths of length j in the entire image by the total 
number of black runs. An estimate of the entropy of this black run-length source, 
denoted as H0 , follows by substituting these probabilities into Eq. (8-6). A similar 
argument holds for the entropy of the white runs, denoted as H1. The approximate 
run-length entropy of the image is then

 H
H H

L LRL = 0 1

0 1

+
+

 (8-18)

where the variables L0 and L1 denote the average values of black and white run 
lengths, respectively. Equation (8-18) provides an estimate of the average number 
of bits per pixel required to code the run lengths in a binary image using a variable-
length code.

DIP4E_GLOBAL_Print_Ready.indb   567 6/16/2017   2:10:52 PM



568    Chapter 8  Image Compression and Watermarking

Two of the oldest and most widely used image compression standards are the 
CCITT Group 3 and 4 standards for binary image compression. Although they have 
been used in a variety of computer applications, they were originally designed as 
facsimile (FAX) coding methods for transmitting documents over telephone net-
works. The Group 3 standard uses a 1-D run-length coding technique in which the 
last K - 1 lines of each group of K lines (for K = 2 or 4) can be optionally coded in 
a 2-D manner. The Group 4 standard is a simplified or streamlined version of the 
Group 3 standard in which only 2-D coding is allowed. Both standards use the same 
2-D coding approach, which is two-dimensional in the sense that information from 
the previous line is used to encode the current line. Both 1-D and 2-D coding will 
be discussed next.

ONE-DIMENSIONAL CCITT COMPRESSION

In the 1-D CCITT Group 3 compression standard, each line of an image† is encoded 
as a series of variable-length Huffman code words that represent the run lengths of 
alternating white and black runs in a left-to-right scan of the line. The compression 
method employed is commonly referred to as Modified Huffman (MH) coding. The 
code words themselves are of two types, which the standard refers to as terminating 
codes and makeup codes. If run length r is less than or equal to 63, a terminating code 
is used to represent it. The standard specifies different terminating codes for black 
and white runs. If r > 63, two codes are used; a makeup code for quotient r 64 64⎢⎣ ⎥⎦ * , 
and terminating code for remainder rmod64. Makeup codes may or may not depend 
on the intensity (black or white) of the run being coded. If r 64 64 1728⎢⎣ ⎥⎦ * … , sepa-
rate black and white run makeup codes are specified; otherwise, makeup codes are 
independent of run intensity. The standard requires that each line begin with a white 
run-length code word, which may in fact be 00110101, the code for a white run of 
length zero. Finally, a unique end-of-line (EOL) code word 000000000001 is used to 
terminate each line, as well as to signal the first line of each new image. The end of a 
sequence of images is indicated by six consecutive EOLs.

TWO-DIMENSIONAL CCITT COMPRESSION

The 2-D compression approach adopted for both the CCITT Group 3 and 4 stan-
dards is a line-by-line method in which the position of each black-to-white or 
white-to-black run transition is coded with respect to the position of a reference 
element a0 that is situated on the current coding line. The previously coded line is 
called the reference line; the reference line for the first line of each new image is an  

† In the standard, images are referred to as pages and sequences of images are called documents.

Consult the book web-
site for tables of the MH 
terminating and makeup 
codes.

Recall that the notation 
x⎢⎣ ⎥⎦  denotes the largest 

interger less than or 
equal to x.

Second Byte Value Condition

0 End of line

1 End of image

2 Move to a new position

3-255 Specify pixels individually

TABLE 8.9
BMP absolute 
coding mode  
options. In this 
mode, the first 
byte of the BMP 
pair is 0.
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imaginary white line. The 2-D coding technique that is used is called Relative Ele-
ment Address Designate (READ) coding. In the Group 3 standard, one or three 
READ coded lines are allowed between successive MH coded lines; this technique 
is called Modified READ (MR) coding. In the Group 4 standard, a greater num-
ber of READ coded lines are allowed, and the method is called Modified Modified 
READ (MMR) coding. As was previously noted, the coding is two-dimensional in 
the sense that information from the previous line is used to encode the current line. 
Two-dimensional transforms are not involved.

Figure 8.14 shows the basic 2-D coding process for a single scan line. Note that 
the initial steps of the procedure are directed at locating several key changing ele-
ments: a0, a1, a2, b1, and b2. A changing element is defined by the standard as a pixel 
whose value is different from that of the previous pixel on the same line. The most 
important changing element is a0 (the reference element), which is either set to the 
location of an imaginary white changing element to the left of the first pixel of each 
new coding line, or determined from the previous coding mode. Coding modes will 
be discussed in the following paragraph. After a0 is located, a1 is identified as the 
location of the next changing element to the right of a0 on the current coding line, 
a2 as the next changing element to the right of a1 on the coding line, b1 as the chang-
ing element of the opposite value (of a0) and to the right of a0 on the reference (or 
previous) line, and b2 as the next changing element to the right of b1 on the reference 
line. If any of these changing elements are not detected, they are set to the location 
of an imaginary pixel to the right of the last pixel on the appropriate line. Figure 8.15 
provides two illustrations of the general relationships between the various changing 
elements.

After identification of the current reference element and associated changing ele-
ments, two simple tests are performed to select one of three possible coding modes: 
pass mode, vertical mode, or horizontal mode. The initial test, which corresponds 
to the first branch point in the flowchart in Fig. 8.14, compares the location of b2 to 
that of a1. The second test, which corresponds to the second branch point in Fig. 8.14, 
computes the distance (in pixels) between the locations of a1 and b1 and compares it 
against 3. Depending on the outcome of these tests, one of the three outlined coding 
blocks of Fig. 8.14 is entered and the appropriate coding procedure is executed. A 
new reference element is then established, as per the flowchart, in preparation for 
the next coding iteration.

Table 8.10 defines the specific codes utilized for each of the three possible cod-
ing modes. In pass mode, which specifically excludes the case in which b2 is directly 
above a1, only the pass mode code word 0001 is needed. As Fig. 8.15(a) shows, this 
mode identifies white or black reference line runs that do not overlap the current 
white or black coding line runs. In horizontal coding mode, the distances from a0 to 
a1 and a1 to a2 must be coded in accordance with the termination and makeup codes 
of 1-D CCITT Group 3 compression, then appended to the horizontal mode code 
word 001. This is indicated in Table 8.10 by the notation 001 0 1 1 2+ +M a a M a a( ) ( ), 
where a0a1 and a1a2 denote the distances from a0 to a1 and a1 to a2, respectively. 
Finally, in vertical coding mode, one of six special variable-length codes is assigned 
to the distance between a1 and b1. Figure 8.15(b) illustrates the parameters involved 

Consult the book web-
site for the coding tables 
of the CCITT standard.
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FIGURE 8.14
CCITT 2-D 
READ coding 
procedure. The 
notation a b1 1  
denotes the abso-
lute value of the 
distance between 
changing  
elements a1  
and b1.

Start new
coding line

Detect a1

Detect b1

Detect b2

Detect a2

No

Yes

Yes

No

Pass mode
coding

Vertical mode
coding

Horizontal
mode coding

End of
coding line

End of
line?

b2 left of a1

Put a0

under b2

Put a0 on a2 Put a0 on a1

 @ a1b1 @  3
Yes

No

Put a0 before
the first pixel
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in both horizontal and vertical mode coding. The extension mode code word at the 
bottom of Table 8.10 is used to enter an optional facsimile coding mode. For exam-
ple, the 0000001111 code is used to initiate an uncompressed mode of transmission.

EXAMPLE 8.9 :   CCITT vertical mode coding example.

Although Fig. 8.15(b) is annotated with the parameters for both horizontal and vertical mode coding 
(to facilitate the discussion above), the depicted pattern of black and white pixels is a case for vertical 
mode coding. That is, because b2 is to the right of a1, the first (or pass mode) test in Fig. 8.14 fails. The 
second test, which determines whether the vertical or horizontal coding mode is entered, indicates that 
vertical mode coding should be used, because the distance from a1 to b1 is less than 3. In accordance with 
Table 8.10, the appropriate code word is 000010, implying that a1 is two pixels left of b1. In preparation 
for the next coding iteration, a0 is moved to the location of a1.

Mode Code Word

Pass 0001

Horizontal 001 + M(a0a1) + M(a1a2)

Vertical

a1 below b1 1

a1 one to the right of b1 011

a1 two to the right of b1 000011

a1 three to the right of b1 0000011

a1 one to the left of b1 010

a1 two to the left of b1 000010

a1 three to the left of b1 0000010

Extension 0000001xxx

TABLE 8.10
CCITT  
two-dimensional 
code table.

b
a

FIGURE 8.15
CCITT (a) pass 
mode and  
(b) horizontal 
and vertical mode 
coding  
parameters.

� 0
� 1

b1

a0 a1Next a0

b2

b2a1b1

a0 a1 a2

b1

a0a1 a1a2

Reference line

Coding line

Reference line

Coding line

Vertical mode

Pass mode

Horizontal mode
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EXAMPLE 8.10 :  CCITT compression example.

Figure 8.16(a) is a 300 dpi scan of a 7 9 25* .  inch book page displayed at about 1 3 scale. Note that about 
half of the page contains text, around 9% is occupied by a halftone image, and the rest is white space. 
A section of the page is enlarged in Fig. 8.16(b). Keep in mind that we are dealing with a binary image; 
the illusion of gray tones is created, as was described in Section 4.5, by the halftoning process used in 
printing. If the binary pixels of the image in Fig. 8.16(a) are stored in groups of 8 pixels per byte, the 
1952 2697×  bit scanned image, commonly called a document, requires 658,068 bytes. An uncompressed 
PDF file of the document (created in Photoshop) requires 663,445 bytes. CCITT Group 3 compression 
reduces the file to 123,497 bytes, resulting in a compression ratio C = 5 37. . CCITT Group 4 compression 
reduces the file to 110,456 bytes, increasing the compression ratio to about 6.

8.7 SYMBOL-BASED CODING  

In symbol- or token-based coding, an image is represented as a collection of fre-
quently occurring subimages, called symbols. Each such symbol is stored in a sym-
bol dictionary and the image is coded as a set of triplets ( , , ),( , , ), ,x y t x y t1 1 1 2 2 2 p{ }  
where each ( , )x yi i  pair specifies the location of a symbol in the image and token 
ti is the address of the symbol or subimage in the dictionary. That is, each triplet 
represents an instance of a dictionary symbol in the image. Storing repeated sym-
bols only once can compress images significantly, particularly in document storage 
and retrieval applications where the symbols are often character bitmaps that are 
repeated many times.

8.7

With reference to 
Tables 8.3–8.5, symbol-
based coding is used in

• JBIG2

compression.

ba

FIGURE 8.16
A binary scan of 
a book page: (a) 
scaled to show 
the general page 
content;  
(b) scaled to show 
the binary pixels 
used in dithering.
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Consider the simple bilevel image in Fig. 8.17(a). It contains the single word, 
banana, which is composed of three unique symbols: a b, three a’s, and two n’s. 
Assuming that the b is the first symbol identified in the coding process, its 9 7*  bit-
map is stored in location 0 of the symbol dictionary. As Fig. 8.17(b) shows, the token 
identifying the b bitmap is 0. Thus, the first triplet in the encoded image’s represen-
tation [see Fig. 8.17(c)] is (0, 2, 0), indicating that the upper-left corner (an arbitrary 
convention) of the rectangular bitmap representing the b symbol is to be placed 
at location (0, 2) in the decoded image. After the bitmaps for the a and n symbols 
have been identified and added to the dictionary, the remainder of the image can 
be encoded with five additional triplets. As long as the six triplets required to locate 
the symbols in the image, together with the three bitmaps required to define them, 
are smaller than the original image, compression occurs. In this case, the starting 
image has  9 51 1* *  or 459 bits and, assuming that each triplet is composed of three 
bytes, the compressed representation has ( ) ( ) ( ) ( )6 3 8 9 7 6 7 6 6* * + * * *+ +[ ] or 
285 bits; the resulting compression ratio C = 1 61. . To decode the symbol-based rep-
resentation in Fig. 8.17(c), you simply read the bitmaps of the symbols specified in 
the triplets from the symbol dictionary and place them at the spatial coordinates 
specified in each triplet.

Symbol-based compression was proposed in the early 1970s (Ascher and Nagy 
[1974]), but has become practical only recently. Advances in symbol-matching algo-
rithms (see Chapter 12) and increased CPU computer processing speeds have made 
it possible to both select dictionary symbols and to find where they occur in an 
image in a timely manner. And like many other compression methods, symbol-based 
decoding is significantly faster than encoding. Finally, we note that both the symbol 
bitmaps that are stored in the dictionary and the triplets used to reference them 
themselves can be encoded to further improve compression performance. If, as in 
Fig. 8.17, only exact symbol matches are allowed, the resulting compression is loss-
less; if small differences are permitted, some level of reconstruction error will be 
present.

JBIG2 COMPRESSION

JBIG2 is an international standard for bilevel image compression. By segmenting 
an image into overlapping and/or non-overlapping regions of text, halftone, and 
generic content, compression techniques that are specifically optimized for each 
type of content are employed:

ba c

FIGURE 8.17
(a) A bi-level 
document, (b) 
symbol dictionary, 
and (c) the trip-
lets used to locate 
the symbols in the 
document.

Token Symbol Triplet

0

1

2

(0, 2, 0)
(3,10, 1)
(3, 18, 2)
(3, 26, 1)
(3, 34, 2)
(3, 42, 1)
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1. Text regions are composed of characters that are ideally suited for a symbol-
based coding approach. Typically, each symbol will correspond to a character 
bitmap—a subimage representing a character of text. There is normally only 
one character bitmap (or subimage) in the symbol dictionary for each upper- 
and lowercase character of the font being used. For example, there would be 
one “a” bitmap in the dictionary, one “A” bitmap, one “b” bitmap, and so on.

In lossy JBIG2 compression, often called perceptually lossless or visually 
lossless, we neglect differences between dictionary bitmaps (i.e., the reference 
character bitmaps or character templates) and specific instances of the corre-
sponding characters in the image. In lossless compression, the differences are 
stored and used in conjunction with the triplets encoding each character (by 
the decoder) to produce the actual image bitmaps. All bitmaps are encoded 
either arithmetically or using MMR (see Section 8.6); the triplets used to access 
dictionary entries are either arithmetically or Huffman encoded.

2. Halftone regions are similar to text regions in that they are composed of pat-
terns arranged in a regular grid. The symbols that are stored in the dictionary, 
however, are not character bitmaps but periodic patterns that represent intensi-
ties (e.g., of a photograph) that have been dithered to produce bilevel images 
for printing.

3. Generic regions contain non-text, non-halftone information, like line art and 
noise, and are compressed using either arithmetic or MMR coding.

As is true of many image compression standards, JBIG2 defines decoder behavior. It 
does not explicitly define a standard encoder, but is flexible enough to allow various 
encoder designs. Although the design of the encoder is left unspecified, it is impor-
tant because it determines the level of compression that is achieved. After all, the 
encoder must segment the image into regions, choose the text and halftone symbols 
that are stored in the dictionaries, and decide when those symbols are essentially 
the same as, or different from, potential instances of the symbols in the image. The 
decoder simply uses that information to recreate the original image.

EXAMPLE 8.11 :   JBIG2 compression example.

Consider again the bilevel image in Fig. 8.16(a). Figure 8.18(a) shows a reconstructed section of the 
image after lossless JBIG2 encoding (by a commercially available document compression application). 
It is an exact replica of the original image. Note that the ds in the reconstructed text vary slightly, despite 
the fact that they were generated from the same d entry in the dictionary. The differences between that   
d and the ds in the image were used to refine the output of the dictionary. The standard defines an algo-
rithm for accomplishing this during the decoding of the encoded dictionary bitmaps. For the purposes of 
our discussion, you can think of it as adding the difference between a dictionary bitmap and a specific 
instance of the corresponding character in the image to the bitmap read from the dictionary.

Figure 8.18(b) is another reconstruction of the area in Fig. 8.18(a) after perceptually lossless JBIG2 
compression. Note that the ds in this figure are identical. They have been copied directly from the sym-
bol dictionary. The reconstruction is called perceptually lossless because the text is readable and the font 
is even the same. The small differences shown in Fig. 8.18(c) between the ds in the original image and the 
d in the dictionary are considered unimportant because they do not affect readability. Remember that 

DIP4E_GLOBAL_Print_Ready.indb   574 6/16/2017   2:10:55 PM



8.8  Bit-plane Coding    575

we are dealing with bilevel images, so there are only three intensities in Fig. 8.18(c). Intensity 128 indi-
cates areas where there is no difference between the corresponding pixels of the images in Figs. 8.18(a) 
and (b); intensities 0 (black) and 255 (white) indicate pixels of opposite intensities in the two images—
for example, a black pixel in one image that is white in the other, and vice versa.

The lossless JBIG2 compression that was used to generate Fig. 8.18(a) reduces the original 663,445 
byte uncompressed PDF image to 32,705 bytes; the compression ratio is C = 20 3. . Perceptually lossless 
JBIG2 compression reduces the image to 23,913 bytes, increasing the compression ratio to about 27.7. 
These compressions are 4 to 5 times greater than the CCITT Group 3 and 4 results from Example 8.10.

8.8 BIT-PLANE CODING  

The run-length and symbol-based techniques of the previous sections can be applied 
to images with more than two intensities by individually processing their bit planes. 
The technique, called bit-plane coding, is based on the concept of decomposing a 
multilevel (monochrome or color) image into a series of binary images (see Sec-
tion 3.2) and compressing each binary image via one of several well-known binary 
compression methods. In this section, we describe the two most popular decomposi-
tion approaches.

The intensities of an m-bit monochrome image can be represented in the form of 
the base-2 polynomial

 a a a am
m

m
m

-
-

-
-

1
1

2
2

1
1

0
02 2 2 2+ + + +…  (8-19)

Based on this property, a simple method of decomposing the image into a collection 
of binary images is to separate the m coefficients of the polynomial into m 1-bit bit 
planes. As noted in Section 3.2, the lowest-order bit plane (the plane corresponding 
to the least significant bit) is generated by collecting the a0 bits of each pixel, while 
the highest-order bit plane contains the am-1  bits or coefficients. In general, each bit 
plane is constructed by setting its pixels equal to the values of the appropriate bits 
or polynomial coefficients from each pixel in the original image. The inherent disad-
vantage of this decomposition approach is that small changes in intensity can have 
a significant impact on the complexity of the bit planes. If a pixel of intensity 127 
(01111111) is adjacent to a pixel of intensity 128 (10000000), for instance, every bit 

8.8

With reference to 
Tables 8.3–8.5, bit-plane 
coding is used in

• JBIG2 
• JPEG-2000

compression standards.

ba c

FIGURE 8.18
JBIG2 compres-
sion compari-
son: (a) lossless 
compression and 
reconstruction; 
(b) perceptually 
lossless; and (c) 
the scaled differ-
ence between the 
two.
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plane will contain a corresponding 0 to 1 (or 1 to 0) transition. For example, because 
the most significant bits of the binary codes for 127 and 128 are different, the highest 
bit plane will contain a zero-valued pixel next to a pixel of value 1, creating a 0 to 1 
(or 1 to 0) transition at that point.

An alternative decomposition approach (which reduces the effect of small inten-
sity variations) is to first represent the image by an m-bit Gray code. The m-bit Gray 
code g g g gm−1 2 1 0…  that corresponds to the polynomial in Eq. (8-19) can be com-
puted from

 
g a a i m

g a
i i i

m m

= ≤ ≤
=

+� 1

1 1

0 2-

- -
 (8-20)

Here, �  denotes the exclusive OR operation. This code has the unique property 
that successive code words differ in only one bit position. Thus, small changes in 
intensity are less likely to affect all m bit planes. For instance, when intensity levels 
127 and 128 are adjacent, only the highest-order bit plane will contain a 0 to 1 tran-
sition, because the Gray codes that correspond to 127 and 128 are 01000000 and 
11000000, respectively.

EXAMPLE 8.12 :  Bit-plane coding.

Figures 8.19 and 8.20 show the eight binary and Gray-coded bit planes of the 8-bit monochrome image 
of the child in Fig. 8.19(a). Note that the high-order bit planes are far less complex than their low-order 
counterparts. That is, they contain large uniform areas of significantly less detail, busyness, or random-
ness. In addition, the Gray-coded bit planes are less complex than the corresponding binary bit planes. 
Both observations are reflected in the JBIG2 coding results of Table 8.11. Note, for instance, that the a5 
and g5 results are significantly larger than the a6 and g6 compressions, and that both g5 and g6 are smaller 
than their a5 and a6 counterparts. This trend continues throughout the table, with the single exception of 
a0. Gray-coding provides a compression advantage of about 1.06:1 on average. Combined together, the 
Gray-coded files compress the original monochrome image by 678 676 475 964, ,  or 1.43:1; the non-Gray-
coded files compress the image by 678 676 503 916, ,  or 1.35:1.

Finally, we note that the two least significant bits in Fig. 8.20 have little apparent structure. Because 
this is typical of most 8-bit monochrome images, bit-plane coding is usually restricted to images of 
6 bits/pixel or less. JBIG1, the predecessor to JBIG2, imposes such a limit.

8.9 BLOCK TRANSFORM CODING  

In this section, we consider a compression technique that divides an image into 
small non-overlapping blocks of equal size (e.g., 8 8* ) and processes the blocks 
independently using a 2-D transform. In block transform coding, a reversible, linear 
transform (such as the Fourier transform) is used to map each block or subimage 
into a set of transform coefficients, which are then quantized and coded. For most 
images, a significant number of the coefficients have small magnitudes and can be 
coarsely quantized (or discarded entirely) with little image distortion. A variety of  

8.9

With reference to 
Tables 8.3–8.5, block 
transform coding is 
used in

• JPEG 
• M-JPEG 
• MPEG-1,2,4 
• H.261, H.262, 
 H.263, and H.264 
• DV and HDV 
• VC-1
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8.9  Block Transform Coding    577

transformations, including the discrete Fourier transform (DFT) of Chapter 4, can 
be used to transform the image data.

Figure 8.21 shows a typical block transform coding system. The decoder imple-
ments the inverse sequence of steps (with the exception of the quantization func-
tion) of the encoder, which performs four relatively straightforward operations: 
subimage decomposition, transformation, quantization, and coding. An M N*  input 
image is subdivided first into subimages of size n n* , which are then transformed 
to generate MN n2  subimage transform arrays, each of size n n* . The goal of the 
transformation process is to decorrelate the pixels of each subimage, or to pack as 
much information as possible into the smallest number of transform coefficients. 
The quantization stage then selectively eliminates or more coarsely quantizes the 
coefficients that carry the least amount of information in a predefined sense (several 
methods will be discussed later in the section). These coefficients have the smallest 
impact on reconstructed subimage quality. The encoding process terminates by cod-
ing (normally using a variable-length code) the quantized coefficients. Any or all of 
the transform encoding steps can be adapted to local image content, called adaptive 
transform coding, or fixed for all subimages, called nonadaptive transform coding.

TRANSFORM SELECTION

Block transform coding systems based on a variety of discrete 2-D transforms have 
been constructed and/or studied extensively. The choice of a particular transform in 
a given application depends on the amount of reconstruction error that can be toler-
ated and the computational resources available. Compression is achieved during the 
quantization of the transformed coefficients (not during the transformation step).

EXAMPLE 8.13 :  Block transform coding with the DFT, WHT, and DCT.

Figures 8.22(a) through (c) show three approximations of the 512 512×  monochrome image in Fig. 8.9(a). 
These pictures were obtained by dividing the original image into subimages of size 8 8× , representing 
each subimage using three of the transforms described in Chapter 7 (the DFT, WHT, and DCT trans-
forms), truncating 50% of the resulting coefficients, and taking the inverse transform of the truncated 
coefficient arrays.

In this section, we restrict 
our attention to square 
subimages (the most 
commonly used). It is 
assumed that the input 
image is padded, if neces-
sary, so that both M and 
N are multiples of n.

Coefficient
m

Binary Code
(PDF bits)

Gray Code
(PDF bits)

Compression
Ratio

7 6,999 6,999 1.00

6 12,791 11,024 1.16

5 40,104 36,914 1.09

4 55,911 47,415 1.18

3 78,915 67,787 1.16

2 101,535 92,630 1.10

1 107,909 105,286 1.03

0 99,753 107,909 0.92

TABLE 8.11
JBIG2 lossless 
coding results 
for the binary 
and Gray-coded 
bit planes of 
Fig. 8.19(a). These 
results include the 
overhead of each 
bit plane’s PDF 
representation.
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FIGURE 8.19
(a) A 256-bit 
monochrome 
image.  
(b)–(h) The four 
most significant 
binary and  
Gray-coded bit 
planes of the 
image in (a).

All
bits a7, g7

a6 g6

a5 g5

a4 g4
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ba
dc
fe
hg

FIGURE 8.20
(a)–(h) The four 
least significant 
binary (left  
column) and 
Gray-coded 
(right column) 
bit planes of 
the image in 
Fig. 8.19(a).

a3 g3

a2 g2

a1 g1

a0 g0
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In each case, the 32 retained coefficients were selected on the basis of maximum magnitude. Note 
that in all cases, the 32 discarded coefficients had little visual impact on the quality of the reconstructed 
image. Their elimination, however, was accompanied by some mean-squared error, which can be seen 
in the scaled error images of Figs. 8.22(d) through (f). The actual rms errors were 2.32, 1.78, and 1.13 
intensities, respectively.

b
a

FIGURE 8.21
A block transform 
coding system:  
(a) encoder;  
(b) decoder.

Input
image

(M * N)

Contruct
n * n

subimage

Forward
transform

Quantizer
Symbol
encoder

Symbol
decoder

Inverse
transform

Merge
n * n

subimage

Compressed
image

Decompressed
image

Compressed
image

ba c
ed f

FIGURE 8.22  Approximations of Fig. 8.9(a) using the (a) Fourier, (b) Walsh-Hadamard, and (c) cosine transforms, 
together with the corresponding scaled error images in (d)–(f).
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The small differences in mean-squared reconstruction error noted in the preced-
ing example are related directly to the energy or information packing properties of 
the transforms employed. In accordance with Eqs. (7-75) and (7-76) of Section 7.5, 
an n n*  subimage g x y( , ) can be expressed as a function of its 2-D transform T u v( , ):

 G S=
==
∑∑ T u v uv
v

n

u

n

( , )
0

1

0

1 −−

 (8-21)

for x y n, , , , , .= 0 1 2 1… −  G, the matrix containing the pixels of the input subimage, 
is explicitly defined as a linear combination of n2 basis images of size n n× . Recall 
that the basis images of the DFT, DCT, and WHT transforms for n = 8  are shown 
in Figs. 7.7, 7.10, and 7.16. If we now define a transform coefficient masking function

 χ u v
T u v

,
,( ) =

( )0

1

if satisfies a specified truncation criterion

otheerwise

⎧
⎨
⎪

⎩⎪
 (8-22)

for u v n, , , , , ,= 0 1 2 1… −  an approximation of G can be obtained from the trun-
cated expansion

 ˆ , ( , )G S= ( )
==
∑∑ χ

−−

u v T u v uv
v

n

u

n

0

1

0

1

 (8-23)

where χ u v,( ) is constructed to eliminate the basis images that make the smallest 
contribution to the total sum in Eq. (8-21). The mean-squared error between subim-
age G and approximation Ĝ  then is
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 (8-24)

where G G− ˆ  is the norm of matrix G G− ˆ( )  and sT u v( , )
2  is the variance of the coef-

ficient at transform location ( , ).u v  The final simplification is based on the ortho-
normal nature of the basis images and the assumption that the pixels of G are 
generated by a random process with zero mean and known covariance. The total 
mean-squared error of approximation thus is the sum of the variances of the dis-
carded transform coefficients; that is, the coefficients for which χ u v, ,( ) = 0  so that 
1 − χ u v,( )⎡⎣ ⎤⎦  in Eq. (8-24) is 1. Transformations that redistribute or pack the most 

information into the fewest coefficients provide the best subimage approximations 
and, consequently, the smallest reconstruction errors. Finally, under the assumptions 
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582    Chapter 8  Image Compression and Watermarking

that led to Eq. (8-24), the mean-squared error of the MN n2  subimages of an M N×  
image are identical. Thus the mean-squared error (being a measure of average error) 
of the M N×  image equals the mean-squared error of a single subimage.

The earlier example showed that the information packing ability of the DCT is 
superior to that of the DFT and WHT. Although this condition usually holds for most 
images, the Karhunen-Loève transform (see Chapter 11), not the DCT, is the opti-
mal transform in an information packing sense. This is due to the fact that the KLT 
minimizes the mean-squared error in Eq. (8-24) for any input image and any number 
of retained coefficients (Kramer and Mathews [1956]). However, because the KLT  
is data dependent, obtaining the KLT basis images for each subimage, in general, is 
a nontrivial computational task. For this reason, the KLT is used infrequently for 
image compression. Instead, a transform, such as the DFT, WHT, or DCT, whose 
basis images are fixed (input independent) is normally used. Of the possible input 
independent transforms, the nonsinusoidal transforms (such as the WHT transform) 
are the simplest to implement. The sinusoidal transforms (such as the DFT or DCT) 
more closely approximate the information packing ability of the optimal KLT.

Hence, most transform coding systems are based on the DCT, which provides a 
good compromise between information packing ability and computational complex-
ity. In fact, the properties of the DCT have proved to be of such practical value that 
the DCT is an international standard for transform coding systems. Compared to 
the other input independent transforms, it has the advantages of having been imple-
mented in a single integrated circuit, packing the most information into the fewest 
coefficients† (for most images), and minimizing the block-like appearance, called 
blocking artifact, that results when the boundaries between subimages become 
visible. This last property is particularly important in comparisons with the other 
sinusoidal transforms. As Fig. 7.11(a) of Section 7.6 shows, the implicit n-point peri-
odicity of the DFT gives rise to boundary discontinuities that result in substantial 
high-frequency transform content. When the DFT transform coefficients are trun-
cated or quantized, the Gibbs phenomenon‡ causes the boundary points to take on 
erroneous values, which appear in an image as blocking artifact. That is, the bound-
aries between adjacent subimages become visible because the boundary pixels of 
the subimages assume the mean values of discontinuities formed at the boundary 
points [see Fig. 7.11(a)]. The DCT of Fig. 7.11(b) reduces this effect, because its 
implicit 2n-point periodicity does not inherently produce boundary discontinuities.

SUBIMAGE SIZE SELECTION

Another significant factor affecting transform coding error and computational com-
plexity is subimage size. In most applications, images are subdivided so the correla-
tion (redundancy) between adjacent subimages is reduced to some acceptable level 

† Ahmed et al. [1974] first noticed that the KLT basis images of a first-order Markov image source closely resem-
ble the DCT’s basis images. As the correlation between adjacent pixels approaches one, the input-dependent 
KLT basis images become identical to the input-independent DCT basis images (Clarke [1985]).

‡ This phenomenon, described in most electrical engineering texts on circuit analysis, occurs because the Fourier 
transform fails to converge uniformly at discontinuities. At discontinuities, Fourier expansions take the mean 
values of the points of discontinuity.

An additional condition 
for optimality is that 
the masking function 
of Eq. (8-22) selects 
the KLT coefficients of 
maximum variance.
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8.9  Block Transform Coding    583

and so n is an integer power of 2 where, as before, n is the subimage dimension. 
The latter condition simplifies the computation of the subimage transforms (see the 
base-2 successive doubling method discussed in Section 4.11). In general, both the 
level of compression and computational complexity increase as the subimage size 
increases. The most popular subimage sizes are 8 8×  and 16 6×1 .

EXAMPLE 8.14 :  Effects of subimage size on transform coding.

Figure 8.23 illustrates graphically the impact of subimage size on transform coding reconstruction error. 
The data plotted were obtained by dividing the monochrome image of Fig. 8.9(a) into subimages of size 
n n× , for n = 2 4 8 16 256 512, , , , , , ,…  computing the transform of each subimage, truncating 75% of the 
resulting coefficients, and taking the inverse transform of the truncated arrays. Note that the Hadamard 
and cosine curves flatten as the size of the subimage becomes greater than 8 8× , whereas the Fourier 
reconstruction error continues to decrease in this region. As n further increases, the Fourier reconstruc-
tion error crosses the Walsh-Hadamard curve and approaches the cosine result. This result is consistent 
with the theoretical and experimental findings reported by Netravali and Limb [1980] and by Pratt 
[2001] for a 2-D Markov image source.

All three curves intersect when 2 2×  subimages are used. In this case, only one of the four coefficients 
(25%) of each transformed array was retained. The coefficient in all cases was the dc component, so the 
inverse transform simply replaced the four subimage pixels by their average value [see Eq. (4-92)]. This 
condition is evident in Fig. 8.24(b), which shows a zoomed portion of the 2 2×  DCT result. Note that 
the blocking artifact that is prevalent in this result decreases as the subimage size increases to 4 4×  and 
8 8×  in Figs. 8.24(c) and (d). Figure 8.24(a) shows a zoomed portion of the original image for reference.

BIT ALLOCATION

The reconstruction error associated with the truncated series expansion of Eq. (8-23) 
is a function of the number and relative importance of the transform coefficients 
that are discarded, as well as the precision that is used to represent the retained 
coefficients. In most transform coding systems, the retained coefficients are selected 
[that is, the masking function of Eq. (8-22) is constructed] on the basis of maximum 

FIGURE 8.23
Reconstruction 
error versus 
subimage size.
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584    Chapter 8  Image Compression and Watermarking

variance, called zonal coding, or on the basis of maximum magnitude, called thresh-
old coding. The overall process of truncating, quantizing, and coding the coefficients 
of a transformed subimage is commonly called bit allocation.

EXAMPLE 8.15 :  Bit allocation.

Figures 8.25(a) and (c) show two approximations of Fig. 8.9(a) in which 87.5% of the DCT coefficients 
of each 8 8×  subimage were discarded. The first result was obtained via threshold coding by keeping 
the eight largest transform coefficients, and the second image was generated by using a zonal coding 
approach. In the latter case, each DCT coefficient was considered a random variable whose distribution 
could be computed over the ensemble of all transformed subimages. The eight distributions of largest 
variance (12.5% of the 64 coefficients in the transformed 8 8×  subimage) were located and used to 
determine the coordinates [u and v of the coefficients, T u v( , )], that were retained for all subimages. 
Note that the threshold coding difference image of Fig. 8.25(b) contains less error than the zonal coding 
result in Fig. 8.25(d). Both images have been scaled to make the errors more visible. The corresponding 
rms errors are 4.5 and 6.5 intensities, respectively.

Zonal Coding Implementation

Zonal coding is based on the information theory concept of viewing information as 
uncertainty. Therefore, the transform coefficients of maximum variance carry the 
most image information, and should be retained in the coding process. The variances 
themselves can be calculated directly from the ensemble of MN n2  transformed 
subimage arrays (as in the preceding example) or based on an assumed image model 
(say, a Markov autocorrelation function). In either case, the zonal sampling process 
can be viewed, in accordance with Eq. (8-23), as multiplying each T u v( , )  by the cor-
responding element in a zonal mask, which is constructed by placing a 1 in the loca-
tions of maximum variance and a 0 in all other locations. Coefficients of maximum 
variance usually are located around the origin of an image transform, resulting in 
the typical zonal mask shown in Fig. 8.26(a).

The coefficients retained during the zonal sampling process must be quantized 
and coded, so zonal masks are sometimes depicted showing the number of bits used 

ba c d

FIGURE 8.24  Approximations of Fig. 8.24(a) using 25% of the DCT coefficients and (b) 2 2×  subimages, (c) 4 4×  
subimages, and (d) 8 8×  subimages. The original image in (a) is a zoomed section of Fig. 8.9(a).
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8.9  Block Transform Coding    585

to code each coefficient [see Fig. 8.26(b)]. In most cases, the coefficients are allo-
cated the same number of bits, or some fixed number of bits is distributed among 
them unequally. In the first case, the coefficients generally are normalized by their 
standard deviations and uniformly quantized. In the second case, a quantizer, such 
as an optimal Lloyd-Max quantizer (see Optimal quantizers in Section 8.10), is 
designed for each coefficient. To construct the required quantizers, the zeroth or DC 
coefficient normally is modeled by a Rayleigh density function, whereas the remain-
ing coefficients are modeled by a Laplacian or Gaussian density.† The number of 
quantization levels (and thus the number of bits) allotted to each quantizer is made 
proportional to log .,2

2sT u v( )  Thus, the retained coefficients in Eq. (8-23)—which (in 
the context of the current discussion) are selected on the basis of maximum vari-
ance—are assigned bits in proportion to the logarithm of the coefficient variances.

Threshold Coding Implementation

Zonal coding usually is implemented by using a single fixed mask for all subimages. 
Threshold coding, however, is inherently adaptive in the sense that the location of 
the transform coefficients retained for each subimage vary from one subimage to 

† As each coefficient is a linear combination of the pixels in its subimage [see Eq. (7-31)], the central-limit theo-
rem suggests that, as subimage size increases, the coefficients tend to become Gaussian. This result does not 
apply to the dc coefficient, however, because nonnegative images always have positive dc coefficients.

ba
dc

FIGURE 8.25
Approximations 
of Fig. 8.9(a) using 
12.5% of the   
DCT coefficients: 
(a)–(b) threshold 
coding results; 
(c)–(d) zonal 
coding results. The 
difference images 
are scaled by 4.
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another. In fact, threshold coding is the adaptive transform coding approach most 
often used in practice because of its computational simplicity. The underlying con-
cept is that, for any subimage, the transform coefficients of largest magnitude make 
the most significant contribution to reconstructed subimage quality, as demonstrated 
in the last example. Because the locations of the maximum coefficients vary from 
one subimage to another, the elements of χ u v T u v, ( , )( )  normally are reordered (in a 
predefined manner) to form a 1-D, run-length coded sequence. Figure 8.26(c) shows 
a typical threshold mask for one subimage of a hypothetical image. This mask pro-
vides a convenient way to visualize the threshold coding process for the correspond-
ing subimage, as well as to mathematically describe the process using Eq. (8-23). 
When the mask is applied [via Eq. (8-23)] to the subimage for which it was derived, 
and the resulting n n×  array is reordered to form an n2-element coefficient sequence 
in accordance with the zigzag ordering pattern of Fig. 8.26(d), the reordered 1-D 
sequence contains several long runs of 0’s. [The zigzag pattern becomes evident by 
starting at 0 in Fig. 8.26(d) and following the numbers in sequence.] These runs nor-
mally are run-length coded. The nonzero or retained coefficients, corresponding to 
the mask locations that contain a 1, are represented using a variable-length code.

There are three basic ways to threshold a transformed subimage or, stated dif-
ferently, to create a subimage threshold masking function of the form given in 
Eq. (8-22): (1) A single global threshold can be applied to all subimages; (2) a differ-
ent threshold can be used for each subimage, or; (3) the threshold can be varied as a 
function of the location of each coefficient within the subimage. In the first approach, 

ba
dc

FIGURE 8.26
A typical  
(a) zonal mask, 
(b) zonal bit allo-
cation,  
(c) threshold 
mask, and  
(d) thresholded 
coefficient order-
ing sequence. 
Shading highlights 
the coefficients 
that are retained.
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8.9  Block Transform Coding    587

the level of compression differs from image to image, depending on the number of 
coefficients that exceed the global threshold. In the second, called N-largest coding, 
the same number of coefficients is discarded for each subimage. As a result, the code 
rate is constant and known in advance. The third technique, like the first, results in a 
variable code rate, but offers the advantage that thresholding and quantization can 
be combined by replacing χ u v T u v, ( , )( )  in Eq. (8-23) with

 T u v
T u v

Z u v
ˆ ,

,

,
( ) =

( )
( )

⎡

⎣
⎢

⎤

⎦
⎥round  (8-25)

where ˆ ( , )T u v  is a thresholded and quantized approximation of T u v( , ),  and Z u v( , ) 
is an element of the following transform normalization array:
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 (8-26)

Before a normalized (thresholded and quantized) subimage transform, ˆ ( , ),T u v  can 
be inverse transformed to obtain an approximation of subimage g x y( , ), it must 
be multiplied by Z u v( , ). The resulting denormalized array, denoted �T u v( , )  is an 
approximation of ˆ ( , ):T u v

 �T u v T u v Z u v( , ) ( , ) ( , )= ˆ  (8-27)

The inverse transform of �T u v( , )  yields the decompressed subimage approximation.
Figure 8.27(a) graphically depicts Eq. (8-25) for the case in which Z u v( , ) is 

assigned a particular value c. Note that ˆ ( , )T u v  assumes integer value k if and only if

 kc
c

T u v kc
c

− +
2 2

≤ ( ) <,  (8-28)

If Z u v T u v, , ,( ) > ( )2  then ˆ ( , )T u v = 0  and the transform coefficient is completely 
truncated or discarded. When ˆ ( , )T u v  is represented with a variable-length code that 
increases in length as the magnitude of k increases, the number of bits used to rep-
resent T u v( , )  is controlled by the value of c. Thus, the elements of Z can be scaled 
to achieve a variety of compression levels. Figure 8.27(b) shows a typical normaliza-
tion array. This array, which has been used extensively in the JPEG standardization 
efforts (see the next section), weighs each coefficient of a transformed subimage 
according to heuristically determined perceptual or psychovisual importance.

The N in “N-largest 
coding” is not an image 
dimension, but refers 
to the number of coef-
ficients that are kept.
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EXAMPLE 8.16 :  Illustration of threshold coding.

Figures 8.28(a) through (f) show six threshold-coded approximations of the monochrome image in 
Fig. 8.9(a). All images were generated using an 8 8×  DCT and the normalization array of Fig. 8.27(b). 
The first result, which provides a compression ratio of about 12 to 1 (i.e., C = 12), was obtained by direct 
application of that normalization array. The remaining results, which compress the original image by 19, 
30, 49, 85, and 182 to 1, were generated after multiplying (scaling) the normalization arrays by 2, 4, 8, 
16, and 32, respectively. The corresponding rms errors are 3.83, 4.93, 6.62, 9.35, 13.94, and 22.46 intensity 
levels.

JPEG

One of the most popular and comprehensive continuous tone, still-frame compres-
sion standards is the JPEG standard. It defines three different coding systems: (1) a 
lossy baseline coding system, which is based on the DCT and is adequate for most 
compression applications; (2) an extended coding system for greater compression, 
higher precision, or progressive reconstruction applications; and (3) a lossless inde-
pendent coding system for reversible compression. To be JPEG compatible, a prod-
uct or system must include support for the baseline system. No particular file format, 
spatial resolution, or color space model is specified.

In the baseline system, often called the sequential baseline system, the input and 
output data precision is limited to 8 bits, whereas the quantized DCT values are 
restricted to 11 bits. The compression itself is performed in three sequential steps: 
DCT computation, quantization, and variable-length code assignment. The image 
is first subdivided into pixel blocks of size 8 8× , which are processed left-to-right, 
top-to-bottom. As each 8 8×  block or subimage is encountered, its 64 pixels are 
level-shifted by subtracting the quantity 2 1k− , where 2k is the maximum number of 
intensity levels. The 2-D discrete cosine transform of the block is then computed, 
quantized in accordance with Eq. (8-25), and reordered, using the zigzag pattern of 
Fig. 8.26(d), to form a 1-D sequence of quantized coefficients.

Because the one-dimensionally reordered array generated under the zigzag 
pattern of Fig. 8.26(d) is arranged qualitatively according to increasing spatial fre-
quency, the JPEG coding procedure is designed to take advantage of the long runs 

ba

FIGURE 8.27
(a) A threshold 
coding quantiza-
tion curve [see 
Eq. (8-28)]. (b) A 
typical normaliza-
tion matrix.
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-3
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T(u, v)
16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99
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of zeros that normally result from the reordering. In particular, the nonzero AC† 
coefficients are coded using a variable-length code that defines the coefficient values 
and number of preceding zeros. The DC coefficient is difference coded relative to 
the DC coefficient of the previous subimage. The default JPEG Huffman codes for 
the luminance component of a color image, or intensity of a monochrome image, are 
available on the book website. The JPEG recommended luminance quantization 
array is given in Fig. 8.27(b) and can be scaled to provide a variety of compression 
levels. The scaling of this array allows users to select the “quality” of JPEG compres-
sions. Although default coding tables and quantization arrays are provided for both 
color and monochrome processing, the user is free to construct custom tables and/or 
arrays, which may be adapted to the characteristics of the image being compressed.

† In the standard, the term AC denotes all transform coefficients with the exception of the zeroth or DC coef-
ficient.

Consult the book web-
site for the JPEG default 
Huffman code tables:  
(1) a JPEG coefficient 
category table, (2) a 
default DC code table, 
and (3) a default AC 
code table.

ba c
ed f

FIGURE 8.28  Approximations of Fig. 8.9(a) using the DCT and normalization array of Fig. 8.27(b): (a) Z, (b) 2Z,  
(c) 4Z, (d) 8Z, (e) 16Z, and (f) 32Z.

DIP4E_GLOBAL_Print_Ready.indb   589 6/16/2017   2:11:05 PM



590    Chapter 8  Image Compression and Watermarking

EXAMPLE 8.17 :  JPEG baseline coding and decoding.

Consider compression and reconstruction of the following 8 8×  subimage with the JPEG baseline stan-
dard:

52 55 61 66 70 61 64 73

63 59 66 90 109 85 69 72

62 59 68 113 144 104 66 73

63 58 71 122 154 106 70 69

67 61 68 104 126 88 68 70

79 65 60 70 77 63 58 75

85 71 64 59 55 61 65 83

87 79 69 68 65 76 78 94

The original image consists of 256 or 28 possible intensities, so the coding process begins by level shifting 
the pixels of the original subimage by −27 or −128 intensity levels. The resulting shifted array is

-76 -73 -67 -62 -58 -67 -64 -55

-65 -69 -62 -38 -19 -43 -59 -56

-66 -69 -60 -15 16 -24 -62 -55

-65 -70 -57 -6 26 -22 -58 -59

-61 -67 -60 -24 -2 -40 -60 -58

-49 -63 -68 -58 -51 -65 -70 -53

-43 -57 -64 -69 -73 -67 -63 -45

-41 -49 -59 -60 -63 -52 -50 -34

which, when transformed in accordance with the forward DCT of Eq. (7-31) with r x y u v s x y u v( , , , ) ( , , , )=
of Eq. (7-85) for n = 8 becomes

-415 -29 -62 25 55 -20 -1 3

7 -21 -62 9 11 -7 -6 6

-46 8 77 -25 -30 10 7 -5

-50 13 35 -15 -9 6 0 3

11 -8 -13 -2 -1 1 -4 1

-10 1 3 -3 -1 0 2 -1

-4 -1 2 -1 2 -3 1 -2

-1 -1 -1 -2 -1 -1 0 -1

If the JPEG recommended normalization array of Fig. 8.27(b) is used to quantize the transformed array, 
the scaled and truncated [that is, normalized in accordance with Eq. (8-25)] coefficients are
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-26 -3 -6 2 2 0 0 0

1 -2 -4 0 0 0 0 0

-3 1 5 -1 -1 0 0 0

-4 1 2 -1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

where, for instance, the DC coefficient is computed as
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round
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Note that the transformation and normalization process produces a large number of zero-valued coeffi-
cients. When the coefficients are reordered in accordance with the zigzag ordering pattern of Fig. 8.26(d), 
the resulting 1-D coefficient sequence is

 − − − − − − − − − −26 3 1 3 2 6 2 4 1 4 1 1 5 0 2 0 0 1 2 0 0 0 0 0 1 1 EOB[ ]

where the EOB symbol denotes the end-of-block condition. A special EOB Huffman code word (see 
category 0 and run-length 0 of the JPEG default AC code table on the book website) is provided to 
indicate that the remainder of the coefficients in a reordered sequence are zeros.

The construction of the default JPEG code for the reordered coefficient sequence begins with the 
computation of the difference between the current DC coefficient and that of the previously encoded 
subimage. Assuming the DC coefficient of the transformed and quantized subimage to its immediate left 
was −17, the resulting DPCM difference is − − −26 17( )[ ] or −9, which lies in DC difference category 4  
of the JPEG coefficient category table (see the book website). In accordance with the default Huffman 
difference code, the proper base code for a category 4 difference is 101 (a 3-bit code), while the total 
length of a completely encoded category 4 coefficient is 7 bits. The remaining 4 bits must be generated 
from the least significant bits (LSBs) of the difference value. For a general DC difference category (say, 
category K), an additional K bits are needed and computed as either the K LSBs of the positive differ-
ence or the K LSBs of the negative difference minus 1. For a difference of −9, the appropriate LSBs are 
0111 1( ) −  or 0110, and the complete DPCM coded DC code word is 1010110.

The nonzero AC coefficients of the reordered array are coded similarly. The principal difference is 
that each default AC Huffman code word depends on the number of zero-valued coefficients preceding 
the nonzero coefficient to be coded, as well as the magnitude category of the nonzero coefficient. (See 
the column labeled Run/Category in the JPEG AC code table on the book website.) Thus, the first non-
zero AC coefficient of the reordered array ( )−3  is coded as 0100. The first 2 bits of this code indicate that 
the coefficient was in magnitude category 2 and preceded by no zero-valued coefficients; the last 2 bits 
are generated by the same process used to arrive at the LSBs of the DC difference code. Continuing in 
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this manner, the completely coded (reordered) array is

 1010110 0100 001 0100 0101 100001 0110 100011 001 100011 001
 001 100101 11100110 110110 0110 11110100 000 1010

where the spaces have been inserted solely for readability. Although it was not needed in this example, 
the default JPEG code contains a special code word for a run of 15 zeros followed by a zero. The total 
number of bits in the completely coded reordered array (and thus the number of bits required to rep-
resent the entire 8 8× , 8-bit subimage of this example) is 92. The resulting compression ratio is 512 92, 
or about 5.6:1.

To decompress a JPEG compressed subimage, the decoder must first recreate the normalized trans-
form coefficients that led to the compressed bit stream. Because a Huffman-coded binary sequence is 
instantaneous and uniquely decodable, this step is easily accomplished in a simple lookup table manner. 
Here, the regenerated array of quantized coefficients is

-26 -3 -6 2 2 0 0 0

1 -2 -4 0 0 0 0 0

-3 1 5 -1 -1 0 0 0

-4 1 2 -1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

After denormalization in accordance with Eq. (8-27), the array becomes

-416 -33 -60 32 48 0 0 0

12 -24 -56 0 0 0 0 0

-42 13 80 -24 -40 0 0 0

-56 17 44 -29 0 0 0 0

18 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

where, for example, the DC coefficient is computed as

 �T T Z0 0 0 0 0 0 26 16 416, , ,( ) = ( ) ( ) = ( )( ) =ˆ − −

DIP4E_GLOBAL_Print_Ready.indb   592 6/16/2017   2:11:07 PM



8.9  Block Transform Coding    593

The completely reconstructed subimage is obtained by taking the inverse DCT of the denormalized 
array in accordance with Eqs. (7-32) and (7-85) to obtain

-70 -64 -61 -64 -69 -66 -58 -50

-72 -73 -61 -39 -30 -40 -54 -59

-68 -78 -58 -9 13 -12 -48 -64

-59 -77 -57 0 22 -13 -51 -60

-54 -75 -64 -23 -13 -44 -63 -56

-52 -71 -72 -54 -54 -71 -71 -54

-45 -59 -70 -68 -67 -67 -61 -50

-35 -47 -61 -66 -60 -48 -44 -44

and level shifting each inverse transformed pixel by 27 (or +128) to yield

58 64 67 64 59 62 70 78

56 55 67 89 98 88 74 69

60 50 70 119 141 116 80 64

69 51 71 128 149 115 77 68

74 53 64 105 115 84 65 72

76 57 56 74 75 57 57 74

83 69 59 60 61 61 67 78

93 81 67 62 69 80 84 84

Any differences between the original and reconstructed subimage are a result of the lossy nature of the 
JPEG compression and decompression process. In this example, the errors range from −14 to +11 and 
are distributed as follows:

-6 -9 -6 2 11 -1 -6 -5

7 4 -1 1 11 -3 -5 3

2 9 -2 -6 -3 -12 -14 9

-6 7 0 -4 -5 -9 -7 1

-7 8 4 -1 6 4 3 -2

3 8 4 -4 2 6 1 1

2 2 5 -1 -6 0 -2 5

-6 -2 2 6 -4 -4 -6 10

The root-mean-squared error of the overall compression and reconstruction process is approximately 
5.8 intensity levels.
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EXAMPLE 8.18 :  Illustration of JPEG coding.

Figures 8.29(a) and (d) show two JPEG approximations of the monochrome image in Fig. 8.9(a). The 
first result provides a compression of 25:1; the second compresses the original image by 52:1. The dif-
ferences between the original image and the reconstructed images in Figs. 8.29(a) and (d) are shown in 
Figs. 8.29(b) and (e), respectively. The corresponding rms errors are 5.4 and 10.7 intensities. The errors 
are clearly visible in the zoomed images in Figs. 8.29(c) and (f). These images show a magnified section 
of Figs. 8.29(a) and (d), respectively. Note that the JPEG blocking artifact increases with compression.

8.10 PREDICTIVE CODING  

We now turn to a simpler approach that achieves good compression without sig-
nificant computational overhead and can be either error-free or lossy. The approach, 
commonly referred to as predictive coding, is based on eliminating the redundancies 
of closely spaced pixels—in space and/or time—by extracting and coding only the 
new information in each pixel. The new information of a pixel is defined as the dif-
ference between the actual and predicted value of the pixel.

LOSSLESS PREDICTIVE CODING

Figure 8.30 shows the basic components of a lossless predictive coding system. The 
system consists of an encoder and a decoder, each containing an identical predic-
tor. As successive samples of discrete time input signal, f n( ), are introduced to the 
encoder, the predictor generates the anticipated value of each sample based on a 
specified number of past samples. The output of the predictor is then rounded to the 
nearest integer, denoted f nˆ ( ), and used to form the difference or prediction error

 e n f n f n( ) = ( ) ( )− ˆ  (8-29)

which is encoded using a variable-length code (by the symbol encoder) to generate 
the next element of the compressed data stream. The decoder in Fig. 8.30(b) recon-
structs e n( ) from the received variable-length code words and performs the inverse 
operation

 f n e n f n( ) = +( ) ( )ˆ  (8-30)

to decompress or recreate the original input sequence.
Various local, global, and adaptive methods (see the later subsection entitled Lossy 

predictive coding) can be used to generate f nˆ ( ). In many cases, the prediction is 
formed as a linear combination of m previous samples. That is,

 f n f n ii
i

m
ˆ ( ) = ( )⎡

⎣
⎢

⎤

⎦
⎥

=
∑round a

1

−  (8-31)

where m is the order of the linear predictor, round is a function used to denote the 
rounding or nearest integer operation, and the ai  for i m= 1 2, , ,…  are prediction 

8.10

With reference to 
Tables 8.3–8.5, predictive 
coding is used in

• JBIG2 
• JPEG 
• JPEG-LS 
• MPEG-1,2,4 
• H.261, H.262, 
 H.263, and H.264 
• HDV 
• VC-1

and other compres-
sion standards and file 
formats.
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coefficients. If the input sequence in Fig. 8.30(a) is considered to be samples of an 
image, the f n( ) in Eqs. (8-29) through (8-31) are pixels—and the m samples used 
to predict the value of each pixel come from the current scan line (called 1-D lin-
ear predictive coding), from the current and previous scan lines (called 2-D linear 
predictive coding), or from the current image and previous images in a sequence of 
images (called 3-D linear predictive coding). Thus, for 1-D linear predictive image 
coding, Eq. (8-31) can be written as

 f x y f x y ii
i

m
ˆ , ,( ) = ( )⎡

⎣
⎢

⎤

⎦
⎥

=
∑round a

1

−  (8-32)

where each sample is now expressed explicitly as a function of the input image’s 
spatial coordinates, x and y. Note that Eq. (8-32) indicates that the 1-D linear predic-
tion is a function of the previous pixels on the current line alone. In 2-D predictive 

ba c
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FIGURE 8.29  Two JPEG approximations of Fig. 8.9(a). Each row contains a result after compression and reconstruc-
tion, the scaled difference between the result and the original image, and a zoomed portion of the reconstructed 
image.
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coding, the prediction is a function of the previous pixels in a left-to-right, top-to-
bottom scan of an image. In the 3-D case, it is based on these pixels and the previous 
pixels of preceding frames. Equation (8-32) cannot be evaluated for the first m pix-
els of each line, so those pixels must be coded by using other means (such as a Huff-
man code) and considered as an overhead of the predictive coding process. Similar 
comments apply to the higher-dimensional cases.

EXAMPLE 8.19 :  Predictive coding and spatial redundancy.

Consider encoding the monochrome image of Fig. 8.31(a) using the simple first-order (i.e., m = 1) linear 
predictor from Eq. (8-32)

 f x y f x yˆ , ,( ) = ( )⎡⎣ ⎤⎦round a − 1  (8-33)

This equation is a simplification of Eq. (8-32), with m = 1 and the subscript of lone prediction coefficient 
a1 removed as unnecessary. A predictor of this general form is called a previous pixel predictor, and the 
corresponding predictive coding procedure is known as differential coding or previous pixel coding. Fig-
ure 8.31(c) shows the prediction error image, e x y f x y f x y, ( , ) ( , )( ) = − ˆ  that results from Eq. (8-33) with 
a = 1. The scaling of this image is such that intensity 128 represents a prediction error of zero, while all 
nonzero positive and negative prediction errors (under and over estimates) are displayed as lighter and 
darker shades of gray, respectively. The mean value of the prediction image is 128.26. Because intensity 
128 corresponds to a prediction error of 0, the average prediction error is only 0.26 bits.

Figures 8.31(b) and (d) show the intensity histogram of the image in Fig. 8.31(a) and the histogram 
of prediction error e x y( , ), respectively. Note that the standard deviation of the prediction error in 
Fig. 8.31(d) is much smaller than the standard deviation of the intensities in the original image. More-
over, the entropy of the prediction error, as estimated using Eq. (8-7), is significantly less than the esti-
mated entropy of the original image (3.99 bits pixel  as opposed to 7.25 bits pixel ). This decrease in 
entropy reflects removal of a great deal of spatial redundancy, despite the fact that for k-bit images, 
( )k + 1 -bit numbers are needed to represent accurately the prediction error sequence e x y( , ). (Note that 
the variable-length encoded prediction error is the compressed image.) In general, the maximum com-
pression of a predictive coding approach can be estimated by dividing the average number of bits used 

b
a

FIGURE 8.30
A lossless predic-
tive coding model: 
(a) encoder;  
(b) decoder.
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ba
dc

FIGURE 8.31
(a) A view of the 
Earth from an 
orbiting space 
shuttle. (b) The 
intensity histo-
gram of (a).  
(c) The predic-
tion error image 
resulting from 
Eq. (8-33).  
(d) A histogram 
of the prediction 
error. 
(Original image 
courtesy of 
NASA.)

to represent each pixel in the original image by an estimate of the entropy of the prediction error. In this 
example, any variable-length coding procedure can be used to code e x y( , ), but the resulting compres-
sion will be limited to about 8 3 99. , or 2:1.

The preceding example illustrates that the compression achieved in predictive 
coding is related directly to the entropy reduction that results from mapping an input 
image into a prediction error sequence, often called a prediction residual. Because 
spatial redundancy is removed by the prediction and differencing process, the prob-
ability density function of the prediction residual is, in general, highly peaked at zero, 
and characterized by a relatively small (in comparison to the input intensity distribu-
tion) variance. In fact, it is often modeled by a zero mean uncorrelated Laplacian 
PDF
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where se  is the standard deviation of e.
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EXAMPLE 8.20 :  Predictive coding and temporal redundancy.

The image in Fig. 8.31(a) is a portion of a frame of NASA video in which the Earth is moving from left 
to right with respect to a stationary camera attached to the space shuttle. It is repeated in Fig. 8.32(b), 
along with its immediately preceding frame in Fig. 8.32(a). Using the first-order linear predictor

 f x y t f x y tˆ , , , ,( ) = ( )⎡⎣ ⎤⎦round a − 1  (8-35)

with a = 1, the intensities of the pixels in Fig. 8.32(b) can be predicted from the corresponding pix-
els in (a). Figure 8.34(c) is the resulting prediction residual image, e x y t f x y t f x y t( , , ) ( , , ) ( , , ).= − ˆ   
Figure 8.31(d) is the histogram of e x y t( , , ). Note there is very little prediction error. The standard devia-
tion of the error is much smaller than in the previous example: 3.76 bits pixel  as opposed to 15.58 
bits pixel . In addition, the entropy of the prediction error [computed using Eq. (8-7)] has decreased from 
3.99 to 2.59 bits pixel . (Recall again that the variable-length encoded prediction error is the compressed 
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FIGURE 8.32
(a) and (b) Two 
views of Earth 
from an orbit-
ing space shuttle 
video. (c) The 
prediction error 
image resulting 
from Eq. (8-35). 
(d) A histogram 
of the prediction 
error. 
(Original images 
courtesy of 
NASA.)
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image.) By variable-length coding the resulting prediction residual, the original image is compressed 
by approximately 8 2 59.  or 3.1:1, a 50% improvement over the 2:1 compression obtained using the  
spatially oriented previous pixel predictor in Example 8.19.

MOTION COMPENSATED PREDICTION RESIDUALS

As you saw in Example 8.20, successive frames in a video sequence often are very 
similar. Coding their differences can reduce temporal redundancy and provide sig-
nificant compression. However, when a sequence of frames contains rapidly moving 
objects—or involves camera zoom and pan, sudden scene changes, or fade-ins and 
fade-outs—the similarity between neighboring frames is reduced, and compression 
is affected negatively. That is, like most compression techniques (see Example 8.5), 
temporally based predictive coding works best with certain kinds of inputs, namely, 
a sequence of images with significant temporal redundancy. When used on images 
with little temporal redundancy, data expansion can occur. Video compression sys-
tems avoid the problem of data expansion in two ways:

1. By tracking object movement and compensating for it during the prediction 
and differencing process.

2. By switching to an alternate coding method when there is insufficient inter-
frame correlation (similarity between frames) to make predictive coding advan-
tageous.

The first of these, called motion compensation, is the subject of the remainder of this 
section. Before proceeding, however, we should note that when there is insufficient 
interframe correlation to make predictive coding effective, the second problem is 
typically addressed using a block-oriented 2-D transform, like JPEG’s DCT-based 
coding (see the previous section). Frames compressed in this way (i.e., without a 
prediction residual) are called intraframes or Independent frames (I-frames). They 
can be decoded without access to other frames in the video to which they belong. 
I-frames usually resemble JPEG encoded images, and are ideal starting points for 
the generation of prediction residuals. Moreover, they provide a high degree of ran-
dom access, ease of editing, and resistance to the propagation of transmission error. 
As a result, all standards require the periodic insertion of I-frames into the com-
pressed video codestream.

Figure 8.33 illustrates the basics of motion-compensated predictive coding. Each 
video frame is divided into non-overlapping rectangular regions (typically of size 
4 4×  to 16 16× ) called macroblocks. (Only one macroblock is shown in Fig. 8.33.) 
The “movement” of each macroblock with respect to its “most likely” position in 
the previous (or subsequent) video frame, called the reference frame, is encoded 
in a motion vector. The vector describes the motion by defining the horizontal and 
vertical displacement from the “most likely” position. The displacements typically 
are specified to the nearest pixel, ½ pixel, or ¼ pixel precision. If subpixel precision 
is used, the predictions must be interpolated [e.g., using bilinear interpolation (see 
Section 2.4)] from a combination of pixels in the reference frame. An encoded frame 
that is based on the previous frame (a forward prediction in Fig. 8.33) is called a Pre-

The “most likely” 
position is the one that 
minimizes an error 
measure between the 
reference macroblock 
and the macroblock 
being encoded. The two 
blocks do not have to 
be representations of 
the same object, but 
they must minimize the 
error measure.
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dictive frame (P-frame); one that is based on the subsequent frame (a backward pre-
diction in Fig. 8.33) is called a Bidirectional frame (B-frame). B-frames require the 
compressed codestream to be reordered so that frames are presented to the decoder 
in the proper decoding sequence, rather than the natural display order.

As you might expect, motion estimation is the key component of motion compen-
sation. During motion estimation, the motion of objects is measured and encoded 
into motion vectors. The search for the “best” motion vector requires that a criterion 
of optimality be defined. For example, motion vectors may be selected on the basis 
of maximum correlation or minimum error between macroblock pixels and the pre-
dicted pixels (or interpolated pixels for sub-pixel motion vectors) from the chosen 
reference frame. One of the most commonly used error measures is mean absolute 
distortion (MAD)

 MAD x y
mn

f x i y j p x i dx y j dy
j

n

i

m

, , ,( ) = + +( ) + + + +( )
==
∑∑1

0

1

0

1

−
−−

 (8-36)

where x and y are the coordinates of the upper-left pixel of the m n×  macroblock 
being coded, dx and dy are displacements from the reference frame as shown in 
Fig. 8.33, and p is an array of predicted macroblock pixel values. For sub-pixel 
motion vector estimation, p is interpolated from pixels in the reference frame. Typi-
cally, dx and dy must fall within a limited search region (see Fig. 8.33) around each 
macroblock. Values from ±8 to ±64 pixels are common, and the horizontal search 
area is often slightly larger than the vertical area. A more computationally efficient 
error measure, called the sum of absolute distortions (SAD), omits the 1 mn factor 
in Eq. (8-36).

Given a selection criterion like that of Eq. (8-36), motion estimation is performed 
by searching for the dx and dy that minimize MAD x y( , ) over the allowed range of 
motion vector displacements, including subpixel displacements. This process often is 
called block matching. An exhaustive search guarantees the best possible result, but 
is computationally expensive because every possible motion must be tested over the 
entire displacement range. For 16 ×16 macroblocks and a ±32 pixel displacement 

FIGURE 8.33
Macroblock 
motion specifica-
tion.

Current image

Search region

Macroblock

Forward prediction image

Displacement

Backward prediction image

Displacement

Time

Motion vector Motion vector

dx

dy
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range (not out of the question for action films and sporting events), 4225 16 16×  
MAD calculations must be performed for each macroblock in a frame when integer 
displacement precision is used. If ½ or ¼ pixel precision is desired, the number of 
calculations is multiplied by a factor of 4 or 16, respectively. Fast search algorithms 
can reduce the computational burden, but may or may not yield optimal motion 
vectors. A number of fast block-based motion estimation algorithms have been pro-
posed and studied in the literature (see Furht et al. [1997] or Mitchell et al. [1997]).

EXAMPLE 8.21 :  Motion compensated prediction.

Figures 8.34(a) and (b) were taken from the same NASA video sequence used in Examples 8.19 and 
8.20. Figure 8.34(b) is identical to Figs. 8.31(a) and 8.32(b); Fig. 8.34(a) is the corresponding section of a 
frame occurring thirteen frames earlier. Figure 8.34(c) is the difference between the two frames, scaled 
to the full intensity range. Note that the difference is 0 in the area of the stationary (with respect to the 
camera) space shuttle, but there are significant differences in the remainder of the image due to the 
relative motion of the Earth. The standard deviation of the prediction residual in Fig. 8.34(c) is 12.73 
intensity levels; its entropy [using Eq. (8-7)] is 4.17 bits pixel . The maximum compression achievable, 
when variable-length coding the prediction residual, is C = =8 4 17 1 92. . .

Figure 8.34(d) shows a motion compensated prediction residual with a much lower standard devia-
tion (5.62 as opposed to 12.73 intensity levels) and slightly lower entropy (3.04 vs. 4.17 bits pixel ). The 
entropy was computed using Eq. (8-7). If the prediction residual in Fig. 8.34(d) is variable-length coded, 
the resulting compression ratio is C = =8 3 04 2 63. . . To generate this prediction residual, we divided 
Fig. 8.34(b) into non-overlapping 16 16×  macroblocks and compared each macroblock against every 
16 16×  region in Fig. 8.34(a)—the reference frame—that fell within ±16 pixels of the macroblock’s posi-
tion in (b). We then used Eq. (8-36) to determine the best match by selecting displacement ( , )dx dy  with 
the lowest MAD. The resulting displacements are the x and y components of the motion vectors shown 
in Fig. 8.34(e). The white dots in the figure are the heads of the motion vectors; they indicate the upper-
left-hand corner of the coded macroblocks. As you can see from the pattern of the vectors, the predomi-
nant motion in the image is from left to right. In the lower portion of the image, which corresponds to 
the area of the space shuttle in the original image, there is no motion, and therefore no motion vectors 
displayed. Macroblocks in this area are predicted from similarly located (i.e., the corresponding) macro-
blocks in the reference frame. Because the motion vectors in Fig. 8.34(e) are highly correlated, they can 
be variable-length coded to reduce their storage and transmission requirements

Figure 8.35 illustrates the increased prediction accuracy that is possible with sub-
pixel motion compensation. Figure 8.35(a) is repeated from Fig. 8.34(c) and included 
as a point of reference; it shows the prediction error that results without motion 
compensation. The images in Figs. 8.35(b), (c), and (d) are motion compensated pre-
diction residuals. They are based on the same two frames that were used in Exam-
ple 8.21 and computed with macroblock displacements to 1, ½, and ¼ pixel resolu-
tion (i.e., precision), respectively. Macroblocks of size 8 8×  were used; displacements 
were limited to ±8 pixels.

The most significant visual difference between the prediction residuals in Fig. 8.35 
is the number and size of intensity peaks and valleys—their darkest and lightest 
areas of intensity. The ¼ pixel residual in Fig. 8.35(d) is the “flattest” of the four 

The visual difference 
between Figs. 8.34(c) 
and 8.35(a) is due to 
scaling. The image 
in Fig. 8.35(a) has 
been scaled to match 
Figs. 8.35(b)–(d).
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images, with the fewest excursions to black or white. As would be expected, it has 
the narrowest histogram. The standard deviations of the prediction residuals in 
Figs. 8.35(a) through (d) decrease as motion vector precision increases from 12.7 
to 4.4, 4, and 3.8 pixels, respectively. The entropies of the residuals, as determined 
using Eq. (8-7), are 4.17, 3.34, 3.35, and 3.34 bits pixel , respectively. Thus, the motion 
compensated residuals contain about the same amount of information, despite the 
fact that the residuals in Figs. 8.35(c) and (d) use additional bits to accommodate ½ 
and ¼ pixel interpolation. Finally, we note that there is an obvious strip of increased 
prediction error on the left side of each motion compensated residual. This is due 
to the left-to-right motion of the Earth, which introduces new or previously unseen 
areas of the Earth’s terrain into the left side of each image. Because these areas are 
absent from the previous frames, they cannot be accurately predicted, regardless of 
the precision used to compute motion vectors.

ba
c ed

FIGURE 8.34  (a) and (b) Two views of Earth that are thirteen frames apart in an orbiting space shuttle video. (c) A 
prediction error image without motion compensation. (d) The prediction residual with motion compensation. (e) 
The motion vectors associated with (d). The white dots in (e) represent the arrow heads of the motion vectors that 
are depicted. (Original images courtesy of NASA.)

DIP4E_GLOBAL_Print_Ready.indb   602 6/16/2017   2:11:13 PM



8.10  Predictive Coding    603

Motion estimation is a computationally demanding task. Fortunately, only the 
encoder must estimate macroblock motion. Given the motion vectors of the macro-
blocks, the decoder simply accesses the areas of the reference frames that were used 
in the encoder to form the prediction residuals. Because of this, motion estimation 
is not included in most video compression standards. Compression standards focus 
on the decoder, placing constraints on macroblock dimensions, motion vector preci-
sion, horizontal and vertical displacement ranges, and the like. Table 8.12 gives the 
key predictive coding parameters of some the most important video compression 
standards. Note that most of the standards use an 8 8×  DCT for I-frame encod-
ing, but specify a larger area (i.e., 16 16×  macroblock) for motion compensation. In 
addition, even the P- and B-frame prediction residuals are transform coded due to 
the effectiveness of DCT coefficient quantization. Finally, we note that the H.264 
and MPEG-4 AVC standards support intraframe predictive coding (in I-frames) to 
reduce spatial redundancy.

ba
dc

FIGURE 8.35
Sub-pixel motion 
compensated 
prediction residu-
als: (a) without 
motion compen-
sation; (b) single 
pixel precision;  
(c) ½ pixel preci-
sion; and  
(d) ¼ pixel preci-
sion. (All predic-
tion errors have 
been scaled to 
the full intensity 
range and then 
multiplied by 2 
to increase their 
visibility.)
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Figure 8.36 shows a typical motion compensated video encoder. It exploits redun-
dancies within and between adjacent video frames, motion uniformity between 
frames, and the psychovisual properties of the human visual system. We can think 
of the input to the encoder as sequential macroblocks of video. For color video, 
each macroblock is composed of a luminance block and two chrominance blocks. 
Because the eye has far less spatial acuity for color than for luminance, the chromi-
nance blocks often are sampled at half the horizontal and vertical resolution of the 
luminance block. The dark blue elements in the figure parallel the transformation, 
quantization, and variable-length coding operations of a JPEG encoder. The princi-
pal difference is the input, which may be a conventional macroblock of image data 
(for I-frames), or the difference between a conventional macroblock and a predic-
tion of it based on previous and/or subsequent video frames (for P- and B-frames). 
The encoder includes an inverse quantizer and inverse mapper (e.g., inverse DCT) so 
that its predictions match those of the complementary decoder. Also, it is designed 
to produce compressed bit streams that match the capacity of the intended video 
channel. To accomplish this, the quantization parameters are adjusted by a rate con-
troller as a function of the occupancy of an output buffer. As the buffer becomes 
fuller, the quantization is made coarser, so fewer bits stream into the buffer.

Quantization as 
defined earlier in the 
chapter is irreversible. 
The “inverse quantizer” 
in Fig. 8.36 does not 
prevent information 
loss.

Parameter H.261 MPEG-1
H.262

MPEG-2
H.263 MPEG-4

VC-1
WMV-9

H.264
MPEG-4

AVC

Motion vector 
precision

1 ½ ½ ½ ¼ ¼ ¼

Macroblock 
sizes

16 16× 16 16× 16 16×  
16 8×

16 16×  
8 8×

16 16×  
8 8×

16 16×  
8 8×

16 16×  
16 8×  
8 8×  
8 4×  
4 8×  
4 4×

Transform 8 8×  
DCT

8 8×  
DCT

8 8×  
DCT

8 8×  
DCT

8 8×  
DCT

8 8×  
8 4×  
4 8×  
4 4×  

Integer 
DCT

4 4×  
8 8×  

Integer

Interframe 
predictions

P P, B P, B P, B P, B P, B P, B

I-frame intra-
predictions

No No No No No No Yes

TABLE 8.12
Predictive coding in video compression standards.
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8.10  Predictive Coding    605

EXAMPLE 8.22 :  Video compression example.

We conclude our discussion of motion compensated predictive coding with an example illustrating the 
kind of compression that is possible with modern video compression methods. Figure 8.37 shows fifteen 
frames of a 1 minute HD ( )1280 720×  full-color NASA video, parts of which have been used throughout 
this section. Although the images shown are monochrome, the video is a sequence of 1,829 full-color 
frames. Note that there are a variety of scenes, a great deal of motion, and multiple fade effects. For 
example, the video opens with a 150 frame fade-in from black, which includes frames 21 and 44 in 
Fig. 8.37, and concludes with a fade sequence containing frames 1595, 1609, and 1652 in Fig. 8.37, fol-
lowed by a final fade to black. There are also several abrupt scene changes, like the change involving 
frames 1303 and 1304 in Fig. 8.37.

An H.264 compressed version of the NASA video stored as a Quicktime file (see Table 8.5) requires 
44.56 MB of storage, plus another 1.39 MB for the associated audio. The video quality is excellent. About 
5 GB of data would be needed to store the video frames as uncompressed full-color images. It should 
be noted that the video contains sequences involving both rotation and scale change (e.g., the sequence 
including frames 959, 1023, and 1088 in Fig. 8.37). The discussion in this section, however, has been 
limited to translation alone. (See the book website for the NASA video segment used in this example.)

LOSSY PREDICTIVE CODING

In this section, we add a quantizer to the lossless predictive coding model introduced 
earlier, and examine the trade-off between reconstruction accuracy and compres-
sion performance within the context of spatial predictors. As Fig. 8.38 shows, the 
quantizer, which replaces the nearest integer function of the error-free encoder, is 
inserted between the symbol encoder and the point at which the prediction error is 
formed. It maps the prediction error into a limited range of outputs, denoted �e n( ),
which establish the amount of compression and distortion that occurs.

FIGURE 8.36
A typical motion 
compensated 
video encoder.
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606    Chapter 8  Image Compression and Watermarking

FIGURE 8.37  Fifteen frames from an 1829-frame, 1-minute NASA video. The original video is in HD full color. 
(Courtesy of NASA.)

Frame 0021 Frame 0044 Frame 0201

Frame 0266 Frame 0424 Frame 0801

Frame 0959 Frame 1023 Frame 1088

Frame 1224 Frame 1303 Frame 1304

Frame 1595 Frame 1609 Frame 1652
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In order to accommodate the insertion of the quantization step, the error-free 
encoder of Fig. 8.30(a) must be altered so the predictions generated by the encoder 
and decoder are equivalent. As Fig. 8.38(a) shows, this is accomplished by placing 
the lossy encoder’s predictor within a feedback loop, where its input, denoted as 
�f n( ), is generated as a function of past predictions and the corresponding quantized 
errors. That is,

 � �f n e n f n( ) = ( ) + ( )ˆ (8-37)

where ˆ( )f n  is as defined earlier. This closed loop configuration prevents error 
buildup at the decoder’s output. Note in Fig. 8.38(b) that the output of the decoder 
is given also by Eq. (8-37).

EXAMPLE 8.23 :  Delta modulation.

Delta modulation (DM) is a simple but well-known form of lossy predictive coding in which the predic-
tor and quantizer are defined as

 f n f nˆ ( ) = ( )a � − 1  (8-38)

and

 �e n
e n( ) =

( ) >⎧
⎨
⎪

⎩⎪

+
−
z

z

for

otherwise

0
(8-39)

where a  is a prediction coefficient (normally less than 1), and z  is a positive constant. The output of the 
quantizer, �e n( ), can be represented by a single bit [see Fig. 8.39(a)], so the symbol encoder of Fig. 8.38(a) 
can utilize a 1-bit fixed-length code. The resulting DM code rate is 1 bit pixel .

Figure 8.39(c) illustrates the mechanics of the delta modulation process, where the calculations 
needed to compress and reconstruct input sequence {14, 15, 14, 15, 13, 15, 15, 14, 20, 26, 27, 28, 27, 27, 29, 
37, 47, 62, 75, 77, 78, 79, 80, 81, 81, 82, 82} with a = 1 and z = 6 5.  are tabulated. The process begins with the 

b
a

FIGURE 8.38
A lossy predictive 
coding model:  
(a) encoder;  
(b) decoder.

	
�

	
	

	
	

Input
sequence

Compressed
sequence

Compressed
sequence

Decompressed
sequence

Symbol
encoder

Quantizer

Predictor

Symbol
decoder

Predictor

�e n( )

�e n( ) �f n( )

ˆ( )f n

ˆ( )f n

�f n( )

f(n)

e(n)

DIP4E_GLOBAL_Print_Ready.indb   607 6/16/2017   2:11:19 PM



608    Chapter 8  Image Compression and Watermarking

error-free transfer of the first input sample to the decoder. With the initial condition �f f( ) ( )0 0 14= =
established at both the encoder and decoder, the remaining outputs can be computed by repeatedly 
evaluating Eqs. (8-38), (8-29), (8-39), and (8-37). Thus, when n = 1, for example, ˆ( ) ( )( ) ,f 1 1 14 14= =
e( ) ,1 15 14 1= =−  �e( ) .1 6 5= +  (because e( )1 0> ), �f ( ) . . ,1 6 4 14 20 5= =+  and the resulting reconstruction 
error is ( . ),15 20 5−  or −5 5. .

Figure 8.39(b) graphically shows the tabulated data in Fig. 8.39(c). Both the input and completely 
decoded output f n f n( ) ( ) and �⎡⎣ ⎤⎦  are shown. Note that in the rapidly changing area from n = 14 to 19, 
where z  was too small to represent the input’s largest changes, a distortion known as slope overload 
occurs. Moreover, when z  was too large to represent the input’s smallest changes, as in the relatively 
smooth region from n = 0 to n = 7, granular noise appears. In images, these two phenomena lead to 
blurred object edges and grainy or noisy surfaces (that is, distorted smooth areas).

The distortions noted in the preceding example are common to all forms of lossy 
predictive coding. The severity of these distortions depends on a complex set of 
interactions between the quantization and prediction methods employed. Despite 
these interactions, the predictor normally is designed with the assumption of no 
quantization error, and the quantizer is designed to minimize its own error. That is, 
the predictor and quantizer are designed independently of each other.

ba
c

FIGURE 8.39
An example of 
delta modulation.
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OPTIMAL PREDICTORS

In many predictive coding applications, the predictor is chosen to minimize the 
encoder’s mean-squared prediction error

 E e n E f n f n2 2( ){ } = ( ) ( )⎡⎣ ⎤⎦{ }− ˆ  (8-40)

subject to the constraint that

 � �f n e n f n e n f n f n( ) = ( ) + ( ) ≈ ( ) + ( ) = ( )ˆ ˆ  (8-41)

and

 f n f n ii
i

m
ˆ ( ) = ( )

=
∑a −

1

 (8-42)

That is, the optimization criterion is minimal mean-squared prediction error, the 
quantization error is assumed to be negligible �e n e n( ) ( )≈[ ], and the prediction is 
constrained to a linear combination of m previous samples. These restrictions are 
not essential, but they considerably simplify the analysis and, at the same time, 
decrease the computational complexity of the predictor. The resulting predictive 
coding approach is referred to as differential pulse code modulation (DPCM).

Under these conditions, the optimal predictor design problem is reduced to the 
relatively straightforward exercise of selecting the m prediction coefficients that 
minimize the expression

 E e n E f n f n ii
i

m
2

1

2

( ){ } = ( ) ( )⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=
∑− −a  (8-43)

Differentiating Eq. (8-43) with respect to each coefficient, equating the derivatives 
to zero, and solving the resulting set of simultaneous equations under the assump-
tion that f n( ) has mean zero and variance s2  yields

 A = R r−1  (8-44)

where R−1 is the inverse of the m m×  autocorrelation matrix

 R =

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }
( )

E f n f n E f n f n E f n f n m

E f n f n

− − − − − −
− −

1 1 1 2 1

2

�
11

1 2

( ){ }

( ) ( ){ } ( ) ( ){ } (

� � �
� � � �
� � � �
� � � �

�E f n m f n E f n m f n E f n m− − − − − )) ( ){ }

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥f n m−

 

  (8-45)

The notation E i{ }  
denotes the statistical 
expectation operator.

In general, the optimal 
predictor for a non-
Gaussian sequence is 
a nonlinear function 
of the samples used to 
form the estimate.
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and r and A  are the m-element vectors

 r =

{ }
{ }

{ }

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

E f n f n

E f n f n

E f n f n m

( ) ( )

( ) ( )

( ) ( )

−
−

−

1

2

�
     A

a

a

a

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1

2

�

m

 (8-46)

Thus for any input sequence, the coefficients that minimize Eq. (8-43) can be deter-
mined via a series of elementary matrix operations. Moreover, the coefficients 
depend only on the autocorrelations of the samples in the original sequence. The 
variance of the prediction error that results from the use of these optimal coeffi-
cients is

 s s A s ae
T

i
i

m

E f n f n i2 2 2

1

= = { }
=
∑− − −r ( ) ( )  (8-47)

Although the mechanics of evaluating Eq. (8-44) are quite simple, computation of 
the autocorrelations needed to form R and r is so difficult in practice that local 
predictions (those in which the prediction coefficients are computed for each input 
sequence) are almost never used. In most cases, a set of global coefficients is com-
puted by assuming a simple input model and substituting the corresponding auto-
correlations into Eqs. (8-45) and (8-46). For instance, when a 2-D Markov image 
source (see Section 8.1) with separable autocorrelation function

 E f x y f x i y j v
i

h
j, ,( ) ( ){ } =− − s r r2  (8-48)

and generalized fourth-order linear predictor

 
f x y f x y f x y

f x y f x y

ˆ , , ,

, ,

( ) = ( ) + ( )
( ) ( )

a a

a a

1 2

3 4

1 1 1

1 1 1

− − −

+ − + − +
 (8-49)

are assumed, the resulting optimal coefficients (Jain [1989]) are

 a r a r r a r a1 2 3 4 0= = = =h v h v−  (8-50)

where rh  and rh  are the horizontal and vertical correlation coefficients, respectively, 
of the image under consideration.

Finally, the sum of the prediction coefficients in Eq. (8-42) is normally required to 
be less than or equal to one. That is,

 ai
i

m

≤ 1
1=

∑  (8-51)
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This restriction is made to ensure that the output of the predictor falls within the 
allowed range of the input, and to reduce the impact of transmission noise [which 
generally is seen as horizontal streaks in reconstructed images when the input to 
Fig. 8.38(a) is an image]. Reducing the DPCM decoder’s susceptibility to input noise 
is important, because a single error (under the right circumstances) can propagate 
to all future outputs. That is, the decoder’s output may become unstable. Further 
restricting Eq. (8-51) to be strictly less than 1 confines the impact of an input error 
to a small number of outputs.

EXAMPLE 8.24 :  Comparison of prediction techniques.

Consider the prediction error that results from DPCM coding the monochrome image of Fig. 8.9(a) 
under the assumption of zero quantization error and with each of four predictors:

 f x y f x yˆ , . ,( ) = ( )0 97 1−  (8-52)

 f x y f x y f x yˆ , . , . ,( ) = ( ) ( )0 5 1 0 5 1− + −  (8-53)

 f x y f x y f x y f x yˆ , . , . , . ,( ) = ( ) + ( ) ( )0 75 1 0 75 1 0 5 1 1− − − − −  (8-54)

 f x y
f x y h v

f x y
ˆ ,

. ,

. ,
( ) =

( )
( )

⎧
⎨
⎪

⎩⎪

0 97 1

0 97 1

− ≤

−

if

otherwise

� �
 (8-55)

where �h f x y f x y= ( ) ( )− − − −1 1 1, ,  and �v f x y f x y= ( ) ( ), ,− − − −1 1 1  denote the horizontal and 
vertical gradients at point ( , ).x y  Equations (8-52) through (8-55) define a relatively robust set of ai  that 
provide satisfactory performance over a wide range of images. The adaptive predictor of Eq. (8-55) is 
designed to improve edge rendition by computing a local measure of the directional properties of an 
image (�h and �v), and selecting a predictor specifically tailored to the measured behavior.

Figures 8.40(a) through (d) show the prediction error images that result from using the predictors of 
Eqs. (8-52) through (8-55). Note that the visually perceptible error decreases as the order of the predic-
tor increases.† The standard deviations of the prediction errors follow a similar pattern. They are 11.1, 9.8, 
9.1, and 9.7 intensity levels, respectively.

OPTIMAL QUANTIZATION

The staircase quantization function t q s= ( ) in Fig. 8.41 is an odd function of s [that is, 
q s q s( ) ( )− −= ] that can be described completely by the L 2 values of si and ti shown 
in the first quadrant of the graph. These break points define function discontinuities, 
and are called the decision and reconstruction levels of the quantizer. As a matter 
of convention, s is considered to be mapped to ti if it lies in the half-open interval 
( , ].s si i+1

The quantizer design problem is to select the best si and ti for a particular opti-
mization criterion and input probability density function p s( ). If the optimization 

† Predictors that use more than three or four previous pixels provide little compression gain for the added pre-
dictor complexity (Habibi [1971]).
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criterion, which could be either a statistical or psychovisual measure,† is the minimi-
zation of the mean-squared quantization error A E FBthat is E s ti i( )− 2  and p s( ) is an 
even function, the conditions for minimal error (Max [1960]) are

 
s

s

i

i

s t p s ds i
L

i

−

−
1

0 1 2
22 ( ) ( ) , , ,= = …  (8-56)
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2

2
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−, , ,…  (8-57)

† See Netravali [1977] and Limb for more on psychovisual measures.

ba
dc

FIGURE 8.40
A comparison of 
four linear  
prediction  
techniques.
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and

 s s t ti i i i− −− −= =  (8-58)

Equation (8-56) indicates that the reconstruction levels are the centroids of the areas 
under p s( ) over the specified decision intervals, whereas Eq. (8-57) indicates that 
the decision levels are halfway between the reconstruction levels. Equation (8-58) 
is a consequence of the fact that q is an odd function. For any L, the si and ti that 
satisfy Eqs. (8-56) through (8-58) are optimal in the mean-squared error sense; the 
corresponding quantizer is called an L-level Lloyd-Max quantizer.

Table 8.13 lists the 2-, 4-, and 8-level Lloyd-Max decision and reconstruction 
levels for a unit variance Laplacian probability density function [see Eq. (8-34)]. 
Because obtaining an explicit or closed-form solution to Eqs. (8-56) through (8-58)
for most nontrivial p s( ) is difficult, these values were generated numerically (Paez 
and Glisson [1972]). The three quantizers shown provide fixed output rates of 1, 2, 
and 3 bits pixel , respectively. As Table 8.13 was constructed for a unit variance dis-
tribution, the reconstruction and decision levels for the case of s ≠ 1 are obtained by 
multiplying the tabulated values by the standard deviation of the probability density 

FIGURE 8.41
A typical  
quantization  
function.

t = q(s)

s1 s2

t1

t2

t

s

Output

Input

s L− −( )2 1[ ]
s L( )2 1−

−tL 2

tL 2

Levels 2 4 8

si ti si ti si ti

1 � 0.707 1.102 0.395 0.504 0.222

2 � 1.810 1.181 0.785

3 2.285 1.576

4 � 2.994

u 1.414 1.087 0.731

TABLE 8.13
Lloyd-Max  
quantizers for a  
Laplacian  
probability  
density function 
of unit variance.
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function under consideration. The final row of the table lists the step size, u, that 
simultaneously satisfies Eqs. (8-56) through (8-58) and the additional constraint that

 t t s si i i i− −− −1 1= = u  (8-59)

If a symbol encoder that utilizes a variable-length code is used in the general lossy 
predictive encoder of Fig. 8.38(a), an optimum uniform quantizer of step size u  will 
provide a lower code rate (for a Laplacian PDF) than a fixed-length coded Lloyd-
Max quantizer with the same output fidelity (O’Neil [1971]).

Although the Lloyd-Max and optimum uniform quantizers are not adaptive, 
much can be gained from adjusting the quantization levels based on the local behav-
ior of an image. In theory, slowly changing regions can be finely quantized, while the 
rapidly changing areas are quantized more coarsely. This approach simultaneously 
reduces both granular noise and slope overload, while requiring only a minimal 
increase in code rate. The trade-off is increased quantizer complexity.

8.11 WAVELET CODING  

As with the block transform coding techniques presented earlier, wavelet coding is 
based on the idea that the coefficients of a transform that decorrelates the pixels of 
an image can be coded more efficiently than the original pixels themselves. If the 
basis functions of the transform (in this case wavelets) pack most of the important 
visual information into a small number of coefficients, the remaining coefficients can 
be quantized coarsely or truncated to zero with little image distortion.

Figure 8.42 shows a typical wavelet coding system. To encode a 2 2J J×  image, an 
analyzing wavelet, c, and minimum decomposition level, J P− , are selected and 
used to compute the discrete wavelet transform of the image. If the wavelet has 
a complementary scaling function w, the fast wavelet transform (see Section 7.10) 
can be used. In either case, the computed transform converts a large portion of the 
original image to horizontal, vertical, and diagonal decomposition coefficients with 
zero mean and Laplacian-like probabilities. Because many of the computed coef-
ficients carry little visual information, they can be quantized and coded to minimize 
intercoefficient and coding redundancy. Moreover, the quantization can be adapted 
to exploit any positional correlation across the P decomposition levels. One or more 
lossless coding methods, such as run-length, Huffman, arithmetic, and bit-plane cod-
ing, can be incorporated into the final symbol coding step. Decoding is accomplished 
by inverting the encoding operations, with the exception of quantization, which can-
not be reversed exactly.

The principal difference between the wavelet-based system of Fig. 8.42 and the 
transform coding system of Fig. 8.21 is the omission of the subimage processing 
stages of the transform coder. Because wavelet transforms are both computation-
ally efficient and inherently local (i.e., their basis functions are limited in duration), 
subdivision of the original image is unnecessary. As you will see later in this section, 
the removal of the subdivision step eliminates the blocking artifact that character-
izes DCT-based approximations at high compression ratios.

8.11

With reference to 
Tables 8.3–8.5, wavelet 
coding is used in the

• JPEG-2000

compression standard.
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WAVELET SELECTION

The wavelets chosen as the basis of the forward and inverse transforms in Fig. 8.42 
affect all aspects of wavelet coding system design and performance. They impact 
directly the computational complexity of the transforms and, less directly, the sys-
tem’s ability to compress and reconstruct images of acceptable error. When the 
transforming wavelet has a companion scaling function, the transformation can be 
implemented as a sequence of digital filtering operations, with the number of filter 
taps equal to the number of nonzero wavelet and scaling vector coefficients. The 
ability of the wavelet to pack information into a small number of transform coef-
ficients determines its compression and reconstruction performance.

The most widely used expansion functions for wavelet-based compression are 
the Daubechies wavelets and biorthogonal wavelets. The latter allow useful analysis 
properties, like the number of vanishing moments (see Section 7.10), to be incor-
porated into the decomposition filters, while important synthesis properties, like 
smoothness of reconstruction, are built into the reconstruction filters.

EXAMPLE 8.25 :  Wavelet bases in wavelet coding.

Figure 8.43 contains four discrete wavelet transforms of Fig. 8.9(a). Haar wavelets, the simplest and only 
discontinuous wavelets considered in this example, were used as the expansion or basis functions in 
Fig. 8.43(a). Daubechies wavelets, among the most popular imaging wavelets, were used in Fig. 8.43(b), 
and symlets, which are an extension of the Daubechies wavelets with increased symmetry, were used in 
Fig. 8.43(c). The Cohen-Daubechies-Feauveau wavelets employed in Fig. 8.43(d) are included to illus-
trate the capabilities of biorthogonal wavelets. As in previous results of this type, all detail coefficients 
were scaled to make the underlying structure more visible, with intensity 128 corresponding to coef-
ficient value 0.

As you can see in Table 8.14, the number of operations involved in the computation of the transforms 
in Fig. 8.43 increases from 4 to 28 multiplications and additions per coefficient (for each decomposition 

b
a

FIGURE 8.42
A wavelet coding 
system:  
(a) encoder;  
(b) decoder.

Wavelet
transform

Quantizer Symbol
encoder

Input
image

Compressed
image

Inverse
wavelet transform

Compressed
image

Decompressed
image

Symbol
decoder

Wavelet
Filter Taps

(Scaling + Wavelet)
Zeroed 

Coefficients

Haar 2 + 2 33.3%

Daubechies 8 + 8 40.9%

Symlet 8 + 8 41.2%

Biorthogonal 17 + 11 42.1%

TABLE 8.14
Wavelet trans-
form filter taps 
and zeroed 
coefficients when 
truncating the 
transforms  
in Fig. 8.43  
below 1.5.
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level) as you move from Fig. 8.43(a) to (d). All four transforms were computed using a fast wavelet 
transform (i.e., filter bank) formulation. Note that as the computational complexity (i.e., the number 
of filter taps) increases, the information packing performance does as well. When Haar wavelets are 
employed and the detail coefficients below 1.5 are truncated to zero, 33.8% of the total transform is 
zeroed. With the more complex biorthogonal wavelets, the number of zeroed coefficients rises to 42.1%, 
increasing the potential compression by almost 10%.

DECOMPOSITION LEVEL SELECTION

Another factor affecting wavelet coding computational complexity and reconstruc-
tion error is the number of transform decomposition levels. Because a P-scale fast 
wavelet transform involves P filter bank iterations, the number of operations in 
the computation of the forward and inverse transforms increases with the num-
ber of decomposition levels. Moreover, quantizing the increasingly lower-scale  

ba
dc

FIGURE 8.43
Three-scale wave-
let transforms of 
Fig. 8.9(a) with 
respect to  
(a) Haar wavelets, 
(b) Daubechies 
wavelets,  
(c) symlets, 
and (d) Cohen-
Daubechies-Feau-
veau biorthogonal 
wavelets.
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Decomposition Level
(Scales or Filter Bank 

Iterations)

Approximation 
Coefficient Image

Truncated  
Coefficients (%)

Reconstruction  
Error (rms)

1 256 256× 74.7% 3.27

2 128 128× 91.7% 4.23

3 64 64× 95.1% 4.54

4 32 32× 95.6% 4.61

5 16 16× 95.5% 4.63

TABLE 8.15
Decomposition 
level impact on 
wavelet coding 
the 512 512×   
image of 
Fig. 8.9(a).

coefficients that result with more decomposition levels affects increasingly larger 
areas of the reconstructed image. In many applications, like searching image data-
bases or transmitting images for progressive reconstruction, the resolution of the 
stored or transmitted images, and the scale of the lowest useful approximations, nor-
mally determine the number of transform levels.

EXAMPLE 8.26 :  Decomposition levels in wavelet coding.

Table 8.15 illustrates the effect of decomposition level selection on the coding of Fig. 8.9(a) using bior-
thogonal wavelets and a fixed global threshold of 25. As in the previous wavelet coding example, only 
detail coefficients are truncated. The table lists both the percentage of zeroed coefficients and the result-
ing rms reconstruction errors from Eq. (8-10). Note that the initial decompositions are responsible for 
the majority of the data compression. There is little change in the number of truncated coefficients 
above three decomposition levels.

QUANTIZER DESIGN

The most important factor affecting wavelet coding compression and reconstruc-
tion error is coefficient quantization. Although the most widely used quantizers 
are uniform, the effectiveness of the quantization can be improved significantly by  
(1) introducing a larger quantization interval around zero, called a dead zone, or  
(2) adapting the size of the quantization interval from scale to scale. In either case, 
the selected quantization intervals must be transmitted to the decoder with the 
encoded image bit stream. The intervals themselves may be determined heuristically, 
or computed automatically based on the image being compressed. For example, a 
global coefficient threshold could be computed as the median of the absolute values 
of the first-level detail coefficients or as a function of the number of zeroes that are 
truncated and the amount of energy that is retained in the reconstructed image.

EXAMPLE 8.27 :  Dead zone interval selection in wavelet coding.

Figure 8.44 illustrates the impact of dead zone interval size on the percentage of truncated detail coef-
ficients for a three-scale biorthogonal wavelet-based encoding of Fig. 8.9(a). As the size of the dead zone 
increases, the number of truncated coefficients does as well. Above the knee of the curve (i.e., beyond 5),  

One measure of the 
energy of a digital signal 
is the sum of the squared 
samples.
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618    Chapter 8  Image Compression and Watermarking

there is little gain. This is due to the fact that the histogram of the detail coefficients is highly peaked 
around zero.

The rms reconstruction errors corresponding to the dead zone thresholds in Fig. 8.44 increase from 
0 to 1.94 intensity levels at a threshold of 5, and to 3.83 intensity levels for a threshold of 18, where the 
number of zeroes reaches 93.85%. If every detail coefficient were eliminated, that percentage would 
increase to about 97.92% (by about 4%), but the reconstruction error would grow to 12.3 intensity levels.

JPEG-2000

JPEG-2000 extends the popular JPEG standard to provide increased flexibility in 
both the compression of continuous-tone still images and access to the compressed 
data. For example, portions of a JPEG-2000 compressed image can be extracted for 
retransmission, storage, display, and/or editing. The standard is based on the wavelet 
coding techniques just described. Coefficient quantization is adapted to individual 
scales and subbands, and the quantized coefficients are arithmetically coded on a 
bit-plane basis (see Sections 8.4 and 8.8). Using the notation of the standard, an 
image is encoded as follows (ISO/IEC [2000]).

The first step of the encoding process is to DC level shift the samples of the Ssiz-
bit unsigned image to be coded by subtracting 2 1Ssiz− . If the image has more than one 
component, such as the red, green, and blue planes of a color image, each component 
is shifted individually. If there are exactly three components, they may be optionally 
decorrelated using a reversible or nonreversible linear combination of the compo-
nents. The irreversible component transform of the standard, for example, is

 

Y x y I x y I x y I x y

Y x y
0 0 1 2

1

0 299 0 587 0 114

0 1

, . , . , . ,

, .
( ) = ( ) ( ) ( )
( ) =

+ +
− 66875 0 33126 0 5

0 5 0
0 1 2

2 0

I x y I x y I x y

Y x y I x y

, . , . ,

, . ,
( ) ( ) ( )

( ) = ( )
− +

− .. , . ,41869 0 081311 2I x y I x y( ) ( )−
 (8-60)

Ssiz is used in the stan-
dard to denote intensity 
resolution.

The irreversible com-
ponent transform is the 
component transform 
used for lossy compres-
sion. The component 
transform itself is not 
irreversible. A different 
component transform 
is used for reversible 
compression.

FIGURE 8.44
The impact of 
dead zone interval 
selection on  
wavelet coding.

97.918%

C
oe

ff
ic

ie
nt

 tr
un

ca
ti

on
 (

%
)

Dead zone threshold

R
oo

t-
m

ea
n-

sq
ua

re
 e

rr
or

(i
nt

en
si

ty
 le

ve
ls

)RMSE
% Zeroes

80

70

60

50

40

30

20

10

90

0

100

0 2 4 6 8 10 12 14 16 18

3.2

2.8

2.4

2

1.6

1.2

0.8

0.4

3.6

0

4.0

DIP4E_GLOBAL_Print_Ready.indb   618 6/16/2017   2:11:27 PM



8.11  Wavelet Coding    619

where I0, I1, and I2 are the level-shifted input components, and Y0, Y1, and Y2 are 
the corresponding decorrelated components. If the input components are the red, 
green, and blue planes of a color image, Eq. (8-60) approximates the ′ ′ ′R G B  to 

′Y C Cb r  color video transform (Poynton [1996]).† The goal of the transformation is to 
improve compression efficiency; transformed components Y1 and Y2 are difference 
images whose histograms are highly peaked around zero.

After the image has been level-shifted and optionally decorrelated, its compo-
nents can be divided into tiles. Tiles are rectangular arrays of pixels that are pro-
cessed independently. Because an image can have more than one component (e.g., it 
could be made up of three color components), the tiling process creates tile compo-
nents. Each tile component can be reconstructed independently, providing a simple 
mechanism for accessing and/or manipulating a limited region of a coded image. For 
example, an image having a 16:9 aspect ratio could be subdivided into tiles so one 
of its tiles is a subimage with a 4:3 aspect ratio. That tile then could be reconstructed 
without accessing the other tiles in the compressed image. If the image is not subdi-
vided into tiles, it is a single tile.

The 1-D discrete wavelet transform of the rows and columns of each tile compo-
nent is then computed. For error-free compression, the transform is based on a bior-
thogonal, 5/3 coefficient scaling and wavelet vector (Le Gall and Tabatabai [1988]). 
A rounding procedure is defined for non-integer-valued transform coefficients. In 
lossy applications, a 9/7 coefficient scaling-wavelet vector is employed (Antonini, 
Barlaud, Mathieu, and Daubechies [1992]). In either case, the transform is computed 
using the fast wavelet transform of Section 7.10 or via a complementary lifting-based 
approach (Mallat [1999]). For example, in lossy applications, the coefficients used to 
construct the 9/7 FWT analysis filter bank are given in Table 7.1. The complementary 
lifting-based implementation involves six sequential “lifting” and “scaling” opera-
tions:

 

Y n X n X n X n i n i

Y n X n

2 1 2 1 2 2 2 3 2 1 3

2 2
0 1+( ) = +( ) + ( ) + +( )⎡⎣ ⎤⎦ ≤ + < +
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)) + ( ) + +( )⎡⎣ ⎤⎦ ≤ < +
+( ) = +( ) + ( ) +
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Y n Y n i n i

Y n Y n Y n

2 1 2 1 2 2 2

2 1 2 1 2
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( ) = ( ) ≤ <
−

 

  (8-61)

Here, X is the tile component being transformed, Y is the resulting transform, 
and i0 and i1 define the position of the tile component within a component. That 
is, they are the indices of the first sample of the tile-component row or column 
being transformed and the one immediately following the last sample. Variable 

† ′ ′ ′R G B  is a gamma-corrected, nonlinear version of a linear CIE (International Commission on Illumination)  
RGB colorimetry value. ′Y  is luminance and Cb and Cr are color differences (i.e., scaled ′ ′B Y−  and ′ ′R Y−  
values).

Lifting-based imple-
mentations are another 
way to compute wavelet 
transforms. The coef-
ficients used in the 
approach are directly 
related to the FWT filter 
bank coefficients.
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n assumes values based on i0, i1, and determines which of the six operations is 
being performed. If n i< 0  or n i> 1, X n( ) is obtained by symmetrically extending 
X. For example, X i X i0 01 1−( ) = +( ),  X i X i0 02 2−( ) = +( ),  X i X i1 1 2( ) = ( )− , and 
X i X i1 11 3+( ) = ( )− . At the conclusion of the lifting and scaling operations, the even-
indexed values of Y are equivalent to the FWT lowpass filtered output; the odd-
indexed values of Y correspond to the highpass FWT filtered result. Lifting param-
eters a, b, g, and d  are −1 586134342. , −0 052980118. , 0.882911075, and 0.433506852, 
respectively, and scaling factor K is 1.230174105.

The transformation just described produces four subbands; a low-resolution 
approximation of the tile component and the component’s horizontal, vertical, and 
diagonal frequency characteristics. Repeating the transformation NL times, with sub-
sequent iterations restricted to the previous decomposition’s approximation coeffi-
cients, produces an NL-scale wavelet transform. Adjacent scales are related spatially 
by powers of 2, and the lowest scale contains the only explicitly defined approxima-
tion of the original tile component. As can be surmised from Fig. 8.45, where the 
notation of the JPEG-2000 standard is summarized for the case of NL = 2, a general 
NL-scale transform contains 3 1NL +  subbands whose coefficients are denoted ab for  
b = NL HL,…, 1HL, 1LH, 1HH. The standard does not specify the number of scales 
to be computed.

When each of the tile components has been processed, the total number of trans-
form coefficients is equal to the number of samples in the original image, but the 
important visual information is concentrated in a few coefficients. To reduce the 
number of bits needed to represent the transform, coefficient a u vb( , ) of subband b 
is quantized to value q u vb( , ) using

 q u v a u v
a u v

b b
b

b

, ,
,( ) = ( )⎡⎣ ⎤⎦ ⋅

( )
Δ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sign floor  (8-62)

where the quantiztion step size �b is

 Δ = +⎛
⎝⎜

⎞
⎠⎟b

R bb b2 1
211

−e m  (8-63)

Rb is the nominal dynamic range of subband b, while eb and mb are the number of 
bits allotted to the exponent and mantissa of the subband’s coefficients. The nominal 
dynamic range of subband b is the sum of the number of bits used to represent the 
original image and the analysis gain bits for subband b. Subband analysis gain bits 
follow the simple pattern shown in Fig. 8.45. For example, there are two analysis gain 
bits for subband b = 1HH.

For error-free compression, mb = 0, Rb b= e , and �b = 1. For irreversible com-
pression, no particular quantization step size is specified in the standard. Instead, 
the number of exponent and mantissa bits must be provided to the decoder on a 
subband basis, called expounded quantization, or for the NLLL subband only, called 
derived quantization. In the latter case, the remaining subbands are quantized using 

These lifting-based coef-
ficients are specified in 
the standard.

Recall from Chapter 7 
that the DWT decom-
poses an image into a set 
of band-limited compo-
nents called subbands.

Do not confuse the 
standard’s definition of 
nominal dynamic range 
with the closely related 
definition in Chapter 2.
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extrapolated NLLL subband parameters. Letting e0 and m0  be the number of bits 
allocated to the NLLL subband, the extrapolated parameters for subband b are

m m

e e

b

b b Ln N

=
= +

0

0 −
 (8-64)

where nb denotes the number of subband decomposition levels from the original 
image tile component to subband b.

In the final steps of the encoding process, the coefficients of each transformed 
tile-component’s subbands are arranged into rectangular blocks called code blocks, 
which are coded individually, one bit plane at a time. Starting from the most signifi-
cant bit plane with a nonzero element, each bit plane is processed in three passes. 
Each bit (in a bit plane) is coded in only one of the three passes, which are called 
significance propagation, magnitude refinement, and cleanup. The outputs are then 
arithmetically coded and grouped with similar passes from other code blocks to 
form layers. A layer is an arbitrary number of groupings of coding passes from 
each code block. The resulting layers finally are partitioned into packets, providing 
an additional method of extracting a spatial region of interest from the total code 
stream. Packets are the fundamental unit of the encoded code stream.

JPEG-2000 decoders simply invert the operations previously described. After 
reconstructing the subbands of the tile-components from the arithmetically coded 
JPEG-2000 packets, a user-selected number of the subbands is decoded. Although 
the encoder may have encoded Mb bit planes for a particular subband, the user, 
due to the embedded nature of the code stream, may choose to decode only Nb bit 
planes. This amounts to quantizing the coefficients of the code block using a step 

FIGURE 8.45
JPEG 2000 two-
scale wavelet 
transform tile-
component coeffi-
cient notation and 
analysis gain.
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size of 2M N
b

b b− ⋅ Δ . Any nondecoded bits are set to zero and the resulting coefficients, 
denoted q u vb( , ), are inverse quantized using

 R u v

q u v r q u v

q u v rq

b
M N u v

b b

b
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b
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 (8-65)

where R u vqb
( , ) denotes an inverse-quantized transform coefficient, and N u vb( , ) is 

the number of decoded bit planes for q u vb( , ). Reconstruction parameter r is cho-
sen by the decoder to produce the best visual or objective quality of reconstruction. 
Generally, 0 1≤ <r , with a common value being r = 1 2. The inverse-quantized coef-
ficients then are inverse-transformed by column and by row using an FWT−1 filter 
bank whose coefficients are obtained from Table 7.1, or via the following lifting-
based operations:
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where parameters a, b, g, d, and K are as defined for Eq. (8-61). Inverse-quantized 
coefficient row or column element Y n( ) is symmetrically extended when necessary. 
The final decoding steps are the assembly of the component tiles, inverse compo-
nent transformation (if required), and DC level shifting. For irreversible coding, the 
inverse component transformation is

 

I x y Y x y Y x y

I x y Y x y Y x y
0 0 2

1 0 1

1 402

0 34413

, , . ,

, , . ,
( ) = ( ) + ( )
( ) = ( ) ( )− −− 0 71414

1 772
2

2 0 1

. ,

, , . ,

Y x y

I x y Y x y Y x y
( )

( ) = ( ) + ( )
 (8-67)

and the transformed pixels are shifted by + −2 1Ssiz .

EXAMPLE 8.28 :  A comparison of JPEG-2000 wavelet-based coding and JPEG DCT-based compression.

Figure 8.46 shows four JPEG-2000 approximations of the monochrome image in Figure 8.9(a). Succes-
sive rows of the figure illustrate increasing levels of compression, including C = 25, 52, 75, and 105. The 
images in column 1 are decompressed JPEG-2000 encodings. The differences between these images 
and the original image [see Fig. 8.9(a)] are shown in the second column, and the third column contains 
a zoomed portion of the reconstructions in column 1. Because the compression ratios for the first two 
rows are virtually identical to the compression ratios in Example 8.18, these results can be compared 
(both qualitatively and quantitatively) to the JPEG transform-based results in Figs. 8.29(a) through (f).

Quantization as defined 
earlier in the chapter is 
irreversible. The term 
“inverse quantized” does 
not mean that there is 
no information loss. This 
process is lossy except 
for the case of reversible 
JPEG-2000 compression, 
where mb = 0,  Rb b= e ,  
and �b = 1.
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FIGURE 8.46  Four JPEG-2000 approximations of Fig. 8.9(a). Each row contains a result after compression and recon-
struction, the scaled difference between the result and the original image, and a zoomed portion of the recon-
structed image. (Compare the results in rows 1 and 2 with the JPEG results in Fig. 8.29.).

DIP4E_GLOBAL_Print_Ready.indb   623 6/16/2017   2:11:32 PM



624    Chapter 8  Image Compression and Watermarking

A visual comparison of the error images in rows 1 and 2 of Fig. 8.46 with the corresponding images 
in Figs. 8.29(b) and (e) reveals a noticeable decrease of error in the JPEG-2000 results—3.86 and 5.77 
intensity levels, as opposed to 5.4 and 10.7 intensity levels for the JPEG results. The computed errors 
favor the wavelet-based results at both compression levels. Besides decreasing reconstruction error, 
wavelet coding dramatically increases (in a subjective sense) image quality. Note that the blocking arti-
fact that dominated the JPEG results [see Figs. 8.29(c) and (f)] is not present in Fig. 8.46. Finally, we 
note that the compression achieved in rows 3 and 4 of Fig. 8.46 is not practical with JPEG. JPEG-2000 
provides useable images that are compressed by more than 100:1, with the most objectionable degrada-
tion being increased image blur.

8.12 DIGITAL IMAGE WATERMARKING  

The methods and standards of Sections 8.2 through 8.11 make the distribution of 
images (in photographs or videos) on digital media and over the Internet practi-
cal. Unfortunately, the images so distributed can be copied repeatedly and without 
error, putting the rights of their owners at risk. Even when encrypted for distribution, 
images are unprotected after decryption. One way to discourage illegal duplication 
is to insert one or more items of information, collectively called a watermark, into 
potentially vulnerable images in such a way that the watermarks are inseparable 
from the images themselves. As integral parts of the watermarked images, they pro-
tect the rights of their owners in a variety of ways, including:

1. Copyright identification. Watermarks can provide information that serves as 
proof of ownership when the rights of the owner have been infringed.

2. User identification or fingerprinting. The identity of legal users can be encoded 
in watermarks and used to identify sources of illegal copies.

3. Authenticity determination. The presence of a watermark can guarantee that an 
image has not been altered, assuming the watermark is designed to be destroyed 
by any modification of the image.

4. Automated monitoring. Watermarks can be monitored by systems that track 
when and where images are used (e.g., programs that search the Web for images 
placed on Web pages). Monitoring is useful for royalty collection and/or the 
location of illegal users.

5. Copy protection. Watermarks can specify rules of image usage and copying (e.g., 
to DVD players).

In this section, we provide a brief overview of digital image watermarking, which is 
the process of inserting data into an image in such a way that it can be used to make 
an assertion about the image. The methods described have little in common with 
the compression techniques presented in the previous sections (although they do 
involve the coding of information). In fact, watermarking and compression are in 
some ways opposites. While the objective in compression is to reduce the amount of 
data used to represent images, the goal in watermarking is to add information and 
data (i.e., watermarks) to them. As will be seen in the remainder of the section, the 
watermarks themselves can be either visible or invisible.

8.12
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A visible watermark is an opaque or semi-transparent subimage or image that is 
placed on top of another image (i.e., the image being watermarked) so that it is obvi-
ous to the viewer. Television networks often place visible watermarks (fashioned 
after their logos) in the upper or lower right-hand corner of the television screen. As 
the following example illustrates, visible watermarking typically is performed in the 
spatial domain.

EXAMPLE 8.29 :  A simple visible watermark.

The image in Fig. 8.47(b) is the lower right-hand quadrant of the image in Fig. 8.9(a) with a scaled ver-
sion of the watermark in Fig. 8.47(a) overlaid on top of it. Letting fw  denote the watermarked image, we 
can express it as a linear combination of the unmarked image f and watermark w  using

 f fw w= ( ) +1 − a a  (8-68)

where constant a  controls the relative visibility of the watermark and the underlying image. If a  is 1, 
the watermark is opaque and the underlying image is completely obscured. As a  approaches 0, more of 
the underlying image and less of the watermark is seen. In general, 0 1< ≤a ; in Fig. 8.47(b), a = 0 3. . Fig-
ure 8.47(c) is the computed difference (scaled in intensity) between the watermarked image in (b) and 
the unmarked image in Fig. 8.9(a). Intensity 128 represents a difference of 0. Note that the underlying 
image is clearly visible through the “semi-transparent” watermark. This is evident in both Fig. 8.47(b) 
and the difference image in Fig. 8.47(c).

Unlike the visible watermark of the previous example, invisible watermarks can-
not be seen with the naked eye. They are imperceptible but can be recovered with an 
appropriate decoding algorithm. Invisibility is assured by inserting them as visually 
redundant information [information that the human visual system ignores or cannot 

b
a

c

FIGURE 8.47
A simple visible 
watermark:  
(a) watermark;  
(b) the water-
marked image; 
and  
(c) the  
difference 
between the 
watermarked 
image and the 
original (non-
watermarked) 
image.

Digital Image
Processing
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perceive (see Section 8.1)]. Figure 8.48(a) provides a simple example. Because the 
least significant bits of an 8-bit image have virtually no effect on our perception of 
the image, the watermark from Fig. 8.47(a) was inserted or “hidden” in its two least 
significant bits. Using the notation introduced above, we let

 f
f

w

w
= ⎛

⎝⎜
⎞
⎠⎟

+4
4 64

 (8-69)

and use unsigned integer arithmetic to perform the calculations. Dividing and mul-
tiplying by 4 sets the two least significant bits of f to 0, dividing w by 64 shifts its two 
most significant bits into the two least significant bit positions, and adding the two 
results generates the LSB watermarked image. Note that the embedded watermark 
is not visible in Fig. 8.48(a). By zeroing the most significant 6 bits of this image and 
scaling the remaining values to the full intensity range, however, the watermark can 
be extracted as in Fig. 8.48(b).

An important property of invisible watermarks is their resistance to both acci-
dental and intentional attempts to remove them. Fragile invisible watermarks 
are destroyed by any modification of the images in which they are embedded. In 
some applications, like image authentication, this is a desirable characteristic. As 
Figs. 8.48(c) and (d) show, the LSB watermarked image in Fig. 8.48(a) contains a 
fragile invisible watermark. If the image in (a) is compressed and decompressed 
using lossy JPEG, the watermark is destroyed. Figure 8.48(c) is the result after com-

ba
dc

FIGURE 8.48
A simple invis-
ible watermark: 
(a) watermarked 
image;  
(b) the extracted 
watermark;  
(c) the water-
marked image 
after high quality 
JPEG compres-
sion and decom-
pression; and  
(d) the extracted 
watermark  
from (c).
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pressing and decompressing Fig. 8.48(a); the rms error is 2.1 bits. If we try to extract 
the watermark from this image using the same method as in (b), the result is unintel-
ligible [see Fig. 8.48(d)]. Although lossy compression and decompression preserved 
the important visual information in the image, the fragile watermark was destroyed.

Robust invisible watermarks are designed to survive image modification, whether 
the so-called attacks are inadvertent or intentional. Common inadvertent attacks 
include lossy compression, linear and nonlinear filtering, cropping, rotation, resam-
pling, and the like. Intentional attacks range from printing and rescanning to adding 
additional watermarks and/or noise. Of course, it is unnecessary to withstand attacks 
that leave the image itself unusable.

Figure 8.49 shows the basic components of a typical image watermarking system. 
The encoder in Fig. 8.49(a) inserts watermark wi  into image fi producing water-
marked image f

iw ; the complementary decoder in (b) extracts and validates the 
presence of wi  in watermarked input f

iw  or unmarked input fj . If wi  is visible, the 
decoder is not needed. If it is invisible, the decoder may or may not require a copy 
of fi and wi  [shown in blue in Fig. 8.49(b)] to do its job. If fi and/or wi  are used, the 
watermarking system is known as a private or restricted-key system; if not, it is a 
public or unrestricted-key system. Because the decoder must process both marked 
and unmarked images, w∅  is used in Fig. 8.49(b) to denote the absence of a mark. 
Finally, we note that to determine the presence of wi  in an image, the decoder must 
correlate extracted watermark wj  with wi  and compare the result to a predefined 
threshold. The threshold sets the degree of similarity that is acceptable for a “match.”

EXAMPLE 8.30 :  A DCT-based invisible robust watermark.

