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Preface

When something can be read without effort, great effort has gone into its writing.
Enrique Jardiel Poncela

This edition of Digital Image Processing is a major revision of the book. As in
the 1977 and 1987 editions by Gonzalez and Wintz, and the 1992, 2002, and 2008
editions by Gonzalez and Woods, this sixth-generation edition was prepared
with students and instructors in mind. The principal objectives of the book
continue to be to provide an introduction to basic concepts and methodologies
applicable to digital image processing, and to develop a foundation that can
be used as the basis for further study and research in this field. To achieve
these objectives, we focused again on material that we believe is fundamental
and whose scope of application is not limited to the solution of specialized
problems. The mathematical complexity of the book remains at a level well
within the grasp of college seniors and first-year graduate students who have
introductory preparation in mathematical analysis, vectors, matrices, probability,
statistics, linear systems, and computer programming. The book website pro-
vides tutorials to support readers needing a review of this background material.
One of the principal reasons this book has been the world leader in its field for
40 years is the level of attention we pay to the changing educational needs of our
readers. The present edition is based on an extensive survey that involved faculty,
students, and independent readers of the book in 150 institutions from 30 countries.
The survey revealed a need for coverage of new material that has matured since the
last edition of the book. The principal findings of the survey indicated a need for:

e Expanded coverage of the fundamentals of spatial filtering.

¢ A more comprehensive and cohesive coverage of image transforms.

* A more complete presentation of finite differences, with a focus on edge detec-
tion.

e A discussion of clustering, superpixels, and their use in region segmentation.

e Coverage of maximally stable extremal regions.

e Expanded coverage of feature extraction to include the Scale Invariant Feature
Transform (SIFT).

e Expanded coverage of neural networks to include deep neural networks, back-
propagation, deep learning, and, especially, deep convolutional neural networks.

¢ More homework exercises at the end of the chapters.

The new and reorganized material that resulted in the present edition is our
attempt at providing a reasonable balance between rigor, clarity of presentation,
and the findings of the survey. In addition to new material, earlier portions of the
text were updated and clarified. This edition contains 241 new images, 72 new draw-
ings, and 135 new exercises.
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New to This Edition

The highlights of this edition are as follows.

Chapter 1: Some figures were updated, and parts of the text were rewritten to cor-
respond to changes in later chapters.

Chapter 2: Many of the sections and examples were rewritten for clarity. We
added 14 new exercises.

Chapter 3: Fundamental concepts of spatial filtering were rewritten to include a
discussion on separable filter kernels, expanded coverage of the properties of low-
pass Gaussian kernels, and expanded coverage of highpass, bandreject, and band-
pass filters, including numerous new examples that illustrate their use. In addition to
revisions in the text, including 6 new examples, the chapter has 59 new images, 2 new
line drawings, and 15 new exercises.

Chapter 4: Several of the sections of this chapter were revised to improve the clar-
ity of presentation. We replaced dated graphical material with 35 new images and 4
new line drawings. We added 21 new exercises.

Chapter 5: Revisions to this chapter were limited to clarifications and a few cor-
rections in notation. We added 6 new images and 14 new exercises,

Chapter 6: Several sections were clarified, and the explanation of the CMY and
CMYK color models was expanded, including 2 new images.

Chapter 7: This is a new chapter that brings together wavelets, several new trans-
forms, and many of the image transforms that were scattered throughout the book.
The emphasis of this new chapter is on the presentation of these transforms from a
unified point of view. We added 24 new images, 20 new drawings, and 25 new exer-
cises.

Chapter 8: The material was revised with numerous clarifications and several
improvements to the presentation.

Chapter 9: Revisions of this chapter included a complete rewrite of several sec-
tions, including redrafting of several line drawings. We added 16 new exercises

Chapter 10: Several of the sections were rewritten for clarity. We updated the
chapter by adding coverage of finite differences, K-means clustering, superpixels,
and graph cuts. The new topics are illustrated with 4 new examples. In total, we
added 29 new images, 3 new drawings, and 6 new exercises.

Chapter 11:The chapter was updated with numerous topics, beginning with a more
detailed classification of feature types and their uses. In addition to improvements in
the clarity of presentation, we added coverage of slope change codes, expanded the
explanation of skeletons, medial axes, and the distance transform, and added sev-
eral new basic descriptors of compactness, circularity, and eccentricity. New mate-
rial includes coverage of the Harris-Stephens corner detector, and a presentation of
maximally stable extremal regions. A major addition to the chapter is a comprehen-
sive discussion dealing with the Scale-Invariant Feature Transform (SIFT). The new
material is complemented by 65 new images, 15 new drawings, and 12 new exercises.
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Chapter 12: This chapter underwent a major revision to include an extensive
rewrite of neural networks and deep learning, an area that has grown significantly
since the last edition of the book. We added a comprehensive discussion on fully
connected, deep neural networks that includes derivation of backpropagation start-
ing from basic principles. The equations of backpropagation were expressed in “tra-
ditional” scalar terms, and then generalized into a compact set of matrix equations
ideally suited for implementation of deep neural nets. The effectiveness of fully con-
nected networks was demonstrated with several examples that included a compari-
son with the Bayes classifier. One of the most-requested topics in the survey was
coverage of deep convolutional neural networks. We added an extensive section on
this, following the same blueprint we used for deep, fully connected nets. That is, we
derived the equations of backpropagation for convolutional nets, and showed how
they are different from “traditional” backpropagation. We then illustrated the use of
convolutional networks with simple images, and applied them to large image data-
bases of numerals and natural scenes. The written material is complemented by 23
new images, 28 new drawings, and 12 new exercises.

Also for the first time, we have created student and faculty support packages that
can be downloaded from the book website. The Student Support Package contains
many of the original images in the book and answers to selected exercises The Fac-
ulty Support Package contains solutions to all exercises, teaching suggestions, and all
the art in the book in the form of modifiable PowerPoint slides. One support pack-
age is made available with every new book, free of charge.

The book website, established during the launch of the 2002 edition, continues to
be a success, attracting more than 25,000 visitors each month. The site was upgraded
for the launch of this edition. For more details on site features and content, see The
Book Website, following the Acknowledgments section.

This edition of Digital Image Processing is a reflection of how the educational
needs of our readers have changed since 2008. As is usual in an endeavor such as
this, progress in the field continues after work on the manuscript stops. One of the
reasons why this book has been so well accepted since it first appeared in 1977 is its
continued emphasis on fundamental concepts that retain their relevance over time.
This approach, among other things, attempts to provide a measure of stability in a
rapidly evolving body of knowledge. We have tried to follow the same principle in
preparing this edition of the book.

R.C.G.
R.EW.
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Introduction

One picture is worth more than ten thousand words.

Anonymous

Preview

Interest in digital image processing methods stems from two principal application areas: improvement
of pictorial information for human interpretation, and processing of image data for tasks such as storage,
transmission, and extraction of pictorial information. This chapter has several objectives: (1) to define
the scope of the field that we call image processing; (2) to give a historical perspective of the origins of
this field; (3) to present an overview of the state of the art in image processing by examining some of
the principal areas in which it is applied; (4) to discuss briefly the principal approaches used in digital
image processing; (5) to give an overview of the components contained in a typical, general-purpose
image processing system; and (6) to provide direction to the literature where image processing work is
reported. The material in this chapter is extensively illustrated with a range of images that are represen-
tative of the images we will be using throughout the book.

Upon completion of this chapter, readers should:

B Understand the concept of a digital image. B Be aware of the different fields in which digi-
B Have a broad overview of the historical under- tal image processing methods are applied.
pinnings of the field of digital image process- B Be familiar with the basic processes involved
ing. in image processing.
B Understand the definition and scope of digi- B Be familiar with the components that make
tal image processing. up a general-purpose digital image process-
B Know the fundamentals of the electromag- Ing system.
netic spectrum and its relationship to image B Be familiar with the scope of the literature
generation. where image processing work is reported.

17
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Chapter 1 Introduction

1.1 WHAT IS DIGITAL IMAGE PROCESSING? NN

An image may be defined as a two-dimensional function, f(x,y), where x and y are
spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x,y)
is called the intensity or gray level of the image at that point. When x, y, and the
intensity values of fare all finite, discrete quantities, we call the image a digital image.
The field of digital image processing refers to processing digital images by means of
a digital computer. Note that a digital image is composed of a finite number of ele-
ments, each of which has a particular location and value. These elements are called
picture elements, image elements, pels, and pixels. Pixel is the term used most widely
to denote the elements of a digital image. We will consider these definitions in more
formal terms in Chapter 2.

Vision is the most advanced of our senses, so it is not surprising that images
play the single most important role in human perception. However, unlike humans,
who are limited to the visual band of the electromagnetic (EM) spectrum, imaging
machines cover almost the entire EM spectrum, ranging from gamma to radio waves.
They can operate on images generated by sources that humans are not accustomed
to associating with images. These include ultrasound, electron microscopy, and com-
puter-generated images. Thus, digital image processing encompasses a wide and var-
ied field of applications.

There is no general agreement among authors regarding where image process-
ing stops and other related areas, such as image analysis and computer vision, start.
Sometimes, a distinction is made by defining image processing as a discipline in
which both the input and output of a process are images. We believe this to be a
limiting and somewhat artificial boundary. For example, under this definition, even
the trivial task of computing the average intensity of an image (which yields a sin-
gle number) would not be considered an image processing operation. On the other
hand, there are fields such as computer vision whose ultimate goal is to use comput-
ers to emulate human vision, including learning and being able to make inferences
and take actions based on visual inputs. This area itself is a branch of artificial intel-
ligence (AI) whose objective is to emulate human intelligence. The field of Al is in its
earliest stages of infancy in terms of development, with progress having been much
slower than originally anticipated. The area of image analysis (also called image
understanding) is in between image processing and computer vision.

There are no clear-cut boundaries in the continuum from image processing at
one end to computer vision at the other. However, one useful paradigm is to con-
sider three types of computerized processes in this continuum: low-, mid-, and high-
level processes. Low-level processes involve primitive operations such as image
preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-
level process is characterized by the fact that both its inputs and outputs are images.
Mid-level processing of images involves tasks such as segmentation (partitioning
an image into regions or objects), description of those objects to reduce them to a
form suitable for computer processing, and classification (recognition) of individual
objects. A mid-level process is characterized by the fact that its inputs generally
are images, but its outputs are attributes extracted from those images (e.g., edges,
contours, and the identity of individual objects). Finally, higher-level processing
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involves “making sense” of an ensemble of recognized objects, as in image analysis,
and, at the far end of the continuum, performing the cognitive functions normally
associated with human vision.

Based on the preceding comments, we see that a logical place of overlap between
image processing and image analysis is the area of recognition of individual regions
or objects in an image. Thus, what we call in this book digital image processing encom-
passes processes whose inputs and outputs are images and, in addition, includes pro-
cesses that extract attributes from images up to, and including, the recognition of
individual objects. As an illustration to clarify these concepts, consider the area of
automated analysis of text. The processes of acquiring an image of the area con-
taining the text, preprocessing that image, extracting (segmenting) the individual
characters, describing the characters in a form suitable for computer processing, and
recognizing those individual characters are in the scope of what we call digital image
processing in this book. Making sense of the content of the page may be viewed as
being in the domain of image analysis and even computer vision, depending on the
level of complexity implied by the statement “making sense of.” As will become
evident shortly, digital image processing, as we have defined it, is used routinely in a
broad range of areas of exceptional social and economic value. The concepts devel-
oped in the following chapters are the foundation for the methods used in those
application areas.

1.2 THE ORIGINS OF DIGITAL IMAGE PROCESSING I

One of the earliest applications of digital images was in the newspaper industry,
when pictures were first sent by submarine cable between London and New York.
Introduction of the Bartlane cable picture transmission system in the early 1920s
reduced the time required to transport a picture across the Atlantic from more than
a week to less than three hours. Specialized printing equipment coded pictures for
cable transmission, then reconstructed them at the receiving end. Figure 1.1 was
transmitted in this way and reproduced on a telegraph printer fitted with typefaces
simulating a halftone pattern.

Some of the initial problems in improving the visual quality of these early digital
pictures were related to the selection of printing procedures and the distribution of

FIGURE 1.1 A digital picture produced in 1921 from a coded tape by a telegraph printer with
special typefaces. (McFarlane.) [References in the bibliography at the end of the book are
listed in alphabetical order by authors’ last names.]
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FIGURE 1.2

A digital picture
made in 1922
from a tape
punched after
the signals had
crossed the
Atlantic twice.
(McFarlane.)

FIGURE 1.3
Unretouched
cable picture of
Generals Pershing
(right) and Foch,
transmitted in
1929 from
London to New
York by 15-tone
equipment.
(McFarlane.)

intensity levels. The printing method used to obtain Fig. 1.1 was abandoned toward
the end of 1921 in favor of a technique based on photographic reproduction made
from tapes perforated at the telegraph receiving terminal. Figure 1.2 shows an image
obtained using this method. The improvements over Fig. 1.1 are evident, both in
tonal quality and in resolution.

The early Bartlane systems were capable of coding images in five distinct levels
of gray. This capability was increased to 15 levels in 1929. Figure 1.3 is typical of the
type of images that could be obtained using the 15-tone equipment. During this
period, introduction of a system for developing a film plate via light beams that were
modulated by the coded picture tape improved the reproduction process consider-
ably.

Although the examples just cited involve digital images, they are not considered
digital image processing results in the context of our definition, because digital com-
puters were not used in their creation. Thus, the history of digital image processing
is intimately tied to the development of the digital computer. In fact, digital images
require so much storage and computational power that progress in the field of digi-
tal image processing has been dependent on the development of digital computers
and of supporting technologies that include data storage, display, and transmission.
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The concept of a computer dates back to the invention of the abacus in Asia
Minor, more than 5000 years ago. More recently, there have been developments
in the past two centuries that are the foundation of what we call a computer today.
However, the basis for what we call a modern digital computer dates back to only
the 1940s, with the introduction by John von Neumann of two key concepts: (1) a
memory to hold a stored program and data, and (2) conditional branching. These
two ideas are the foundation of a central processing unit (CPU), which is at the heart
of computers today. Starting with von Neumann, there were a series of key advanc-
es that led to computers powerful enough to be used for digital image processing.
Briefly, these advances may be summarized as follows: (1) the invention of the tran-
sistor at Bell Laboratories in 1948; (2) the development in the 1950s and 1960s of
the high-level programming languages COBOL (Common Business-Oriented Lan-
guage) and FORTRAN (Formula Translator); (3) the invention of the integrated
circuit (IC) at Texas Instruments in 1958; (4) the development of operating systems
in the early 1960s; (5) the development of the microprocessor (a single chip consist-
ing of a CPU, memory, and input and output controls) by Intel in the early 1970s;
(6) the introduction by IBM of the personal computer in 1981; and (7) progressive
miniaturization of components, starting with large-scale integration (LI) in the late
1970s, then very-large-scale integration (VLSI) in the 1980s, to the present use of
ultra-large-scale integration (ULSI) and experimental nonotechnologies. Concur-
rent with these advances were developments in the areas of mass storage and display
systems, both of which are fundamental requirements for digital image processing.

The first computers powerful enough to carry out meaningful image processing
tasks appeared in the early 1960s. The birth of what we call digital image processing
today can be traced to the availability of those machines, and to the onset of the
space program during that period. It took the combination of those two develop-
ments to bring into focus the potential of digital image processing for solving prob-
lems of practical significance. Work on using computer techniques for improving
images from a space probe began at the Jet Propulsion Laboratory (Pasadena, Cali-
fornia) in 1964, when pictures of the moon transmitted by Ranger 7 were processed
by a computer to correct various types of image distortion inherent in the on-board
television camera. Figure 1.4 shows the first image of the moon taken by Ranger
7 on July 31, 1964 at 9:09 A.M. Eastern Daylight Time (EDT), about 17 minutes
before impacting the lunar surface (the markers, called reseau marks, are used for
geometric corrections, as discussed in Chapter 2).This also is the first image of the
moon taken by a U.S. spacecraft. The imaging lessons learned with Ranger 7 served
as the basis for improved methods used to enhance and restore images from the Sur-
veyor missions to the moon, the Mariner series of flyby missions to Mars, the Apollo
manned flights to the moon, and others.

In parallel with space applications, digital image processing techniques began in
the late 1960s and early 1970s to be used in medical imaging, remote Earth resourc-
es observations, and astronomy. The invention in the early 1970s of computerized
axial tomography (CAT), also called computerized tomography (CT) for short, is
one of the most important events in the application of image processing in medical
diagnosis. Computerized axial tomography is a process in which a ring of detectors
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FIGURE 1.4

The first picture
of the moon by

a U.S. spacecraft.
Ranger 7 took
this image on
July 31,1964 at
9:09 AM. EDT,
about 17 minutes
before impacting
the lunar surface.
(Courtesy of
NASA.)

encircles an object (or patient) and an X-ray source, concentric with the detector
ring, rotates about the object. The X-rays pass through the object and are collected
at the opposite end by the corresponding detectors in the ring. This procedure is
repeated the source rotates. Tomography consists of algorithms that use the sensed
data to construct an image that represents a “slice” through the object. Motion of
the object in a direction perpendicular to the ring of detectors produces a set of
such slices, which constitute a three-dimensional (3-D) rendition of the inside of the
object. Tomography was invented independently by Sir Godfrey N. Hounsfield and
Professor Allan M. Cormack, who shared the 1979 Nobel Prize in Medicine for their
invention. It is interesting to note that X-rays were discovered in 1895 by Wilhelm
Conrad Roentgen, for which he received the 1901 Nobel Prize for Physics. These two
inventions, nearly 100 years apart, led to some of the most important applications of
image processing today.

From the 1960s until the present, the field of image processing has grown vigor-
ously. In addition to applications in medicine and the space program, digital image
processing techniques are now used in a broad range of applications. Computer pro-
cedures are used to enhance the contrast or code the intensity levels into color for
easier interpretation of X-rays and other images used in industry, medicine, and the
biological sciences. Geographers use the same or similar techniques to study pollu-
tion patterns from aerial and satellite imagery. Image enhancement and restoration
procedures are used to process degraded images of unrecoverable objects, or experi-
mental results too expensive to duplicate. In archeology, image processing meth-
ods have successfully restored blurred pictures that were the only available records
of rare artifacts lost or damaged after being photographed. In physics and related
fields, computer techniques routinely enhance images of experiments in areas such
as high-energy plasmas and electron microscopy. Similarly successful applications
of image processing concepts can be found in astronomy, biology, nuclear medicine,
law enforcement, defense, and industry.
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These examples illustrate processing results intended for human interpretation.
The second major area of application of digital image processing techniques men-
tioned at the beginning of this chapter is in solving problems dealing with machine
perception. In this case, interest is on procedures for extracting information from
an image, in a form suitable for computer processing. Often, this information bears
little resemblance to visual features that humans use in interpreting the content
of an image. Examples of the type of information used in machine perception are
statistical moments, Fourier transform coefficients, and multidimensional distance
measures. Typical problems in machine perception that routinely utilize image pro-
cessing techniques are automatic character recognition, industrial machine vision
for product assembly and inspection, military recognizance, automatic processing of
fingerprints, screening of X-rays and blood samples, and machine processing of aer-
ial and satellite imagery for weather prediction and environmental assessment. The
continuing decline in the ratio of computer price to performance, and the expansion
of networking and communication bandwidth via the internet, have created unprec-
edented opportunities for continued growth of digital image processing. Some of
these application areas will be illustrated in the following section.

1.3 EXAMPLES OF FIELDS THAT USE DIGITAL IMAGE PROCESSING Il

Today, there is almost no area of technical endeavor that is not impacted in some
way by digital image processing. We can cover only a few of these applications in the
context and space of the current discussion. However, limited as it is, the material
presented in this section will leave no doubt in your mind regarding the breadth and
importance of digital image processing. We show in this section numerous areas of
application, each of which routinely utilizes the digital image processing techniques
developed in the following chapters. Many of the images shown in this section are
used later in one or more of the examples given in the book. Most images shown are
digital images.

The areas of application of digital image processing are so varied that some form
of organization is desirable in attempting to capture the breadth of this field. One
of the simplest ways to develop a basic understanding of the extent of image pro-
cessing applications is to categorize images according to their source (e.g., X-ray,
visual, infrared, and so on).The principal energy source for images in use today is
the electromagnetic energy spectrum. Other important sources of energy include
acoustic, ultrasonic, and electronic (in the form of electron beams used in electron
microscopy). Synthetic images, used for modeling and visualization, are generated
by computer. In this section we will discuss briefly how images are generated in
these various categories, and the areas in which they are applied. Methods for con-
verting images into digital form will be discussed in the next chapter.

Images based on radiation from the EM spectrum are the most familiar, espe-
cially images in the X-ray and visual bands of the spectrum. Electromagnetic waves
can be conceptualized as propagating sinusoidal waves of varying wavelengths, or
they can be thought of as a stream of massless particles, each traveling in a wavelike
pattern and moving at the speed of light. Each massless particle contains a certain
amount (or bundle) of energy. Each bundle of energy is called a photon. If spectral
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FIGURE 1.5 The electromagnetic spectrum arranged according to energy per photon.

bands are grouped according to energy per photon, we obtain the spectrum shown
in Fig. 1.5, ranging from gamma rays (highest energy) at one end to radio waves
(lowest energy) at the other. The bands are shown shaded to convey the fact that
bands of the EM spectrum are not distinct, but rather transition smoothly from one
to the other.

GAMMA-RAY IMAGING

Major uses of imaging based on gamma rays include nuclear medicine and astro-
nomical observations. In nuclear medicine, the approach is to inject a patient with a
radioactive isotope that emits gamma rays as it decays. Images are produced from
the emissions collected by gamma-ray detectors. Figure 1.6(a) shows an image of a
complete bone scan obtained by using gamma-ray imaging. Images of this sort are
used to locate sites of bone pathology, such as infections or tumors. Figure 1.6(b)
shows another major modality of nuclear imaging called positron emission tomogra-
phy (PET). The principle is the same as with X-ray tomography, mentioned briefly
in Section 1.2. However, instead of using an external source of X-ray energy, the
patient is given a radioactive isotope that emits positrons as it decays. When a pos-
itron meets an electron, both are annihilated and two gamma rays are given off.
These are detected and a tomographic image is created using the basic principles of
tomography. The image shown in Fig. 1.6(b) is one sample of a sequence that con-
stitutes a 3-D rendition of the patient. This image shows a tumor in the brain and
another in the lung, easily visible as small white masses.

A star in the constellation of Cygnus exploded about 15,000 years ago, generat-
ing a superheated, stationary gas cloud (known as the Cygnus Loop) that glows in
a spectacular array of colors. Figure 1.6(c) shows an image of the Cygnus Loop in
the gamma-ray band. Unlike the two examples in Figs. 1.6(a) and (b), this image was
obtained using the natural radiation of the object being imaged. Finally, Fig. 1.6(d)
shows an image of gamma radiation from a valve in a nuclear reactor. An area of
strong radiation is seen in the lower left side of the image.

X-RAY IMAGING

X-rays are among the oldest sources of EM radiation used for imaging. The best
known use of X-rays is medical diagnostics, but they are also used extensively in
industry and other areas, such as astronomy. X-rays for medical and industrial imag-
ing are generated using an X-ray tube, which is a vacuum tube with a cathode and
anode. The cathode is heated, causing free electrons to be released. These electrons
flow at high speed to the positively charged anode. When the electrons strike a
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FIGURE 1.6
Examples of
gamma-ray
imaging.

(a) Bone scan.
(b) PET image.
(c) Cygnus Loop.
(d) Gamma radia-
tion (bright spot)
from a reactor
valve.

(Images

courtesy of

(a) G.E. Medical
Systems; (b) Dr.
Michael E. Casey,
CTI PET Systems;
(c) NASA;

(d) Professors
Zhong He and
David K. Wehe,
University of
Michigan.)
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nucleus, energy is released in the form of X-ray radiation. The energy (penetrat-
ing power) of X-rays is controlled by a voltage applied across the anode, and by a
current applied to the filament in the cathode. Figure 1.7(a) shows a familiar chest
X-ray generated simply by placing the patient between an X-ray source and a film
sensitive to X-ray energy. The intensity of the X-rays is modified by absorption as
they pass through the patient, and the resulting energy falling on the film develops it,
much in the same way that light develops photographic film. In digital radiography,
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FIGURE 1.7
Examples of
X-ray imaging.
(a) Chest X-ray.
(b) Aortic
angiogram.

(c) Head CT.

(d) Circuit boards.
(e) Cygnus Loop.
(Images courtesy
of (a) and (c) Dr.
David R. Pickens,
Dept. of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center;
(b) Dr. Thomas
R. Gest, Division
of Anatomical
Sciences, Univ. of
Michigan Medical
School;

(d) Mr. Joseph

E. Pascente, Lixi,
Inc.;and

(e) NASA))

digital images are obtained by one of two methods: (1) by digitizing X-ray films; or;
(2) by having the X-rays that pass through the patient fall directly onto devices (such
as a phosphor screen) that convert X-rays to light. The light signal in turn is captured
by a light-sensitive digitizing system. We will discuss digitization in more detail in
Chapters 2 and 4.
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Angiography is another major application in an area called contrast enhancement
radiography. This procedure is used to obtain images of blood vessels, called angio-
grams. A catheter (a small, flexible, hollow tube) is inserted, for example, into an
artery or vein in the groin. The catheter is threaded into the blood vessel and guided
to the area to be studied. When the catheter reaches the site under investigation,
an X-ray contrast medium is injected through the tube. This enhances the contrast
of the blood vessels and enables a radiologist to see any irregularities or blockages.
Figure 1.7(b) shows an example of an aortic angiogram. The catheter can be seen
being inserted into the large blood vessel on the lower left of the picture. Note the
high contrast of the large vessel as the contrast medium flows up in the direction of
the kidneys, which are also visible in the image. As we will discuss further in Chapter 2,
angiography is a major area of digital image processing, where image subtraction is
used to further enhance the blood vessels being studied.

Another important use of X-rays in medical imaging is computerized axial tomog-
raphy (CAT). Due to their resolution and 3-D capabilities, CAT scans revolution-
ized medicine from the moment they first became available in the early 1970s. As
noted in Section 1.2, each CAT image is a “slice” taken perpendicularly through
the patient. Numerous slices are generated as the patient is moved in a longitudinal
direction. The ensemble of such images constitutes a 3-D rendition of the inside of
the body, with the longitudinal resolution being proportional to the number of slice
images taken. Figure 1.7(c) shows a typical CAT slice image of a human head.

Techniques similar to the ones just discussed, but generally involving higher
energy X-rays, are applicable in industrial processes. Figure 1.7(d) shows an X-ray
image of an electronic circuit board. Such images, representative of literally hundreds
of industrial applications of X-rays, are used to examine circuit boards for flaws in
manufacturing, such as missing components or broken traces. Industrial CAT scans
are useful when the parts can be penetrated by X-rays, such as in plastic assemblies,
and even large bodies, such as solid-propellant rocket motors. Figure 1.7(e) shows an
example of X-ray imaging in astronomy. This image is the Cygnus Loop of Fig. 1.6(c),
but imaged in the X-ray band.

IMAGING IN THE ULTRAVIOLET BAND

Applications of ultraviolet “light” are varied. They include lithography, industrial
inspection, microscopy, lasers, biological imaging, and astronomical observations.
We illustrate imaging in this band with examples from microscopy and astronomy.
Ultraviolet light is used in fluorescence microscopy, one of the fastest growing
areas of microscopy. Fluorescence is a phenomenon discovered in the middle of the
nineteenth century, when it was first observed that the mineral fluorspar fluoresces
when ultraviolet light is directed upon it. The ultraviolet light itself is not visible, but
when a photon of ultraviolet radiation collides with an electron in an atom of a fluo-
rescent material, it elevates the electron to a higher energy level. Subsequently, the
excited electron relaxes to a lower level and emits light in the form of a lower-energy
photon in the visible (red) light region. Important tasks performed with a fluores-
cence microscope are to use an excitation light to irradiate a prepared specimen,
and then to separate the much weaker radiating fluorescent light from the brighter
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FIGURE 1.8 Examples of ultraviolet imaging. (a) Normal corn. (b) Corn infected by smut. (c) Cygnus Loop. (Images
(a) and (b) courtesy of Dr. Michael W. Davidson, Florida State University, (c) NASA.)

excitation light. Thus, only the emission light reaches the eye or other detector. The
resulting fluorescing areas shine against a dark background with sufficient contrast
to permit detection. The darker the background of the nonfluorescing material, the
more efficient the instrument.

Fluorescence microscopy is an excellent method for studying materials that can be
made to fluoresce, either in their natural form (primary fluorescence) or when treat-
ed with chemicals capable of fluorescing (secondary fluorescence). Figures 1.8(a)
and (b) show results typical of the capability of fluorescence microscopy. Figure
1.8(a) shows a fluorescence microscope image of normal corn, and Fig. 1.8(b) shows
corn infected by “smut,” a disease of cereals, corn, grasses, onions, and sorghum that
can be caused by any one of more than 700 species of parasitic fungi. Corn smut is
particularly harmful because corn is one of the principal food sources in the world.
As another illustration, Fig. 1.8(c) shows the Cygnus Loop imaged in the high-energy
region of the ultraviolet band.

IMAGING IN THE VISIBLE AND INFRARED BANDS

Considering that the visual band of the electromagnetic spectrum is the most famil-
iar in all our activities, it is not surprising that imaging in this band outweighs by far
all the others in terms of breadth of application. The infrared band often is used in
conjunction with visual imaging, so we have grouped the visible and infrared bands
in this section for the purpose of illustration. We consider in the following discus-
sion applications in light microscopy, astronomy, remote sensing, industry, and law
enforcement.

Figure 1.9 shows several examples of images obtained with a light microscope.
The examples range from pharmaceuticals and microinspection to materials char-
acterization. Even in microscopy alone, the application areas are too numerous to
detail here. It is not difficult to conceptualize the types of processes one might apply
to these images, ranging from enhancement to measurements.
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FIGURE 1.9

Examples of light
microscopy images.
(a) Taxol (antican-
cer agent), magni-
fied 250 x.

(b) Cholesterol —
40 x.

(¢) Microproces-
sor— 60 x.

(d) Nickel oxide
thin film— 600 x.
(e) Surface of audio
CD—1750 x.

(f) Organic super-
conductor — 450 x.
(Images courtesy of
Dr. Michael W.
Davidson, Florida
State University.)
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Another major area of visual processing is remote sensing, which usually includes
several bands in the visual and infrared regions of the spectrum. Table 1.1 shows the
so-called thematic bands in NASA’s LANDSAT satellites. The primary function of
LANDSAT is to obtain and transmit images of the Earth from space, for purposes
of monitoring environmental conditions on the planet. The bands are expressed in
terms of wavelength, with 1um being equal to 10° m (we will discuss the wave-
length regions of the electromagnetic spectrum in more detail in Chapter 2). Note
the characteristics and uses of each band in Table 1.1.

In order to develop a basic appreciation for the power of this type of multispec-
tral imaging, consider Fig. 1.10, which shows one image for each of the spectral bands
in Table 1.1. The area imaged is Washington D.C., which includes features such as
buildings, roads, vegetation, and a major river (the Potomac) going though the city.
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TABLE 1.1
Thematic bands
of NASA’s
LANDSAT
satellite.

Band No. Name Wavelength Characteristics and Uses
(pem)

1 Visible blue 0.45-0.52 Maximum water penetration
2 Visible green 0.53-0.61 Measures plant vigor
3 Visible red 0.63-0.69 Vegetation discrimination
4 Near infrared 0.78-0.90 Biomass and shoreline mapping
5 Middle infrared 1.55-1.75 Moisture content: soil/vegetation
6 Thermal infrared 10.4-12.5 Soil moisture; thermal mapping
7 Short-wave infrared 2.09-2.35 Mineral mapping

Images of population centers are used over time to assess population growth and
shift patterns, pollution, and other factors affecting the environment. The differenc-
es between visual and infrared image features are quite noticeable in these images.
Observe, for example, how well defined the river is from its surroundings in Bands
4 and 5.

Weather observation and prediction also are major applications of multispectral
imaging from satellites. For example, Fig. 1.11 is an image of Hurricane Katrina, one
of the most devastating storms in recent memory in the Western Hemisphere. This
image was taken by a National Oceanographic and Atmospheric Administration
(NOAA) satellite using sensors in the visible and infrared bands. The eye of the hur-
ricane is clearly visible in this image.

FIGURE 1.10 LANDSAT satellite images of the Washington, D.C. area. The numbers refer to the thematic bands in
Table 1.1. (Images courtesy of NASA.)



FIGURE 1.11

Satellite image of
Hurricane Katrina
taken on August
29,2005.
(Courtesy of
NOAA.)
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Figures 1.12 and 1.13 show an application of infrared imaging. These images are
part of the Nighttime Lights of the World data set, which provides a global inventory
of human settlements. The images were generated by an infrared imaging system
mounted on a NOAA/DMSP (Defense Meteorological Satellite Program) satel-
lite. The infrared system operates in the band 10.0 to 13.4 wm, and has the unique
capability to observe faint sources of visible, near infrared emissions present on the
Earth’s surface, including cities, towns, villages, gas flares, and fires. Even without
formal training in image processing, it is not difficult to imagine writing a computer
program that would use these images to estimate the relative percent of total electri-
cal energy used by various regions of the world.

A major area of imaging in the visible spectrum is in automated visual inspection
of manufactured goods. Figure 1.14 shows some examples. Figure 1.14(a) is a con-
troller board for a CD-ROM drive. A typical image processing task with products
such as this is to inspect them for missing parts (the black square on the top, right
quadrant of the image is an example of a missing component).

Figure 1.14(b) is an imaged pill container. The objective here is to have a machine
look for missing, incomplete, or deformed pills. Figure 1.14(c) shows an application
in which image processing is used to look for bottles that are not filled up to an
acceptable level. Figure 1.14(d) shows a clear plastic part with an unacceptable num-
ber of air pockets in it. Detecting anomalies like these is a major theme of industrial
inspection that includes other products, such as wood and cloth. Figure 1.14(e) shows
a batch of cereal during inspection for color and the presence of anomalies such as
burned flakes. Finally, Fig. 1.14(f) shows an image of an intraocular implant (replace-
ment lens for the human eye). A “structured light” illumination technique was used
to highlight deformations toward the center of the lens, and other imperfections. For
example, the markings at 1 o’clock and 5 o’clock are tweezer damage. Most of the
other small speckle detail is debris. The objective in this type of inspection is to find
damaged or incorrectly manufactured implants automatically, prior to packaging.
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FIGURE 1.12
Infrared

satellite images of
the Americas. The
small shaded map
is provided for
reference.
(Courtesy of
NOAA.)

Figure 1.15 illustrates some additional examples of image processing in the vis-
ible spectrum. Figure 1.15(a) shows a thumb print. Images of fingerprints are rou-
tinely processed by computer, either to enhance them or to find features that aid
in the automated search of a database for potential matches. Figure 1.15(b) shows
an image of paper currency. Applications of digital image processing in this area



FIGURE 1.13
Infrared

satellite images
of the remaining
populated parts
of the world. The
small shaded map
is provided for
reference.
(Courtesy of
NOAA.)
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include automated counting and, in law enforcement, the reading of the serial num-
ber for the purpose of tracking and identifying currency bills. The two vehicle images
shown in Figs. 1.15(c) and (d) are examples of automated license plate reading. The
light rectangles indicate the area in which the imaging system detected the plate.
The black rectangles show the results of automatically reading the plate content by
the system. License plate and other applications of character recognition are used
extensively for traffic monitoring and surveillance.

IMAGING IN THE MICROWAVE BAND

The principal application of imaging in the microwave band is radar. The unique
feature of imaging radar is its ability to collect data over virtually any region at any
time, regardless of weather or ambient lighting conditions. Some radar waves can
penetrate clouds, and under certain conditions, can also see through vegetation, ice,
and dry sand. In many cases, radar is the only way to explore inaccessible regions of
the Earth’s surface. An imaging radar works like a flash camera in that it provides
its own illumination (microwave pulses) to illuminate an area on the ground and
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FIGURE 1.14 Some examples of manufactured goods checked using digital image processing. (a) Circuit board con-
troller. (b) Packaged pills. (c) Bottles. (d) Air bubbles in a clear plastic product. (¢) Cereal. (f) Image of intraocular
implant. (Figure (f) courtesy of Mr. Pete Sites, Perceptics Corporation.)

take a snapshot image. Instead of a camera lens, a radar uses an antenna and digital
computer processing to record its images. In a radar image, one can see only the
microwave energy that was reflected back toward the radar antenna.

Figure 1.16 shows a spaceborne radar image covering a rugged mountainous area
of southeast Tibet, about 90 km east of the city of Lhasa. In the lower right cor-
ner is a wide valley of the Lhasa River, which is populated by Tibetan farmers and
yak herders, and includes the village of Menba. Mountains in this area reach about
5800 m (19,000 ft) above sea level, while the valley floors lie about 4300 m (14,000 ft)
above sea level. Note the clarity and detail of the image, unencumbered by clouds or
other atmospheric conditions that normally interfere with images in the visual band.

IMAGING IN THE RADIO BAND

As in the case of imaging at the other end of the spectrum (gamma rays), the major
applications of imaging in the radio band are in medicine and astronomy. In medicine,
radio waves are used in magnetic resonance imaging (MRI). This technique places a
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FIGURE 1.15

Some additional
examples of
imaging in the
visible spectrum.
(a) Thumb print.
(b) Paper
currency.

(c) and (d) Auto-
mated license
plate reading.
(Figure (a)
courtesy of the
National
Institute of
Standards and
Technology.
Figures (c) and
(d) courtesy of
Dr. Juan
Herrera,
Perceptics
Corporation.)
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patient in a powerful magnet and passes radio waves through the individual’s body
in short pulses. Each pulse causes a responding pulse of radio waves to be emitted
by the patient’s tissues. The location from which these signals originate and their
strength are determined by a computer, which produces a two-dimensional image
of a section of the patient. MRI can produce images in any plane. Figure 1.17 shows
MRI images of a human knee and spine.

The rightmost image in Fig. 1.18 is an image of the Crab Pulsar in the radio band.
Also shown for an interesting comparison are images of the same region, but taken
in most of the bands discussed earlier. Observe that each image gives a totally dif-
ferent “view” of the pulsar.

OTHER IMAGING MODALITIES

Although imaging in the electromagnetic spectrum is dominant by far, there are a
number of other imaging modalities that are also important. Specifically, we discuss
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FIGURE 1.16
Spaceborne radar
image of
mountainous
region in
southeast Tibet.
(Courtesy of
NASA.)

in this section acoustic imaging, electron microscopy, and synthetic (computer-gen-
erated) imaging.

Imaging using “sound” finds application in geological exploration, industry, and
medicine. Geological applications use sound in the low end of the sound spectrum
(hundreds of Hz) while imaging in other areas use ultrasound (millions of Hz). The
most important commercial applications of image processing in geology are in min-
eral and oil exploration. For image acquisition over land, one of the main approaches
is to use a large truck and a large flat steel plate. The plate is pressed on the ground by

ab

FIGURE 1.17 MRI images of a human (a) knee, and (b) spine. (Figure (a) courtesy of Dr. Thom-
as R. Gest, Division of Anatomical Sciences, University of Michigan Medical School, and
(b) courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center.)
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FIGURE 1.18 Images of the Crab Pulsar (in the center of each image) covering the electromagnetic spectrum. (Cour-

tesy of NASA.)

FIGURE 1.19
Cross-sectional
image of a
seismic model.
The arrow points
to a hydrocarbon
(oil and/or gas)
trap. (Courtesy of
Dr. Curtis Ober,
Sandia National
Laboratories.)

the truck, and the truck is vibrated through a frequency spectrum up to 100 Hz. The
strength and speed of the returning sound waves are determined by the composi-
tion of the Earth below the surface. These are analyzed by computer, and images are
generated from the resulting analysis.

For marine image acquisition, the energy source consists usually of two air guns
towed behind a ship. Returning sound waves are detected by hydrophones placed
in cables that are either towed behind the ship, laid on the bottom of the ocean,
or hung from buoys (vertical cables). The two air guns are alternately pressurized
to ~2000 psi and then set off. The constant motion of the ship provides a transversal
direction of motion that, together with the returning sound waves, is used to gener-
ate a 3-D map of the composition of the Earth below the bottom of the ocean.

Figure 1.19 shows a cross-sectional image of a well-known 3-D model against
which the performance of seismic imaging algorithms is tested. The arrow points to a
hydrocarbon (oil and/or gas) trap. This target is brighter than the surrounding layers
because the change in density in the target region is larger. Seismic interpreters look
for these “bright spots” to find oil and gas. The layers above also are bright, but their
brightness does not vary as strongly across the layers. Many seismic reconstruction
algorithms have difficulty imaging this target because of the faults above it.

Although ultrasound imaging is used routinely in manufacturing, the best known
applications of this technique are in medicine, especially in obstetrics, where fetuses
are imaged to determine the health of their development. A byproduct of this
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FIGURE 1.20
Examples of
ultrasound
imaging. (a) A
fetus. (b) Another
view of the fetus.
(c) Thyroids.

(d) Muscle layers
showing lesion.
(Courtesy of
Siemens

Medical Systems,
Inc., Ultrasound
Group.)

examination is determining the sex of the baby. Ultrasound images are generated
using the following basic procedure:

1. The ultrasound system (a computer, ultrasound probe consisting of a source, a
receiver, and a display) transmits high-frequency (1 to 5 MHz) sound pulses
into the body.

2. The sound waves travel into the body and hit a boundary between tissues (e.g.,
between fluid and soft tissue, soft tissue and bone). Some of the sound waves
are reflected back to the probe, while some travel on further until they reach
another boundary and are reflected.

3. The reflected waves are picked up by the probe and relayed to the computer.

4. The machine calculates the distance from the probe to the tissue or organ bound-
aries using the speed of sound in tissue (1540 m/s) and the time of each echo’s
return.

5. The system displays the distances and intensities of the echoes on the screen,
forming a two-dimensional image.

In a typical ultrasound image, millions of pulses and echoes are sent and received
each second. The probe can be moved along the surface of the body and angled to
obtain various views. Figure 1.20 shows several examples of medical uses of ultra-
sound.

We continue the discussion on imaging modalities with some examples of elec-
tron microscopy. Electron microscopes function as their optical counterparts, except
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that they use a focused beam of electrons instead of light to image a specimen. The
operation of electron microscopes involves the following basic steps: A stream
of electrons is produced by an electron source and accelerated toward the speci-
men using a positive electrical potential. This stream is confined and focused using
metal apertures and magnetic lenses into a thin, monochromatic beam. This beam is
focused onto the sample using a magnetic lens. Interactions occur inside the irradi-
ated sample, affecting the electron beam. These interactions and effects are detected
and transformed into an image, much in the same way that light is reflected from,
or absorbed by, objects in a scene. These basic steps are carried out in all electron
miCroscopes.

A transmission electron microscope (TEM) works much like a slide projector. A
projector transmits a beam of light through a slide; as the light passes through the
slide, it is modulated by the contents of the slide. This transmitted beam is then
projected onto the viewing screen, forming an enlarged image of the slide. TEMs
work in the same way, except that they shine a beam of electrons through a spec-
imen (analogous to the slide). The fraction of the beam transmitted through the
specimen is projected onto a phosphor screen. The interaction of the electrons with
the phosphor produces light and, therefore, a viewable image. A scanning electron
microscope (SEM), on the other hand, actually scans the electron beam and records
the interaction of beam and sample at each location. This produces one dot on a
phosphor screen. A complete image is formed by a raster scan of the beam through
the sample, much like a TV camera. The electrons interact with a phosphor screen
and produce light. SEMs are suitable for “bulky” samples, while TEMs require very
thin samples.

Electron microscopes are capable of very high magnification. While light micros-
copy is limited to magnifications on the order of 1000 %, electron microscopes can
achieve magnification of 10,000 x or more. Figure 1.21 shows two SEM images of
specimen failures due to thermal overload.

We conclude the discussion of imaging modalities by looking briefly at images
that are not obtained from physical objects. Instead, they are generated by computer.
Fractals are striking examples of computer-generated images. Basically, a fractal is
nothing more than an iterative reproduction of a basic pattern according to some
mathematical rules. For instance, tiling is one of the simplest ways to generate a frac-
tal image. A square can be subdivided into four square subregions, each of which can
be further subdivided into four smaller square regions, and so on. Depending on the
complexity of the rules for filling each subsquare, some beautiful tile images can be
generated using this method. Of course, the geometry can be arbitrary. For instance,
the fractal image could be grown radially out of a center point. Figure 1.22(a) shows
a fractal grown in this way. Figure 1.22(b) shows another fractal (a “moonscape”)
that provides an interesting analogy to the images of space used as illustrations in
some of the preceding sections.

A more structured approach to image generation by computer lies in 3-D model-
ing. This is an area that provides an important intersection between image process-
ing and computer graphics, and is the basis for many 3-D visualization systems (e.g.,
flight simulators). Figures 1.22(c) and (d) show examples of computer-generated
images. Because the original object is created in 3-D, images can be generated in any
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FIGURE 1.22

(a) and (b) Fractal
images.

(c) and (d) Images
generated from
3-D computer
models of the
objects shown.
(Figures (a) and
(b) courtesy of
Ms. Melissa D.
Binde,
Swarthmore
College; (c) and
(d) courtesy of
NASA.)

FIGURE 1.21 (a) 250 x SEM image of a tungsten filament following thermal failure (note the
shattered pieces on the lower left). (b) 2500 X SEM image of a damaged integrated circuit.
The white fibers are oxides resulting from thermal destruction. (Figure (a) courtesy of Mr.
Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene; (b) cour-
tesy of Dr. J. M. Hudak, McMaster University, Hamilton, Ontario, Canada.)

perspective from plane projections of the 3-D volume. Images of this type can be
used for medical training and for a host of other applications, such as criminal foren-
sics and special effects.
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1.4 FUNDAMENTAL STEPS IN DIGITAL IMAGE PROCESSING N

It is helpful to divide the material covered in the following chapters into the two
broad categories defined in Section 1.1: methods whose input and output are images,
and methods whose inputs may be images, but whose outputs are attributes extract-
ed from those images. This organization is summarized in Fig. 1.23. The diagram
does not imply that every process is applied to an image. Rather, the intention is to
convey an idea of all the methodologies that can be applied to images for different
purposes, and possibly with different objectives. The discussion in this section may
be viewed as a brief overview of the material in the remainder of the book.

Image acquisition is the first process in Fig. 1.23. The discussion in Section 1.3
gave some hints regarding the origin of digital images. This topic will be considered
in much more detail in Chapter 2, where we also introduce a number of basic digital
image concepts that are used throughout the book. Acquisition could be as simple as
being given an image that is already in digital form. Generally, the image acquisition
stage involves preprocessing, such as scaling.

Image enhancement is the process of manipulating an image so the result is more
suitable than the original for a specific application. The word specific is important
here, because it establishes at the outset that enhancement techniques are problem
oriented. Thus, for example, a method that is quite useful for enhancing X-ray images
may not be the best approach for enhancing satellite images taken in the infrared
band of the electromagnetic spectrum.

There is no general “theory” of image enhancement. When an image is processed
for visual interpretation, the viewer is the ultimate judge of how well a particular

Outputs of these processes generally are images
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method works. Enhancement techniques are so varied, and use so many different
image processing approaches, that it is difficult to assemble a meaningful body of
techniques suitable for enhancement in one chapter without extensive background
development. For this reason, and also because beginners in the field of image pro-
cessing generally find enhancement applications visually appealing, interesting, and
relatively simple to understand, we will use image enhancement as examples when
introducing new concepts in parts of Chapter 2 and in Chapters 3 and 4. The mate-
rial in the latter two chapters span many of the methods used traditionally for image
enhancement. Therefore, using examples from image enhancement to introduce new
image processing methods developed in these early chapters not only saves having
an extra chapter in the book dealing with image enhancement but, more importantly,
is an effective approach for introducing newcomers to the details of processing tech-
niques early in the book. However, as you will see in progressing through the rest
of the book, the material developed in Chapters 3 and 4 is applicable to a much
broader class of problems than just image enhancement.

Image restoration is an area that also deals with improving the appearance of
an image. However, unlike enhancement, which is subjective, image restoration
is objective, in the sense that restoration techniques tend to be based on mathe-
matical or probabilistic models of image degradation. Enhancement, on the other
hand, is based on human subjective preferences regarding what constitutes a “good”
enhancement result.

Color image processing is an area that has been gaining in importance because of
the significant increase in the use of digital images over the internet. Chapter 6 cov-
ers a number of fundamental concepts in color models and basic color processing
in a digital domain. Color is used also as the basis for extracting features of interest
in an image.

Wavelets are the foundation for representing images in various degrees of reso-
lution. In particular, this material is used in the book for image data compression
and for pyramidal representation, in which images are subdivided successively into
smaller regions. The material in Chapters 4 and 5 is based mostly on the Fourier
transform. In addition to wavelets, we will also discuss in Chapter 7 a number of
other transforms that are used routinely in image processing.