Mark insertion and extraction can be performed in the spatial domain, as in the previous examples, 
or in the transform domain. Figures 8.50(a) and (c) show two watermarked versions of the image in 
Fig. 8.9(a) using the DCT-based watermarking approach outlined here (Cox et al. [1997]):

1. Compute the 2-D DCT of the image to be watermarked.
2. Locate its K largest coefficients, c c cK1 2, , , ,…  by magnitude.
3. Create a watermark by generating a K-element pseudo-random sequence of numbers, v v v1 2, , , ,… K  

taken from a Gaussian distribution with mean m = 0 and variance s2 1= . (Note: A pseudo-random 
number sequence approximates the properties of random numbers. It is not truly random because 
it depends on a predetermined initial value.)

4. Embed the watermark from Step 3 into the K largest DCT coefficients from Step 2 using the fol-
lowing equation

 ′ = ⋅ +c c i Ki i i( )1 1av ≤ ≤  (8-70)

for a specified constant a > 0 (that controls the extent to which vi  alters ci). Replace the original 
ci with the computed ′ci  from Eq. (8-70). (For the images in Fig. 8.50, a = 0 1.  and K = 1000.)

5. Compute the inverse DCT of the result from Step 4.

By employing watermarks made from pseudo-random numbers and spreading them across an image’s 
perceptually significant frequency components, a  can be made small, reducing watermark visibility. At 
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the same time, watermark security is kept high because (1) the watermarks are composed of pseudo-
random numbers with no obvious structure, (2) the watermarks are embedded in multiple frequency 
components with spatial impact over the entire 2-D image (so their location is not obvious) and 
(3) attacks against them tend to degrade the image as well (i.e., the image’s most important frequency  
components must be altered to affect the watermarks).

Figures 8.50(b) and (d) make the changes in image intensity that result from the pseudo-random 
numbers that are embedded in the DCT coefficients of the watermarked images in Figs. 8.50(a) and (c) 

ba
dc

FIGURE 8.50
(a) and (c) Two 
watermarked 
versions of 
Fig. 8.9(a);  
(b) and (d) 
the differences 
(scaled in inten-
sity) between 
the watermarked 
versions and the 
unmarked image. 
These two images 
show the inten-
sity contribution 
(although scaled 
dramatically) of 
the pseudo- 
random water-
marks on the 
original image.
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FIGURE 8.49
A typical image 
watermarking  
system:  
(a) encoder;  
(b) decoder.
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visible. Obviously, the pseudo-random numbers must have an effect (even if too small to see) on the 
watermarked images. To display the effect, the images in Figs. 8.50(a) and (c) were subtracted from the 
unmarked image in Fig. 8.9(a) and scaled in intensity to the range [0, 255]. Figures 8.50(b) and (d) are 
the resulting images; they show the 2-D spatial contributions of the pseudo-random numbers. Because 
they have been scaled, however, you cannot simply add these images to the image in Fig. 8.9(a) and 
get the watermarked images in Figs. 8.50(a) and (c). As can be seen in Figs. 8.50(a) and (c), their actual 
intensity perturbations are small to negligible.

To determine whether a particular image is a copy of a previously watermarked image with water-
mark v v v1 2, , ,… K  and DCT coefficients c c cK1 2, , , ,…  we use the following procedure:

1. Compute the 2-D DCT of the image in question.
2. Extract the K DCT coefficients (in the positions corresponding to c c cK1 2, , ,…  of Step 2 in the 

watermarking procedure) and denote the coefficients as ˆ , ˆ , , ˆ .c c cK1 2 …  If the image in question is the 
previously watermarked image (without modification), ĉ ci i= ′  for 1 ≤ ≤i K. If it is a modified copy 
of the watermarked image (i.e., it has undergone some sort of attack), ĉ ci i≈ ′  for 1 ≤ ≤i K (the ĉi  
will be approximations of the ′ci ). Otherwise, the image in question will be an unmarked image or an 
image with a completely different watermark, and the ĉi  will bear no resemblance to the original ˆ .ci

3. Compute watermark ˆ , ˆ , , ˆv v v1 2 … K  using

 ˆ
ˆ

v
a

i
i i

i

c c

c
i k=

−
≤ ≤for 1  (8-71)

Recall that watermarks are sequences of pseudo-random numbers.

4. Measure the similarity of ˆ , ˆ , , ˆv v v1 2 … K  (from Step 3) and v v v1 2, , ,… K  (from Step 3 of the water-
marking procedure) using a metric such as the correlation coefficient

 g

v v v v

v v v v
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≤ ≤=
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∑
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1
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11

1  (8-72)

where v  and v̂  are the means of the two K-element watermarks. (Note: Correlation coefficients 
are discussed in detail in Section 12.3.)

5. Compare the measured similarity, g, to a predefined threshold, T, and make a binary detection deci-
sion:

 D
T

=
⎧
⎨
⎩

1

0

if 

otherwise

g ≥
 (8-73)

In other words, D = 1 indicates that watermark v v v1 2, , ,… K  is present (with respect to the speci-
fied threshold, T); D = 0 indicates that it was not.

Using this procedure, the original watermarked image in Fig. 8.50(a), measured against itself, yields a 
correlation coefficient of 0.9999, i.e., g = 0 9999. . It is an unmistakable match. In a similar manner, the 
image in Fig. 8.50(b), when measured against the image in Fig. 8.50(a), results in a g of 0.0417. It could 
not be mistaken for the watermarked image in Fig. 8.50(a) because the correlation coefficient is so low.
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To conclude the section, we note that the DCT-based watermarking approach of the previous 
example is fairly resistant to watermark attacks, partly because it is a private or restricted-key method. 
Restricted-key methods are always more resilient than their unrestricted-key counterparts. Using the 
watermarked image in Fig. 8.50(a), Fig. 8.51 illustrates the ability of the method to withstand a variety 
of common attacks. As can be seen in the figure, watermark detection is quite good over the range of 
attacks that were implemented; the resulting correlation coefficients (shown under each image in the 
figure) vary from 0.3113 to 0.9945. When subjected to a high quality but lossy (resulting in an rms error 
of 7 intensities) JPEG compression and decompression, g = 0 9945. . Even when the compression and 
reconstruction yields an rms error of 10 intensity levels, g = 0 7395. ; and the usability of this image has 
been significantly degraded. Significant smoothing by spatial filtering and the addition of Gaussian noise 
do not reduce the correlation coefficient below 0.8230. However, histogram equalization reduces g to 
0.5210; and rotation has the largest effect; reducing g to 0.3313. All attacks, except for the lossy JPEG 
compression and reconstruction in Fig. 8.51(a), have significantly reduced the usability of the original 
watermarked image.

Summary, References, and Further Reading  
The principal objectives of this chapter were to present the theoretic foundation of digital image compression, to 
describe the most commonly used compression methods, and to introduce the related area of digital image water-
marking. Although the level of the presentation is introductory in nature, the references provide an entry into the 
extensive body of literature dealing with the topics discussed. As evidenced by the international standards listed 
in Tables 8.3 through 8.5, compression plays a key role in document image storage and transmission, the Internet, 
and commercial video distribution (e.g., DVDs). It is one of the few areas of image processing that has received a 
sufficiently broad commercial appeal to warrant the adoption of widely accepted standards. Image watermarking is 
becoming increasingly important as more and more images are distributed in compressed digital form.

The introductory material of the chapter, which is generally confined to Section 8.1, is basic to image compres-
sion, and may be found in one form or another in most of the general image processing books cited at the end of 
Chapter 1. For additional information on the human visual system, see Netravali and Limb [1980], as well as Huang 
[1966], Schreiber and Knapp [1958], and the references cited at the end of Chapter 2. For more on information 
theory, see the book website or Abramson [1963], Blahut [1987], and Berger [1971]. Shannon’s classic paper, “A 
Mathematical Theory of Communication” [1948], lays the foundation for the area and is another excellent refer-
ence. Subjective fidelity criteria are discussed in Frendendall and Behrend [1960]. Throughout the chapter, a variety 
of compression standards are used in examples. Most of them were implemented using Adobe Photoshop (with 
freely available compression plug-ins) and/or MATLAB, which is described in Gonzalez et al. [2004]. Compression 
standards, as a rule, are lengthy and complex; we have not attempted to cover any of them in their entirety. For more 
information on a particular standard, see the published documents of the appropriate standards organization—the 
International Standards Organization, International Electrotechnical Commission, and/or the International Tele-
communications Union.

The lossy and error-free compression techniques described in Sections 8.2 through 8.11 and watermarking tech-
niques in Section 8.12 are, for the most part, based on the original papers cited in the text. The algorithms covered 
are representative of the work in this area, but are by no means exhaustive. The material on LZW coding has its 
origins in the work of Ziv and Lempel [1977, 1978]. The material on arithmetic coding follows the development in 
Witten, Neal, and Cleary [1987]. One of the more important implementations of arithmetic coding is summarized in 
Pennebaker et al. [1988]. For a good discussion of lossless predictive coding, see the tutorial by Rabbani and Jones 
[1991]. The adaptive predictor of Eq. (8-55) is from Graham [1958]. For more on motion compensation, see S. Solari 
[1997], which also contains an introduction to general video compression and compression standards, and Mitchell 
et al. [1997]. The DCT-based watermarking technique in Section 8.12 is based on the paper by Cox et al. [1997]. For 
more on watermarking, see the books by Cox et al. [2001] and Parhi and Nishitani [1999]. See also the paper by S. 
Mohanty [1999].
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ba c
ed f

FIGURE 8.51  Attacks on the watermarked image in Fig. 8.50(a): (a) lossy JPEG compression and decompression 
with an rms error of seven intensity levels; (b) lossy JPEG compression and decompression with an rms error of 10 
intensity levels (note the blocking artifact); (c) smoothing by spatial filtering; (d) the addition of Gaussian noise;  
(e) histogram equalization; and (f) rotation. Each image is a modified version of the watermarked image in 
Fig. 8.50(a). After modification, they retain their watermarks to varying degrees, as indicated by the correlation 
coefficients below each image.

g = 0.9945 g = 0.7395 g = 0.8390

g = 0.8230 g = 0.5210 g = 0.3113

Many survey articles have been devoted to the field of image compression. Noteworthy are Netravali and Limb 
[1980], A. K. Jain [1981], a special issue on picture communication systems in the IEEE Transactions on Communi-
cations [1981], a special issue on the encoding of graphics in the Proceedings of IEEE [1980], a special issue on visual 
communication systems in the Proceedings of the IEEE [1985], a special issue on image sequence compression in 
the IEEE Transactions on Image Processing [1994], and a special issue on vector quantization in the IEEE Transac-
tions on Image Processing [1996]. In addition, most issues of the IEEE Transactions on Image Processing, IEEE 
Transactions on Circuits and Systems for Video Technology, and IEEE Transactions on Multimedia include articles 
on video and still image compression, motion compensation, and watermarking.
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Problems  
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book 
website: www.ImageProcessingPlace.com).

8.1 Answer the following.

(a) Can variable-length coding procedures be used 
to compress a histogram equalized image with 
2n intensity levels? Explain.

(b) Can such an image contain spatial or tempo-
ral redundancies that could be exploited for 
data compression?

8.2 One variation of run-length coding involves  
(1) coding only the runs of 0’s or 1’s (not both) 
and (2) assigning a special code to the start of 
each line to reduce the effect of transmission 
errors. One possible code pair is ( , ),x rk k  where 
xk and rk represent the kth run’s starting coordi-
nate and run length, respectively. The code (0, 0) 
is used to signal each new line.

(a) Derive a general expression for the maxi-
mum average runs per scan line required 
to guarantee data compression when run-
length coding a 2 2n n×  binary image.

(b) Compute the maximum allowable value for 
n = 10.

8.3 Consider an 8-pixel line of intensity data, {108, 
139, 135, 244, 172, 173, 56, 99}. If it is uniformly 
quantized with 4-bit accuracy, compute the rms 
error and rms signal-to-noise ratios for the quan-
tized data.

8.4 * Although quantization results in information loss, 
it is sometimes invisible to the eye. For example, 
when 8-bit pixels are uniformly quantized to 
fewer bits pixel, false contouring often occurs. 
It can be reduced or eliminated using improved 
gray-scale (IGS) quantization. A sum (initially set 
to zero) is formed from the current 8-bit intensity 
value and the four least significant bits of the pre-
viously generated sum. If the four most signifi-
cant bits of the intensity value are 11112, however, 
00002 is added instead. The four most significant 
bits of the resulting sum are used as the coded 
pixel value.

(a) Construct the IGS code for the intensity data 
in Problem 8.3.

(b) Compute the rms error and rms signal-to-
noise ratios for the IGS data.

8.5 A 1024 024× 1  8-bit image with 5.3 bits pixel  
entropy [computed from its histogram using 
Eq. (8-7)] is to be Huffman coded.

(a) What is the maximum compression that can 
be expected?

(b) Will it be obtained?

(c) If a greater level of lossless compression is 
required, what else can be done?

8.6 * The base e unit of information is commonly 
called a nat, and the base-10 information unit is 
called a Hartley. Compute the conversion factors 
needed to relate these units to the base-2 unit of 
information (the bit).

8.7 * Prove that, for a zero-memory source with q sym-
bols, the maximum value of the entropy is log q, 
which is achieved if and only if all source symbols 
are equiprobable. [Hint: Consider the quantity   
log ( )q H z−  and note the inequality ln .x x≤ − 1 ]

8.8 Answer the following.

(a) How many unique Huffman codes are there 
for a three-symbol source?

(b) Construct them.

8.9 Consider the simple 4 8× , 8-bit image:

21   21   21   95   169   243   243   243

21   21   21   95   169   243   243   243

21   21   21   95   169   243   243   243

21   21   21   95   169   243   243   243

(a) Compute the entropy of the image.

(b) Compress the image using Huffman coding.

(c) Compute the compression achieved and the 
effectiveness of the Huffman coding.

(d) * Consider Huffman encoding pairs of pixels 
rather than individual pixels. That is, con-
sider the image to be produced by the sec-
ond extension of the zero-memory source 
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that produced the original image. What is the 
entropy of the image when looked at as pairs 
of pixels?

(e) Consider coding the differences between 
adjacent pixels. What is the entropy of the 
new difference image? What does this tell us 
about compressing the image?

(f) Explain the entropy differences in (a), (d) 
and (e).

8.10 Using the Huffman code in Fig. 8.8, decode the 
encoded string 0101000001010111110100.

8.11 Compute Golomb code G n3( ) for 0 15≤ ≤n .

8.12 Write a general procedure for decoding Golomb 
code G nm( ).

8.13 Why is it not possible to compute the Huffman 
code of the nonnegative integers, n ≥ 0, with the 
probability mass function of Eq. (8-13)?

8.14 Compute exponential Golomb code G nexp( )2  for 
0 15≤ ≤n .

8.15 * Write a general procedure for decoding exponen-
tial Golomb code G nk

exp( ).

8.16 Plot the optimal Golomb coding parameter m as 
a function of r for 0 1< <r  in Eq. (8-14).

8.17 Given a four-symbol source {a, b, c, d} with source 
probabilities {0.1, 0.4, 0.3, 0.2}, arithmetically 
encode the sequence bbadc.

8.18 * The arithmetic decoding process is the reverse 
of the encoding procedure. Decode the message 
0.23355 given the coding model

Symbol Probability
a 0.2
e 0.3
i 0.1
o 0.2
u 0.1
! 0.1

8.19 Use the LZW coding algorithm to encode the 
7-bit ASCII string “aaaaaaaaaaa”.

8.20 * Devise an algorithm for decoding the LZW 
encoded output of Example 8.7. Since the dic-
tionary that was used during the encoding is not 
available, the code book must be reproduced as 
the output is decoded.

8.21 Decode the BMP encoded sequence {3, 4, 5, 6, 0, 3, 
103, 125, 67, 0, 2, 47}.

8.22 Do the following:

(a) Construct the entire 4-bit Gray code.

(b) Create a general procedure for converting a 
Gray-coded number to its binary equivalent 
and use it to decode 0111010100111.

8.23 Use the CCITT Group 4 compression algorithm 
to code the second line of the following two-line 
segment:

01100111001111111100001

11111110001110000111111

Assume that the initial reference element a0 is 
located on the first pixel of the second line seg-
ment. (Note: Employ the CCITT 2-D code table 
from the book website.)

8.24 * Do the following.

(a) List all the members of JPEG DC coefficient 
difference category 3.

(b) Compute their default Huffman codes using 
using the appropriate Huffamn code table 
from the book website.

8.25 How many computations are required to find the 
optimal motion vector of a macroblock of size 
8 8×  using the MAD optimality criterion, single 
pixel precision, and a maximum allowable dis-
placement of 8 pixels? What would it become for 
¼ pixel precision?

8.26 What are the advantages of using B-frames for 
motion compensation?

8.27 * Draw the block diagram of the companion 
motion compensated video decoder for the 
encoder in Fig. 8.36.

8.28 An image whose autocorrelation function is of 
the form of Eq. (8-48) with rh = 0 is to be DPCM 
coded using a second-order predictor.

(a) Form the autocorrelation matrix R and vec-
tor r.

(b) Find the optimal prediction coefficients.

(c) Compute the variance of the prediction error 
that would result from using the optimal 
coefficients.
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8.29 * Derive the Lloyd-Max decision and reconstruc-
tion levels for L = 4 and the uniform probability 
density function

 p s A
A s A( ) =

≤ ≤⎧
⎨
⎪

⎩⎪

1
2
0

−

otherwise

8.30 A radiologist from a well-known research hospital 
recently attended a medical conference at which 
a system that could transmit 4096 096× 4  12-bit 
digitized X-ray images over standard T1 (1.544 
Mb/s) phone lines was exhibited. The system 
transmitted the images in a compressed format 
using a progressive technique in which a reason-
ably good approximation of the X-ray was first 
reconstructed at the viewing station, then refined 
gradually to produce an error-free display. The 
transmission of the data needed to generate the 
first approximation took approximately 5 or 6 s.  
Refinements were made every 5 or 6 s (on the 
average) for the next 1 min, with the first and last 
refinements having the most and least significant 
impact on the reconstructed X-ray, respectively. 
The physician was favorably impressed with the 
system, because she could begin her diagnosis by 
using the first approximation of the X-ray and 
complete it as the error-free reconstruction of 
the X-ray was being generated. Upon returning 
to her office, she submitted a purchase request 
to the hospital administrator. Unfortunately, the 
hospital was on a relatively tight budget, which 
recently had been stretched by the hiring of an 
aspiring young electrical engineering graduate. To 

appease the radiologist, the administrator gave 
the young engineer the task of designing such a 
system. (He thought it might be cheaper to design 
and build a similar system in-house. The hospital 
currently owned some of the elements of such 
a system, but the transmission of the raw X-ray 
data took more than 2 min.) The administrator 
asked the engineer to have an initial block dia-
gram by the afternoon staff meeting. With little 
time and only a copy of Digital Image Processing 
from his recent school days in hand, the engineer 
was able to devise a system conceptually to sat-
isfy the transmission and associated compression 
requirements. Construct a conceptual block dia-
gram of such a system, specifying the compression 
techniques you would recommend.

8.31 Show that the lifting-based wavelet transform 
defined by Eq. (8-61) is equivalent to the tradi-
tional FWT filter bank implementation using the 
coefficients in Table 7.1. Define the filter coeffi-
cients in terms of a, b,  g, d, and K.

8.32 Compute the quantization step sizes of the sub-
bands for a JPEG-2000 encoded image in which 
derived quantization is used and 8 bits are allot-
ted to the mantissa and exponent of the 2LL sub-
band.

8.33 How would you add a visible watermark to an 
image in the frequency domain?

8.34 * Design an invisible watermarking system based 
on the discrete Fourier transform.

8.35 Design an invisible watermarking system based 
on the discrete wavelet transform.
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9 Morphological Image 
Processing

Preview
The word morphology commonly denotes a branch of biology that deals with the form and structure of 
animals and plants. We use the same word here in the context of mathematical morphology as a tool for 
extracting image components that are useful in the representation and description of region shape, such 
as boundaries, skeletons, and the convex hull. We are interested also in morphological techniques for 
pre- or postprocessing, such as morphological filtering, thinning, and pruning.

In the following sections, we will develop a number of fundamental concepts in mathematical mor-
phology, and illustrate how they are applied in image processing. The material in this chapter begins a 
transition from methods whose inputs and outputs are images, to methods whose outputs are image 
attributes, for tasks such as object extraction and description. Morphology is one of several tools devel-
oped in the remainder of the book—such as segmentation, feature extraction, and object recognition—
that form the foundation of techniques for extracting “meaning” from an image. The material in the 
following sections of this chapter deals with methods for processing both binary and grayscale images. 

Upon completion of this chapter, readers should:
 Understand basic concepts of mathematical 

morphology, and how to apply them to digital 
image processing.

 Be familiar with the tools used for binary 
image morphology, including erosion, dilation, 
opening, closing, and how to combine them to 
generate more complex tools.

 Be able to develop algorithms based on bi-
nary image morphology for performing tasks 

such as morphological smoothing, edge de-
tection, extracting connected components, 
and skeletonizing.

 Be familiar with how binary image morphol-
ogy can be extended to grayscale images.

 Be able to develop algorithms for grayscale 
image processing for tasks such as textural 
segmentation, granulometry, computing gray-
scale image gradients, and others.

In form and feature, face and limb, 
I grew so like my brother 
That folks got taking me for him 
And each for one another.

Henry Sambrook Leigh, Carols of Cockayne, The Twins
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636    Chapter 9  Morphological Image Processing

9.1 PRELIMINARIES  

The language of mathematical morphology is set theory. As such, morphology offers 
a unified and powerful approach to numerous image processing problems. When 
working with images, sets in mathematical morphology represent objects in those 
images. In binary images, the sets in question are members of the 2-D integer space 
Z2 , where each element of a set is a tuple (2-D vector) whose coordinates are the 
coordinates of an object (typically foreground) pixel in the image. Grayscale digital 
images can be represented as sets whose components are in Z3. In this case, two 
components of each element of the set refer to the coordinates of a pixel, and the 
third corresponds to its discrete intensity value. Sets in higher dimensional spaces 
can contain other image attributes, such as color and time-varying components.

Morphological operations are defined in terms of sets. In image processing, we use 
morphology with two types of sets of pixels: objects and structuring elements (SE’s). 
Typically, objects are defined as sets of foreground pixels. Structuring elements can 
be specified in terms of both foreground and background pixels. In addition, struc-
turing elements sometimes contain so-called “don’t care” elements, denoted by ×, 
signifying that the value of that particular element in the SE does not matter. In this 
sense, the value can be ignored, or it can be made to fit a desired value in the evalu-
ation of an expression; for example, it might take on the value of a pixel in an image 
in applications in which value matching is the objective. 

Because the images with which we work are rectangular arrays, and sets in general 
are of arbitrary shape, applications of morphology in image processing require that 
sets be embedded in rectangular arrays. In forming such arrays, we assign a back-
ground value to all pixels that are not members of object sets. The top row in Fig. 9.1 
shows an example. On the left are sets in the graphical format you are accustomed 
to seeing in book figures. In the center, the sets have been embedded in a rectangular 
background (white) to form a graphical image.† On the right, we show a digital image 
(notice the grid) which is the format we use for digital image processing. 

Structuring elements are defined in the same manner, and the second row in Fig. 9.1 
shows an example. There is an important difference between the way we represent 
digital images and digital structuring elements. Observe on the top right that there is 
a border of background pixels surrounding the objects, while there is none in the SE. 
As you will learn shortly, structuring elements are used in a form similar to spatial 
convolution kernels (see Fig. 3.28), and the image border just described is similar 
to the padding we discussed in Section 3.4 and 3.5. The operations are different in 
morphology, but the padding and sliding operations are the same as in convolution. 

In addition to the set definitions given in Section 2.6, the concept of set reflection 
and translation are used extensively in morphology in connection with structuring 
elements. The reflection of a set (structuring element) B about its origin, denoted by 
ˆ ,B  is defined as

† Sets are shown as drawings of objects (e.g. squares and triangles) of arbitrary shape. A graphical image contains 
sets that have been embedded into a background to form a rectangular array. When we intend for a drawing to 
be interpreted as a digital image (or structuring element), we include a grid in illustrations that might otherwise 
be ambiguous. Objects in all drawings are shaded, and the background is shown in white. When working with 
actual binary images, we say that objects are foreground pixels. All other pixels are background. 

9.1

Before proceeding, you 
will find it helpful to 
review the discussion in 
Section 2.4 dealing with 
representing images, the 
discussion on  
connectivity in Section 
2.5, and the discussion on 
sets in Section 2.6. 
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ˆ ,B b b B= = − ∈{ }w w for (9-1)

That is, if B is a set of points in 2-D, then B̂ is the set of points in B whose ( , )x y
coordinates have been replaced by ( , ).− −x y  Figure 9.2 shows several examples of 
digital sets (structuring elements) and their reflection. The dot denotes the origin of 
the SE. Note that reflection consists simply of rotating an SE by 180° about its origin, 
and that all elements, including the background and don’t care elements, are rotated. 

The translation of a set B by point z z z= ( )1 2, , denoted B
z( ) , is defined as

B c c b z b B
z( ) = = + ∈{ }, for (9-2)

That is, if B is a set of pixels in 2-D, then B
z( )  is the set of pixels in B whose ( , )x y

coordinates have been replaced by x z y z+ +( )1 2, . This construct is used to trans-
late (slide) a structuring element over an image, and each location perform a set 

Reflection is the same 
operation we performed 
with kernels prior to 
spatial convolution, as 
explained in Section 3.4.

FIGURE 9.1  Top row. Left: Objects represented as graphical sets. Center: Objects embedded in a background to form 
a graphical image. Right: Object and background are digitized to form a digital image (note the grid). Second row: 
Example of a structuring element represented as a set, a graphical image, and finally as a digital SE. 

Objects representeed
as sets Objects represented as

a graphical image Digital image

Structuring element
represented as a set

Structuring element 
represented as a graphical image

Digital 
structuring element

FIGURE 9.2
Structuring  
elements and their 
reflections about the 
origin (the ×’s  are 
don’t care elements, 
and the dots denote 
the origin). Reflec-
tion is rotation by 
180°  of an SE about 
its origin.

× ×

× ××

×

B̂B

×
×

B

×
×

B̂

B B̂

B̂B
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638    Chapter 9  Morphological Image Processing

operation between the structuring element and the area of the image directly under 
it, as we explained in Fig. 3.28 for correlation and convolution. Both reflection and 
translation are defined with respect to the origin of B.

As an introduction to how morphological operations between images and struc-
turing elements are performed, consider Fig 9.3, which shows a simple binary image, I, 
consisting of an object (set) A, shown shaded, and a 3 3×  SE whose elements are 
all 1’s (foreground pixels). The background pixels (0’s) are shown in white. We are 
interested in performing the following morphological operations: (1) form a new 
image, of the same size as I, consisting only of background values initially, (2) trans-
late (slide) B over image I, and (3) at each increment of translation, if B is completely 
contained in A, mark the location of the origin of B as a foreground pixel in the new 
image; otherwise, leave it as a background point. Figure 9.3(c) is the result after the 
origin of B has visited every element of I. We see that, when the origin of B is on 
a border element of A, part of B ceases to be contained in A, thus eliminating that 
location of the origin of B as a possible foreground point of the new image. The net 
result is that the boundary of set A is eroded, as Fig. 9.3(e) shows. Because of the way 
in which we defined the operation, the maximum excursion needed for B in I is when 
the origin of B (which is at its center) is contained in A. With B being of size 3 3× , 
the narrowest background padding we needed was one pixel wide, as shown in Fig. 
9.3(a). By using the smallest border needed for an operation, we keep the drawings 
smaller. In practice, we specify the width of padding based on the maximum dimen-
sions of the structuring elements used, regardless of the operations being performed.

When we use terminology such as “the structuring element B is contained in 
set  A,” we mean specifically that the foreground elements of B overlap only ele-
ments of A. This becomes an important issue when B also contains background and, 
possibly, don’t care elements. Also, we use set A to denote all foreground pixels of I. 
Those foreground elements can be a single object, as in Fig. 9.3, or they can represent 
disjoint subsets of foreground elements, as in the first row of Fig. 9.1. We will discuss 
binary images and structuring elements from Sections 9.2 through 9.7. Then, in Sec-
tion 9.8, we will extend the binary ideas to grayscale images and structuring elements. 

9.2 EROSION AND DILATION  

We begin the discussion of morphology by studying two operations: erosion and 
dilation. These operations are fundamental to morphological processing. In fact, 
many of the morphological algorithms discussed in this chapter are based on these 
two primitive operations.

The reason we gener-
ally specify the padding 
border to be of the same 
dimensions as B, is that 
some morphological 
operations are defined 
for an entire structuring 
element, and cannot be 
interpreted with respect 
to the location of its 
origin.

9.2

ba c

FIGURE 9.3   
(a) A binary image 
containing one object 
(set), A. (b) A struc-
turing element, B.  
(c) Image resulting 
from a morphological 
operation (see text). 

Image I

A

B

Image after morphological operation
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EROSION

Morphological expressions are written in terms of structuring elements and a set, 
A, of foreground pixels, or in terms of structuring elements and an image, I, that 
contains A. We consider the former approach first. With A and B as sets in Z2 , the 
erosion of A by B, denoted A B| , is defined as

 A B z B A
z

| 8= ( ){ }  (9-3)

where A is a set of foreground pixels, B is a structuring element, and the z’s are 
foreground values (1’s). In words, this equation indicates that the erosion of A by B 
is the set of all points z such that B, translated by z, is contained in A. (Remember, 
displacement is defined with respect to the origin of B.) Equation (9-3) is the formu-
lation that resulted in the foreground pixels of the image in Fig. 9.3(c).

As noted, we work with sets of foreground pixels embedded in a set of back-
ground pixels to form a complete image, I. Thus, inputs and outputs of our morpho-
logical procedures are images, not individual sets. We could make this fact explicit 
by writing Eq. (9-3) as

 I B z B A A I A A I
z

c c| 8 8 ´ 8= ( ){ } { } and  (9-4)

where I is a rectangular array of foreground and background pixels. The contents of 
the first braces say the same thing as Eq. (9-3), with the added clarification that A is 
a subset of (i.e., is contained in) I. The union with the operation inside the second set 
of braces “adds” the pixels that are not in subset A (i.e., Ac , which is the set of back-
ground pixels) to the result from the first braces, requiring also that the background 
pixels be part of the rectangle defined by I. In words, all this equation says is that 
erosion of I by B is the set of all points, z, such that B, translated by z, is contained in 
A. The equation also makes explicit that A is contained in I, that the result is embed-
ded in a set of background pixels, and that the entire process is of the same size as I. 

Of course, we do not use the cumbersome notation of Eq. (9-4), which we show 
only to emphasize an important point. Instead, we use the notation A B|  when a 
morphological operation uses only foreground elements, and I B|  when the oper-
ation uses foreground and background elements. This distinction may seem trivial, 
but suppose that we want to perform erosion with Eq. (9-3), using the foreground 
elements of the structuring element in the last column in Fig. 9.2. This structuring 
element also has background elements, but Eq. (9-3) assumes that B only has fore-
ground elements. In fact, erosion is defined only for operations between foreground 
elements, so writing I B|  would be meaningless without the “explanation” embed-
ded in Eq. (9-4). To avoid confusion, we use A in morphological expressions when 
the operation involves only foreground elements, and I when the operation also 
involves background and/or “don’t-care” elements. We also avoid using standard 
morphological symbols like | when working with “mixed” SEs. For example, later 
in Eq. (9-17) we use the symbol in the expression I B z B I

z
= ( ){ },P 8  which has 

the same form as Eq. (9-3), but instead involves an entire image and the mixed-value 
SE in the last column of Fig. 9.2. As you will see, using SE’s with mixed values adds 
considerable power to morphological operations.

Remember, set A can 
represent (be the union 
of) multiple disjoint sets 
of foreground pixels  
(i.e., objects).
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640    Chapter 9  Morphological Image Processing

Returning to our discussion of Eq. (9-3), because the statement that B has to be 
contained in A is equivalent to B not sharing any common elements with the back-
ground (i.e., the set complement of A), we can express erosion equivalently as

 A B z B A
z

c| ¨= ( ) = ∅{ } (9-5)

where, as defined in Section 2.6, ∅  is the empty set.
Figure 9.4 shows an example of erosion. The elements of set A (shaded) are the 

foreground pixels of image I, and, as before, the background is shown in white. The 
solid boundary inside the dashed boundary in Fig. 9.4(c) is the limit beyond which 
further displacements of the origin of B would cause some elements of the struc-
turing element to cease being completely contained in A. Thus, the locus of points 
(locations of the origin of B) within (and including) this boundary constitutes the 
foreground elements of the erosion of A by B. We show the resulting erosion shaded 
in Fig. 9.4(c), and the background as white. Erosion is the set of values of z that sat-
isfy Eqs. (9-3) or (9-5). The boundary of A is shown dashed in Figs. 9.4(c) and (e) as a 
reference; it is not part of the erosion. Figure 9.4(d) shows an elongated structuring 
element, and Fig. 9.4(e) shows the erosion of A by this element. Note that the origi-
nal object was eroded to a line. As you can see, the result of erosion is controlled by 
the shape of the structuring element. In both cases, the assumption is that the image 
was padded to accommodate all excursions of B, and that the result was cropped to 
the same size as the original image, just as we did  with images processed by spatial 
convolution in Chapter 3. 

Equations (9-3) and (9-5) are not the only definitions of erosion (see Problems 9.12 
and 9.13 for two additional, equivalent definitions). However, the former equations 
have the advantage of being more intuitive when the structuring element B is viewed 
as if it were a spatial kernel that slides over a set, as in convolution.

ba c
ed

FIGURE 9.4
(a) Image I,  
consisting of a set 
(object) A, and back-
ground.  
(b) Square SE, B (the 
dot is the origin).  
(c) Erosion of A by 
B (shown shaded in 
the resulting image).  
(d) Elongated SE.  
(e) Erosion of A  
by B. (The erosion 
is a line.) The dotted 
border in (c) and (e) 
is the boundary of A, 
shown for reference.  

d/4
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B
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Image I

A
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ba
dc

FIGURE 9.5
Using erosion to 
remove image 
components.  
(a) A 486 486×  
binary image of a 
wire-bond mask 
in which fore-
ground pixels are 
shown in white. 
(b)–(d) Image 
eroded using 
square structuring 
elements of sizes 
11 11× , 15 15× ,  
and 45 45×   
elements,  
respectively, all 
valued 1.

EXAMPLE 9.1 :  Using erosion to remove image components.

Figure 9.5(a) is a binary image depicting a simple wire-bond mask. As mentioned previously, we gener-
ally show the foreground pixels in binary images in white and the background in black. Suppose that 
we want to remove the lines connecting the center region to the border pads in Fig. 9.5(a). Eroding the 
image (i.e., eroding the foreground pixels of the image) with a square structuring element of size 11 11×  
whose components are all 1’s removed most of the lines, as Fig. 9.5(b) shows. The reason that the two 
vertical lines in the center were thinned but not removed completely is that their width is greater than 
11 pixels. Changing the SE size to 15 15×  elements and eroding the original image again did remove all 
the connecting lines, as Fig. 9.5(c) shows. An alternate approach would have been to erode the image 
in Fig. 9.5(b) again, using the same 11 11× , or smaller, SE. Increasing the size of the structuring element 
even more would eliminate larger components. For example, the connecting lines and the border pads 
can be removed with a structuring element of size 45 45×  elements applied to the original image, as 
Fig. 9.5(d) shows.

We see from this example that erosion shrinks or thins objects in a binary image. In fact, we can 
view erosion as a morphological filtering operation in which image details smaller than the structuring 
element are filtered (removed) from the image. In Fig. 9.5, erosion performed the function of a “line 
filter.” We will return to the concept of morphological filters in Sections 9.4 and 9.8.

DILATION

With A and B as sets in Z2 , the dilation of A by B, denoted as A B{ , is defined as

 A B z B Az{ ¨= ∅{ }P ( )ˆ ≠  (9-6)
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642    Chapter 9  Morphological Image Processing

This equation is based on reflecting B about its origin and translating the reflection 
by z, as in erosion. The dilation of A by B then is the set of all displacements, z, such 
that the foreground elements of B̂ overlap at least one element of A. (Remember, 
z is the displacement of the origin of ˆ .)B  Based on this interpretation, Eq. (9-6) can 
be written equivalently as

 A B z B A Az{ ¨ 8= { }P [( )ˆ ]   (9-7)

Equations (9-6) and (9-7) are not the only definitions of dilation currently in use 
(see Problems 9.14 and 9.15 for two different, yet equivalent, definitions). As with 
erosion, the preceding definitions have the advantage of being more intuitive when 
structuring element B is viewed as a convolution kernel. As noted earlier, the basic 
process of flipping (rotating) B about its origin and then successively displacing it 
so that it slides over set A is analogous to spatial convolution. However, keep in 
mind that dilation is based on set operations and therefore is a nonlinear operation, 
whereas convolution is a sum of products, which is a linear operation.

Unlike erosion, which is a shrinking or thinning operation, dilation “grows” or 
“thickens” objects in a binary image. The manner and extent of this thickening is con-
trolled by the shape and size of the structuring element used. Figure 9.6(a) shows the 
same object used in Fig. 9.4 (the background area is larger to accommodate the dila-
tion), and Fig. 9.6(b) shows a structuring element (in this case B̂ B=  because the SE 
is symmetric about its origin). The dashed line in Fig. 9.6(c) shows the boundary of 
the original object for reference, and the solid line shows the limit beyond which any 
further displacements of the origin of B̂ by z would cause the intersection of B̂ and 
A to be empty. Therefore, all points on and inside this boundary constitute the dila-
tion of A by B. Figure 9.6(d) shows a structuring element designed to achieve more 
dilation vertically than horizontally, and Fig. 9.6(e) shows the dilation achieved with 
this element. 

EXAMPLE 9.2 :  Using dilation to repair broken characters in an image.

One of the simplest applications of dilation is for bridging gaps. Figure 9.7(a) shows the same image 
with broken characters that we studied in Fig. 4.48 in connection with lowpass filtering. The maximum 
length of the breaks is known to be two pixels. Figure 9.7(b) shows a structuring element that can be 
used for repairing the gaps. As noted earlier, we use white (1) to denote the foreground and black (0) for 
the background when working with images. Figure 9.7(c) shows the result of dilating the original image 
with the structuring element. The gaps were bridged. One important advantage of the morphological 
approach over the lowpass filtering method we used to bridge the gaps in Fig. 4.48 is that the morpho-
logical method resulted directly in a binary image. Lowpass filtering, on the other hand, started with 
a binary image and produced a grayscale image that would require thresholding to convert it back to 
binary form (we will discuss thresholding in Chapter 10). Observe that set A in this application consists 
of numerous disjointed objects of foreground pixels.
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ba c
ed

FIGURE 9.6
(a) Image I,  
composed of set 
(object) A and  
background.  
(b) Square SE (the 
dot is the origin).  
(c) Dilation of A by 
B (shown shaded).  
(d) Elongated SE.  
(e) Dilation of A by 
this element. The  
dotted line in (c)  
and (e) is the  
boundary of A, 
shown for  
reference. 
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FIGURE 9.7
(a) Low-resolution 
text showing 
broken characters 
(see magnified 
view).  
(b) Structuring 
element.  
(c) Dilation of (a) 
by (b). Broken 
segments were 
joined.
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DUALITY

Erosion and dilation are duals of each other with respect to set complementation 
and reflection. That is,

 A B A B
c c| {( ) = ˆ  (9-8)

and

 A B A B
c c{ |( ) = ˆ  (9-9)

Equation (9-8) indicates that erosion of A by B is the complement of the dilation of 
Ac  by ˆ ,B  and vice versa. The duality property is useful when the structuring element 
values are symmetric with respect to its origin (as often is the case), so that ˆ .B B=  
Then, we can obtain the erosion of A simply by dilating its background (i.e., dilating 
Ac) with the same structuring element and complementing the result. Similar com-
ments apply to Eq. (9-9).

We proceed to prove formally the validity of Eq. (9-8) in order to illustrate a typi-
cal approach for establishing the validity of morphological expressions. Starting with 
the definition of erosion, it follows that

 A B z B A
c

z

c
| 8( ) = ( ){ }P  

If set ( )B z is contained in A, then it follows that B A
z

c( ) = ∅¨ , in which case the 
preceding expression becomes

 A B z B A
c

z
c

c
| ¨( ) = ( ) = ∅{ }P

But the complement of the set of z’s that satisfy B A
z

c( ) = ∅¨  is the set of z’s such 
that B A

z
c( ) ∅¨ ≠ . Therefore,

 
A B z B A

A B

c

z
c

c

| ¨

{

( ) = ( ) ≠ ∅{ }
=

|

ˆ
 

where the last step follows from the definition of dilation in Eq. (9-6) and its equiva-
lent form in Eq. (9-7). This concludes the proof. A similar line of reasoning can be 
used to prove Eq. (9-9) (see Problem 9.16).

9.3 OPENING AND CLOSING  

As you saw in the previous section, dilation expands the components of a set and 
erosion shrinks it. In this section, we discuss two other important morphological 
operations: opening and closing. Opening generally smoothes the contour of an 
object, breaks narrow isthmuses, and eliminates thin protrusions. Closing also tends 

9.3
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9.3  Opening and Closing    645

to smooth sections of contours, but, as opposed to opening, it generally fuses narrow 
breaks and long thin gulfs, eliminates small holes, and fills gaps in the contour.

The opening of set A by structuring element B, denoted by A B� , is defined as

 A B A B B� = ( )| { (9-10)

Thus, the opening A by B is the erosion of A by B, followed by a dilation of the result 
by B.

Similarly, the closing of set A by structuring element B, denoted A B� , is defined 
as

 A B A B B� = ( ){ | (9-11)

which says that the closing of A by B is simply the dilation of A by B, followed by 
erosion of the result by B.

Equation (9-10) has a simple geometrical interpretation: The opening of A by B is 
the union of all the translations of B so that B fits entirely in A. Figure 9.8(a) shows 
an image containing a set (object) A and Fig. 9.8(b) is a solid, circular structuring ele-
ment, B. Figure 9.8(c) shows some of the translations of B such that it is contained 
within A, and the set shown shaded in Fig. 9.8(d) is the union of all such possible 
translations. Observe that, in this case, the opening is a set composed of two disjoint 
subsets, resulting from the fact that B could not fit in the narrow segment in the cen-
ter of A. As you will see shortly, the ability to eliminate regions narrower than the 
structuring element is one of the key features of morphological opening. 

The interpretation that the opening of A by B is the union of all the translations 
of B such that B fits entirely within A can be written in equation form as 

 A B B B A
z z

� ∪= ( ) ( ){ }8  (9-12)

where ´  denotes the union of the sets inside the braces.

When a circular  
structuring element is 
used for opening, the 
analogy is often made of 
the shape of the opening 
being determined by a 
“rolling ball” reaching as 
far as it can on the inner  
boundary of a set. For 
morphological closing 
the ball rolls outside, and 
the shape of the closing 
is determined by how far 
the ball can reach into 
the boundary.

ba
dc

FIGURE 9.8
(a) Image I, 
composed of set 
(object) A and 
background.  
(b) Structuring  
element, B. 
(c) Translations 
of B while being 
contained in A. (A 
is shown dark for  
clarity.)  
(d) Opening of A 
by B.

A

B

A B�

Image, I
Background
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646    Chapter 9  Morphological Image Processing

Closing has a similar geometric interpretation, except that now we translate B 
outside A. The closing is then the complement of the union of all translations of B 
that do not overlap A. Figure 9.9 illustrates this concept. Note that the boundary of 
the closing is determined by the furthest points B could reach without going inside 
any part of A. Based on this interpretation, we can write the closing of A by B as

  A B B B A
z z

c
� = ( ) ( ) = ∅{ }⎡

⎣
⎤
⎦¨∪  (9-13)

EXAMPLE 9.3 :  Morphological opening and closing.

Figure 9.10 shows in more detail the process and properties of opening and closing. Unlike Figs. 9.8 
and 9.9, whose main objectives are overall geometrical interpretations, this figure shows the individual 
processes and also pays more attention to the relationship between the scale of the final results and the 
size of the structuring elements. 

Figure 9.10(a) shows an image containing a single object (set) A, and a disk structuring element. 
Figure 9.10(b) shows various positions of the structuring element during erosion. This process resulted 
in the disjoint set in Fig. 9.10(c). Note how the bridge between the two main sections was eliminated. 
Its width was thin in relation to the diameter of the structuring element, which could not be completely 
contained in this part of the set, thus violating the definition of erosion. The same was true of the two 
rightmost members of the object. Protruding elements where the disk did not fit were eliminated. Figure 
9.10(d) shows the process of dilating the eroded set, and Fig. 9.10(e) shows the final result of opening. 
Morphological opening removes regions that cannot contain the structuring element, smoothes object 
contours, breaks thin connections, and removes thin protrusions. 

Figures 9.10(f) through (i) show the results of closing A with the same structuring element. As with 
opening, closing also smoothes the contours of objects. However, unlike opening, closing tends to join 
narrow breaks, fills long thin gulfs, and fills objects smaller than the structuring element. In this example, 
the principal result of closing was that it filled the small gulf on the left of set A.

ba
dc

FIGURE 9.9
(a) Image I,  
composed of set 
(object) A, and 
background.  
(b) Structuring  
element B. 
(c) Translations of B 
such that B does not 
overlap any part  
of A. (A is shown 
dark for clarity.)  
(d) Closing of A 
by B.

B

A B�

Background

A

Image, I
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9.3  Opening and Closing    647

As with erosion and dilation, opening and closing are duals of each other with 
respect to set complementation and reflection: 

A B A B
c c

� �( ) = ( )ˆ (9-14)

and

A B A B
c c

� �( ) = ( )ˆ (9-15)

We leave the proof of these equations as an exercise (see Problem 9.20).

a
b c

ed
f
h

g
i

FIGURE 9.10
Morphological 
opening and  
closing.  
(a) Image I, 
composed of a 
set (object ) A 
and background; 
a solid, circular 
structuring element 
is shown also. (The 
dot is the origin.)  
(b) Structuring  
element in  
various positions. 
(c)-(i) The  
morphological 
operations used to 
obtain the opening 
and closing.

AA

Background Image, I

A � B

A � B

A � B � (A � B) � B

A � B � (A � B) � B

B
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648    Chapter 9  Morphological Image Processing

Morphological opening has the following properties:

(a) A B�  is a subset of A.
(b) If C is a subset of D, then C B�  is a subset of D B� .
(c) ( ) .A B B A B� � �=

Similarly, closing satisfies the following properties:

(a) A is a subset of A B� .
(b) If C is a subset of D, then C B�  is a subset of D B� .
(c) ( ) .A B B A B� � �=

Note from condition (c) in both cases that multiple openings or closings of a set have 
no effect after the operation has been applied once.

EXAMPLE 9.4 : Using opening and closing for morphological filtering.

Morphological operations can be used to construct filters similar in concept to the spatial filters discussed 
in Chapter 3. The binary image in Fig. 9.11(a) shows a section of a fingerprint corrupted by noise. In 
terms of our previous notation, A is the set of all foreground (white) pixels, which includes objects of 
interest (the fingerprint ridges) as well as white specks of random noise. The background is black, as 
before. The noise manifests itself as white specks on a dark background and dark specks on the white 
components of the fingerprint. The objective is to eliminate the noise and its effects on the print, while 
distorting it as little as possible. A morphological filter consisting of an opening followed by a closing can 
be used to accomplish this objective.

Figure 9.11(b) shows the structuring element we used. The rest of Fig. 9.11 shows the sequence of 
steps in the filtering operation. Figure 9.11(c) is the result of eroding A by B. The white speckled noise 
in the background was eliminated almost completely in the erosion stage of opening because in this case 
most noise components are smaller than the structuring element. The size of the noise elements (dark 
spots) contained within the fingerprint actually increased in size. The reason is that these elements are 
inner boundaries that increase in size as objects are eroded. This enlargement is countered by perform-
ing dilation on Fig. 9.11(c). Figure 9.11(d) shows the result.

The two operations just described constitute the opening of A by B. We note in Fig. 9.11(d) that the 
net effect of opening was to reduce all noise components in both the background and the fingerprint 
itself. However, new gaps between the fingerprint ridges were created. To counter this undesirable effect, 
we perform a dilation on the opening, as shown in Fig. 9.11(e). Most of the breaks were restored, but the 
ridges were thickened, a condition that can be remedied by erosion. The result, shown in Fig. 9.11(f), is 
the closing of the opening of Fig. 9.11(d). This final result is remarkably clean of noise specks, but it still 
shows some specks of noise that appear as single pixels. These could be eliminated by methods we will 
discuss later in this chapter.

9.4 THE HIT-OR-MISS TRANSFORM  

The morphological hit-or-miss transform (HMT) is a basic tool for shape detection. 
Let I be a binary image composed of foreground (A) and background  pixels, respec-
tively. Unlike the morphological methods discussed thus far, the HMT utilizes two 

9.4
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[(A � B) � B] � B � (A � B) � B(A � B) � B

(A � B) � B � A � B

A � B

B1 1 1
1 1 1
1 1 1

A (foreground pixels)ba
d c

fe

FIGURE 9.11
(a) Noisy image. 
(b) Structuring  
element.  
(c) Eroded image. 
(d) Dilation of the 
erosion (opening 
of A). (e) Dilation 
of the opening. 
(f) Closing of the 
opening. 
(Original image 
courtesy of the 
National Institute 
of Standards and 
Technology.)

structuring elements: B1, for detecting shapes in the foreground, and B2 , for detect-
ing shapes in the background. The HMT of image I is defined as

 
I B z A B A

A B A B

B
z z

c

c

1 2 1 2

1 2

, = ( ) ( ){ }
= ( ) ( )

P 8 8

| ¨ |

 and 
  (9-16)

where the second line follows from the definition of erosion in Eq. (9-3). In words, 
this equation says that the morphological HMT is the set of translations, z, of struc-
turing elements B1 and B2  such that, simultaneously, B1 found a match in the fore-
ground (i.e., B1 is contained in A) and B2  found a match in the background (i.e., B2  
is contained in Ac ). The word “simultaneous” implies that z is the same translation 
of both structuring elements. The word “miss” in the HMT arises from the fact that 
B2  finding a match in Ac  is the same as B2  not finding (missing) a match in A.

Figure 9.12 illustrates the concepts just introduced. Suppose that we want to find 
the location of the origin of object (set) D in image I. Here, A is the union of all 
object sets, so D is a subset of A. The need for two structuring elements capable 

With reference to the  
explanation of Eq. (9-4), 
we show the  
morphological HMT  
operation working 
directly on image I, to 
make it explicit that the 
structuring elements 
work on sets of  
foreground and back-
ground pixels  
simultaneously. 
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650    Chapter 9  Morphological Image Processing

of detecting properties of both the foreground and background becomes immedi-
ately obvious. All three objects are composed of foreground pixels, and one way of 
explaining why they appear as different shapes is because each occupies a different 
area of the background. In other words, the nature of a shape is determined by the 
geometrical arrangement of both foreground and background pixels.

Figure 9.12(a) shows that I is composed of foreground (A) and background pixels. 
Figure 9.12(b) is I c, the complement of I. The foreground of I c  is defined as the set of 
pixels in Ac, and the background is the union of the complement of the three objects. 
Figure 9.12(c) shows the two structuring elements needed to detect D. Element B1 is 
equal to D itself. As Fig. 9.12(d) shows, the erosion of A by B1 contains a single point: 
the origin of D, as desired, but it also contains parts of object C. 

ba
dc
fe

FIGURE 9.12
(a) Image  
consisting of a 
foreground (1’s) 
equal to the union, 
A, of set of objects, 
and a background 
of 0’s.  
(b)  Image with 
its foreground 
defined as Ac .  
(c) Structuring ele-
ments designed to 
detect object D.  
(d) Erosion of A 
by B1. 
(e) Erosion of Ac  
by B2. 
(f) Intersection of 
(d) and (e),  
showing the  
location of the 
origin of D, as 
desired. The dots 
indicate the origin 
of their respective  
components. Each 
dot is a single 
pixel.
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Structuring element B2  is designed to detect D in I c . Because D is composed of 
background elements in I c, and erosion works with foreground elements, B2  has to 
be designed to detect the border of D, which is composed of foreground pixels in I c. 
The SE in Fig. 9.12(c) does precisely this. It consists of a rectangle of foreground ele-
ments one pixel thick. The size of the rectangle is such that is encloses the size of D. 
Figure 9.12(e) shows (shaded) the erosion of the foreground of I c  by B2. It contains 
the origin of D, but is also contains parts of sets Ac  and C. (The outer shaded area 
in Fig. 9.12(e) is larger than shown (see Problem 9.25); the result was cropped to 
the same size as image I for consistency.) The only elements that are common in 
Figs. 9.12(d) and (e) is the origin of D, so the intersection of these two sets of ele-
ments gives the location of that point, as desired. Figure 9.12(f) shows the final result. 

The preceding explanation is the classic way of presenting the HMT using erosion, 
which is defined only for foreground pixels. A good question at this point is: Why 
not try to detect D directly in image I using a single structuring element, instead 
of going thorough such a laborious process? The answer is that it is possible to do 
so, but not in the “traditional” context of erosion the way we defined it in Eqs. (9-3) 
and (9-5). In order to detect D directly in image I, we would have to be able to pro-
cess foreground and background pixels simultaneously, rather than processing just 
foreground pixels, as required by the definition of erosion. 

To show how this can be done for the example in Fig. 9.12, we define a structuring 
element, B, identical to D, but having in addition a border of background elements 
with a width of one pixel. We can use a structuring element formed in such a way to 
restate the HMT as

 I B z B I
z

= ( ){ }P 8  (9-17)

The form is the same as Eq. (9-3), but now we test to see if ( )B z is a subset of image I,  
which is composed of both foreground and background pixels. This formulation is 
general, in the sense that B can be structured to detect any arrangement of pixels in 
image I, as Figs. 9.13 and 9.14 will illustrate. 

Figure 9.13 shows graphically the same solution as Fig. 9.12(f), but using the 
single structuring element discussed in the previous paragraph. Figure 9.14 shows 
several examples based on using Eq. (9-17). The first row shows the result of using 
a small SE composed of both foreground (shaded) and background elements. This 
SE is designed to detect one-pixel holes (i.e., one background pixel surrounded by a 
connected border of foreground pixels) contained in image I.  The SE in the second 
row is capable of detecting the foreground corner pixel of the top, right corner of 
the object in I. Using this SE in Eq. (9-17) yielded the image on the right. As you 
can see, the correct pixel was identified. The last row of Fig. 9.14 is more interest-
ing, as it shows a structuring element composed of foreground, background, and 

“don’t care” elements which, as mentioned earlier, we denote by ×’s. You can think 
of the value of a don’t care element as always matching its corresponding pixel in 
an image. In this example, when the SE is centered on the top, right corner pixel, 
the don’t care elements in the top of the SE can be considered to be background, 
and the don’t care elements on the bottom row as foreground, producing a correct 
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match. When the SE is centered on the bottom, right corner pixel, the role of the 
don’t care elements is reversed, again resulting in a correct match. The other border 
pixels between the two corners were similarly detected by considering all don’t care 
elements as foreground. Thus, using don’t care elements increases the flexibility of 
structuring elements to perform multiple roles. 

9.5 SOME BASIC MORPHOLOGICAL ALGORITHMS  

With the preceding discussion as a foundation, we are now ready to consider some 
practical uses of morphology. When dealing with binary images, one of the principal 
applications of morphology is in extracting image components that are useful in the 

9.5

ba c  
FIGURE 9.13 Same solution as in Fig. 9.12, but using Eq. (9-17) with a single structuring element. 
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background pixels
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Image, I
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FIGURE 9.14
Three examples 
of using a single 
structuring  
element and 
Eq. (9-17) to 
detect specific 
features. First 
row: detection 
of single-pixel 
holes. Second 
row: detection of 
an upper-right 
corner. Third row: 
detection of  
multiple features. 
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representation and description of shape. In particular, we consider morphological 
algorithms for extracting boundaries, connected components, the convex hull, and 
the skeleton of a region. We also develop several methods (for region filling, thinning, 
thickening, and pruning) that are used frequently for pre- or post-processing. We 
make extensive use in this section of “mini-images,” designed to clarify the mechan-
ics of each morphological method as we introduce it. These binary images are shown 
graphically with foreground (1’s) shaded and background (0’s) in white, as before.

BOUNDARY EXTRACTION

The boundary of a set A of foreground pixels, denoted by b( ),A  can be obtained by 
first eroding A by a suitable structuring element B, and then performing the set dif-
ference between A and its erosion. That is,

 b( ) ( )A A A B= − |  (9-18)

Figure 9.15 illustrates the mechanics of boundary extraction. It shows a simple binary 
object, a structuring element B, and the result of using Eq. (9-18). The structuring 
element in Fig. 9.15(b) is among the most frequently used, but it is not unique. For 
example, using a 5 5×  structuring element of 1’s would result in a boundary between 
2 and 3 pixels thick. It is understood that the image in Fig. 9.15(a) was padded with 
a border of background elements, and that the results were cropped back to the 
original size after the morphological operations were completed.

EXAMPLE 9.5 :  Boundary extraction.

Figure 9.16 further illustrates the use of Eq. (9-18) using a 3 3×  structuring element of 1’s. As before 
when working with images, we show foreground pixels (1’s) in white and background pixels (0’s) in 
black. The elements of the SE, which are 1’s, also are treated as white. Because of the size of the structur-
ing element used, the boundary in Fig. 9.16(b) is one pixel thick.

HOLE FILLING

As mentioned in the discussion of Fig. 9.14, a hole may be defined as a background 
region surrounded by a connected border of foreground pixels. In this section, we 
develop an algorithm based on set dilation, complementation, and intersection for 

A � B

A B

( ) ( )A A A B= −b |

ba
dc  

FIGURE 9.15
(a) Set, A, of  
foreground pixels.  
(b) Structuring 
element.  
(c) A eroded by B. 
(d) Boundary of A.

DIP4E_GLOBAL_Print_Ready.indb   653 6/16/2017   2:11:53 PM



654    Chapter 9  Morphological Image Processing

filling holes in an image. Let A denote a set whose elements are 8-connected bound-
aries, with each boundary enclosing a background region (i.e., a hole). Given a point 
in each hole, the objective is to fill all the holes with foreground elements (1’s).

We begin by forming an array, X0 , of 0’s (the same size as I, the image containing 
A), except at locations in X0 that correspond to pixels that are known to be holes, 
which we set to 1. Then, the following procedure fills all the holes with 1’s:

 X X B I kk k
c= ( ) =−1 1 2 3{ ¨ , , ,…  (9-19)

where B is the symmetric structuring element in Fig. 9.17(c) . The algorithm termi-
nates at iteration step k if X Xk k= −1. Then, Xk contains all the filled holes. The set 
union of Xk and I contains all the filled holes and their boundaries.

The dilation in Eq. (9-19) would fill the entire area if left unchecked, but the 
intersection at each step with I c limits the result to inside the region of interest. This is 
our first example of how a morphological process can be conditioned to meet a desired 
property. In the current application, the process is appropriately called conditional 
dilation. The rest of Fig. 9.17 illustrates further the mechanics of Eq. (9-19). This exam-
ple only has one hole, but the concept applies to any finite number of holes, assuming 
that a point inside each hole is given (we remove this requirement in Section 9.6).

EXAMPLE 9.6 :  Morphological hole filling.

Figure 9.18(a) shows an image of white circles with black holes. An image such as this might result from 
thresholding into two levels a scene containing polished spheres (e.g., ball bearings). The dark circular 
areas inside the spheres would result from reflections. The objective is to eliminate the reflections by 
filling the holes in the image. Figure 9.18(b) shows the result of filling all the spheres. Because it must be 
known whether black points are background points or sphere inner points (i.e., holes), fully automating 
this procedure requires that additional “intelligence” be built into the algorithm. We will give a fully 
automatic approach in Section 9.6 based on morphological reconstruction (see Problem 9.36 also).

Remember, the dila-
tion of image X by B 
is the dilation of the 
foreground  
elements of X by B.

ba

FIGURE 9.16
(a) A binary  
image. 
(b) Result of 
using Eq. (9-18) 
with the  
structuring  
element in  
Fig. 9.15(b).
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X0 X1 X2

X6 X8

BA I cI

8X I�

cA

ba c
ed f
hg i

FIGURE 9.17
Hole filling. 
(a) Set A (shown 
shaded) contained 
in image I.  
(b) Complement 
of I.  
(c) Structuring  
element B. Only 
the foreground 
elements are  
used in  
computations 
(d) Initial point  
inside hole, set 
to 1.  
(e)–(h) Various 
steps of Eq. (9-19). 
(i) Final result 
[union of (a) and 
(h)].

EXTRACTION OF CONNECTED COMPONENTS

Being able to extract connected components from a binary image is central to many 
automated image analysis applications. Let A be a set of foreground pixels consist-
ing of one or more connected components, and form an image X0 (of the same size 
as I, the image containing A) whose elements are 0’s (background values), except 
at each location known to correspond to a point in each connected component in A, 

Connectivity and  
connected components 
are discussed in  
Section 2.5.

ba

FIGURE 9.18
 (a) Binary image. 
The white dots 
inside the regions 
(shown enlarged 
for clarity) are the 
starting points for 
the hole-filling 
algorithm.  
(b) Result of  
filling all holes.
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B

A X0 X1

X3 X6X2

I

a
b c d
e f g

FIGURE 9.19
(a) Structuring 
element. 
(b) Image  
containing a set 
with one connected 
component. 
(c) Initial array 
containing a 1 in 
the region of the 
connected  
component. 
(d)–(g) Various 
steps in the  
iteration of  
Eq. (9-20)

which we set to 1 (foreground value). The objective is to start with X0 and find all 
the connected components in I. The following iterative procedure accomplishes this:

 X X B I kk k= ( ) =−1 1 2 3{ ¨ , , ,…  (9-20)

where B is the SE in Fig. 9.19(a). The procedure terminates when X Xk k= −1, with 
Xk containing all the connected components of foreground pixels in the image. 
Both Eqs. (9-19) and (9-20) use conditional dilation to limit the growth of set dila-
tion, but Eq. (9-20) uses I instead of I c . This is because here we are looking for 
foreground points, while the objective of (9-19) is to find background points. Figure 
9.19 illustrates the mechanics of Eq. (9-20), with convergence being achieved for 
k = 6. Note that the shape of the structuring element used is based on 8-connec-
tivity between pixels. As in the hole-filling algorithm, Eq. (9-20) is applicable to 
any finite number of connected components contained in I, assuming that a point 
is known in each. See Problem 9.37 for a completely automated procedure that 
removes this requirement.

EXAMPLE 9.7 :  Using connected components to detect foreign objects in packaged food.

Connected components are used frequently for automated inspection. Figure 9.20(a) shows an X-ray 
image of a chicken breast that contains bone fragments. It is important to be able to detect such foreign 
objects in processed foods before shipping. In this application, the density of the bones is such that their 
nominal intensity values are significantly different from the background. This makes extraction of the 
bones from the background a simple matter by using a single threshold (thresholding was introduced in 
Section 3.1 and we will discuss in more detail in Section 10.3). The result is the binary image in Fig. 9.20(b).

The most significant feature in this figure is the fact that the points that remain after thresholding 
are clustered into objects (bones), rather than being scattered. We can make sure that only objects of 
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“significant” size are contained in the binary image by eroding its foreground. In this example, we define 
as significant any object that remains after erosion with a 5 5×  SE of 1’s. Figure 9.20(c) shows the result 
of erosion. The next step is to analyze the size of the objects that remain. We label (identify) these 
objects by extracting the connected components in the image. The table in Fig. 9.20(d) lists the results 
of the extraction. There are 15 connected components, with four of them being dominant in size. This is 
enough evidence to conclude that significant, undesirable objects are contained in the original image. If 
needed, further characterization (such as shape) is possible using the techniques discussed in Chapter 11.

CONVEX HULL

A set, S, of points in the Euclidean plane is said to be convex if and only if a straight 
line segment joining any two points in S lies entirely within S. The convex hull, H, 
of S is the smallest convex set containing S. The convex deficiency of S is defined as 
the set difference H S− . Unlike the Euclidean plane, the digital image plane (see 
Fig. 2.19) only allows points at discrete coordinates. Thus, the sets with which we 
work are digital sets. The same concepts of convexity are applicable to digital sets, 
but the definition of a convex digital set is slightly different. A digital set, A, is said 
to be convex if and only if its Euclidean convex hull only contains digital points 

Connected
component

No. of pixels in
connected comp

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

11
9
9

39
133

1
1

743
7

11
11
9
9

674
85

b
a

dc

FIGURE 9.20
(a) X-ray image of 
a chicken filet with 
bone fragments.  
(b) Thresholded 
image (shown as 
the negative for 
clarity).  
(c) Image eroded 
with a 5 5×  SE 
of 1’s.  
(d) Number of 
pixels in the  
connected  
components of (c). 
(Image (a)  
courtesy of NTB 
Elektronische 
Geraete GmbH, 
Diepholz,  
Germany,  
www.ntbxray.com.)
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658    Chapter 9  Morphological Image Processing

belonging to A. A simple way to visualize if a digital set of foreground points is con-
vex is to join its boundary points by straight (continuous) Euclidean line segments. 
If only foreground points are contained within the set formed by the line segments, 
then the set is convex; otherwise it is not. The definitions of convex hull and convex 
deficiency given above for S, extend directly to digital sets. The following morpho-
logical algorithm can be used to obtain an approximation of the convex hull of a set 
A of foreground pixels, embedded in a binary image, I.

Let B ii , , , , ,= 1 2 3 4  denote the four structuring elements in Fig. 9.21(a). The pro-
cedure consists of implementing the morphological equation

 X X B X i kk
i

k
i i

k
i= ( ) = =− −1 1 1 2 3 4 1 2 3´ , , , , , ,and …  (9-21)

with X Ii
0 = . When the procedure converges using the ith structuring element (i.e., 

when X Xk
i

k
i= −1), we let D Xi

k
i= . Then, the convex hull of A is the union of the four 

results:

 C A Di

i
( ) =

=1

4

∪  (9-22)

Thus, the method consists of iteratively applying the hit-or-miss transform to I with 
B1 until convergence, then letting D Xk

1 1= , where k is the step at which convergence 
occurred. The procedure is repeated with B2 (applied to I) until no further changes 
occur, and so on. The union of the four resulting Di constitutes the convex hull of A. 
The algorithm is initialized with k = 0 and X Ii

0 =  every time that i (i.e., the structur-
ing element) changes. 

Figure 9.21 illustrates the use of Eqs. (9-21) and (9-22). Figure 9.21(a) shows the 
structuring elements used to extract the convex hull. The origin of each element is 
at its center. As before, the × entries indicate “don’t care” elements. Recall that the 
HMT is said to have found a match of structuring element Bi  in a 3 3×  region of 
I, if all the elements of Bi  find corresponding matches in that region. As noted ear-
lier, when computing a match, a “don’t care” element can be interpreted as always 
matching the value of its corresponding element in the image. Note in Fig. 9.21(a) 
that Bi  is a clockwise rotation of Bi−1 by 90°.

Figure 9.21(b) shows a set A for which the convex hull is sought. As before, the 
set is embedded in an array of background elements to form an image, I. Starting 
with X I0

1 =  resulted in the set in Fig. 9.21(c) after five iterations of Eq. (9-21). Then, 
letting X I0

2 =  and again using Eq. (9-21) resulted in the set in Fig. 9.21(d) (con-
vergence was achieved in only two steps in this case). The next two results were 
obtained in the same manner. Finally, forming the union of the sets in Figs. 9.21(c), 
(d), (e), and (f) resulted in the convex hull in Fig. 9.21(g). The contribution of each 
structuring element is highlighted in the composite set shown in Fig. 9.21(h).

One obvious shortcoming of the procedure just discussed is that the convex hull 
can grow beyond the minimum dimensions required to guarantee convexity, thus 
violating the definition of the convex hull. This, in fact, is what happened in this 
case. One simple approach to reduce this growth is to place limits so that it does 
not extend beyond the vertical and horizontal dimensions of set A. Imposing this 
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limitation on the example in Fig. 9.21 resulted in Fig. 9.22(a). Joining the boundary 
pixels of the reduced set (remember, the pixels are the center points of the squares) 
show that no set points lie outside these lines, indicating that the set is convex. By 
inspection, you can see that no points can be deleted from this set without losing 
convexity, so the reduced set is the convex hull of A.

Of course, the limits we used to produce Fig. 9.22 do not constitute a general 
approach for obtaining the minimum convex set enclosing a set in question; it is 
simply an easy-to-implement heuristic. The reason why the convex hull algorithm 
did not yield a closer approximation of the actual convex hull is because of the 
structuring elements used. The SEs in Fig. 9.21(a) “look” only in four orthogonal 
directions. We could achieve greater accuracy by looking in additional directions, 
such as the diagonals, for example. The price paid is increased algorithm complexity 
and a higher computational load.

X0
1 � I

X2
4

X2
2

C(A)

B1

**

*

**

B2

*
**

*
*

B3

**

*

**

B4

*
* *

*
*

B1

B2

B3

B4

AI 1
5X

3
7X

a
b c d

h
e f g

FIGURE 9.21
(a) Structuring 
elements.  
(b) Set A.  
(c)–(f) Results of 
convergence with 
the structuring  
elements shown 
in (a).  
(g) Convex hull. 
(h) Convex hull 
showing the 
contribution of 
each structuring 
element. 
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THINNING

Thinning of a set A of foreground pixels by a structuring element B, denoted A Bz ,
can be defined in terms of the hit-or-miss transform:

 
A B A A B

A A B c

z

¨

= − ( )
= ( )

 (9-23)

where the second line follows from the definition of set difference given in Eq. (2-40). 
A more useful expression for thinning A symmetrically is based on a sequence of 
structuring elements:

 B B B B Bn{ } = { }1 2 3, , , ,…  (9-24)

Using this concept, we now define thinning by a sequence of structuring elements as

 A B A B B Bnz z z z{ } = ( )( )( )( )… …1 2 (9-25)

The process is to thin A by one pass with B1, then thin the result with one pass of B2, 
and so on, until A is thinned with one pass of Bn. The entire process is repeated until 
no further changes occur after one complete pass through all structuring elements. 
Each individual thinning pass is performed using Eq. (9-23).

Figure 9.23(a) shows a set of structuring elements used routinely for thinning 
(note that B i  is equal to B i−1 rotated clockwise by 45°), and Fig. 9.23(b) shows a 
set A to be thinned, using the procedure just discussed. Figure 9.23(c) shows the 
result of thinning A with one pass of B1 to obtain A1. Figure 9.23(c) is the result of 
thinning A1 with B2, and Figs. 9.21(e) through (k) show the results of passes with 
the remaining structuring elements (there were no changes from A7 to A8 or from 
A9 to A11.) Convergence was achieved after the second pass of B6. Figure 9.23(l) 
shows the thinned result. Finally, Fig. 9.23(m) shows the thinned set converted to 
m-connectivity (see Section 2.5 and Problem 9.29) to eliminate multiple paths.

THICKENING

Thickening is the morphological dual of thinning and is defined by the expression

 A B A A B} ´= ( )  (9-26)

As before, we assume 
that the image containing 
A was padded to accom-
modate all excursions  
of B, and that the result 
was cropped. We show 
only A for simplicity.

ba  
FIGURE 9.22
(a) Result of limiting 
growth of the convex 
hull algorithm. 
(b) Straight lines 
connecting the 
boundary points 
show that the new set 
is convex also.

A
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where B is a structuring element suitable for thickening. As in thinning, thickening 
can be defined as a sequential operation:

 A B A B B Bn} } } }{ } = ( )( )( )( )… …1 2  ` (9-27)

The structuring elements used for thickening have the same form as those shown 
in Fig. 9.23(a), but with all 1’s and 0’s interchanged. However, a separate algorithm 
for thickening is seldom used in practice. Instead, the usual procedure is to thin the 
background of the set in question, then complement the result. In other words, to 
thicken a set A we form Ac , thin Ac , and then complement the thinned set to obtain 
the thickening of A. Figure 9.24 illustrates this procedure. As before, we show only 
set A and image I, and not the padded version of I.

Depending on the structure of A, this procedure can result in disconnected points, 
as Fig. 9.24(d) shows. Hence thickening by this method usually is followed by post-
processing to remove disconnected points. Note from Fig. 9.24(c) that the thinned 
background forms a boundary for the thickening process. This useful feature is not 
present in the direct implementation of thickening using Eq. (9-27), and it is one of 
the principal reasons for using background thinning to accomplish thickening.
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*

*

B3

*
*

B4

*

*

B5

* *

B6

*

*

B7

*
*

B8

*

*

Origin

A1 � A � B1 A2 � A1 � B2

A3 � A2 � B3

A6 � A5 � B6 A7 � A6 � B7 A9 � A8 � B1

A12 � A11 � B4 A14 � A13 � B6 A14 converted to
m-connectivity.No more changes after this. 

A4 � A3 � B4 A5 � A4 � B5

(A8 � A7 � B
8
 � A7)

(A11 � A10 � A9)

AImage, I

B1

a
b c
e

d
f

h
g

i
k

j
ml

FIGURE 9.23
(a) Structuring  
elements. 
(b) Set A. 
(c) Result of thinning 
A with B1 (shaded). 
(d) Result of thinning 
A1 with B2. 
(e)–(i) Results of 
thinning with the next 
six SEs. (There was no 
change between A7  
and A8.)  
(j)–(k) Result of using 
the first four elements 
again.  
(l) Result after  
convergence.  
(m) Result converted 
to m-connectivity.

DIP4E_GLOBAL_Print_Ready.indb   661 6/16/2017   2:12:01 PM



662    Chapter 9  Morphological Image Processing

AImage, I cA

ba
dc

e

FIGURE 9.24
(a) Set A.  
(b) Complement of A. 
(c) Result of  
thinning the  
complement.  
(d) Thickened set 
obtained by  
complementing (c). 
(e) Final result, with 
no disconnected 
points.

SKELETONS

As Fig. 9.25 shows, the notion of a skeleton S A( ) of a set A is intuitively simple. We 
deduce from this figure that

(a) If z is a point of S A( ), and D
z( )  is the largest disk centered at z and contained 

in A, one cannot find a larger disk (not necessarily centered at z) containing 
D

z( )  and simultaneously included in A. A disk D
z( )  satisfying these conditions 

is called a maximum disk.
(b) If D

z( )  is a maximum disk, it touches the boundary of A at two or more differ-
ent places.

The skeleton of A can be expressed in terms of erosions and openings. That is, it can 
be shown (Serra [1982]) that

 S A S Ak
k

K

( ) = ( )
=0
∪ (9-28)

with

 S A A kB A kB Bk ( ) = ( ) − ( )| | �  (9-29)

where B is a structuring element, and A kB|( )  indicates k successive erosions start-
ing with A; that is, A is first eroded by B, the result is eroded by B, and so on:

 A kB A B B B| | | | |( ) = ( )( )( )( )… … (9-30)

k times. K in E q. (9-28) is the last iterative step before A erodes to an empty set. In 
other words,

 K k A kB= ( ) ≠ ∅{ }max |  (9-31)

The formulation in Eqs. (9-28) and (9-29) indicate that S A( ) can be obtained as the 
union of the skeleton subsets S Ak ( ), k K= 0 1 2, , , , .…  

We will discuss skeletons 
in more detail in Section 
11.2.
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It can be shown (Serra [1982]) that A can be reconstructed from these subsets:

 A S A kBk
k

K

= ( )( )
=

{
0
∪  (9-32)

where S A kBk ( )( ){  denotes k successive dilations, starting with S Ak ( ); that is,

 S A kB S A B B Bk k( )( ) = ( )( )( )( )( ){ { { { {… … (9-33)

EXAMPLE 9.8 :  Computing the skeleton of a simple set.

Figure 9.26 illustrates the concepts just discussed. The first column shows the original set (at the top) 
and two erosions by the structuring element B shown in the figure. Note that one more erosion would 
yield the empty set, so K = 2 in this case. The second column shows the opening by B of the sets in the 
first column. These results are easily explained by the fitting characterization of the opening operation 
discussed in connection with Fig. 9.8. The third column contains the set differences between the first and 
second columns. Thus, the three entries in the third column are S A0( ), S A1( ), and S A2( ), respectively.

The fourth column contains two partial skeletons, and the final result at the bottom of the column. 
The final skeleton not only is thicker than it needs to be but, more important, it is not connected. This 
result is not unexpected, as nothing in the preceding formulation of the morphological skeleton guar-
antees connectivity. Morphology produces an elegant formulation in terms of erosions and openings of 
the given set. However, heuristic formulations (see Section 11.2) are needed if, as is usually the case, the 
skeleton must be maximally thin, connected, and minimally eroded.

A

Skeleton of A

ba
dc

FIGURE 9.25
(a) Set A.  
(b) Various  
positions of  
maximum disks 
whose centers 
partially define 
the skeleton of A. 
(c) Another  
maximum disk, 
whose center 
defines a different 
segment of the 
skeleton of A.  
(d) Complete 
skeleton (dashed).
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1

0

k

2

B

AS(A)

A � kB (A � kB) � B Sk(A) Sk(A) � kB �Sk(A) � kB
k � 0

K
�Sk(A)

k � 0

K
FIGURE 9.26
Implementation 
of Eqs. (9-28) 
through (9-33). 
The original set is 
at the top left, and 
its morphologi-
cal skeleton is at 
the bottom of the 
fourth column. 
The reconstructed 
set is at the  
bottom of the 
sixth column.

The entries  in the fifth and sixth columns deal with reconstructing the original set from its skeleton subsets. 
The fifth column are the dilations of S Ak( );  that is,  S A0( ), S k B1( ) ,{  and  S A B S A B B2 22( ) ( ) .{ { {= ( )  
Finally, the last column shows reconstruction of set A which, according to Eq. (9-32), is the union of the 
dilated skeleton subsets shown in the fifth column.

PRUNING

Pruning methods are an essential complement to thinning and skeletonizing algo-
rithms, because these procedures tend to leave spurs (“parasitic” components) that 
need to be “cleaned up” by postprocessing. We begin the discussion with a pruning 
problem, then develop a solution based on the material introduced in the preceding 
sections. Thus, we take this opportunity to illustrate how to solve a problem by com-
bining several of the morphological techniques discussed up to this point.

A common approach in the automated recognition of hand-printed characters is 
to analyze the shape of the skeleton of a character. These skeletons often contain 
spurs, caused during erosion by noise and non-uniformities in the character strokes. 
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In this section we develop a morphological technique for handling this problem, 
starting with the assumption that the length of a parasitic component does not 
exceed a specified number of pixels.

Figure 9.27(a) shows the skeleton of a hand-printed letter “a.” The spur on the 
leftmost part of the character exemplifies what we are interested in removing. The 
solution is based on suppressing a spur branch by successively eliminating its end 
point. Of course, this also shortens (or eliminates) other branches in the character 
but, in the absence of other structural information, the assumption in this example is 
that any branch with three or less pixels is to be eliminated. Thinning of a set A, with 
a sequence of structuring elements designed to detect only end points, achieves the 
desired result. That is, let

 X A B1 = { }z  (9-34)

where B{ }  denotes the structuring element sequence in Fig. 9.27(b) [see Eq. (9-24) 
regarding structuring-element sequences]. The sequence of structuring elements 
consists of two different structures, each of which is rotated 90° for a total of eight 
elements. The ×  in Fig. 9.27(b) signifies a “don’t care” condition, as defined earlier. 
(Note that each SE is a detector for an end point in a particular orientation.) 

We may define an end 
point as the center point 
of a 3 × 3 region that  
satisfies any of the  
arrangements in  
Fig. 9.27(b).

B5 B6 B7 B8

B1 B2 B4B3

*

* * *

**

*

*

ba
dc
fe

FIGURE 9.27
 (a) Set A of  
foreground pixels 
(shaded).  
(b) SEs used for 
deleting end points.  
(c) Result of three 
cycles of thinning. 
(d) End points  
of (c).  
(e) Dilation of end 
points conditioned 
on (a).  
(f) Pruned image.
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Applying Eq. (9-34) to A three times yielded the set X1 in Fig. 9.27(c). The next 
step is to “restore” the character to its original form, but with the parasitic branches 
removed. This requires that we first form a set X2  containing all end points in X1 
[Fig. 9.27(e)]:

 X X B k

k
2 1

1

8

= ( )
=
∪  (9-35)

where the B k are the end-point detectors in Fig. 9.27(b). The next step is dilation 
of the end points. Typically, the number of dilations is less than the number of end-
point removals to reduce the probability of “growing” back some of the spurs. In 
this case, we know by inspection that no new spurs are created, so we dilate the end 
points three times using A as a delimiter. This is the same number of thinning passes:

 X X H A3 2= ( ){ ¨  (9-36)

where H is a 3 3×  structuring element of 1’s, and the intersection with A is applied 
after each step. As in the case of region filling, this type of conditional dilation pre-
vents the creation of 1-valued elements outside the region of interest, as illustrated 
by the result in Fig. 9.27(e). Finally, the union of X1 and X3 ,

 X X X4 1 3= ´  (9-37)

yields the desired result in Fig. 9.27(f).
In more complex scenarios, using Eq. (9-36) sometimes picks up the “tips” of 

some branches. This can occur when the end points of these branches are near the 
skeleton. Although Eq. (9-36) may eliminate them, they can be picked up again 
during dilation because they are valid points in A. However, unless entire parasitic 
elements are picked up again (a rare case if these elements are short with respect to 
valid strokes), detecting and eliminating the reconstructed elements is easy because 
they are disconnected regions.

A natural thought at this juncture is that there must be easier ways to solve this 
problem. For example, we could just keep track of all deleted points and simply 
reconnect the appropriate points to all end points left after application of Eq. (9-34). 
This argument is valid, but the advantage of the formulation just presented is that 
we used existing morphological constructs to solve the problem. When a set of such 
tools is available, the advantage is that no new algorithms have to be written. We 
simply combine the necessary morphological functions into a sequence of opera-
tions.

Sometimes you will encounter end point detectors based on a single structuring 
element, similar to the first SE in Fig. 9.27(b), but having “don’t care” conditions 
along the entire first column instead having a foreground element separating the 
corner ×’s. This is incorrect. For example, the former element would identify the 
point located in the eighth row, fourth column of Fig. 9.27(a) as an end point, thus 
eliminating it and breaking the connectivity of that part of the stroke.
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9.6  Morphological Reconstruction    667

9.6 MORPHOLOGICAL RECONSTRUCTION  

The morphological concepts discussed thus far involve a single image and one or 
more structuring elements. In this section, we discuss a powerful morphological 
transformation called morphological reconstruction that involves two images and 
a structuring element. One image, the marker, which we denote by F, contains the 
starting points for reconstruction. The other image, the mask, denoted by G, con-
strains (conditions) the reconstruction. The structuring element is used to define 
connectivity.† For 2-D applications, connectivity typically is defined as 8-connectivity, 
which is implied by a structuring element of size 3 3×  whose elements are all 1’s.

GEODESIC DILATION AND EROSION

Central to morphological reconstruction are the concepts of geodesic dilation and 
geodesic erosion. Let F denote the marker image and G the mask image. We assume 
in this discussion that both are binary images and that F G8 . The geodesic dila-
tion of size 1 of the marker image with respect to the mask, denoted by D FG

1( ) ( ), is 
defined as

 D F F B GG
1( ) ( ) = ( ){ ¨  (9-38)

where, as usual, ¨  denotes the set intersection (here ¨  may be interpreted as a logi-
cal AND because we are dealing with binary quantities). The geodesic dilation of 
size n of F with respect to G is defined as

 D F D D FG
n

G G
n( ) ( ) −( )( ) = ( )( )1 1  (9-39)

where n ≥ 1 is an integer, and D F FG
0( ) ( ) = . In this recursive expression, the set inter-

section indicated in Eq. (9-38) is performed at each step.‡ Note that the intersec-
tion operation guarantees that mask G will limit the growth (dilation) of marker F. 
Figure 9.28 shows a simple example of a geodesic dilation of size 1. The steps in the 
figure are a direct implementation of Eq. (9-38). Note that the marker F consists of 
just one point from the object in G. The idea is to grow (dilate) this point succes-
sively, masking of the result at each step by G. Continuing with this process would 
yield a result whose shape is influenced by the structure of G. In this simple case, 
the reconstruction would eventually result in an image identical to G (see Fig. 9.30).

The geodesic erosion of size 1 of marker F with respect to mask G is defined as

 E F F B GG
1( ) ( ) = ( )| ´  (9-40)

†  In much of the literature on morphological reconstruction, the structuring element is tacitly assumed to be 
isotropic and typically is called an elementary isotropic structuring element. In the context of this chapter, an 
example of such an SE is a 3 3×  array of 1’s with the origin at the center.
‡  Although it is more intuitive to develop morphological reconstruction methods using recursive formulations 
(as we do here), their practical implementation typically is based on more computationally efficient algorithms 
(see, for example, Vincent [1993] and Soille [2003]). 

9.6

See Section 2.5 regarding 
connectivity.
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Marker, F

Mask, G

Marker dilated by B

B

�

Geodesic dilation, D (1)(F)
G

(This is the dilated marker 
image masked by G.)

FIGURE 9.28
Illustration of a 
geodesic  
dilation of  
size 1. Note that 
the marker image 
contains a point 
from the object  
in G. If continued, 
subsequent dila-
tions and maskings 
would eventually 
result in the object 
contained in G. 

where ´  denotes set union (or logical OR operation). The geodesic erosion of size n 
of F with respect to G is defined as

 E F E E FG
n

G G
n( ) ( ) −( )( ) = ( )( )1 1  (9-41)

where n ≥ 1 is an integer and E F FG
0( ) ( ) = . The set union in Eq. (9-40) is performed 

at each step, and guarantees that geodesic erosion of an image remains greater than 
or equal to its mask image. As you might have expected from the forms in Eqs. (9-38) 
and (9-40), geodesic dilation and erosion are duals with respect to set complementa-
tion (see Problem 9.41). Figure 9.29 shows an example of a geodesic erosion of size 1.  
The steps in the figure are a direct implementation of Eq. (9-40).

Geodesic dilation and erosion converge after a finite number of iterative steps, 
because propagation or shrinking of the marker image is constrained by the mask.

MORPHOLOGICAL RECONSTRUCTION BY DILATION AND BY EROSION

Based on the preceding concepts, morphological reconstruction by dilation of a 
marker image F with respect to a mask image G, denoted R FG

D ( ), is defined as the 
geodesic dilation of F with respect to G, iterated until stability is achieved; that is,

 
R F D FG

D
G

k( ) = ( )( )  (9-42)

with k such that D F D FG
k

G
k( ) +( )( ) = ( )1 . 

Figure 9.30 illustrates reconstruction by dilation. Figure 9.30(a) continues the pro-
cess begun in Fig. 9.28. The next step in reconstruction after obtaining D FG

( )1 ( ) is to 
dilate this result, then AND it with mask G to yield D FG

( ) ,2 ( )  as Fig. 9.30(b) shows. 
Dilation of D FG

( )2 ( ) and masking with G then yields D FG
( ) ,3 ( )  and so on. This pro-

cedure is repeated until stability is reached. Carrying out this example one more 
step would give D F D FG G

( ) ( ) ,5 6( ) = ( )  so the image, morphologically reconstructed by 
dilation, is given by R F D FG

D
G( ) = ( )( )5 , as indicated in Eq. (9-42). The reconstructed 

image is identical to the mask, as expected.
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9.6  Morphological Reconstruction    669

In a similar manner, the morphological reconstruction by erosion of a marker 
image F with respect to a mask image G, denoted R FG

E ( ), is defined as the geodesic 
erosion of F with respect to G, iterated until stability; that is,

 R F E FG
E

G
k( ) = ( )( )  (9-43)

with k such that E F E FG
k

G
k( ) +( )( ) = ( )1 . As an exercise, generate a figure similar to 

Fig. 9.30 for morphological reconstruction by erosion. Reconstruction by dilation 
and erosion are duals with respect to set complementation (see Problem 9.42).

SAMPLE APPLICATIONS

Morphological reconstruction has a broad spectrum of practical applications, each 
determined by the selection of the marker and mask images, by the structuring 

Marker, F

Mask, G

Marker eroded by B

B

�

Geodesic erosion, E (1)(F)
G

(This is the eroded maker
image masked by G.)

FIGURE 9.29
Illustration of a 
geodesic erosion 
of size 1.

ba dc
f he g

FIGURE 9.30
Illustration of 
morphological 
reconstruction 
by dilation. Sets
D FG

( )( ),1  G, B  
and F are from 
Fig. 9.28. The  
mask (G) is 
shown dotted for 
reference.

(1)( ) dilated by GD F B (2)Result of masking = ( ) GD F (2)( ) dilated by GD F B (3)Result of masking = ( ) GD F

(3)( ) dilated by GD F B (4)Result of masking = ( ) GD F (4)( ) dilated by GD F B (5)Result of masking = ( ) GD F
No changes after this point,
so (5)( ) ( )D

G GR F D F=
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670    Chapter 9  Morphological Image Processing

elements, and by combinations of the morphological operations defined in the pre-
ceding discussion. The following examples illustrate the usefulness of these concepts.

Opening by Reconstruction

In morphological opening, erosion removes small objects and then dilation attempts 
to restore the shape of the objects that remain. The accuracy of this restoration 
dependents on the similarity of the shapes and the structuring element(s) used. 
Opening by reconstruction restores exactly the shapes of the objects that remain 
after erosion. The opening by reconstruction of size n of an image F is defined as the 
reconstruction by dilation of the erosion of size n of F with respect to F; that is,

 O F R F nBR
n

F
D( ) ( ) = ( )|  (9-44)

where F nB|  indicates n erosions by B starting with F, as defined in Eq. (9-30). 
Note that F itself is used as the mask. By comparing this equation with Eq. (9-42), 
we see that Eq. (9-44) indicates that the opening by reconstruction uses an eroded 
version of F as the marker in reconstruction by dilation. 

As you will see in Fig. 9.31, Eq. (9-44) can lead to some interesting results. Typically, 
the structuring element, B, used in Eq. (9-44) is designed to extract some feature of 
interest, based on erosion. However, as mentioned at the beginning of this section, 
the structuring element used in reconstruction (i.e., in the dilation that is performed 
to obtain RF

D) is designed to define connectivity and, for 2-D, that structuring ele-
ment typically is a 3 3×  array of 1’s. It is important that you do not confuse this SE 
with the structuring element, B, used for erosion in Eq. (9-44). Finally, we point out 
that this equation is most commonly used with n = 1. 

Figure 9.31 shows an example of opening by reconstruction. We are interested in 
extracting from Fig. 9.31(a) the characters that contain long, vertical strokes. This 
objective determines the nature of B in Eq. (9-44). The average height of the tall 
characters in the figure is 51 pixels. By eroding the image with a thin structuring 
element of size 51 1× , we should be able to isolate these characters. Figure 9.31(b) 
shows one erosion [n = 1 in Eq. (9-44)] of Fig. 9.31(a) with the structuring element 
just mentioned. As you can see, the locations of the tall characters were extracted 
successively. For the purpose of comparison, we computed the opening (remember 
this is erosion followed by the dilation) of the image using the same structuring ele-
ment. Figure 9.31(c) shows the result. As noted earlier, simply dilating an eroded 
image does not always restore the original. Finally, Fig. 9.31(d) is the reconstruction 
by dilation of the original image using that image as the mask and the eroded image 
as the marker. The dilation in the reconstruction was done using a 3 3×  SE of 1’s, 
for the reason mentioned earlier. Because we only performed one erosion, the steps 
just followed constitute the opening by reconstruction (of size 1) of F [i.e., O FR

( )1 ( ) ] 
given in Eq. (9-44). As the figure shows, characters containing long vertical strokes 
were restored accurately from the eroded image (i.e., the marker); all other charac-
ters were removed.

A expression similar to Eq. (9-44) can be written for closing by reconstruction 
(see Table 9.1 and Problem 9.44). The difference is that the marker used for closing 
by reconstruction is the dilation of F and, instead of RF

D, we use RF
E . As you saw, 

A expression similar 
to this equation can be 
written for closing by 
reconstruction (see  
Table 9.1 and  
Problem 9.44).
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opening by reconstruction works with images in which the background is black (0) 
and the foreground is white (1). Closing by reconstruction works with the opposite 
scenario. For example, if we were working with the complement of Fig. 9.31(a), the 
background would be white and the foreground black. To solve the same problem of 
extracting the tall characters, we would use opening by reconstruction. All the other 
images in Fig. 9.31 would be identical, except that they would be black on white. The 
structuring element used would be the same in both cases, so the operations of clos-
ing by reconstruction would be performed on background pixels.

Automatic Algorithm for Filling Holes

In Section 9.5, we developed an algorithm for filling holes based on knowing a starting 
point in each hole. Here, we develop a fully automated procedure based on morpho-
logical reconstruction. Let I x y( , ) denote a binary image, and suppose that we form 
a marker image F that is 0 everywhere, except at the image border, where it is set to 
1 − I , that is,

 F x y
I x y x y I

,
, ,( ) =

− ( ) ( )⎧
⎨
⎩

1

0

if is on the border of

otherwise
 (9-45)

Then,

 H R F
I
D c

c= ( )⎡⎣ ⎤⎦  (9-46)

is a binary image equal to I with all holes filled.
To see how Eqs. (9-45) and (9-46) cause holes in an image to be filled, consider 

Figs. 9.32(a) and (b), which show an image, I, containing one hole, and the image 

ba
dc

FIGURE 9.31 (a) Text image of size 918 2018×  pixels. The approximate average height of the tall characters is 51  
pixels. (b) Erosion of (a) with a structuring element of size 51 1×  elements (all 1’s). (c) Opening of (a) with the 
same structuring element, shown for comparison. (d) Result of opening by reconstruction.
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complement, respectively. The complement of I sets all foreground (1-valued) pixels 
to background (0-valued) pixels, and vice versa. By definition, a hole is surrounded 
by foreground pixels. Therefore, this operation builds a “wall” of 0’s around the hole. 
Because I c  is used as an AND mask, what we are doing is protecting all foreground 
pixels from changing during iteration. Figure 9.32(c) is array F, formed according to 
Eq. (9-45), and Fig. 9.32(d), using a 3 3×  SE of 1’s. The marker F has a border of 1’s 
(except at locations where I is 1), so the dilation of the marker points starts at the 
border and proceeds inward. Figure 9.32(e) shows the geodesic dilation of F using 
I c  as the mask. We see that all locations in this result that correspond to foreground 
pixels of I are now 0, and that this is true for the hole pixels as well. Another itera-
tion will yield the same result which, when complemented as required by Eq. (9-46), 
gives the result in Fig. 9.32(f). The hole is now filled and the rest of image I was 
unchanged. The operation H I c¨  yields an image containing 1-valued pixels in the 
locations corresponding to the holes in I and 0’s elsewhere, as Fig. 9.32(g) shows.

Figure 9.33 shows a more practical example. Figure 9.33(b) shows the comple-
ment of the text image in Fig. 9.33(a), and Fig. 9.33(c) is the marker image, F, gen-
erated using Eq. (9-45). This image is all black with a white (1’s) border, except at 
locations corresponding to 1’s in the border of the original image (the border values 
are not easily discernible by eye at the magnification shown, and also because the 
page is nearly white). Finally, Fig. 9.33(d) shows the image with all the holes filled.

Border Clearing

Extracting objects from an image for subsequent shape analysis is a fundamental 
task in automated image processing. An algorithm for detecting objects that touch 
(i.e., are connected to) the border is a useful tool because (1) it can be used to screen 
images so that only complete objects remain for further processing, or (2) it can be 
used as a signal that partial objects are present in the field of view. As a final illustra-
tion of the concepts introduced in this section, we develop a border-clearing proce-
dure based on morphological reconstruction. In this application, we use the original 
image as the mask and the following marker image:

 F x y
I x y x y I

,
( , ) ( , )( ) =

⎧
⎨
⎩

if  is on the border of 

otherwise0
 (9-47)

The border-clearing algorithm first computes the morphological reconstruction 
R FI

D ( ) (which extracts the objects touching the border), and then computes the 
following difference:

I Ic F F � B F � B � Ic H � IcH

ba c ed f g

FIGURE 9.32
Hole filling using 
morphological 
reconstruction.
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 X I R FI
D= − ( )  (9-48)

to obtain an image, X , with no objects touching the border.
As an example, consider the original text image from Fig. 9.31(a) again. 

Figure 9.34(a) shows the reconstruction R FI
D ( ) obtained using a 3 3×  structuring 

element of 1’s. The objects touching the border of the original image are visible 
in the right side of Fig. 9.34(a). Figure 9.34(b) shows image X, computed using Eq. 
(9-48). If the task at hand were automated character recognition, having an image in 
which no characters touch the border is most useful because the problem of having 
to recognize partial characters (a difficult task at best) is avoided.

9.7 SUMMARY OF MORPHOLOGICAL OPERATIONS ON BINARY 
IMAGES  

Figure 9.35 summarizes the types of structuring elements used in the various binary 
morphological methods discussed thus far. The shaded elements are foreground 
values (typically denoted by 1’s in numerical arrays), the elements in white are 
background values (typically denoted by 0’s), and the ×’s  are “don’t care” elements. 
Table 9.1 summarizes the binary morphological results developed in the preceding 
sections. The Roman numerals in the third column of Table 9.1 refer to the structur-
ing elements in Fig. 9.35.

9.7

ba
dc

FIGURE 9.33
(a) Text image of 
size 918 2018×  
pixels.  
(b) Complement 
of (a) for use as a 
mask image.  
(c) Marker image. 
(d) Result of 
hole-filling using 
Eqs. (9-45) and 
(9-46).

ba

FIGURE 9.34
(a) Reconstruction 
by dilation of marker 
image. (b) Image 
with no objects 
touching the border. 
The original image is 
Fig. 9.31(a).
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9.8 GRAYSCALE MORPHOLOGY  

In this section, we extend to grayscale images the basic operations of dilation, ero-
sion, opening, and closing. We then use these operations to develop several basic 
grayscale morphological algorithms. Throughout the discussion that follows, we deal 
with digital functions of the form f x y( , ) and b x y( , ), where f x y( , ) is a grayscale 
image and b x y( , ) is a structuring element. The assumption is that these functions 
are discrete in the sense defined in Section 2.4. That is, if Z  denotes the set of real 
integers, then the coordinates ( , )x y  are integers from the Cartesian product Z2, and 
f x y( , ) and b x y( , ) are functions that assign an intensity value (a real number from 
the set of real numbers, R) to each distinct pair of coordinates ( , ).x y  If the intensity 
levels are integers also, then Z replaces R.

Structuring elements in grayscale morphology perform the same basic functions 
as their binary counterparts: They are used as “probes” to examine a given image for 
specific properties. Structuring elements in grayscale morphology belong to one of 
two categories: nonflat and flat. Figure 9.36 shows an example of each. Figure 9.36(a) 
is a hemispherical grayscale SE shown as an image, and Fig. 9.36(c) is a horizontal 
intensity profile through its center. Figure 9.34(b) shows a flat structuring element 
in the shape of a disk, and Fig. 9.36(d) is its corresponding intensity profile. (The 
shape of this profile explains the origin of the word “flat.”) The elements in Fig. 9.36 
are shown as continuous quantities for clarity; their computer implementation is 
based on digital approximations. Because of a number of difficulties discussed later 
in this section, grayscale nonflat SEs are not used frequently in practice. Finally, we 
mention that, as in the binary case, the origin of grayscale structuring elements must 
be clearly identified. Unless mentioned otherwise, all the examples in this section 
are based on symmetrical, flat structuring elements of unit height whose origins 
are at the center. The reflection of an SE in grayscale morphology is as defined in 
Section 9.1; we denote it in the following discussion by ˆ , , .b x y b x y( ) = − −( )

GRAYSCALE EROSION AND DILATION

The grayscale erosion of f  by a flat structuring element b at location ( , )x y  is defined 
as the minimum value of the image in the region coincident with b x y( , ) when the 
origin of b is at ( , ).x y  In equation form, the erosion at ( , )x y  of an image f  by a struc-
turing element b is given as

 f b x y f x s y t
s t b

|[ ]( ) = + +( ){ }( ) ∈
, min ,

,
 (9-49)

9.8

FIGURE 9.35
Five basic types 
of structuring 
elements used for 
binary  
morphology. 

B
I

Bi  i � 1, 2, 3, 4
(rotate 90�)

�

�

Bi  i � 5, 6, 7, 8
(rotate 90�)

V

B
II

Bi  i � 1, 2, 3, 4
(rotate 90�)

III

�

�

�

�

�

Bi  i � 1, 2, . . . , 8
(rotate 45�)

IV

� �

�

= origin
= don’t care
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Operation Equation Comments

Translation B c c b z b B
z( ) = = + ∈{ }, for Translates the origin of B to 

point z. 

Reflection ˆ ,B b b B= = − ∈{ }w w for Reflects B about its origin.

Complement A Ac = ∉{ }w w Set of points not in A.

Difference A B A B

A Bc

− = ∈ ∉{ }
=

w w w,

�

Set of points in A, but not 
in B.

Erosion A B z B A
z

| 8= ( ){ } Erodes the boundary of A. 
(I)

Dilation A B z B Az{ ¨= ∅{ }P ( )ˆ ≠ Dilates the boundary of A. 
(I)

Opening A B A B B� = ( )| { Smoothes contours, breaks 
narrow isthmuses, and  
eliminates small islands and 
sharp peaks. (I)

Closing A B A B B� = ( ){ | Smoothes contours, fuses 
narrow breaks and long thin 
gulfs, and eliminates small 
holes. (I)

Hit-or-miss transform I B z B I
z

= ( ){ }P 8 Finds instances of B in image 
I. B contains both foreground 
and background elements.

Boundary extraction b( ) ( )A A A B= − | Set of points on the bound-
ary of set A. (I)

Hole filling X X B I

k
k k

c= ( )
=

−1

1 2 3

{ ¨
, , ,…

Fills holes in A. X0  is of same 
size as I, with a 1 in each hole 
and 0’s elsewhere. (II)

Connected  
components

X X B I

k
k k= ( )

=
−1

1 2 3

{ ¨
, , ,…

Finds connected components 
in I. X0  is a set, the same size 
as I, with a 1 in each  
connected component and 0’s 
elsewhere. (I)

Convex hull X X B X

i k

X I D X C A

k
i

k
i i

k
i

i i
conv
i

= ( )
= =

= =

− −1 1

0

1 2 3 4 1 2 3

´ ;

, , , , , ,…

; ; (( ) =
=

Di

i 1

4

∪

Finds the convex hull, C A( ),  
of a set, A, of foreground 
pixels contained in image I. 
Xconv

i  means that X Xk
i

k
i= −1. 

(III)

TABLE 9.1
Summary of 
binary morpho-
logical operations 
and their  
properties. A is a 
set of foreground 
pixels contained 
in binary image I, 
and B is a struc-
turing element. I 
is a binary image 
(containing A) , 
with 1’s  
corresponding to 
the elements of A 
and 0’s elsewhere.
The Roman 
numerals refer to 
the structuring 
elements in  
Fig. 9.35.
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Operation Equation Comments

Thinning A B A A B

A A B

A B

A B B B

B B B B

c

n

z

¨
z

z z z

= − ( )
= ( )

{ } =

( )( )( )( )
{ } =

… …1 2

1 2 3, , ,, ,… Bn{ }

Thins set A. The first two 
equations give the basic  
definition of thinning. The 
last two equations denote  
thinning by a sequence of 
structuring elements. This 
method is normally used in 
practice. (IV)

Thickening A B A A B

A B

A B B Bn

} ´
}

} } }

= ( )
{ } =

( )( )( )( )… …1 2

Thickens set A using a 
sequence of structuring ele-
ments, as above. Uses (IV) 
with 0’s and 1’s reversed.

Skeletons
S A S A

S A A kB

A kB B

A

A

k
k

K

k

( ) = ( )

( ) = ( )
− ( )

=

= 0
∪

�

|
|

Reconstruction of :

SS A kBk
k

K

( )( )
=

{
0
∪

Finds the skeleton S A( ) of 
set A. The last equation indi-
cates that A can be  
reconstructed from its skel-
eton subsets S Ak ( ).  K is the 
value of the iterative step af-
ter which the set A erodes to 
the empty set. The notation 
A kB|( )  denotes the kth  

iteration of successive  
erosions of A by B. (I)

Pruning X A B

X X B

X X H A

X X X

k

k

1

2 1
1

8

3 2

4 1 3

= { }

= ( )
= ( )
=

=

z

{ ¨
´

∪

X4 is the result of pruning set 
A. The number of times that 
the first equation is applied 
to obtain X1 must be speci-
fied. Structuring elements 
(V) are used for the first two 
equations. In the third equa-
tion H denotes structuring 
element. (I)

Geodesic dilation–size 1 D F F B GG
1( ) ( ) = ( ){ ¨ F and G are called the 

marker and the mask images, 
respectively. (I)

Geodesic dilation–size n D F D D FG
n

G G
n( ) ( ) −( )( ) = ( )( )1 1 Same comment as above.

Geodesic erosion–size 1 E F F B GG
1( ) ( ) = ( )| ´ Same comment as above.

Geodesic erosion–size n E F E E FG
n

G G
n( ) ( ) −( )( ) = ( )( )1 1 Same comment as above.

Morphological recon-
struction by dilation

R F D FG
D

G
k( ) = ( )( ) With k is such that 

D F D FG
k

G
k( ) +( )( ) = ( )1 .

TABLE 9.1 
(Continued)
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Operation Equation Comments

Morphological recon-
struction by erosion

R F E FG
E

G
k( ) = ( )( ) With k such that 

E F E FG
k

G
k( ) +( )( ) = ( )1 .

Opening by  
reconstruction

O F R F nBR
n

F
D( ) ( ) = ( )| F nB|  indicates n succes-

sive erosions by B, starting 
with F. The form of B is 
application-dependent.

Closing by  
reconstruction

C F R F nBR
n

F
E( ) ( ) = ( ){ F nB{  indicates n succes-

sive dilations by B, starting 
with F. The form of B is 
application-dependent.

Hole filling H R F
I
D c

c= ( )⎡⎣ ⎤⎦
H is equal to the input image 
I, but with all holes filled. See 
Eq. (9-45) for the definition 
of marker image F. 

Border clearing X I R FI
D= − ( ) X is equal to the input image 

I, but with all objects that 
touch (are connected to) 
the boundary removed. See 
Eq. (9-47) for the definition 
of marker image F.

TABLE 9.1
(Continued)

Nonflat SE

Intensity profile Intensity profile

Flat SE

ba
dc

FIGURE 9.36
Nonflat and flat 
structuring  
elements, and  
corresponding 
horizontal  
intensity profiles 
through their  
centers. All 
examples in this 
section are based 
on flat SEs.
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678    Chapter 9  Morphological Image Processing

where, in a manner similar to spatial correlation (see Section 3.4), x and y are incre-
mented through all values required so that the origin of b visits every pixel in f.  That 
is, to find the erosion of f by b, we place the origin of the structuring element at every 
pixel location in the image. The erosion at any location is determined by selecting 
the minimum value of f in the region coincident with b. For example, if b is a square 
structuring element of size 3 3× , obtaining the erosion at a point requires finding 
the minimum of the nine values of f contained in the 3 3×  region spanned by b when 
its origin is at that point.

Similarly, the grayscale dilation of f by a flat structuring element b at any location 
( , )x y  is defined as the maximum value of the image in the window spanned by b̂ 
when the origin of b̂ is at ( , ).x y  That is,

 f b x y f x s y t
s t b

{ ⁄[ ]( ) = − −( ){ }
∈

, max ,
( , )

 (9-50)

where we used the fact stated earlier that ˆ( , ) ( , ).b c d b c d= − −  The explanation of 
this equation is identical to the explanation in the previous paragraph, but using 
the maximum, rather than the minimum operation, and keeping in mind that the 
structuring element is reflected about its origin, which we take into account by using 
( , )− −s t  in the argument of the function. This is analogous to spatial convolution, as 
explained in Section 3.4.

EXAMPLE 9.9 :  Grayscale erosion and dilation.

Because grayscale erosion with a flat SE computes the minimum intensity value of f in every neighbor-
hood of ( , )x y  coincident with b, we expect in general that an eroded grayscale image will be darker than 
the original, that the sizes (with respect to the size of the SE) of bright features will be reduced, and that 
the sizes of dark features will be increased. Figure 9.37(b) shows the erosion of Fig. 9.37(a) using a disk 
SE of unit height and a radius of 2 pixels. The effects just mentioned are clearly visible in the eroded 
image. For instance, note how the intensities of the small bright dots were reduced, making them barely 
visible in Fig. 9.37(b), while the dark features grew in thickness. The general background of the eroded 
image is slightly darker than the background of the original image. 

Similarly, Fig. 9.37(c) is the result of dilation with the same SE. The effects are the opposite of using 
erosion. The bright features were thickened and the intensities of the darker features were reduced. 
In particular, the thin black connecting wires in the left, middle, and right bottom of Fig. 9.37(a) are 
barely visible in Fig. 9.37(c). The sizes of the dark dots were reduced as a result of dilation, but, unlike 
the eroded small white dots in Fig. 9.37(b), they still are easily visible in the dilated image. The reason is 
that the black dots were originally larger than the white dots with respect to the size of the SE. Finally, 
observe that the background of the dilated image is slightly lighter than that of Fig. 9.37(a).

Nonflat SEs have grayscale values that vary over their domain of definition. The 
erosion of image f  by nonflat structuring element, bN , is defined as

 f b x y f x s y t b s tN s t b N
N

|[ ]( ) = + +( ) − ( ){ }( ) ∈
, min , ,

,
 (9-51)
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9.8  Grayscale Morphology    679

Here, we subtract values from f  to determine the erosion at any point. Unlike 
Eq. (9-49), erosion using a nonflat SE is not bounded in general by the values of f, 
which can be problematic in interpreting results. Grayscale SEs are seldom used in 
practice because of this, the potential difficulties in selecting meaningful elements 
for bN , and the added computational burden when compared with Eq. (9-49).

In a similar manner, dilation using a nonflat SE is defined as

 f b x y f x s y t b s tN
s t b

N
N

{ ⁄

⁄[ ]( ) = − −( ) +{ }
( ) ∈

, max , ( , )
,

 (9-52)

The same comments made in the previous paragraph are applicable to dilation with 
nonflat SEs. When all the elements of bN  are constant (i.e., the SE is flat), Eqs. (9-51) 
and (9-52) reduce to Eqs. (9-49) and (9-50), respectively, within a scalar constant 
equal to the amplitude of the SE.

As in the binary case, grayscale erosion and dilation are duals with respect com-
plementation and reflection; that is,

 f b x y f b x yc c| {
⁄[ ] ( ) = ⎡⎣ ⎤⎦ ( ), ,  (9-53)

where f x y f x yc , ,( ) = − ( ) and ˆ( , ) , .b x y b x y= − −( )  The same expression holds for 
nonflat structuring elements. Except as needed for clarity, we simplify the notation 
in the following discussion by suppressing the arguments of all functions, in which 
case the preceding equation is written as

 f b f bc c| {( ) = ˆ  (9-54)

Similarly,

 f b f bc c{ |( ) = ˆ  (9-55)

Erosion and dilation by themselves are not particularly useful in grayscale image 
processing. As with their binary counterparts, these operations become powerful 
when used in combination to derive higher-level algorithms.

ba c

FIGURE 9.37
(a) Gray-scale 
X-ray image of 
size 448 425×  
pixels. (b) Erosion 
using a flat disk SE 
with a radius of 2 
pixels. (c) Dilation 
using the same SE. 
(Original image 
courtesy of Lixi, 
Inc.)
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GRAYSCALE OPENING AND CLOSING

The expressions for opening and closing grayscale images have the same form as 
their binary counterparts. The grayscale opening of image f by structuring element b, 
denoted f b� , is

 f b f b b� = ( )| {  (9-56)

As before, opening is simply the erosion of f  by b, followed by a dilation of the result 
by b. Similarly, the grayscale closing of f  by b, denoted f b� , is

 f b f b b� = ( ){ |  (9-57)

The opening and closing for grayscale images are duals with respect to complemen-
tation and SE reflection:

 f b f bc c
� �( ) = ˆ  (9-58)

and

 f b f bc c
� �( ) = ˆ  (9-59)

Because f fc = − , we can write Eq. (9-58) as − = −( ) ( ),f b f b� �  and similarly for 
Eq. (9-59).

Opening and closing of grayscale images have a simple geometric interpretation. 
Suppose that an image function f x y( , ) is viewed as a 3-D surface; that is, its intensity 
values are interpreted as height values over the xy-plane, as in Fig. 2.18(a). Then the 
opening of f by b can be interpreted geometrically as pushing the structuring ele-
ment up from below against the undersurface of f. At each location of the origin of b, 
the opening is the highest value reached by any part of b as it pushes up against the 
undersurface of f. The complete opening is then the set of all such values obtained 
by the origin of b visiting every ( , )x y  coordinate of f.

Figure 9.38 illustrates the concept in one dimension. Suppose the curve in 
Fig. 9.38(a) is the intensity profile along a single row of an image. Figure 9.38(b) 
shows a flat structuring element in several positions, pushed up against the bottom 
of the curve. The heavy curve in Fig. 9.38(c) is the complete opening. Because the 
structuring element is too large to fit completely inside the upward peaks of the 
curve, the tops of the peaks are clipped by the opening, with the amount removed 
being proportional to how far the structuring element was able to reach into the 
peak. In general, openings are used to remove small, bright details, while leaving the 
overall intensity levels and larger bright features relatively undisturbed.

Figure 9.38(d) is a graphical illustration of closing. Observe that the structuring 
element is pushed down on top of the curve while being translated to all locations. 
The closing, shown in Fig. 9.38(e), is constructed by finding the lowest points reached 
by any part of the structuring element as it slides against the upper side of the curve.
The grayscale opening satisfies the following properties:

Although we deal with 
flat SEs in the following 
discussion, the concepts 
discussed are applicable 
also to nonflat  
structuring elements.
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(a) f b f� ↵
(b) If f f1 2↵ , then f b f b1 2� �( ) ( )↵
(c) f b b f b� � �( ) =

The notation q r↵  is used to indicate that the domain of q is a subset of the domain 
of r, and also that q x y r x y( , ) ( , )≤  for any ( , )x y  in the domain of q.

Similarly, the closing operation satisfies the following properties:

(a) f f b↵ �

(b) If f f1 2↵ , then f b f b1 2
� �( ) ( )↵

(c) f b b f b� � �( ) =

The usefulness of these properties is similar to that of their binary counterparts. 

EXAMPLE 9.10 :  Grayscale opening and closing.

Figure 9.39 extends to 2-D the 1-D concepts illustrated in Fig. 9.38. Figure 9.39(a) is the same image we 
used in Example 9.9, and Fig. 9.39(b) is the opening obtained using a disk structuring element of unit 
height and radius of 3 pixels. As expected, the intensity of all bright features decreased, depending on 
the sizes of the features relative to the size of the SE. Comparing this figure with Fig. 9.37(b), we see 
that, unlike the result of erosion, opening had negligible effect on the dark features of the image, and 
the effect on the background was negligible. Similarly, Fig. 9.39(c) shows the closing of the image with 
a disk of radius 5 (the small round black dots are larger than the small white dots, so a larger disk was 
needed to achieve results comparable to the opening). In this image, the bright details and background 
were relatively unaffected, but the dark features were attenuated, with the degree of attenuation being 
dependent on the relative sizes of the features with respect to the SE.

Flat SE

Intensity profile

Opening

Closing

b
a

c
d
e

FIGURE 9.38
Grayscale opening and 
closing in one  
dimension.  
(a) Original 1-D signal. 
(b) Flat structuring 
element pushed up 
underneath the signal.  
(c) Opening.  
(d) Flat structuring 
element pushed down 
along the top of the 
signal.  
(e) Closing.
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682    Chapter 9  Morphological Image Processing

SOME BASIC GRAYSCALE MORPHOLOGICAL ALGORITHMS

Numerous grayscale morphological techniques are based on the grayscale morpho-
logical concepts introduced thus far. We illustrate some of these algorithms in the 
following discussion.

Morphological Smoothing

Because opening suppresses bright details smaller than the specified SE while leav-
ing dark details relatively unaffected, and closing generally has the opposite effect, 
these two operations are used often in combination as morphological filters for 
image smoothing and noise removal. Consider Fig. 9.40(a), which shows an image 
of the Cygnus Loop supernova taken in the X-ray band (see Fig. 1.7 for details 
about this image). For purposes of the present discussion, suppose that the cen-
tral light region is the object of interest, and that the smaller components are noise. 
Our objective is to remove the noise. Figure 9.40(b) shows the result of opening the 
original image with a flat disk of radius 1, then closing the opening with an SE of the 
same size. Figures 9.40(c) and (d) show the results of the same operation using SEs 
of radii 3 and 5, respectively. As expected, this sequence shows progressive removal 
of small components as a function of SE size. In the last result, we see that the noise 
has been almost eliminated. The noise components on the lower right side of the 
image could not be removed completely because their sizes are larger than the other 
image elements that were successfully removed.

The results in Fig. 9.40 are based on opening the original image, then closing the 
opening. A procedure used sometimes is to perform alternating sequential filtering, 
in which the opening–closing sequence starts with the original image, but subse-
quent steps perform the opening and closing on the results of the previous step. This 
type of filtering is useful in automated image analysis, in which results at each step 
are compared against a specified metric. This approach generally results in more 
blurring for the same size SE than the method illustrated in Fig. 9.40.

Morphological Gradient

Dilation and erosion can be used in combination with image subtraction to obtain 
the morphological gradient, g, of a grayscale image f, as follows:

See Section 3.6 for a 
definition of the image 
gradient.

ba c

FIGURE 9.39
(a) A grayscale  
X-ray image of 
size 448 425×   
pixels.  
(b) Opening using 
a disk SE with a 
radius of 3 pixels. 
(c) Closing using 
an SE of radius 5.
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 g f b f b= ( ) − ( ){ |  (9-60)

where b is a suitable structuring element. The overall effect achieved by using this 
equation is that dilation thickens regions in an image, and erosion shrinks them. 
Their difference emphasizes the boundaries between regions. Homogenous areas 
are not affected (provided that the SE is not too large relative to the resolution of 
the image) so the subtraction operation tends to eliminate them. The net result is an 
image in which the edges are enhanced and the contribution of the homogeneous 
areas is suppressed, thus producing a “derivative-like” (gradient) effect.

Figure 9.41 shows an example. Figure 9.41(a) is a head CT scan, and the next two 
figures are the opening and closing with a 3 3×  flat SE of 1’s. Note the thickening 
and shrinking just mentioned. Figure 9.41(d) is the morphological gradient obtained 
using Eq. (9-60). As you can see, the boundaries between regions were clearly delin-
eated, as expected of a 2-D derivative image.

Top-Hat and Bottom-Hat Transformations

Combining image subtraction with openings and closings results in so-called top-hat 
and bottom-hat transformations. The top-hat transformation of a grayscale image f is 
defined as f minus its opening:

ba
dc

FIGURE 9.40
(a) 566 566×  image 
of the Cygnus Loop 
supernova, taken 
in the X-ray band 
by NASA’s Hubble 
Telescope.  
(b)–(d) Results of 
performing opening 
and closing  
sequences on the 
original image with 
disk structuring  
elements of radii, 1, 
3, and 5, respectively. 
(Original image 
courtesy of NASA.)
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684    Chapter 9  Morphological Image Processing

 T f f f bhat ( ) = − ( )�  (9-61)

Similarly, the bottom-hat transformation of f is defined as the closing of f minus f : 

 B f f b fhat ( ) = ( ) −�  (9-62)

One of the principal applications of these transformations is in removing objects 
from an image by using a structuring element in the opening or closing operation 
that does not fit the objects to be removed. The difference operation then yields an 
image in which only the removed components remain. The top-hat transformation 
is used for light objects on a dark background, and the bottom-hat transformation 
is used for the opposite situation. For this reason, the names white top-hat and black 
top-hat, respectively, are used frequently when referring to these two transformations.

An important use of top-hat transformations is for correcting the effects of non-
uniform illumination. As you will learn in Chapter 10, proper (uniform) illumination 
plays a central role in being able to extract objects from the background in an image. 
This process is fundamental in automated image analysis, and is often used in conjunc-
tion with thresholding, as you will learn in Chapter 10.