Compression, as the name implies, deals with techniques for reducing the storage
required to save an image, or the bandwidth required to transmit it. Although stor-
age technology has improved significantly over the past decade, the same cannot be
said for transmission capacity. This is true particularly in uses of the internet, which
are characterized by significant pictorial content. Image compression is familiar
(perhaps inadvertently) to most users of computers in the form of image file exten-
sions, such as the jpg file extension used in the JPEG (Joint Photographic Experts
Group) image compression standard.

Morphological processing deals with tools for extracting image components that
are useful in the representation and description of shape. The material in this chap-
ter begins a transition from processes that output images to processes that output
image attributes, as indicated in Section 1.1.

Segmentation partitions an image into its constituent parts or objects. In gen-
eral, autonomous segmentation is one of the most difficult tasks in digital image
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processing. A rugged segmentation procedure brings the process a long way toward
successful solution of imaging problems that require objects to be identified indi-
vidually. On the other hand, weak or erratic segmentation algorithms almost always
guarantee eventual failure. In general, the more accurate the segmentation, the
more likely automated object classification is to succeed.

Feature extraction almost always follows the output of a segmentation stage, which
usually is raw pixel data, constituting either the boundary of a region (i.e., the set
of pixels separating one image region from another) or all the points in the region
itself. Feature extraction consists of feature detection and feature description. Fea-
ture detection refers to finding the features in an image, region, or boundary. Feature
description assigns quantitative attributes to the detected features. For example, we
might detect corners in a region, and describe those corners by their orientation
and location; both of these descriptors are quantitative attributes. Feature process-
ing methods discussed in this chapter are subdivided into three principal categories,
depending on whether they are applicable to boundaries, regions, or whole images.
Some features are applicable to more than one category. Feature descriptors should
be as insensitive as possible to variations in parameters such as scale, translation,
rotation, illumination, and viewpoint.

Image pattern classification is the process that assigns a label (e.g., “vehicle”) to an
object based on its feature descriptors. In the last chapter of the book, we will discuss
methods of image pattern classification ranging from “classical” approaches such as
minimum-distance, correlation, and Bayes classifiers, to more modern approaches
implemented using deep neural networks. In particular, we will discuss in detail deep
convolutional neural networks, which are ideally suited for image processing work.

So far, we have said nothing about the need for prior knowledge or about the
interaction between the knowledge base and the processing modules in Fig. 1.23.
Knowledge about a problem domain is coded into an image processing system in the
form of a knowledge database. This knowledge may be as simple as detailing regions
of an image where the information of interest is known to be located, thus limiting
the search that has to be conducted in seeking that information. The knowledge base
can also be quite complex, such as an interrelated list of all major possible defects
in a materials inspection problem, or an image database containing high-resolution
satellite images of a region in connection with change-detection applications. In
addition to guiding the operation of each processing module, the knowledge base
also controls the interaction between modules. This distinction is made in Fig. 1.23
by the use of double-headed arrows between the processing modules and the knowl-
edge base, as opposed to single-headed arrows linking the processing modules.

Although we do not discuss image display explicitly at this point, it is important to
keep in mind that viewing the results of image processing can take place at the out-
put of any stage in Fig. 1.23. We also note that not all image processing applications
require the complexity of interactions implied by Fig. 1.23. In fact, not even all those
modules are needed in many cases. For example, image enhancement for human
visual interpretation seldom requires use of any of the other stages in Fig. 1.23. In
general, however, as the complexity of an image processing task increases, so does
the number of processes required to solve the problem.
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1.5 COMPONENTS OF AN IMAGE PROCESSING SYSTEM I

As recently as the mid-1980s, numerous models of image processing systems being
sold throughout the world were rather substantial peripheral devices that attached
to equally substantial host computers. Late in the 1980s and early in the 1990s, the
market shifted to image processing hardware in the form of single boards designed
to be compatible with industry standard buses and to fit into engineering work-
station cabinets and personal computers. In the late 1990s and early 2000s, a new
class of add-on boards, called graphics processing units (GPUs) were introduced for
work on 3-D applications, such as games and other 3-D graphics applications. It was
not long before GPUs found their way into image processing applications involving
large-scale matrix implementations, such as training deep convolutional networks.
In addition to lowering costs, the market shift from substantial peripheral devices to
add-on processing boards also served as a catalyst for a significant number of new
companies specializing in the development of software written specifically for image
processing.

The trend continues toward miniaturizing and blending of general-purpose small
computers with specialized image processing hardware and software. Figure 1.24
shows the basic components comprising a typical general-purpose system used for
digital image processing. The function of each component will be discussed in the
following paragraphs, starting with image sensing.

Two subsystems are required to acquire digital images. The first is a physical sen-
sor that responds to the energy radiated by the object we wish to image. The second,
called a digitizer, is a device for converting the output of the physical sensing device
into digital form. For instance, in a digital video camera, the sensors (CCD chips)
produce an electrical output proportional to light intensity. The digitizer converts
these outputs to digital data. These topics will be covered in Chapter 2.

Specialized image processing hardware usually consists of the digitizer just men-
tioned, plus hardware that performs other primitive operations, such as an arithme-
tic logic unit (ALU), that performs arithmetic and logical operations in parallel on
entire images. One example of how an ALU is used is in averaging images as quickly
as they are digitized, for the purpose of noise reduction. This type of hardware some-
times is called a front-end subsystem, and its most distinguishing characteristic is
speed. In other words, this unit performs functions that require fast data through-
puts (e.g., digitizing and averaging video images at 30 frames/s) that the typical main
computer cannot handle. One or more GPUs (see above) also are common in image
processing systems that perform intensive matrix operations.

The computer in an image processing system is a general-purpose computer and
can range from a PC to a supercomputer. In dedicated applications, sometimes cus-
tom computers are used to achieve a required level of performance, but our interest
here is on general-purpose image processing systems. In these systems, almost any
well-equipped PC-type machine is suitable for off-line image processing tasks.

Software for image processing consists of specialized modules that perform
specific tasks. A well-designed package also includes the capability for the user to
write code that, as a minimum, utilizes the specialized modules. More sophisticated
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software packages allow the integration of those modules and general-purpose
software commands from at least one computer language. Commercially available
image processing software, such as the well-known MATLAB® Image Processing
Toolbox, is also common in a well-equipped image processing system.

Mass storageis amust in image processing applications. Animage of size 1024 x 1024
pixels, in which the intensity of each pixel is an 8-bit quantity, requires one megabyte
of storage space if the image is not compressed. When dealing with image databases
that contain thousands, or even millions, of images, providing adequate storage in
an image processing system can be a challenge. Digital storage for image processing
applications falls into three principal categories: (1) short-term storage for use dur-
ing processing; (2) on-line storage for relatively fast recall; and (3) archival storage,
characterized by infrequent access. Storage is measured in bytes (eight bits), Kbytes
(10° bytes), Mbytes (10° bytes), Gbytes (10° bytes), and Tbytes (10'* bytes).
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One method of providing short-term storage is computer memory. Another is by
specialized boards, called frame buffers, that store one or more images and can be
accessed rapidly, usually at video rates (e.g., at 30 complete images per second). The
latter method allows virtually instantaneous image zoom, as well as scroll (vertical
shifts) and pan (horizontal shifts). Frame buffers usually are housed in the special-
ized image processing hardware unit in Fig. 1.24. On-line storage generally takes
the form of magnetic disks or optical-media storage. The key factor characterizing
on-line storage is frequent access to the stored data. Finally, archival storage is char-
acterized by massive storage requirements but infrequent need for access. Magnetic
tapes and optical disks housed in “jukeboxes” are the usual media for archival appli-
cations.

Image displays in use today are mainly color, flat screen monitors. Monitors are
driven by the outputs of image and graphics display cards that are an integral part of
the computer system. Seldom are there requirements for image display applications
that cannot be met by display cards and GPUs available commercially as part of the
computer system. In some cases, it is necessary to have stereo displays, and these are
implemented in the form of headgear containing two small displays embedded in
goggles worn by the user.

Hardcopy devices for recording images include laser printers, film cameras, heat-
sensitive devices, ink-jet units, and digital units, such as optical and CD-ROM disks.
Film provides the highest possible resolution, but paper is the obvious medium of
choice for written material. For presentations, images are displayed on film trans-
parencies or in a digital medium if image projection equipment is used. The latter
approach is gaining acceptance as the standard for image presentations.

Networking and cloud communication are almost default functions in any com-
puter system in use today. Because of the large amount of data inherent in image
processing applications, the key consideration in image transmission is bandwidth. In
dedicated networks, this typically is not a problem, but communications with remote
sites via the internet are not always as efficient. Fortunately, transmission bandwidth
is improving quickly as a result of optical fiber and other broadband technologies.
Image data compression continues to play a major role in the transmission of large
amounts of image data.

Summary, References, and Further Reading

The main purpose of the material presented in this chapter is to provide a sense of perspective about the origins
of digital image processing and, more important, about current and future areas of application of this technology.
Although the coverage of these topics in this chapter was necessarily incomplete due to space limitations, it should
have left you with a clear impression of the breadth and practical scope of digital image processing. As we proceed
in the following chapters with the development of image processing theory and applications, numerous examples
are provided to keep a clear focus on the utility and promise of these techniques. Upon concluding the study of the
final chapter, a reader of this book will have arrived at a level of understanding that is the foundation for most of
the work currently underway in this field.

In past editions, we have provided a long list of journals and books to give readers an idea of the breadth of the
image processing literature, and where this literature is reported. The list has been updated, and it has become so
extensive that it is more practical to include it in the book website: www.ImageProcessingPlace.com, in the section
entitled Publications.
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Digital Image Fundamentals

Those who wish to succeed must ask the right preliminary
questions.

Atristotle

Preview

This chapter is an introduction to a number of basic concepts in digital image processing that are used
throughout the book. Section 2.1 summarizes some important aspects of the human visual system, includ-
ing image formation in the eye and its capabilities for brightness adaptation and discrimination. Section
2.2 discusses light, other components of the electromagnetic spectrum, and their imaging characteristics.
Section 2.3 discusses imaging sensors and how they are used to generate digital images. Section 2.4 intro-
duces the concepts of uniform image sampling and intensity quantization. Additional topics discussed
in that section include digital image representation, the effects of varying the number of samples and
intensity levels in an image, the concepts of spatial and intensity resolution, and the principles of image
interpolation. Section 2.5 deals with a variety of basic relationships between pixels. Finally, Section 2.6
is an introduction to the principal mathematical tools we use throughout the book. A second objective
of that section is to help you begin developing a “feel” for how these tools are used in a variety of basic
image processing tasks.

Upon completion of this chapter, readers should:

B Have an understanding of some important B Be familiar with spatial and intensity resolu-
functions and limitations of human vision. tion and their effects on image appearance.

B Be familiar with the electromagnetic energy B Have an understanding of basic geometric
spectrum, including basic properties of light. relationships between image pixels.

B Know how digital images are generated and B Be familiar with the principal mathematical
represented. tools used in digital image processing.

B Understand the basics of image sampling and M Be able to apply a variety of introductory dig-
quantization. ital image processing techniques.

47
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FIGURE 2.1
Simplified
diagram of a
cross section of
the human eye.

2.1 ELEMENTS OF VISUAL PERCEPTION I

Although the field of digital image processing is built on a foundation of mathemat-
ics, human intuition and analysis often play a role in the choice of one technique
versus another, and this choice often is made based on subjective, visual judgments.
Thus, developing an understanding of basic characteristics of human visual percep-
tion as a first step in our journey through this book is appropriate. In particular, our
interest is in the elementary mechanics of how images are formed and perceived
by humans. We are interested in learning the physical limitations of human vision
in terms of factors that also are used in our work with digital images. Factors such
as how human and electronic imaging devices compare in terms of resolution and
ability to adapt to changes in illumination are not only interesting, they are also
important from a practical point of view.

STRUCTURE OF THE HUMAN EYE

Figure 2.1 shows a simplified cross section of the human eye. The eye is nearly a
sphere (with a diameter of about 20 mm) enclosed by three membranes: the cornea
and sclera outer cover; the choroid; and the retina. The cornea is a tough, transparent
tissue that covers the anterior surface of the eye. Continuous with the cornea, the
sclera is an opaque membrane that encloses the remainder of the optic globe.

The choroid lies directly below the sclera. This membrane contains a network of
blood vessels that serve as the major source of nutrition to the eye. Even superficial

Cornea

Iris

Ciliary muscle

Visual axis

Vitreous humor
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injury to the choroid can lead to severe eye damage as a result of inflammation that
restricts blood flow. The choroid coat is heavily pigmented, which helps reduce the
amount of extraneous light entering the eye and the backscatter within the optic
globe. At its anterior extreme, the choroid is divided into the ciliary body and the
iris. The latter contracts or expands to control the amount of light that enters the eye.
The central opening of the iris (the pupil) varies in diameter from approximately 2
to 8 mm. The front of the iris contains the visible pigment of the eye, whereas the
back contains a black pigment.

The lens consists of concentric layers of fibrous cells and is suspended by fibers
that attach to the ciliary body. It is composed of 60% to 70% water, about 6% fat,
and more protein than any other tissue in the eye. The lens is colored by a slightly
yellow pigmentation that increases with age. In extreme cases, excessive clouding of
the lens, referred to as cataracts, can lead to poor color discrimination and loss of
clear vision. The lens absorbs approximately 8% of the visible light spectrum, with
higher absorption at shorter wavelengths. Both infrared and ultraviolet light are
absorbed by proteins within the lens and, in excessive amounts, can damage the eye.

The innermost membrane of the eye is the retina, which lines the inside of the
wall’s entire posterior portion. When the eye is focused, light from an object is
imaged on the retina. Pattern vision is afforded by discrete light receptors distrib-
uted over the surface of the retina. There are two types of receptors: cones and rods.
There are between 6 and 7 million cones in each eye. They are located primarily in
the central portion of the retina, called the fovea, and are highly sensitive to color.
Humans can resolve fine details because each cone is connected to its own nerve end.
Muscles rotate the eye until the image of a region of interest falls on the fovea. Cone
vision is called photopic or bright-light vision.

The number of rods is much larger: Some 75 to 150 million are distributed over
the retina. The larger area of distribution, and the fact that several rods are connect-
ed to a single nerve ending, reduces the amount of detail discernible by these recep-
tors. Rods capture an overall image of the field of view. They are not involved in
color vision, and are sensitive to low levels of illumination. For example, objects that
appear brightly colored in daylight appear as colorless forms in moonlight because
only the rods are stimulated. This phenomenon is known as scotopic or dim-light
vision.

Figure 2.2 shows the density of rods and cones for a cross section of the right eye,
passing through the region where the optic nerve emerges from the eye. The absence
of receptors in this area causes the so-called blind spot (see Fig. 2.1). Except for this
region, the distribution of receptors is radially symmetric about the fovea. Receptor
density is measured in degrees from the visual axis. Note in Fig. 2.2 that cones are
most dense in the center area of the fovea, and that rods increase in density from
the center out to approximately 20° off axis. Then, their density decreases out to the
periphery of the retina.

The fovea itself is a circular indentation in the retina of about 1.5 mm in diameter,
so it has an area of approximately 1.77 mm?. As Fig. 2.2 shows, the density of cones
in that area of the retina is on the order of 150,000 elements per mm?*. Based on
these figures, the number of cones in the fovea, which is the region of highest acuity
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FIGURE 2.2
Distribution of
rods and cones in
the retina.
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in the eye, is about 265,000 elements. Modern electronic imaging chips exceed this
number by a large factor. While the ability of humans to integrate intelligence and
experience with vision makes purely quantitative comparisons somewhat superficial,
keep in mind for future discussions that electronic imaging sensors can easily exceed
the capability of the eye in resolving image detail.

IMAGE FORMATION IN THE EYE

In an ordinary photographic camera, the lens has a fixed focal length. Focusing at
various distances is achieved by varying the distance between the lens and the imag-
ing plane, where the film (or imaging chip in the case of a digital camera) is located.
In the human eye, the converse is true; the distance between the center of the lens
and the imaging sensor (the retina) is fixed, and the focal length needed to achieve
proper focus is obtained by varying the shape of the lens. The fibers in the ciliary
body accomplish this by flattening or thickening the lens for distant or near ob-
jects, respectively. The distance between the center of the lens and the retina along
the visual axis is approximately 17 mm. The range of focal lengths is approximately
14 mm to 17 mm, the latter taking place when the eye is relaxed and focused at dis-
tances greater than about 3 m. The geometry in Fig. 2.3 illustrates how to obtain the
dimensions of an image formed on the retina. For example, suppose that a person
is looking at a tree 15 m high at a distance of 100 m. Letting /# denote the height
of that object in the retinal image, the geometry of Fig. 2.3 yields 15/100 = 4/17 or
h =2.5 mm. As indicated earlier in this section, the retinal image is focused primar-
ily on the region of the fovea. Perception then takes place by the relative excitation
of light receptors, which transform radiant energy into electrical impulses that ulti-
mately are decoded by the brain.

BRIGHTNESS ADAPTATION AND DISCRIMINATION

Because digital images are displayed as sets of discrete intensities, the eye’s abil-
ity to discriminate between different intensity levels is an important consideration
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| 100 m

in presenting image processing results. The range of light intensity levels to which
the human visual system can adapt is enormous—on the order of 10'°— from the
scotopic threshold to the glare limit. Experimental evidence indicates that subjec-
tive brightness (intensity as perceived by the human visual system) is a logarithmic
function of the light intensity incident on the eye. Figure 2.4, a plot of light inten-
sity versus subjective brightness, illustrates this characteristic. The long solid curve
represents the range of intensities to which the visual system can adapt. In photopic
vision alone, the range is about 10°. The transition from scotopic to photopic vision
is gradual over the approximate range from 0.001 to 0.1 millilambert (-3 to -1 mL
in the log scale), as the double branches of the adaptation curve in this range show.
The key point in interpreting the impressive dynamic range depicted in Fig. 2.4
is that the visual system cannot operate over such a range simultaneously. Rather, it
accomplishes this large variation by changing its overall sensitivity, a phenomenon
known as brightness adaptation. The total range of distinct intensity levels the eye
can discriminate simultaneously is rather small when compared with the total adap-
tation range. For a given set of conditions, the current sensitivity level of the visual
system is called the brightness adaptation level, which may correspond, for example,
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FIGURE 2.5
Basic
experimental
setup used to
characterize
brightness

discrimination.

to brightness B, in Fig. 2.4. The short intersecting curve represents the range of sub-
jective brightness that the eye can perceive when adapted to this level. This range is
rather restricted, having a level B, at, and below which, all stimuli are perceived as
indistinguishable blacks. The upper portion of the curve is not actually restricted but,
if extended too far, loses its meaning because much higher intensities would simply
raise the adaptation level higher than B,.

The ability of the eye to discriminate between changes in light intensity at any
specific adaptation level is of considerable interest. A classic experiment used to
determine the capability of the human visual system for brightness discrimination
consists of having a subject look at a flat, uniformly illuminated area large enough to
occupy the entire field of view. This area typically is a diffuser, such as opaque glass,
illuminated from behind by a light source, /, with variable intensity. To this field is
added an increment of illumination, A7, in the form of a short-duration flash that
appears as a circle in the center of the uniformly illuminated field, as Fig. 2.5 shows.

If A7 is not bright enough, the subject says “no,” indicating no perceivable change.
As Al gets stronger, the subject may give a positive response of “yes,” indicating a
perceived change. Finally, when A/ is strong enough, the subject will give a response
of “yes” all the time. The quantity A7, /I, where A, is the increment of illumination
discriminable 50% of the time with background illumination /, is called the Weber
ratio. A small value of A, /I means that a small percentage change in intensity is
discriminable. This represents “good” brightness discrimination. Conversely, a large
value of A7, /I means that a large percentage change in intensity is required for the
eye to detect the change. This represents “poor” brightness discrimination.

A plot of Al /I as a function of log I has the characteristic shape shown in Fig. 2.6.
This curve shows that brightness discrimination is poor (the Weber ratio is large) at
low levels of illumination, and it improves significantly (the Weber ratio decreases)
as background illumination increases. The two branches in the curve reflect the fact
that at low levels of illumination vision is carried out by the rods, whereas, at high
levels, vision is a function of cones.

If the background illumination is held constant and the intensity of the other
source, instead of flashing, is now allowed to vary incrementally from never being
perceived to always being perceived, the typical observer can discern a total of one
to two dozen different intensity changes. Roughly, this result is related to the num-
ber of different intensities a person can see at any one point or small area in a mono-
chrome image. This does not mean that an image can be represented by such a small
number of intensity values because, as the eye roams about the image, the average

—1+Al
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background changes, thus allowing a different set of incremental changes to be detect-
ed at each new adaptation level. The net result is that the eye is capable of a broader
range of overall intensity discrimination. In fact, as we will show in Section 2.4, the eye
is capable of detecting objectionable effects in monochrome images whose overall
intensity is represented by fewer than approximately two dozen levels.

Two phenomena demonstrate that perceived brightness is not a simple function
of intensity. The first is based on the fact that the visual system tends to undershoot
or overshoot around the boundary of regions of different intensities. Figure 2.7(a)
shows a striking example of this phenomenon. Although the intensity of the stripes

[ Actual intensity

Perceived intensity
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FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity,
but they appear progressively darker as the background becomes lighter.

is constant [see Fig.2.7(b)], we actually perceive a brightness pattern that is strongly
scalloped near the boundaries, as Fig. 2.7(c) shows. These perceived scalloped bands
are called Mach bands after Ernst Mach, who first described the phenomenon in 1865.

The second phenomenon, called simultaneous contrast, is that a region’s per-
ceived brightness does not depend only on its intensity, as Fig. 2.8 demonstrates. All
the center squares have exactly the same intensity, but each appears to the eye to
become darker as the background gets lighter. A more familiar example is a piece of
paper that looks white when lying on a desk, but can appear totally black when used
to shield the eyes while looking directly at a bright sky.

Other examples of human perception phenomena are optical illusions, in which
the eye fills in nonexisting details or wrongly perceives geometrical properties of
objects. Figure 2.9 shows some examples. In Fig. 2.9(a), the outline of a square is
seen clearly, despite the fact that no lines defining such a figure are part of the image.
The same effect, this time with a circle, can be seen in Fig. 2.9(b); note how just a few
lines are sufficient to give the illusion of a complete circle. The two horizontal line
segments in Fig. 2.9(c) are of the same length, but one appears shorter than the other.
Finally, all long lines in Fig.2.9(d) are equidistant and parallel. Yet, the crosshatching
creates the illusion that those lines are far from being parallel.

2.2 LIGHT AND THE ELECTROMAGNETIC SPECTRUM I

The electromagnetic spectrum was introduced in Section 1.3. We now consider this
topic in more detail. In 1666, Sir Isaac Newton discovered that when a beam of
sunlight passes through a glass prism, the emerging beam of light is not white but
consists instead of a continuous spectrum of colors ranging from violet at one end
to red at the other. As Fig. 2.10 shows, the range of colors we perceive in visible light
is a small portion of the electromagnetic spectrum. On one end of the spectrum are
radio waves with wavelengths billions of times longer than those of visible light. On
the other end of the spectrum are gamma rays with wavelengths millions of times
smaller than those of visible light. We showed examples in Section 1.3 of images in
most of the bands in the EM spectrum.
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FIGURE 2.9 Some
well-known
optical illusions.
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The electromagnetic spectrum can be expressed in terms of wavelength, frequency,
or energy. Wavelength () and frequency (v) are related by the expression

A=— (2-1)
v
where c is the speed of light (2.998 X 10* m/s). Figure 2.11 shows a schematic repre-
sentation of one wavelength.
The energy of the various components of the electromagnetic spectrum is given
by the expression

E=hv (2-2)

where £ is Planck’s constant. The units of wavelength are meters, with the terms
microns (denoted um and equal to 10° m) and nanometers (denoted nm and equal
to 107’ m) being used just as frequently. Frequency is measured in Hertz (Hz), with
one Hz being equal to one cycle of a sinusoidal wave per second. A commonly used
unit of energy is the electron-volt.

Electromagnetic waves can be visualized as propagating sinusoidal waves with
wavelength A (Fig.2.11), or they can be thought of as a stream of massless particles,
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FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanations, but note
that it encompasses a very narrow range of the total EM spectrum.

FIGURE 2.11
Graphical
representation of
one wavelength.

each traveling in a wavelike pattern and moving at the speed of light. Each mass-
less particle contains a certain amount (or bundle) of energy, called a photon. We
see from Eq. (2-2) that energy is proportional to frequency, so the higher-frequency
(shorter wavelength) electromagnetic phenomena carry more energy per photon.
Thus, radio waves have photons with low energies, microwaves have more energy
than radio waves, infrared still more, then visible, ultraviolet, X-rays, and finally
gamma rays, the most energetic of all. High-energy electromagnetic radiation, espe-
cially in the X-ray and gamma ray bands, is particularly harmful to living organisms.

Light is a type of electromagnetic radiation that can be sensed by the eye. The
visible (color) spectrum is shown expanded in Fig. 2.10 for the purpose of discussion
(we will discuss color in detail in Chapter 6). The visible band of the electromag-
netic spectrum spans the range from approximately 0.43 um (violet) to about 0.79
pm (red). For convenience, the color spectrum is divided into six broad regions:
violet, blue, green, yellow, orange, and red. No color (or other component of the
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electromagnetic spectrum) ends abruptly; rather, each range blends smoothly into
the next, as Fig. 2.10 shows.

The colors perceived in an object are determined by the nature of the light reflect-
ed by the object. A body that reflects light relatively balanced in all visible wave-
lengths appears white to the observer. However, a body that favors reflectance in
a limited range of the visible spectrum exhibits some shades of color. For example,
green objects reflect light with wavelengths primarily in the 500 to 570 nm range,
while absorbing most of the energy at other wavelengths.

Light that is void of color is called monochromatic (or achromatic) light. The
only attribute of monochromatic light is its intensity. Because the intensity of mono-
chromatic light is perceived to vary from black to grays and finally to white, the
term gray level is used commonly to denote monochromatic intensity (we use the
terms intensity and gray level interchangeably in subsequent discussions). The range
of values of monochromatic light from black to white is usually called the gray scale,
and monochromatic images are frequently referred to as grayscale images.

Chromatic (color) light spans the electromagnetic energy spectrum from approxi-
mately 0.43 to 0.79 wm, as noted previously. In addition to frequency, three other
quantities are used to describe a chromatic light source: radiance, luminance, and
brightness. Radiance is the total amount of energy that flows from the light source,
and it is usually measured in watts (W). Luminance, measured in lumens (Im), gives
a measure of the amount of energy an observer perceives from a light source. For
example, light emitted from a source operating in the far infrared region of the
spectrum could have significant energy (radiance), but an observer would hardly
perceive it; its luminance would be almost zero. Finally, as discussed in Section 2.1,
brightness is a subjective descriptor of light perception that is practically impossible
to measure. It embodies the achromatic notion of intensity and is one of the key fac-
tors in describing color sensation.

In principle, if a sensor can be developed that is capable of detecting energy
radiated in a band of the electromagnetic spectrum, we can image events of inter-
est in that band. Note, however, that the wavelength of an electromagnetic wave
required to “see” an object must be of the same size as, or smaller than, the object.
For example, a water molecule has a diameter on the order of 10" m. Thus, to study
these molecules, we would need a source capable of emitting energy in the far (high-
energy) ultraviolet band or soft (low-energy) X-ray bands.

Although imaging is based predominantly on energy from electromagnetic wave
radiation, this is not the only method for generating images. For example, we saw in
Section 1.3 that sound reflected from objects can be used to form ultrasonic images.
Other sources of digital images are electron beams for electron microscopy, and
software for generating synthetic images used in graphics and visualization.

2.3 IMAGE SENSING AND ACQUISITION I

Most of the images in which we are interested are generated by the combination of
an “illumination” source and the reflection or absorption of energy from that source
by the elements of the “scene” being imaged. We enclose illumination and scene
in quotes to emphasize the fact that they are considerably more general than the
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familiar situation in which a visible light source illuminates a familiar 3-D scene. For
example, the illumination may originate from a source of electromagnetic energy,
such as a radar, infrared, or X-ray system. But, as noted earlier, it could originate
from less traditional sources, such as ultrasound or even a computer-generated illu-
mination pattern. Similarly, the scene elements could be familiar objects, but they
can just as easily be molecules, buried rock formations, or a human brain. Depend-
ing on the nature of the source, illumination energy is reflected from, or transmitted
through, objects. An example in the first category is light reflected from a planar
surface. An example in the second category is when X-rays pass through a patient’s
body for the purpose of generating a diagnostic X-ray image. In some applications,
the reflected or transmitted energy is focused onto a photo converter (e.g., a phos-
phor screen) that converts the energy into visible light. Electron microscopy and
some applications of gamma imaging use this approach.

Figure 2.12 shows the three principal sensor arrangements used to transform inci-
dent energy into digital images. The idea is simple: Incoming energy is transformed
into a voltage by a combination of the input electrical power and sensor material
that is responsive to the type of energy being detected. The output voltage wave-
form is the response of the sensor, and a digital quantity is obtained by digitizing that
response. In this section, we look at the principal modalities for image sensing and
generation. We will discuss image digitizing in Section 2.4.

IMAGE ACQUISITION USING A SINGLE SENSING ELEMENT

Figure 2.12(a) shows the components of a single sensing element. A familiar sensor
of this type is the photodiode, which is constructed of silicon materials and whose
output is a voltage proportional to light intensity. Using a filter in front of a sensor
improves its selectivity. For example, an optical green-transmission filter favors light
in the green band of the color spectrum. As a consequence, the sensor output would
be stronger for green light than for other visible light components.

In order to generate a 2-D image using a single sensing element, there has to
be relative displacements in both the x- and y-directions between the sensor and
the area to be imaged. Figure 2.13 shows an arrangement used in high-precision
scanning, where a film negative is mounted onto a drum whose mechanical rotation
provides displacement in one dimension. The sensor is mounted on a lead screw
that provides motion in the perpendicular direction. A light source is contained
inside the drum. As the light passes through the film, its intensity is modified by
the film density before it is captured by the sensor. This "modulation” of the light
intensity causes corresponding variations in the sensor voltage, which are ultimately
converted to image intensity levels by digitization.

This method is an inexpensive way to obtain high-resolution images because
mechanical motion can be controlled with high precision. The main disadvantages
of this method are that it is slow and not readily portable. Other similar mechanical
arrangements use a flat imaging bed, with the sensor moving in two linear direc-
tions. These types of mechanical digitizers sometimes are referred to as transmission
microdensitometers. Systems in which light is reflected from the medium, instead
of passing through it, are called reflection microdensitometers. Another example
of imaging with a single sensing element places a laser source coincident with the
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FIGURE 2.14

(a) Image
acquisition using
a linear sensor
strip. (b) Image
acquisition using
a circular sensor
strip.

sensor. Moving mirrors are used to control the outgoing beam in a scanning pattern
and to direct the reflected laser signal onto the sensor.

IMAGE ACQUISITION USING SENSOR STRIPS

A geometry used more frequently than single sensors is an in-line sensor strip, as in
Fig. 2.12(b). The strip provides imaging elements in one direction. Motion perpen-
dicular to the strip provides imaging in the other direction, as shown in Fig. 2.14(a).
This arrangement is used in most flat bed scanners. Sensing devices with 4000 or
more in-line sensors are possible. In-line sensors are used routinely in airborne
imaging applications, in which the imaging system is mounted on an aircraft that
flies at a constant altitude and speed over the geographical area to be imaged. One-
dimensional imaging sensor strips that respond to various bands of the electromag-
netic spectrum are mounted perpendicular to the direction of flight. An imaging
strip gives one line of an image at a time, and the motion of the strip relative to
the scene completes the other dimension of a 2-D image. Lenses or other focusing
schemes are used to project the area to be scanned onto the sensors.

Sensor strips in a ring configuration are used in medical and industrial imaging
to obtain cross-sectional (“slice”) images of 3-D objects, as Fig. 2.14(b) shows. A
rotating X-ray source provides illumination, and X-ray sensitive sensors opposite
the source collect the energy that passes through the object. This is the basis for
medical and industrial computerized axial tomography (CAT) imaging, as indicated
in Sections 1.2 and 1.3. The output of the sensors is processed by reconstruction
algorithms whose objective is to transform the sensed data into meaningful cross-
sectional images (see Section 5.11). In other words, images are not obtained directly
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from the sensors by motion alone; they also require extensive computer process-
ing. A 3-D digital volume consisting of stacked images is generated as the object is
moved in a direction perpendicular to the sensor ring. Other modalities of imaging
based on the CAT principle include magnetic resonance imaging (MRI) and posi-
tron emission tomography (PET). The illumination sources, sensors, and types of
images are different, but conceptually their applications are very similar to the basic
imaging approach shown in Fig. 2.14(b).

IMAGE ACQUISITION USING SENSOR ARRAYS

Figure 2.12(c) shows individual sensing elements arranged in the form of a 2-D array.
Electromagnetic and ultrasonic sensing devices frequently are arranged in this man-
ner. This is also the predominant arrangement found in digital cameras. A typical
sensor for these cameras is a CCD (charge-coupled device) array, which can be
manufactured with a broad range of sensing properties and can be packaged in rug-
ged arrays of 4000 X 4000 elements or more. CCD sensors are used widely in digital
cameras and other light-sensing instruments. The response of each sensor is pro-
portional to the integral of the light energy projected onto the surface of the sensor,
a property that is used in astronomical and other applications requiring low noise
images. Noise reduction is achieved by letting the sensor integrate the input light
signal over minutes or even hours. Because the sensor array in Fig. 2.12(c) is two-
dimensional, its key advantage is that a complete image can be obtained by focusing
the energy pattern onto the surface of the array. Motion obviously is not necessary,
as is the case with the sensor arrangements discussed in the preceding two sections.

Figure 2.15 shows the principal manner in which array sensors are used. This
figure shows the energy from an illumination source being reflected from a scene
(as mentioned at the beginning of this section, the energy also could be transmit-
ted through the scene). The first function performed by the imaging system in Fig.
2.15(c) is to collect the incoming energy and focus it onto an image plane. If the illu-
mination is light, the front end of the imaging system is an optical lens that projects
the viewed scene onto the focal plane of the lens, as Fig. 2.15(d) shows. The sensor
array, which is coincident with the focal plane, produces outputs proportional to the
integral of the light received at each sensor. Digital and analog circuitry sweep these
outputs and convert them to an analog signal, which is then digitized by another sec-
tion of the imaging system. The output is a digital image, as shown diagrammatically
in Fig. 2.15(e). Converting images into digital form is the topic of Section 2.4.

A SIMPLE IMAGE FORMATION MODEL

As introduced in Section 1.1, we denote images by two-dimensional functions of the
form f(x,y). The value of f at spatial coordinates (x,y) is a scalar quantity whose
physical meaning is determined by the source of the image, and whose values are
proportional to energy radiated by a physical source (e.g., electromagnetic waves).
As a consequence, f(x,y) must be nonnegative’ and finite; that is,

"Image intensities can become negative during processing, or as a result of interpretation. For example, in radar
images, objects moving toward the radar often are interpreted as having negative velocities while objects moving
away are interpreted as having positive velocities. Thus, a velocity image might be coded as having both positive
and negative values. When storing and displaying images, we normally scale the intensities so that the smallest
negative value becomes 0 (see Section 2.6 regarding intensity scaling).
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FIGURE 2.15 An example of digital image acquisition. (a) Illumination (energy) source. (b) A scene. (c) Imaging
system. (d) Projection of the scene onto the image plane. (e) Digitized image.

0 < flx,y) <o (2-3)

Function f(x,y) is characterized by two components: (1) the amount of source illu-
mination incident on the scene being viewed, and (2) the amount of illumination
reflected by the objects in the scene. Appropriately, these are called the illumination
and reflectance components, and are denoted by i(x, y) and r(x, y), respectively. The
two functions combine as a product to form f(x,y):

f(xy) = i(x,y)r(x,y) (2-4)
where
0<i(x,y) <o (2-5)
and
0<r(xy <1 (2-6)

Thus, reflectance is bounded by 0 (total absorption) and 1 (total reflectance). The
nature of i(x,y) is determined by the illumination source, and r(x, y) is determined
by the characteristics of the imaged objects. These expressions are applicable also
to images formed via transmission of the illumination through a medium, such as a
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chest X-ray. In this case, we would deal with a transmissivity instead of a reflectivity
function, but the limits would be the same as in Eq. (2-6), and the image function
formed would be modeled as the product in Eq. (2-4).

EXAMPLE 2.1: Some typical values of illumination and reflectance.

The following numerical quantities illustrate some typical values of illumination and reflectance for
visible light. On a clear day, the sun may produce in excess of 90,000 Im/m? of illumination on the sur-
face of the earth. This value decreases to less than 10,000 Im/m? on a cloudy day. On a clear evening, a
full moon yields about 0.1 Im/m? of illumination. The typical illumination level in a commercial office
is about 1,000 Im/m?. Similarly, the following are typical values of r(x, y): 0.01 for black velvet, 0.65 for
stainless steel, 0.80 for flat-white wall paint, 0.90 for silver-plated metal, and 0.93 for snow.

The discussion of sam-
pling in this section is of
an intuitive nature. We
will discuss this topic in
depth in Chapter 4.

Let the intensity (gray level) of a monochrome image at any coordinates (x,y)
be denoted by

€= f(x,y) (2-7)
From Egs. (2-4) through (2-6) it is evident that € lies in the range
Lmin <t < Lmax (2'8)

In theory, the requirement on L ;, is that it be nonnegative, and on L, that it
be finite. In practice, L, = ipin Fmin @0d Loy = Loy Fax - From Example 2.1, using
average office illumination and reflectance values as guidelines, we may expect
L., =10and L, =1000 to be typical indoor values in the absence of additional
illumination. The units of these quantities are lum/m?. However, actual units sel-
dom are of interest, except in cases where photometric measurements are being
performed.

The interval [L,;,, L. | is called the intensity (or gray) scale. Common practice is
to shift this interval numerically to the interval [0, 1], or [0,C], where € = 0 is consid-
ered black and ¢ =1 (or C) is considered white on the scale. All intermediate values

are shades of gray varying from black to white.

‘min

2.4 IMAGE SAMPLING AND QUANTIZATION I

As discussed in the previous section, there are numerous ways to acquire images, but
our objective in all is the same: to generate digital images from sensed data. The out-
put of most sensors is a continuous voltage waveform whose amplitude and spatial
behavior are related to the physical phenomenon being sensed. To create a digital
image, we need to convert the continuous sensed data into a digital format. This
requires two processes: sampling and quantization.

BASIC CONCEPTS IN SAMPLING AND QUANTIZATION

Figure 2.16(a) shows a continuous image f that we want to convert to digital form.
An image may be continuous with respect to the x- and y-coordinates, and also in
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Sampling

amplitude. To digitize it, we have to sample the function in both coordinates and
also in amplitude. Digitizing the coordinate values is called sampling. Digitizing the
amplitude values is called quantization.

The one-dimensional function in Fig. 2.16(b) is a plot of amplitude (intensity
level) values of the continuous image along the line segment AB in Fig. 2.16(a). The
random variations are due to image noise. To sample this function, we take equally
spaced samples along line AB, as shown in Fig. 2.16(c). The samples are shown as
small dark squares superimposed on the function, and their (discrete) spatial loca-
tions are indicated by corresponding tick marks in the bottom of the figure. The set
of dark squares constitute the sampled function. However, the values of the sam-
ples still span (vertically) a continuous range of intensity values. In order to form a
digital function, the intensity values also must be converted (quantized) into discrete
quantities. The vertical gray bar in Fig. 2.16(c) depicts the intensity scale divided
into eight discrete intervals, ranging from black to white. The vertical tick marks
indicate the specific value assigned to each of the eight intensity intervals. The con-
tinuous intensity levels are quantized by assigning one of the eight values to each
sample, depending on the vertical proximity of a sample to a vertical tick mark. The
digital samples resulting from both sampling and quantization are shown as white
squares in Fig. 2.16(d). Starting at the top of the continuous image and carrying out
this procedure downward, line by line, produces a two-dimensional digital image.
It is implied in Fig. 2.16 that, in addition to the number of discrete levels used, the
accuracy achieved in quantization is highly dependent on the noise content of the
sampled signal.
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FIGURE 2.17

(a) Continuous
image projected
onto a sensor
array. (b) Result
of image sampling
and quantization.
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In practice, the method of sampling is determined by the sensor arrangement
used to generate the image. When an image is generated by a single sensing element
combined with mechanical motion, as in Fig. 2.13, the output of the sensor is quan-
tized in the manner described above. However, spatial sampling is accomplished by
selecting the number of individual mechanical increments at which we activate the
sensor to collect data. Mechanical motion can be very exact so, in principle, there is
almost no limit on how fine we can sample an image using this approach. In practice,
limits on sampling accuracy are determined by other factors, such as the quality of
the optical components used in the system.

When a sensing strip is used for image acquisition, the number of sensors in the
strip establishes the samples in the resulting image in one direction, and mechanical
motion establishes the number of samples in the other. Quantization of the sensor
outputs completes the process of generating a digital image.

When a sensing array is used for image acquisition, no motion is required. The
number of sensors in the array establishes the limits of sampling in both directions.
Quantization of the sensor outputs is as explained above. Figure 2.17 illustrates this
concept. Figure 2.17(a) shows a continuous image projected onto the plane of a 2-D
sensor. Figure 2.17(b) shows the image after sampling and quantization. The quality
of a digital image is determined to a large degree by the number of samples and dis-
crete intensity levels used in sampling and quantization. However, as we will show
later in this section, image content also plays a role in the choice of these parameters.

REPRESENTING DIGITAL IMAGES

Let f(s, t) represent a continuous image function of two continuous variables, s and
t. We convert this function into a digital image by sampling and quantization, as
explained in the previous section. Suppose that we sample the continuous image
into a digital image, f(x,y), containing M rows and N columns, where (x,y) are
discrete coordinates. For notational clarity and convenience, we use integer values
for these discrete coordinates: x =0,1,2,...,M -1 and y=0,1,2,..., N — 1. Thus,
for example, the value of the digital image at the origin is f(0,0), and its value at
the next coordinates along the first row is f(0,1). Here, the notation (0, 1) is used



66 Chapter 2 Digital Image Fundamentals

to denote the second sample along the first row. It does not mean that these are
the values of the physical coordinates when the image was sampled. In general, the
value of a digital image at any coordinates (x,y) is denoted f(x,y), where x and y
are integers. When we need to refer to specific coordinates (i, j), we use the notation
f(i,j), where the arguments are integers. The section of the real plane spanned by
the coordinates of an image is called the spatial domain, with x and y being referred
to as spatial variables or spatial coordinates.

Figure 2.18 shows three ways of representing f(x,y). Figure 2.18(a) is a plot of
the function, with two axes determining spatial location and the third axis being the
values of fas a function of x and y. This representation is useful when working with
grayscale sets whose elements are expressed as triplets of the form (x,y,z), where
x and y are spatial coordinates and z is the value of f at coordinates (x,y). We will
work with this representation briefly in Section 2.6.

The representation in Fig.2.18(b) is more common, and it shows f(x, y) as it would
appear on a computer display or photograph. Here, the intensity of each point in the
display is proportional to the value of f at that point. In this figure, there are only
three equally spaced intensity values. If the intensity is normalized to the interval
[0,1], then each point in the image has the value 0, 0.5, or 1. A monitor or printer con-
verts these three values to black, gray, or white, respectively, as in Fig. 2.18(b). This
type of representation includes color images, and allows us to view results at a glance.

As Fig. 2.18(c) shows, the third representation is an array (matrix) composed of
the numerical values of f(x,y).This is the representation used for computer process-
ing. In equation form, we write the representation of an M X N numerical array as

fp| RO SAD e JAN-D) 09)

f(M.—l,O) f(M.—l,l) f(M—i,N—l)

The right side of this equation is a digital image represented as an array of real
numbers. Each element of this array is called an image element, picture element, pixel,
or pel. We use the terms image and pixel throughout the book to denote a digital
image and its elements. Figure 2.19 shows a graphical representation of an image
array, where the x- and y-axis are used to denote the rows and columns of the array.
Specific pixels are values of the array at a fixed pair of coordinates. As mentioned
earlier, we generally use f(i,j) when referring to a pixel with coordinates (i, j).
We can also represent a digital image in a traditional matrix form:

do,o Aoy 0 GyN-1
a a e a
1.0 1.1 1.N-1
A= . . . (2-10)
Ay 11 " Ay-1N-1

Clearly, a; = f(i,]), so Egs. (2-9) and (2-10) denote identical arrays.
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FIGURE 2.18

(a) Image plotted
as a surface.

(b) Image displayed
as a visual intensity
array. (c) Image
shown as a 2-D nu-
merical array. (The
numbers 0, .5, and
1 represent black,
gray, and white,
respectively.)
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As Fig. 2.19 shows, we define the origin of an image at the top left corner. This is
a convention based on the fact that many image displays (e.g., TV monitors) sweep
an image starting at the top left and moving to the right, one row at a time. More
important is the fact that the first element of a matrix is by convention at the top
left of the array. Choosing the origin of f(x,y) at that point makes sense mathemati-
cally because digital images in reality are matrices. In fact, as you will see, sometimes
we use x and y interchangeably in equations with the rows (r) and columns (c) of a
matrix.

It is important to note that the representation in Fig. 2.19, in which the positive
x-axis extends downward and the positive y-axis extends to the right, is precisely the
right-handed Cartesian coordinate system with which you are familiar,” but shown
rotated by 90° so that the origin appears on the top, left.

"Recall that a right-handed coordinate system is such that, when the index of the right hand points in the direc-
tion of the positive x-axis and the middle finger points in the (perpendicular) direction of the positive y-axis, the
thumb points up. As Figs. 2.18 and 2.19 show, this indeed is the case in our image coordinate system. In practice,
you will also find implementations based on a left-handed system, in which the x- and y-axis are interchanged
from the way we show them in Figs. 2.18 and 2.19. For example, MATLAB uses a left-handed system for image
processing. Both systems are perfectly valid, provided they are used consistently.
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FIGURE 2.19
Coordinate
convention used
to represent digital
images. Because
coordinate values
are integers, there
is a one-to-one
correspondence
between x and y
and the rows (r)
and columns (c) of
a matrix.

The floor of z, sometimes
denoted |z, is the largest
integer that is less than
or equal to z. The ceiling
of z, denoted z],is the
smallest integer that is
greater than or equal

to z.

See Eq. (2-41) in
Section 2.6 for a formal
definition of the
Cartesian product.
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The centerofan M x N digitalimage with origin at(0,0) and rangeto (M — 1, N — 1)
is obtained by dividing M and N by 2 and rounding down to the nearest integer.
This operation sometimes is denoted using the floor operator, |+|, as shown in Fig.
2.19. This holds true for M and N even or odd. For example, the center of an image
of size 1023 x 1024 is at (511, 512). Some programming languages (e.g., MATLAB)
start indexing at 1 instead of at 0. The center of an image in that case is found at
(x.,y,) = (floor (M/2) +1, floor (N/2) +1).

To express sampling and quantization in more formal mathematical terms, let
Z and R denote the set of integers and the set of real numbers, respectively. The
sampling process may be viewed as partitioning the xy-plane into a grid, with the
coordinates of the center of each cell in the grid being a pair of elements from the
Cartesian product Z* (also denoted Z x Z) which, as you may recall, is the set of
all ordered pairs of elements (z;,z;) with z; and z; being integers from set Z. Hence,
f(x,y) is a digital image if (x, y) are integers from Z” and fis a function that assigns
an intensity value (that is, a real number from the set of real numbers, R) to each
distinct pair of coordinates (x, y). This functional assignment is the quantization pro-
cess described earlier. If the intensity levels also are integers, then R = Z, and a
digital image becomes a 2-D function whose coordinates and amplitude values are
integers. This is the representation we use in the book.

Image digitization requires that decisions be made regarding the values for M, N,
and for the number, L, of discrete intensity levels. There are no restrictions placed
on M and N, other than they have to be positive integers. However, digital storage
and quantizing hardware considerations usually lead to the number of intensity lev-

els, L, being an integer power of two; that is
L =2k (2-11)

where k is an integer. We assume that the discrete levels are equally spaced and that
they are integers in the range [0,L —1].



FIGURE 2.20

An image exhibit-
ing saturation and
noise. Saturation
is the highest val-
ue beyond which
all intensity values
are clipped (note
how the entire
saturated area has
a high, constant
intensity level).
Visible noise in
this case appears
as a grainy texture
pattern. The dark
background is
noisier, but the
noise is difficult
to see.
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\>— Noise

Saturation

Sometimes, the range of values spanned by the gray scale is referred to as the
dynamic range, a term used in different ways in different fields. Here, we define the
dynamic range of an imaging system to be the ratio of the maximum measurable
intensity to the minimum detectable intensity level in the system. As a rule, the
upper limit is determined by saturation and the lower limit by noise, although noise
can be present also in lighter intensities. Figure 2.20 shows examples of saturation
and slight visible noise. Because the darker regions are composed primarily of pixels
with the minimum detectable intensity, the background in Fig. 2.20 is the noisiest
part of the image; however, dark background noise typically is much harder to see.