To illustrate, consider Fig. 9.42(a), which shows an image of grains of rice. This 
image was obtained under nonuniform lighting, as evidenced by the darker area in 
the bottom rightmost part of the image. Figure 9.42(b) shows the result of thresh-
olding using Otsu’s method, an optimal thresholding method to be discussed in 
Section 10.3. The net result of nonuniform illumination was to cause segmentation 

ba
dc

FIGURE 9.41
(a) 512 512×   
image of a head 
CT scan.  
(b) Dilation.  
(c) Erosion.  
(d) Morphological 
gradient,  
computed as the 
difference  
between (b)  
and (c). (Original 
image courtesy of 
Dr. David R.  
Pickens,  
Vanderbilt  
University.)
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errors in the dark area (several grains of rice were not extracted from the back-
ground), as well as in the top left part of the image, where parts of the background 
were interpreted as rice. Figure 9.42(c) shows the opening of the image with a disk 
of radius 40. This SE was large enough so that it would not fit in any of the objects. 
As a result, the objects were eliminated, leaving only an approximation of the back-
ground. The shading pattern is clear in this image. By subtracting this image from the 
original (i.e., by applying a top-hat transformation), the background should become 
more uniform. This is indeed the case, as Fig. 9.42(d) shows. The background is not 
perfectly uniform, but the differences between light and dark extremes are less, and 
this was enough to yield a correct thresholding result, in which all the rice grains 
were properly extracted using Otsu’s method, as Fig. 9.42(e) shows.

Granulometry

In the context of this discussion, granulometry is a field that deals with determining 
the size distribution of particles in an image. Particles seldom are neatly separated, 

ba
c ed

FIGURE 9.42 Using the top-hat transformation for shading correction. (a) Original image of size 600 600×  pixels.  
(b) Thresholded image. (c) Image opened using a disk SE of radius 40. (d) Top-hat transformation (the image minus 
its opening). (e) Thresholded top-hat image.
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which makes counting based on identifying individual particles a difficult task. Mor-
phology can be used to estimate particle size distribution indirectly, without having 
to identify and measure individual particles. 

The approach is simple. With particles having regular shapes that are lighter than 
the background, the method consists of applying openings with SEs of increasing 
sizes. The basic idea is that opening operations of a particular size should have the 
most effect on regions of the input image that contain particles of similar size. For 
each image resulting from an opening, we compute the sum of the pixel values. This 
sum, called the surface area, decreases as a function of increasing SE size because, 
as we discussed earlier, openings decrease the intensity of light features in an image. 
This procedure yields a 1-D array each element of which is the sum of the pixels in 
the opening for the size SE corresponding to that location in the array. To emphasize 
changes between successive openings, we compute the difference between adjacent 
elements of the 1-D array. If the differences are plotted, the peaks in the plot are an 
indication of the predominant size distributions of the particles in the image.

As an example, consider the image of wood dowel plugs of two dominant sizes 
in Fig. 9.43(a). The wood grain in the dowels is likely to introduce variations in the 
openings, so smoothing is a sensible preprocessing step. Figure Fig. 9.43(b) shows the 
image smoothed using the morphological smoothing filter discussed earlier, with a 
disk of radius 5. Figures 9.43(c) through (f) show image openings with disks of radii 
10, 20, 25, and 30, respectively. Note in Fig. 9.43(d) that the intensity contribution 
due to the small dowels has been almost eliminated. In Fig. 9.43(e) the contribution 
of the large dowels has been reduced significantly, and in Fig. 9.43(f) even more so. 
Observe in Fig. 9.43(e) that the large dowel near the top right of the image is much 
darker than the others because its size is smaller than other lager dowels. This would 
be useful information if we had been attempting to detect defective dowels.

Figure 9.44 shows a plot of the difference array. As mentioned previously, we 
expect significant differences (peaks in the plot) around radii at which the SE is 

ba c
ed f

FIGURE 9.43
(a) 531 675×  image 
of wood dowels.  
(b) Smoothed 
image.  
(c)–(f) Openings  
of (b) with disks of  
radii equal  
to 10, 20, 25,  
and 30 pixels, 
respectively. 
(Original image 
courtesy of Dr. 
Steve Eddins, 
MathWorks, Inc.)
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large enough to encompass a set of particles of approximately the same diameter. 
The result in Fig. 9.44 has two distinct peaks, clearly indicating the presence of two 
dominant object sizes in the image.

Textural Segmentation

Figure 9.45(a) shows a noisy image of dark blobs superimposed on a light back-
ground. The image has two textural regions: a region composed of large blobs on the 
right and a region on the left composed of smaller blobs. The objective is to find a 
boundary between the two regions based on their textural content, which in this case 
is determined by the sizes and spatial distribution of the blobs (we discuss texture in 
Chapter 11). The process of partitioning an image into regions is called segmentation, 
which is the topic of Chapter 10.

The objects of interest are darker than the background, and we know that if we 
close the image with a structuring element larger than the small blobs, these blobs 
will be removed. The result in Fig. 9.45(b), obtained by closing the input image using 
a disk with a radius of 30 pixels, shows that indeed this is the case. (The radius of the 
smaller blobs is approximately 25 pixels.) So, at this point, we have an image with 
large, dark blobs on a light background. If we open this image with a structuring ele-
ment that is large relative to the separation between these blobs, the net result should 
be an image in which the light patches between the blobs are removed, leaving the 
dark blobs, and also the now dark patches between these blobs. Figure 9.45(c) shows 
the result, obtained using a disk of radius 60.

Performing a morphological gradient on this image with, say, a 3 3×  SE of 1’s, will 
give us the boundary between the two regions. Figure 9.45(d) shows the boundary 
obtained from the morphological gradient operation, superimposed on the original 
image. All pixels to the right of this boundary are said to belong to the texture region 
characterized by large blobs, and conversely for the pixels on the left of the bound-
ary. You will find it instructive to work through this example in more detail using the 
graphical analogy for opening and closing illustrated in Fig. 9.38.
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FIGURE 9.44
Differences in 
surface area as 
a function of SE 
disk radius, r. 
The two peaks 
indicate that there 
are two dominant 
particle sizes in 
the image.
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GRAYSCALE MORPHOLOGICAL RECONSTRUCTION

Grayscale morphological reconstruction is defined in the same manner introduced 
in Section 9.6 for binary images. Let f and g denote the marker and mask images, 
respectively. We assume that both are grayscale images of the same size and that 
f g≤ , meaning that the intensity of f at any point in the image is less than the inten-
sity of g at that point. The geodesic dilation of size 1 of f with respect to g is defined as

 D f f b gg
1( ) ( ) = ( ){ �  (9-63)

where � denotes the point-wise minimum operator, and b is a suitable structuring 
element. We see that the geodesic dilation of size 1 is obtained by first computing the 
dilation of f  by b, then selecting the minimum between the result and g at every point 
( , ).x y  The dilation is given by Eq. (9-50) if b is a flat SE, or by Eq. (9-52) if it is not. 

The geodesic dilation of size n of f with respect to g is defined as

 D f D D fg
n

g g
n( ) ( ) −( )( ) = ( )( )1 1  (9-64)

with D f fg
0( ) ( ) = .

As mentioned earlier, it 
is understood that f and g 
are functions of x and y. 
We omit the coordinates 
to simplify the notation.

ba
dc

FIGURE 9.45
Textural  
segmentation.  
(a) A 600 600×  
image consisting 
of two types of 
blobs.  
(b) Image with 
small blobs  
removed by  
closing (a).  
(c) Image with 
light patches 
between large 
blobs removed by 
opening (b).  
(d) Original  
image with 
boundary  
between the two 
regions in (c) 
superimposed. 
The boundary was 
obtained using 
a morphological 
gradient.
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Similarly, the geodesic erosion of size 1 of f  with respect to g is defined as

 E f f b gg
1( ) ( ) = ( )| �  (9-65)

where �  denotes the point-wise maximum operator. The geodesic erosion of size n 
is defined as

 E f E E fg
n

g g
n( ) ( ) −( )( ) = ( )( )1 1  (9-66)

with E f fg
0( ) ( ) = .

The morphological reconstruction by dilation of a grayscale mask image, g, by a 
grayscale marker image, f, denoted by R fg

D( ) ,( )  is defined as the geodesic dilation of 
f with respect to g, iterated until stability is reached; that is,

 R f D fg
D

g
k( ) = ( )( )  (9-67)

with k such that D f D fg
k

g
k( ) +( )=( ) ( ).1  The morphological reconstruction by erosion of 

g by f , denoted by R fg
E ( ), is similarly defined as

 R f E fg
E

g
k( ) = ( )( )  (9-68)

with k such that E f E fg
k

g
k( ) +( )( ) = ( )1 .

As in the binary case, opening by reconstruction of grayscale images first erodes 
the input image and uses it as a marker, and uses the image itself as the mask. The 
opening by reconstruction of size n of an image f is defined as the reconstruction by 
dilation of the erosion of size n of f  with respect to f ; that is,

 O f R f nbR
n

f
D( ) ( ) = ( )|  (9-69)

where f nb|  denotes n successive erosions by b, starting with f , as explained in 
connection with Eq. (9-30) (note that f itself is used as the mask). Recall also from 
the discussion of Eq. (9-44) for binary images that the objective of opening by recon-
struction is to preserve the shape of the image components that remain after erosion.

Similarly, the closing by reconstruction of size n of an image f is defined as the 
reconstruction by erosion of the dilation of size n of f  with respect to f ; that is,

 C f R f nbR
n

f
E( ) ( ) = ( ){  (9-70)

where f nb{  denotes n successive dilations by b, starting with f. Because of duality, 
the closing by reconstruction of an image can be obtained by complementing the 
image, obtaining the opening by reconstruction, and complementing the result. Finally, 
as the following example shows, a useful technique called top-hat by reconstruction 
consists of subtracting from an image its opening by reconstruction.

EXAMPLE 9.11 :  Using grayscale morphological reconstruction to flatten a complex background.

In this example, we illustrate the use of grayscale reconstruction in several steps. The objective is to 
normalize the irregular background of the image in Fig. 9.46(a), leaving only text on a background of 

See Problem 9.33 for a 
list of dual relationships 
between expressions in 
this section.
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FIGURE 9.46 (a) Original image of size 1134 1360×  pixels. (b) Opening by reconstruction of (a), using a structur-
ing element consisting of a horizontal line 71 pixels long in the erosion. (c) Opening of (a) using the same SE.  
(d) Top-hat by reconstruction. (e) Result of applying just a top-hat transformation. (f) Opening by reconstruction 
of (d), using a horizontal line 11 pixels long. (g) Dilation of (f) using a horizontal line 21 pixels long. (h) Minimum  
of (d) and (g). (i) Final reconstruction result. (Images courtesy of Dr. Steve Eddins, MathWorks, Inc.)

constant intensity. The solution of this problem is a good illustration of the power of grayscale mor-
phology. We begin by suppressing the horizontal reflection on the top of the keys. The reflections are 
wider than any single character in the image, so we should be able to suppress them by performing an 
opening by reconstruction using a long horizontal line in the erosion operation. This operation will 
yield the background containing the keys and their reflections. Subtracting this from the original image 
(i.e., performing a top-hat by reconstruction) will eliminate the horizontal reflections and variations in 
background from the original image.
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Figure 9.46(b) shows the result of opening by reconstruction of the original image using a hori-
zontal line of size 1 71×  pixels for the SE in the erosion operation. We could have used an opening to 
remove the characters, but the resulting background would not have been as uniform, as Fig. 9.46(c) 
shows (compare the regions between the keys in the two images). Figure 9.46(d) shows the result 
of subtracting Fig. 9.46(b) from Fig. 9.46(a). As expected, the horizontal reflections and variations 
in background were suppressed. For comparison, Fig. 9.46(e) shows the result of performing just a 
top-hat transformation (i.e., subtracting the “standard” opening from the image). As expected from 
the characteristics of the background in Fig. 9.46(c), the background in Fig. 9.46(e) is not nearly as 
uniform as in Fig. 9.46(d).

The next step is to remove the vertical reflections from the edges of the keys, visible in Fig. 9.46(d). 
We can do this by performing an opening by reconstruction with a line SE whose width is approximately 
equal to the reflections (about 11 pixels in this case). Figure 9.46(f) shows the result of performing this 
operation on Fig. 9.46(d). The vertical reflections were suppressed, but so were thin, vertical strokes 
that are valid characters (for example, the I in SIN), so we have to find a way to restore the latter. 
The suppressed characters are very close to the other characters so, if we dilate the remaining characters 
horizontally, the dilated characters will overlap the area previously occupied by the suppressed characters. 
Figure 9.46(g), obtained by dilating Fig. 9.46(f) with a line SE of size 1 21×  elements, shows that indeed 
this is case.

All that remains at this point is to restore the suppressed characters. Consider an image formed as 
the point-wise minimum between the dilated image in Fig. 9.46(g) and the top-hat by reconstruction in 
Fig. 9.46(d). Figure 9.46(h) shows the minimum image (although this result appears to be close to our 
objective, note that the I in SIN is still missing). By using this image as a marker and the dilated image as 
the mask in grayscale reconstruction [Eq. (9-67)], we obtained the final result in Fig. 9.46(i). This image 
shows that all characters were properly extracted from the original, irregular background, including the 
background of the keys. The background in Fig. 9.46(i) is uniform throughout.

Summary, References, and Further Reading 
The morphological concepts and techniques introduced in this chapter constitute a powerful set of tools for extract-
ing features of interest in an image. One of the most appealing aspects of morphological image processing is the 
extensive set-theoretic foundation from which morphological techniques have evolved. A significant advantage in 
terms of implementation is that dilation and erosion are primitive operations, which are the basis for a broad class 
of morphological algorithms. As will be shown in the following chapter, morphology can be used as the basis for 
developing image segmentation procedures with numerous applications. As we will discuss in Chapter 11, morpho-
logical techniques also play a major role in procedures for image feature extraction.

The book by Serra [1982] is a fundamental reference on morphological image processing. See also Serra [1988], 
Giardina and Dougherty [1988], and Haralick and Shapiro [1992]. For an overview of both binary and gray-scale 
morphology, see Basart and Gonzalez [1992] and Basart et al. [1992]. This set of references provides ample basic 
background for the material covered in Sections 9.1 through 9.4. For a good overview of the material in Sections 9.5 
and 9.6, see the book by Soille [2003].

Important issues of implementing morphological algorithms such as the ones given in Section 9.5 and 9.6 are 
exemplified in the papers by Jones and Svalbe [1994], Sussner and Ritter [1997], and Shaked and Bruckstein [1998]. 
A paper by Vincent [1993] is especially important in terms of practical details for implementing gray-scale morpho-
logical algorithms. For additional reading on the theory and applications of morphological image processing, see the 
books by Goutsias and Bloomberg [2000], and by Beyerer et al. [2016]. To get an idea of the state of the art in fast 
computer implementation of morphological algorithms, see Thurley and Danell [ 2012]. For details on the software 
aspects of many of the examples in this chapter, see Gonzalez, Woods, and Eddins [2009].
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Problems 
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book 
website: www.ImageProcessingPlace.com).

9.1 Find the reflection, ˆ ,B  of each of the following 
structuring elements. The dot indicates the origin 
of the SE.

(a)* (b) (c)

9.2 Sketch the result of eroding Fig. 9.3(a) with each 
of the following structuring elements.

(a)* (b) (c)

9.3 * Erosion of a set A by structuring element B is 
a subset of A, provided that the origin of B lies 
within B. Give an example in which the erosion 
A B|  lies outside, or partially outside, A.

9.4 Let B be a structuring element containing a single 
point, valued 1, and let A be a set of foreground 
pixels. 

(a) * What do you think would happen if we erode 
A by B?

(b) What do you think would happen if we dilate 
A by B?

9.5 You are given a “black-box” function that com-
putes erosion. You are told that this function 
automatically pads the input image with a border 
whose width is the thinnest border possible, as 
determined by the dimensions of the structuring 
element (e.g., for a 3 3×  structuring element the 
border would be one pixel wide). However, you 
are not told whether the padding is composed of 
background (0) or foreground (1) values. Propose 
an experiment for answering this question.

9.6 Do the following:

(a) * Dilate Fig. 9.3(a) using the structuring element 
in figure (a) of Problem 9.2.

(b) Repeat (a) using the structuring element in 
figure (b).

(c) Repeat (a) using the structuring element in 
figure (c).

9.7 Dilation of a set A by structuring element B is 
the set of locations of the origin of B such that A 
contains at least one (foreground) element of B. 
Give an example in which the dilation of A by B 
lies completely outside of A. (Hint: Let A and B 
be disks of different radii.)

9.8 With reference to the image at the top of the fig-
ure shown below, answer the following:

(a) * Give the structuring element and morpho-
logical operation(s) that produced image (a). 
Show the origin of the structuring element. 
The dashed lines denote the boundary of the 
original object and are shown for reference; 
they are not part of the result. (The white 
elements are foreground pixels.)

(b) Repeat part (a) for the output shown in 
image (b).

(c) * Repeat part (a) for the output shown in 
image (c).

(d) Repeat part (a) for the solution shown in fig-
ure (d). Note that in image (d) all corners are 
rounded.

(a)* (b) (c)* (d)

9.9 Let A denote the set shown shaded in the follow-
ing figure, and refer to the structuring elements 
shown (the black dots denote the origin). Sketch 
the result of the following operations:

(a) * A B B| {4 2( ) .

(b) A B B| {1 3( ) .

(c) A B B{ {1 3( ) .
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9.10 Be specific in answering the following:

(a) * What is the limiting effect of repeatedly dilating 
a set of foreground pixels in an image? Assume 
that a trivial (one point) structuring element is 
not used.

(b) What is the smallest set from which you can 
start in order for your answer in (a) to hold?

9.11 Be specific in answering the following:

(a) What is the limiting effect of repeatedly erod-
ing a set of foreground pixels in an image? 
Assume that a trivial (one point) structuring 
element is not used.

(b) What is the smallest set of foreground pixels 
from which you can start in order for your 
answer in (a) to hold?

9.12 * An alternative definition of erosion is

 A B Z b A b B| = ∈ + ∈ ∈{ }w w2 for every 

Show that this definition is equivalent to the 
definition in Eq. (9-3).

9.13 Do the following:

(a) Show that the definition of erosion given in 
Problem 9.12 is equivalent to yet another 
definition of erosion:

 A B A
b B

b| = ( )
∈

−∩

(If −b is replaced with b, this expression is 
called the Minkowsky subtraction of two 
sets.)

(b) * Show that the expression in (a) is equivalent 
to the definition in Eq. (9-3).

9.14 * An alternative definition of dilation is

A B Z a b a A b B{ = ∈ = + ∈ ∈{ }w w2 ,  for some  and 

Show that this definition and the definition in 
Eq. (9-6) are equivalent.

9.15 Do the following:

(a) Show that the definition of dilation given in 
Problem 9.14 is equivalent to yet another 
definition of dilation:

 A B A
b B

b{ = ( )
∈
∪

(This expression is called the Minkowsky 
addition of two sets.)

(b) * Show that the expression in (a) is equivalent 
also to the definition in Eq. (9-6). 

9.16 Prove the validity of the duality expression given 
in Eq. (9-9).

9.17 Answer the following:

(a) * The curved portions the black border of 
Fig. 9.8(d) delineate the opening of set A 
in Fig. 9.8(a), but those curved segments 
are not part of the boundary of A. Are the 
black straight-line portions in (d) part of the 
boundary of A? Explain.

(b) The curved portions the black border of 
Fig. 9.9(d) delineate the closing of set A in 
Fig. 9.9(a), but those curved segments are 
not part of the boundary of A. Are the black 
straight line portions of the boundary in (d) 
part of the boundary of A? Explain.
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9.18 Show all intermediate steps of your computations 
for the following:

(a) * Obtain the opening of the figure below using 
a 3 3×  SE of 1’s. Do all operations manually.

(b) Repeat (a) for the closing operation.

A

B

9.19 A is a solid rectangle of 1’s of size M N×  with a 
1-pixel border of 0’s, and m and n below are odd 
integers. Discuss what the result will be in each 
case.

(a) * A is opened with a structuring element of 1’s 
of size m n× .

(b) A is closed with a structuring element of 1’s 
of size m n× .

9.20 Show the validity of the following duality expres-
sions [these are Eqs. (9-14) and (9-15)]:

(a) *  A B A B
c c

� �( ) = ˆ .

(b) A B A B
c c

� �( ) = ˆ .

9.21 Show the validity of the following expressions: 

(a) * A B�  is a subset of A. You may assume that 
Eq. (9-12) is valid. (Hint: Start with this equa-
tion and Fig. 9.8.)

(b) * If C is a subset of D, then C B�  is a subset of 
D B� . [Hint: Start with Eq. (9-12).]

(c) A B B A B� � �( ) = .  [Hint: Start with the 
definition of opening.]

9.22 Show the validity of the following expressions. 
(Hint: Study the solution to Problem 9.21.)

(a) A is a subset of A B� .

(b) If C is a subset of D, then C B�  is a subset 
of D B� .

(c) A B B A B� � �( ) = .

9.23 Refer to the image and the disk structuring ele-
ment shown in the lower right of the image. Sketch 
what the sets C, D, E, and F would look like for 
the following sequence of operations: C A B= | ;
D C B= { ; E D B= { ;  and F E B= | . Set A 
consists of all the foreground pixels (white), 

except the structuring element, B, which you may 
assume is just large enough to encompass any of 
the random elements in the image. Note that the 
sequence of operations above is simply the open-
ing of A by B followed by a closing of the result 
by B.

9.24 * Assume that SE B2  in Fig. 9.12 has a border of 
foreground pixels that is more than one pixel 
wide. Assuming that all four sides of the border 
are the same, what is the maximum width of a 
border we can use around B2  before the solution 
shown in Fig. 9.12(f) fails?

9.25 We mentioned when discussing Fig. 9.12(e) that 
the image had been cropped for consistency. 
Assume that Fig. 9.12(b) was padded with the 
minimum border required to encompass the 
maximum excursions of B2  after which no further 
changes would occur in the erosion. What did 
Fig. 9.12(e) look like before it was cropped?

9.26 Sketch the result of applying the hit-or-miss 
transform to the image below, using the SE shown. 
Indicate clearly the origin and border you select-
ed for the structuring element.

Image Structuring element
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9.27 * Give the foundation of an algorithm for convert-
ing an 8-connected, closed curve to a 4-connected 
curve (see Section 2.5 regarding connectivity). 
The input is a binary image, I, in which the curve 
consists of 1-valued pixels embedded in a back-
ground of 0’s. The output should be a binary image 
also, containing the new curve. You may assume 
that the curve is fully connected, is one pixel thick, 
and has no branches. You do not need to (but you 
may) state the algorithm in a step-by-step man-
ner. An overall plan containing all the information 
needed to implement a working algorithm is suf-
ficient.

9.28 Give the foundation of an algorithm for convert-
ing a 4-connected closed curve to a curve con-
taining only 8-connected pixels (see Section 2.5 
regarding connectivity). The input is a binary 
image, I, in which the curve consists of 1-valued 
pixels embedded in a background of 0’s. The 
output should be a binary image also, containing 
the new curve. You may assume that the curve is 
fully connected, it is one-pixel-wide, and has no 
branches. You do not need to (but you may) state 
the algorithm in a step-by-step manner. An over-
all plan containing all the information needed to 
implement a working algorithm is sufficient.

9.29 Give the foundation of an algorithm for convert-
ing an 8-connected closed curve to an m-connect-
ed curve (see Section 2.5 regarding connectiv-
ity). The input is a binary image, I, in which the 
curve consists of 1-valued pixels embedded in a 
background of 0’s. The output should be a binary 
image also, containing the new curve. You may 
assume that the curve is fully connected, it is one-
pixel-wide, and has no branches. You do not need 
to (but you may) state the algorithm in a step-
by-step manner. An overall plan containing all 
the information needed to implement a working 
algorithm is sufficient.

9.30 * Three curve types (lake, bay, and line segment) 
useful for differentiating thinned objects in an 
image are shown in the following figure. Develop 
a morphological/logical algorithm for differentiat-
ing between these shapes. The input to your algo-
rithm would be one of these three curves. The out-
put must be the type of the input. You may assume 
that the curves are 1 pixel thick and are fully con-
nected. They can appear in any orientation.

Lake Bay Line segment

9.31 Write Eq. (9-18) in terms of a dilation, instead of 
an erosion, of A. (Hint: Take a look at the defini-
tion of set difference in Eq. (2-40) and then con-
sider the duality relationship between erosion 
and dilation.)

9.32 Answer the following:

(a) * Discuss the effect of using the structuring 
element in Fig. 9.17(c) for boundary extrac-
tion, instead of the element in Fig. 9.15(b).

(b) What would be the effect of using a 3 3×
structuring element composed of all 1’s in the 
hole filling algorithm of Eq. (9-19), instead of 
the structuring element in Fig. 9.17(c)?

9.33 Discuss what you would expect the result to be in 
each of the following cases:

(a) * The starting point of the hole filling algo-
rithm of Eq. (9-19) is a point on the outer 
boundary of the object containing the hole.

(b) The starting point in the hole filling algo-
rithm is outside of the boundary (i.e., the 
starting point is a background pixel).

9.34 Sketch the convex hull of the large figure in Prob-
lem 9.9. Assume that L = 3 pixels.

9.35 Obtain the convex deficiency of set A shown in 
Fig. 9.21(b). Use the convex hull in Fig. 9.22(a).

9.36 Do the following:

(a) * Propose a method using any of the methods 
developed in this chapter for automating the 
example in Fig. 9.18. You may assume that 
the spheres do not touch each other and that 
none touch the border of the image.

(b) Repeat (a), but allowing the spheres to touch 
in arbitrary ways, including the border.
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9.37 * The algorithm for extracting connected compo-
nents discussed in Section 9.5 requires that a point 
be known in each connected component in order 
to extract them all. Suppose that you are given a 
binary image containing an arbitrary (unknown) 
number of connected components. Propose a 
completely automated procedure for extracting 
all connected components. Assume that points 
belonging to connected components are labeled 
1 and background points are labeled 0.

9.38 Give an expression based on reconstruction by 
dilation capable of extracting all the holes in a 
binary image.

9.39 With reference to the hole-filling algorithm in 
Eqs. (9-45) and (9-46):

(a) * Explain what would happen if all border 
points of I are 1 (foreground).

(b) If the result in (a) gives the result that you 
would expect, explain why. If it does not, 
explain how you would modify the algorithm 
so that it works as expected.

9.40 * As explained in Eqs. (9-44) and (9-69), opening by 
reconstruction preserves the shape of the image 
components that remain after erosion. What does 
closing by reconstruction do?

9.41 Show that geodesic erosion and dilation (Sec-
tion 9.6) are duals with respect to set comple-
mentation. That is, assuming that the structuring 
element is symmetric about its origin, show that:

(a) *  E F D D FG
n

G G

n c
c

c c
( ) ( ) −( )( ) = ( )⎡

⎣
⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

1 1  and, conversely, that

(b)  D F E E FG
n

G G

n c
c

c c
( ) ( ) −( )( ) = ( )⎡

⎣
⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

1 1 . 

(Hint: Use proof by induction.)

9.42 Show that reconstruction by dilation and recon-
struction by erosion (Section 9.6) are duals with 
respect to set complementation. That is, assum-
ing that the structuring element is symmetric 
about its origin, show that R F R FG

D
G
E c

c

c( ) = ( )⎡
⎣

⎤
⎦  and, 

conversely, that R F R FG
E

G
D c

c

c( ) = ( )⎡
⎣

⎤
⎦ . (Hint: Consider 

using the results from Problem 9.41.)

9.43 Show that: 

(a) * F nB F nB
c c| {( ) = ˆ ,  where F nB|  indicates 

n successive erosions, starting with B; and 
similarly, that 

(b)  F nB F nB
c c{ |( ) = ˆ .

9.44 Show the validity of the following binary morpho-

logical expressions. You may assume that the struc-
turing element is symmetric about its origin.

(a) * O F C FR
n

R
n c

c( ) ( )( ) = ( )⎡
⎣

⎤
⎦ .

(b) C F O FR
n

R
n c

c( ) ( )( ) = ( )⎡
⎣

⎤
⎦ .

9.45 Prove the validity of the following grayscale mor-
phological expressions. Recall from the discus-
sion in Section 9.8 that f x y f x yc( , ) ( , )= −  and 
that ˆ( , ) ( , ).b x y b x y= − −

(a) * ( ) .f b f bc| {=

(b) f b f b
c c{ |( ) = ˆ.

(c) f b f b
c c

� �( ) = ˆ.

(d) * f b f b
c c

� �( ) = ˆ.

9.46 Prove the validity of the following gray-
scale morphological expressions. Recall that 
f x y f x yc( , ) ( , )= −  and that ˆ( , ) ( , ).b x y b x y= − −  
(Hint: Use proof by induction.)

(a) * D f E E fg
n

g g

n c
c

c c
( ) ( ) −( )( ) = ⎡

⎣
⎤
⎦

1 1[ ( )] . Assume a symmetric 
structuring element.

(b) E f D D fg
n

g g

n c
c

c c
( ) ( ) −( )( ) = ⎡

⎣
⎤
⎦

1 1[ ( )] .  Assume a symmetric 
structuring element.

9.47 Prove the validity of the following grayscale mor-
phological expressions.

(a) * R f R fg
D

g
E c

c

c( ) = ( )⎡
⎣

⎤
⎦ .

(b) R f R fg
E

g
D c

c

c( ) = ( )⎡
⎣

⎤
⎦ .

9.48 Prove the validity of the following grayscale mor-
phological expressions.

(a) * f nb f nb
c c| {( ) = ( )ˆ ,  where f nb|( ) indicates 

n successive erosions, starting with b.

(b) f nb f nb
c c{ |( ) = ( )ˆ .

9.49 Prove the validity of the following gray-
scale morphological expressions. Recall that 
f x y f x yc( , ) ( , )= −   and  that ˆ( , ) ( , ).b x y b x y= − −  

Assume a symmetric structuring element.

(a) * O f C fR
n

R
n c

c( ) ( )( ) = ( )⎡
⎣

⎤
⎦ . 

(b) C f O fR
n

R
n c

c( ) ( )( ) = ( )⎡
⎣

⎤
⎦ .

9.50 Consider the image below, which shows a region 
of small circles enclosed by a region of larger 
circles.

(a) Would you expect the method used to gen-
erate Fig. 9.45(d) to work with this image 
also? Explain your reasoning, including any 
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assumptions that you need to make for the 
method to work.

(b) * If your answer to (a) is yes, sketch what the 
boundary will look like.

9.51 A preprocessing step in an application of mi- 
croscopy is concerned with the issue of isolating 
individual round particles from similar particles 
that overlap in groups of two or more particles 
(see the following image). Assuming that all parti-
cles are of the same size, propose a morphological 
algorithm that produces three images consisting 
respectively of:

(a) * Only particles that have merged with the 
boundary of the image.

(b) Only overlapping particles.

(c) Only nonoverlapping particles.

9.52 A high-technology manufacturing plant is award-
ed a government contract to manufacture high-
precision washers of the form shown. The terms 
of the contract require that the shape of all wash-
ers be inspected by an imaging system. In this con-
text, shape inspection refers to deviations from 
round on the inner and outer edges of the wash-
ers. You may assume the following: (1) A “golden” 
(perfect with respect to the problem) image of an 
acceptable washer is available; and (2) the imag-
ing and positioning components ultimately used 
in the system will have an accuracy high enough 
to allow you to ignore errors due to digitalization 
and positioning. You are hired as a consultant to 
help specify the visual inspection part of the sys-
tem. Propose a solution based on morphological/
logical operations.
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10 Image Segmentation

Preview
The material in the previous chapter began a transition from image processing methods whose inputs 
and outputs are images, to methods in which the inputs are images but the outputs are attributes extract-
ed from those images. Most of the segmentation algorithms in this chapter are based on one of two basic 
properties of image intensity values: discontinuity and similarity. In the first category, the approach is 
to partition an image into regions based on abrupt changes in intensity, such as edges. Approaches in 
the second category are based on partitioning an image into regions that are similar according to a set 
of predefined criteria. Thresholding, region growing, and region splitting and merging are examples of 
methods in this category. We show that improvements in segmentation performance can be achieved 
by combining methods from distinct categories, such as techniques in which edge detection is combined 
with thresholding. We discuss also image segmentation using clustering and superpixels, and give an 
introduction to graph cuts, an approach ideally suited for extracting the principal regions of an image. 
This is followed by a discussion of image segmentation based on morphology, an approach that com-
bines several of the attributes of segmentation based on the techniques presented in the first part of the 
chapter. We conclude the chapter with a brief discussion on the use of motion cues for segmentation. 

Upon completion of this chapter, readers should:
 Understand the characteristics of various types 

of edges found in practice.

 Understand how to use spatial filtering for 
edge detection.

 Be familiar with other types of edge detection 
methods that go beyond spatial filtering.

 Understand image thresholding using several 
different approaches.

 Know how to combine thresholding and spa-
tial filtering to improve segmentation.

 Be familiar with region-based segmentation, 
including clustering and superpixels.

 Understand how graph cuts and morphologi-
cal watersheds are used for segmentation. 

 Be familiar with basic techniques for utilizing 
motion in image segmentation.

The whole is equal to the sum of its parts.
Euclid

The whole is greater than the sum of its parts.
Max Wertheimer
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10.1  FUNDAMENTALS  

Let R represent the entire spatial region occupied by an image. We may view image 
segmentation as a process that partitions R into n subregions, R R Rn1 2, , , ,…  such 
that

(a) R Ri
i

n

=
=

.
1
∪

(b) Ri  is a connected set, for i n= 0 1 2, , , , .…

(c) R Ri j� = ∅ for all i and j, i j≠ .

(d) Q Ri( ) = TRUE for i n= 0 1 2, , , , .…
(e) Q R Ri j�( ) = FALSE for any adjacent regions Ri  and Rj .

where Q Rk( )  is a logical predicate defined over the points in set Rk , and ∅  is the 
null set. The symbols ´  and ¨  represent set union and intersection, respectively, as 
defined in Section 2.6. Two regions Ri  and Rj  are said to be adjacent if their union 
forms a connected set, as defined in Section 2.5. If the set formed by the union of two 
regions is not connected, the regions are said to disjoint.

Condition (a) indicates that the segmentation must be complete, in the sense that 
every pixel must be in a region. Condition (b) requires that points in a region be con-
nected in some predefined sense (e.g., the points must be 8-connected). Condition 
(c) says that the regions must be disjoint. Condition (d) deals with the properties that 
must be satisfied by the pixels in a segmented region—for example, Q Ri( ) = TRUE 
if all pixels in Ri  have the same intensity. Finally, condition (e) indicates that two 
adjacent regions Ri  and Rj  must be different in the sense of predicate Q.†

Thus, we see that the fundamental problem in segmentation is to partition an 
image into regions that satisfy the preceding conditions. Segmentation algorithms 
for monochrome images generally are based on one of two basic categories dealing 
with properties of intensity values: discontinuity and similarity. In the first category, 
we assume that boundaries of regions are sufficiently different from each other, and 
from the background, to allow boundary detection based on local discontinuities in 
intensity. Edge-based segmentation is the principal approach used in this category. 
Region-based segmentation approaches in the second category are based on parti-
tioning an image into regions that are similar according to a set of predefined criteria.

Figure 10.1 illustrates the preceding concepts. Figure 10.1(a) shows an image of a 
region of constant intensity superimposed on a darker background, also of constant 
intensity. These two regions comprise the overall image. Figure 10.1(b) shows the 
result of computing the boundary of the inner region based on intensity discontinui-
ties. Points on the inside and outside of the boundary are black (zero) because there 
are no discontinuities in intensity in those regions. To segment the image, we assign 
one level (say, white) to the pixels on or inside the boundary, and another level (e.g., 
black) to all points exterior to the boundary. Figure 10.1(c) shows the result of such 
a procedure. We see that conditions (a) through (c) stated at the beginning of this 

† In general, Q can be a compound expression such as, “Q Ri( ) = TRUE  if the average intensity of the pixels in 
region Ri  is less than mi  AND if the standard deviation of their intensity is greater than si,” where mi and si  
are specified constants. 

10.1
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ba c
ed f

FIGURE 10.1
(a) Image of a 
constant intensity 
region.  
(b) Boundary 
based on intensity 
discontinuities.  
(c) Result of 
segmentation.  
(d) Image of a 
texture region.  
(e) Result of 
intensity discon-
tinuity computa-
tions (note the 
large number of 
small edges).  
(f) Result of 
segmentation 
based on region 
properties.

section are satisfied by this result. The predicate of condition (d) is: If a pixel is on, 
or inside the boundary, label it white; otherwise, label it black. We see that this predi-
cate is TRUE for the points labeled black or white in Fig. 10.1(c). Similarly, the two 
segmented regions (object and background) satisfy condition (e).

The next three images illustrate region-based segmentation. Figure 10.1(d) is 
similar to Fig. 10.1(a), but the intensities of the inner region form a textured pattern. 
Figure 10.1(e) shows the result of computing intensity discontinuities in this image. 
The numerous spurious changes in intensity make it difficult to identify a unique 
boundary for the original image because many of the nonzero intensity changes are 
connected to the boundary, so edge-based segmentation is not a suitable approach. 
However, we note that the outer region is constant, so all we need to solve this seg-
mentation problem is a predicate that differentiates between textured and constant 
regions. The standard deviation of pixel values is a measure that accomplishes this 
because it is nonzero in areas of the texture region, and zero otherwise. Figure 10.1(f) 
shows the result of dividing the original image into subregions of size 8 8× . Each 
subregion was then labeled white if the standard deviation of its pixels was posi-
tive (i.e., if the predicate was TRUE), and zero otherwise. The result has a “blocky” 
appearance around the edge of the region because groups of 8 8×  squares were 
labeled with the same intensity (smaller squares would have given a smoother 
region boundary). Finally, note that these results also satisfy the five segmentation 
conditions stated at the beginning of this section.

10.2  POINT, LINE, AND EDGE DETECTION  

The focus of this section is on segmentation methods that are based on detecting 
sharp, local changes in intensity. The three types of image characteristics in which 

10.2
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702    Chapter 10  Image Segmentation

we are interested are isolated points, lines, and edges. Edge pixels are pixels at which 
the intensity of an image changes abruptly, and edges (or edge segments) are sets of 
connected edge pixels (see Section 2.5 regarding connectivity). Edge detectors are 
local image processing tools designed to detect edge pixels. A line may be viewed as 
a (typically) thin edge segment in which the intensity of the background on either 
side of the line is either much higher or much lower than the intensity of the line 
pixels. In fact, as we will discuss later, lines give rise to so-called “roof edges.” Finally, 
an isolated point may be viewed as a foreground (background) pixel surrounded by 
background (foreground) pixels.

BACKGROUND

As we saw in Section 3.5, local averaging smoothes an image. Given that averaging 
is analogous to integration, it is intuitive that abrupt, local changes in intensity can 
be detected using derivatives. For reasons that will become evident shortly, first- and 
second-order derivatives are particularly well suited for this purpose.

Derivatives of a digital function are defined in terms of finite differences. There 
are various ways to compute these differences but, as explained in Section 3.6, we 
require that any approximation used for first derivatives (1) must be zero in areas 
of constant intensity; (2) must be nonzero at the onset of an intensity step or ramp; 
and (3) must be nonzero at points along an intensity ramp. Similarly, we require that 
an approximation used for second derivatives (1) must be zero in areas of constant 
intensity; (2) must be nonzero at the onset and end of an intensity step or ramp; and 
(3) must be zero along intensity ramps. Because we are dealing with digital quanti-
ties whose values are finite, the maximum possible intensity change is also finite, and 
the shortest distance over which a change can occur is between adjacent pixels.

We obtain an approximation to the first-order derivative at an arbitrary point x of 
a one-dimensional function f x( ) by expanding the function f x x( )+ �  into a Taylor 
series about x

f x x f x x
f x

x

x f x

x

x f x

x
( ) ( )

( )
!

( )
!

( )+ = + ∂
∂
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� �
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 (10-1)

where �x is the separation between samples of f. For our purposes, this separation 
is measured in pixel units. Thus, following the convention in the book, �x = 1 for 
the sample preceding x and �x = −1 for the sample following x. When �x = 1, Eq. 
(10-1) becomes

 

f x f x
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 (10-2)

When we refer to lines, 
we are referring to thin 
structures, typically just 
a few pixels thick. Such 
lines may correspond, for 
example, to elements of 
a digitized architectural 
drawing, or roads in a 
satellite image.

Remember, the notation 
n! means “n factorial”:  
n! = 1�2�· · ·� n.

Although this is an 
expression of only one 
variable, we used partial 
derivatives notation for 
consistency when we 
discuss functions of two 
variables later in this 
section.
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Similarly, when �x = −1,
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 (10-3)

In what follows, we compute intensity differences using just a few terms of the Taylor 
series. For first-order derivatives we use only the linear terms, and we can form dif-
ferences in one of three ways.

The forward difference is obtained from Eq. (10-2):

 
∂

∂
= = + −f x

x
f x f x f x

( )
( ) ( ) ( )� 1  (10-4)

where, as you can see, we kept only the linear terms. The backward difference is simi-
larly obtained by keeping only the linear terms in Eq. (10-3):

 
∂

∂
= = − −f x

x
f x f x f x

( )
( ) ( ) ( )� 1  (10-5)

and the central difference is obtained by subtracting Eq. (10-3) from Eq. (10-2):

 
∂

∂
= = + − −f x

x
f x

f x f x( )
( )

( ) ( )
�

1 1
2

 (10-6)

The higher terms of the series that we did not use represent the error between an 
exact and an approximate derivative expansion. In general, the more terms we use 
from the Taylor series to represent a derivative, the more accurate the approxima-
tion will be. To include more terms implies that more points are used in the approxi-
mation, yielding a lower error. However, it turns out that central differences have 
a lower error for the same number of points (see Problem 10.1). For this reason, 
derivatives are usually expressed as central differences.

The second order derivative based on a central difference, ∂ ∂2 2f x x( ) , is obtained 
by adding Eqs. (10-2) and (10-3):

 
∂

∂
= = + − −

2

2 1 2 1
f x

x
f x f x f x f x

( )
( ) ( ) ( ) ( )�� +  (10-7)

To obtain the third order, central derivative we need one more point on either side 
of x. That is, we need the Taylor expansions for f x( )+ 2  and f x( ),− 2  which we 
obtain from Eqs. (10-2) and (10-3) with �x = 2  and �x = −2,  respectively. The strat-
egy is to combine the two Taylor expansions to eliminate all derivatives lower than 
the third. The result after ignoring all higher-order terms [see Problem 10.2(a)] is
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∂
∂

= = + − + + + − − −3

3

2 2 1 0 2 1 2
2

f x

x
f x

f x f x f x f x f x( )
( )

( ) ( ) ( ) ( ) ( )
���  (10-8)

Similarly [see Problem 10.2(b)], the fourth finite difference (the highest we use in 
the book) after ignoring all higher order terms is given by

∂
∂

= = + − + + − − + −
4

4 2 4 1 6 4 1 2
f x

x
f x f x f x f x f x f x

( )
( ) ( ) ( ) ( ) ( ) ( )����  (10-9)

Table 10.1 summarizes the first four central derivatives just discussed. Note the 
symmetry of the coefficients about the center point. This symmetry is at the root 
of why central differences have a lower approximation error for the same number 
of points than the other two differences. For two variables, we apply the results in 
Table 10.1 to each variable independently. For example,

 
∂ ( )

∂
= +( ) − ( ) + −( )

2

2 1 2 1
f x y

x
f x y f x y f x y

,
, , ,   (10-10)

and

 
∂ ( )

∂
= +( ) − ( ) + −( )

2

2 1 2 1
f x y

y
f x y f x y f x y

,
, , ,  (10-11)

It is easily verified that the first and second-order derivatives in Eqs. (10-4) 
through (10-7) satisfy the conditions stated at the beginning of this section regarding 
derivatives of the first and second order. To illustrate this, consider Fig. 10.2. Part (a) 
shows an image of various objects, a line, and an isolated point. Figure 10.2(b) shows 
a horizontal intensity profile (scan line) through the center of the image, including 
the isolated point. Transitions in intensity between the solid objects and the back-
ground along the scan line show two types of edges: ramp edges (on the left) and 
step edges (on the right). As we will discuss later, intensity transitions involving thin 
objects such as lines often are referred to as roof edges. 

Figure 10.2(c) shows a simplified profile, with just enough points to make it possi-
ble for us to analyze manually how the first- and second-order derivatives behave as 
they encounter a point, a line, and the edges of objects. In this diagram the transition 

f x( )+ 2 f x( )+ 1 f x( ) f x( )− 1 f x( )− 2

2 f x�( ) 1 0 −1

f x��( ) 1 −2 1

2 f x���( ) 1 −2 0 2 −1

f x����( ) 1 −4 6 −4 1

TABLE 10.1
First four central 
digital derivatives 
(finite differenc-
es) for samples 
taken uniformly, 
�x = 1 units apart.
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FIGURE 10.2
(a) Image.  
(b) Horizontal 
intensity profile 
that includes the 
isolated point 
indicated by the 
arrow.  
(c) Subsampled 
profile; the dashes 
were added 
for clarity. The 
numbers in the 
boxes are the 
intensity values 
of the dots shown 
in the profile. The 
derivatives were 
obtained using 
Eqs. (10-4) for the 
first derivative 
and Eq. (10-7) for 
the second.

in the ramp spans four pixels, the noise point is a single pixel, the line is three pixels 
thick, and the transition of the step edge takes place between adjacent pixels. The 
number of intensity levels was limited to eight for simplicity. 

Consider the properties of the first and second derivatives as we traverse the 
profile from left to right. Initially, the first-order derivative is nonzero at the onset 
and along the entire intensity ramp, while the second-order derivative is nonzero 
only at the onset and end of the ramp. Because the edges of digital images resemble 
this type of transition, we conclude that first-order derivatives produce “thick” edges, 
and second-order derivatives much thinner ones. Next we encounter the isolated 
noise point. Here, the magnitude of the response at the point is much stronger for 
the second- than for the first-order derivative. This is not unexpected, because a 
second-order derivative is much more aggressive than a first-order derivative in 
enhancing sharp changes. Thus, we can expect second-order derivatives to enhance 
fine detail (including noise) much more than first-order derivatives. The line in this 
example is rather thin, so it too is fine detail, and we see again that the second deriva-
tive has a larger magnitude. Finally, note in both the ramp and step edges that the 
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second derivative has opposite signs (negative to positive or positive to negative) 
as it transitions into and out of an edge. This “double-edge” effect is an important 
characteristic that can be used to locate edges, as we will show later in this section. 
As we move into the edge, the sign of the second derivative is used also to determine 
whether an edge is a transition from light to dark (negative second derivative), or 
from dark to light (positive second derivative)

In summary, we arrive at the following conclusions: (1) First-order derivatives gen-
erally produce thicker edges. (2) Second-order derivatives have a stronger response to 
fine detail, such as thin lines, isolated points, and noise. (3) Second-order derivatives 
produce a double-edge response at ramp and step transitions in intensity. (4) The sign 
of the second derivative can be used to determine whether a transition into an edge is 
from light to dark or dark to light.

The approach of choice for computing first and second derivatives at every pix-
el location in an image is to use spatial convolution. For the 3 3×  filter kernel in 
Fig. 10.3, the procedure is to compute the sum of products of the kernel coefficients 
with the intensity values in the region encompassed by the kernel, as we explained 
in Section 3.4. That is, the response of the filter at the center point of the kernel is

 

Z z z z

zk k
k

= + + +

=
=

∑

w w w

w

1 1 2 2 9 9

1

9

…

 (10-12)

where zk is the intensity of the pixel whose spatial location corresponds to the loca-
tion of the kth kernel coefficient. 

DETECTION OF ISOLATED POINTS

Based on the conclusions reached in the preceding section, we know that point 
detection should be based on the second derivative which, from the discussion in 
Section 3.6, means using the Laplacian:

 ∇ = ∂
∂

+ ∂
∂

2
2

2

2

2f x y
f

x

f

y
( , )  (10-13)

This equation is an 
expansion of Eq. (3-35) 
for a 3�3 kernel, valid 
at one point, and using 
simplified subscript 
notation for the kernel 
coefficients.

w1 w2 w3

w4 w5 w6

w7 w8 w9

FIGURE 10.3
A general 3 3×  
spatial filter  
kernel. The w’s  
are the kernel  
coefficients 
(weights).
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where the partial derivatives are computed using the second-order finite differences 
in Eqs. (10-10) and (10-11). The Laplacian is then

     ∇ ( ) = + + − + + + − −2 1 1 1 1 4f x y f x y f x y f x y f x y f x y, ( , ) ( , ) ( , ) ( , ) ( , )  (10-14)

As explained in Section 3.6, this expression can be implemented using the Lapla-
cian kernel in Fig. 10.4(a) in Example 10.1. We then we say that a point has been 
detected at a location ( , )x y  on which the kernel is centered if the absolute value of 
the response of the filter at that point exceeds a specified threshold. Such points are 
labeled 1 and all others are labeled 0 in the output image, thus producing a binary 
image. In other words, we use the expression: 

  g x y
Z x y T

( , )
( , )

=
>⎧

⎨
⎩

1

0

if

otherwise
 (10-15)

where g x y( , ) is the output image, T is a nonnegative threshold, and Z is given by 
Eq. (10-12). This formulation simply measures the weighted differences between a 
pixel and its 8-neighbors. Intuitively, the idea is that the intensity of an isolated point 
will be quite different from its surroundings, and thus will be easily detectable by 
this type of kernel. Differences in intensity that are considered of interest are those 
large enough (as determined by T ) to be considered isolated points. Note that, as 
usual for a derivative kernel, the coefficients sum to zero, indicating that the filter 
response will be zero in areas of constant intensity.

EXAMPLE 10.1 :  Detection of isolated points in an image.

Figure 10.4(b) is an X-ray image of a turbine blade from a jet engine. The blade has a porosity mani-
fested by a single black pixel in the upper-right quadrant of the image. Figure 10.4(c) is the result of fil-
tering the image with the Laplacian kernel, and Fig. 10.4(d) shows the result of Eq. (10-15) with T equal 
to 90% of the highest absolute pixel value of the image in Fig. 10.4(c). The single pixel is clearly visible 
in this image at the tip of the arrow (the pixel was enlarged to enhance its visibility). This type of detec-
tion process is specialized because it is based on abrupt intensity changes at single-pixel locations that 
are surrounded by a homogeneous background in the area of the detector kernel. When this condition 
is not satisfied, other methods discussed in this chapter are more suitable for detecting intensity changes.

LINE DETECTION

The next level of complexity is line detection. Based on the discussion earlier in this 
section, we know that for line detection we can expect second derivatives to result 
in a stronger filter response, and to produce thinner lines than first derivatives. Thus, 
we can use the Laplacian kernel in Fig. 10.4(a) for line detection also, keeping in 
mind that the double-line effect of the second derivative must be handled properly. 
The following example illustrates the procedure.
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EXAMPLE 10.2 :  Using the Laplacian for line detection.

Figure 10.5(a) shows a 486 486×  (binary) portion of a wire-bond mask for an electronic circuit, and 
Fig. 10.5(b) shows its Laplacian image. Because the Laplacian image contains negative values (see the 
discussion after Example 3.18), scaling is necessary for display. As the magnified section shows, mid gray 
represents zero, darker shades of gray represent negative values, and lighter shades are positive. The 
double-line effect is clearly visible in the magnified region.

At first, it might appear that the negative values can be handled simply by taking the absolute value 
of the Laplacian image. However, as Fig. 10.5(c) shows, this approach doubles the thickness of the lines. 
A more suitable approach is to use only the positive values of the Laplacian (in noisy situations we use 
the values that exceed a positive threshold to eliminate random variations about zero caused by the 
noise). As Fig. 10.5(d) shows, this approach results in thinner lines that generally are more useful. Note 
in Figs. 10.5(b) through (d) that when the lines are wide with respect to the size of the Laplacian kernel, 
the lines are separated by a zero “valley.” This is not unexpected. For example, when the 3 3×  kernel is 
centered on a line of constant intensity 5 pixels wide, the response will be zero, thus producing the effect 
just mentioned. When we talk about line detection, the assumption is that lines are thin with respect to 
the size of the detector. Lines that do not satisfy this assumption are best treated as regions and handled 
by the edge detection methods discussed in the following section.

The Laplacian detector kernel in Fig. 10.4(a) is isotropic, so its response is inde-
pendent of direction (with respect to the four directions of the 3 3×  kernel: verti-
cal, horizontal, and two diagonals). Often, interest lies in detecting lines in specified 

1

1

1

1

�8

1

1

1

1

b
a

dc

FIGURE 10.4
(a) Laplacian ker-
nel used for point 
detection.  
(b) X-ray image 
of a turbine blade 
with a porosity 
manifested by a 
single black pixel. 
(c) Result of con-
volving the kernel 
with the image.  
(d) Result of 
using Eq. (10-15) 
was a single point 
(shown enlarged 
at the tip of the 
arrow). (Original 
image courtesy of 
X-TEK Systems, 
Ltd.)
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ba
dc

FIGURE 10.5
(a) Original  
image.  
(b) Laplacian  
image; the  
magnified  
section shows the 
positive/negative 
double-line effect 
characteristic of 
the Laplacian.  
(c) Absolute value 
of the Laplacian. 
(d) Positive values 
of the Laplacian.

directions. Consider the kernels in Fig. 10.6. Suppose that an image with a constant 
background and containing various lines (oriented at 0°, ± °45 , and 90°) is filtered 
with the first kernel. The maximum responses would occur at image locations in 
which a horizontal line passes through the middle row of the kernel. This is easily 
verified by sketching a simple array of 1’s with a line of a different intensity (say, 5s) 
running horizontally through the array. A similar experiment would reveal that the 
second kernel in Fig. 10.6 responds best to lines oriented at + °45 ; the third kernel 
to vertical lines; and the fourth kernel to lines in the − °45  direction. The preferred 
direction of each kernel is weighted with a larger coefficient (i.e., 2) than other possi-
ble directions. The coefficients in each kernel sum to zero, indicating a zero response 
in areas of constant intensity.

Let Z Z Z1 2 3, , , and Z4  denote the responses of the kernels in Fig. 10.6, from left 
to right, where the Zs are given by Eq. (10-12). Suppose that an image is filtered 
with these four kernels, one at a time. If, at a given point in the image, Z Zk j> , 
for all j k≠ , that point is said to be more likely associated with a line in the direc-
tion of kernel k. For example, if at a point in the image, Z Zj1 >  for j = 2 3 4, , , that 
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point is said to be more likely associated with a horizontal line. If we are interested 
in detecting all the lines in an image in the direction defined by a given kernel, we 
simply run the kernel through the image and threshold the absolute value of the 
result, as in Eq. (10-15). The nonzero points remaining after thresholding are the 
strongest responses which, for lines one pixel thick, correspond closest to the direc-
tion defined by the kernel. The following example illustrates this procedure.

EXAMPLE 10.3 :  Detecting lines in specified directions.

Figure 10.7(a) shows the image used in the previous example. Suppose that we are interested in find-
ing all the lines that are one pixel thick and oriented at + °45 . For this purpose, we use the kernel in 
Fig. 10.6(b). Figure 10.7(b) is the result of filtering the image with that kernel. As before, the shades 
darker than the gray background in Fig. 10.7(b) correspond to negative values. There are two principal 
segments in the image oriented in the + °45  direction, one in the top left and one at the bottom right. Fig-
ures 10.7(c) and (d) show zoomed sections of Fig. 10.7(b) corresponding to these two areas. The straight 
line segment in Fig. 10.7(d) is brighter than the segment in Fig. 10.7(c) because the line segment in the 
bottom right of Fig. 10.7(a) is one pixel thick, while the one at the top left is not. The kernel is “tuned” 
to detect one-pixel-thick lines in the + °45  direction, so we expect its response to be stronger when such 
lines are detected. Figure 10.7(e) shows the positive values of Fig. 10.7(b). Because we are interested in 
the strongest response, we let T  equal 254 (the maximum value in Fig. 10.7(e) minus one). Figure 10.7(f) 
shows in white the points whose values satisfied the condition g T> , where g  is the image in Fig. 10.7(e). 
The isolated points in the figure are points that also had similarly strong responses to the kernel. In the 
original image, these points and their immediate neighbors are oriented in such a way that the kernel 
produced a maximum response at those locations. These isolated points can be detected using the kernel 
in Fig. 10.4(a) and then deleted, or they can be deleted using morphological operators, as discussed in the 
last chapter.

EDGE MODELS

Edge detection is an approach used frequently for segmenting images based on 
abrupt (local) changes in intensity. We begin by introducing several ways to model 
edges and then discuss a number of approaches for edge detection.

ba c d

FIGURE 10.6  Line detection kernels. Detection angles are with respect to the axis system in Fig. 2.19, with positive 
angles measured counterclockwise with respect to the (vertical) x-axis.
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ba c
ed f

FIGURE 10.7 (a) Image of a wire-bond template. (b) Result of processing with the + °45  line detector kernel in Fig. 
10.6. (c) Zoomed view of the top left region of (b). (d) Zoomed view of the bottom right region of (b). (e) The image 
in (b) with all negative values set to zero. (f) All points (in white) whose values satisfied the condition g T> , where 
g is the image in (e) and T = 254 (the maximum pixel value in the image minus 1). (The points in (f) were enlarged 
to make them easier to see.)

Edge models are classified according to their intensity profiles. A step edge is 
characterized by a transition between two intensity levels occurring ideally over the 
distance of one pixel. Figure 10.8(a) shows a section of a vertical step edge and 
a horizontal intensity profile through the edge. Step edges occur, for example, in 
images generated by a computer for use in areas such as solid modeling and ani-
mation. These clean, ideal edges can occur over the distance of one pixel, provided 
that no additional processing (such as smoothing) is used to make them look “real.” 
Digital step edges are used frequently as edge models in algorithm development. 
For example, the Canny edge detection algorithm discussed later in this section was 
derived originally using a step-edge model.

In practice, digital images have edges that are blurred and noisy, with the degree 
of blurring determined principally by limitations in the focusing mechanism (e.g., 
lenses in the case of optical images), and the noise level determined principally by 
the electronic components of the imaging system. In such situations, edges are more 
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ba c

FIGURE 10.8
From left to right, 
models (ideal 
representations) of 
a step, a ramp, and 
a roof edge, and 
their corresponding 
intensity profiles.

closely modeled as having an intensity ramp profile, such as the edge in Fig. 10.8(b). 
The slope of the ramp is inversely proportional to the degree to which the edge is 
blurred. In this model, we no longer have a single “edge point” along the profile. 
Instead, an edge point now is any point contained in the ramp, and an edge segment 
would then be a set of such points that are connected.

A third type of edge is the so-called roof edge, having the characteristics illus-
trated in Fig. 10.8(c). Roof edges are models of lines through a region, with the 
base (width) of the edge being determined by the thickness and sharpness of the 
line. In the limit, when its base is one pixel wide, a roof edge is nothing more than 
a one-pixel-thick line running through a region in an image. Roof edges arise, for 
example, in range imaging, when thin objects (such as pipes) are closer to the sensor 
than the background (such as walls). The pipes appear brighter and thus create an 
image similar to the model in Fig. 10.8(c). Other areas in which roof edges appear 
routinely are in the digitization of line drawings and also in satellite images, where 
thin features, such as roads, can be modeled by this type of edge.

It is not unusual to find images that contain all three types of edges. Although 
blurring and noise result in deviations from the ideal shapes, edges in images that 
are reasonably sharp and have a moderate amount of noise do resemble the charac-
teristics of the edge models in Fig. 10.8, as the profiles in Fig. 10.9 illustrate. What the 
models in Fig. 10.8 allow us to do is write mathematical expressions for edges in the 
development of image processing algorithms. The performance of these algorithms 
will depend on the differences between actual edges and the models used in devel-
oping the algorithms.

Figure 10.10(a) shows the image from which the segment in Fig. 10.8(b) was extract-
ed. Figure 10.10(b) shows a horizontal intensity profile. This figure shows also the first 
and second derivatives of the intensity profile. Moving from left to right along the 
intensity profile, we note that the first derivative is positive at the onset of the ramp 
and at points on the ramp, and it is zero in areas of constant intensity. The second 
derivative is positive at the beginning of the ramp, negative at the end of the ramp, 
zero at points on the ramp, and zero at points of constant intensity. The signs of the 
derivatives just discussed would be reversed for an edge that transitions from light to 
dark. The intersection between the zero intensity axis and a line extending between 
the extrema of the second derivative marks a point called the zero crossing of the 
second derivative.

We conclude from these observations that the magnitude of the first derivative 
can be used to detect the presence of an edge at a point in an image. Similarly, the 
sign of the second derivative can be used to determine whether an edge pixel lies on 
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FIGURE 10.9  A 1508 1970×  image showing (zoomed) actual ramp (bottom, left), step (top, 
right), and roof edge profiles. The profiles are from dark to light, in the areas enclosed by the 
small circles. The ramp and step profiles span 9 pixels and 2 pixels, respectively. The base of the 
roof edge is 3 pixels. (Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)

Second
derivative

First
derivative

Horizontal intensity
profile

Zero crossing

ba  
FIGURE 10.10
(a) Two regions of 
constant  
intensity  
separated by an  
ideal ramp edge.  
(b) Detail near 
the edge, showing 
a horizontal  
intensity profile, 
and its first and 
second  
derivatives.

the dark or light side of an edge. Two additional properties of the second derivative 
around an edge are: (1) it produces two values for every edge in an image; and (2) 
its zero crossings can be used for locating the centers of thick edges, as we will show 
later in this section. Some edge models utilize a smooth transition into and out of 
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714    Chapter 10  Image Segmentation

the ramp (see Problem 10.9). However, the conclusions reached using those models 
are the same as with an ideal ramp, and working with the latter simplifies theoretical 
formulations. Finally, although attention thus far has been limited to a 1-D horizon-
tal profile, a similar argument applies to an edge of any orientation in an image. We 
simply define a profile perpendicular to the edge direction at any desired point, and 
interpret the results in the same manner as for the vertical edge just discussed.

EXAMPLE 10.4 :  Behavior of the first and second derivatives in the region of a noisy edge.

The edge models in Fig. 10.8 are free of noise. The image segments in the first column in Fig. 10.11 show 
close-ups of four ramp edges that transition from a black region on the left to a white region on the right 
(keep in mind that the entire transition from black to white is a single edge). The image segment at the 
top left is free of noise. The other three images in the first column are corrupted by additive Gaussian 
noise with zero mean and standard deviation of 0.1, 1.0, and 10.0 intensity levels, respectively. The graph 
below each image is a horizontal intensity profile passing through the center of the image. All images 
have 8 bits of intensity resolution, with 0 and 255 representing black and white, respectively.

Consider the image at the top of the center column. As discussed in connection with Fig. 10.10(b), the 
derivative of the scan line on the left is zero in the constant areas. These are the two black bands shown 
in the derivative image. The derivatives at points on the ramp are constant and equal to the slope of the 
ramp. These constant values in the derivative image are shown in gray. As we move down the center col-
umn, the derivatives become increasingly different from the noiseless case. In fact, it would be difficult 
to associate the last profile in the center column with the first derivative of a ramp edge. What makes 
these results interesting is that the noise is almost visually undetectable in the images on the left column. 
These examples are good illustrations of the sensitivity of derivatives to noise.

As expected, the second derivative is even more sensitive to noise. The second derivative of the noise-
less image is shown at the top of the right column. The thin white and black vertical lines are the positive 
and negative components of the second derivative, as explained in Fig. 10.10. The gray in these images 
represents zero (as discussed earlier, scaling causes zero to show as gray). The only noisy second deriva-
tive image that barely resembles the noiseless case corresponds to noise with a standard deviation of 0.1. 
The remaining second-derivative images and profiles clearly illustrate that it would be difficult indeed to 
detect their positive and negative components, which are the truly useful features of the second deriva-
tive in terms of edge detection.

The fact that such little visual noise can have such a significant impact on the two key derivatives 
used for detecting edges is an important issue to keep in mind. In particular, image smoothing should be 
a serious consideration prior to the use of derivatives in applications where noise with levels similar to 
those we have just discussed is likely to be present.

In summary, the three steps performed typically for edge detection are:

1. Image smoothing for noise reduction. The need for this step is illustrated by the 
results in the second and third columns of Fig. 10.11.

2. Detection of edge points. As mentioned earlier, this is a local operation that 
extracts from an image all points that are potential edge-point candidates.

3. Edge localization. The objective of this step is to select from the candidate 
points only the points that are members of the set of points comprising an edge.

The remainder of this section deals with techniques for achieving these objectives.
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FIGURE 10.11  First column: 8-bit images with values in the range [ , ],0 255  and intensity profiles 
of a ramp edge corrupted by Gaussian noise of zero mean and standard deviations of 0.0, 0.1, 
1.0, and 10.0 intensity levels, respectively. Second column: First-derivative images and inten-
sity profiles. Third column: Second-derivative images and intensity profiles.
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716    Chapter 10  Image Segmentation

BASIC EDGE DETECTION

As illustrated in the preceding discussion, detecting changes in intensity for the pur-
pose of finding edges can be accomplished using first- or second-order derivatives. 
We begin with first-order derivatives, and work with second-order derivatives in the 
following subsection.

The Image Gradient and Its Properties 

The tool of choice for finding edge strength and direction at an arbitrary location 
( , )x y  of an image, f, is the gradient, denoted by 
f  and defined as the vector

 ∇ ≡ [ ] ≡
⎡

⎣
⎢

⎤

⎦
⎥ =

∂
∂

∂f x y f x y
g x y

g x y
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⎥
⎥
⎥
⎥y

 (10-16)

This vector has the well-known property that it points in the direction of maximum 
rate of change of f at ( , )x y  (see Problem 10.10). Equation (10-16) is valid at an 
arbitrary (but single) point ( , ).x y  When evaluated for all applicable values of x 
and y, 
f x y( , ) becomes a vector image, each element of which is a vector given by 
Eq. (10-16). The magnitude, M x y( , ), of this gradient vector at a point ( , )x y  is given 
by its Euclidean vector norm: 

 M x y f x y g x y g x yx y( , ) ( , ) ( , ) ( , )= ∇ = +2 2  (10-17)

This is the value of the rate of change in the direction of the gradient vector at point 
( , ).x y  Note that M x y( , ), 
f x y( , ) , g x yx( , ), and g x yy( , ) are arrays of the same 
size as f, created when x and y are allowed to vary over all pixel locations in f. It is 
common practice to refer to M x y( , ) and 
f x y( , )  as the gradient image, or simply 
as the gradient when the meaning is clear. The summation, square, and square root 
operations are elementwise operations, as defined in Section 2.6.

The direction of the gradient vector at a point ( , )x y  is given by

 a( , ) tan
( , )

( , )
x y

g x y

g x y
y

x

=
⎡

⎣
⎢

⎤

⎦
⎥

−1  (10-18)

Angles are measured in the counterclockwise direction with respect to the x-axis 
(see Fig. 2.19). This is also an image of the same size as f, created by the elementwise 
division of gx  and gy  over all applicable values of x and y. The following example 
illustrates, the direction of an edge at a point ( , )x y  is orthogonal to the direction, 
a( , ),x y  of the gradient vector at the point. 

EXAMPLE 10.5 :  Computing the gradient.

Figure 10.12(a) shows a zoomed section of an image containing a straight edge segment. Each square 
corresponds to a pixel, and we are interested in obtaining the strength and direction of the edge at the 
point highlighted with a box. The shaded pixels in this figure are assumed to have value 0, and the white 

For convenience, we 
repeat here some of the 
gradient concepts and 
equations introduced in 
Chapter 3.
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pixels have value 1. We discuss after this example an approach for computing the derivatives in the x- 
and y-directions using a 3 3×  neighborhood centered at a point. The method consists of subtracting the 
pixels in the top row of the neighborhood from the pixels in the bottom row to obtain the partial deriva-
tive in the x-direction. Similarly, we subtract the pixels in the left column from the pixels in the right col-
umn of the neighborhood to obtain the partial derivative in the y-direction. It then follows, using these 
differences as our estimates of the partials, that ∂ ∂ = −f x 2  and ∂ ∂ =f y 2 at the point in question. Then,

 ∇ =
⎡

⎣
⎢

⎤

⎦
⎥ =

∂
∂
∂
∂
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⎣

⎢
⎢
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⎥
⎥
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f
y
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y

2

2

from which we obtain 
f = 2 2  at that point. Similarly, the direction of the gradient vector at the 
same point follows from Eq. (10-18): a = ( ) = − °−tan ,1 45g gy x  which is the same as 135° measured in 
the positive (counterclockwise) direction with respect to the x-axis in our image coordinate system (see 
Fig. 2.19). Figure 10.12(b) shows the gradient vector and its direction angle. 

As mentioned earlier, the direction of an edge at a point is orthogonal to the gradient vector at that 
point. So the direction angle of the edge in this example is a − ° = ° − ° = °90 135 90 45 , as Fig. 10.12(c) 
shows. All edge points in Fig. 10.12(a) have the same gradient, so the entire edge segment is in the same 
direction. The gradient vector sometimes is called the edge normal. When the vector is normalized to unit 
length by dividing it by its magnitude, the resulting vector is referred to as the edge unit normal.

Gradient Operators

Obtaining the gradient of an image requires computing the partial derivatives ∂ ∂f x  
and ∂ ∂f y at every pixel location in the image. For the gradient, we typically use a 
forward or centered finite difference (see Table 10.1). Using forward differences we 
obtain

  g x y
f x y

x
f x y f x yx( , )

( , )
( , ) ( , )= ∂

∂
= + −1  (10-19)

x

y

Gradient vector Gradient vector

Edge direction

a
a � 90�

a

Origin

ba c

FIGURE 10.12 Using the gradient to determine edge strength and direction at a point. Note that the edge direction 
is perpendicular to the direction of the gradient vector at the point where the gradient is computed. Each square 
represents one pixel. (Recall from Fig. 2.19 that the origin of our coordinate system is at the top, left.)
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and

 g x y
f x y

y
f x y f x yy( , )

( , )
( , ) ( , )= ∂

∂
= + −1  (10-20)

These two equations can be implemented for all values of x and y by filtering f x y( , ) 
with the 1-D kernels in Fig. 10.13.

When diagonal edge direction is of interest, we need 2-D kernels. The Roberts 
cross-gradient operators (Roberts [1965]) are one of the earliest attempts to use 2-D 
kernels with a diagonal preference. Consider the 3 3×  region in Fig. 10.14(a). The 
Roberts operators are based on implementing the diagonal differences

 g
f
x

z zx = ∂
∂

= −( )9 5  (10-21)

and

 g
f
y

z zy = ∂
∂

= −( )8 6  (10-22)

These derivatives can be implemented by filtering an image with the kernels shown 
in Figs. 10.14(b) and (c).

Kernels of size 2 2×  are simple conceptually, but they are not as useful for com-
puting edge direction as kernels that are symmetric about their centers, the smallest 
of which are of size 3 3× . These kernels take into account the nature of the data on 
opposite sides of the center point, and thus carry more information regarding the 
direction of an edge. The simplest digital approximations to the partial derivatives 
using kernels of size 3 3×  are given by

 g
f
x

z z z z z zx = ∂
∂

= + + − + +( ) ( )7 8 9 1 2 3  

and             (10-23)

 g
f
y

z z z z z zy = ∂
∂

= + + − + +( ) ( )3 6 9 1 4 7

In this formulation, the difference between the third and first rows of the 3 3×  region 
approximates the derivative in the x-direction, and the difference between the third 
and first columns approximate the derivative in the y-direction. Intuitively, we would 
expect these approximations to be more accurate than the approximations obtained 
using the Roberts operators. Equations (10-22) and (10-23) can be implemented over 
an entire image by filtering it with the two kernels in Figs. 10.14(d) and (e). These 
kernels are called the Prewitt operators (Prewitt [1970]). 

A slight variation of the preceding two equations uses a weight of 2 in the center 
coefficient:

Filter kernels used to 
compute the derivatives 
needed for the gradient 
are often called gradient 
operators, difference 
operators, edge operators, 
or edge detectors.

Observe that these two 
equations are first-order 
central differences as 
given in Eq. (10-6), but 
multiplied by 2.

�1

1

�1 1
ba

FIGURE 10.13
1-D kernels used to 
implement Eqs.  
(10-19) and (10-20).
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FIGURE 10.14
A 3 3×  region 
of an image (the 
z’s are intensity 
values), and  
various kernels 
used to compute 
the gradient at the 
point labeled z5.  

 g
f
x

z z z z z zx = ∂
∂

= + + − + +( ) ( )7 8 9 1 2 32 2  (10-24)

and

 g
f
y

z z z z z zy = ∂
∂

= + + − + +( ) ( )3 6 9 1 4 72 2  (10-25)

It can be demonstrated (see Problem 10.12) that using a 2 in the center location pro-
vides image smoothing. Figures 10.14(f) and (g) show the kernels used to implement 
Eqs. (10-24) and (10-25). These kernels are called the Sobel operators (Sobel [1970]).

The Prewitt kernels are simpler to implement than the Sobel kernels, but the 
slight computational difference between them typically is not an issue. The fact 
that the Sobel kernels have better noise-suppression (smoothing) characteristics 
makes them preferable because, as mentioned earlier in the discussion of Fig. 10.11, 
noise suppression is an important issue when dealing with derivatives. Note that the 
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coefficients of all the kernels in Fig. 10.14 sum to zero, thus giving a response of zero 
in areas of constant intensity, as expected of derivative operators.

Any of the pairs of kernels from Fig. 10.14 are convolved with an image to obtain 
the gradient components gx  and gy  at every pixel location. These two partial deriva-
tive arrays are then used to estimate edge strength and direction. Obtaining the 
magnitude of the gradient requires the computations in Eq. (10-17). This imple-
mentation is not always desirable because of the computational burden required 
by squares and square roots, and an approach used frequently is to approximate the 
magnitude of the gradient by absolute values:

 M x y g gx y( , ) ≈ +  (10-26)

This equation is more attractive computationally, and it still preserves relative 
changes in intensity levels. The price paid for this advantage is that the resulting 
filters will not be isotropic (invariant to rotation) in general. However, this is not an 
issue when kernels such as the Prewitt and Sobel kernels are used to compute gx  
and gy  because these kernels give isotropic results only for vertical and horizontal 
edges. This means that results would be isotropic only for edges in those two direc-
tions anyway, regardless of which of the two equations is used. That is, Eqs. (10-17) 
and (10-26) give identical results for vertical and horizontal edges when either the 
Sobel or Prewitt kernels are used (see Problem 10.11).

The 3 3×  kernels in Fig. 10.14 exhibit their strongest response predominantly for 
vertical and horizontal edges. The Kirsch compass kernels (Kirsch [1971]) in Fig. 10.15, 
are designed to detect edge magnitude and direction (angle) in all eight compass 
directions. Instead of computing the magnitude using Eq. (10-17) and angle using 
Eq. (10-18), Kirsch’s approach was to determine the edge magnitude by convolv-
ing an image with all eight kernels and assign the edge magnitude at a point as the 
response of the kernel that gave strongest convolution value at that point. The edge 
angle at that point is then the direction associated with that kernel. For example, if 
the strongest value at a point in the image resulted from using the north (N) kernel, 
the edge magnitude at that point would be assigned the response of that kernel, and 
the direction would be 0°  (because compass kernel pairs differ by a rotation of 180°; 
choosing the maximum response will always result in a positive number). Although 
when working with, say, the Sobel kernels, we think of a north or south edge as 
being vertical, the N and S compass kernels differentiate between the two, the differ-
ence being the direction of the intensity transitions defining the edge. For example, 
assuming that intensity values are in the range [ , ],0 1  the binary edge in Fig. 10.8(a) 
is defined by black (0) on the left and white (1) on the right. When all Kirsch kernels 
are applied to this edge, the N kernel will yield the highest value, thus indicating an 
edge oriented in the north direction (at the point of the computation). 

EXAMPLE 10.6 :  Illustration of the 2-D gradient magnitude and angle.

Figure 10.16 illustrates the Sobel absolute value response of the two components of the gradient, gx  
and gy , as well as the gradient image formed from the sum of these two components. The directionality 
of the horizontal and vertical components of the gradient is evident in Figs. 10.16(b) and (c). Note, for 

Recall the important 
result in Problem 3.32 
that using a kernel 
whose coefficients sum 
to zero produces a 
filtered image whose 
pixels also sum to zero. 
This implies in general 
that some pixels will be 
negative. Similarly, if the 
kernel coefficients sum 
to 1, the sum of pixels in 
the original and filtered 
images will be the same 
(see Problem 3.31).
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example, how strong the roof tile, horizontal brick joints, and horizontal segments of the windows are in 
Fig. 10.16(b) compared to other edges. In contrast, Fig. 10.16(c) favors features such as the vertical com-
ponents of the façade and windows. It is common terminology to use the term edge map when referring 
to an image whose principal features are edges, such as gradient magnitude images. The intensities of the 
image in Fig. 10.16(a) were scaled to the range [ , ].0 1  We use values in this range to simplify parameter 
selection in the various methods for edge detection discussed in this section.

ba dc
f he g

FIGURE 10.15
Kirsch compass 
kernels. The edge 
direction of  
strongest response 
of each kernel is 
labeled below it. 
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FIGURE 10.16
 (a) Image of size 
834 1114×  pixels, 
with intensity 
values scaled to 
the range [ , ].0 1  
(b) gx ,  the 
component of 
the gradient in 
the x-direction, 
obtained using the 
Sobel kernel in 
Fig. 10.14(f) to  
filter the image. 
(c) gy ,  obtained 
using the kernel 
in Fig. 10.14(g). 
(d) The gradient 
image, g gx y+ .
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FIGURE 10.17
Gradient angle 
image computed 
using Eq. (10-18). 
Areas of constant 
intensity in this 
image indicate 
that the direction 
of the gradient 
vector is the same 
at all the pixel 
locations in those 
regions.

Figure 10.17 shows the gradient angle image computed using Eq. (10-18). In general, angle images are 
not as useful as gradient magnitude images for edge detection, but they do complement the information 
extracted from an image using the magnitude of the gradient. For instance, the constant intensity areas 
in Fig. 10.16(a), such as the front edge of the sloping roof and top horizontal bands of the front wall, 
are constant in Fig. 10.17, indicating that the gradient vector direction at all the pixel locations in those 
regions is the same. As we will show later in this section, angle information plays a key supporting role 
in the implementation of the Canny edge detection algorithm, a widely used edge detection scheme.

The original image in Fig. 10.16(a) is of reasonably high resolution, and at the 
distance the image was acquired, the contribution made to image detail by the wall 
bricks is significant. This level of fine detail often is undesirable in edge detection 
because it tends to act as noise, which is enhanced by derivative computations and 
thus complicates detection of the principal edges. One way to reduce fine detail is 
to smooth the image prior to computing the edges. Figure 10.18 shows the same 
sequence of images as in Fig. 10.16, but with the original image smoothed first using 
a 5 5×  averaging filter (see Section 3.5 regarding smoothing filters). The response 
of each kernel now shows almost no contribution due to the bricks, with the results 
being dominated mostly by the principal edges in the image.

Figures 10.16 and 10.18 show that the horizontal and vertical Sobel kernels do 
not differentiate between edges in the ± °45  directions. If it is important to empha-
size edges oriented in particular diagonal directions, then one of the Kirsch kernels 
in Fig. 10.15 should be used. Figures 10.19(a) and (b) show the responses of the 45° 
(NW) and −45° (SW) Kirsch kernels, respectively. The stronger diagonal selectivity 
of these kernels is evident in these figures. Both kernels have similar responses to 
horizontal and vertical edges, but the response in these directions is weaker.

Combining the Gradient with Thresholding

The results in Fig. 10.18 show that edge detection can be made more selective by 
smoothing the image prior to computing the gradient. Another approach aimed 
at achieving the same objective is to threshold the gradient image. For example, 
Fig. 10.20(a) shows the gradient image from Fig. 10.16(d), thresholded so that pix-
els with values greater than or equal to 33% of the maximum value of the gradi-
ent image are shown in white, while pixels below the threshold value are shown in 

The threshold used to 
generate Fig. 10.20(a) 
was selected so that most 
of the small edges caused 
by the bricks were 
eliminated. This was the 
same objective as when 
the image in Fig. 10.16(a) 
was smoothed prior to 
computing the gradient.
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FIGURE 10.18
Same sequence as 
in Fig. 10.16, but 
with the original 
image smoothed 
using a 5 5×  aver-
aging kernel prior 
to edge detection.

black. Comparing this image with Fig. 10.16(d), we see that there are fewer edges 
in the thresholded image, and that the edges in this image are much sharper (see, 
for example, the edges in the roof tile). On the other hand, numerous edges, such 
as the sloping line defining the far edge of the roof (see arrow), are broken in the 
thresholded image.

When interest lies both in highlighting the principal edges and on maintaining 
as much connectivity as possible, it is common practice to use both smoothing and 
thresholding. Figure 10.20(b) shows the result of thresholding Fig. 10.18(d), which is 
the gradient of the smoothed image. This result shows a reduced number of broken 
edges;  for instance, compare the corresponding edges identified by the arrows in 
Figs. 10.20(a) and (b). 

ba

FIGURE 10.19
Diagonal edge  
detection.  
(a) Result of using 
the Kirsch kernel in 
Fig. 10.15(c).  
(b) Result of using 
the kernel in Fig. 
10.15(d). The input 
image in both cases 
was Fig. 10.18(a).
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MORE ADVANCED TECHNIQUES FOR EDGE DETECTION

The edge-detection methods discussed in the previous subsections are based on fil-
tering an image with one or more kernels, with no provisions made for edge char-
acteristics and noise content. In this section, we discuss more advanced techniques 
that attempt to improve on simple edge-detection methods by taking into account 
factors such as image noise and the nature of edges themselves.

The Marr-Hildreth Edge Detector

One of the earliest successful attempts at incorporating more sophisticated analy-
sis into the edge-finding process is attributed to Marr and Hildreth [1980]. Edge- 
detection methods in use at the time were based on small operators, such as the 
Sobel kernels discussed earlier. Marr and Hildreth argued (1) that intensity chang-
es are not independent of image scale, implying that their detection requires using 
operators of different sizes; and (2) that a sudden intensity change will give rise to a 
peak or trough in the first derivative or, equivalently, to a zero crossing in the second 
derivative (as we saw in Fig. 10.10).

These ideas suggest that an operator used for edge detection should have two 
salient features. First and foremost, it should be a differential operator capable of 
computing a digital approximation of the first or second derivative at every point in 
the image. Second, it should be capable of being “tuned” to act at any desired scale, 
so that large operators can be used to detect blurry edges and small operators to 
detect sharply focused fine detail.

Marr and Hildreth suggested that the most satisfactory operator fulfilling these 
conditions is the filter 
2G where, as defined in Section 3.6, 
2 is the Laplacian, and 
G is the 2-D Gaussian function

 G x y e
x y

( , ) =
− +2 2

22s  (10-27)

with standard deviation s  (sometimes s  is called the space constant in this context). 
We find an expression for 
2G by applying the Laplacian to Eq. (10-27):

Equation (10-27) differs 
from the definition of a 
Gaussian function by a 
multiplicative constant 
[see Eq. (3-45)]. Here, 
we are interested only in 
the general shape of the 
Gaussian function.

ba

FIGURE 10.20
(a) Result of  
thresholding  
Fig. 10.16(d), the  
gradient of the 
original image.  
(b) Result of 
thresholding  
Fig. 10.18(d), the  
gradient of the 
smoothed image.
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Collecting terms, we obtain

 ∇ = + − − +
2

2 2 2

4
22
2 2

2
G x y

x y
e

x y

( , ) a bs

s
s  (10-29)

This expression is called the Laplacian of a Gaussian (LoG).
Figures 10.21(a) through (c) show a 3-D plot, image, and cross-section of the 

negative of the LoG function (note that the zero crossings of the LoG occur at 
x y2 2 22+ = s , which defines a circle of radius 2s  centered on the peak of the 
Gaussian function). Because of the shape illustrated in Fig. 10.21(a), the LoG func-
tion sometimes is called the Mexican hat operator. Figure 10.21(d) shows a 5 5×  
kernel that approximates the shape in Fig. 10.21(a) (normally, we would use the neg-
ative of this kernel). This approximation is not unique. Its purpose is to capture the 
essential shape of the LoG function; in terms of Fig. 10.21(a), this means a positive, 
central term surrounded by an adjacent, negative region whose values decrease as a 
function of distance from the origin, and a zero outer region. The coefficients must 
sum to zero so that the response of the kernel is zero in areas of constant intensity.

Filter kernels of arbitrary size (but fixed s) can be generated by sampling Eq. (10-29), 
and scaling the coefficients so that they sum to zero. A more effective approach for 
generating a LoG kernel is sampling Eq. (10-27) to the desired size, then convolving 
the resulting array with a Laplacian kernel, such as the kernel in Fig. 10.4(a). Because 
convolving an image with a kernel whose coefficients sum to zero yields an image 
whose elements also sum to zero (see Problems 3.32 and 10.16), this approach auto-
matically satisfies the requirement that the sum of the LoG kernel coefficients be 
zero. We will discuss size selection for LoG filter later in this section.

There are two fundamental ideas behind the selection of the operator ∇2G. First, 
the Gaussian part of the operator blurs the image, thus reducing the intensity of 
structures (including noise) at scales much smaller than s. Unlike the averaging 
filter used in Fig. 10.18, the Gaussian function is smooth in both the spatial and 
frequency domains (see Section 4.8), and is thus less likely to introduce artifacts 
(e.g., ringing) not present in the original image. The other idea concerns the second-
derivative properties of the Laplacian operator, ∇2. Although first derivatives can 
be used for detecting abrupt changes in intensity, they are directional operators. The 
Laplacian, on the other hand, has the important advantage of being isotropic (invari-
ant to rotation), which not only corresponds to characteristics of the human visual 
system (Marr [1982]) but also responds equally to changes in intensity in any kernel 
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direction, thus avoiding having to use multiple kernels to calculate the strongest 
response at any point in the image.

The Marr-Hildreth algorithm consists of convolving the LoG kernel with an input 
image,

 g x y G x y f x y( , ) ( , ) ( , )= ⎡⎣ ⎤⎦
2
�  (10-30)

and then finding the zero crossings of g x y( , ) to determine the locations of edges in 
f x y( , ). Because the Laplacian and convolution are linear processes, we can write 
Eq. (10-30) as

 g x y G x y f x y( , ) ( , ) ( , )= ∇ [ ]2
�  (10-31)

indicating that we can smooth the image first with a Gaussian filter and then com-
pute the Laplacian of the result. These two equations give identical results.

The Marr-Hildreth edge-detection algorithm may be summarized as follows:

1. Filter the input image with an n n×  Gaussian lowpass kernel obtained by sam-
pling Eq. (10-27).

2. Compute the Laplacian of the image resulting from Step 1 using, for example, 
the 3 3×  kernel in Fig. 10.4(a). [Steps 1 and 2 implement Eq. (10-31).]

3. Find the zero crossings of the image from Step 2.

This expression is  
implemented in the 
spatial domain using 
Eq. (3-35). It can be 
implemented also in the 
frequency domain using 
Eq. (4-104).

0 0 �1 0 0

0 �1 �2 �1 0

�1 �2 16 �2 �1

0 �1 �2 �1 0

0 0 �1 0 0

x y


2G


2G

Zero crossingZero crossing

2s2

ba
dc

FIGURE 10.21
(a) 3-D plot of 
the negative of the 
LoG.  
(b) Negative of 
the LoG  
displayed as an 
image.  
(c) Cross section 
of (a) showing 
zero crossings. 
(d) 5 5×  kernel 
approximation to 
the shape in (a). 
The negative 
of this kernel 
would be used in 
practice.
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To specify the size of the Gaussian kernel, recall from our discussion of Fig. 3.35 that 
the values of a Gaussian function at a distance larger than 3s  from the mean are 
small enough so that they can be ignored. As discussed in Section 3.5, this implies 
using a Gaussian kernel of size L M L M6 6s s× , where L M6s  denotes the ceiling of 6s; that 
is, smallest integer not less than 6s. Because we work with kernels of odd dimen-
sions, we would use the smallest odd integer satisfying this condition. Using a kernel 
smaller than this will “truncate” the LoG function, with the degree of truncation 
being inversely proportional to the size of the kernel. Using a larger kernel would 
make little difference in the result.

One approach for finding the zero crossings at any pixel, p, of the filtered image, 
g x y( , ), is to use a 3 3×  neighborhood centered at p. A zero crossing at p implies 
that the signs of at least two of its opposing neighboring pixels must differ. There are 
four cases to test: left/right, up/down, and the two diagonals. If the values of g x y( , ) 
are being compared against a threshold (a common approach), then not only must 
the signs of opposing neighbors be different, but the absolute value of their numeri-
cal difference must also exceed the threshold before we can call p a zero-crossing 
pixel. We illustrate this approach in Example 10.7.

Computing zero crossings is the key feature of the Marr-Hildreth edge-detection 
method. The approach discussed in the previous paragraph is attractive because of 
its simplicity of implementation and because it generally gives good results. If the 
accuracy of the zero-crossing locations found using this method is inadequate in a 
particular application, then a technique proposed by Huertas and Medioni [1986] 
for finding zero crossings with subpixel accuracy can be employed.

EXAMPLE 10.7 :  Illustration of the Marr-Hildreth edge-detection method.

Figure 10.22(a) shows the building image used earlier and Fig. 10.22(b) is the result of Steps 1 and 2 of 
the Marr-Hildreth algorithm, using s = 4 (approximately 0.5% of the short dimension of the image) 
and n = 25 to satisfy the size condition stated above. As in Fig. 10.5, the gray tones in this image are due 
to scaling. Figure 10.22(c) shows the zero crossings obtained using the 3 3×  neighborhood approach just 
discussed, with a threshold of zero. Note that all the edges form closed loops. This so-called “spaghetti 
effect” is a serious drawback of this method when a threshold value of zero is used (see Problem 10.17). 
We avoid closed-loop edges by using a positive threshold.

Figure 10.22(d) shows the result of using a threshold approximately equal to 4% of the maximum 
value of the LoG image. The majority of the principal edges were readily detected, and “irrelevant” fea-
tures, such as the edges due to the bricks and the tile roof, were filtered out. This type of performance 
is virtually impossible to obtain using the gradient-based edge-detection techniques discussed earlier. 
Another important consequence of using zero crossings for edge detection is that the resulting edges are 
1 pixel thick. This property simplifies subsequent stages of processing, such as edge linking.

It is possible to approximate the LoG function in Eq. (10-29) by a difference of 
Gaussians (DoG):

 D x y e eG

x y x y
( , ) = −− +

− +1
2

1
21

2 2

2
2 2

2 2

1
2

2 2

2
2

ps ps
s s  (10-32)

As explained in Section 
3.5, <⋅= and :⋅; denote the 
ceiling and floor func-
tions. That is, the ceiling 
and floor functions map 
a real number to the 
smallest following, or the 
largest previous, integer, 
respectively.

Attempts to find zero 
crossings by finding the 
coordinates (x, y) where 
g(x, y) = 0 are impractical 
because of noise and 
other computational 
inaccuracies.
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ba
dc

FIGURE 10.22
(a) Image of size 
834 1114×  pixels, 
with intensity  
values scaled to the 
range [0, 1].  
(b) Result of 
Steps 1 and 2 of 
the Marr-Hildreth 
algorithm using 
s = 4 and n = 25. 
(c) Zero cross-
ings of (b) using 
a threshold of 0 
(note the closed-
loop edges).  
(d) Zero cross-
ings found using a 
threshold equal to 
4% of the maxi-
mum value of the 
image in (b). Note 
the thin edges.

with s s1 2> . Experimental results suggest that certain “channels” in the human 
vision system are selective with respect to orientation and frequency, and can be 
modeled using Eq. (10-32) with a ratio of standard deviations of 1.75:1. Using the 
ratio 1.6:1 preserves the basic characteristics of these observations and also pro-
vides a closer “engineering” approximation to the LoG function (Marr and Hil-
dreth [1980]). In order for the LoG and DoG to have the same zero crossings, the 
value of s  for the LoG must be selected based on the following equation (see 
Problem 10.19):

 s
s s

s s

s

s

2 1
2

2
2

1
2

2
2

1
2

2
2=

−
⎡

⎣
⎢

⎤

⎦
⎥ln  (10-33)

 Although the zero crossings of the LoG and DoG will be the same when this value 
of s  is used, their amplitude scales will be different. We can make them compatible 
by scaling both functions so that they have the same value at the origin.

The profiles in Figs. 10.23(a) and (b) were generated with standard devia-
tion ratios of 1:1.75 and 1:1.6, respectively (by convention, the curves shown are 
inverted, as in Fig. 10.21). The LoG profiles are the solid lines, and the DoG profiles 
are dotted. The curves shown are intensity profiles through the center of the LoG 
and DoG arrays, generated by sampling Eqs. (10-29) and (10-32), respectively. The 
amplitude of all curves at the origin were normalized to 1. As Fig. 10.23(b) shows, 
the ratio 1:1.6 yielded a slightly closer approximation of the LoG and DoG func-
tions (for example, compare the bottom lobes of the two figures).
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ba

FIGURE 10.23
(a) Negatives of 
the LoG (solid) 
and DoG  
(dotted) profiles 
using a s ratio of 
1.75:1. (b) Profiles 
obtained using a 
ratio of 1.6:1.

Gaussian kernels are separable (see Section 3.4). Therefore, both the LoG and 
the DoG filtering operations can be implemented with 1-D convolutions instead of 
using 2-D convolutions directly (see Problem 10.19). For an image of size M N×  
and a kernel of size n n× , doing so reduces the number of multiplications and addi-
tions for each convolution from being proportional to n MN2  for 2-D convolutions 
to being proportional to nMN  for 1-D convolutions. This implementation difference 
is significant. For example, if n = 25, a 1-D implementation will require on the order 
of 12 times fewer multiplication and addition operations than using 2-D convolution.

The Canny Edge Detector

Although the algorithm is more complex, the performance of the Canny edge detec-
tor (Canny [1986]) discussed in this section is superior in general to the edge detec-
tors discussed thus far. Canny’s approach is based on three basic objectives:

1. Low error rate. All edges should be found, and there should be no spurious 
responses.

2. Edge points should be well localized. The edges located must be as close as pos-
sible to the true edges. That is, the distance between a point marked as an edge 
by the detector and the center of the true edge should be minimum.

3. Single edge point response. The detector should return only one point for each 
true edge point. That is, the number of local maxima around the true edge should 
be minimum. This means that the detector should not identify multiple edge pix-
els where only a single edge point exists.

The essence of Canny’s work was in expressing the preceding three criteria math-
ematically, and then attempting to find optimal solutions to these formulations. In 
general, it is difficult (or impossible) to find a closed-form solution that satisfies 
all the preceding objectives. However, using numerical optimization with 1-D step 
edges corrupted by additive white Gaussian noise† led to the conclusion that a good 
approximation to the optimal step edge detector is the first derivative of a Gaussian,

 
d
dx

e
x

e
x x− −= −2

2

2

22 2 2s s

s
 (10-34)  

†  Recall that white noise is noise having a frequency spectrum that is continuous and uniform over a specified 
frequency band. White Gaussian noise is white noise in which the distribution of amplitude values is Gaussian. 
Gaussian white noise is a good approximation of many real-world situations and generates mathematically 
tractable models. It has the useful property that its values are statistically independent.
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where the approximation was only about 20% worse that using the optimized 
numerical solution (a difference of this magnitude generally is visually impercep-
tible in most applications). 

Generalizing the preceding result to 2-D involves recognizing that the 1-D 
approach still applies in the direction of the edge normal (see Fig. 10.12). Because 
the direction of the normal is unknown beforehand, this would require applying the 
1-D edge detector in all possible directions. This task can be approximated by first 
smoothing the image with a circular 2-D Gaussian function, computing the gradient 
of the result, and then using the gradient magnitude and direction to estimate edge 
strength and direction at every point.

Let f x y( , ) denote the input image and G x y( , ) denote the Gaussian function:

 G x y e
x y

( , ) =
− +2 2

22s  (10-35)

We form a smoothed image, f x ys( , ), by convolving f  and G:

 f x y G x ys f x y( , ) ( , ) ( , )= �  (10-36)

This operation is followed by computing the gradient magnitude and direction 
(angle), as discussed earlier:

 M x y f x y g x y g x ys s x y( , ) ( , ) ( , ) ( , )= = +
 2 2  (10-37)

and

 a( , ) tan
( , )

( , )
x y

g x y

g x y
y

x

=
⎡

⎣
⎢

⎤

⎦
⎥

−1  (10-38)

with g x y f x y xx s( , ) ( , )= ∂ ∂  and g x y f x y yy s( , ) ( , ) .= ∂ ∂  Any of the derivative fil-
ter kernel pairs in Fig. 10.14 can be used to obtain g x yx( , ) and g x yy( , ). Equation 
(10-36) is implemented using an n n×  Gaussian kernel whose size is discussed below. 
Keep in mind that 
f x ys( , )  and a( , )x y  are arrays of the same size as the image 
from which they are computed.

Gradient image 
f x ys( , )  typically contains wide ridges around local maxima. 
The next step is to thin those ridges. One approach is to use nonmaxima suppres-
sion. The essence of this approach is to specify a number of discrete orientations of 
the edge normal (gradient vector). For example, in a 3 3×  region we can define four 
orientations† for an edge passing through the center point of the region: horizontal, 
vertical, + °,45  and − °.45  Figure 10.24(a) shows the situation for the two possible 
orientations of a horizontal edge. Because we have to quantize all possible edge 
directions into four ranges, we have to define a range of directions over which we 
consider an edge to be horizontal. We determine edge direction from the direction 
of the edge normal, which we obtain directly from the image data using Eq. (10-38). 
As Fig. 10.24(b) shows, if the edge normal is in the range of directions from −22 5. °  to 

†  Every edge has two possible orientations. For example, an edge whose normal is oriented at 0° and an edge 
whose normal is oriented at 180° are the same horizontal edge.
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22 5. °  or from −157 5. °  to 157 5. °, we call the edge a horizontal edge. Figure 10.24(c) 
shows the angle ranges corresponding to the four directions under consideration.

Let d1, d2 , d3,and d4  denote the four basic edge directions just discussed for 
a 3 3×  region: horizontal, −45°, vertical, and +45°, respectively. We can formulate 
the following nonmaxima suppression scheme for a 3 3×  region centered at an 
arbitrary point ( , )x y  in a :

1. Find the direction dk  that is closest to a( , ).x y
2. Let K denote the value of 
fs  at ( , ).x y  If K is less than the value of 
fs  at one 

or both of the neighbors of point ( , )x y  along dk , let g x yN ( , ) = 0 (suppression); 
otherwise, let g x y KN ( , ) .=

When repeated for all values of x and y, this procedure yields a nonmaxima sup-
pressed image g x yN ( , ) that is of the same size as f x ys( , ). For example, with reference 
to Fig. 10.24(a), letting ( , )x y  be at p5, and assuming a horizontal edge through p5,
the pixels of interest in Step 2 would be p2  and p8. Image g x yN ( , ) contains only the 
thinned edges; it is equal to image 
f x ys( , )  with the nonmaxima edge points sup-
pressed.

The final operation is to threshold g x yN ( , ) to reduce false edge points. In the 
Marr-Hildreth algorithm we did this using a single threshold, in which all values 
below the threshold were set to 0. If we set the threshold too low, there will still 
be some false edges (called false positives). If the threshold is set too high, then 
valid edge points will be eliminated (false negatives). Canny’s algorithm attempts to 
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Edge normal

p8 p9

p1 p2 p3

p4 p5
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p7

Edge normal

p8 p9

Edge Edge normal
(gradient vector)
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c

FIGURE 10.24
(a) Two possible 
orientations of a 
horizontal edge 
(shaded) in a 3 3×  
neighborhood.  
(b) Range of values 
(shaded) of a, the 
direction angle of 
the edge normal 
for a horizontal 
edge. (c) The angle 
ranges of the edge 
normals for the 
four types of edge 
directions in a 3 3×  
neighborhood. 
Each edge direc-
tion has two ranges, 
shown in corre-
sponding shades.
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improve on this situation by using hysteresis thresholding which, as we will discuss 
in Section 10.3, uses two thresholds: a low threshold, TL  and a high threshold, TH .  
Experimental evidence (Canny [1986]) suggests that the ratio of the high to low 
threshold should be in the range of 2:1 to 3:1.

We can visualize the thresholding operation as creating two additional images:

 g x y g x y TNH N H( , ) ( , )= ≥  (10-39)

and

 g x y g x y TNL N L( , ) ( , )= ≥  (10-40)

Initially, g x yNH ( , ) and g x yNL( , ) are set to 0. After thresholding, g x yNH ( , ) will usu-
ally have fewer nonzero pixels than g x yNL( , ), but all the nonzero pixels in g x yNH ( , ) 
will be contained in g x yNL( , ) because the latter image is formed with a lower thresh-
old. We eliminate from g x yNL( , ) all the nonzero pixels from g x yNH ( , ) by letting

 g x y g x y g x yNL NL NH( , ) ( , ) ( , )= −  (10-41)

The nonzero pixels in g x yNH ( , ) and g x yNL( , ) may be viewed as being “strong” 
and “weak” edge pixels, respectively. After the thresholding operations, all strong 
pixels in g x yNH ( , ) are assumed to be valid edge pixels, and are so marked imme-
diately. Depending on the value of TH ,  the edges in g x yNH ( , ) typically have gaps. 
Longer edges are formed using the following procedure:

(a) Locate the next unvisited edge pixel, p, in g x yNH ( , ).

(b) Mark as valid edge pixels all the weak pixels in g x yNL( , ) that are connected to 
p using, say, 8-connectivity.

(c) If all nonzero pixels in g x yNH ( , ) have been visited go to Step (d). Else, return 
to Step ( a).

(d) Set to zero all pixels in g x yNL( , ) that were not marked as valid edge pixels.

At the end of this procedure, the final image output by the Canny algorithm is 
formed by appending to g x yNH ( , ) all the nonzero pixels from g x yNL( , ).

We used two additional images, g x yNH ( , ) and g x yNL( , ) to simplify the discussion. 
In practice, hysteresis thresholding can be implemented directly during nonmaxima 
suppression, and thresholding can be implemented directly on g x yN ( , ) by forming a 
list of strong pixels and the weak pixels connected to them.

Summarizing, the Canny edge detection algorithm consists of the following steps:

1. Smooth the input image with a Gaussian filter.

2. Compute the gradient magnitude and angle images.

3. Apply nonmaxima suppression to the gradient magnitude image.

4. Use double thresholding and connectivity analysis to detect and link edges. 

Although the edges after nonmaxima suppression are thinner than raw gradient edg-
es, the former can still be thicker than one pixel. To obtain edges one pixel thick, it is 
typical to follow Step 4 with one pass of an edge-thinning algorithm (see Section 9.5).
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As mentioned earlier, smoothing is accomplished by convolving the input image 
with a Gaussian kernel whose size, n n× , must be chosen. Once a value of s  has 
been specified, we can use the approach discussed in connection with the Marr-Hil-
dreth algorithm to determine an odd value of n that provides the “full” smoothing 
capability of the Gaussian filter for the specified value of s.

Some final comments on implementation: As noted earlier in the discussion of 
the Marr-Hildreth edge detector, the 2-D Gaussian function in Eq. (10-35) is sepa-
rable into a product of two 1-D Gaussians. Thus, Step 1 of the Canny algorithm can 
be formulated as 1-D convolutions that operate on the rows (columns) of the image 
one at a time, and then work on the columns (rows) of the result. Furthermore, if 
we use the approximations in Eqs. (10-19) and (10-20), we can also implement the 
gradient computations required for Step 2 as 1-D convolutions (see Problem 10.22).

EXAMPLE 10.8 : Illustration and comparison of the Canny edge-detection method.

Figure 10.25(a) shows the familiar building image. For comparison, Figs. 10.25(b) and (c) show, respec-
tively, the result in Fig. 10.20(b) obtained using the thresholded gradient, and Fig. 10.22(d) using the 
Marr-Hildreth detector. Recall that the parameters used in generating those two images were selected 
to detect the principal edges, while attempting to reduce “irrelevant” features, such as the edges of the 
bricks and the roof tiles.

Figure 10.25(d) shows the result obtained with the Canny algorithm using the parameters TL = 0 04. ,  
TH = 0 10.  (2.5 times the value of the low threshold), s = 4, and a kernel of size 25 25× , which cor-
responds to the smallest odd integer not less than 6s. These parameters were chosen experimentally 

Usually, selecting a 
suitable value of s 
for the first time in an 
application requires 
experimentation.

ba
dc

FIGURE 10.25
(a) Original image 
of size 834 1114×  
pixels, with  
intensity values 
scaled to the range 
[ , ].0 1   
(b) Thresholded  
gradient of the 
smoothed image. 
(c) Image obtained 
using the  
Marr-Hildreth  
algorithm.  
(d) Image obtained 
using the Canny 
algorithm. Note the 
significant  
improvement of 
the Canny image 
compared to the 
other two.
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FIGURE 10.26
(a) Head CT image 
of size 512 512×  
pixels, with  
intensity values 
scaled to the range 
[ , ].0 1  
(b) Thresholded  
gradient of the 
smoothed image. 
(c) Image obtained 
using the Marr-Hil-
dreth algorithm.  
(d) Image obtained 
using the Canny 
algorithm.  
(Original image 
courtesy of Dr. 
David R. Pickens, 
Vanderbilt  
University.)

to achieve the objectives stated in the previous paragraph for the gradient and Marr-Hildreth images. 
Comparing the Canny image with the other two images, we see in the Canny result significant improve-
ments in detail of the principal edges and, at the same time, more rejection of irrelevant features. For 
example, note that both edges of the concrete band lining the bricks in the upper section of the image 
were detected by the Canny algorithm, whereas the thresholded gradient lost both of these edges, and 
the Marr-Hildreth method detected only the upper one. In terms of filtering out irrelevant detail, the 
Canny image does not contain a single edge due to the roof tiles; this is not true in the other two images. 
The quality of the lines with regard to continuity, thinness, and straightness is also superior in the Canny 
image. Results such as these have made the Canny algorithm a tool of choice for edge detection.

EXAMPLE 10.9 :   Another illustration of the three principal edge-detection methods discussed in this section.

As another comparison of the three principal edge-detection methods discussed in this section, consider 
Fig. 10.26(a), which shows a 512 512×  head CT image. Our objective is to extract the edges of the outer 
contour of the brain (the gray region in the image), the contour of the spinal region (shown directly 
behind the nose, toward the front of the brain), and the outer contour of the head. We wish to generate 
the thinnest, continuous contours possible, while eliminating edge details related to the gray content in 
the eyes and brain areas.

Figure 10.26(b) shows a thresholded gradient image that was first smoothed using a 5 5×  averaging 
kernel. The threshold required to achieve the result shown was 15% of the maximum value of the gradi-
ent image. Figure 10.26(c) shows the result obtained with the Marr-Hildreth edge-detection algorithm 
with a threshold of 0.002, s = 3, and a kernel of size 19 19× . Figure 10.26(d) was obtained using the 
Canny algorithm with TL = 0 05. ,TH = 0 15.  (3 times the value of the low threshold), s = 2, and a kernel 
of size 13 13× . 
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In terms of edge quality and the ability to eliminate irrelevant detail, the results in Fig. 10.26 correspond 
closely to the results and conclusions in the previous example. Note also that the Canny algorithm was 
the only procedure capable of yielding a totally unbroken edge for the posterior boundary of the brain, 
and the closest boundary of the spinal cord. It was also the only procedure capable of finding the cleanest 
contours, while eliminating all the edges associated with the gray brain matter in the original image.

The price paid for the improved performance of the Canny algorithm is a sig-
nificantly more complex implementation than the two approaches discussed earlier. 
In some applications, such as real-time industrial image processing, cost and speed 
requirements usually dictate the use of simpler techniques, principally the thresh-
olded gradient approach. When edge quality is the driving force, the Marr-Hildreth 
and Canny algorithms, especially the latter, offer superior alternatives.

LINKING EDGE POINTS

Ideally, edge detection should yield sets of pixels lying only on edges. In practice, 
these pixels seldom characterize edges completely because of noise, breaks in the 
edges caused by nonuniform illumination, and other effects that introduce disconti-
nuities in intensity values. Therefore, edge detection typically is followed by linking 
algorithms designed to assemble edge pixels into meaningful edges and/or region 
boundaries. In this section, we discuss two fundamental approaches to edge linking 
that are representative of techniques used in practice. The first requires knowledge 
about edge points in a local region (e.g., a 3 3×  neighborhood), and the second 
is a global approach that works with an entire edge map. As it turns out, linking 
points along the boundary of a region is also an important aspect of some of the 
segmentation methods discussed in the next chapter, and in extracting features from 
a segmented image, as we will do in Chapter 11. Thus, you will encounter additional 
edge-point linking methods in the next two chapters. 

Local Processing

A simple approach for linking edge points is to analyze the characteristics of pixels 
in a small neighborhood about every point ( , )x y  that has been declared an edge 
point by one of the techniques discussed in the preceding sections. All points that 
are similar according to predefined criteria are linked, forming an edge of pixels that 
share common properties according to the specified criteria.

The two principal properties used for establishing similarity of edge pixels in this 
kind of local analysis are (1) the strength (magnitude) and (2) the direction of the 
gradient vector. The first property is based on Eq. (10-17). Let Sxy  denote the set of 
coordinates of a neighborhood centered at point ( , )x y  in an image. An edge pixel 
with coordinates ( , )s t  in Sxy  is similar in magnitude to the pixel at ( , )x y  if

 M s t M x y E( , ) ( , )− ≤  (10-42)

where E  is a positive threshold.
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The direction angle of the gradient vector is given by Eq. (10-18). An edge pixel 
with coordinates ( , )s t  in Sxy  has an angle similar to the pixel at ( , )x y  if 

 a a( , ) ( , )s t x y A− ≤  (10-43)

where A is a positive angle threshold. As noted earlier, the direction of the edge at 
( , )x y  is perpendicular to the direction of the gradient vector at that point. 

A pixel with coordinates ( , )s t  in Sxy  is considered to be linked to the pixel at ( , )x y  
if both magnitude and direction criteria are satisfied. This process is repeated for 
every edge pixel. As the center of the neighborhood is moved from pixel to pixel, a 
record of linked points is kept. A simple bookkeeping procedure is to assign a dif-
ferent intensity value to each set of linked edge pixels.

The preceding formulation is computationally expensive because all neighbors of 
every point have to be examined. A simplification particularly well suited for real 
time applications consists of the following steps:

1. Compute the gradient magnitude and angle arrays, M x y( , ) and a( , ),x y  of the 
input image, f x y( , ).

2. Form a binary image, g x y( , ), whose value at any point ( , )x y  is given by:

 g x y
M x y T x y A TM A( , )

( , ) ( , )
=

> = ±⎧
⎨
⎩

1

0

if AND

otherwise

a

where TM  is a threshold, A is a specified angle direction, and ±TA defines a 
“band” of acceptable directions about A.

3. Scan the rows of g  and fill (set to 1) all gaps (sets of 0’s) in each row that do not 
exceed a specified length, L. Note that, by definition, a gap is bounded at both 
ends by one or more 1’s. The rows are processed individually, with no “memory” 
kept between them.

4. To detect gaps in any other direction, u, rotate g  by this angle and apply the 
horizontal scanning procedure in Step 3. Rotate the result back by −u.

When interest lies in horizontal and vertical edge linking, Step 4 becomes a simple 
procedure in which g  is rotated ninety degrees, the rows are scanned, and the result 
is rotated back. This is the application found most frequently in practice and, as the 
following example shows, this approach can yield good results. In general, image 
rotation is an expensive computational process so, when linking in numerous angle 
directions is required, it is more practical to combine Steps 3 and 4 into a single, 
radial scanning procedure.

EXAMPLE 10.10 :  Edge linking using local processing.

Figure 10.27(a) shows a 534 566×  image of the rear of a vehicle. The objective of this example is to 
illustrate the use of the preceding algorithm for finding rectangles whose sizes makes them suitable 
candidates for license plates. The formation of these rectangles can be accomplished by detecting 
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strong horizontal and vertical edges. Figure 10.27(b) shows the gradient magnitude image, M x y( , ), and 
Figs. 10.27(c) and (d) show the result of Steps 3 and 4 of the algorithm, obtained by letting TM  equal 
to 30% of the maximum gradient value, A = 90°, TA = 45°,  and filling all gaps of 25 or fewer pixels 
(approximately 5% of the image width). A large range of allowable angle directions was required to 
detect the rounded corners of the license plate enclosure, as well as the rear windows of the vehicle. 
Figure 10.27(e) is the result of forming the logical OR of the two preceding images, and Fig. 10.27(f) 
was obtained by thinning 10.27(e) with the thinning procedure discussed in Section 9.5. As Fig. 10.27(f) 
shows, the rectangle corresponding to the license plate was clearly detected in the image. It would be 
a simple matter to isolate the license plate from all the rectangles in the image, using the fact that the 
width-to-height ratio of license plates have distinctive proportions (e.g., a 2:1 ratio in U.S. plates).

Global Processing Using the Hough Transform

The method discussed in the previous section is applicable in situations in which 
knowledge about pixels belonging to individual objects is available. Often, we have 
to work in unstructured environments in which all we have is an edge map and no 
knowledge about where objects of interest might be. In such situations, all pixels 
are candidates for linking, and thus have to be accepted or eliminated based on pre-
defined global properties. In this section, we develop an approach based on whether 
sets of pixels lie on curves of a specified shape. Once detected, these curves form the 
edges or region boundaries of interest.

Given n points in an image, suppose that we want to find subsets of these points 
that lie on straight lines. One possible solution is to find all lines determined by every 
pair of points, then find all subsets of points that are close to particular lines. This 
approach involves finding n n n−( )1 2 2∼  lines, then performing n n n n( ) −( )( )1 2 3∼  

ba c
ed f

FIGURE 10.27
(a) Image of the rear 
of a vehicle.  
(b) Gradient magni-
tude image.  
(c) Horizontally 
connected edge 
pixels.  
(d) Vertically con-
nected edge pixels. 
(e) The logical OR 
of (c) and (d).  
(f) Final result, 
using morphological 
thinning. (Original 
image courtesy of 
Perceptics  
Corporation.)
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comparisons of every point to all lines. This is a computationally prohibitive task in 
most applications.

Hough [1962] proposed an alternative approach, commonly referred to as the 
Hough transform. Let ( , )x yi i  denote a point in the xy-plane and consider the general 
equation of a straight line in slope-intercept form: y ax bi i= + . Infinitely many lines 
pass through ( , ),x yi i  but they all satisfy the equation y ax bi i= +  for varying val-
ues of a  and b. However, writing this equation as b x a yi i= − +  and considering the 
ab-plane (also called parameter space) yields the equation of a single line for a fixed 
point ( , ).x yi i  Furthermore, a second point ( , )x yj j  also has a single line in parameter 
space associated with it, which intersects the line associated with ( , )x yi i  at some 
point ( , )a b� �  in parameter space, where a� is the slope and b� the intercept of the line 
containing both ( , )x yi i  and ( , )x yj j  in the xy-plane (we are assuming, of course, that 
the lines are not parallel). In fact, all points on this line have lines in parameter space 
that intersect at ( , ).a b� �  Figure 10.28 illustrates these concepts.

In principle, the parameter space lines corresponding to all points ( , )x yk k  in the 
xy-plane could be plotted, and the principal lines in that plane could be found by 
identifying points in parameter space where large numbers of parameter-space lines 
intersect. However, a difficulty with this approach is that a, (the slope of a line) 
approaches infinity as the line approaches the vertical direction. One way around 
this difficulty is to use the normal representation of a line: 

 x ycos sinu u r+ =  (10-44)

Figure 10.29(a) illustrates the geometrical interpretation of the parameters r and u. 
A horizontal line has u = °0 , with r being equal to the positive x-intercept. Simi-
larly, a vertical line has u = °90 , with r being equal to the positive y-intercept, or 
u = − °90 ,  with r being equal to the negative y-intercept (we limit the angle to the 
range − ° ≤ ≤ °90 90u ). Each sinusoidal curve in Figure 10.29(b) represents the fam-
ily of lines that pass through a particular point ( , )x yk k  in the xy-plane. The intersec-
tion point ( , )r u� �  in Fig. 10.29(b) corresponds to the line that passes through both 
( , )x yi i  and ( , )x yj j  in Fig. 10.29(a).

The computational attractiveness of the Hough transform arises from subdividing 
the ru parameter space into so-called accumulator cells, as Fig. 10.29(c) illustrates, 
where ( , )min maxr r  and u umin max,( )  are the expected ranges of the parameter values: 

The original formulation 
of the Hough transform 
presented here works 
with straight lines. For a 
generalization to  
arbitrary shapes, see  
Ballard [1981].

(xi, yi)

(xj, yj)

x

y

b � �xia 	 yi

b � �xja 	 yj

a

b
b�

a�

ba

FIGURE 10.28
(a) xy-plane.  
(b) Parameter 
space.
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− ° ≤ ≤ °90 90u  and − ≤ ≤D Dr , where D is the maximum distance between opposite 
corners in an image. The cell at coordinates ( , )i j  with accumulator value A i j( , ) cor-
responds to the square associated with parameter-space coordinates ( , ).r ui j  Ini-
tially, these cells are set to zero. Then, for every non-background point ( , )x yk k  in 
the xy-plane, we let u equal each of the allowed subdivision values on the u-axis  
and solve for the corresponding r  using the equation r u u= +x yk kcos sin . The 
resulting r values are then rounded off to the nearest allowed cell value along the 
r axis. If a choice of uq results in the solution rp, then we let A p q A p q( , ) ( , ) .= + 1  
At the end of the procedure, a value of K in a cell A i j( , ) means that K points in the 
xy-plane lie on the line x yj j icos sin .u u r+ =  The number of subdivisions in the 
ru-plane determines the accuracy of the colinearity of these points. It can be shown 
(see Problem 10.27) that the number of computations in the method just discussed is 
linear with respect to n, the number of non-background points in the xy-plane.

EXAMPLE 10.11 :  Some basic properties of the Hough transform.

Figure 10.30 illustrates the Hough transform based on Eq. (10-44). Figure 10.30(a) shows an image 
of size M M M×  ( = 101) with five labeled white points, and Fig. 10.30(b) shows each of these points 
mapped onto the ru-plane using subdivisions of one unit for the r and u axes. The range of u values is 
± °90 , and the range of r values is ± 2M. As Fig. 10.30(b) shows, each curve has a different sinusoidal 
shape. The horizontal line resulting from the mapping of point 1 is a sinusoid of zero amplitude.

The points labeled A (not to be confused with accumulator values) and B in Fig. 10.30(b) illustrate 
the colinearity detection property of the Hough transform. For example, point B, marks the intersection 
of the curves corresponding to points 2, 3, and 4 in the xy image plane. The location of point A indicates 
that these three points lie on a straight line passing through the origin ( )r = 0  and oriented at −45° [see 
Fig. 10.29(a)]. Similarly, the curves intersecting at point B in parameter space indicate that points 2, 3, 
and 4 lie on a straight line oriented at 45°, and whose distance from the origin is r = 71 (one-half the 
diagonal distance from the origin of the image to the opposite corner, rounded to the nearest integer 

(xi, yi)

(xj, yj)

x

y u� umin

rmin

rmax

umax

r�

r
u

xjcosu 	 yjsinu � r

xicosu 	 yisinu � r

r

u

r

u

0

0

ba c

FIGURE 10.29 (a) ( , )r u  parameterization of a line in the xy-plane. (b) Sinusoidal curves in the ru-plane;the point of 
intersection ( , )r u� �  corresponds to the line passing through points ( , )x yi i  and ( , )x yj j  in the xy-plane. (c) Division 
of the ru-plane into accumulator cells.
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value). Finally, the points labeled Q, R, and S in Fig. 10.30(b) illustrate the fact that the Hough transform 
exhibits a reflective adjacency relationship at the right and left edges of the parameter space. This prop-
erty is the result of the manner in which r and u change sign at the ± °90  boundaries.

Although the focus thus far has been on straight lines, the Hough transform is 
applicable to any function of the form g v c, ,( ) = 0  where v  is a vector of coordinates 
and c  is a vector of coefficients. For example, points lying on the circle

 x c y c c−( ) + −( ) =1
2

2
2

3
2  (10-45)

can be detected by using the basic approach just discussed. The difference is the 
presence of three parameters c1, c2 , and c3 that result in a 3-D parameter space with 

�100

�50

0

50

100

r

806040200�20�40�60�80

u

Q

R

R

Q

S SA

3

5

4

2

1

B

b
a

FIGURE 10.30
 (a) Image of size 
101 101×  pixels, 
containing five 
white points (four 
in the corners and 
one in the center).  
(b) Corresponding 
parameter space. 
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cube-like cells, and accumulators of the form A i j k( , , ). The procedure is to incre-
ment c1 and c2 , solve for the value of c3 that satisfies Eq. (10-45), and update the 
accumulator cell associated with the triplet ( , , ).c c c1 2 3  Clearly, the complexity of the 
Hough transform depends on the number of coordinates and coefficients in a given 
functional representation. As noted earlier, generalizations of the Hough transform 
to detect curves with no simple analytic representations are possible, as is the appli-
cation of the transform to grayscale images.

Returning to the edge-linking problem, an approach based on the Hough trans-
form is as follows:

1. Obtain a binary edge map using any of the methods discussed earlier in this section.
2. Specify subdivisions in the ru-plane.
3. Examine the counts of the accumulator cells for high pixel concentrations.
4. Examine the relationship (principally for continuity) between pixels in a chosen 

cell.

Continuity in this case usually is based on computing the distance between discon-
nected pixels corresponding to a given accumulator cell. A gap in a line associated 
with a given cell is bridged if the length of the gap is less than a specified threshold. 
Being able to group lines based on direction is a global concept applicable over the 
entire image, requiring only that we examine pixels associated with specific accumu-
lator cells. The following example illustrates these concepts.

EXAMPLE 10.12 :   Using the Hough transform for edge linking.

Figure 10.31(a) shows an aerial image of an airport. The objective of this example is to use the Hough 
transform to extract the two edges defining the principal runway. A solution to such a problem might be 
of interest, for instance, in applications involving autonomous air navigation.

The first step is to obtain an edge map. Figure 10.31(b) shows the edge map obtained using Canny’s 
algorithm with the same parameters and procedure used in Example 10.9. For the purpose of computing 
the Hough transform, similar results can be obtained using any of the other edge-detection techniques 
discussed earlier. Figure 10.31(c) shows the Hough parameter space obtained using 1° increments for u, 
and one-pixel increments for r.

The runway of interest is oriented approximately 1° off the north direction, so we select the cells cor-
responding to ± °90  and containing the highest count because the runways are the longest lines oriented 
in these directions. The small boxes on the edges of Fig. 10.31(c) highlight these cells. As mentioned ear-
lier in connection with Fig. 10.30(b), the Hough transform exhibits adjacency at the edges. Another way 
of interpreting this property is that a line oriented at + °90  and a line oriented at − °90  are equivalent (i.e., 
they are both vertical). Figure 10.31(d) shows the lines corresponding to the two accumulator cells just 
discussed, and Fig. 10.31(e) shows the lines superimposed on the original image. The lines were obtained 
by joining all gaps not exceeding 20% (approximately 100 pixels) of the image height. These lines clearly 
correspond to the edges of the runway of interest.

Note that the only information needed to solve this problem was the orientation of the runway and 
the observer’s position relative to it. In other words, a vehicle navigating autonomously would know 
that if the runway of interest faces north, and the vehicle’s direction of travel also is north, the runway 
should appear vertically in the image. Other relative orientations are handled in a similar manner. The 
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orientations of runways throughout the world are available in flight charts, and the direction of travel 
is easily obtainable using GPS (Global Positioning System) information. This information also could be 
used to compute the distance between the vehicle and the runway, thus allowing estimates of param-
eters such as expected length of lines relative to image size, as we did in this example.

10.3  THRESHOLDING  

Because of its intuitive properties, simplicity of implementation, and computational 
speed, image thresholding enjoys a central position in applications of image segmen-
tation. Thresholding was introduced in Section 3.1, and we have used it in various 
discussions since then. In this section, we discuss thresholding in a more formal way, 
and develop techniques that are considerably more general than what has been pre-
sented thus far.

FOUNDATION

In the previous section, regions were identified by first finding edge segments, 
then attempting to link the segments into boundaries. In this section, we discuss 

10.3

ba
c ed

FIGURE 10.31  (a) A 502 564×  aerial image of an airport. (b) Edge map obtained using Canny’s algorithm. (c) Hough 
parameter space (the boxes highlight the points associated with long vertical lines). (d) Lines in the image plane 
corresponding to the points highlighted by the boxes. (e) Lines superimposed on the original image.
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10.3  Thresholding    743

techniques for partitioning images directly into regions based on intensity values 
and/or properties of these values.

The Basics of Intensity Thresholding

Suppose that the intensity histogram in Fig. 10.32(a) corresponds to an image, f x y( , ), 
composed of light objects on a dark background, in such a way that object and back-
ground pixels have intensity values grouped into two dominant modes. One obvious 
way to extract the objects from the background is to select a threshold, T, that sepa-
rates these modes. Then, any point ( , )x y  in the image at which f x y T( , ) >  is called 
an object point. Otherwise, the point is called a background point. In other words, 
the segmented image, denoted by g x y( , ), is given by

 g x y
f x y T

f x y T
( , )

( , )

( , )
=

>⎧
⎨
⎩

1

0

if 

if ≤
 (10-46)

When T is a constant applicable over an entire image, the process given in this equa-
tion is referred to as global thresholding. When the value of T changes over an image, 
we use the term variable thresholding. The terms local or regional thresholding are 
used sometimes to denote variable thresholding in which the value of T at any point 
( , )x y  in an image depends on properties of a neighborhood of ( , )x y  (for example, 
the average intensity of the pixels in the neighborhood). If T depends on the spa-
tial coordinates ( , )x y  themselves, then variable thresholding is often referred to as 
dynamic or adaptive thresholding. Use of these terms is not universal.

Figure 10.32(b) shows a more difficult thresholding problem involving a histo-
gram with three dominant modes corresponding, for example, to two types of light 
objects on a dark background. Here, multiple thresholding classifies a point ( , )x y  as 
belonging to the background if f x y T( , ) ,≤ 1  to one object class if T f x y T1 2< ( , ) ,≤  
and to the other object class if f x y T( , ) .> 2  That is, the segmented image is given by

 g x y

a f x y T

b T f x y T

c f x y T

,

( , )

( , )

( , )
( ) =

>
<

⎧
⎨
⎪

⎩⎪

if 

if 

if 

2

1 2

1

≤
≤

 (10-47)

Remember, f(x, y)  
denotes the intensity of f 
at coordinates (x, y).

Although we follow 
convention in using 0 
intensity for the back-
ground and 1 for object 
pixels, any two distinct 
values can be used in  
Eq. (10-46).

T T1 T2

ba

FIGURE 10.32
Intensity  
histograms that 
can be partitioned 
(a) by a single 
threshold, and  
(b) by dual 
thresholds.
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744    Chapter 10  Image Segmentation

where a, b, and c are any three distinct intensity values. We will discuss dual threshold-
ing later in this section. Segmentation problems requiring more than two thresholds 
are difficult (or often impossible) to solve, and better results usually are obtained using 
other methods, such as variable thresholding, as will be discussed later in this section, 
or region growing, as we will discuss in Section 10.4.

Based on the preceding discussion, we may infer intuitively that the success of 
intensity thresholding is related directly to the width and depth of the valley(s) sepa-
rating the histogram modes. In turn, the key factors affecting the properties of the 
valley(s) are: (1) the separation between peaks (the further apart the peaks are, the 
better the chances of separating the modes); (2) the noise content in the image (the 
modes broaden as noise increases); (3) the relative sizes of objects and background; 
(4) the uniformity of the illumination source; and (5) the uniformity of the reflectance 
properties of the image.

The Role of Noise in Image Thresholding

The simple synthetic image in Fig. 10.33(a) is free of noise, so its histogram con-
sists of two “spike” modes, as Fig. 10.33(d) shows. Segmenting this image into two 
regions is a trivial task: we just select a threshold anywhere between the two modes. 
Figure 10.33(b) shows the original image corrupted by Gaussian noise of zero 
mean and a standard deviation of 10 intensity levels. The modes are broader now 

191 25563 1270 191 191 25563 127025563 1270
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FIGURE 10.33 (a) Noiseless 8-bit image. (b) Image with additive Gaussian noise of mean 0 and standard deviation of 
10 intensity levels. (c) Image with additive Gaussian noise of mean 0 and standard deviation of 50 intensity levels. 
(d) through (f) Corresponding histograms.
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[see Fig. 10.33(e)], but their separation is enough so that the depth of the valley 
between them is sufficient to make the modes easy to separate. A threshold placed 
midway between the two peaks would do the job. Figure 10.33(c) shows the result 
of corrupting the image with Gaussian noise of zero mean and a standard deviation 
of 50 intensity levels. As the histogram in Fig. 10.33(f) shows, the situation is much 
more serious now, as there is no way to differentiate between the two modes. With-
out additional processing (such as the methods discussed later in this section) we 
have little hope of finding a suitable threshold for segmenting this image.

The Role of Illumination and Reflectance in Image Thresholding

Figure 10.34 illustrates the effect that illumination can have on the histogram of 
an image. Figure 10.34(a) is the noisy image from Fig. 10.33(b), and Fig. 10.34(d) 
shows its histogram. As before, this image is easily segmentable with a single thresh-
old. With reference to the image formation model discussed in Section 2.3, suppose 
that we multiply the image in Fig. 10.34(a) by a nonuniform intensity function, such 
as the intensity ramp in Fig. 10.37(b), whose histogram is shown in Fig. 10.34(e). 
Figure 10.34(c) shows the product of these two images, and Fig. 10.34(f) is the result-
ing histogram. The deep valley between peaks was corrupted to the point where sep-
aration of the modes without additional processing (to be discussed later in this sec-
tion) is no longer possible. Similar results would be obtained if the illumination was 

In theory, the histogram 
of a ramp image is 
uniform. In practice, the 
degree of uniformity 
depends on the size of 
the image and number of 
intensity levels. 
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FIGURE 10.34 (a) Noisy image. (b) Intensity ramp in the range [0.2, 0.6]. (c) Product of (a) and (b). (d) through (f) 
Corresponding histograms.
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746    Chapter 10  Image Segmentation

perfectly uniform, but the reflectance of the image was not, as a results, for example, 
of natural reflectivity variations in the surface of objects and/or background.

The important point is that illumination and reflectance play a central role in the 
success of image segmentation using thresholding or other segmentation techniques. 
Therefore, controlling these factors when possible should be the first step consid-
ered in the solution of a segmentation problem. There are three basic approaches 
to the problem when control over these factors is not possible. The first is to correct 
the shading pattern directly. For example, nonuniform (but fixed) illumination can 
be corrected by multiplying the image by the inverse of the pattern, which can be 
obtained by imaging a flat surface of constant intensity. The second is to attempt 
to correct the global shading pattern via processing using, for example, the top-hat 
transformation introduced in Section 9.8. The third approach is to “work around” 
nonuniformities using variable thresholding, as discussed later in this section.

BASIC GLOBAL THRESHOLDING

When the intensity distributions of objects and background pixels are sufficiently 
distinct, it is possible to use a single (global) threshold applicable over the entire 
image. In most applications, there is usually enough variability between images that, 
even if global thresholding is a suitable approach, an algorithm capable of estimat-
ing the threshold value for each image is required. The following iterative algorithm 
can be used for this purpose:

1. Select an initial estimate for the global threshold, T.
2. Segment the image using T in Eq. (10-46). This will produce two groups of 

pixels: G1, consisting of pixels with intensity values > T; and G2 , consisting of 
pixels with values ≤ T.

3. Compute the average (mean) intensity values m1  and m2  for the pixels in G1 
and G2 , respectively.

4. Compute a new threshold value midway between m1and m2 :

 T m m= +( )1
2 1 2

5. Repeat Steps 2 through 4 until the difference between values of T in successive 
iterations is smaller than a predefined value, �T. 

The algorithm is stated here in terms of successively thresholding the input image 
and calculating the means at each step, because it is more intuitive to introduce 
it in this manner. However, it is possible to develop an equivalent (and more effi-
cient) procedure by expressing all computations in the terms of the image histogram, 
which has to be computed only once (see Problem 10.29).

The preceding algorithm works well in situations where there is a reasonably 
clear valley between the modes of the histogram related to objects and background. 
Parameter �T  is used to stop iterating when the changes in threshold values is small. 
The initial threshold must be chosen greater than the minimum and less than the 
maximum intensity level in the image (the average intensity of the image is a good 
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initial choice for T ). If this condition is met, the algorithm converges in a finite num-
ber of steps, whether or not the modes are separable  (see Problem 10.30).

EXAMPLE 10.13 :   Global thresholding.

Figure 10.35 shows an example of segmentation using the preceding iterative algorithm. Figure 10.35(a) 
is the original image and Fig. 10.35(b) is the image histogram, showing a distinct valley. Application 
of the basic global algorithm resulted in the threshold T = 125 4.  after three iterations, starting with T 
equal to the average intensity of the image, and using �T = 0. Figure 10.35(c) shows the result obtained 
using T = 125 to segment the original image. As expected from the clear separation of modes in the 
histogram, the segmentation between object and background was perfect.

OPTIMUM GLOBAL THRESHOLDING USING OTSU’S METHOD

Thresholding may be viewed as a statistical-decision theory problem whose objec-
tive is to minimize the average error incurred in assigning pixels to two or more 
groups (also called classes). This problem is known to have an elegant closed-form 
solution known as the Bayes decision function (see Section 12.4). The solution is 
based on only two parameters: the probability density function (PDF) of the inten-
sity levels of each class, and the probability that each class occurs in a given applica-
tion. Unfortunately, estimating PDFs is not a trivial matter, so the problem usually 
is simplified by making workable assumptions about the form of the PDFs, such as 
assuming that they are Gaussian functions. Even with simplifications, the process 
of implementing solutions using these assumptions can be complex and not always 
well-suited for real-time applications.

The approach in the following discussion, called Otsu’s method (Otsu [1979]), is 
an attractive alternative. The method is optimum in the sense that it maximizes the 

0 63 127 191 255
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FIGURE 10.35 (a) Noisy fingerprint. (b) Histogram. (c) Segmented result using a global threshold (thin image border 
added for clarity). (Original image courtesy of the National Institute of Standards and Technology.).
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748    Chapter 10  Image Segmentation

between-class variance, a well-known measure used in statistical discriminant analy-
sis. The basic idea is that properly thresholded classes should be distinct with respect 
to the intensity values of their pixels and, conversely, that a threshold giving the 
best separation between classes in terms of their intensity values would be the best 
(optimum) threshold. In addition to its optimality, Otsu’s method has the important 
property that it is based entirely on computations performed on the histogram of an 
image, an easily obtainable 1-D array (see Section 3.3).

Let 0 1 2 1, , , ,… L −{ }  denote the set of L distinct integer intensity levels in a digi-
tal image of size M N×  pixels, and let ni  denote the number of pixels with intensity i. 
The total number, MN, of pixels in the image is MN n n n nL= + + + + −0 1 2 1� . The 
normalized histogram (see Section 3.3) has components p n MNi i= , from which it 
follows that

 p pi i
i

L

= ≥
=

−

∑ 1 0
0

1

 (10-48)

Now, suppose that we select a threshold T k k k L( ) , ,= < < −0 1  and use it to thresh-
old the input image into two classes, c1 and c2 , where c1 consists of all the pixels in 
the image with intensity values in the range [ , ]0 k  and c2  consists of the pixels with 
values in the range [ , ].k L+ −1 1  Using this threshold, the probability, P k1( ), that a 
pixel is assigned to (i.e., thresholded into) class c1 is given by the cumulative sum

 P k pi
i

k

1
0

( ) =
=
∑  (10-49)

Viewed another way, this is the probability of class c1 occurring. For example, if we 
set k = 0, the probability of class c1 having any pixels assigned to it is zero. Similarly, 
the probability of class c2  occurring is

 P k p P ki
i k

L

2 1
1

1

1( ) ( )= = −
= +

−

∑  (10-50)

From Eq. (3-25), the mean intensity value of the pixels in c1 is 

 

m k iP i c iP c i P i P c

P k
i p

i

k

i

k

i
i

k

1 1
0

1
0

1

1 0

1

( ) = ( ) = ( ) ( ) ( )

= ( )

= =

=

∑ ∑

∑
 (10-51)

where P k1( ) is given by Eq. (10-49). The term P i c1( ) in Eq. (10-51) is the probability 
of intensity value i, given that i  comes from class c1. The rightmost term in the first 
line of the equation follows from Bayes’ formula:

 P A B P B A P A P B( ) = ( ) ( ) ( )
The second line follows from the fact that P c i1( ), the probability of c1 given i, is 1 
because we are dealing only with values of i  from class c1. Also, P i( ) is the probabil-
ity of the ith value, which is the ith component of the histogram, pi . Finally, P c( )1  is 
the probability of class c1 which, from Eq. (10-49), is equal to P k1( ).
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Similarly, the mean intensity value of the pixels assigned to class c2  is

 

m k iP i c

P k
i p

i k

L

i
i k

L

2 2
1

1

2 1

11

( )

( )

= ( )

=

= +

−

= +

−

∑

∑
 (10-52)

The cumulative mean (average intensity) up to level k  is given by

 m k i pi
i

k

( ) =
=
∑

0

 (10-53)

and the average intensity of the entire image (i.e., the global mean) is given by

 m i pG i
i

L

=
=

−

∑
0

1

 (10-54)

The validity of the following two equations can be verified by direct substitution of 
the preceding results:

 P m P m mG1 1 2 2+ =  (10-55)

and

 P P1 2 1+ =  (10-56)

where we have omitted the ks temporarily in favor of notational clarity.
In order to evaluate the effectiveness of the threshold at level k, we use the nor-

malized, dimensionless measure

 h
s

s
= B

G

2

2  (10-57)

where sG
2  is the global variance [i.e., the intensity variance of all the pixels in the 

image, as given in Eq. (3-26)],

 sG G i
i

L

i m p2 2

0

1

= −( )
=

−

∑  (10-58)

and sB
2  is the between-class variance, defined as

 sB G GP m m P m m2
1 1

2
2 2

2= −( ) + −( )  (10-59)

This expression can also be written as

 

sB

G

P P m m

m P m

P P

2
1 2 1 2

2

1
2

1 11

= −( )

=
−( )
−( )

 (10-60)

The second step in this 
equation makes sense 
only if P1 is greater than 
0 and less than 1, which, 
in view of Eq. (10-56), 
implies that P2 must  
satisfy the same  
condition.
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The first line of this equation follows from Eqs. (10-55), (10-56), and (10-59). The 
second line follows from Eqs. (10-50) through (10-54). This form is slightly more 
efficient computationally because the global mean, mG , is computed only once, so 
only two parameters, m1  and P1, need to be computed for any value of k.

The first line in Eq. (10-60) indicates that the farther the two means m1 and m2  are 
from each other, the larger sB

2  will be, implying that the between-class variance is a 
measure of separability between classes. Because sG

2  is a constant, it follows that h 
also is a measure of separability, and maximizing this metric is equivalent to maximiz-
ing sB

2 . The objective, then, is to determine the threshold value, k, that maximizes the 
between-class variance, as stated earlier. Note that Eq. (10-57) assumes implicitly that 
sG

2 0> . This variance can be zero only when all the intensity levels in the image are 
the same, which implies the existence of only one class of pixels. This in turn means 
that h = 0 for a constant image because the separability of a single class from itself 
is zero.

Reintroducing k, we have the final results:

 h
s

s
k

kB

G

( ) =
2

2

( )
 (10-61)

and

 sB
Gk

m P k m k

P k P k
2 1

2

1 11
( ) =

−[ ]
−[ ]

( ) ( )

( ) ( )
 (10-62)

Then, the optimum threshold is the value, k*, that maximizes sB k2 ( ) :

 s sB k L Bk k2

0 1

2* max ( )( ) =
≤ ≤ −

 (10-63)

To find k*   we simply evaluate this equation for all integer values of k  (subject to the 
condition 0 11< <P k( ) ) and select the value of k  that yielded the maximum sB k2 ( ). 
If the maximum exists for more than one value of k, it is customary to average the 
various values of k  for which sB k2 ( ) is maximum. It can be shown (see Problem 
10.36) that a maximum always exists, subject to the condition 0 11< <P k( ) . Evaluat-
ing Eqs. (10-62) and (10-63) for all values of k  is a relatively inexpensive computa-
tional procedure, because the maximum number of integer values that k  can have 
is L, which is only 256 for 8-bit images.

Once k*  has been obtained, input image f x y( , ) is segmented as before:

 g x y
f x y k

f x y k
( , )

( , )

( , )

*

*
=

>⎧
⎨
⎪

⎩⎪

1

0

if 

if ≤
 (10-64)

for x M= −0 1 2 1, , , ,…  and y N= −0 1 2 1, , , , .…  Note that all the quantities needed 
to evaluate Eq. (10-62) are obtained using only the histogram of f x y( , ). In addition 
to the optimum threshold, other information regarding the segmented image can be 
extracted from the histogram. For example, P k1( )*  and P k2( ),*  the class probabilities 
evaluated at the optimum threshold, indicate the portions of the areas occupied by 
the classes (groups of pixels) in the thresholded image. Similarly, the means m k1( )*  
and m k2( )*  are estimates of the average intensity of the classes in the original image.
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In general, the measure in Eq.(10-61) has values in the range

 0 1≤ ≤h( )k  (10-65)

for values of k  in the range 0 1, .L −[ ]  When evaluated at the optimum threshold 
k*,   this measure is a quantitative estimate of the separability of classes, which in 
turn gives us an idea of the accuracy of thresholding a given image with k*. The 
lower bound in Eq. (10-65) is attainable only by images with a single, constant inten-
sity level. The upper bound is attainable only by two-valued images with intensities 
equal to 0 and L − 1 (see Problem 10.37).

Otsu’s algorithm may be summarized as follows:

1. Compute the normalized histogram of the input image. Denote the components 
of the histogram by p i Li , , , , , .= −0 1 2 1…

2. Compute the cumulative sums, P k1( ), for k L= −0 1 2 1, , , , ,…  using Eq. (10-49).
3. Compute the cumulative means, m k( ), for k L= −0 1 2 1, , , , ,…  using Eq. (10-53).
4. Compute the global mean, mG , using Eq. (10-54).
5. Compute the between-class variance term, sB k2 ( ), for k L= −0 1 2 1, , , , ,…  using 

Eq. (10-62).
6. Obtain the Otsu threshold, k*,  as the value of k  for which sB k2 ( ) is maximum. If 

the maximum is not unique, obtain k*   by averaging the values of k   correspond-
ing to the various maxima detected.

7. Compute the global variance, sG
2 , using Eq. (10-58), and then obtain the separa-

bility measure, h*, by evaluating Eq. (10-61) with k k= *.

The following example illustrates the use of this algorithm.

EXAMPLE 10.14 :  Optimum global thresholding using Otsu’s method.

Figure 10.36(a) shows an optical microscope image of polymersome cells. These are cells artificially engi-
neered using polymers. They are invisible to the human immune system and can be used, for example, 
to deliver medication to targeted regions of the body. Figure 10.36(b) shows the image histogram. The 
objective of this example is to segment the molecules from the background. Figure 10.36(c) is the result 
of using the basic global thresholding algorithm discussed earlier. Because the histogram has no distinct 
valleys and the intensity difference between the background and objects is small, the algorithm failed to 
achieve the desired segmentation. Figure 10.36(d) shows the result obtained using Otsu’s method. This 
result obviously is superior to Fig. 10.36(c). The threshold value computed by the basic algorithm was 
169, while the threshold computed by Otsu’s method was 182, which is closer to the lighter areas in the 
image defining the cells. The separability measure h* was 0.467.

As a point of interest, applying Otsu’s method to the fingerprint image in Example 10.13 yielded a 
threshold of 125 and a separability measure of 0.944. The threshold is identical to the value (rounded to 
the nearest integer) obtained with the basic algorithm. This is not unexpected, given the nature of the 
histogram. In fact, the separability measure is high because of the relatively large separation between 
modes and the deep valley between them.
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USING IMAGE SMOOTHING TO IMPROVE GLOBAL THRESHOLDING

As illustrated in Fig. 10.33, noise can turn a simple thresholding problem into an 
unsolvable one. When noise cannot be reduced at the source, and thresholding is the 
preferred segmentation method, a technique that often enhances performance is to 
smooth the image prior to thresholding. We illustrate this approach with an example.

Figure 10.37(a) is the image from Fig. 10.33(c), Fig. 10.37(b) shows its histogram, 
and Fig. 10.37(c) is the image thresholded using Otsu’s method. Every black point 
in the white region and every white point in the black region is a thresholding error, 
so the segmentation was highly unsuccessful. Figure 10.37(d) shows the result of 
smoothing the noisy image with an averaging kernel of size 5 5×  (the image is of size 
651 814×  pixels), and Fig. 10.37(e) is its histogram. The improvement in the shape 
of the histogram as a result of smoothing is evident, and we would expect threshold-
ing of the smoothed image to be nearly perfect. Figure 10.37(f) shows this to be the 
case. The slight distortion of the boundary between object and background in the 
segmented, smoothed image was caused by the blurring of the boundary. In fact, the 
more aggressively we smooth an image, the more boundary errors we should antici-
pate in the segmented result.

0 63 127 191 255
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FIGURE 10.36
(a) Original  
image.  
(b) Histogram 
(high peaks 
were clipped to 
highlight details in 
the lower values). 
(c) Segmenta-
tion result using 
the basic global 
algorithm from 
Section 10.3.  
(d) Result using 
Otsu’s method. 
(Original image 
courtesy of 
Professor Daniel 
A. Hammer, the 
University of 
Pennsylvania.)
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Next, we investigate the effect of severely reducing the size of the foreground 
region with respect to the background. Figure 10.38(a) shows the result. The noise in 
this image is additive Gaussian noise with zero mean and a standard deviation of 10 
intensity levels (as opposed to 50 in the previous example). As Fig. 10.38(b) shows, 
the histogram has no clear valley, so we would expect segmentation to fail, a fact that 
is confirmed by the result in Fig. 10.38(c). Figure 10.38(d) shows the image smoothed 
with an averaging kernel of size 5 5× , and Fig. 10.38(e) is the corresponding histo-
gram. As expected, the net effect was to reduce the spread of the histogram, but the 
distribution still is unimodal. As Fig. 10.38(f) shows, segmentation failed again. The 
reason for the failure can be traced to the fact that the region is so small that its con-
tribution to the histogram is insignificant compared to the intensity spread caused 
by noise. In situations such as this, the approach discussed in the following section is 
more likely to succeed.

USING EDGES TO IMPROVE GLOBAL THRESHOLDING

Based on the discussion thus far, we conclude that the chances of finding a “good” 
threshold are enhanced considerably if the histogram peaks are tall, narrow, sym-
metric, and separated by deep valleys. One approach for improving the shape of 
histograms is to consider only those pixels that lie on or near the edges between 
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FIGURE 10.37 (a) Noisy image from Fig. 10.33(c) and (b) its histogram. (c) Result obtained using Otsu’s method.  
(d) Noisy image smoothed using a 5 5×  averaging kernel and (e) its histogram. (f) Result of thresholding using 
Otsu’s method.
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objects and the background. An immediate and obvious improvement is that his-
tograms should be less dependent on the relative sizes of objects and background. 
For instance, the histogram of an image composed of a small object on a large back-
ground area (or vice versa) would be dominated by a large peak because of the high 
concentration of one type of pixels. We saw in Fig. 10.38 that this can lead to failure 
in thresholding.

If only the pixels on or near the edges between objects and background were 
used, the resulting histogram would have peaks of approximately the same height. In 
addition, the probability that any of those pixels lies on an object would be approxi-
mately equal to the probability that it lies on the background, thus improving the 
symmetry of the histogram modes. Finally, as indicated in the following paragraph, 
using pixels that satisfy some simple measures based on gradient and Laplacian 
operators has a tendency to deepen the valley between histogram peaks.

The approach just discussed assumes that the edges between objects and back-
ground are known. This information clearly is not available during segmentation, 
as finding a division between objects and background is precisely what segmenta-
tion aims to do. However, an indication of whether a pixel is on an edge may be 
obtained by computing its gradient or Laplacian. For example, the average value 
of the Laplacian is 0 at the transition of an edge (see Fig. 10.10), so the valleys of 
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FIGURE 10.38 (a) Noisy image and (b) its histogram. (c) Result obtained using Otsu’s method. (d) Noisy image 
smoothed using a 5 5×  averaging kernel and (e) its histogram. (f) Result of thresholding using Otsu’s method. 
Thresholding failed in both cases to extract the object of interest. (See Fig. 10.39 for a better solution.)
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histograms formed from the pixels selected by a Laplacian criterion can be expected 
to be sparsely populated. This property tends to produce the desirable deep valleys 
discussed above. In practice, comparable results typically are obtained using either 
the gradient or Laplacian images, with the latter being favored because it is compu-
tationally more attractive and is also created using an isotropic edge detector.

The preceding discussion is summarized in the following algorithm, where f x y( , ) 
is the input image:

1. Compute an edge image as either the magnitude of the gradient, or absolute 
value of the Laplacian, of f x y( , ) using any of the methods in Section 10.2.

2. Specify a threshold value, T.

3. Threshold the image from Step 1 using T from Step 2 to produce a binary image, 
g x yT ( , ). This image is used as a mask image in the following step to select pixels 
from f x y( , ) corresponding to “strong” edge pixels in the mask.

4. Compute a histogram using only the pixels in f x y( , ) that correspond to the 
locations of the 1-valued pixels in g x yT ( , ).

5. Use the histogram from Step 4 to segment f x y( , ) globally using, for example, 
Otsu’s method.

If T  is set to any value less than the minimum value of the edge image then, accord-
ing to Eq. (10-46), g x yT ( , ) will consist of all 1’s, implying that all pixels of f x y( , ) 
will be used to compute the image histogram. In this case, the preceding algorithm 
becomes global thresholding using the histogram of the original image. It is custom-
ary to specify the value of T  to correspond to a percentile, which typically is set 
high (e.g., in the high 90’s) so that few pixels in the gradient/Laplacian image will 
be used in the computation. The following examples illustrate the concepts just dis-
cussed. The first example uses the gradient, and the second uses the Laplacian. Simi-
lar results can be obtained in both examples using either approach. The important 
issue is to generate a suitable derivative image.

EXAMPLE 10.15 :  Using edge information based on the gradient to improve global thresholding.

Figures 10.39(a) and (b) show the image and histogram from Fig. 10.38. You saw that this image could 
not be segmented by smoothing followed by thresholding. The objective of this example is to solve the 
problem using edge information. Figure 10.39(c) is the mask image, g x yT ( , ), formed as gradient mag-
nitude image thresholded at the 99.7 percentile. Figure 10.39(d) is the image formed by multiplying the 
mask by the input image. Figure 10.39(e) is the histogram of the nonzero elements in Fig. 10.39(d). Note 
that this histogram has the important features discussed earlier; that is, it has reasonably symmetrical 
modes separated by a deep valley. Thus, while the histogram of the original noisy image offered no hope 
for successful thresholding, the histogram in Fig. 10.39(e) indicates that thresholding of the small object 
from the background is indeed possible. The result in Fig. 10.39(f) shows that this is the case. This image 
was generated using Otsu’s method [to obtain a threshold based on the histogram in Fig. 10.42(e)], and 
then applying the Otsu threshold globally to the noisy image in Fig. 10.39(a). The result is nearly perfect.

It is possible to modify 
this algorithm so that 
both the magnitude of 
the gradient and the 
absolute value of the 
Laplacian images are 
used. In this case, we 
would specify a threshold 
for each image and form 
the logical OR of the 
two results to obtain 
the marker image. This 
approach is useful when 
more control is desired 
over the points deemed 
to be valid edge points.

The nth percentile is 
the smallest number 
that is greater than n% 
of the numbers in a 
given set. For example, 
if you received a 95 in a 
test and this score was 
greater than 85% of all 
the students taking the 
test, then you would be 
in the 85th percentile 
with respect to the test 
scores.

DIP4E_GLOBAL_Print_Ready.indb   755 6/16/2017   2:13:39 PM



756    Chapter 10  Image Segmentation

EXAMPLE 10.16 :  Using edge information based on the Laplacian to improve global thresholding.

In this example, we consider a more complex thresholding problem. Figure 10.40(a) shows an 8-bit 
image of yeast cells for which we want to use global thresholding to obtain the regions corresponding 
to the bright spots. As a starting point, Fig. 10.40(b) shows the image histogram, and Fig. 10.40(c) is 
the result obtained using Otsu’s method directly on the image, based on the histogram shown. We see 
that Otsu’s method failed to achieve the original objective of detecting the bright spots. Although the 
method was able to isolate some of the cell regions themselves, several of the segmented regions on the 
right were actually joined. The threshold computed by the Otsu method was 42, and the separability 
measure was 0.636.

Figure 10.40(d) shows the mask image g x yT ( , ) obtained by computing the absolute value of the 
Laplacian image, then thresholding it with T set to 115 on an intensity scale in the range [ , ].0 255  This 
value of T corresponds approximately to the 99.5 percentile of the values in the absolute Laplacian 
image, so thresholding at this level results in a sparse set of pixels, as Fig. 10.40(d) shows. Note in this 
image how the points cluster near the edges of the bright spots, as expected from the preceding dis-
cussion. Figure 10.40(e) is the histogram of the nonzero pixels in the product of (a) and (d). Finally, 
Fig. 10.40(f) shows the result of globally segmenting the original image using Otsu’s method based on 
the histogram in Fig. 10.40(e). This result agrees with the locations of the bright spots in the image. The 
threshold computed by the Otsu method was 115, and the separability measure was 0.762, both of which 
are higher than the values obtained by using the original histogram.
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FIGURE 10.39 (a) Noisy image from Fig. 10.38(a) and (b) its histogram. (c) Mask image formed as the gradient mag-
nitude image thresholded at the 99.7 percentile. (d) Image formed as the product of (a) and (c). (e) Histogram of 
the nonzero pixels in the image in (d). (f) Result of segmenting image (a) with the Otsu threshold based on the 
histogram in (e). The threshold was 134, which is approximately midway between the peaks in this histogram.
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FIGURE 10.40 (a) Image of yeast cells. (b) Histogram of (a). (c) Segmentation of (a) with Otsu’s method using the  
histogram in (b). (d) Mask image formed by thresholding the absolute Laplacian image. (e) Histogram of the non-
zero pixels in the product of (a) and (d). (f) Original image thresholded using Otsu’s method based on the histogram 
in (e). (Original image courtesy of Professor Susan L. Forsburg, University of Southern California.)

By varying the percentile at which the threshold is set, we can even improve the segmentation of the 
complete cell regions. For example, Fig. 10.41 shows the result obtained using the same procedure as in 
the previous paragraph, but with the threshold set at 55, which is approximately 5% of the maximum 
value of the absolute Laplacian image. This value is at the 53.9 percentile of the values in that image. 
This result clearly is superior to the result in Fig. 10.40(c) obtained using Otsu’s method with the histo-
gram of the original image.

MULTIPLE THRESHOLDS

Thus far, we have focused attention on image segmentation using a single global 
threshold. Otsu’s method can be extended to an arbitrary number of thresholds 
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because the separability measure on which it is based also extends to an arbitrary 
number of classes (Fukunaga [1972]). In the case of K  classes, c c cK1 2, , , ,…  the 
between-class variance generalizes to the expression

 sB k k G
k

K

P m m2 2

1

= −( )
=

∑  (10-66)

where

 P pk i
i ck

=
∈
∑  (10-67)
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i
i ck

=
∈
∑1

 (10-68)

As before, mG  is the global mean given in Eq. (10-54). The K classes are separated 
by K − 1 thresholds whose values, k k kK1 2 1

∗ ∗
−

∗, , , ,…  are the values that maximize Eq. 
(10-66):
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< < < < − −( ) = ( ), , , max , ,… …

…
 (10-69)

Although this result is applicable to an arbitrary number of classes, it begins to lose 
meaning as the number of classes increases because we are dealing with only one 
variable (intensity). In fact, the between-class variance usually is cast in terms of 
multiple variables expressed as vectors (Fukunaga [1972]). In practice, using mul-
tiple global thresholding is considered a viable approach when there is reason to 
believe that the problem can be solved effectively with two thresholds. Applications 
that require more than two thresholds generally are solved using more than just 
intensity values. Instead, the approach is to use additional descriptors (e.g., color) 
and the application is cast as a pattern recognition problem, as you will learn shortly 
in the discussion on multivariable thresholding.

In applications involving 
more than one variable 
(for example the RGB 
components of a color 
image), thresholding can 
be implemented using a 
distance measure, such 
as the Euclidean distance, 
or Mahalanobis distance 
discussed in Section 6.7 
(see Eqs. (6-48), (6-49), 
and Example 6.15).

FIGURE 10.41
Image in Fig. 
10.40(a) segmented 
using the same 
procedure as 
explained in Figs. 
10.40(d) through 
(f), but using a 
lower value to 
threshold the 
absolute Laplacian 
image.
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For three classes consisting of three intensity intervals (which are separated by 
two thresholds), the between-class variance is given by:

 sB G G GP m m P m m P m m2
1 1

2
2 2

2
3 3

2= −( ) + −( ) + −( )  (10-70)
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and
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As in Eqs. (10-55) and (10-56), the following relationships hold:

 P m P m P m mG1 1 2 2 3 3+ + =  (10-73)

and

 P P P1 2 3 1+ + =  (10-74)

We see from Eqs. (10-71) and (10-72) that P and m, and therefore sB
2 , are functions 

of k1 and k2. The two optimum threshold values, k1
*  and k2

*, are the values that maxi-
mize sB k k2

1 2( , ). That is, as indicated in Eq. (10-69), we find the optimum thresholds 
by finding

 s sB k k L Bk k k k2
1 2 0 1

2
1 2

1 2

∗ ∗
< < < −

( ) = ( ), max ,  (10-75)

The procedure starts by selecting the first value of k1 (that value is 1 because look-
ing for a threshold at 0 intensity makes no sense; also, keep in mind that the incre-
ment values are integers because we are dealing with integer intensity values). 
Next, k2 is incremented through all its values greater than k1 and less than L − 1 
(i.e., k k L2 1 1 2= + −, , ).…  Then, k1 is incremented to its next value and k2 is incre-
mented again through all its values greater than k1. This procedure is repeated 
until k L1 3= − . The result of this procedure is a 2-D array, sB k k2

1 2, ,( )  and the last 
step is to look for the maximum value in this array. The values of k1 and k2 cor-
responding to that maximum in the array are the optimum thresholds, k1

*  and k2
*. 

Recall from the  
discussion of the 
Canny edge detec-
tor that thresholding 
with two thresholds is 
referred to as hysteresis 
thresholding.
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If there are several maxima, the corresponding values of k1 and k2 are averaged to 
obtain the final thresholds. The thresholded image is then given by

 g x y

a f x y k

b k f x y k

c f x y k
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( , )

( , )

*

* *
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 (10-76)

where a, b, and c are any three distinct intensity values.
Finally, the separability measure defined earlier for one threshold extends direct-

ly to multiple thresholds:

 h
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1 2

2
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 (10-77)

where sG
2  is the total image variance from Eq. (10-58).

EXAMPLE 10.17 :   Multiple global thresholding.

Figure 10.42(a) shows an image of an iceberg. The objective of this example is to segment the image into 
three regions: the dark background, the illuminated area of the iceberg, and the area in shadows. It is 
evident from the image histogram in Fig. 10.42(b) that two thresholds are required to solve this problem. 
The procedure discussed above resulted in the thresholds k1 80∗ =  and k2 177∗ = , which we note from 
Fig. 10.45(b) are near the centers of the two histogram valleys. Figure 10.42(c) is the segmentation that 
resulted using these two thresholds in Eq. (10-76). The separability measure was 0.954. The principal 
reason this example worked out so well can be traced to the histogram having three distinct modes 
separated by reasonably wide, deep valleys. But we can do even better using superpixels, as you will see 
in Section 10.5.
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FIGURE 10.42  (a) Image of an iceberg. (b) Histogram. (c) Image segmented into three regions using dual Otsu thresholds. 
(Original image courtesy of NOAA.)
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VARIABLE THRESHOLDING

As discussed earlier in this section, factors such as noise and nonuniform illumina-
tion play a major role in the performance of a thresholding algorithm. We showed 
that image smoothing and the use of edge information can help significantly. How-
ever, sometimes this type of preprocessing is either impractical or ineffective in 
improving the situation, to the point where the problem cannot be solved by any 
of the thresholding methods discussed thus far. In such situations, the next level of 
thresholding complexity involves variable thresholding, as we will illustrate in the 
following discussion.

Variable Thresholding Based on Local Image Properties

A basic approach to variable thresholding is to compute a threshold at every point, 
( , ),x y  in the image based on one or more specified properties in a neighborhood 
of ( , ).x y  Although this may seem like a laborious process, modern algorithms and 
hardware allow for fast neighborhood processing, especially for common functions 
such as logical and arithmetic operations.

We illustrate the approach using the mean and standard deviation of the pixel 
values in a neighborhood of every point in an image. These two quantities are use-
ful for determining local thresholds because, as you know from Chapter 3, they are 
descriptors of average intensity and contrast. Let mxy and sxy  denote the mean and 
standard deviation of the set of pixel values in a neighborhood, Sxy , centered at 
coordinates ( , )x y  in an image (see Section 3.3 regarding computation of the local 
mean and standard deviation). The following are common forms of variable thresh-
olds based on the local image properties:

 T a bmxy xy xy= +s  (10-78)

where a  and b are nonnegative constants, and

 T a bmxy xy G= +s  (10-79)

where mG  is the global image mean. The segmented image is computed as

 g x y
f x y T

f x y T
xy

xy

( , )
( , )

( , )
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>⎧
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⎪

⎩⎪

1

0

if  

if  ≤
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where f x y( , ) is the input image. This equation is evaluated for all pixel locations 
in the image, and a different threshold is computed at each location ( , )x y  using the 
pixels in the neighborhood Sxy.

Significant power (with a modest increase in computation) can be added to vari-
able thresholding by using predicates based on the parameters computed in the neigh-
borhood of a point ( , ) :x y

 g x y
Q

Q
( , ) =

1

0

if (local parameters) is TRUE

if (local parameterrs) is FALSE
⎧
⎨
⎩

 (10-81)

We simplified the nota-
tion slightly from the 
form we used in  
Eqs. (3-27) and (3-28) by  
letting xy imply a  
neighborhood S, centered 
at coordinates (x, y).

Note that Txy is a 
threshold array of the 
same size as the image 
from which it was 
obtained. The threshold 
at a location (x, y) in the 
array is used to segment 
the value of an image at 
that location.
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where Q is a predicate based on parameters computed using the pixels in neighbor-
hood Sxy. For example, consider the following predicate, Q mxy xys , ,( )  based on the 
local mean and standard deviation:

 Q m
f x y a f x y bm

xy xy
xy xy

s
s

,
( , ) ( , )( ) =

> >TRUE if  AND  

FALSE otherwisee

⎧
⎨
⎪

⎩⎪
 (10-82)

Note that Eq. (10-80) is a special case of Eq. (10-81), obtained by letting Q be TRUE 
if f x y Txy( , ) >  and FALSE otherwise. In this case, the predicate is based simply on 
the intensity at a point.

EXAMPLE 10.18 : Variable thresholding based on local image properties.

Figure 10.43(a) shows the yeast image from Example 10.16. This image has three predominant inten-
sity levels, so it is reasonable to assume that perhaps dual thresholding could be a good segmentation 
approach. Figure 10.43(b) is the result of using the dual thresholding method summarized in Eq. (10-76). 
As the figure shows, it was possible to isolate the bright areas from the background, but the mid-gray 
regions on the right side of the image were not segmented (i.e., separated) properly. To illustrate the use 

ba
dc

FIGURE 10.43
(a) Image from 
Fig. 10.40.  
(b) Image  
segmented using 
the dual  
thresholding  
approach given 
by Eq. (10-76). 
(c) Image of local 
standard  
deviations.  
(d) Result  
obtained using  
local thresholding.

DIP4E_GLOBAL_Print_Ready.indb   762 6/16/2017   2:13:46 PM



10.3  Thresholding    763

of local thresholding, we computed the local standard deviation sxy  for all ( , )x y  in the input image using 
a neighborhood of size 3 3× . Figure 10.43(c) shows the result. Note how the faint outer lines correctly 
delineate the boundaries of the cells. Next, we formed a predicate of the form shown in Eq. (10-82), but 
using the global mean instead of mxy. Choosing the global mean generally gives better results when the 
background is nearly constant and all the object intensities are above or below the background intensity. 
The values a = 30 and b = 1 5.  were used to complete the specification of the predicate (these values 
were determined experimentally, as is usually the case in applications such as this). The image was then 
segmented using Eq. (10-82). As Fig. 10.43(d) shows, the segmentation was quite successful. Note in par-
ticular that all the outer regions were segmented properly, and that most of the inner, brighter regions 
were isolated correctly.

Variable Thresholding Based on Moving Averages

A special case of the variable thresholding method discussed in the previous sec-
tion is based on computing a moving average along scan lines of an image. This 
implementation is useful in applications such as document processing, where speed 
is a fundamental requirement. The scanning typically is carried out line by line in a 
zigzag pattern to reduce illumination bias. Let zk+1 denote the intensity of the point 
encountered in the scanning sequence at step k + 1. The moving average (mean 
intensity) at this new point is given by
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where n is the number of points used in computing the average, and m z( ) .1 1=  The 
conditions imposed on k are so that all subscripts on zk are positive. All this means 
is that n points must be available for computing the average. When k is less than the 
limits shown (this happens near the image borders) the averages are formed with 
the available image points. Because a moving average is computed for every point 
in the image, segmentation is implemented using Eq. (10-80) with T cmxy xy= ,  where 
c is positive scalar, and mxy is the moving average from Eq. (10-83) at point ( , )x y  in 
the input image. 

EXAMPLE 10.19 :   Document thresholding using moving averages.

Figure 10.44(a) shows an image of handwritten text shaded by a spot intensity pattern. This form of 
intensity shading is typical of images obtained using spot illumination (such as a photographic flash). 
Figure 10.44(b) is the result of segmentation using the Otsu global thresholding method. It is not unex-
pected that global thresholding could not overcome the intensity variation because the method gener-
ally performs poorly when the areas of interest are embedded in a nonuniform illumination field. Figure 
10.44(c) shows successful segmentation with local thresholding using moving averages. For images of 
written material, a rule of thumb is to let n equal five times the average stroke width. In this case, the 
average width was 4 pixels, so we let n = 20 in Eq. (10-83) and used c = 0 5. .
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As another illustration of the effectiveness of this segmentation approach, we used the same param-
eters as in the previous paragraph to segment the image in Fig. 10.45(a), which is corrupted by a sinu-
soidal intensity variation typical of the variations that may occur when the power supply in a document 
scanner is not properly grounded. As Figs. 10.45(b) and (c) show, the segmentation results are compa-
rable to those in Fig. 10.44.

Note that successful segmentation results were obtained in both cases using the same values for n 
and c, which shows the relative ruggedness of the approach. In general, thresholding based on moving 
averages works well when the objects of interest are small (or thin) with respect to the image size, a 
condition satisfied by images of typed or handwritten text.

10.4   SEGMENTATION BY REGION GROWING AND BY REGION 
SPLITTING AND MERGING 

As we discussed in Section 10.1, the objective of segmentation is to partition an 
image into regions. In Section 10.2, we approached this problem by attempting to 
find boundaries between regions based on discontinuities in intensity levels, where-
as in Section 10.3, segmentation was accomplished via thresholds based on the dis-
tribution of pixel properties, such as intensity values or color. In this section and in 
Sections 10.5 and 10.6, we discuss segmentation techniques that find the regions 
directly. In Section 10.7, we will discuss a method that finds the regions and their 
boundaries simultaneously. 

REGION GROWING

As its name implies, region growing is a procedure that groups pixels or subregions 
into larger regions based on predefined criteria for growth. The basic approach is to 
start with a set of “seed” points, and from these grow regions by appending to each 
seed those neighboring pixels that have predefined properties similar to the seed 
(such as ranges of intensity or color).

Selecting a set of one or more starting points can often be based on the nature of 
the problem, as we show later in Example 10.20. When a priori information is not 

10.4

You should review the 
terminology introduced 
in Section 10.1 before 
proceeding.
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FIGURE 10.44 (a) Text image corrupted by spot shading. (b) Result of global thresholding using Otsu’s method.  
(c) Result of local thresholding using moving averages.
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available, the procedure is to compute at every pixel the same set of properties that 
ultimately will be used to assign pixels to regions during the growing process. If the 
result of these computations shows clusters of values, the pixels whose properties 
place them near the centroid of these clusters can be used as seeds.

The selection of similarity criteria depends not only on the problem under con-
sideration, but also on the type of image data available. For example, the analysis of 
land-use satellite imagery depends heavily on the use of color. This problem would 
be significantly more difficult, or even impossible, to solve without the inherent infor-
mation available in color images. When the images are monochrome, region analysis 
must be carried out with a set of descriptors based on intensity levels and spatial 
properties (such as moments or texture). We will discuss descriptors useful for region 
characterization in Chapter 11.

Descriptors alone can yield misleading results if connectivity properties are not 
used in the region-growing process. For example, visualize a random arrangement of 
pixels that have three distinct intensity values. Grouping pixels with the same inten-
sity value to form a “region,” without paying attention to connectivity, would yield a 
segmentation result that is meaningless in the context of this discussion.

Another problem in region growing is the formulation of a stopping rule. Region 
growth should stop when no more pixels satisfy the criteria for inclusion in that 
region. Criteria such as intensity values, texture, and color are local in nature and 
do not take into account the “history” of region growth. Additional criteria that can 
increase the power of a region-growing algorithm utilize the concept of size, like-
ness between a candidate pixel and the pixels grown so far (such as a comparison of 
the intensity of a candidate and the average intensity of the grown region), and the 
shape of the region being grown. The use of these types of descriptors is based on 
the assumption that a model of expected results is at least partially available.

Let: f x y( , ) denote an input image; S x y( , ) denote a seed array containing 1’s 
at the locations of seed points and 0’s elsewhere; and Q denote a predicate to be 
applied at each location ( , ).x y  Arrays f  and S  are assumed to be of the same size. 
A basic region-growing algorithm based on 8-connectivity may be stated as follows.

ba c

FIGURE 10.45 (a) Text image corrupted by sinusoidal shading. (b) Result of global thresholding using Otsu’s method. 
(c) Result of local thresholding using moving averages..
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1. Find all connected components in S x y( , ) and reduce each connected component 
to one pixel; label all such pixels found as 1. All other pixels in S  are labeled 0.

2. Form an image fQ such that, at each point ( , ),x y  f x yQ( , ) = 1 if the input image 
satisfies a given predicate, Q, at those coordinates, and f x yQ( , ) = 0 otherwise.

3. Let g  be an image formed by appending to each seed point in S  all the 1-valued 
points in fQ that are 8-connected to that seed point.

4. Label each connected component in g  with a different region label (e.g.,integers 
or letters). This is the segmented image obtained by region growing.

The following example illustrates the mechanics of this algorithm.

EXAMPLE 10.20 :  Segmentation by region growing.

Figure 10.46(a) shows an 8-bit X-ray image of a weld (the horizontal dark region) containing several 
cracks and porosities (the bright regions running horizontally through the center of the image). We illus-
trate the use of region growing by segmenting the defective weld regions. These regions could be used 
in applications such as weld inspection, for inclusion in a database of historical studies, or for controlling 
an automated welding system.

The first thing we do is determine the seed points. From the physics of the problem, we know that 
cracks and porosities will attenuate X-rays considerably less than solid welds, so we expect the regions 
containing these types of defects to be significantly brighter than other parts of the X-ray image. We 
can extract the seed points by thresholding the original image, using a threshold set at a high percen-
tile. Figure 10.46(b) shows the histogram of the image, and Fig. 10.46(c) shows the thresholded result 
obtained with a threshold equal to the 99.9 percentile of intensity values in the image, which in this case 
was 254 (see Section 10.3 regarding percentiles). Figure 10.46(d) shows the result of morphologically 
eroding each connected component in Fig. 10.46(c) to a single point.

Next, we have to specify a predicate. In this example, we are interested in appending to each seed 
all the pixels that (a) are 8-connected to that seed, and (b) are “similar” to it. Using absolute intensity 
differences as a measure of similarity, our predicate applied at each location ( , )x y  is

 Q =
TRUE if the absolute difference of intensities

between the  seed and the pixel at  is 

FALSE otherwise

( , )x y T≤
⎧
⎨
⎪

⎩⎪

where T  is a specified threshold. Although this predicate is based on intensity differences and uses a 
single threshold, we could specify more complex schemes in which a different threshold is applied to 
each pixel, and properties other than differences are used. In this case, the preceding predicate is suf-
ficient to solve the problem, as the rest of this example shows.

From the previous paragraph, we know that all seed values are 255 because the image was thresh-
olded with a threshold of 254. Figure 10.46(e) shows the difference between the seed value (255) and 
Fig. 10.46(a). The image in Fig. 10.46(e) contains all the differences needed to compute the predicate at 
each location ( , ).x y  Figure 10.46(f) shows the corresponding histogram. We need a threshold to use in 
the predicate to establish similarity. The histogram has three principal modes, so we can start by apply-
ing to the difference image the dual thresholding technique discussed in Section 10.3. The resulting two 
thresholds in this case were T1 68=  and T2 126= ,  which we see correspond closely to the valleys of 
the histogram. (As a brief digression, we segmented the image using these two thresholds. The result in 

See Sections 2.5 and 9.5 
regarding connected 
components, and  
Section 9.2 regarding 
erosion.
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Fig. 10.46(g) shows that segmenting the defects cannot be accomplished using dual thresholds, despite 
the fact that the thresholds are in the deep valleys of the histogram.) 

Figure 10.46(h) shows the result of thresholding the difference image with only T1.  The black points 
are the pixels for which the predicate was TRUE; the others failed the predicate. The important result 
here is that the points in the good regions of the weld failed the predicate, so they will not be included 
in the final result. The points in the outer region will be considered by the region-growing algorithm as 

ba c
ed f
hg i  

Figure 10.46 (a) X-ray image of a defective weld. (b) Histogram. (c) Initial seed image. (d) Final seed image (the 
points were enlarged for clarity). (e) Absolute value of the difference between the seed value (255) and (a).  
(f) Histogram of (e). (g) Difference image thresholded using dual thresholds. (h) Difference image thresholded with 
the smallest of the dual thresholds. (i) Segmentation result obtained by region growing. (Original image courtesy 
of X-TEK Systems, Ltd.)

191 2550 63 127

0 63 127 191 255
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candidates. However, Step 3 will reject the outer points because they are not 8-connected to the seeds. 
In fact, as Fig. 10.46(i) shows, this step resulted in the correct segmentation, indicating that the use of 
connectivity was a fundamental requirement in this case. Finally, note that in Step 4 we used the same 
value for all the regions found by the algorithm. In this case, it was visually preferable to do so because 
all those regions have the same physical meaning in this application—they all represent porosities. 

REGION SPLITTING AND MERGING

The procedure just discussed grows regions from seed points. An alternative is to sub-
divide an image initially into a set of disjoint regions and then merge and/or split the 
regions in an attempt to satisfy the conditions of segmentation stated in Section 10.1. 
The basics of region splitting and merging are discussed next.

Let R represent the entire image region and select a predicate Q. One approach 
for segmenting R is to subdivide it successively into smaller and smaller quadrant 
regions so that, for any region R Q Ri i, ( ) .= TRUE  We start with the entire region, R.
If Q R( ) = FALSE, we divide the image into quadrants. If Q is FALSE for any 
quadrant, we subdivide that quadrant into sub-quadrants, and so on. This splitting 
technique has a convenient representation in the form of so-called quadtrees; that 
is, trees in which each node has exactly four descendants, as Fig. 10.47 shows (the 
images corresponding to the nodes of a quadtree sometimes are called quadregions 
or quadimages). Note that the root of the tree corresponds to the entire image, and 
that each node corresponds to the subdivision of a node into four descendant nodes. 
In this case, only R4  was subdivided further.

If only splitting is used, the final partition normally contains adjacent regions with 
identical properties. This drawback can be remedied by allowing merging as well as 
splitting. Satisfying the constraints of segmentation outlined in Section 10.1 requires 
merging only adjacent regions whose combined pixels satisfy the predicate Q.  That 
is, two adjacent regions Rj  and Rk  are merged only if Q R Rj k�( ) = TRUE.

The preceding discussion can be summarized by the following procedure in which, 
at any step, we

1. Split into four disjoint quadrants any region Ri  for which Q Ri( ) = FALSE.

2. When no further splitting is possible, merge any adjacent regions Rj  and Rk  for 
which Q R Rj k�( ) = TRUE.

See Section 2.5  
regarding region  
adjacency.

R1

R3

R41 R42

R43 R44

R2

R1 R2 R3

R

R4

R41 R42 R43 R44

Rba

FIGURE 10.47
(a) Partitioned 
image.  
(b) Corresponding 
quadtree.  
R represents 
the entire image 
region.
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3. Stop when no further merging is possible.

Numerous variations of this basic theme are possible. For example, a significant 
simplification results if in Step 2 we allow merging of any two adjacent regions Rj  
and Rk  if each one satisfies the predicate individually. This results in a much sim-
pler (and faster) algorithm, because testing of the predicate is limited to individual 
quadregions. As the following example shows, this simplification is still capable of 
yielding good segmentation results.

EXAMPLE 10.21 :  Segmentation by region splitting and merging.

Figure 10.48(a) shows a 566 566×  X-ray image of the Cygnus Loop supernova. The objective of this 
example is to segment (extract from the image) the “ring” of less dense matter surrounding the dense 
inner region. The region of interest has some obvious characteristics that should help in its segmenta-
tion. First, we note that the data in this region has a random nature, indicating that its standard devia-
tion should be greater than the standard deviation of the background (which is near 0) and of the large 
central region, which is smooth. Similarly, the mean value (average intensity) of a region containing 
data from the outer ring should be greater than the mean of the darker background and less than the 
mean of the lighter central region. Thus, we should be able to segment the region of interest using the 
following predicate:

ba
dc

FIGURE 10.48
(a) Image of the 
Cygnus Loop  
supernova, taken 
in the X-ray band 
by NASA’s 
Hubble Telescope. 
(b) through (d) 
Results of limit-
ing the smallest 
allowed  
quadregion to be 
of sizes of 32 32× , 
16 16× , and 8 8×  
pixels,  
respectively. 
(Original image 
courtesy of 
NASA.)
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 Q R
a m bR R( ) =

> < <⎧
⎨
⎩

TRUE if AND

FALSE otherwise

s 0

where sR  and mR are the standard deviation and mean of the region being processed, and a  and b are 
nonnegative constants.

Analysis of several regions in the outer area of interest revealed that the mean intensity of pixels 
in those regions did not exceed 125, and the standard deviation was always greater than 10. Figures 
10.48(b) through (d) show the results obtained using these values for a  and b, and varying the minimum 
size allowed for the quadregions from 32 to 8. The pixels in a quadregion that satisfied the predicate 
were set to white; all others in that region were set to black. The best result in terms of capturing the 
shape of the outer region was obtained using quadregions of size 16 16× . The small black squares in 
Fig. 10.48(d) are quadregions of size 8 8×  whose pixels did not satisfy the predicate. Using smaller 
quadregions would result in increasing numbers of such black regions. Using regions larger than the one 
illustrated here would result in a more “block-like” segmentation. Note that in all cases the segmented 
region (white pixels) was a connected region that completely separates the inner, smoother region from 
the background. Thus, the segmentation effectively partitioned the image into three distinct areas that 
correspond to the three principal features in the image: background, a dense region, and a sparse region. 
Using any of the white regions in Fig. 10.48 as a mask would make it a relatively simple task to extract 
these regions from the original image (see Problem 10.43). As in Example 10.20, these results could not 
have been obtained using edge- or threshold-based segmentation.

As used in the preceding example, properties based on the mean and standard 
deviation of pixel intensities in a region attempt to quantify the texture of the region 
(see Section 11.3 for a discussion on texture). The concept of texture segmentation 
is based on using measures of texture in the predicates. In other words, we can per-
form texture segmentation by any of the methods discussed in this section simply by 
specifying predicates based on texture content.

10.5  REGION SEGMENTATION USING CLUSTERING AND  
SUPERPIXELS  

In this section, we discuss two related approaches to region segmentation. The first 
is a classical approach based on seeking clusters in data, related to such variables as 
intensity and color. The second approach is significantly more modern, and is based 
on using clustering to extract “superpixels” from an image.

REGION SEGMENTATION USING K-MEANS CLUSTERING

The basic idea behind the clustering approach used in this chapter is to partition a 
set, Q, of observations into a specified number, k, of clusters. In k-means clustering, 
each observation is assigned to the cluster with the nearest mean (hence the name 
of the method), and each mean is called the prototype of its cluster. A k-means algo-
rithm is an iterative procedure that successively refines the means until convergence 
is achieved.

Let { , , , }z z z1 2 … Q  be set of vector observations (samples). These vectors have 
the form

10.5

A more general form of 
clustering is  
unsupervised clustering, 
in which a clustering 
algorithm attempts to 
find a meaningful set of 
clusters in a given set 
of samples. We do not 
address this topic, as 
our focus in this brief 
introduction is only to 
illustrate how supervised 
clustering is used for 
image segmentation.
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 z =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

z

z

zn

1

2

�
 (10-84)

In image segmentation, each component of a vector z represents a numerical pixel 
attribute. For example, if segmentation is based on just grayscale intensity, then z = z 
is a scalar representing the intensity of a pixel. If we are segmenting RGB color 
images, z typically is a 3-D vector, each component of which is the intensity of a pixel 
in one of the three primary color images, as we discussed in Chapter 6. The objec-
tive of k-means clustering is to partition the set Q of observations into k k Q( )≤  
disjoint cluster sets C C C Ck= { , , , },1 2 …  so that the following criterion of optimality 
is satisfied:†

 arg min
C

i
Ci

k

i

a bz m
z

−
∈=
∑∑ 2

1

 (10-85)

where mi  is the mean vector (or centroid) of the samples in set Ci  and arg  is the vec-
tor norm of the argument. Typically, the Euclidean norm is used, so the term z m− i  
is the familiar Euclidean distance from a sample in Ci  to mean mi . In words, this 
equation says that we are interested in finding the sets C C C Ck= { , , , }1 2 …  such that 
the sum of the distances from each point in a set to the mean of that set is minimum.

Unfortunately, finding this minimum is an NP-hard problem for which no practi-
cal solution is known. As a result, a number of heuristic methods that attempt to find 
approximations to the minimum have been proposed over the years. In this section, 
we discuss what is generally considered to be the “standard” k-means algorithm, 
which is based on the Euclidean distance (see Section 2.6). Given a set { , , , }z z z1 2 … Q  
of vector observation and a specified value of k, the algorithm is as follows:

1. Initialize the algorithm: Specify an initial set of means, mi( ),1  i k= 1 2, , , .…
2. Assign samples to clusters: Assign each sample to the cluster set whose mean 

is the closest (ties are resolved arbitrarily, but samples are assigned to only one 
cluster):

      z z m z mq i q i q jC j k j i q Q→ − < − = =if � � � �2 2 1 2 1 2, , , ( ); , , ,… …≠

3. Update the cluster centers (means):

   m z
z

i
i CC

i k
i

= =
∈
∑1

1 2, , ,…  

where Ci  is the number of samples in cluster set Ci .

4. Test for completion: Compute the Euclidean norms of the differences between 
the mean vectors in the current and previous steps. Compute the residual error, 
E, as the sum of the k norms. Stop if E T≤ , where T a specified, nonnegative 
threshold. Else, go back to Step 2.

†   Remember, min ( )
x

h x( ) is the minimum of h with respected to x, whereas arg min ( )
x

h x( )  is the value (or values) 
of x at which h is minimum.

These initial means are 
the initial cluster centers. 
They are also called seeds.
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When T = 0, this algorithm is known to converge in a finite number of iterations 
to a local minimum. It is not guaranteed to yield the global minimum required to 
minimize Eq. (10-85). The result at convergence does depend on the initial values 
chosen for mi . An approach used frequently in data analysis is to specify the initial 
means as k randomly chosen samples from the given sample set, and to run the 
algorithm several times, with a new random set of initial samples each time. This is 
to test the “stability” of the solution. In image segmentation, the important issue is 
the value selected for k because this determines the number of segmented regions; 
thus, multiple passes are rarely used.

EXAMPLE 10.22 :  Using k-means clustering for segmentation.

Figure 10.49(a) shows an image of size 688 688×  pixels, and Fig. 10.49(b) is the segmentation obtained 
using the k-means algorithm with k = 3. As you can see, the algorithm was able to extract all the mean-
ingful regions of this image with high accuracy. For example, compare the quality of the characters in 
both images. It is important to realize that the entire segmentation was done by clustering of a single 
variable (intensity). Because k-means works with vector observations in general, its power to discrimi-
nate between regions increases as the number of components of vector z in Eq. (10-84) increases.

REGION SEGMENTATION USING SUPERPIXELS

The idea behind superpixels is to replace the standard pixel grid by grouping pixels 
into primitive regions that are more perceptually meaningful than individual pixels. 
The objectives are to lessen computational load, and to improve the performance of 
segmentation algorithms by reducing irrelevant detail. A simple example will help 
explain the basic approach of superpixel representations.

Figure 10.50(a) shows an image of size 600 800×  (480,000) pixels containing 
various levels of detail that could be described verbally as: “This is an image of two 
large carved figures in the foreground, and at least three, much smaller, carved fig-
ures resting on a fence behind the large figures. The figures are on a beach, with 

ba

FIGURE 10.49
(a) Image of size 
688 688×  pixels.  
(b) Image  
segmented using 
the k-means  
algorithm with 
k = 3.
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the ocean and sky in the background.” Figure 10.50(b) shows the same image rep-
resented by 4,000 superpixels and their boundaries (the boundaries are shown for 
reference—they are not part of the data), and Fig. 10.50(c) shows the superpixel 
image. One could argue that the level of detail in the superpixel image would lead 
to the same description as the original, but the former contains only 4,000 primitive 
units, as opposed to 480,000 in the original. Whether the superpixel representation 
is “adequate” depends on the application. If the objective is to describe the image 
at the level of detail mentioned above, then the answer is yes. On the other hand, if 
the objective is to detect imperfections at pixel-level resolutions, then the answer 
obviously is no. And there are application, such as computerized medical diagnosis, 
in which approximate representations of any kind are not acceptable. Nevertheless, 
numerous application areas, such as image-database queries, autonomous naviga-
tion, and certain branches of robotics, in which economy of implementation and 
potential improvements in segmentation performance far outweigh any appreciable 
loss of image detail.

One important requirement of any superpixel representation is adherence to bound-
aries. This means that boundaries between regions of interest must be preserved 
in a superpixel image. We can see that this indeed is the case with the image in 
Fig. 10.50(c). Note, for example, how clear the boundaries between the figures and 
the background are. The same is true of the boundaries between the beach and the 
ocean, and between the ocean and the sky. Other important characteristics are the 
preservations of topological properties and, of course, computational efficiency. The 
superpixel algorithm discussed in this section meets these requirements.

As another illustration, we show the results of severely decreasing the number of 
superpixels to 1,000, 500, and 250. The results in Fig. 10.51, show a significant loss of 
detail compared to Fig. 10.50(a), but the first two images contain most of the detail 
relevant to the image description discussed earlier. A notable difference is that two 
of the three small carvings on the fence in the back were eliminated. The 250-ele-
ment superpixel image even lost the third. However, the boundaries between the 
principal regions, as well as the basic topology of the images, were preserved.

Figures 10.50(b) and (c) 
were obtained using a 
method to be discussed 
later in this section.

ba c

FIGURE 10.50 (a) Image of size 600 480×  (480,000) pixels. (b) Image composed of 4,000 superpixels (the boundaries 
between superpixels (in white) are superimposed on the superpixel image for reference—the boundaries are not 
part of the data). (c) Superpixel image. (Original image courtesy of the U.S. National Park Services.).
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SLIC Superpixel Algorithm

In this section we discuss an algorithm for generating superpixels, called simple lin-
ear iterative clustering (SLIC). This algorithm, developed by Achanta et al. [2012], 
is conceptually simple, and has computational and other performance advantages 
over other superpixels techniques. SLIC is a modification of the k-means algorithm 
discussed in the previous section. SLIC observations typically use (but are not lim-
ited to) 5-dimensional vectors containing three color components and two spatial 
coordinates. For example, if we are using the RGB color system, the 5-dimensional 
vector associated with an image pixel has the form

 z =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

r
g

b

x

y

 (10-86)

where ( , , )r g b  are the three color components of a pixel, and ( , )x y  are its two spatial 
coordinates. Let nsp  denote the desired number of superpixels and let ntp denote the 
total number of pixels in the image. The initial superpixel centers, mi i i i i i

T
r g b x y= [ ] , 

i nsp= 1 2, , , ,…  are obtained by sampling the image on a regular grid spaced s units 
apart. To generate superpixels approximately equal in size (i.e., area), the grid spac-

As you will learn in 
Chapter 11, vectors  
containing image  
attributes are called 
feature vectors.

FIGURE 10.51  Top row: Results of using 1,000, 500, and 250 superpixels in the representation of Fig. 10.50(a). As before, 
the boundaries between superpixels are superimposed on the images for reference. Bottom row: Superpixel images.

DIP4E_GLOBAL_Print_Ready.indb   774 6/16/2017   2:13:57 PM



10.5  Region Segmentation Using Clustering and Superpixels    775

ing interval is selected as s n ntp sp= [ ] .1 2  To prevent centering a superpixel on the 
edge of the image, and to reduce the chances of starting at a noisy point, the initial 
cluster centers are moved to the lowest gradient position in the 3 3×  neighborhood 
about each center.

The SLIC superpixel algorithm consists of the following steps. Keep in mind that 
superpixels are vectors in general. When we refer to a “pixel” in the algorithm, we 
are referring to the ( , )x y  location of the superpixel relative to the image. 

1. Initialize the algorithm: Compute the initial superpixel cluster centers, 

 mi i i i i i
T

spr g b x y i n= [ ] =, , , ,1 2 …

by sampling the image at regular grid steps, s. Move the cluster centers to the 
lowest gradient position in a 3 3×  neighborhood. For each pixel location, p, in 
the image, set a label L p( ) = −1 and a distance d p( ) .= �  

2. Assign samples to cluster centers: For each cluster center mi , i nsp= 1 2, , , ,…  
compute the distance, D pi( ) between mi  and each pixel p in a 2 2s s×  neighbor-
hood about mi . Then, for each p and i nsp= 1 2, , , ,…  if D d pi < ( ), let d p Di( ) =  
and L p i( ) .=

3. Update the cluster centers: Let Ci  denote the set of pixels in the image with 
label L p i( ) .=  Update mi :

 m z
z

i
i C

spC
i n

i

= =
∈
∑1

1 2, , ,…

where Ci  is the number of pixels in set Ci , and the z’s are given by Eq. (10-86).
4. Test for convergence: Compute the Euclidean norms of the differences between 

the mean vectors in the current and previous steps. Compute the residual error, 
E, as the sum of the nsp  norms. If E T< , where T a specified nonnegative thresh-
old, go to Step 5. Else, go back to Step 2.

5. Post-process the superpixel regions: Replace all the superpixels in each region, 
Ci , by their average value, mi .

Note in Step 5 that superpixels end up as contiguous regions of constant value. The 
average value is not the only way to compute this constant, but it is the most widely 
used. For graylevel images, the average is just the average intensity of all the pixels 
in the region spanned by the superpixel. This algorithm is similar to the k-means 
algorithm in the previous section, with the exceptions that the distances, Di , are not 
specified as Euclidean distances (see below), and that these distances are computed 
for regions of size 2 2s s× , rather than for all the pixels in the image, thus reduc-
ing computation time significantly. In practice, SLIC convergence with respect to 
E can be achieved with fairly large values of T. For example, all results reported by 
Achanta et al. [2012] were obtained using T = 10.
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Specifying the Distance Measure

SLIC superpixels correspond to clusters in a space whose coordinates are colors 
and spatial variables. It would be senseless to use a single Euclidean distance in this 
case, because the scales in the axes of this coordinate system are different and unre-
lated. In other words, spatial and color distances must be treated separately. This is 
accomplished by normalizing the distance of the various components, then combin-
ing them into a single measure. Let dc  and ds  denote the color and spatial Euclidean 
distances between two points in a cluster, respectively:

 d r r g g b bc j i j i j i= − + − + −⎡⎣ ⎤⎦( ) ( ) ( )2 2 2 1 2
 (10-87)

and

 d x x y ys j i j i= − + −⎡⎣ ⎤⎦( ) ( )2 2 1 2
 (10-88)

We then define D as the composite distance

 D
d

d
d

d
c

cm

s

sm

= +
⎡

⎣
⎢

⎤

⎦
⎥a b a b

2 2
1 2

 (10-89)

where dcm  and dsm  are the maximum expected values of dc  and ds. The maximum spa-
tial distance should correspond to the sampling interval; that is, d s n nsm tp sp= = [ ] .1 2  
Determining the maximum color distance is not as straightforward, because these 
distances can vary significantly from cluster to cluster, and from image to image. A 
solution is to set dcm  to a constant c so that Eq. (10-89) becomes

 D
d
c

d
s

c s= +
⎡

⎣
⎢

⎤

⎦
⎥a b a b

2 2
1 2

 (10-90)

We can write this equation as

 D d
d
s

cc
s= +

⎡

⎣
⎢

⎤

⎦
⎥

2
2

2
1 2

a b  (10-91)

This is the distance measure used for each cluster in the algorithm. Constant c can be 
used to weigh the relative importance between color similarity and spatial proximity. 
When c is large, spatial proximity is more important, and the resulting superpixels 
are more compact. When c is small, the resulting superpixels adhere more tightly to 
image boundaries, but have less regular size and shape.

For grayscale images, as in Example 10.23 below, we use

 d l lc j i= −⎡⎣ ⎤⎦( )2 1 2
 (10-92)

DIP4E_GLOBAL_Print_Ready.indb   776 6/16/2017   2:14:01 PM



10.6  Region Segmentation Using Graph Cuts    777

in Eq. (10-91), where the l’s are intensity levels of the points for which the distance 
is being computed. 

In 3-D, superpixels become supervoxels, which are handled by defining

 d x x y y z zs j i j i j i= − + − + −⎡⎣ ⎤⎦( ) ( ) ( )2 2 2 1 2
 (10-93)

where the z’s are the coordinates of the third spatial dimension. We must also add 
the third spatial variable, z, to the vector in Eq. (10-86).

Because no provision is made in the algorithm to enforce connectivity, it is pos-
sible for isolated pixels to remain after convergence. These are assigned the label 
of the nearest cluster using a connected components algorithm (see Section 9.6). 
Although we explained the algorithm in the context of RGB color components, the 
method is equally applicable to other colors systems. In fact, other components of 
vector z in Eq. (10-86) (with the exception of the spatial variables) could be other 
real-valued feature values, provided that a meaningful distance measure can be 
defined for them.

EXAMPLE 10.23 :  Using superpixels for image segmentation.

Figure 10.52(a) shows an image of an iceberg, and Fig. 10.52(b) shows the result of segmenting this 
image using the k-means algorithm developed in the last section, with k = 3. Although the main regions 
of the image were segmented, there are numerous segmentation errors in both regions of the iceberg, 
and also on the boundary separating it from the background. Errors are visible as isolated pixels (and 
also as small groups of pixels) with the wrong shade (e.g., black pixels within a white region). Figure 
10.52(c) shows a 100-superpixel representation of the image with the superpixel boundaries superim-
posed for reference, and Fig. 10.52(d) shows the same image without the boundaries. Figure 10.52(e) is 
the segmentation of (d) using the k-means algorithm with k = 3 as before. Note the significant improve-
ment over the result in (b), indicating that the original image has considerably more (irrelevant) detail 
than is needed for a proper segmentation. In terms of computational advantage, consider that generat-
ing Fig. 10.52(b) required individual processing of over 300K pixels, while (e) required processing of 100 
pixels with considerably fewer shades of gray.

10.6  REGION SEGMENTATION USING GRAPH CUTS  

In this section, we discuss an approach for partitioning an image into regions by 
expressing the pixels of the image as nodes of a graph, and then finding an optimum 
partition (cut) of the graph into groups of nodes. Optimality is based on criteria whose 
values are high for members within a group (i.e., a region) and low across members of 
different groups. As you will see later in this section, graph-cut segmentation is capa-
ble in some cases of results that can be superior to the results achievable by any of the 
segmentation methods studied thus far. The price of this potential benefit is added 
complexity in implementation, which generally translates into slower execution.

10.6
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IMAGES AS GRAPHS

A graph, G, is a mathematical structure consisting of a set V of nodes and a set E of 
edges connecting those vertices:

 G V E= ( , )  (10-94)

where V is a set and 

 E V V8 ×  (10-95)

is a set of ordered pairs of elements from V. If ( , )u v ∈E  implies that ( , ) ,v u ∈E  and 
vice versa, the graph is said to be undirected; otherwise the graph is directed. For 
example, we may consider a street map as a graph in which the nodes are street 
intersections, and the edges are the streets connecting those intersections. If all 
streets are bidirectional, the graph is undirected (meaning that we can travel both 
ways from any two intersections). Otherwise, if at least one street is a one-way street, 
the graph is directed. 

Nodes and edges are also 
referred to as vertices 
and links, respectively.

See Section 2.5 for an 
explanation of the  
Cartesian product V ×  V 
and for a review of the 
set symbols used in this 
section.

ba
c ed

FIGURE 10.52 (a) Image of size 533 566×  (301,678) pixels. (b) Image segmented using the k-means algorithm.  
(c) 100-element superpixel image showing boundaries for reference. (d) Same image without boundaries. (e) Super-
pixel image (d) segmented using the k-means algorithm. (Original image courtesy of NOAA.)
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The types of graphs in which we are interested are undirected graphs whose 
edges are further characterized by a matrix, W, whose element w( , )i j  is a weight 
associated with the edge that connects nodes i and j. Because the graph is undirected, 
w w( , ) ( , ),i j j i=  which means that W is a symmetric matrix. The weights are selected 
to be proportional to one or more similarity measures between all pairs of nodes. A 
graph whose edges are associated with weights is called a weighted graph. 

The essence of the material in this section is to represent an image to be seg-
mented as a weighted, undirected graph, where the nodes of the graph are the pixels 
in the image, and an edge is formed between every pair of nodes. The weight, w( , ),i j  
of each edge is a function of the similarity between nodes i and j. We then seek to 
partition the nodes of the graph into disjoint subsets V V VK1 2, , ,…  where, by some 
measure, the similarity among the nodes within a subset is high, and the similarity 
across the nodes of different subsets is low. The nodes of the partitioned subsets 
correspond to the regions in the segmented image.

Set V is partitioned into subsets by cutting the graph. A cut of a graph is a parti-
tion of V into two subsets A and B such that

 A B V A B´ ¨= = ∅and  (10-96)  

where the cut is implemented by removing the edges connecting subgraphs A and B. 
There are two key aspects of using graph cuts for image segmentation: (1) how to 
associate a graph with an image; and (2) how to cut the graph in a way that makes 
sense in terms of partitioning the image into background and foreground (object) 
pixels. We address these two questions next.

Figure 10.53 shows a simplified approach for generating a graph from an image. 
The nodes of the graph correspond to the pixels in the image and, to keep the expla-
nation simple, we allow edges only between adjacent pixels using 4-connectivity, 
which means that there are no diagonal edges linking the pixels. But, keep in mind 
that, in general, edges are specified between every pair of pixels. The weights for the 
edges typically are formed from spatial relationships (for example, distance from the 
vertex pixel) and intensity measures (for example, texture and color), consistent with 
exhibiting similarity between pixels. In this simple example, we define the degree 
of similarity between two pixels as the inverse of the difference in their intensities. 
That is, for two nodes (pixels) ni  and nj , the weight of the edge between them is 
w( , ) ( ) ( ) ,i j I n I n ci j= − +1� � �A B  where I ni( ) and I nj( ), are the intensities of the two 
nodes (pixels) and c is a constant included to prevent division by 0. Thus, the closer 
the values of intensity between adjacent pixels is, the larger the value of w  will be.

For illustrative purposes, the thickness of each edge in Fig. 10.53 is shown propor-
tional to the degree of similarity between the pixels that it connects (see Problem 
10.44). As you can see in the figure, the edges between the dark pixels are stronger 
than the edges between dark and light pixels, and vice versa. Conceptually, segmen-
tation is achieved by cutting the graph along its weak edges, as illustrated by the 
dashed line in Fig. 10.53(d). Figure 10.53(c) shows the segmented image. 

Although the basic structure in Fig. 10.53 is the focus of the discussion in this 
section, we mention for completeness another common approach for constructing 

Superpixels are also well 
suited for use as graph 
nodes. Thus, when we 
refer in this section to 

“pixels” in an image, we 
are, by implication,  
also referring to super-
pixels.
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image graphs. Figure 10.54 shows the same graph as the one we just discussed, but 
here you see two additional nodes called the source and sink terminal nodes, respec-
tively, each connected to all nodes in the graph via unidirectional links called t-links. 
The terminal nodes are not part of the image; their role, for example, is to associate 
with each pixel a probability that it is a background or foreground (object) pixel. 
The probabilities are the weights of the t-links. In Figs. 10.54(c) and (d), the thickness 
of each t-link is proportional to the value of the probability that the graph node to 
which it is connected is a foreground or background pixel (the thicknesses shown 
are so that the segmentation result would be the same as in Fig. 10.53). Which of the 
two nodes we call background or foreground is arbitrary. 

MINIMUM GRAPH CUTS

Once an image has been expressed as a graph, the next step is to cut the graph into 
two or more subgraphs. The nodes (pixels) in each resulting subgraph correspond 
to a region in the segmented image. Approaches based on Fig. 10.54 rely on inter-
preting the graph as a flow network (of pipes, for example) and obtaining what is 
commonly referred to as a minimum graph cut. This formulation is based on the 
so-called Max-Flow, Min-Cut Theorem. This theorem states that, in a flow network, 
the maximum amount of flow passing from the source to the sink is equal to the 
minimum cut. This minimum cut is defined as the smallest total weight of the edges 
that, if removed, would disconnect the sink from the source:

 cut A B u
A B

( , ) ( , )
,

=
∈ ∈
∑ w v

u v

 (10-97)

Cut

⇓

⇓

⇓Image

Graph

Segmentation

Edge
Node

ba
dc  

FIGURE 10.53
(a) A 3 3×  image. 
(c) A corresponding 
graph.  
(d) Graph cut.  
(c) Segmented  
image.
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where A and B satisfy Eq. (10-96). The optimum partition of a graph is the one that 
minimizes this cut value. There is an exponential number of such partitions, which 
would present us with an intractable computational problem. However, efficient 
algorithms that run in polynomial time have been developed for solving max-flow 
problems. Therefore, based on the Max-Flow, Min-Cut Theorem, we can apply these 
algorithms to image segmentation, provided that we cast segmentation as a flow 
problem and select the weights for the edges and t-links such that minimum graph 
cuts will result in meaningful segmentations.

Although the min-cut approach offers an elegant solution, it can result in group-
ings that favor cutting small sets of isolated nodes in a graph, leading to improper 
segmentations. Figure 10.55 shows an example, in which the two regions of interest 
are characterized by the tightness of the pixel groupings. Meaningful edge weights 
that reflect this property would be inversely proportional to the distance between 
pairs of points. But this would lead to weights that would be smaller for isolated 
points, resulting in min cuts such as the example in Fig. 10.55. In fact, any cut that 
partitions out individual points on the left of the figure will have a smaller cut value 
in Eq. (10-4) than a cut that properly partitions the points into two groups based on 

ba
dc

FIGURE 10.54
(a) Same image 
as in Fig. 10.53(a). 
(c) Corresponding 
graph and terminal 
nodes. (d) Graph 
cut. (b) Segmented 
image. 

Cut

⇓

⇓

⇓Image

Graph

Segmentation

(Background)

(Foreground)

Source Terminal

Sink Terminal

(Background)

(Foreground)

Source Terminal

Sink Terminal
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their proximity, such as the partition shown in Fig. 10.55. The approach presented in 
this section, proposed by Shi and Malik [2000] (see also Hochbaum [2010]), is aimed 
at avoiding this type of behavior by redefining the concept of a cut.

Instead of looking at the total weight value of the edges that connect two parti-
tions, the idea is to work with a measure of “disassociation” that computes the cost 
as a fraction of the total edge connections to all nodes in the graph. This measure, 
called the normalized cut (Ncut), is defined as

 Ncut A B
cut A B

assoc A V
cut A B

assoc B V
( , )

( , )
( , )

( , )
( , )

= +  (10-98)

where cut A B( , ) is given by Eq. (10-97) and 

 assoc A V u z
u A z V

( , ) ( , )
,

=
∈ ∈
∑ w  (10-99)

is the sum of the weights of all the edges from the nodes of subgraph A to the nodes 
of the entire graph. Similarly,

 assoc B V z
B z V

( , ) ( , )
,

=
∈ ∈
∑ w v

v

 (10-100)

is the sum of the weights of the edges from all the edges in B to the entire graph. As 
you can see, assoc A V( , ) is simply the cut of A from the rest of the graph, and simi-
larly for assoc B V( , ).

By using Ncut A B( , ) instead of cut A B( , ), the cut that partitions isolated points 
will no longer have small values. You can see this, for example, by noting in Fig. 10.55 
that if A is the single node shown, cut A B( , ) and assoc A V( , ) will have the same val-
ue. Thus, independently of how small cut A B( , ) is, Ncut A B( , ) will always be greater 
than or equal to 1, thus providing normalization for “pathological” cases such as this.

Based on similar concepts, we can define a measure for total normalized associa-
tion within graph partitions as

A more meaningful cutA min cutFIGURE 10.55
An example 
showing how a 
min cut can lead 
to a meaningless 
segmentation. In 
this example, the 
similarity between 
pixels is defined 
as their spatial 
proximity, which 
results in two 
distinct regions.
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 Nassoc A B
assoc A A
assoc A V

assoc B B
assoc B V

( , )
( , )
( , )

( , )
( , )

= +  (10-101)

where assoc A A( , ) and assoc B B( , ) are the total weights connecting the nodes within 
A and within B, respectively. It is not difficult to show (see Problem 10.46) that

 Ncut A B Nassoc A B( , ) ( , )= −2  (10-102)

which implies that minimizing Ncut A B( , ) simultaneously maximizes Nassoc A B( , ).
Based on the preceding discussion, image segmentation using graph cuts is now 

based on finding a partition that minimizes Ncut A B( , ). Unfortunately, minimizing 
this quantity exactly is an NP-complete computational task, and we can no longer 
rely on the solutions available for max flow because the approach being followed 
now is based on the concepts explained in connection with Fig. 10.53. However, Shi 
and Malik [2000] (see also Hochbaum [2010]) were able to find an approximate dis-
crete solution to minimizing Ncut A B( , ) by formulating minimization as a general-
ized eigenvalue problem, for which numerous implementations exist.

COMPUTING MINIMAL GRAPH CUTS

As above, let V denote the nodes of a graph G, and let A and B be two subsets 
of V satisfying Eq. (10-96). Let K denote the number of nodes in V and define a 
K-dimensional indicator vector, x, whose element xi  has the property xi = 1 if node 
ni  of V is in A and xi = −1 if it is in B. Let

 d i ji
j

= ∑w( , )  (10-103)

be the sum of the weights from node ni  to all other nodes in V. Using these defini-
tions, we can write Eq. (10-98) as

 

Ncut A B
cut A B
cut A V

cut A B
cut B V

i j x xi j
xi

( , )
( , )
( , )

( , )
( , )

( , )

= +

=
−

>
w
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0 0

0

, ,

( , )
x

i
x

i j
x x

i
x

j

i

i j

i

d

i j x x

d

<
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∑

∑

∑

∑
+

−w  (10-104)

The objective is to find a vector, x, that minimizes Ncut A B( , ). A closed-form solu-
tion that minimizes Eq. (10-104) can be found, but only if the elements of x are 
allowed to be real, continuous numbers instead of being constrained to be ±1. The 
solution derived by Shi and Malik [2000] is given by solving the generalized eigen-
system expression

 ( )D W y Dy− = l  (10-105)

where D is a K K×  diagonal matrix with main-diagonal elements di , i K= 1 2, , , ,…  
and W is a K K×  weight matrix with elements w( , ),i j  as defined earlier. Solving 

If the nodes of graph 
G are the pixels in an 
image, then K = M × N, 
where M and N are the 
number of rows and 
columns in the image.
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Eq. (10-105) gives K eigenvalues and K eigenvectors, each corresponding to one 
eigenvalue. The solution to our problem is the eigenvector corresponding the second 
smallest eigenvalue.

We can convert the preceding generalized eigenvalue formulation into a standard 
eigenvalue problem by writing Eq. (10-105) as (see Problem 10.45):

 Az z= l  (10-106)

where

 A D D W D= −− −1
2

1
2( )  (10-107)

and

 z D y=
1
2  (10-108)

from which it follows that

 y D z= − 1
2  (10-109)

Thus, we can find the (continuous-valued) eigenvector corresponding to the second 
smallest eigenvalue using either a generalized or a standard eigenvalue solver. The 
desired (discrete) vector x can be generated from the resulting, continuous valued 
solution vector by finding a splitting point that divides the values of the continuous 
eigenvector elements into two parts. We do this by finding the splitting point that 
yields the smallest value of Ncut A B( , ), since this is the quantity we are trying to 
minimize. To simplify the search, we divide the range of values in the continuous 
vector into Q evenly spaced values, evaluate Eq. (10-104) for each value, and choose 
the splitting point that yields the smallest value of Ncut A B( , ). Then, all values of the 
eigenvector with values above the split point are assigned the value 1; all others are 
assigned the value −1. The result is the desired vector x. Then, partition A is the set 
nodes in V corresponding to 1’s in x; the remaining nodes correspond to partition B. 
This partitioning is carried out only if the stability criterion discussed in the follow-
ing paragraph is met.

Searching for a splitting point implies computing a total of Q values of Ncut A B( , ) 
and selecting the smallest one. A region that is not clearly segmentable into two 
subregions using the specified weights will usually result in many splitting points 
with similar values of Ncut A B( , ). Trying to segment such a region is likely to result 
in a meaningless partition. To avoid this behavior, a region (i.e., subgraph) is split 
only if it satisfies a stability criterion, obtained by first computing the histogram of 
the eigenvector values, then forming the ratio of the minimum to the maximum bin 
counts. In an “uncertain” eigenvector, the values in the histogram will stay relatively 
the same, and the ratio will be relatively high. Shi and Malik [2000] found experi-
mentally that thresholding the ratio at 0.06 was a effective criterion for not splitting 
the region in question.
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GRAPH CUT SEGMENTATION ALGORITHM

In the preceding discussion, we illustrated two ways in which edge weights can be 
generated from an image. In Figs. 10.53 and 10.54, we looked at weights generated 
using image intensity values, and in Fig. 10.55 we considered weights based on the 
distance between pixels. But these are just two examples of the many ways that 
we can generate a graph and corresponding weights from an image. For example, 
we could use color, texture, statistical moments about a region, and other types of 
features to be discussed in Chapter 11. In general, then, graphs can be constructed 
from image features, of which pixel intensities are a special case. With this concept 
as background, we can summarize the discussion thus far in this section as the fol-
lowing algorithm:

1. Given a set of features, specify a weighted graph, G V E= ( , ) in which V contains 
the points in the feature space, and E contains the edges of the graph. Compute 
the edge weights and use them to construct matrices W and D. Let K denote the 
desired number of partitions of the graph.

2. Solve the eigenvalue system ( )D W y Dy− = l  to find the eigenvector with the 
second smallest eigenvalue.

3. Use the eigenvector from Step 2 to bipartition the graph by finding the splitting 
point such that Ncut A B( , ) is minimized.

4. If the number of cuts has not reached K, decide if the current partition should 
be subdivided by checking the stability of the cut.

5. Recursively repartition the segmented parts if necessary.

Note that the algorithm works by recursively generating two-way cuts. The number of 
groups (e.g., regions) in the segmented image is controlled by K. Other criteria, such 
as the maximum size allowed for each cut, can further refine the final segmentation. 
For example, when using pixels and their intensities as the basis for constructing the 
graph, we can specify the maximum and/or minimum size allowed for each region.

EXAMPLE 10.24 :  Specifying weights for graph cut segmentation.

In Fig. 10.53, we illustrated how to generate graph weights using intensity values, and in Fig. 10.55 we 
discussed briefly how to generate weights based on the distance between pixels. In this example, we give 
a more practical approach for generating weights that include both intensity and distance from a pixel, 
thus introducing the concept of a neighborhood in graph segmentation.

Let ni  and nj  denote two nodes (image pixels). As mentioned earlier in this section, weights are sup-
posed to reflect the similarity between nodes in a graph. When considering segmentation, one of the 
principal ways to establish how likely two pixels in an image are to be a part of the same region or object 
is to determine the difference in their intensity values, and how close the pixels are to each other. The 
weight value of the edge between two pixels should be large when the pixels are very close in intensity 
and proximity (i.e., when the pixels are “similar), and should decrease as their intensity difference and 
distance from each other increases. That is, the weight value should be a function of how similar the 
pixels are in intensity and distance. These two concepts can be embedded into a single weight function 
using the following expression:
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where I ni( ) is the intensity of node ni , sI
2 and sd

2 are constants determining the spread of the two 
Gaussian-like functions, dist n ni j( , ) is the distance (e.g., the Euclidean distance) between the two nodes, 
and r is a radial constant that establishes how far away we are willing to consider similarity. The expo-
nential terms decrease as a function of dissimilarity in intensity and as function of distance between the 
nodes, as required of our measure of similarity in this case.

EXAMPLE 10.25 :   Segmentation using graph cuts.

Graph cuts are ideally suited for obtaining a rough segmentation of the principal regions in an image. 
Figure 10.56 shows a typical result. Figure 10.56(a) is the familiar building image. Consistent with the 
idea of extracting the principal regions of an image, Fig. 10.56(b) shows the image smoothed with a 
simple 25 25×  box kernel. Observe how the fine detail is smoothed out, leaving only major regional 
features such as the facade and sky. Figure 10.56(c) is the result of segmentation using the graph cut 
algorithm just developed, with weights of the form discussed in the previous example, and allowing only 
two partitions. Note how well the region corresponding to the building was extracted, with none of the 
details characteristic of the methods discussed earlier in this chapter. In fact, it would have been nearly 
impossible to obtain comparable results using any of the methods we have discussed thus far without 
significant additional processing. This type of result is ideal for tasks such as providing broad cues for 
autonomous navigation, for searching image databases, and for low-level image analysis.

10.7  SEGMENTATION USING MORPHOLOGICAL WATERSHEDS  

Thus far, we have discussed segmentation based on three principal concepts: edge 
detection, thresholding, and region extraction. Each of these approaches was found 
to have advantages (for example, speed in the case of global thresholding) and dis-
advantages (for example, the need for post-processing, such as edge linking, in edge-
based segmentation). In this section, we discuss an approach based on the concept of 
so-called morphological watersheds. Segmentation by watersheds embodies many of 
the concepts of the other three approaches and, as such, often produces more stable 
segmentation results, including connected segmentation boundaries. This approach 
also provides a simple framework for incorporating knowledge-based constraints 
(see Fig. 1.23) in the segmentation process, as we discuss at the end of this section.

BACKGROUND

The concept of a watershed is based on visualizing an image in three dimensions, 
two spatial coordinates versus intensity, as in Fig. 2.18(a). In such a “topographic” 
interpretation, we consider three types of points: (1) points belonging to a regional 
minimum; (2) points at which a drop of water, if placed at the location of any of those 

10.7

DIP4E_GLOBAL_Print_Ready.indb   786 6/16/2017   2:14:09 PM



10.7  Segmentation Using Morphological Watersheds    787

points, would fall with certainty to a single minimum; and (3) points at which water 
would be equally likely to fall to more than one such minimum. For a particular 
regional minimum, the set of points satisfying condition (2) is called the catchment 
basin or watershed of that minimum. The points satisfying condition (3) form crest 
lines on the topographic surface, and are referred to as divide lines or watershed lines.

The principal objective of segmentation algorithms based on these concepts is to 
find the watershed lines. The method for doing this can be explained with the aid of 
Fig. 10.57. Figure 10.57(a) shows a gray-scale image and Fig. 10.57(b) is a topograph-
ic view, in which the height of the “mountains” is proportional to intensity values in 
the input image. For ease of interpretation, the backsides of structures are shaded. 
This is not to be confused with intensity values; only the general topography of the 
three-dimensional representation is of interest. In order to prevent the rising water 
from spilling out through the edges of the image, we imagine the perimeter of the 
entire topography (image) being enclosed by dams that are higher than the highest 
possible mountain, whose value is determined by the highest possible intensity value 
in the input image.

Suppose that a hole is punched in each regional minimum [shown as dark areas in 
Fig. 10.57(b)] and that the entire topography is flooded from below by letting water 
rise through the holes at a uniform rate. Figure 10.57(c) shows the first stage of flood-
ing, where the “water,” shown in light gray, has covered only areas that correspond 
to the black background in the image. In Figs. 10.57(d) and (e) we see that the water 
now has risen into the first and second catchment basins, respectively. As the water 
continues to rise, it will eventually overflow from one catchment basin into another. 
The first indication of this is shown in 10.57(f). Here, water from the lower part of 
the left basin overflowed into the basin on the right, and a short “dam” (consisting of 
single pixels) was built to prevent water from merging at that level of flooding (the 
mathematical details of dam building are discussed in the following section). The 

Because of neighboring 
contrast, the leftmost 
basin in Fig. 10.57(c) 
appears black, but it is a 
few shades lighter than 
the black background. 
The mid-gray in the 
second basin is a natural 
gray from the image 
in (a).

ba c

FIGURE 10.56 (a) Image of size 600 600×  pixels. (b) Image smoothed with a 25 25×  box kernel. (c) Graph cut segmen-
tation obtained by specifying two regions.
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effect is more pronounced as water continues to rise, as shown in Fig. 10.57(g). This 
figure shows a longer dam between the two catchment basins and another dam in 
the top part of the right basin. The latter dam was built to prevent merging of water 
from that basin with water from areas corresponding to the background. This pro-
cess is continued until the maximum level of flooding (corresponding to the highest 
intensity value in the image) is reached. The final dams correspond to the watershed 
lines, which are the desired segmentation boundaries. The result for this example is 
shown in Fig. 10.57(h) as dark, one-pixel-thick paths superimposed on the original 
image. Note the important property that the watershed lines form connected paths, 
thus giving continuous boundaries between regions.

One of the principal applications of watershed segmentation is in the extraction 
of nearly uniform (blob-like) objects from the background. Regions characterized 
by small variations in intensity have small gradient values. Thus, in practice, we often 
see watershed segmentation applied to the gradient of an image, rather than to the 
image itself. In this formulation, the regional minima of catchment basins correlate 
nicely with the small value of the gradient corresponding to the objects of interest.

Water Water

Water

b
a

d
c

FIGURE 10.57
(a) Original  
image.  
(b) Topographic 
view. Only the 
background is 
black. The basin 
on the left is 
slightly lighter 
than black. 
(c) and (d) Two 
stages of flooding. 
All constant dark 
values of gray are 
intensities in the 
original image. 
Only constant 
light gray repre-
sents “water.” 
(Courtesy of Dr. 
S. Beucher, CMM/
Ecole des Mines 
de Paris.) 
(Continued on 
next page.)
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DAM CONSTRUCTION

Dam construction is based on binary images, which are members of 2-D integer 
space Z2  (see Sections 2.4 and 2.6). The simplest way to construct dams separating 
sets of binary points is to use morphological dilation (see Section 9.2).

Figure 10.58 illustrates the basics of dam construction using dilation. Part (a) 
shows portions of two catchment basins at flooding step n − 1, and Fig. 10.58(b) 
shows the result at the next flooding step, n. The water has spilled from one basin 
to the another and, therefore, a dam must be built to keep this from happening. In 
order to be consistent with notation to be introduced shortly, let M1 and M2 denote 
the sets of coordinates of points in two regional minima. Then let the set of coordi-
nates of points in the catchment basin associated with these two minima at stage n − 1 
of flooding be denoted by C Mn−1 1( ) and C Mn−1 2( ), respectively. These are the two 
gray regions in Fig. 10.58(a).

Let C n −[ ]1  denote the union of these two sets. There are two connected com-
ponents in Fig. 10.58(a), and only one component in Fig. 10.58(b). This connected 

See Sections 2.5 and 9.5 
regarding connected 
components.

 
FIGURE 10.57 
(Continued) 
(e) Result of 
further flooding. 
(f) Beginning of 
merging of water 
from two  
catchment basins 
(a short dam was 
built between 
them).  
(g) Longer dams. 
(h) Final water-
shed (segmenta-
tion) lines super-
imposed on the 
original image.  
(Courtesy of Dr. 
S. Beucher, CMM/
Ecole des Mines 
de Paris.)
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First

Second dilation

Dam points

1

1

1 1

1 1
1 1 1

Origin

dilation

b
a

d c

FIGURE 10.58 (a) Two partially flooded catchment basins at stage n − 1 of flooding. (b) Flooding at stage n,  showing 
that water has spilled between basins. (c) Structuring element used for dilation. (d) Result of dilation and dam 
construction.
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component encompasses the earlier two components, which are shown dashed. 
Two connected components having become a single component indicates that 
water between the two catchment basins has merged at flooding step n. Let this 
connected component be denoted by q. Note that the two components from step 
n − 1 can be extracted from q  by performing a logical AND operation, q C n� −[ ]1 . 
Observe also that all points belonging to an individual catchment basin form a 
single connected component.

Suppose that each of the connected components in Fig. 10.58(a) is dilated by 
the structuring element in Fig. 10.58(c), subject to two conditions: (1) The dilation 
has to be constrained to q  (this means that the center of the structuring element 
can be located only at points in q  during dilation); and (2) the dilation cannot be 
performed on points that would cause the sets being dilated to merge (i.e., become 
a single connected component). Figure 10.58(d) shows that a first dilation pass (in 
light gray) expanded the boundary of each original connected component. Note that 
condition (1) was satisfied by every point during dilation, and that condition (2) did 
not apply to any point during the dilation process; thus, the boundary of each region 
was expanded uniformly.

In the second dilation, shown in black in 10.58(d), several points failed condition 
(1) while meeting condition (2), resulting in the broken perimeter shown in the figure. 
It is evident that the only points in q  that satisfy the two conditions under consid-
eration describe the one-pixel-thick connected path shown crossed-hatched in Fig. 
10.58(d). This path is the desired separating dam at stage n of flooding. Construction 
of the dam at this level of flooding is completed by setting all the points in the path 
just determined to a value greater than the maximum possible intensity value of the 
image (e.g., greater than 255 for an 8-bit image). This will prevent water from cross-
ing over the part of the completed dam as the level of flooding is increased. As noted 
earlier, dams built by this procedure, which are the desired segmentation boundaries, 
are connected components. In other words, this method eliminates the problems of 
broken segmentation lines.

Although the procedure just described is based on a simple example, the method 
used for more complex situations is exactly the same, including the use of the 3 3×  
symmetric structuring element in Fig. 10.58(c).

WATERSHED SEGMENTATION ALGORITHM

Let M M MR1 2, , ,…  be sets denoting the coordinates of the points in the regional 
minima of an image, g x y( , ). As mentioned earlier, this typically will be a gradient 
image. Let C Mi( ) be a set denoting the coordinates of the points in the catchment 
basin associated with regional minimum Mi (recall that the points in any catchment 
basin form a connected component). The notation min and max will be used to 
denote the minimum and maximum values of g x y( , ). Finally, let T n[ ] represent the 
set of coordinates ( , )s t  for which g s t n( , ) .<  That is,

 T n s t g s t n[ ] = ( ) ( ) <{ }, ,  (10-110)
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Geometrically, T n[ ] is the set of coordinates of points in g x y( , ) lying below the 
plane g x y n( , ) .=

The topography will be flooded in integer flood increments, from n = +min 1 to 
n = +max .1  At any step n of the flooding process, the algorithm needs to know 
the number of points below the flood depth. Conceptually, suppose that the coordi-
nates in T n[ ] that are below the plane g x y n( , ) =  are “marked” black, and all other 
coordinates are marked white. Then when we look “down” on the xy-plane at any 
increment n of flooding, we will see a binary image in which black points correspond 
to points in the function that are below the plane g x y n( , ) .=  This interpretation is 
quite useful, and will make it easier to understand the following discussion.

Let C Mn i( ) denote the set of coordinates of points in the catchment basin associ-
ated with minimum Mi that are flooded at stage n. With reference to the discussion 
in the previous paragraph, we may view C Mn i( ) as a binary image given by

 C M C M T nn i i( ) = ( ) [ ]�  (10-111)

In other words, C Mn i( ) = 1 at location ( , )x y  if ( , )x y C Mi∈ ( ) AND ( , ) ;x y T n∈ [ ]  
otherwise C Mn i( ) = 0. The geometrical interpretation of this result is straightfor-
ward. We are simply using the AND operator to isolate at stage n of flooding the 
portion of the binary image in T n[ ] that is associated with regional minimum Mi .

Next, let B denote the number of number of flooded catchment basins at stage n, 
and let C n[ ] denote the union of these basins at stage n :

 C n C Mn i
i

B

[ ] = ( )
=1
∪  (10-112)

Then C[max ]+ 1  is the union of all catchment basins:

 C C Mi
i

B

max +[ ] = ( )
=

1
1
∪  (10-113)

It can be shown (see Problem 10.47) that the elements in both C Mn i( ) and T n[ ] are 
never replaced during execution of the algorithm, and that the number of elements 
in these two sets either increases or remains the same as n  increases. Thus, it fol-
lows that C n[ ]− 1  is a subset of C n[ ]. According to Eqs. (10-112) and (10-113), C n[ ] 
is a subset of T n[ ],  so it follows that C n[ ]− 1  is also a subset of T n[ ]. From this we 
have the important result that each connected component of C n[ ]− 1  is contained 
in exactly one connected component of T n[ ].

The algorithm  for finding the watershed lines is initialized by letting C[min ]+ =1
T[min ].+ 1  The procedure then proceeds recursively, successively computing C n[ ] 
from C n[ ],− 1  using the following approach. Let Q denote the set of connected com-
ponents in T n[ ].  Then, for each connected component q Q n∈ [ ], there are three pos-
sibilities:

1. q C n� [ ]− 1  is empty.
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2. q C n� [ ]− 1  contains one connected component of C n[ ].− 1
3. [ ]q C n� − 1  contains more than one connected component of C n[ ].− 1

The construction of C n[ ] from C n[ ]− 1  depends on which of these three conditions 
holds. Condition 1 occurs when a new minimum is encountered, in which case con-
nected component q  is incorporated into C n[ ]− 1  to form C n[ ]. Condition 2 occurs 
when q  lies within the catchment basin of some regional minimum, in which case 
q  is incorporated into C n[ ]− 1  to form C n[ ]. Condition 3 occurs when all (or part) 
of a ridge separating two or more catchment basins is encountered. Further flood-
ing would cause the water level in these catchment basins to merge. Thus, a dam (or 
dams if more than two catchment basins are involved) must be built within q  to pre-
vent overflow between the catchment basins. As explained earlier, a one-pixel-thick 
dam can be constructed when needed by dilating q C n� [ ]− 1  with a 3 3×  structur-
ing element of 1’s, and constraining the dilation to q.

Algorithm efficiency is improved by using only values of n that correspond to 
existing intensity values in g x y( , ). We can determine these values, as well as the 
values of min and max, from the histogram of g x y( , ).

EXAMPLE 10.26 :   Illustration of the watershed segmentation algorithm.

Consider the image and its gradient in Figs. 10.59(a) and (b), respectively. Application of the watershed 
algorithm just described yielded the watershed lines (white paths) shown superimposed on the gradient 
image in Fig. 10.59(c). These segmentation boundaries are shown superimposed on the original image in 
Fig. 10.59(d). As noted at the beginning of this section, the segmentation boundaries have the important 
property of being connected paths.

THE USE OF MARKERS

Direct application of the watershed segmentation algorithm in the form discussed 
in the previous section generally leads to over-segmentation, caused by noise and 
other local irregularities of the gradient. As Fig. 10.60 illustrates, over-segmentation 
can be serious enough to render the result of the algorithm virtually useless. In this 
case, this means a large number of segmented regions. A practical solution to this 
problem is to limit the number of allowable regions by incorporating a preprocess-
ing stage designed to bring additional knowledge into the segmentation procedure.

An approach used to control over-segmentation is based on the concept of mark-
ers. A marker is a connected component belonging to an image. We have internal 
markers, associated with objects of interest, and external markers, associated with 
the background. A procedure for marker selection typically will consist of two prin-
cipal steps: (1) preprocessing; and (2) definition of a set of criteria that markers 
must satisfy. To illustrate, consider Fig. 10.60(a) again. Part of the problem that led 
to the over-segmented result in Fig. 10.60(b) is the large number of potential min-
ima. Because of their size, many of these minima are irrelevant detail. As has been 
pointed out several times in earlier discussions, an effective method for minimizing 
the effect of small spatial detail is to filter the image with a smoothing filter. This is 
an appropriate preprocessing scheme in this case also.
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ba
dc

FIGURE 10.59
(a) Image of blobs. 
(b) Image gradient.  
(c) Watershed lines, 
superimposed on 
the gradient image.
(d) Watershed lines 
superimposed on 
the original image. 
(Courtesy of Dr. 
S. Beucher, CMM/
Ecole des Mines de 
Paris.)
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FIGURE 10.60
(a) Electrophoresis 
image.  
(b) Result of apply-
ing the watershed 
segmentation algo-
rithm to the gradient 
image.  
Over-segmentation 
is evident.  
(Courtesy of Dr. 
S. Beucher, CMM/
Ecole des Mines de 
Paris.)
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Suppose that we define an internal marker as (1) a region that is surrounded by 
points of higher “altitude”; (2) such that the points in the region form a connected 
component; and (3) in which all the points in the connected component have the 
same intensity value. After the image was smoothed, the internal markers resulting 
from this definition are shown as light gray, blob-like regions in Fig. 10.61(a). Next, 
the watershed algorithm was applied to the smoothed image, under the restriction 
that these internal markers be the only allowed regional minima. Figure 10.61(a) 
shows the resulting watershed lines. These watershed lines are defined as the exter-
nal markers. Note that the points along the watershed line pass along the highest 
points between neighboring markers.

The external markers in Fig. 10.61(a) effectively partition the image into regions, 
with each region containing a single internal marker and part of the background. 
The problem is thus reduced to partitioning each of these regions into two: a single 
object, and its background. We can bring to bear on this simplified problem many of 
the segmentation techniques discussed earlier in this chapter. Another approach is 
simply to apply the watershed segmentation algorithm to each individual region. In 
other words, we simply take the gradient of the smoothed image [as in Fig. 10.59(b)] 
and restrict the algorithm to operate on a single watershed that contains the marker 
in that particular region. Figure 10.61(b) shows the result obtained using this 
approach. The improvement over the image in 10.60(b) is evident.

Marker selection can range from simple procedures based on intensity values 
and connectivity, as we just illustrated, to more complex descriptions involving size, 
shape, location, relative distances, texture content, and so on (see Chapter 11 regard-
ing feature descriptors). The point is that using markers brings a priori knowledge 
to bear on the segmentation problem. Keep in mind that humans often aid segmen-
tation and higher-level tasks in everyday vision by using a priori knowledge, one 
of the most familiar being the use of context. Thus, the fact that segmentation by 
watersheds offers a framework that can make effective use of this type of knowledge 
is a significant advantage of this method.

ba

FIGURE 10.61
(a) Image showing 
internal markers 
(light gray regions) 
and external  
markers (watershed 
lines).  
(b) Result of 
segmentation. Note 
the improvement 
over Fig. 10.60(b). 
(Courtesy of Dr. 
S. Beucher, CMM/
Ecole des Mines de 
Paris.)
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10.8 THE USE OF MOTION IN SEGMENTATION  

Motion is a powerful cue used by humans and many animals to extract objects or 
regions of interest from a background of irrelevant detail. In imaging applications, 
motion arises from a relative displacement between the sensing system and the 
scene being viewed, such as in robotic applications, autonomous navigation, and 
dynamic scene analysis. In the following discussion we consider the use of motion in 
segmentation both spatially and in the frequency domain.

SPATIAL TECHNIQUES

In what follows, we will consider two approaches for detecting motion, working direct-
ly in the spatial domain. The key objective is to give you an idea how to measure 
changes in digital images using some straightforward techniques. 

A Basic Approach

One of the simplest approaches for detecting changes between two image frames 
f x y ti( , , ) and f x y t j( , , ) taken at times ti  and t j , respectively, is to compare the two 
images pixel by pixel. One procedure for doing this is to form a difference image. 
Suppose that we have a reference image containing only stationary components. 
Comparing this image against a subsequent image of the same scene, but including 
one or more moving objects, results in the difference of the two images canceling the 
stationary elements, leaving only nonzero entries that correspond to the nonstation-
ary image components.

A difference image of two images (of the same size) taken at times ti  and t j  may 
be defined as

 d x y
f x y t f x y t T

ij
i j( , )

( , , ) ( , , )
=

− >⎧
⎨
⎪

⎩⎪

1

0

if  

otherwise
 (10-114)

where T  is a nonnegative threshold. Note that d x yij( , ) has a value of 1 at spatial coor-
dinates ( , )x y  only if the intensity difference between the two images is appreciably 
different at those coordinates, as determined by T.  Note also that coordinates ( , )x y  
in Eq. (10-114) span the dimensions of the two images, so the difference image is of 
the same size as the images in the sequence.

In the discussion that follows, all pixels in d x yij( , ) that have value 1 are consid-
ered the result of object motion. This approach is applicable only if the two imag-
es are registered spatially, and if the illumination is relatively constant within the 
bounds established by T.  In practice, 1-valued entries in d x yij( , ) may arise as a result 
of noise also. Typically, these entries are isolated points in the difference image, and 
a simple approach to their removal is to form 4- or 8-connected regions of 1’s in 
image d x yij( , ), then ignore any region that has less than a predetermined number of 
elements. Although it may result in ignoring small and/or slow-moving objects, this 
approach improves the chances that the remaining entries in the difference image 
actually are the result of motion, and not noise.

10.8
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Although the method just described is simple, it is used frequently as the basis of 
imaging systems designed to detect changes in controlled environments, such as in 
surveillance of parking facilities, buildings, and similar fixed locales.

Accumulative Differences

Consider a sequence of image frames denoted by f x y t f x y t f x y tn( , , ), ( , , ), , ( , , ),1 2 …  
and let f x y t( , , )1  be the reference image. An accumulative difference image (ADI) 
is formed by comparing this reference image with every subsequent image in the 
sequence. A counter for each pixel location in the accumulative image is increment-
ed every time a difference occurs at that pixel location between the reference and an 
image in the sequence. Thus, when the kth frame is being compared with the refer-
ence, the entry in a given pixel of the accumulative image gives the number of times 
the intensity at that position was different [as determined by T  in Eq. (10-114)] from 
the corresponding pixel value in the reference image.

Assuming that the intensity values of the moving objects are greater than the 
background, we consider three types of ADIs. Let R x y( , ) denote the reference 
image and, to simplify the notation, let k  denote tk  so that f x y k f x y tk( , , ) ( , , ).=  We 
assume that R x y f x y( , ) ( , , ).= 1  Then, for any k > 1,  and keeping in mind that the 
values of the ADIs are counts, we define the following accumulative differences for 
all relevant values of ( , ) :x y

 A x y
A x y R x y f x y k T

A x yk
k

k

( , )
( , ) ( , ) ( , , )

( , )
=

+ − >−

−

1

1

1 if  

otherwise

⎧⎧
⎨
⎪

⎩⎪
 (10-115)

 P x y
P x y R x y f x y k T

P x yk
k

k

( , )
( , ) ( , ) ( , , )

( , )
=

+ − >−

−

1

1

1 if  

otherwise

⎧⎧
⎨
⎪

⎩⎪
 (10-116)

and

 N x y
N x y R x y f x y k T

N x yk
k

k

( , )
( , ) ( , ) ( , , )

( , )
=

+ − < −−

−

1

1

1 if  

otherwisee

⎧
⎨
⎪

⎩⎪
 (10-117)

where A x yk( , ), P x yk( , ), and N x yk( , ) are the absolute, positive, and negative ADIs, 
respectively, computed using the kth image in the sequence. All three ADIs start 
out with zero counts and are of the same size as the images in the sequence. The 
order of the inequalities and signs of the thresholds in Eqs. (10-116) and (10-117) are 
reversed if the intensity values of the background pixels are greater than the values 
of the moving objects.

EXAMPLE 10.27 :  Computation of the absolute, positive, and negative accumulative difference images.

Figure 10.62 shows the three ADIs displayed as intensity images for a rectangular object of dimension 
75 50×  pixels that is moving in a southeasterly direction at a speed of 5 2  pixels per frame. The images 
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are of size 256 256×  pixels. We note the following: (1) The nonzero area of the positive ADI is equal 
to the size of the moving object; (2) the location of the positive ADI corresponds to the location of the 
moving object in the reference frame; (3) the number of counts in the positive ADI stops increasing 
when the moving object is displaced completely with respect to the same object in the reference frame; 
(4) the absolute ADI contains the regions of the positive and negative ADI; and (5) the direction and 
speed of the moving object can be determined from the entries in the absolute and negative ADIs.

Establishing a Reference Image

A key to the success of the techniques just discussed is having a reference image 
against which subsequent comparisons can be made. The difference between two 
images in a dynamic imaging problem has the tendency to cancel all stationary com-
ponents, leaving only image elements that correspond to noise and to the moving 
objects.

Obtaining a reference image with only stationary elements is not always pos-
sible, and building a reference from a set of images containing one or more moving 
objects becomes necessary. This applies particularly to situations describing busy 
scenes or in cases where frequent updating is required. One procedure for generat-
ing a reference image is as follows. Consider the first image in a sequence to be the 
reference image. When a nonstationary component has moved completely out of 
its position in the reference frame, the corresponding background in the present 
frame can be duplicated in the location originally occupied by the object in the ref-
erence frame. When all moving objects have moved completely out of their original 
positions, a reference image containing only stationary components will have been 
created. Object displacement can be established by monitoring the changes in the 
positive ADI, as indicated earlier. The following example illustrates how to build a 
reference frame using the approach just described.

ba c

FIGURE 10.62  ADIs of a rectangular object moving in a southeasterly direction. (a) Absolute ADI. (b) Positive ADI. 
(c) Negative ADI.
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EXAMPLE 10.28 :  Building a reference image.

Figures 10.63(a) and (b) show two image frames of a traffic intersection. The first image is considered 
the reference, and the second depicts the same scene some time later. The objective is to remove the 
principal moving objects in the reference image in order to create a static image. Although there are 
other smaller moving objects, the principal moving feature is the automobile at the intersection mov-
ing from left to right. For illustrative purposes we focus on this object. By monitoring the changes in 
the positive ADI, it is possible to determine the initial position of a moving object, as explained above. 
Once the area occupied by this object is identified, the object can be removed from the image by sub-
traction. By looking at the frame in the sequence at which the positive ADI stopped changing, we can 
copy from this image the area previously occupied by the moving object in the initial frame. This area 
then is pasted onto the image from which the object was cut out, thus restoring the background of that 
area. If this is done for all moving objects, the result is a reference image with only static components 
against which we can compare subsequent frames for motion detection. The reference image resulting 
from removing the east-bound moving vehicle and restoring the background is shown in Fig. 10.63(c).