The dynamic range establishes the lowest and highest intensity levels that a system
can represent and, consequently, that an image can have. Closely associated with this
concept is image contrast, which we define as the difference in intensity between
the highest and lowest intensity levels in an image. The contrast ratio is the ratio of
these two quantities. When an appreciable number of pixels in an image have a high
dynamic range, we can expect the image to have high contrast. Conversely, an image
with low dynamic range typically has a dull, washed-out gray look. We will discuss
these concepts in more detail in Chapter 3.

The number, b, of bits required to store a digital image is

b=MXN Xk (2-12)

When M = N, this equation becomes

b= N7k (2-13)
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FIGURE 2.21
Number of
megabytes
required to store
images for
various values of
N and k.
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Figure 2.21 shows the number of megabytes required to store square images for
various values of N and k (as usual, one byte equals 8 bits and a megabyte equals
10° bytes).

When an image can have 2* possible intensity levels, it is common practice to
refer to it as a “k-bit image,” (e,g., a 256-level image is called an 8-bit image). Note
that storage requirements for large 8-bit images (e.g., 10,000 X 10,000 pixels) are
not insignificant.

LINEAR VS. COORDINATE INDEXING

The convention discussed in the previous section, in which the location of a pixel is
given by its 2-D coordinates, is referred to as coordinate indexing, or subscript index-
ing. Another type of indexing used extensively in programming image processing
algorithms is linear indexing, which consists of a 1-D string of nonnegative integers
based on computing offsets from coordinates (0,0). There are two principal types of
linear indexing, one is based on a row scan of an image, and the other on a column scan.

Figure 2.22 illustrates the principle of linear indexing based on a column scan.
The idea is to scan an image column by column, starting at the origin and proceeding
down and then to the right. The linear index is based on counting pixels as we scan
the image in the manner shown in Fig.2.22. Thus, a scan of the first (leftmost) column
yields linear indices 0 through M — 1. A scan of the second column yields indices M
through 2M —1,and so on, until the last pixel in the last column is assigned the linear
index value MN —1. Thus, a linear index, denoted by «, has one of MN possible
values: 0,1,2,..., MN — 1, as Fig. 2.22 shows. The important thing to notice here is
that each pixel is assigned a linear index value that identifies it uniquely.

The formula for generating linear indices based on a column scan is straightfor-
ward and can be determined by inspection. For any pair of coordinates (x, y), the
corresponding linear index value is

a=My+x (2-14)



FIGURE 2.22
Illustration of
column scanning
for generating
linear indices.
Shown are several
2-D coordinates (in
parentheses) and
their corresponding
linear indices.
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Conversely, the coordinate indices for a given linear index value « are given by the

equations’
x=amodM (2-15)

and
y=(a—x)/M (2-106)

Recall that e« mod M means “the remainder of the division of @ by M.” This is a
formal way of stating that row numbers repeat themselves at the start of every col-
umn. Thus, when « = 0, the remainder of the division of 0 by M is 0, so x = 0. When
a =1, the remainder is 1, and so x = 1. You can see that x will continue to be equal
to a until @« = M — 1. When @ = M (which is at the beginning of the second column),
the remainder is 0, and thus x = 0 again, and it increases by 1 until the next column
is reached, when the pattern repeats itself. Similar comments apply to Eq. (2-16). See

Problem 2.11 for a derivation of the preceding two equations.

SPATIAL AND INTENSITY RESOLUTION
Intuitively, spatial resolution is a measure of the smallest discernible detail in an
image. Quantitatively, spatial resolution can be stated in several ways, with line
pairs per unit distance, and dots (pixels) per unit distance being common measures.
Suppose that we construct a chart with alternating black and white vertical lines,
each of width W units (W can be less than 1). The width of a line pair is thus 2W, and
there are W/2 line pairs per unit distance. For example, if the width of a line is 0.1 mm,
there are 5 line pairs per unit distance (i.e., per mm). A widely used definition of
image resolution is the largest number of discernible line pairs per unit distance (e.g.,
100 line pairs per mm). Dots per unit distance is a measure of image resolution used
in the printing and publishing industry. In the U.S., this measure usually is expressed
as dots per inch (dpi). To give you an idea of quality, newspapers are printed with a

"When working with modular number systems, it is more accurate to write x =« mod M, where the symbol =
means congruence. However, our interest here is just on converting from linear to coordinate indexing, so we

use the more familiar equal sign.
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resolution of 75 dpi, magazines at 133 dpi, glossy brochures at 175 dpi, and the book
page at which you are presently looking was printed at 2400 dpi.

To be meaningful, measures of spatial resolution must be stated with respect to
spatial units. Image size by itself does not tell the complete story. For example, to say
that an image has a resolution of 1024 X 1024 pixels is not a meaningful statement
without stating the spatial dimensions encompassed by the image. Size by itself is
helpful only in making comparisons between imaging capabilities. For instance, a
digital camera with a 20-megapixel CCD imaging chip can be expected to have a
higher capability to resolve detail than an 8-megapixel camera, assuming that both
cameras are equipped with comparable lenses and the comparison images are taken
at the same distance.

Intensity resolution similarly refers to the smallest discernible change in inten-
sity level. We have considerable discretion regarding the number of spatial samples
(pixels) used to generate a digital image, but this is not true regarding the number
of intensity levels. Based on hardware considerations, the number of intensity levels
usually is an integer power of two, as we mentioned when discussing Eq. (2-11).The
most common number is 8 bits, with 16 bits being used in some applications in which
enhancement of specific intensity ranges is necessary. Intensity quantization using
32 bits is rare. Sometimes one finds systems that can digitize the intensity levels of
an image using 10 or 12 bits, but these are not as common.

Unlike spatial resolution, which must be based on a per-unit-of-distance basis to
be meaningful, it is common practice to refer to the number of bits used to quan-
tize intensity as the “intensity resolution.” For example, it is common to say that an
image whose intensity is quantized into 256 levels has 8 bits of intensity resolution.
However, keep in mind that discernible changes in intensity are influenced also by
noise and saturation values, and by the capabilities of human perception to analyze
and interpret details in the context of an entire scene (see Section 2.1). The following
two examples illustrate the effects of spatial and intensity resolution on discernible
detail. Later in this section, we will discuss how these two parameters interact in
determining perceived image quality.

EXAMPLE 2.2: Effects of reducing the spatial resolution of a digital image.

Figure 2.23 shows the effects of reducing the spatial resolution of an image. The images in Figs. 2.23(a)
through (d) have resolutions of 930, 300, 150, and 72 dpi, respectively. Naturally, the lower resolution
images are smaller than the original image in (a). For example, the original image is of size 2136 X 2140
pixels, but the 72 dpi image is an array of only 165 X 166 pixels. In order to facilitate comparisons, all the
smaller images were zoomed back to the original size (the method used for zooming will be discussed
later in this section). This is somewhat equivalent to “getting closer” to the smaller images so that we can
make comparable statements about visible details.

There are some small visual differences between Figs. 2.23(a) and (b), the most notable being a slight
distortion in the seconds marker pointing to 60 on the right side of the chronometer. For the most part,
however, Fig. 2.23(b) is quite acceptable. In fact, 300 dpi is the typical minimum image spatial resolution
used for book publishing, so one would not expect to see much difference between these two images.
Figure 2.23(c) begins to show visible degradation (see, for example, the outer edges of the chronometer
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FIGURE 2.23

Effects of RO
reducing spatial Y e |
resolution. The
images shown
are at:

(a) 930 dpi,

(b) 300 dpi,

(¢) 150 dpi, and
(d) 72 dpi.

case and compare the seconds marker with the previous two images). The numbers also show visible
degradation. Figure 2.23(d) shows degradation that is visible in most features of the image. When print-
ing at such low resolutions, the printing and publishing industry uses a number of techniques (such as
locally varying the pixel size) to produce much better results than those in Fig. 2.23(d). Also, as we will
show later in this section, it is possible to improve on the results of Fig. 2.23 by the choice of interpola-
tion method used.

EXAMPLE 2.3: Effects of varying the number of intensity levels in a digital image.

Figure 2.24(a) is a 774 x 640 CT projection image, displayed using 256 intensity levels (see Chapter 1
regarding CT images). The objective of this example is to reduce the number of intensities of the image
from 256 to 2 in integer powers of 2, while keeping the spatial resolution constant. Figures 2.24(b)
through (d) were obtained by reducing the number of intensity levels to 128, 64, and 32, respectively (we
will discuss in Chapter 3 how to reduce the number of levels).
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FIGURE 2.24

(a) 774 x 640,
256-level image.
(b)-(d) Image
displayed in 128,
64, and 32 inten-
sity levels, while
keeping the
spatial resolution
constant.
(Original image
courtesy of the
Dr. David R.
Pickens,
Department of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

The 128- and 64-level images are visually identical for all practical purposes. However, the 32-level image
in Fig. 2.24(d) has a set of almost imperceptible, very fine ridge-like structures in areas of constant inten-
sity. These structures are clearly visible in the 16-level image in Fig. 2.24(e). This effect, caused by using
an insufficient number of intensity levels in smooth areas of a digital image, is called false contouring, so
named because the ridges resemble topographic contours in a map. False contouring generally is quite
objectionable in images displayed using 16 or fewer uniformly spaced intensity levels, as the images in
Figs. 2.24(e)-(h) show.

As a very rough guideline, and assuming integer powers of 2 for convenience, images of size 256 X 256
pixels with 64 intensity levels, and printed on a size format on the order of 5 X 5 cm, are about the lowest
spatial and intensity resolution images that can be expected to be reasonably free of objectionable sam-
pling distortions and false contouring.
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FIGURE 2.24
(Continued)
(e)-(h) Image
displayed in 16, 8,
4, and 2 intensity
levels.
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The results in Examples 2.2 and 2.3 illustrate the effects produced on image qual-
ity by varying spatial and intensity resolution independently. However, these results
did not consider any relationships that might exist between these two parameters.
An early study by Huang [1965] attempted to quantify experimentally the effects on
image quality produced by the interaction of these two variables. The experiment
consisted of a set of subjective tests. Images similar to those shown in Fig. 2.25 were
used. The woman’s face represents an image with relatively little detail; the picture
of the cameraman contains an intermediate amount of detail; and the crowd picture
contains, by comparison, a large amount of detail.

Sets of these three types of images of various sizes and intensity resolution were
generated by varying N and k [see Eq. (2-13)]. Observers were then asked to rank
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FIGURE 2.25 (a) Image with a low level of detail. (b) Image with a medium level of detail. (c) Image with a relatively
large amount of detail. (Image (b) courtesy of the Massachusetts Institute of Technology.)

FIGURE 2.26
Representative
isopreference
curves for the
three types of
images in
Fig.2.25.

them according to their subjective quality. Results were summarized in the form of
so-called isopreference curves in the Nk-plane. (Figure 2.26 shows average isopref-
erence curves representative of the types of images in Fig. 2.25.) Each point in the
Nk-plane represents an image having values of N and k equal to the coordinates
of that point. Points lying on an isopreference curve correspond to images of equal
subjective quality. It was found in the course of the experiments that the isoprefer-
ence curves tended to shift right and upward, but their shapes in each of the three
image categories were similar to those in Fig. 2.26. These results were not unexpect-
ed, because a shift up and right in the curves simply means larger values for N and &,

which implies better picture quality.
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Contrary to what the
name suggests, bilinear
interpolation is not a
linear operation because
it involves multiplication
of coordinates (which is
not a linear operation).
See Eq. (2-17).
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Observe that isopreference curves tend to become more vertical as the detail in
the image increases. This result suggests that for images with a large amount of detail
only a few intensity levels may be needed. For example, the isopreference curve in
Fig. 2.26 corresponding to the crowd is nearly vertical. This indicates that, for a fixed
value of N, the perceived quality for this type of image is nearly independent of the
number of intensity levels used (for the range of intensity levels shown in Fig. 2.26).
The perceived quality in the other two image categories remained the same in some
intervals in which the number of samples was increased, but the number of intensity
levels actually decreased. The most likely reason for this result is that a decrease in k
tends to increase the apparent contrast, a visual effect often perceived as improved
image quality.

IMAGE INTERPOLATION

Interpolation is used in tasks such as zooming, shrinking, rotating, and geometrically
correcting digital images. Our principal objective in this section is to introduce inter-
polation and apply it to image resizing (shrinking and zooming), which are basically
image resampling methods. Uses of interpolation in applications such as rotation
and geometric corrections will be discussed in Section 2.6.

Interpolation is the process of using known data to estimate values at unknown
locations. We begin the discussion of this topic with a short example. Suppose that
an image of size 500 X 500 pixels has to be enlarged 1.5 times to 750 X 750 pixels. A
simple way to visualize zooming is to create an imaginary 750 X 750 grid with the
same pixel spacing as the original image, then shrink it so that it exactly overlays the
original image. Obviously, the pixel spacing in the shrunken 750 X 750 grid will be
less than the pixel spacing in the original image. To assign an intensity value to any
point in the overlay, we look for its closest pixel in the underlying original image and
assign the intensity of that pixel to the new pixel in the 750 X 750 grid. When intensi-
ties have been assigned to all the points in the overlay grid, we expand it back to the
specified size to obtain the resized image.

The method just discussed is called nearest neighbor interpolation because it
assigns to each new location the intensity of its nearest neighbor in the original
image (see Section 2.5 regarding neighborhoods). This approach is simple but, it has
the tendency to produce undesirable artifacts, such as severe distortion of straight
edges. A more suitable approach is bilinear interpolation, in which we use the four
nearest neighbors to estimate the intensity at a given location. Let (x, y) denote the
coordinates of the location to which we want to assign an intensity value (think of
it as a point of the grid described previously), and let v(x,y) denote that intensity
value. For bilinear interpolation, the assigned value is obtained using the equation

v(x,y)=ax+by+cxy+d (2-17)

where the four coefficients are determined from the four equations in four
unknowns that can be written using the four nearest neighbors of point (x,y).
Bilinear interpolation gives much better results than nearest neighbor interpolation,
with a modest increase in computational burden.



78  Chapter 2 Digital Image Fundamentals

The next level of complexity is bicubic interpolation, which involves the sixteen
nearest neighbors of a point. The intensity value assigned to point (x,y) is obtained
using the equation

33
v(x,y) = 2 z aijx’y’ (2-18)
i=07=0

The sixteen coefficients are determined from the sixteen equations with six-
teen unknowns that can be written using the sixteen nearest neighbors of point
(x,y). Observe that Eq. (2-18) reduces in form to Eq. (2-17) if the limits of both
summations in the former equation are 0 to 1. Generally, bicubic interpolation does
a better job of preserving fine detail than its bilinear counterpart. Bicubic interpola-
tion is the standard used in commercial image editing applications, such as Adobe
Photoshop and Corel Photopaint.

Although images are displayed with integer coordinates, it is possible during pro-
cessing to work with subpixel accuracy by increasing the size of the image using
interpolation to “fill the gaps” between pixels in the original image.

EXAMPLE 2.4: Comparison of interpolation approaches for image shrinking and zooming.

Figure 2.27(a) is the same as Fig. 2.23(d), which was obtained by reducing the resolution of the 930 dpi
image in Fig. 2.23(a) to 72 dpi (the size shrank from 2136 X 2140 to 165 X 166 pixels) and then zooming
the reduced image back to its original size. To generate Fig. 2.23(d) we used nearest neighbor interpola-
tion both to shrink and zoom the image. As noted earlier, the result in Fig. 2.27(a) is rather poor. Figures
2.27(b) and (c) are the results of repeating the same procedure but using, respectively, bilinear and bicu-
bic interpolation for both shrinking and zooming. The result obtained by using bilinear interpolation is a
significant improvement over nearest neighbor interpolation, but the resulting image is blurred slightly.
Much sharper results can be obtained using bicubic interpolation, as Fig. 2.27(c) shows.

abc

FIGURE 2.27 (a) Image reduced to 72 dpi and zoomed back to its original 930 dpi using nearest neighbor interpolation.
This figure is the same as Fig. 2.23(d). (b) Image reduced to 72 dpi and zoomed using bilinear interpolation. (c) Same
as (b) but using bicubic interpolation.
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It is possible to use more neighbors in interpolation, and there are more complex
techniques, such as using splines or wavelets, that in some instances can yield better
results than the methods just discussed. While preserving fine detail is an exception-
ally important consideration in image generation for 3-D graphics (for example, see
Hughes and Andries [2013]), the extra computational burden seldom is justifiable
for general-purpose digital image processing, where bilinear or bicubic interpola-
tion typically are the methods of choice.

2.5 SOME BASIC RELATIONSHIPS BETWEEN PIXELS NN

In this section, we discuss several important relationships between pixels in a digital
image. When referring in the following discussion to particular pixels, we use lower-
case letters, such as p and q.

NEIGHBORS OF A PIXEL

A pixel p at coordinates (x,y) has two horizontal and two vertical neighbors with
coordinates

(x+1’y)’(x_17y)’(x’y+1)’(x’y_1)

This set of pixels, called the 4-neighbors of p,is denoted N,(p).
The four diagonal neighbors of p have coordinates

(x+Ly+1),(x+1Ly-1D,(x-1Ly+1),(x-1,y-1)

and are denoted N,(p). These neighbors, together with the 4-neighbors, are called
the 8-neighbors of p, denoted by Ng¢(p). The set of image locations of the neighbors
of a point p is called the neighborhood of p. The neighborhood is said to be closed if
it contains p. Otherwise, the neighborhood is said to be open.

ADJACENCY, CONNECTIVITY, REGIONS, AND BOUNDARIES

Let V be the set of intensity values used to define adjacency. In a binary image,
V= {1} if we are referring to adjacency of pixels with value 1. In a grayscale image,
the idea is the same, but set V typically contains more elements. For example, if we
are dealing with the adjacency of pixels whose values are in the range 0 to 255, set V/
could be any subset of these 256 values. We consider three types of adjacency:

1. 4-adjacency.Two pixels p and g with values from V are 4-adjacent if g is in the
set N,(p).

2. 8-adjacency. Two pixels p and g with values from V are 8-adjacent if ¢ is in the
set Ng(p).

3. m-adjacency (also called mixed adjacency). Two pixels p and g with values from
V are m-adjacent if
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‘We use the symbols

M and U to denote set
intersection and union,
respectively. Given sets
A and B, recall that
their intersection is the
set of elements that
are members of both

A and B.The union of
these two sets is the set
of elements that are
members of A, of B, or
of both. We will discuss
sets in more detail in

Section 2.6.
0 1
01
0 0
abcdef

= O

(a) gisin N,(p),or
(b) q is in N,(p) and the set N,(p)NN,(g) has no pixels whose values are
from V.

Mixed adjacency is a modification of 8-adjacency, and is introduced to eliminate the
ambiguities that may result from using 8-adjacency. For example, consider the pixel
arrangement in Fig. 2.28(a) and let V = {1}.The three pixels at the top of Fig. 2.28(b)
show multiple (ambiguous) 8-adjacency, as indicated by the dashed lines. This ambi-
guity is removed by using /m-adjacency, as in Fig. 2.28(c). In other words, the center
and upper-right diagonal pixels are not m-adjacent because they do not satisfy con-
dition (b).

A digital path (or curve) from pixel p with coordinates (x,,y,) to pixel g with
coordinates (x,, y,) is a sequence of distinct pixels with coordinates

(xO’yO)’(xl’yl)""’(xn’yn)

where points (x;,y;) and (x,_;,y, ;) are adjacent for 1 < i < n. In this case, n is the
length of the path. If (x,,y,) = (x,,y,) the path is a closed path. We can define 4-, 8-,
or m-paths, depending on the type of adjacency specified. For example, the paths in
Fig. 2.28(b) between the top right and bottom right points are 8-paths, and the path
in Fig. 2.28(c) is an m-path.

Let S represent a subset of pixels in an image. Two pixels p and ¢ are said to be
connected in S if there exists a path between them consisting entirely of pixels in S.
For any pixel p in S, the set of pixels that are connected to it in S is called a connected
component of S. If it only has one component, and that component is connected,
then S is called a connected set.

Let R represent a subset of pixels in an image. We call R a region of the image if R
is a connected set. Two regions, R; and R; are said to be adjacent if their union forms
a connected set. Regions that are not adjacent are said to be disjoint. We consider 4-
and 8-adjacency when referring to regions. For our definition to make sense, the type
of adjacency used must be specified. For example, the two regions of 1’s in Fig. 2.28(d)
are adjacent only if 8-adjacency is used (according to the definition in the previous

111 00000 000
191}R,» 01100 010
0 10 01100 010
0 1--1 0 1--1 0 0.1y 011310 010
010 0 10 111’}R, 01110 010
001 001 111 00000 000

FIGURE 2.28 (a) An arrangement of pixels. (b) Pixels that are 8-adjacent (adjacency is shown by dashed lines).
(c) m-adjacency. (d) Two regions (of 1’s) that are 8-adjacent. (e) The circled point is on the boundary of the 1-valued
pixels only if 8-adjacency between the region and background is used. (f) The inner boundary of the 1-valued region
does not form a closed path, but its outer boundary does.



2.5 Some Basic Relationships Between Pixels 81

paragraph, a 4-path between the two regions does not exist, so their union is not a
connected set).

Suppose an image contains K disjoint regions, R,,k =1,2,..., K, none of which
touches the image border.” Let R, denote the union of all the K regions, and let
(R,)" denote its complement (recall that the complement of a set A is the set of
points that are not in A). We call all the points in R, the foreground, and all the
points in (R,)" the background of the image.

The boundary (also called the border or contour) of aregion R is the set of pixels in
R that are adjacent to pixels in the complement of R. Stated another way, the border
of a region is the set of pixels in the region that have at least one background neigh-
bor. Here again, we must specify the connectivity being used to define adjacency. For
example, the point circled in Fig. 2.28(e) is not a member of the border of the 1-val-
ued region if 4-connectivity is used between the region and its background, because
the only possible connection between that point and the background is diagonal.
As a rule, adjacency between points in a region and its background is defined using
8-connectivity to handle situations such as this.

The preceding definition sometimes is referred to as the inner border of the
region to distinguish it from its outer border, which is the corresponding border in
the background. This distinction is important in the development of border-follow-
ing algorithms. Such algorithms usually are formulated to follow the outer boundary
in order to guarantee that the result will form a closed path. For instance, the inner
border of the 1-valued region in Fig. 2.28(f) is the region itself. This border does not
satisfy the definition of a closed path. On the other hand, the outer border of the
region does form a closed path around the region.

If R happens to be an entire image, then its boundary (or border) is defined as the
set of pixels in the first and last rows and columns of the image. This extra definition
is required because an image has no neighbors beyond its border. Normally, when
we refer to a region, we are referring to a subset of an image, and any pixels in the
boundary of the region that happen to coincide with the border of the image are
included implicitly as part of the region boundary.

The concept of an edge is found frequently in discussions dealing with regions
and boundaries. However, there is a key difference between these two concepts. The
boundary of a finite region forms a closed path and is thus a “global” concept. As we
will discuss in detail in Chapter 10, edges are formed from pixels with derivative val-
ues that exceed a preset threshold. Thus, an edge is a “local” concept that is based on
a measure of intensity-level discontinuity at a point. It is possible to link edge points
into edge segments, and sometimes these segments are linked in such a way that
they correspond to boundaries, but this is not always the case. The one exception in
which edges and boundaries correspond is in binary images. Depending on the type
of connectivity and edge operators used (we will discuss these in Chapter 10), the
edge extracted from a binary region will be the same as the region boundary. This is

*'We make this assumption to avoid having to deal with special cases. This can be done without loss of generality
because if one or more regions touch the border of an image, we can simply pad the image with a 1-pixel-wide
border of background values.
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intuitive. Conceptually, until we arrive at Chapter 10, it is helpful to think of edges
as intensity discontinuities, and of boundaries as closed paths.

DISTANCE MEASURES

For pixels p, g, and s, with coordinates (x, y), (1#,v), and (w,z), respectively, D
is a distance function or metric if

(@) D(p,q) >0 (D(p,q)=0 iff p=gq),
(b) D(p,q) = D(q, p), and
(¢) D(p,s) < D(p,q)+ D(q,s).

The Euclidean distance between p and ¢ is defined as

D(p.q)=[(x—uy + (-] (2-19)

For this distance measure, the pixels having a distance less than or equal to some
value r from (x, y) are the points contained in a disk of radius r centered at (x, y).
The D, distance, (called the city-block distance) between p and q is defined as

Dy(p.q)=|x—u|+|y—v| (2-20)

In this case, pixels having a D, distance from (x,y) that is less than or equal to some
value d form a diamond centered at (x, y). For example, the pixels with D, distance < 2
from (x, y) (the center point) form the following contours of constant distance:

2
212
21012
212
2

The pixels with D, =1 are the 4-neighbors of (x, y).
The Dy distance (called the chessboard distance) between p and q is defined as

Dy(p.q) = max(|x —ul,[y - v|) (2-21)

In this case, the pixels with D; distance from (x, y) less than or equal to some value d
form a square centered at (x,y). For example, the pixels with Dy distance < 2 form
the following contours of constant distance:

222 2 2
21112
21 01 2
21112
222 2 2

The pixels with Dy = 1 are the 8-neighbors of the pixel at (x,y).
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Note that the D, and D distances between p and g are independent of any paths
that might exist between these points because these distances involve only the coor-
dinates of the points. In the case of m-adjacency, however, the D,, distance between
two points is defined as the shortest m-path between the points. In this case, the
distance between two pixels will depend on the values of the pixels along the path,
as well as the values of their neighbors. For instance, consider the following arrange-
ment of pixels and assume that p, p,, and p, have a value of 1, and that p, and p;,
can be O or 1:

D3 Dy
P D>
p

Suppose that we consider adjacency of pixels valued 1 (i.e.,V = {1} ).If p, and p; are 0,
the length of the shortest m-path (the D, distance) between p and p, is 2. If p, is 1,
then p, and p will no longer be m-adjacent (see the definition of m-adjacency given
earlier) and the length of the shortest m-path becomes 3 (the path goes through the
points pp,p,p,). Similar comments apply if p; is 1 (and p, is 0); in this case, the
length of the shortest m-path also is 3. Finally, if both p, and p, are 1, the length of
the shortest m-path between p and p, is 4. In this case, the path goes through the

sequence of points pp, p, psp,.

2.6 INTRODUCTION TO THE BASIC MATHEMATICAL TOOLS USED IN

DIGITAL IMAGE PROCESSING I

This section has two principal objectives: (1) to introduce various mathematical
tools we use throughout the book; and (2) to help you begin developing a “feel” for
how these tools are used by applying them to a variety of basic image-processing
tasks, some of which will be used numerous times in subsequent discussions.

ELEMENTWISE VERSUS MATRIX OPERATIONS

An elementwise operation involving one or more images is carried out on a pixel-by-
pixel basis. We mentioned earlier in this chapter that images can be viewed equiva-
lently as matrices. In fact, as you will see later in this section, there are many situ-
ations in which operations between images are carried out using matrix theory. It
is for this reason that a clear distinction must be made between elementwise and
matrix operations. For example, consider the following 2 X 2 images (matrices):

|:a11 a12:| {bn b12:|
and
Iy dp by, by
The elementwise product (often denoted using the symbol ©® or ®) of these two

images is
{an an}@[bn b12j| _ [“11[911 a12b12i|
dy ap by by, ay by,

ayb,,
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These are image
summations, not the
sums of all the elements
of an image.

That is, the elementwise product is obtained by multiplying pairs of corresponding
pixels. On the other hand, the matrix product of the images is formed using the rules
of matrix multiplication:

{6111 al2i||:bll b12j| _ |:a11b11 +apby  apby, + a12b22}

4y Gy || by by by + aybyy  ay by, + ayby,

We assume elementwise operations throughout the book, unless stated otherwise.
For example, when we refer to raising an image to a power, we mean that each indi-
vidual pixel is raised to that power; when we refer to dividing an image by another,
we mean that the division is between corresponding pixel pairs, and so on. The terms
elementwise addition and subtraction of two images are redundant because these are
elementwise operations by definition. However, you may see them used sometimes
to clarify notational ambiguities.

LINEAR VERSUS NONLINEAR OPERATIONS

One of the most important classifications of an image processing method is whether
it is linear or nonlinear. Consider a general operator, J, that produces an output
image, g(x,y), from a given input image, f(x, y):

%[f(X,y)] = g(x’y) (2'22)

Given two arbitrary constants,a and b, and two arbitrary images f,(x,y) and f,(x,y),
7€ is said to be a linear operator if

%[afl(x’y) + bfz(an)]: a%[fl(xvy)] + b%[fz(xa)’)]
=ag(x,y) + bg,(x,y)

This equation indicates that the output of a linear operation applied to the sum of
two inputs is the same as performing the operation individually on the inputs and
then summing the results. In addition, the output of a linear operation on a con-
stant multiplied by an input is the same as the output of the operation due to the
original input multiplied by that constant. The first property is called the property
of additivity, and the second is called the property of homogeneity. By definition, an
operator that fails to satisfy Eq. (2-23) is said to be nonlinear.

As an example, suppose that ¥ is the sum operator, X. The function performed
by this operator is simply to sum its inputs. To test for linearity, we start with the left
side of Eq. (2-23) and attempt to prove that it is equal to the right side:

Z[afl(x’y) + bfz(x,Y)] = zafl(x>y) + zbfz(x»)’)
= aZfl(x9y) + bez(va)
=ag (x,y) + bgy(x,y)

(2-23)

where the first step follows from the fact that summation is distributive. So, an
expansion of the left side is equal to the right side of Eq. (2-23), and we conclude
that the sum operator is linear.
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On the other hand, suppose that we are working with the max operation, whose
function is to find the maximum value of the pixels in an image. For our purposes
here, the simplest way to prove that this operator is nonlinear is to find an example
that fails the test in Eq. (2-23). Consider the following two images

[0 2 . [6 5
S

and suppose that we let a = 1 and b = —1.To test for linearity, we again start with the
left side of Eq. (2-23):

ol ofs oonf 7]

=2
Working next with the right side, we obtain

(1)max{B ﬂ} + (—1)max{[j ﬂ} =3+ (-1)7=-4

The left and right sides of Eq. (2-23) are not equal in this case, so we have proved
that the max operator is nonlinear.

As you will see in the next three chapters, linear operations are exceptionally impor-
tant because they encompass a large body of theoretical and practical results that are
applicable to image processing. The scope of nonlinear operations is considerably
more limited. However, you will encounter in the following chapters several nonlin-
ear image processing operations whose performance far exceeds what is achievable
by their linear counterparts.

ARITHMETIC OPERATIONS

Arithmetic operations between two images f(x,y) and g(x,y) are denoted as

s(x,y) = f(x,y) + g(x,y)
d(x,y) = f(x,y) — g(x,y)
p(x,y) = f(x,y) x g(x,y)
v(x,y) = f(x,y) + g(x,y)

(2-24)

These are elementwise operations which, as noted earlier in this section, means
that they are performed between corresponding pixel pairs in f and g for
x=0,1,2,...,M—1and y=0,1,2,..., N—1. As usual, M and N are the row and
column sizes of the images. Clearly, s, d, p, and v are images of size M X N also.
Note that image arithmetic in the manner just defined involves images of the same
size. The following examples illustrate the important role of arithmetic operations
in digital image processing.
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EXAMPLE 2.5: Using image addition (averaging) for noise reduction.

Suppose that g(x,y) is a corrupted image formed by the addition of noise, n(x, y), to a noiseless image
f(x,y); that is,

g(x,y) = f(x,y) + n(x,y) (2-25)

where the assumption is that at every pair of coordinates (x,y) the noise is uncorrelated’ and has
zero average value. We assume also that the noise and image values are uncorrelated (this is a typical
assumption for additive noise). The objective of the following procedure is to reduce the noise content
of the output image by adding a set of noisy input images, { g;(x, y)}. This is a technique used frequently
for image enhancement.

If the noise satisfies the constraints just stated, it can be shown (Problem 2.26) that if an image g(x, y)
is formed by averaging K different noisy images,

_ 1&
g(x,y)= Ezgi(x,y) (2-26)
i=1
then it follows that
E{g(x,y)} = f(x.y) (2-27)
and
) 1

_1 2 i
Te(ey) = e Iy (2-28)
where E{g(x, y)} is the expecteq value of g(x,y),and o-é(x,y) and Ufl(w) are the Varianc§s of g(x, y) and
n(x,y), respectively, all at coordinates (x,y). These variances are arrays of the same size as the input
image, and there is a scalar variance value for each pixel location.
The standard deviation (square root of the variance) at any point (x, y) in the average image is

1
Oglxy) = JK Oo(xy)

As K increases, Egs. (2-28) and (2-29) indicate that the variability (as measured by the variance or the
standard deviation) of the pixel values at each location (x,y) decreases. Because E{g(x,y)} = f(x,y),
this means that g(x, y) approaches the noiseless image f(x, y) as the number of noisy images used in the
averaging process increases. In order to avoid blurring and other artifacts in the output (average) image,
it is necessary that the images g;(x, y) be registered (i.e., spatially aligned).

An important application of image averaging is in the field of astronomy, where imaging under
very low light levels often cause sensor noise to render individual images virtually useless for analysis
(lowering the temperature of the sensor helps reduce noise). Figure 2.29(a) shows an 8-bit image of the
Galaxy Pair NGC 3314, in which noise corruption was simulated by adding to it Gaussian noise with
zero mean and a standard deviation of 64 intensity levels. This image, which is representative of noisy
astronomical images taken under low light conditions, is useless for all practical purposes. Figures
2.29(b) through (f) show the results of averaging 5, 10, 20, 50, and 100 images, respectively. We see from
Fig. 2.29(b) that an average of only 10 images resulted in some visible improvement. According to Eq.

(2-29)

The variance of a random variable z with mean Z is defined as E{(z —Z)*}, where E{-} is the expected value of the argument. The covari-
ance of two random variables z; and z; is defined as E{(z; — z;)(z; — z;)}. If the variables are uncorrelated, their covariance is 0, and vice
versa. (Do not confuse correlation and statistical independence. If two random variables are statistically independent, their correlation is
zero. However, the converse is not true in general.)
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FIGURE 2.29 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)-(f) Result of averaging
5,10, 20, 50, and 1,00 noisy images, respectively. All images are of size 566 X 598 pixels, and all were scaled so that
their intensities would span the full [0, 255] intensity scale. (Original image courtesy of NASA.)

(2-29), the standard deviation of the noise in Fig. 2.29(b) is less than half (1/+/5 = 0.45) the standard
deviation of the noise in Fig. 2.29(a), or (0.45)(64) = 29 intensity levels. Similarly, the standard devia-
tions of the noise in Figs. 2.29(c) through (f) are 0.32,0.22,0.14, and 0.10 of the original, which translates
approximately into 20, 14, 9, and 6 intensity levels, respectively. We see in these images a progression
of more visible detail as the standard deviation of the noise decreases. The last two images are visually
identical for all practical purposes. This is not unexpected, as the difference between the standard devia-
tions of their noise level is only about 3 intensity levels According to the discussion in connection with
Fig. 2.5, this difference is below what a human generally is able to detect.

EXAMPLE 2.6: Comparing images using subtraction.

Image subtraction is used routinely for enhancing differences between images. For example, the image
in Fig. 2.30(b) was obtained by setting to zero the least-significant bit of every pixel in Fig. 2.30(a).
Visually, these images are indistinguishable. However, as Fig. 2.30(c) shows, subtracting one image from
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abc

FIGURE 2.30 (a) Infrared image of the Washington, D.C. area. (b) Image resulting from setting to zero the least
significant bit of every pixel in (a). (c¢) Difference of the two images, scaled to the range [0,255] for clarity. (Original
image courtesy of NASA.)

the other clearly shows their differences. Black (0) values in the difference image indicate locations
where there is no difference between the images in Figs. 2.30(a) and (b).

We saw in Fig. 2.23 that detail was lost as the resolution was reduced in the chronometer image
shown in Fig. 2.23(a). A vivid indication of image change as a function of resolution can be obtained
by displaying the differences between the original image and its various lower-resolution counterparts.
Figure 2.31(a) shows the difference between the 930 dpi and 72 dpi images. As you can see, the dif-
ferences are quite noticeable. The intensity at any point in the difference image is proportional to the
magnitude of the numerical difference between the two images at that point. Therefore, we can analyze
which areas of the original image are affected the most when resolution is reduced. The next two images
in Fig. 2.31 show proportionally less overall intensities, indicating smaller differences between the 930 dpi
image and 150 dpi and 300 dpi images, as expected.

allblfe

FIGURE 2.31 (a) Difference between the 930 dpi and 72 dpi images in Fig. 2.23. (b) Difference between the 930 dpi and
150 dpi images. (c) Difference between the 930 dpi and 300 dpi images.
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As a final illustration, we discuss briefly an area of medical imaging called mask mode radiography, a
commercially successful and highly beneficial use of image subtraction. Consider image differences of
the form

g(x,y)= f(x,y) — h(x,y) (2-30)

In this case A(x,y), the mask, is an X-ray image of a region of a patient’s body captured by an intensified
TV camera (instead of traditional X-ray film) located opposite an X-ray source. The procedure consists
of injecting an X-ray contrast medium into the patient’s bloodstream, taking a series of images called
live images [samples of which are denoted as f(x,y)] of the same anatomical region as A(x, y), and sub-
tracting the mask from the series of incoming live images after injection of the contrast medium. The net
effect of subtracting the mask from each sample live image is that the areas that are different between
f(x,y) and h(x,y) appear in the output image, g(x,y), as enhanced detail. Because images can be cap-
tured at TV rates, this procedure outputs a video showing how the contrast medium propagates through
the various arteries in the area being observed.

Figure 2.32(a) shows a mask X-ray image of the top of a patient’s head prior to injection of an iodine
medium into the bloodstream, and Fig. 2.32(b) is a sample of a live image taken after the medium was

ab
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FIGURE 2.32
Digital
subtraction
angiography.

(a) Mask image.
(b) A live image.
(c) Difference
between (a) and
(b). (d) Enhanced
difference image.
(Figures (a) and
(b) courtesy of
the Image
Sciences
Institute,
University
Medical Center,
Utrecht, The
Netherlands.)
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injected. Figure 2.32(c) is the difference between (a) and (b). Some fine blood vessel structures are vis-
ible in this image. The difference is clear in Fig.2.32(d), which was obtained by sharpening the image and
enhancing its contrast (we will discuss these techniques in the next chapter). Figure 2.32(d) is a “snap-
shot” of how the medium is propagating through the blood vessels in the subject’s brain.

EXAMPLE 2.7: Using image multiplication and division for shading correction and for masking.

An important application of image multiplication (and division) is shading correction. Suppose that an
imaging sensor produces images that can be modeled as the product of a “perfect image,” denoted by
f(x,y), times a shading function, A(x,y); that is, g(x,y) = f(x,y)h(x,y). If h(x,y) is known or can be
estimated, we can obtain f(x,y) (or an estimate of it) by multiplying the sensed image by the inverse of
h(x,y) (i.e., dividing g by 4 using elementwise division). If access to the imaging system is possible, we
can obtain a good approximation to the shading function by imaging a target of constant intensity. When
the sensor is not available, we often can estimate the shading pattern directly from a shaded image using
the approaches discussed in Sections 3.5 and 9.8. Figure 2.33 shows an example of shading correction
using an estimate of the shading pattern. The corrected image is not perfect because of errors in the
shading pattern (this is typical), but the result definitely is an improvement over the shaded image in Fig.
2.33 (a). See Section 3.5 for a discussion of how we estimated Fig. 2.33 (b). Another use of image mul-
tiplication is in masking, also called region of interest (ROI), operations. As Fig. 2.34 shows, the process
consists of multiplying a given image by a mask image that has 1’s in the ROI and 0’s elsewhere. There
can be more than one ROI in the mask image, and the shape of the ROI can be arbitrary.

A few comments about implementing image arithmetic operations are in order
before we leave this section. In practice, most images are displayed using 8 bits (even
24-bit color images consist of three separate 8-bit channels). Thus, we expect image
values to be in the range from 0 to 255. When images are saved in a standard image
format, such as TIFF or JPEG, conversion to this range is automatic. When image
values exceed the allowed range, clipping or scaling becomes necessary. For example,
the values in the difference of two 8-bit images can range from a minimum of -255

FIGURE 2.33 Shading correction. (a) Shaded test pattern. (b) Estimated shading pattern. (c) Product of (a) by the
reciprocal of (b). (See Section 3.5 for a discussion of how (b) was estimated.)
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FIGURE 2.34 (a) Digital dental X-ray image. (b) ROI mask for isolating teeth with fillings (white corresponds to 1 and
black corresponds to 0). (c) Product of (a) and (b).

These are elementwise
subtraction and division.
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to a maximum of 255, and the values of the sum of two such images can range from 0
to 510. When converting images to eight bits, many software applications simply set
all negative values to 0 and set to 255 all values that exceed this limit. Given a digital
image g resulting from one or more arithmetic (or other) operations, an approach
guaranteeing that the full range of a values is “captured” into a fixed number of bits
is as follows. First, we perform the operation

g, = & —min(g) (2-31)

which creates an image whose minimum value is 0. Then, we perform the operation

8 = K [gm /max(gm)] (2_32)

which creates a scaled image, g,, whose values are in the range [0, K]. When working
with 8-bit images, setting K = 255 gives us a scaled image whose intensities span the
full 8-bit scale from 0 to 255. Similar comments apply to 16-bit images or higher. This
approach can be used for all arithmetic operations. When performing division, we
have the extra requirement that a small number should be added to the pixels of the
divisor image to avoid division by 0.

SET AND LOGICAL OPERATIONS

In this section, we discuss the basics of set theory. We also introduce and illustrate
some important set and logical operations.

Basic Set Operations

A set is a collection of distinct objects. If a is an element of set A, then we write
aeA (2-33)
Similarly, if @ is not an element of A we write
ag A (2-34)

The set with no elements is called the null or empty set, and is denoted by &.
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A set is denoted by the contents of two braces: { « }. For example, the expression
C={c|c =—d, deD}

means that C is the set of elements, ¢, such that ¢ is formed by multiplying each of
the elements of set D by —1.

If every element of a set A is also an element of a set B, then A is said to be a
subset of B, denoted as

ACB (2-35)
The union of two sets A and B, denoted as
C=AUB (2-36)

is a set C consisting of elements belonging either to A, to B, or to both. Similarly, the
intersection of two sets A and B, denoted by

D=ANB (2-37)

is a set D consisting of elements belonging to both A and B. Sets A and B are said to
be disjoint or mutually exclusive if they have no elements in common, in which case,

ANB=Q (2-38)

The sample space, (), (also called the set universe) is the set of all possible set
elements in a given application. By definition, these set elements are members of
the sample space for that application. For example, if you are working with the set
of real numbers, then the sample space is the real line, which contains all the real
numbers. In image processing, we typically define () to be the rectangle containing
all the pixels in an image.

The complement of a set A is the set of elements that are not in A:

A ={w|w ¢ A} (2-39)
The difference of two sets A and B, denoted A — B, is defined as
A-B={w|lweAweB}=ANB (2-40)

This is the set of elements that belong to A, but not to B. We can define A° in terms
of ) and the set difference operation; that is, A = () — A. Table 2.1 shows several
important set properties and relationships.

Figure 2.35 shows diagrammatically (in so-called Venn diagrams) some of the set
relationships in Table 2.1. The shaded areas in the various figures correspond to the
set operation indicated above or below the figure. Figure 2.35(a) shows the sample
set, {). As no earlier, this is the set of all possible elements in a given application. Fig-
ure 2.35(b) shows that the complement of a set A is the set of all elements in ) that
are not in A, which agrees with our earlier definition. Observe that Figs. 2.35(¢e) and
(g) are identical, which proves the validity of Eq. (2-40) using Venn diagrams. This
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Some important
set operations
and relationships.

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 93

Description Expressions

Operations between the QO°=g;, =0, QUT=0; ONT=J

sample space and null sets

Union and intersection with AU =A, ANDG=T, AUQ=0; ANQ=A

the null and sample space sets

Union and intersection of a AUA=A; ANA=A

set with itself

Union and intersection of a AUA=Q0; ANA =0

set with its complement

Commutative laws AUB=BUA
ANB=BNA

Associative laws (AUB)UC=AU(BUC)

(ANB)NC=AN(BNC)

Distributive laws (AUB)NC=(ANC)U(BNC)
(ANB)UC =(AUC)N(BUC)

DeMorgan’s laws (AUB) = A°“N B°
(ANB) = A°UB*

is an example of the usefulness of Venn diagrams for proving equivalences between
set relationships.

When applying the concepts just discussed to image processing, we let sets repre-
sent objects (regions) in a binary image, and the elements of the sets are the (x,y)
coordinates of those objects. For example, if we want to know whether two objects,
A and B, of a binary image overlap, all we have to do is compute AN B. If the result
is not the empty set, we know that some of the elements of the two objects overlap.
Keep in mind that the only way that the operations illustrated in Fig. 2.35 can make
sense in the context of image processing is if the images containing the sets are
binary, in which case we can talk about set membership based on coordinates, the
assumption being that all members of the sets have the same intensity value (typi-
cally denoted by 1). We will discuss set operations involving binary images in more
detail in the following section and in Chapter 9.

The preceding concepts are not applicable when dealing with grayscale images,
because we have not defined yet a mechanism for assigning intensity values to the
pixels resulting from a set operation. In Sections 3.8 and 9.6 we will define the union
and intersection operations for grayscale values as the maximum and minimum of
corresponding pixel pairs, respectively. We define the complement of a grayscale
image as the pairwise differences between a constant and the intensity of every pixel
in the image. The fact that we deal with corresponding pixel pairs tells us that gray-
scale set operations are elementwise operations, as defined earlier. The following
example is a brief illustration of set operations involving grayscale images. We will
discuss these concepts further in the two sections just mentioned.
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Q A° ANB AUB

4

A-B B ANB* AN(BUC)

abcd
ef &h

FIGURE 2.35 Venn diagrams corresponding to some of the set operations in Table 2.1. The results of the operations,
such as A°, are shown shaded. Figures (e) and (g) are the same, proving via Venn diagrams that A— B = ANB°
[see Eq. (2-40)].

EXAMPLE 2.8: lllustration of set operations involving grayscale images.

Let the elements of a grayscale image be represented by a set A whose elements are triplets of the form
(x, y,2), where x and y are spatial coordinates, and z denotes intensity values. We define the complement
of A as the set

A= {(x, ¥, K=2)|(x,y, z)eA}

which is the set of pixels of A whose intensities have been subtracted from a constant K. This constant
is equal to the maximum intensity value in the image, 2* — 1, where k is the number of bits used to
represent z. Let A denote the 8-bit grayscale image in Fig. 2.36(a), and suppose that we want to form
the negative of A using grayscale set operations. The negative is the set complement, and this is an 8-bit
image, so all we have to do is let K = 255 in the set defined above:

A ={(x,y,255-2)|(x, y.2) € A}

Figure 2.36(b) shows the result. We show this only for illustrative purposes. Image negatives generally
are computed using an intensity transformation function, as discussed later in this section.
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FIGURE 2.36

Set operations
involving grayscale
images. (a) Original
image. (b) Image
negative obtained
using grayscale set
complementation.
(c) The union of
image (a) and a
constant image.
(Original image
courtesy of G.E.
Medical Systems.)
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The union of two grayscale sets A and B with the same number of elements is defined as the set

AUB = {max(a, b)| ac A, beB}

where it is understood that the max operation is applied to pairs of corresponding elements. If A and B
are grayscale images of the same size, we see that their the union is an array formed from the maximum
intensity between pairs of spatially corresponding elements. As an illustration, suppose that A again
represents the image in Fig. 2.36(a), and let B denote a rectangular array of the same size as A, but in
which all values of z are equal to 3 times the mean intensity, Z, of the elements of A. Figure 2.36(c) shows
the result of performing the set union, in which all values exceeding 3z appear as values from A and all
other pixels have value 3z, which is a mid-gray value.

We follow convention
in using the symbol x
to denote the Cartesian
product. This is not to
be confused with our
use of the same symbol
throughout the book

to denote the size of

an M-by-N image (i.e.,
M x N).

Before leaving the discussion of sets, we introduce some additional concepts that
are used later in the book. The Cartesian product of two sets X and Y, denoted
X xY, is the set of all possible ordered pairs whose first component is a member of
X and whose second component is a member of Y. In other words,

XxY ={(x,y)|xe X and yeY} (2-41)

For example, if X is a set of M equally spaced values on the x-axis and Y'is a set of N
equally spaced values on the y-axis, we see that the Cartesian product of these two
sets define the coordinates of an M-by-N rectangular array (i.e., the coordinates of
an image). As another example, if X and Y denote the specific x- and y-coordinates
of a group of 8-connected, 1-valued pixels in a binary image, then set X XY repre-
sents the region (object) comprised of those pixels.
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A relation (or, more precisely, a binary relation) on a set A is a collection of
ordered pairs of elements from A. That is, a binary relation is a subset of the Carte-
sian product A x A.A binary relation between two sets, A and B, is a subset of A x B.

A partial order on a set S is a relation R on S such that R is:

(a) reflexive: for any ae S, aRa;
(b) transitive: for any a,b,ceS,aRb and bRc implies that aRc;
(¢) antisymmetric: for any a,be S, aRb and bRa implies that a = b.

where, for example, aRb reads “a is related to b.” This means that a and b are in set
R, which itself is a subset of § X § according to the preceding definition of a relation.
A set with a partial order is called a partially ordered set.

Let the symbol < denote an ordering relation. An expression of the form

a 2a, 2a; 22 a,

reads: a, precedes a, or is the same as a,, a, precedes a, or is the same as a;,and so on.
When working with numbers, the symbol < typically is replaced by more traditional
symbols. For example, the set of real numbers ordered by the relation “less than or
equal to” (denoted by <)is a partially ordered set (see Problem 2.33). Similarly, the
set of natural numbers, paired with the relation “divisible by” (denoted by +), is a
partially ordered set.

Of more interest to us later in the book are strict orderings. A strict ordering on a
set S is a relation R on S, such that R is:

(a) antireflexive: for any ae S, —aRa;
(b) transitive: for any a,b,ce S, aRb and bRc implies that aRc.

where —aRa means that a is not related to a. Let the symbol < denote a strict
ordering relation. An expression of the form

a,< a,< a;< -+ < a,

reads a, precedes a,, a, precedes a,, and so on. A set with a strict ordering is called
a strict-ordered set.

As an example, consider the set composed of the English alphabet of lowercase
letters, S = {a, b,c,--+,z } Based on the preceding definition, the ordering

a<b<c<--<z

is strict because no member of the set can precede itself (antireflexivity) and, for any
three letters in S, if the first precedes the second, and the second precedes the third,
then the first precedes the third (transitivity). Similarly, the set of integers paired
with the relation “less than (<)” is a strict-ordered set.

Logical Operations

Logical operations deal with TRUE (typically denoted by 1) and FALSE (typically
denoted by 0) variables and expressions. For our purposes, this means binary images
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Truth table
defining the
logical operators
AND(N),
OR(V), and
NOT(~).
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composed of foreground (1-valued) pixels, and a background composed of O-valued
pixels.

We work with set and logical operators on binary images using one of two basic
approaches: (1) we can use the coordinates of individual regions of foreground pix-
els in a single image as sets, or (2) we can work with one or more images of the same
size and perform logical operations between corresponding pixels in those arrays.

In the first category, a binary image can be viewed as a Venn diagram in which
the coordinates of individual regions of 1-valued pixels are treated as sets. The
union of these sets with the set composed of 0-valued pixels comprises the set uni-
verse, ). In this representation, we work with single images using all the set opera-
tions defined in the previous section. For example, given a binary image with two
1-valued regions, R, and R,, we can determine if the regions overlap (i.e., if they
have at least one pair of coordinates in common) by performing the set intersec-
tion operation R, N R, (see Fig. 2.35). In the second approach, we perform logical
operations on the pixels of one binary image, or on the corresponding pixels of two
or more binary images of the same size.

Logical operators can be defined in terms of truth tables, as Table 2.2 shows for
two logical variables a and b. The logical AND operation (also denoted A) yields a 1
(TRUE) only when both a and b are 1. Otherwise, it yields 0 (FALSE). Similarly,
the logical OR (V) yields 1 when both a or b or both are 1, and 0 otherwise. The
NOT (~) operator is self explanatory. When applied to two binary images, AND
and OR operate on pairs of corresponding pixels between the images. That is, they
are elementwise operators (see the definition of elementwise operators given earlier
in this chapter) in this context. The operators AND, OR, and NOT are functionally
complete, in the sense that they can be used as the basis for constructing any other
logical operator.

Figure 2.37 illustrates the logical operations defined in Table 2.2 using the second
approach discussed above. The NOT of binary image B, is an array obtained by
changing all 1-valued pixels to 0, and vice versa. The AND of B, and B, contains a
1 at all spatial locations where the corresponding elements of B, and B, are 1; the
operation yields 0’s elsewhere. Similarly, the OR of these two images is an array
that contains a 1 in locations where the corresponding elements of B,, or B,, or
both, are 1. The array contains 0’s elsewhere. The result in the fourth row of Fig. 2.37
corresponds to the set of 1-valued pixels in B, but not in B,. The last row in the
figure is the XOR (exclusive OR) operation, which yields 1 in the locations where
the corresponding elements of B, or B,, (but not both) are 1. Note that the logical

a b aANDb aORb NOT(a)
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0
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FIGURE 2.37
Iustration of
logical operations
involving
foreground
(white) pixels.
Black represents
binary 0’s and
white binary 1’s.
The dashed lines
are shown for
reference only.
They are not part
of the result.

B, AND [NOT (B,)]

AND-
NOT

=

XOR

U

expressions in the last two rows of Fig. 2.37 were constructed using operators from
Table 2.2; these are examples of the functionally complete nature of these operators.

We can arrive at the same results in Fig. 2.37 using the first approach discussed
above. To do this, we begin by labeling the individual 1-valued regions in each of
the two images (in this case there is only one such region in each image). Let A
and B denote the set of coordinates of all the 1-valued pixels in images B, and B,,
respectively. Then we form a single array by ORing the two images, while keeping
the labels A and B. The result would look like the array B, OR B, in Fig. 2.37, but
with the two white regions labeled A and B. In other words, the resulting array
would look like a Venn diagram. With reference to the Venn diagrams and set opera-
tions defined in the previous section, we obtain the results in the rightmost column
of Fig. 2.37 using set operations as follows: A° = NOT(B,), ANB = B, ANDB,,
AUB = B, ORB,, and similarly for the other results in Fig. 2.37. We will make

extensive use in Chapter 9 of the concepts developed in this section.

SPATIAL OPERATIONS

Spatial operations are performed directly on the pixels of an image. We classify
spatial operations into three broad categories: (1) single-pixel operations, (2) neigh-

borhood operations, and (3) geometric spatial transformations.



Our use of the word
“negative” in this context
refers to the digital
equivalent of a
photographic negative,
not to the numerical
negative of the pixels in
the image.

FIGURE 2.38
Intensity
transformation
function used to
obtain the digital
equivalent of
photographic
negative of an
8-bit image..
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Single-Pixel Operations

The simplest operation we perform on a digital image is to alter the intensity of its
pixels individually using a transformation function, 7', of the form:

s=T(2) (2-42)

where z is the intensity of a pixel in the original image and s is the (mapped) inten-
sity of the corresponding pixel in the processed image. For example, Fig. 2.38 shows
the transformation used to obtain the negative (sometimes called the complement)
of an 8-bit image. This transformation could be used, for example, to obtain the
negative image in Fig. 2.36, instead of using sets.

Neighborhood Operations

Let S,, denote the set of coordinates of a neighborhood (see Section 2.5 regarding
neighborhoods) centered on an arbitrary point (x, y) in an image, f. Neighborhood
processing generates a corresponding pixel at the same coordinates in an output
(processed) image, g, such that the value of that pixel is determined by a specified
operation on the neighborhood of pixels in the input image with coordinates in the
set §,,. For example, suppose that the specified operation is to compute the average
value of the pixels in a rectangular neighborhood of size m x n centered on (x,y).
The coordinates of pixels in this region are the elements of set S, . Figures 2.39(a)
and (b) illustrate the process. We can express this averaging operation as

e =— ¥ f0.0) (2-43)

(rc)es,,

where r and c¢ are the row and column coordinates of the pixels whose coordinates
are in the set S, . Image g is created by varying the coordinates (x,y) so that the
center of the neighborhood moves from pixel to pixel in image f, and then repeat-
ing the neighborhood operation at each new location. For instance, the image in
Fig. 2.39(d) was created in this manner using a neighborhood of size 41 x 41. The

s=T(2)
255

So
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ab
@l n
FIGURE 2.39 ] ’\
Local averaging o °
using neighbor- (xy) (x,y)
hood processing. The value of this pixel
The procedure is is the average value of the
illustrated in (a) pixels in S,
and (b) for a
rectangular
neighborhood.
(c) An aortic
angiogram (see
Section 1.3).
(d) The result of
using Eq. (2-43) Image f Image g
with m =n =41.
The images are
of size 790 x 686
pixels. (Original
image courtesy
of Dr. Thomas R.
Gest, Division of
Anatomical
Sciences,
University of
Michigan Medical
School.)

net effect is to perform local blurring in the original image. This type of process is
used, for example, to eliminate small details and thus render “blobs” correspond-
ing to the largest regions of an image. We will discuss neighborhood processing in
Chapters 3 and 5, and in several other places in the book.

Geometric Transformations

We use geometric transformations modify the spatial arrangement of pixels in an
image. These transformations are called rubber-sheet transformations because they
may be viewed as analogous to “printing” an image on a rubber sheet, then stretch-
ing or shrinking the sheet according to a predefined set of rules. Geometric transfor-
mations of digital images consist of two basic operations:



2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 101

1. Spatial transformation of coordinates.

2. Intensity interpolation that assigns intensity values to the spatially transformed
pixels.

The transformation of coordinates may be expressed as

x’ X t, t X
_ _|n 244
L"} ! {Y} Lﬂ ’22}[)’} .

where (x,y) are pixel coordinates in the original image and (x’,y") are the
corresponding pixel coordinates of the transformed image. For example, the
transformation (x’,y") = (x/2, y/2) shrinks the original image to half its size in both
spatial directions.

Our interestis in so-called affine transformations,which include scaling, translation,
rotation, and shearing. The key characteristic of an affine transformation in 2-D is
that it preserves points, straight lines, and planes. Equation (2-44) can be used to
express the transformations just mentioned, except translation, which would require
that a constant 2-D vector be added to the right side of the equation. However, it is
possible to use homogeneous coordinates to express all four affine transformations
using a single 3 x 3 matrix in the following general form:

x’ X a;, a, aj||x
YI=Aly|=|lay ayn ayl|ly (2-45)
1 1 0o 0 1|1

This transformation can scale, rotate, translate, or sheer an image, depending on the
values chosen for the elements of matrix A. Table 2.3 shows the matrix values used
to implement these transformations. A significant advantage of being able to per-
form all transformations using the unified representation in Eq. (2-45) is that it pro-
vides the framework for concatenating a sequence of operations. For example, if we
want to resize an image, rotate it, and move the result to some location, we simply
form a 3 x3 matrix equal to the product of the scaling, rotation, and translation
matrices from Table 2.3 (see Problems 2.36 and 2.37).

The preceding transformation moves the coordinates of pixels in an image to new
locations. To complete the process, we have to assign intensity values to those loca-
tions. This task is accomplished using intensity interpolation. We already discussed
this topic in Section 2.4. We began that discussion with an example of zooming an
image and discussed the issue of intensity assignment to new pixel locations. Zoom-
ing is simply scaling, as detailed in the second row of Table 2.3, and an analysis simi-
lar to the one we developed for zooming is applicable to the problem of assigning
intensity values to the relocated pixels resulting from the other transformations in
Table 2.3. As in Section 2.4, we consider nearest neighbor, bilinear, and bicubic inter-
polation techniques when working with these transformations.

We can use Eq. (2-45) in two basic ways. The first, is a forward mapping, which
consists of scanning the pixels of the input image and, at each location (x,y), com-
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TABLE 2.3
Affine

puting the spatial location (x’,y”) of the corresponding pixel in the output image
using Eq. (2-45) directly. A problem with the forward mapping approach is that two
or more pixels in the input image can be transformed to the same location in the
output image, raising the question of how to combine multiple output values into a
single output pixel value. In addition, it is possible that some output locations may
not be assigned a pixel at all. The second approach, called inverse mapping, scans
the output pixel locations and, at each location (x’,y"), computes the corresponding
location in the input image using (x,y) = A™'(x’,y”). It then interpolates (using one
of the techniques discussed in Section 2.4) among the nearest input pixels to deter-
mine the intensity of the output pixel value. Inverse mappings are more efficient to
implement than forward mappings, and are used in numerous commercial imple-
mentations of spatial transformations (for example, MATLAB uses this approach).

Transformation

Name

Affine Matrix, A

Coordinate
Equations

transformations
based on
Eq. (2-45).

=]
o
—_

~

Identity 1 00 x'=x T Y
Scaling/Reflection ¢ 0 0 X' =cx >
(For. reflection, set one 0 ¢ 0 y = ¢,y
scaling factor to —1 )
and the other to 0) 0o 0 1 ,

X

Rotation (about the cosf —sinh O
origin)

x"=xcosf—ysinf
Y =xsinf+ycos6

Translation

Shear (vertical)

Shear (horizontal)

X' =x+t,
Y =y+i,

X' =x+s,y
y =y

X' =x
Y =sx+y

]

<

- =

~
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EXAMPLE 2.9: Image rotation and intensity interpolation.

The objective of this example is to illustrate image rotation using an affine transform. Figure 2.40(a)
shows a simple image and Figs. 2.40(b)-(d) are the results (using inverse mapping) of rotating the
original image by —21° (in Table 2.3, clockwise angles of rotation are negative). Intensity assignments
were computed using nearest neighbor, bilinear, and bicubic interpolation, respectively. A key issue in
image rotation is the preservation of straight-line features. As you can see in the enlarged edge sections
in Figs. 2.40(f) through (h), nearest neighbor interpolation produced the most jagged edges and, as in
Section 2.4, bilinear interpolation yielded significantly improved results. As before, using bicubic inter-
polation produced slightly better results. In fact, if you compare the progression of enlarged detail in
Figs. 2.40(f) to (h), you can see that the transition from white (255) to black (0) is smoother in the last
figure because the edge region has more values, and the distribution of those values is better balanced.
Although the small intensity differences resulting from bilinear and bicubic interpolation are not always
noticeable in human visual analysis, they can be important in processing image data, such as in auto-
mated edge following in rotated images.

The size of the spatial rectangle needed to contain a rotated image is larger than the rectangle of the
original image, as Figs. 2.41(a) and (b) illustrate. We have two options for dealing with this: (1) we can
crop the rotated image so that its size is equal to the size of the original image, as in Fig. 2.41(c), or we
can keep the larger image containing the full rotated original, an Fig.2.41(d). We used the first option in
Fig. 2.40 because the rotation did not cause the object of interest to lie outside the bounds of the original
rectangle. The areas in the rotated image that do not contain image data must be filled with some value, 0
(black) being the most common. Note that counterclockwise angles of rotation are considered positive.
This is a result of the way in which our image coordinate system is set up (see Fig. 2.19), and the way in
which rotation is defined in Table 2.3.

Image Registration

Image registration is an important application of digital image processing used to
align two or more images of the same scene. In image registration, we have avail-
able an input image and a reference image. The objective is to transform the input
image geometrically to produce an output image that is aligned (registered) with the
reference image. Unlike the discussion in the previous section where transformation
functions are known, the geometric transformation needed to produce the output,
registered image generally is not known, and must be estimated.

Examples of image registration include aligning two or more images taken at
approximately the same time, but using different imaging systems, such as an MRI
(magnetic resonance imaging) scanner and a PET (positron emission tomography)
scanner. Or, perhaps the images were taken at different times using the same instru-
ments, such as satellite images of a given location taken several days, months, or even
years apart. In either case, combining the images or performing quantitative analysis
and comparisons between them requires compensating for geometric distortions
caused by differences in viewing angle, distance, orientation, sensor resolution, shifts
in object location, and other factors.
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FIGURE 2.40 (a) A 541 x 421 image of the letter T. (b) Image rotated —21° using nearest-neighbor interpolation for
intensity assignments. (c) Image rotated —21° using bilinear interpolation. (d) Image rotated —21° using bicubic
interpolation. (e¢)-(h) Zoomed sections (each square is one pixel, and the numbers shown are intensity values).

One of the principal approaches for solving the problem just discussed is to use tie
points (also called control points). These are corresponding points whose locations
are known precisely in the input and reference images. Approaches for selecting tie
points range from selecting them interactively to using algorithms that detect these
points automatically. Some imaging systems have physical artifacts (such as small
metallic objects) embedded in the imaging sensors. These produce a set of known
points (called reseau marks or fiducial marks) directly on all images captured by the
system. These known points can then be used as guides for establishing tie points.

The problem of estimating the transformation function is one of modeling. For
example, suppose that we have a set of four tie points each in an input and a refer-
ence image. A simple model based on a bilinear approximation is given by

X=00 + W + ;oW + ¢4 (2-46)
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FIGURE 2.41

(a) A digital
image.

(b) Rotated image
(note the
counterclockwise
direction for a
positive angle of
rotation).

(c) Rotated image
cropped to fit the
same area as the
original image.

(d) Image
enlarged to
accommodate

the entire rotated
image.
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: Origin

y y
Positive
angle of
rotation
Image f(x, y)
X X
y Y

Y =C50 4 W + VW + ¢ (2-47)
During the estimation phase, (v,w) and (x, y) are the coordinates of tie points in the
input and reference images, respectively. If we have four pairs of corresponding tie
points in both images, we can write eight equations using Eqs. (2-46) and (2-47) and
use them to solve for the eight unknown coefficients, ¢, through c;.

Once we have the coefficients, Egs. (2-46) and (2-47) become our vehicle for trans-
forming all the pixels in the input image. The result is the desired registered image.
After the coefficients have been computed, we let (v,w) denote the coordinates of
each pixel in the input image, and (x, y) become the corresponding coordinates of the
output image. The same set of coefficients, ¢, through ¢, are used in computing all
coordinates (x, y); we just step through all (v,w) in the input image to generate the
corresponding (x,y) in the output, registered image. If the tie points were selected
correctly, this new image should be registered with the reference image, within the
accuracy of the bilinear approximation model.

In situations where four tie points are insufficient to obtain satisfactory regis-
tration, an approach used frequently is to select a larger number of tie points and
then treat the quadrilaterals formed by groups of four tie points as subimages. The
subimages are processed as above, with all the pixels within a quadrilateral being
transformed using the coefficients determined from the tie points corresponding
to that quadrilateral. Then we move to another set of four tie points and repeat the
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procedure until all quadrilateral regions have been processed. It is possible to use
more complex regions than quadrilaterals, and to employ more complex models,
such as polynomials fitted by least squares algorithms. The number of control points
and sophistication of the model required to solve a problem is dependent on the
severity of the geometric distortion. Finally, keep in mind that the transformations
defined by Egs. (2-46) and (2-47), or any other model for that matter, only map the
spatial coordinates of the pixels in the input image. We still need to perform inten-
sity interpolation using any of the methods discussed previously to assign intensity
values to the transformed pixels.

EXAMPLE 2.10: Image registration.

Figure 2.42(a) shows a reference image and Fig. 2.42(b) shows the same image, but distorted geometri-
cally by vertical and horizontal shear. Our objective is to use the reference image to obtain tie points
and then use them to register the images. The tie points we selected (manually) are shown as small white
squares near the corners of the images (we needed only four tie points because the distortion is linear
shear in both directions). Figure 2.42(c) shows the registration result obtained using these tie points in
the procedure discussed in the preceding paragraphs. Observe that registration was not perfect, as is
evident by the black edges in Fig. 2.42(c). The difference image in Fig. 2.42(d) shows more clearly the
slight lack of registration between the reference and corrected images. The reason for the discrepancies
is error in the manual selection of the tie points. It is difficult to achieve perfect matches for tie points
when distortion is so severe.

Recall that an
n-dimensional vector
can be thought of as a
point in n-dimensional
Euclidean space.

VECTOR AND MATRIX OPERATIONS

Multispectral image processing is a typical area in which vector and matrix opera-
tions are used routinely. For example, you will learn in Chapter 6 that color images
are formed in RGB color space by using red, green, and blue component images, as
Fig. 2.43 illustrates. Here we see that each pixel of an RGB image has three compo-
nents, which can be organized in the form of a column vector

=2, (2-48)

where z, is the intensity of the pixel in the red image, and z, and z; are the corre-
sponding pixel intensities in the green and blue images, respectively. Thus, an RGB
color image of size M x N can be represented by three component images of this
size, or by a total of MN vectors of size 3 x 1. A general multispectral case involving
n component images (e.g., see Fig. 1.10) will result in n-dimensional vectors:

4

2=| " (2-49)
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FIGURE 2.42

Image
registration.

(a) Reference
image. (b) Input
(geometrically
distorted image).
Corresponding tie
points are shown
as small white
squares near the
corners.

(c) Registered
(output) image
(note the errors
in the border).

(d) Difference
between (a) and
(c), showing more
registration errors.

The product ab” is called
the outer product of a
and b. It is a matrix of
size nxn.
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saaaaaadd
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We will use this type of vector representation throughout the book.
The inner product (also called the dot product) of two n-dimensional column vec-
tors a and b is defined as

asb2a’b

=ab +a,b, +---+a

n
= Z“ibi
i=1

where T indicates the transpose. The Euclidean vector norm, denoted by |z|, is
defined as the square root of the inner product:

2] = (2"2)

b

n

(2-50)

n

o —

(2-51)
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FIGURE 2.43
Forming a vector
from
corresponding
pixel values in
three RGB
component
images.

.....

.....

<1
22
<3

7=

Component image 3 (Blue)

Component image 2 (Green)

Component image 1 (Red)

We recognize this expression as the length of vector z.

We can use vector notation to express several of the concepts discussed earlier.
For example, the Euclidean distance, D(z, a), between points (vectors) z and a in
n-dimensional space is defined as the Euclidean vector norm:

D(z,a)=|z-a|=|(z - a) (z - a) ] (2-52)

=|:(Zl - a1)2 +(z, - a2)2 +ot(z, - an)z]5

This is a generalization of the 2-D Euclidean distance defined in Eq. (2-19).
Another advantage of pixel vectors is in linear transformations, represented as

w=A(z — a) (2-53)

where A is a matrix of size m X n, and z and a are column vectors of size n x 1.

As noted in Eq. (2-10), entire images can be treated as matrices (or, equivalently,
as vectors), a fact that has important implication in the solution of numerous image
processing problems. For example, we can express an image of size M X N as a col-
umn vector of dimension MN x 1 by letting the first M elements of the vector equal
the first column of the image, the next M elements equal the second column, and
so on. With images formed in this manner, we can express a broad range of linear
processes applied to an image by using the notation

g=Hf + n (2-54)

where fis an MN x 1 vector representing an input image, n is an MN X 1 vector rep-
resenting an M X N noise pattern, g is an MN x 1 vector representing a processed
image, and H is an MN x MN matrix representing a linear process applied to the
input image (see the discussion earlier in this chapter regarding linear processes).
It is possible, for example, to develop an entire body of generalized techniques for
image restoration starting with Eq. (2-54), as we discuss in Section 5.9. We will men-
tion the use of matrices again in the following section, and show other uses of matri-
ces for image processing in numerous chapters in the book.
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IMAGE TRANSFORMS

All the image processing approaches discussed thus far operate directly on the pixels
of an input image; that is, they work directly in the spatial domain. In some cases,
image processing tasks are best formulated by transforming the input images, carry-
ing the specified task in a transform domain, and applying the inverse transform to
return to the spatial domain. You will encounter a number of different transforms
as you proceed through the book. A particularly important class of 2-D linear trans-
forms, denoted T'(u,v), can be expressed in the general form

M—-1N-1

T(u,v)= 2 2 fx,y)r(x, y,u,v) (2-55)

x=0 y=0

where f(x,y) is an input image, r(x,y,u,v) is called a forward transformation ker-
nel,and Eq. (2-55) is evaluated foru =0,1,2,.... M—land v=0,1,2,..., N - 1. As
before, x and y are spatial variables, while M and N are the row and column dimen-
sions of f. Variables u and v are called the transform variables. T(u,v) is called the
forward transform of f(x,y). Given T(u,v), we can recover f(x,y) using the inverse
transform of T(u,v):

flx,y)= 2 2 T(u,v)s(x, y,u,v) (2-56)

forx=0,1,2,....M—-1landy=0,1,2,..., N — 1,where s(x, y,u,v) is called an inverse
transformation kernel. Together, Egs. (2-55) and (2-56) are called a transform pair.

Figure 2.44 shows the basic steps for performing image processing in the linear
transform domain. First, the input image is transformed, the transform is then modi-
fied by a predefined operation and, finally, the output image is obtained by computing
the inverse of the modified transform. Thus, we see that the process goes from the
spatial domain to the transform domain, and then back to the spatial domain.

The forward transformation kernel is said to be separable if

r(x, y,u,v) = r(x,u)r(y,v) (2-57)

In addition, the kernel is said to be symmetric if r,(x,u) is functionally equal to
r,(y,v),so that

r(x7 y, u, 1))= rl(xs u)rl(y’ 1)) (2_58)

Identical comments apply to the inverse kernel.

The nature of a transform is determined by its kernel. A transform of particular
importance in digital image processing is the Fourier transform, which has the fol-
lowing forward and inverse kernels:

r(x’ V. u, ’U) — e—j27r(ux/M + vy/N) (2_59)
and

s(x, y,u,v) = —MlN /2 My /N) (2-60)
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FIGURE 2.44 T(u, v) Overati RIT@ )l
General approach f(x,y) = Transform [ = pe? 1on = transform ﬁ> g(x.y)
for working in the —_— —_—
linear transform Spatial  “S—— — —  Spatial
domain. domain Transform domain domain

respectively, where j = v/—1,so0 these kernels are complex functions. Substituting the
preceding kernels into the general transform formulations in Egs. (2-55) and (2-56)

_ gives us the discrete Fourier transform pair:
The exponential terms

in the Fourier transform
kernels can be expanded M-
as sines and cosines of T(Lt 1)) — Z
various frequencies. As ’

aresult, the domain of x=0
the Fourier transform
is called the frequency
domain.

f(x y)e—]277(uX/M + vy/N) (2-61)

Ii MZ

and
M-1N-1 A
f(x y _ 2 z T(u’v)e]Zﬂ(ux/M + vy/N) (2-62)
1=0 v=0

It can be shown that the Fourier kernels are separable and symmetric (Problem 2.39),
and that separable and symmetric kernels allow 2-D transforms to be computed using
1-D transforms (see Problem 2.40). The preceding two equations are of fundamental
importance in digital image processing, as you will see in Chapters 4 and 5.

EXAMPLE 2.11: Image processing in the transform domain.

Figure 2.45(a) shows an image corrupted by periodic (sinusoidal) interference. This type of interference

can be caused, for example, by a malfunctioning imaging system; we will discuss it in Chapter 5. In the

spatial domain, the interference appears as waves of intensity. In the frequency domain, the interference
manifests itself as bright bursts of intensity, whose location is determined by the frequency of the sinu-
soidal interference (we will discuss these concepts in much more detail in Chapters 4 and 5). Typi-
cally, the bursts are easily observable in an image of the magnitude of the Fourier transform, [T(u,)).
With reference to the diagram in Fig. 2.44, the corrupted image is f(x,y), the transform in the leftmost
box is the Fourier transform, and Fig. 2.45(b) is [T'(u,v)| displayed as an image. The bright dots shown
are the bursts of intensity mentioned above. Figure 2.45(c) shows a mask image (called a filter) with
white and black representing 1 and 0, respectively. For this example, the operation in the second box of
Fig. 2.44 is to multiply the filter by the transform to remove the bursts associated with the interference.
Figure 2.45(d) shows the final result, obtained by computing the inverse of the modified transform. The
interference is no longer visible, and previously unseen image detail is now made quite clear. Observe,
for example, the fiducial marks (faint crosses) that are used for image registration, as discussed earlier.

When the forward and inverse kernels of a transform are separable and sym-
metric, and f(x,y) is a square image of size M x M, Egs. (2-55) and (2-56) can be
expressed in matrix form:
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FIGURE 2.45

(a) Image
corrupted by
sinusoidal
interference.

(b) Magnitude of
the Fourier
transform
showing the
bursts of energy
caused by the
interference
(the bursts were
enlarged for

display purposes).

(c) Mask used

to eliminate the
energy bursts.
(d) Result of
computing the
inverse of the
modified Fourier
transform.
(Original

image courtesy of
NASA.)
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T = AFA

(2-63)

where F is an M x M matrix containing the elements of f(x,y) [see Eq. (2-9)], A is
an M x M matrix with elements a; =r;(,j), and T is an M x M transform matrix
with elements T'(u,v), for u,v =0,1,2,..., M — 1.

To obtain the inverse transform, we pre- and post-multiply Eq. (2-63) by an
inverse transformation matrix B:

BTB = BAFAB (2-64)
IfB=A",

F =BTB (2-65)
indicating that F or, equivalently, f(x,y), can be recovered completely from its
forward transform. If B is not equal to A™", Eq. (2-65) yields an approximation:

F = BAFAB (2-66)

In addition to the Fourier transform, a number of important transforms, including
the Walsh, Hadamard, discrete cosine, Haar, and slant transforms, can be expressed
in the form of Egs. (2-55) and (2-56), or, equivalently, in the form of Egs. (2-63) and
(2-65). We will discuss these and other types of image transforms in later chapters.
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You may find it useful

to consult the tutorials
section in the book
website for a brief review
of probability.

IMAGE INTENSITIES AS RANDOM VARIABLES

We treat image intensities as random quantities in numerous places in the book. For
example, let z;,i = 0,1,2,...,L — 1, denote the values of all possible intensities in an
M x N digital image. The probability, p(z, ), of intensity level z, occurring in the im-
age is estimated as

)= (2:67)

where 7, is the number of times that intensity z, occurs in the image and MN is the
total number of pixels. Clearly,

kz:op@k) -1 (2-68)

Once we have p(z, ), we can determine a number of important image characteristics.
For example, the mean (average) intensity is given by

~

-1

m=3 zp(z) (2-69)

=~
I

Similarly, the variance of the intensities is
o’ =3 (2 —m)’ p(z) (2-70)

The variance is a measure of the spread of the values of z about the mean, so it is
a useful measure of image contrast. In general, the nth central moment of random
variable z about the mean is defined as

(2) = kZ(zk —m)' p(z,) (2-71)

We see that u,(z) =1, u,(z) =0, and u,(z) = 0. Whereas the mean and variance
have an immediately obvious relationship to visual properties of an image, higher-
order moments are more subtle. For example, a positive third moment indicates
that the intensities are biased to values higher than the mean, a negative third mo-
ment would indicate the opposite condition, and a zero third moment would tell us
that the intensities are distributed approximately equally on both sides of the mean.
These features are useful for computational purposes, but they do not tell us much
about the appearance of an image in general.

As you will see in subsequent chapters, concepts from probability play a central
role in a broad range of image processing applications. For example, Eq. (2-67) is
utilized in Chapter 3 as the basis for image enhancement techniques based on his-
tograms. In Chapter 5, we use probability to develop image restoration algorithms,
in Chapter 10 we use probability for image segmentation, in Chapter 11 we use it
to describe texture, and in Chapter 12 we use probability as the basis for deriving
optimum pattern recognition algorithms.
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Summary, References, and Further Reading

The material in this chapter is the foundation for the remainder of the book. For additional reading on visual per-
ception, see Snowden et al. [2012], and the classic book by Cornsweet [1970]. Born and Wolf [1999] discuss light in
terms of electromagnetic theory. A basic source for further reading on image sensing is Trussell and Vrhel [2008].
The image formation model discussed in Section 2.3 is from Oppenheim et al. [1968]. The IES Lighting Handbook
[2011] is a reference for the illumination and reflectance values used in that section. The concepts of image sampling
introduced in Section 2.4 will be covered in detail in Chapter 4. The discussion on experiments dealing with the
relationship between image quality and sampling is based on results from Huang [1965]. For further reading on the
topics discussed in Section 2.5, see Rosenfeld and Kak [1982], and Klette and Rosenfeld [2004].

See Castleman [1996] for additional reading on linear systems in the context of image processing. The method of
noise reduction by image averaging was first proposed by Kohler and Howell [1963]. See Ross [2014] regarding the
expected value of the mean and variance of the sum of random variables. See Schroder [2010] for additional read-
ing on logic and sets. For additional reading on geometric spatial transformations see Wolberg [1990] and Hughes
and Andries [2013]. For further reading on image registration see Goshtasby [2012]. Bronson and Costa [2009] is a
good reference for additional reading on vectors and matrices. See Chapter 4 for a detailed treatment of the Fourier
transform, and Chapters 7, 8, and 11 for details on other image transforms. For details on the software aspects of
many of the examples in this chapter, see Gonzalez, Woods, and Eddins [2009].

Problems

Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book
website: www.ImageProcessingPlace.com).

2.1 If you use a sheet of white paper to shield your 2.4 You are hired to design the front end of an imag-

eyes when looking directly at the sun, the side of ing system for studying the shapes of cells, bacteria,
the sheet facing you appears black. Which of the viruses, and proteins. The front end consists in
visual processes discussed in Section 2.1 is respon- this case of the illumination source(s) and cor-
sible for this? responding imaging camera(s).The diameters of

circles required to fully enclose individual speci-
mens in each of these categories are 50, 1, 0.1, and
0.01 wm, respectively. In order to perform auto-
mated analysis, the smallest detail discernible on a
specimen must be 0.001 wm.

2.2* Using the background information provided in
Section 2.1, and thinking purely in geometrical
terms, estimate the diameter of the smallest
printed dot that the eye can discern if the page
on which the dot is printed is 0.2 m away from the

eyes. Assume for simplicity that the visual system (a)* Can you solve the imaging aspects of this
ceases to detect the dot when the image of the dot problem with a Single sensor and camera?
on the fovea becomes smaller than the diameter If your answer is yes, specify the illumina-
of one receptor (cone) in that area of the retina. tion wavelength band and the type of camera
Assume further that the fovea can be modeled as needed. By “type,” we mean the band of the
a square array of dimension 1.5 mm on the side, electromagnetic spectrum to which the cam-
and that the cones and spaces between the cones era is most sensitive (e.g., infrared).

are distributed uniformly throughout this array. ) ) )
(b) If your answer in (a) is no, what type of illu-

mination sources and corresponding imaging
sensors would you recommend? Specify the
light sources and cameras as requested in
part (a). Use the minimum number of illumi-
nation sources and cameras needed to solve
the problem. (Hint: From the discussion in

2.3 Although it is not shown in Fig. 2.10, alternating
current is part of the electromagnetic spectrum.
Commercial alternating current in the United
States has a frequency of 60 Hz. What is the wave-
length in kilometers of this component of the
spectrum?
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Section 2.2, the illumination required to “see”
an object must have a wavelength the same
size or smaller than the object.)

You are preparing a report and have to insert in it
an image of size 2048 x 2048 pixels.

(a)* Assuming no limitations on the printer, what
would the resolution in line pairs per mm
have to be for the image to fit in a space of
size 5x 5 cm?

(b) What would the resolution have to be in dpi
for the image to fitin 2 X 2 inches?

A CCD camera chip of dimensions 7 x 7 mm and
1024 x 1024 sensing elements, is focused on a
square, flat area, located 0.5 m away. The camera
is equipped with a 35-mm lens. How many line
pairs per mm will this camera be able to resolve?
(Hint: Model the imaging process as in Fig. 2.3,
with the focal length of the camera lens substitut-
ing for the focal length of the eye.)

An automobile manufacturer is automating the
placement of certain components on the bumpers
of a limited-edition line of sports cars. The com-
ponents are color-coordinated, so the assembly
robots need to know the color of each car in order
to select the appropriate bumper component.
Models come in only four colors: blue, green, red,
and white. You are hired to propose a solution
based on imaging. How would you solve the prob-
lem of determining the color of each car, keeping
in mind that cost is the most important consider-
ation in your choice of components?

Suppose that a given automated imaging applica-
tion requires a minimum resolution of 5 line pairs
per mm to be able to detect features of interest
in objects viewed by the camera. The distance
between the focal center of the camera lens and
the area to be imaged is 1 m. The area being
imaged is 0.5x 0.5 m. You have available a 200
mm lens, and your job is to pick an appropriate
CCD imaging chip. What is the minimum number
of sensing elements and square size, d X d, of the
CCD chip that will meet the requirements of this
application? (Hint: Model the imaging process
as in Fig. 2.3, and assume for simplicity that the
imaged area is square.)
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A common measure of transmission for digital
data is the baud rate, defined as symbols (bits in
our case) per second. As a minimum, transmission
is accomplished in packets consisting of a start
bit, a byte (8 bits) of information, and a stop bit.
Using these facts, answer the following:

(a)* How many seconds would it take to transmit
a sequence of 500 images of size 1024 x 1024
pixels with 256 intensity levels using a 3
M-baud (10° bits/sec) baud modem? (This
is a representative medium speed for a DSL
(Digital Subscriber Line) residential line.

(b) What would the time be using a 30 G-baud
(10° bits/sec) modem? (This is a represen-
tative medium speed for a commercial line.)

High-definition television (HDTV) generates
images with 1125 horizontal TV lines interlaced
(i.e., where every other line is “painted” on the
screen in each of two fields, each field being
1/60th of a second in duration). The width-to-
height aspect ratio of the images is 16:9. The
fact that the number of horizontal lines is fixed
determines the vertical resolution of the images.
A company has designed a system that extracts
digital images from HDTV video. The resolution
of each horizontal line in their system is propor-
tional to vertical resolution of HDTYV, with the
proportion being the width-to-height ratio of the
images. Each pixel in the color image has 24 bits
of intensity, 8 bits each for a red, a green, and a
blue component image. These three “primary’
images form a color image. How many bits would
it take to store the images extracted from a two-
hour HDTV movie?

When discussing linear indexing in Section 2.4,
we arrived at the linear index in Eq. (2-14) by
inspection. The same argument used there can be
extended to a 3-D array with coordinates x, y, and
z,and corresponding dimensions M, N,and P.The
linear index for any (x,y,z) is

s=x+M(y+ Nz)

9

Start with this expression and
(a)* Derive Eq. (2-15).
(b) Derive Eq. (2-16).

Suppose that a flat area with center at (x,,y,) is
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illuminated by a light source with intensity distri-
bution

i(x y) — Ke—[(x—x0)2+(y—y0)z]

Assume for simplicity that the reflectance of
the area is constant and equal to 1.0, and let
K = 255. 1f the intensity of the resulting image is
quantized using k bits, and the eye can detect an
abrupt change of eight intensity levels between
adjacent pixels, what is the highest value of k that
will cause visible false contouring?

Sketch the image in Problem 2.12 for k = 2.

Consider the two image subsets, S; and §, in the
following figure. With reference to Section 2.5,
and assuming that V = {1}, determine whether
these two subsets are:

(a)* 4-adjacent.
(b) 8-adjacent.

(¢) m-adjacent.

= -
_o O = O

Develop an algorithm for converting a one-pixel-
thick 8-path to a 4-path.

Develop an algorithm for converting a one-pixel-
thick m-path to a 4-path.

Refer to the discussion toward the end of Sec-
tion 2.5, where we defined the background of an
image as (R, )", the complement of the union of
all the regions in the image. In some applications,
itis advantageous to define the background as the
subset of pixels of (R,) that are not hole pixels
(informally, think of holes as sets of background
pixels surrounded by foreground pixels). How
would you modify the definition to exclude hole
pixels from (R,)°? An answer such as “the back-
ground is the subset of pixels of (R, )" that are not
hole pixels” is not acceptable. (Hint: Use the con-
cept of connectivity.)
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Problems 115
Consider the image segment shown in the figure
that follows.

(a)*As in Section 2.5, let V ={0,1} be the set
of intensity values used to define adjacency.
Compute the lengths of the shortest 4-, 8-,
and m-path between p and ¢ in the follow-
ing image. If a particular path does not exist
between these two points, explain why.

31 2 1(q)

2 2 0 2

12 1 1
P11 0 1 2

(b) Repeat (a) but using V = {1,2}.

Consider two points p and g.

(a)* State the condition(s) under which the D,
distance between p and ¢ is equal to the
shortest 4-path between these points.

(b) Is this path unique?
Repeat problem 2.19 for the Dy distance.

Consider two one-dimensional images f and g of
the same size. What has to be true about the ori-
entation of these images for the elementwise and
matrix products discussed in Section 2.6 to make
sense? Either of the two images can be first in
forming the product.

In the next chapter, we will deal with operators
whose function is to compute the sum of pixel val-
ues in a small subimage area, S,,, asin Eq. (2-43).
Show that these are linear operators.

Refer to Eq. (2-24) in answering the following:

(a)* Show that image summation is a linear opera-
tion.

(b) Show that image subtraction is a linear oper-
ation.

(¢)* Show that image multiplication in a nonlinear
operation.

(d) Show that image division is a nonlinear opera-
tion.

The median, £, of a set of numbers is such that
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half the values in the set are below ¢ and the oth-
er half are above it. For example, the median of
the set of values {2,3,8,20,21,25,31} is 20. Show
that an operator that computes the median of a
subimage area, S, is nonlinear. (Hint: It is suffi-
cient to show that ¢ fails the linearity test for a
simple numerical example.)

Show that image averaging can be done recur-
sively. That is, show that if a(k)is the average of
k images, then the average of k+1 images can
be obtained from the already-computed average,
a(k), and the new image, f, .-

With reference to Example 2.5:
(a)* Prove the validity of Eq. (2-27).
(b) Prove the validity of Eq. (2-28).

For part (b) you will need the following facts from
probability: (1) the variance of a constant times a
random variable is equal to the constant squared
times the variance of the random variable. (2) The
variance of the sum of uncorrelated random vari-
ables is equal to the sum of the variances of the
individual random variables.

Consider two 8-bit images whose intensity levels
span the full range from 0 to 255.

(a)* Discuss the limiting effect of repeatedly sub-
tracting image (2) from image (1). Assume
that the results have to be represented also
in eight bits.

(b) Would reversing the order of the images
yield a different result?

Image subtraction is used often in industrial appli-
cations for detecting missing components in prod-
uct assembly. The approach is to store a “golden”
image that corresponds to a correct assembly; this
image is then subtracted from incoming images of
the same product. Ideally, the differences would
be zero if the new products are assembled cor-
rectly. Difference images for products with miss-
ing components would be nonzero in the area
where they differ from the golden image. What
conditions do you think have to be met in prac-
tice for this method to work?

With reference to Eq. (2-32),

(a)* Give a general formula for the value of K
as a function of the number of bits, k, in an

2.30

2.31

2.32

2.33

2.34

image, such that K results in a scaled image
whose intensities span the full k-bit range.

(b) Find K for 16- and 32-bit images.

Give Venn diagrams for the following expres-
sions:

(a)* (ANC) = (ANBNC).

(b) (ANC)U(BNC).

(©) B-[(ANB)-(ANBNC)]

(d) B-BN(AUC); Given that ANC = @.

Use Venn diagrams to prove the validity of the
following expressions:

(@)* (ANB)U[(ANC)- ANBNC|=AN(BUC)
(b) (AUBUC) = A“NB°NC*

(¢) (AUC)YNB=(B-A)-C

(d) (ANBNC)" = A“UB°UC*

Give expressions (in terms of sets A, B, and C)
for the sets shown shaded in the following figures.

The shaded areas in each figure constitute one set,
so give only one expression for each of the four

figures.

L1
\.[/

v

B

1
\./

(a)* (b) (c) (d)

With reference to the discussion on sets in Section
2.6, do the following:

(a)* Let S be a set of real numbers ordered by the
relation “less than or equal to” (<). Show
that S is a partially ordered set; that is, show
that the reflexive, transitive, and antisymmet-
ric properties hold.

(b)* Show that changing the relation “less than or
equal to” to “less than” (<) produces a strict
ordered set.

Now let S be the set of lower-case letters in
the English alphabet. Show that, under (<),
S is a strict ordered set.

(©)

For any nonzero integers m and n, we say that m
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is divisible by n, written m/n, if there exists an
integer k such that kn = m. For example, 42 (m)
is divisible by 7 (n) because there exists an inte-
ger k = 6 such that kn = m. Show that the set of
positive integers is a partially ordered set under
the relation “divisible by.” In other words, do the
following:

(a)* Show that the property of reflectivity holds
under this relation.

(b) Show that the property of transitivity holds.
(¢) Show that anti symmetry holds.

In general, what would the resulting image, g(x, ),
look like if we modified Eq. (2-43), as follows:

g(x,y)=mL N, T[f(r.0)]

(r,c)esS,,

where T is the intensity transformation function
in Fig. 2.38(b)?

2.36 With reference to Table 2.3, provide single, com-

posite transformation functions for performing
the following operations:

(a)* Scaling and translation.
(b)* Scaling, translation, and rotation.

(¢) Vertical shear, scaling, translation, and rota-
tion.

(d) Does the order of multiplication of the indi-
vidual matrices to produce a single transfor-
mations make a difference? Give an example
based on a scaling/translation transforma-

tion to support your answer.

2.37 We know from Eq. (2-45) that an affine transfor-

mation of coordinates is given by

’

X X ay ap, aj||x
Y =Aly|=lay ayn ay|y
1 1 0 0 1|1

where (x’,y”) are the transformed coordinates,
(x,y) are the original coordinates, and the ele-
ments of A are given in Table 2.3 for various
types of transformations. The inverse transforma-
tion, AL, to go from the transformed back to the
original coordinates is just as important for per-
forming inverse mappings.

2.38

2.39

2.40%

241
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Problems

(a)* Find the inverse scaling transformation.
(b) Find the inverse translation transformation.

(¢) Find the inverse vertical and horizontal
shearing transformations.

(d)* Find the inverse rotation transformation.

(e)* Show a composite inverse translation/rota-
tion transformation.

What are the equations, analogous to Egs. (2-46)
and (2-47), that would result from using triangu-
lar instead of quadrilateral regions?

Do the following.

(a)* Prove that the Fourier kernel in Eq. (2-59) is
separable and symmetric.

(b) Repeat (a) for the kernel in Eq. (2-60).

Show that 2-D transforms with separable, sym-
metric kernels can be computed by: (1) comput-
ing 1-D transforms along the individual rows (col-
umns) of the input image; and (2) computing 1-D
transforms along the columns (rows) of the result
from step (1).

A plant produces miniature polymer squares that
have to undergo 100% visual inspection. Inspec-
tion is semi-automated. At each inspection sta-
tion, a robot places each polymer square over an
optical system that produces a magnified image
of the square. The image completely fills a view-
ing screen of size 80 x 80 mm. Defects appear as
dark circular blobs, and the human inspector’s job
is to look at the screen and reject any sample that
has one or more dark blobs with a diameter of 0.8
mm or greater, as measured on the scale of the
screen. The manufacturing manager believes that
if she can find a way to fully automate the process,
profits will increase by 50%, and success in this
project will aid her climb up the corporate ladder.
After extensive investigation, the manager decides
that the way to solve the problem is to view each
inspection screen with a CCD TV camera and feed
the output of the camera into an image processing
system capable of detecting the blobs, measuring
their diameter, and activating the accept/reject
button previously operated by a human inspec-
tor. She is able to find a suitable system, provided
that the smallest defect occupies an area of at
least 2 x 2 pixels in the digital image. The manager
hires you to help her specify the camera and lens
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system to satisfy this requirement, using off-the-
shelf components. Available off-the-shelf lenses
have focal lengths that are integer multiples of
25 mm or 35 mm, up to 200 mm. Available cam-
eras yield image sizes of 512 x 512, 1024 x 1024,
or 2048 x 2048 pixels. The individual imaging
elements in these cameras are squares measuring
8x 8 um, and the spaces between imaging ele-
ments are 2 um. For this application, the cameras

cost much more than the lenses, so you should use
the lowest-resolution camera possible, consistent
with a suitable lens. As a consultant, you have
to provide a written recommendation, showing
in reasonable detail the analysis that led to your
choice of components. Use the imaging geometry
suggested in Problem 2.6.



Intensity Transformations and
Spatial Filtering

It makes all the difference whether one sees darkness through
the light or brightness through the shadows.
David Lindsay

Preview

The term spatial domain refers to the image plane itself, and image processing methods in this category
are based on direct manipulation of pixels in an image. This is in contrast to image processing in a trans-
form domain which, as we will discuss in Chapters 4 and 6, involves first transforming an image into the
transform domain, doing the processing there, and obtaining the inverse transform to bring the results
back into the spatial domain. Two principal categories of spatial processing are intensity transforma-
tions and spatial filtering. Intensity transformations operate on single pixels of an image for tasks such
as contrast manipulation and image thresholding. Spatial filtering performs operations on the neighbor-
hood of every pixel in an image. Examples of spatial filtering include image smoothing and sharpening.
In the sections that follow, we discuss a number of “classical” techniques for intensity transformations
and spatial filtering.

Upon completion of this chapter, readers should:

B Understand the meaning of spatial domain
processing, and how it differs from transform
domain processing.

B Understand the principles of spatial convolu-
tion and correlation.

B Be familiar with the principal types of spatial
B Be familiar with the principal techniques used filters, and how they are applied.

for intensity transformations. B Be aware of the relationships between spatial

B Understand the physical meaning of image
histograms and how they can be manipulated
for image enhancement.

B Understand the mechanics of spatial filtering,
and how spatial filters are formed.

filters, and the fundamental role of lowpass
filters.

B Understand how to use combinations of
enhancement methods in cases where a single
approach is insufficient.

119
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FIGURE 3.1
A3x3
neighborhood
about a point

(xy,¥,) in an image.