FREQUENCY DOMAIN TECHNIQUES

In this section, we consider the problem of determining motion via a Fourier trans-
form formulation. Consider a sequence f x y t t K( , , ), , , , , ,= −0 1 2 1…  of K  digital 
image frames of size M N×  pixels, generated by a stationary camera. We begin the 
development by assuming that all frames have a homogeneous background of zero 
intensity. The exception is a single, 1-pixel object of unit intensity that is moving 
with constant velocity. Suppose that for frame one ( ),t = 0  the object is at location 
( , )x y� �  and the image plane is projected onto the x-axis; that is, the pixel intensities 
are summed (for each row) across the columns in the image. This operation yields 
a 1-D array with M  entries that are zero, except at x�, which is the x-coordinate of 
the single-point object. If we now multiply all the components of the 1-D array by 
the quantity exp j a x t2 1p Δ[ ] for x M= −0 1 2 1, , , ,…  and add the results, we obtain 
the single term exp j a x t2 1p ′Δ[ ] because there is only one nonzero point in the array. 
In this notation, a1 is a positive integer, and �t  is the time interval between frames.

ba c

FIGURE 10.63 Building a static reference image. (a) and (b) Two frames in a sequence. (c) Eastbound automobile sub-
tracted from (a), and the background restored from the corresponding area in (b). (Jain and Jain.)
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Suppose that in frame two ( ),t = 1  the object has moved to coordinates ( , );x y� �+ 1  
that is, it has moved 1 pixel parallel to the x-axis. Then, repeating the projection pro-
cedure discussed in the previous paragraph yields the sum exp .j a x t2 11p ′ +( )Δ⎡⎣ ⎤⎦  If 
the object continues to move 1 pixel location per frame then, at any integer instant 
of time, t, the result will be exp ,j a x t t2 1p ′ +( )Δ⎡⎣ ⎤⎦  which, using Euler’s formula, may 
be expressed as

 e a x t t j a x t tj a x t t2
1 1

1 2 2p
p p

′ ′ ′+( )Δ = +( )Δ⎡⎣ ⎤⎦ + +( )Δ⎡⎣ ⎤⎦cos sin  (10-118)

for t K= −0 1 2 1, , , , .…  In other words, this procedure yields a complex sinusoid 
with frequency a1. If the object were moving V1  pixels (in the x-direction) between 
frames, the sinusoid would have frequency V a1 1. Because t  varies between 0 and 
K − 1 in integer increments, restricting a1 to have integer values causes the discrete 
Fourier transform of the complex sinusoid to have two peaks—one located at fre-
quency V a1 1 and the other at K V a− 1 1. This latter peak is the result of symmetry in 
the discrete Fourier transform, as discussed in Section 4.6, and may be ignored. Thus 
a peak search in the Fourier spectrum would yield one peak with value V a1 1. Divid-
ing this quantity by a1 yields V1, which is the velocity component in the x-direction, 
as the frame rate is assumed to be known. A similar analysis would yield V2 , the 
component of velocity in the y-direction.

A sequence of frames in which no motion takes place produces identical exponen-
tial terms, whose Fourier transform would consist of a single peak at a frequency of 0 
(a single dc term). Therefore, because the operations discussed so far are linear, the 
general case involving one or more moving objects in an arbitrary static background 
would have a Fourier transform with a peak at dc corresponding to static image 
components, and peaks at locations proportional to the velocities of the objects.

These concepts may be summarized as follows. For a sequence of k  digital images 
of size M N×  pixels, the sum of the weighted projections onto the x-axis at any inte-
ger instant of time is

 g t a f x y t e t Kx
y

N

x

M
j a x t( , ) ( , , ) , , ,1

0

1

0

1
2 1 0 1 1= = −

=

−

=

−
Δ∑∑ p …  (10-119)

Similarly, the sum of the projections onto the y-axis is

 g t a f x y t e t Ky
x

M

y

N
j a y t( , ) ( , , ) , , ,2

0

1

0

1
2 2 0 1 1= = −

=

−

=

−
Δ∑∑ p …  (10-120)

where, as noted earlier, a1 and a2  are positive integers.
The 1D Fourier transforms of Eqs. (10-119) and (10-120), respectively, are

 G u a g t a e u Kx x
t

K
j u t K( , ) ( , ) , , ,1 1 1

0

1
2

1
1 0 1 1= = −

=

−
−∑ p …  (10-121)

and
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 G u a g t a e u Ky y
t

K
j u t K( , ) ( , ) , , ,2 2 2

0

1
2

2
2 0 1 1= = −

=

−
−∑ p …  (10-122)

These transforms are computed using an FFT algorithm, as discussed in Section 4.11.
The frequency-velocity relationship is

 u a V1 1 1=  (10-123)

and

 u a V2 2 2=  (10-124)

In the preceding formulation, the unit of velocity is in pixels per total frame time. 
For example, V1 10=  indicates motion of 10 pixels in K  frames. For frames that 
are taken uniformly, the actual physical speed depends on the frame rate and the 
distance between pixels. Thus, if V1 10= , and K = 30, the frame rate is two images 
per second, and the distance between pixels is 0.5 m, then the actual physical speed 
in the x-direction is

 
V1 10 0 5 2 30= ( )( )( )( )pixels m pixel frames s frames.

The sign of the x-component of the velocity is obtained by computing

 S
d g t a

dtx
x

t n

1

2
1

2=
( )⎡⎣ ⎤⎦

=

Re ,
 (10-125)

and

 S
d g t a

dtx
x

t n

2

2
1

2=
( )⎡⎣ ⎤⎦

=

Im ,
 (10-126)

Because gx  is sinusoidal, it can be shown (see Problem 10.53) that S x1  and S x2  will 
have the same sign at an arbitrary point in time, n, if the velocity component V1  
is positive. Conversely, opposite signs in S x1  and S x2  indicate a negative velocity 
component. If either S x1  or S x2  is zero, we consider the next closest point in time, 
t n t= ± � . Similar comments apply to computing the sign of V2.

EXAMPLE 10.29 :  Detection of a small moving object via frequency-domain analysis.

Figures 10.64 through 10.66 illustrate the effectiveness of the approach just developed. Figure 10.64 
shows one of a 32-frame sequence of LANDSAT images generated by adding white noise to a reference 
image. The sequence contains a superimposed target moving at 0.5 pixel per frame in the x-direction 
and 1 pixel per frame in the y-direction. The target, shown circled in Fig. 10.65, has a Gaussian intensity 
distribution spread over a small (9-pixel) area, and is not easily discernible by eye. Figure 10.66 shows 
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the results of computing Eqs. (10-121) and (10-122) with a1 6=  and a2 4= , respectively. The peak at 
u1 3=  in Fig. 10.66(a) yields V1 0 5= .  from Eq. (10-123). Similarly, the peak at u2 4=  in Fig. 10.66(b) 
yields V2 1 0= .  from Eq. (10-124).

Guidelines for selecting a1 and a2  can be explained with the aid of Fig. 10.66. For 
instance, suppose that we had used a2 15=  instead of a2 4= . In that case, the peaks in 
Fig. 10.66(b) would now be at u2 15=  and 17 because V2 1 0= . . This would be a seri-
ously aliased result. As discussed in Section 4.5, aliasing is caused by under-sampling 
(too few frames in the present discussion, as the range of u is determined by K). 
Because u aV= , one possibility is to select a as the integer closest to a u V= max max, 

FIGURE 10.64
LANDSAT 
frame. (Cowart, 
Snyder, and 
Ruedger.)

y

x

FIGURE 10.65
Intensity plot of 
the image in  
Fig. 10.64, with 
the target circled. 
(Rajala, Riddle, 
and Snyder.)
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ba

FIGURE 10.66 (a) Spectrum of Eq. (10-121) showing a peak at u1 3= . (b) Spectrum of Eq. (10-122) showing a peak at 
u2 4= .  (Rajala, Riddle, and Snyder.)
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Summary, References, and Further Reading 
Because of its central role in autonomous image processing, segmentation is a topic covered in most books dealing 
with image processing, image analysis, and computer vision. The following books provide complementary and/or 
supplementary reading for our coverage of this topic: Umbaugh [2010]; Prince [2012]; Nixon and Aguado, A [2012]; 
Pratt [2014]; and Petrou and Petrou [2010].

Work dealing with the use of kernels to detect intensity discontinuities (see Section 10.2) has a long history. 
Numerous kernels have been proposed over the years: Roberts [1965]; Prewitt [1970]; and Kirsh [1971]. The Sobel 
operators are from [Sobel]; see also Danielsson and Seger [1990]. Our presentation of the zero-crossing properties of 
the Laplacian is based on Marr [1982]. The Canny edge detector discussed in Section 10.2 is due to Canny [1986]. The 
basic reference for the Hough transform is Hough [1962]. See Ballard [1981], for a generalization to arbitrary shapes.

Other approaches used to deal with the effects of illumination and reflectance on thresholding are illustrated by 
the work of Perez and Gonzalez [1987], Drew et al. [1999], and Toro and Funt [2007]. The optimum thresholding 
approach due to Otsu [1979] has gained considerable acceptance because it combines excellent performance with 
simplicity of implementation, requiring only estimation of image histograms. The basic idea of using preprocessing 
to improve thresholding dates back to an early paper by White and Rohrer [1983]), which combined thresholding, 
the gradient, and the Laplacian in the solution of a difficult segmentation problem.

See Fu and Mui [1981] for an early survey on the topic of region-oriented segmentation. The work of Haddon 
and Boyce [1990] and of Pavlidis and Liow [1990] are among the earliest efforts to integrate region and boundary 
information for the purpose of segmentation. Region growing is still an active area of research in image processing, 
as exemplified by Liangjia et al. [2013]. The basic reference on the k-means algorithm presented in Section 10.5 
goes way back several decades to an obscure 1957 Bell Labs report by Lloyd, who subsequenty published in Lloyd 
[1982]. This algorithm was already being in used in areas such as pattern recognition in the 1960s and ’70s (Tou and 

where umax is the aliasing frequency limitation established by K, and Vmax  is the 
maximum expected object velocity.
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Gonzalez [1974]). The superpixel algorithm presented in Section 10.5 is from Achanta et al. [2012]. See their paper 
for a listing and comparison of other superpixel approaches. The material on graph cuts is based on the paper by 
Shi and Malik [2000]. See Hochbaum [2010] for an example of faster implementations.

Segmentation by watersheds was shown in Section 10.7 to be a powerful concept. Early references dealing with 
segmentation by watersheds are Serra [1988], and Beucher and Meyer [1992]. As indicated in our discussion in Sec-
tion 10.7, one of the key issues with watersheds is the problem of over-segmentation. The papers by Bleau and Leon 
[2000] and by Gaetano et al. [2015] are illustrative of approaches for dealing with this problem. 

The material in Section 10.8 dealing with accumulative differences is from Jain, R. [1981]. See also Jain, Kasturi, 
and Schunck [1995]. The material dealing with motion via Fourier techniques is from Rajala, Riddle, and Snyder 
[1983]. The books by Snyder and Qi [2004], and by Chakrabarti et al. [2015], provide additional reading on 
motion estimation. For details on the software aspects of many of the examples in this chapter, see Gonzalez, Woods, 
and Eddins [2009].

Problems  
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book 
website: www.ImageProcessingPlace.com)..

10.1 * In a Taylor series approximation, the remainder 
(also called the truncation error) consists of all 
the terms not used in the approximation. The 
first term in the remainder of a finite difference 
approximation is indicative of the error in the 
approximation. The higher the derivative order 
of that term is, the lower the error will be in the 
approximation. All three approximations to the 
first derivative given in Eqs. (10-4)-(10-6) are 
computed using the same number of sample 
points. However, the error of the central differ-
ence approximation is less than the other two. 
Show that this is true.

10.2 Do the following:

(a) * Show how Eq. (10-8) was obtained.

(b) Show how Eq. (10-9) was obtained.

10.3 A binary image contains straight lines oriented 
horizontally, vertically, at 45°, and at −45°. Give 
a set of 3 3×  kernels that can be used to detect 
one-pixel breaks in these lines. Assume that the 
intensities of the lines and background are 1 and 
0, respectively.

10.4 Propose a technique for detecting gaps of length 
ranging between 1 and K pixels in line segments 
of a binary image. Assume that the lines are one 
pixel thick. Base your technique on 8-neighbor 
connectivity analysis, rather than attempting to 
construct kernels for detecting the gaps.

10.5 * With reference to Fig. 10.6, what are the angles 
(measured with respect to the x-axis of the book 
axis convention in Fig. 2.19) of the horizontal and 
vertical lines to which the kernels in Figs. 10.6(a) 
and (c) are most responsive?

10.6 Refer to Fig. 10.7 in answering the following ques- 
tions.

(a) * Some of the lines joining the pads and center 
element in Fig. 10.7(e) are single lines, while 
others are double lines. Explain why.

(b) Propose a method for eliminating the com-
ponents in Fig. 10.7(f) that are not part of 
the line oriented at −45°.

(c) 

10.7 With reference to the edge models in Fig. 10.8, 
answer the following without generating the gra-
dient and angle images. Simply provide sketches 
of the profiles that show what you would expect 
the profiles of the magnitude and angle images 
to look like.

(a) * Suppose that we compute the gradient mag-
nitude of each of these models using the 
Prewitt kernels in Fig. 10.14. Sketch what a 
horizontal profile through the center of each 
gradient image would look like.

(b) Sketch a horizontal profile for each corre-
sponding angle image.

10.8 Consider a horizontal intensity profile through 
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the middle of a binary image that contains a ver-
tical step edge through the center of the image. 
Draw what the profile would look like after the 
image has been blurred by an averaging kernel 
of size n n×  with coefficients equal to 1 2n .  For 
simplicity, assume that the image was scaled so 
that its intensity levels are 0 on the left of the 
edge and 1 on its right. Also, assume that the size 
of the kernel is much smaller than the image, so 
that image border effects are not a concern near 
the center of the image.

10.9 * Suppose that we had used the edge models in the 
following image, instead of the ramp in Fig. 10.10. 
Sketch the gradient and Laplacian of each profile.

Image

Profile of a
horizontal line

10.10 Do the following:

(a) * Show that the direction of steepest (maxi-
mum) ascent of a function f at point ( , )x y  
is given by the vector 
f x y( , ) in Eq. (10-16), 
and that the rate of that descent is 
f x y( , ) ,  
defined in Eq. (10-17).

(b) Show that the direction of steepest descent is 
given by the vector −
f x y( , ), and that the 
rate of the steepest descent is 
f x y( , ) .

(c) Give the description of an image whose gra-
dient magnitude image would be the same, 
whether we computed it using Eq. (10-17) or 
(10-26). A constant image is not acceptable 
answer.

10.11 Do the following.

(a) How would you modify the Sobel and 
Prewitt kernels in Fig. 10.14 so that they give 
their strongest gradient response for edges 
oriented at ± °45 ?

(b) * Show that the Sobel and Prewitt kernels 

in Fig. 10.14, and in (a) above, and give iso-
tropic results only for horizontal and verti-
cal edges, and for edges oriented at ± °45 , 
respectively.

10.12 The results obtained by a single pass through an 
image of some 2-D kernels can be achieved also 
by two passes using 1-D kernels. For example, 
the same result of using a 3 3×  smoothing kernel 
with coefficients 1 9 can be obtained by a pass 
of the kernel [ ]1 1 1  through an image, followed 
by a pass of the result with the kernel [ ] .1 1 1 T  
The final result is then scaled by 1 9.  Show that 
the response of Sobel kernels (Fig. 10.14) can 
be implemented similarly by one pass of the 
differencing kernel [ ]−1 0 1  (or its vertical coun-
terpart) followed by the smoothing kernel [ ]1 2 1  
(or its vertical counterpart).

10.13 A popular variation of the compass kernels 
shown in Fig. 10.15 is based on using coefficients 
with values 0, 1, and −1.

(a) * Give the form of the eight compass kernels 
using these coefficients. As in Fig. 10.15, let N, 
NW, . . . denote the direction of the edge that 
gives the strongest response.

(b) Specify the gradient vector direction of the 
edges detected by each kernel in (a).

10.14 The rectangle in the following binary image is of 
size m n×  pixels.

(a) * What would the magnitude of the gradient 
of this image look like based on using the 
approximation in Eq. (10-26)? Assume that
gx  and gy  are obtained using the Sobel ker-
nels. Show all relevant different pixel values 
in the gradient image.

(b) With reference to Eq. (10-18) and Fig. 10.12, 
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sketch the histogram of edge directions. Be 
precise in labeling the height of each compo-
nent of the histogram.

(c) What would the Laplacian of this image look 
like based on using Eq. (10-14)? Show all 
relevant different pixel values in the Lapla-
cian image.

10.15 Suppose that an image f x y( , ) is convolved with 
a kernel of size n n×  (with coefficients 1 2n ) to 
produce a smoothed image f x y( , ).

(a) * Derive an expression for edge strength 
(edge magnitude) as a function of n. Assume 
that n is odd and that the partial derivatives 
are computed using Eqs. (10-19) and (10-20).

(b) Show that the ratio of the maximum edge 
strength of the smoothed image to the maxi-
mum edge strength of the original image is 
1 n. In other words, edge strength is inversely 
proportional to the size of the smoothing 
kernel, as one would expect.

10.16 With reference to Eq. (10-29),

(a) * Show that the average value of the LoG 
operator, 
2G x y( , ), is zero.

(b) Show that the average value of any image 
convolved with this operator also is zero. 
(Hint: Consider solving this problem in the 
frequency domain, using the convolution 
theorem and the fact that the average value 
of a function is proportional to its Fourier 
transform evaluated at the origin.)

(c) Suppose that we: (1) used the kernel in Fig. 
10.4(a) to approximate the Laplacian of a 
Gaussian, and (2) convolved this result with 
any image. What would be true in general of 
the values of the resulting image? Explain. 
(Hint: Take a look at Problem 3.32.)

10.17 Refer to Fig. 10.22(c).

(a) Explain why the edges form closed contours.

(b) * Does the zero-crossing method for finding 
edge location always result in closed con-
tours? Explain.

10.18 One often finds in the literature a derivation of 
the Laplacian of a Gaussian (LoG) that starts 
with the expression

G r e r( ) = − 2 22s

where r x y2 2 2= + . The LoG is then derived by 
taking the second partial derivative with respect 
to r: 
2 2 2G r G r r( ) ( ) .= ∂ ∂  Finally, x y2 2+  is sub-
stituted for r2  to get the final (incorrect) result:

 

2 2 2 2 4

2 2 22

G x y x y

x y

,

exp

( ) = + −( )⎡
⎣

⎤
⎦

− +( )⎡
⎣

⎤
⎦

s s

s

Derive this result and explain the reason for the 
difference between this expression and Eq. (10-29).

10.19 Do the following:

(a) * Derive Eq. (10-33).

(b) Let k = s s1 2  denote the standard deviation 
ratio discussed in connection with the DoG 
function, and express Eq. (10-33) in terms of 
k and s2.

10.20 In the following, assume that G and f are discrete 
arrays of size n n×  and M N× , respectively.

(a) Show that the 2-D convolution of the Gauss-
ian function G x y( , ) in Eq. (10-27) with an 
image f x y( , ) can be expressed as a 1-D con-
volution along the rows (columns) of f x y( , ), 
followed by a 1-D convolution along the col-
umns (rows) of the result. (Hints: See Sec-
tion 3.4 regarding discrete convolution and 
separability).

(b) * Derive an expression for the computa-
tional advantage using the 1-D convolution 
approach in (a) as opposed to implementing 
the 2-D convolution directly. Assume that 
G x y( , ) is sampled to produce an array of size 
n n×  and that f x y( , ) is of size M N× .  The 
computational advantage is the ratio of the 
number of multiplications required for 2-D 
convolution to the number required for 1-D 
convolution. (Hint: Review the subsection 
on separable kernels in Section 3.4.)

10.21 Do the following.

(a) Show that Steps 1 and 2 of the Marr-Hildreth 
algorithm can be implemented using four 
1-D convolutions. (Hints: Refer to Problem 
10.20(a) and express the Laplacian operator 
as the sum of two partial derivatives, given 
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by Eqs. (10-10) and (10-11), and implement 
each derivative using a 1-D kernel, as in 
Problem 10.12.)

(b) Derive an expression for the computational 
advantage of using the 1-D convolution 
approach in (a) as opposed to implementing 
the 2-D convolution directly. Assume that 
G x y( , ) is sampled to produce an array of 
size n n×  and that f x y( , ) is of size M N× .  
The computational advantage is the ratio of 
the number of multiplications required for 
2-D convolution to the number required for 
1-D convolution (see Problem 10.20).

10.22 Do the following.

(a) * Formulate Step 1 and the gradient mag-
nitude image computation in Step 2 of the 
Canny algorithm using 1-D instead of 2-D 
convolutions.

(b) What is the computational advantage of 
using the 1-D convolution approach as 
opposed to implementing a 2-D convolu-
tion. Assume that the 2-D Gaussian filter in 
Step 1 is sampled into an array of size n n×  
and that the input image is of size M N× .  
Express the computational advantage as 
the ratio of the number of multiplications 
required by each method.

10.23 With reference to the three vertical edge models 
and corresponding profiles in Fig. 10.8 provide 
sketches of the profiles that would result from 
each of the following methods. You may sketch 
the profiles manually.

(a) * Suppose that we compute the gradient 
magnitude of each of the three edge model 
images using the Sobel kernels. Sketch the 
horizontal intensity profiles of the three 
resulting gradient images.

(b) Sketch the horizontal intensity profiles that 
would result from using the 3 3×  Laplacian 
kernel in Fig. 10.10.4(a).

(c) * Repeat (b) using only the first two steps of 
the Marr-Hildreth edge detector.

(d) Repeat (b) using the first two steps of the 
Canny edge detector. You may ignore the 
angle images.

(e) Sketch the horizontal profiles of the angle 
images resulting from using the Canny edge 
detector.

10.24 In Example 10.9, we used a smoothing kernel of 
size 19 19×  to generate Fig. 10.26(c) and a kernel 
of size 13 13×  to generate Fig. 10.26(d). What was 
the rationale that led to choosing these values? 
(Hint: Observe that both are Gaussian kernels, 
and refer to the discussion of lowpass Gaussian 
kernels in Section 3.5.)

10.25 Refer to the Hough transform in Section 10.2.

(a) Propose a general procedure for obtaining 
the normal representation of a line from its 
slope-intercept form, y ax b= + .

(b) * Find the normal representation of the line 
y x= − +2 1.

10.26 Refer to the Hough transform in Section 10.2.

(a) * Explain why the Hough mapping of the point 
labeled 1 in Fig. 10.30(a) is a straight line in 
Fig. 10.30(b).

(b) * Is this the only point that would produce that 
result? Explain.

(c) Explain the reflective adjacency relationship 
illustrated by, for example, the curve labeled 
Q in Fig. 10.30(b).

10.27 Show that the number of operations required to 
implement the accumulator-cell approach dis-
cussed in Section 10.2 is linear in n, the number 
of non-background points in the image plane (i.e., 
the xy-plane).

10.28 An important application of image segmentation 
is in processing images resulting from so-called 
bubble chamber events. These images arise from 
experiments in high-energy physics in which a 
beam of particles of known properties is directed 
onto a target of known nuclei. A typical event con-
sists of incoming tracks, any one of which, upon 
a collision, branches out into secondary tracks of 
particles emanating from the point of collision. 
Propose a segmentation approach for detecting 
all tracks angled at any of the following six direc-
tions off the horizontal: ± °,25  ± °50 , and ± °.75  
The estimation error allowed in any of these six 
directions is ±5°. For a track to be valid it must 
be at least 100 pixels long and have no more than 
three gaps, each not exceeding 10 pixels. You may 
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assume that the images have been preprocessed 
so that they are binary and that all tracks are 1 
thick, except at the point of collision from which 
they emanate. Your procedure should be able to 
differentiate between tracks that have the same 
direction but different origins. (Hint: Base your 
solution on the Hough transform.)

10.29 * Restate the basic global thresholding algorithm 
in Section 10.3 so that it uses the histogram of an 
image instead of the image itself.

10.30 * Prove that the basic global thresholding algo-
rithm in Section 10.3 converges in a finite number 
of steps. (Hint: Use the histogram formulation 
from Problem 10.29.)

10.31 Give an explanation why the initial threshold in 
the basic global thresholding algorithm in Sec-
tion 10.3 must be between the minimum and 
maximum values in the image. (Hint: Construct 
an example that shows the algorithm failing for a 
threshold value selected outside this range.)

10.32 * Assume that the initial threshold in the basic 
global thresholding algorithm in Section 10.3 is 
selected as a value between the minimum and 
maximum intensity values in an image. Do you 
think the final value of the threshold at conver-
gence depends on the specific initial value used? 
Explain. (You can use a simple image example to 
support your conclusion.)

10.33 You may assume in both of the following cases 
that the initial threshold is in the open interval 
( , ).0 1L −

(a) * Show that if the histogram of an image is 
uniform over all possible intensity levels, 
the basic global thresholding algorithm con-
verges to the average intensity of the image. 

(b) Show that if the histogram of an image is 
bimodal, with identical modes that are sym-
metric about their means, then the basic 
global thresholding algorithm will converge 
to the point halfway between the means of 
the modes.

10.34 Refer to the basic global thresholding algorithm in 
Section 10.3. Assume that in a given problem, the 
histogram is bimodal with modes that are Gauss-
ian curves of the form A z m1 1

2
1
22exp[ ( ) ]− − s  

andA z m2 2
2

2
22exp[ ( ) ].− − s  Assume that m1 is 

greater than m2 , and that the initial T is between 
the max and min image intensities. Give conditions 
(in terms of the parameters of these curves) for the 
following to be true when the algorithm converges:

(a) * The threshold is equal to ( ) .m m1 2 2+

(b) * The threshold is to the left of m2 .

(c) The threshold is in the interval given by the 
equation ( ) .m m T m1 2 12+ < <

10.35 Do the following:

(a) * Show how the first line in Eq. (10-60) fol-
lows from Eqs. (10-55), (10-56), and (10-59).

(b) Show how the second line in Eq. (10-60) 
follows from the first.

10.36 Show that a maximum value for Eq. (10-63) 
always exists for k in the range 0 1≤ ≤ −k L .

10.37 * With reference to Eq. (10-65), advance an 
argument that establishes that 0 1≤ ≤h( )k  for k 
in the range 0 1≤ ≤ −k L , where the minimum 
is achievable only by images with constant inten-
sity, and the maximum occurs only for 2-valued 
images with values 0 and ( ).L − 1

10.38 Do the following:

(a) * Suppose that the intensities of a digital 
image f x y( , ) are in the range [ , ]0 1  and that 
a threshold, T, successfully segmented the 
image into objects and background. Show 
that the threshold T T′ = −1  will success-
fully segment the negative of f x y( , ) into the 
same regions. The term negative is used here 
in the sense defined in Section 3.2.

(b) The intensity transformation function in 
(a) that maps an image into its negative is 
a linear function with negative slope. State 
the conditions that an arbitrary intensity 
transformation function must satisfy for the 
segmentability of the original image with 
respect to a threshold, T, to be preserved. 
What would be the value of the threshold 
after the intensity transformation?

10.39 The objects and background in the image below 
have a mean intensity of 170 and 60, respectively, 
on a [0, 255] scale. The image is corrupted by 
Gaussian noise with 0 mean and a standard devia-
tion of 10 intensity levels. Propose a thresholding 
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method capable of a correct segmentation rate of 
90% or higher. (Recall that 99.7% of the area of 
a Gaussian curve lies in a ±3s interval about the 
mean, where s is the standard deviation.)

10.40 Refer to the intensity ramp image in Fig. 10.34(b) 
and the moving-average algorithm discussed in 
Section 10.3. Assume that the image is of size 
500 700×  pixels and that its minimum and maxi-
mum values are 0 and 1, where 0’s are contained 
only in the first column.

(a) * What would be the result of segmenting this 
image with the moving-average algorithm 
using b = 0 and an arbitrary value for n.
Explain what the segmented image would 
look like.

(b) Now reverse the direction of the ramp so 
that its leftmost value is 1 and the rightmost 
value is 0 and repeat (a).

(c) Repeat (a) but with b = 1 and n = 2.

(d) Repeat (a) but with b = 1 and n = 100.

10.41 Propose a region-growing algorithm to segment 
the image in Problem 10.39.

10.42 * Segment the image shown by using the split and 
merge procedure discussed in Section 10.4. Let 
Q Ri( ) = TRUE  if all pixels in Ri  have the same 
intensity. Show the quadtree corresponding to 
your segmentation.

N

N

10.43 Consider the region of 1’s resulting from the 
segmentation of the sparse regions in the image 
of the Cygnus Loop in Example 10.21. Propose 
a technique for using this region as a mask to 
isolate the three main components of the image: 
(1) background; (2) dense inner region; and (3) 
sparse outer region.

10.44 Let the pixels in the first row of a 3 3×  image, like 
the one in Fig. 10.53(a), be labeled as 1, 2, 3, and 
the pixels in the second and third rows be labeled 
as 4, 5, 6 and 7, 8, 9, respectively. Let the inten-
sity of these pixels be [90, 80, 30; 70, 5, 20; 80 20 
30] where, for example, the intensity of pixel 2 is 
80 and of pixel 4 it is 70. Compute the weights 
for the edges for the graph in Fig. 10.53(c), using 
the formula w( , ) [ ( ) ( ) ]i j I n I n ci j= − +30 1� � �A B
explained in the text in connection with that 
figure (we scaled the formula by 30 to make the 
numerical results easier to interpret). Let c = 0
in this case.

10.45 * Show how Eqs. (10-106) through (10-108) follow 
from Eq. (10-105).

10.46 Demonstrate the validity of Eq. (10-102).

10.47 Refer to the discussion in Section 10.7.

(a) * Show that the elements of C Mn i( ) and T n[ ]
are never replaced during execution of the 
watershed segmentation algorithm.

(b) Show that the number of elements in sets 
C Mn i( ) and T n[ ] either increases or remains 
the same as n increases.

10.48 You saw in Section 10.7 that the boundaries 
obtained using the watershed segmentation algo-
rithm form closed loops (for example, see Figs. 
10.59 and 10.61). Advance an argument that estab-
lishes whether or not closed boundaries always 
result from application of this algorithm.

10.49 * Give a step-by-step implementation of the dam-
building procedure for the one-dimensional inten-
sity cross section shown below. Show a drawing 
of the cross section at each step, showing “water” 
levels and dams constructed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x0

1
2
3
4
5
6
7
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10.50 What would the negative ADI image shown 
in Fig. 10.62(c) look like if we tested against T 
(instead of testing against −T) in Eq. (10-117)?

10.51 Are the following statements true or false? Ex-
plain the reason for your answer in each.

(a) * The nonzero entries in the absolute ADI 
continue to grow in dimension, provided 
that the object is moving.

(b) The nonzero entries in the positive ADI  
always occupy the same area, regardless of 
the motion undergone by the object.

(c) The nonzero entries in the negative ADI 
continue to grow in dimension, provided 
that the object is moving.

10.52 Suppose that in Example 10.29 motion along the 
x-axis is set to zero. The object now moves only 
along the y-axis at 1 pixel per frame for 32 frames 
and then (instantaneously) reverses direction 
and moves in exactly the opposite direction for  
another 32 frames. What would Figs. 10.66(a)  
and (b) look like under these conditions?

10.53 * Advance an argument that demonstrates that 
when the signs of S x1  and S x2  in Eqs. (10-125) 
and (10-126) are the same, velocity component 
V1 is positive.

10.54 An automated pharmaceutical plant uses image 
processing to measure the shapes of medication 
tablets for the purpose of quality control. The 
segmentation stage of the system is based on 
Otsu’s method. The speed of the inspection lines 
is so high that a very high rate flash illumina-
tion is required to “stop” motion. When new, the  
illumination lamps project a uniform pattern of 
light. However, as the lamps age, the illumination  
pattern deteriorates as a function of time and 
spatial coordinates according to the equation

 i x y A t t e x M y N( , ) ( ) [( ) ( ) ]= − − − + −2 2 22 2

where M N2 2,( ) is the center of the viewing 
area and t is time measured in increments of 
months. The lamps are still experimental and 
the behavior of A t( ) is not fully understood by 

the manufacturer. All that is known is that, dur-
ing the life of the lamps, A t( ) is always greater 
than the negative component in the preceding 
equation because illumination cannot be nega-
tive. It has been observed that Otsu’s algorithm 
works well when the lamps are new, and their  
pattern of illumination is nearly constant over the  
entire image. However, segmentation perfor-
mance deteriorates with time. Being experimental, 
the lamps are exceptionally expensive, so you are 
employed as a consultant to help solve the prob-
lem using digital image processing techniques to 
compensate for the changes in illumination, and 
thus extend the useful life of the lamps. You are 
given flexibility to install any special markers or 
other visual cues in the viewing area of the imag-
ing cameras. Propose a solution in sufficient detail 
that the engineering plant manager can under-
stand your approach. (Hint: Review the image 
model discussed in Section 2.3 and consider using 
one or more targets of known reflectivity.)

10.55 The speed of a bullet in flight is to be estimated by 
using high-speed imaging techniques. The method 
of choice involves the use of a CCD camera and 
flash that exposes the scene for K seconds. The bul-
let is 2.5 cm long, 1 cm wide, and its range of speed 
is 750 250± m s. The camera optics produce an  
image in which the bullet occupies 10% of the 
horizontal resolution of a 256 256×  digital image.

(a) * Determine the maximum value of K that 
will guarantee that the blur from motion 
does not exceed 1 pixel.

(b) Determine the minimum number of frames 
per second that would have to be acquired 
in order to guarantee that at least two com-
plete images of the bullet are obtained dur-
ing its path through the field of view of the 
camera.

(c) * Propose a segmentation procedure for 
automatically extracting the bullet from a 
sequence of frames.

(d) Propose a method for automatically deter-
mining the speed of the bullet.
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11 Feature Extraction 

Preview
After an image has been segmented into regions or their boundaries using methods such as those in 
Chapters 10 and 11, the resulting sets of segmented pixels usually have to be converted into a form suit-
able for further computer processing. Typically, the step after segmentation is feature extraction, which 
consists of feature detection and feature description. Feature detection refers to finding the features 
in an image, region, or boundary. Feature description assigns quantitative attributes to the detected 
features. For example, we might detect corners in a region boundary, and describe those corners by 
their orientation and location, both of which are quantitative attributes. Feature processing methods 
discussed in this chapter are subdivided into three principal categories, depending on whether they are 
applicable to boundaries, regions, or whole images. Some features are applicable to more than one cat-
egory. Feature descriptors should be as insensitive as possible to variations in parameters such as scale, 
translation, rotation, illumination, and viewpoint. The descriptors discussed in this chapter are either 
insensitive to, or can be normalized to compensate for, variations in one or more of these parameters. 

Upon completion of this chapter, readers should:
 Understand the meaning and applicability of 

a broad class of features suitable for image 
processing.

 Understand the concepts of feature vectors 
and feature space, and how to relate them 
to the various descriptors developed in this 
chapter.

 Be skilled in the mathematical tools used in 
feature extraction algorithms.

 Be familiar with the limitations of the various 
feature extraction methods discussed.

 Understand the principal steps used in the 
solution of feature extraction problems. 

 Be able to formulate feature extraction algo-
rithms.

 Have a “feel” for the types of features that 
have a good chance of success in a given 
application.

Well, but reflect; have we not several times  
acknowledged that names rightly given are the  
likenesses and images of the things which they name?

Socrates
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11.1  BACKGROUND  

Although there is no universally accepted, formal definition of what constitutes an 
image feature, there is little argument that, intuitively, we generally think of a fea-
ture as a distinctive attribute or description of “something” we want to label or 
differentiate. For our purposes, the key words here are label and differentiate. The 

“something” of interest in this chapter refers either to individual image objects, or 
even to entire images or sets of images. Thus, we think of features as attributes that 
are going to help us assign unique labels to objects in an image or, more gener-
ally, are going to be of value in differentiating between entire images or families of 
images.

There are two principal aspects of image feature extraction: feature detection, and 
feature description. That is, when we refer to feature extraction, we are referring 
to both detecting the features and then describing them. To be useful, the extrac-
tion process must encompass both. The terminology you are likely to encounter in 
image processing and analysis to describe feature detection and description varies, 
but a simple example will help clarify our use of these term. Suppose that we use 
object corners as features for some image processing task. In this chapter, detection 
refers to finding the corners in a region or image. Description, on the other hand, 
refers to assigning quantitative (or sometimes qualitative) attributes to the detected 
features, such as corner orientation, and location with respect to other corners. In 
other words, knowing that there are corners in an image has limited use without 
additional information that can help us differentiate between objects in an image, 
or between images, based on corners and their attributes.

Given that we want to use features for purposes of differentiation, the next ques-
tion is: What are the important characteristics that these features must possess in 
the realm of digital image processing? You are already familiar with some of these 
characteristics. In general, features should be independent of location, rotation, and 
scale. Other factors, such as independence of illumination levels and changes caused 
by the viewpoint between the imaging sensor(s) and the scene, also are impor-
tant. Whenever possible, preprocessing should be used to normalize input images 
before feature extraction. For example, in situations where changes in illumination 
are severe enough to cause difficulties in feature detection, it would make sense to 
preprocess an image to compensate for those changes. Histogram equalization or 
specification come to mind as automatic techniques that we know are helpful in 
this regard. The idea is to use as much a priori information as possible to preprocess 
images in order to improve the chances of accurate feature extraction.

When used in the context of a feature, the word “independent” usually has one of 
two meanings: invariant or covariant. A feature descriptor is invariant with respect 
to a set of transformations if its value remains unchanged after the application (to 
the entity being described) of any transformation from the family. A feature descrip-
tor is covariant with respect to a set of transformations if applying to the entity any 
transformation from the set produces the same result in the descriptor. For example, 
consider this set of affine transformations: {translation, reflection, rotation}, and sup-
pose that we have an elliptical region to which we assign the feature descriptor area. 
Clearly, applying any of these transformations to the region does not change its area. 

11.1

See Table 2.3 regarding 
affine transformations.
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Therefore, area is an invariant feature descriptor with respect to the given family of 
transformations. However, if we add the affine transformation scaling to the fam-
ily, descriptor area ceases to be invariant with respect to the extended family. The 
descriptor is now covariant with respect to the family, because scaling the area of the 
region by any factor scales the value of the descriptor by the same factor. Similarly, 
the descriptor direction (of the principal axis of the region) is covariant because 
rotating the region by any angle has the same effect on the value of the descriptor. 
Most of the feature descriptors we use in this chapter are covariant in general, in 
the sense that they may be invariant to some transformations of interest, but not to 
others that may be equally as important. As you will see shortly, it is good practice to 
normalize as many relevant invariances as possible out of covariances. For instance, 
we can compensate for changes in direction of a region by computing its actual 
direction and rotating the region so that its principal axis points in a predefined 
direction. If we do this for every region detected in an image, rotation will cease to 
be covariant.

Another major classification of features is local vs. global. You are likely to see 
many different attempts to classify features as belonging to one of these two catego-
ries. What makes this difficult is that a feature may belong to both, depending on the 
application. For example, consider the descriptor area again, and suppose that we 
are applying it to the task of inspecting the degree to which bottles moving past an 
imaging sensor on a production line are full of liquid. The sensor and its accompany-
ing software are capable of generating images of ten bottles at once, in which liquid 
in each bottle appears as a bright region, and the rest of the image appears as dark 
background. The area of a region in this fixed geometry is directly proportional to 
the amount of liquid in a bottle and, if detected and measured reliably, area is the 
only feature we need to solve the inspection problem. Each image has ten regions, so 
we consider area to be a local feature, in the sense that it is applicable to individual 
elements (regions) of an image. If the problem were to detect the total amount (area) 
of liquid in an image, we would now consider area to be a global descriptor. But the 
story does not end there. Suppose that the liquid inspection task is redefined so that 
it calculates the entire amount of liquid per day passing by the imaging station. We 
no longer care about the area of individual regions per se. Our units now are images. 
If we know the total area in an image, and we know the number of images, calculat-
ing the total amount of liquid in a day is trivial. Now the area of an entire image is a 
local feature, and the area of the total at the end of the day is global. Obviously, we 
could redefine the task so that the area at the end of a day becomes a local feature 
descriptor, and the area for all assembly lines becomes a global measure. And so on, 
endlessly. In this chapter, we call a feature local if it is applies to a member of a set, 
and global if it applies to the entire set, where “member” and “set” are determined 
by the application.

Features by themselves are seldom generated for human consumption, except in 
applications such as interactive image processing, topics that are not in the main-
stream of this book. In fact, as you will see later, some feature extraction meth-
ods generate tens, hundreds, or even thousands of descriptor values that would 
appear meaningless if examined visually. Instead, feature description typically is 
used as a preprocessing step for higher-level tasks, such as image registration, object 
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recognition for automated inspection, searching for patterns (e.g., individual faces 
and/or fingerprints) in image databases, and autonomous applications, such as robot 
and vehicle navigation. For these applications, numerical features usually are “pack-
aged” in the form of a feature vector, (i.e., a 1 × n or n × 1 matrix) whose elements are 
the descriptors. An RGB image is one of the simplest examples. As you know from 
Chapter 6, each pixel of an RGB image can be expressed as 3-D vector,

 x =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x

x

x

1

2

3

in which x1 is the intensity value of the red image at a point, and the other com-
ponents are the intensity values of the green and blue images at the same point. If 
color is used as a feature, then a region in an RGB image would be represented as 
a set of feature vectors (points) in 3-D space. When n descriptors are used, feature 
vectors become n-dimensional, and the space containing them is referred to as an 
n-dimensional feature space. You may “visualize” a set of n-dimensional feature vec-
tors as a “hypercloud” of points in n-dimensional Euclidean space.

In this chapter, we group features into three principal categories: boundary, 
region, and whole image features. This subsidivision is not based on the applicabil-
ity of the methods we are about to discuss; rather, it is based on the fact that some 
categories make more sense than others when considered in the context of what is 
being described. For example, it is implied that when we refer to the “length of a 
boundary” we are referring to the “length of the boundary of a region,” but it makes 
no sense to refer to the “length” of an image. It will become clear that many of the 
features we will be discussing are applicable to boundaries and regions, and some 
apply to whole images as well.

11.2  BOUNDARY PREPROCESSING  

The segmentation techniques discussed in the previous two chapters yield raw data 
in the form of pixels along a boundary or pixels contained in a region. It is standard 
practice to use schemes that compact the segmented data into representations that 
facilitate the computation of descriptors. In this section, we discuss various bound-
ary preprocessing approaches suitable for this purpose. 

BOUNDARY FOLLOWING (TRACING)

Several of the algorithms discussed in this chapter require that the points in the 
boundary of a region be ordered in a clockwise or counterclockwise direction. Con-
sequently, we begin our discussion by introducing a boundary-following algorithm 
whose output is an ordered sequence of points. We assume (1) that we are work-
ing with binary images in which object and background points are labeled 1 and 0, 
respectively; and (2) that images are padded with a border of 0’s to eliminate the 
possibility of an object merging with the image border. For clarity, we limit the dis-
cussion to single regions. The approach is extended to multiple, disjoint regions by 
processing the regions individually.

11.2

You will find it helpful to 
review the discussion in 
Sections 2.5 on neighbor-
hoods, adjacency and 
connectivity, and the 
discussion in Section 9.6 
dealing with connected 
components.
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The following algorithm traces the boundary of a 1-valued region, R, in a binary 
image.

1. Let the starting point, b0 , be the uppermost-leftmost point† in the image that is 
labeled 1. Denote by c0  the west neighbor of b0  [see Fig. 11.1(b)]. Clearly, c0  is 
always a background point. Examine the 8-neighbors of b0 , starting at c0  and 
proceeding in a clockwise direction. Let b1 denote the first neighbor encountered 
whose value is 1, and let c1 be the (background) point immediately preceding b1 
in the sequence. Store the locations of b0  for use in Step 5.

2. Let b b= 0 and c c= 0.
3. Let the 8-neighbors of b, starting at c and proceeding in a clockwise direction, 

be denoted by n n n1 2 8, , , .…  Find the first neighbor labeled 1 and denote it by nk .
4. Let b nk=  and c nk= – .1

5. Repeat Steps 3 and 4 until b b= 0. The sequence of b points found when the 
algorithm stops is the set of ordered boundary points.

Note that c in Step 4 is always a background point because nk is the first 1-valued 
point found in the clockwise scan. This algorithm is referred to as the Moore bound-
ary tracing algorithm after Edward F. Moore, a pioneer in cellular automata theory. 

Figure 11.1 illustrates the first few steps of the algorithm. It is easily verified (see 
Problem 11.1) that continuing with this procedure will yield the correct boundary, 
shown in Fig. 11.1(f), whose points are ordered in a clockwise sequence. The algo-
rithm works equally well with more complex boundaries, such as the boundary with 
an attached branch in Fig. 11.2(a) or the self-intersecting boundary in Fig. 11.2(b). 
Multiple boundaries [Fig. 11.2(c)] are handled by processing one boundary at a time.

If we start with a binary region instead of a boundary, the algorithm extracts the 
outer boundary of the region. Typically, the resulting boundary will be one pixel 
thick, but not always [see Problem 11.1(b)]. If the objective is to find the boundaries 
of holes in a region (these are called the inner or interior boundaries of the region), 

† As you will see later in this chapter and in Problem 11.8, the uppermost-leftmost point in a 1-valued boundary 
has the important property that a polygonal approximation to the boundary has a convex vertex at that location. 
Also, the left and north neighbors of the point are guaranteed to be background points. These properties make 
it a good “standard” point at which to start boundary-following algorithms. 

See Section 2.5 for the 
definition of 4-neigh-
bors, 8-neighbors, and 
m-neighbors of a point,

ba c ed f

FIGURE 11.1 Illustration of the first few steps in the boundary-following algorithm. The point to be processed next is 
labeled in bold, black; the points yet to be processed are gray; and the points found by the algorithm are shaded. 
Squares without labels are considered background (0) values.
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a straightforward approach is to extract the holes (see Section 9.6) and treat them 
as 1-valued regions on a background of 0’s. Applying the boundary-following algo-
rithm to these regions will yield the inner boundaries of the original region.

We could have stated the algorithm just as easily based on following a boundary 
in the counterclockwise direction but you will find it easier to have just one algo-
rithm and then reverse the order of the result to obtain a sequence in the opposite 
direction. We use both directions interchangeably (but consistently) in the following 
sections to help you become familiar with both approaches.

CHAIN CODES

Chain codes are used to represent a boundary by a connected sequence of straight-
line segments of specified length and direction. We assume in this section that all 
curves are closed, simple curves (i.e., curves that are closed and not self intersecting).

Freeman Chain Codes 

Typically, a chain code representation is based on 4- or 8-connectivity of the seg-
ments. The direction of each segment is coded by using a numbering scheme, as in Fig. 
11.3. A boundary code formed as a sequence of such directional numbers is referred 
to as a Freeman chain code.

Digital images usually are acquired and processed in a grid format with equal 
spacing in the x- and y-directions, so a chain code could be generated by following a 
boundary in, say, a clockwise direction and assigning a direction to the segments con-
necting every pair of pixels. This level of detail generally is not used for two principal 
reasons: (1) The resulting chain would be quite long and (2) any small disturbances 
along the boundary due to noise or imperfect segmentation would cause changes 
in the code that may not be related to the principal shape features of the boundary.

An approach used to address these problems is to resample the boundary by 
selecting a larger grid spacing, as in Fig. 11.4(a). Then, as the boundary is traversed, a 
boundary point is assigned to a node of the coarser grid, depending on the proximity 
of the original boundary point to that node, as in Fig. 11.4(b). The resampled bound-
ary obtained in this way can be represented by a 4- or 8-code. Figure 11.4(c) shows 
the coarser boundary points represented by an 8-directional chain code. It is a simple 
matter to convert from an 8-code to a 4-code and vice versa (see Problems 2.15, 9.27, 

ba c

FIGURE 11.2  Examples of boundaries that can be processed by the boundary-following algo-
rithm. (a) Closed boundary with a branch. (b) Self-intersecting boundary. (c) Multiple bound-
aries (processed one at a time). 
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11.2  Boundary Preprocessing    817

and 9.29). For the same reason mentioned when discussing boundary tracing earlier 
in this section, we chose the starting point in Fig. 11.4(c) as the uppermost-leftmost 
point of the boundary, which gives the chain code 0766 1212… . As you might suspect, 
the spacing of the resampling grid is determined by the application in which the 
chain code is used. 

If the sampling grid used to obtain a connected digital curve is a uniform quad-
rilateral (see Fig. 2.19) all points of a Freeman code based on Fig. 11.3 are guaran-
teed to coincide with the points of the curve. The same is true if a digital curve is 
subsampled using the same type of sampling grid, as in Fig. 11.4(b). This is because 
the samples of curves produced using such grids have the same arrangement as in 
Fig. 11.3, so all points are reachable as we traverse a curve from one point to the next 
to generate the code. 

The numerical value of a chain code depends on the starting point. However, the 
code can be normalized with respect to the starting point by a straightforward pro-
cedure: We simply treat the chain code as a circular sequence of direction numbers 
and redefine the starting point so that the resulting sequence of numbers forms an 
integer of minimum magnitude. We can normalize also for rotation (in angles that 
are integer multiples of the directions in Fig. 11.3) by using the first difference of the 
chain code instead of the code itself. This difference is obtained by counting the num-
ber of direction changes (in a counterclockwise direction in Fig. 11.3) that separate 
two adjacent elements of the code. If we treat the code as a circular sequence to nor-
malize it with respect to the starting point, then the first element of the difference is 
computed by using the transition between the last and first components of the chain. 
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FIGURE 11.4
(a) Digital 
boundary with 
resampling grid 
superimposed.  
(b) Result of 
resampling.  
(c) 8-directional 
chain-coded 
boundary.
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FIGURE 11.3
Direction  
numbers for  
(a) 4-directional 
chain code, and 
(b) 8-directional 
chain code.
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For instance, the first difference of the 4-directional chain code 10103322 is 3133030. 
Size normalization can be achieved by altering the spacing of the resampling grid.

The normalizations just discussed are exact only if the boundaries themselves 
are invariant to rotation (again, in angles that are integer multiples of the directions 
in Fig. 11.3) and scale change, which seldom is the case in practice. For instance, 
the same object digitized in two different orientations will have different bound-
ary shapes in general, with the degree of dissimilarity being proportional to image 
resolution. This effect can be reduced by selecting chain elements that are long in 
proportion to the distance between pixels in the digitized image, and/or by orienting 
the resampling grid along the principal axes of the object to be coded, as discussed 
in Section 11.3, or along its eigen axes, as discussed in Section 11.5.

EXAMPLE 11.1 : Freeman chain code and some of its variations.
Figure 11.5(a) shows a 570 570× -pixel, 8-bit gray-scale image of a circular stroke embedded in small, 
randomly distributed specular fragments. The objective of this example is to obtain a Freeman chain 
code, the corresponding integer of minimum magnitude, and the first difference of the outer boundary 
of the stroke. Because the object of interest is embedded in small fragments, extracting its boundary 
would result in a noisy curve that would not be descriptive of the general shape of the object. As you 
know, smoothing is a routine process when working with noisy boundaries. Figure 11.5(b) shows the 
original image smoothed using a box kernel of size 9 9×  pixels (see Section 3.5 for a discussion of spa-
tial smoothing), and Fig. 11.5(c) is the result of thresholding this image with a global threshold obtained 
using Otsu’s method. Note that the number of regions has been reduced to two (one of which is a dot), 
significantly simplifying the problem.

Figure 11.5(d) is the outer boundary of the region in Fig. 11.5(c). Obtaining the chain code of this 
boundary directly would result in a long sequence with small variations that are not representative 
of the global shape of the boundary, so we resample it before obtaining its chain code.  This reduces 
insignificant variability. Figure 11.5(e) is the result of using a resampling grid with nodes 50 pixels apart 
(approximately 10% of the image width) and Fig. 11.5(f) is the result of joining the sample points by 
straight lines. This simpler approximation retained the principal features of the original boundary.

The 8-directional Freeman chain code of the simplified boundary is

 0 0 0 0 6 0 6 6 6 6 6 6 6 6 4 4 4 4 4 4 2 4 2 2 2 2 2 0 2                             22 0 2   

The starting point of the boundary is at coordinates (2, 5) in the subsampled grid (remember from 
Fig. 2.19 that the origin of an image is at its top, left). This is the uppermost-leftmost point in Fig. 11.5(f). 
The integer of minimum magnitude of the code happens in this case to be the same as the chain code:

 0 0 0 0 6 0 6 6 6 6 6 6 6 6 4 4 4 4 4 4 2 4 2 2 2 2 2 0 2                             22 0 2   

The first difference of the code is

 0 0 0 6 2 6 0 0 0 0 0 0 0 6 0 0 0 0 0 6 2 6 0 0 0 0 6 2 0                             66 2 6   

Using this code to represent the boundary results in a significant reduction in the amount of data 
needed to store the boundary. In addition, working with code numbers offers a unified way to analyze 
the shape of a boundary, as we discuss in Section 11.3. Finally, keep in mind that the subsampled bound-
ary can be recovered from any of the preceding codes.
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Slope Chain Codes

Using Freeman chain codes generally requires resampling a boundary to smooth 
small variations, a process that implies defining a grid and subsequently assigning 
all boundary points to their closest neighbors in the grid. An alternative to this 
approach is to use slope chain codes (SCCs) (Bribiesca [1992, 2013]). The SCC of a 
2-D curve is obtained by placing straight-line segments of equal length around the 
curve, with the end points of the segments touching the curve. 

Obtaining an SSC requires calculating the slope changes between contiguous line 
segments, and normalizing the changes to the continuous (open) interval ( , ).−1 1  
This approach requires defining the length of the line segments, as opposed to Free-
man codes, which require defining a grid and assigning curve points to it—a much 
more elaborate procedure. Like Freeman codes, SCCs are independent of rotation, 
but a larger range of possible slope changes provides a more accurate representa-
tion under rotation than the rotational independence of the Freeman codes, which is 
limited to the eight directions in Fig. 11.3(b). As with Freeman codes, SCCs are inde-
pendent of translation, and can be normalized for scale changes (see Problem 11.8).

ba c
ed f

FIGURE 11.5 (a) Noisy image of size 570 570×  pixels. (b) Image smoothed with a 9 9×  box kernel. (c) Smoothed 
image, thresholded using Otsu’s method. (d) Longest outer boundary of (c). (e) Subsampled boundary (the points 
are shown enlarged for clarity). (f) Connected points from (e).
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Figure 11.6 illustrates how an SCC is generated. The first step is to select the 
length of the line segment to use in generating the code [see Fig. 11.6(b)]. Next, a 
starting point (the origin) is specified (for an open curve, the logical starting point is 
one of its end points). As Fig. 11.6(c) shows, once the origin has been selected, one 
end of a line segment is placed at the origin and the other end of the segment is set 
to coincide with the curve. This point becomes the starting point of the next line seg-
ment, and we repeat this procedure until the starting point (or end point in the case 
of an open curve) is reached. As the figure illustrates, you can think of this process as 
a sequence of identical circles (with radius equal to the length of the line segment) 
traversing the curve. The intersections of the circles and the curve determine the 
nodes of the straight-line approximation to the curve. 

Once the intersections of the circles are known, we determine the slope changes 
between contiguous line segments. Positive and zero slope changes are normalized 
to the open half interval [ , ),0 1  while negative slope changes are normalized to the 
open interval ( , ).−1 0  Not allowing slope changes of ±1 eliminates the implementa-
tion issues that result from having to deal with the fact that such changes result in 
the same line segment with opposite directions. 

The sequence of slope changes is the chain that defines the SCC approximation 
to the original curve. For example, the code for the curve in Fig. 11.6(e) is 0 12. , 0 20. , 
0 21. , 0 11. , −0 11. , −0 12. , −0 21. , −0 22. , −0 24. , −0 28. , −0 28. , −0 31. , −0 30. . The accu-
racy of the slope changes defined in Fig. 11.6(d) is 10 2− , resulting in an “alphabet” 
of 199 possible symbols (slope changes). The accuracy can be changed, of course. For 
instance, and accuracy of 10 1−  produces an alphabet of 19 symbols (see Problem 11.6). 
Unlike a Freeman code, there is no guarantee that the last point of the coded curve 
will coincide with the last point of the curve itself. However, shortening the line 

Line segment

ba c ed

FIGURE 11.6 (a) An open curve. (b) A straight-line segment. (c) Traversing the curve using circumferences to deter-
mine slope changes; the dot is the origin (starting point). (d) Range of slope changes in the open interval ( , )−1 1  
(the arrow in the center of the chart indicates direction of travel). There can be ten subintervals between the slope 
numbers shown.(e) Resulting coded curve showing its corresponding numerical sequence of slope changes. (Cour-
tesy of Professor Ernesto Bribiesca, IIMAS-UNAM, Mexico.)
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length and/or increasing angle resolution often resolves the problem, because the 
results of computations are rounded to the nearest integer (remember we work with 
integer coordinates).

The inverse of an SCC is another chain of the same length, obtained by reversing 
the order of the symbols and their signs. The mirror image of a chain is obtained by 
starting at the origin and reversing the signs of the symbols. Finally, we point out 
that the preceding discussion is directly applicable to closed curves. Curve following 
would start at an arbitrary point (for example, the uppermost-leftmost point of the 
curve) and proceed in a clockwise or counterclockwise direction, stopping when the 
starting point is reached. We will illustrate an use of SSCs in Example 11.6.

BOUNDARY APPROXIMATIONS USING MINIMUM-PERIMETER  
POLYGONS

A digital boundary can be approximated with arbitrary accuracy by a polygon. For a 
closed curve, the approximation becomes exact when the number of segments of the 
polygon is equal to the number of points in the boundary, so each pair of adjacent 
points defines a segment of the polygon. The goal of a polygonal approximation 
is to capture the essence of the shape in a given boundary using the fewest pos-
sible number of segments. Generally, this problem is not trivial, and can turn into 
a time-consuming iterative search. However, approximation techniques of modest 
complexity are well suited for image-processing tasks. Among these, one of the most 
powerful is representing a boundary by a minimum-perimeter polygon (MPP), as 
defined in the following discussion.

Foundation

An intuitive approach for computing MPPs is to enclose a boundary [see Fig. 11.7(a)] 
by a set of concatenated cells, as in Fig. 11.7(b). Think of the boundary as a rubber 
band contained in the gray cells in Fig. 11.7(b). As it is allowed to shrink, the rubber 
band will be constrained by the vertices of the inner and outer walls of the region 
of the gray cells. Ultimately, this shrinking produces the shape of a polygon of mini-
mum perimeter (with respect to this geometrical arrangement) that circumscribes 
the region enclosed by the cell strip, as in Fig. 11.7(c). Note in this figure that all the 
vertices of the MPP coincide with corners of either the inner or the outer wall.

The size of the cells determines the accuracy of the polygonal approximation. 
In the limit, if the size of each (square) cell corresponds to a pixel in the boundary, 
the maximum error in each cell between the boundary and the MPP approxima-
tion would be 2d, where d is the minimum possible distance between pixels (i.e., 
the distance between pixels established by the resolution of the original sampled 
boundary). This error can be reduced in half by forcing each cell in the polygonal 
approximation to be centered on its corresponding pixel in the original boundary. 
The objective is to use the largest possible cell size acceptable in a given application, 
thus producing MPPs with the fewest number of vertices. Our objective in this sec-
tion is to formulate a procedure for finding these MPP vertices.

The cellular approach just described reduces the shape of the object enclosed 
by the original boundary, to the area circumscribed by the gray walls in Fig. 11.7(b). 

For an open curve, the 
number of segments 
of an exact polygonal 
approximation is equal 
to the number of points 
minus 1.
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Figure 11.8(a) shows this shape in dark gray. Suppose that we traverse the bound-
ary of the dark gray region in a counterclockwise direction. Every turn encountered 
in the traversal will be either a convex or a concave vertex (the angle of a vertex is 
defined as an interior angle of the boundary at that vertex). Convex and concave 
vertices are shown, respectively, as white and blue dots in Fig. 11.8(b). Note that 
these vertices are the vertices of the inner wall of the light-gray bounding region in 
Fig. 11.8(b), and that every concave (blue) vertex in the dark gray region has a corre-
sponding concave “mirror” vertex in the light gray wall, located diagonally opposite 
the vertex. Figure 11.8(c) shows the mirrors of all the concave vertices, with the MPP 
from Fig. 11.7(c) superimposed for reference. We see that the vertices of the MPP 
coincide either with convex vertices in the inner wall (white dots) or with the mir-
rors of the concave vertices (blue dots) in the outer wall. Only convex vertices of the 
inner wall and concave vertices of the outer wall can be vertices of the MPP.  Thus, 
our algorithm needs to focus attention only on those vertices.

MPP Algorithm

The set of cells enclosing a digital boundary [e.g., the gray cells in Fig. 11.7(b)] is 
called a cellular complex. We assume the cellular complexes to be simply connected, 
in the sense the boundaries they enclose are not self-intersecting. Based on this 
assumption, and letting white (W) denote convex vertices, and blue (B) denote mir-
rored concave vertices, we state the following observations:

1. The MPP bounded by a simply connected cellular complex is not self-intersecting.

2. Every convex vertex of the MPP is a W vertex, but not every W vertex of a bound-
ary is a vertex of the MPP.

A convex vertex is the 
center point of a triplet 
of points that define an 
angle in the range  
0° < u < 180°. Similarly, 
angles of a concave  
vertex are in the range  
180° < u < 360°. An 
angle of 180° defines a 
degenerate vertex (i.e., 
segment of a straight 
line), which cannot be an 
MPP-vertex.

ba c
FIGURE 11.7 (a) An object boundary. (b) Boundary enclosed by cells (shaded). (c) Minimum-perimeter polygon 
obtained by allowing the boundary to shrink. The vertices of the polygon are created by the corners of the inner 
and outer walls of the gray region.
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3. Every mirrored concave vertex of the MPP is a B vertex, but not every B vertex 
of a boundary is a vertex of the MPP.

4. All B vertices are on or outside the MPP, and all W vertices are on or inside the 
MPP.

5. The uppermost-leftmost vertex in a sequence of vertices contained in a cellular 
complex is always a W vertex of the MPP (see Problem 11.8).

These assertions can be proved formally (Sklansky et al. [1972], Sloboda et al. [1998], 
and Klette and Rosenfeld [2004]). However, their correctness is evident for our pur-
poses (see Fig. 11.8), so we do not dwell on the proofs here. Unlike the angles of the 
vertices of the dark gray region in Fig. 11.8, the angles sustained by the vertices of 
the MPP are not necessarily multiples of 90°.

In the discussion that follows, we will need to calculate the orientation of triplets 
of points. Consider a triplet of points, a b c, , ,( )  and let the coordinates of these points 
be a a ax y= ( , ), b b bx y= ( , ), and c c cx y= ( , ). If we arrange these points as the rows of 
the matrix

 A =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a a

b b

c c

x y

x y

x y

1

1

1

 (11-1)

Direction of travel

ba c

FIGURE 11.8 (a) Region (dark gray) resulting from enclosing the original boundary by cells (see Fig. 11.7). (b) Convex 
(white dots) and concave (blue dots) vertices obtained by following the boundary of the dark gray region in the 
counterclockwise direction. (c) Concave vertices (blue dots) displaced to their diagonal mirror locations in the 
outer wall of the bounding region; the convex vertices are not changed. The MPP (solid boundary) is superimposed 
for reference.
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Then, it follows from matrix analysis that

 det( )

( , , )

A =
> 0

0

if  is a counterclockwise sequence

if the 

a b c

ppoints are colinear

if  is a clockwise sequence<

⎧
⎨

0 ( , , )a b c

⎪⎪

⎩⎪
 (11-2)

where det( )A  is the determinant of A. In terms of this equation, movement in a 
counterclockwise or clockwise direction is with respect to a right-handed coordinate 
system (see the footnote in the discussion of Fig. 2.19). For example, using the image 
coordinate system from Fig. 2.19 (in which the origin is at the top left, the positive 
x-axis extends vertically downward, and the positive y-axis extends horizontally to 
the right), the sequence a = ( , ),3 4  b = ( , ),2 3  and c = ( , )3 2  is in the counterclockwise 
direction. This would give det( )A > 0 when substituted into Eq. (11-2). It is conve-
nient when describing the algorithm to define

 sgn( , , ) det( )a b c ≡ A  (11-3)

so that sgn( , , )a b c > 0 for a counterclockwise sequence, sgn( , , )a b c < 0 for a clock-
wise sequence, and sgn( , , )a b c = 0 when the points are collinear. Geometrically, 
sgn( , , )a b c > 0 indicates that point c lies on the positive side of pair ( , )a b  (i.e., c lies on 
the positive side of the line passing through points a and b). Similarly, if sgn( , , ) ,a b c < 0  
point c lies on the negative side of the line. Equations (11-2) and (11-3) give the same 
result if the sequence ( , , )c a b  or ( , , )b c a  is used because the direction of travel in the 
sequence is the same as for ( , , ).a b c  However, the geometrical interpretation is differ-
ent. For example, sgn( , , )c a b > 0 indicates that point b lies on the positive side of the 
line through points c and a.

To prepare the data for the MPP algorithm, we form a list of triplets consisting 
of a vertex label (e.g., V0 , V1, etc.); the coordinates of each vertex; and an additional 
element denoting whether the vertex is W or B. It is important that the concave ver-
tices be mirrored, as in Fig. 11.8(c), that the vertices be in sequential order,† and that 
the first vertex be the uppermost-leftmost vertex, which we know from property 5 
is a W vertex of the MPP.  Let V0 denote this vertex. We assume that the vertices are 
arranged in the counterclockwise direction. The algorithm for finding MPPs uses 
two “crawler” points: a white crawler ( )WC  and a blue crawler ( ).BC  WC  crawls along 
the convex (W) vertices, and BC  crawls along the concave (B) vertices. These two 
crawler points, the last MPP vertex found, and the vertex being examined are all that 
is necessary to implement the algorithm.

The algorithm starts by setting W B VC C= = 0 (recall that V0 is an MPP-vertex). 
Then, at any step in the algorithm, let VL  denote the last MPP vertex found, and let 
Vk  denote the current vertex being examined. One of the following three conditions 
can exist between VL , Vk , and the two crawler points:

†  Vertices of a boundary can be ordered by tracking the boundary using the boundary-following algorithm 
discussed earlier. 
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(a) Vk  is on the positive side of the line through the pair of points ( , ),V WL C  in which 
case sgn , , .V W VL C k( ) > 0

(b) Vk  is on the negative side of the line though pair V WL C,( )  or is collinear with 
it; that is sgn , , .V W VL C k( ) ≤ 0  Simultaneously, Vk  lies to the positive side of the 
line through V BL C,( )  or is collinear with it; that is, sgn , , .V B VL C k( ) ≥ 0

(c) Vk  is on the negative side of the line though pair V BL C, ,( )  in which case 
sgn , , .V B VL C k( ) < 0

If condition (a) holds, the next MPP vertex is WC , and we let V WL C= ; then we 
reinitialize the algorithm by setting W B VC C L= = ,  and start with the next vertex 
after the newly changed VL.

If condition (b) holds, Vk  becomes a candidate MPP vertex. In this case, we set 
W VC k=  if Vk  is convex (i.e., it is a W vertex); otherwise we set B VC k= . We then 
continue with the next vertex in the list.

If condition (c) holds, the next MPP vertex is BC  and we let V BL C= ; then we 
reinitialize the algorithm by setting W B VC C L= =  and start with the next vertex 
after the newly changed VL.

The algorithm stops when it reaches the first vertex again, and thus has processed 
all the vertices in the polygon. The VL  vertices found by the algorithm are the ver-
tices of the MPP. Klette and Rosenfeld [2004] have proved that this algorithm finds 
all the MPP vertices of a polygon enclosed by a simply connected cellular complex.

EXAMPLE 11.2 :  A numerical example showing the details of how the MPP algorithm works.

A simple example in which we can follow the algorithm step-by-step will help clarify the preceding con-
cepts. Consider the vertices in Fig. 11.8(c). In our image coordinate system, the top-left point of the grid 
is at coordinates ( , ).0 0  Assuming unit grid spacing, the first few (counterclockwise) vertices are:

 V W V B V W V B V W V W V0 1 2 3 4 5 61 4 2 3 3 3 3 2 4 1 7 1 8( , ) ( , ) ( , ) ( , ) ( , ) ( , ) (⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,, ) ( , )2 9 27B V B⏐

where the triplets are separated by vertical lines, and the B vertices are mirrored, as required by the 
algorithm.

The uppermost-leftmost vertex is always the first vertex of the MPP, so we start by letting VL  and V0 
be equal, V VL = =0 1 4( , ), and initializing the other variables: W B VC C L= = = ( )1 4, . 

The next vertex is V1 2 3= ( ), . In this case we have sgn , ,V W VL C 1 0( ) =  and sgn , , ,V B VL C 1 0( ) =  so 
condition (b) holds. Because V1  is a B (concave) vertex, we update the blue crawler: B VC = = ( )1 2 3, . At 
this stage, we have VL = ( , ),1 4  WC = ( , ),1 4  and BC = ( , ).2 3  

Next, we look at V2 3 3= ( ), . In this case, sgn , , ,V W VL C 2 0( ) =  and sgn , , ,V B VL C 2 1( ) =  so condition (b) 
holds. Because V2 is W, we update the white crawler: WC = ( , ).3 3

The next vertex is V3 = ( )3 2, . At this junction we have VL = ( , ),1 4  WC = ( , ),3 3  and BC = ( , ).2 3  Then, 
sgn , ,V W VL C 3 2( ) = −  and sgn , , ,V B VL C 3 0( ) =  so condition (b) holds again. Because V3 is B, we let 
B VC = =3 4 3( , ) and look at the next vertex.

The next vertex is V4 4 1= ( ), . We are working with VL = ( , ),1 4 WC = ( , ),3 3  and BC = ( , ).3 2  The values 
of sgn are sgn( , , )V W VL C 4 3= −  and sgn( , , ) .V B VL C 4 0=  So, condition (b) holds yet again, and we let 
W VC = =4 4 1( , ) because V4  is a W vertex.
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The next vertex is V5 7 1= ( , ). Using the values from the previous step we obtain sgn( , , ) ,V W VL C 5 9=  
so condition (a) is satisfied. Therefore, we let V WL C= = ( , )4 1  (this is V4 ) and reinitialize: 
B W VC C L= = = ( , ).4 1  Note that once we knew that sgn( , , )V W VL C 5 0>  we did not bother to compute 
the other sgn expression. Also, reinitialization means that we start fresh again by examining the next 
vertex following the newly found MPP vertex. In this case, that next vertex is V5, so we visit it again.

With V5 7 1= ( ), , and using the new values of VL , WC ,  and BC ,  it follows that sgn , ,V W VL C 5 0( ) =  and 
sgn , , ,V B VL C 5 0( ) =  so condition (b) holds. Therefore, we let W VC = = ( )5 7 1,  because V5 is a W vertex.

The next vertex is V6 8 2= ( ),  and sgn , , ,V W VL C 6 3( ) =  so condition (a) holds. Thus, we let 
V WL C= = ( )7 1,  and reinitialize the algorithm by setting W B VC C L= = .

Because the algorithm was reinitialized at V5, the next vertex is V6 8 2= ( , ) again. Using the results 
from the previous step gives us sgn( , , )V W VL C 6 0=  and sgn( , , ) ,V B VL C 6 0=  so condition (b) holds this 
time. Because V6 is B we let B VC = =6 8 2( , ).

Summarizing, we have found three vertices of the MPP up to this point: V1 1 4= ( , ), V4 4 1= ( , ), and 
V5 7 1= ( , ). Continuing as above with the remaining vertices results in the MPP vertices in Fig. 11.8(c) 
(see Problem 11.9). The mirrored B vertices at (2, 3), (3, 2), and on the lower-right side at (13, 10), are on 
the boundary of the MPP. However, they are collinear and thus are not considered vertices of the MPP. 
Appropriately, the algorithm did not detect them as such.

EXAMPLE 11.3 :  Applying the MPP algorithm.

Figure 11.9(a) is a 566 566×  binary image of a maple leaf, and Fig. 11.9(b) is its 8-connected boundary. 
The sequence in Figs. 11.9(c) through (h) shows MMP representations of this boundary using square 
cellular complex cells of sizes 2, 4, 6, 8, 16, and 32, respectively (the vertices in each figure were con-
nected with straight lines to form a closed boundary). The leaf has two major features: a stem and three 
main lobes. The stem begins to be lost for cell sizes greater than 4 4× , as Fig. 11.9(e) shows. The three 
main lobes are preserved reasonably well, even for a cell size of 16 16× , as Fig. 11.9(g) shows. However, 
we see in Fig. 11.8(h) that by the time the cell size is increased to 32 32× , this distinctive feature has 
been nearly lost.

The number of points in the original boundary [Fig. 11.9(b)] is 1900. The numbers of vertices in 
Figs. 11.9(c) through (h) are 206, 127, 92, 66, 32, and 13, respectively. Figure 11.9(e), which has 127 ver-
tices, retained all the major features of the original boundary while achieving a data reduction of over 
90%. So here we see a significant advantage of MMPs for representing a boundary. Another important 
advantage is that MPPs perform boundary smoothing. As explained in the previous section, this is a 
usual requirement when representing a boundary by a chain code.

SIGNATURES

A signature is a 1-D functional representation of a 2-D boundary and may be gener-
ated in various ways. One of the simplest is to plot the distance from the centroid 
to the boundary as a function of angle, as illustrated in Fig. 11.10. The basic idea of 
using signatures is to reduce the boundary representation to a 1-D function that 
presumably is easier to describe than the original 2-D boundary.

Based on the assumptions of uniformity in scaling with respect to both axes, and 
that sampling is taken at equal intervals of u, changes in the size of a shape result 
in changes in the amplitude values of the corresponding signature. One way to 
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normalize for this is to scale all functions so that they always span the same range of 
values, e.g., [ , ].0 1  The main advantage of this method is simplicity, but it has the dis-
advantage that scaling of the entire function depends on only two values: the mini-
mum and maximum. If the shapes are noisy, this can be a source of significant error 
from object to object. A more rugged (but also more computationally intensive) 
approach is to divide each sample by the variance of the signature, assuming that 
the variance is not zero—as in the case of Fig. 11.10(a)—or so small that it creates 
computational difficulties. Using the variance yields a variable scaling factor that 
is inversely proportional to changes in size and works much as automatic volume 
control does. Whatever the method used, the central idea is to remove dependency 
on size while preserving the fundamental shape of the waveforms.

Distance versus angle is not the only way to generate a signature. For example, 
another way is to traverse the boundary and, corresponding to each point on the 
boundary, plot the angle between a line tangent to the boundary at that point and a 
reference line. The resulting signature, although quite different from the r( )u  curves 
in Fig. 11.10, carries information about basic shape characteristics. For instance, 
horizontal segments in the curve correspond to straight lines along the boundary 
because the tangent angle is constant there. A variation of this approach is to use 
the so-called slope density function as a signature. This function is a histogram of 

ba dc
f he g

FIGURE 11.9 (a) 566 566×  binary image. (b) 8-connected boundary. (c) through (h), MMPs obtained using square cells 
of sizes 2, 4, 6, 8, 16, and 32, respectively (the vertices were joined by straight-line segments for display). The number 
of boundary points in (b) is 1900. The numbers of vertices in (c) through (h) are 206, 127, 92, 66, 32, and 13, respec-
tively. Images (b) through (h) are shown as negatives to make the boundaries easier to see.
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tangent-angle values. Because a histogram is a measure of the concentration of val-
ues, the slope density function responds strongly to sections of the boundary with 
constant tangent angles (straight or nearly straight segments) and has deep valleys 
in sections producing rapidly varying angles (corners or other sharp inflections).

EXAMPLE 11.4 :   Signatures of two regions.

Figures 11.11(a) and (d) show two binary objects, and Figs. 11.11(b) and (e) are their boundaries. The 
corresponding r( )u  signatures in Figs. 11.11(c) and (f) range from 0° to 360° in increments of 1°. The 
number of prominent peaks in the signatures is sufficient to differentiate between the shapes of the two 
objects.

SKELETONS, MEDIAL AXES, AND DISTANCE TRANSFORMS

Like boundaries, skeletons are related to the shape of a region. Skeletons can be 
computed from a boundary by filling the area enclosed by the boundary with fore-
ground values, and treating the result as a binary region. In other words, a skeleton is 
computed using the coordinates of points in the entire region, including its boundary. 
The idea is to reduce a region to a tree or graph by computing its skeleton. As we 
explained in Section 9.5 (see Fig. 9.25), the skeleton of a region is the set of points in 
the region that are equidistant from the border of the region. 

The skeleton is obtained using one of two principal approaches: (1) by succes-
sively thinning the region (e.g., using morphological erosion) while preserving end 
points and line connectivity (this is called topology-preserving thinning); or (2) 
by computing the medial axis of the region via an efficient implementation of the 
medial axis transform (MAT) proposed by Blum [1967]. We discussed thinning in 
Section 9.5. The MAT of a region R with border B is as follows: For each point p in 
R, we find its closest neighbor in B. If p has more than one such neighbor, it is said 

As is true of thinning, 
the MAT is highly 
susceptible to boundary 
and internal region 
irregularities, so smooth-
ing and other preprocess-
ing steps generally are 
required to obtain a 
clean a binary image.
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FIGURE 11.10
Distance-versus-
angle signatures. 
In (a), r( )u  is  
constant. In (b), 
the signature  
consists of 
repetitions of 
the pattern 
r Au u( ) = sec  for 
0 4≤ ≤u p , and 
r Au u( ) = csc  for 
p u p4 2< ≤ .
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to belong to the medial axis of R. The concept of “closest” (and thus the resulting 
MAT) depends on the definition of a distance metric (see Section 2.5). Figure 11.12 
shows some examples using the Euclidean distance. If the Euclidean distance is used, 
the resulting skeleton is the same as what would be obtained by using the maximum 
disks from Section 9.5. The skeleton of a region is defined as its medial axis.

The MAT of a region has an intuitive interpretation based on the “prairie fire” 
concept discussed in Section 11.3 (see Fig. 11.15). Consider an image region as a 
prairie of uniform, dry grass, and suppose that a fire is lit simultaneously along all 
the points on its border. All fire fronts will advance into the region at the same speed. 
The MAT of the region is the set of points reached by more than one fire front at 
the same time.

In general, the MAT comes considerably closer than thinning to producing skel-
etons that “make sense.” However, computing the MAT of a region requires cal-
culating the distance from every interior point to every point on the border of the 
region—an impractical endeavor in most applications. Instead, the approach is to 
obtain the skeleton equivalently from the distance transform, for which numerous 
efficient algorithms exist.

 The distance transform of a region of foreground pixels in a background of zeros 
is the distance from every pixel to the nearest nonzero valued pixel. Figure 11.13(a) 
shows a small binary image, and Fig. 11.13(b) is its distance transform. Observe that 
every 1-valued pixel has a distance transform value of 0 because its closest nonzero 
valued pixel is itself. For the purpose of finding skeletons equivalent to the MAT, 
we are interested in the distance from the pixels of a region of foreground (white) 

ba c
ed f

FIGURE 11.11
(a) and (d) Two 
binary regions,  
(b) and (e) their  
external  
boundaries, and 
(c) and (f) their 
corresponding r( )u  
signatures. The 
horizontal axes 
in (c) and (f) cor-
respond to angles 
from 0° to 360°, in 
increments of 1°.
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pixels to their nearest background (zero) pixels, which constitute the region bound-
ary. Thus, we compute the distance transform of the complement of the image, as 
Figs. 11.13(c) and (d) illustrate. By comparing Figs. 11.13(d) and 11.12(a), we see 
in the former that the MAT (skeleton) is equivalent to the ridge of the distance 
transform [i.e., the ridge in the image in Fig. 11.13(d)]. This ridge is the set of local 
maxima [shown bold in Fig. 11.13(d)]. Figures 11.13(e) and (f) show the same effect 
on a larger ( )414 708×  binary image. 

Finding approaches for computing the distance transform efficiently has been a 
topic of research for many years. Numerous approaches exist that can compute the 
distance transform with linear time complexity, O K( ), for a binary image with K 
pixels. For example, the algorithm by Maurer et al. [2003] not only can compute the 
distance transform in O K( ), it can compute it in O K P( ) using P processors.

1.41   1    1    1   1.41
   1      0    0    0     1
   1      0    0    0     1
1.41   1    1    1    1.41

0     0     0     0     0     0     0     0     0
0     1     1     1     1     1     1     1     0
0     1     2     2     2     2     2     1     0
0     1     2     3     3     3     2     1     0
0     1     2     2     2     2     2     1     0
0     1     1     1     1     1     1     1     0
0     0     0     0     0     0     0     0     0

0      0      0      0      0 
0      1      1      1      0 
0      1      1      1      0 
0      0      0      0      0 

 0     0     0     0     0     0     0     0     0
 0     1     1     1     1     1     1     1     0
 0     1     1     1     1     1     1     1     0
 0     1     1     1     1     1     1     1     0
 0     1     1     1     1     1     1     1     0
 0     1     1     1     1     1     1     1     0
 0     0     0     0     0     0     0     0     0

ba
dc
fe

FIGURE 11.13
(a) A small  
image and (b) its 
distance  
transform. Note 
that all 1-valued 
pixels in (a) have 
corresponding 
0’s in (b). (c) A 
small image, and 
(d) the distance 
transform of its 
complement. (e) A 
larger image, and 
(f) the distance 
transform of its 
complement. The 
Euclidian distance 
was used through-
out.

ba c  
FIGURE 11.12
Medial axes 
(dashed) of three 
simple regions.
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EXAMPLE 11.5 :  Skeletons obtained using thinning and pruning vs. the distance transform.

Figure 11.14(a) shows a segmented image of blood vessels, and Fig. 11.14(b) shows the skeleton obtained 
using morphological thinning. As we discussed in Chapter 9, thinning is characteristically accompanied 
by spurs, which certainly is the case here. Figure 11.14(c) shows the result of forty passes of spur removal. 
With the exception of the few small spurs visible on the bottom left of the image, pruning did a reason-
able job of cleaning up the skeleton. One drawback of thinning is the loss of potentially important 
features. This was not the case here, except the pruned skeleton does not cover the full expanse of the 
image. Figure 11.14(c) shows the skeleton obtained using distance transform computations based on fast 
marching (see Lee et al. [2005] and Shi and Karl [2008]). The way the algorithm we used implements 
branch generation handles ambiguities such as spurs automatically. 

The result in Fig. 11.14(d) is slightly superior to the result in Fig. 11.14(c), but both skeletons certainly 
capture the important features of the image in this case. A key advantage of the thinning approach 
is simplicity of implementation, which can be important in dedicated applications. Overall, distance-
transform formulations tend to produce skeletons less prone to discontinuities, but overcoming the 
computational burden of the distance transform results in implementations that are considerably more 
complex than thinning.

11.3  BOUNDARY FEATURE DESCRIPTORS  

We begin our discussion of feature descriptors by considering several fundamental 
approaches for describing region boundaries. 

11.3

ba
dc  

FIGURE 11.14  
(a) Thresholded 
image of blood 
vessels.  
(b) Skeleton 
obtained by  
thinning, shown  
superimposed 
on the image 
(note the spurs). 
(c) Result of 40 
passes of spur 
removal.  
(d) Skeleton 
obtained using the 
distance  
transform.
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SOME BASIC BOUNDARY DESCRIPTORS 

The length of a boundary is one of its simplest descriptors. The number of pixels 
along a boundary is an approximation of its length. For a chain-coded curve with 
unit spacing in both directions, the number of vertical and horizontal components 
plus 2  multiplied by the number of diagonal components gives its exact length. If 
the boundary is represented by a polygonal curve, the length is equal to the sum of 
the lengths of the polygonal segments. 

The diameter of a boundary B is defined as

 diameter B D p p
i j i j( ) max ,
,

= ( )⎡⎣ ⎤⎦  (11-4)

where D is a distance measure (see Section 2.5) and pi  and pj  are points on the 
boundary. The value of the diameter and the orientation of a line segment connect-
ing the two extreme points that comprise the diameter is called the major axis (or 
longest chord) of the boundary. That is, if the major axis is defined by points ( , )x y1 1  
and ( , ),x y2 2  then the length and orientation of the major axis are given by

 length x x y ym = − + −⎡⎣ ⎤⎦( ) ( )2 1
2

2 1
2 1 2

 (11-5)

and

 angle
y y
x xm = −

−
⎡

⎣
⎢

⎤

⎦
⎥

−tan 1 2 1

2 1

The minor axis (also called the longest perpendicular chord) of a boundary is defined 
as the line perpendicular to the major axis, and of such length that a box passing 
through the outer four points of intersection of the boundary with the two axes com-
pletely encloses the boundary. The box just described is called the basic rectangle or 
bounding box, and the ratio of the major to the minor axis is called the eccentricity 
of the boundary. We give some examples of this descriptor in Section 11.4. 

The curvature of a boundary is defined as the rate of change of slope. In general, 
obtaining reliable measures of curvature at a point of a raw digital boundary is dif-
ficult because these boundaries tend to be locally “ragged.” Smoothing can help, but 
a more rugged measure of curvature is to use the difference between the slopes of 
adjacent boundary segments that have been represented as straight lines. Polygonal 
approximations are well-suited for this approach [see Fig. 11.8(c)], in which case we 
are concerned only with curvature at the vertices. As we traverse the polygon in the 
clockwise direction, a vertex point p is said to be convex if the change in slope at p 
is nonnegative; otherwise, p is said to be concave. The description can be refined 
further by using ranges for the changes of slope. For instance, p could be labeled as 
part of a nearly straight line segment if the absolute change of slope at that point is 
less than 10°, or it could be labeled as “corner-like” point if the absolute change is 
in the range 90°, ± °30 . 

Descriptors based on changes of slope can be formulated easily by expressing a 
boundary in the form of a slope chain code (SSC), as discussed earlier (see Fig. 11.6). 
A particularly useful boundary descriptor that is easily implemented using SSCs is 
tortuosity, a measure of the twists and turns of a curve. The tortuosity, t, of a curve 

The major and minor 
axes are used also as 
regional descriptors.

We will discuss corners 
in detail later in this 
chapter.
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represented by an SCC is defined as the sum of the absolute values of the chain ele-
ments:

 t =
=
∑ ai
i

n

1

 (11-6)

where n is the number of elements in the SCC, and ai  are the values (slope changes) 
of the elements in the code. The next example illustrates one use of this descriptor

EXAMPLE 11.6 :  Using slope chain codes to describe tortuosity.

An important measures of blood vessel morphology is its tortuosity. This metric can assist in the computer-   
aided diagnosis of Retinopathy of Prematurity (ROP), an eye disease that affects babies born prema-
turely (Bribiesca [2013]). ROP causes abnormal blood vessels to grow in the retina (see Section 2.1). This 
growth can cause the retina to detach from the back of the eye, potentially leading to blindness.

Figure 11.15(a) shows an image of the retina (called a fundus image) from a newborn baby. Ophthal-
mologists diagnose and make decisions about the initial treatment of ROP based on the appearance of 
retinal blood vessels. Dilatation and increased tortuosity of the retinal vessels are signs of highly prob-
able ROP. Blood vessels denoted A, B, and C in Fig. 11.15 were selected to demonstrate the discrimi-
native potential of SCCs for quantifying tortuosity (each vessel shown is a long, thin region, not a line 
segment).

The border of each vessel was extracted and its length (number of pixels), P, was calculated. To make 
SCC comparisons meaningful, the three boundaries were normalized so that each would have the same 
number, m, of straight-line segments. The length, L, of the line segment was then computed as L m P= . 
It follows that the number of elements of each SCC is m − 1. The tortuosity, t, of a curve represented by 
an SCC is defined as the sum of the absolute values of the chain elements, as noted in Eq. (11-6).

The table in Fig. 11.15(b) shows values of t  for vessels A, B, and C based on 51 straight-line segments 
(as noted above, n m= − 1). The values of tortuosity are in agreement with our visual analysis of the 
three vessels, showing B as being slightly “busier” than A, and C as having the fewest twists and turns.

ba  
FIGURE 11.15
(a) Fundus image 
from a prematurely 
born baby with ROP. 
(b) Tortuosity of 
vessels A, B, and C. 
(Courtesy of  
Professor Ernesto 
Bribiesca, IIMAS-
UNAM, Mexico.)
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SHAPE NUMBERS
The shape  number of a Freeman chain-coded boundary, based on the 4-directional 
code of Fig. 11.3(a), is defined as the first difference of smallest magnitude. The order, 
n, of a shape number is defined as the number of digits in its representation. More-
over, n is even for a closed boundary, and its value limits the number of possible 
different shapes. Figure 11.16 shows all the shapes of order 4, 6, and 8, along with 
their chain-code representations, first differences, and corresponding shape numbers. 
Although the first difference of a 4-directional chain code is independent of rotation 
(in increments of 90°), the coded boundary in general depends on the orientation of 
the grid. One way to normalize the grid orientation is by aligning the chain-code grid 
with the sides of the basic rectangle defined in the previous section.

In practice, for a desired shape order, we find the rectangle of order n whose 
eccentricity (defined in Section 11.4) best approximates that of the basic rectangle, 
and use this new rectangle to establish the grid size. For example, if n = 12, all the 
rectangles of order 12 (that is, those whose perimeter length is 12) are of sizes 
2 4× ,  3 3× , and 1 5× . If the eccentricity of the 2 4×  rectangle best matches the 
eccentricity of the basic rectangle for a given boundary, we establish a 2 4×  grid 
centered on the basic rectangle and use the procedure outlined in Section 11.2 to 
obtain the Freeman chain code. The shape number follows from the first differ-
ence of this code. Although the order of the resulting shape number usually equals 
n because of the way the grid spacing was selected, boundaries with depressions 
comparable to this spacing sometimes yield shape numbers of order greater than n. 
In this case, we specify a rectangle of order lower than n, and repeat the procedure 
until the resulting shape number is of order n. The order of a shape number starts 
at 4 and is always even because we are working with 4-connectivity and require that 
boundaries be closed.

As explained  
Section 11.2, the first dif-
ference of smallest mag-
nitude makes a Freeman 
chain code independent 
of the starting point, and 
is insensitive to rotation 
in increments of 90° if a 
4-directional code is used.

Order 4

Chain code: 0  3  2  1

Difference: 3  3  3  3

Shape no.: 3  3  3  3

Order 6

0  0  3  2  2  1

3  0  3  3  0  3

0  3  3  0  3  3

Order 8

Chain code: 0  0  3  3  2  2  1  1 0  3  0  3  2  2  1  1 0  0  0  3  2  2  2  1

Difference: 3  0  3  0  3  0  3  0 3  3  1  3  3  0  3  0 3  0  0  3  3  0  0  3

Shape no.: 0  3  0  3  3  1  3  3 0  0  3  3  0  0  3  30  3  0  3  0  3  0  3

FIGURE 11.16
All shapes of 
order 4, 6, and 8. 
The directions are 
from Fig. 11.3(a), 
and the dot  
indicates the  
starting point.
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EXAMPLE 11.7 :  Computing shape numbers.

Suppose that n = 18  is specified for the boundary in Fig. 11.17(a). To obtain a shape number of this order 
we follow the steps just discussed. First, we find the basic rectangle, as shown in Fig. 11.17(b). Next we find 
the closest rectangle of order 18. It is a 3 6×  rectangle, requiring the subdivision of the basic rectangle 
shown in Fig. 11.17(c). The chain-code directions are aligned with the resulting grid. The final step is to 
obtain the chain code and use its first difference to compute the shape number, as shown in Fig. 11.17(d).

FOURIER DESCRIPTORS

Figure 11.18 shows a digital boundary in the xy-plane, consisting of K points. Starting 
at an arbitrary point x y0 0, ,( )  coordinate pairs x y x y x y x yK K0 0 1 1 2 2 1 1, , , , , , , ,( ) ( ) ( ) ( )− −…  
are encountered in traversing the boundary, say, in the counterclockwise direction. 
These coordinates can be expressed in the form x k xk( ) =  and y k yk( ) = . Using 
this notation, the boundary itself can be represented as the sequence of coordinates 
s k x k y k( ) = ( ) ( )⎡⎣ ⎤⎦,  for k K= −0 1 2 1, , , , .…  Moreover, each coordinate pair can be 
treated as a complex number so that

 s k x k jy k( ) = ( ) + ( )  (11-7)

for k K= −0 1 2 1, , , , .…  That is, the x-axis is treated as the real axis and the y-axis as 
the imaginary axis of a sequence of complex numbers. Although the interpretation 

We use the “conven-
tional” axis system here 
for consistency with the 
literature. However, the 
same result is obtained 
if we use the book 
image coordinate system 
whose origin is at the 
top left because both are 
right-handed coordinate 
systems (see Fig. 2.19). In 
the latter, the rows and 
columns represent the 
real and imaginary parts 
of the complex number. 

Chain code: 0  0  0  0  3  0  0  3  2  2  3  2  2  2  1  2  1  1

Difference: 3  0  0  0  3  1  0  3  3  0  1  3  0  0  3  1  3  0

Shape no.: 0  0  0  3  1  0  3  3  0  1  3  0  0  3  1  3  0  3

1

3
0

2

ba
dc

FIGURE 11.17
Steps in the  
generation of a 
shape number.
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of the sequence was restated, the nature of the boundary itself was not changed. 
Of course, this representation has one great advantage: It reduces a 2-D to a 1-D 
description problem.

We know from Eq. (4-44) that the discrete Fourier transform (DFT) of s k( ) is

 a u s k e
k

K
j uk K( ) = ( )

=
∑

0

1
2

–
– p  (11-8)

for u K= −0 1 2 1, , , , .…  The complex coefficients a u( )  are called the Fourier descrip-
tors of the boundary. The inverse Fourier transform of these coefficients restores 
s k( ). That is, from Eq. (4-45),

 s k
K

a u e
u

K
j uk K( ) = ( )

=
∑1

0

1
2

–
p  (11-9)

for k K= −0 1 2 1, , , , .…  We know from Chapter 4 that the inverse is identical to the 
original input, provided that all the Fourier coefficients are used in Eq. (11-9). How-
ever, suppose that, instead of all the Fourier coefficients, only the first P coefficients 
are used. This is equivalent to setting a u( ) = 0 for u P> – 1 in Eq. (11-9). The result 
is the following approximation to s k( ) :

 ˆ
–

s k
K

a u e
u

P
j uk K( ) = ( )

=
∑1

0

1
2p  (11-10)

for k K= −0 1 2 1, , , , .…  Although only P terms are used to obtain each component 
of ˆ ,s k( )  parameter k still ranges from 0 to K – .1  That is, the same number of points 
exists in the approximate boundary, but not as many terms are used in the recon-
struction of each point. 

Deleting the high-frequency coefficients is the same as filtering the transform 
with an ideal lowpass filter. You learned in Chapter 4 that the periodicity of the 
DFT requires that we center the transform prior to filtering it by multiplying it by 
( ) .−1 x  Thus, we use this procedure when implementing Eq. (11-8), and use it again 

jy

x
x0

y0
y1

x1

Real axis

Im
ag

in
ar

y 
ax

is

FIGURE 11.18
A digital  
boundary and its  
representation 
as sequence of 
complex numbers. 
The points ( , )x y0 0  
and ( , )x y1 1  are 
(arbitrarily) the 
first two points in 
the sequence.
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to reverse the centering when computing the inverse in Eq. (11-10). Because of 
symmetry considerations in the DFT, the number of points in the boundary and its 
inverse must be even. This implies that the number of coefficients removed (set to 0) 
before the inverse is computed must be even. Because the transform is centered, we 
set to 0 half the number of coefficients on each end of the transform to preserve 
symmetry. Of course, the DFT and its inverse are computed using an FFT algorithm.

Recall from discussions of the Fourier transform in Chapter 4 that high-frequency 
components account for fine detail, and low-frequency components determine over-
all shape. Thus, the smaller we make P in Eq. (11-10), the more detail that will be lost 
on the boundary, as the following example illustrates. 

EXAMPLE 11.8 :  Using Fourier descriptors.

Figure 11.19(a) shows the boundary of a human chromosome, consisting of 2868 points. The correspond-
ing 2868 Fourier descriptors were obtained using Eq. (11-8). The objective of this example is to examine 
the effects of reconstructing the boundary using fewer Fourier descriptors. Figure 11.19(b) shows the 
boundary reconstructed using one-half of the 2868 descriptors in Eq. (11-10). Observe that there is no 
perceptible difference between this boundary and the original. Figures 11.19(c) through (h) show the 
boundaries reconstructed with the number of Fourier descriptors being 10%, 5%, 2.5%, 1.25%, 0.63% 
and 0.28% of 2868, respectively. When rounded to the nearest even integer, these percentages are equal 
to 286, 144, 72, 36, 18, and 8 descriptors, respectively. The important point is that 18 descriptors, a mere 
six-tenths of one percent of the original 2868 descriptors, were sufficient to retain the principal shape 
features of the original boundary: four long protrusions and two deep bays. Figure 11.19(h), obtained 
with 8 descriptors, is unacceptable because the principal features are lost. Further reductions to 4 and 2 
descriptors would result in an ellipse and a circle, respectively (see Problem 11.18).

As the preceding example demonstrates, a few Fourier descriptors can be used 
to capture the essence of a boundary. This property is valuable, because these coef-
ficients carry shape information. Thus, forming a feature vector from these coef-
ficients can be used to differentiate between boundary shapes, as we will discuss in 
Chapter 12.

We have stated several times that descriptors should be as insensitive as pos-
sible to translation, rotation, and scale changes. In cases where results depend on 
the order in which points are processed, an additional constraint is that descrip-
tors should be insensitive to the starting point. Fourier descriptors are not directly 
insensitive to these geometrical changes, but changes in these parameters can be 
related to simple transformations on the descriptors. For example, consider rotation 
and recall from basic mathematical analysis that rotation of a point by an angle u 
about the origin of the complex plane is accomplished by multiplying the point by 
e ju . Doing so to every point of s k( ) rotates the entire sequence about the origin. The 
rotated sequence is s k ej( ) u , whose Fourier descriptors are

 
a u s k e e

a u e

r
k

K
j j uk K

j

( ) = ( )

= ( )
=
∑

0

1
2

–
–u p

u

 (11-11)
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for u = −0 1 2 1, , , , .… K  Thus, rotation simply affects all coefficients equally by a 
multiplicative constant term e ju .

Table 11.1 summarizes the Fourier descriptors for a boundary sequence s k( ) that 
undergoes rotation, translation, scaling, and changes in the starting point. The sym-
bol Δxy  is defined as Δ = Δ + Δxy x j y, so the notation s k s kt xy( ) = ( ) + Δ  indicates 
redefining (translating) the sequence as

 s k x k x j y k yt ( ) = ( ) + Δ⎡⎣ ⎤⎦ + ( ) + Δ⎡⎣ ⎤⎦  (11-12)

Note that translation has no effect on the descriptors, except for u = 0, which has the 
value d( ).0  Finally, the expression s k s k kp ( ) = ( )– 0  means redefining the sequence 
as

 s k x k k jy k kp( ) = −( ) + −( )0 0  (11-13)

Recall from Chapter 4 
that the Fourier transform 
of a constant is an 
impulse located at the 
origin. Recall also that 
an impulse δ(u) is zero 
everywhere, except when 
u = 0.

ba dc
f he g

FIGURE 11.19 (a) Boundary of a human chromosome (2868 points). (b)–(h) Boundaries reconstructed using 1434, 
286, 144, 72, 36, 18, and 8 Fourier descriptors, respectively. These numbers are approximately 50%, 10%, 5%, 2.5%, 
1.25%, 0.63%, and 0.28% of 2868, respectively. Images (b)–(h) are shown as negatives to make the boundaries 
easier to see.
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which changes the starting point of the sequence from k = 0 to k k= 0. The last entry 
in Table 11.1 shows that a change in starting point affects all descriptors in a differ-
ent (but known) way, in the sense that the term multiplying a u( )  depends on u.

STATISTICAL MOMENTS

Statistical moments of one variable are useful descriptors applicable to 1-D rendi-
tions of 2-D boundaries, such as signatures. To see how this can be accomplished, 
consider Fig. 11.20 which shows the signature from Fig. 11.10(b) sampled, and treated 
as an ordinary discrete function g r( ) of one variable, r.

Suppose that we treat the amplitude of g  as a discrete random variable z and 
form an amplitude histogram p zi( ), i A= −0 1 2 1, , , , ,…  where A is the number of 
discrete amplitude increments in which we divide the amplitude scale. If p is normal-
ized so that the sum of its elements equals 1, then p zi( ) is an estimate of the prob-
ability of intensity value zi occurring. It then follows from Eq. (3-24) that the nth 
moment of z about its mean is

 mn i
i

A
n

iz z m p z( ) = ( ) ( )
=
∑ –

–

0

1

 (11-14)

where

 m z p zi
i

A

i= ( )
=
∑

0

1–

 (11-15)

As you know, m is the mean (average) value of z, and m2  is its variance. Gener-
ally, only the first few moments are required to differentiate between signatures of 
clearly distinct shapes.

We will discuss moments 
of two variable in  
Section 11.4.

Transformation Boundary Fourier Descriptor

Identity s k( ) a u( )
Rotation s k s k er

j( ) = ( ) u a u a u er
j( ) = ( ) u

Translation s k s kt xy( ) = ( ) + Δ a u a u ut xy( ) = ( ) + Δ ( )d

Scaling s k s ks ( ) = ( )a a u a us ( ) = ( )a

Starting point s k s k kp( ) = −( )0 a u a u ep
j k u K( ) = ( ) – 2 0p

TABLE 11.1
Some basic  
properties of  
Fourier  
descriptors.

r

g(r)FIGURE 11.20
Sampled  
signature from 
Fig. 11.10(b) treat-
ed as an ordinary, 
discrete function 
of one variable. 
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An alternative approach is to normalize the area of g r( ) in Fig. 11.20 to unity and 
treat it as a histogram. In other words, g ri( ) is now treated as the probability of value 
ri  occurring. In this case, r is treated as the random variable and the moments are

 mn i
i

K
n

ir r m g r( ) = ( ) ( )
=
∑ –

–

0

1

 (11-16)

where

 m r g ri
i

K

i= ( )
=
∑

0

1–

 (11-17)

In these equations, K is the number of points on the boundary, and mn r( ) is related 
directly to the shape of signature g r( ). For example, the second moment m2( )r  mea-
sures the spread of the curve about the mean value of r, and the third moment m3( )r  
measures its symmetry with respect to the mean.

Although moments are used frequently for characterizing signatures, they are not 
the only descriptors used for this purpose. For instance, another approach is to com-
pute the 1-D discrete Fourier transform of g r( ), obtain its spectrum, and use the first 
few components as descriptors. The advantage of moments over other techniques is 
that their implementation is straightforward and they also carry a “physical” inter-
pretation of signature (and by implication boundary) shape. The insensitivity of this 
approach to rotation follows from the fact that signatures are independent of rota-
tion, provided that the starting point is always the same along the boundary. Size 
normalization can be achieved by scaling the values of g and r.

11.4  REGION FEATURE DESCRIPTORS  

As we did with boundaries, we begin the discussion of regional features with some 
basic region descriptors.

SOME BASIC DESCRIPTORS

The major and minor axes of a region, as well as the idea of a bounding box, are 
as defined earlier for boundaries. The area of a region is defined as the number of 
pixels in the region. The perimeter of a region is the length of its boundary. When 
area and perimeter are used as descriptors, they generally make sense only when 
they are normalized (Example 11.9 shows such a use). A more frequent use of these 
two descriptors is in measuring compactness of a region, defined as the perimeter 
squared over the area:

 compactness = p
A

2

 (11-18)

This is a dimensionless measure that is 4p  for a circle (its minimum value) and 16 
for a square.

A similar dimensionless measure is circularity (also called roundness), defined as

 circularity = 4
2

pA
p

 (11-19)

11.4

Sometimes compactness 
is defined as the inverse of 
the circularity. Obviously, 
these two measures are 
closely related.

DIP4E_GLOBAL_Print_Ready.indb   840 6/16/2017   2:15:17 PM
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The value of this descriptor is 1 for a circle (its maximum value) and p 4 for a square. 
Note that these two measures are independent of size, orientation, and translation. 
Another measure based on a circle is the effective diameter:

 d
A

e = 2
p

 (11-20)

This is the diameter of a circle having the same area, A, as the region being pro-
cessed. This measure is neither dimensionless nor independent of region size, but it 
is independent of orientation and translation. It can be normalized for size and made 
dimensionless by dividing it by the largest diameter expected in a given application. 

In a manner analogous to the way we defined compactness and circularity relative 
to a circle, we define the eccentricity of a region relative to an ellipse as the eccentric-
ity of an ellipse that has the same second central moments as the region. For 1-D, the 
second central moment is the variance. For 2-D discrete data, we have to consider 
the variance of each variable as well as the covariance between them. These are 
the components of the covariance matrix, which is estimated from samples using 
Eq. (11-21) below, with the samples in this case being 2-D vectors representing the 
coordinates of the data.

Figure 11.21(a) shows an ellipse in standard form (i.e., an ellipse whose major and 
minor axes are aligned with the coordinate axes). The eccentricity of such an ellipse 
is defined as the ratio of the distance between foci (2c  in Fig. 11.21), and the length 
of its major axis ( ),2a  which gives the ratio 2 2c a c a= . That is, 

 eccentricity = =
−

= −c
a

a b

a
b a a b

2 2
21 ( ) ≥  

However, we are interested in the eccentricity of an ellipse that has the same second 
central moments as a given 2-D region, which means that our ellipses can have arbi-
trary orientations. Intuitively, what we are trying to do is approximate our 2-D data 
by an elliptical region whose axes are aligned with the principal axes of the data, as 
Fig. 11.21(b) illustrates. As you will learn in Section 11.5 (see Example 11.17), the 
principal axes are the eigenvectors of the covariance matrix, C, of the data, which is 
given by:

 C z z z z=
−

− −
=

∑1
1 1K k k

T

k

K

( )( )   (11-21)

Often, you will the 
constant in Eq. (11-21) 
written as 1/K instead of 
1/K−1. The latter is used 
to obtain a statistically- 
unbiased estimate of C. 
For our purposes, either 
formulation is acceptable.

ba

FIGURE 11.21
(a) An ellipse in 
standard form. 
(b) An ellipse 
approximating a 
region in arbitrary 
orientation.

c

b
FocusFocus

a

2 2 2c a b= −

Centroid
of region

1e

2e 2l 1l

Major axis

Binary
region eigenvectors and

corresponding eigenvalues
of the covariance matrix of 
the coordinates of the region

2e 2l1e 1l and are the

Minor axis
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where zk  is a 2-D vector whose elements are the two spatial coordinates of a point in 
the region, K is the total number of points, and z  is the mean vector:

 z z=
=

∑1

1K k
k

K

 (11-22)

The main diagonal elements of C are the variances of the coordinate values of the 
points in the region, and the off-diagonal elements are their covariances.

An ellipse oriented in the same direction as the principal axes of the region can be 
interpreted as the intersection of a 2-D Gaussian function with the xy-plane. The ori-
entation of the axes of the ellipse are also in the direction of the eigenvectors of the 
covariance matrix, and the distances from the center of the ellipse to its intersection 
with its major and minor axes is equal to the largest and smallest eigenvalues of the 
covariance matrix, respectively, as Fig. 11.21(b) shows. With reference to Fig. 11.21, 
and the equation of its eccentricity given above, we see by analogy that the eccen-
tricity of an ellipse with the same second moments as the region is given by

 
eccentricity =

−

= −

l l

l

l l l l

2
2

1
2

2

1 2
2

2 11 ( ) ≥

 (11-23)

For circular regions, l l1 2=  and the eccentricity is 0. For a line, l1 0=  and the eccen-
tricity is 1. Thus, values of this descriptor are in the range [ , ].0 1

EXAMPLE 11.9 :  Comparison of feature descriptors.

Figure 11.22 shows values of the preceding descriptors for several region shapes. None of the descriptors 
for the circle was exactly equal to its theoretical value because digitizing a circle introduces error into 
the computation, and because we approximated the length of a boundary as its number of elements. The 
eccentricity of the square did have an exact value of 0, because a square with no rotation aligns perfectly 
with the sampling grid. The other two descriptors for the square were close to their theoretical values also. 

The values listed in the first two rows of Fig. 11.22 carry the same information. For example, we can 
tell that the star is less compact and less circular than the other shapes. Similarly, it is easy to tell from the 
numbers listed that the teardrop region has by far the largest eccentricity, but it is harder to differentiate 
from the other shapes using compactness or circularity.

As we discussed in Section 11.1, feature descriptors typically are arranged in the form of feature 
vectors for subsequent processing. Figure 11.23 shows the feature space for the descriptors in Fig. 11.22. 

13.230842.2442

0.2975 0.9478

10.1701

1.2356

0.0411 0.0636 0.8117

Compactness

Circularity

Eccentricity

15.9836

0.7862

0

Descriptor

ba c d

FIGURE 11.22
Compactness, 
circularity, and  
eccentricity of 
some simple 
binary regions.
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11.4  Region Feature Descriptors    843

Each point in feature space “encapsulates” the three descriptor values for each object. Although we can 
tell from looking at the values of the descriptors in the figure that the circle and square are much more 
similar than the other two objects, note how much clearer this fact is in feature space. You can imagine 
that if we had multiple samples of those objects corrupted by noise, it could become difficult to differ-
entiate between vectors (points) corresponding to squares or circles. In contrast, the star and teardrop 
objects are far from each other, and from the circle and square, so they are less likely to be misclassified 
in the presence of noise. Feature space will play an important role in Chapter 12, when we discuss image 
pattern classification. 

EXAMPLE 11.10 :  Using area features.

Even a simple descriptor such as normalized area can be quite useful for extracting information from 
images. For instance, Fig. 11.24 shows a night-time satellite infrared image of the Americas. As we dis-
cussed in Section 1.3, such images provide a global inventory of human settlements. The imaging sensors 
used to collect these images have the capability to detect visible and near infrared emissions, such as 
lights, fires, and flares. The table alongside the images shows (by region from top to bottom) the ratio 
of the area occupied by white (the lights) to the total light area in all four regions. A simple measure-
ment like this can give, for example, a relative estimate by region of electrical energy consumption. The 
data can be refined by normalizing it with respect to land mass per region, with respect to population 
numbers, and so on.

TOPOLOGICAL DESCRIPTORS

Topology is the study of properties of a figure that are unaffected by any defor-
mation, provided that there is no tearing or joining of the figure (sometimes these 
are called rubber-sheet distortions). For example, Fig. 11.25(a) shows a region with 
two holes. Obviously, a topological descriptor defined as the number of holes in 
the region will not be affected by a stretching or rotation transformation. However, 
the number of holes can change if the region is torn or folded. Because stretching 

FIGURE 11.23
The descriptors 
from Fig. 11.22 in 
3-D feature space. 
Each dot shown 
corresponds to 
a feature vector 
whose compo-
nents are the three 
corresponding 
descriptors in  
Fig. 11.22.
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affects distance, topological properties do not depend on the notion of distance or 
any properties implicitly based on the concept of a distance measure.

Another topological property useful for region description is the number of con-
nected components of an image or region. Figure 11.25(b) shows a region with three 
connected components. The number of holes H  and connected components C  in a 
figure can be used to define the Euler number, E : 

 E C H= − (11-24)

See Sections 2.5 and 9.5 
regarding connected 
components.

Region no.
(from top)

Ratio of lights per
region to total lights

0.204
0.640
0.049
0.107

1
2
3
4

FIGURE 11.24
Infrared images 
of the Americas at 
night. (Courtesy 
of NOAA.)
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The Euler number is also a topological property. The regions shown in Fig. 11.26, for 
example, have Euler numbers equal to 0 and −1, respectively, because the “A” has 
one connected component and one hole, and the “B” has one connected component 
but two holes.

Regions represented by straight-line segments (referred to as polygonal networks) 
have a particularly simple interpretation in terms of the Euler number. Figure 11.27 
shows a polygonal network. Classifying interior regions of such a network into faces 
and holes is often important. Denoting the number of vertices by V, the number of 
edges by Q, and the number of faces by F  gives the following relationship, called the 
Euler formula:

 V Q F C H− + = −  (11-25)

which, in view of Eq. (11-24), can be expressed as

 V Q F E− + =  (11-26)

The network in Fig. 11.27 has seven vertices, eleven edges, two faces, one connected 
region, and three holes; thus the Euler number is −2 ( ).i.e., 7 11 2 1 3 2− + = − = −

EXAMPLE 11.11 :  Extracting and characterizing the largest feature in a segmented image.

Figure 11.28(a) shows a 512 512× , 8-bit image of Washington, D.C. taken by a NASA LANDSAT satel-
lite. This image is in the near infrared band (see Fig. 1.10 for details). Suppose that we want to segment 
the river using only this image (as opposed to using several multispectral images, which would simplify 
the task, as you will see later in this chapter). Because the river is a dark, uniform region relative to 
the rest of the image, thresholding is an obvious approach to try. The result of thresholding the image 
with the highest possible threshold value before the river became a disconnected region is shown in Fig. 

ba

FIGURE 11.25
(a) A region with 
two holes.  
(b) A region with 
three connected  
components.

ba

FIGURE 11.26
Regions with 
Euler numbers 
equal to 0 and −1, 
respectively.
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11.28(b). The threshold was selected manually to illustrate the point that it would be impossible in this 
case to segment the river by itself without other regions of the image also appearing in the thresholded 
result. 

The image in Fig. 11.28(b) has 1591 connected components (obtained using 8-connectivity) and its 
Euler number is 1552, from which we deduce that the number of holes is 39. Figure 11.28(c) shows the 
connected component with the largest number of pixels (8479). This is the desired result, which we 
already know cannot be segmented by itself from the image using a threshold. Note how clean this result 
is. The number of holes in the region defined by the connected component just found would give us the 
number of land masses within the river. If we wanted to perform measurements, like the length of each 
branch of the river, we could use the skeleton of the connected component [Fig. 11.28(d)] to do so. 

TEXTURE

An important approach to region description is to quantify its texture content. 
While no formal definition of texture exists, intuitively this descriptor provides mea-
sures of properties such as smoothness, coarseness, and regularity (Fig. 11.29 shows 
some examples). In this section, we discuss statistical and spectral approaches for 
describing the texture of a region. Statistical approaches yield characterizations of 
textures as smooth, coarse, grainy, and so on. Spectral techniques are based on prop-
erties of the Fourier spectrum and are used primarily to detect global periodicity in 
an image by identifying high-energy, narrow peaks in its spectrum.

Statistical Approaches

One of the simplest approaches for describing texture is to use statistical moments 
of the intensity histogram of an image or region. Let z be a random variable denot-
ing intensity, and let p z i Li( ) = −, , , , , ,0 1 2 1…  be the corresponding normalized his-
togram, where L is the number of distinct intensity levels. From Eq. (3-24), the nth 
moment of z about the mean is

 mn i
i

L
n

iz z m p z( ) = −( ) ( )
=
∑

0

1–

 (11-27)

Vertex

Face

Hole
Edge

FIGURE 11.27
A region  
containing a  
polygonal  
network.
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ba
dc

FIGURE 11.28
(a) Infrared image 
of the Washington, 
D.C. area.  
(b) Thresholded 
image.  
(c) The largest  
connected compo-
nent of (b).  
(d) Skeleton of (c). 
(Original image 
courtesy of NASA.)

ba c

FIGURE 11.29
The white squares 
mark, from left 
to right, smooth, 
coarse, and regular 
textures. These are 
optical microscope 
images of a  
superconductor, 
human cholesterol, 
and a microproces-
sor. (Courtesy of 
Dr. Michael W.  
Davidson, Florida 
State University.)
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where m is the mean value of z (i.e., the average intensity of the image or region):

 m z p zi
i

L

i= ( )
=

−

∑
0

1

 (11-28)

Note from Eq. (11-27) that m0 1=  and m1 0= . The second moment [the variance 
s m2

2z z( ) = ( )] is particularly important in texture description. It is a measure of 
intensity contrast that can be used to establish descriptors of relative intensity 
smoothness. For example, the measure

 R z
z

( ) = −
+ ( )1

1
1 2s

 (11-29)

is 0 for areas of constant intensity (the variance is zero there) and approaches 1 for 
large values of s2 z( ). Because variance values tend to be large for grayscale images 
with values, for example, in the range 0 to 255, it is a good idea to normalize the vari-
ance to the interval [0, 1] for use in Eq. (11-29). This is done simply by dividing s2 z( ) 
by L −( )1 2 in Eq. (11-29). The standard deviation, s( ),z  also is used frequently as a 
measure of texture because its values are more intuitive. 

As discussed in Section 2.6, the third moment, m3 z( ), is a measure of the skewness 
of the histogram while the fourth moment, m4 z( ), is a measure of its relative flat-
ness. The fifth and higher moments are not so easily related to histogram shape, but 
they do provide further quantitative discrimination of texture content. Some useful 
additional texture measures based on histograms include a measure of uniformity, 
defined as

 U z p zi
i

L

( ) = ( )
=

−

∑ 2

0

1

 (11-30)

and a measure of average entropy that, as you may recall from information theory, 
is defined as

 e z p z p zi
i

L

i( ) = ( ) ( )
=

−

∑– log
0

1

2  (11-31)

Because values of p are in the range [0, 1] and their sum equals 1, the value of 
descriptor U is maximum for an image in which all intensity levels are equal (maxi-
mally uniform), and decreases from there. Entropy is a measure of variability, and is 
0 for a constant image.

EXAMPLE 11.12 :   Texture descriptors based on histograms.

Table 11.2 lists the values of the preceding descriptors for the three types of textures highlighted in 
Fig. 11.29. The mean describes only the average intensity of each region and is useful only as a rough 
idea of intensity, not texture. The standard deviation is more informative; the numbers clearly show 
that the first texture has significantly less variability in intensity (it is smoother) than the other two tex-
tures. The coarse texture shows up clearly in this measure. As expected, the same comments hold for R, 
because it measures essentially the same thing as the standard deviation. The third moment is useful for 

For texture, typically we 
are interested in signs 
and relative magnitudes. 
If, in addition, normaliza-
tion proves to be useful, 
we normalize the third 
and fourth moments. 
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determining the symmetry of histograms and whether they are skewed to the left (negative value) or the 
right (positive value). This gives an indication of whether the intensity levels are biased toward the dark 
or light side of the mean. In terms of texture, the information derived from the third moment is useful 
only when variations between measurements are large. Looking at the measure of uniformity, we again 
conclude that the first subimage is smoother (more uniform than the rest) and that the most random 
(lowest uniformity) corresponds to the coarse texture. Finally, we see that the entropy values increase as 
uniformity decreases, leading us to the same conclusions regarding the texture of the regions as the uni-
formity measure did. The first subimage has the lowest variation in intensity levels, and the coarse image 
the most. The regular texture is in between the two extremes with respect to both of these measures.

Measures of texture computed using only histograms carry no information regard-
ing spatial relationships between pixels, which is important when describing texture. 
One way to incorporate this type of information into the texture-analysis process is 
to consider not only the distribution of intensities, but also the relative positions of 
pixels in an image. 

Let Q be an operator that defines the position of two pixels relative to each other, 
and consider an image, f , with L  possible intensity levels. Let G  be a matrix whose 
element gij  is the number of times that pixel pairs with intensities zi and zj  occur in 
image f  in the position specified by Q, where 1 ≤ ≤i j L, . A matrix formed in this 
manner is referred to as a graylevel (or intensity) co-occurrence matrix. When the 
meaning is clear, G is referred to simply as a co-occurrence matrix.

Figure 11.30 shows an example of how to construct a co-occurrence matrix using  
L = 8 and a position operator Q defined as “one pixel immediately to the right” (i.e., 
the neighbor of a pixel is defined as the pixel immediately to its right). The array on 
the left is a small image and the array on the right is matrix G. We see that element 
( , )1 1  of G is 1, because there is only one occurrence in f  of a pixel valued 1 having 
a pixel valued 1 immediately to its right. Similarly, element ( , )6 2  of G is 3, because 
there are three occurrences in f  of a pixel with a value of 6 having a pixel valued 2 
immediately to its right. The other elements of G are similarly computed. If we had 
defined Q as, say, “one pixel to the right and one pixel above,” then position ( , )1 1  
in G would have been 0 because there are no instances in f  of a 1 with another 1 in 
the position specified by Q. On the other hand, positions ( , ),1 3  ( , ),1 5  and ( , )1 7  in 
G would all be 1’s, because intensity value 1 occurs in f  with neighbors valued 3, 5, 
and 7 in the position specified by Q—one occurrence of each. As an exercise, you 
should compute all the elements of G using this definition of Q.