The neighborhood
is moved from
pixel to pixel in the
image to generate
an output image.
Recall from
Chapter 2 that the
value of a pixel at
location (x,,y,) is
f(x9,¥,), the value
of the image at that
location.

3.1 BACKGROUND |

All the image processing techniques discussed in this chapter are implemented in
the spatial domain, which we know from the discussion in Section 2.4 is the plane
containing the pixels of an image. Spatial domain techniques operate directly on the
pixels of an image, as opposed, for example, to the frequency domain (the topic of
Chapter 4) in which operations are performed on the Fourier transform of an image,
rather than on the image itself. As you will learn in progressing through the book,
some image processing tasks are easier or more meaningful to implement in the
spatial domain, while others are best suited for other approaches.

THE BASICS OF INTENSITY TRANSFORMATIONS AND SPATIAL
FILTERING

The spatial domain processes we discuss in this chapter are based on the expression

g(x,y) =T[f(x.y)] (3-1)
where f(x,y) is an input image, g(x, y) is the output image, and 7 is an operator on f
defined over a neighborhood of point (x, y). The operator can be applied to the pix-
els of a single image (our principal focus in this chapter) or to the pixels of a set of
images, such as performing the elementwise sum of a sequence of images for noise
reduction, as discussed in Section 2.6. Figure 3.1 shows the basic implementation of
Eq. (3-1) on a single image. The point (x,,y,) shown is an arbitrary location in the
image, and the small region shown is a neighborhood of (x,,y,), as explained in Sec-
tion 2.6. Typically, the neighborhood is rectangular, centered on (x,,,), and much
smaller in size than the image.

The process that Fig. 3.1 illustrates consists of moving the center of the neighbor-
hood from pixel to pixel, and applying the operator 7 to the pixels in the neighbor-
hood to yield an output value at that location. Thus, for any specific location (x,,y,),

Origin N Yo

wlueiis F(x05%0)]

3 x 3 neighborhood
of point (xy, )

Image f




Depending on the size
of a neighborhood and
its location, part of the
neighborhood may lie
outside the image. There
are two solutions to this:
(1) to ignore the values
outside the image, or
(2) to pad image, as
discussed in Section 3.4.
The second approach is
preferred.

ab

FIGURE 3.2
Intensity
transformation
functions.

(a) Contrast
stretching
function.

(b) Thresholding
function.
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the value of the output image g at those coordinates is equal to the result of apply-
ing T to the neighborhood with origin at (x,,y,) in f. For example, suppose that
the neighborhood is a square of size 3x 3 and that operator T is defined as “com-
pute the average intensity of the pixels in the neighborhood.” Consider an arbitrary
location in an image, say (100,150). The result at that location in the output image,
£(100,150), is the sum of f(100,150) and its 8-neighbors, divided by 9. The center of
the neighborhood is then moved to the next adjacent location and the procedure
is repeated to generate the next value of the output image g. Typically, the process
starts at the top left of the input image and proceeds pixel by pixel in a horizontal
(vertical) scan, one row (column) at a time. We will discuss this type of neighbor-
hood processing beginning in Section 3.4.

The smallest possible neighborhood is of size 1x 1. In this case, g depends only
on the value of fat a single point (x,y) and 7'in Eq. (3-1) becomes an intensity (also
called a gray-level, or mapping) transformation function of the form

s=T(r) (3-2)
where, for simplicity in notation, we use s and r to denote, respectively, the intensity
of g and f at any point (x,y). For example, if 7(r) has the form in Fig. 3.2(a), the
result of applying the transformation to every pixel in fto generate the correspond-
ing pixels in g would be to produce an image of higher contrast than the original, by
darkening the intensity levels below k and brightening the levels above k. In this
technique, sometimes called contrast stretching (see Section 3.2), values of r lower
than k reduce (darken) the values of s, toward black. The opposite is true for values
of r higher than k. Observe how an intensity value 7, is mapped to obtain the cor-
responding value s,,. In the limiting case shown in Fig. 3.2(b), T'(r) produces a two-
level (binary) image. A mapping of this form is called a thresholding function. Some
fairly simple yet powerful processing approaches can be formulated with intensity
transformation functions. In this chapter, we use intensity transformations princi-
pally for image enhancement. In Chapter 10, we will use them for image segmenta-
tion. Approaches whose results depend only on the intensity at a point sometimes
are called point processing techniques, as opposed to the neighborhood processing
techniques discussed in the previous paragraph.

s=T(r) s=T(r)
s9.=T(ro) [+——4 ! R !
= [ < [
=) [ 20 [
S T~ ! T TO~ !
I I
| | |
I ! I
[ [
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S : | A |
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ABOUT THE EXAMPLES IN THIS CHAPTER

Although intensity transformation and spatial filtering methods span a broad range
of applications, most of the examples in this chapter are applications to image
enhancement. Enhancement is the process of manipulating an image so that the
result is more suitable than the original for a specific application. The word specific
is important, because it establishes at the outset that enhancement techniques are
problem-oriented. Thus, for example, a method that is quite useful for enhancing
X-ray images may not be the best approach for enhancing infrared images. There is
no general “theory” of image enhancement. When an image is processed for visual
interpretation, the viewer is the ultimate judge of how well a particular method
works. When dealing with machine perception, enhancement is easier to quantify.
For example, in an automated character-recognition system, the most appropriate
enhancement method is the one that results in the best recognition rate, leaving
aside other considerations such as computational requirements of one method
versus another. Regardless of the application or method used, image enhancement
is one of the most visually appealing areas of image processing. Beginners in image
processing generally find enhancement applications interesting and relatively sim-
ple to understand. Therefore, using examples from image enhancement to illustrate
the spatial processing methods developed in this chapter not only saves having an
extra chapter in the book dealing with image enhancement but, more importantly, is
an effective approach for introducing newcomers to image processing techniques in
the spatial domain. As you progress through the remainder of the book, you will find
that the material developed in this chapter has a scope that is much broader than
just image enhancement.

3.2 SOME BASIC INTENSITY TRANSFORMATION FUNCTIONS N

Intensity transformations are among the simplest of all image processing techniques.
As noted in the previous section, we denote the values of pixels, before and after
processing, by r and s, respectively. These values are related by a transformation 7,
as given in Eq. (3-2), that maps a pixel value r into a pixel value s. Because we deal
with digital quantities, values of an intensity transformation function typically are
stored in a table, and the mappings from r to s are implemented via table lookups.
For an 8-bit image, a lookup table containing the values of 7 will have 256 entries.

As an introduction to intensity transformations, consider Fig. 3.3, which shows
three basic types of functions used frequently in image processing: linear (negative
and identity transformations), logarithmic (log and inverse-log transformations),
and power-law (nth power and nth root transformations). The identity function is
the trivial case in which the input and output intensities are identical.

IMAGE NEGATIVES

The negative of an image with intensity levels in the range [0, L — 1] is obtained by
using the negative transformation function shown in Fig. 3.3, which has the form:

s=L-1-r (3-3)



FIGURE 3.3

Some basic
intensity
transformation
functions. Each
curve was scaled
independently so
that all curves
would fit in the
same graph. Our
interest here is
on the shapes of
the curves, not
on their relative
values.
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FIGURE 3.4

(a)A

digital
mammogram.
(b) Negative
image obtained
using Eq. (3-3).
(Image (a)
Courtesy of
General Electric
Medical Systems.)
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Input intensity levels, r

Reversing the intensity levels of a digital image in this manner produces the
equivalent of a photographic negative. This type of processing is used, for example,
in enhancing white or gray detail embedded in dark regions of an image, especially
when the black areas are dominant in size. Figure 3.4 shows an example. The origi-
nal image is a digital mammogram showing a small lesion. Despite the fact that the
visual content is the same in both images, some viewers find it easier to analyze the
fine details of the breast tissue using the negative image.
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FIGURE 3.5

(a) Fourier
spectrum
displayed as a
grayscale image.
(b) Result of
applying the log
transformation
in Eq. (3-4) with
¢ = 1. Both images
are scaled to the
range [0, 255].

LOG TRANSFORMATIONS

The general form of the log transformation in Fig. 3.3 is

s=clog(l+r) (3-4)

where ¢ is a constant and it is assumed that > 0. The shape of the log curve in Fig. 3.3
shows that this transformation maps a narrow range of low intensity values in the
input into a wider range of output levels. For example, note how input levels in the
range [0, L/4] map to output levels to the range [0, 3L/4]. Conversely, higher values
of input levels are mapped to a narrower range in the output. We use a transformation
of this type to expand the values of dark pixels in an image, while compressing the
higher-level values. The opposite is true of the inverse log (exponential) transformation.

Any curve having the general shape of the log function shown in Fig. 3.3 would
accomplish this spreading/compressing of intensity levels in an image, but the pow-
er-law transformations discussed in the next section are much more versatile for
this purpose. The log function has the important characteristic that it compresses
the dynamic range of pixel values. An example in which pixel values have a large
dynamic range is the Fourier spectrum, which we will discuss in Chapter 4. It is not
unusual to encounter spectrum values that range from 0 to 10° or higher. Processing
numbers such as these presents no problems for a computer, but image displays can-
not reproduce faithfully such a wide range of values. The net effect is that intensity
detail can be lost in the display of a typical Fourier spectrum.

Figure 3.5(a) shows a Fourier spectrum with values in the range 0 to 1.5 x 10°.
When these values are scaled linearly for display in an 8-bit system, the brightest
pixels dominate the display, at the expense of lower (and just as important) values
of the spectrum. The effect of this dominance is illustrated vividly by the relatively
small area of the image in Fig. 3.5(a) that is not perceived as black. If, instead of
displaying the values in this manner, we first apply Eq. (3-4) (with ¢ = 1 in this case)
to the spectrum values, then the range of values of the result becomes 0 to 6.2. Trans-
forming values in this way enables a greater range of intensities to be shown on the
display. Figure 3.5(b) shows the result of scaling the intensity range linearly to the




FIGURE 3.6

Plots of the
gamma equation
s =cr? for various
valuesof y (c=1
in all cases). Each
curve was scaled
independently so
that all curves
would fit in the
same graph. Our
interest here is
on the shapes of
the curves, not

on their relative
values.
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interval [0,255] and showing the spectrum in the same 8-bit display. The level of
detail visible in this image as compared to an unmodified display of the spectrum
is evident from these two images. Most of the Fourier spectra in image processing
publications, including this book, have been scaled in this manner.

POWER-LAW (GAMMA) TRANSFORMATIONS

Power-law transformations have the form

(3-5)

s=cr’

where ¢ and y are positive constants. Sometimes Eq. (3-5) is written as s = ¢(r + &)”
to account for offsets (that is,a measurable output when the input is zero). However,
offsets typically are an issue of display calibration, and as a result they are normally
ignored in Eq. (3-5). Figure 3.6 shows plots of s as a function of r for various values
of y. As with log transformations, power-law curves with fractional values of y map
a narrow range of dark input values into a wider range of output values, with the
opposite being true for higher values of input levels. Note also in Fig. 3.6 that a fam-
ily of transformations can be obtained simply by varying y. Curves generated with
values of y>1 have exactly the opposite effect as those generated with values of
v<1.When ¢ =y =1 Eq. (3-5) reduces to the identity transformation.

The response of many devices used for image capture, printing, and display obey
a power law. By convention, the exponent in a power-law equation is referred to as
gamma [hence our use of this symbol in Eq. (3-5)]. The process used to correct these
power-law response phenomena is called gamma correction or gamma encoding.
For example, cathode ray tube (CRT) devices have an intensity-to-voltage response
that is a power function, with exponents varying from approximately 1.8 to 2.5. As
the curve for y = 2.5 in Fig. 3.6 shows, such display systems would tend to produce

3L/4

N

L)

Output intensity levels

L/A

Input intensity levels, r
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FIGURE 3.7

(a) Intensity ramp
image. (b) Image
as viewed on a
simulated monitor
with a gamma of
2.5.(c) Gamma-
corrected image.
(d) Corrected
image as viewed
on the same
monitor. Compare

(d) and (a).

Sometimes, a higher
gamma makes the
displayed image look
better to viewers than
the original because of
an increase in contrast.
However, the objective
of gamma correction is to
produce a faithful display
of an input image.

. .

Original image

Gamma-corrected image

Gamma Correction Original image as viewed on a monitor with

a gamma of 2.5

.

Gamma-corrected image as viewed on the
same monitor

images that are darker than intended. Figure 3.7 illustrates this effect. Figure 3.7(a)
is an image of an intensity ramp displayed in a monitor with a gamma of 2.5. As
expected, the output of the monitor appears darker than the input, as Fig. 3.7(b)
shows.

In this case, gamma correction consists of using the transformation s = r
to preprocess the image before inputting it into the monitor. Figure 3.7(c) is the result.
When input into the same monitor, the gamma-corrected image produces an output
that is close in appearance to the original image, as Fig.3.7(d) shows. A similar analysis
as above would apply to other imaging devices, such as scanners and printers, the dif-
ference being the device-dependent value of gamma (Poynton [1996]).

Y25 _ 04

EXAMPLE 3.1: Contrast enhancement using power-law intensity transformations.

In addition to gamma correction, power-law transformations are useful for general-purpose contrast
manipulation. Figure 3.8(a) shows a magnetic resonance image (MRI) of a human upper thoracic spine
with a fracture dislocation. The fracture is visible in the region highlighted by the circle. Because the
image is predominantly dark, an expansion of intensity levels is desirable. This can be accomplished
using a power-law transformation with a fractional exponent. The other images shown in the figure were
obtained by processing Fig. 3.8(a) with the power-law transformation function of Eq. (3-5). The values
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FIGURE 3.8

(a) Magnetic
resonance

image (MRI) of a
fractured human
spine (the region
of the fracture is
enclosed by the
circle).

(b)—(d) Results of
applying the
transformation

in Eq. (3-5)

with ¢ =1 and

v = 0.6, 0.4, and
0.3, respectively.
(Original image
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)
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of gamma corresponding to images (b) through (d) are 0.6, 0.4, and 0.3, respectively (¢ =1 in all cases).
Observe that as gamma decreased from 0.6 to 0.4, more detail became visible. A further decrease of
gamma to 0.3 enhanced a little more detail in the background, but began to reduce contrast to the point
where the image started to have a very slight “washed-out” appearance, especially in the background.
The best enhancement in terms of contrast and discernible detail was obtained with y = 0.4. A value of
v = 0.3 is an approximate limit below which contrast in this particular image would be reduced to an

unacceptable level.

EXAMPLE 3.2: Another illustration of power-law transformations.

Figure 3.9(a) shows the opposite problem of that presented in Fig. 3.8(a). The image to be processed
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FIGURE 3.9

(a) Aerial image.
(b)-(d) Results
of applying the
transformation
in Eq. (3-5) with
v =3.0,4.0,and
5.0, respectively.
(¢ =11n all cases.)
(Original image
courtesy of
NASA.)

now has a washed-out appearance, indicating that a compression of intensity levels is desirable. This can
be accomplished with Eq. (3-5) using values of y greater than 1. The results of processing Fig. 3.9(a) with
v =3.0, 4.0, and 5.0 are shown in Figs. 3.9(b) through (d), respectively. Suitable results were obtained
using gamma values of 3.0 and 4.0. The latter result has a slightly more appealing appearance because it
has higher contrast. This is true also of the result obtained withy = 5.0. For example, the airport runways
near the middle of the image appears clearer in Fig. 3.9(d) than in any of the other three images.

PIECEWISE LINEAR TRANSFORMATION FUNCTIONS

An approach complementary to the methods discussed in the previous three sec-
tions is to use piecewise linear functions. The advantage of these functions over those
discussed thus far is that the form of piecewise functions can be arbitrarily complex.
In fact, as you will see shortly, a practical implementation of some important trans-
formations can be formulated only as piecewise linear functions. The main disadvan-
tage of these functions is that their specification requires considerable user input.
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FIGURE 3.10

Contrast stretching.
(a) Piecewise linear
transformation
function. (b) A low-
contrast electron
microscope image
of pollen, magnified
700 times.

(c) Result of
contrast stretching.
(d) Result of
thresholding.
(Original image
courtesy of Dr.
Roger Heady,
Research School of
Biological Sciences,
Australian National
University,
Canberra,
Australia.)
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Contrast Stretching

Low-contrast images can result from poor illumination, lack of dynamic range in the
imaging sensor, or even the wrong setting of a lens aperture during image acquisi-
tion. Contrast stretching expands the range of intensity levels in an image so that it
spans the ideal full intensity range of the recording medium or display device.
Figure 3.10(a) shows a typical transformation used for contrast stretching. The
locations of points (#;,s;) and (r,,s, ) control the shape of the transformation function.
If , =5, and r, = s, the transformation is a linear function that produces no changes
in intensity. If r, =r,, s, =0, and s, = L — 1 the transformation becomes a threshold-
ing function that creates a binary image [see Fig. 3.2(b)]. Intermediate values of (;, s, )
and (s,,r,) produce various degrees of spread in the intensity levels of the output
image, thus affecting its contrast. In general, , < r, and s; < s, is assumed so that
the function is single valued and monotonically increasing. This preserves the order
of intensity levels, thus preventing the creation of intensity artifacts. Figure 3.10(b)
shows an 8-bit image with low contrast. Figure 3.10(c) shows the result of contrast
stretching, obtained by setting (r,s,) = (r,,,,,0) and (r,,s,) = (r,.» L — 1), where
roin and 7. denote the minimum and maximum intensity levels in the input image,

L-1 I |
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“
)
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respectively. The transformation stretched the intensity levels linearly to the full
intensity range, [0, L — 1]. Finally, Fig. 3.10(d) shows the result of using the thresh-
olding function, with (1, s,) = (m,0) and (r,, s,) = (m, L — 1), where m is the mean
intensity level in the image.

Intensity-Level Slicing

There are applications in which it is of interest to highlight a specific range of inten-
sities in an image. Some of these applications include enhancing features in satellite
imagery, such as masses of water, and enhancing flaws in X-ray images. The method,
called intensity-level slicing, can be implemented in several ways, but most are varia-
tions of two basic themes. One approach is to display in one value (say, white) all the
values in the range of interest and in another (say, black) all other intensities. This
transformation, shown in Fig. 3.11(a), produces a binary image. The second approach,
based on the transformation in Fig. 3.11(b), brightens (or darkens) the desired range
of intensities, but leaves all other intensity levels in the image unchanged.

EXAMPLE 3.3: Intensity-level slicing.

Figure 3.12(a) is an aortic angiogram near the kidney area (see Section 1.3 for details on this image). The
objective of this example is to use intensity-level slicing to enhance the major blood vessels that appear
lighter than the background, as a result of an injected contrast medium. Figure 3.12(b) shows the result
of using a transformation of the form in Fig. 3.11(a). The selected band was near the top of the intensity
scale because the range of interest is brighter than the background. The net result of this transformation
is that the blood vessel and parts of the kidneys appear white, while all other intensities are black. This
type of enhancement produces a binary image, and is useful for studying the shape characteristics of the
flow of the contrast medium (to detect blockages, for example).

If interest lies in the actual intensity values of the region of interest, we can use the transformation of
the form shown in Fig. 3.11(b). Figure 3.12(c) shows the result of using such a transformation in which
a band of intensities in the mid-gray region around the mean intensity was set to black, while all other
intensities were left unchanged. Here, we see that the gray-level tonality of the major blood vessels and
part of the kidney area were left intact. Such a result might be useful when interest lies in measuring the
actual flow of the contrast medium as a function of time in a sequence of images.
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FIGURE 3.12 (a) Aortic angiogram. (b) Result of using a slicing transformation of the type illustrated in Fig. 3.11(a),
with the range of intensities of interest selected in the upper end of the gray scale. (¢) Result of using the transfor-
mation in Fig. 3.11(b), with the selected range set near black, so that the grays in the area of the blood vessels and
kidneys were preserved. (Original image courtesy of Dr. Thomas R. Gest, University of Michigan Medical School.)

Bit-Plane Slicing

Pixel values are integers composed of bits. For example, values in a 256-level gray-
scale image are composed of 8 bits (one byte). Instead of highlighting intensity-level
ranges, as 3.3, we could highlight the contribution made to total image appearance
by specific bits. As Fig. 3.13 illustrates, an 8-bit image may be considered as being
composed of eight one-bit planes, with plane 1 containing the lowest-order bit of all
pixels in the image, and plane 8 all the highest-order bits.

Figure 3.14(a) shows an 8-bit grayscale image and Figs. 3.14(b) through (i) are
its eight one-bit planes, with Fig. 3.14(b) corresponding to the highest-order bit.
Observe that the four higher-order bit planes, especially the first two, contain a sig-
nificant amount of the visually-significant data. The lower-order planes contribute
to more subtle intensity details in the image. The original image has a gray border
whose intensity is 194. Notice that the corresponding borders of some of the bit

FIGURE 3.13 One 8-bit byte 7 Bit plane 8
Bit-planes of an (most significant)
8-bit image.

Bit plane 1
(least significant)
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FIGURE 3.14 (a) An 8-bit gray-scale image of size 550 x 1192 pixels. (b) through (i) Bit planes 8 through 1, with bit
plane 1 corresponding to the least significant bit. Each bit plane is a binary image..

planes are black (0), while others are white (1). To see why, consider a pixel in, say,
the middle of the lower border of Fig. 3.14(a). The corresponding pixels in the bit
planes, starting with the highest-order plane, have values 11 0000 1 0, which is the
binary representation of decimal 194. The value of any pixel in the original image
can be similarly reconstructed from its corresponding binary-valued pixels in the bit
planes by converting an 8-bit binary sequence to decimal.

The binary image for the 8th bit plane of an 8-bit image can be obtained by thresh-
olding the input image with a transformation function that maps to 0 intensity values
between 0 and 127, and maps to 1 values between 128 and 255. The binary image in
Fig.3.14(b) was obtained in this manner. It is left as an exercise (see Problem 3.3) to
obtain the transformation functions for generating the other bit planes.

Decomposing an image into its bit planes is useful for analyzing the relative
importance of each bit in the image, a process that aids in determining the adequacy
of the number of bits used to quantize the image. Also, this type of decomposition
is useful for image compression (the topic of Chapter 8), in which fewer than all
planes are used in reconstructing an image. For example, Fig. 3.15(a) shows an image
reconstructed using bit planes 8 and 7 of the preceding decomposition. The recon-
struction is done by multiplying the pixels of the nth plane by the constant 2" ", This
converts the nth significant binary bit to decimal. Each bit plane is multiplied by the
corresponding constant, and all resulting planes are added to obtain the grayscale
image. Thus, to obtain Fig. 3.15(a), we multiplied bit plane 8 by 128, bit plane 7 by 64,
and added the two planes. Although the main features of the original image were
restored, the reconstructed image appears flat, especially in the background. This
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abec FIGURE 3.15 Image reconstructed from bit planes: (a) 8 and 7; (b) 8,7,and 6; (¢) 8,7, 6, and 5.

is not surprising, because two planes can produce only four distinct intensity lev-
els. Adding plane 6 to the reconstruction helped the situation, as Fig. 3.15(b) shows.
Note that the background of this image has perceptible false contouring. This effect
is reduced significantly by adding the 5th plane to the reconstruction, as Fig. 3.15(¢c)
illustrates. Using more planes in the reconstruction would not contribute significant-
ly to the appearance of this image. Thus, we conclude that, in this example, storing
the four highest-order bit planes would allow us to reconstruct the original image
in acceptable detail. Storing these four planes instead of the original image requires
50% less storage.

3.3 HISTOGRAM PROCESSING I

Let r,, fork =0,1,2,...,L —1, denote the intensities of an L-level digital image,
f(x,y). The unnormalized histogram of fis defined as

h(rk)znk fork:o’1327--'9L_1 (3'6)

where n, is the number of pixels in f with intensity 7, and the subdivisions of the
intensity scale are called histogram bins. Similarly, the normalized histogram of f is
defined as

_h(r) _

p(r) MN _ MN (3-7)

where, as usual, M and N are the number of image rows and columns, respectively.
Mostly, we work with normalized histograms, which we refer to simply as histograms
or image histograms.The sum of p(r, ) for all values of k is always 1. The components
of p(r,) are estimates of the probabilities of intensity levels occurring in an image.
As you will learn in this section, histogram manipulation is a fundamental tool in
image processing. Histograms are simple to compute and are also suitable for fast
hardware implementations, thus making histogram-based techniques a popular tool
for real-time image processing.

Histogram shape is related to image appearance. For example, Fig. 3.16 shows
images with four basic intensity characteristics: dark, light, low contrast, and high
contrast; the image histograms are also shown. We note in the dark image that the
most populated histogram bins are concentrated on the lower (dark) end of the
intensity scale. Similarly, the most populated bins of the light image are biased
toward the higher end of the scale. An image with low contrast has a narrow histo-
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FIGURE 3.16 Four image types and their corresponding histograms. (a) dark; (b) light; (c) low contrast; (d) high con-
trast. The horizontal axis of the histograms are values of r, and the vertical axis are values of p(r, ).

gram located typically toward the middle of the intensity scale, as Fig. 3.16(c) shows.
For a monochrome image, this implies a dull, washed-out gray look. Finally, we see
that the components of the histogram of the high-contrast image cover a wide range
of the intensity scale, and the distribution of pixels is not too far from uniform, with
few bins being much higher than the others. Intuitively, it is reasonable to conclude
that an image whose pixels tend to occupy the entire range of possible intensity lev-
els and, in addition, tend to be distributed uniformly, will have an appearance of high
contrast and will exhibit a large variety of gray tones. The net effect will be an image
that shows a great deal of gray-level detail and has a high dynamic range. As you will
see shortly, it is possible to develop a transformation function that can achieve this
effect automatically, using only the histogram of an input image.

HISTOGRAM EQUALIZATION

Assuming initially continuous intensity values, let the variable r denote the intensi-
ties of an image to be processed. As usual, we assume that 7 is in the range [0, L — 1],
with r = 0 representing black and r = L — 1 representing white. For r satisfying these
conditions, we focus attention on transformations (intensity mappings) of the form

s=T(r) 0<r<L-1 (3-8)
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(a) Monotonic
increasing function,
showing how
multiple values can
map to a single
value. (b) Strictly
monotonic increas-
ing function. This is
a one-to-one map-
ping, both ways.
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that produce an output intensity value, s, for a given intensity value r in the input
image. We assume that

(a) T(r)is a monotonic’ increasing function in the interval 0 < r < L —1; and
(b) 0ST(r)sL-1for0O<r<L-1.

In some formulations to be discussed shortly, we use the inverse transformation
r=T"s) 0<s<L-1 (3-9)

in which case we change condition (a) to:
(a") T(r) is a strictly monotonic increasing function in the interval 0 < r < L —1.

The condition in (a) that 7(r) be monotonically increasing guarantees that output
intensity values will never be less than corresponding input values, thus preventing
artifacts created by reversals of intensity. Condition (b) guarantees that the range of
output intensities is the same as the input. Finally, condition (a’) guarantees that the
mappings from s back to r will be one-to-one, thus preventing ambiguities.

Figure 3.17(a) shows a function that satisfies conditions (a) and (b). Here, we see
that it is possible for multiple input values to map to a single output value and still
satisfy these two conditions. That is, a monotonic transformation function performs
a one-to-one or many-to-one mapping. This is perfectly fine when mapping from r
to s. However, Fig. 3.17(a) presents a problem if we wanted to recover the values of
r uniquely from the mapped values (inverse mapping can be visualized by revers-
ing the direction of the arrows). This would be possible for the inverse mapping
of 5, in Fig. 3.17(a), but the inverse mapping of s, is a range of values, which, of
course, prevents us in general from recovering the original value of r that resulted

" A function T(r) is a monotonic increasing functionif T(r,) > T(r,) forr, > r,. T(r) is astrictly monotonic increas-
ing function if 7'(r,) > T(r;) for r, > ;. Similar definitions apply to a monotonic decreasing function.
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in s,. As Fig. 3.17(b) shows, requiring that 7(r) be strictly monotonic guarantees
that the inverse mappings will be single valued (i.e., the mapping is one-to-one in
both directions).This is a theoretical requirement that will allow us to derive some
important histogram processing techniques later in this chapter. Because images are
stored using integer intensity values, we are forced to round all results to their near-
est integer values. This often results in strict monotonicity not being satisfied, which
implies inverse transformations that may not be unique. Fortunately, this problem is
not difficult to handle in the discrete case, as Example 3.7 in this section illustrates.

The intensity of an image may be viewed as a random variable in the interval
[0,L —1]. Let p,(r) and p,(s) denote the PDFs of intensity values r and s in two dif-
ferent images. The subscripts on p indicate that p, and p, are different functions. A
fundamental result from probability theory is that if p,(r) and T(r) are known, and
T(r) is continuous and differentiable over the range of values of interest, then the
PDF of the transformed (mapped) variable s can be obtained as

p(s) = p.(r) (3-10)

ﬂ
ds

Thus, we see that the PDF of the output intensity variable, s, is determined by the
PDF of the input intensities and the transformation function used [recall that r and
s are related by 7'(r)].

A transformation function of particular importance in image processing is

s:T(r):(L—l)/rpr(w)dw (3-11)
0

where w is a dummy variable of integration. The integral on the right side is the
cumulative distribution function (CDF) of random variable r. Because PDFs always
are positive, and the integral of a function is the area under the function, it follows
that the transformation function of Eq. (3-11) satisfies condition (a). This is because
the area under the function cannot decrease as r increases. When the upper limit in
this equation is r = (L — 1) the integral evaluates to 1, as it must for a PDF. Thus, the
maximum value of s is L — 1, and condition (b) is satisfied also.

We use Eq. (3-10) to find the p,(s) corresponding to the transformation just dis-
cussed. We know from Leibniz’s rule in calculus that the derivative of a definite
integral with respect to its upper limit is the integrand evaluated at the limit. That is,

@ _dT(r)
dr  dr
- (L—1)iUrp,(w)dw1 (3-12)
dr| Jo

— (L=1)p,(r)
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FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying Eq. (3-11) to the input PDFE The
resulting PDF is always uniform, independently of the shape of the input.

Substituting this result for dr/ds in Eq. (3-10), and noting that all probability values
are positive, gives the result

P(s)= P00

=D

1
N 3-13
( )‘<L—1>p,<r> G13)

1

L-1

We recognize the form of p (s) in the last line of this equation as a uniform prob-
ability density function. Thus, performing the intensity transformation in Eq. (3-11)
yields a random variable, s, characterized by a uniform PDF. What is important is
that p (s) in Eq. (3-13) will always be uniform, independently of the form of p,(r).
Figure 3.18 and the following example illustrate these concepts.

EXAMPLE 3.4: lllustration of Eqs. (3-11) and (3-13).

Suppose that the (continuous) intensity values in an image have the PDF

_2ar
p,(r)=4(L-1y
0 otherwise

forO<r<L-1

From Eq. (3-11)

r r 2
s:T(r):(L—l)/0 pr(w)dwzﬁ/0 wdw = Lr—l
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Suppose that we form a new image with intensities, s, obtained using this transformation; that is, the s
values are formed by squaring the corresponding intensity values of the input image, then dividing them
by L — 1. We can verify that the PDF of the intensities in the new image, p,(s), is uniform by substituting
p,(r) into Eq. (3-13), and using the fact that s = r*/(L —1); that is,

dr 2r dsT"

py(s)=p,(r) s = m [E}
2 [d AT 2 (L—l)‘_ 1
C(L-1?||drL-1] | (L-1*| 2r | L-1

The last step follows because r is nonnegative and L > 1. As expected, the result is a uniform PDF.

For discrete values, we work with probabilities and summations instead of prob-
ability density functions and integrals (but the requirement of monotonicity stated
earlier still applies). Recall that the probability of occurrence of intensity level 7, in
a digital image is approximated by

.
MN

p(r) = (3-14)

where MN is the total number of pixels in the image, and n, denotes the number of
pixels that have intensity r,. As noted in the beginning of this section, p,(r,), with
r, € [0,L —1], is commonly referred to as a normalized image histogram.

The discrete form of the transformation in Eq. (3-11) is

k
s, =T(n)=(L-1)Y p(r;) k=012,..L-1 (3-15)
j=0

where, as before, L is the number of possible intensity levels in the image (e.g., 256
for an 8-bit image). Thus, a processed (output) image is obtained by using Eq. (3-15)
to map each pixel in the input image with intensity 7, into a corresponding pixel with
level s, in the output image, This is called a histogram equalization or histogram
linearization transformation. It is not difficult to show (see Problem 3.9) that this
transformation satisfies conditions (a) and (b) stated previously in this section.

EXAMPLE 3.5: lllustration of the mechanics of histogram equalization.
It will be helpful to work through a simple example. Suppose that a 3-bit image (L = 8) of size 64 x 64
pixels (MN = 4096) has the intensity distribution in Table 3.1, where the intensity levels are integers in
the range [0, L — 1] =[0,7]. The histogram of this image is sketched in Fig. 3.19(a).Values of the histo-
gram equalization transformation function are obtained using Eq. (3-15). For instance,

so=T(ry) = 7201%(4-) =7p,(r) =1.33

]
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TABLE 3.1

Intensity Ty n; p. () =n /MN

d@stribution and =0 790 0.19

histogram values

for a 3-bit, 64 x 64 n= 1023 0.25

vital i .

digital image - 850 021
= 656 0.16
7= 329 0.08
4
r=5 245 0.06
5, =6 122 0.03
r=17 81 0.02

Similarly, s, = T(r,) = 3.08, s, =4.55, sy =5.67, 5, = 6.23, 55 = 6.65, s, = 6.86, and s, = 7.00. This trans-
formation function has the staircase shape shown in Fig. 3.19(b).

At this point, the s values are fractional because they were generated by summing probability values,
so we round them to their nearest integer values in the range [0, 7] :

5=133->1 5,=455->5 5,=623-56 5 =687
5, =308—->3 s5=567T-56 s5=0665->7 s5,=700->7

These are the values of the equalized histogram. Observe that the transformation yielded only five
distinct intensity levels. Because 7, = 0 was mapped to s, =1, there are 790 pixels in the histogram
equalized image with this value (see Table 3.1). Also, there are 1023 pixels with a value of s, = 3 and 850
pixels with a value of s, =5. However, both r, and r, were mapped to the same value, 6, so there are
(656 + 329) = 985 pixels in the equalized image with this value. Similarly, there are (245 + 122 + 81) = 448
pixels with a value of 7 in the histogram equalized image. Dividing these numbers by MN = 4096 yield-
ed the equalized histogram in Fig. 3.19(c).

Because a histogram is an approximation to a PDF, and no new allowed intensity levels are created
in the process, perfectly flat histograms are rare in practical applications of histogram equalization using
the method just discussed. Thus, unlike its continuous counterpart, it cannot be proved in general that
discrete histogram equalization using Eq. (3-15) results in a uniform histogram (we will introduce later in

abec Pr(r) Sk ps(si)
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this section an approach for removing this limitation). However, as you will see shortly, using Eq. (3-15)
has the general tendency to spread the histogram of the input image so that the intensity levels of the
equalized image span a wider range of the intensity scale. The net result is contrast enhancement.

We discussed earlier the advantages of having intensity values that span the entire
gray scale. The method just derived produces intensities that have this tendency, and
also has the advantage that it is fully automatic. In other words, the process of his-
togram equalization consists entirely of implementing Eq. (3-15), which is based on
information that can be extracted directly from a given image, without the need for
any parameter specifications. This automatic, “hands-off” characteristic is important.

The inverse transformation from s back to r is denoted by

ro=T7"(s,) (3-16)

It can be shown (see Problem 3.9) that this inverse transformation satisfies conditions
(a") and (b) defined earlier only if all intensity levels are present in the input image.
This implies that none of the bins of the image histogram are empty. Although the
inverse transformation is not used in histogram equalization, it plays a central role
in the histogram-matching scheme developed after the following example.

EXAMPLE 3.6: Histogram equalization.

The left column in Fig. 3.20 shows the four images from Fig. 3.16, and the center column shows the result
of performing histogram equalization on each of these images. The first three results from top to bottom
show significant improvement. As expected, histogram equalization did not have much effect on the
fourth image because its intensities span almost the full scale already. Figure 3.21 shows the transforma-
tion functions used to generate the equalized images in Fig. 3.20. These functions were generated using
Eq. (3-15). Observe that transformation (4) is nearly linear, indicating that the inputs were mapped to
nearly equal outputs. Shown is the mapping of an input value 7, to a corresponding output value s,. In
this case, the mapping was for image 1 (on the top left of Fig. 3.21), and indicates that a dark value was
mapped to a much lighter one, thus contributing to the brightness of the output image.

The third column in Fig. 3.20 shows the histograms of the equalized images. While all the histograms
are different, the histogram-equalized images themselves are visually very similar. This is not totally
unexpected because the basic difference between the images on the left column is one of contrast, not
content. Because the images have the same content, the increase in contrast resulting from histogram
equalization was enough to render any intensity differences between the equalized images visually
indistinguishable. Given the significant range of contrast differences in the original images, this example
illustrates the power of histogram equalization as an adaptive, autonomous contrast-enhancement tool.

HISTOGRAM MATCHING (SPECIFICATION)

As explained in the last section, histogram equalization produces a transformation
function that seeks to generate an output image with a uniform histogram. When
automatic enhancement is desired, this is a good approach to consider because the



3.3 Histogram Processing 141

| "

+ '

FIGURE 3.20 Left column: Images from Fig. 3.16. Center column: Corresponding histogram-equalized images. Right
column: histograms of the images in the center column (compare with the histograms in Fig. 3.16).
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FIGURE 3.21
Transformation
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gram equalization.
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histograms of the
images on the left
column of Fig. 3.20.
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intensity value r, in
image 1 to its cor-
responding value s,
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results from this technique are predictable and the method is simple to implement.
However, there are applications in which histogram equalization is not suitable. In
particular, it is useful sometimes to be able to specify the shape of the histogram that
we wish the processed image to have. The method used to generate images that have
a specified histogram is called histogram matching or histogram specification.

Consider for a moment continuous intensities r and z which, as before, we treat
as random variables with PDFs p,(r) and p_(z), respectively. Here, r and z denote
the intensity levels of the input and output (processed) images, respectively. We can
estimate p,(r) from the given input image, and p,(z) is the specified PDF that we
wish the output image to have.

Let s be a random variable with the property

s=T(r)=(L- 1)/ p(w)dw (3-17)
0
where w is dummy variable of integration. This is the same as Eq. (3-11), which we
repeat here for convenience.
Define a function G on variable z with the property

G(z)=(L- 1)/zpz(v)dv =s (3-18)
0

where v is a dummy variable of integration. It follows from the preceding two equa-
tions that G(z) = s = T(r) and, therefore, that z must satisfy the condition

2=G ' (s)=G[T(r)] (3-19)
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The transformation function 7(r) can be obtained using Eq. (3-17) after p,(r) has
been estimated using the input image. Similarly, function G(z) can be obtained from
Eq. (3-18) because p,(z) is given.

Equations (3-17) through (3-19) imply that an image whose intensity levels have
a specified PDF can be obtained using the following procedure:

1. Obtain p,(r) from the input image to use in Eq. (3-17).

2. Use the specified PDF, p,(z), in Eq. (3-18) to obtain the function G(z).

3. Compute the inverse transformation z = G™'(s); this is a mapping from s to z,
the latter being the values that have the specified PDF.

4. Obtain the output image by first equalizing the input image using Eq. (3-17); the
pixel values in this image are the s values. For each pixel with value s in the equal-
ized image, perform the inverse mapping z = G™'(s) to obtain the corresponding
pixel in the output image. When all pixels have been processed with this trans-
formation, the PDF of the output image, p,(z), will be equal to the specified PDF.

Because s is related to r by T(r), it is possible for the mapping that yields z from s
to be expressed directly in terms of r. In general, however, finding analytical expres-
sions for G is not a trivial task. Fortunately, this is not a problem when working
with discrete quantities, as you will see shortly.

As before, we have to convert the continuous result just derived into a discrete
form. This means that we work with histograms instead of PDFs. As in histogram
equalization, we lose in the conversion the ability to be able to guarantee a result that
will have the exact specified histogram. Despite this, some very useful results can be
obtained even with approximations.

The discrete formulation of Eq. (3-17) is the histogram equalization transforma-
tion in Eq. (3-15), which we repeat here for convenience:

k
s, =T(n)=(L-1)Y p,(r) k=012..L-1 (3-20)
j=0

where the components of this equation are as before. Similarly, given a specific value
of s,, the discrete formulation of Eq. (3-18) involves computing the transformation
function

q
Glz,)=(L=1)Y p.(z) (3-21)
i=0
for a value of ¢ so that
G(z,) =5, (3-22)

where p_(z;) is the ith value of the specified histogram. Finally, we obtain the desired
value z, from the inverse transformation:
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2, =G (s0) (3-23)

When performed over all pixels, this is a mapping from the s values in the histogram-
equalized image to the corresponding z values in the output image.

In practice, there is no need to compute the inverse of G. Because we deal with
intensity levels that are integers, it is a simple matter to compute all the possible
values of G using Eq. (3-21) for ¢ = 0,1,2,..., L — 1. These values are rounded to their
nearest integer values spanning the range [0, L —1] and stored in a lookup table.
Then, given a particular value of s,, we look for the closest match in the table. For
example, if the 27th entry in the table is the closest value to s, then g = 26 (recall
that we start counting intensities at 0) and z,, is the best solution to Eq. (3-23).
Thus, the given value s, would map to z,,. Because the z’s are integers in the range
[0,L —1], it follows that z, =0, z; , = L —1, and, in general, z, = q- Therefore, z,q
would equal intensity value 26. We repeat this procedure to find the mapping from
each value s, to the value z, that s its closest match in the table. These mappings are
the solution to the histogram-specification problem.

Given an input image, a specified histogram, p_(z;), i = 0,1,2,...,L -1, and recall-
ing that the s,’s are the values resulting from Eq. (3-20), we may summarize the
procedure for discrete histogram specification as follows:

1. Compute the histogram, p,(r), of the input image, and use it in Eq. (3-20) to map
the intensities in the input image to the intensities in the histogram-equalized
image. Round the resulting values, s, to the integer range [0, L —1].

2. Compute all values of function G(z,) using the Eq. (3-21) forg = 0,1,2,...,L -1,
where p,(z;) are the values of the specified histogram. Round the values of G to
integers in the range [0, L — 1]. Store the rounded values of G in a lookup table.

3. For every value of 5, k = 0,1,2,..., L — 1, use the stored values of G from Step 2
to find the corresponding value of z, so that G(z,) is closest to s,. Store these
mappings from s to z. When more than one value of z, gives the same match
(i.e., the mapping is not unique), choose the smallest value by convention.

4. Form the histogram-specified image by mapping every equalized pixel with val-
ue s, to the corresponding pixel with value z, in the histogram-specified image,
using the mappings found in Step 3.

As in the continuous case, the intermediate step of equalizing the input image is
conceptual. It can be skipped by combining the two transformation functions, 7 and
G, as Example 3.7 below shows.

We mentioned at the beginning of the discussion on histogram equalization that,
in addition to condition (b), inverse functions (G in the present discussion) have to
be strictly monotonic to satisfy condition (a'). In terms of Eq. (3-21), this means that
none of the values p_(z;) in the specified histogram can be zero (see Problem 3.9).
When this condition is not satisfied, we use the “work-around” procedure in Step 3.
The following example illustrates this numerically.
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EXAMPLE 3.7: lllustration of the mechanics of histogram specification.

Consider the 64 x 64 hypothetical image from Example 3.5, whose histogram is repeated in Fig. 3.22(a).
It is desired to transform this histogram so that it will have the values specified in the second column of
Table 3.2. Figure 3.22(b) shows this histogram.

The first step is to obtain the histogram-equalized values, which we did in Example 3.5:

So=1; 85,=3; 5,=5; 55=6; 5,=6; s55=T7; 5,=T; s57=7
In the next step, we compute the values of G(z,) using the values of p,(z,) from Table 3.2 in Eq. (3-21):

G(z,) =0.00 G(z,)=0.00 G(z,) =245 G(z;)=5.95
G(z,)=0.00 G(zy)=1.05 G(z5)=4.55 G(z;)=7.00

As in Example 3.5, these fractional values are rounded to integers in the range [0,7]:

G(z))=0.00—-0 G(z)=245->2
G(z,)=0.00 -0 G(z5)=455->5
G(z,)=0.00->0 G(z5)=595—6
G(z3)=1.05->1 G(z;)=7.00 > 7

These results are summarized in Table 3.3.The transformation function, G(z, ), is sketched in Fig. 3.23(c).
Because its first three values are equal, G is not strictly monotonic,so condition (a') is violated. Therefore,
we use the approach outlined in Step 3 of the algorithm to handle this situation. According to this step,
we find the smallest value of z, so that the value G(z,) is the closest to 5,. We do this for every value of
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TABLE 3.2 ]

Specified and Specified Actual

actual histograms Zq p.(z,) p:(z,)

(the values in z = 0.00 0.00

the third column 0

are computed in 7 =1 0.00 0.00

Example 3.7). L =2 0.00 0.00
73=3 0.15 0.19
7, =4 0.20 0.25
=5 0.30 0.21
72=6 0.20 0.24
7 = 0.15 0.11

s, to create the required mappings from s to z. For example, s, = 1, and we see that G(z;) = 1, which is
a perfect match in this case, so we have the correspondence s, — z;. Every pixel whose value is 1 in the
histogram equalized image would map to a pixel valued 3 in the histogram-specified image. Continuing
in this manner, we arrive at the mappings in Table 3.4.

In the final step of the procedure, we use the mappings in Table 3.4 to map every pixel in the his-
togram equalized image into a corresponding pixel in the newly created histogram-specified image.
The values of the resulting histogram are listed in the third column of Table 3.2, and the histogram is
shown in Fig. 3.22(d). The values of p_(z,) were obtained using the same procedure as in Example 3.5.
For instance, we see in Table 3.4 that s, =1 maps to z, =3, and there are 790 pixels in the histogram-
equalized image with a value of 1. Therefore, p_(z;) = 790/4096 = 0.19.

Although the final result in Fig. 3.22(d) does not match the specified histogram exactly, the gen-
eral trend of moving the intensities toward the high end of the intensity scale definitely was achieved.
As mentioned earlier, obtaining the histogram-equalized image as an intermediate step is useful for

TABLE 3.3

Rounded values 2y G(Zq)

of the 2= 0

transformation 0

function G(z,). 7= 0
7 =2 0
Z3 = 1
7, =4 2
25 = 5 5
Zg = 6 6

7

z; =17
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TABLE 3.4

Mapping of Sk = %

values s, into 1 N 3

corresponding

values 2, 3 N 4
5 — 5
6 - 6
7 - 7

explaining the procedure, but this is not necessary. Instead, we could list the mappings from the 7’s to
the s’s and from the s’s to the z’s in a three-column table. Then, we would use those mappings to map
the original pixels directly into the pixels of the histogram-specified image.

EXAMPLE 3.8: Comparison between histogram equalization and histogram specification.

Figure 3.23(a) shows an image of the Mars moon, Phobos, taken by NASA’s Mars Global Surveyor.
Figure 3.23(b) shows the histogram of Fig. 3.23(a). The image is dominated by large, dark areas, result-
ing in a histogram characterized by a large concentration of pixels in the dark end of the gray scale. At
first glance, one might conclude that histogram equalization would be a good approach to enhance this
image, so that details in the dark areas become more visible. It is demonstrated in the following discus-
sion that this is not so.

Figure 3.24(a) shows the histogram equalization transformation [Eq. (3-20)] obtained using the histo-
gram in Fig. 3.23(b). The most relevant characteristic of this transformation function is how fast it rises
from intensity level 0 to a level near 190. This is caused by the large concentration of pixels in the input
histogram having levels near 0. When this transformation is applied to the levels of the input image to
obtain a histogram-equalized result, the net effect is to map a very narrow interval of dark pixels into the
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upper end of the gray scale of the output image. Because numerous pixels in the input image have levels
precisely in this interval, we would expect the result to be an image with a light, washed-out appearance.
As Fig. 3.24(b) shows, this is indeed the case. The histogram of this image is shown in Fig. 3.24(c). Note
how all the intensity levels are biased toward the upper one-half of the gray scale.

Because the problem with the transformation function in Fig. 3.24(a) was caused by a large con-
centration of pixels in the original image with levels near 0, a reasonable approach is to modify the
histogram of that image so that it does not have this property. Figure 3.25(a) shows a manually speci-
fied function that preserves the general shape of the original histogram, but has a smoother transition
of levels in the dark region of the gray scale. Sampling this function into 256 equally spaced discrete
values produced the desired specified histogram. The transformation function, G(z, ), obtained from this
histogram using Eq. (3-21) is labeled transformation (1) in Fig. 3.25(b). Similarly, the inverse transfor-
mation G™'(s, ), from Eq. (3-23) (obtained using the step-by-step procedure discussed earlier) is labeled
transformation (2) in Fig. 3.25(b). The enhanced image in Fig. 3.25(c) was obtained by applying trans-
formation (2) to the pixels of the histogram-equalized image in Fig. 3.24(b). The improvement of the
histogram-specified image over the result obtained by histogram equalization is evident by comparing
these two images. It is of interest to note that a rather modest change in the original histogram was all
that was required to obtain a significant improvement in appearance. Figure 3.25(d) shows the histo-
gram of Fig.3.25(c). The most distinguishing feature of this histogram is how its low end has shifted right
toward the lighter region of the gray scale (but not excessively so), as desired.
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LOCAL HISTOGRAM PROCESSING

The histogram processing methods discussed thus far are global, in the sense that
pixels are modified by a transformation function based on the intensity distribution
of an entire image. This global approach is suitable for overall enhancement, but
generally fails when the objective is to enhance details over small areas in an image.
This is because the number of pixels in small areas have negligible influence on
the computation of global transformations. The solution is to devise transformation
functions based on the intensity distribution of pixel neighborhoods.

The histogram processing techniques previously described can be adapted to local
enhancement. The procedure is to define a neighborhood and move its center from

149
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pixel to pixel in a horizontal or vertical direction. At each location, the histogram of
the points in the neighborhood is computed, and either a histogram equalization or
histogram specification transformation function is obtained. This function is used to
map the intensity of the pixel centered in the neighborhood. The center of the neigh-
borhood is then moved to an adjacent pixel location and the procedure is repeated.
Because only one row or column of the neighborhood changes in a one-pixel trans-
lation of the neighborhood, updating the histogram obtained in the previous loca-
tion with the new data introduced at each motion step is possible (see Problem 3.14).
This approach has obvious advantages over repeatedly computing the histogram of
all pixels in the neighborhood region each time the region is moved one pixel loca-
tion. Another approach used sometimes to reduce computation is to utilize nonover-
lapping regions, but this method usually produces an undesirable “blocky” effect.

EXAMPLE 3.9: Local histogram equalization.

Figure 3.26(a) is an 8-bit, 512 x 512 image consisting of five black squares on a light gray background.
The image is slightly noisy, but the noise is imperceptible. There are objects embedded in the dark
squares, but they are invisible for all practical purposes. Figure 3.26(b) is the result of global histogram
equalization. As is often the case with histogram equalization of smooth, noisy regions, this image shows
significant enhancement of the noise. However, other than the noise, Fig. 3.26(b) does not reveal any
new significant details from the original. Figure 3.26(c) was obtained using local histogram equaliza-
tion of Fig. 3.26(a) with a neighborhood of size 3 x 3. Here, we see significant detail within all the dark
squares. The intensity values of these objects are too close to the intensity of the dark squares, and their
sizes are too small, to influence global histogram equalization significantly enough to show this level of

intensity detail.

abc

FIGURE 3.26

(a) Original
image. (b) Result
of global
histogram
equalization.

(c) Result of local
histogram
equalization.

USING HISTOGRAM STATISTICS FOR IMAGE ENHANCEMENT

Statistics obtained directly from an image histogram can be used for image enhance-
ment. Let » denote a discrete random variable representing intensity values in the range
[0,L —1],and let p(r;) denote the normalized histogram component corresponding to
intensity value .. As indicated earlier, we may view p(r;) as an estimate of the prob-
ability that intensity r, occurs in the image from which the histogram was obtained.
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For an image with intensity levels in the range [0,L — 1], the nth moment of r
about its mean, m, is defined as

= 3 = m)' pir) (3-24)

where m is given by

[~

m= rp(r ) (3-25)

1

I\
f=}

i

The mean is a measure of average intensity and the variance (or standard deviation,
o), given by

L-
z r,—m)” p(r,) (3-26)
i=0

is a measure of image contrast.

We consider two uses of the mean and variance for enhancement purposes. The
global mean and variance [Egs. (3-25) and (3-26)] are computed over an entire
image and are useful for gross adjustments in overall intensity and contrast. A more
powerful use of these parameters is in local enhancement, where the local mean and
variance are used as the basis for making changes that depend on image character-
istics in a neighborhood about each pixel in an image.

Let (x, y) denote the coordinates of any pixel in a given image, and let S, denote
a neighborhood of specified size, centered on (x, y). The mean value of the pixels in
this neighborhood is given by the expression

my. =Zr, (@) (3-27)

where pg is the histogram of the pixels in region S,,. This histogram has L bins,
correspondlng to the L possible intensity values in the 1nput image. However, many
of the bins will have 0 counts, depending on the size of S,,. For example, if the neigh-
borhood is of size 3x 3 and L = 256, only between 1 and 9 of the 256 bins of the
histogram of the neighborhood will be nonzero (the maximum number of possible
different intensities in a 3 x 3 region is 9, and the minimum is 1). These non-zero
values will correspond to the number of different intensities in S,
The variance of the pixels in the neighborhood is similarly given by

= Z_ (r; —mg ) ps_ (1) (3-28)

As before, the local mean is a measure of average intensity in neighborhood S,,, and
the local variance (or standard deviation) is a measure of intensity contrast in that
neighborhood.
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As the following example illustrates, an important aspect of image processing
using the local mean and variance is the flexibility these parameters afford in devel-
oping simple, yet powerful enhancement rules based on statistical measures that
have a close, predictable correspondence with image appearance.

EXAMPLE 3.10: Local enhancement using histogram statistics.

Figure 3.27(a) is the same image as Fig. 3.26(a), which we enhanced using local histogram equalization.
As noted before, the dark squares contain embedded symbols that are almost invisible. As before, we
want to enhance the image to bring out these hidden features.

We can use the concepts presented in this section to formulate an approach for enhancing low-con-
trast details embedded in a background of similar intensity. The problem at hand is to enhance the low-
contrast detail in the dark areas of the image, while leaving the light background unchanged.

A method used to determine whether an area is relatively light or dark at a point (x, y) is to com-
pare the average local intensity, mg_, to the average image intensity (the global mean), denoted by
mg,. We obtain m, using Eq. (3-25) with the histogram of the entire image. Thus, we have the first ele-
ment of our enhancement scheme: We will consider the pixel at (x, y) as a candidate for processing if
kymg < mg < kymg, where k, and k, are nonnegative constants and k, < k;. For example, if our focus is
on areas that are darker than one-quarter of the mean intensity, we would choose k, = 0 and k, = 0.25.

Because we are interested in enhancing areas that have low contrast, we also need a measure to
determine whether the contrast of an area makes it a candidate for enhancement. We consider the
pixel at (x, y) as a candidate if k,o; < 05 < ko, where o is the global standard deviation obtained
with Eq. (3-26) using the histogram of the entire image, and k, and k; are nonnegative constants, with
k, < k,. For example, to enhance a dark area of low contrast, we might choose k, =0 and k; =0.1. A
pixel that meets all the preceding conditions for local enhancement is processed by multiplying it by a
specified constant, C, to increase (or decrease) the value of its intensity level relative to the rest of the
image. Pixels that do not meet the enhancement conditions are not changed.

We summarize the preceding approach as follows. Let f(x,y) denote the value of an image at any
image coordinates (x,y), and let g(x,y) be the corresponding value in the enhanced image at those
coordinates. Then,

Cf(x,y) if kymg <mg < kymg AND kyo, < 05 < ko

g(x,y)= (3-29)
flx,y) otherwise

ab
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Fig. 3.26(c).
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forx=0,1,2,...,M—-1and y=0,1,2,..., N -1, where, as indicated above, C, k, k,, k,, and k; are
specified constants, m; is the global mean of the input image, and o ; is its standard deviation. Param-
eters mg and o are the local mean and standard deviation, respectively, which change for every loca-
tion (x, y§ As usual, M and N are the number of rows and columns in the input image.

Factors such as the values of the global mean and variance relative to values in the areas to be
enhanced play a key role in selecting the parameters in Eq. (3-29), as does the range of differences
between the intensities of the areas to be enhanced and their background. In the case of Fig. 3.27(a),
mg; =161, o, =103, the maximum intensity values of the image and areas to be enhanced are 228 and
10, respectively, and the minimum values are 0 in both cases.

We would like for the maximum value of the enhanced features to be the same as the maximum value
of the image, so we select C = 22.8. The areas to be enhanced are quite dark relative to the rest of the
image, and they occupy less than a third of the image area; thus, we expect the mean intensity in the
dark areas to be much less than the global mean. Based on this, we let k, = 0 and k; = 0.1. Because the
areas to be enhanced are of very low contrast, we let k, = 0. For the upper limit of acceptable values
of standard deviation we set k; = 0.1, which gives us one-tenth of the global standard deviation. Figure
3.27(b) is the result of using Eq. (3-29) with these parameters. By comparing this figure with Fig. 3.26(c),
we see that the method based on local statistics detected the same hidden features as local histogram
equalization. But the present approach extracted significantly more detail. For example, we see that all
the objects are solid, but only the boundaries were detected by local histogram equalization. In addition,
note that the intensities of the objects are not the same, with the objects in the top-left and bottom-right
being brighter than the others. Also, the horizontal rectangles in the lower left square evidently are of
different intensities. Finally, note that the background in both the image and dark squares in Fig. 3.27(b)
is nearly the same as in the original image; by comparison, the same regions in Fig. 3.26(c) exhibit more
visible noise and have lost their gray-level content. Thus, the additional complexity required to use local
statistics yielded results in this case that are superior to local histogram equalization.

3.4 FUNDAMENTALS OF SPATIAL FILTERING NN

In this section, we discuss the use of spatial filters for image processing. Spatial filter-
ing is used in a broad spectrum of image processing applications, so a solid under-
standing of filtering principles is important. As mentioned at the beginning of this
chapter, the filtering examples in this section deal mostly with image enhancement.
Other applications of spatial filtering are discussed in later chapters.
The name filter is borrowed from frequency domain processing (the topic of
Chapter 4) where “filtering” refers to passing, modifying, or rejecting specified fre-
quency components of an image. For example, a filter that passes low frequencies
is called a lowpass filter. The net effect produced by a lowpass filter is to smooth an
image by blurring it. We can accomplish similar smoothing directly on the image
itself by using spatial filters.
Spatial filtering modifies an image by replacing the value of each pixel by a func-
tion of the values of the pixel and its neighbors. If the operation performed on the
See Section 2.6 regarding image pixels is linear, then the filter is called a linear spatial filter. Otherwise, the
linearity. filter is a nonlinear spatial filter. We will focus attention first on linear filters and then
introduce some basic nonlinear filters. Section 5.3 contains a more comprehensive
list of nonlinear filters and their application.
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It certainly is possible

to work with kernels of
even size, or mixed even
and odd sizes. However,
working with odd sizes
simplifies indexing and
is also more intuitive
because the kernels have
centers falling on integer
values, and they are
spatially symmetric

THE MECHANICS OF LINEAR SPATIAL FILTERING

A linear spatial filter performs a sum-of-products operation between an image fand a
filter kernel, w. The kernel is an array whose size defines the neighborhood of opera-
tion, and whose coefficients determine the nature of the filter. Other terms used to
refer to a spatial filter kernel are mask, template, and window. We use the term filter
kernel or simply kernel.

Figure 3.28 illustrates the mechanics of linear spatial filtering using a 3 x 3 ker-
nel. At any point (x, y) in the image, the response, g(x, y), of the filter is the sum of
products of the kernel coefficients and the image pixels encompassed by the kernel:

gx,y)=w(-L,-Df(x-Ly-1)+w(-L0)f(x-1,y)+ ... (3-30)
+w(0,0)f(x,y) + ... +w(,D)f(x+1,y+1)

As coordinates x and y are varied, the center of the kernel moves from pixel to pixel,
generating the filtered image, g, in the process.”

Observe that the center coefficient of the kernel, w(0,0), aligns with the pixel at
location (x, y). For a kernel of size m x n, we assume that m = 2a+1 and n = 2b + 1,
where a and b are nonnegative integers. This means that our focus is on kernels of
odd size in both coordinate directions. In general, linear spatial filtering of an image
of size M x N with a kernel of size m X n is given by the expression

g = 3 S ws.)f(x+s.y+1)

s=—at=-b

(3-31)

where x and y are varied so that the center (origin) of the kernel visits every pixel in
fonce. For a fixed value of (x,y), Eq. (3-31) implements the sum of products of the
form shown in Eq. (3-30), but for a kernel of arbitrary odd size. As you will learn in
the following section, this equation is a central tool in linear filtering.

SPATIAL CORRELATION AND CONVOLUTION

Spatial correlation is illustrated graphically in Fig. 3.28, and it is described mathemati-
cally by Eq. (3-31). Correlation consists of moving the center of a kernel over an
image, and computing the sum of products at each location. The mechanics of spatial
convolution are the same, except that the correlation kernel is rotated by 180°. Thus,
when the values of a kernel are symmetric about its center, correlation and convolu-
tion yield the same result. The reason for rotating the kernel will become clear in
the following discussion. The best way to explain the differences between the two
concepts is by example.
We begin with a 1-D illustration, in which case Eq. (3-31) becomes

a

g(x)= X w(s)f(x +s5)

S=—a

(3-32)

T A filtered pixel value typically is assigned to a corresponding location in a new image created to hold the results
of filtering. It is seldom the case that filtered pixels replace the values of the corresponding location in the origi-
nal image, as this would change the content of the image while filtering is being performed.
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Figure 3.29(a) shows a 1-D function, f, and a kernel, w. The kernel is of size 1 x 5, so
a =2 and b =0 in this case. Figure 3.29(b) shows the starting position used to per-
form correlation, in which w is positioned so that its center coefficient is coincident
with the origin of f.

The first thing we notice is that part of w lies outside f, so the summation is
undefined in that area. A solution to this problem is to pad function f with enough
0’s on either side. In general, if the kernel is of size 1 x m, we need (m —1)/2 zeros
on either side of fin order to handle the beginning and ending configurations of w
with respect to f. Figure 3.29(c) shows a properly padded function. In this starting
configuration, all coefficients of the kernel overlap valid values.
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FIGURE 3.29
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correlation and
convolution of a
kernel, w, with a
function f
consisting of a
discrete unit
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The first correlation value is the sum of products in this initial position, computed
using Eq. (3-32) with x =0 :
2
80)= 3, w()(s+0)=0
This value is in the leftmost location of the correlation result in Fig. 3.29(g).

To obtain the second value of correlation, we shift the relative positions of w and
fone pixel location to the right [i.e., we let x =1 in Eq. (3-32)] and compute the sum
of products again. The result is g(1) = 8, as shown in the leftmost, nonzero location
in Fig. 3.29(g). When x = 2, we obtain g(2) = 2. When x = 3, we get g(3) = 4 [see Fig.
3.29(e)]. Proceeding in this manner by varying x one shift at a time, we “build” the
correlation result in Fig. 3.29(g). Note that it took 8 values of x (i.e., x =0,1,2,...,7)
to fully shift w past fso the center coefficient in w visited every pixel in f. Sometimes,
it is useful to have every element of w visit every pixel in f. For this, we have to start



Rotating a 1-D kernel
by 180° is equivalent to
flipping the kernel about
its axis.

In 2-D, rotation by 180°
is equivalent to flipping
the kernel about one axis
and then the other.
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with the rightmost element of w coincident with the origin of f, and end with the
leftmost element of w being coincident the last element of f (additional padding
would be required). Figure Fig. 3.29(h) shows the result of this extended, or full, cor-
relation. As Fig. 3.29(g) shows, we can obtain the “standard” correlation by cropping
the full correlation in Fig. 3.29(h).

There are two important points to note from the preceding discussion. First, cor-
relation is a function of displacement of the filter kernel relative to the image. In
other words, the first value of correlation corresponds to zero displacement of the
kernel, the second corresponds to one unit displacement, and so on.” The second
thing to notice is that correlating a kernel w with a function that contains all 0’s and
a single 1 yields a copy of w, but rotated by 180°. A function that contains a single 1
with the rest being 0’s is called a discrete unit impulse. Correlating a kernel with a dis-
crete unit impulse yields a rotated version of the kernel at the location of the impulse.

The right side of Fig. 3.29 shows the sequence of steps for performing convolution
(we will give the equation for convolution shortly). The only difference here is that
the kernel is pre-rotated by 180° prior to performing the shifting/sum of products
operations. As the convolution in Fig. 3.29(0) shows, the result of pre-rotating the
kernel is that now we have an exact copy of the kernel at the location of the unit
impulse. In fact, a foundation of linear system theory is that convolving a function
with an impulse yields a copy of the function at the location of the impulse. We will
use this property extensively in Chapter 4.

The 1-D concepts just discussed extend easily to images, as Fig. 3.30 shows. For a
kernel of size m x n, we pad the image with a minimum of (m —1)/2 rows of 0’s at
the top and bottom and (1 —1)/2 columns of 0’s on the left and right. In this case,
m and n are equal to 3, so we pad f with one row of 0’s above and below and one
column of 0’s to the left and right, as Fig. 3.30(b) shows. Figure 3.30(c) shows the
initial position of the kernel for performing correlation, and Fig. 3.30(d) shows the
final result after the center of w visits every pixel in f, computing a sum of products
at each location. As before, the result is a copy of the kernel, rotated by 180°. We will
discuss the extended correlation result shortly.

For convolution, we pre-rotate the kernel as before and repeat the sliding sum of
products just explained. Figures 3.30(f) through (h) show the result. You see again
that convolution of a function with an impulse copies the function to the location
of the impulse. As noted earlier, correlation and convolution yield the same result if
the kernel values are symmetric about the center.

The concept of an impulse is fundamental in linear system theory, and is used in
numerous places throughout the book. A discrete impulse of strength (amplitude) A
located at coordinates (x,, y, ) is defined as

A ifx=x,andy=y,

8(x = X9,y = ¥p) = . (3-33)
0  otherwise

"In reality, we are shifting fto the left of w every time we increment x in Eq. (3-32). However, it is more intuitive
to think of the smaller kernel moving right over the larger array f. The motion of the two is relative, so either
way of looking at the motion is acceptable. The reason we increment fand not w is that indexing the equations
for correlation and convolution is much easier (and clearer) this way, especially when working with 2-D arrays.
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FIGURE 3.30
Correlation
(middle row) and
convolution (last
row) of a 2-D
kernel with an
image consisting
of a discrete unit
impulse. The 0’s
are shown in gray
to simplify visual
analysis. Note that
correlation and
convolution are
functions of x and
y.As these
variable change,
they

displace one
function with
respect to the
other. See the
discussion of Egs.
(3-36) and (3-37)
regarding full
correlation and
convolution.

Recall that A =1 for a
unit impulse.
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Padded f
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00000 456 00O0O0O0O0O0
000O0O0O 789 000O0O0O0O0

(a) (b)
. Initial position for w Correlation result Full correlation result
:T'z“g.‘: 0000 00000O0O0O
4 5 6,0 0 0 0 00000 000O0O0O0O0
7.8 910000 09870 0098700
0001000 06 540 006 5400
00 O0O0O0O0OO© 0 03210 0032100
00 O0O0O0O0ODO 00 0O00O0 00 0O0O0O 0O
00 O0O0O0O 0O 00 0O0O0O0OO
(c) (d) (e)
rRotated w Convolution result Full convolution result
:6'5'7‘: 0000 000000O00O
16 5 40 0 00 00 00O 000O0OO0O0OO
:§_g_1_: 0000 01230 0012300
0001000 04560 0045600
000O0O0O0ODQ O 07 8 90 0078900
00O0O0O0O 0O 00 0O00O0 00 0O0O0O0OO O
00O0O0O0O 0O 00 0O0O0O0OO O
() (8) (h)

For example, the unit impulse in Fig. 3.29(a) is given by &(x — 3) in the 1-D version of
the preceding equation. Similarly, the impulse in Fig.3.30(a) is given by 6(x — 2,y — 2)
[remember, the origin is at (0,0)].

Summarizing the preceding discussion in equation form, the correlation of a
kernel w of size m x n with an image f(x,y), denoted as (w ¥ f)(x,y), is given by
Eq. (3-31), which we repeat here for convenience:

(w f)(x,y) = i z w(s,)f(x+s,y+1) (3-34)

s=—at=-b
Because our kernels do not depend on (x, y), we will sometimes make this fact explic-
it by writing the left side of the preceding equation as w ¥ f(x, y). Equation (3-34) is
evaluated for all values of the displacement variables x and y so that the center point
of w visits every pixel in f," where we assume that f has been padded appropriately.

¥ As we mentioned earlier, the minimum number of required padding elements for a 2-D correlation is (1 — 1)/2
rows above and below f; and (n—1)/2 columns on the left and right. With this padding, and assuming that f
is of size M x N, the values of x and y required to obtain a complete correlation are x =0,1,2,...,M —1 and
y=0,1,2,...,N — 1. This assumes that the starting configuration is such that the center of the kernel coincides
with the origin of the image, which we have defined to be at the top, left (see Fig. 2.19).
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As explained earlier, a = (m—1)/2, b= (n-1)/2, and we assume that m and n are
odd integers.

In a similar manner, the convolution of a kernel w of size m x n with an image
f(x,y), denoted by (w * f)(x,y), is defined as

(W Ny =3 Y wsnf(x-sy—1) (3-35)

s=—at=-b

where the minus signs align the coordinates of fand w when one of the functions is
rotated by 180° (see Problem 3.17). This equation implements the sum of products
process to which we refer throughout the book as linear spatial filtering. That is, lin-
ear spatial filtering and spatial convolution are synonymous.

Because convolution is commutative (see Table 3.5), it is immaterial whether w
or fis rotated, but rotation of the kernel is used by convention. Our kernels do not
depend on (x,y), a fact that we sometimes make explicit by writing the left side
of Eq. (3-35) as w % f(x,y). When the meaning is clear, we let the dependence of
the previous two equations on x and y be implied, and use the simplified notation
wY f and w* f. As with correlation, Eq. (3-35) is evaluated for all values of the
displacement variables x and y so that the center of w visits every pixel in f, which
we assume has been padded. The values of x and y needed to obtain a full convolu-
tion are x =0,1,2,...,M —1 and y =0,1,2,..., N — 1. The size of the resultis M x N.

We can define correlation and convolution so that every element of w (instead of
just its center) visits every pixel in f. This requires that the starting configuration be
such that the right, lower corner of the kernel coincides with the origin of the image.
Similarly, the ending configuration will be with the top left corner of the kernel coin-
ciding with the lower right corner of the image. If the kernel and image are of sizes
mxn and M x N, respectively, the padding would have to increase to (m — 1) pad-
ding elements above and below the image, and (n — 1) elements to the left and right.
Under these conditions, the size of the resulting full correlation or convolution array
will be of size S, x S, where (see Figs. 3.30(¢e) and (h), and Problem 3.19),

S,=m+M-1 (3-36)
and
S, =n+N-1 (3-37)

Often, spatial filtering algorithms are based on correlation and thus implement
Eq. (3-34) instead. To use the algorithm for correlation, we input w into it; for con-
volution, we input w rotated by 180°. The opposite is true for an algorithm that
implements Eq. (3-35). Thus, either Eq. (3-34) or Eq. (3-35) can be made to perform
the function of the other by rotating the filter kernel. Keep in mind, however, that
the order of the functions input into a correlation algorithm does make a difference,
because correlation is neither commutative nor associative (see Table 3.5).
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TABLE 3.5

Some fundamen-
tal properties of
convolution and
correlation. A
dash means that
the property does
not hold.

Because the values of
these kernels are sym-
metric about the center,
no rotation is required
before convolution.

We could not write a
similar equation for
correlation because it is
not commutative.

ab

FIGURE 3.31
Examples of

smoothing kernels:

(a) is a box kernel,
(b) is a Gaussian
kernel.

Property Convolution Correlation
Commutative frg=gxf —
Associative f*(g*h):(f*g)*h —
Distributive

[r(g+h)=(fxg)+(F*h)  [r(g+h)=(frg)+(f*h)

Figure 3.31 shows two kernels used for smoothing the intensities of an image. To
filter an image using one of these kernels, we perform a convolution of the kernel
with the image in the manner just described. When talking about filtering and ker-
nels, you are likely to encounter the terms convolution filter, convolution mask, or
convolution kernel to denote filter kernels of the type we have been discussing. Typi-
cally, these terms are used in the literature to denote a spatial filter kernel, and not
to imply necessarily that the kernel is used for convolution. Similarly, “convolving a
kernel with an image” often is used to denote the sliding, sum-of-products process
we just explained, and does not necessarily differentiate between correlation and
convolution. Rather, it is used generically to denote either of the two operations.
This imprecise terminology is a frequent source of confusion. In this book, when we
use the term linear spatial filtering, we mean convolving a kernel with an image.

Sometimes an image is filtered (i.e., convolved) sequentially, in stages, using a dif-
ferent kernel in each stage. For example, suppose than an image fis filtered with a
kernel w,, the result filtered with kernel w,, that result filtered with a third kernel,
and so on, for Q stages. Because of the commutative property of convolution, this
multistage filtering can be done in a single filtering operation, w % f, where

W = W, kW, K w; k- kW, (3-38)

The size of w is obtained from the sizes of the individual kernels by successive
applications of Egs. (3-36) and (3-37). If all the individual kernels are of size m X n,
it follows from these equations that w will be of size W, x W,, where

W,=0x(m-1)+m (3-39)

and

W,=0x(n-1)+n (3-40)

These equations assume that every value of a kernel visits every value of the array
resulting from the convolution in the previous step. That is, the initial and ending
configurations, are as described in connection with Egs. (3-36) and (3-37).

1 1 1 0.3679 | 0.6065 | 0.3679
L X 1 1 1 L 0.6065 | 1.0000 | 0.6065
9 4.8976 ' ' ’

1 1 1 0.3679 | 0.6065 | 0.3679




To be strictly consistent
in notation, we should
use uppercase, bold
symbols for kernels when
we refer to them as
matrices. However,
kernels are mostly
treated in the book as
2-D functions, which we
denote in italics. To avoid
confusion, we continue
to use italics for kernels
in this short section, with
the understanding that
the two notations are
intended to be equivalent
in this case.

‘We assume that the
values of M and N
include any padding of
fprior to performing
convolution.
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SEPARABLE FILTER KERNELS

Asnoted in Section 2.6,a 2-D function G(x, y) is said to be separable if it can be written
as the product of two 1-D functions, G,(x) and G, (x); that is, G(x, y) = G,(x)G,(y).
A spatial filter kernel is a matrix, and a separable kernel is a matrix that can be
expressed as the outer product of two vectors. For example, the 2 X 3 kernel

111
w =
111

is separable because it can be expressed as the outer product of the vectors

1
1

c= and r=|1
1

1

ch:m[l 1 1]:& 1 ﬂzw

A separable kernel of size m X n can be expressed as the outer product of two vec-
tors, v and w:

That is,

w=vw' (3-41)
where v and w are vectors of size m X 1 and n x 1, respectively. For a square kernel
of size m x m, we write

w=vv’ (3-42)

It turns out that the product of a column vector and a row vector is the same as the
2-D convolution of the vectors (see Problem 3.24).

The importance of separable kernels lies in the computational advantages that
result from the associative property of convolution. If we have a kernel w that can
be decomposed into two simpler kernels, such that w = w, *w,, then it follows
from the commutative and associative properties in Table 3.5 that

wk f = (w Fw,) * f=(w, kw; )k f=w, *(w *f)=(w *fekw, (3-43)
This equation says that convolving a separable kernel with an image is the same as
convolving w, with f first, and then convolving the result with w,.

For an image of size M X N and a kernel of size m x n, implementation of Eq.
(3-35) requires on the order of MNmn multiplications and additions. This is because
it follows directly from that equation that each pixel in the output (filtered) image
depends on all the coefficients in the filter kernel. But, if the kernel is separable and
we use Eq. (3-43), then the first convolution, w, * f, requires on the order of MNm
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As we will discuss later
in this chapter, the only
kernels that are sepa-
rable and whose values
are circularly symmetric
about the center are
Gaussian kernels, which
have a nonzero center
coefficient (i.e., ¢ > 0 for
these kernels).

multiplications and additions because wj is of size m x 1. The result is of size M X N,
so the convolution of w, with the result requires MNn such operations, for a total of
MN (m + n) multiplication and addition operations. Thus, the computational advan-
tage of performing convolution with a separable, as opposed to a nonseparable, ker-
nel is defined as

C= MNmn _ mn

_MN(m+n)_m+n (3-44)

For a kernel of modest size, say 11 x 11, the computational advantage (and thus exe-
cution-time advantage) is a respectable 5.2. For kernels with hundreds of elements,
execution times can be reduced by a factor of a hundred or more, which is significant.
We will illustrate the use of such large kernels in Example 3.16.

We know from matrix theory that a matrix resulting from the product of a column
vector and a row vector al/ways has a rank of 1. By definition, a separable kernel is
formed by such a product. Therefore, to determine if a kernel is separable, all we
have to do is determine if its rank is 1. Typically, we find the rank of a matrix using a
pre-programmed function in the computer language being used. For example, if you
use MATLAB, function rank will do the job.

Once you have determined that the rank of a kernel matrix is 1, it is not difficult
to find two vectors v and w such that their outer product, vw’, is equal to the kernel.
The approach consists of only three steps:

1. Find any nonzero element in the kernel and let E denote its value.

2. Form vectors ¢ and r equal, respectively, to the column and row in the kernel
containing the element found in Step 1.

3. With reference to Eq. (3-41),let v=c and w’ =1/E.

The reason why this simple three-step method works is that the rows and columns
of a matrix whose rank is 1 are linearly dependent. That is, the rows differ only by a
constant multiplier, and similarly for the columns. It is instructive to work through
the mechanics of this procedure using a small kernel (see Problems 3.20 and 3.22).

As we explained above, the objective is to find two 1-D kernels, w, and w,, in
order to implement 1-D convolution. In terms of the preceding notation, w, =¢=v
and w, = r/ E = w’. For circularly symmetric kernels, the column through the center
of the kernel describes the entire kernel; that is, w = vv’ /c, where c is the value of
the center coefficient. Then, the 1-D components are w, = v and w, = v/ /c.

SOME IMPORTANT COMPARISONS BETWEEN FILTERING IN THE
SPATIAL AND FREQUENCY DOMAINS

Although filtering in the frequency domain is the topic of Chapter 4, we introduce
at this junction some important concepts from the frequency domain that will help
you master the material that follows.

The tie between spatial- and frequency-domain processing is the Fourier trans-
form.We use the Fourier transform to go from the spatial to the frequency domain;
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FIGURE 3.32

(a) Ideal 1-D low-
pass filter transfer
function in the
frequency domain.
(b) Corresponding
filter kernel in the
spatial domain.

See the explanation of
Eq. (3-33) regarding
impulses.

As we did earlier with
spatial filters, when the
meaning is clear we use
the term filter inter-
changeably with filter
transfer function when
working in the frequency
domain.
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to return to the spatial domain we use the inverse Fourier transform. This will be
covered in detail in Chapter 4. The focus here is on two fundamental properties
relating the spatial and frequency domains:

1. Convolution, which is the basis for filtering in the spatial domain, is equivalent
to multiplication in the frequency domain, and vice versa.

2. An impulse of strength A in the spatial domain is a constant of value A in the
frequency domain, and vice versa.

As explained in Chapter 4, a function (e.g., an image) satisfying some mild condi-
tions can be expressed as the sum of sinusoids of different frequencies and ampli-
tudes. Thus, the appearance of an image depends on the frequencies of its sinusoidal
components—change the frequencies of those components, and you will change the
appearance of the image. What makes this a powerful concept is that it is possible to
associate certain frequency bands with image characteristics. For example, regions
of an image with intensities that vary slowly (e.g., the walls in an image of a room)
are characterized by sinusoids of low frequencies. Similarly, edges and other sharp
intensity transitions are characterized by high frequencies. Thus, reducing the high-
frequency components of an image will tend to blur it.

Linear filtering is concerned with finding suitable ways to modify the frequency
content of an image. In the spatial domain we do this via convolution filtering. In
the frequency domain we do it with multiplicative filters. The latter is a much more
intuitive approach, which is one of the reasons why it is virtually impossible to truly
understand spatial filtering without having at least some rudimentary knowledge of
the frequency domain.

An example will help clarify these ideas. For simplicity, consider a 1-D func-
tion (such as an intensity scan line through an image) and suppose that we want to
eliminate all its frequencies above a cutoff value, u,, while “passing” all frequen-
cies below that value. Figure 3.32(a) shows a frequency-domain filter function for
doing this. (The term filter transfer function is used to denote filter functions in the
frequency domain—this is analogous to our use of the term “filter kernel” in the
spatial domain.) Appropriately, the function in Fig. 3.32(a) is called a lowpass filter
transfer function. In fact, this is an ideal lowpass filter function because it eliminates
all frequencies above u,,, while passing all frequencies below this value.” That is, the

TAll the frequency domain filters in which we are interested are symmetrical about the origin and encompass
both positive and negative frequencies, as we will explain in Section 4.3 (see Fig. 4.8). For the moment, we show
only the right side (positive frequencies) of 1-D filters for simplicity in this short explanation.



164 Chapter 3 Intensity Transformations and Spatial Filtering

transition of the filter between low and high frequencies is instantaneous. Such filter

functions are not realizable with physical components, and have issues with “ringing”
when implemented digitally. However, ideal filters are very useful for illustrating

numerous filtering phenomena, as you will learn in Chapter 4.

To lowpass-filter a spatial signal in the frequency domain, we first convert it to the
frequency domain by computing its Fourier transform, and then multiply the result
by the filter transfer function in Fig. 3.32(a) to eliminate frequency components with
values higher than u,. To return to the spatial domain, we take the inverse Fourier
transform of the filtered signal. The result will be a blurred spatial domain function.

Because of the duality between the spatial and frequency domains, we can obtain
the same result in the spatial domain by convolving the equivalent spatial domain
filter kernel with the input spatial function. The equivalent spatial filter kernel
is the inverse Fourier transform of the frequency-domain filter transfer function.
Figure 3.32(b) shows the spatial filter kernel corresponding to the frequency domain
filter transfer function in Fig. 3.32(a). The ringing characteristics of the kernel are
evident in the figure. A central theme of digital filter design theory is obtaining faith-
ful (and practical) approximations to the sharp cut off of ideal frequency domain
filters while reducing their ringing characteristics.

A WORD ABOUT HOW SPATIAL FILTER KERNELS ARE CONSTRUCTED

We consider three basic approaches for constructing spatial filters in the following
sections of this chapter. One approach is based on formulating filters based on
mathematical properties. For example, a filter that computes the average of pixels
in a neighborhood blurs an image. Computing an average is analogous to integra-
tion. Conversely, a filter that computes the local derivative of an image sharpens the
image. We give numerous examples of this approach in the following sections.

A second approach is based on sampling a 2-D spatial function whose shape has
a desired property. For example, we will show in the next section that samples from
a Gaussian function can be used to construct a weighted-average (lowpass) filter.
These 2-D spatial functions sometimes are generated as the inverse Fourier trans-
form of 2-D filters specified in the frequency domain. We will give several examples
of this approach in this and the next chapter.

A third approach is to design a spatial filter with a specified frequency response.
This approach is based on the concepts discussed in the previous section, and falls
in the area of digital filter design. A 1-D spatial filter with the desired response is
obtained (typically using filter design software). The 1-D filter values can be expressed
as a vector v,and a 2-D separable kernel can then be obtained using Eq. (3-42). Or the
1-D filter can be rotated about its center to generate a 2-D kernel that approximates a
circularly symmetric function. We will illustrate these techniques in Section 3.7.

3.5 SMOOTHING (LOWPASS) SPATIAL FILTERS I

Smoothing (also called averaging) spatial filters are used to reduce sharp transi-
tions in intensity. Because random noise typically consists of sharp transitions in



3.5 Smoothing (Lowpass) Spatial Filters 165

intensity, an obvious application of smoothing is noise reduction. Smoothing prior
to image resampling to reduce aliasing, as will be discussed in Section 4.5, is also
a common application. Smoothing is used to reduce irrelevant detail in an image,
where “irrelevant” refers to pixel regions that are small with respect to the size of
the filter kernel. Another application is for smoothing the false contours that result
from using an insufficient number of intensity levels in an image, as discussed in Sec-
tion 2.4. Smoothing filters are used in combination with other techniques for image
enhancement, such as the histogram processing techniques discussed in Section 3.3,
and unsharp masking, as discussed later in this chapter. We begin the discussion
of smoothing filters by considering linear smoothing filters in some detail. We will
introduce nonlinear smoothing filters later in this section.

As we discussed in Section 3.4, linear spatial filtering consists of convolving an
image with a filter kernel. Convolving a smoothing kernel with an image blurs the
image, with the degree of blurring being determined by the size of the kernel and
the values of its coefficients. In addition to being useful in countless applications of
image processing, lowpass filters are fundamental, in the sense that other impor-
tant filters, including sharpening (highpass), bandpass, and bandreject filters, can be
derived from lowpass filters, as we will show in Section 3.7.

We discuss in this section lowpass filters based on box and Gaussian kernels,
both of which are separable. Most of the discussion will center on Gaussian kernels
because of their numerous useful properties and breadth of applicability. We will
introduce other smoothing filters in Chapters 4 and 5.

BOX FILTER KERNELS

The simplest, separable lowpass filter kernel is the box kernel, whose coefficients
have the same value (typically 1). The name “box kernel” comes from a constant
kernel resembling a box when viewed in 3-D. We showed a 3 x 3 box filter in Fig.
3.31(a). An m x n box filter is an m x n array of 1’s, with a normalizing constant in
front, whose value is 1 divided by the sum of the values of the coefficients (i.e., 1/mn
when all the coefficients are 1’s). This normalization, which we apply to all lowpass
kernels, has two purposes. First, the average value of an area of constant intensity
would equal that intensity in the filtered image, as it should. Second, normalizing
the kernel in this way prevents introducing a bias during filtering; that is, the sum
of the pixels in the original and filtered images will be the same (see Problem 3.31).
Because in a box kernel all rows and columns are identical, the rank of these kernels
is 1, which, as we discussed earlier, means that they are separable.

EXAMPLE 3.11: Lowpass filtering with a box kernel.

Figure 3.33(a) shows a test pattern image of size 1024 x 1024 pixels. Figures 3.33(b)-(d) are the results
obtained using box filters of size m x m with m = 3, 11, and 21, respectively. For m = 3, we note a slight
overall blurring of the image, with the image features whose sizes are comparable to the size of the
kernel being affected significantly more. Such features include the thinner lines in the image and the
noise pixels contained in the boxes on the right side of the image. The filtered image also has a thin gray
border, the result of zero-padding the image prior to filtering. As indicated earlier, padding extends the
boundaries of an image to avoid undefined operations when parts of a kernel lie outside the border of



166  Chapter 3 Intensity Transformations and Spatial Filtering

ab

cd -BJI[ZE.[E. -t&l.-

FIGURE 3.33 ;
(a) Test pattern of o a : & a
size 1024 x 1024 3 i, .

i 000 wegeas § ) )

pixels.
(b)-(d) Results of Rl == v = Il =
lowpass filtering — ” I I I =1 — ” I I | —

with box kernels //&\\

of sizes 3x 3, //-/:\\ S
11 %11,
e dovr i bl Ko L

L.
L . a 2 b .
Lt .
¥ .

|

Zaa|aa

the image during filtering. When zero (black) padding is used, the net result of smoothing at or near the
border is a dark gray border that arises from including black pixels in the averaging process. Using the
11 x 11 kernel resulted in more pronounced blurring throughout the image, including a more prominent
dark border. The result with the 21 x 21 kernel shows significant blurring of all components of the image,
including the loss of the characteristic shape of some components, including, for example, the small
square on the top left and the small character on the bottom left. The dark border resulting from zero
padding is proportionally thicker than before. We used zero padding here, and will use it a few more
times, so that you can become familiar with its effects. In Example 3.14 we discuss two other approaches
to padding that eliminate the dark-border artifact that usually results from zero padding.

LOWPASS GAUSSIAN FILTER KERNELS

Because of their simplicity, box filters are suitable for quick experimentation and
they often yield smoothing results that are visually acceptable. They are useful also
when it is desired to reduce the effect of smoothing on edges (see Example 3.13).
However, box filters have limitations that make them poor choices in many appli-
cations. For example, a defocused lens is often modeled as a lowpass filter, but
box filters are poor approximations to the blurring characteristics of lenses (see
Problem 3.33). Another limitation is the fact that box filters favor blurring along
perpendicular directions. In applications involving images with a high level of detail,



Our interest here is
strictly on the bell shape
of the Gaussian function;
thus, we dispense with
the traditional multiplier
of the Gaussian PDF and
use a general constant,
K, instead. Recall that o
controls the “spread” of a
Gaussian function about
its mean.

FIGURE 3.34
Distances from
the center for
various sizes of
square kernels.
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or with strong geometrical components, the directionality of box filters often pro-
duces undesirable results. (Example 3.13 illustrates this issue.) These are but two
applications in which box filters are not suitable.

The kernels of choice in applications such as those just mentioned are circularly
symmetric (also called isotropic, meaning their response is independent of orienta-
tion). As it turns out, Gaussian kernels of the form

s+ 2

w(s,t) = G(s,t) = Ke 27

(3-45)

are the only circularly symmetric kernels that are also separable (Sahoo [1990]).
Thus, because Gaussian kernels of this form are separable, Gaussian filters enjoy the
same computational advantages as box filters, but have a host of additional proper-
ties that make them ideal for image processing, as you will learn in the following
discussion. Variables s and ¢ in Eq. (3-45), are real (typically discrete) numbers.

By letting r = [s% + 2]/ we can write Eq. (3-45) as

G(r)=Ke > (3-46)

This equivalent form simplifies derivation of expressions later in this section. This
form also reminds us that the function is circularly symmetric. Variable r is the dis-
tance from the center to any point on function G. Figure 3.34 shows values of r for
several kernel sizes using integer values for s and . Because we work generally with
odd kernel sizes, the centers of such kernels fall on integer values, and it follows that
all values of r* are integers also. You can see this by squaring the values in Fig. 3.34
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Small Gaussian kernels
cannot capture the char-
acteristic Gaussian bell
shape, and thus behave
more like box kernels. As
we discuss below, a prac-
tical size for Gaussian
kernels is on the order of
60 X60.

As we explained in
Section 2.6, the symbols
[-] and |-] denote the
ceiling and floor func-
tions. That is, the ceiling
and floor functions map
areal number to the
smallest following, or the
largest previous, integer,
respectively.

Proofs of the results in
Table 3.6 are simplified
by working with the
Fourier transform and
the frequency domain,
both of which are topics
in Chapter 4.
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FIGURE 3.35

(a) Sampling a
Gaussian function
to obtain a discrete
Gaussian kernel.
The values shown
are for K =1 and
o =1. (b) Resulting
3% 3 kernel [this
is the same as Fig.
3.31(b)].

(for a formal proof, see Padfield [2011]). Note in particular that the distance squared
to the corner points for a kernel of size m x m is

2= 200 } -l (3-47)

The kernel in Fig. 3.31(b) was obtained by sampling Eq. (3-45) (with K =1 and
o =1).Figure 3.35(a) shows a perspective plot of a Gaussian function, and illustrates
that the samples used to generate that kernel were obtained by specifying values of
s and ¢, then “reading” the values of the function at those coordinates. These values
are the coefficients of the kernel. Normalizing the kernel by dividing its coefficients
by the sum of the coefficients completes the specification of the kernel. The reasons
for normalizing the kernel are as discussed in connection with box kernels. Because
Gaussian kernels are separable, we could simply take samples along a cross section
through the center and use the samples to form vector v in Eq. (3-42), from which
we obtain the 2-D kernel.

Separability is one of many fundamental properties of circularly symmetric
Gaussian kernels. For example, we know that the values of a Gaussian function at a
distance larger than 30 from the mean are small enough that they can be ignored.
This means that if we select the size of a Gaussian kernel to be [60|x[6¢] (the nota-
tion [c] is used to denote the ceiling of c; that is, the smallest integer not less than
¢), we are assured of getting essentially the same result as if we had used an arbi-
trarily large Gaussian kernel. Viewed another way, this property tells us that there
is nothing to be gained by using a Gaussian kernel larger than [60| x [6c] for image
processing. Because typically we work with kernels of odd dimensions, we would use
the smallest odd integer that satisfies this condition (e.g., a 43 x 43 kernel if o = 7).

Two other fundamental properties of Gaussian functions are that the product
and convolution of two Gaussians are Gaussian functions also. Table 3.6 shows the
mean and standard deviation of the product and convolution of two 1-D Gaussian
functions, f and g (remember, because of separability, we only need a 1-D Gauss-
ian to form a circularly symmetric 2-D function). The mean and standard deviation

0.3679 | 0.6065 | 0.3679

0.6065 | 1.0000 | 0.6065

0.3679 | 0.6065 | 0.3679
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TABLE 3.6 Mean and standard deviation of the product (x) and convolution () of two 1-D Gaussian functions, f
and g. These results generalize directly to the product and convolution of more than two 1-D Gaussian functions
(see Problem 3.25).

S g fxg Sf*xg
_ mf(ri, +mg0-f%

Mean my m, Mg = My = My + 11,

2 2

o+ o,
Standard deviation . = U-%Uz N
oy oy fxg a2 2 Orxg=40f T 0y

o +o,

completely define a Gaussian, so the parameters in Table 3.6 tell us all there is to
know about the functions resulting from multiplication and convolution of Gauss-
ians. As indicated by Egs. (3-45) and (3-46), Gaussian kernels have zero mean, so our
interest here is in the standard deviations.

The convolution result is of particular importance in filtering. For example, we
mentioned in connection with Eq. (3-43) that filtering sometimes is done in succes-
sive stages, and that the same result can be obtained by one stage of filtering with a
composite kernel formed as the convolution of the individual kernels. If the kernels
are Gaussian, we can use the result in Table 3.6 (which, as noted, generalizes directly
to more than two functions) to compute the standard deviation of the composite
kernel (and thus completely define it) without actually having to perform the con-
volution of all the individual kernels.

EXAMPLE 3.12: Lowpass filtering with a Gaussian kernel.

To compare Gaussian and box kernel filtering, we repeat Example 3.11 using a Gaussian kernel. Gauss-
ian kernels have to be larger than box filters to achieve the same degree of blurring. This is because,
whereas a box kernel assigns the same weight to all pixels, the values of Gaussian kernel coefficients
(and hence their effect) decreases as a function of distance from the kernel center. As explained earlier,
we use a size equal to the closest odd integer to (60] X [60}. Thus, for a Gaussian kernel of size 21 x 21,
which is the size of the kernel we used to generate Fig. 3.33(d), we need o = 3.5. Figure 3.36(b) shows the
result of lowpass filtering the test pattern with this kernel. Comparing this result with Fig. 3.33(d), we see
that the Gaussian kernel resulted in significantly less blurring. A little experimentation would show that
we need o = 7 to obtain comparable results. This implies a Gaussian kernel of size 43 x 43. Figure 3.36(c)
shows the results of filtering the test pattern with this kernel. Comparing it with Fig. 3.33(d), we see that
the results indeed are very close.

We mentioned earlier that there is little to be gained by using a Gaussian kernel larger than |60 | x[60].
To demonstrate this, we filtered the test pattern in Fig. 3.36(a) using a Gaussian kernel with o = 7 again,
but of size 85x 85. Figure 3.37(a) is the same as Fig. 3.36(c), which we generated using the smallest
odd kernel satisfying the [6]x [6] condition (43 x 43, for o = 7). Figure 3.37(b) is the result of using the
85 % 85 kernel, which is double the size of the other kernel. As you can see, not discernible additional
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FIGURE 3.36 (a)A test pattern of size 1024 x 1024. (b) Result of lowpass filtering the pattern with a Gaussian kernel
of size 21 x 21, with standard deviations o = 3.5. (¢) Result of using a kernel of size 43 x 43, with o = 7. This result
is comparable to Fig. 3.33(d). We used K =1 in all cases.

blurring occurred. In fact, the difference image in Fig 3.37(c) indicates that the two images are nearly
identical, their maximum difference being 0.75, which is less than one level out of 256 (these are 8-bit
images).

EXAMPLE 3.13: Comparison of Gaussian and box filter smoothing characteristics.

The results in Examples 3.11 and 3.12 showed little visual difference in blurring. Despite this, there are
some subtle differences that are not apparent at first glance. For example, compare the large letter “a”
in Figs. 3.33(d) and 3.36(c); the latter is much smoother around the edges. Figure 3.38 shows this type
of different behavior between box and Gaussian kernels more clearly. The image of the rectangle was
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FIGURE 3.37 (a) Result of filtering Fig. 3.36(a) using a Gaussian kernels of size 43 x 43, with o = 7. (b) Result of using
a kernel of 85 x 85, with the same value of . (c) Difference image.
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FIGURE 3.38 (a) Image of a white rectangle on a black background, and a horizontal intensity profile along the scan
line shown dotted. (b) Result of smoothing this image with a box kernel of size 71 x 71, and corresponding intensity
profile. (c) Result of smoothing the image using a Gaussian kernel of size 151 x 151, with K =1 and o = 25. Note
the smoothness of the profile in (c) compared to (b). The image and rectangle are of sizes 1024 x 1024 and 768 x 128
pixels, respectively.

abc

smoothed using a box and a Gaussian kernel with the sizes and parameters listed in the figure. These
parameters were selected to give blurred rectangles of approximately the same width and height, in
order to show the effects of the filters on a comparable basis. As the intensity profiles show, the box filter
produced linear smoothing, with the transition from black to white (i.e., at an edge) having the shape
of a ramp. The important features here are hard transitions at the onset and end of the ramp. We would
use this type of filter when less smoothing of edges is desired. Conversely, the Gaussian filter yielded
significantly smoother results around the edge transitions. We would use this type of filter when gener-
ally uniform smoothing is desired.