Note that we are using 
the intensity range [1,  L] 
instead of the usual 
[0,  L− 1]. We do this so 
that intensity values will 
correspond with “tradi-
tional” matrix indexing 
(i.e., intensity value 1 
corresponds to the first 
row and column indices 
of G).

Texture Mean
Standard  
deviation

R (normalized) 3rd moment Uniformity Entropy

Smooth 82.64 11.79 0.002 − 0.105 0.026 5.434

Coarse 143.56 74.63 0.079 − 0.151 0.005 7.783

Regular 99.72 33.73 0.017 0.750 0.013 6.674

TABLE 11.2  
Statistical texture measures for the subimages in Fig. 11.29.
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The number of possible intensity levels in the image determines the size 
of matrix G. For an 8-bit image (256 possible intensity levels), G will be of size 
256 256× . This is not a problem when working with one matrix but, as you will see 
in as Example 11.13, co-occurrence matrices sometimes are used in sequences. One 
approach for reducing computations is to quantize the intensities into a few bands 
in order to keep the size of G manageable. For example, in the case of 256 intensities, 
we can do this by letting the first 32 intensity levels equal to 1, the next 32 equal to 2, 
and so on. This will result in a co-occurrence matrix of size 8 8× .

The total number, n, of pixel pairs that satisfy Q is equal to the sum of the ele-
ments of G (n = 30 in the example of Fig. 11.30). Then, the quantity

 p
g

nij
ij=

is an estimate of the probability that a pair of points satisfying Q will have values 
z zi j, .( )  These probabilities are in the range [ , ]0 1  and their sum is 1:

 pij
j

K

i

K

=
==
∑∑ 1

11

where K  is the row and column dimension of square matrix G.
Because G depends on Q, the presence of intensity texture patterns can be detected 

by choosing an appropriate position operator and analyzing the elements of G. A set 
of descriptors useful for characterizing the contents of G are listed in Table 11.3. The 
quantities used in the correlation descriptor (second row) are defined as follows:

 m i pr ij
j

K

i

K

=
==
∑∑

11

 m j pc ij
i

K

j

K

=
==
∑∑

11

and
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Image f Co-occurrence matrix G

FIGURE 11.30
How to construct 
a co-occurrence 
matrix.
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then the preceding equations can be written as
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Descriptor Explanation Formula

Maximum 
probability

Measures the strongest response of G. 
The range of values is [0, 1].

max( )
,i j ijp

Correlation A measure of how correlated a pixel is 
to its neighbor over the entire image. The 
range of values is 1 to −1 corresponding 
to perfect positive and perfect negative 
correlations. This measure is not defined 
if either standard deviation is zero.

i m j m pr c ij

r cj
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s s
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Contrast A measure of intensity contrast between a 
pixel and its neighbor over the entire image. 
The range of values is 0 (when G is constant) 
to ( ) .K − 1 2

i j pij
j

K

i

K

−( )
==
∑∑ 2

11

Uniformity (also 
called Energy)

A measure of uniformity in the range [0, 1]. 
Uniformity is 1 for a constant image. pij

j

K

i

K
2

11 ==
∑∑

Homogeneity Measures the spatial closeness to the diagonal 
of the distribution of elements in G. The range 
of values is [0, 1], with the maximum being 
achieved when G is a diagonal matrix.

p

i j
ij

j

K

i

K

111 + −==
∑∑

Entropy Measures the randomness of the elements of 
G. The entropy is 0 when all pij’s are 0, and is 
maximum when the pij’s are uniformly distrib-
uted. The maximum value is thus 2 2log .K

– logp pij ij
j

K

i

K

2
11 ==

∑∑

TABLE 11.3
Descriptors used 
for characterizing 
co-occurrence 
matrices of size 
K K× . The term 
pij  is the ij-th term 
of G divided by 
the sum of the 
elements of G.
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 sc c
j

K
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With reference to Eqs. (11-27), (11-28), and to their explanation, we see that mr  is 
in the form of a mean computed along rows of the normalized G, and mc  is a mean 
computed along the columns. Similarly, sr  and sc  are in the form of standard devia-
tions (square roots of the variances) computed along rows and columns, respectively. 
Each of these terms is a scalar, independently of the size of G.

Keep in mind when studying Table 11.3 that “neighbors” are with respect to the 
way in which Q is defined (i.e., neighbors do not necessarily have to be adjacent), 
and also that the pij’s are nothing more than normalized counts of the number of 
times that pixels having intensities zi and zj  occur in f  relative to the position speci-
fied in Q. Thus, all we are doing here is trying to find patterns (texture) in those 
counts.

EXAMPLE 11.13 :   Using descriptors to characterize co-occurrence matrices.

Figures 11.31(a) through (c) show images consisting of random, horizontally periodic (sine), and mixed 
pixel patterns, respectively. This example has two objectives: (1) to show values of the descriptors in 
Table 11.3 for the three co-occurrence matrices, G1, G2 ,and G3, corresponding (from top to bottom) 
to these images; and (2) to illustrate how sequences of co-occurrence matrices can be used to detect 
texture patterns in an image.

Figure 11.32 shows co-occurrence matrices G1, G2 , and G3, displayed as images. These matrices were 
obtained using L = 256  and the position operator “one pixel immediately to the right.” The value at 
coordinates ( , )i j  in these images is the number of times that pixel pairs with intensities zi and zj  occur 
in f  in the position specified by Q, so it is not surprising that Fig. 11.32(a) is a random image, given the 
nature of the image from which it was obtained.

Figure 11.32(b) is more interesting. The first obvious feature is the symmetry about the main diagonal. 
Because of the symmetry of the sine wave, the number of counts for a pair ( , )z zi j  is the same as for the 
pair ( , ),z zj i  which produces a symmetric co-occurrence matrix. The nonzero elements of G2 are sparse 
because value differences between horizontally adjacent pixels in a horizontal sine wave are relatively 
small. It helps to remember in interpreting these concepts that a digitized sine wave is a staircase, with 
the height and width of each step depending on the frequency of the sine wave and the number of ampli-
tude levels used in representing the function.

The structure of co-occurrence matrix G3 in Fig. 11.32(c) is more complex. High count values are 
grouped along the main diagonal also, but their distribution is more dense than for G2 , a property 
that is indicative of an image with a rich variation in intensity values, but few large jumps in intensity 
between adjacent pixels. Examining Fig. 11.32(c), we see that there are large areas characterized by low 
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variability in intensities. The high transitions in intensity occur at object boundaries, but these counts 
are low with respect to the moderate intensity transitions over large areas, so they are obscured by the 
ability of an image display to show high and low values simultaneously, as we discussed in Chapter 3.

The preceding observations are qualitative. To quantify the “content” of co-occurrence matrices, we 
need descriptors such as those in Table 11.3. Table 11.4 shows values of these descriptors computed 
for the three co-occurrence matrices in Fig. 11.32. To use these descriptors, the co-occurrence matrices 
must be normalized by dividing them by the sum of their elements, as discussed earlier. The entries in 
Table 11.4 agree with what one would expect from the images in Fig. 11.31 and their corresponding co-
occurrence matrices in Fig. 11.32. For example, consider the Maximum Probability column in Table 11.4. 
The highest probability corresponds to the third co-occurrence matrix, which tells us that this matrix 
has the highest number of counts (largest number of pixel pairs occurring in the image relative to the 
positions in Q) than the other two matrices. This agrees with our analysis of G3. The second column indi-
cates that the highest correlation corresponds to G2 , which in turn tells us that the intensities in the sec-
ond image are highly correlated. The repetitiveness of the sinusoidal pattern in Fig. 11.31(b) indicates 
why this is so. Note that the correlation for G1 is essentially zero, indicating that there is virtually no 
correlation between adjacent pixels, a characteristic of random images such as the image in Fig. 11.31(a).

b
a

c

FIGURE 11.31
Images whose  
pixels have  
(a) random,  
(b) periodic, and 
(c) mixed texture 
patterns. Each 
image is of size 
263 800×  pixels.

ba c

FIGURE 11.32
256 256×   
co-occurrence  
matrices G1, G2 , 
and G3,  
corresponding 
from left to right 
to the images in 
Fig. 11.31.
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The contrast descriptor is highest for G1 and lowest for G2. Thus, we see that the less random an 
image is, the lower its contrast tends to be. We can see the reason by studying the matrix displayed in 
Fig. 11.32. The ( )i j− 2  terms are differences of integers for 1 ≤ ≤i j L, , so they are the same for any G. 
Therefore, the probabilities of the elements of the normalized co-occurrence matrices are the factors 
that determine the value of contrast. Although G1 has the lowest maximum probability, the other two 
matrices have many more zero or near-zero probabilities (the dark areas in Fig. 11.32). Because the sum 
of the values of G n is 1, it is easy to see why the contrast descriptor tends to increase as a function of 
randomness.

The remaining three descriptors are explained in a similar manner. Uniformity increases as a func-
tion of the values of the probabilities squared. Thus, the less randomness there is in an image, the higher 
the uniformity descriptor will be, as the fifth column in Table 11.4 shows. Homogeneity measures the 
concentration of values of G with respect to the main diagonal. The values of the denominator term 
( )1 + −i j  are the same for all three co-occurrence matrices, and they decrease as i and j  become closer 
in value (i.e., closer to the main diagonal). Thus, the matrix with the highest values of probabilities 
(numerator terms) near the main diagonal will have the highest value of homogeneity. As we discussed 
earlier, such a matrix will correspond to images with a “rich” gray-level content and areas of slowly vary-
ing intensity values. The entries in the sixth column of Table 11.4 are consistent with this interpretation.

The entries in the last column of the table are measures of randomness in co-occurrence matrices, 
which in turn translate into measures of randomness in the corresponding images. As expected, G1 had 
the highest value because the image from which it was derived was totally random. The other two 
entries are self-explanatory. Note that the entropy measure for G1 is near the theoretical maximum of 
16 ( log ).2 256 162 =  The image in Fig. 11.31(a) is composed of uniform noise, so each intensity level has 
approximately an equal probability of occurrence, which is the condition stated in Table 11.3 for maxi-
mum entropy.

Thus far, we have dealt with single images and their co-occurrence matrices. Suppose that we want 
to “discover” (without looking at the images) if there are any sections in these images that contain 
repetitive components (i.e., periodic textures). One way to accomplish this goal is to examine the cor-
relation descriptor for sequences of co-occurrence matrices, derived from these images by increasing 
the distance between neighbors. As mentioned earlier, it is customary when working with sequences of 
co-occurrence matrices to quantize the number of intensities in order to reduce matrix size and corre-
sponding computational load. The following results were obtained using L = 8.

Figure 11.33 shows plots of the correlation descriptors as a function of horizontal “offset” (i.e., hori-
zontal distance between neighbors) from 1 (for adjacent pixels) to 50. Figure 11.33(a) shows that all 
correlation values are near 0, indicating that no such patterns were found in the random image. The 

Normalized 
Co-occurrence

Matrix

Maximum 
Probability

Correlation Contrast Uniformity Homogeneity Entropy

G1 1n 0.00006 −0.0005 10838 0.00002 0.0366 15.75

G2 2n 0.01500 0.9650 00570 0.01230 0.0824 06.43

G3 3n 0.06860 0.8798 01356 0.00480 0.2048 13.58

TABLE 11.4
Descriptors evaluated using the co-occurrence matrices displayed as images in Fig. 11.32.
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shape of the correlation in Fig. 11.33(b) is a clear indication that the input image is sinusoidal in the hori-
zontal direction. Note that the correlation function starts at a high value, then decreases as the distance 
between neighbors increases, and then repeats itself.

Figure 11.33(c) shows that the correlation descriptor associated with the circuit board image 
decreases initially, but has a strong peak for an offset distance of 16 pixels. Analysis of the image in Fig. 
11.31(c) shows that the upper solder joints form a repetitive pattern approximately 16 pixels apart (see 
Fig. 11.34). The next major peak is at 32, caused by the same pattern, but the amplitude of the peak is 
lower because the number of repetitions at this distance is less than at 16 pixels. A similar observation 
explains the even smaller peak at an offset of 48 pixels.

Spectral Approaches

As we discussed in Section 5.4, the Fourier spectrum is ideally suited for describing 
the directionality of periodic or semiperiodic 2-D patterns in an image. These global 
texture patterns are easily distinguishable as concentrations of high-energy bursts in 
the spectrum. Here, we consider three features of the Fourier spectrum that are use-
ful for texture description: (1) prominent peaks in the spectrum give the principal 
direction of the texture patterns; (2) the location of the peaks in the frequency plane 
gives the fundamental spatial period of the patterns; and (3) eliminating any peri-
odic components via filtering leaves nonperiodic image elements, which can then 
be described by statistical techniques. Recall that the spectrum is symmetric about 
the origin, so only half of the frequency plane needs to be considered. Thus, for the 

1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50
�1

�0.5

0

1

0.5
C

or
re

la
ti

on

Horizontal Offset Horizontal Offset Horizontal Offset
ba c

FIGURE 11.33 Values of the correlation descriptor as a function of offset (distance between “adjacent” pixels) corre-
sponding to the (a) noisy, (b) sinusoidal, and (c) circuit board images in Fig. 11.31.

16 pixelsFIGURE 11.34
A zoomed section 
of the circuit board  
image showing  
periodicity of  
components.
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purpose of analysis, every periodic pattern is associated with only one peak in the 
spectrum, rather than two.

Detection and interpretation of the spectrum features just mentioned often 
are simplified by expressing the spectrum in polar coordinates to yield a function 
S r, ,u( )  where S  is the spectrum function, and r  and u are the variables in this coor-
dinate system. For each direction u, S r,u( )  may be considered a 1-D function S ru ( ). 
Similarly, for each frequency r Sr, u( ) is a 1-D function. Analyzing S ru ( ) for a fixed 
value of u yields the behavior of the spectrum (e.g., the presence of peaks) along a 
radial direction from the origin, whereas analyzing Sr u( ) for a fixed value of r  yields 
the behavior along a circle centered on the origin.

A more global description is obtained by integrating (summing for discrete vari-
ables) these functions:

 S r S r( ) = ( )
=
∑ u
u

p

0

 (11-32)

and

 S Sr
r

R

u u( ) = ( )
=
∑

1

0

 (11-33)

where R0  is the radius of a circle centered at the origin.
The results of Eqs. (11-32) and (11-33) constitute a pair of values S r S( ) ( )⎡⎣ ⎤⎦, u  for 

each pair of coordinates r, .u( )  By varying these coordinates, we can generate two 
1-D functions, S r( ) and S u( ), that constitute a spectral-energy description of texture 
for an entire image or region under consideration. Furthermore, descriptors of these 
functions themselves can be computed in order to characterize their behavior quan-
titatively. Descriptors useful for this purpose are the location of the highest value, 
the mean and variance of both the amplitude and axial variations, and the distance 
between the mean and the highest value of the function.

EXAMPLE 11.14 :   Spectral texture.

Figure 11.35(a) shows an image containing randomly distributed objects, and Fig. 11.35(b) shows an 
image in which these objects are arranged periodically. Figures 11.35(c) and (d) show the corresponding 
Fourier spectra. The periodic bursts of energy extending quadrilaterally in two dimensions in both Fou-
rier spectra are due to the periodic texture of the coarse background material on which the objects rest. 
The other dominant components in the spectra in Fig. 11.35(c) are caused by the random orientation of 
the object edges in Fig. 11.35(a). On the other hand, the main energy in Fig. 11.35(d) not associated with 
the background is along the horizontal axis, corresponding to the strong vertical edges in Fig. 11.35(b).

Figures 11.36(a) and (b) are plots of S r( ) and S u( ) for the random objects, and similarly in (c) and 
(d) for the ordered objects. The plot of S r( ) for the random objects shows no strong periodic compo-
nents (i.e., there are no dominant peaks in the spectrum besides the peak at the origin, which is the dc 
component). Conversely, the plot of S r( ) for the ordered objects shows a strong peak near r = 15 and 
a smaller one near r = 25, corresponding to the periodic horizontal repetition of the light (objects) and 
dark (background) regions in Fig. 11.35(b). Similarly, the random nature of the energy bursts in Fig. 
11.35(c) is quite apparent in the plot of S u( ) in Fig. 11.36(b). By contrast, the plot in Fig. 11.36(d) shows 
strong energy components in the region near the origin and at 90° and 180°. This is consistent with the 
energy distribution of the spectrum in Fig. 11.35(d).
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FIGURE 11.35
(a) and (b) Images 
of random and 
ordered objects.  
(c) and (d) Cor-
responding  
Fourier spectra. All 
images are of size 
600 600×  pixels.
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FIGURE 11.36
 (a) and (b) Plots 
of  S r( )  and S( )u  
for Fig. 11.35(a).  
(c) and (d) Plots 
of S r( )  and S( )u  
for Fig. 11.35(b).  
All vertical axes 
are ×105.
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MOMENT INVARIANTS

The 2-D moment of order p q+( ) of an M N×  digital image, f x y( , ), is defined as

 m x y f x ypq
p q

y

N

x

M

= ( )
==

∑∑
0

1

0

1 ––

,  (11-34)

where p = 0 1 2, , ,… and q = 0 1 2, , ,… are integers. The corresponding central moment 
of order p q+( ) is defined as

 mpq
y

N

x

M p q
x x y y f x y= ( ) ( ) ( )

==
∑∑ – – ,

––

0

1

0

1

 (11-35)

for p = 0 1 2, , ,… and q = 0 1 2, , , ,…  where

 x
m
m

y
m
m

= =10

00

01

00

and  (11-36)

The normalized central moment of order p q+( ), denoted hpq , is defined as

 h
m

m
gpq
pq=
00

 (11-37)

where

 g = + +p q
2

1  (11-38)

for p q+ = 2 3, , .… A set of seven, 2-D moment invariants can be derived from the 
second and third normalized central moments:†

 f h h1 20 02= +  (11-39)

  f h h h2 20 02
2

11
24= ( ) +–  (11-40)

 f h h h h3 30 12
2

21 03
2

3 3= ( ) + ( )– –  (11-41)

 f h h h h4 30 12
2

21 03
2= +( ) + +( )  (11-42)

† Derivation of these results requires concepts that are beyond the scope of this discussion. The book by Bell 
[1965] and the paper by Hu [1962] contain detailed discussions of these concepts. For generating moment invari-
ants of an order higher than seven, see Flusser [2000]. Moment invariants can be generalized to n dimensions 
(see Mamistvalov [1998]).
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 f h h h h h h h h5 30 12 30 12 30 12
2

21 03
2

3 3= ( ) +( ) +( )⎡
⎣ − +( ) ⎤

⎦–

 + ( ) +( ) +( ) +( )⎡
⎣

⎤
⎦3 321 03 21 03 30 12

2
21 03

2
h h h h h h h h– –  (11-43)

 f h h h h h h6 20 02 30 12
2

21 03
2= ( ) +( ) +( )⎡

⎣
⎤
⎦– –

 + +( ) +( )4 11 30 12 21 03h h h h h  (11-44)

 f h h h h h h h h7 21 03 30 12 30 12
2

21 03
2

3 3= ( ) +( ) +( )⎡
⎣ +( ) ⎤

⎦– –

 + ( ) +( ) +( ) +( )⎡
⎣

⎤
⎦3 312 30 21 03 30 12

2
21 03

2
h h h h h h h h– –  (11-45)

This set of moments is invariant to translation, scale change, mirroring (within a 
minus sign), and rotation. We can attach physical meaning to some of the low-order 
moment invariants. For example, f1 is the sum of two second moments with respect 
to the principal axes of data spread, so this moment can be interpreted as a mea-
sure of data spread. Similarly, f3 is the difference of second moments, and may be 
interpreted as a measure of “slenderness.” However, as the order of the moment 
invariants increases, the complexity of their formulation causes physical meaning to 
be lost. The importance of Eqs. (11-39) through (11-45) is their invariance, not their 
physical meaning.

EXAMPLE 11.15 :  Moment invariants.

The objective of this example is to compute and compare the preceding moment invariants using the 
image in Fig. 11.37(a). The black (0) border was added to make all images in this example be of the 
same size; the zeros do not affect computation of the moment invariants. Figures 11.37(b) through (f) 
show the original image translated, scaled by 0.5 in both spatial dimensions, mirrored, rotated by 45°, 
and rotated by 90°, respectively. Table 11.5 summarizes the values of the seven moment invariants for 
these six images. To reduce dynamic range and thus simplify interpretation, the values shown are scaled 
using the expression − ( ) ( )sgn log .f fi i10  The absolute value is needed to handle any numbers that may 
be negative. The term sgn fi( ) preserves the sign of fi , and the minus sign in front is there to handle 
fractions in the log computation. The idea is to make the numbers easier to interpret. Interest in this 
example is on the invariance and relative signs of the moments, not on their actual values. The two key 
points in Table 11.5 are: (1) the closeness of the values of the moments, independent of translation, scale 
change, mirroring and rotation; and (2) the fact that the sign of f7 is different for the mirrored image.

11.5  PRINCIPAL COMPONENTS AS FEATURE DESCRIPTORS  

The material in this section is applicable to boundaries and regions. It is different 
from our discussion thus far, in the sense that features are based on more than one 
image. Suppose that we are given the three component images of a color image. The 
three images can be treated as a unit by expressing each group of three correspond-
ing pixels as a vector, as discussed in Section 11.1. If we have a total of n registered 

11.5

As we show in Example 
11.17, principal compo-
nents can be used also 
to normalize regions or 
boundaries for variations 
in size, translation, and 
rotation.
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ba c
ed f

FIGURE 11.37 (a) Original image. (b)–(f) Images translated, scaled by one-half, mirrored, rotated by 45°, and rotated 
by 90°, respectively.

Moment  
Invariant

Original  
Image

Translated Half Size Mirrored Rotated 45° Rotated 90°

f1
2.8662 2.8662 2.8664 2.8662 2.8661 2.8662

f2
7.1265 7.1265 7.1257 7.1265 7.1266 7.1265

f3
10.4109 10.4109 10.4047 10.4109 10.4115 10.4109

f4
10.3742 10.3742 10.3719 10.3742 10.3742 10.3742

f5
21.3674 21.3674 21.3924 21.3674 21.3663 21.3674

f6
13.9417 13.9417 13.9383 13.9417 13.9417 13.9417

f7
−20.7809 −20.7809 −20.7724 20.7809 −20.7813 −20.7809

TABLE 11.5
Moment invariants for the images in Fig. 11.37.
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images, then the corresponding pixels at the same spatial location in all images can 
be arranged as an n-dimensional vector:

 x =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x

x

xn

1

2

�
 (11-46)

Throughout this section, the assumption is that all vectors are column vectors (i.e., 
matrices of order n × 1). We can write them on a line of text simply by expressing 
them as x = x x xn

T
1 2, , , ,…( )  where T indicates the transpose.

We can treat the vectors as random quantities, just like we did when constructing 
an intensity histogram. The only difference is that, instead of talking about quanti-
ties like the mean and variance of the random variables, we now talk about mean 
vectors and covariance matrices. The mean vector of the population is defined as 

 m xx = { }E  (11-47)

where E x{ } is the expected value of x, and the subscript denotes that m is associated 
with the population of x vectors. Recall that the expected value of a vector or matrix 
is obtained by taking the expected value of each element.

The covariance matrix of the vector population is defined as

 C x m x mx x x= ( )( ){ }E
T

– –  (11-48)

Because x is n dimensional, Cx  is an n n×  matrix. Element cii  of Cx  is the variance 
of xi , the ith component of the x vectors in the population, and element cij  of Cx  
is the covariance between elements xi  and xj  of these vectors. Matrix Cx  is real 
and symmetric. If elements xi  and xj  are uncorrelated, their covariance is zero and, 
therefore, cij = 0, resulting in a diagonal covariance matrix.

Because Cx  is real and symmetric, finding a set of n orthonormal eigenvectors 
is always possible (Noble and Daniel [1988]). Let ei  and li , i n=1 2, , , ,…  be the 
eigenvectors and corresponding eigenvalues of CX ,† arranged (for convenience) in 
descending order so that � �j j≥ +1  for j n= −1 2 1, , , .…  Let A be a matrix whose 
rows are formed from the eigenvectors of CX , arranged in descending value of their 
eigenvalues, so that the first row of A is the eigenvector corresponding to the largest 
eigenvalue.

Suppose that we use A as a transformation matrix to map the x’s into vectors 
denoted by y’s, as follows:

 y A x mx= ( )–  (11-49)

This expression is called the Hotelling transform, which, as you will learn shortly, has 
some very interesting and useful properties.

†  By definition, the eigenvector and eigenvalues of an n n×  matrix C satisfy the equation Ce ei i i= l . 

You may find it helpful 
to review the tutorials on 
probability and matrix 
theory available on the 
book website.

The Hotelling transform 
is the same as the 
discrete Karhunen-Loève  
transform, so the 
two names are used 
interchangeably in the 
literature.
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It is not difficult to show (see Problem 11.25) that the mean of the y vectors result-
ing from this transformation is zero; that is,

 m y 0y = { } =E  (11-50)

It follows from basic matrix theory that the covariance matrix of the y’s is given in 
terms of A and Cx  by the expression

 C AC Ay x= T  (11-51)

Furthermore, because of the way A was formed, Cy  is a diagonal matrix whose ele-
ments along the main diagonal are the eigenvalues of Cx ;  that is,

 Cy =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

�

�

�

1

2

0

0

�

n

 (11-52)

The off-diagonal elements of this covariance matrix are 0, so the elements of the 
y vectors are uncorrelated. Keep in mind that the li  are the eigenvalues of Cx  and 
that the elements along the main diagonal of a diagonal matrix are its eigenvalues 
(Noble and Daniel [1988]). Thus, Cx  and Cy  have the same eigenvalues.

Another important property of the Hotelling transform deals with the reconstruc-
tion of x from y. Because the rows of A are orthonormal vectors, it follows that 
A A– ,1 = T  and any vector x can be recovered from its corresponding y by using the 
expression

 x A y mx= T +  (11-53)

But, suppose that, instead of using all the eigenvectors of Cx , we form a matrix Ak  
from the k eigenvectors corresponding to the k largest eigenvalues, yielding a trans-
formation matrix of order k n× . The y vectors would then be k dimensional, and 
the reconstruction given in Eq. (11-53) would no longer be exact (this is somewhat 
analogous to the procedure we used in Section 11.3 to describe a boundary with a 
few Fourier coefficients).

The vector reconstructed by using Ak  is

 x̂ A y mx= k
T +  (11-54)

It can be shown that the mean squared error between x and x̂  is given by the expres-
sion

 e j
j

n

j
j

k

j
j k

n

ms = − =
= = = +
∑ ∑ ∑� � �

1 1 1

 (11-55)

Equation (11-55) indicates that the error is zero if k n=  (that is, if all the eigen-
vectors are used in the transformation). Because the � j ’s decrease monotonically, 
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Eq. (11-55) also shows that the error can be minimized by selecting the k eigenvec-
tors associated with the largest eigenvalues. Thus, the Hotelling transform is optimal 
in the sense that it minimizes the mean squared error between the vectors x and 
their approximations x̂. Due to this idea of using the eigenvectors corresponding 
to the largest eigenvalues, the Hotelling transform also is known as the principal 
components transform.

EXAMPLE 11.16 :  Using principal components for image description.

Figure 11.38 shows six multispectral satellite images corresponding to six spectral bands: visible blue 
(450–520 nm), visible green (520–600 nm), visible red (630–690 nm), near infrared (760–900 nm), middle 
infrared (1550–1,750 nm), and thermal infrared (10,400–12,500 nm). The objective of this example is to 
illustrate how to use principal components as image features.

Organizing the images as in Fig. 11.39 leads to the formation of a six-element vector x from each set 
of corresponding pixels in the images, as discussed earlier in this section. The images in this example 
are of size 564 564×  pixels, so the population consisted of 564 318 0962( ) = ,  vectors from which the 
mean vector, covariance matrix, and corresponding eigenvalues and eigenvectors were computed. The 

ba c
ed f  

FIGURE 11.38 Multispectral images in the (a) visible blue, (b) visible green, (c) visible red, (d) near infrared, (e) middle 
infrared, and (f) thermal infrared bands. (Images courtesy of NASA.)
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eigenvectors were then used as the rows of matrix A, and a set of y vectors were obtained using Eq. 
(11-49). Similarly, we used Eq. (11-51) to obtain Cy . Table 11.6 shows the eigenvalues of this matrix. 
Note the dominance of the first two eigenvalues.

A set of principal component images was generated using the y vectors mentioned in the previous 
paragraph (images are constructed from vectors by applying Fig. 11.39 in reverse). Figure 11.40 shows 
the results. Figure 11.40(a) was formed from the first component of the 318,096 y vectors, Fig. 11.40(b) 
from the second component of these vectors, and so on, so these images are of the same size as the origi-
nal images in Fig. 11.38. The most obvious feature in the principal component images is that a significant 
portion of the contrast detail is contained in the first two images, and it decreases rapidly from there. The 
reason can be explained by looking at the eigenvalues. As Table 11.6 shows, the first two eigenvalues are 
much larger than the others. Because the eigenvalues are the variances of the elements of the y vectors, 
and variance is a measure of intensity contrast, it is not unexpected that the images formed from the 
vector components corresponding to the largest eigenvalues would exhibit the highest contrast. In fact, 
the first two images in Fig. 11.40 account for about 89% of the total variance. The other four images have 
low contrast detail because they account for only the remaining 11%.

According to Eqs. (11-54) and (11-55), if we used all the eigenvectors in matrix A we could recon-
struct the original images from the principal component images with zero error between the original 
and reconstructed images (i.e., the images would be identical). If the objective is to store and/or transmit 
the principal component images and the transformation matrix for later reconstruction of the original 
images, it would make no sense to store and/or transmit all the principal component images because 
nothing would be gained. Suppose, however, that we keep and/or transmit only the two principal com-
ponent images. Then there would be significant savings in storage and/or transmission (matrix A would 
be of size 2 6× , so its impact would be negligible).

Figure 11.41 shows the results of reconstructing the six multispectral images from the two principal 
component images corresponding to the largest eigenvalues. The first five images are quite close in 

Spectral band 1

Spectral band 2

Spectral band 3

Spectral band 4

Spectral band 5

Spectral band 6

x

x1

x2

x3

x4

x5

x6

�

FIGURE 11.39
Forming of a 
feature vector from 
corresponding  
pixels in six images.

L1 L2 L3 L4 L5 L6

10344 2966 1401 203 94 31

TABLE 11.6
Eigenvalues of Cx 
obtained from the 
images in Fig. 11.38.
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ba c
ed f

FIGURE 11.40 The six principal component images obtained from vectors computed using Eq. (11-49). Vectors are 
converted to images by applying Fig. 11.39 in reverse.

appearance to the originals in Fig. 11.38, but this is not true for the sixth image. The reason is that the 
original sixth image is actually blurry, but the two principal component images used in the reconstruc-
tion are sharp, therefore, the blurry “detail” is lost. Figure 11.42 shows the differences between the 
original and reconstructed images. The images in Fig. 11.42 were enhanced to highlight the differences 
between them. If they were shown without enhancement, the first five images would appear almost all 
black, with the sixth (difference) image showing the most variability.

EXAMPLE 11.17 :  Using principal components for normalizing for variations in size, translation, and rotation.

As we mentioned earlier in this chapter, feature descriptors should be as independent as possible of 
variations in size, translation, and rotation. Principal components provide a convenient way to normal-
ize boundaries and/or regions for variations in these three variables. Consider the object in Fig. 11.43, 
and assume that its size, location, and orientation (rotation) are arbitrary. The points in the region (or its 
boundary) may be treated as 2-D vectors, x = ( )x x

T
1 2, , where x1 and x2 are the coordinates of any object 

point. All the points in the region or boundary constitute a 2-D vector population that can be used to 
compute the covariance matrix Cx  and mean vector mx . One eigenvector of Cx  points in the direction 
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of maximum variance (data spread) of the population, while the second eigenvector is perpendicular to 
the first, as Fig. 11.43(b) shows. In terms of the present discussion, the principal components transform in 
Eq. (11-49) accomplishes two things: (1) it establishes the center of the transformed coordinates system 
as the centroid (mean) of the population because mx is subtracted from each x; and (2) the y coordinates 
(vectors) it generates are rotated versions of the x’s, so that the data align with the eigenvectors. If we 
define a y y1 2,( ) axis system so that y1 is along the first eigenvector and y2  is along the second, then the 
geometry that results is as illustrated in Fig. 11.43(c). That is, the dominant data directions are aligned 
with the new axis system. The same result will be obtained regardless of the size, translation, or rotation 
of the object, provided that all points in the region or boundary undergo the same transformation. If we 
wished to size-normalize the transformed data, we would divide the coordinates by the corresponding 
eigenvalues.

Observe in Fig. 11.43(c) that the points in the y-axes system can have both positive and negative val-
ues. To convert all coordinates to positive values, we simply subtract the vector y y T

1 2min min,( )  from all 
the y vectors. To displace the resulting points so that they are all greater than 0, as in Fig. 11.43(d), we 
add to them a vector a b T,( )  where a and b are greater than 0.

Although the preceding discussion is straightforward in principle, the mechanics are a frequent source 
of confusion. Thus, we conclude this example with a simple manual illustration. Figure 11.44(a) shows 

ba c
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FIGURE 11.41 Multispectral images reconstructed using only the two principal component images corresponding to the 
two principal component vectors with the largest eigenvalues. Compare these images with the originals in Fig. 11.38.
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four points with coordinates (1, 1), (2, 4), (4, 2), and (5, 5). The mean vector, covariance matrix, and nor-
malized (unit length) eigenvectors of this population are:

 m Cx x=
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

3

3

3 333 2 00

2 00 3 333
,

. .

. .

and

 e e1 2=
⎡

⎣
⎢

⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥

0 707

0 707

0 707

0 707

.

.
,

.

.

The corresponding eigenvalues are �1 5 333= .  and �2 1 333= . . Figure 11.44(b) shows the eigenvec-
tors superimposed on the data. From Eq. (11-49), the transformed points (the y’s) are ( . , ) ,−2 828 0 T  
( , . ) ,0 1 414− T  ( , . ) ,0 1 414 T  and ( . , ) .2 828 0 T  These points are plotted in Fig. 11.44(c). Note that they are 
aligned with the y-axes and that they have fractional values. When working with images, coordinate 
values are integers, making it necessary to round all values to their nearest integer value. Figure 11.44(d) 
shows the points rounded to the nearest integer and their location shifted so that all coordinate values 
are integers greater than 0, as in the original figure.

ba c
ed f

FIGURE 11.42 Differences between the original and reconstructed images. All images were enhanced by scaling them 
to the full [0, 255] range to facilitate visual analysis.
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When transforming image pixels, keep in mind that image coordinates are the same as matrix coor-
dinates; that is, ( , )x y  represents ( , ),r c  and the origin is the top left. Axes of the principal components 
just illustrated are as shown in Figs. 11.43(a) and (d). You need to keep this in mind in interpreting the 
results of applying a principal components transformation to objects in an image. 

11.6  WHOLE-IMAGE FEATURES  

The descriptors introduced in Sections 11.2 through 11.4 are well suited for appli-
cations (e.g., industrial inspection), in which individual regions can be segmented 
reliably using methods such as the ones discussed in Chapters 10 and 11. With the 
exception of the application in Example 11.17, the principal components feature 
vectors in Section 11.5 are different from the earlier material, in the sense that they 
are based on multiple images. But even these descriptors are localized to sets of 
corresponding pixels. In some applications, such as searching image databases for 
matches (e.g., as in human face recognition), the variability between images is so 
extensive that the methods in Chapters 10 and 11 are not applicable. 

11.6

x2

x1

Direction perpendicular
to the direction of max
variance

Direction of
max variance

e2
e1

y2

y1

x2

x1

Centroid

y2

y1

ba
dc

FIGURE 11.43
(a) An object.  
(b) Object show-
ing eigenvectors 
of its covariance 
matrix.  
(c) Transformed 
object, obtained  
using Eq. (11-49).  
(d) Object  
translated so that 
all its coordinate 
values are greater 
than 0.
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The state of the art in image processing is such that as the complexity of the task 
increases, the number of techniques suitable for addressing those tasks decreases. 
This is particularly true when dealing with feature descriptors applicable to entire 
images that are members of a large family of images. In this section, we discuss 
two of the principal feature detection methods currently being used for this pur-
pose. One is based on detecting corners, and the other works with entire regions 
in an image. Then, in Section 11.7 we present a feature detection and description 
approach designed specifically to work with these types of features.

THE HARRIS-STEPHENS CORNER DETECTOR

Intuitively, we think of a corner as a rapid change of direction in a curve. Corners 
are highly effective features because they are distinctive and reasonably invariant to 
viewpoint. Because of these characteristics, corners are used routinely for matching 
image features in applications such as tracking for autonomous navigation, stereo 
machine vision algorithms, and image database queries.

In this section, we discuss an algorithm for corner detection formulated by Har-
ris and Stephens [1988]. The idea behind the Harris-Stephens (HS) corner detec-
tor is illustrated in Fig. 11.45. The basic approach is this: Corners are detected by 
running a small window over an image, as we did in Chapter 3 for spatial filtering. 
The detector window is designed to compute intensity changes. We are interested in 
three scenarios: (1) Areas of zero (or small) intensity changes in all directions, which 

The discussion in  
Sections 12.5 through 
12.7 dealing with neural 
networks is also impor-
tant in terms of process-
ing large numbers of 
entire images for the 
purpose of characterizing 
their content.

Our use the term “corner” 
is broader than just 
90° corners; it refers to 
features that are “corner-
like.” 
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FIGURE 11.44
A manual  
example.  
(a) Original points. 
(b) Eigenvectors of 
the covariance  
matrix of the points 
in (a).  
(c) Transformed 
points obtained 
using Eq. (11-49). 
(d) Points from (c), 
rounded and trans-
lated so that all 
coordinate values 
are integers greater 
than 0. The dashed 
lines are included 
to facilitate viewing. 
They are not part of 
the data.
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happens when the window is located in a constant (or nearly constant) region, as 
in location A in Fig. 11.45; (2) areas of changes in one direction but no (or small) 
changes in the orthogonal direction, which this happens when the window spans a 
boundary between two regions, as in location B; and (3) areas of significant changes 
in all directions, a condition that happens when the window contains a corner (or 
isolated points), as in location C. The HS corner detector is a mathematical formula-
tion that attempts to differentiate between these three conditions.

Let f denote an image, and let f s t( , ) denote a patch of the image defined by the 
values of ( , ).s t  A patch of the same size, but shifted by ( , ),x y  is given by f s x t y( , ).+ +  
Then, the weighted sum of squared differences between the two patches is given by

 C x y s t f s x t y f s t
ts

( , ) ( , ) ( , ) ( , )= + + −[ ]∑∑ w
2

 (11-56)

where w( , )s t  is a weighting function to be discussed shortly. The shifted patch can be 
approximated by the linear terms of a Taylor expansion

 f s x t y f s t xf s t yf s tx y( , ) ( , ) ( , ) ( , )+ + ≈ + +  (11-57)

where f s t f xx( , ) = ∂ ∂  and f s t f yy( , ) ,= ∂ ∂  both evaluated at ( , ).s t  We can then write 
Eq. (11-56) as

 C x y s t xf s t yf s tx y
ts

( , ) ( , ) ( , ) ( , )= +⎡⎣ ⎤⎦∑∑ w
2

 (11-58)

This equation can written in matrix form as

 C x y x y
x

y
( , ) = [ ] ⎡

⎣
⎢

⎤

⎦
⎥M  (11-59)

A patch is the image area 
spanned by the detector 
window at any given 
time.

FIGURE 11.45
Illustration of how 
the Harris-Stephens 
corner detector  
operates in the 
three types of sub-
regions indicated by 
A (flat), B (edge), 
and C (corner). The 
wiggly arrows  
indicate graphically 
a directional  
response in the 
detector as it moves 
in the three areas 
shown.

B C

Region 1

Region 2
A

Boundary
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where

 M A= ∑∑ w( , )s t
ts

 (11-60)

and

 A =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f f f

f f f
x x y

x y y

2

2
 (11-61)

Matrix M sometimes is called the Harris matrix. It is understood that its terms are 
evaluated at ( , ).s t  If w( , )s t  is isotropic, then M is symmetric because A is. The 
weighting function w( , )s t  used in the HS detector generally has one of two forms: 
(1) it is 1 inside the patch and 0 elsewhere (i.e., it has the shape of a box lowpass filter 
kernel), or (2) it is an exponential function of the form

 w( , ) ( )s t e s t= − +2 2 22s  (11-62)

The box is used when computational speed is paramount and the noise level is low. 
The exponential form is used when data smoothing is important.

As illustrated in Fig. 11.45, a corner is characterized by large values in region C, 
in both spatial directions. However, when the patch spans a boundary there will also 
be a response in one direction. The question is: How can we tell the difference? As 
we discussed in Section 11.5 (see Example 11.17), the eigenvectors of a real, sym-
metric matrix (such as M above) point in the direction of maximum data spread, 
and the corresponding eigenvalues are proportional to the amount of data spread in 
the direction of the eigenvectors. In fact, the eigenvectors are the major axes of an 
ellipse fitting the data, and the magnitude of the eigenvalues are the distances from 
the center of the ellipse to the points where it intersects the major axes. Figure 11.46 
illustrates how we can use these properties to differentiate between the three cases 
in which we are interested.

The small image patches in Figs. 11.46(a) through (c) are representative of regions 
A, B, and C in Fig. 11.45. In Fig. 11.46(d), we show values of ( , )f fx y  computed using 
the derivative kernels wy = −[ ]1 0 1  and w wx y

T=  (remember, we use the coordinate 
system defined in Fig. 2.19). Because we compute the derivatives at each point in the 
patch, variations caused by noise result in scattered values, with the spread of the 
scatter being directly related to the noise level and its properties. As expected, the 
derivatives from the flat region form a nearly circular cluster, whose eigenvalues are 
almost identical, yielding a nearly circular fit to the points (we label these eigenvalues 
as “small” in relation to the other two plots). Figure 11.46(e) shows the derivatives of 
the patch containing the edge. Here, the spread is greater along the x-axis, and about 
nearly the same as Fig. 11.46 (a) in the y-axis. Thus, eigenvalue lx is “large” while ly is 

“small.” Consequently, the ellipse fitting the data is elongated in the x-direction. Final-
ly, Fig. 11.46(f) shows the derivatives of the patch containing the corner. Here, the 
data is spread along both directions, resulting in two large eigenvalues and a much 
larger and nearly circular fitting ellipse. From this we conclude that: (1) two small 
eigenvalues indicate nearly constant intensity; (2) one small and one large eigenvalue 

As noted in Chapter 3, we 
do not use bold notation 
for vectors and matrices 
representing spatial 
kernels.
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imply the presence of a vertical or horizontal boundary; and (3) two large eigenval-
ues imply the presence of a corner or (unfortunately) isolated bright points.

Thus, we see that the eigenvalues of the matrix formed from derivatives in the 
image patch can be used to differentiate between the three scenarios of interest. 
However, instead of using the eigenvalues (which are expensive to compute), the HS 
detector utilizes a measure of corner response based on the fact that the trace of a 
square matrix is equal to the sum of its eigenvalues, and its determinant is equal to 
the product of its eigenvalues. The measure is defined as 

 
R k

k

x y x y= − +

= −

l l l l( )

det( ) ( )

2

2M Mtrace
 (11-63)

where k is a constant to be explained shortly. Measure R has large positive values 
when both eigenvalues are large, indicating the presence of a corner; it has large 
negative values when one eigenvalue is large and the other small, indicating an edge; 

The eigenvalues of the 
2 × 2 matrix M can be 
expressed in a closed 
form (see Problem 11.31). 
However, their computa-
tion requires squares and 
square roots, which are 
expensive to process.

The advantage of this for-
mulation is that the trace 
is the sum of the main 
diagonal terms of M (just 
two numbers). The deter-
minant of a 2 × 2 matrix 
is the product of the main 
diagonal elements minus 
the product of the cross 
elements. These are trivial 
computations.
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FIGURE 11.46 (a)–(c) Noisy images and image patches (small squares) encompassing image regions similar in content 
to those in Fig. 11.45. (d)–(f) Plots of value pairs ( , )f fx y  showing the characteristics of the eigenvalues of M that are 
useful for detecting the presence of a corner in an image patch.
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and its absolute value is small when both eigenvalues are small, indicating that the 
image patch under consideration is flat. 

Constant k is determined empirically, and its range of values depends on the imple-
mentation. For example, the MATLAB Image Processing Toolbox uses 0 0 25< <k . . 
You can interpret k as a “sensitivity factor;” the smaller it is, the more likely the detec-
tor is to find corners. Typically, R is used with a threshold, T.  We say that a corner at 
an image location has been detected only if R T>  for a patch at that location.

EXAMPLE 11.18 :  Applying the HS corner detector.

Figure 11.47(a) shows a noisy image, and Fig. 11.47(b) is the result of using the HS corner detector 
with k = 0 04.  and T = 0 01.  (the default values in our implementation). All corners of the squares were 
detected correctly, but the number of false detections is too high (note that all errors occurred on the 
right side of the image, where the difference in intensity between squares is less). Figure 11.47(c) shows 

ba c
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FIGURE 11.47 (a) A 600 600×  image with values in the range [ , ],0 1  corrupted by additive Gaussian noise with 0 mean 
and variance of 0.006. (b) Result of applying the HS corner detector with k = 0 04.  and T = 0 01.  (the defaults). Sev-
eral errors are visible. (c) Result using k = 0 1.  and T = 0 01. . (d) Result using k = 0 1.  and T = 0 1. .  (e) Result using 
k = 0 04.  and T = 0 1. .  (f) Result using k = 0 04.  and T = 0 3.  (only the strongest corners on the left were detected).
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the result obtained by increasing k to 0.1 and leaving T at 0.01. This time, all corners were detected cor-
rectly. As Fig. 11.47(d) shows, increasing the threshold to T = 0 1.  yielded the same result. In fact, using 
the default value of k and leaving T at 0.1 also produced the same result, as Fig. 11.47(e) shows. The 
point of all this is that there is considerable flexibility in the interplay between the values of k and T. 
Figure 11.47(f) shows the result obtained using the default value for k and using T = 0 3. .  As expected, 
increasing the value of the threshold eliminated some corners, yielding in this case only the corner of 
the squares with larger intensity differences. Increasing the value of k to 0.1 and setting T to its default 
value yielded the same result, as did using k = 0 1.  and T = 0 3. ,  demonstrating again the flexibility in the 
values chosen for these two parameters. However, as the level of noise increases, the range of possible 
values becomes narrower, as the results in the next paragraph illustrate.

Figure 11.48(a) shows the checkerboard corrupted by a much higher level of additive Gaussian noise 
(see the figure caption). Although this image does not appear much different than Fig. 11.47(a), the 
results using the default values of k and T are much worse than before. False corners were detected even 
on the left side of the image, where the intensity differences are much stronger. Figure 11.48(c) is the 
result of increasing k near the maximum value in our implementation (2.5) while keeping T at its default 
value. This time, k alone could not overcome the higher noise level. On the other hand, decreasing k to 
its default value and increasing T to 0.15 produced a perfect result, as Fig. 11.48(d) shows.

Figure 11.49(a) shows a more complex image with a significant number of corners embedded in 
various ranges of intensities. Figure 11.49(b) is the result obtained using the default values for k and T. 

ba
dc

FIGURE 11.48
(a) Same as Fig. 
11.47(a), but  
corrupted with 
Gaussian noise of 
mean 0 and  
variance 0.01.  
(b) Result of using 
the HS detector 
with k = 0 04.  and 
T = 0 01.  [compare 
with Fig. 11.47(b)]. 
(c) Result with 
k = 0 249. ,  (near 
the highest value 
in our implementa-
tion), and T = 0 01. .  
(d) Result of using 
k = 0 04.  and 
T = 0 15. .
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As you can see, numerous detection errors occurred (see, for example, the large number of wrong corner 
detections in the right edge of the building). Increasing k alone had little effect on the over-detection 
of corners until k was near its maximum value. Using the same values as in Fig. 11.48(c) resulted in the 
image in 11.49(c), which shows a reduced number of erroneous corners, at the expense of missing numer-
ous important ones in the front of the building. Reducing k  to 0.17 and increasing T to 0.05 did a much 
better job, as Fig. 11.49(d) show. Parameter k did not play a major role in corner detection for the building 
image. In fact, Figs. 11.49(e) and (f) show essentially the same level of performance obtained by reducing 
k to its default value of 0.04, and using T = 0 05.  and T = 0 07. ,  respectively.

Finally, Fig. 11.50 shows corner detection on a rotated image. The result in Fig. 11.50(b) was obtained 
using the same parameters we used in Fig. 11.49(f), showing the relative insensitivity of the method to 
rotation. Figures 11.49(f) and 11.50(b) show detection of at least one corner in every major structural 
feature of the image, such as the front door, all the windows, and the corners that define the apex of the 
facade. For matching purposes, these are excellent results.

ba c
ed f

FIGURE 11.49 600 600×  image of a building. (b) Result of applying the HS corner detector with k = 0 04.  and T = 0 01.  
(the default values in our implementation). Numerous irrelevant corners were detected. (c) Result using k = 0 249.  
and the default value for T. (d) Result using k = 0 17.  and T = 0 05. . (e) Result using the default value for k and 
T = 0 05. . (f) Result using the default value of k and T = 0 07. . 
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ba

FIGURE 11.50
(a) Image  
rotated 5°.  
(b) Corners 
detected using the 
parameters used 
to obtain  
Fig. 11.49(f). 

MAXIMALLY STABLE EXTREMAL REGIONS (MSERs)

The Harris-Stephens corner detector discussed in the previous section is useful in 
applications characterized by sharp transitions of intensities, such as the intersec-
tion of straight edges, that result in corner-like features in an image. Conversely, the 
maximally stable extremal regions (MSERs) introduced by Matas et al. [2002] are 
more “blob” oriented. As with the HS corner detector, MSERs are intended to yield 
whole image features for the purpose of establishing correspondence between two 
or more images.

We know from Fig. 2.18 that a grayscale image can be viewed as a topographic 
map, with the xy-axes representing spatial coordinates, and the z-axis representing 
intensities. Imagine that we start thresholding an 8-bit grayscale image one intensity 
level at a time. The result of each thresholding is a binary image in which we show 
the pixels at or above the threshold in white, and the pixels below the threshold as 
black. When the threshold, T, is 0, the result is a white image (all pixel values are 
at or above 0). As we start increasing T in increments of one intensity level, we will 
begin to see black components in the resulting binary images. These correspond to 
local minima in the topographic map view of the image. These black regions may 
begin to grow and merge, but they never get smaller from image to image. Finally, 
when we reach T = 255,  the resulting image will be black (there are no pixel values 
above this level). Because each stage of thresholding results in a binary image, there 
will be one or more connected components of white pixels in each image. The set of 
all such components resulting from all thresholdings is the set of extremal regions. 
Extremal regions that do not change size (number of pixels) appreciably over a 
range of threshold values are called maximally stable extremal regions.

As you will see shortly, the procedure just discussed can be cast in the form of a 
rooted, connected tree called a component tree, where each level of the tree corre-
sponds to a value of the threshold discussed in the previous paragraph. Each node 
of this tree represents an extremal region, R, defined as

 ∀ ∈ ∀ ∈p R q R I p I q and boundary( ) : ( ) ( )>  (11-64)

Remember, ∀  
means “for any,” ∈ 
means “belonging to,” 
and a colon, :,  
is used to  
mean “it is true that.”
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where I is the image under consideration, and p and q are image points. This equa-
tion indicates that an extremal region R is a region of I, with the property that the 
intensity of any point in the region is higher than the intensity at any point in the 
boundary of the region. As usual, we assume that image intensities are integers, 
ordered from 0 (black) to the maximum intensity (e.g., 255 for 8-bit images), which 
are represented by white.

MSERs are found by analyzing the nodes of the component tree. For each con-
nected region in the tree, we compute a stability measure, c, defined as

 c( )
( ) ( )

R
R R

R
j
T n T i

T n T
k
T n T

j
T n T

+
+ − + +

+
=

−
�

� �

�

1 1

 (11-65)

where R  is the size of the area (number of pixels) of connected region R, T is a 
threshold value in the range T I I∈[min( ), max( )],  and �T  is a specified thresh-
old increment. Regions Ri

T n T+ −( ) ,1 �  Rj
T n T+ � , and Rk

T n T+ +( )1 �  are connected regions 
obtained at threshold levels T n T+ −( ) ,1 �  T n T+ � ,  and T n T+ +( ) ,1 �  respectively. 
In terms of the component tree, regions Ri  and Rk  are respectively the parent and 
child of region Rj . Because T n T T n T+ − < + +( ) ( ) ,1 1� �  we are guaranteed that 
| | | |.( ) ( )R Ri

T n T
k
T n T+ − + +1 1� �≥  It then follows from Eq. (11-65) that c ≥ 0. MSREs 

are the regions corresponding to the nodes in the tree that have a stability value 
that is a local minimum along the path of the tree containing that region. What this 
means in practice is that maximally stable regions are regions whose sizes do not 
change appreciably across two, 2�T  neighboring thresholded images.

Figure 11.51 illustrates the concepts just introduced. The grayscale image at the 
top consists of some simple regions of constant intensity, with values in the range 
[ , ].0 255  Based on the explanation of Eqs. (11-64) and (11-65), we used the threshold 
T = 10,  which is in the range min( ) , max( ) .I I= =[ ]5 225  Choosing �T = 50 segmen-
ted all the different regions of the image. The column of binary images on the left con-
tains the results of thresholding the grayscale image with the threshold values shown. 
The resulting component tree is on the right. Note that the tree is shown “root up,” 
which is the way you would normally program it.

All the squares in the grayscale image are of the same size (area); therefore, 
regardless of the image size, we can normalize the size of each square to 1. For exam-
ple, if the image is of size 400 400×  pixels, the size of each square is 100 100 104× =  
pixels. Normalizing the size to 1 means that size 1 corresponds to 104  pixels (one 
square), size 2 corresponds to 2 104×  pixels (two squares), and so forth. You can 
arrive at the same conclusion by noticing that the ratio in Eq. (11-65) eliminates the 
common 104  factor.

The component tree in Fig. 11.51 is a good summary of how the MSER algorithm 
works. The first level is the result of thresholding I with T T+ =� 60.  There is only 
one connected component (white pixels) in the thresholded image on the left. The 
size of the connected component is 11 normalized units. As mentioned above, each 
node of a component tree, denoted by a subscripted R, contains one connected 
component consisting of white pixels. The next level in the tree is formed from the 
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regions in the binary image obtained by thresholding I using T T+ =2 110� .  As you 
can see on the left, this image has three connected components, so we create three 
nodes in the component tree at the level of the thresholded image. Similarly, the 
binary image obtained by thresholding I with T T+ =3 160�  has two connected 
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Region R6Region R5
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Area = 2 

Area = 3 Area = 1 Area = 3 
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3=c  8 3=c
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2 110T T+ =�

3 160T T+ =�

4 210T T+ =�

FIGURE 11.51  Detecting MSERs. Top: Grayscale image. Left: Thresholded images using T = 10 and �T = 50. Right: 
Component tree, showing the individual regions. Only one MSER was detected (see dashed tree node on the 
rightmost branch of the tree). Each level of the tree is formed from the thresholded image on the left, at that same 
level. Each node of the tree contains one extremal region (connected component) shown in white, and denoted by 
a subscripted R. 
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components, so we create two nodes in the tree at this level. These two connected 
components are children of the connected components in the previous level, so we 
place the new nodes in the same path as their respective parents. The next level of 
the tree is explained in the same manner.  Note that the center node in the previous 
level had no children, so that path of the tree ends in the second level. 

Because we need to check size variations between parent and child regions to deter-
mine stability, only the two middle regions (corresponding to threshold values of 110 
and 160) are relevant in this example. As you can see in our component tree, only R6  
has a parent and child of similar size (the sizes are identical in this case). Therefore, 
region R6  is the only MSER detected in this case. Observe that if we had used a single 
global threshold to detect the brightest regions, region R7 would have been detected 
also (an undesirable result in this context). Thus, we see that although MSERs are 
based on intensity, they also depend on the nature of the background surrounding a 
region. In this case, R6  was surrounded by a darker background than R7, and the darker 
background was thresholded earlier in the tree, allowing the size of R6  to remain con-
stant over the two, 2�T  neighboring range required for detection as an MSER.

In our example, it was easy to detect an MSER as the only region that did not 
change size, which gave a stability factor 0. A value of zero automatically implies 
that an MSER has been found because the parent and child regions are of the 
same size. When working with more complex images, the values of stability fac-
tors seldom are zero because of variations in intensity caused by variables such 
as illumination, viewpoint, and noise. The concept of a local minimum mentioned 
earlier is simply a way of saying that MSERs are extremal regions that do change 
size significantly over a 2�T  thresholding range. What is considered a “significant” 
change depends on the application.

It is not unusual for numerous MSERs to be detected, many of which may not be 
meaningful because of their size. One way to control the number of regions detected 
is by the choice of �T. Another is to label as insignificant any region whose size is 
not in a specified size range. We illustrate this in Example 11.19.

Matas et al. [2002] indicate that MSERs are affine-covariant (see Section 11.1). 
This follows directly from the fact that area ratios are preserved under affine trans-
formations, which in turn implies that for an affine transformation the original and 
transformed regions are related by that transformation. We illustrate this property 
in Figs. 11.54 and 11.55.

Finally, keep in mind that the preceding MSER formulation is designed to detect 
bright regions with darker surroundings. The same formulation applied to the nega-
tive (in the sense defined in Section 3.2) of an image will detect dark regions with 
lighter surroundings. If interest lies in detecting both types of regions simultaneously, 
we form the union of both sets of MSERs.

EXAMPLE 11.19 :  Extracting MSERs from grayscale images.

Figure 11.52(a) shows a slice image from a CT scan of a human head, and Fig. 11.52(b) shows the result 
of smoothing Fig. 11.52(a) with a box kernel of size 15 15×  elements. Smoothing is used routinely as a 

DIP4E_GLOBAL_Print_Ready.indb   879 6/16/2017   2:16:07 PM



880    Chapter 11  Feature Extraction 

preprocessing step when �T  is relatively small. In this case, we used T = 0  and �T = 10. This increment 
was small enough to require smoothing for proper MSER detection. In addition, we used a “size filter,” 
in the sense that the size (area) of an MSER had to be between 10,262 and 34,200 pixels; these size limits 
are 3% and 10% of the size of the image, respectively. 

Figure 11.53 illustrates MSER detection on a more complex image. We used less blurring (a 5 5×  box 
kernel) in this image because is has more fine detail. We used the same T and �T  as in Fig. 11.52, and 
a valid MSER size in the range 10,000 to 30,000 pixels, corresponding approximately to 3% and 8% of 
image size, respectively. Two MSERs were detected using these parameters, as Figs. 11.53(c) and (d) 
show. The composite MSER, shown in Fig. 11.53(e), is a good representation of the front of the building.

Figure 11.54 shows the behavior under rotation of the MSERs detected in Fig. 11.53. Figure 11.54(a) 
is the building image rotated 5° in the conterclockwise direction. The image was cropped after rota-
tion to eliminate the resulting black areas (see Fig. 2.41), which would change the nature of the image 
data and thus influence the results. Figure 11.54(b) is the result of performing the same smoothing as 
in Fig. 11.53, and Fig. 11.54(c) is the composite MSER detected using the same parameters as in Fig. 
11.53(e). As you can see, the composite MSER of the rotated image corresponds quite closely to the 
MSER in Fig. 11.53(e).

Finally, Fig. 11.55 shows the behavior of the MSER detector under scale changes. Figure 11.55(a) is the 
building image scale to 0.5 of its original dimensions, and Fig. 11.55(b) shows the image smoothed with 
a correspondingly smaller box kernel of size 3 3× . Because the image area is now one-fourth the size 

ba
dc

FIGURE 11.52
(a) 600 570×  CT 
slice of a human 
head. (b) Image 
smoothed with a 
box kernel of size 
15 15×  elements. (c) 
A extremal region 
along the path of the 
tree containing one 
MSER.  
(d) The MSER.  
(All MSER regions 
were limited to the 
range 10,260 – 34,200  
pixels, correspond-
ing to a range 
between 3% 
and 10% of image 
size.)  
(Original image 
courtesy of Dr. 
David R.  
Pickens, Vanderbilt 
University.)
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of the original area, we reduced the valid MSER range by one-fourth to 2500 –7500 pixels. Other than 
these changes, we used the same parameters as in Fig. 11.53. Figure 11.55(c) shows the resulting MSER. 
As you can see, this figure is quite close to the full-size result in Fig. 11.53(e).

11.7  SCALE-INVARIANT FEATURE TRANSFORM (SIFT) 

SIFT is an algorithm developed by Lowe [2004] for extracting invariant features from 
an image. It is called a transform because it transforms image data into scale-invariant 
coordinates relative to local image features. SIFT is by far the most complex feature 
detection and description approach we discuss in this chapter. 

As you progress though this section, you will notice the use of a significant num-
ber of experimentally determined parameters. Thus, unlike most of the formulations 
of individual approaches we have discussed thus far, SIFT is strongly heuristic. This 
is a consequence of the fact that our current knowledge is insufficient to tell us how 

11.7

ba
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FIGURE 11.53 (a) Building image of size 600 600×  pixels. (b) Image smoothed using a 5 5×  box kernel. (c) and 
(d) MSERs detected using T = 0, �T = 10, and MSER size range between 10,000 and 30,000 pixels, corresponding 
approximately to 3% and 8% of the area of the image. (e) Composite image.
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to assemble a set of reasonably well-understood individual methods into a “system” 
capable of addressing problems that cannot be solved by any single known method 
acting alone. Thus, we are forced to determine experimentally the interplay between 
the various parameters controlling the performance of more complex systems. 

When images are similar in nature (same scale, similar orientation, etc), cor-
ner detection and MSERs are suitable as whole image features. However, in the 
presence of variables such as scale changes, rotation, changes in illumination, and 
changes in viewpoint, we are forced to use methods like SIFT.

SIFT features (called keypoints) are invariant to image scale and rotation, and 
are robust across a range of affine distortions, changes in 3-D viewpoint, noise, and 
changes of illumination. The input to SIFT is an image. Its output is an n-dimensional 
feature vector whose elements are the invariant feature descriptors. We begin our 
discussion by analyzing how scale invariance is achieved by SIFT.

ba c

FIGURE 11.54 (a) Building image rotated 5° counterclockwise. (b) Smoothed image using the same kernel as in 
Fig. 11.53(b). (c) Composite MSER detected using the same parameters we used to obtain Fig. 11.53(e). The MSERs 
of the original and rotated images are almost identical.

ba c

FIGURE 11.55 (a) Building image reduced to half-size. (b) Image smoothed with a 3 3×  box 
kernel. (c) Composite MSER obtained with the same parameters as Fig. 11.53(e), but using a 
valid MSER region size range of 2,500 -–7,500 pixels.

DIP4E_GLOBAL_Print_Ready.indb   882 6/16/2017   2:16:09 PM



11.7  Scale-Invariant Feature Transform (SIFT)    883

SCALE SPACE

The first stage of the SIFT algorithm is to find image locations that are invariant 
to scale change. This is achieved by searching for stable features across all possible 
scales, using a function of scale known as scale space, which is a multi-scale rep-
resentation suitable for handling image structures at different scales in a consis-
tent manner. The idea is to have a formalism for handling the fact that objects in 
unconstrained scenes will appear in different ways, depending on the scale at which 
images are captured. Because these scales may not be known beforehand, a reason-
able approach is to work with all relevant scales simultaneously. Scale space repre-
sents an image as a one-parameter family of smoothed images, with the objective of 
simulating the loss of detail that would occur as the scale of an image decreases. The 
parameter controlling the smoothing is referred to as the scale parameter.

In SIFT, Gaussian kernels are used to implement smoothing, so the scale param-
eter is the standard deviation. The reason for using Gaussian kernels in based on 
work performed by Lindberg [1994], who showed that the only smoothing kernel 
that meets a set of important constraints, such as linearity and shift-invariance, is 
the Gaussian lowpass kernel. Based on this, the scale space, L x y( , , ),s  of a grayscale 
image, f x y( , ),† is produced by convolving f with a variable-scale Gaussian kernel, 
G x y( , , ) :s

 L x y G x y f x y( , , ) ( , , ) ( , )s s= �  (11-66)

where the scale is controlled by parameter s, and G is of the form

 G x y e x y( , , ) ( )s
ps

s= − +1
2 2

22 2 2

 (11-67)

The input image f x y( , ) is successively convolved with Gaussian kernels having 
standard deviations s s s s, , , , . . .k k k2 3  to generate a “stack” of Gaussian-filtered 
(smoothed) images that are separated by a constant factor k, as shown in the lower 
left of Fig. 11.56.

SIFT subdivides scale space into octaves, with each octave corresponding to a 
doubling of s, just as an octave in music theory corresponds to doubling the fre-
quency of a sound signal. SIFT further subdivides each octave into an integer num-
ber, s, of intervals, so that an interval of 1 consists of two images, an interval of 2 
consists of three images, and so forth. It then follows that the value used in the Gauss-
ian kernel that generates the image corresponding to an octave is kss s= 2  which 
means that k s= 21 . For example, for s = 2, k = 2, and the input image is succes-
sively smoothed using standard deviations of s s s, ( ) , ,2 2 2and ( )  so that the third 
image (i.e., the octave image for s = 2) in the sequence is filtered using a Gaussian 
kernel with standard deviation ( )2 22s s= . 

†  Experimental results reported by Lowe [2004] suggest that smoothing the original image using a Gaussian 
kernel with s = 0 5.  and then doubling its size by linear (nearest-neighbor) interpolation improves the number 
of stable features detected by SIFT. This preprocessing step is an integral part of the algorithm. Images are 
assumed to have values in the range [ , ].0 1

As in Chapter 3, “�” 
indicates spatial convolu-
tion.
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The preceding discussion indicates that the number of smoothed images gener-
ated in an octave is s + 1. However, as you will see in the next section, the smoothed 
images in scale space are used to compute differences of Gaussians [see Eq. (10-32)] 
which, in order to cover a full octave, implies that an additional two images past the 
octave image are required, giving a total of s + 3 images. Because the octave image is 
always the ( )s + 1 th  image in the stack (counting from the bottom), it follows that this 
image is the third image from the top in the expanded sequence of s + 3 images. Each 
octave in Fig. 11.56 contains five images, indicating that s = 2 was used in this case.

The first image in the second octave is formed by downsampling the original 
image (by skipping every other row and column), and then smoothing it using a 
kernel with twice the standard deviation used in the first octave (i.e., s s2 12= ). 
Subsequent images in that octave are smoothed using s2 , with the same sequence 
of values of k as in the first octave (this is denoted by dots in Fig. 11.56). The same 
basic procedure is then repeated for subsequent octaves. That is, the first image of 
the new octave is formed by: (1) downsampling the original image enough times 
to achieve half the size of the image in the previous octave, and (2) smoothing the 
downsampled image with a new standard deviation that is twice the standard devia-
tion of the previous octave. The rest of the images in the new octave are obtained by 
smoothing the downsampled image with the new standard deviation multiplied by 
the same sequence of values of k as before. 

When k = 2, we can obtain the first image of a new octave without having to 
smooth the downsampled image. This is because, for this value of k, the kernel used 
to smooth the first image of every octave is the same as the kernel used to smooth 

Instead of repeatedly 
downsampling the 
original image, we can 
carry the previously 
downsampled image, 
and downsample it 
by 2 to obtain the image 
required for the next 
octave.

Images smoothed using
Gaussian lowpass kernelsOctave 1

Scale

Scale

Scale
Octave 2

Octave 3

.

.

.
More octaves

6

6
Standard deviations used 
in the Gaussian lowpass
kernels of each octave (the
same number of images 
with the same powers of k is
generated in each octave)

.

.

.

1s
1ks

2
1k s

3
1k s

4
1k s

2 12=s s
2ks

4
2k s...

2=3 2s s
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FIGURE 11.56
Scale space,  
showing three 
octaves. Because 
s = 2  in this case, 
each octave has five 
smoothed  
images. A  
Gaussian ker-
nel was used for 
smoothing, so the 
space parameter 
is s.  
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the third image from the top of the previous octave. Thus, the first image of a new 
octave can be obtained directly by downsampling that third image of the previous 
octave by 2. The result will be the same (see Problem 11.36). The third image from 
the top of any octave is called the octave image because the standard deviation used 
to smooth it is twice (i.e., k2 2= ) the value of the standard deviation used to smooth 
the first image in the octave.

Figure 11.57 uses grayscale images to further illustrate how scale space is con-
structed in SIFT. Because each octave is composed of five images, it follows that 
we are again using s = 2. We chose s1 2 2 0 707= = .  and k = =2 1 414.  for this 
example so that the numbers would result in familiar multiples. As in Fig. 11.56, the 
images going up scale space are blurred by using Gaussian kernels with progressively 
larger standard deviations, and the first image of the second and subsequent octaves 
is obtained by downsampling the octave image from the previous octave by 2. As 
you can see, the images become significantly more blurred (and consequently lose 
more fine detail) as they go up both in scale as well as in octave. The images in the 
third octave show significantly fewer details, but their gross appearance is unmistak-
ably that of the same structure.

DETECTING LOCAL EXTREMA

SIFT initially finds the locations of keypoints using the Gaussian filtered images, 
then refines the locations and validity of those keypoints using two processing steps.

Finding the Initial Keypoints

Keypoint locations in scale space are found initially by SIFT by detecting extrema 
in the difference of Gaussians of two adjacent scale-space images in an octave, con-
volved with the input image that corresponds to that octave. For example, to find 
keypoint locations related to the first two levels of octave 1 in scale space, we look 
for extrema in the function

 D x y G x y k G x y f x y( , , ) ( , , ) ( , , ) ( , )s s s= −[ ]�  (11-68)

It follows from Eq. (11-66) that

 D x y L x y k L x y( , , ) ) )( , , ( , ,s s s= −   (11-69)

In other words, all we have to do to form function D x y( , , )s  is subtract the first two 
images of octave 1. Recall from the discussion of the Marr-Hildreth edge detector 
(Section 10.2) that the difference of Gaussians is an approximation to the Laplacian 
of a Gaussian (LoG). Therefore, Eq. (11-69) is nothing more than an approximation 
to Eq. (10-30). The key difference is that SIFT looks for extrema in D x y( , , ),s  where-
as the Marr-Hildreth detector would look for the zero crossings of this function.

Lindberg [1994] showed that true scale invariance in scale space requires that the 
LoG be normalized by s2 (i.e., that s2 2
 G be used). It can be shown (see Problem 
11.34) that
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G x y k G x y k G( , , ) ( , , ) ( )s s s− ≈ − 1 2 2
  (11-70)

Therefore, DoGs already have the necessary scaling “built in.” The factor ( )k − 1  is 
constant over all scales, so it does not influence the process of locating extrema in 
scale space. Although Eqs. (11-68) and (11-69) are applicable to the first two images 
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FIGURE 11.57
Illustration using 
images of the first 
three octaves of 
scale space in 
SIFT. The entries 
in the table are 
values of standard 
deviation used 
at each scale of 
each octave. For 
example the  
standard  
deviation used in 
scale 2 of octave 1 
is ks1, which is 
equal to 1.0.  
(The images 
of octave 1 are 
shown slightly 
overlapped to 
fit in the figure 
space.)
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11.7  Scale-Invariant Feature Transform (SIFT)    887

of octave 1, the same form of these equations is applicable to any two images from 
any octave, provided that the appropriate downsampled image is used, and the DoG 
is computed from two adjacent images in the octave.

Figure 11.58 illustrates the concepts just discussed, using the building image from 
Fig. 11.57. A total of s + 2 difference functions, D x y( , , ),s  are formed in each octave 
from all adjacent pairs of Gaussian-filtered images in that octave. These difference 
functions can be viewed as images, and one sample of such an image is shown for each 
of the three octaves in Fig. 11.58. As you might expect from the results in Fig. 11.57, 
the level of detail in these images decreases the further up we go in scale space.

Figure 11.59 shows the procedure used by SIFT to find extrema in a D x y( , , )s

image. At each location (shown in black) in a D x y( , , )s  image, the value of the pixel 
at that location is compared to the values of its eight neighbors in the current image 
and its nine neighbors in the images above and below. The point is selected as an 
extremum (maximum or minimum) point if its value is larger than the values of all 
its neighbors, or smaller than all of them. No extrema can be detected in the first 
(last) scale of an octave because it has no lower (upper) scale image of the same size.

Improving the Accuracy of Keypoint Locations

When a continuous function is sampled, its true maximum or minimum may actually 
be located between sample points. The usual approach used to get closer to the true 

Octave 2

Octave 3

Octave 1

Scale

( , , )D x y s

( , , )D x y sSample

Gaussian-filtered images, ( , , )L x y s

FIGURE 11.58 How Eq. (11-69) is implemented in scale space. There are s + 3 L x y( , , )s  images and s + 2 corre-
sponding D x y( , , )s  images in each octave.
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extremum (to achieve subpixel accuracy) is to fit an interpolating function at each 
extremum point found in the digital function, then look for an improved extremum 
location in the interpolated function. SIFT uses the linear and quadratic terms of 
a Taylor series expansion of D x y( , , ),s  shifted so that the origin is located at the 
sample point being examined. In vector form, the expression is
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 (11-71)

where D and its derivatives are evaluated at the sample point, x = ( , , )x y Ts  is the 
offset from that point, 
 is the familiar gradient operator,
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and H is the Hessian matrix

 H =
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 (11-73)

The location of the extremum, ˆ ,x  is found by taking the derivative of Eq. (11-71) 
with respect to x and setting it to zero, which gives us (see Problem 11.37):

 x̂ H= − ( )−1 
D  (11-74)

Because D and its 
derivatives are evalu-
ated at the sample point, 
they are constants with 
respect to x.

Scale

( , , )D x y s

Corresponding sections of three 
contiguous images

FIGURE 11.59
Extrema (maxima 
or minima) of the 
D x y( , , )s  images 
in an octave are  
detected by 
comparing a pixel 
(shown in black) 
to its 26 neighbors 
(shown shaded) in 
3 3×  regions at the 
current and  
adjacent scale  
images.
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The Hessian and gradient of D are approximated using differences of neighbor-
ing points, as we did in Section 10.2. The resulting 3 3×  system of linear equations 
is easily solved computationally. If the offset x̂  is greater than 0.5 in any of its three 
dimensions, we conclude that the extremum lies closer to another sample point, in 
which case the sample point is changed and the interpolation is performed about 
that point instead. The final offset x̂  is added to the location of its sample point to 
obtain the interpolated estimate of the location of the extremum.

The function value at the extremum, D( ),x⁄  is used by SIFT for rejecting unstable 
extrema with low contrast, where D( )x⁄  is obtained by substituting Eq. (11-74) into 
Eq. (11-71), giving (see Problem 11.37):

 D D D T( )x x⁄ ⁄= + ( )1
2


  (11-75)

In the experimental results reported by Lowe [2004], any extrema for which D( )x⁄  
was less than 0.03 was rejected, based on all image values being in the range [ , ].0 1  
This eliminates keypoints that have low contrast and/or are poorly localized.

Eliminating Edge Responses

Recall from Section 10.2 that using a difference of Gaussians yields edges in an 
image. But keypoints of interest in SIFT are “corner-like” features, which are signifi-
cantly more localized. Thus, intensity transitions caused by edges are eliminated. To 
quantify the difference between edges and corners, we can look at local curvature. 
An edge is characterized by high curvature in one direction, and low curvature in the 
orthogonal direction. Curvature at a point in an image can be estimated from the 
2 2×  Hessian matrix evaluated at that point. Thus, to estimate local curvature of the 
DoG at any level in scalar space, we compute the Hessian matrix of D at that level:
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where the form on the right uses the same notation as the A term [Eq. (11-61)] of 
the Harris matrix (but note that the main diagonals are different). The eigenvalues 
of H are proportional to the curvatures of D. As we explained in connection with the 
Harris-Stephens corner detector, we can avoid direct computation of the eigenvalues 
by formulating tests based on the trace and determinant of H, which are equal to 
the sum and product of the eigenvalues, respectively. To use notation different from 
the HS discussion, let a  and b be the eigenvalues of H with the largest and smallest 
magnitude, respectively. Using the relationship between the eigenvalues of H and 
its trace and determinant we have (remember, H is is symmetric and of size 2 2× ) :
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If you display an image 
as a topographic map 
(see Fig. 2.18), edges 
will appear as ridges 
that have low curvature 
along the ridge and high 
curvature perpendicular 
to it.
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If the determinant is negative, the curvatures have different signs and the keypoint 
in question cannot be an extremum, so it is discarded.

Let r denote the ratio of the largest to the smallest eigenvalue. Then a b= r  and
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 (11-78)

which depends on the ratio of the eigenvalues, rather than their individual values. 
The minimum of ( )r r+ 1 2  occurs when the eigenvalues are equal, and it increases 
with r. Therefore, to check that the ratio of principal curvatures is below some 
threshold, r, we only need to check
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H

[ ] <
+( )2 21r

r
 (11-79)

which is a simple computation. In the experimental results reported by Lowe [2004], 
a value of r = 10 was used, meaning that keypoints with ratios of curvature greater 
than 10 were eliminated.

Figure 11.60 shows the SIFT keypoints detected in the building image using the 
approach discussed in this section. Keypoints for which D( )x⁄  in Eq. (11-75) was less 
than 0.03 were rejected, as were keypoints that failed to satisfy Eq. (11-79) with 
r = 10. 

KEYPOINT ORIENTATION

At this point in the process, we have computed keypoints that SIFT considers stable. 
Because we know the location of each keypoint in scale space, we have achieved 
scale independence. The next step is to assign a consistent orientation to each key-
point based on local image properties. This allows us to represent a keypoint rela-
tive to its orientation and thus achieve invariance to image rotation. SIFT uses a 

As with the HS corner 
detector, the advantage 
of this formulation is 
that the trace and deter-
minants of 2 × 2 matrix 
H are easy to compute. 
See the margin note in 
Eq. (11-63).

FIGURE 11.60
SIFT keypoints 
detected in the 
building image. 
The points were 
enlarged slightly 
to make them 
easier to see.
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straightforward approach for this. The scale of the keypoint is used to select the 
Gaussian smoothed image, L, that is closest to that scale. In this way, all orienta-
tion computations are performed in a scale-invariant manner. Then, for each image 
sample, L x y( , ), at this scale, we compute the gradient magnitude, M x y( , ), and ori-
entation angle, u( , ),x y  using pixel differences:

          M x y L x y L x y L x y L x y( , ) ( , ) ( , ) ( , ) ( , )= + − −( ) + + − −( )⎡
⎣

⎤
⎦1 1 1 12 2

1
2  (11-80)

and

            u( , ) tan ( , ) ( , ) ( , ) ( , )x y L x y L x y L x y L x y= + − −( ) + − −( )⎡⎣ ⎤⎦
−1 1 1 1 1  (11-81)

A histogram of orientations is formed from the gradient orientations of sample 
points in a neighborhood of each keypoint. The histogram has 36 bins covering the 
360°  range of orientations on the image plane. Each sample added to the histogram 
is weighed by its gradient magnitude, and by a circular Gaussian function with a stan-
dard deviation 1.5 times the scale of the keypoint.

Peaks in the histogram correspond to dominant local directions of local gradients. 
The highest peak in the histogram is detected and any other local peak that is within 
80% of the highest peak is used also to create another keypoint with that orienta-
tion. Thus, for the locations with multiple peaks of similar magnitude, there will be 
multiple keypoints created at the same location and scale, but with different orienta-
tions. SIFT assigns multiple orientations to only about 15% of points with multiple 
orientations, but these contribute significant to image matching (to be discussed 
later and in Chapter 12). Finally, a parabola is fit to the three histogram values clos-
est to each peak to interpolate the peak position for better accuracy.

Figure 11.61 shows the same keypoints as Fig. 11.60 superimposed on the image 
and showing keypoint orientations as arrows. Note the consistency of orientation 

See Section 10.2 regard-
ing computation of the 
gradient magnitude and 
angle.

FIGURE 11.61
The keypoints 
from Fig. 11.60 
superimposed 
on the original 
image. The arrows 
indicate keypoint 
orientations.
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of similar sets of keypoints in the image. For example, observe the keypoints on the 
right, vertical corner of the building. The lengths of the arrows vary, depending on 
illumination and image content, but their direction is unmistakably consistent. Plots 
of keypoint orientations generally are quite cluttered and are not intended for gen-
eral human interpretation. The value of keypoint orientation is in image matching, 
as we will illustrate later in our discussion.

KEYPOINT DESCRIPTORS

The procedures discussed up to this point are used for assigning an image location, 
scale, and orientation to each keypoint, thus providing invariance to these three 
variables. The next step is to compute a descriptor for a local region around each 
keypoint that is highly distinctive, but is at the same time as invariant as possible to 
changes in scale, orientation, illumination, and image viewpoint. The idea is to be 
able to use these descriptors to identify matches (similarities) between local regions 
in two or more images.

The approach used by SIFT to compute descriptors is based on experimental 
results suggesting that local image gradients appear to perform a function similar 
to what human vision does for matching and recognizing 3-D objects from different 
viewpoints (Lowe [2004]). Figure 11.62 summarizes the procedure used by SIFT 
to generate the descriptors associated with each keypoint. A region of size 16 16×

8-directional histogram (the 
bins are multiples of 45°)

Keypoint descriptor = 128-dimensional vector

= Keypoint

}

}

Gaussian weighting function

Gradients
in 16*16
region

FIGURE 11.62
Approach used to 
compute a  
keypoint  
descriptor.
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pixels is centered on a keypoint, and the gradient magnitude and direction are com-
puted at each point in the region using pixel differences. These are shown as ran-
domly oriented arrows in the upper-left of the figure. A Gaussian weighting function 
with standard deviation equal to one-half the size of the region is then used to assign 
a weight that multiplies the magnitude of the gradient at each point. The Gaussian 
weighting function is shown as a circle in the figure, but it is understood that it is a 
bell-shaped surface whose values (weights) decrease as a function of distance from 
the center. The purpose of this function is to reduce sudden changes in the descriptor 
with small changes in the position of the function.

Because there is one gradient computation for each point in the region surround-
ing a keypoint, there are ( )16 2 gradient directions to process for each keypoint. 
There are 16 directions in each 4 4×  subregion. The top-rightmost subregion is 
shown zoomed in the figure to simplify the explanation of the next step, which 
consists of quantizing all gradient orientations in the 4 4×  subregion into eight pos-
sible directions differing by 45°. Rather than assigning a directional value as a full 
count to the bin to which it is closest, SIFT performs interpolation that distributes a 
histogram entry among all bins proportionally, depending on the distance from that 
value to the center of each bin. This is done by multiplying each entry into a bin by 
a weight of 1 − d, where d is the shortest distance from the value to the center of a 
bin, measured in the units of the histogram spacing, so that the maximum possible 
distance is 1. For example, the center of the first bin is at 45 2 22 5° °= . , the next cen-
ter is at 22 5 45 67 5. . ,° ° °+ =  and so on. Suppose that a particular directional value is 
22 5. .°  The distance from that value to the center of the first histogram bin is 0, so we 
would assign a full entry (i.e., a count of 1) to that bin in the histogram. The distance 
to the next center would be greater than 0, so we would assign a fraction of a full 
entry, that is 1 1* ( ),− d  to that bin, and so forth for all bins. In this way, every bin 
gets a proportional fraction of a count, thus avoiding “boundary” effects in which a 
descriptor changes abruptly as a small change in orientation causes it to be assigned 
from one bin to another.

Figure 11.62 shows the eight directions of a histogram as a small cluster of vec-
tors, with the length of each vector being equal to the value of its correspond ing bin. 
Sixteen histograms are computed, one for each 4 4×  subregion of the 16 16×  region 
surrounding a keypoint. A descriptor, shown on the lower left of the figure, then con-
sists of a 4 4×  array, each containing eight directional values. In SIFT, this descriptor 
data is organized as a 128-dimensional vector.

In order to achieve orientation invariance, the coordinates of the descriptor and 
the gradient orientations are rotated relative to the keypoint orientation. In order to 
reduce the effects of illumination, a feature vector is normalized in two stages. First, 
the vector is normalized to unit length by dividing each component by the vector 
norm. A change in image contrast resulting from each pixel value being multiplied 
by a constant will multiply the gradients by the same constant, so the change in 
contrast will be cancelled by the first normalization. A brightness change caused 
by a constant being added to each pixel will not affect the gradient values because 
they are computed from pixel differences. Therefore, the descriptor is invariant to 
affine changes in illumination. However, nonlinear illumination changes resulting, 
for example, from camera saturation, can also occur. These types of changes can 
cause large variations in the relative magnitudes of some of the gradients, but they 
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are less likely to affect gradient orientation. SIFT reduces the influence of large 
gradient magnitudes by thresholding the values of the normalized feature vector 
so that all components are below the experimentally determined value of 0.2. After 
thresholding, the feature vector is renormalized to unit length.

SUMMARY OF THE SIFT ALGORITHM

As the material in the preceding sections shows, SIFT is a complex procedure con-
sisting of many parts and empirically determined constants. The following is a step-
by-step summary of the method.

1. Construct the scale space. This is done using the procedure outlined in Figs. 11.56 
and 11.57. The parameters that need to be specified are s, s, (k is computed 
from s), and the number of octaves. Suggested values are s = 1 6. , s = 2, and 
three octaves.

2. Obtain the initial keypoints. Compute the difference of Gaussians, D x y( , , ),s  
from the smoothed images in scale space, as explained in Fig. 11.58 and Eq. (11-69). 
Find the extrema in each D x y( , , )s  image using the method explained in Fig. 
11.59. These are the initial keypoints.

3. Improve the accuracy of the location of the keypoints. Interpolate the values 
of D x y( , , )s  via a Taylor expansion. The improved key point locations are given 
by Eq. (11-74). 

4. Delete unsuitable keypoints. Eliminate keypoints that have low contrast and/or 
are poorly localized. This is done by evaluating D from Step 3 at the improved 
locations, using Eq. (11-75). All keypoints whose values of D are lower than a 
threshold are deleted. A suggested threshold value is 0.03. Keypoints associated 
with edges are deleted also, using Eq. (11-79). A value of 10 is suggested for r. 

5. Compute keypoint orientations. Use Eqs. (11-80) and (11-81) to compute the 
magnitude and orientation of each keypoint using the histogram-based proce-
dure discussed in connection with these equations.

6. Compute keypoint descriptors. Use the method summarized in Fig. 11.62 to 
compute a feature (descriptor) vector for each keypoint. If a region of size 
16 16×  around each keypoint is used, the result will be a 128-dimensional feature 
vector for each keypoint. 

The following example illustrates the power of this algorithm.

EXAMPLE 11.20 :  Using SIFT for image matching.

We illustrate the performance of the SIFT algorithm by using it to find the number of matches between 
an image of a building and a subimage formed by extracting part of the right corner edge of the building. 
We also show results for rotated and scaled-down versions of the image and subimage. This type of pro-
cess can be used in applications such as finding correspondences between two images for the purpose of 
image registration, and for finding instances of an image in a database of images. 

Figure 11.63(a) shows the keypoints for the building image (this is the same as Fig. 11.61), and the 
keypoints for the subimage, which is a separate, much smaller image. The keypoints were computed 

As indicated at the 
beginning of this section, 
smoothing and doubling 
the size of the input 
image is assumed. Input 
images are assumed to 
have values in the range 
[0, 1].
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using SIFT independently for each image. The building shows 643 keypoints and the subimage 54 key-
points. Figure 11.63(b) shows the matches found by SIFT between the image and subimage; 36 keypoint 
matches were found and, as the figure shows, only three were incorrect. Considering the large number 
of initial keypoints, you can see that keypoint descriptors offer a high degree of accuracy for establishing 
correspondences between images.

Figure 11.64(a) shows keypoints for the building image after it was rotated by 5° counterclockwise, 
and for a subimage extracted from its right corner edge. The rotated image is smaller than the original 
because it was cropped to eliminate the constant areas created by rotation (see Fig. 2.41). Here, SIFT 
found 547 keypoints for the building and 49 for the subimage. A total of 26 matches were found and, as 
Fig. 11.64(b) shows, only two were incorrect.

Figure 11.65 shows the results obtained using SIFT on an image of the building reduced to half the 
size in both spatial directions. When SIFT was applied to the downsampled image and a correspond-
ing subimage, no matches were found. This was remedied by brightening the reduced image slightly 
by manipulating the intensity gamma. The subimage was extracted from this image. Despite the fact 
that SIFT has the capability to handle some degree of changes in intensity, this example indicates that 
performance can be improved by enhancing the contrast of an image prior to processing. When work-
ing with a database of images, histogram specification (see Chapter 3) is an excellent tool for normal-
izing the intensity of all images using the characteristics of the image being queried. SIFT found 195 
keypoints for the half-size image and 24 keypoints for the corresponding subimage. A total of seven 
matches were found between the two images, of which only one was incorrect.

The preceding two figures illustrate the insensitivity of SIFT to rotation and scale changes, but they 
are not ideal tests because the reason for seeking insensitivity to these variables in the first place is 

ba

FIGURE 11.63 (a) Keypoints and their directions (shown as gray arrows) for the building image and for a section of 
the right corner of the building. The subimage is a separate image and was processed as such. (b) Corresponding 
key points between the building and the subimage (the straight lines shown connect pairs of matching points). Only 
three of the 36 matches found are incorrect.
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that we do not always know a priori when images have been acquired under different conditions and 
geometrical arrangements. A more practical test is to compute features for a prototype image and test 
them against unknown samples. Figure 11.66 shows the results of such tests. Figure 11.66(a) is the origi-
nal building image, for which SIFT features vectors were already computed (see Fig. 11.63). SIFT was 
used to compare the rotated subimage from Fig. 11.64(a) against the original, unrotated image. As Fig. 
11.66(a) shows, 10 matches were found, of which two were incorrect. These are excellent results, con-
sidering the relatively small size of the subimage, and the fact that it was rotated. Figure 11.66(b) shows 
the results of matching the half-sized subimage against the original image. Eleven matches were found, 

ba

FIGURE 11.64 (a) Keypoints for the rotated (by 5°) building image and for a section of the right corner of the building. 
The subimage is a separate image and was processed as such. (b) Corresponding keypoints between the corner and 
the building. Of the 26 matches found, only two are in error.

ba

FIGURE 11.65 (a) Keypoints for the half-sized building and a section of the right corner. (b) Corresponding keypoints 
between the corner and the building. Of the seven matches found, only one is in error.
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ba

FIGURE 11.66 (a) Matches between the original building image and a rotated version of a segment of its right corner. 
Ten matches were found, of which two are incorrect. (b) Matches between the original image and a half-scaled ver-
sion of a segment of its right corner. Here, 11 matches were found, of which four were incorrect.

of which four were incorrect. Again, these are good results, considering the fact that significant detail 
was lost in the subimage when it was rotated or reduced in size. If asked in both cases: Based solely on 
the matches found by SIFT, from which part of the building did the two subimages come? The obvious 
answer in both is that the subimages are from the right corner of the building. The preceding two tests 
illustrate the adaptability of SIFT to variations in rotation and scale. 

Summary, References, and Further Reading 
Feature extraction is a fundamental process in the operation of most automated image processing applications. 
As indicated by the range of feature detection and description techniques covered in this chapter, the choice of 
one method over another is determined by the problem under consideration. The objective is to choose feature 
descriptors that “capture” essential differences between objects, or classes of objects, while maintaining as much 
independence as possible to changes in variables such as location, scale, orientation, illumination, and viewing angle.

The Freeman chain code discussed in Section 11.2 was first proposed by Freeman [1961, 1974], while the slope 
chain code is due to Bribiesca [2013]. See Klette and Rosenfeld [2004] regarding the minimum-perimeter polygon 
algorithm. For additional reading on signatures see Ballard and Brown [1982]. The medial axis transform is gener-
ally credited to Blum [1967]. For efficient computation of the Euclidean distance transform used for skeletonizing 
see Maurer et al. [2003].

For additional reading on the basic boundary feature descriptors in Section 11.3, see Rosenfeld and Kak [1982]. 
The discussion on shape numbers is based on the work of Bribiesca and Guzman [1980]. For additional reading on 
Fourier descriptors, see the early paper by Zahn and Roskies [1972]. For an example of current uses of this tech-
nique, see Sikic and Konjicila [2016]. The discussion on statistical moments as boundary descriptors is from basic 
probability (for example, see Montgomery and Runger [2011]).

For additional reading on the basic region descriptors discussed in Section 11.4, see Rosenfeld and Kak [1982]. 
For further introductory reading on texture, see Haralick and Shapiro [1992] and Shapiro and Stockman [2001]. 
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Problems 
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book 
website: www.ImageProcessingPlace.com).

11.1 Do the following:

(a) * Provide all the missing steps in Fig. 11.1. 
Show your results using the same format as 
in that figure.

(b) When applied to binary regions, the bound-
ary-following algorithm in Section 11.2 typi-
cally yields boundaries that are one pixel 
thick, but this is not always the case. Give a 
small image example in which the boundary 
is thicker than one pixel in at least one place.

11.2 With reference to the Moore boundary-following 
algorithm explained in Section 11.2, answer the 
following, using the same grid as in Fig. 11.2 to 
identify boundary points in your explanation 
[remember, the origin is at ( , ),1 1  instead of our 
usual ( , )]0 0 . Include the position of points b 
and c at each point you mention. 

(a) * Give the coordinates in Fig. 11.2(a) at which 
the algorithm starts and ends. What would 
it do when it arrived at the end point of the 
boundary?

(b) How would the algorithm behave when 
it arrived at the intersection point in Fig. 
11.2(b) for the first time, and then for the 
second time?

11.3 Answer the following:

(a) * Does normalizing the Freeman chain code 
of a closed curve so that the starting point 
is the smallest integer always give a unique 
starting point?

(b) Does a chain-coded closed curve always 
have an even number of segments? If your 
answer is yes, prove it. If it is no, give an ex- 
ample.

(c) Find the normalized starting point of the 
code 11076765543322.

11.4 Do the following:

(a) * Show that the first difference of a chain code 
normalizes it to rotation, as explained in 
Section 11.2.

(b) Compute the first difference of the code 
0101030303323232212111.

11.5 Answer the following:

(a) * Given a one-pixel-thick, open or closed, 
4-connected simple (does not intersect 
itself) digital curve, can a slope chain code 
be formulated so that it behaves exactly as 
a Freeman chain code? If your answer is no, 
explain why. If your answer is yes, explain 
how you would do it, detailing any assump-
tions you need to make for your answer to 
hold.

(b) Repeat (a) for an 8-connected curve.

(c) How would you normalize a slope chain code 
for scale changes?

11.6 * Explain why a slope chain code with an angle 
accuracy of 10 1−  produces 19 symbols.

11.7 Let L be the length of the straight-line segments 
used in a slope chain code. Assume that L is such 
that an integral number of line segments fit the 

Our discussion of moment-invariants is based on Hu [1962]. For generating moments of arbitrary order, see Flusser 
[2000]. 

Hotelling [1933] was the first to derive and publish the approach that transforms discrete variables into uncor-
related coefficients (Section 11.5). He referred to this technique as the method of principal components. His paper 
gives considerable insight into the method and is worth reading. Principal components are still used widely in 
numerous fields, including image processing, as evidenced by Xiang et al. [2016]. The corner detector in Section 11.6 
is from Harris and Stephens [1988], and our discussion of MSERs is based on Matas et al. [2002]. The SIFT material 
in Section 11.7 is from Lowe [2004]. For details on the software aspects of many of the examples in this chapter, see 
Gonzalez, Woods, and Eddins [2009].
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curve under consideration. Assume also that the 
angle accuracy is high enough so that it may be 
considered infinite for your purposes, answer the 
following:

(a) * What is the tortuosity of a square boundary 
of size d d× ?

(b) * What is the tortuosity of a circle of radius r?

(c) What is the tortuosity of a closed convex 
curve?

11.8 * Advance an argument that explains why the 
uppermost-leftmost point of a digital closed 
curve has the property that a polygonal approxi-
mation to the curve has a convex vertex at that 
point.

11.9 With reference to Example 11.2, start with vertex 
V7  and apply the MPP algorithm through, and 
including, V11.

11.10 Do the following:

(a) * Explain why the rubber-band polygonal 
approximation approach discussed in Sec-
tion 11.2 yields a polygon with minimum 
perimeter for a convex curve.

(b) Show that if each cell corresponds to a pixel 
on the boundary, the maximum possible 
error in that cell is 2d,  where d is the mini-
mum possible horizontal or vertical distance 
between adjacent pixels (i.e., the distance 
between lines in the sampling grid used to 
produce the digital image).

11.11 Explain how the MPP algorithm in Section 11.2 
behaves under the following conditions:

(a) * One-pixel wide, one-pixel deep indentations.

(b) * One-pixel wide, two-or-more pixel deep 
indentations.

(c) One-pixel wide, n-pixel long protrusions.

11.12 Do the following.

(a) * Plot the signature of a square boundary using 
the tangent-angle method discussed in Sec-
tion 11.2.

(b) Repeat (a) for the slope density function. 
Assume that the square is aligned with the x- 
and y-axes, and let the x-axis be the reference 
line. Start at the corner closest to the origin.

11.13 Find an expression for the signature of each of 

the following boundaries, and plot the signatures.

(a) * An equilateral triangle.

(b) A rectangle.

(c) An ellipse

11.14 Do the following:

(a) * With reference to Figs. 11.11(c) and (f), give 
a word description of an algorithm for count-
ing the peaks in the two waveforms. Such an 
algorithm would allow us to differentiate 
between triangles and rectangles.

(b) How can you make your solution indepen-
dent of scale changes? You may assume that 
the scale changes are the same in both direc-
tions.

11.15 Draw the medial axis of:

(a) * A circle.

(b) * A square.

(c) An equilateral triangle.

11.16 For the figure shown,

(a) * What is the order of the shape number?

(b) Obtain the shape number.

11.17 * The procedure discussed in Section 11.3 for using 
Fourier descriptors consists of expressing the 
coordinates of a contour as complex numbers, 
taking the DFT of these numbers, and keeping 
only a few components of the DFT as descriptors 
of the boundary shape. The inverse DFT is then 
an approximation to the original contour. What 
class of contour shapes would have a DFT con-
sisting of real numbers, and how would the axis 
system in Fig. 11.18 have to be set up to obtain 
those real numbers?

11.18 Show that if you use only two Fourier descrip-
tors ( )u u= =0 1 and  to reconstruct a bound-
ary with Eq. (11-10), the result will always be a 
circle. (Hint: Use the parametric representation 
of a circle in the complex plane, and express the 
equation of a circle in polar coordinates.)
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11.19 * Give the smallest number of statistical moment 
descriptors needed to differentiate between the 
signatures of the figures in Fig. 11.10.

11.20 Give two boundary shapes that have the same 
mean and third statistical moment descriptors, 
but different second moments.

11.21 * Propose a set of descriptors capable of differen-
tiating between the shapes of the characters 0, 1, 
8, 9, and X. (Hint: Use topological descriptors in 
conjunction with the convex hull.)

11.22 Consider a binary image of size 200 200×  pix-
els, with a vertical black band extending from 
columns 1 to 99 and a vertical white band extend-
ing from columns 100 to 200.

(a) Obtain the co-occurrence matrix of this 
image using the position operator “one pixel 
to the right.”

(b) * Normalize this matrix so that its elements 
become probability estimates, as explained 
in Section 11.4.

(c) Use your matrix from (b) to compute the six 
descriptors in Table 11.3.

11.23 Consider a checkerboard image composed of 
alternating black and white squares, each of size 
m m×  pixels. Give a position operator that will 
yield a diagonal co-occurrence matrix.

11.24 Obtain the gray-level co-occurrence matrix of 
an  array pattern of alternating single 0’s and 1’s 
(starting with 0) if:

(a) * The position operator Q is defined as “one 
pixel to the right.”

(b) The position operator Q is defined as “two 
pixels to the right.”

11.25 Do the following.

(a) * Prove the validity of Eqs. (11-50) and (11-51).

(b) Prove the validity of Eq. (11-52).

11.26 * We mentioned in Example 11.16 that a credible 
job could be done of reconstructing approxima-
tions to the six original images by using only the 
two principal-component images associated with 
the largest eigenvalues. What would be the mean 
squared error incurred in doing so? Express your 
answer as a percentage of the maximum possible 
error.

11.27 For a set of images of size 64 64× ,  assume that 
the covariance matrix given in Eq. (11-52) is 
the identity matrix. What would be the mean 
squared error between the original images and 
images reconstructed using Eq. (11-54) with only 
half of the original eigenvectors?

11.28 Under what conditions would you expect the 
major axes of a boundary, defined in the discus-
sion of Eq. (11-4), to be equal to the eigen axes of 
that boundary?

11.29 * You are contracted to design an image process-
ing system for detecting imperfections on the 
inside of certain solid plastic wafers. The wafers 
are examined using an X-ray imaging system, 
which yields 8-bit images of size 512 512× . In 
the absence of imperfections, the images appear 
uniform, having a mean intensity of 100 and vari-
ance of 400. The imperfections appear as blob-
like regions in which about 70% of the pixels 
have excursions in intensity of 50 intensity levels 
or less about a mean of 100. A wafer is consid-
ered defective if such a region occupies an area 
exceeding 20 20×  pixels in size. Propose a system 
based on texture analysis for solving this prob-
lem.

11.30 With reference to Fig. 11.46, answer the following:

(a) * What is the cause of nearly identical clusters 
near the origin in Figs. 11.46(d)-(f).

(b) Look carefully, and you will see a single point 
near coordinates ( . , . )0 8 0 8  in Fig. 11.46(f). 
What caused this point?

(c) The results in Fig. 11.46(d)–(e) are for 
the small image patches shown in Figs. 
11.46(a)–(b). What would the results look 
like if we performed the computations over 
the entire image, instead of limiting the com-
putation to the patches?

11.31 When we discussed the Harris-Stephens corner 
detector, we mentioned that there is a closed-form 
formula for computing the eigenvalues of a 2 2×
matrix.

(a) * Given matrix M = [ ; ],a b c d  give the gen-
eral formula for finding its eigenvalues. 
Express your formula in terms of the trace 
and determinant of M.

(b) Give the formula for symmetric matrices of 
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size 2 2×  in terms of its four elements, with-
out using the trace nor the determinant.

11.32 * With reference to the component tree in Fig. 
11.51, assume that any pixels extending past the 
border of the small image are 0. Is region R1  an 
extremal region? Explain.

11.33 With reference to the discussion of maximally 
stable extremal regions in Section 11.6, can the 
root of a component tree contain an MSER? 
Explain.

11.34 * The well known heat-diffusion equation of a 
temperature function g x y z t( , , , ) of three spatial 
variables, ( , , ),x y z  is given by ∂ ∂ − =g t ga
2 0, 
where a  is the thermal diffusivity and 
2 is the 
Laplacian operator. In terms of our discussion of 
SIFT, the form of this equation is used to estab-
lish a relationship between the difference of 
Gaussians and the scaled Laplacian, s2 2
 . Show 
how this can be done to derive Eq. (11-70).

11.35 With reference to the SIFT algorithm discussed 
in Section 11.7, assume that the input image is 
square, of size M M×  (with M n= 2 ), and let the 
number of intervals per octave be s = 2.

(a) How many smoothed images will there be in 
each octave?

(b) * How many octaves could be generated before 
it is no longer possible to down-sample the 
image by 2?

(c) If the standard deviation used to smooth 
the first image in the first octave is s, what 
are the values of standard deviation used to 
smooth the first image in each of the remain-
ing octaves in (b)?

11.36 Advance an argument showing that smoothing 
an image and then downsampling it by 2 gives 
the same result as first downsampling the image 
by 2 and then smoothing it with the same kernel. 
By downsampling we mean skipping every other 
row and column. (Hint: Consider the fact that 
convolution is a linear process.)

11.37 Do the following:

(a) * Show how to obtain Eq. (11-74) from Eq. 
(11-71).

(b) Show how Eq. (11-75) follows from Eqs. 
(11-74) and (11-71).

11.38 A company that bottles a variety of industrial 
chemicals employs you to design an approach for 
detecting when bottles of their product are not 
full. As they move along a conveyor line past an 
automatic filling and capping station, the bottles 
appear as shown in the following image. A bottle 
is considered imperfectly filled when the level 
of the liquid is below the midway point between 
the bottom of the neck and the shoulder of the 
bottle. The shoulder is defined as the intersection 
of the sides and slanted portions of the bottle. 
The bottles move at a high rate of speed, but the 
company has an imaging system equipped with 
an illumination flash front end that effectively 
stops motion, so you will be given images that 
look very close to the sample shown here. Based 
on the material you have learned up to this point, 
propose a solution for detecting bottles that are 
not filled properly. State clearly all assumptions 
that you make and that are likely to impact the 
solution you propose.

11.39 Having heard about your success with the 
bottle inspection problem, you are contacted by a 
fluids company that wishes to automate bubble-
counting in certain processes for quality control. 
The company has solved the imaging problem 
and can obtain 8-bit images of size 700 700×  pix-
els, such as the one shown in the figure below. 

Each image represents an area of 7 2cm . The 
company wishes to do two things with each 
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image: (1) Determine the ratio of the area occu-
pied by bubbles to the total area of the image; 
and (2) count the number of distinct bubbles. 
Based on the material you have learned up to 
this point, propose a solution to this problem. In 

your report, state the physical dimensions of the 
smallest bubble your solution can detect. State 
clearly all assumptions that you make and that 
are likely to impact the solution you propose.
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12 Image Pattern Classification

Preview
We conclude our coverage of digital image processing with an introduction to techniques for image 
pattern classification. The approaches developed in this chapter are divided into three principal catego-
ries: classification by prototype matching, classification based on an optimal statistical formulation, and 
classification based on neural networks. The first two approaches are used extensively in applications in 
which the nature of the data is well understood, leading to an effective pairing of features and classifier 
design. These approaches often rely on a great deal of engineering to define features and elements of a 
classifier. Approaches based on neural networks rely less on such knowledge, and lend themselves well 
to applications in which pattern class characteristics (e.g., features) are learned by the system, rather 
than being specified a priori by a human designer. The focus of the material in this chapter is on prin-
ciples, and on how they apply specifically in image pattern classification.

Upon completion of this chapter, readers should:
 Understand the meaning of patterns and pat-

tern classes, and how they relate to digital 
image processing.

 Be familiar with the basics of minimum-dis-
tance classification. 

 Know how to apply image correlation tech-
niques for template matching.

 Understand the concept of string matching.

 Be familiar with Bayes classifiers.

 Understand perceptrons and their history.

 Be familiar with the concept of learning from 
training samples.

 Understand neural network architectures. 

 Be familiar with the concept of deep learning 
in fully connected and deep convolutional neu-
ral networks. In particular, be familiar with the 
importance of the latter in digital image pro-
cessing.

One of the most interesting aspects of the world is that it can be  
considered to be made up of patterns.

A pattern is essentially an arrangement. It is characterized by  
the order of the elements of which it is made, rather than by the  
intrinsic nature of these elements.

Norbert Wiener
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12.1  BACKGROUND  

Humans possess the most sophisticated pattern recognition capabilities in the known 
biological world. By contrast, the capabilities of current recognition machines pale 
in comparison with tasks humans perform routinely, from being able to interpret the 
meaning of complex images, to our ability for generalizing knowledge stored in our 
brains. But recognition machines play an important, sometimes even crucial role in 
everyday life. Imagine what modern life would be like without machines that read 
barcodes, process bank checks, inspect the quality of manufactured products, read 
fingerprints, sort mail, and recognize speech. 

In image pattern recognition, we think of a pattern as a spatial arrangement of 
features. A pattern class is a set of patterns that share some common properties. Pat-
tern recognition by machine encompasses techniques for automatically assigning 
patterns to their respective classes. That is, given a pattern or sets of patterns whose 
class is unknown, the job of a pattern recognition system is to assign a class label to 
each of its input patterns.

There are four main stages involved in recognition: (1) sensing, (2) preprocessing, 
(3) feature extraction, and (4) classification. In terms of image processing, sensing is 
concerned with generating signals in a spatial (2-D) or higher-dimensional format. 
We covered numerous aspects of image sensing in Chapter 1. Preprocessing deals 
with techniques for tasks such as noise reduction, enhancement, restoration, and 
segmentation, as discussed in earlier chapters. You learned about feature extraction 
in Chapter 11. Classification, the focus of this chapter, deals with using a set of fea-
tures as the basis for assigning class labels to unknown input image patterns.

In the following section, we will discuss three basic approaches used for image 
pattern classification: (1) classification based on matching unknown patterns against 
specified prototypes, (2) optimum statistical classifiers, and (3) neural networks. 
One way to characterize the differences between these approaches is in the level 
of “engineering” required to transform raw data into formats suitable for computer 
processing. Ultimately, recognition performance is determined by the discriminative 
power of the features used. 

In classification based on prototypes, the objective is to make the features so 
unique and easily detectable that classification itself becomes a simple task. A good 
example of this are bank-check processors, which use stylized font styles to simplify 
machine processing (we will discuss this application in Section 12.3). 

In the second category, classification is cast in decision-theoretic, statistical terms, 
and the classification approach is based on selecting parameters that can be shown 
to yield optimum classification performance in a statistical sense. Here, emphasis is 
placed on both the features used, and the design of the classifier. We will illustrate 
this approach in Section 12.4 by deriving the Bayes pattern classifier, starting from 
basic principles. 

In the third category, classification is performed using neural networks. As you 
will learn in Sections 12.5 and 12.6, neural networks can operate using engineered 
features too, but they have the unique ability of being able to generate, on their own, 
representations (features) suitable for recognition. These systems can accomplish 
this using raw data, without the need for engineered features. 

12.1
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One characteristic shared by the preceding three approaches is that they are 
based on parameters that must be either specified or learned from patterns that rep-
resent the recognition problem we want to solve. The patterns can be labeled, mean-
ing that we know the class of each pattern, or unlabeled, meaning that the data are 
known to be patterns, but the class of each pattern is unknown. A classic example 
of labeled data is the character recognition problem, in which a set of character 
samples is collected and the identity of each character is recorded as a label from 
the group 0 through 9 and a through z. An example of unlabeled data is when we are 
seeking clusters in a data set, with the aim of utilizing the resulting cluster centers as 
being prototypes of the pattern classes contained in the data.

When working with a labeled data, a given data set generally is subdivided into 
three subsets: a training set, a validation set, and a test set (a typical subdivision might 
be 50% training, and 25% each for the validation and test sets). The process by 
which a training set is used to generate classifier parameters is called training. In 
this mode, a classifier is given the class label of each pattern, the objective being to 
make adjustments in the parameters if the classifier makes a mistake in identify-
ing the class of the given pattern. At this point, we might be working with several 
candidate designs. At the end of training, we use the validation set to compare the 
various designs against a performance objective. Typically, several iterations of train-
ing/validation are required to establish the design that comes closest to meeting the 
desired objective. Once a design has been selected, the final step is to determine how 
it will perform “in the field.” For this, we use the test set, which consists of patterns 
that the system has never “seen” before. If the training and validation sets are truly 
representative of the data the system will encounter in practice, the results of train-
ing/validation should be close to the performance using the test set. If training/vali-
dation results are acceptable, but test results are not, we say that training/validation 

“over fit” the system parameters to the available data, in which case further work on 
the system architecture is required. Of course all this assumes that the given data are 
truly representative of the problem we want to solve, and that the problem in fact 
can be solved by available technology.

A system that is designed using training data is said to undergo supervised learn-
ing. If we are working with unlabeled data, the system learns the pattern classes 
themselves while in an unsupervised learning mode. In this chapter, we deal only 
with supervised learning. As you will see in this and the next chapter, supervised 
learning covers a broad range of approaches, from applications in which a system 
learns parameters of features whose form is fixed by a designer, to systems that uti-
lize deep learning and large sets of raw data sets to learn, on their own, the features 
required for classification. These systems accomplish this task without a human 
designer having to specify the features, a priori. 

After a brief discussion in the next section of how patterns are formed, and on 
the nature of patterns classes, we will discuss in Section 12.3 various approaches for 
prototype-based classification. In Section 12.4, we will start from basic principles 
and derive the equations of the Bayes classifier, an approach characterized by opti-
mum classification performance on an average basis. We will also discuss supervised 
training of a Bayes classifier based on the assumption of multivariate Gaussian 

Because the examples in 
this chapter are intended 
to demonstrate basic 
principles and are not 
large scale, we dispense 
with validation and 
subdivide the pattern 
data into training and 
test sets.

Generally, we associate 
the concept of deep 
learning with large sets 
of data. These ideas are 
discussed in more detail 
later in this section and 
next.
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distributions. Starting with Section 12.5, we will spend the rest of the chapter discuss-
ing neural networks. We will begin Section 12.5 with a brief introduction to percep-
trons  and some historical facts about machine learning. Then, we will introduce the 
concept of deep neural networks and derive the equations of backpropagation, the 
method of choice for training deep neural nets. These networks are well-suited for 
applications in which input patterns are vectors. In Section 12.6, we will introduce 
deep convolutional neural networks, which currently are the preferred approach 
when the system inputs are digital images. After deriving the backpropagation equa-
tions used for training convolutional nets, we will give several examples of appli-
cations involving classes of images of various complexities. In addition to working 
directly with image inputs, deep convolutional nets are capable of learning, on their 
own, image features suitable for classification. This is accomplished starting with raw 
image data, as opposed to the other classification methods discussed in Sections 12.3 
and 12.4, which rely on “engineered” features whose form, as noted earlier, is speci-
fied a priori by a human designer.

12.2  PATTERNS AND PATTERN CLASSES  

In image pattern classification, the two principal pattern arrangements are quantita-
tive and structural. Quantitative patterns are arranged in the form of pattern vectors. 
Structural patterns typically are composed of symbols, arranged in the form of strings, 
trees, or, less frequently, as graphs. Most of the work in this chapter is based on pat-
tern vectors, but we will discuss structural patterns briefly at the end of this section, 
and give an example at the end of Section 12.3. 

PATTERN VECTORS

Pattern vectors are represented by lowercase letters, such as x, y, and z, and have 
the form

 x =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x

x

xn

1

2

�
 (12-1)

where each component, xi , represents the ith feature descriptor, and n is the total 
number of such descriptors. We can express a vector in the form of a column, as 
in Eq. (12-1), or in the equivalent row form x = ( )x x xn

T
1 2, , , ,…  where T  indicates 

transposition. A pattern vector may be “viewed” as a point in n-dimensional Euclid-
ean space, and a pattern class may be interpreted as a “hypercloud” of points in this 
pattern space. For the purpose of recognition, we like for our pattern classes to be 
grouped tightly, and as far away from each other as possible. 

Pattern vectors can be formed directly from image pixel intensities by vector-
izing the image using, for example, linear indexing, as in Fig. 12.1. A more common 
approach is for pattern elements to be features. An early example is the work of 
Fisher [1936] who, close to a century ago, reported the use of what then was a new 

12.2

We discussed linear  
indexing in Section 2.4 
(see Fig. 2.22).
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technique called discriminant analysis to recognize three types of iris flowers (Iris 
setosa, virginica, and versicolor). Fisher described each flower using four features: 
the length and width of the petals, and similarly for the sepals (see Fig. 12.2). This 
leads to the 4-D vectors shown in the figure. A set of these vectors, obtained for fifty 
samples of each flower gender, constitutes the three famous Fisher iris pattern class-
es. Had Fisher been working today, he probably would have added spectral colors 
and shape features to his measurements, yielding vectors of higher dimensionality. 
We will be working with the original iris data set later in this chapter. 

A higher-level representation of patterns is based on feature descriptors of the 
types you learned in Chapter 11. For instance, pattern vectors formed from descrip-
tors of boundary shape are well-suited for applications in controlled environments, 
such as industrial inspection. Figure 12.3 illustrates the concept. Here, we are inter-
ested in classifying different types of noisy shapes, a sample of which is shown in 
the figure. If we represent an object by its signature, we would obtain 1-D signals 
of the form shown in Fig. 12.3(b). We can express a signature as a vector by sam-
pling its amplitude at increments of u, then formimg a vector by letting x ri i= ( ),u  
for i n= 0 1 2, , , , .…  Instead of using “raw” sampled signatures, a more common 
approach is to compute some function, x g ri i= ( )( ) ,u  of the signature samples and 
use them to form vectors. You learned in Section 11.3 several approaches to do this, 
such as statistical moments. 

Sepals are the undergrowth 
beneath the petals. 
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FIGURE 12.1
Using linear  
indexing to  
vectorize a  
grayscale image. 

FIGURE 12.2
Petal and sepal 
width and length 
measurements 
(see arrows) 
performed on iris 
flowers for the 
purpose of data 
classification. The 
image shown is of 
the Iris virginica 
gender. (Image 
courtesy of 
USDA.)
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Vectors can be formed also from features of both boundary and regions. For 
example, the objects in Fig. 12.4 can be represented by 3-D vectors whose compo-
nents capture shape information related to both boundary and region properties 
of single binary objects. Pattern vectors can be used also to represent properties of 
image regions. For example, the elements of the 6-D vector in Fig. 12.5 are texture 
measures based on the feature descriptors in Table 11.3. Figure 12.6 shows an exam-
ple in which pattern vector elements are features that are invariant to transforma-
tions, such as image rotation and scaling (see Section 11.4).

When working with sequences of registered images, we have the option of using 
pattern vectors formed from corresponding pixels in those images (see Fig. 12.7). 
Forming pattern vectors in this way implies that recognition will be based on infor-
mation extracted from the same spatial location across the images. Although this 
may seem like a very limiting approach, it is ideally suited for applications such as 
recognizing regions in multispectral images, as you will see in Section 12.4.

When working with entire images as units, we need the detail afforded by vectors 
of much-higher dimensionality, such as those we discussed in Section 11.7 in connec-
tion with the SIFT algorithm. However, a more powerful approach when working 
with entire images is to use deep convolutional neural networks. We will discuss 
neural nets in detail in Sections 12.5 and 12.6.

STRUCTURAL PATTERNS

Pattern vectors are not suitable for applications in which objects are represented 
by structural features, such as strings of symbols. Although they are used much less 
than vectors in image processing applications, patterns containing structural descrip-
tions of objects are important in applications where shape is of interest. Figure 12.8 
shows an example. The boundaries of the bottles were approximated by a polygon 
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x2 = circularity
x3 = eccentricity
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Spectral band 1

Spectral band 2

Spectral band 3

Spectral band 4

Spectral band 5

Spectral band 6

x
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�

Images in spectral bands 1 3–

Images in spectral bands 4 6–

FIGURE 12.5
An example of  
pattern vectors 
based on  
properties of 
subimages. See 
Table 11.3 for an 
explanation of the 
components of x.
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FIGURE 12.7 Pattern (feature) vectors formed by concatenating corresponding pixels from a set of registered images. 
(Original images courtesy of NASA.)
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910    Chapter 12  Image Pattern Classification

using the approach explained in Section 11.2. The boundary is subdivided into line 
segments (denoted by b in the figure), and the interior angle, u, is computed at each 
intersection of two line segments. A string of sequential symbols is generated as the 
boundary is traversed in the counterclockwise direction, as the figure shows. Strings 
of this form are structural patterns, and the objective, as you will see in Section 12.3, 
is to match a given string against stored string prototypes.

A tree is another structural representation, suitable for higher-level descriptions 
of an entire image in terms of its component regions. Basically, most hierarchical 
ordering schemes lead to tree structures. For example, Fig. 12.9 shows a satellite 
image of a heavily built downtown area and surrounding residential areas. Let the 
symbol $ represent the root of a tree. The (upside down) tree shown in the figure 
was obtained using the structural relationship “composed of.” Thus, the root of the 
tree represents the entire image. The next level indicates that the image is composed 
of a downtown and residential areas. In turn, the residential areas are composed 
of housing, highways, and shopping malls. The next level down in the tree further 
describes the housing and highways. We can continue this type of subdivision until 
we reach the limit of our ability to resolve different regions in the image.