As the results in Examples 3.11,3.12, and 3.13 show, zero padding an image intro-
duces dark borders in the filtered result, with the thickness of the borders depending
on the size and type of the filter kernel used. Earlier, when discussing correlation
and convolution, we mentioned two other methods of image padding: mirror (also
called symmetric) padding, in which values outside the boundary of the image are
obtained by mirror-reflecting the image across its border; and replicate padding, in
which values outside the boundary are set equal to the nearest image border value.
The latter padding is useful when the areas near the border of the image are con-
stant. Conversely, mirror padding is more applicable when the areas near the border
contain image details. In other words, these two types of padding attempt to “extend”
the characteristics of an image past its borders.

Figure 3.39 illustrates these padding methods, and also shows the effects of more
aggressive smoothing. Figures 3.39(a) through 3.39(c) show the results of filtering
Fig. 3.36(a) with a Gaussian kernel of size 187 x 187 elements with K = 1 and o = 31,
using zero, mirror, and replicate padding, respectively. The differences between the
borders of the results with the zero-padded image and the other two are obvious,
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FIGURE 3.39 Result of filtering the test pattern in Fig. 3.36(a) using (a) zero padding, (b) mirror padding, and (c) rep-
licate padding. A Gaussian kernel of size 187 x 187, with K =1 and o = 31 was used in all three cases.

and indicate that mirror and replicate padding yield more visually appealing results
by eliminating the dark borders resulting from zero padding.

EXAMPLE 3.14: Smoothing performance as a function of kernel and image size.

The amount of relative blurring produced by a smoothing kernel of a given size depends directly on
image size. To illustrate, Fig. 3.40(a) shows the same test pattern used earlier, but of size 4096 x 4096
pixels, four times larger in each dimension than before. Figure 3.40(b) shows the result of filtering this
image with the same Gaussian kernel and padding used in Fig. 3.39(b). By comparison, the former
image shows considerably less blurring for the same size filter. In fact, Fig. 3.40(b) looks more like the

vee a - c‘.
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FIGURE 3.40 (a) Test pattern of size 4096 x 4096 pixels. (b) Result of filtering the test pattern with the same Gaussian
kernel used in Fig. 3.39. (c) Result of filtering the pattern using a Gaussian kernel of size 745 x 745 elements, with
K =1 and o = 124. Mirror padding was used throughout.
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image in Fig. 3.36(d), which was filtered using a 43 x 43 Gaussian kernel. In order to obtain results that
are comparable to Fig. 3.39(b) we have to increase the size and standard deviation of the Gaussian
kernel by four, the same factor as the increase in image dimensions. This gives a kernel of (odd) size
745 x 745 (with K =1 and o = 124). Figure 3.40(c) shows the result of using this kernel with mirror pad-
ding. This result is quite similar to Fig. 3.39(b). After the fact, this may seem like a trivial observation, but
you would be surprised at how frequently not understanding the relationship between kernel size and
the size of objects in an image can lead to ineffective performance of spatial filtering algorithms.

EXAMPLE 3.15: Using lowpass filtering and thresholding for region extraction.

Figure 3.41(a) is a 2566 x 2758 Hubble Telescope image of the Hickson Compact Group (see figure
caption), whose intensities were scaled to the range [0, 1]. Our objective is to illustrate lowpass filtering
combined with intensity thresholding for eliminating irrelevant detail in this image. In the present con-
text, “irrelevant” refers to pixel regions that are small compared to kernel size.

Figure 3.41(b) is the result of filtering the original image with a Gaussian kernel of size 151 x 151
(approximately 6% of the image width) and standard deviation o = 25. We chose these parameter val-
ues in order generate a sharper, more selective Gaussian kernel shape than we used in earlier examples.
The filtered image shows four predominantly bright regions. We wish to extract only those regions from
the image. Figure 3.41(c) is the result of thresholding the filtered image with a threshold 7' = 0.4 (we will
discuss threshold selection in Chapter 10). As the figure shows, this approach effectively extracted the
four regions of interest, and eliminated details deemed irrelevant in this application.

EXAMPLE 3.16: Shading correction using lowpass filtering.

One of the principal causes of image shading is nonuniform illumination. Shading correction (also
called flat-field correction) is important because shading is a common cause of erroneous measurements,
degraded performance of automated image analysis algorithms, and difficulty of image interpretation

abc

FIGURE 3.41 (a) A 2566 x 2758 Hubble Telescope image of the Hickson Compact Group. (b) Result of lowpass filter-
ing with a Gaussian kernel. (c) Result of thresholding the filtered image (intensities were scaled to the range [0, 1]).
The Hickson Compact Group contains dwarf galaxies that have come together, setting off thousands of new star
clusters. (Original image courtesy of NASA.)
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FIGURE 3.42 (a) Image shaded by a shading pattern oriented in the —45° direction. (b) Estimate of the shading
patterns obtained using lowpass filtering. (c) Result of dividing (a) by (b). (See Section 9.8 for a morphological
approach to shading correction).

by humans. We introduced shading correction in Example 2.7, where we corrected a shaded image by
dividing it by the shading pattern. In that example, the shading pattern was given. Often, that is not the
case in practice, and we are faced with having to estimate the pattern directly from available samples of
shaded images. Lowpass filtering is a rugged, simple method for estimating shading patterns.

Consider the 2048 x 2048 checkerboard image in Fig. 3.42(a), whose inner squares are of size 128 x 128
pixels. Figure 3.42(b) is the result of lowpass filtering the image with a 512 x 512 Gaussian kernel (four
times the size of the squares), K =1, and o = 128 (equal to the size of the squares). This kernel is just
large enough to blur-out the squares (a kernel three times the size of the squares is too small to blur
them out sufficiently). This result is a good approximation to the shading pattern visible in Fig. 3.42(a).
Finally, Fig. 3.42(c) is the result of dividing (a) by (b). Although the result is not perfectly flat, it definitely
is an improvement over the shaded image.

In the discussion of separable kernels in Section 3.4, we pointed out that the computational advan-
tage of separable kernels can be significant for large kernels. It follows from Eq. (3-44) that the compu-
tational advantage of the kernel used in this example (which of course is separable) is 262 to 1. Thinking
of computation time, if it took 30 sec to process a set of images similar to Fig. 3.42(b) using the two 1-D
separable components of the Gaussian kernel, it would have taken 2.2 hrs to achieve the same result
using a nonseparable lowpass kernel, or if we had used the 2-D Gaussian kernel directly, without decom-
posing it into its separable parts.

ORDER-STATISTIC (NONLINEAR) FILTERS

Order-statistic filters are nonlinear spatial filters whose response is based on ordering
(ranking) the pixels contained in the region encompassed by the filter. Smoothing is
achieved by replacing the value of the center pixel with the value determined by the
ranking result. The best-known filter in this category is the median filter, which, as
its name implies, replaces the value of the center pixel by the median of the intensity
values in the neighborhood of that pixel (the value of the center pixel is included
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in computing the median). Median filters provide excellent noise reduction capa-
bilities for certain types of random noise, with considerably less blurring than lin-
ear smoothing filters of similar size. Median filters are particularly effective in the
presence of impulse noise (sometimes called salt-and-pepper noise, when it manis-
fests itself as white and black dots superimposed on an image).

The median, &, of a set of values is such that half the values in the set are less than
or equal to ¢ and half are greater than or equal to &. In order to perform median
filtering at a point in an image, we first sort the values of the pixels in the neighbor-
hood, determine their median, and assign that value to the pixel in the filtered image
corresponding to the center of the neighborhood. For example, in a 3 x 3 neighbor-
hood the median is the 5th largest value,in a 5 X 5 neighborhood it is the 13th largest
value, and so on. When several values in a neighborhood are the same, all equal val-
ues are grouped. For example, suppose that a 3 x 3 neighborhood has values (10, 20,
20,20, 15,20, 20,25,100). These values are sorted as (10, 15, 20, 20, 20, 20, 20, 25, 100),
which results in a median of 20. Thus, the principal function of median filters is to
force points to be more like their neighbors. Isolated clusters of pixels that are light
or dark with respect to their neighbors, and whose area is less than m”/2 (one-half
the filter area), are forced by an m x m median filter to have the value of the median
intensity of the pixels in the neighborhood (see Problem 3.36).

The median filter is by far the most useful order-statistic filter in image processing,
but is not the only one. The median represents the 50th percentile of a ranked set
of numbers, but ranking lends itself to many other possibilities. For example, using
the 100th percentile results in the so-called max filter, which is useful for finding the
brightest points in an image or for eroding dark areas adjacent to light regions. The
response of a 3 x 3 max filter is given by R = max{zk | k= 1,2,3,...,9}. The Oth per-
centile filter is the min filter, used for the opposite purpose. Median, max, min, and
several other nonlinear filters will be considered in more detail in Section 5.3.

EXAMPLE 3.17: Median filtering.

Figure 3.43(a) shows an X-ray image of a circuit board heavily corrupted by salt-and-pepper noise. To
illustrate the superiority of median filtering over lowpass filtering in situations such as this, we show in
Fig. 3.43(b) the result of filtering the noisy image with a Gaussian lowpass filter, and in Fig. 3.43(c) the
result of using a median filter. The lowpass filter blurred the image and its noise reduction performance
was poor. The superiority in all respects of median over lowpass filtering in this case is evident.

3.6 SHARPENING (HIGHPASS) SPATIAL FILTERS NGNS

Sharpening highlights transitions in intensity. Uses of image sharpening range from
electronic printing and medical imaging to industrial inspection and autonomous
guidance in military systems. In Section 3.5, we saw that image blurring could be
accomplished in the spatial domain by pixel averaging (smoothing) in a neighbor-
hood. Because averaging is analogous to integration, it is logical to conclude that
sharpening can be accomplished by spatial differentiation. In fact, this is the case,
and the following discussion deals with various ways of defining and implementing
operators for sharpening by digital differentiation. The strength of the response of
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FIGURE 3.43 (a) X-ray image of a circuit board, corrupted by salt-and-pepper noise. (b) Noise reduction using a
19 x 19 Gaussian lowpass filter kernel with o = 3. (¢) Noise reduction using a 7 X 7 median filter. (Original image
courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

a derivative operator is proportional to the magnitude of the intensity discontinuity
at the point at which the operator is applied. Thus, image differentiation enhances
edges and other discontinuities (such as noise) and de-emphasizes areas with slowly
varying intensities. As noted in Section 3.5, smoothing is often referred to as lowpass
filtering, a term borrowed from frequency domain processing. In a similar manner,
sharpening is often referred to as highpass filtering. In this case, high frequencies
(which are responsible for fine details) are passed, while low frequencies are attenu-
ated or rejected.

FOUNDATION

In the two sections that follow, we will consider in some detail sharpening filters that
are based on first- and second-order derivatives, respectively. Before proceeding
with that discussion, however, we stop to look at some of the fundamental properties
of these derivatives in a digital context. To simplify the explanation, we focus atten-
tion initially on one-dimensional derivatives. In particular, we are interested in the
behavior of these derivatives in areas of constant intensity, at the onset and end of
discontinuities (step and ramp discontinuities), and along intensity ramps. As you will
see in Chapter 10, these types of discontinuities can be used to model noise points,
lines, and edges in an image.

Derivatives of a digital function are defined in terms of differences. There are
various ways to define these differences. However, we require that any definition we
use for a first derivative:

1. Must be zero in areas of constant intensity.
2. Must be nonzero at the onset of an intensity step or ramp.
3. Must be nonzero along intensity ramps.

Similarly, any definition of a second derivative
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1. Must be zero in areas of constant intensity.
2. Must be nonzero at the onset and end of an intensity step or ramp.
3. Must be zero along intensity ramps.

We are dealing with digital quantities whose values are finite. Therefore, the maxi-
mum possible intensity change also is finite, and the shortest distance over which
that change can occur is between adjacent pixels.

A basic definition of the first-order derivative of a one-dimensional function f(x)
is the difference

L )= ) (3-48)
X

We used a partial derivative here in order to keep the notation consistent when we

consider an image function of two variables, f(x, y), at which time we will be deal-

ing with partial derivatives along the two spatial axes. Clearly, df /ox = df /dx when

there is only one variable in the function; the same is true for the second derivative.
We define the second-order derivative of f(x) as the difference

gz—];= fx+D+fx=1)=2f(x) (3-49)
X

These two definitions satisfy the conditions stated above, as we illustrate in Fig. 3.44,
where we also examine the similarities and differences between first- and second-
order derivatives of a digital function.

The values denoted by the small squares in Fig. 3.44(a) are the intensity values
along a horizontal intensity profile (the dashed line connecting the squares is includ-
ed to aid visualization). The actual numerical values of the scan line are shown inside
the small boxes in 3.44(b). As Fig. 3.44(a) shows, the scan line contains three sections
of constant intensity, an intensity ramp, and an intensity step. The circles indicate the
onset or end of intensity transitions. The first- and second-order derivatives, com-
puted using the two preceding definitions, are shown below the scan line values in
Fig. 3.44(b), and are plotted in Fig. 3.44(c).When computing the first derivative at a
location x, we subtract the value of the function at that location from the next point,
as indicated in Eq. (3-48), so this is a “look-ahead” operation. Similarly, to compute
the second derivative at x, we use the previous and the next points in the computa-
tion, as indicated in Eq. (3-49). To avoid a situation in which the previous or next
points are outside the range of the scan line, we show derivative computations in Fig.
3.44 from the second through the penultimate points in the sequence.

As we traverse the profile from left to right we encounter first an area of constant
intensity and, as Figs. 3.44(b) and (c) show, both derivatives are zero there, so condi-
tion (1) is satisfied by both. Next, we encounter an intensity ramp followed by a step,
and we note that the first-order derivative is nonzero at the onset of the ramp and
the step; similarly, the second derivative is nonzero at the onset and end of both the
ramp and the step; therefore, property (2) is satisfied by both derivatives. Finally, we
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FIGURE 3.44

(a) A section of a
horizontal scan
line from an
image, showing
ramp and step
edges, as well as
constant
segments.
(b)Values of the
scan line and its
derivatives.

(c) Plot of the
derivatives, show-
ing a Zero cross-
ing. In (a) and (c)
points were joined
by dashed lines as
a visual aid.

We will return to the
second derivative in
Chapter 10, where we use
it extensively for image
segmentation.
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see that property (3) is satisfied also by both derivatives because the first derivative
is nonzero and the second is zero along the ramp. Note that the sign of the second
derivative changes at the onset and end of a step or ramp. In fact, we see in Fig.
3.44(c) that in a step transition a line joining these two values crosses the horizontal
axis midway between the two extremes. This zero crossing property is quite useful
for locating edges, as you will see in Chapter 10.

Edges in digital images often are ramp-like transitions in intensity, in which case
the first derivative of the image would result in thick edges because the derivative
is nonzero along a ramp. On the other hand, the second derivative would produce a
double edge one pixel thick, separated by zeros. From this, we conclude that the sec-
ond derivative enhances fine detail much better than the first derivative, a property
ideally suited for sharpening images. Also, second derivatives require fewer opera-
tions to implement than first derivatives, so our initial attention is on the former.

USING THE SECOND DERIVATIVE FOR IMAGE SHARPENING —THE
LAPLACIAN

In this section we discuss the implementation of 2-D, second-order derivatives and
their use for image sharpening. The approach consists of defining a discrete formu-
lation of the second-order derivative and then constructing a filter kernel based on
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that formulation. As in the case of Gaussian lowpass kernels in Section 3.5, we are
interested here in isotropic kernels, whose response is independent of the direction
of intensity discontinuities in the image to which the filter is applied.

It can be shown (Rosenfeld and Kak [1982]) that the simplest isotropic deriva-
tive operator (kernel) is the Laplacian, which, for a function (image) f(x, y) of two
variables, is defined as

’f 9
Vif = —f + —f (3-50)
ox~  dy
Because derivatives of any order are linear operations, the Laplacian is a linear oper-
ator. To express this equation in discrete form, we use the definition in Eq. (3-49),
keeping in mind that we now have a second variable. In the x-direction, we have

o’ f
oz Ly + flx=1y) - 2f(x.y) (3-51)

and, similarly, in the y-direction, we have

82
SE= fey e+ fey=D=2f(x) (352)
It follows from the preceding three equations that the discrete Laplacian of two
variables is

sz(x’y): f(x+17y)+ f(x_19y)+f(x7y+1)+f(xvy_l)_4f(an) (3'53)

This equation can be implemented using convolution with the kernel in Fig. 3.45(a);
thus, the filtering mechanics for image sharpening are as described in Section 3.5 for
lowpass filtering; we are simply using different coefficients here.

The kernel in Fig. 3.45(a) is isotropic for rotations in increments of 90° with respect
to the x- and y-axes. The diagonal directions can be incorporated in the definition of
the digital Laplacian by adding four more terms to Eq. (3-53). Because each diagonal
term would contains a -2 f(x, y) term, the total subtracted from the difference terms

0 1 0 1 1 1 0 -1 0 -1 -1 | -1

1 —4 1 1 -8 1 -1 4 -1 -1 8 -1

0 1 0 1 1 1 0 -1 0 -1 -1 -1
abcd

FIGURE 3.45 (a) Laplacian kernel used to implement Eq. (3-53). (b) Kernel used to implement
an extension of this equation that includes the diagonal terms. (c¢) and (d) Two other Lapla-
cian kernels.
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now would be —8f(x,y). Figure 3.45(b) shows the kernel used to implement this
new definition. This kernel yields isotropic results in increments of 45°. The kernels
in Figs. 3.45(c) and (d) also are used to compute the Laplacian. They are obtained
from definitions of the second derivatives that are the negatives of the ones we used
here. They yield equivalent results, but the difference in sign must be kept in mind
when combining a Laplacian-filtered image with another image.

Because the Laplacian is a derivative operator, it highlights sharp intensity tran-
sitions in an image and de-emphasizes regions of slowly varying intensities. This
will tend to produce images that have grayish edge lines and other discontinuities,
all superimposed on a dark, featureless background. Background features can be
“recovered” while still preserving the sharpening effect of the Laplacian by adding
the Laplacian image to the original. As noted in the previous paragraph, it is impor-
tant to keep in mind which definition of the Laplacian is used. If the definition used
has a negative center coefficient, then we subtract the Laplacian image from the
original to obtain a sharpened result. Thus, the basic way in which we use the Lapla-
cian for image sharpening is

(%) = f(x,y) +¢[ V2 f(x,y)] (3-54)

where f(x,y) and g(x,y) are the input and sharpened images, respectively. We let
¢ = —1if the Laplacian kernels in Fig. 3.45(a) or (b) is used, and ¢ =1 if either of the
other two kernels is used.

EXAMPLE 3.18: Image sharpening using the Laplacian.

Figure 3.46(a) shows a slightly blurred image of the North Pole of the moon, and Fig. 3.46(b) is the result
of filtering this image with the Laplacian kernel in Fig. 3.45(a) directly. Large sections of this image are
black because the Laplacian image contains both positive and negative values, and all negative values
are clipped at 0 by the display.

Figure 3.46(c) shows the result obtained using Eq. (3-54), with ¢ = —1, because we used the kernel in
Fig. 3.45(a) to compute the Laplacian. The detail in this image is unmistakably clearer and sharper than
in the original image. Adding the Laplacian to the original image restored the overall intensity varia-
tions in the image. Adding the Laplacian increased the contrast at the locations of intensity discontinui-
ties. The net result is an image in which small details were enhanced and the background tonality was
reasonably preserved. Finally, Fig. 3.46(d) shows the result of repeating the same procedure but using
the kernel in Fig. 3.45(b). Here, we note a significant improvement in sharpness over Fig. 3.46(c). This is
not unexpected because using the kernel in Fig. 3.45(b) provides additional differentiation (sharpening)
in the diagonal directions. Results such as those in Figs. 3.46(c) and (d) have made the Laplacian a tool
of choice for sharpening digital images.

Because Laplacian images tend to be dark and featureless, a typical way to scale these images for dis-
play is to use Egs. (2-31) and (2-32). This brings the most negative value to 0 and displays the full range
of intensities. Figure 3.47 is the result of processing Fig. 3.46(b) in this manner. The dominant features of
the image are edges and sharp intensity discontinuities. The background, previously black, is now gray as
a result of scaling. This grayish appearance is typical of Laplacian images that have been scaled properly.
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FIGURE 3.46

(a) Blurred
image of the
North Pole of the
moon.

(b) Laplacian
image obtained
using the kernel
in Fig. 3.45(a).
(c) Image
sharpened

using Eq. (3-54)
with ¢ = 1.

(d) Image
sharpened using
the same
procedure, but
with the kernel
in Fig. 3.45(b).
(Original

image courtesy of
NASA.)
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Observe in Fig. 3.45 that the coefficients of each kernel sum to zero. Convolution-
based filtering implements a sum of products, so when a derivative kernel encom-
passes a constant region in a image, the result of convolution in that location must be
zero. Using kernels whose coefficients sum to zero accomplishes this.

In Section 3.5, we normalized smoothing kernels so that the sum of their coef-
ficients would be one. Constant areas in images filtered with these kernels would
be constant also in the filtered image. We also found that the sum of the pixels in
the original and filtered images were the same, thus preventing a bias from being
introduced by filtering (see Problem 3.31). When convolving an image with a kernel
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FIGURE 3.47

The Laplacian
image from

Fig. 3.46(b), scaled
to the full [0, 255]
range of intensity
values. Black pixels
correspond to the
most negative
value in the
unscaled
Laplacian image,
grays are inter-
mediate values,
and white pixels
corresponds to the
highest positive
value.

The photographic pro-
cess of unsharp masking
is based on creating a
blurred positive and
using it along with the
original negative to
create a sharper image.
Our interest is in the
digital equivalent of this
process.

whose coefficients sum to zero, it turns out that the pixels of the filtered image will
sum to zero also (see Problem 3.32). This implies that images filtered with such ker-
nels will have negative values, and sometimes will require additional processing to
obtain suitable visual results. Adding the filtered image to the original, as we did in
Eq. (3-54), is an example of such additional processing.

UNSHARP MASKING AND HIGHBOOST FILTERING

Subtracting an unsharp (smoothed) version of an image from the original image is
process that has been used since the 1930s by the printing and publishing industry to
sharpen images. This process, called unsharp masking, consists of the following steps:

1. Blur the original image.

2. Subtract the blurred image from the original (the resulting difference is called
the mask.)

3. Add the mask to the original.

Letting f(x, y) denote the blurred image, the mask in equation form is given by:

gmask(x’y)=f(x’y)_f(x’y) (3'55)

Then we add a weighted portion of the mask back to the original image:

g(x7y)=f(x?y)+kgmask(x’y) (3'56)
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FIGURE 3.48

1-D illustration of
the mechanics of
unsharp masking.
(a) Original
signal. (b) Blurred
signal with original
shown dashed for
reference.

(c¢) Unsharp mask.
(d) Sharpened
signal, obtained by
adding (c) to (a).
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Original signal
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&

Blurred signal

Unsharp mask

AN

\/

Sharpened signal

where we included a weight, k (k > 0), for generality. When k =1 we have unsharp
masking, as defined above. When k > 1, the process is referred to as highboost filter-
ing. Choosing k < 1 reduces the contribution of the unsharp mask.

Figure 3.48 illustrates the mechanics of unsharp masking. Part (a) is a horizontal
intensity profile across a vertical ramp edge that transitions from dark to light. Fig-
ure 3.48(b) shows the blurred scan line superimposed on the original signal (shown
dashed). Figure 3.48(c) is the mask, obtained by subtracting the blurred signal from
the original. By comparing this result with the section of Fig. 3.44(c) corresponding
to the ramp in Fig. 3.44(a), we note that the unsharp mask in Fig. 3.48(c) is similar
to what we would obtain using a second-order derivative. Figure 3.48(d) is the final
sharpened result, obtained by adding the mask to the original signal. The points
at which a change of slope occurs in the signal are now emphasized (sharpened).
Observe that negative values were added to the original. Thus, it is possible for the
final result to have negative intensities if the original image has any zero values, or if
the value of k is chosen large enough to emphasize the peaks of the mask to a level
larger than the minimum value in the original signal. Negative values cause dark
halos around edges that can become objectionable if & is too large.

EXAMPLE 3.19: Unsharp masking and highboost filtering.

Figure 3.49(a) shows a slightly blurred image of white text on a dark gray background. Figure 3.49(b)
was obtained using a Gaussian smoothing filter of size 31 x 31 with o = 5. As explained in our earlier
discussion of Gaussian lowpass kernels, the size of the kernel we used here is the smallest odd integer
no less than 60 x 6. Figure 3.49(c) is the unsharp mask, obtained using Eq. (3-55). To obtain the im-
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FIGURE 3.49 (a) Original image of size 600 x 259 pixels. (b) Image blurred using a 31 x 31 Gaussian lowpass filter with
o = 5. (¢) Mask. (d) Result of unsharp masking using Eq. (3-56) with k = 1. (e) Result of highboost filtering with
k=45.

a

age in Fig. 3.49(d) was used the unsharp masking expression room Eq. (3-56) with k = 1. This image is
significantly sharper than the original image in Fig. 3.49(a), but we can do better, as we show in the fol-
lowing paragraph.

Figure 3.49(e) shows the result of using Eq. (3-56) with k = 4.5. This value is almost at the extreme of
what we can use without introducing some serious artifacts in the image. The artifacts are dark, almost
black, halos around the border of the characters. This is caused by the lower “blip” in Fig. 3.48(d) be-
coming negative, as we explained earlier. When scaling the image so that it only has positive values for
display, the negative values are either clipped at 0, or scaled so that the most negative values become 0,
depending on the scaling method used. In either case, the blips will be the darkest values in the image.

The results in Figs. 3.49(d) and 3.49(e) would be difficult to generate using the traditional film pho-
tography explained earlier, and it illustrates the power and versatility of image processing in the context
of digital photography.

USING FIRST-ORDER DERIVATIVES FOR IMAGE SHARPENING —THE
GRADIENT

First derivatives in image processing are implemented using the magnitude of the

e willdiscuss the gradient. The gradient of an image f at coordinates (x,y) is defined as the two-

gradient in more detail

in Section 10.2. Here, dimensional column vector
we are interested only
in using it for image
sharpening. a_f
8x ox
Vf = grad(f) = =5 (3-57)
g y _f

dy



The vertical bars denote
absolute values.
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This vector has the important geometrical property that it points in the direction of
the greatest rate of change of f at location (x, y).

The magnitude (length) of vector Vf, denoted as M(x,y) (the vector norm nota-
tion |Vf] is also used frequently), where

M(x,y) = |Vf|=mag (Vf) = \/g: + &, (3-58)

is the value at (x, y) of the rate of change in the direction of the gradient vector. Note
that M(x,y) is an image of the same size as the original, created when x and y are
allowed to vary over all pixel locations in f. It is common practice to refer to this
image as the gradient image (or simply as the gradient when the meaning is clear).

Because the components of the gradient vector are derivatives, they are linear
operators. However, the magnitude of this vector is not, because of the squaring and
square root operations. On the other hand, the partial derivatives in Eq. (3-57) are
not rotation invariant, but the magnitude of the gradient vector is.

In some implementations, it is more suitable computationally to approximate the
squares and square root operations by absolute values:

M(x,y)=|g.|+]g,l (3-59)

This expression still preserves the relative changes in intensity, but the isotropic
property is lost in general. However, as in the case of the Laplacian, the isotropic
properties of the discrete gradient defined in the following paragraph are preserved
only for a limited number of rotational increments that depend on the kernels used
to approximate the derivatives. As it turns out, the most popular kernels used to
approximate the gradient are isotropic at multiples of 90°. These results are inde-
pendent of whether we use Eq. (3-58) or (3-59), so nothing of significance is lost in
using the latter equation if we choose to do so.

As in the case of the Laplacian, we now define discrete approximations to the
preceding equations, and from these formulate the appropriate kernels. In order
to simplify the discussion that follows, we will use the notation in Fig. 3.50(a) to
denote the intensities of pixels in a 3 x 3 region. For example, the value of the center
point, z5, denotes the value of f(x,y) at an arbitrary location, (x, y); z; denotes the
value of f(x—1,y—1); and so on. As indicated in Eq. (3-48), the simplest approxi-
mations to a first-order derivative that satisfy the conditions stated at the beginning
of this section are g, = (zg — z5) and g, = (z5 — z5). Two other definitions, proposed
by Roberts [1965] in the early development of digital image processing, use cross
differences:

g =(z9-25) and g, =(z5—2) (3-60)

If we use Egs. (3-58) and (3-60), we compute the gradient image as

M(x,y) = [(Zg —Zs )2 + (25— Z6)2 :|1/2 (3-61)
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FIGURE 3.50

(a) A 3x 3 region
of an image,
where the zs are
intensity values.
(b)—(c) Roberts
cross-gradient
operators.

(d)—(e) Sobel
operators. All the
kernel
coefficients sum
to zero, as expect-
ed of a derivative
operator.

21 2 23

24 Zs 26

27 28 29

-1 0 0 -1
0 1 1 0

-1 -2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1

If we use Egs. (3-59) and (3-60), then

M(x,y) = |2y = 25| + |25 — 2] (3-62)
where it is understood that x and y vary over the dimensions of the image in the
manner described earlier. The difference terms needed in Eq. (3-60) can be imple-
mented using the two kernels in Figs. 3.50(b) and (c). These kernels are referred to
as the Roberts cross-gradient operators.

As noted earlier, we prefer to use kernels of odd sizes because they have a unique,
(integer) center of spatial symmetry. The smallest kernels in which we are interested
are of size 3 x 3. Approximations to g, and g, using a 3 x 3 neighborhood centered
on z; are as follows:

8 = g—{c =(z7 +2z3+ 2) — (z+22, +23) (3-63)
and
of
=——=(z3 + 2z, + 29) — (7, +224+2;) (3-64)

8y Jy

These equations can be implemented using the kernels in Figs. 3.50(d) and (e). The
difference between the third and first rows of the 3 x 3 image region approximates the
partial derivative in the x-direction, and is implemented using the kernel in Fig. 3.50(d).
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The difference between the third and first columns approximates the partial deriva-
tive in the y-direction and is implemented using the kernel in Fig. 3.50(e). The partial
derivatives at all points in an image are obtained by convolving the image with these
kernels. We then obtain the magnitude of the gradient as before. For example, substitut-
ing g, and g, into Eq. (3-59) yields

1

M(x,y) = [gi + gﬁ:lE = [[(27 +2z5+29) — (5 +2z, + 23)]2

. (369

+ [(Z3 +2z5 +29) — (21 + 2z, + Z7)]1E

This equation indicates that the value of M at any image coordinates (x,y) is given
by squaring values of the convolution of the two kernels with image f at those coor-
dinates, summing the two results, and taking the square root.

The kernels in Figs. 3.50(d) and (e) are called the Sobel operators. The idea behind
using a weight value of 2 in the center coefficient is to achieve some smoothing by
giving more importance to the center point (we will discuss this in more detail in
Chapter 10). The coefficients in all the kernels in Fig. 3.50 sum to zero, so they would
give a response of zero in areas of constant intensity, as expected of a derivative
operator. As noted earlier, when an image is convolved with a kernel whose coef-
ficients sum to zero, the elements of the resulting filtered image sum to zero also, so
images convolved with the kernels in Fig. 3.50 will have negative values in general.

The computations of g, and g, are linear operations and are implemented using
convolution, as noted above. The nonlinear aspect of sharpening with the gradient is
the computation of M(x, y) involving squaring and square roots, or the use of abso-
lute values, all of which are nonlinear operations. These operations are performed
after the linear process (convolution) that yields g, and g,.

EXAMPLE 3.20: Using the gradient for edge enhancement.

The gradient is used frequently in industrial inspection, either to aid humans in the detection of defects
or, what is more common, as a preprocessing step in automated inspection. We will have more to say
about this in Chapter 10. However, it will be instructive now to consider a simple example to illustrate
how the gradient can be used to enhance defects and eliminate slowly changing background features.

Figure 3.51(a) is an optical image of a contact lens, illuminated by a lighting arrangement designed
to highlight imperfections, such as the two edge defects in the lens boundary seen at 4 and 5 o’clock.
Figure 3.51(b) shows the gradient obtained using Eq. (3-65) with the two Sobel kernels in Figs. 3.50(d)
and (e). The edge defects are also quite visible in this image, but with the added advantage that constant
or slowly varying shades of gray have been eliminated, thus simplifying considerably the computational
task required for automated inspection. The gradient can be used also to highlight small specs that may
not be readily visible in a gray-scale image (specs like these can be foreign matter, air pockets in a sup-
porting solution, or miniscule imperfections in the lens). The ability to enhance small discontinuities in
an otherwise flat gray field is another important feature of the gradient.
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FIGURE 3.51

(a) Image of a
contact lens (note
defects on the
boundary at 4 and
5 o’clock).

(b) Sobel gradient.

(Original image
courtesy of
Perceptics
Corporation.)

Recall from the discus-
sion of Eq. (3-33) that a
unit impulse is an array
of 0’s with a single 1.
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3.7 HIGHPASS, BANDREJECT, AND BANDPASS FILTERS FROM LOW-
PASS FILTERS

Spatial and frequency-domain linear filters are classified into four broad categories:
lowpass and highpass filters, which we introduced in Sections 3.5 and 3.6, and band-
pass and bandreject filters, which we introduce in this section. We mentioned at the
beginning of Section 3.5 that the other three types of filters can be constructed from
lowpass filters. In this section we explore methods for doing this. Also, we illustrate
the third approach discussed at the end of Section 3.4 for obtaining spatial filter ker-
nels. That is, we use a filter design software package to generate 1-D filter functions.
Then, we use these to generate 2-D separable filters functions either via Eq.(3-42),
or by rotating the 1-D functions about their centers to generate 2-D kernels. The
rotated versions are approximations of circularly symmetric (isotropic) functions.

Figure 3.52(a) shows the transfer function of a 1-D ideal lowpass filter in the
frequency domain [this is the same as Fig. 3.32(a)]. We know from earlier discus-
sions in this chapter that lowpass filters attenuate or delete high frequencies, while
passing low frequencies. A highpass filter behaves in exactly the opposite manner.
As Fig. 3.52(b) shows, a highpass filter deletes or attenuates all frequencies below a
cut-off value, u,, and passes all frequencies above this value. Comparing Figs. 3.52(a)
and (b), we see that a highpass filter transfer function is obtained by subtracting a
lowpass function from 1. This operation is in the frequency domain. As you know
from Section 3.4, a constant in the frequency domain is an impulse in the spatial
domain. Thus, we obtain a highpass filter kernel in the spatial domain by subtracting
a lowpass filter kernel from a unit impulse with the same center as the kernel. An
image filtered with this kernel is the same as an image obtained by subtracting a low-
pass-filtered image from the original image. The unsharp mask defined by Eq. (3-55)
is precisely this operation. Therefore, Egs. (3-54) and (3-56) implement equivalent
operations (see Problem 3.42).

Figure 3.52(c) shows the transfer function of a bandreject filter. This transfer
function can be constructed from the sum of a lowpass and a highpass function with



3.7 Highpass, Bandreject, and Bandpass Filters from Lowpass Filters 189

ab
cd

FIGURE 3.52
Transfer functions 1 Ir
ofideal 1-D filters Passband Stopband Stopband Passband
in the frequency
domain (u denotes u u
frequency). “o o

(a) Lowpass filter.
(b) Highpass filter.
(c) Bandreject filter. Bandreject filter Bandpass filter
(d) Bandpass filter. 1—St0pband

(As before, we —
show only positive Passband Passband Stopband Stopband
frequencies for

simplicity. u u
P Y) i U U U

Lowpass filter Highpass filter

Vau Passband
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different cut-off frequencies (the highpass function can be constructed from a dif-
ferent lowpass function). The bandpass filter transfer function in Fig. 3.52(d) can be
obtained by subtracting the bandreject function from 1 (a unit impulse in the spatial
domain). Bandreject filters are also referred to as notch filters, but the latter tend
to be more locally oriented, as we will show in Chapter 4. Table 3.7 summarizes the
preceding discussion.

The key point in Fig. 3.52 and Table 3.7 is that all transfer functions shown can
be obtained starting with a lowpass filter transfer function. This is important. It is
important also to realize that we arrived at this conclusion via simple graphical
interpretations in the frequency domain. To arrive at the same conclusion based on
convolution in the spatial domain would be a much harder task.

EXAMPLE 3.21: Lowpass, highpass, bandreject, and bandpass filtering.

In this example we illustrate how we can start with a 1-D lowpass filter transfer function generated
using a software package, and then use that transfer function to generate spatial filter kernels based on
the concepts introduced in this section. We also examine the spatial filtering properties of these kernels.

;ﬁﬁi}gé of the Filter type Spatial kernel in terms of lowpass kernel, Ip
four principal Lowpass Ip(x,y)

spatial filter types

expressed in Highpass hp(x,y) = 8(x,y) —Ip(x,y)

terms of low- .

pass filters. The Bandreject br(x,y) = Ip,(x,y)+ hp,(x,y)

centers of the = Ip,(x,y) +[8(x,y) = Ip,(x,)]
unit impulse and

the filter kernels Bandpass bp(x,y)=8(x,y)—br(x,y)

coincide.

= 8(x,y) [ Ipy (x,y) +[8(x,y) = Ip, (x,)]]
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FIGURE 3.53

A zone plate
image of size
597 x 597 pixels.

Figure 3.53 shows a so-called zone plate image that is used frequently for testing the characteristics of
filtering approaches. There are various versions of zone plates; the one in Fig. 3.53 was generated using
the equation

2(x,y) = %[1 + cos(x2 + yz)] (3-66)

with x and y varying in the range [-8.2, 8.2], in increments of 0.0275. This resulted in an image of size
597 x 597 pixels. The bordering black region was generated by setting to 0 all pixels with distance great-
er than 8.2 from the image center. The key characteristic of a zone plate is that its spatial frequency
increases as a function of distance from the center, as you can see by noting that the rings get narrower
the further they are from the center. This property makes a zone plate an ideal image for illustrating the
behavior of the four filter types just discussed.

Figure 3.54(a) shows a 1-D, 128-element spatial lowpass filter function designed using MATLAB
[compare with Fig. 3.32(b)]. As discussed earlier, we can use this 1-D function to construct a 2-D, separa-
ble lowpass filter kernel based on Eq. (3-42), or we can rotate it about its center to generate a 2-D, isotro-
pic kernel. The kernel in Fig. 3.54(b) was obtained using the latter approach. Figures 3.55(a) and (b) are
the results of filtering the image in Fig. 3.53 with the separable and isotropic kernels, respectively. Both
filters passed the low frequencies of the zone plate while attenuating the high frequencies significantly.
Observe, however, that the separable filter kernel produced a “squarish” (non-radially symmetric) result
in the passed frequencies. This is a consequence of filtering the image in perpendicular directions with
a separable kernel that is not isotropic. Using the isotropic kernel yielded a result that is uniform in all
radial directions. This is as expected, because both the filter and the image are isotropic.

ab 0.12

FIGURE 3.54

(a) A 1-D spatial 0.06
lowpass filter

function. (b) 2-D 0.04
kernel obtained

by rotating the 0
1-D profile about
its center. ) 32 64 96
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Figure 3.56 shows the results of filtering the zone plate with the four filters described in Table 3.7. We
used the 2-D lowpass kernel in Fig. 3.54(b) as the basis for the highpass filter, and similar lowpass ker-
nels for the bandreject filter. Figure 3.56(a) is the same as Fig. 3.55(b), which we repeat for convenience.
Figure 3.56(b) is the highpass-filtered result. Note how effectively the low frequencies were filtered out.
As is true of highpass-filtered images, the black areas were caused by negative values being clipped at 0
by the display. Figure 3.56(c) shows the same image scaled using Egs. (2-31) and (2-32). Here we see
clearly that only high frequencies were passed by the filter. Because the highpass kernel was constructed
using the same lowpass kernel that we used to generate Fig. 3.56(a), it is evident by comparing the two
results that the highpass filter passed the frequencies that were attenuated by the lowpass filter.

Figure 3.56(d) shows the bandreject-filtered image, in which the attenuation of the mid-band of
frequencies is evident. Finally, Fig. 33.56(e) shows the result of bandpass filtering. This image also has
negative values, so it is shown scaled in Fig. 3.56(f). Because the bandpass kernel was constructed by
subtracting the bandreject kernel from a unit impulse, we see that the bandpass filter passed the fre-
quencies that were attenuated by the bandreject filter. We will give additional examples of bandpass and
bandreject filtering in Chapter 4.
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FIGURE 3.55

(a) Zone plate
image filtered
with a separable
lowpass kernel.
(b) Image filtered
with the isotropic
lowpass kernel in
Fig. 3.54(b).

3.8 COMBINING SPATIAL ENHANCEMENT METHODS IS

With a few exceptions, such as combining blurring with thresholding (Fig. 3.41), we
have focused attention thus far on individual spatial-domain processing approaches.
Frequently, a given task will require application of several complementary tech-
niques in order to achieve an acceptable result. In this section, we illustrate how to
combine several of the approaches developed thus far in this chapter to address a
difficult image enhancement task.

The image in Fig. 3.57(a) is a nuclear whole body bone scan, used to detect dis-
eases such as bone infections and tumors. Our objective is to enhance this image by
sharpening it and by bringing out more of the skeletal detail. The narrow dynamic

In this context, masking
refers to multiplying two
images, as in Fig. 2.34.
This is not be confused
with the mask used in
unsharp masking.

range of the intensity levels and high noise content make this image difficult to
enhance. The strategy we will follow is to utilize the Laplacian to highlight fine detail,
and the gradient to enhance prominent edges. For reasons that will be explained
shortly, a smoothed version of the gradient image will be used to mask the Laplacian
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cll@] i

FIGURE 3.56
Spatial filtering of the zone plate image. (a) Lowpass result; this is the same as Fig. 3.55(b). (b) Highpass result.
(c) Image (b) with intensities scaled. (d) Bandreject result. (e) Bandpass result. (f) Image (e) with intensities scaled.

image. Finally, we will attempt to increase the dynamic range of the intensity levels
by using an intensity transformation.

Figure 3.57(b) shows the Laplacian of the original image, obtained using the
kernel in Fig. 3.45(d). This image was scaled (for display only) using the same
technique as in Fig. 3.47. We can obtain a sharpened image at this point simply by
adding Figs. 3.57(a) and (b), according to Eq. (3-54). Just by looking at the noise
level in Fig. 3.57(b), we would expect a rather noisy sharpened image if we added
Figs. 3.57(a) and (b). This is confirmed by the result in Fig. 3.57(c). One way that
comes immediately to mind to reduce the noise is to use a median filter. However,
median filtering is an aggressive nonlinear process capable of removing image fea-
tures. This is unacceptable in medical image processing.

An alternate approach is to use a mask formed from a smoothed version of the
gradient of the original image. The approach is based on the properties of first- and
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FIGURE 3.57

(a) Image of whole
body bone scan.

(b) Laplacian of (a).
(c) Sharpened image
obtained by adding
(a) and (b).

(d) Sobel gradient of
image (a).(Original
image courtesy of
G.E. Medical Sys-
tems.)
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second-order derivatives we discussed when explaining Fig. 3.44. The Laplacian, is
a second-order derivative operator and has the definite advantage that it is superior
for enhancing fine detail. However, this causes it to produce noisier results than
the gradient. This noise is most objectionable in smooth areas, where it tends to be
more visible. The gradient has a stronger response in areas of significant intensity
transitions (ramps and steps) than does the Laplacian. The response of the gradient
to noise and fine detail is lower than the Laplacian’s and can be lowered further by
smoothing the gradient with a lowpass filter. The idea, then, is to smooth the gradient
and multiply it by the Laplacian image. In this context, we may view the smoothed
gradient as a mask image. The product will preserve details in the strong areas, while
reducing noise in the relatively flat areas. This process can be interpreted roughly as
combining the best features of the Laplacian and the gradient. The result is added to
the original to obtain a final sharpened image.

Figure 3.57(d) shows the Sobel gradient of the original image, computed using
Eqg. (3-59). Components g, and g, were obtained using the kernels in Figs. 3.50(d)
and (e), respectively. As expected, the edges are much more dominant in this image
than in the Laplacian image. The smoothed gradient image in Fig. 3.57(e) was
obtained by using a box filter of size 5x 5. The fact that Figs. 3.57(d) and (e) are
much brighter than Fig. 3.57(b) is further evidence that the gradient of an image
with significant edge content has values that are higher in general than in a Lapla-
cian image.

Figure 3.57(f) shows the product of the Laplacian and smoothed gradient image.
Note the dominance of the strong edges and the relative lack of visible noise, which
is the reason for masking the Laplacian with a smoothed gradient image. Adding the
product image to the original resulted in the sharpened image in Fig. 3.57(g). The
increase in sharpness of detail in this image over the original is evident in most parts
of the image, including the ribs, spinal cord, pelvis, and skull. This type of improve-
ment would not have been possible by using the Laplacian or the gradient alone.

The sharpening procedure just discussed did not affect in an appreciable way the
dynamic range of the intensity levels in an image. Thus, the final step in our enhance-
ment task is to increase the dynamic range of the sharpened image. As we discussed
in some detail in Sections 3.2 and 3.3, there are several intensity transformation
functions that can accomplish this objective. Histogram processing is not a good
approach on images whose histograms are characterized by dark and light compo-
nents, which is the case here. The dark characteristics of the images with which we
are dealing lend themselves much better to a power-law transformation. Because
we wish to spread the intensity levels, the value of y in Eq. (3-5) has to be less than 1.
After a few trials with this equation, we arrived at the result in Fig. 3.57(h), obtained
with y = 0.5 and ¢ = 1. Comparing this image with Fig. 3.57(g), we note that signifi-
cant new detail is visible in Fig. 3.57(h). The areas around the wrists, hands, ankles,
and feet are good examples of this. The skeletal bone structure also is much more
pronounced, including the arm and leg bones. Note the faint definition of the outline
of the body, and of body tissue. Bringing out detail of this nature by expanding the
dynamic range of the intensity levels also enhanced noise, but Fig. 3.57(h) is a signifi-
cant visual improvement over the original image.
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FIGURE 3.57
(Continued)

(e) Sobel image
smoothed with a

5 x5 box filter.

(f) Mask image
formed by the
product of (b)

and (e).

(g) Sharpened
image obtained
by the adding
images (a) and (f).
(h) Final result
obtained by
applying a power-
law transformation
to (g). Compare
images (g) and (h)
with (a). (Original
image courtesy

of G.E. Medical
Systems.)
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Summary, References, and Further Reading

The material in this chapter is representative of current techniques used for intensity transformations and spatial
filtering. The topics were selected for their value as fundamental material that would serve as a foundation in an
evolving field. Although most of the examples used in this chapter deal with image enhancement, the techniques
presented are perfectly general, and you will encounter many of them again throughout the remaining chapters in
contexts unrelated to enhancement.

The material in Section 3.1 is from Gonzalez [1986]. For additional reading on the material in Section 3.2, see
Schowengerdt [2006] and Poyton [1996]. Early references on histogram processing (Section 3.3) are Gonzalez and
Fittes [1977], and Woods and Gonzalez [1981]. Stark [2000] gives some interesting generalizations of histogram
equalization for adaptive contrast enhancement.

For complementary reading on linear spatial filtering (Sections 3.4-3.7), see Jain [1989], Rosenfeld and Kak
[1982], Schowengerdt [2006], Castleman [1996], and Umbaugh [2010]. For an interesting approach for generating
Gaussian kernels with integer coefficients see Padfield [2011]. The book by Pitas and Venetsanopoulos [1990] is a
good source for additional reading on median and other nonlinear spatial filters.

For details on the software aspects of many of the examples in this chapter, see Gonzalez, Woods, and Eddins
[2009].

Problems

Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book
website: www.ImageProcessingPlace.com).

3.1 Give a single intensity transformation function cant bit plane (see Fig. 3.13). (Hint: Use an
for spreading the intensities of an image so the 8-bit truth table to determine the form of
lowest intensity is 0 and the highest is L — 1. each transformation function.)

32 Do the following: (b) How many intensity transformation functions

. . . . would there be for 16-bit images?
(a)* Give a continuous function for implement- &

ing the contrast stretching transformation in
Fig. 3.2(a). In addition to m, your function
must include a parameter, E, for control-
ling the slope of the function as it transi-

(¢) Isthe basic approach in (a) limited to images
in which the number of intensity levels is an
integer power of 2, or is the method general
for any number of integer intensity levels?

tions from low to high intensity values. Your (d) If the method is general, how would it be dif-
function should be normalized so that its ferent from your solution in (a)?

minimqm and maximum values are 0 and 1, 3.4 Do the following;

respectively.

(a) Propose amethod for extracting the bit planes
of an image based on converting the value of
its pixels to binary.