12.3  PATTERN CLASSIFICATION BY PROTOTYPE MATCHING  

Prototype matching involves comparing an unknown pattern against a set of pro-
totypes, and assigning to the unknown pattern the class of the prototype that is the 
most “similar” to the unknown. Each prototype represents a unique pattern class, 
but there may be more than one prototype for each class. What distinguishes one 
matching method from another is the measure used to determine similarity. 

MINIMUM-DISTANCE CLASSIFIER

One of the simplest and most widely used prototype matching methods is the 
minimum-distance classifier which, as its name implies, computes a distance-based  
measure between an unknown pattern vector and each of the class prototypes. It 
then assigns the unknown pattern to the class of its closest prototype. The prototype 

12.3

The minimum-distance 
classifier is also referred 
to as the nearest-neighbor 
classifier. 

=� �a bubb
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 interior angle=u
 line segment of specified length=b

FIGURE 12.8
Symbol string  
generated from 
a polygonal 
approximation of 
the boundaries of 
medicine bottles.
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vectors of the minimum-distance classifier usually are the mean vectors of the vari-
ous pattern classes:

 m x
x

j
j c

cn j N
j

= =
∈
∑1

1 2, , ,…  (12-2)

where nj  is the number of pattern vectors used to compute the jth mean vector, 
cj  is the jth pattern class, and Nc  is the number of classes. If we use the Euclidean 
distance to determine similarity, the minimum-distance classifier computes the dis-
tances

 D j Nj j cx x m( ) = − =� � 1 2, , ,…  (12-3)

where � �a a a= ( )T 1 2  is the Euclidean norm. The classifier then assigns an unknown 
pattern x  to class ci  if D Di j( ) ( )x x<  for j N j ic= 1 2, , , , .… ≠  Ties [i.e., D Di j( ) ( )]x x=
are resolved arbitrarily.

It is not difficult to show (see Problem 12.2) that selecting the smallest distance is 
equivalent to evaluating the functions

 d j Nj j
T

j
T

j cx m x m m( ) = − =1
2

1 2, , ,…  (12-4)
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FIGURE 12.9 Tree representation of a satellite image showing a heavily built downtown area (Washington, D.C.) and 
surrounding residential areas. (Original image courtesy of NASA.)
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912    Chapter 12  Image Pattern Classification

and assigning an unknown pattern x to the class whose prototype yielded the largest 
value of d. That is, x  is assigned to class ci , if

 d d j N j ii j c( ) ( ) , , , ;x x> = 1 2 … ≠  (12-5)

When used for recognition, functions of this form are referred to as decision or dis-
criminant functions. 

The decision boundary separating class ci  from cj  is given by the values of x for 
which 

 d di j( ) ( )x x=   (12-6)

or, equivalently, by values of x  for which

 d di j( ) ( )x x− = 0  (12-7)

The decision boundaries for a minimum-distance classifier follow directly from this 
equation and Eq. (12-4):

 
d d dij i j

i j
T

i j
T

i j

( ) ( ) ( )

( ) ( ) ( )

x x x= −

= − − − + =m m x m m m m1
2

0
 (12-8)

The boundary given by Eq. (12-8) is the perpendicular bisector of the line segment 
joining mi  and m j  (see Problem 12.3). In 2-D (i.e., n = 2), the perpendicular bisector 
is a line, for n = 3 it is a plane, and for n > 3 it is called a hyperplane.

EXAMPLE 12.1 :  Illustration of the minimum-distance classifier for two classes in 2-D.

Figure 12.10 shows scatter plots of petal width and length values for the classes Iris versicolor and Iris 
setosa. As mentioned in the previous section, pattern vectors in the iris database consists of four mea-
surements for each flower. We show only two here so that you can visualize the pattern classes and the 
decision boundary between them. We will work with the complete database later in this chapter. 

We denote the Iris versicolor and setosa data as classes c1 and c2, respectively. The means of the two 
classes are m1 4 3 1 3= ( ). , . T  and m2 1 5 0 3= ( ). , . .T  It then follows from Eq. (12-4) that

 
d

x x

T T
1 1 1 1

1 2

1
2

4 3 1 3 10 1

x m x m m( ) = −

= + −. . .
and

 
d

x x

T T
2 2 2 2

1 2

1
2

1 5 0 3 1 17

x m x m m( ) = −

= + −. . .

From Eq. (12-8), the equation of the boundary is

 
d d d

x x
12 1 2

1 22 8 1 0 8 9 0
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. . .

x = −
= + − =

x x
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12.3  Pattern Classification by Prototype Matching    913

Figure 12.10 shows a plot of this boundary. Substituting any pattern vector from class c1 into this equa-
tion would yield d12 0( ) .x >  Conversely, any pattern from class c2  would give d12 0( ) .x <  Thus, given an 
unknown pattern x  belonging to one of these two classes, the sign of d12( )x  would be sufficient to deter-
mine the class to which that pattern belongs.

The minimum-distance classifier works well when the distance between means is 
large compared to the spread or randomness of each class with respect to its mean. 
In Section 12.4 we will show that the minimum-distance classifier yields optimum 
performance (in terms of minimizing the average loss of misclassification) when the 
distribution of each class about its mean is in the form of a spherical “hypercloud” in 
n-dimensional pattern space.

As noted earlier, one of the keys to accurate recognition performance is to specify 
features that are effective discriminators between classes. As a rule, the better the 
features are at meeting this objective, the better the recognition performance will be. 
In the case of the minimum-distance classifier this implies wide separation between 
means and tight grouping of the classes. 

Systems based on the Banker’s Association E-13B font character are a classic 
example of how highly engineered features can be used in conjunction with a simple 
classifier to achieve superior results. In the mid-1940s, bank checks were processed 
manually, which was a laborious, costly process prone to mistakes. As the volume 
of check writing increased in the early 1950s, banks became keenly interested in 
automating this task. In the middle 1950s, the E-13B font and the system that reads 
it became the standard solution to the problem. As Fig. 12.11 shows, this font set con-
sists of 14 characters laid out on a 9 7×  grid. The characters are stylized to maximize 
the difference between them. The font was designed to be compact and readable by 
humans, but the overriding purpose was that the characters should be readable by 
machine, quickly, and with very high accuracy. 
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FIGURE 12.10
Decision  
boundary of a 
minimum distance 
classifier (based 
on two measure-
ments) for the 
classes of Iris 
versicolor and Iris 
setosa. The dark 
dot and square 
are the means of 
the two classes.
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914    Chapter 12  Image Pattern Classification

In addition to a stylized font design, the operation of the reading system is further 
enhanced by printing each character using an ink that contains finely ground mag-
netic material. To improve character detectability in a check being read, the ink is 
subjected to a magnetic field that accentuates each character against the background. 
The stylized design further enhances character detectability. The characters are 
scanned in a horizontal direction with a single-slit reading head that is narrower but 
taller than the characters. As a check passes through the head, the sensor produces a 
1-D electrical signal (a signature) that is conditioned to be proportional to the rate 
of increase or decrease of the character area under the head. For example, consider 
the waveform of the number 0 in Fig. 12.11. As a check moves to the right past the 
head, the character area seen by the sensor begins to increase, producing a positive 
derivative (a positive rate of change). As the right leg of the character begins to pass 
under the head, the character area seen by the sensor begins to decrease, produc-
ing a negative derivative. When the head is in the middle zone of the character, the 
area remains nearly constant, producing a zero derivative. This waveform repeats 
itself as the other leg of the character enters the head. The design of the font ensures 
that the waveform of each character is distinct from all others. It also ensures that 
the peaks and zeros of each waveform occur approximately on the vertical lines of 
the background grid on which these waveforms are displayed, as the figure shows. 
The E-13B font has the property that sampling the waveforms only at these (nine) 

Appropriately, recogni-
tion of magnetized char-
acters is referred to as 
Magnetic Ink Character 
Recognition (MICR).
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FIGURE 12.11
The American  
Bankers  
Association 
E-13B font 
character set and 
corresponding 
waveforms.
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points yields enough information for their accurate classification. The effectiveness 
of these highly engineered features is further refined by the magnetized ink, which 
results in clean waveforms with almost no scatter.

Designing a minimum-distance classifier for this application is straightforward. 
We simply store the sample values of each waveform at the vertical lines of the grid,  
and let each set of the resulting samples be represented as a 9-D prototype vector, 
m j j, , , , .= 1 2 14…  When an unknown character is to be classified, the approach is 
to scan it in the manner just described, express the grid samples of the waveform as 
a 9-D vector, x, and identify its class by selecting the class of the prototype vector 
that yields the highest value in Eq. (12-4). We do not even need a computer to do 
this. Very high classification speeds can be achieved with analog circuits composed 
of resistor banks (see Problem 12.4).

The most important lesson in this example is that a recognition problem often can 
be made trivial if we can control the environment in which the patterns are gener-
ated. The development and implementation of the E13-B font reading system is a 
striking example of this fact. On the other hand, this system would be inadequate if 
we added the requirement that it has to recognize the textual content and signature 
written on each check. For this, we need systems that are significantly more complex, 
such as the convolutional neural networks we will discuss in Section 12.6.

USING CORRELATION FOR 2-D PROTOTYPE MATCHING

We introduced the basic idea of spatial correlation and convolution in Section 3.4, 
and used these concepts extensively in Chapter 3 for spatial filtering. From Eq. (3-34), 
we know that correlation of a kernel w  with an image f x y( , ) is given by

 (w w(� f x y s t f x s y t
ts

)( , ) , ) ( , )= + +∑∑  (12-9)

where the limits of summation are taken over the region shared by w  and f . This 
equation is evaluated for all values of the displacement variables x and y so all ele-
ments of w  visit every pixel of f . As you know, correlation has its highest value(s) 
in the region(s) where f  and w  are equal or nearly equal. In other words, Eq. (12-9) 
finds locations where w  matches a region of f . But this equation has the drawback 
that the result is sensitive to changes in the amplitude of either function. In order 
to normalize correlation to amplitude changes in one or both functions, we perform 
matching using the correlation coefficient instead:

 g( , )
( , ) ( , )

( , ) ( ,

x y
s t f x s y t f

s t f x s y
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2
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 (12-10)

where the limits of summation are taken over the region shared by w  and f , w  is the 
average value of the kernel (computed only once), and fxy is the average value of f  in 
the region coincident with w.  In image correlation work, w  is often referred to as a 
template (i.e., a prototype subimage) and correlation is referred to as template matching. 

To be formal, we should 
refer to correlation (and 
the correlation  
coefficient) as cross-
correlation when the 
functions are different, 
and as autocorrelation 
when they are the same. 
However, it is customary 
to use the generic term 
correlation and  
correlation coefficient, 
except when the distinc-
tion is important (as in 
deriving equations, in 
which it makes a dif-
ference which is being 
applied).
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916    Chapter 12  Image Pattern Classification

It can be shown (see Problem 12.5) that g( , )x y  has values in the range [ , ]−1 1  and is thus 
normalized to changes in the amplitudes of w  and f . The maximum value of g occurs 
when the normalized w  and the corresponding normalized region in f  are identical. 
This indicates maximum correlation (the best possible match). The minimum occurs 
when the two normalized functions exhibit the least similarity in the sense of Eq. (12-10). 

Figure 12.12 illustrates the mechanics of the procedure just described. The border 
around image f  is padding, as explained in Section 3.4. In template matching, values 
of correlation when the center of the template is past the border of the image gener-
ally are of no interest, so the padding is limited to half the kernel width.

The template in Fig. 12.12 is of size m n× , and it is shown with its center at an 
arbitrary location ( , ).x y  The value of the correlation coefficient at that point is com-
puted using Eq. (12-10). Then, the center of the template is incremented to an adja-
cent location and the procedure is repeated. Values of the correlation coefficient 
g( , )x y  are obtained by moving the center of the template (i.e., by incrementing x 
and y) so the center of w  visits every pixel in f . At the end of the procedure, we 
look for the maximum in g( , )x y  to find where the best match occurred. It is possible 
to have multiple locations in g( , )x y  with the same maximum value, indicating sev-
eral matches between w  and f .

EXAMPLE 12.2 :  Matching by correlation.

Figure 12.13(a) shows a 913 913×  satellite image of 1992 Hurricane Andrew, in which the eye of the 
storm is clearly visible. We want to use correlation to find the location of the best match in Fig. 12.13(a) 
of the template in Fig. 12.13(b), which is a 31 1× 3  subimage of the eye of the storm. Figure 12.13(c) 
shows the result of computing the correlation coefficient in Eq. (12-10) for all values of x and y in 
the original image. The size of this image was 943 943×  pixels due to padding (see Fig. 12.12), but we 
cropped it to the size of the original image for display. The intensity in this image is proportional to the 
correlation values, and all negative correlations were clipped at 0 (black) to simplify the visual analysis 
of the image. The area of highest correlation values appears as a small white region in this image. The 
brightest point in this region matches with the center of the eye of the storm. Figure 12.13(d) shows as a 

(n � 1)/2

(m � 1)/2

Origin

Padding

Image, f

Template w
centered at an arbitrary
location (x, y)

(x, y)

n

m

FIGURE 12.12
The mechanics of 
template  
matching.
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12.3  Pattern Classification by Prototype Matching    917

white dot the location of this maximum correlation value (in this case there was a unique match whose 
maximum value was 1), which we see corresponds closely with the location of the eye in Fig. 12.13(a). 

MATCHING SIFT FEATURES

We discussed the scale-invariant feature transform (SIFT) in Section 11.7. SIFT 
computes a set of invariant features that can be used for matching between known 
(prototype) and unknown images. The SIFT implementation in Section 11.7 yields 
128-dimensional feature vectors for each local region in an image. SIFT performs 
matching by looking for correspondences between sets of stored feature vector pro-
totypes and feature vectors computed for an unknown image. Because of the large 
number of features involved, searching for exact matches is computationally inten-
sive. Instead, the approach is to use a best-bin-first method that can identify the near-
est neighbors with high probability using only a limited amount of computation (see 
Lowe [1999], [2004]). The search is further simplified by looking for clusters of poten-
tial solutions using the generalized Hough transform proposed by Ballard [1981]. We 

ba
dc  

FIGURE 12.13
(a) 913 913×  
satellite image 
of Hurricane 
Andrew.  
(b) 31 31×   
template of the 
eye of the storm.  
(c) Correlation 
coefficient shown 
as an image (note 
the brightest 
point, indicated 
by an arrow). 
(d) Location of 
the best match 
(identified by the 
arrow). This point 
is a single pixel, 
but its size was 
enlarged to make 
it easier to see. 
(Original image 
courtesy of 
NOAA.)
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918    Chapter 12  Image Pattern Classification

know from the discussion in Section 10.2 that the Hough transform simplifies looking 
for data patterns by utilizing bins that reduce the level of detail with which we look at 
a data set. We already discussed the SIFT algorithm in Section 11.7. The focus in this 
section is to further illustrate the capabilities of SIFT for prototype matching. 

Figure 12.14 shows the circuit board image we have used several times before. 
The small rectangle enclosing the rightmost connector on the top of the large image 
identifies an area from which an image of the connector was extracted. The small 
image is shown zoomed for clarity.  The sizes of the large and small images are shown 
in the figure caption. Figure 12.15 shows the keypoints found by SIFT, as explained 
in Section 11.7. They are visible as faint lines on both images. The zoomed view of 
the subimage shows them a little clearer. It is important to note that the keypoints 
for the image and subimage were found independently by SIFT.  The large image 
had 2714 keypoints, and the small image had 35. 

Figure 12.16 shows the matches between keypoints found by SIFT. A total of 41 
matches were found between the two images. Because there are only 35 keypoints 

FIGURE 12.15
Keypoints found 
by SIFT. The 
large image has 
2714 keypoints 
(visible as faint 
gray lines). The 
subimage has 35 
keypoints. This is 
a separate image, 
and SIFT found 
its keypoints inde-
pendently of the 
large image. The 
zoomed section is 
shown for clarity.

FIGURE 12.14
Circuit board 
image of size 
948 915×  pixels, 
and a subimage 
of one of the 
connectors. The 
subimage is of size 
212 128×  pixels, 
shown zoomed 
on the right for 
clarity. (Original 
image courtesy of 
Mr. Joseph E.  
Pascente, Lixi, 
Inc.)
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in the small image, obviously at least six matches are either incorrect, or there are 
multiple matches. Three of the errors are clearly visible as matches with connectors 
in the middle of the large image. However, if you compare the shape of the connec-
tors in the middle of the large image, you can see that they are virtually identical to 
parts of the connectors on the right. Therefore, these errors can be explained on that 
basis. The other three extra matches are easier to explain. All connectors on the top 
right of the circuit board are identical, and we are comparing one of them against 
the rest. There is no way for a system to tell the difference between them. In fact, by 
looking at the connecting lines, we can see that the matches are between the subim-
age and all five connectors. These in fact are correct matches between the subimage 
and other connectors that are identical to it.

MATCHING STRUCTURAL PROTOTYPES

The techniques discussed up to this point deal with patterns quantitatively, and 
largely ignore any structural relationships inherent in pattern shapes. The methods 
discussed in this section seek to achieve pattern recognition by capitalizing precisely 
on these types of relationships. In this section, we introduce two basic approaches 
for the recognition of boundary shapes based on string representations, which are 
the most practical approach in structural pattern recognition.

Matching Shape Numbers

A procedure similar in concept to the minimum-distance classifier introduced ear-
lier for pattern vectors can be formulated for comparing region boundaries that are 

Errors

FIGURE 12.16
Matches found by 
SIFT between the 
large and small 
images. A total of 
41 matching pairs 
were found. They 
are shown  
connected by 
straight lines. 
Only three of the 
matches were 
“real” errors 
(labeled “Errors” 
in the figure).
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920    Chapter 12  Image Pattern Classification

described by shape numbers. With reference to the discussion in Section 11.3, the 
degree of similarity, k, between two region boundaries, is defined as the largest order 
for which their shape numbers still coincide. For example, let a  and b denote shape 
numbers of closed boundaries represented by 4-directional chain codes. These two 
shapes have a degree of similarity k  if

 
s a s b j k

s a s b j k k

j j

j j

( ) = ( ) =

( ) ≠ ( ) = + +

for and

for

4 6 8

2 4

, , , , ;

, ,

…

…
 (12-11)

where s  indicates shape number, and the subscript indicates shape order. The dis-
tance between two shapes a  and b is defined as the inverse of their degree of simi-
larity:

 D a b
k

,( ) = 1
 (12-12)

This expression satisfies the following properties:

 

D a b

D a b a b

D a c D a b D b c

,

,

, max , , ,

( ) ≥

( ) = =

( ) ≤ ( ) ( )⎡⎣

0

0 if and only if

⎤⎤⎦

 (12-13)

Either k  or D may be used to compare two shapes. If the degree of similarity is used, 
the larger k  is, the more similar the shapes are (note that k  is infinite for identical 
shapes). The reverse is true when Eq. (12-12) is used.

EXAMPLE 12.3 :  Matching shape numbers.

Suppose we have a shape, f , and want to find its closest match in a set of five shape prototypes, denoted 
by a, b, c, d, and e, as shown in Fig. 12.17(a). The search may be visualized with the aid of the similarity 
tree in Fig. 12.17(b). The root of the tree corresponds to the lowest possible degree of similarity, which 
is 4. Suppose shapes are identical up to degree 8, with the exception of shape a, whose degree of simi-
larity with respect to all other shapes is 6. Proceeding down the tree, we find that shape d has degree of 
similarity 8 with respect to all others, and so on. Shapes f and c match uniquely, having a higher degree 
of similarity than any other two shapes. Conversely, if a had been an unknown shape, all we could have 
said using this method is that a was similar to the other five shapes with degree of similarity 6. The same 
information can be summarized in the form of the similarity matrix in Fig. 12.17(c).

String Matching

Suppose two region boundaries, a and b, are coded into strings of symbols, denot-
ed as a a an1 2…  and b b bm1 2… , respectively. Let a  represent the number of matches 
between the two strings, where a match occurs in the kth position if a bk k= . The 
number of symbols that do not match is

 b a= ( ) −max ,a b  (12-14)

Parameter j starts at 
4 and is always even 
because we are working 
with 4-connectivity, and 
we require that  
boundaries be closed.
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12.3  Pattern Classification by Prototype Matching    921

where arg  is the length (number of symbols) of string in the argument. It can be 
shown that b = 0  if and only if a  and b are identical (see Problem 12.7).

An effective measure of similarity is the ratio

 R
a b

= = ( ) −
a

b

a

amax ,
 (12-15)

We see that R is infinite for a perfect match and 0 when none of the corresponding 
symbols in a  and b match (a = 0 in this case). Because matching is done symbol by 
symbol, the starting point on each boundary is important in terms of reducing the 
amount of computation required to perform a match. Any method that normalizes 
to, or near, the same starting point is helpful if it provides a computational advan-
tage over brute-force matching, which consists of starting at arbitrary points on each 
string, then shifting one of the strings (with wraparound) and computing Eq. (12-15) 
for each shift. The largest value of R gives the best match.

EXAMPLE 12.4 : String matching.

Figures 12.18(a) and (b) show sample boundaries from each of two object classes, which were approxi-
mated by a polygonal fit (see Section 11.2). Figures 12.18(c) and (d) show the polygonal approximations 

Refer to Section 11.2 
for examples of how the 
starting point of a curve 
can be normalized.

4
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a d c f b e
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d e f
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12

14

b
a

c

FIGURE 12.17
(a) Shapes.  
(b) Similarity 
tree. (c) Similarity 
matrix. 
(Bribiesca and 
Guzman.)

DIP4E_GLOBAL_Print_Ready.indb   921 6/16/2017   2:16:42 PM



922    Chapter 12  Image Pattern Classification

corresponding to the boundaries in Figs. 12.18(a) and (b), respectively. Strings were formed from the 
polygons by computing the interior angle, u, between segments as each polygon was traversed clock-
wise. Angles were coded into one of eight possible symbols, corresponding to multiples of 45°; that is, 
a u a u a u1 2 80 45 45 90 315 360: ; : ; ; : .° < ≤ ° ° < ≤ ° ° < ≤ °…

Figure 12.18(e) shows the results of computing the measure R for six samples of object 1 against 
themselves. The entries are values of R and, for example, the notation 1.c refers to the third string from 
object class 1. Figure 12.18(f) shows the results of comparing the strings of the second object class 
against themselves. Finally, Fig. 12.18(g) shows the R values obtained by comparing strings of one class 
against the other. These values of R are significantly smaller than any entry in the two preceding tabu-
lations. This indicates that the R measure achieved a high degree of discrimination between the two 
classes of objects. For example, if the class of string 1.a had been unknown, the smallest value of R result-
ing from comparing this string against sample (prototype) strings of class 1 would have been 4.7 [see 
Fig. 12.18(e)]. By contrast, the largest value in comparing it against strings of class 2 would have been 
1.24 [see Fig. 12.18(g)]. This result would have led to the conclusion that string 1.a is a member of object 
class 1. This approach to classification is analogous to the minimum-distance classifier introduced earlier.

R 1.a 1.b 1.c 1.d 1.e 1.f

1.a

1.b 16.0

1.c 9.6 26.3

1.d 5.1 8.1 10.3

1.e 4.7 7.2 10.3 14.2

1.f 4.7 7.2 10.3 8.4 23.7

R 2.a 2.b 2.c 2.d 2.e 2.f

2.a

2.b 33.5

2.c 4.8 5.8

2.d 3.6 4.2 19.3

2.e 2.8 3.3 9.2 18.3

2.f 2.6 3.0 7.7 13.5 27.0

R 1.a 1.b 1.c 1.d 1.e 1.f

2.a 1.24 1.50 1.32 1.47 1.55 1.48

2.b 1.18 1.43 1.32 1.47 1.55 1.48

2.c 1.02 1.18 1.19 1.32 1.39 1.48

2.d 1.02 1.18 1.19 1.32 1.29 1.40

2.e 0.93 1.07 1.08 1.19 1.24 1.25

2.f 0.89 1.02 1.02 1.24 1.22 1.18

ba
dc
fe

g

FIGURE 12.18
(a) and (b) sample  
boundaries of two 
different object 
classes; (c) and (d) 
their corresponding 
polygonal  
approximations; 
(e)–(g) tabulations 
of R. 
(Sze and Yang.)
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12.4  OPTIMUM (BAYES) STATISTICAL CLASSIFIERS  

In this section, we develop a probabilistic approach to pattern classification. As is 
true in most fields that deal with measuring and interpreting physical events, prob-
ability considerations become important in pattern recognition because of the ran-
domness under which pattern classes normally are generated. As shown in the fol-
lowing discussion, it is possible to derive a classification approach that is optimal in 
the sense that, on average, it yields the lowest probability of committing classifica-
tion errors (see Problem 12.12).

DERIVATION OF THE BAYES CLASSIFIER

The probability that a pattern vector x comes from class ci  is denoted by p ci x( ). If 
the pattern classifier decides that x came from class cj  when it actually came from ci  
it incurs a loss (to be defined shortly), denoted by Lij . Because pattern x may belong 
to any one of Nc  possible classes, the average loss incurred in assigning x to class cj  is

 r L p cj kj
k

N

k

c

x x( ) = ( )
=

∑
1

 (12-16)

Quantity rj( )x  is called the conditional average risk or loss in decision-theory termi-
nology.

We know from Bayes’ rule that p a b p a p b a p b( ) ( ) ( ) ( ),= [ ]  so we can write Eq. 
(12-16) as

 r
p

L p c P cj kj
k

N

k k

c

x
x

x( ) = ( ) ( ) ( )
=

∑1

1

 (12-17)

where p ckx( ) is the probability density function (PDF) of the patterns from class 
ck , and P ck( ) is the probability of occurrence of class ck (sometimes P ck( ) is referred 
to as the a priori, or simply the prior, probability). Because 1 p( )x  is positive and 
common to all the r j Nj cx( ) =, , , , ,1 2 …  it can be dropped from Eq. (12-17) without 
affecting the relative order of these functions from the smallest to the largest value. 
The expression for the average loss then reduces to

 r L p c P cj kj
k

N

k k

c

x x( ) = ( ) ( )
=

∑
1

 (12-18)

Given an unknown pattern, the classifier has Nc  possible classes from which to 
choose. If the classifier computes r r rNc1 2( ), ( ), , ( )x x x…  for each pattern x and 
assigns the pattern to the class with the smallest loss, the total average loss with 
respect to all decisions will be minimum. The classifier that minimizes the total 
average loss is called the Bayes classifier. This classifier assigns an unknown pat-
tern x to class ci  if r ri j( ) ( )x x<  for j N j ic= ≠1 2, , , ; .…  In other words, x is assigned 
to class ci  if

 L p c P c L p c P cki k
k

N

k qj q q
q

Nc c

x x( ) ( ) < ( ) ( )
= =

∑ ∑
1 1

 (12-19)

12.4
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924    Chapter 12  Image Pattern Classification

for all j j i; .≠  The loss for a correct decision generally is assigned a value of 0, and 
the loss for any incorrect decision usually is assigned a value of 1. Then, the loss 
function becomes
 Lij ij= −1 d  (12-20)

where dij = 1 if i j= , and dij = 0 if i j≠ . Equation (12-20) indicates a loss of unity for 
incorrect decisions and a loss of zero for correct decisions. Substituting Eq. (12-20)
into Eq. (12-18) yields

 
r p c P c

p p c P c

j kj k k
k

N

j j

c

x x

x x

( ) = −( ) ( ) ( )

= ( ) − ( ) ( )
=

∑ 1
1

d
 (12-21)

The Bayes classifier then assigns a pattern x to class ci  if, for all j i≠ ,

 p p c P c p p c P ci i j jx x x x( ) − ( ) ( ) < ( ) − ( ) ( )  (12-22)

or, equivalently, if

 p c P c p c P c j N j ii i j j cx x( ) ( ) > ( ) ( ) = ≠1 2, , , ;…  (12-23)

Thus, the Bayes classifier for a 0-1 loss function computes decision functions of the 
form

 d p c P c j Nj j j cx x( ) = ( ) ( ) = 1 2, , ,…  (12-24)

and assigns a pattern to class ci  if d x d xi j( ) ( )>  for all j i≠ . This is exactly the same 
process described in Eq. (12-5), but we are now dealing with decision functions that 
have been shown to be optimal in the sense that they minimize the average loss in 
misclassification.

For the optimality of Bayes decision functions to hold, the probability density 
functions of the patterns in each class, as well as the probability of occurrence of 
each class, must be known. The latter requirement usually is not a problem. For 
instance, if all classes are equally likely to occur, then P c Nj c( ) .= 1  Even if this con-
dition is not true, these probabilities generally can be inferred from knowledge of 
the problem. Estimating the probability density functions p cj( )x  is more difficult. If 
the pattern vectors are n-dimensional, then p cj( )x  is a function of n variables. If the 
form of p cj( )x  is not known, estimating it requires using multivariate estimation 
methods. These methods are difficult to apply in practice, especially if the number 
of representative patterns from each class is not large, or if the probability density 
functions are not well behaved. For these reasons, uses of the Bayes classifier often 
are based on assuming an analytic expression for the density functions. This in turn 
reduces the problem to one of estimating the necessary parameters from sample 
patterns from each class using training patterns. By far, the most prevalent form 
assumed for p cj( )x  is the Gaussian probability density function. The closer this 
assumption is to reality, the closer the Bayes classifier approaches the minimum 
average loss in classification.
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12.4  Optimum (Bayes) Statistical Classifiers    925

BAYES CLASSIFIER FOR GAUSSIAN PATTERN CLASSES

To begin, let us consider a 1-D problem ( )n = 1  involving two pattern classes ( )Nc = 2  
governed by Gaussian densities, with means m1  and m2 , and standard deviations s1 
and s2 , respectively. From Eq. (12-24) the Bayes decision functions have the form

 

d x p x c P c

e P c j

j j j

j

x m

j

j

j

( ) = ( ) ( )

= ( ) =
−

−( )
1

2
1 2

2

22

ps

s ,
 (12-25)

where the patterns are now scalars, denoted by x. Figure 12.19 shows a plot of the 
probability density functions for the two classes. The boundary between the two 
classes is a single point, x0 , such that d x d x1 0 2 0( ) ( ).=  If the two classes are equally 
likely to occur, then P c P c( ) ( ) ,1 2 1 2= =  and the decision boundary is the value of 
x0  for which p x c p x c( ) ( ).0 1 0 2=  This point is the intersection of the two probabil-
ity density functions, as shown in Fig. 12.19. Any pattern (point) to the right of x0  is 
classified as belonging to class c1. Similarly, any pattern to the left of x0  is classified 
as belonging to class c2. When the classes are not equally likely to occur, x0  moves to 
the left if class c1 is more likely to occur or, conversely, it moves to the right if class 
c2  is more likely to occur. This result is to be expected, because the classifier is trying 
to minimize the loss of misclassification. For instance, in the extreme case, if class c2  
never occurs, the classifier would never make a mistake by always assigning all pat-
terns to class c1 (that is, x0  would move to negative infinity).

In the n-dimensional case, the Gaussian density of the vectors in the jth pattern 
class has the form

 p c ej n
j

j
T

j jx
C

x m C x m( ) =
( )

− −( ) −( )−1

2 2 1 2

1
2

1

p
 (12-26)

where each density is specified completely by its mean vector m j  and covariance 
matrix C j , which are defined as

You may find it helpful 
to review the tutorial on 
probability available in 
the book website.

P
ro

ba
bi

lit
y 

de
ns

it
y

m2 m1
x

x0

1( )p x c

2( )p x c

FIGURE 12.19
Probability  
density functions 
for two 1-D  
pattern classes. 
Point x0  (at the 
intersection of the 
two curves) is the 
Bayes decision 
boundary if the 
two classes are 
equally likely to 
occur.
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926    Chapter 12  Image Pattern Classification

 m xj jE= { }  (12-27)

and

 C x m x mj j j j

T
E= −( ) −( ){ }  (12-28)

where Ej { }⋅  is the expected value of the argument over the patterns of class cj . In 
Eq. (12-26), n is the dimensionality of the pattern vectors, and C j  is the determinant 
of matrix C j .  Approximating the expected value Ej  by the sample average yields an 
estimate of the mean vector and covariance matrix:

 m x
x

j
j cn

j

=
∈
∑1

 (12-29)

and

 C xx m m
x

j
j

T
j j

T

cn
j

= −
∈
∑1

 (12-30)

where nj  is the number of sample pattern vectors from class cj  and the summation 
is taken over these vectors. We will give an example later in this section of how to 
use these two expressions.

The covariance matrix is symmetric and positive semidefinite. Its kth diagonal ele-
ment is the variance of the kth element of the pattern vectors. The kjth off-diagonal 
matrix element is the covariance of elements xk and xj  in these vectors. The multi-
variate Gaussian density function reduces to the product of the univariate Gauss-
ian density of each element of x when the off-diagonal elements of the covariance 
matrix are zero, which happens when the vector elements xk and xj  are uncorrelated.

From Eq. (12-24), the Bayes decision function for class cj  is d p c P cj j j( ) ( ) ( ).x x=  
However, the exponential form of the Gaussian density allows us to work with the 
natural logarithm of this decision function, which is more convenient. In other words, 
we can use the form

 
d p c P c

p c P c

j j j

j j

x x

x

( ) = ( ) ( )⎡⎣ ⎤⎦
= ( ) + ( )

ln

ln ln
 (12-31)

This expression is equivalent to Eq. (12-24) in terms of classification performance 
because the logarithm is a monotonically increasing function. That is, the numerical 
order of the decision functions in Eqs. (12-24) and (12-31) is the same. Substituting 
Eq. (12-26) into Eq. (12-31) yields

 d P c
n

j j j j

T

j jx C x m C x m( ) = ( ) − − − ( ) ( )⎡
⎣⎢

⎤
⎦⎥

−ln ln ln
2

2
1
2

1
2

1p − −  (12-32)

The term n 2 2( ) ln p is the same for all classes, so it can be eliminated from Eq. 
(12-32), which then becomes

 d P cj j j j

T

j jx C x m C x m( ) = ( ) − − ( ) ( )⎡
⎣⎢

⎤
⎦⎥

−ln ln
1
2

1
2

1− −  (12-33)

As noted in Section 6.7 
[see Eq. (6-49)], the 
square root of the 
rightmost term in this 
equation is called the 
Mahalanobis distance.
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12.4  Optimum (Bayes) Statistical Classifiers    927

for j Nc= 1 2, , , .…  This equation gives the Bayes decision functions for Gaussian 
pattern classes under the condition of a 0-1 loss function.

The decision functions in Eq. (12-33) are hyperquadrics (quadratic functions in 
n-dimensional space), because no terms higher than the second degree in the com-
ponents of x appear in the equation. Clearly, then, the best that a Bayes classifier 
for Gaussian patterns can do is to place a second-order decision boundary between 
each pair of pattern classes. If the pattern populations are truly Gaussian, no other 
boundary would yield a lesser average loss in classification.

If all covariance matrices are equal, then C Cj =  for j Nc= 1 2, , , .…  By expanding 
Eq. (12-33), and dropping all terms that do not depend on j, we obtain

 d P cj j
T

j j
T

jx x C m m C m( ) = ( ) + −− −ln 1 11
2

 (12-34)

which are linear decision functions (hyperplanes) for j Nc= 1 2, , , .…
If, in addition, C I= ,  where I is the identity matrix, and also if the classes are 

equally likely (i.e., P c Nj c( ) = 1  for all j), then we can drop the term ln ( )P cj  because 
it would be the same for all values of j. Equation (12-34) then becomes

 d j Nj j
T

j
T

j cx m x m m( ) = − =1
2

1 2, , ,…  (12-35)

which we recognize as the decision functions for a minimum-distance classifier [see 
Eq. (12-4)]. Thus, as mentioned earlier, the minimum-distance classifier is optimum 
in the Bayes sense if (1) the pattern classes follow a Gaussian distribution, (2) all 
covariance matrices are equal to the identity matrix, and (3) all classes are equally 
likely to occur. Gaussian pattern classes satisfying these conditions are spherical 
clouds of identical shape in n dimensions (called hyperspheres). The minimum-
distance classifier establishes a hyperplane between every pair of classes, with the 
property that the hyperplane is the perpendicular bisector of the line segment join-
ing the center of the pair of hyperspheres. In 2-D, the patterns are distributed in cir-
cular regions, and the boundaries become lines that bisect the line segment joining 
the center of every pair of such circles.

EXAMPLE 12.5 :  A Bayes classifier for 3-D patterns.

We illustrate the mechanics of the preceding development using the simple patterns in Fig. 12.20. We 
assume that the patterns are samples from two Gaussian populations, and that the classes are equally 
likely to occur. Applying Eq. (12-29) to the patterns in the figure results in

 m m1 2
1
3

3

1

1

1
3

1

3

3

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and

And, from Eq. (12-30),
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C C1 2
1

16

3 1 1

1 3 1

1 1 3

= = −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The inverse of this matrix is

 C C1
1

2
1

8 4 4

4 8 4

4 4 8

− −= =
− −

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Next, we obtain the decision functions. Equation (12-34) applies because the covariance matrices are 
equal, and we are assuming that the classes are equally likely:

 dj
T

j j
T

jx x C m m C m( ) = −− −1 11
2

Carrying out the vector-matrix expansion, we obtain the two decision functions:

 d x d x x x1 1 2 1 2 34 1 5 4 8 8 5 5x x( ) = − ( ) = − + + −. .and

The decision boundary separating the two classes is then

 d d x x x1 2 1 2 38 8 8 4 0x x( ) − ( ) = − − + =

Figure 12.20 shows a section of this planar surface. Note that the classes were separated effectively.

EXAMPLE 12.6 :  Classification of multispectral data using a Bayes classifier.

As discussed in Sections 1.3 and 11.5, a multispectral scanner responds to selected bands of the electro-
magnetic energy spectrum, such as the bands: 0.45– 0.52, 0.53– 0.61, 0.63– 0.69, and 0.78– 0.90 microns. 
These ranges are in the visible blue, visible green, visible red, and near infrared bands, respectively. A 
region on the ground scanned using these multispectral bands produces four digital images of the region, 

x3

x1

(1, 0, 0)

(1, 0, 1)

(0, 0, 0)

(1, 1, 1)

(0, 0, 1)
(0, 1, 1)

(0, 1, 0)

(1, 1, 0)

x2

1c∈

2c∈

FIGURE 12.20
Two simple 
pattern classes 
and the portion 
of their Bayes 
decision bound-
ary (shaded) that 
intersects the 
cube.
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one for each band. If the images are registered spatially, they can be visualized as being stacked one 
behind the other, as illustrated in Fig. 12.7. As we explained in that figure, every point on the ground 
in this example can be represented by a 4-D pattern vector of the form x = x x x x T

1 2 3 4, , , ,( )  where x1 
is a shade of blue, x2 a shade of green, and so on. If the images are of size 512 512×  pixels, each stack 
of four multispectral images can be represented by 266,144 four-dimensional pattern vectors. As noted 
previously, the Bayes classifier for Gaussian patterns requires estimates of the mean vector and covari-
ance matrix for each class. In remote sensing applications, these estimates are obtained using training 
multispectral data whose classes are known from each region of interest (this knowledge sometimes is 
referred to as ground truth). The resulting vectors are then used to estimate the required mean vectors 
and covariance matrices, as in Example 12.5.

Figures 12.21(a) through (d) show four 512 512×  multispectral images of the Washington, D.C. area, 
taken in the bands mentioned in the previous paragraph. We are interested in classifying the pixels in 
these images into one of three pattern classes: water, urban development, or vegetation. The masks in 
Fig. 12.21(e) were superimposed on the images to extract samples representative of these three classes. 
Half of the samples were used for training (i.e., for estimating the mean vectors and covariance matri-
ces), and the other half were used for independent testing to assess classifier performance. We assume 
that the a priori probabilities are equal, P c jj( ) ; , , .= =1 3 1 2 3  

Table 12.1 summarizes the classification results we obtained with the training and test data sets. The 
percentage of training and test pattern vectors recognized correctly was about the same with both data 
sets, indicating that the learned parameters did not over-fit the parameters to the training data. The larg-
est error in both cases was with patterns from the urban area. This is not unexpected, as vegetation is 
present there also (note that no patterns in the vegetation or urban areas were misclassified as water). 
Figure 12.21(f) shows as black dots the training and test patterns that were misclassified, and as white 
dots the patterns that were classified correctly. No black dots are visible in region 1, because the seven 
misclassified points are very close to the boundary of the white region. You can compute from the num-
bers in the table that the correct recognition rate was 96.4% for the training patterns, and 96.1% for the 
test patterns. 

Figures 12.21(g) through (i) are more interesting. Here, we let the system classify all image pixels into 
one of the three categories. Figure 12.21(g) shows in white all pixels that were classified as water. Pixels 
not classified as water are shown in black. We see that the Bayes classifier did an excellent job of deter-
mining which parts of the image were water. Figure 12.21(h) shows in white all pixels classified as urban 
development; observe how well the system performed in recognizing urban features, such as the bridges 
and highways. Figure 12.21(i) shows the pixels classified as vegetation. The center area in Fig. 12.21(h) 
shows a high concentration of white pixels in the downtown area, with the density decreasing as a func-
tion of distance from the center of the image. Figure 12.21(i) shows the opposite effect, indicating the 
least vegetation toward the center of the image, where urban development is the densest.

We mentioned in Section 10.3 when discussing Otsu’s method that thresholding 
may be viewed as a Bayes classification problem, which optimally assigns patterns 
to two or more classes. In fact, as the previous example shows, pixel-by-pixel classi-
fication may be viewed as a segmentation that partitions an image into two or more 
possible types of regions. If only one single variable (e.g., intensity) is used, then 
Eq. (12-24) becomes an optimum function that similarly partitions an image based 
on the intensity of its pixels, as we did in Section 10.3. Keep in mind that optimal-
ity requires that the PDF and a priori probability of each class be known. As we 

DIP4E_GLOBAL_Print_Ready.indb   929 6/16/2017   2:16:56 PM



930    Chapter 12  Image Pattern Classification

ba c
ed f
hg i

FIGURE 12.21  Bayes classification of multispectral data. (a)–(d) Images in the visible blue, visible green, visible red, 
and near infrared wavelength bands. (e) Masks for regions of water (labeled 1), urban development (labeled 2), 
and vegetation (labeled 3). (f) Results of classification; the black dots denote points classified incorrectly. The other 
(white) points were classified correctly. (g) All image pixels classified as water (in white). (h) All image pixels clas-
sified as urban development (in white). (i) All image pixels classified as vegetation (in white).
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Training Patterns Test Patterns

Class
No. of 

Samples

Classified into Class % 
Correct Class

No. of 
Samples

Classified into Class % 
Correct1 2 3 1 2 3

1 484 482 2 0 99.6 1 483 478 3 2 98.9

2 933 0 885 48 94.9 2 932 0 880 52 94.4

3 483 0 19 464 96.1 3 482 0 16 466 96.7

TABLE 12.1
Bayes classification of multispectral image data. Classes 1, 2, and 3 are water, urban, and vegetation, respectively.

have mentioned previously, estimating these densities is not a trivial task. If assump-
tions have to be made (e.g., as in assuming Gaussian densities), then the degree of 
optimality achieved in classification depends on how close the assumptions are to 
reality.

12.5  NEURAL NETWORKS AND DEEP LEARNING  

The principal objectives of the material in this section and in Section 12.6 are to 
present an introduction to deep neural networks, and to derive the equations that 
are the foundation of deep learning. We will discuss two types of networks. In this 
section, we focus attention on multilayer, fully connected neural networks, whose 
inputs are pattern vectors of the form introduced in Section 12.2. In Section 12.6, we 
will discuss convolutional neural networks, which are capable of accepting images 
as inputs. We follow the same basic approach in presenting the material in these two 
sections. That is, we begin by developing the equations that describe how an input is 
mapped through the networks to generate the outputs that are used to classify that 
input. Then, we derive the equations of backpropagation, which are the tools used 
to train both types of networks. We give examples in both sections that illustrate the 
power of deep neural networks and deep learning for solving complex pattern clas-
sification problems.

BACKGROUND

The essence of the material that follows is the use of a multitude of elemental non-
linear computing elements (called artificial neurons), organized as networks whose 
interconnections are similar in some respects to the way in which neurons are inter-
connected in the visual cortex of mammals. The resulting models are referred to 
by various names, including neural networks, neurocomputers, parallel distributed 
processing models, neuromorphic systems, layered self-adaptive networks, and con-
nectionist models. Here, we use the name neural networks, or neural nets for short. 
We use these networks as vehicles for adaptively learning the parameters of decision 
functions via successive presentations of training patterns.

Interest in neural networks dates back to the early 1940s, as exemplified by the 
work of McCulloch and Pitts [1943], who proposed neuron models in the form of 

12.5
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binary thresholding devices, and stochastic algorithms involving sudden 0–1 and 1–0 
changes of states, as the basis for modeling neural systems. Subsequent work by 
Hebb [1949] was based on mathematical models that attempted to capture the con-
cept of learning by reinforcement or association.

During the mid-1950s and early 1960s, a class of so-called learning machines origi-
nated by Rosenblatt [1959, 1962] caused a great deal of excitement among research-
ers and practitioners of pattern recognition. The reason for the interest in these 
machines, called perceptrons, was the development of mathematical proofs showing 
that perceptrons, when trained with linearly separable training sets (i.e., training sets 
separable by a hyperplane), would converge to a solution in a finite number of itera-
tive steps. The solution took the form of parameters (coefficients) of hyperplanes 
that were capable of correctly separating the classes represented by patterns of the 
training set.

Unfortunately, the expectations following discovery of what appeared to be a 
well-founded theoretical model of learning soon met with disappointment. The 
basic perceptron, and some of its generalizations, were inadequate for most pattern 
recognition tasks of practical significance. Subsequent attempts to extend the power 
of perceptron-like machines by considering multiple layers of these devices lacked 
effective training algorithms, such as those that had created interest in the percep-
tron itself. The state of the field of learning machines in the mid-1960s was sum-
marized by Nilsson [1965]. A few years later, Minsky and Papert [1969] presented 
a discouraging analysis of the limitation of perceptron-like machines. This view was 
held as late as the mid-1980s, as evidenced by comments made by Simon [1986]. In 
this work, originally published in French in 1984, Simon dismisses the perceptron 
under the heading “Birth and Death of a Myth.”

More recent results by Rumelhart, Hinton, and Williams [1986] dealing with the 
development of new training algorithms for multilayers of perceptron-like units 
have changed matters considerably. Their basic method, called backpropagation 
(backprop for short), provides an effective training method for multilayer networks. 
Although this training algorithm cannot be shown to converge to a solution in the 
sense of the proof for the single-layer perceptron, backpropagation is capable of 
generating results that have revolutionized the field of pattern recognition. 

The approaches to pattern recognition we have studied up to this point rely on 
human-engineered techniques to transform raw data into formats suitable for com-
puter processing. The methods of feature extraction we studied in Chapter 11 are 
examples of this. Unlike these approaches, neural networks can use backpropaga-
tion to automatically learn representations suitable for recognition, starting with 
raw data. Each layer in the network “refines” the representation into more abstract 
levels. This type of multilayered learning is commonly referred to as deep learning, 
and this capability is one of the underlying reasons why applications of neural net-
works have been so successful. As we noted at the beginning of this section, practical 
implementations of deep learning generally are associated with large data sets.

Of course, these are not “magical” systems that assemble themselves. Human 
intervention is still required for specifying parameters such as the number of layers, 
the number of artificial neurons per layer, and various coefficients that are problem 
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dependent. Teaching proper recognition to a complex multilayer neural network is 
not a science; rather, it is an art that requires considerable knowledge and experi-
mentation on the part of the designer. Countless applications of pattern recogni-
tion, especially in constrained environments, are best handled by more “traditional” 
methods. A good example of this is stylized font recognition. It would be senseless 
to develop a neural network to recognize the E-13B font we studied in Fig. 12.11. A 
minimum-distance classifier implemented on a hard-wired architecture is the ideal 
solution to this problem, provided that interest is limited to reading only the E-13B 
font printed on bank checks. On the other hand, neural networks have proved to be 
the ideal solution if the scope of application is expanded to require that all relevant 
text written on checks, including cursive script, be read with high accuracy. 

Deep learning has shined in applications that defy other methods of solution. In 
the two decades following the introduction of backpropagation, neural networks 
have been used successfully in a broad range of applications. Some of them, such as 
speech recognition, have become an integral part of everyday life. When you speak 
into a smart phone, the nearly flawless recognition is performed by a neural network. 
This type of performance was unachievable just a few years ago. Other applications 
from which you benefit, perhaps without realizing it, are smart filters that learn user 
preferences for rerouting spam and other junk mail from email accounts, and the 
systems that read zip codes on postal mail. Often, you see television clips of vehicles 
navigating autonomously, and robots that are capable of interacting with their envi-
ronment. Most are solutions based on neural networks. Less familiar applications 
include the automated discovery of new medicines, the prediction of gene mutations 
in DNA research, and advances in natural language understanding.

Although the list of practical uses of neural nets is long, applications of this tech-
nology in image pattern classification has been slower in gaining popularity. As 
you will learn shortly, using neural nets in image processing is based principally on 
neural network architectures called convolutional neural nets (denoted by CNNs 
or ConvNets). One of the earliest well-known applications of CNNs is the work of 
LeCun et al. [1989] for reading handwritten U.S. postal zip codes. A number of other 
applications followed shortly thereafter, but it was not until the results of the 2012 
ImageNet Challenge were published (e.g., see Krizhevsky, Sutskever, and Hinton 
[2012]) that CNNs became widely used in image pattern recognition. Today, this is 
the approach of choice for addressing complex image recognition tasks.

The neural network literature is vast and rapidly evolving, so as usual, our 
approach is to focus on fundamentals. In this and the following sections, we will 
establish the foundation of how neural nets are trained, and how they operate after 
training. We will begin by briefly discussing perceptrons. Although these computing 
elements are not used per se in current neural network architectures, the opera-
tions they perform are almost identical to artificial neurons, which are the basic 
computing units of neural nets. In fact, an introduction to neural networks would 
be incomplete without a discussion of perceptrons. We will follow this discussion by 
developing in detail the theoretical foundation of backpropagation. After develop-
ing the basic backpropagation equations, we will recast them in matrix form, which 
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reduces the training and operation of neural nets to a simple, straightforward cas-
cade of matrix multiplications.

After studying several examples of fully connected neural nets, we will follow a 
similar approach in developing the foundation of CNNs, including how they differ 
from fully connected neural nets, and how their training is different. This is followed 
by several examples of how CNNs are used for image pattern classification.

THE PERCEPTRON

A single perceptron unit learns a linear boundary between two linearly separable 
pattern classes. Figure 12.22(a) shows the simplest possible example in two dimen-
sions: two pattern classes, consisting of a single pattern each. A linear boundary in 
2-D is a straight line with equation y ax b= + , where coefficient a is the slope and b 
is the y-intercept. Note that if b = 0, the line goes through the origin. Therefore, the 
function of parameter b is to displace the line from the origin without affecting its 
slope. For this reason, this “floating” coefficient that is not multiplied by a coordi-
nate is often referred to as the bias, the bias coefficient, or the bias weight.

We are interested in a line that separates the two classes in Fig. 12.22. This is a line 
positioned in such a way that pattern ( , )x y1 1  from class c1 lies on one side of the line, 
and pattern ( , )x y2 2  from class c2  lies on the other. The locus of points ( , )x y  that are 
on the line, satisfy the equation y ax b− − = 0. It then follows that any point on one 
side of the line would yield a positive value when its coordinates are plugged into 
this equation, and conversely for a point on the other side. 

Generally, we work with patterns in much higher dimensions than two, so we need 
more general notation. Points in n dimensions are vectors. The components of a vec-
tor, x x xn1 2, , , ,…  are the coordinates of the point. For the coefficients of the boundary 
separating the two classes, we use the notation w w w w1 2 1, , , , ,… n n+  where wn+1  is the 
bias. The general equation of our line using this notation is w w w1 1 2 2 3 0x x+ + =  (we 
can express this equation in slope-intercept form as x x2 1 2 1 0+ + =(w w w w3 2) ). 
Figure 12.22(b) is the same as (a), but using this notation. Comparing the two fig-
ures, we see that y x= 2 , x x= 1, a = w w1 2, and b = w w3 2. Equipped with our more 

FIGURE 12.22
(a) The simplest 
two-class example 
in 2-D, showing one 
possible decision 
boundary out of an 
infinite number of 
such boundaries.  
(b) Same as (a), but 
with the  
decision boundary 
expressed using 
more general  
notation.
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general notation, we say that an arbitrary point ( , )x x1 2  is on the positive side of a 
line if w w w1 1 2 2 3 0x x+ + > ,  and conversely for any point on the negative side. For 
points in 3-D, we work with the equation of a plane, w w w w1 1 2 2 3 3 4 0x x x+ + + = ,  
but would perform exactly the same test to see if a point lies on the positive or 
negative side of the plane. For a point in n dimensions, the test would be against a 
hyperplane, whose equation is

 w w w w1 1 2 2 1 0x x xn n n+ + + + =+�  (12-36)

This equation is expressed in summation form as

 w wi i n
i

n

x + =+
=
∑ 1

1

0  (12-37)

or in vector form as

 wT
nx + =+w 1 0  (12-38)

where w  and x  are n-dimensional column vectors and wT x  is the dot (inner) prod-
uct of the two vectors. Because the inner product is commutative, we can express 
Eq. (12-38) in the equivalent form xT

nw + =+w 1 0. We refer to w  as a weight vector 
and, as above, to wn+1  as a bias. Because the bias is a weight that is always multiplied 
by 1, sometimes we avoid repetition by using the term weights, coefficients, or param-
eters when referring to the bias and the elements of a weight vector collectively.

Stating the class separation problem in general form we say that, given any pat-
tern vector x  from a vector population, we want to find a set of weights with the 
property

 wT
n

c

c
x

x

x
+ =

> ∈
< ∈

⎧
⎨
⎩

+w 1
1

2

0

0

if 

if 
 (12-39)

Finding a line that separates two linearly separable pattern classes in 2-D can be 
done by inspection. Finding a separating plane by visual inspection of 3-D data is 
more difficult, but it is doable. For n > 3, finding a separating hyperplane by inspec-
tion becomes impossible in general. We have to resort instead to an algorithm to find 
a solution. The perceptron is an implementation of such an algorithm. It attempts 
to find a solution by iteratively stepping through the patterns of each of two classes. 
It starts with an arbitrary weight vector and bias, and is guaranteed to converge in a 
finite number of iterations if the classes are linearly separable. 

The perceptron algorithm is simple. Let a > 0 denote a correction increment (also 
called the learning increment or the learning rate), let w( )1  be a vector with arbi-
trary values, and let wn+1 1( ) be an arbitrary constant. Then, do the following for 
k = 2 3, , :…  For a pattern vector, x( ),k  at step k, 

1) If x( )k c∈ 1 and wT
nk k k( ) ( ) ( ) ,x + +w 1 0≤  let

 
w w( ) ( ) ( )

( ) ( )

k k k

k kn n

+ = +
+ = ++ +

1

11 1

a

v v a

x
 (12-40)

It is customary to  
associate > with class c1 
and < with class c2, but 
the sense of the  
inequality is arbitrary, 
provided that you are 
consistent. Note that this 
equation implements a 
linear decision function.

Linearly separable class-
es satisfy Eq. (12-39). 
That is, they are  
separable by single 
hyperplanes.
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2) If x( )k c∈ 2 and wT
nk k k( ) ( ) ( ) ,x + +w 1 0≥  let

 
w w( ) ( ) ( )

( ) ( )

k k k

k kn n

+ = −
+ = −+ +

1

11 1

a

v v a

x
 (12-41)

3) Otherwise, let

 
w w( ) ( )

( ) ( )

k k

k kn n

+ =
+ =+ +

1

11 1v v
 (12-42)

The correction in Eq. (12-40) is applied when the pattern is from class c1 and 
Eq. (12-39) does not give a positive response. Similarly, the correction in Eq. (12-41) 
is applied when the pattern is from class c2  and Eq. (12-39) does not give a negative 
response. As Eq. (12-42) shows, no change is made when Eq. (12-39) gives the cor-
rect response. 

The notation in Eqs. (12-40) through (12-42) can be simplified if we add a 1 at 
the end of every pattern vector and include the bias in the weight vector. That is, 
we definex � …[ , , , , ]x x xn

T
1 2 1  and w � …[ , , , , ] .w w w w1 2 1n n

T
+  Then, Eq. (12-39) 

becomes

 wT c

c
x

x

x
=

> ∈
< ∈

⎧
⎨
⎩

0

0
1

2

if 

if 
 (12-43)

where both vectors are now ( )n + 1 -dimensional. In this formulation, x  and w  are 
referred to as augmented pattern and weight vectors, respectively. The algorithm in 
Eqs. (12-40) through (12-42) then becomes: For any pattern vector, x( ),k  at step k

1�) If x( )k c∈ 1 and wT k k( ) ( ) ,x ≤ 0  let

 w w( ) ( ) ( )k k k+ = +1 ax  (12-44)

2�) If x( )k c∈ 2 and wT k k( ) ( ) ,x ≥ 0  let 

 w w( ) ( ) ( )k k k+ = −1 ax  (12-45)

3�) Otherwise, let

 w w( ) ( )k k+ =1  (12-46)

where the starting weight vector, w( ),1  is arbitrary and, as above, a  is a positive 
constant. The procedure implemented by Eqs. (12-40)–(12-42) or (12-44)–(12-46) is 
called the perceptron training algorithm. The perceptron convergence theorem states 
that the algorithm is guaranteed to converge to a solution (i.e., a separating hyper-
plane) in a finite number of steps if the two pattern classes are linearly separable 
(see Problem 12.15). Normally, Eqs. (12-44)–(12-46) are the basis for implementing 
the perceptron training algorithm, and we will use it in the following paragraphs 
of this section. However, the notation in Eqs. (12-40)–(12-42), in which the bias is 

DIP4E_GLOBAL_Print_Ready.indb   936 6/16/2017   2:17:03 PM



12.5  Neural Networks and Deep Learning    937

shown separately, is more prevalent in neural networks, so you need to be familiar 
with it as well.

Figure 12.23 shows a schematic diagram of the perceptron. As you can see, all 
this simple “machine” does is form a sum of products of an input pattern using the 
weights and bias found during training. The output of this operation is a scalar value 
that is then passed through an activation function to produce the unit’s output. For 
the perceptron, the activation function is a thresholding function (we will consider 
other forms of activation when we discuss neural networks). If the thresholded out-
put is a +1, we say that the pattern belongs to class c1. Otherwise, a −1 indicates that 
the pattern belongs to class c2. Values 1 and 0 sometimes are used to denote the two 
possible states of the output.

EXAMPLE 12.7 :  Using the perceptron algorithm to learn a decision boundary.

We illustrate the steps taken by a perceptron in learning the coefficients of a linear boundary by solving 
the mini problem in Fig. 12.22. To simplify manual computations, let the pattern vector furthest from the 
origin be x = [ ] ,3 3 1 T  and the other be x = [ ] ,1 1 1 T  where we augmented the vectors by appending a 
1 at the end, as discussed earlier. To match the figure, let these two patterns belong to classes c1 and c2 , 
respectively. Also, assume the patterns are “cycled” through the perceptron in that order during training 
(one complete iteration through all patterns of the training is called an epoch). To start, we let a = 1 and 
w( ) [ ] ;1 0 0 0= =0 T  then, 

For k = 1, x( ) [ ] ,1 3 3 1 1= ∈T c  and w( ) [ ] .1 0 0 0= T  Their inner product is zero,

 wT ( ) ( )1 1 0 0 0

3

3

1

0x = [ ]
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

so Step 1� of the second version of the training algorithm applies:

 w w( ) ( ) ( ) ( )2 1 1

0
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3

3
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3

3
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⎥
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⎦

⎥
ax ⎥⎥

⎥

For k = 2, x( ) [ ]2 1 1 1 2= ∈T c  and w( ) [ ] .2 3 3 1= T  Their inner product is

Note that the perceptron 
model implements Eq. 
(12-39), which is in 
the form of a decision 
function. 

FIGURE 12.23
Schematic of a 
perceptron,  
showing the  
operations it  
performs. 
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 wT ( ) ( )2 2 3 3 1

1

1

1

7x = [ ]
⎡

⎣
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⎢
⎢

⎤

⎦

⎥
⎥
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The result is positive when it should have been negative, so Step 2� applies:

 w w( ) ( ) ( ) ( )3 2 2

3

3

1

1

1

1
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2
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We have gone through a complete training epoch with at least one correction, so we cycle through the 
training set again.

For k = 3, x( ) [ ] ,3 3 3 1 1= ∈T c  and w( ) [ ] .3 2 2 0= T  Their inner product is positive (i.e., 6) as it should 
be because x( ) .3 1∈c  Therefore, Step 3� applies and the weight vector is not changed:

 w w( ) ( )4 3

2

2

0

= =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

For k = 4, x( ) [ ] ,4 1 1 1 2= ∈T c  and w( ) [ ] .4 2 2 0= T  Their inner product is positive (i.e., 4) and it should 
have been negative, so Step 2� applies:

 w w( ) ( ) ( ) ( )5 4 4
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At least one correction was made, so we cycle through the training patterns again. For k = 5, we have
x( ) [ ] ,5 3 3 1 1= ∈T c  and, using w( ),5  we compute their inner product to be 5. This is positive as it should 
be, so Step 3� applies and we let w w( ) ( ) [ ] .6 5 1 1 1= = − T  Following this procedure just discussed, you 
can show (see Problem 12.13) that the algorithm converges to the solution weight vector

 w w= =
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( )12

1

1

3

which gives the decision boundary

 x x1 2 3 0+ − =

Figure 12.24(a) shows the boundary defined by this equation. As you can see, it clearly separates the 
patterns of the two classes. In terms of the terminology we used in the previous section, the decision 
surface learned by the perceptron is d d x x x x( ) ( , ) ,x = = + −1 2 1 2 3  which is a plane. As before, the 
decision boundary is the locus of points such that d d x x( ) ( , ) ,x = =1 2 0  which is a line. Another way to 
visualize this boundary is that it is the intersection of the decision surface (a plane) with the x x1 2 -plane, 
as Fig. 12.24(b) shows. All points ( , )x x1 2  such that d x x( , )1 2 0>  are on the positive side of the boundary, 
and vice versa for d x x( , ) .1 2 0<
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EXAMPLE 12.8 :  Using the perceptron to classify two sets of iris data measurements.

In Fig. 12.10 we showed a reduced set of the iris database in two dimensions, and mentioned that the 
only class that was separable from the others is the class of Iris setosa. As another illustration of the 
perceptron, we now find the full decision boundary between the Iris setosa and the Iris versicolor classes. 
As we mentioned when discussing Fig. 12.10, these are 4-D data sets. Letting a = 0 5. , and starting with 
all parameters equal to zero, the perceptron converged in only four epochs to the solution weight vector 
w = − −[ . , . , . , . , . ] ,0 65 2 05 2 60 1 10 0 50 T  where the last element is wn+1.

In practice, linearly separable pattern classes are rare, and a significant amount 
of research effort during the 1960s and 1970s went into developing techniques for 
dealing with nonseparable pattern classes. With recent advances in neural networks, 
many of those methods have become items of mere historical interest, and we will 
not dwell on them here. However, we mention briefly one approach because it is rel-
evant to the discussion of neural networks in the next section. The method is based 
on minimizing the error between the actual and desired response at any training step.

Let r denote the response we want the perceptron to have for any pattern during 
training. The output of our perceptron is either +1 or −1, so these are the two pos-
sible values that r can have. We want to find the augmented weight vector, w,  that 
minimizes the mean squared error (MSE) between the desired and actual responses 
of the perceptron. The function should be differentiable and have a unique mini-
mum. The function of choice for this purpose is a quadratic of the form

 E r T( )w w= −( )1
2

2
x  (12-47)

where E is our error measure, w  is the weight vector we are seeking, x  is any pattern 
from the training set, and r is the response we desire for that pattern. Both w  and x
are augmented vectors. 

The 1 ⁄ 2 is used to cancel 
out the 2 that will result 
from taking the deriva-
tive of this expression. 
Also, remember that wTx 
is a scalar. 
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FIGURE 12.24
(a) Segment 
of the decision 
boundary learned 
by the perceptron 
algorithm.  
(b) Section of the 
decision surface. 
The decision 
boundary is the 
intersection of the 
decision surface 
with the x x1 2 -
plane.
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We find the minimum of E( )w  using an iterative gradient descent algorithm, whose 
form is

 w w
w

w
w w

k k
E

k

+( ) = −
∂ ( )

∂
⎡

⎣
⎢

⎤

⎦
⎥

= ( )
1 ( ) a  (12-48)

where the starting weight vector is arbitrary, and a > 0. 
Figure 12.25(a) shows a plot of E for scalar values, w  and x, of w  and x. We want 

to move w  incrementally so E( )w  approaches a minimum, which implies that E 
should stop changing or, equivalently, that ∂ ∂ =E( ) .w w 0  Equation (12-48) does 
precisely this. If ∂ ∂ >E( ) ,w w 0  a portion of this quantity (determined by the value 
of the learning increment a) is subtracted from w( )k  to create a new, updated value 
w( ),k + 1  of the weight. The opposite happens if ∂ ∂ <E( ) .w w 0  If ∂ ∂ =E( ) ,w w 0  
the weight is unchanged, meaning that we have arrived at a minimum, which is the 
solution we are seeking. The value of a  determines the relative magnitude of the 
correction in weight value. If a  is too small, the step changes will be correspond-
ingly small and the weight would move slowly toward convergence, as Fig. 12.25(a) 
illustrates. On the other hand, choosing a  too large could cause large oscillations 
on either side of the minimum, or even become unstable, as Fig. 12.25(b) illustrates. 
There is no general rule for choosing a. However, a logical approach is to start small 
and experiment by increasing a  to determine its influence on a particular set of 
training patterns. Figure 12.25(c) shows the shape of the error function for two vari-
ables.

Because the error function is given analytically and it is differentiable, we can 
express Eq. (12-48) in a form that does not require computing the gradient explicitly 
at every step. The partial of E( )w  with respect to w  is

 
∂ ( )

∂
= − −( )E

r Tw

w
w x x  (12-49)

Note that the right side 
of this equation is the 
gradient of E(w).
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FIGURE 12.25 Plots of E as a function of wx  for r = 1. (a) A value of a  that is too small can slow down convergence. 
(b) If a  is too large, large oscillations or divergence may occur. (c) Shape of the error function in 2-D.
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Substituting this result into Eq. (12-48) yields

 w w wk k r k k k kT+( ) = ( ) + ( ) − ( ) ( )⎡⎣ ⎤⎦ ( )1 a x x  (12-50)

which is in terms of known or easily computable terms. As before, w( )1  is arbitrary.
Widrow and Stearns [1985] have shown that it is necessary (but not sufficient) 

for a  to be in the range 0 2< <a  for the algorithm in Eq. (12-50) to converge. A 
typical range for a  is 0 1 1 0. . .< <a  Although the proof is not shown here, the algo-
rithm converges to a solution that minimizes the mean squared error over the pat-
terns of the training set. For this reason, the algorithm is often referred to as the 
least-mean-squared-error (LMSE) algorithm. In practice, we say that the algorithm 
has converged when the error decreases below a specified threshold. The solution 
at convergence may not be a hyperplane that fully partitions two linearly separable 
classes. That is, a mean-square-error solution does not imply a solution in the sense of 
the perceptron training theorem. This uncertainty is the price of using an algorithm 
whose convergence is independent of the linear separability of the pattern classes.

EXAMPLE 12.9 :  Using the LMSE algorithm.

It will be interesting to compare the performance of the LMSE algorithm using the same set of separa-
ble iris data as in Example 12.8. Figure 12.26(a) is a plot of the error [Eq. (12-47)] as a function of epoch 
for 50 epochs, using Eq. (12-50) (with a = 0 001. ) to obtain the weights (we started with w( ) ).1 = 0  Each 
epoch of training consisted of sequentially updating the weights, one pattern at a time, and computing 
Eq. (12-47) for each weight and the corresponding pattern. At the end of the epoch, the errors were 
added and divided by 100 (the total number of patterns) to obtain the mean squared error (MSE). This 
yielded one point of the curve of Fig. 12.26(a). After increasing and then decreasing rapidly, no appre-
ciable difference in error occurred after about 20 epochs. For example, the error at the end of the 50th 
epoch was 0.02 and, at the end of 1,000 epochs, it was 0.0192. Getting smaller error values is possible by 
further decreasing a, but at the expense of slower decay in the error, as noted in Fig. 12.25. Keep in mind 
also that MSE is not directly proportional to correct recognition rate.
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FIGURE 12.26
MSE as a function 
of epoch for:  
(a) the linearly 
separable Iris 
classes (setosa 
and versicolor); 
and (b) the 
linearly nonsepa-
rable Iris classes 
(versicolor and 
virginica).
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The weight vector at the end of 50 epochs of training was w = [ ] .0.098 0.357 0.548 0.255 0.075− − T  
All patterns were classified correctly into their two respective classes using this vector. That is, although 
the MSE did not become zero, the resulting weight vector was able to classify all the patterns correctly. 
But keep in mind that the LMSE algorithm does not always achieve 100% correct recognition of lin-
early separable classes. 

As noted earlier, only the Iris setosa samples are linearly separable from the others. But the Iris ver-
sicolor and virginica samples are not. The perceptron algorithm would not converge when presented 
with these data, whereas the LMSE algorithm does. Figure 12.26(b) is the MSE as a function of training 
epoch for these two data sets, obtained using the same values for w( )1  and a  as in (a). This time, it took 
900 epochs for the MSE to stabilize at 0.09, which is much higher than before. The resulting weight vec-
tor was w = [0.534 0.584 0.878 1.028  0.651] .− − T  Using this vector resulted in seven misclassification 
errors out of 100 patterns, giving a recognition rate of 93%.

A classic example used to show the limitations of single linear decision boundar-
ies (and hence single perceptron units) is the XOR classification problem. The table 
in Fig. 12.27(a) shows the definition of the XOR operator for two variables. As you 
can see, the XOR operation produces a logical true (1) value when either of the 
variables (but not both) is true; otherwise, the result is false (0). The XOR two-class 
pattern classification problem is set up by letting each pair of values A and B be a 
point in 2-D space, and letting the true (1) XOR values define one class, and the false 
(0) values define the other. In this case, we assigned the class c1 label to patterns 

( , ), ( , ) ,0 0 1 1{ }  and the c2  label to patterns ( , ), ( , ) .1 0 0 1{ }  A classifier capable of solv-
ing the XOR problem must respond with a value, say, 1, when a pattern from class c1 
is presented, and a different value, say, 0  or −1, when the input pattern is from class 
c2. You can tell by inspection of Fig. 12.27(b) that a single linear decision boundary 
(a straight line) cannot separate the two classes correctly. This means that we cannot 
solve the problem with a single perceptron. The simplest linear boundary consists 
of two straight lines, as Fig. 12.27(b) shows. A more complex, nonlinear, boundary 
capable of solving the problem is a quadratic function, as in Fig. 12.27(c).
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FIGURE 12.27  The XOR classification problem in 2-D. (a) Truth table definition of the XOR 
operator. (b) 2-D pattern classes formed by assigning the XOR truth values (1) to one pattern 
class, and false values (0) to another. The simplest decision boundary between the two classes 
consists of two straight lines. (c) Nonlinear (quadratic) boundary separating the two classes.
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Natural questions at this point are: Can more than one perceptron solve the XOR 
problem? If so, what is the minimum number of units required? We know that a 
single perceptron can implement one straight line, and we need to implement two 
lines, so the obvious answers are: yes to the first question, and two units to the sec-
ond. Figure 12.28(a) shows the solution for two variables, which requires a total of 
six coefficients because we need two lines. The solution coefficients are such that, 
for either of the two patterns from class c1, one output is true (1) and the other is 
false (0). The opposite condition must hold for either pattern from class c2. This 
solution requires that we analyze two outputs. If we want to implement the truth 
table, meaning that a single output should give the same response as the XOR func-
tion [the third column in Fig. 12.27(a)], then we need one additional perceptron. 
Figure 12.28(b) shows the architecture for this solution. Here, one perceptron in the 
first layer maps any input from one class into a 1, and the other perceptron maps a 
pattern from the other class into a 0. This reduces the four possible inputs into two 
outputs, which is a two-point problem. As you know from Fig. 12.24, a single percep-
tron can solve this problem. Therefore, we need three perceptrons to implement the 
XOR table, as in Fig. 12.28(b).

With a little work, we could determine by inspection the coefficients needed to 
implement either solution in Fig. 12.28. However, rather than dwell on that, we focus 
attention in the following section on a more general, layered architecture, of which 
the XOR solution is a trivial, special case.

MULTILAYER FEEDFORWARD NEURAL NETWORKS

In this section, we discuss the architecture and operation of multilayer neural net-
works, and derive the equations of backpropagation used to train them. We then 
give several examples illustrating the capabilities of neural nets

Model of an Artificial Neuron 

Neural networks are interconnected perceptron-like computing elements called 
artificial neurons. These neurons perform the same computations as the perceptron, 
but they differ from the latter in how they process the result of the computations. 
As illustrated in Fig. 12.23, the perceptron uses a “hard” thresholding function that 
outputs two values, such as +1 and −1, to perform classification. Suppose that in a 
network of perceptrons, the output before thresholding of one of the perceptrons 
is infinitesimally greater than zero. When thresholded, this very small signal will be 
turned into a +1. But a similarly small signal with the opposite sign would cause 
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FIGURE 12.28
(a) Minimum  
perceptron solution 
to the XOR problem 
in 2-D. (b) A solution 
that implements the 
XOR truth table in 
Fig. 12.27(a).
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a large swing in value from +1 to −1. Neural networks are formed from layers of 
computing units, in which the output of one unit affects the behavior of all units fol-
lowing it. The perceptron’s sensitivity to the sign of small signals can cause serious 
stability problems in an interconnected system of such units, making perceptrons 
unsuitable for layered architectures.

The solution is to change the characteristic of the activation function from a hard-
limiter to a smooth function. Figure 12.29 shows an example based on using the 
activation function

 h z
e z( ) =

+ −
1

1
 (12-51)

where z is the result of the computation performed by the neuron, as shown in Fig. 
12.29. Except for more complicated notation, and the use of a smooth function rath-
er than a hard threshold, this model performs the same sum-of-products operations 
as in Eq. (12-36) for the perceptron. Note that the bias term is denoted by b instead 
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FIGURE 12.30 Various activation functions. (a) Sigmoid. (b) Hyperbolic tangent (also has a sigmoid shape, but it is 
centered about 0 in both dimensions). (c) Rectifier linear unit (ReLU).
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a layered  
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of wn+1,  as we do the perceptron. It is customary to use different notation, typically 
b, in neural networks to denote the bias term, so we are following convention. The 
more complicated notation used in Fig. 12.29, which we will explain shortly, is need-
ed because we will be dealing with multilayer arrangements with several neurons 
per layer. We use the symbol “ ”�  to denote layers.

As you can see by comparing Figs. 12.29 and 12.23, we use variable z to denote 
the sum-of-products computed by the neuron. The output of the unit, denoted by a, 
is obtained by passing z through h. We call h the activation function, and refer to its 
output, a h z= ( ), as the activation value of the unit. Note in Fig. 12.29 that the inputs 
to a neuron are activation values from neurons in the previous layer. Figure 12.30(a) 
shows a plot of h z( ) from Eq. (12-51). Because this function has the shape of a sig-
moid function, the unit in Fig. 12.29 is sometimes called an artificial sigmoid neuron, 
or simply a sigmoid neuron. Its derivative has a very nice form, expressible in terms 
of h z( ) [see Problem 12.16(a)]:

 h z
h z

z
h z h z�( )

( )
( ) ( )= ∂

∂
= −[ ]1  (12-52)

Figures 12.30(b) and (c) show two other forms of h z( ) used frequently. The hyper-
bolic tangent also has the shape of a sigmoid function, but it is symmetric about both 
axes. This property can help improve the convergence of the backpropagation algo-
rithm to be discussed later. The function in Fig. 12.30(c) is called the rectifier func-
tion, and a unit using it is referred to a rectifier linear unit (ReLU). Often, you see 
the function itself referred to as the ReLU activation function. Experimental results 
suggest that this function tends to outperform the other two in deep neural networks. 

Interconnecting Neurons to Form a Fully Connected Neural Network

Figure 12.31 shows a generic diagram of a multilayer neural network. A layer in the 
network is the set of nodes (neurons) in a column of the network. As indicated by 
the zoomed node in Fig. 12.31, all the nodes in the network are artificial neurons of 
the form shown in Fig. 12.29, except for the input layer, whose nodes are the com-
ponents of an input pattern vector x. Therefore, the outputs (activation values) of 
the first layer are the values of the elements of x. The outputs of all other nodes are 
the activation values of neurons in a particular layer. Each layer in the network can 
have a different number of nodes, but each node has a single output. The multiple 
lines shown at the outputs of the neurons in Fig. 12.31 indicate that the output of 
every node is connected to the input of all nodes in the next layer, to form a fully 
connected network. We also require that there be no loops in the network. Such 
networks are called feedforward networks. Fully connected, feedforward neural nets 
are the only types of networks considered in this section. 

We obviously know the values of the nodes in the first layer, and we can observe 
the values of the output neurons. All others are hidden neurons, and the layers that 
contain them are called hidden layers. Generally, we call a neural net with a single 
hidden layer a shallow neural network, and refer to network with two or more hid-
den layers as a deep neural network. However, this terminology is not universal, and 
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946    Chapter 12  Image Pattern Classification

sometimes you will see the words “shallow” and “deep” used subjectively to denote 
networks with a “few” and with “many” layers, respectively.

We used the notation in Eq. (12-37) to label all the inputs and weights of a per-
ceptron. In a neural network, the notation is more complicated because we have to 
account for neuron weights, inputs, and outputs within a layer, and also from layer 
to layer. Ignoring layer notation for a moment, we denote by wij  the weight that 
associates the link connecting the output of neuron j to the input of neuron i. That is, 
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FIGURE 12.31
General model 
of a feedforward, 
fully connected 
neural net. The 
neuron is the 
same as in  
Fig. 12.29. Note 
how the output of 
each neuron goes 
to the input of all 
neurons in the 
following layer, 
hence the name 
fully connected 
for this type of 
architecture.

DIP4E_GLOBAL_Print_Ready.indb   946 6/16/2017   2:17:16 PM



12.5  Neural Networks and Deep Learning    947

the first subscript denotes the neuron that receives the signal, and the second refers 
to the neuron that sends the signal. Because i precedes j alphabetically, it would 
seem to make more sense for i to send and for j to receive. The reason we use the 
notation as stated is to avoid a matrix transposition in the equation that describes 
propagation of signals through the network. This notation is convention, but there is 
no doubt that it is confusing, so special care is necessary to keep the notation straight. 

Because the biases depend only on the neuron containing it, a single subscript 
that associates a bias with a neuron is sufficient. For example, we use bi  to denote the 
bias value associated with the ith neuron in a given layer of the network. Our use of 
b instead of wn+1  (as we did for perceptrons) follows notational convention used in 
neural networks. The weights, biases, and activation function(s) completely define a 
neural network. Although the activation function of any neuron in a neural network 
could be different from the others, there is no convincing evidence to suggest that 
there is anything to be gained by doing so. We assume in all subsequent discussions 
that the same form of activation function is used in all neurons. 

Let �  denote a layer in the network, for � …= 1 2, , , .L  With reference to Fig. 12.31, 
� = 1 denotes the input layer, � = L  is the output layer, and all other values of �  
denote hidden layers. The number of neurons in layer �  is denoted n�. We have two 
options to include layer indexing in the parameters of a neural network. We can do 
it as a superscript, for example, wij

�  and bi
� ; or we can use the notation wij( )�  and 

bi( ).�  The first option is more prevalent in the literature on neural network. We use 
the second option because it is more consistent with the way we describe iterative 
expressions in the book, and also because you may find it easier to follow. Using this 
notation, the output (activation value) of neuron k in layer �  is denoted ak( ).�

Keep in mind that our objective in using neural networks is the same as for per-
ceptrons: to determine the class membership of unknown input patterns. The most 
common way to perform pattern classification using a neural network is to assign a 
class label to each output neuron. Thus, a neural network with nL outputs can clas-
sify an unknown pattern into one of nL classes. The network assigns an unknown 
pattern vector x to class ck if output neuron k has the largest activation value; that is, 
if a L a Lk j( ) ( ),>  j n j kL= 1 2, , , ; .… ≠ † 

In this and the following section, the number of outputs of our neural networks 
will always equal the number of classes. But this is not a requirement. For instance, a 
network for classifying two pattern classes could be structured with a single output 
(Problem 12.17 illustrates such a case) because all we need for this task is two states, 
and a single neuron is capable of that. For three and four classes, we need three and 
four states, respectively, which can be achieved with two output neurons. Of course, 
the problem with this approach is that we would need additional logic to decipher 
the output combinations. It is simply more practical to have one neuron per output, 
and let the neuron with the highest output value determine the class of the input.

†  Instead of a sigmoid or similar function in the final output layer, you will sometimes see a softmax function used 
instead. The concept is the same as we explained earlier, but the activation values in a softmax implementation 
are given by a L z L z Li i k i( ) exp[ ( )] exp[ ( )],= ∑  where the summation is over all outputs. In this formulation, the 
sum of all activations is 1, thus giving the outputs a probabilistic interpretation. 

Remember, a bias is a 
weight that is always 
multiplied by 1.
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FORWARD PASS THROUGH A FEEDFORWARD NEURAL NETWORK

A forward pass through a neural network maps the input layer (i.e., values of x) to 
the output layer. The values in the output layer are used for determining the class of 
an input vector. The equations developed in this section explain how a feedforward 
neural network carries out the computations that result in its output. Implicit in the 
discussion in this section is that the network parameters (weights and biases) are 
known. The important results in this section will be summarized in Table 12.2 at the 
end of our discussion, but understanding the material that gets us there is important 
when we discuss training of neural nets in the next section.

The Equations of a Forward Pass

The outputs of the layer 1 are the components of input vector x:

 a x j nj j( ) , , ,1 1 2 1= = …  (12-53)

where n n1 =  is the dimensionality of x. As illustrated in Figs. 12.29 and 12.31, the 
computation performed by neuron i in layer �  is given by

 z a bi ij j i
j

n

( ) ( ) ( ) ( )� � � �
�

= − +
=

−

∑ w 1
1

1

 (12-54)

for i n= 1 2, , ,… �  and � …= 2, , .L  Quantity zi( )�  is called the net (or total) input to 
neuron i in layer �,  and is sometimes denoted by neti . The reason for this terminol-
ogy is that zi( )�  is formed using all outputs from layer � − 1. The output (activation 
value) of neuron i in layer �  is given by

 a h z i ni i( ) ( ) , , ,� � … �= ( ) = 1 2  (12-55)

where h is an activation function. The value of network output node i is

 a L h z L i ni i L( ) ( ) , , ,= ( ) = 1 2 …  (12-56)

Equations (12-53) through (12-56) describe all the operations required to map the 
input of a fully connected feedforward network to its output.

EXAMPLE 12.10 :  Illustration of a forward pass through a fully connected neural network.

It will be helpful to consider a simple numerical example. Figure 12.32 shows a three-layer neural network 
consisting of the input layer, one hidden layer, and the output layer. The network accepts three inputs, and 
has two outputs. Thus, this network is capable of classifying 3-D patterns into one of two classes.

The numbers shown above the arrow heads on each input to a node are the weights of that node 
associated with the outputs from the nodes in the preceding layer. Similarly, the number shown in the 
output of each node is the activation value, a, of that node. As noted earlier, there is only one output 
value for each node, but it is routed to the input of every node in the next layer. The inputs associated 
with the 1’s are bias values. 

Let us look at the computations performed at each node, starting with the first (top) node in layer 2. 
We use Eq. (12-54) to compute the net input, z1 2( ), for that node:
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FIGURE 12.32
A small,  
fully connected,  
feedforward 
net with labeled 
weights, biases, 
and outputs. The 
activation  
function is a 
sigmoid.

 z a b
j

j1
1

3

12 2 1 2 0 1 3 0 2 0 0 6 1 0( ) ( ) ( ) ( ) ( . )( ) ( . )( ) ( . )( ) .= + = + + +
=
∑w1j 44 1 3= .

We obtain the output of this node using Eqs. (12-51) and (12-55):

 a h z
e1 1 1 32 2
1

1
0 7858( ) ( ) ..= ( ) =

+
=−

A similar computation gives the value for the output of the second node in the second layer,

 z a b
j

j2
1

3

22 2 1 2 0 4 3 0 3 0 0 1 1 0( ) ( ) ( ) ( ) ( . )( ) ( . )( ) ( . )( ) .= + = + + +
=
∑w2j 22 1 5= .

and

 a h z
e2 2 1 52 2
1

1
0 8176( ) ( ) ..= ( ) =

+
=−

We use the outputs of the nodes in layer 2 to obtain the net values of the neurons in layer 3:

 z a b
j

j1
1

2

13 3 2 3 0 2 0 7858 0 1 0 8176 0( ) ( ) ( ) ( ) ( . )( . ) ( . )( . )= + = + +
=
∑w1j .. .6 0 8389=

The output of this neuron is

 a h z
e1 1 0 83893 3
1

1
0 6982( ) ( ) ..= ( ) =

+
=−

Similarly,

 z a b
j

j2
1

2

23 3 2 3 0 1 0 7858 0 4 0 8176 0( ) ( ) ( ) ( ) ( . )( . ) ( . )( . )= + = + +
=
∑w2j .. .3 0 7056=

and

 a h z
e2 2 0 70563 2
1

1
0 6694( ) ( ) ..= ( ) =

+
=−

If we were using this network to classify the input, we would say that pattern x belongs to class c1 
because a L a L1 2( ) ( ),>  where L = 3 and nL = 2 in this case.
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Matrix Formulation

The details of the preceding example reveal that there are numerous individual 
computations involved in a pass through a neural network. If you wrote a computer 
program to automate the steps we just discussed, you would find the code to be very 
inefficient because of all the required loop computations, the numerous node and 
layer indexing you would need, and so forth. We can develop a more elegant (and 
computationally faster) implementation by using matrix operations. This means 
writing Eqs. (12-53) through (12-55) as follows. 

First, note that the number of outputs in layer 1 is always of the same dimension 
as an input pattern, x, so its matrix (vector) form is simple:

 a x( )1 =  (12-57)

Next, we look at Eq. (12-54). We know that the summation term is just the inner 
product of two vectors [see Eqs. (12-37) and (12-38)]. However, this equation has 
to be evaluated for all nodes in every layer past the first. This implies that a loop is 
required if we do the computations node by node. The solution is to form a matrix, 
W( ),�  that contains all the weights in layer �.  The structure of this matrix is simple—
each of its rows contains the weights for one of the nodes in layer � :

 W( )

( ) ( ) ( )

( ) ( ) ( )

(

�

� � � �

� � � �

� � �
�

�

�

�

=

−

−

w w w

w w w

w

11 12

21

n 1

1

22 2

1

1

n

n

)) ( ) ( )w wn n� � �
� � �2 1n −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (12-58)

Then, we can obtain all the sum-of-products computations, zi( ),�  for layer �  simulta-
neously:
 z W a b( ) ( ) ( ) ( ) , , ,� � � � � …= − + =1 2 3 L  (12-59)

where a( )� − 1  is a column vector of dimension n�−1 1×  containing the outputs of 
layer � − 1, b( )�  is a column vector of dimension n� × 1 containing the bias values 
of all the neurons in layer �,  and z( )�  is an n� × 1 column vector containing the net 
input values, z i ni( ), , , , ,� … �= 1 2  to all the nodes in layer �.  You can easily verify 
that Eq. (12-59) is dimensionally correct.

Because the activation function is applied to each net input independently of the 
others, the outputs of the network at any layer can be expressed in vector form as:

 a z( ) ( )

( )

( )

( )

� �

�
�
�

�
�

= [ ] =

( )
( )

( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

h

h z

h z

h zn

1

2
 (12-60)

Implementing Eqs. (12-57) through (12-60) requires just a series of matrix opera-
tions, with no loops.

With reference to our 
earlier discussion on the 
order of the subscripts 
i and j, if we had let i 
be the sending node 
and j the receiver, this 
matrix would have to be 
transposed.
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EXAMPLE 12.11 : Redoing Example 12.10 using matrix operations.

Figure 12.33 shows the same neural network as in Fig. 12.32, but with all its parameters shown in matrix 
form. As you can see, the representation in Fig. 12.33 is more compact. Starting with

 a( )1

3

0

1

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

it follows that

 z W a b( ) ( ) ( ) ( )
. . .

. . .
2 2 1 2

0 1 0 2 0 6

0 4 0 3 0 1

3

0

1

0
= + =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
..

.

.

.

4

0 2

1 3

1 5
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

Then,

 a z( ) ( )
( )

( )

( . )

( . )

.
2 2

2

2

1 3

1 5

0 71

2

= [ ] =
( )
( )

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =h

h z

h z

h

h

8858

0 8176.
⎡

⎣
⎢

⎤

⎦
⎥

With a( )2  as input to the next layer, we obtain

 z W a b( ) ( ) ( ) ( )
. .

. .

.

.

.
3 3 2 3

0 2 0 1

0 1 0 4

0 7858

0 8176

0
= + =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ +

66

0 3

0 8389

0 7056.

.

.
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

and, as before,

 a z( ) ( )
( )

( )

( . )

( . )
3 3

3

3

0 8389

0 7056
1

2

= [ ] =
( )
( )

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤
h

h z

h z

h

h ⎦⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

0 6982

0 6694

.

.

The clarity of the matrix formulation over the indexed notation used in Example 12.10 is evident.

Equations (12-57) through (12-60) are a significant improvement over node-by-
node computations, but they apply only to one pattern. To classify multiple pat-
tern vectors, we would have to loop through each pattern using the same set of 
matrix equations per loop iteration. What we are after is one set of matrix equations 

x1

x2

x3

0.1 0.2 0.6
(2)

0.4 0.3 0.1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

W

0.4
(2)

0.2
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

b

0.2 0.1
(3)

0.1 0.4
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

W

0.6
(3)

0.3
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

b

3

(1) 0

1

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

a x

0.7858
(2)

0.8176
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

a

0.6982
(3)

0.6694
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

a

FIGURE 12.33
Same as Fig. 12.32, 
but using matrix 
labeling.
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capable of processing all patterns in a single forward pass. Extending Eqs. (12-57) 
through (12-60) to this more general formulation is straightforward. We begin by 
arranging all our input pattern vectors as columns of a single matrix, X, of dimension 
n np×  where, as before, n is the dimensionality of the vectors and np is the number 
of pattern vectors. It follows from Eq. (12-57) that

 A X( )1 =  (12-61)

where each column of matrix A( )1  contains the initial activation values (i.e., the vec-
tor values) for one pattern. This is a straightforward extension of Eq. (12-57), except 
that we are now dealing with an n np×  matrix instead of an n × 1 vector.

The parameters of a network do not change because we are processing more 
pattern vectors, so the weight matrix is as given in Eq. (12-58). This matrix is of size 
n n� �× −1. When � = 2,  we have that W( )2  is of size n n2 × , because n1 is always equal 
to n. Then, extending the product term of Eq. (12-59) to use A( )2  instead of a( ),2  
results in the matrix product W A( ) ( ),2 2  which is of size ( )( ) .n n n n n np p2 2× × ×=  
To this, we have to add the bias vector for the second layer, which is of size n2 1× . 
Obviously, we cannot add a matrix of size n np2 ×  and a vector of size n2 1× . How-
ever, as is true of the weight matrices, the bias vectors do not change because we 
are processing more pattern vectors. We just have to account for one identical bias 
vector, b( ),2  per input vector. We do this by creating a matrix B( )2  of size n np2 × , 
formed by concatenating column vector b( )2  np times, horizontally. Then, Eq. (12-59) 
written in matrix becomes Z W A B( ) ( ) ( ) ( ).2 2 1 2= +  Matrix Z( )2  is of size n np2 × ; it 
contains the computation performed by Eq. (12-59), but for all input patterns. That 
is, each column of Z( )2  is exactly the computation performed by Eq. (12-59) for one 
input pattern.

The concept just discussed applies to the transition from any layer to the next 
in the neural network, provided that we use the weights and bias appropriate for a 
particular location in the network. Therefore, the full matrix version of Eq. (12-59) is

 Z W A B( ) ( ) ( ) ( )� � � �= − +1  (12-62)

where W( )�  is given by Eq. (12-58) and B( )�  is an n np� ×  matrix whose columns are 
duplicates of b( ),�  the bias vector containing the biases of the neurons in layer �.  

All that remains is the matrix formulation of the output of layer �.  As Eq. (12-60) 
shows, the activation function is applied independently to each element of the vec-
tor z( ).�  Because each column of Z( )�  is simply the application of Eq. (12-60) cor-
responding to a particular input vector, it follows that

 A Z( ) ( )� �= [ ]h  (12-63)

where activation function h is applied to each element of matrix Z( ).�  
Summarizing the dimensions in our matrix formulation, we have: X  and A( )1  

are of size n np× , Z( )�  is of size n np� × , W( )�  is of size n n� �× −1, A( )� − 1  is of 

DIP4E_GLOBAL_Print_Ready.indb   952 6/16/2017   2:17:27 PM



12.5  Neural Networks and Deep Learning    953

size n np�−1 × , B( )�  is of size n np� × , and A( )�  is of size n np� × . Table 12.2 summa-
rizes the matrix formulation for the forward pass through a fully connected, feed-
forward neural network for all pattern vectors. Implementing these operations in a 
matrix-oriented language like MATLAB is a trivial undertaking. Performance can 
be improved significantly by using dedicated hardware, such as one or more graphics 
processing units (GPUs). 

The equations in Table 12.2 are used to classify each of a set of patterns into one 
of nL pattern classes. Each column of output matrix A( )L  contains the activation 
values of the nL output neurons for a specific pattern vector. The class membership 
of that pattern is given by the location of the output neuron with the highest activa-
tion value. Of course, this assumes we know the weights and biases of the network. 
These are obtained during training using backpropagation, as we explain next.

USING BACKPROPAGATION TO TRAIN DEEP NEURAL NETWORKS

A neural network is defined completely by its weights, biases, and activation func-
tion. Training a neural network refers to using one or more sets of training patterns 
to estimate these parameters. During training, we know the desired response of 
every output neuron of a multilayer neural net. However, we have no way of know-
ing what the values of the outputs of hidden neurons should be. In this section, we 
develop the equations of backpropagation, the tool of choice for finding the value 
of the weights and biases in a multilayer network. This training by backpropaga-
tion involves four basic steps: (1) inputting the pattern vectors; (2) a forward pass 
through the network to classify all the patterns of the training set and determine the 
classification error; (3) a backward (backpropagation) pass that feeds the output 
error back through the network to compute the changes required to update the 
parameters; and (4) updating the weights and biases in the network. These steps are 
repeated until the error reaches an acceptable level. We will provide a summary of 
all principal results derived in this section at the end of the discussion (see Table 
12.3). As you will see shortly, the principal mathematical tool needed to derive the 
equations of backpropagation is the chain rule from basic calculus.

The Equations of Backpropagation

Given a set of training patterns and a multilayer feedforward neural network archi-
tecture, the approach in the following discussion is to find the network parameters 

Step Description Equations

Step 1 Input patterns A X( )1 =

Step 2 Feedforward For � …= 2, , ,L  compute Z W A B( ) ( ) ( ) ( )� � � �= − +1  and A Z( ) ( )� �= ( )h

Step 3 Output A Z( ) ( )L h L= ( )

TABLE 12.2
Steps in the matrix computation of a forward pass through a fully connected, feedforward multilayer neural net.
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that minimize an error (also called cost or objective) function. Our interest is in 
classification performance, so we define the error function for a neural network as 
the average of the differences between desired and actual responses. Let r denote 
the desired response for a given pattern vector, x, and let a( )L  denote the actu-
al response of the network to that input. For example, in a ten-class recognition 
application, r and a( )L  would be 10-D column vectors. The ten components of a( )L  
would be the ten outputs of the neural network, and the components of r would be 
zero, except for the element corresponding to the class of x, which would be 1. For 
example, if the input training pattern belongs to class 6, the 6th element of r would 
be 1 and the rest would be 0’s.

The activation values of neuron j in the output layer is a Lj( ). We define the error 
of that neuron as

 E r a Lj j j= −( )1
2

2
( )  (12-64)

for j nL= 1 2, , , ,…  where rj  is the desired response of output neuron a Lj( ) for a 
given pattern x. The output error with respect to a single x is the sum of the errors of 
all output neurons with respect to that vector:

 
E E r a L

L

j
j

n

j j
j

nL L

= = −( )

= −

= =
∑ ∑

1

2

1

2

1
2

1
2

( )

( )� �r a

 (12-65)

where the second line follows from the definition of the Euclidean vector norm. The 
total network output error over all training patterns is defined as the sum of the errors 
of the individual patterns. We want to find the weights that minimize this total error. 
As we did for the LMSE perceptron, we find the solution using gradient descent. 
However, unlike the perceptron, we have no way for computing the gradients of the 
weights in the hidden nodes. The beauty of backpropagation is that we can achieve an 
equivalent result by propagating the output error back into the network.

The key objective is to find a scheme to adjust all weights in a network using train-
ing patterns. In order to do this, we need to know how E changes with respect to the 
weights in the network. The weights are contained in the expression for the net input 
to each node [see Eq. (12-54)], so the quantity we are after is ∂ ∂E zj( )�  where, as 
defined in Eq. (12-54), zj( )�  is the net input to node j in layer �.  In order to simplify 
the notation later, we use the symbol d j( )�  to denote ∂ ∂E zj( ).�  Because backpropa-
gation starts with the output and works backward from there, we look first at

 d j
j

L
E

z L
( )

( )
= ∂

∂
 (12-66)

We can express this equation in terms of the output a Lj( ) using the chain rule:

See Eqs. (2-50) and 
(2-51) regarding the 
Euclidean vector norm.

When the meaning is 
clear, we sometimes 
include the bias term in 
the word “weights.” 

We use “j” generically 
to mean any node in the 
network. We are not 
concerned at the moment 
with inputs to, or outputs 
from, a node. 
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d j

j j

j

j j

j

j

L
E

z L
E

a L

a L

z L
E

a L

h z L

z L
( )

( ) ( )

( )

( ) ( )

( )

(
= ∂

∂
= ∂

∂
∂
∂

= ∂
∂

∂ ( )
∂ ))

( )
( )= ∂

∂ ( )E
a L

h z L
j

j�

 (12-67)

where we used Eq. (12-56) to obtain the last expression in the first line. This equa-
tion gives us the value of d j L( ) in terms of quantities that can be observed or com-
puted. For example, if we use Eq. (12-64) as our error measure, and Eq. (12-52) for 
h z xj� ( ) ,( )  then

 d j j j j jL h z L h z L a L r( ) ( ) ( ) ( )= ( ) − ( )⎡⎣ ⎤⎦ −⎡⎣ ⎤⎦1  (12-68)

where we interchanged the order of the terms. The h z Lj( )( ) are computed in the 
forward pass, a Lj( ) can be observed in the output of the network, and rj  is given 
along with x during training. Therefore, we can compute d j L( ).

Because the relationship between the net input and the output of any neuron in 
any layer (except the first) is the same, the form of Eq. (12-66) is valid for any node 
j in any hidden layer:

 d j
j

E
z

( )
( )

�
�

= ∂
∂

 (12-69)

This equation tells us how E changes with respect to a change in the net input to any 
neuron in the network. What we want to do next is express d j( )�  in terms of d j( ).� + 1  
Because we will be proceeding backward in the network, this means that if we have 
this relationship, then we can start with d j L( ) and find d j L( ).− 1  We then use this 
result to find d j L( ),− 2  and so on until we arrive at layer 2. We obtain the desired 
expression using the chain rule (see Problem 12.25):

 

d

d

j
j i

i

j

j

ji

i

E
z

E
z

z
a

a

z
( )

( ) ( )
( )
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( )

( )

(

�
� �

�
�

�

�

�

= ∂
∂

= ∂
∂ +

∂ +
∂

∂
∂

=

∑ 1
1

++ ∂ +
∂ ( )

= ( ) + +

∑

∑

1
1

1 1
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( )
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( )

( ) ( ) ( )

z
a

h z

h z

i

ji
j

j ij i
i

�
�

�

� � �

�

� w d

 (12-70)

for � …= − −L L1 2 2, , , where we used Eqs. (12-55) and (12-69) to obtain the mid-
dle line, and Eq. (12-54), plus some rearranging to obtain the last line.

The preceding development tells us how we can start with the error in the output 
(which we can compute) and obtain how that error changes as function of the net 
inputs to every node in the network. This is an intermediate step toward our final 
objective, which is to obtain expressions for ∂ ∂E w (ij �) and ∂ ∂E ib (�) in terms of 
d j jE z( ) ( ).� �= ∂  For this, we use the chain rule again:

DIP4E_GLOBAL_Print_Ready.indb   955 6/16/2017   2:17:32 PM



956    Chapter 12  Image Pattern Classification

 

∂
∂

= ∂
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∂
∂

= ∂
∂

= −
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i
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� �
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�
�
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�
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( )

)
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( )

)

( )

d

1 ddi( )�

 (12-71)

where we used Eq. (12-54), Eq. (12-69), and interchanged the order of the results 
to clarify matrix formulations later in our discussion. Similarly (see Problem 12.26),

 
∂

∂
=E

bi
i( )
( )

�
�d  (12-72)

Now we have the rate of change of E with respect to the network weights and biases 
in terms of quantities we can compute. The last step is to use these results to update 
the network parameters using gradient descent:

 
w w

w

w

ij ij
ij

ij i j

E

a

( ) ( )
( )
( )

( ) ( ) ( )

� �
�
�

� � �

= − ∂
∂

= − −

a

ad 1
 (12-73)

and

 
b b

E
b

b

i i
i

i i

( ) ( )
( )

( ) ( )

� �
�

� �

= − ∂
∂

= −

a

ad

 (12-74)

for � …= − −L L1 2 2, , ,  where the a’s  are computed in the forward pass, and the d’s  
are computed during backpropagation. As with the perceptron, a  is the learning 
rate constant used in gradient descent. There are numerous approaches that attempt 
to find optimal learning rates, but ultimately this is a problem-dependent parameter 
that involves experimenting. A reasonable approach is to start with a small value of 
a  (e.g., 0.01), then experiment with vectors from the training set to determine a suit-
able value in a given application. Remember, a  is used only during training, so it has 
no effect on post-training operating performance.

Matrix Formulation

As with the equations that describe the forward pass through a neural network, the 
equations of backpropagation developed in the previous discussion are excellent for 
describing how the method works at a fundamental level, but they are clumsy when 
it comes to implementation. In this section, we follow a procedure similar to the one 
we used for the forward pass to develop the matrix equations for backpropagation.
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As before, we arrange all the pattern vectors as columns of matrix X, and package 
the weights of layer �  as matrix W( ).�  We use D( )�  to denote the matrix equiva-
lent of Î( ),�  the vector containing the errors in layer �.  Our first step is to find an 
expression for D( ).L  We begin at the output and proceed backward, as before. From 
Eq. (12-67),
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 (12-75)

where, as defined in Section 2.6, “}” denotes elementwise multiplication (of two 
vectors in this case). We can write the vector on the left of this symbol as ∂ ∂E La( ), 
and the vector on the right as h L� z( ) .( )  Then, we can write Eq. (12-75) as

 Î( )
( )

( )L
E
L

h L= ∂
∂

( )
a

z} �  (12-76)

This nL × 1 column vector contains the activation values of all the output neurons 
for one pattern vector. The only error function we use in this chapter is a quadratic 
function, which is given in vector form in Eq. (12-65). The partial of that quadratic 
function with respect to a( )L  is a r( )L −( ) which, when substituted into Eq. (12-76), 
gives us

 Î( ) ( ) ( )L L h L= −( ) ( )a r z} �  (12-77)

Column vector Î( )L  accounts for one pattern vector. To account for all np patterns 
simultaneously we form a matrix D( ),�  whose columns are the Î( )L  from Eq. (12-77), 
evaluated for a specific pattern vector. This is equivalent to writing Eq. (12-77) 
directly in matrix form as

 D A R Z( ) ( ) ( )L L h L= −( ) ( )} �  (12-78)

Each column of A( )L  is the network output for one pattern. Similarly, each col-
umn of R is a binary vector with a 1 in the location corresponding to the class of a 
particular pattern vector, and 0’s elsewhere, as explained earlier. Each column of 
the difference A R( )L −( ) contains the components of � �a r− .  Therefore, squaring 
the elements of a column, adding them, and dividing by 2 is the same as computing 
the error measure defined in Eq. (12-65), for one pattern. Adding all the column 
computations gives an average measure of error for all the patterns. Similarly, the 
columns of matrix h L� Z( )( ) are values of the net inputs to all output neurons, with 
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958    Chapter 12  Image Pattern Classification

each column corresponding to one pattern vector. All matrices in Eq. (12-78) are of 
size n nL p× .

Following a similar line of reasoning, we can express Eq. (12-70) in matrix form as

 D W D Z( ) ( ) ( ) ( )� � � �= + +( ) ( )T h1 1 } '  (12-79)

It is easily confirmed by dimensional analysis that the matrix D( )�  is of size n np� ×  
(see Problem 12.27). Note that Eq. (12-79) uses the weight matrix transposed. This 
reflects the fact that the inputs to layer �  are coming from layer � + 1, because in 
backpropagation we move in the direction opposite of a forward pass.

We complete the matrix formulation by expressing the weight and bias update 
equations in matrix form. Considering the weight matrix first, we can tell from Eqs. 
(12-70) and (12-73) that we are going to need matrices W( ),�  D( ),�  and A( ).� − 1  
We already know that W( )�  is of size n n� �× −1  and that D( )�  is of size n np� × . Each 
column of matrix A( )� − 1  is the set of outputs of the neurons in layer � − 1 for one 
pattern vector. There are np patterns, so A( )� − 1  is of size n np�−1 × . From Eq. (12-
73) we infer that A post-multiplies D, so we are also going to need AT ( ),� − 1  which 
is of size n np × �−1. Finally, recall that in a matrix formulation, we construct a matrix 
B( )�  of size n np� ×  whose columns are copies of vector b( ),�  which contains all the 
biases in layer �.  

Next, we look at updating the biases. We know from Eq. (12-74) that each ele-
ment bi( )�  of b( )�  is updated as b bi i i( ) ( ) ( ),� � �= − ad  for i n= 1 2, , , .… �  Therefore, 
b b( ) ( ) ( ).� � �= − aÎ  But this is for one pattern, and the columns of D( )�  are the 
Î( )’� s  for all patterns in the training set. This is handled in a matrix formulation by 
using the average of the columns of D( )�  (this is the average error over all patterns) 
to update b( ).�  

Putting it all together results in the following two equations for updating the 
network parameters:

 W W D A( ) ( ) ( ) ( )� � � �= − −a T 1  (12-80)

and

 b b( ) ( ) ( )� � �= −
=
∑a Îk
k

np

1

 (12-81)

where Îk( )�  is the kth column of matrix D( ).�  As before, we form matrix B( )�  of size 
n np� ×  by concatenating b( )�  np times in the horizontal direction:

 B b( ) ( )� �= { }concatenate
timesnp

 (12-82)

As we mentioned earlier, backpropagation consists of four principal steps: (1) 
inputting the patterns, (2) a forward pass, (3) a backpropagation pass, and (4) a 
parameter update step. The process begins by specifying the initial weights and bias-
es as (small) random numbers. Table 12.3 summarizes the matrix formulations of 
these four steps. During training, these steps are repeated for a number of specified 
epochs, or until a predefined measure of error is deemed to be small enough. 
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12.5  Neural Networks and Deep Learning    959

There are two major types of errors in which we are interested. One is the clas-
sification error, which we compute by counting the number of patterns that were 
misclassified and dividing by the total number of patterns in the training set. Mul-
tiplying the result by 100 gives the percentage of patterns misclassified. Subtracting 
the result from 1 and multiplying by 100 gives the percent correct recognition. The 
other is the mean squared error (MSE), which is based on actual values of E. For 
the error defined in Eq. (12-65), this value is obtained (for one pattern) by squaring 
the elements of a column of the matrix A R( ) ,L −( )  adding them, and dividing by 
the result by 2 (see Problem 12.28). Repeating this operation for all columns and 
dividing the result by the number of patterns in X  gives the MSE over the entire 
training set. 

EXAMPLE 12.12 :   Using a fully connected neural net to solve the XOR problem.

Figure 12.34(a) shows the XOR classification problem discussed previously (the coordinates were cho-
sen to center the patterns for convenience in indexing, but the spatial relationships are as before). Pat-
tern matrix X and class membership matrix R are:

 X R=
− −
− −

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

1 1 1 1

1 1 1 1

1 1 0 0

0 0 1 1
;

We specified a neural network having three layers, with two nodes each (see Fig. 12.35). This is the small-
est network consistent with our architecture in Fig. 12.31. Comparing it to the minimum perceptron 
arrangements in Fig. 12.28(a), we see that our neural network performs the same basic function, in the 
sense that it has two inputs and two outputs.

We used a = 1 0. , an initial set of Gaussian random weights of zero mean and standard deviation of 
0.02, and the activation function in Eq. (12-51). We then trained the network for 10,000 epochs (we 
used a large number of epochs to get close to the values in the R; we discuss below solutions with fewer 
epochs). The resulting weights and biases were:

Step Description Equations

Step 1 Input patterns A X( )1 =

Step 2 Forward pass For � …= 2, , ,L  compute: Z W A B( ) ( ) ( ) ( );� � � �= − +1  A Z( ) ( ) ;� �= ( )h  

h� Z( ) ;�( )  and D A R Z( ) ( ) ( )L L h L= −( ) ( )} �

Step 3 Backpropagation For � …= − −L L1 2 2, , , ,  compute D W D Z( ) ( ) ( ) ( )� � � �= + +( ) ( )T h1 1 } '

Step 4 Update weights and 
biases

For � …= 2, , ,L  let W W D A( ) ( ) ( ) ( ),� � � �= − −a T 1  b b( ) ( ) ( ),� � �= −
=∑a Îkk

np

1
 

and B b( ) ( ) ,� �= { }concatenate
timesnp

 where the Îk ( )�  are the columns of D( )�

TABLE 12.3
Matrix formulation for training a feedforward, fully connected multilayer neural network using backpropagation. 
Steps 1–4 are for one epoch of training. X, R, and the learning rate parameter a, are provided to the network for train-
ing. The network is initialized by specifying weights, W( ),1  and biases, B( ),1  as small random numbers.
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W b W( ) ; ( )
.

.
; (2 2

4 590

4 486
3=

⎡

⎣
⎢

⎤

⎦
⎥ =

−
⎡

⎣
⎢

⎤

⎦
⎥

4.792 4.792

4.486 4.486
)) ; ( )

.

.
=

−
−

⎡

⎣
⎢

⎤

⎦
⎥ =

−
⎡

⎣
⎢

⎤

⎦
⎥

9.180 9.429

9.178 9.427
b 3

4 420

4 419

Figure 12.35 shows the neural net based on these values.
When presented with the four training patterns after training was completed, the results at the two 

outputs should have been equal to the values in R. Instead, the values were close:

 A( )
.

3
0 010

=
⎡

⎣
⎢

⎤

⎦
⎥

0.987 0.990 0.010 0.010

0.013 0.990 0.990

These weights and biases, along with the sigmoid activation function, completely specify our trained 
neural network. To test its performance with values other than the training patterns, which we know it 
classifies correctly, we created a set of 2-D test patterns by subdividing the pattern space into increments 
of 0.1, from −1 5.  to 1.5 in both directions, and classified the resulting points using a forward pass through 

x1

x2

4.792 4.792
(2)

4.486 4.486
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

W

4.590
(2)

4.486
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
b

9.180 9.429
(3)

9.178 9.427

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

W

4.420
(3)

4.419
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
b

FIGURE 12.35
Neural net used 
to solve the XOR 
problem, showing 
the weights and 
biases learned 
via training using 
the equations in 
Table 12.3. 
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FIGURE 12.34 Neural net solution to the XOR problem. (a) Four patterns in an XOR arrangement. (b) Results of 
classifying additional points in the range −1 5.  to 1 5.  in increments of 0.1. All solid points were classified as belong-
ing to class c1 and all open circles were classified as belonging to class c2 . Together, the two lines separating the 
regions constitute the decision boundary [compare with Fig. 12.27(b)]. (c) Decision surface, shown as a mesh. The 
decision boundary is the pair of dashed, white lines in the intersection of the surface and a plane perpendicular to 
the vertical axis, intersecting that axis at 0.5. (Figure (c) is shown in a different perspective than (b) in order to make 
all four patterns visible.)
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the network. If the activation value of output node 1 was greater than the activation value of output 
node 2, the pattern was assigned to class c1; otherwise, it was assigned to class c2. Fig. 12.34(b) is a plot 
of the results. Solid dots are points classified into to class c1, and white dots were classified as belong-
ing to class c2. The boundaries between these two regions (shown as solid black lines) are precisely the 
boundaries in Fig. 12.27(b). Thus, our small neural network found the simplest boundary between the 
two classes, and thus performed the same function as the perceptron arrangement in Fig. 12.28(a).

Figure 12.34(c) shows the decision surface. This figure is analogous to Fig. 12.24(b), but it intersects 
the plane twice because the patterns are not linearly separable. Our decision boundary is the intersec-
tion of the decision surface with a plane perpendicular to the vertical axis, and intersecting that axis at 
0.5. This is because the range of values in the output nodes is in the [ , ]0 1  range, and we assign a pattern 
to the class for which one the two outputs had the largest value. The plane is shown shaded in the fig-
ure, and the decision boundary is shown as dashed white lines. We adjusted the viewing perspective of 
Fig. 12.34(c) so you can see all the XOR points.

Because classification in this case is based on selecting the largest output, we do not need the outputs 
to be so close to 1 and 0 as we showed above, provided they are greater for the patterns of class c1 and 
conversely for the patterns of class c2. This means that we can train the network using fewer epochs 
and still achieve correct recognition. For example, correct classification of the XOR patterns can be 
achieved using the parameters learned with as few as 150 epochs. Figure 12.36 shows the reason why this 
is possible. By the end of the 1000th epoch, the mean squared error has decreased almost to zero, so we 
would expect it to decrease very little from there for 10,000 epochs. We know from the preceding results 
that the neural net performed flawlessly using the weights learned with 10,000 epochs. Because the 
error for 1,000 and 10,000 epochs is close, we can expect the weights to be close as well. At 150 epochs, 
the error has decreased by close to 90% from its maximum, so the probability that the weights would 
perform well should be reasonably high, which was true in this case.

EXAMPLE 12.13 :  Using neural nets to classify multispectral image data.

In this example, we compare the recognition performance of the Bayes classifier we discussed in Sec-
tion 12.4 and the multilayer neural nets discussed in this section. The objective here is the same as in 
Example 12.6: to classify the pixels of multispectral image data into three pattern classes: water, urban, 
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FIGURE 12.36
MSE as a function 
of training epochs 
for the XOR  
pattern  
arrangement.
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962    Chapter 12  Image Pattern Classification

and vegetation. Figure 12.37 shows the four multispectral images used in the experiment, the masks used 
to extract the training and test samples, and the approach used to generate the 4-D pattern vectors.

As in Example 12.6, we extracted a total of 1900 training pattern vectors and 1887 test pattern vectors 
(see Table 12.1 for a listing of vectors by class). After preliminary runs with the training data to establish 
that the mean squared error was decreasing as a function of epoch, we determined that a neural net 
with one hidden layer of two nodes achieved stable learning with a = 0 001.  and 1,000 training epochs. 
Keeping those two parameters fixed, we varied the number of nodes in the internal layer, as listed in 
Table 12.4. The objective of these preliminary runs was to determine the smallest neural net that would 
give the best recognition rate. As you can see from the results in the table, [4 3 3] is clearly the architec-
ture of choice in this case. Figure 12.38 shows this neural net, along with the parameters learned during 
training.

After the basic architecture was defined, we kept the learning rate constant at a = 0 001.  and varied the 
number of epochs to determine the best recognition rate with the architecture in Fig. 12.38. Table 12.5 
shows the results. As you can see, the recognition rate improved slowly as a function of epoch, reach-
ing a plateau at around 50,000 epochs. In fact, as Fig. 12.39 shows, the MSE decreased quickly up to 
about 800 training epochs and decreased slowly after that, explaining why the correct recognition rate 
changed so little after about 2,000 epochs. Similar results were obtained with a = 0 01. , but decreasing 

(a) Images in spectral bands 1  4 and binary mask used to extract training samples

Spectral band 1

Spectral band 2

Spectral band 3

Spectral band 4

1

2

3

4

x

x

x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x

(b) Approach used to extract pattern vectors

–

FIGURE 12.37 (a) Starting with the leftmost image: blue, green, red, near infrared, and binary mask images. In the 
mask, the lower region is for water, the center region is for the urban area, and the left mask corresponds to vegeta-
tion. All images are of size 512 512×  pixels. (b) Approach used for generating 4-D pattern vectors from a stack of 
the four multispectral images. (Multispectral images courtesy of NASA.)

Network  
Architecture

[4 2 3] [4 3 3] [4 4 3] [4 5 3] [4 2 2 3] [4 4 3 3] [4 4 4 3] [4 10 3 3] [4 10 10 3]

Recognition 
Rate

95.8% 96.2% 95.9% 96.1% 74.6% 90.8% 87.1% 84.9% 89.7%

TABLE 12.4
Recognition rate as a function of neural net architecture for a = 0 001.  and 1,000 training epochs. The network archi-
tecture is defined by the numbers in brackets. The first and last number inside each bracket refer to the number of 
input and output nodes, respectively. The inner entries give the number of nodes in each hidden layer.
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x1

x2

x3

4x

2.393 1.020 1.249 15.965

(2) 6.599 2.705 0.912 14.928

8.745 0.270 3.358 1.249

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

W

4.093 10.563 3.245

(3) 7.045 9.662 6.436

7.447 3.931 6.619

− −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

W

[ ](2) 4.920 2.002 3.485 T= − −b [ ](3) 3.277 14.982 1.582 T= −b

FIGURE 12.38
Neural net  
architecture used to 
classify the  
multispectral image 
data in Fig. 12.37 
into three classes: 
water, urban, and 
vegetation. The 
parameters shown 
were obtained 
in 50,000 epochs 
of training using 
a = 0 001. . 

Training 
Epochs

1,000 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

Recognition 
Rate

95.3% 96.6% 96.7% 96.8% 96.9% 97.0% 97.0% 97.0% 97.0%

TABLE 12.5
Recognition performance on the training set as a function of training epochs. The learning rate constant was a = 0 001.  
in all cases.
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FIGURE 12.39
MSE for the 
network  
architecture in 
Fig. 12.38 as a 
function of the 
number of  
training epochs. 
The learning rate 
parameter was 
a = 0 001.  in all 
cases.
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964    Chapter 12  Image Pattern Classification

this parameter to a = 0 1.  resulted in a drop of the best correct recognition rate to 49.1%. Based on the 
preceding results, we used a = 0 001.  and 50,000 epochs to train the network.

The parameters in Fig. 12.38 were the result of training. The recognition rate for the training data 
using these parameters was 97%. We achieved a recognition rate of 95.6% on the test set using the same 
parameters. The difference between these two figures, and the 96.4% and 96.2%, respectively, obtained 
for the same data with the Bayes classifier (see Example 12.6), are statistically insignificant. 

The fact that our neural networks achieved results comparable to those obtained with the Bayes 
classifier is not surprising. It can be shown (Duda, Hart, and Stork [2001]) that a three-layer neural net, 
trained by backpropagation using a sum of errors squared criterion, approximates the Bayes decision 
functions in the limit, as the number of training samples approaches infinity. Although our training sets 
were small, the data were well behaved enough to yield results that are close to what theory predicts. 

12.6  DEEP CONVOLUTIONAL NEURAL NETWORKS  

Up to this point, we have organized pattern features as vectors. Generally, this 
assumes that the form of those features has been specified (i.e., “engineered” by a 
human designer) and extracted from images prior to being input to a neural network 
(Example 12.13 is an illustration of this approach). But one of the strengths of neural 
networks is that they are capable of learning pattern features directly from training 
data. What we would like to do is input a set of training images directly into a neural 
network, and have the network learn the necessary features on its own. One way to 
do this would be to convert images to vectors directly by organizing the pixels based 
on a linear index (see Fig. 12.1), and then letting each element (pixel) of the linear 
index be an element of the vector. However, this approach does not utilize any spa-
tial relationships that may exist between pixels in an image, such as pixel arrange-
ments into corners, the presence of edge segments, and other features that may help 
to differentiate one image from another. In this section, we present a class of neural 
networks called deep convolutional neural networks (CNNs or ConvNets for short) 
that accept images as inputs and are ideally suited for automatic learning and image 
classification. In order to differentiate between CNNs and the neural nets we stud-
ied in Section 12.5, we will refer to the latter as “fully connected” neural networks. 

A BASIC CNN ARCHITECTURE

In the following discussion, we use a LeNet architecture (see references at the end of 
this chapter) to introduce convolutional nets. We do this for two main reasons: First, 
the LeNet architecture is reasonably simple to understand. This makes it ideal for 
introducing basic CNN concepts. Second, our real interest is in deriving the equa-
tions of backpropagation for convolutional networks, a task that is simplified by the 
intuitiveness of LeNets.

The CNN in Fig. 12.40 contains all the basic elements of a LeNet architecture, 
and we use it without loss of generality. A key difference between this architecture 
and the neural net architectures we studied in the previous section is that inputs to 
CNNs are 2-D arrays (images), while inputs to our fully connected neural networks 
are vectors. However, as you will see shortly, the computations performed by both 
networks are very similar: (1) a sum of products is formed, (2) a bias value is added, 

12.6

To simplify the explana-
tion of the CNN in 
Fig. 12.40, we focus 
attention initially on 
a single image input. 
Multiple input images 
are a trivial extension we 
will consider later in our 
discussion.
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(3) the result is passed through an activation function, and (4) the activation value 
becomes a single input to a following layer. 

Despite the fact that the computations performed by CNNs and fully connected 
neural nets are similar, there are some basic differences between the two, beyond 
their input formats being 2-D versus vectors. An important difference is that CNNs 
are capable of learning 2-D features directly from raw image data, as mentioned ear-
lier. Because the tools for systematically engineering comprehensive feature sets for 
complex image recognition tasks do not exist, having a system that can learn its own 
image features from raw image data is a crucial advantage of CNNs. Another major 
difference is in the way in which layers are connected. In a fully connected neural net, 
we feed the output of every neuron in a layer directly into the input of every neuron in 
the next layer. By contrast, in a CNN we feed into every input of a layer, a single value, 
determined by the convolution (hence the name convolutional neural net) over a 
spatial neighborhood in the output of the previous layer. Therefore, CNNs are not 
fully connected in the sense defined in the last section. Another difference is that the 
2-D arrays from one layer to the next are subsampled to reduce sensitivity to transla-
tional variations in the input. These differences and their meaning will become clear 
as we look at various CNN configurations in the following discussion.

Basics of How a CNN Operates

As noted above, the type of neighborhood processing in CNNs is spatial convolu-
tion. We explained the mechanics of spatial convolution in Fig. 3.29, and expressed 
it mathematically in Eq. (3-35). As that equation shows, convolution computes a 
sum of products between pixels and a set of kernel weights. This operation is car-
ried out at every spatial location in the input image. The result at each location 
( , )x y  in the input is a scalar value. Think of this value as the output of a neuron in 
a layer of a fully connected neural net. If we add a bias and pass the result through 
an activation function (see Fig. 12.29), we have a complete analogy between the 

We will discuss in the 
next subsection the exact 
form of neural computa-
tions in a CNN, and show 
they are equivalent in 
form to the computations 
performed by neurons in 
a fully connected neural 
net.
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FIGURE 12.40 A CNN containing all the basic elements of a LeNet architecture. Points A and B are specific values 
to be addressed later in this section. The last pooled feature maps are vectorized and serve as the input to a fully 
connected neural network. The class to which the input image belongs is determined by the output neuron with the 
highest value.
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basic computations performed by a CNN and those performed by the neural nets 
discussed in the previous section.

These remarks are summarized in Fig. 12.40, the leftmost part of which shows a 
neighborhood at one location in the input image. In CNN terminology, these neigh-
borhoods are called receptive fields. All a receptive field does is select a region of 
pixels in the input image. As the figure shows, the first operation performed by a 
CNN is convolution, whose values are generated by moving the receptive field over 
the image and, at each location, forming a sum of products of a set of weights and 
the pixels contained in the receptive field. The set of weights, arranged in the shape 
of the receptive field, is a kernel, as in Chapter 3. The number of spatial increments 
by which a receptive field is moved is called the stride. Our spatial convolutions in 
previous chapters had a stride of one, but that is not a requirement of the equations 
themselves. In CNNs, an important motivations for using strides greater than one is 
data reduction. For example, changing the stride from one to two reduces the image 
resolution by one-half in each spatial dimension, resulting in a three-fourths reduc-
tion in the amount of data per image. Another important motivation is as a substi-
tute for subsampling which, as we discuss below, is used to reduce system sensitivity 
to spatial translation.

To each convolution value (sum of products) we add a bias, then pass the result 
through an activation function to generate a single value. Then, this value is fed to 
the corresponding ( , )x y  location in the input of the next layer. When repeated for all 
locations in the input image, the process just explained results in a 2-D set of values 
that we store in next layer as a 2-D array, called a feature map. This terminology is 
motivated by the fact that the role performed by convolution is to extract features 
such as edges, points, and blobs from the input (remember, convolution is the basis 
of spatial filtering, which we used in Chapter 3 for tasks such as smoothing, sharpen-
ing, and computing edges in an image). The same weights and a single bias are used 
to generate the convolution (feature map) values corresponding to all locations of 
the receptive field in the input image. This is done to cause the same feature to be 
detected at all points in the image. Using the same weights and bias for this purpose 
is called weight (or parameter) sharing.

Figure 12.40 shows three feature maps in the first layer of the network. The other 
two feature maps are generated in the manner just explained, but using a different 
set of weights and bias for each feature map. Because each set of weights and bias 
is different, each feature map generally will contain a different set of features, all 
extracted from the same input image. The feature maps are referred to collectively 
as a convolutional layer. Thus, the CNN in Fig. 12.40 has two convolutional layers.

The process after convolution and activation is subsampling (also called pooling), 
which is motivated by a model of the mammal visual cortex proposed by Hubel 
and Wiesel [1959]. Their findings suggest that parts of the visual cortex consist of 
simple and complex cells. The simple cells perform feature extraction, while the 
complex cells combine (aggregate) those features into a more meaningful whole. In 
this model, a reduction in spatial resolution appears to be responsible for achieving 
translational invariance. Pooling is a way of modeling this reduction in dimension-
ality. When training a CNN with large image databases, pooling has the additional 

In the terminology of 
Chapter 3, a feature map 
is a spatially filtered 
image.
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advantage of reducing the volume of data being processed. You can think of the 
results of subsampling as producing pooled feature maps. In other words, a pooled 
feature map is a feature map of reduced spatial resolution. Pooling is done by subdi-
viding a feature map into a set of small (typically 2 2× ) regions, called pooling neigh-
borhoods, and replacing all elements in such a neighborhood by a single value. We 
assume that pooling neighborhoods are adjacent (i.e., they do not overlap). There 
are several ways to compute the pooled values; collectively, the different approaches 
are called pooling methods. Three common pooling methods are: (1) average pool-
ing, in which the values in each neighborhood are replaced by the average of the 
values in the neighborhood; (2) max-pooling, which replaces the values in a neigh-
borhood by the maximum value of its elements; and (3) L2 pooling, in which the 
resulting pooled value is the square root of the sum of the neighborhood values 
squared. There is one pooled feature map for each feature map. The pooled feature 
maps are referred to collectively as a pooling layer. In Fig. 12.40 we used 2 2×  pool-
ing so each resulting pooled map is one-fourth the size of the preceding feature map. 
The use of receptive fields, convolution, parameter sharing, and pooling are charac-
teristics unique to CNNs.

Because feature maps are the result of spatial convolution, we know from Chapter 3 
that they are simply filtered images. It then follows that pooled feature maps are fil-
tered images of lower resolution. As Fig. 12.40 illustrates, the pooled feature maps 
in the first layer become the inputs to the next layer in the network. But, whereas 
we showed a single image as an input to the first layer, we now have multiple pooled 
feature maps (filtered images) that are inputs into the second layer. 

To see how these multiple inputs to the second layer are handled, focus for a 
moment on one pooled feature map. To generate the values for the first feature map 
in the second convolutional layer, we perform convolution, add a bias, and use acti-
vation, as before. Then, we change the kernel and bias, and repeat the procedure for 
the second feature map, still using the same input. We do this for every remaining 
feature map, changing the kernel weights and bias for each. Then, we consider the 
next pooled feature map input and perform the same procedure (convolution, plus 
bias, plus activation) for every feature map in the second layer, using yet another set 
of different kernels and biases. When we are finished, we will have generated three 
values for the same location in every feature map, with one value coming from the 
corresponding location in each of the three inputs. The question now is: How do 
we combine these three individual values into one? The answer lies in the fact that 
convolution is a linear process, from which it follows that the three individual values 
are combined into one by superposition (that is, by adding them).

In the first layer, we had one input image and three feature maps, so we needed 
three kernels to complete all required convolutions. In the second layer, we have 
three inputs and seven feature maps, so the total number of kernels (and biases) 
needed is 3 7 21× = . Each feature map is pooled to generate a corresponding 
pooled feature map, resulting in seven pooled feature maps. In Fig. 12.40, there are 
only two layers, so these seven pooled feature maps are the outputs of the last layer. 

As usual, the ultimate objective is to use features for classification, so we need 
a classifier. As Fig. 12.40 shows, in a CNN we perform classification by feeding the 

Adjacency is not a 
requirement of pooling 
per se. We assume it 
here for simplicity 
and because this is an 
approach that is used 
frequently.

You could interpret the 
convolution with several 
input images as 3-D con-
volution, but with move-
ment only in the spatial 
(x and y) directions. The 
result would be identical 
to summing individual 
convolutions with each 
image separately, as we 
do here. 
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value of the last pooled layer into a fully connected neural net, the details of which 
you learned in Section 12.5. But the outputs of a CNN are 2-D arrays (i.e., filtered 
images of reduced resolution), whereas the inputs to a fully connected net are vec-
tors. Therefore, we have to vectorize the 2-D pooled feature maps in the last layer. 
We do this using linear indexing (see Fig. 12.1). Each 2-D array in the last layer of 
the CNN is converted into a vector, then all resulting vectors are concatenated (verti- 
cally for a column) to form a single vector. This vector propagates through the neu-
ral net, as explained in Section 12.5. In any given application, the number of outputs 
in the fully connected net is equal to the number of pattern classes being classified. 
As before, the output with the highest value determines the class of the input.

EXAMPLE 12.14 :   Receptive fields, pooling neighborhoods, and their corresponding feature maps.

The top row of Fig. 12.41 shows a numerical example of the relative sizes of feature maps and pooled 
feature maps as a function of the sizes of receptive fields and pooling neighborhoods. The input image 
is of size 28 28×  pixels, and the receptive field is of size 5 5× . If we require that the receptive field be 
contained in the image during convolution, you know from Section 3.4 that the resulting convolution 
array (feature map) will be of size 24 24× . If we use a pooling neighborhood of size 2 2× , the resulting 
pooled feature maps will be of size 12 12× , as the figure shows. As noted earlier, we assume that pooling 
neighborhoods do not overlap.

As an analogy with fully connected neural nets, think of each element of a 2-D array in the top row 
of Fig. 12.41 as a neuron. The outputs of the neurons in the input are pixel values. The neurons in the 
feature map of the first layer have output values generated by convolving with the input image a kernel 
whose size and shape are the same as the receptive field, and whose coefficients are learned during train-
ing. To each convolution value we add a bias and pass the result through an activation function to gener-
ate the output value of the corresponding neuron in the feature map. The output values of the neurons in 
the pooled feature maps are generated by pooling the output values of the neurons in the feature maps.

The second row in Fig. 12.41 illustrates visually how feature maps and pooled feature maps look 
based on the input image shown in the figure. The kernel shown is as described in the previous para-
graph, and its weights (shown as intensity values) were learned from sample images using the training 
of the CNN described later in Example 12.17. Therefore, the nature of the learned features is deter-
mined by the learned kernel coefficients. Note that the contents of the feature maps are specific features 
detected by convolution. For example, some of the features emphasize edges in the the character. As 
mentioned earlier, the pooled features are lower-resolution versions of this effect. 

EXAMPLE 12.15 :   Graphical illustration of the functions performed by the components of a CNN.

Figure 12.42 shows the 28 28×  image from Fig. 12.41, input into an expanded version of the CNN archi-
tecture from Fig. 12.40. The expanded CNN, which we will discuss in more detail in Example 12.17, has 
six feature maps in the first layer, and twelve in the second. It uses receptive fields of size 5 5× , and 
pooling neighborhoods of size 2 2× . Because the receptive fields are of size 5 5× , the feature maps in 
the first layer are of size 24 24× , as we explained in Example 12.14. Each feature map has its own set of 
weights and bias, so we will need a total of ( )5 5 6 6 156× × + =  parameters (six kernels with twenty-five 
weights each, and six biases) to generate the feature maps in the first layer. The top row of Fig. 12.43(a) 
shows the kernels with the weights learned during training of the CNN displayed as images, with intensity 
being proportional to kernel values.

The parameters of the 
fully connected neural 
net are learned during 
training of the CNN, to 
be discussed shortly.
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FIGURE 12.41
Top row: How the 
sizes of receptive 
fields and pooling 
neighborhoods 
affect the sizes of 
feature maps and 
pooled feature 
maps. 
Bottom row: An 
image example.  
This figure is 
explained in more 
detail in Example 
12.17. (Image 
courtesy of NIST.)
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Because we used pooling neighborhoods of size 2 2× , the pooled feature maps in the first layer of 
Fig. 12.42 are of size 12 12× . As we discussed earlier, the number of feature maps and pooled feature 
maps is the same, so we will have six arrays of size 12 12×  acting as inputs to the twelve feature maps 
in the second layer (the number of feature maps generally is different from layer to layer). Each fea-
ture map will have its own set of weights and bias, so will need a total of 6 5 5 12 12 1812× × × +( ) =
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FIGURE 12.42 Numerical example illustrating the various functions of a CNN, including recognition of an input image. 
A sigmoid activation function was used throughout.
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parameters to generate the feature maps in the second layer (i.e., twelve sets of six kernels with twenty-
five weights each, plus twelve biases). The bottom part of Fig. 12.43 shows the kernels as images. Because 
we are using receptive fields of size 5 5× , the feature maps in the second layer are of size 8 8× . Using 
2 2×  pooling neighborhoods resulted in pooled feature maps of size 4 4×  in the second layer.

As we discussed earlier, the pooled feature maps in the last layer have to be vectorized to be able to 
input them into the fully connected neural net. Each pooled feature map resulted in a column vector of 
size 16 1× . There are 12 of these vectors which, when concatenated vertically, resulted in a single vector 
of size 192 1× . Therefore, our fully connected neural net has 192 input neurons. There are ten numeral 
classes, so there are 10 output neurons. As you will see later, we obtained excellent performance by using 
a neural net with no hidden layers, so our complete neural net had a total of 192 input neurons and 10 
output neurons. For the input character shown in Fig. 12.42, the highest value in the output of the fully 
connected neural net was in the seventh neuron, which corresponds to the class of 6’s. Therefore, the 
input was recognized properly. This is shown in bold text in the figure.

Figure 12.44 shows graphically what the feature maps look like as the input image propagates through 
the CNN. Consider the feature maps in the first layer. If you look at each map carefully, you will notice 
that it highlights a different characteristic of the input. For example, the map on the top of the first 
column highlights the two principal edges on the top of the character. The second map highlights the 
edges of the entire inner region, and the third highlights a “blob-like” nature of the digit, almost as if it 
had been blurred by a lowpass kernel. The other three images show other features. Although the pooled 
feature maps are lower-resolution versions of the original feature maps, they still retained the key char-
acteristics of the features in the latter. If you look at the first two feature maps in the second layer, and 
compare them with the first two in the first layer, you can see that they could be interpreted as higher-

FIGURE 12.43 Top: The weights (shown as images of size 5 5× ) corresponding to the six feature maps in the first layer 
of the CNN in Fig. 12.42. Bottom: The weights corresponding to the twelve feature maps in the second layer.

DIP4E_GLOBAL_Print_Ready.indb   970 6/16/2017   2:17:49 PM



12.6  Deep Convolutional Neural Networks    971

level abstractions of the top part of the character, in the sense that they show an area flanked on both 
sides by areas of opposite intensity. These abstractions are not always easy to analyze visually, but as you 
will see in later examples, they can be very effective. The vectorized version of the last pooled layer is 
self-explanatory. The output of the fully connected neural net shows dark for low values and white for 
the highest value, indicating that the input was properly recognized as a number 6. Later in this section, 
we will show that the simple CNN architecture in Fig. 12.42 is capable of recognizing the correct class of 
over 70,000 numerical samples with nearly perfect accuracy.

Neural Computations in a CNN

Recall from Fig. 12.29 that the basic computation performed by an artificial neuron 
is a sum of products between weights and values from a previous layer. To this we 
add a bias and call the result the net (total) input to the neuron, which we denoted 
by zi . As we showed in Eq. (12-54), the sum involved in generating zi is a single sum. 
The computations performed in a CNN to generate a single value in a feature map 
is 2-D convolution. As you learned in Chapter 3, this is a double sum of products 
between the coefficients of a kernel and the corresponding elements of the image 
array overlapped by the kernel. With reference to Fig. 12.40, let w  denote a kernel 
formed by arranging the weights in the shape of the receptive field we discussed 
in connection with that figure. For notational consistency with Section 12.5, let ax y,  
denote image or pooled feature values, depending on the layer. The convolution 
value at any point ( , )x y  in the input is given by

 w a wx,y� = − −∑∑ l k x l y k
kl

a, ,  (12-83)

FIGURE 12.44
Visual summary 
of an input image 
propagating 
through the CNN 
in Fig. 12.42. Shown 
as images are all the 
results of  
convolution  
(feature maps) and 
pooling (pooled 
feature maps) for 
both layers of the 
network. (Example 
12.17 contains more 
details about this 
figure.)
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where l  and k  span the dimensions of the kernel. Suppose that w  is of size 3 3× . 
Then, we can then expand this equation into the following sum of products:

 
w a w a w

w w

x,y x,y� �= =

= + +

− −

− − − −

∑∑ l k x l y k
kl

x y x y

a

a a

, ,

, , , ,1 1 1 1 1 2 1 2 � ++ − −w3 3 3 3, ,ax y

 (12-84)

We could relabel the subscripts on w  and a, and write instead

 

w a =w w w

w

x,y

i

� 1 1 2 2 9 9
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a a a
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i

+ + +

=
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∑

�

 (12-85)

The results of Eqs. (12-84) and (12-85) are identical. If we add a bias to the latter 
equation and call the result z we have

 
z a b

b

j j
j

= +

= +
=
∑w

w ax,y

1

9

�

 (12-86)

The form of the first line of this equation is identical to Eq. (12-54). Therefore, we 
conclude that if we add a bias to the spatial convolution computation performed by 
a CNN at any fixed position ( , )x y  in the input, the result can be expressed in a form 
identical to the computation performed by an artificial neuron in a fully connected 
neural net. We need the x y,  only to account for the fact that we are working in 2-D. 
If we think of z as the net input to a neuron, the analogy with the neurons discussed 
in Section 12.5 is completed by passing z through an activation function, h, to get 
the output of the neuron:

 a h z= ( )  (12-87)

This is exactly how the value of any point in a feature map (such as the point labeled 
A in Fig. 12.40) is computed.

Now consider point B in that figure. As mentioned earlier, its value is given by 
adding three convolution equations:

  

w a w a w a w(1) (2) (3)
l k x y l k x y l k x y l k xa, ,

( )
, ,

( )
, ,

( )
,

( )
� � �

1 2 3 1+ + = −ll y k
kl

l k x l y k
kl

l k x l y k
kl

a a

,
( )

,
( )

,
( )

,
( )

,
( )

−

− − − −

∑∑
∑∑ ∑

+

+

1

2 2 2 2w w∑∑
 (12-88)

where the superscripts refer to the three pooled feature maps in Fig. 12.40. The val-
ues of l k x, , , and y are the same in all three equations because all three kernels are 
of the same size and they move in unison. We could expand this equation and obtain 
a sum of products that is lengthier than for point A in Fig. 12.40, but we could still 
relabel all terms and obtain a sum of products that involves only one summation, 
exactly as before.
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The preceding result tells us that the equations used to obtain the value of an 
element of any feature map in a CNN can be expressed in the form of the computa-
tion performed by an artificial neuron. This holds for any feature map, regardless 
of how many convolutions are involved in the computation of the elements of that 
feature map, in which case we would simply be dealing with the sum of more con-
volution equations. The implication is that we can use the basic form of Eqs. (12-86) 
and (12-87) to describe how the value of an element in any feature map of a CNN 
is obtained. This means we do not have to account explicitly for the number of dif-
ferent pooled feature maps (and hence the number of different kernels) used in a 
pooling layer. The result is a significant simplification of the equations that describe 
forward and backpropagation in a CNN.

Multiple Input Images

The values of ax y,  just discussed are pixel values in the first layer but, in layers past 
the first, ax y,  denotes values of pooled features. However, our equations do not dif-
ferentiate based on what these variables actually represent. For example, suppose 
we replace the input to Fig. 12.40 with three images, such as the three components 
of an RGB image. The equations for the value of point A in the figure would now 
have  the same form as those we stated for point B—only the weights and biases 
would be different. Thus, the results in the previous discussion for one input image 
are applicable directly to multiple input images. We will give an example of a CNN 
with three input images later in our discussion.

THE EQUATIONS OF A FORWARD PASS THROUGH A CNN

We concluded in the preceding discussion that we can express the result of convolv-
ing a kernel, w,  and an input array with values ax y, , as

 
z a b

b

x y l k x l y k
kl

, , ,= +

= +

− −∑∑ w

w ax,y�

 (12-89)

where l  and k  span the dimensions of the kernel, x and y span the dimensions of the 
input, and b is a bias. The corresponding value of ax y,  is

 a h zx y x y, ,= ( )  (12-90)

But this ax y,  is different from the one we used to compute Eq. (12-89), in which ax y,  
represents values from the previous layer. Thus, we are going to need additional 
notation to differentiate between layers. As in fully connected neural nets, we use �  
for this purpose, and write Eqs. (12-89) and (12-90) as

 
z a b

b

x y l k x l y k
kl

,
( ) ( ) ( ) ( )

( ) ( )

, ,� � � �

� � �

= − +

= − +

− −∑∑ w

w( ) ax,y

1

1�

 (12-91)

As noted earlier, a kernel 
is formed by organizing 
the weights in the shape of 
a corresponding receptive 
field. Also keep in mind 
that w and ax,y represent 
all the weights and  
corresponding values in 
a set of input images or 
pooled features.
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and

 a h zx y x y, ,( ) ( )� �= ( )  (12-92)

for � …= 1 2, , , ,Lc  where Lc  is the number of convolutional layers, and ax y, ( )�  
denotes the values of pooled features in convolutional layer �.  When � = 1,  

 ax y, ( )0 = { }values of pixels in the input image(s)  (12-93)

When � = Lc ,

 ( ),a Lx y c = values of pooled features in last layer of the CNNN{ }  (12-94)  

Note that �  starts at 1 instead of 2, as we did in Section 12.5. The reason is that we are 
naming layers, as in “convolutional layer �.” It would be confusing to start at convo-
lutional layer 2. Finally, we note that the pooling does not require any convolutions. 
The only function of pooling is to reduce the spatial dimensions of the feature map 
preceding it, so we do not include explicit pooling equations here.

Equations (12-91) through (12-94) are all we need to compute all values in a 
forward pass through the convolutional section of a CNN. As described in Fig. 12.40, 
the values of the pooled features of the last layer are vectorized and fed into a fully 
connected feedforward neural network, whose forward propagation is explained in 
Eqs. (12-54) and (12-55) or, in matrix form, in Table 12.2.

THE EQUATIONS OF BACKPROPAGATION USED TO TRAIN CNNS

As you saw in the previous section, the feedforward equations of a CNN are similar 
to those of a fully connected neural net, but with multiplication replaced by convo-
lution, and notation that reflects the fact that CNNs are not fully connected in the 
sense defined in Section 12.5. As you will see in this section, the equations of back-
propagation also are similar in many respects to those in fully connected neural nets.

As in the derivation of backpropagation in Section 12.5, we start with the defini-
tion of how the output error of our CNN changes with respect to each neuron in the 
network. The form of the error is the same as for fully connected neural nets, but 
now it is a function of x and y instead of j:

 dx y
x y

E
z,

,

( )
( )

�
�

= ∂
∂

 (12-95)

As in Section 12.5, we want to relate this quantity to dxy( ),� + 1  which we again do 
using the chain rule:
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1
 (12-96)
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where u and v  are any two variables of summation over the range of possible values 
of z. As noted in Section 12.5, these summations result from applying the chain rule. 

By definition, the first term of the double summation of Eq. (12-96) is dx y, ( ).� + 1  
So, we can write this equation as

 d dx y
x y
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u
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 (12-97)

Substituting Eq. (12-92) into Eq. (12-91), and using the resulting zu,v  in Eq. (12-97), 
we obtain

 d dx y u
u x y

l k
kl

u l kz
h z, ,

,
, ,( ) ( )

( )
( ) ( )� �

�
� �= + ∂

∂
+ ( ) +∑∑ ∑∑ − −v

v
vw1 1 bb( )� +

⎡

⎣
⎢

⎤

⎦
⎥1 (12-98)

The derivative of the expression inside the brackets is zero unless u l x− =  and 
v − =k y,  and because the derivative of b( )� + 1  with respect to zx y, ( )�  is zero. But, if 
u l x− =  and v − =k y,  then l u x= −  and k y= −v . Therefore, taking the indicated 
derivative of the expression in brackets, we can write Eq. (12-98) as

 d dx y u
u

x y
yx

x yh z, , , ,( ) ( ) ( ) ( )� � � �= + + ( )⎡

⎣
⎢

⎤

⎦
∑∑ ∑∑ − −

−−
v

v
u v

vu

w1 1 � ⎥⎥  (12-99)

Values of x, y, u, and v  are specified outside of the terms inside the brackets. Once the 
values of these variables are fixed, u − x and v − y  inside the brackets are simply two 
constants. Therefore, the double summation evaluates to wu v− − + ( )x y x yh z, ,( ) ( ) ,� �1 �  
and we can write Eq. (12-99) as 

 

d d

d

x y u
u

x y x y

x y

h z

h z

, , , ,

,

( ) ( ) ( ) ( )

( )

� � � �

�

= + + ( )
= ( )

∑∑ − −v
v

u vw1 1 �

� uu
u

x y, ,( ) ( )v
v

u vw� �+ +∑∑ − −1 1
 (12-100)

The double sum expression in the second line of this equation is in the form of a con-
volution, but the displacements are the negatives of those in Eq. (12-91). Therefore, 
we can write Eq. (12-100) as

 d dx y x y x y x yh z, , , ,( ) ( ) ( ) ( )� � � �= ( ) + +⎡⎣ ⎤⎦− −� 1 1�w  (12-101)

The negatives in the subscripts indicate that w is reflected about both spatial axes. 
This is the same as rotating w  by 180°, as we explained in connection with Eq. (3-35). 
Using this fact, we finally arrive at an expression for the error at a layer �  by writing 
Eq. (12-101) equivalently as

 d dx y x y x y x yh z, , , ,( ) ( ) ( ) ( )� � � �= ( ) + +( )⎡⎣ ⎤⎦� 1 1180� rot w  (12-102)
The 180° rotation is 
for each 2-D kernel in 
a layer. 
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But the kernels do not depend on x and y, so we can write this equation as

 d dx y x y x yh z, , ,( ) ( ) ( ) ( )� � � �= ( ) + +( )⎡⎣ ⎤⎦� 1 1180� rot w  (12-103)

As in Section 12.5, our final objective is to compute the change in E with respect 
to the weights and biases. Following a similar procedure as above, we obtain
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 (12-104)

where the last line follows from Eq. (12-92). This line is in the form of a convolution 
but, comparing it to Eq. (12-91), we see there is a sign reversal between the summa-
tion variables and their corresponding subscripts. To put it in the form of a convolu-
tion, we write the last line of Eq. (12-104) as
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 (12-105)

Similarly (see Problem 12.32),

 
∂

∂
= ∑∑E

b x y
yx( )

( ),�
�d  (12-106)

Using the preceding two expressions in the gradient descent equations (see 
Section 12.5), it follows that
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l k l k
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ad � rot180 1  (12-107)
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and
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= − ∂
∂

= − ∑∑

a

a d

 (12-108)

Equations (12-107) and (12-108) update the weights and bias of each convolution 
layer in a CNN. As we have mentioned before, it is understood that the wl k,  repre-
sents all the weights of a layer. The variables l and k span the spatial dimensions of 
the 2-D kernels, all of which are of the same size. 

In a forward pass, we went from a convolution layer to a pooled layer. In back-
propagation, we are going in the opposite direction. But the pooled feature maps 
are smaller than their corresponding feature maps (see Fig. 12.40). Therefore, when 
going in the reverse direction, we upsample (e.g., by pixel replication) each pooled 
feature map to match the size of the feature map that generated it. Each pooled 
feature map corresponds to a unique feature map, so the path of backpropagation 
is clearly defined.

With reference to Fig. 12.40, backpropagation starts at the output of the fully con-
nected neural net. We know from Section 12.5 how to update the weights of this net-
work. When we get to the “interface” between the neural net and the CNN, we have 
to reverse the vectorization method used to generate input vectors. That is, before 
we can proceed with backpropagation using Eqs. (12-107) and (12-108), we have to 
regenerate the individual pooled feature maps from the single vector propagated 
back by the fully connected neural net. 

We summarized in Table 12.3 the backpropagation steps for a fully connected 
neural net. Table 12.6 summarizes the steps for performing backpropagation in the 
CNN architecture in Fig. 12.40. The procedure is repeated for a specified number of 

Step Description Equations

Step 1 Input images a( )0  = the set of image pixels in the input to layer 1

Step 2 Forward pass For each neuron corresponding to location ( , )x y  in each feature map in layer �  
compute: 
z bx y x ya, ,( ) ) ) ( )(� � � �= − +w( � 1  and a h zx y x y, ,( ) ( ) ;� �= ( )  � …= 1 2, , , Lc

Step 3 Backpropagation For each neuron in each feature map in layer �  compute: 

d dx y x y x yh z, , ,( ) ( ) ( ) ( ) ;� � � �= ( ) + +( )⎡⎣ ⎤⎦� 1 1180� rot w  � …= − −L Lc c1 2 1, , ,

Step 4 Update parameters Update the weights and bias for each feature map using  
 
w wl k l k l k a, , ,( ) ( ) ( ) ( )� � � �= − −( )ad �rot180 1  and 
 
b b x y

yx

( ) ( ) ( );,� � �= − ∑∑a d  � …= 1 2, , , Lc

TABLE 12.6
The principal steps used to train a CNN. The network is initialized with a set of small random weights and biases. 
In backpropagation, a vector arriving (from the fully connected net) at the output pooling layer must be converted 
to 2-D arrays of the same size as the pooled feature maps in that layer. Each pooled feature map is upsampled to 
match the size of its corresponding feature map. The steps in the table are for one epoch of training.
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epochs, or until the output error of the neural net reaches an acceptable value. The 
error is computed exactly as we did in Section 12.5. It can be the mean squared error, 
or the recognition error. Keep in mind that the weights in w( )�  and the bias value 
b( )�  are different for each feature map in layer �.  

EXAMPLE 12.16 :  Teaching a CNN to recognize some simple images.

We begin our illustrations of CNN performance by teaching the CNN in Fig. 12.45 to recognize the small 
6 6×  images in Fig. 12.46. As you can see on the left of this figure, there are three samples each of images 
of a horizontal stripe, a small centered square, and a vertical stripe. These images were used as the train-
ing set. On the right are noisy samples of images in these three categories. These were used as the test set.

Fully connected
two-layer neural net

Two feature maps 
of size 4 � 4Image of size 6 � 6

Two pooled 
feature maps 
of size 2 � 2

V
ec

to
ri

za
ti

on

8 input neurons

3 output
 neurons

FIGURE 12.45
CNN with one 
convolutional 
layer used to 
learn to recognize 
the images in Fig. 
12.46.

Training Image Set Test Image Set

FIGURE 12.46 Left: Training images. Top row: Samples of a dark horizontal stripe. Center row: Samples of a centered 
dark square. Bottom row: Samples of a dark vertical stripe. Right: Noisy samples of the three categories on the left, 
created by adding Gaussian noise of zero mean and unit variance to the samples on the left. (All images are 8-bit 
grayscale images.)
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As Fig. 12.45 shows, the inputs to our system are single images. We used a receptor field of size 3 3× , 
which resulted in feature maps of size 4 4× . There are two feature maps, which means we need two 
kernels of size 3 3× , and two biases. The pooled feature maps were generated using average pooling in 
neighborhoods of size 2 2× . This resulted in two pooled feature maps of size 2 2× , because the feature 
maps are of size 4 4× . The two pooled maps contain eight total elements which were organized as an 
8-D column vector to vectorize the output of the last layer. (We used linear indexing of each image, then 
concatenated the two resulting 4-D vectors into a single 8-D vector.) This vector was then fed into the 
fully connected neural net on the right, which consists of the input layer and a three-neuron output layer, 
one neuron per class. Because this network has no hidden layers, it implements linear decision functions 
(see Problem 12.18). To train the system, we used a = 1 0.  and ran the system for 400 epochs. Figure 12.47 
is a plot of the MSE as a function of epoch. Perfect recognition of the training set was achieved after 
approximately 100 epochs of training, despite the fact that the MSE was relatively high there. Recogni-
tion of the test set was 100% as well. The kernel and bias values learned by the system were: 

 w1 =
−
−
−

3.0132 1.1808 0.0945

0.9718 0.7087 0.9093

0.7193 0.0230 0.88333

0.7388 1.8832 4.1077

1.0027 0.390
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= − =
−
−, .b1 20 2990 w 88 2.0357

1.2164 1.1853 0.1987− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −, .b2 0 2834

It is important that the CNN learned these parameters automatically from the raw training images. No 
features in the sense discussed in Chapter 11 were employed. 

EXAMPLE 12.17 :   Using a large training set to teach a CNN to recognize handwritten numerals.

In this example, we look at a more practical application using a database containing 60,000 training and 
10,000 test images of handwritten numeric characters. The content of this database, called the MNIST 
database, is similar to a database from NIST (National Institute of Standards and Technology). The 
former is a “cleaned up” version of the latter, in which the characters have been centered and for-
matted into grayscale images of size 28 28×  pixels. Both databases are freely available online. Figure 
12.48 shows examples of typical numeric characters available in the databases. As you can see, there is 
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FIGURE 12.47
Training MSE as a 
function of epoch 
for the images in 
Fig. 12.46. Perfect 
recognition of the 
training and test 
sets was achieved 
after approxi-
mately 100 
epochs, despite 
the fact that the 
MSE was rela-
tively high there.
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significant variability in the characters—and this is just a small sampling of the 70,000 characters avail-
able for experimentation.

Figure 12.49 shows the architecture of the CNN we trained to recognize the ten digits in the MNIST 
database. We trained the system for 200 epochs using a = 1 0. . Figure 12.50 shows the training MSE as a 
function of epoch for the 60,000 training images in the MNIST database.

Training was done using mini batches of 50 images at a time to improve the learning rate (see the dis-
cussion in Section 12.7). We also classified all images of the training set and all images of the test set after 
each epoch of training. The objective of doing this was to see how quickly the system was learning the 
characteristics of the data. Figure 12.51 shows the results. A high level of correct recognition performance 
was achieved after relatively few epochs for both data sets, with approximately 98% correct recognition 
achieved after about 40 epochs. This is consistent with the training MSE in Fig. 12.50, which dropped 
quickly, then began a slow descent after about 40 epochs. Another 160 epochs of training were required 
for the system to achieve recognition of about 99.9%. These are impressive results for such a small CNN.

6 feature maps 
of size 24 � 24

6 pooled 
feature 
maps of 

size 12 � 12
Image of size 28 � 28

12
feature 
maps of 

size 8 � 8

12
pooled 
feature

maps of 
size 4 � 4 Fully connected

two-layer neural net

10 
output

 neurons

V
ec

to
ri
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ti

on

192 input neurons

FIGURE 12.49  CNN used to recognize the ten digits in the MNIST database. The system was trained with 60,000 
numerical character images of the same size as the image shown on the left. This architecture is the same as the 
architecture we used in Fig. 12.42. (Image courtesy of NIST.)

FIGURE 12.48
Samples  
similar to those 
available in the 
NIST and MNIST  
databases. Each 
character  
subimage is 
of size 28 28×  
pixels.(Individual 
images courtesy 
of NIST.)
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Figure 12.52 shows recognition performance on each digit class for both the training and test sets. The 
most revealing feature of these two graphs is that the CNN did equally as well on both sets of data. This 
is a good indication that the training was successful, and that it generalized well to digits it had not seen 
before. This is an example of the neural network not “over-fitting” the data in the training set.

Figure 12.53 shows the values of the kernels for the first feature map, displayed as intensities. There 
is one input image and six feature maps, so six kernels are required to generate the feature maps of 
the first layer. The dimensions of the kernels are the same as the receptive field, which we set at 5 5× . 
Thus, the first image on the left in Fig. 12.53 is the 5 5×  kernel corresponding to the first feature map. 
Figure 12.54 shows the kernels for the second layer. In this layer, we have six inputs (which are the 
pooled maps of the first layer) and twelve feature maps, so we need a total of 6 12 72× =  kernels and 
biases to generate the twelve feature maps in the second layer. Each column of Fig. 12.54 shows the six 

FIGURE 12.50
Training mean 
squared error 
as a function of 
epoch for the 
60,000 training 
digit images in the 
MNIST database.
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FIGURE 12.51 (a) Training accuracy (percent correct recognition of the training set) as a function of epoch for the 
60,000 training images in the MNIST database. The maximum achieved was 99.36% correct recognition. (b) Accu-
racy as a function of epoch for the 10,000 test images in the MNIST database. The maximum correct recognition 
rate was 99.13%. 
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5 5×  kernels corresponding to one of the feature maps in the second layer. We used 2 2×  pooling in 
both layers, resulting in a 50% reduction of each of the two spatial dimensions of the feature maps.

Finally, it is of interest to visualize how one input image proceeds through the network, using the 
kernels learned during training. Figure 12.55 shows an input digit image from the test set, and the com-
putations performed by the CNN at each layer. As before, we display numerical results as intensities. 

Consider the results of convolution in the first layer. If you look at each resulting feature map care-
fully, you will notice that it highlights a different characteristic of the input. For example, the feature map 
on the top of the first column highlights the two vertical edges on the top of the character. The second 
highlights the edges of the entire inner region, and the third highlights a “blob-like”feature of the digit, 
as if it had been blurred by a lowpass kernel. The other three feature maps show other features. If you 
now look at the first two feature maps in the second layer, and compare them with the first feature map 
in the first layer, you can see that they could be interpreted as higher-level abstractions of the top of the 
character, in the sense that they show a dark area flanked on each side by white areas. Although these 
abstractions are not always easy to analyze visually, this example clearly demonstrates that they can be 
very effective. And, remember the important fact that our simple system learned these features auto-
matically from 60,000 training images. This capability is what makes convolutional networks so powerful 
when it comes to image pattern classification. In the next example, we will consider even more complex 
images, and show some of the limitations of our simple CNN architecture. 

EXAMPLE 12.18 : Using a large image database to teach a CNN to recognize natural images.

In this example, we trained the same CNN architecture as in Fig. 12.49, but using the RGB color images 
in Fig. 12.56. These images are representative of those found in the CIFAR-10 database, a popular data-
base used to test the performance of image classification systems. Our objective was to test the limita-
tions of the CNN architecture in Fig. 12.49 by training it with data that is significantly more complex 
than the MNIST images in Example 12.17. The only difference between the architecture needed to 

ba

FIGURE 12.52 (a) Recognition accuracy of training set by image class. Each bar shows a number between 0 and 1. 
When multiplied by 100%, these numbers give the correct recognition percentage for that class. (b) Recognition 
results per class in the test set. In both graphs the recognition rate is above 98%. 
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FIGURE 12.54 Kernels of the second layer after 200 epochs of training, displayed as images of size 5 5× .  There are six 
inputs (pooled feature maps) into the second layer. Because there are twelve feature maps in the second layer, the 
CNN learned the weights of 6 12 72× =  kernels.

FIGURE 12.53
Kernels of the 
first layer after 
200 epochs of 
training, shown as 
images.

FIGURE 12.55
Results of a for-
ward pass for one 
digit image through 
the CNN in Fig. 
12.49 after training. 
The feature maps 
were generated 
using the kernels 
from Figs. 12.53 and 
12.54, followed by 
pooling. The neural 
net is the two-layer 
neural network 
from Fig. 12.49. The 
output high value 
(in white) indicates 
that the CNN rec-
ognized the input 
properly. (This 
figure is the same 
as Fig. 12.44.)
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FIGURE 12.56
Mini images 
of size 32 32×  
pixels,  
representative of 
the 50,000  
training and 
10,000 test images 
in the CIFAR-10 
database (the 10 
stands for ten 
classes). The class 
names are shown 
on the right. 
(Images courtesy 
of Pearson  
Education.)
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FIGURE 12.57
Training mean 
squared error 
as a function of 
the number of 
epochs for a train-
ing set of 50,000 
CIFAR-10 images.
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process the CIFAR-10 images, and the architecture in Fig. 12.49, is that the CIFAR-10 images are RGB 
color images, and hence have three channels. We worked with these input images using the approach 
explained in the subsection entitled Multiple Input Images, on page 973. 

We trained the modified CNN for 500 epochs using the 50,000 training images of the CIFAR-10 data-
base. Figure 12.57 is a plot of the mean squared error as a function of epoch during the training phase. 
Observe that the MSE begins to plateau at a value of approximately 0.25. In contrast, the MSE plot in 
Fig. 12.50 for the MNIST data achieved a much lower final value. This is not unexpected, given that the 
CIFAR-10 images are significantly more complex, both in the objects of interest as well as their back-
grounds. The lower expected recognition performance of the training set is confirmed by the training-
accuracy plotted in Fig. 12.58(a) as a function of epoch. The recognition rate leveled-off around 68% for 
the training data and about 61% for the test data. Although these results are not nearly as good as those 
obtained for the MNIST data, they are consistent with what we would expect from a very basic network. 
It is possible to achieve over 96% accuracy on this database (see Graham [2015]), but that requires a 
more complex network and a different pooling strategy.

Figure 12.59 shows the recognition accuracy per class for the training and test image sets. With a few 
exceptions, the highest recognition rate in both the training and test sets was achieved for engineered 
objects, and the lowest was for small animals. Frogs were an exception, caused most likely by the fact 
that frog size and shape are more consistent than they are, for example, in dogs and birds. As you can 
see in Fig. 12.59, if the small animals were removed from the list, recognition performance on the rest of 
the images would have been considerably higher.

Figures 12.60 and Fig. 12.61 show the kernels of the first and second layers. Note that each column 
in Fig. 12.60 has three 5 5×  kernels. This is because there are three input channels to the CNN in this 
example. If you look carefully at the columns in Fig. 12.60, you can detect a similarity in the arrangement 
and values of the coefficients. Although it is not obvious what the kernels are detecting, it is clear that 
they are consistent in each column, and that all columns are quite different from each other, indicating 
a capability to detect different features in the input images. We show Fig. 12.61 for completeness only, 
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FIGURE 12.58 (a) Training accuracy (percent correct recognition of the training set) as a function of epoch for the 
50,000 training images in the CIFAR-10 database. (b) Accuracy as a function of epoch for the 10,000 CIFAR-10 
test images.
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as there is little we can infer that deep into the network, especially at this small scale, and considering 
the complexity of the images in the training set. Finally, Fig. 12.62 shows a complete recognition pass 
through the CNN using the weights in Figs. 12.60 and 12.61. The input shows the three color channels 
of the RGB image in the seventh column of the first row in Fig. 12.56. The feature maps in the first 
column, show the various features extracted from the input. The second column shows the pooling 
results, zoomed to the size of the features maps for clarity. The third and fourth columns show the results 
in the second layer, and the fifth column shows the vectorized output. Finally, the last column shows the 
result of recognition, with white representing a high output, and the others showing much smaller values. 
The input image was properly recognized as belonging to class 1.
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FIGURE 12.59 (a) CIFAR-10 recognition rate of training set by image class. Each bar shows a number between 0 and 1. 
When multiplied by 100%, these numbers give the correct recognition percentage for that class. (b) Recognition 
results per class in the test set.

FIGURE 12.60
Weights of the 
kernels of the first 
convolution layer 
after 500 epochs 
of training. 
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12.7  SOME ADDITIONAL DETAILS OF IMPLEMENTATION  

We mentioned in the previous section that neural (including convolutional) nets 
have the ability to learn features directly from training data, thus reducing the need 
for “engineered” features. While this is a significant advantage, it does not imply that 
the design of a neural network is free of human input. On the contrary, designing 
complex neural networks requires significant skill and experimentation.

In the last two sections, our focus was on the development of fundamental con-
cepts in neural nets, with an emphasis on the derivation of backpropagation for both 
fully connected and convolutional nets. Backpropagation is the backbone of neural 
net design, but there are other important considerations that influence how well 
a neural net learns, and then generalizes to patterns it has not seen before. In this 
section, we discuss briefly some important aspects in the design of fully connected 
and convolutional neural networks.

One of the first questions when designing a neural net architecture is how many 
layers to specify for the network. Theoretically, the universality approximation 
theorem (Cybenco [1989]) tells us that, under mild conditions, arbitrarily complex 
decision functions can be approximated by a continuous feedforward neural network 
with a single hidden layer. Although the theorem does not tell us how to compute 
the parameters of that single hidden layer, it does indicate that structurally simple 
neural nets can be very powerful. You have seen this in some of the examples in the 
last two sections. Experimental evidence suggests that deep neural nets (i.e., net-
works with two or more hidden layers) are better than a single hidden layer network 
at learning abstract representations, which typically is the main point of learning. 
There is no such thing as an algorithm to determine the “optimum” number of lay-
ers to use in a neural network. Therefore, specifying the number of layers generally 

12.7

FIGURE 12.61 Weights of the kernels of the second convolution layer after 500 epochs of training. The interpretation 
of these kernels is the same as in Fig. 12.54.
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FIGURE 12.62
Graphical  
illustration of 
a forward pass 
through the 
trained CNN. 
The purpose 
was to recognize 
one input image 
from the set in 
Fig. 12.56. As the 
output shows, the 
image was  
recognized  
correctly as 
belonging to class 
1, the class of 
airplanes.  
(Original image 
courtesy of  
Pearson  
Education.)
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is determined by a combination of experience and experimentation. “Starting small” 
is a logical approach to this problem. The more layers a network has, the higher the 
probability that backpropagation will run into problems such as so-called vanishing 
gradients, where gradient values are so small that gradient descent ceases to be 
effective. In convolutional networks, we have the added issue that the size of the 
inputs decreases as the images propagate through the network. There are two causes 
for this. The first is a natural size reduction caused by convolution itself, with the 
amount of reduction being proportional to the size of the receptive fields. One solu-
tion is to use padding prior to performing convolution operations, as we discussed in 
Section 3.4. The second (and most significant) cause of size reduction is pooling. The 
minimum pooling neighborhood is of size 2 2× , which reduces the size of feature 
maps by three-quarters at each layer. A solution that helps is to upsample the input 
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images, but this must done with care because the relative sizes of features of interest 
would increase proportionally, thus influencing the size selected for receptive fields.

After the number of layers has been specified, the next task is to specify the num-
ber of neurons per layer. We always know how many neurons are needed in the first 
and last layers, but the number of neurons for internal layer is also an open question 
with no theoretical “best” answer. If the objective is to keep the number of layers as 
small as possible, the power of the network is increased to some degree by increas-
ing the number of neurons per layer. 

The main aspects of specifying the architecture of a neural network are com-
pleted by specifying the activation function. In this chapter, we worked with sigmoid 
functions for consistency between examples, but there are applications in which 
hyperbolic tangent and ReLU activation functions are superior in terms of improv-
ing training performance.

Once a network architecture has been specified, training is the central aspect of 
making the architecture useful. Although the networks we discussed in this chapter 
are relatively simple, networks applied to very large-scale problems can have mil-
lions of nodes and require large blocks of time to train. When available, the param-
eters of a pretrained network are an ideal starting point for further training, or for 
validating recognition performance. Another central theme in training neural nets is 
the use of GPUs to accelerate matrix operations.

An issue often encountered in training is over-fitting, in which recognition of the 
training set is acceptable, but the recognition rate on samples not used for training is 
much lower. That is, the net is not able to generalize what it learned and apply it to 
inputs it has not encountered before. When additional training data is not available, 
the most common approach is to artificially enlarge the training set using transfor-
mations such as geometric distortions and intensity variations. The transformations 
are carried out while preserving the class membership of the transformed patterns. 
Another major approach is to use dropout, a technique that randomly drops nodes 
with their connections from a neural network during training. The idea is to change 
the architecture slightly to prevent the net from adapting too much to a fixed set of 
parameters (see Srivastava et al. [2014]).

In addition to computational speed, another important aspect of training is effi-
ciency. Simple things, such as shuffling the input patterns at the beginning of each 
training epoch can reduce or eliminate the possibility of “cycling,” in which param-
eter values repeat at regular intervals. Stochastic gradient descent is another impor-
tant training refinement in which, instead of using the entire training set, samples 
are selected randomly and input into the network. You can think of this as dividing 
the training set into mini-batches, and then choosing a single sample from each mini-
batch. This approach often results in speedier convergence during training.

In addition to the above topics, a paper by LeCun et al. [2012] is an excellent over-
view of the types of considerations introduced in the preceding discussion. In fact, 
the breath spanned by these topics is extensive enough to be the subject of an entire 
book (see Montavon et al. [2012]). The neural net architectures we discussed were 
by necessity limited in scope. You can get a good idea of the practical requirements 
of implementing practical networks by reading a paper by Krizhevsky, Sutskever, 
and Hinton [2012], which summarizes the design and implementation of a large-
scale, deep convolutional neural network. There are a multitude of designs that have 
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Problems 
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book 
website: www.ImageProcessingPlace.com).

12.1 Do the following:

(a) * Compute the decision functions of a mini-
mum distance classifier for the patterns in 
Fig. 12.10. You may obtain the required mean 
vectors by (careful) inspection.

(b) Sketch the decision boundary implemented 
by the decision functions in (a).

12.2 * Show that Eqs. (12-3) and (12-4) perform the 
same function in terms of pattern classification.

12.3 Show that the boundary given by Eq. (12-8) is 
the perpendicular bisector of the line joining the 
n-dimensional points mi  and m j .

12.4 * Show how the minimum distance classifier dis-
cussed in connection with Fig. 12.11 could be 
implemented by using Nc  resistor banks (Nc  is 
the number of classes), a summing junction at 

each bank (for summing currents), and a maxi-
mum selector capable of selecting the maximum 
value of Nc  decision functions in order to deter-
mine the class membership of a given input.

12.5 * Show that the correlation coefficient of Eq. (12-10) 
has values in the range [ , ].−1 1  (Hint: Express g in 
vector form.)

12.6 Show that the distance measure D a b( , ) in Eq. 
(12-12) satisfies the properties in Eq. (12-13).

12.7 * Show that b a= ( ) −max ,a b  in Eq. (12-14) is 0 
if and only if a and b are identical strings.

12.8 Carry out the manual computations that resulted 
in the mean vector and covariance matrices in 
Example 12.5.

12.9 * The following pattern classes have Gaussian prob-
ability density functions:

Summary, References, and Further Reading 
Background material for Sections 12.1 through 12.4 are the books by Theodoridis and Koutroumbas [2006], by 
Duda, Hart, and Stork [2001], and by Tou and Gonzalez [1974]. For additional reading on the material on match-
ing shape numbers see Bribiesca and Guzman [1980]. On string matching, see Sze and Yang [1981]. A significant 
portion of this chapter was devoted to neural networks. This is a reflection of the fact that neural nets, and in 
particular convolutional neural nets, have made significant strides in the past decade in solving image pattern 
classifications problems. As in the rest of the book, our presentation of this topic focused on fundamentals, but 
the topics covered were thoroughly developed. What you have learned in this chapter is a solid foundation for 
much of the work being conducted in this area. As we mentioned earlier, the literature on neural nets is vast, and 
quickly growing. As a starting point, a basic book by Nielsen [2015] provides an excellent introduction to the topic. 
The more advanced book by Goodfellow, Bengio, and Courville [2016] provides more depth into the mathemati-
cal underpinning of neural nets. Two classic papers worth reading are by Rumelhart, Hinton, and Williams [1986], 
and by LeCun, Bengio, and Haffner [1998]. The LeNet architecture we discussed in Section 12.6 was introduced in 
the latter reference, and it is still a foundation for image pattern classification. A recent survey article by LeCun, 
Bengio, and Hinton [2015] gives an interesting perspective on the scope of applicability of neural nets in general. 
The paper by Krizhevsky, Sutskever, and Hinton [2012] was one of the most important catalysts leading to the 
significant increase in the present interest on convolutional networks, and on their applicability to image pattern 
classification. This paper is also a good overview of the details and techniques involved in implementing a large-
scale convolutional neural network. For details on the software aspects of many of the examples in this chapter, see 
Gonzalez, Woods, and Eddins [2009].

been implemented over the past decade, including commercial and free implemen-
tations. A quick internet search will reveal a multitude of available architectures. 
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c T T T T
1 0 0 2 0 2 2 0 2: {( , ) ,( , ) ,( , ) ,( , ) }

c T T T T
2 4 4 6 4 6 6 4 6: {( , ) ,( , ) ,( , ) ,( , ) }

(a) Assume that P c P c( ) ( )1 2 1 2= =  and obtain 
the equation of the Bayes decision boundary 
between these two classes.

(b) Sketch the boundary.

12.10 Repeat Problem 12.9, but use the following pat-
tern classes:

c T T T T
1 1 0 0 1 1 0 0 1: {( , ) ,( , ) ,( , ) ,( , ) }− −

c T T T T
2 2 0 0 2 2 0 0 2: {( , ) ,( , ) ,( , ) ,( , ) }− −

Note that the classes are not linearly separable.

12.11 With reference to the results in Table 12.1, com-
pute the overall correct recognition rate for the 
patterns of the training set. Repeat for the pat-
terns of the test set.

12.12 * We derived the Bayes decision functions

d p c P c j Nj j j cx x( ) = ( ) ( ) =, , , ,1 2 …

using a 0-1 loss function. Prove that these deci-
sion functions minimize the probability of error. 
(Hint: The probability of error p e( ) is 1 − p c( ), 
where p c( ) is the probability of being correct. 
For a pattern vector x belonging to class ci , 
p c p cix x( ) = ( ). Find p c( ) and show that p c( ) is 
maximum [p e( ) is minimum] when p c P ci i( ) ( )x  
is maximum.)

12.13 Finish the computations started in Example 12.7.

12.14 * The perceptron algorithm given in Eqs. (12-44) 
through (12-46) can be expressed in a more con-
cise form by multiplying the patterns of class 
c2  by −1, in which case the correction steps 
in the algorithm become w w( ) ( ),k k+ =1  if 
wT k k( ) ( ) ,y > 0  and w w( ) ( )k k k+ = + ( )1 ay  
otherwise, where we use y instead of x to make it 
clear that the patterns of class c2  were multiplied 
by −1. This is one of several perceptron algo-
rithm formulations that can be derived starting 
from the general gradient descent equation

w w
w

w
w w

k k
J

k

+( ) = ( ) −
∂ ( )

∂
⎡

⎣
⎢

⎤

⎦
⎥

= ( )
1 a

,y

where a > 0,  J( , )w y  is a criterion function, and 
the partial derivative is evaluated at w w= ( ).k  
Show that the perceptron algorithm in the prob-

lem statement can be obtained from this general 
gradient descent procedure by using the criterion 
function

J T T( , )w w wy y y= −( )1
2

(Hint: The partial derivative of wT y  with respect 
to w  is y.)

12.15 * Prove that the perceptron training algorithm giv-
en in Eqs. (12-44) through (12-46) converges in 
a finite number of steps if the training pattern 
sets are linearly separable. [Hint: Multiply the 
patterns of class c2  by −1 and consider a non-
negative threshold, T0  so that the perceptron 
training algorithm (with a = 1) is expressed in 
the form w w( ) ( ),k k+ =1  if wT k k T( ) ( ) ,y > 0  
and w w( ) ( ) ( )k k k+ = +1 ay  otherwise. You 
may need to use the Cauchy-Schwartz inequality: 
a b a b2 2 2≥ ( ) .]T

12.16 Derive equations of the derivatives of the follow-
ing activation functions:

(a) The sigmoid activation function in Fig. 12.30(a).

(b) The hyperbolic tangent activation function 
in Fig. 12.30(b).

(c) * The ReLU activation function in Fig. 12.30(c).

12.17 * Specify the structure, weights, and bias(es) of the 
smallest neural network capable of performing 
exactly the same function as a minimum distance 
classifier for two pattern classes in n-dimensional 
space. You may assume that the classes are tightly 
grouped and are linearly separable.

12.18 What is the decision boundary implemented by 
a neural network with n inputs, a single output 
neuron, and no hidden layers? Explain.

12.19 Specify the structure, weights, and bias of a neu-
ral network capable of performing exactly the 
same function as a Bayes classifier for two pat-
tern classes in n-dimensional space. The classes 
are Gaussian with different means but equal 
covariance matrices.

12.20 Answer the following:

(a) * Under what conditions are the neural net-
works in Problems 12.17 and 12.19 identical?

(b) Suppose you specify a neural net architecture 
identical to the one in Problem 12.17. Would 
training by backpropagation yield the same 
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weights and bias as that network if trained 
with a sufficiently large number of samples? 
Explain.

12.21 Two pattern classes in two dimensions are distrib-
uted in such a way that the patterns of class c1 lie 
randomly along a circle of radius r1.  Similarly, the 
patterns of class c2  lie randomly along a circle of 
radius r2 , where r r2 12= . Specify the structure of 
a neural network with the minimum number of 
layers and nodes needed to classify properly the 
patterns of these two classes.

12.22 * If two classes are linearly separable, we can train 
a perceptron starting with weights and a bias that 
are all zero, and we would still get a solution. Can 
you do the same when training a neural network 
by backpropagation? Explain.

12.23 Label the outputs, weights, and biases for every 
node in the following neural network using the 
general notation introduced in Fig. 12.31.

1

11

1

12.24 Answer the following:

(a) The last element of the input vector in Fig. 
12.32 is 1. Is this vector augmented? Explain.

(b) Repeat the calculations in Fig. 12.32, but 
using weight matrices that are 100 times the 
values of those used in the figure. 

(c) * What can you conclude in general from your 
results in (b)?

12.25 Answer the following:

(a) * The chain rule in Eq. (12-70) shows three 
terms. However, you are probably more famil-
iar with chain rule expressions that have two 
terms. Show that if you start with the expres-
sion

d j
j i

i

ji

E
z

E
z

z
z

( )
( ) ( )

( )
( )

�
� �

�
�

= ∂
∂

= ∂
∂ +

∂ +
∂∑ 1

1

you can arrive at the result in Eq. (12-70).

(b) Show how the middle term in the third line 
of Eq. (12-70) follows from the middle term 
in the second.

12.26 Show the validity of Eq. (12-72). (Hint: Use the 
chain rule.)

12.27 * Show that the dimensions of matrix D( )�  in Eq. 
(12-79) are n np� × . (Hint: Some of the parameters 
in that equation are computed in forward propaga-
tion, so you already know their dimensions.)

12.28 With reference to the discussion following Eq. 
(12-82), explain why the error for one pattern is 
obtained by squaring the elements of one column 
of matrix A R( ) ,L −( )  adding them, and dividing 
the result by 2.

12.29 * The matrix formulation in Table 12.3 contains all 
patterns as columns of a single matrix X. This is 
ideal in terms of speed and economy of imple-
mentation. It is also well suited when training 
is done using mini-batches. However, there are 
applications in which the large number of train-
ing vectors is too large to hold in memory, and 
it becomes more practical to loop through each 
pattern using the vector formulation. Compose 
a table similar to Table 12.3, but using individual 
patterns, x, instead of matrix X.

12.30 Consider a CNN whose inputs are RGB color 
images of size 512 512×  pixels. The network has 
two convolutional layers. Using this information, 
answer the following:

(a) * You are told that the spatial dimensions 
of the feature maps in the first layer are 
504 504× ,  and that there are 12 feature 
maps in the first layer. Assuming that no 
padding is used, and that the kernels used 
are square, and of an odd size, what are the 
spatial dimensions of these kernels?

(b) If subsampling is done using neighborhoods 
of size 2 2× , what are the spatial dimensions 
of the pooled feature maps in the first layer?

(c) What is the depth (number) of the pooled 
feature maps in the first layer?

(d) The spatial dimensions of the convolution 
kernels in the second layer are 3 3× .  Assum-
ing no padding, what are the sizes of the fea-
ture maps in the second layer?

(e) You are told that the number of feature maps 
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in the second layer is 6, and that the size of 
the pooling neighborhoods is again 2 2× . 
What are the dimensions of the vectors that 
result from vectorizing the last layer of the 
CNN? Assume that vectorization is done 
using linear indexing. 

12.31 Suppose the input images to a CNN are padded 
to compensate for the size reduction caused by 
convolution and subsampling (pooling). Let P  
denote the thickness of the padding border, let V  
denote the width of the (square) input images, let 
S  denote the stride, and let F  denote the width of 
the (square) receptive field. 

(a) Show that the number, N,  of neurons in 
each row in the resulting feature map is

 N
V P F

S
= + − +2

1

(b) * How would you interpret a result using this 
equation that is not an integer?

12.32 * Show the validity of Eq. (12-106).

12.33 An experiment produces binary images of blobs 
that are nearly elliptical in shape, as the following 
example image shows. The blobs are of three siz-
es, with the average values of the principal axes 
of the ellipses being (1.3, 0.7), (1.0, 0.5), and (0.75, 
0.25). The dimensions of these axes vary ±10% 
about their average values. 

Develop an image processing system capable of 
rejecting incomplete or overlapping ellipses, then 
classifying the remaining single ellipses into one 
of the three given size classes. Show your solu-
tion in block diagram form, giving specific details 
regarding the operation of each block. Solve the 
classification problem using a minimum distance 
classifier, indicating clearly how you would go 
about obtaining training samples, and how you 
would use these samples to train the classifier.

12.34 A factory mass-produces small American flags 
for sporting events. The quality assurance team 
has observed that, during periods of peak pro-
duction, some printing machines have a tendency 
to drop (randomly) between one and three stars 
and one or two entire stripes. Aside from these 
errors, the flags are perfect in every other way. 
Although the flags containing errors represent a 
small percentage of total production, the plant 
manager decides to solve the problem. After 
much investigation, she concludes that automatic 
inspection using image processing techniques is 
the most economical approach. The basic specifi-
cations are as follows: The flags are approximate-
ly 7.5 cm by 12.5 cm in size. They move length-
wise down the production line (individually, but 
with a ±15% variation in orientation) at approxi-
mately 50 cm/s, with a separation between flags of 
approximately 5 cm. In all cases, “approximately” 
means ± 5%. The plant manager employs you to 
design an image processing system for each pro-
duction line. You are told that cost and simplicity 
are important parameters in determining the via-
bility of your approach. Design a complete sys-
tem based on the model of Fig. 1.23. Document 
your solution (including assumptions and speci-
fications) in a brief (but clear) written report 
addressed to the plant manager. You can use any 
of the methods discussed in the book.
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Index
A

Accumulator cells, 738
Acquisition. See Image: acquisition
Activation functions

activation value, 945
hyperbolic tangent, 945
of perceptron, 937
ReLU, 945
sigmoid, 944

Adaptive filters. See Spatial filters
Adjacency, 115, 
Affine transformations. See Geometric trans-

formations
Aliasing, 234

aliased pair, 221
anti-aliasing, 222
anti-aliasing filtering, 236
examples of, 223, 234, 236, 238
in 1-D functions, 221
in images, 233
moiré patterns, 238
spatial, 233
temporal, 234

Angiogram, 27, 130
Apodizing function, 257. See also Filtering 

window
Arctangent, 208
Arithmetic coding, 561
Artificial intelligence, 18
Artificial neurons. See also Neural networks

activation function, 944
activation value, 945
interconnecting, 945
model, 943
ReLU, 945
schematic, 944
sigmoid, 945
sum-of-products computation, 944

Augmented pattern. See Pattern
Autocorrelation, 915

B

Background flattening, 689. See also Shading 
correction

Backpropagation. See Neural networks
Band-limited function, 217, 225, 232. See 

also Function
Bartlane cable system, 19
Basic rectangle, 832
Basis functions

in the time-frequency plane, 479
of the cosine transform, 489
of the Fourier transform, 485
of the Haar transform, 504
of the Hartley transform, 486
of the sine transform, 493
of the slant transform, 502
of the Walsh-Hadamard transform, 499
standard, 484

Basis images, 483. See Basis functions
Basis vectors, 480. See also Basis functions

biorthonormal, 474
complex orthonormal, 473

Bayes
classifier. See Bayes classifier

Bayes classifier. See also Pattern classification
as a minimum-distance classifier, 927
comparison with neural networks, 964
derivation, 923
for Gaussian pattern classes, 925
special cases, 927

Between-class variance, 748, 749
Bias. See Neural networks
Bidirectional frame (B-frame), 600
Biorthogonal basis, 465
Biorthonormal basis, 465
Bit-plane

decomposition, 131
reconstruction, 132

Bit-plane coding, 575
Bit rate, 550
Blind spot, 49
Block matching, 600
Block transform coding, 576

bit allocation for, 583
selection of transform for, 577
subimage size and, 582
threshold implementation, 585
zonal implementation, 584

BMP compression, 566
Border, 81. See also Boundary

inner, outer, 81
Boundary. See also Border

definition, 81
following, 814
outer, 815
resampling, 817
tracing. See Boundary following

Boundary descriptors, 832
basic rectangle, 832
bounding box, 832
diameter, 832
eccentricity, 832
Fourier descriptors, 835
longest chord, 832
major axis, 832
shape numbers, 834
statistical moments, 839
tortuosity, 832

Bounding box, 832
Brightness, 400
Bubble chamber, 807

C

Cartesian product, 95
CAT. See Computed tomography (CT)
CCITT, 551
CCITT compression, 568
Ceiling function, 68, 168, 727
Cellular complex, 822–825
Center ray, 387
Chain codes

first difference, 817

Freeman, 816
normalized, 817
slope, 819

Classification. See Pattern classification
Clustering

k-means, 770
seeds, 771
supervised, 770
unsupervised, 770

Code. See also Compression
arithmetic, 561
CCITT makeup, 568
CCITT terminating, 568
Elias gamma, 560
Golomb, 556
Gray, 576
Huffman, 548
instantaneous, 555
length, 540
MH (Modified Huffman), 568
MMR (Modified Modified READ), 569, 

574
MR (Modified READ), 569
natural binary, 542
Rice, 557
symbols, 540
unary, 557
uniquely decodable, 556
variable-length, 542
words, 540

Codec, 549
Coding. See also Compression

N-largest, 587
previous pixel, 596
redundancy, 540, 542
symbol-based (or token-based), 572

Cohen-Daubechies-Feauveau biorthogonal 
wavelets, 525, 615

Color image processing
achromatic light, 400
brightness, 400
chromaticity, 403
chromaticity diagram, 404
chromatic light, 400
CMY color model, 408
CMYK color model, 408
CMYK to CMY conversion, 410
CMY to RGB conversion, 409
color circle, 434
color complements, 434
color fundamentals, 400
color “gradient”, 450
color image compression, 455
color models, 405
color pixel, 407
color slicing, 436
color transformations, 430
device independent color model, 418
edge detection, 450
full-color image processing, 429
gray level, 400
HSI color model, 411
HSI image segmentation, 446
HSI to RGB conversion, 415
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Color Image Processing (cont.)
image segmentation, 445
intensity, 400
intensity to color transformations, 423
L*a*b* color model, 419
luminance, 400
noise in color images, 452
primary colors of light, 401
primary colors of pigments, 402
pseudocolor image processing, 420
radiance, 400
RGB color cube, 408
RGB color model, 407
RGB color vector, 429, 446
RGB image segmentation, 446
RGB to CMY conversion, 409
RGB to HSI conversion, 413
secondary colors of light, 402
secondary colors of pigments, 402
sharpening, 442
smoothing, 442
tone and color corrections, 437

Complex conjugate, 207
Complex numbers, 207

angle, 208
magnitude, 207

Compression
arithmetic coding, 540
bit-plane coding, 575
block diagram, 550
block transform coding, 576
BMP, 566
CCITT, 568
containers for, 551
fidelity criteria, 540
formats for, 551
fundamentals of, 540
Golomb coding, 551
Huffman coding, 551, 553
irrelevant information and, 544
JBIG2, 573
JPEG, 588
JPEG-2000, 618
Lempil-Ziv-Welch (LZW) coding, 564
measuring information for, 551
models for, 549
MPEG-4 AVC (or H.264), 603
predictive coding, 594
quantization and, 603
ratio, 540
run-length coding, 566
spatial redundancy, 603
standards for, 551
symbol-based coding, 572
temporal redundancy, 603
wavelet coding, 614

Computed tomography (CT), 21. See also To-
mography

Computer, history of, 21
Computerized axial tomography (CAT). 

See Computed tomography (CT)
Conditional average risk. See Bayes classifier
Conditional loss. See Bayes classifier
Connectionist models. See Neural networks
Contour. See Border; See Boundary
Contrast. See also Enhancement

enhancement radiography, 27
high, 134

manipulation, 126
measure, 851
ratio, 69
simultaneous, 54
stretching, 121, 129

Control (tie) points, 104
Convex. See also Morphological image 

processing
deficiency, 657
digital set, 657
hull, 657

ConvNets. See Neural networks (Convolu-
tional)

Convolution (Frequency domain), 213, 228
circular, 228, 253, 256
theorem, 318
tie between spatial and frequency domain 

filtering, 254
Convolution (Spatial)

2-D, discrete, defined, 159
and correlation, 154
computational advantage with separable 

kernel, 162
filter, 160
kernel, 160
kernel rotation explained, 159
mask, 160
mechanics of, 155–160
padding, 159
properties, 160
simple example of, 158
size of, 159
tie between spatial and frequency domain 

filtering, 254
with separable kernel, 161

Convolution theorem, 214, 215, 216, 225, 228, 
253, 259, 309, 310, 312

Co-occurrence matrix. See Region descriptors
Correlation, 478. See also Matching

coefficient, 915
image, 915
maximum, 916
minimum, 916
range of values, 916
single-point, 478
template matching. See Matching

Correlation (Frequency domain), 257, 258
theorem, 259

Correlation (Spatial)
2-D, discrete, defined, 158
and convolution, 154
mechanics of, 155–158
padding, 158
properties of, 160
size of, 159

Cost function, 954
Covariance matrix

diagonal, 862
eigenvalues of, 861
eigenvectors of, 861

Cross-correlation, 915
Cross-modulation, 518
CT. See Computed tomography (CT)
Curvature, 832

estimation, 889
local, 889
obtained using Hessian matrix, 889
of edges, 889

Cutoff frequency, 274

D

Data compression, 540. See also Compression
Daubechies wavelets, 525, 615
dc component, 250
Decision boundary, 912
Decision function, 912

for Bayes’ classifier, 924
for minimum-distance classifier, 912
for perceptron, 935
linear, 935

Deep learning. See Learning
Deep neural networks. See Neural networks
Delta modulation (DM), 607
Denoising. See Image restoration
Derivative. See Gradient; See also Laplacian
Derivatives. See also Finite differences

behavior in images, 714
requirement of approximations, 702
sensitivity to noise, 714

Description
regional. See Regional descriptors

DFT. See Discrete Fourier transform; Fourier 
transform

Difference of Gaussians, 270
Difference operators. See Gradient operators
Differential pulse code modulation (DPCM), 

609
Digital

angiography, 27
boundary, 81
computer, 21
curve, 80
filter. See Filters
image. See Image
image, definition of, 18
image representation, 65
path, 80
radiography, 25

Digital image processing. See Image; See 
also Image

fundamentals of, 47
origins of, 19
scope of, 18
steps in, 41
system components, 44
uses of, 23

Dilation. See Morphological image processing
Discrete cosine transform (DCT), 487. See 

also JPEG compression
and lowpass filtering, 494
blocking artifact, 582
periodicity of, 491

Discrete Fourier transform (DFT), 475. See 
also Fourier transform

circular convolution. See Convolution
circular correlation. See Correlation

Discrete sine transform (DST), 492
and lowpass filtering, 489
periodicity, 493

Discrete wavelet transform (DWT). 
See Wavelets; See also Wavelets

one-dimensional, 512
two-dimensional, 520

Discriminant function. See Decision function
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Distance, 82
chessboard, 82
city-block, 82
D4, 82
D8, 82
Dm (mixed), 83
Euclidean, 82
function, 82
Mahalanobis, 926
metric, 82

Distance transform, 829
Dot product, 107
Dots per inch (dpi), 238
DPI (dots per inch), 71
Dynamic range, 69, 134

E

Edge, 81. See also Edge detection
closed loops, 727
derivative properties, 706
detector, definition, 702
direction, 716
double, 706, 707
global processing with Hough transform, 

737
magnitude, 716
map, 721
operators. See Gradient operators
pixels, 702
point-linking, 735
ramp, 704, 712
roof, 704, 712
segments, 702
step, 704, 711
strength, 716
unit normal, 717

Edge detection
basic steps, 714
behavior in noise, 714
Canny edge detector, 729
edge models. See Edge models
gradient. See Gradient
gradient based, 716
Laplacian of a Gaussian, 725
Marr-Hildreth detector, 724, 885
three steps performed, 714

Edge models
behavior in noise, 714
ideal edges, 711
ramp edges, 712
roof edges, 712
zero crossing, 712

Eigenvalue, defined, 861
Eigenvalues. See Covariance matrix
Eigenvector, defined, 861
Electromagnetic (EM) spectrum, 23, 54
Elementwise operations, 83
Ellipse in standard form, 841
Encoding. See Compression
End point. See also Morphological image 

processing
definition, 665

Engineered features, 904, 913
Enhancement. See Image enhancement
Entropy, 546
Epoch. See Training, epoch

Erosion. See Morphological image processing
Euclidean. See Distance measures

distance, 82. See also Distance
space, 464
vector norm, 108

Euler formula, 845
Euler number, 844
Euler’s formula, 207
Expansions

linear, 467
Eye structure, 48

F

Face recognition, 868
False color. See Pseudocolor image process-

ing
False contouring, 74
False negative, 731
False positive, 731
Fast Fourier transform (FFT). See Discrete 

Fourier transform (DFT)
Fast Fourier Transform (FFT)

algorithm, 304
background, 204
computational advantage, 205, 269, 308

Fast wavelet transform (FWT), 513
analysis filter bank, 515
approximation and detail coefficients, 520
synthesis filter bank, 519
two-dimensional, 520

Feature extraction
chain codes, 816–820. See also Chain codes
corner detection, 869
covariant, 812
distance transform, 828
feature description, defined, 812
feature detection, defined, 812
feature space, 814
feature vector, 814
global, 813
invariant, 812
label, 812
local, 813
maximally stable extremal regions, 876–883
medial axis, 828
minimum-perimeter polygons, 821
Moore boundary tracing, 815
principal components, 859–869. See 

also Principal components
region feature descriptors, 840–859. See 

also Region descriptors
SIFT (scale invariant feature transform), 

881–897
signatures, 826
skeletons, 828
whole image features, 868–899

Fidelity criteria, 547
Fiducial marks, 104, 342
Filtering (Frequency domain), 203

anti-aliasing, 236
bandpass, 297
bandreject, 297
basics of, 260
blind deconvolution, 352
computational advantage of, 205
correspondence with spatial filtering, 268, 

271
deblurring and denoising using constrained 

least squares filtering, 363
deblurring and denoising using Wiener 

filtering, 358
deconvolution, 352
foundation of, 215, 254
fundamentals, 261
high-boost, 291
high-frequency emphasis, 291
highpass (image sharpening), 284
highpass, offset, 263
homomorphic, 293
inverse filtering, 356
Laplacian, 289
linear, 254
lowpass (smoothing), 264, 272
notch, 299
periodic noise reduction ny notch filtering, 

340
selective, 296
steps summary, 266
tie to spatial filtering, 254, 268, 271
to reduce aliasing, 222
unsharp masking, 291

Filtering (Spatial domain), 153–197
and convolution, 159
based on first derivative, 176
based on second derivative, 176
based on the gradient, 184
bias, 165, 181, 198
compared to frequency domain filters, 162
deconvolution, 352
denoising using mean filters, 328
for restoration, 327
fundamentals, 153
highboost, 182
highpass, 175
linear, 154, 160
linear, equation of, 159
lowpass, 164–174
nonlinear, 174
sharpening, 175
smoothing, 164–174
tie to frequency domain filtering, 254, 268, 

271
unsharp masking, 182

Filtering windows, 257. See also Apodizing, 
Windowing

Bartlett, 257
Hamming, 257
Hann, 257

Filtering windows (See also Apodizing)
Hamming, 382
Hann, 382
Hanning, 382
Ram-Lak, 382
ramp, 382

Filters
finite impulse response (FIR), 517
frequency domain. See Frequency domain 

filtering
kernels. See Spatial filters
spatial. See Spatial filtering; See Spatial 

filters
Filters, digital

perfect reconstruction, 518
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Filters (Frequency domain)
anti-aliasing, 236
bandpass, 297
bandreject, 297
Butterworth highpass from lowpass, 284
Butterworth lowpass, 278
constrained least squares filter, 363
cutoff-frequency, 274
deconvolution, 352
difference of Gaussians, 270
filter transfer function, 261, 268
finite impulse response (FIR), 269
Gaussian highpass from lowpass, 284
Gaussian lowpass, 264, 277
geometric mean filter, 367
highpass, 262
homomorphic, 295
ideal highpass (from lowpass), 284
ideal lowpass, 220, 265, 273
inverse filter, 356
lowpass, 262
notch, 299
notch filter, 341
obtaining from spatial kernel, 271
optimum notch filter, 345
parametric Wiener filter, 367
reconstruction filters, 220
sharpening (highpass), 284
smoothing, 272
spectrum equalization, 368
Wiener filter, 358
zero-phase-shift, 266

Filters (Spatial domain). See also Kernels
adaptive local noise filter, 336
adaptive median filter, 338
alpha-trimmed filter, 332
arithmetic mean filter, 328
bandpass from lowpass, 188
bandrejecct from lowpass, 188
contraharmonic mean filter, 329
geometric mean filter, 328
harmonic mean filter, 329
highpass, 175
highpass from lowpass, 188
kernel, 154
Laplacian, 178
linear, 153
max, 175
max filter, 332
median, 174
median filter, 330
midpoint filter, 332
min, 175
min filter, 332
nonlinear, 153, 174
sharpening, 175

Fingerprints, 32
Finite differences, 702

backward, 703
central, 703
forward, 703
fourth order, 704
second order, 703
third order, 703

Fisher iris pattern classes, 907
Flat-field correction, 173
Floor function, 68, 168, 727
Fourier

phase angle, 249
power spectrum, 249
spectrum, 249

Fourier descriptors. See Boundary descriptors
Fourier series, 475

defined, 208
history, 204

Fourier-slice theorem. See Image reconstruc-
tion from projections

Fourier transform, 252
1-D continuous, 210
1-D discrete (DFT), 225, 226, 227
1-D inverse discrete (IDFT), 227
2-D, continuous, 231
2-D discrete (DFT), 240
and aliasing, 222
and convolution, 214
center, 243, 259
centering, 242
computing inverse from forward, 304
conditions for existence, 210
convolution. See Convolution
dc component, 250
derivation of DFT, 225
discrete. See Discrete Fourier transform 

(DFT)
forward, 210, 227, 228, 272
history, 204
inverse, 227
inverse, 1-D continuous, 210
inverse from forward algorihm, 304
magnitude, 249
of 2-D box, 231
of impulse, 208
of impulse and impulse train, 212
of pulse, 211
of sampled functions, 216
pair, 214, 227, 231
periodicity, 241
phase angle, 249
power spectrum, 249
properties of, 240, 246, 258
separability, 303
spectrum, 249
symmetry, 243

Four-quadrant arctangent, 207, 249
Fractals, 39
Frequency

domain, defined, 211
rectangle, 243
units of, 211

Frequency domain filtering. See also Spatial 
filtering; See Filtering (Frequency 
domain)

Frequency leakage, 257
Function

antisymmetric, 244
band-limited. See Band-limited function
Bessel, 276
circularly symmetric, 167
complex, 243
conjugate symmetric, 245
Dirac delta, 208
even, 243
frequency of a periodic, 223
generalized, 208
isotropic, 167
modulation, 346

odd, 243
period, 223
periodic, 223
real, 243, 245
reconstruction (recovery), 224
sinc, 212
symmetric, 244
weighting, 346

Fundus image, 833

G

Gamma
correction, 125
noise. See Noise

Gaussian. See also Probability density func-
tion (PDF)

circularly symmetric shape, 167
convolution of Gaussians, 169
coveriance matrix. See also Covariance 

matrix
difference of (DoG), 727, 885
first derivative of, 729
isotropic shape, 167
kernel, 883
kernel max size needed, 168. See also Ker-

nels
Laplacian of (LoG), 725
noise, 86, 319
noise, white, 729
product of Gaussians, 169

Gaussian noise. See Noise
Generalized eigenvalue problem, 783
Geometric transformations, 100
Global thresholding. See Thresholding
Golden image, 116
Golomb codes and coding, 556
Gradient

combined with thresholding, 722
definition of, 184, 716
direction, 716
kernels, 718–721. See also Kernels
magnitude, 185, 716
operators, 717
vector, 716

Gradient descent, 940
Granular noise, 608
Granulometry, 685
Graph

cuts (for segmentation). See Graph cuts
directed, 778
nodes, 778
undirected, 778
vertices, 778
weighted, 779

Graph cuts, 777. See also Image segmentation
computing, 783
max-flow, min-cut theorem, 781
minimum, 780
normalized cut, 782
segmentation algorithm, 785

Gray level, 18, 57, 400. See also Intensity
Gray-level transformation. See Intensity 

transformations
Gray scale, 63. See also Intensity
Ground truth, 929
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H

Haar functions, 502
Haar transform, 502, 522
Haar wavelets, 615
Hadamard product, 83, 490
Halftone dots, 238
Harris matrix, 871
Harris-Stephens corner detector, 869
Hartley transform, 485

and lowpass filtering, 494
Heisenberg-Gabor inequaltiy, 481
Heisenberg uncertainty principle, 481
Hertz, 211
Hessian matrix, 888
Histogram

bins, 133
equalization. See Histogram processing
linearization. See Histogram, equaliza-

tion
normalized, 133
specification. See Histogram processing, 

matching.
statistics, 150
unnormalized, 133

Histogram processing, 140
equalization, 134
local, 149, 152
matching, 140
using statistics, 150

Homogeneity, 84
Hotelling transform. See Principal com-

ponents
Hough transform, 737
Huffman coding, 553
Human eye. See Visual perception
Hyperplanes, 912
Hyperspheres, 927

I

IDFT. See Fourier transform, 227
IEC, 551
Illumination, 57. See also Intensity

bias, 763
effect on thresholding, 745
sinusoidal, 764
spot, 763

Image, 27
acquisition, 57, 58, 60, 62
analysis, 18
arithmetic, 85
background, 81, 97, 743
bit planes, 131
center, 68
classification. See Pattern classification
columns, 67
comparing, 87
complement, 99
compression. See Compression
contrast, 69
contrast ratio, 69
coordinates, 18
correspondence between (x, y) and (row, 

col), 68
denoising. See Image restoration
difference, 87

dynamic range, 69
element, 66. See Pixel
EM spectrum, 23
enhancement. See Enhancement
foreground, 81, 97
formation model, 61
gamma-ray, 24
golden, 116
grayscale, 57
illumination, 62. See Illumination
indexing. See Indexing
intensity, 18. See Intensity
interpolation, 77, 237. See Interpolation
masking, 90
mathematical tools, 83–118
microwave, 33
morphology. See Morphological image 

processing
MRI, 34
multispectral, 29
negative, 99, 123
neighborhood, 120
origin, definition, 67
padding, 157, 158
patch, 870
PET, 24
pixel, 18. See Pixel
quantization, 63
radar, 33
radio, 34
recognition. See Pattern classification
reference, 103
reflectance, 62
registration, 103, 106
resampling, 237
resizing, 237
resolution. See Resolution
restoration. See Image restoration
rotation. See Geometric transformations
rows, 67
sampling, 63
saturation, 69
scaling. See Geometric transformations
sensing, 57
sharpening, 175
shearing. See Geometric transformations
shrinking, 237
smoothing, 164
sound, 36
spatial coordinates, 18
synthetic, 23
transformation kernel, 109
translation. See Geometric transforma-

tions
ultrasound, 38
ultraviolet, 27
understanding, 18
watermarking, 624
X-ray, 24
zooming, 237

Image enhancement
character repair, 282
combined spatial methods, 191
contrast enhancement, 126
contrast stretching, 129
defined, 122
gamma correction, 125
gradient based, 184

highboost filtering, 182, 291
high-frequency emphasis, 291
homomorphic, 293
intensity-level slicing, 130
intensity transformations, 122
interference reduction, 283, 300, 302
Laplacian based, 178, 289
local, 151, 152
mask mode radiography, 89
median filtering, 174
noise reduction by averaging, 86
shading correction, 90, 173
sharpening, 284
sharpening and thresholding, 289
smoothing, 164, 272, 282
thresholding, 173
unsharp masking, 182, 291

ImageNet Challenge, 933
Image quantization, 63
Image reconstruction from projections

absorption profile, 368
backprojections, 369, 371, 377, 387, 388
backprojections, fan-beam filtered, 386
backprojections, parallel-beam filtered, 

380, 384
center ray, 386
CT principles, 370
CT scanner generations, 372
filtered backprojection, 383
Fourier-slice theorem, 379, 380
introductory example, 368
parallel-beam filtered backprojections, 

380
parallel-ray beam projection, 374
Radon transform, 374, 375
Radon transform example, 376
Ram-Lak filter, 382
raysum, 368, 374
Shepp-Logan phantom, 377
sinogram, 377
slice, 380
smearing, 368
windowing, 382, 385

Image registration, 103
Image restoration

adaptive filtering, 333
adaptive mean filter, 338
alpha-trimmed filtering, 332
arithmetic mean filter, 328
blind deconvolution, 352
constrained least square filtering, 363
constrained least squares filtering, 363
contraharmonic mean filter, 329
deblurring, 361, 362, 364
deblurring by inverse filtering, 361
deblurring using a least squares filter, 

364
deblurring using a Wiener filter, 364
deconvolution, 352
degradation function, 352
degradation function estimation, 352
denoising using adaptive median filtering, 

339
denoising using linear spatial filters, 327
denoising using notch filtering, 342
denoising using order-statistic filtering, 

333
denoising using spatial mean filters, 329
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Image restoration (cont.)
Erlang (Gamma) noise model, 321
exponential noise model, 321
Gaussian noise model, 319
geometric mean filtering, 367
harmonic mean filter, 329
image blurring caused by motion, 356
interactive, 367
interference removal using notch filters, 347
linear, position invariant degradations, 348
max filtering, 332
median filtering, 330
midpoint filtering, 332
min filtering, 332
modeling motion blurr, 354
model of, 318
noise reduction in the frequency domain, 

340
notch filtering, 341
optimum noise filtering, 345
order-statistic filters, 330
periodic noise model, 324
Rayleigh noise nodel, 320
salt-and-pepper noise model, 322
uniform noise model, 321
Wiener filtering, 358

Image sampling, 63, 215
Image segmentation

clustering (K-means), 770
cluster seeds, 771
definition, 700
edge-based, 710–742
edge-point linking, 735
finite differences, 702
graph cuts. See Graph cuts
line detection, 707
morphological watersheds, 786
motion-based, 796
point detection, 706
region growing, 764
region splitting and merging, 768
seeds, 764
superpixels, 772
textural segmentation, 687
texture based, 770
thresholding. See Thresholding
unsupervised clustering, 770

Image transforms, 109. See Transforms
Impulse (Frequency domain), 208

1-D continuous, 208
1-D discrete, 209
2-D continuous, 230
Fourier transform of, 212
sifting property, 208, 210, 230
train, 212, 216
unit, 208, 259

Impulse response, 269, 350
Impulse (Spatial domain)

strength, 157
unit discrete, 157

Independent frames (I-frames), 599
Indexing, 70

coordinate, 70
linear, 70

Information theory, 545
Inner product, 107
Intensity, 18, 63, 67, 68

discrete, 68

discrimination, 53
levels, 70, 73
range, 68
resolution, 71, 72
scale, 63
scaling, 91
slicing, 130
variance. See also Moments

Intensity mappings. See Intensity transforma-
tions

Intensity transformations
definition, 121
for histogram equalization, 134, 138
monotonic, 135
piecewise-linear, 128
single valued, 136
thresholding, 121

Interior angle, 822
Interpolation, 77, 101, 225

bicubic, 78
bilinear, 77
control points, 104
nearest neighbor, 77
splines, 79
tie points, 104
wavelets, 79

Inverse proportionality, 211, 213, 229, 241, 
276

Inverse transforms. See Transforms
Iris data (Fisher), 906

classification using min-dist-classifier, 912
classification using perceptrons, 939

ISO, 551
Isolated point

definition. See also Image segmentation
Isopreference curves, 76
ITU-T, 551

J

JBIG2 compression, 573
JPEG-2000 compression, 618

irreversible component transform, 618
lifting-based wavelet transform for, 619
tile components, 619

JPEG compression, 588

K

Karhunen-Loève transform. See Principal 
components

Kernels
bandpass from lowpass, 188
bandreject from lowpass, 188
box (lowpass), 165
defined, 154
edge detection, 717
for implementing gradient, 184
Gaussian, 160
Gaussian lowpass, 166, 727
highpass from lowpass, 188
how to construct, 164
in terms of lowpass kernels, 189
isotropic, 708, 725
Kirsch compass, 720
Laplacian, 179

line detection, 707
normalizing, 168
point detection, 706
Prewitt, 718
Roberts, 185, 718
separable, 109, 161
separable, computational advantage, 162
separable, construction of, 162
Sobel, 187, 719
symmetric, 109
transformation, 109

K-means clustering. See Image segmentation

L

Laminogram. See Image reconstruction from 
projections

Laplacian
defined, 179
kernel. See Kernels
line detection, 708
sharpening, 180

Laplacian of a Gaussian. See Edge detection
Learning. See also Pattern classification; 

Neural networks
deep, 905, 931
defined, 905
history of, 931
increment, 935
machines, 932
over fitting, 905, 929
rate, 935
supervised, 905
unsupervised, 905

Leftmost uppermost point, 815
Leibniz’s rule, 136
Lempel-Ziv-Welch (LZW) coding, 564
Lens (of eye), 49
Light, 54. See also Electromagnetic (EM) 

spectrum
achromatic, 57, 400
chromatic, 57, 400
color, 57
intensity, 57
luminance, 57
monochromatic, 57
photon, 56
radiance, 57
wavelength, 56
white, 57

Line
definition. See also Image segmentation
normal representation, 374, 738
slope-intercept form, 374, 738

Linear
additivity property, 349
convolution. See Convolution
correlation. See Correlation
homogeneity property, 349
index. See Indexing
operation, 348
operator, 84
transform pair, 109
transforms, 109

Linearly separable, 935
Linear system, 350. See also Linear operator

characterization by impulse, 350
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convolution integral, 351
superposition (Fredholm) integral, 350

Line pairs, 71
Lloyd-Max quantizer, 613
LMSE algorithm. See Perceptrons
Logical operations, 96

AND, 97
FALSE, 97
functionally complete, 97
NOT (complement), 97
OR, 97
TRUE, 97
XOR, 97

Lookup table, 122, 144
Luminance, 57, 400
LZW coding. See Lempel-Ziv-Welch (LZW) 

coding

M

Mach bands, 53
Macroblock, 599
Magnetic Ink Character Recognition (MICR), 

914
Mahalanobis distance, 448, 758, 926. See 

also Distance measures
Major axis, 832
Mapper, 550

inverse, 604
Mapping. See Intensity: mapping
Markov sources, 547
Mask mode radiography, 89
Masks. See Spatial filters

threshold, 586
zonal, 584

Matching. See also Pattern classification
correlation, 915
degree of similarity, 920
prototypes, 910
shape numbers, 919
SIFT features, 917
similarity matrix, 920
similarity tree, 920
strings, 920
template, 915

Matrix
covariance. See Covariance matrix
product, 84
rank, 162

Matrix determinant in terms of eigenvalues, 
872

Matrix trace in terms of eigenvalues, 872
Maximally stable extremal regions. See Fea-

ture extraction
Maximally stable extremal regions (MSER’s). 

See Feature extraction
Mean absolute distortion (MAD), 600
Mean filters. See Spatial filters
Mean of intensity. See Moments
Mean squared error, 939. See also Neural 

networks
Mean-squared signal-to-noise ratio, 548
Medial axis, 828
Mexican hat operator, 725
Microdensitometers, 58
Microscopy

electron, 39

fluorescence, 27
light, 28

Minimum-distance classifier, 910
decision function, 912

Minimum-perimeter polygons. See Feature 
extraction

Minkowsky addition, 693
Minkowsky subtraction, 693
Minor axis, 832
MNIST, 979
Modulation, 518
Moiré patterns, 238
Moment invariants, 858
Moments. See also Population

global mean, 151
global variance, 151
local mean, 151
local variance, 151

Monotonic function, 135
strict, 135

Moore boundary tracing algorithm. See Fea-
ture extraction

Morphological algorithms. See Morphological 
image processing

Morphological image processing
algorithms (binary), 652
background flattening, 689
background pixels, 636, 638
border clearing, 672. See Morphological 

reconstruction
bottom-hat transformation, 684
boundary extraction, 653
broken character repair, 642
closing, 644
closing by reconstruction, 670
closing by reconstruction, grayscale, 689
closing, grayscale, 680
closing, properties, 648
complement, 644, 646
computationally efficient, 667
conditional operations, 654, 667
connected component extraction, 655
convex deficiency, 657
convex digital set, 657
convex hull, 657
detecting foreign objects in packaged food, 

656
dilation, 641
dilation, grayscale, 678
don’t-care elements, 651
don’t-care elements, 636, 639, 665, 673
duality, 644, 647
end point detection, 665
erosion, 639
erosion, grayscale, 674
filtering, 641, 648, 682
foreground pixels, 636, 638
geodesic dilation, 667
geodesic dilation, grayscale, 688
geodesic erosion, 667
geodesic erosion, grayscale, 689
gradient, 682
granulometry, 685
grayscale images, 673
hit-or-miss transform, 648
hole, defined, 651, 653
hole filling, 653, 671
marker image, 689

mask image, 689
opening, 644
opening by reconstruction, 670
opening by reconstruction, grayscale, 689
opening, grayscale, 680
opening, properties, 648
pruning, 664
reconstruction, 667. See Morphological 

reconstruction
reconstruction by dilation, 668
reconstruction by dilation, grayscale, 689
reconstruction by erosion, 669
reconstruction by erosion, grayscale, 689
reconstruction, grayscale, 688
reflection, set, 636
rolling ball analogy, 645
segmentation, textural, 687
segmentation using watersheds, 786
SE. See Structuring element, 636
shading correction, 685
skeletons, 662. See also Skeletons
smoothing, 682
spurs, 664
structuring element, defined, 636
structuring element, isotropic, 667
structuring element, nonflat, 678
structuring elements, examples of, 637
summary of binary operations, 673
surface area, 686
thickening, 660
thinning, 660
thinning, topology-preserving, 828
top-hat by reconstruction, 689
top-hat transformation, 683
translation, set, 637

Motion and its use in segmentation, 796. See 
also Image segmentation

Motion compensation, predictive coding 
and, 599

MSER’s. See Maximally stable extremal 
regions

Multiresolution analysis, 506

N

National Institute of Standards and Technol-
ogy, 979

Nearest-neighbor classifier. See Minimum-
distance classifier

Neighbor
4-neighbor, 79
8-neighbor, 79
diagonal, 79
nearest. See also Interpolation
north, south, east, west, 815

Neighborhood, 79
closed, 79
definition, 120
open, 79
operations, 99, 120

Neural networks
activation functions. See Activation func-

tions
backpropagation, 932, 953, 974
convolutional. See Neural networks (Con-

volutional)
deep, 906, 931, 945, 946
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Neural networks (cont.)
deep learning, 932, 933
design considerations, 987
error (classification), 959
error (mean squared) (MSE), 959
feedforward, 945
fully-connected. See Neural networks 

(Fully-connected)
multilayer, 943
over-fitting, 981, 989
pretrained, 989
shallow, 945
using GPUs, 989

Neural networks (Convolutional)
activation functions. See Activation func-

tions
activation value, 945
artificial neuron. See Artificial neurons
background, 931
backpropagation derivation, 974
backpropagation equations, 974
basic architecture, 964
bias, 964
CNN for large character dataset, 979
CNN for large image database, 982
convolutional layer, 966
convolution equations, 975
dropout, 989
feature map, 966
forward pass equations, 973
graphical illustration of functioning, 968
implementation details, 987
kernel, 966
mean squared error, 978, 980
mini-batches,, 989
multiple input images, 973
neural computations, 971
overfitting, 989
padding, 988
pooled feature maps, 967
pooling, 966
pooling methods, 967
pooling neighborhoods, 967
receptive fields, 966
recognition error, 978, 981, 985
rot180 (rotation), 975
rotated kernel, 975
stochastic gradient, 989
stride, 966
subsampling, 966
summary table, 977
sum of products, 936, 937
training by backpropagation, 974
updsampling, 977
vanishing gradients, 988
vectorizing, 968
visual cortex model, 966
weight (parameter) sharing, 966

Neural networks (Fully-connected)
activation functions. See Activation func-

tions
activation value, 948
artificial neuron. See Artificial neurons
background, 931
backpropagation, derivation, 953
backpropagation, matric formulation, 956
bias, 935, 944, 947

chain rule, 953
comparison with Bayes’ classifier, 964
comparison with the Bayes’ classifier, 964
correction increment, 935
deep, 945
dropout, 989
error function, 954
feedforward, 945
forward pass, equations of, 948
forward pass, matrix formulation, 950
hidden layers, 945
implementation details, 987
input vectors, 948
learning. See Learning
learning increment, 935
learning rate, 935
mean squared error, 961
mini-batches,, 989
model of, 946
multilayer, 943
multispectral data classification, 961
net input, 948
overfitting, 989
padding, 988
pretrained network, 989
recognition error, 978
shallow, 946
stochastic gradient, 989
sum of products, 937
training, 953
training by backpropagation, 953
training epoch. See Epoch
upsampling, 988
vanishing gradients, 988
weights, 946
XOR problem solution, 959

Neurocomputers. See Neural networks
Neuromorphic systems. See Neural networks
NIST, 979
Noise

autocorrelation of, 359
bipolar impulse, 322
data-drop-out, 322
density, 322
Erlang (Gamma), 321
Exponential, 321
Gaussian, 319
granular, 608
impulse bipolar, 322
impulse unipolar, 322
parameter estimation, 325
periodic, 324, 340
Rayleigh, 320
salt-and-pepper, 322
spike, 322
uniform, 321
unipolar, 322
white, 319, 360, 729
white Gaussian, 729

Noiseless coding theorem, 546
Nonlinear operator, 84
Nonmaxima suppression, 730
Normalized central moments, 858
Notch filters. See Frequency domain filtering
Nyquist rate, 219. See also Sampling; See 

also Sampling

O

Objective function, 954
Object recognition. See Patterns: recognition 

and
Opening. See Morphological image process-

ing
Operations

arithmetic, 85
elementwise, 83
linear, 84
logical, 91, 96
matrix, 84, 106
neighborhood, 99
nonlinear, 84
set, 91
spatial, 98
vector, 106

Operator
linear, operator. See Linear operator
position invariance, 349
space invariance, 349

Optical illusions, 54
Order

partial, 96
strict, 96

Ordered pairs, 95. See also Cartesian product
Order-statistic filters. See Spatial filters
origins of, 19
Orthogonal basis, 465
Orthonormal basis, 465
Otsu’s method. See Threshold; See Thresh-

olding
Outer product, 107
Over fitting. See Learning
Over-segmentation, 793

P

Padding, 155, 158, 256
and periodicity, 264
difference between spatial and frequency, 

265
illustration, 171, 172
mirror, 171
replicate, 171
size, 159, 256, 266
symmetric, 171
zero, 165, 166, 171, 256, 265

Parameter space, 738
Path, 80, 83
Pattern

augmented, 936
classes, 906
definition of, 904
formation, 906
labeling, 905
recognition. See Pattern classification
space, 906
strings, 910
test, 905
training, 905
trees, 910
unlabeled, 905
validation, 905
vectors, 906, 909
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Pattern classification. See also Learning
approaches, 904
Bayes’ classifier. See Classifier
correlation, 915
decision functions, 912. See also Decision 

functions
deep learning. See Learning
discriminant functions., 912
feature extraction. See Feature extraction
hyperplane, 912
minimum-distance classifier, 910
pattern. See Pattern
pattern class, definition of, 904
pattern classes, 906
pattern recognition, stages, 904
pattern strings. See Pattern
pattern tree. See Pattern
pattern vectors, 906
prototype matching. See Matching
SIFT. See Matching
string matching. See Matching
supervised learning. See Learning
test set, 905
training set, 905
unsupervised learning, 905
validation set, 905

Pattern recognition. See also Pattern clas-
sification

stages of, 904
PDF. See Probability density function (PDF)
Pel. See Pixel
Perceptrons

bias, 935
convergence theorem, 936
correction increment, 935
decision boundary, 938
decision surfaces, 934
hyperplanes, 935
learning rate, 935
least-mean-squared-error (LMSE), 941
linearly separable. See Linearly separable
parameters, 935
schematic, 937
sum of products computation, 937
training algorithm, 935
training epoch, 937
weights, 935
weight vector, 935
XOR problem, 942

Photons, 23, 56
Pixel

adjacency of, 80
connected, 80
definition, 18, 66
foreground. See Image, background; 

See Image, foreground
interpolation. See Interpolation
neighborhood operations. See also Spatial 

filtering
neighbors of, 79
object, 743
replication, 237
transformation. See Intensity: transforma-

tions
Point processing, 121
Point spread function, 350

Pointwise min and max operators, 688
Population. See also Moments, Sample
Positron emission tomography, 24. See 

also Tomography
Predicate

region growing, 766
thresholding, 762

Prediction errors, 597
Prediction residuals, 597

motion compensated, 599
Predictive coding, 594

delta modulation (DM), 607
differential pulse code modulation 

(DPCM), 609
lossless, 594
lossy, 605
motion compensation and, 599
optimal predictors for, 609
optimal quantization in, 611
prediction error, 594

Predictive frame (P-frame), 599
Prewitt gradient operators. See Spatial filters
Principal components

covariance matrix, 861
eigenvalues, 861
eigenvectors, 861
Hotelling transform, 861
Karhunen-Loève transform, 861
mean vector, 861
rotation normalization, 865
size normalization, 865
transformation, 861
translation normalization, 865
vector formation, 863

Probability
a priori, 923
cumulative distribution function (CDF). 

See Cumulative distribution func-
tion (CDF)

density function (PDF). See also Probabil-
ity density function

mass function (PMF). See also Probability 
mass function

prior, 923
Probability density function (PDF)

Erlang (Gamma), 321
Exponential, 321
Gaussian, 319
Rayleigh, 320
Salt-and-Pepper, 322
Uniform, 321

Probability mass function (PMF), 558
Probability models, 562
Projection-slice theorem. See Image recon-

struction from projections
Pruning. See Morphological image processing

Q

Quad tree, 768
Quantization, 545. See also Sampling
Quantizer, 550

inverse, 604
Lloyd-Max, 613
optimum uniform, 614

R

Radar band, 33
Radiance, 57, 400
Radon transform

formulation, 374
history, 371

Ramp edges. See Edges
Random variable. See also Probability
Ranger 7, 21
Rayleigh noise. See Noise
Redundancy, 540

coding, 540, 541
relative data, 540
spatial and temporal, 540, 543

Region
adjacent, 700
border, 81
boundary, 81
contour, 81
definition, 80
descriptors. See Description
disjoint, 700

Region descriptors
circularity, 840
compactness, 840
connected components, 844
contrast, 851
co-occurrence matrix, 849
correlation, 850
eccentricity, 841
effective diameter, 841
entropy, 851
Euler number, 844
holes, 844
homogeneity, 851
major and minor axes, 840
moments, 846
polygonal networks, 845
principal axes, 841
roundness, 840
texture (spectral), 855
texture (statistical), 846
topological, 843
uniformity, 848, 851

Relation
antireflexive, 96
binary, 96
ordering, 96
transitive, 96

Remote sensing, 29
LANDSAT, 29
thematic bands, 29

Resampling. See Image: resampling
Reseau marks, 21, 104
Resolution, 71

dots per inch (dpi), 71
intensity, 71
line pairs, 71
spatial, 71

Root-mean-squared (rms) error, 360, 548
Rubber-sheet distortions, 843
Run-length encoding (RLE), 566
Run-length pairs, 543, 566
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S

Salt-and-pepper noise. See Noise
Sample. See also Population
Sampling, 63, 215, 233. See also Quantization

aliasing. See Aliasing
critically-sampled signal, 217
limitations of human eye, 236
Nyquist rate, 219
of printed material, 238
over-sampled signal, 217
rate, 215, 217, 223, 232
relationship to frequency intervals, 228
theorem, 217, 231, 236
undersampled signal, 221
units of sampling rate, 215

Saturation, 69
Scale-invariant feature transform. See SIFT
Scale space. See SIFT
Scaling

geometric. See Geometric transformations
intensity, 91

Scaling functions, 505
coefficients of, 507
Haar, 505
refinement equation for, 507
scale and translation of, 505
separable, 520

Self-adaptive networks. See Neural networks
Sensors

acquisition and, 57
arrays, 61
single, 58
strips, 60

sequency, 497
Sets, 91, 93

complement, 92
difference, 92
intersection, 92
mutually exclusive, 92
on grayscale images, 94
partially-ordered, 96
sample space, 92
set universe, 92
strict-ordered, 96
union, 92

Sets and set operations, 644
reflection, 636
translation, 637

Shading correction, 90, 685. See also Back-
ground flattening

using lowpass filtering, 173
Shannon’s first theorem, 546
Sharpening

frequency. See Filtering (Frequency 
domain)

spatial. See Filtering (Spatial domain)
Shepp-Logan phantom. See Image recon-

struction from projections
Shrinking. See Image: resampling
SIFT

algorithm, 894
curvature estimation using Hessian matrix, 

889
examples of image matching, 894–897
Hessian matrix, 888

keypoint descriptors, 892
keypoint locations accuracy, 887
keypoint orientation, 890
keypoints, 882
local extrema, 885
octaves, 883
scale parameter, 883
scale space, 883
subpixel accuracy, 888

Sifting property. See Impulse
Signal-to-noise ratio, 360
Signatures, 826
Sinc function, 212. See also Function
Sinogram. See Image reconstruction from 

projections
Skeletons, 828. See also Morphological image 

processing
defined, 829
via the distance transform, 828

Slant transform, 500
Sliding inner product, 478
Slope density function, 827
Slope overload, 608
SMPTE, 551
Sobel gradient operators. See Spatial filtering
Softmax function, 947. See also Neural 

networks
Space constant, 724
Spaghetti effect, 727
Spatial coordinates, 66

definition, 18
transformation of, 101

Spatial domain
convolution. See Convolution
correlation. See Correlation
definition, 119
filtering. See Spatial filtering

Spatial filtering. See Filtering (Spatial 
domain)

masks. See Spatial filters
Spatial filters. See also Spatial filtering
Spatial operations, 98
Spatial variables, 66
Spectrum. See Discrete Fourier transform 

(DFT); See Fourier transform
Statistical moments. See Moments
Step edges. See Edges
Strict ordering, 96
Structured light, 31
Structuring element. See Morphological im-

age processing
Subband coding, 517
Subpixel accuracy, 78, 727, 888
Subspace analysis tree, 527
Successive-doubling. See Fast Fourier 

transform
Sum of absolute distortions (SAD), 600
Sum of products, 154, 159, 213
Superpixels

as graph nodes, 779
defined, 772
SLIC algorithm, 774

Superposition, 350
Supervoxels, 777
Symlets, 525, 615
Symmetry

antihermitian, 245
conjugate, 245
conjugate antisymmetry, 245
even, 249, 364
hermitian, 245
odd, 249

T

Taylor series, 702
Texture. See also Region descriptors

spectral, 855
statistical, 846

Thickening. See Morphological image 
processing

Thinning. See Morphological image process-
ing

Threshold. See also Thresholding
coding, 584

Thresholding
adaptive, 743
basics, 743
document, 763
dynamic, 743
global, 746
hysteresis, 732, 759
illumination, role of, 745
local, 743
multiple, 757
multivariate, 448
noise, role of, 744
Otsu’s method, 747
predicate, 762
reflectance, role of, 745
regional, 743
using edges, 753
using smoothing, 752
variable, 761

Tie (control) points, 104
Time-Frequency Plane, 479
Token, 572
Tomography, 368. See also Image reconstruc-

tion from projections
magnetic resonance imaging (MRI), 374
single photon emission, (SPECT), 374
X-ray computed tomography, 370
X-ray CT scanner generations, 372

Training
defined, 905
epoch, 937, 958
neural networks. See Neural networks
over-fitting. See Neural networks
patterns. See Pattern
perceptrons. See Perceptrons
test set, 905
training set, 905
validation set, 905
vanishing gradients, 988

Training by backpropagation, 953, 974
Transformation

affine, 101
geometric (rubber-sheet). See Geometric 

transformations
kernel, 467
matrix, 468
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matrix dual, 474
rotate, 101
scale, 101
sheer, 101
translate, 101

Transformation functions
bit-plane slicing, 131

Transforms
cosine, 487, 577
Fourier, 577. See Fourier transform
Haar, 502
Hartley, 485
Hough. See Hough transform
matrix-based, 466
morphological. See Morphological image 

processing
orthogonal, 470
sine, 492
slant, 500
Walsh-Hadamard, 496, 577
wavelet, 504. See also Wavelets

U

Uniform. See Noise
Unitary

matrix, 473
space, 464
transform, 473

universality approximation theorem
universality approximation theorem, 987

Uppermost leftmost point, 815

V

Vanishing gradient, 988
Vanishing moments, 524
Variable thresholding. See Thresholding
Variance of intensity. See Moments
Vector operations

angle between vectors, 465
dot (scalar) product, 464
inner product, 464
integral inner product, 464

norm, 464
orthogonal complement, 508

Vertex
concave, 822
convex, 822
degenerate, 822

Video compression standards, 604
Vision. See also Visual perception

high-level, 18
inspection, 31
low-level, 18
machine, 18
mid-level, 18

Visual perception, 48
blind spot, 49
brightness adaptation, 51
brightness discrimination, 51
human eye structure, 48
image formation in eye, 50
Mach bands, 53
optical illusions, 54
photopic vision, 49
scotopic vision, 49
simultaneous contrast, 54
subjective brightness, 51

Voxels, 429

W

Walsh functions, 496
Walsh-Hadamard transform (WHT), 496

Hadamard (natural) ordering, 496
sequency ordering, 498

Watermarking digital images, 624
block diagram for, 628
reasons for, 624

Watermarks, 624
attacks on, 627
fragile invisible, 626
insertion and extraction, 627
invisible, 625
private (or restricted key), 627
public (or unrestricted key), 627
robust invisible, 627
visible, 625

Wavelength, 56
of EM spectrum, 56
required to get image, 57

Wavelet coding, 614
decomposition level selection, 616
quantizer design for, 617
selection of wavelets for, 615

Wavelet functions, 507
coefficients of, 508, 525
Haar, 509

Wavelet packets, 526
filter bank for, 529
subspace analysis tree, 527

Wavelets, 479, 482
and edge detection, 524
and multiresolution analysis, 506
packets, 526
scaling functions, 505. See also Scaling 

functions
series expansions, 510
wavelet functions, 507. See also Wavelet 

functions
Weber ratio, 52
White noise. See Noise
Windowing, 257. See also Apodizing, Filtering 

windows
Wraparound error, 256, 257, 262, 266, 271, 300

X

XOR classification problem
definition, 942
solution using neural nets, 959
solution using perceptrons, 943

Z

Zero crossing, 178
Zero crossings, 712, 724, 726
Zero-memory source, 546
Zonal coding implementation, 584
Zone plate, 190
Zooming. See Image: zooming

DIP4E_GLOBAL_Print_Ready.indb   1019 6/16/2017   2:18:17 PM



GLOBAL 
EDITION

This is a special edition of an established 
title widely used by colleges and universities 
throughout the world. Pearson published this 
exclusive edition for the benefit of students 
outside the United States and Canada. If 
you purchased this book within the United 
States or Canada, you should be aware that 
it has been imported without the approval of 
the Publisher or Author. The Global Edition 
is not supported in the United States and 
Canada.

Pearson Global Edition

GLOBAL 
EDITION

For these Global Editions, the editorial team at Pearson has 
collaborated with educators across the world to address a 
wide range of subjects and requirements, equipping students 
with the best possible learning tools. This Global Edition 
preserves the cutting-edge approach and pedagogy of the 
original, but also features alterations, customization, and 
adaptation from the North American version. Digital Image Processing

 FOURTH EDITION

 Rafael C. Gonzalez • Richard E. Woods

D
igital Im

age Processing
G

onzalez 
W

oods
FO

U
RT

H
 

ED
IT

IO
N

G
LO

B
A

L 
ED

IT
IO

N

Gonzalez_04_1292223049_Final.indd   1 11/08/17   5:27 PM


	Front Cover
	Contents���������������
	Preface��������������
	Acknowledgments����������������������
	The Book Website�����������������������
	The DIP4E Support Packages���������������������������������
	About the Authors������������������������
	1 Introduction���������������������
	What is Digital Image Processing?����������������������������������������
	The Origins of Digital Image Processing����������������������������������������������
	Examples of Fields that Use Digital Image Processing�����������������������������������������������������������
	Fundamental Steps in Digital Image Processing����������������������������������������������������
	Components of an Image Processing System�����������������������������������������������

	2 Digital Image Fundamentals�����������������������������������
	Elements of Visual Perception������������������������������������
	Light and the Electromagnetic Spectrum���������������������������������������������
	Image Sensing and Acquisition������������������������������������
	Image Sampling and Quantization��������������������������������������
	Some Basic Relationships Between Pixels����������������������������������������������
	Introduction to the Basic Mathematical Tools Used in Digital Image Processing������������������������������������������������������������������������������������

	3 Intensity Transformations and Spatial Filtering��������������������������������������������������������
	Background�����������������
	Some Basic Intensity Transformation Functions����������������������������������������������������
	Histogram Processing���������������������������
	Fundamentals of Spatial Filtering����������������������������������������
	Smoothing (Lowpass) Spatial Filters������������������������������������������
	Sharpening (Highpass) Spatial Filters��������������������������������������������
	Highpass, Bandreject, and Bandpass Filters from Lowpass Filters����������������������������������������������������������������������
	Combining Spatial Enhancement Methods��������������������������������������������

	4 Filtering in the Frequency Domain������������������������������������������
	Background�����������������
	Preliminary Concepts���������������������������
	Sampling and the Fourier Transform of Sampled Functions��������������������������������������������������������������
	The Discrete Fourier Transform of One Variable�����������������������������������������������������
	Extensions to Functions of Two Variables�����������������������������������������������
	Some Properties of the 2-D DFT and IDFT����������������������������������������������
	The Basics of Filtering in the Frequency Domain������������������������������������������������������
	Image Smoothing Using Lowpass Frequency Domain Filters�������������������������������������������������������������
	Image Sharpening Using Highpass Filters����������������������������������������������
	Selective Filtering��������������������������
	The Fast Fourier Transform���������������������������������

	5 Image Restoration and Reconstruction���������������������������������������������
	A Model of the Image Degradation/Restoration process�����������������������������������������������������������
	Noise Models�������������������
	Restoration in the Presence of Noise Only—Spatial Filtering������������������������������������������������������������������
	Periodic Noise Reduction Using Frequency Domain Filtering����������������������������������������������������������������
	Linear, Position-Invariant Degradations����������������������������������������������
	Estimating the Degradation Function������������������������������������������
	Inverse Filtering������������������������
	Minimum Mean Square Error (Wiener) Filtering���������������������������������������������������
	Constrained Least Squares Filtering������������������������������������������
	Geometric Mean Filter����������������������������
	Image Reconstruction from Projections��������������������������������������������

	6 Color Image Processing�������������������������������
	Color Fundamentals�������������������������
	Color Models�������������������
	Pseudocolor Image Processing�����������������������������������
	Basics of Full-Color Image Processing��������������������������������������������
	Color Transformations����������������������������
	Color Image Smoothing and Sharpening�������������������������������������������
	Using Color in Image Segmentation����������������������������������������
	Noise in Color Images����������������������������
	Color Image Compression������������������������������

	7 Wavelet and Other Image Transforms�������������������������������������������
	Preliminaries��������������������
	Matrix-based Transforms������������������������������
	Correlation������������������
	Basis Functions in the Time-Frequency Plane��������������������������������������������������
	Basis Images�������������������
	Fourier-Related Transforms���������������������������������
	Walsh-Hadamard Transforms��������������������������������
	Slant Transform����������������������
	Haar Transform���������������������
	Wavelet Transforms�������������������������

	8 Image Compression and Watermarking�������������������������������������������
	Fundamentals�������������������
	Huffman Coding���������������������
	Golomb Coding��������������������
	Arithmetic Coding������������������������
	LZW Coding�����������������
	Run-length Coding������������������������
	Symbol-based Coding��������������������������
	Bit-plane Coding�����������������������
	Block Transform Coding�����������������������������
	Predictive Coding������������������������
	Wavelet Coding���������������������
	Digital Image Watermarking���������������������������������

	9 Morphological Image Processing���������������������������������������
	Preliminaries��������������������
	Erosion and Dilation���������������������������
	Opening and Closing��������������������������
	The Hit-or-Miss Transform��������������������������������
	Some Basic Morphological Algorithms������������������������������������������
	Morphological Reconstruction�����������������������������������
	Summary of Morphological Operations on Binary Images�����������������������������������������������������������
	Grayscale Morphology���������������������������

	10 Image Segmentation����������������������������
	Fundamentals�������������������
	Point, Line, and Edge Detection��������������������������������������
	Thresholding�������������������
	Segmentation by Region Growing and by Region Splitting and Merging�������������������������������������������������������������������������
	Region Segmentation Using Clustering and Superpixels�����������������������������������������������������������
	Region Segmentation Using Graph Cuts�������������������������������������������
	Segmentation Using Morphological Watersheds��������������������������������������������������
	The Use of Motion in Segmentation����������������������������������������

	11 Feature Extraction����������������������������
	Background�����������������
	Boundary Preprocessing�����������������������������
	Boundary Feature Descriptors�����������������������������������
	Region Feature Descriptors���������������������������������
	Principal Components as Feature Descriptors��������������������������������������������������
	Whole-Image Features���������������������������
	Scale-Invariant Feature Transform (SIFT)�����������������������������������������������

	12 Image Pattern Classification��������������������������������������
	Background�����������������
	Patterns and Pattern Classes�����������������������������������
	Pattern Classification by Prototype Matching���������������������������������������������������
	Optimum (Bayes) Statistical Classifiers����������������������������������������������
	Neural Networks and Deep Learning����������������������������������������
	Deep Convolutional Neural Networks�����������������������������������������
	Some Additional Details of Implementation������������������������������������������������

	Bibliography�������������������
	Index������������
	Back Cover