(b) Sketch a family of transformations as a
function of parameter E, for a fixed value

m = L/2, where L is the number of intensity
levels in the image.. (b) Find all the bit planes of the following 4-bit

3.3 Do the following: 1mage: 01 8 6
(a)* Propose a set of intensity-slicing transforma- 22 1 1
tion functions capable of producing all the 115 14 12
individual bit planes of an 8-bit monochrome 36 9 10
image. For example, applying to an image a
transformation function with the property 35 1p general:
T(r)=0if ris 0 or even,and 7(r) =1 if r is

odd, produces an image of the least signifi- (a)* What effect would setting to zero the lower-


http://www.ImageProcessingPlace.com

3.6

3.7

3.8

3.9

3.10

311

order bit planes have on the histogram of an
image?

(b) What would be the effect on the histogram
if we set to zero the higher-order bit planes
instead?

Explain why the discrete histogram equalization
technique does not yield a flat histogram in gen-
eral.

Suppose that a digital image is subjected to histo-
gram equalization. Show that a second pass of his-
togram equalization (on the histogram-equalized
image) will produce exactly the same result as the
first pass.

Assuming continuous values, show by an exam-
ple that it is possible to have a case in which the
transformation function given in Eq. (3-11) satis-
fies conditions (a) and (b) discussed in Section 3.3,
but its inverse may fail condition (a’).

Do the following:

(a) Show that the discrete transformation func-
tion given in Eq. (3-15) for histogram equal-
ization satisfies conditions (a) and (b) stated
at the beginning of Section 3.3.

(b)*Show that the inverse discrete transforma-
tion in Eq. (3-16) satisfies conditions (a’)
and (b) in Section 3.3 only if none of the
intensity levels r,, k=0,12,...,L -1, are
missing in the original image.

Twoimages, f(x,y) and g(x, y) have unnormalized

histograms /, and h,. Give the conditions (on the

values of the pixels in f and g) under which you
can determine the histograms of images formed
as follows:

@* f(x,y) + g(x.y)
(b) f(x.y)-g(x.y)
© f(x.y)xg(x.y)
@ f(xy)+glx.y)
Show how the histograms would be formed in

each case. The arithmetic operations are element-
wise operations, as defined in Section 2.6.

Assume continuous intensity values, and sup-
pose that the intensity values of an image have
the PDF p,(r) = 2r/(L —1)* for 0<r< L -1, and
p,(r) = 0 for other values of r.
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(a)* Find the transformation function that will
map the input intensity values, r, into values,
s, of a histogram-equalized image.

(b)* Find the transformation function that (when
applied to the histogram-equalized intensi-
ties, s) will produce an image whose intensity
PDF is p_(z) = 3z*/(L—1)’ for 0<z< L -1
and p_(z) = 0 for other values of z.

(¢) Express the transformation function from (b)
directly in terms of r, the intensities of the

input image.

3.12 An image with intensities in the range [0,1] has

3.13*

3.14%

the PDF, p,(r), shown in the following figure. It
is desired to transform the intensity levels of this
image so that they will have the specified p,(z)
shown in the figure. Assume continuous quantities,
and find the transformation (expressed in terms
of r and z) that will accomplish this.

p(r) p-(2)

¥ r f <
1 1

In Fig. 3.25(b), the transformation function labeled (2)
[G7'(s,) from Eq. (3-23)] is the mirror image of
(1) [G(z,) in Eq. (3-21)] about a line joining the
two end points. Does this property always hold
for these two transformation functions? Explain.

The local histogram processing method discussed
in Section 3.3 requires that a histogram be com-
puted at each neighborhood location. Propose
a method for updating the histogram from one
neighborhood to the next, rather than computing
a new histogram each time.

3.15 Whatis the behavior of Eq.(3-35) whena = b =0?

Explain.

3.16 You are given a computer chip that is capable of

performing linear filtering in real time, but you
are not told whether the chip performs correla-
tion or convolution. Give the details of a test you
would perform to determine which of the two
operations the chip performs.

3.17* We mentioned in Section 3.4 that to perform con-



198

volution we rotate the kernel by 180°. The rota-
tion is “built” into Eq. (3-35). Figure 3.28 corre-
sponds to correlation. Draw the part of the figure
enclosed by the large ellipse, but with w rotated
180°. Expand Eq. (3-35) for a general 3 x 3 kernel
and show that the result of your expansion corre-
sponds to your figure. This shows graphically that
convolution and correlation differ by the rotation
of the kernel.

3.18 You are given the following kernel and image:

0

121 0
w=[2 4 2| f=|0
121 0
0

oS O o o O
R S e
o O o o o
oS O o o O

(a)* Give a sketch of the area encircled by the

large ellipse in Fig. 3.28 when the kernel is
centered at point (2,3) (2nd row, 3rd col) of
the image shown above. Show specific values
of w and f.

(b)* Compute the convolution w* f using the

()

minimum zero padding needed. Show the
details of your computations when the ker-
nel is centered on point (2,3) of f; and then
show the final full convolution result.

Repeat (b), but for correlation, w ¥ f.

3.19* Prove the validity of Egs. (3-36) and (3-37).
3.20 The kernel, w, in Problem 3.18 is separable.

(a)*

(b)

()

By inspection, find two kernels, w, and w, so
that w = w, * w,.

Using the image in Problem 3.18, compute
w, * f using the minimum zero padding (see
Fig. 3.30). Show the details of your compu-
tation when the kernel is centered at point
(2,3) (2nd row, 3rd col) of f and then show
the full convolution.

Compute the convolution of w, with the
result from (b). Show the details of your
computation when the kernel is centered at
point (3,3) of the result from (b), and then
show the full convolution. Compare with the
result in Problem 3.18(b).

3.21 Given the following kernel and image:

Chapter 3 Intensity Transformations and Spatial Filtering

(a)
(b)

S
Il
_ N =
[N L
—_— N
~
]
Y
—_ ol = s
I T =
—_ ol = s
I T T S

Give the convolution of the two.

Does your result have a bias?

3.22 Answer the following:

(a)*

(b)

If v=[1 2 1]' and w" =[2 1 1 3], is the
kernel formed by vw” separable?

The following kernel is separable. Find w;
and w, such that w = w, * w,.

131
YZla 6 2

3.23 Do the following:
(a)* Show that the Gaussian kernel, G(s,f), in

(b)

Eq. (3-45) is separable. (Hint: Read the first
paragraph in the discussion of separable fil-
ter kernels in Section 3.4.)

Because G is separable and circularly sym-
metric, it can be expressed in the form
G =vv'. Assume that the kernel form in
Eq. (3-46) is used, and that the function is
sampled to yield an m x m kernel. What is v
in this case?

3.24* Show that the product of a column vector with a
row vector is equivalent to the 2-D convolution
of the two vectors. The vectors do not have to
be of the same length. You may use a graphical
approach (as in Fig. 3.30) to support the explana-
tion of your proof.

3.25 Given K, 1-D Gaussian kernels, g,,8,,...,8x, With
arbitrary means and standard deviations:

(a)* Determine what the entries in the third col-

umn of Table 3.6 would be for the product
81 X8 XX 8k

(b) What would the fourth column look like for

the convolution g, x g, *---k g, ?

(Hint: 1t is easier to work with the variance; the
standard deviation is just the square root of your
result.)
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The two images shown in the following figure are
quite different, but their histograms are the same.
Suppose that each image is blurred using a 3x 3
box kernel.

(a)* Would the histograms of the blurred images
still be equal? Explain.

(b) If your answer is no, either sketch the two
histograms or give two tables detailing the
histogram components.

3.27 An image is filtered four times using a Gaussian

kernel of size 3x 3 with a standard deviation of
1.0. Because of the associative property of con-
volution, we know that equivalent results can be
obtained using a single Gaussian kernel formed
by convolving the individual kernels.

(a)* What is the size of the single Gaussian ker-
nel?

(b) What is its standard deviation?

3.28 An image is filtered with three Gaussian lowpass

3.29*

3.30

kernels of sizes 3x 3, 5x5, and 7x 7, and stan-
dard deviations 1.5, 2, and 4, respectively. A com-
posite filter, w, is formed as the convolution of
these three filters.

(a)* Is the resulting filter Gaussian? Explain.

(b) What is its standard deviation?

(¢) What is its size?

Discuss the limiting effect of repeatedly filtering

an image with a 3 x 3 lowpass filter kernel. You
may ignore border effects.

In Fig. 3.42(b) the corners of the estimated shad-
ing pattern appear darker or lighter than their
surrounding areas. Explain the reason for this.

3.31°** An image is filtered with a kernel whose coeffi-

cients sum to 1. Show that the sum of the pixel
values in the original and filtered images is the
same.

3.32 An image is filtered with a kernel whose coeffi-

3.33

3.34

3.35

Problems 199
cients sum to 0. Show that the sum of the pixel
values in the filtered image also is 0.

A single point of light can be modeled by a digital
image consisting of all 0’s, with a 1 in the location
of the point of light. If you view a single point of
light through a defocused lens, it will appear as a
fuzzy blob whose size depends on the amount by
which the lens is defocused. We mentioned in Sec-
tion 3.5 that filtering an image with a box kernel
is a poor model for a defocused lens, and that a
better approximation is obtained with a Gauss-
ian kernel. Using the single-point-of-light analogy,
explain why this is so.

In the original image used to generate the three
blurred images shown, the vertical bars are 5 pix-
els wide, 100 pixels high, and their separation is
20 pixels. The image was blurred using square box
kernels of sizes 23,25, and 45 elements on the side,
respectively. The vertical bars on the left, lower
part of (a) and (c) are blurred, but a clear separa-
tion exists between them.

il ] ] Sl ]
v’ L
“d wd
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(a) (b)
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A

(c)

However, the bars have merged in image (b), de-
spite the fact that the kernel used to generate this
image is much smaller than the kernel that pro-
duced image (c). Explain the reason for this.

Consider an application such as in Fig. 3.41, in
which it is desired to eliminate objects smaller
than those enclosed by a square of size g x g pix-
els. Suppose that we want to reduce the average
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3.36

3.37

3.38

3.39%

intensity of those objects to one-tenth of their
original average value. In this way, their intensity
will be closer to the intensity of the background
and they can be eliminated by thresholding. Give
the (odd) size of the smallest box kernel that will
yield the desired reduction in average intensity in
only one pass of the kernel over the image.

With reference to order-statistic filters (see Sec-
tion 3.5):

(a)** We mentioned that isolated clusters of dark
or light (with respect to the background) pix-
els whose area is less than one-half the area
of a median filter are forced to the median
value of the neighbors by the filter. Assume
a filter of size n x n (n odd) and explain why
this is so.

(b) Consider an image having various sets of
pixel clusters. Assume that all points in a
cluster are lighter or darker than the back-
ground (but not both simultaneously in the
same cluster), and that the area of each clus-
ter is less than or equal to n°/2. In terms of
n, under what condition would one or more
of these clusters cease to be isolated in the

sense described in part (a)?
Do the following:

(a)* Develop a procedure for computing the median
of an n x n neighborhood.

(b) Propose a technique for updating the median
as the center of the neighborhood is moved
from pixel to pixel.

In a given application, a smoothing kernel is
applied to input images to reduce noise, then a
Laplacian kernel is applied to enhance fine details.
Would the result be the same if the order of these
operations is reversed?

Show that the Laplacian defined in Eq. (3-50) is
isotropic (invariant to rotation). Assume continu-
ous quantities. From Table 2.3, coordinate rota-
tion by an angle 6 is given by

x'=xcosf — ysinf and y' = xsin6 + ycosé

where (x,y) and (x',y") are the unrotated and
rotated coordinates, respectively.

3.40* You saw in Fig. 3.46 that the Laplacian with a -8

3.41%

3.42

3.43

3.44

3.45

in the center yields sharper results than the one
with a —4 in the center. Explain the reason why.

Give a 3 x 3 kernel for performing unsharp mask-
ing in a single pass through an image. Assume that
the average image is obtained using a box filter of
size 3 x 3.

Show that subtracting the Laplacian from an im-
age gives a result that is proportional to the un-
sharp mask in Eq. (3-55). Use the definition for
the Laplacian given in Eq. (3-53).

Do the following:

(a)* Show that the magnitude of the gradient giv-
enin Eq. (3-58) is an isotropic operation (see
the statement of Problem 3.39).

(b) Show that the isotropic property is lost in
general if the gradient is computed using

Eq. (3-59).

Are any of the following highpass (sharpening)
kernels separable? For those that are, find vectors
v and w such that vw” equals the kernel(s).

(a) The Laplacian kernels in Figs.3.45(a) and (b).

(b) The Roberts cross-gradient kernels shown in
Figs. 3.50(b) and (c).

(¢)* The Sobel kernels in Figs. 3.50(d) and (e).

In a character recognition application, text pages
are reduced to binary using a thresholding trans-
formation function of the form in Fig. 3.2(b). This
is followed by a procedure that thins the charac-
ters until they become strings of binary 1’s on a
background of 0’s. Due to noise, binarization and
thinning result in broken strings of characters
with gaps ranging from 1 to 3 pixels. One way
to “repair” the gaps is to run a smoothing kernel
over the binary image to blur it, and thus create
bridges of nonzero pixels between gaps.

(a)* Give the (odd) size of the smallest box ker-
nel capable of performing this task.

(b) After bridging the gaps, the image is thresh-
olded to convert it back to binary form. For
your answer in (a), what is the minimum val-
ue of the threshold required to accomplish
this, without causing the segments to break
up again?



3.46 A manufacturing company purchased an imag-

ing system whose function is to either smooth
or sharpen images. The results of using the sys-
tem on the manufacturing floor have been poor,
and the plant manager suspects that the system
is not smoothing and sharpening images the way
it should. You are hired as a consultant to deter-
mine if the system is performing these functions
properly. How would you determine if the system
is working correctly? (Hint: Study the statements
of Problems 3.31 and 3.32).

3.47 A CCDTV camerais used to perform a long-term

study by observing the same area 24 hours a day, for
30 days. Digital images are captured and transmit-
ted to a central location every 5 minutes. The illu-

Problems 201

mination of the scene changes from natural day-
light to artificial lighting. At no time is the scene
without illumination, so it is always possible to
obtain an acceptable image. Because the range of
illumination is such that it is always in the linear
operating range of the camera, it is decided not
to employ any compensating mechanisms on the
camera itself. Rather, it is decided to use image
processing techniques to post-process, and thus
normalize, the images to the equivalent of con-
stant illumination. Propose a method to do this.
You are at liberty to use any method you wish,
but state clearly all the assumptions you made in
arriving at your design.
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Filtering in the Frequency
Domain

Filter: A device or material for suppressing or minimizing waves or
oscillations of certain frequencies.

Frequency: The number of times that a periodic function repeats
the same sequence of values during a unit variation of the
independent variable.

Webster’s New Collegiate Dictionary

Preview

After a brief historical introduction to the Fourier transform and its importance in image processing, we
start from basic principles of function sampling, and proceed step-by-step to derive the one- and two-
dimensional discrete Fourier transforms. Together with convolution, the Fourier transform is a staple of
frequency-domain processing. During this development, we also touch upon several important aspects
of sampling, such as aliasing, whose treatment requires an understanding of the frequency domain and
thus are best covered in this chapter. This material is followed by a formulation of filtering in the fre-
quency domain, paralleling the spatial filtering techniques discussed in Chapter 3. We conclude the
chapter with a derivation of the equations underlying the fast Fourier transform (FFT), and discuss its
computational advantages. These advantages make frequency-domain filtering practical and, in many
instances, superior to filtering in the spatial domain.

Upon completion of this chapter, readers should:

B Understand the meaning of frequency domain
filtering, and how it differs from filtering in the
spatial domain.

B Understand why image padding is important.

B Know the steps required to perform filtering
in the frequency domain.
B Be familiar with the concepts of sampling, func-

X : o B Understand when frequency domain filtering
tion reconstruction, and aliasing.

is superior to filtering in the spatial domain.

B Understand convolution in the frequency B Be familiar with other filtering techniques in

domain, and how it is related to filtering.

B Know how to obtain frequency domain filter
functions from spatial kernels, and vice versa.

B Be able to construct filter transfer functions
directly in the frequency domain.

the frequency domain, such as unsharp mask-
ing and homomorphic filtering.

B Understand the origin and mechanics of the
fast Fourier transform, and how to use it effec-
tively in image processing.

203
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4.1 BACKGROUND I

We begin the discussion with a brief outline of the origins of the Fourier transform
and its impact on countless branches of mathematics, science, and engineering.

A BRIEF HISTORY OF THE FOURIER SERIES AND TRANSFORM

The French mathematician Jean Baptiste Joseph Fourier was born in 1768 in the
town of Auxerre, about midway between Paris and Dijon. The contribution for
which he is most remembered was outlined in a memoir in 1807, and later pub-
lished in 1822 in his book, La Théorie Analitique de la Chaleur (The Analytic Theory
of Heat). This book was translated into English 55 years later by Freeman (see
Freeman [1878]). Basically, Fourier’s contribution in this field states that any peri-
odic function can be expressed as the sum of sines and/or cosines of different fre-
quencies, each multiplied by a different coefficient (we now call this sum a Fourier
series). It does not matter how complicated the function is; if it is periodic and satis-
fies some mild mathematical conditions, it can be represented by such a sum. This
is taken for granted now but, at the time it first appeared, the concept that compli-
cated functions could be represented as a sum of simple sines and cosines was not
at all intuitive (see Fig. 4.1). Thus, it is not surprising that Fourier’s ideas were met
initially with skepticism.

Functions that are not periodic (but whose area under the curve is finite) can be
expressed as the integral of sines and/or cosines multiplied by a weighting function.
The formulation in this case is the Fourier transform, and its utility is even greater
than the Fourier series in many theoretical and applied disciplines. Both representa-
tions share the important characteristic that a function, expressed in either a Fourier
series or transform, can be reconstructed (recovered) completely via an inverse pro-
cess, with no loss of information. This is one of the most important characteristics of
these representations because it allows us to work in the Fourier domain (generally
called the frequency domain) and then return to the original domain of the function
without losing any information. Ultimately, it is the utility of the Fourier series and
transform in solving practical problems that makes them widely studied and used as
fundamental tools.

The initial application of Fourier’s ideas was in the field of heat diffusion, where
they allowed formulation of differential equations representing heat flow in such
a way that solutions could be obtained for the first time. During the past century,
and especially in the past 60 years, entire industries and academic disciplines have
flourished as a result of Fourier’s initial ideas. The advent of digital computers and
the “discovery” of a fast Fourier transform (FFT) algorithm in the early 1960s revo-
lutionized the field of signal processing. These two core technologies allowed for the
first time practical processing of a host of signals of exceptional importance, ranging
from medical monitors and scanners to modern electronic communications.

As you learned in Section 3.4, it takes on the order of MNmn operations (multi-
plications and additions) to filter an M x N image with a kernel of size m x n ele-
ments. If the kernel is separable, the number of operations is reduced to MN(m + n).
In Section 4.11, you will learn that it takes on the order of 2MN log, MN operations
to perform the equivalent filtering process in the frequency domain, where the 2 in
front arises from the fact that we have to compute a forward and an inverse FFT.
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The function at
the bottom is the
sum of the four
functions above it.
Fourier’s idea in
1807 that periodic
functions could be
represented as a
weighted sum of
sines and cosines
was met with
skepticism.
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To get anidea of the relative computational advantages of filtering in the frequency
versus the spatial domain, consider square images and kernels, of sizes M x M and
m x m, respectively. The computational advantage (as a function of kernel size) of
filtering one such image with the FFT as opposed to using a nonseparable kernel is
defined as

M*m?
2M?log, M*
m2

" dlog, M

C,(m) =
(1)

If the kernel is separable, the advantage becomes

2M*m

C(m)=——"""—
s(m) 2M?log, M*

(4-2)
m

- 2log, M

In either case, when C(m)>1 the advantage (in terms of fewer computations)
belongs to the FFT approach; otherwise the advantage favors spatial filtering.
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ab

FIGURE 4.2

(a) Computational
advantage of the
FFT over non-
separable spatial
kernels.

(b) Advantage over
separable kernels.
The numbers for
C(m) in the inset
tables are not to be
multiplied by the
factors of 10 shown
for the curves.

The computational
advantages given by Eqs.
(4-1) and (4-2) do not
take into account the fact
that the FFT performs
operations between
complex numbers, and
other secondary (but
small in comparison)
computations discussed
later in the chapter. Thus,
comparisons should be
interpreted only as
guidelines,
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Figure 4.2(a) shows a plot of C,(m) as a function of m for an image of intermedi-
ate size (M = 2048). The inset table shows a more detailed look for smaller kernel
sizes. As you can see, the FFT has the advantage for kernels of sizes 7 x 7 and larger.
The advantage grows rapidly as a function of m, being over 200 for m =101, and
close to 1000 for m = 201. To give you a feel for the meaning of this advantage, if
filtering a bank of images of size 2048 x 2048 takes 1 minute with the FFT, it would
take on the order of 17 hours to filter the same set of images with a nonseparable
kernel of size 201 x 201 elements. This is a significant difference, and is a clear indica-
tor of the importance of frequency-domain processing using the FFT.

In the case of separable kernels, the computational advantage is not as dramatic,
but it is still meaningful. The “cross over” point now is around m = 27, and when
m =101 the difference between frequency- and spatial-domain filtering is still man-
ageable. However, you can see that with m = 201 the advantage of using the FFT
approaches a factor of 10, which begins to be significant. Note in both graphs that
the FFT is an overwhelming favorite for large spatial kernels.

Our focus in the sections that follow is on the Fourier transform and its properties.
As we progress through this chapter, it will become evident that Fourier techniques
are useful in a broad range of image processing applications. We conclude the chap-
ter with a discussion of the FFT.

ABOUT THE EXAMPLES IN THIS CHAPTER

As in Chapter 3, most of the image filtering examples in this chapter deal with image
enhancement. For example, smoothing and sharpening are traditionally associated
with image enhancement, as are techniques for contrast manipulation. By its very
nature, beginners in digital image processing find enhancement to be interesting
and relatively simple to understand. Therefore, using examples from image enhance-
ment in this chapter not only saves having an extra chapter in the book but, more
importantly, is an effective tool for introducing newcomers to filtering techniques in
the frequency domain. We will use frequency domain processing methods for other
applications in Chapters 5,7, 8,10, and 11.



4.2 Preliminary Concepts 207
4.2 PRELIMINARY CONCEPTS I

We pause briefly to introduce several of the basic concepts that underlie the mate-
rial in later sections.

COMPLEX NUMBERS

A complex number, C, is defined as
C=R+jI (4-3)

where R and 7 are real numbers and j = J=1. Here, R denotes the real part of the
complex number and [/ its imaginary part. Real numbers are a subset of complex
numbers in which 7 = 0. The conjugate of a complex number C, denoted C’, is
defined as

C"'=R-jI (4-4)

Complex numbers can be viewed geometrically as points on a plane (called the com-
plex plane) whose abscissa is the real axis (values of R) and whose ordinate is the
imaginary axis (values of I). That is, the complex number R + jI is point (R, ) in the
coordinate system of the complex plane.

Sometimes it is useful to represent complex numbers in polar coordinates,

C =|C|(cos + jsin6) (4-5)

where |[C|=/R* + I” is the length of the vector extending from the origin of the
complex plane to point (R, ), and 6 is the angle between the vector and the real axis.
Drawing a diagram of the real and complex axes with the vector in the first quadrant
will show that tan6 = (I/R) or 6 = arctan(I/R). The arctan function returns angles
in the range [-/2,7/2]. But, because I and R can be positive and negative inde-
pendently, we need to be able to obtain angles in the full range [—, 7]. We do this
by keeping track of the sign of / and R when computing §. Many programming
languages do this automatically via so called four-quadrant arctangent functions. For
example, MATLAB provides the function atan2(Imag, Real) for this purpose.
Using Euler’s formula,

e = cosf + jsin6 (4-6)

where e = 2.71828..., gives the following familiar representation of complex num-
bers in polar coordinates,

C=|Cle” (4-7)

where |C | and 0 are as defined above. For example, the polar representation of the
complex number 1 + j2 is V5 where 6 = 63.4° or 1.1 radians. The preceding equa-
tions are applicable also to complex functions. A complex function, F(u), of a real
variable u, can be expressed as the sum F(«) = R(u) + jI(u), where R(u) and I(u) are
the real and imaginary component functions of F(u). As previously noted, the com-
plex conjugate is F'(u) = R(u) — jI(u), the magnitude is [F(u)| = [R(u)* + I1(u)*]"

’
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An impulse is not a
function in the usual
sense. A more accurate
name is a distribution

or generalized function.
However, one often
finds in the literature the
names impulse function,
delta function, and Dirac
delta function, despite the
misnomer.

To sift means literally to
separate, or to separate
out, by putting something
through a sieve.

Chapter 4 Filtering in the Frequency Domain

and the angle is 6(u) = arctan[/(u)/R(«)]. We will return to complex functions sev-
eral times in the course of this and the next chapter.

FOURIER SERIES

As indicated in the previous section, a function f(¢) of a continuous variable, ¢,
that is periodic with a period, 7, can be expressed as the sum of sines and cosines
multiplied by appropriate coefficients. This sum, known as a Fourier series, has the
form

fO=Y ¢ T (4-8)
where
/2 2an
1 it
c, =— f(t)e T dt forn=0,£1,%£2,... (4-9)

-T)2

are the coefficients. The fact that Eq. (4-8) is an expansion of sines and cosines fol-
lows from Euler’s formula, Eq. (4-6).

IMPULSES AND THEIR SIFTING PROPERTIES

Central to the study of linear systems and the Fourier transform is the concept of an
impulse and its sifting property. A unit impulse of a continuous variable ¢, located at
t =0, and denoted &(¢), is defined as

o ift=0
S5(1) = 4-10
® {0 ifr#0 (4-10)
and is constrained to satisfy the identity
/ 8(r)dt =1 (4-11)

Physically, if we interpret ¢ as time, an impulse may be viewed as a spike of infinity
amplitude and zero duration, having unit area. An impulse has the so-called sifting
property with respect to integration,

oo
/ f0d)dr = £(0) (4-12)
—00
provided that f(¢) is continuous at ¢ = 0, a condition typically satisfied in practice.
Sifting simply yields the value of the function f(¢) at the location of the impulse (i.e.,
at r = 0 in the previous equation). A more general statement of the sifting property
involves an impulse located at an arbitrary point, #,, denoted as, (¢ — ¢,,). In this case,

/ ()8t —1y)dt = f(z,) (4-13)
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FIGURE 4.3

(a) Continuous
impulse located
atr=t¢,. (b) An
impulse train
consisting of
continuous
impulses. (c) Unit
discrete impulse
located at x = x,.
(d) An impulse
train consisting
of discrete unit
impulses.
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which simply gives the value of the function at the location of the impulse. For
example, if f(¢) = cos(¢), using the impulse 8(f — 7) in Eq. (4-13) yields the result
f(ar) = cos(m) = —1. The power of the sifting concept will become evident shortly.

Of particular interest later in this section is an impulse train, s, ,(t), defined as the
sum of infinitely many impulses AT units apart:

syr(t) = i 8(t — kAT) (4-14)

k=—o0
Figure 4.3(a) shows a single impulse located at ¢ =¢,, and Fig. 4.3(b) shows an
impulse train. Impulses for continuous variables are denoted by up-pointing arrows
to simulate infinite height and zero width. For discrete variables the height is finite,
as we will show next.

Let x represent a discrete variable. As you learned in Chapter 3, the unit discrete
impulse, 8(x), serves the same purposes in the context of discrete systems as the
impulse 8(¢) does when working with continuous variables. It is defined as

1 ifx=0
5(x) = 4-15
) {0 if x %0 *+15)
Clearly, this definition satisfies the discrete equivalent of Eq. (4-11):
z 8(x)=1 (4-16)
The sifting property for discrete variables has the form
Y, f(x)8(x) = £(0) (4-17)
(1) sar(?)
8(t — 1)
)
0 fo ! coo =3AT =2AT —AT 0 AT 2AT 3AT --- !
8(x) sax(x)
1T+ 3(x — xp) 1 T
| | L .y .
0 X s =3AX-2AX —AX 0 AX 2AX 3AX .-
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Equation (4-21) indicates
the important fact men-
tioned in Section 4.1 that
a function can be recov-
ered from its transform.

Because ¢ is integrated
out in this equation, the
only variable left is pu,
which is the frequency of

the sine and cosine terms.

or, more generally using a discrete impulse located at x = x, (see Eq. 3-33),

D, F(0)8(x = x0) = f(x,) (4-18)
As before, we see that the sifting property yields the value of the function at the
location of the impulse. Figure 4.3(c) shows the unit discrete impulse diagrammati-
cally, and Fig. 4.3(d) shows a train of discrete unit impulses, Unlike its continuous
counterpart, the discrete impulse is an ordinary function.

THE FOURIER TRANSFORM OF FUNCTIONS OF ONE CONTINUOUS
VARIABLE

The Fourier transform of a continuous function f(¢f) of a continuous variable, ¢,
denoted J{f(¢)}, is defined by the equation

3{f0) = / F@ye ™ e (4-19)

where u is a continuous variable also.” Because ¢ is integrated out, I{ f(¢)}is a func-
tion only of u. That is J{f(r)} = F(u); therefore, we write the Fourier transform of

f(@) as

F(u) = /w F@)e ™ dr w20)

Conversely, given F(u), we can obtain f(¢) back using the inverse Fourier transform,
written as

(o) = / Fluye ™ dy (421)

where we made use of the fact that variable w is integrated out in the inverse
transform and wrote simply f(¢), rather than the more cumbersome notation
f(t)=3"{F(n)}. Equations (4-20) and (4-21) comprise the so-called Fourier
transform pair, often denoted as f(¢) & F(u). The double arrow indicates that the
expression on the right is obtained by taking the forward Fourier transform of the
expression on the left, while the expression on the left is obtained by taking the
inverse Fourier transform of the expression on the right.
Using Euler’s formula, we can write Eq. (4-20) as

F(p) =/ f(©)[cos(2mut) — jsin(2mput)]dt (4-22)

fConditions for the existence of the Fourier transform are complicated to state in general (Champeney [1987]),
but a sufficient condition for its existence is that the integral of the absolute value of f(), or the integral of the
square of f(¢), be finite. Existence is seldom an issue in practice, except for idealized signals, such as sinusoids
that extend forever. These are handled using generalized impulses. Our primary interest is in the discrete Fourier
transform pair which, as you will see shortly, is guaranteed to exist for all finite functions.
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If f(z) is real, we see that its transform in general is complex. Note that the Fourier
transform is an expansion of f(¢) multiplied by sinusoidal terms whose frequencies
are determined by the values of . Thus, because the only variable left after integra-
tion is frequency, we say that the domain of the Fourier transform is the frequency
domain. We will discuss the frequency domain and its properties in more detail later
in this chapter. In our discussion, ¢ can represent any continuous variable, and the
units of the frequency variable w depend on the units of . For example, if ¢ repre-
sents time in seconds, the units of u are cycles/sec or Hertz (Hz). If ¢ represents
distance in meters, then the units of w are cycles/meter, and so on. In other words,
the units of the frequency domain are cycles per unit of the independent variable of
the input function.

EXAMPLE 4.1: Obtaining the Fourier transform of a simple continuous function.

The Fourier transform of the function in Fig. 4.4(a) follows from Eq. (4-20):

F(p) = / Fe)e 2™ dr = / Ae 2y

w2
_ -A [e—j%m]W/z _ -A [e"’”w _ ejmuW:'
J2mp Wiz 2
= .2A [eWW _e_WWJ
27
:AWsin(WMW)
(muW)
(1) F(u) [F(w)l

AW

-W/2 0 W)2

M w
F o
S =2 /W /UW 1/>—2/W

abc

FIGURE 4.4 (a) A box function, (b) its Fourier transform, and (c) its spectrum. All functions extend to infinity in both
directions. Note the inverse relationship between the width, W, of the function and the zeros of the transform.
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where we used the trigonometric identity sin = (¢’ — ¢7?)/2j. In this case, the complex terms of the
Fourier transform combined nicely into a real sine function. The result in the last step of the preceding
expression is known as the sinc function, which has the general form

sin(mm)

sinc(m) = (4-23)

(7m)
where sinc(0) = 1 and sinc(m) = 0 for all other infeger values of m. Figure 4.4(b) shows a plot of F(u).
In general, the Fourier transform contains complex terms, and it is customary for display purposes to
work with the magnitude of the transform (a real quantity), which is called the Fourier spectrum or the
frequency spectrum:

sin(muW)

Pl =AW=

Figure 4.4(c) shows a plot of |[F(u)| as a function of frequency. The key properties to note are (1) that
the locations of the zeros of both F(u) and |F(u)| are inversely proportional to the width, W, of the “box”
function; (2) that the height of the lobes decreases as a function of distance from the origin; and (3) that
the function extends to infinity for both positive and negative values of u. As you will see later, these
properties are quite helpful in interpreting the spectra of two dimensional Fourier transforms of images.

EXAMPLE 4.2: Fourier transform of an impulse and an impulse train.

The Fourier transform of a unit impulse located at the origin follows from Eq. (4-20):

3{6([)} =F(n)= / 8(¢) e Pt = / 6_72””’8(t)dt = g2k

where we used the sifting property from Eq. (4-12). Thus, we see that the Fourier transform of an
impulse located at the origin of the spatial domain is a constant in the frequency domain (we discussed
this briefly in Section 3.4 in connection with Fig. 3.30).

Similarly, the Fourier transform of an impulse located at t = ¢, is

S{S(t—to)}:F(p,):/ 8(t—t0)e"2””‘dr:/ e P §(t —ty)dt = e P

where we used the sifting property from Eq. (4-13). The term e />™ represents a unit circle centered on
the origin of the complex plane, as you can easily see by using Euler’s formula to expand the exponential
into its sine and cosine components.

In Section 4.3, we will use the Fourier transform of a periodic impulse train. Obtaining this transform
is not as straightforward as we just showed for individual impulses. However, understanding how to
derive the transform of an impulse train is important, so we take the time to derive it here. We start by
noting that the only basic difference in the form of Eqs. (4-20) and (4-21) is the sign of the exponential.
Thus, if a function f(¢) has the Fourier transform F(u), then evaluating this function at ¢, F(¢), must
have the transform f(—u). Using this symmetry property and given, as we showed above, that the Fou-
rier transform of an impulse 8(¢ — ) is e />™%, it follows that the function e /*™" has the transform
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8(—w —t,). By letting —t, = a, it follows that the transform of /™ is §(—u + a) = 8(u — a), where the last
step is true because & is zero unless u = a, which is the same condition for either 6(—u + a) or 6(u — a).

The impulse train s,,(¢) in Eq. (4-14) is periodic with period AT, so it can be expressed as a Fourier
series:

o ]_ZLn[
SAT(I): Z Cn€ ar
n=—ow
where
AT/2
c, = AT sar(t)e dt
—AT/2

With reference to Fig. 4.3(b), we see that the integral in the interval [-AT/2, AT /2] encompasses only
the impulse located at the origin. Therefore, the preceding equation becomes

AT)2 2mn 1

¢ =L s(t)e ' = Lo = L
AT J sr AT T AT

where we used the sifting property of 8(¢). The Fourier series then becomes

1 4] 2mn

je—t
sar(0) = A7 ¢ a7

Our objective is to obtain the Fourier transform of this expression. Because summation is a linear pro-
cess, obtaining the Fourier transform of a sum is the same as obtaining the sum of the transforms of the
individual components of the sum. These components are exponentials, and we established earlier in

this example that
2mn n
~&d et L "
J{e AT } 5( AT )
So, S(u), the Fourier transform of the periodic impulse train, is

S = o0} = 315 T 5} = 2 T e - 5 3 o(u- 1)

This fundamental result tells us that the Fourier transform of an impulse train with period AT is also
an impulse train, whose period is 1/AT. This inverse proportionality between the periods of s,,(¢) and
S(w) is analogous to what we found in Fig. 4.4 in connection with a box function and its transform. This
inverse relationship plays a fundamental role in the remainder of this chapter.

As in Section 3.4, the CONVOLUTION

fact that convolution of a
function with animpulse  We showed in Section 3.4 that convolution of two functions involves flipping (rotat-

hifts the origin of th . ) L S )
o e tonof  iNE by 180°) one function about its origin and sliding it past the other. At each dis-

the impulse is also true for -~ placement in the sliding process, we perform a computation, which, for discrete

continuous convolution. . . . .
(See Figs. 320and 330)  variables, is a sum of products [see Eq. (3-35)]. In the present discussion, we are
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Remember, convolution
is commutative, so the
order of the functions in
convolution expressions
does not matter.

interested in the convolution of two continuous functions, f(t) and h(t), of one con-
tinuous variable, ¢, so we have to use integration instead of a summation. The con-
volution of these two functions, denoted as before by the operator %, is defined as

(f*xh)(t)= / f(r)h(t—7)dr (4-24)

where the minus sign accounts for the flipping just mentioned, ¢ is the displacement
needed to slide one function past the other, and 7 is a dummy variable that is inte-
grated out. We assume for now that the functions extend from —x to .

We illustrated the basic mechanics of convolution in Section 3.4, and we will do
so again later in this chapter and in Chapter 5. At the moment, we are interested in
finding the Fourier transform of Eq. (4-24). We start with Eq. (4-19):

S{I*hO] = / { / F(r)h(t=7)dr }-ﬂwz

= / f(T)[ / h(t—T)e_jzm”dt:IdT

The term inside the brackets is the Fourier transform of /(¢ — 7). We will show later
in this chapter that J{h(t — 7)} = H()e >™", where H () is the Fourier transform
of A(t). Using this in the preceding equation gives us

SH{Fxm @} = / FEO[H(wye ™ Jdr

~ H(w) / F(r)e ™ dr

= H(p)F(p)
= (HF)(n)

where indicates multiplication. As noted earlier, if we refer to the domain of ¢
as the spatial domain, and the domain of u as the frequency domain, the preceding
equation tells us that the Fourier transform of the convolution of two functions in
the spatial domain is equal to the product in the frequency domain of the Fourier
transforms of the two functions. Conversely, if we have the product of the two trans-
forms, we can obtain the convolution in the spatial domain by computing the inverse
Fourier transform. In other words, f % h and H-F are a Fourier transform pair. This
result is one-half of the convolution theorem and is written as

(f*h)(1) = (HF)(p) (4-25)

As noted earlier, the double arrow indicates that the expression on the right is
obtained by taking the forward Fourier transform of the expression on the left, while

[T3REL)



These two expressions
also hold for discrete
variables, with the
exception that the right
side of Eq. (4-26) is
multiplied by (1/M),
where M is the number
of discrete samples (see
Problem 4.18).

Taking samples AT units
apart implies a sampling
rate equal to 1/AT. If the
units of AT are seconds,
then the sampling rate is
in samples/s. If the units
of AT are meters, then
the sampling rate is in
samples/m, and so on.
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the expression on the left is obtained by taking the inverse Fourier transform of the
expression on the right.

Following a similar development would result in the other half of the convolution
theorem:

(fem)(1) & (H * F)(u) (4-26)
which states that convolution in the frequency domain is analogous to multiplica-
tion in the spatial domain, the two being related by the forward and inverse Fourier
transforms, respectively. As you will see later in this chapter, the convolution theo-
rem is the foundation for filtering in the frequency domain.

4.3 SAMPLING AND THE FOURIER TRANSFORM OF SAMPLED
FUNCTIONS I

In this section, we use the concepts from Section 4.2 to formulate a basis for express-
ing sampling mathematically. Starting from basic principles, this will lead us to the
Fourier transform of sampled functions. That is, the discrete Fourier transform.

SAMPLING

Continuous functions have to be converted into a sequence of discrete values before
they can be processed in a computer. This requires sampling and quantization, as
introduced in Section 2.4. In the following discussion, we examine sampling in more
detail.

Consider a continuous function, f(¢), that we wish to sample at uniform intervals,
AT, of the independent variable ¢ (see Fig. 4.5). We assume initially that the function
extends from — to % with respect to . One way to model sampling is to multiply
f(¢) by a sampling function equal to a train of impulses AT units apart. That is,

F() = f)ssr ()= S F(0)3(t — nAT) (427)

n=-—w

where f(r) denotes the sampled function. Each component of this summation is an
impulse weighted by the value of f(¢) at the location of the impulse, as Fig. 4.5(c)
shows. The value of each sample is given by the “strength” of the weighted impulse,
which we obtain by integration. That is, the value, f,, of an arbitrary sample in the
sampled sequence is given by

fk:/ f(6)é(t — kKAT)dt
= f(kAT)

(4-28)

where we used the sifting property of 8 in Eq. (4-13). Equation (4-28) holds for any
integer value k=...,—2,-1,0,1,2,.... Figure 4.5(d) shows the result, which con-
sists of equally spaced samples of the original function.
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a
b
©
d

FIGURE 4.5

(a) A continuous
function. (b) Train
of impulses used to
model sampling.
(c) Sampled
function formed as
the product of (a)
and (b). (d) Sample
values obtained by
integration and
using the sifting
property of
impulses. (The
dashed line in (c) is
shown for refer-
ence. It is not part
of the data.)
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THE FOURIER TRANSFORM OF SAMPLED FUNCTIONS

Let F(u) denote the Fourier transform of a continuous function f(¢). As discussed
in the previous section, the corresponding sampled function, f(t), is the product of
f(t) and an impulse train. We know from the convolution theorem that the Fourier
transform of the product of two functions in the spatial domain is the convolution
of the transforms of the two functions in the frequency domain. Thus, the Fourier
transform of the sampled function is:

F(u)=3{F(0)} = 3{f (s, (1)}
= (F*S)(w)

(4-29)

where, from Example 4.2,

=)

Sw=57 ¥ 8u-57) (4-30)
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is the Fourier transform of the impulse train s,,(#). We obtain the convolution of
F(w) and S(w) directly from the 1-D definition of convolution in Eq. (4-24):

F(M)=(F*S)(M)=/ F(7)S(p—7)dr

1
E F(’T)z 5( —T—%)d’r

n=-w

n—E_lao | F(T)(S([.L —-T- %)d’r

(4-31)

| =
_ E,,:_WF( —A—”T)

where the final step follows from the sifting property of the impulse, Eq. (4-13).

The summation in the last line of Eq. (4-31) shows that the Fourier transform
F(u) of the sampled function f(¢) is an infinite, periodic sequence of copies of the
transform of the original, continuous function. The separation between copies is
determined by the value of 1/AT. Observe that although f(¢) is a sampled function,
its transform, F(uw), is continuous because it consists of copies of F(uw), which is a
continuous function.

Figure 4.6 is a graphical summary of the preceding results.” Figure 4.6(a) is a
sketch of the Fourier transform, F(u), of a function f(¢), and Fig. 4.6(b) shows the
transform, F(u), of the sampled function, f(¢). As mentioned in the previous sec-
tion, the quantity 1/AT is the sampling rate used to generate the sampled function.
So, in Fig. 4.6(b) the sampling rate was high enough to provide sufficient separation
between the periods, and thus preserve the integrity (i.e., perfect copies) of F(w). In
Fig. 4.6(c), the sampling rate was just enough to preserve F(w), but in Fig. 4.6(d), the
sampling rate was below the minimum required to maintain distinct copies of F(u),
and thus failed to preserve the original transform. Figure 4.6(b) is the result of an
over-sampled signal, while Figs. 4.6(c) and (d) are the results of critically sampling
and under-sampling the signal, respectively. These concepts are the basis that will
help you grasp the fundamentals of the sampling theorem, which we discuss next.

THE SAMPLING THEOREM

We introduced the idea of sampling intuitively in Section 2.4. Now we consider sam-
pling formally, and establish the conditions under which a continuous function can
be recovered uniquely from a set of its samples.

A function f(t) whose Fourier transform is zero for values of frequencies outside
a finite interval (band) [, Luax ] @bOUt the origin is called a band-limited func-
tion. Figure 4.7(a), which is a magnified section of Fig. 4.6(a), is such a function. Simi-
larly, Fig. 4.7(b) is a more detailed view of the transform of the critically sampled

For the sake of clarity in sketches of Fourier transforms in Fig. 4.6, and other similar figures in this chapter, we
ignore the fact that Fourier transforms typically are complex functions. Our interest here is on concepts.
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FIGURE 4.6

(a) Ilustrative
sketch of the
Fourier transform
of a band-limited
function.

(b)—(d) Trans-
forms of the
corresponding
sampled functions
under the
conditions of
over-sampling,
critically
sampling, and
under-sampling,
respectively.

Remember, the sampling
rate is the number of

samples taken per unit of
the independent variable.
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function [see Fig. 4.6(c)]. A higher value of AT would cause the periods in F(u) to
merge; a lower value would provide a clean separation between the periods.

We can recover f(¢) from its samples if we can isolate a single copy of F(u) from
the periodic sequence of copies of this function contained in F(w), the transform of
the sampled function f(¢). Recall from the discussion in the previous section that
F(w) is a continuous, periodic function with period 1/AT. Therefore, all we need is
one complete period to characterize the entire transform. In other words, we can
recover f(t) from that single period by taking its inverse Fourier transform.

Extracting from F(u) a single period that is equal to F(u) is possible if the sepa-
ration between copies is sufficient (see Fig. 4.6). In terms of Fig. 4.7(b), sufficient
separation is guaranteed if 1/2A7 > u,... or

1
E > ZI‘Lmax (4-32)
This equation indicates that a continuous, band-limited function can be recovered

completely from a set of its samples if the samples are acquired at a rate exceeding
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FIGURE 4.7

(a) Ilustrative
sketch of the
Fourier
transform of a
band-limited
function.

(b) Transform
resulting from
critically sampling
that band-limited
function.

The ATin Eq. (4-33)
cancels out the 1/ATin
Eq. (4-31).
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F(w)
~ Mmax 0 M max m
F(w)
~ M max M max
1 1 } I
a0 11
2AT 2AT AT

twice the highest frequency content of the function. This exceptionally important
result is known as the sampling theorem.” We can say based on this result that no
information is lost if a continuous, band-limited function is represented by samples
acquired at a rate greater than twice the highest frequency content of the function.
Conversely, we can say that the maximum frequency that can be “captured” by sam-
pling a signal at a rate 1/AT is w,.,, = 1/2AT. A sampling rate exactly equal to twice
the highest frequency is called the Nyquist rate. Sampling at exactly the Nyquist rate
sometimes is sufficient for perfect function recovery, but there are cases in which
this leads to difficulties, as we will illustrate later in Example 4.3. This is the reason
why the sampling theorem specifies that sampling must exceed the Nyquist rate.

Figure 4.8 illustrates the procedure for recovering F(u) from F(w) when a function
is sampled at a rate higher than the Nyquist rate. The function in Fig. 4.8(b) is defined
by the equation

AT “Mmax S M S Minax

. (4-33)
0 otherwise

H(M)={

When multiplied by the periodic sequence in Fig. 4.8(a), this function isolates the
period centered on the origin. Then, as Fig. 4.8(c) shows, we obtain F(u) by multiply-

ing F(u) by H(u):

"The sampling theorem is a cornerstone of digital signal processing theory. It was first formulated in 1928 by
Harry Nyquist, a Bell Laboratories scientist and engineer. Claude E. Shannon, also from Bell Labs, proved the
theorem formally in 1949. The renewed interest in the sampling theorem in the late 1940s was motivated by the
emergence of early digital computing systems and modern communications, which created a need for methods
dealing with digital (sampled) data.
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a
b
©

FIGURE 4.8

(a) Fourier
transform of a
sampled,
band-limited
function.

(b) Ideal lowpass
filter transfer
function.

(c) The product
of (b) and (a),
used to extract
one period of the
infinitely periodic
sequence in (a).

In Fig. 3.32 we sketched
the radial cross sections
of filter transfer functions
using only positive fre-
quencies, for simplicity.
Now you can see that
frequency domain filter
functions encompass
both positive and nega-
tive frequencies.

F(w)
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“Mmax 0

I‘L max

F(p)= H(W)F(p) (4-34)

Once we have F(u), we can recover f(¢) using the inverse Fourier transform:

f0) = / F(u)e™™dp (4-35)

Equations (4-33) through (4-35) prove that, theoretically, it is possible to recover a
band-limited function from samples obtained at a rate exceeding twice the highest
frequency content of the function. As we will discuss in the following section, the
requirement that f(z) must be band-limited implies in general that f(¢) must extend
from — to %, a condition that cannot be met in practice. As you will see shortly,
having to limit the duration of a function prevents perfect recovery of the function
from its samples, except in some special cases.

Function H(w) is called a lowpass filter because it passes frequencies in the low
end of the frequency range, but it eliminates (filters out) higher frequencies. It is
called also an ideal lowpass filter because of its instantaneous transitions in ampli-
tude (between 0 and AT at location —u,,,, and the reverse at u,,,, ), a characteristic
that cannot be implemented physically in hardware. We can simulate ideal filters
in software, but even then there are limitations (see Section 4.8). Because they are
instrumental in recovering (reconstructing) the original function from its samples,
filters used for the purpose just discussed are also called reconstruction filters.



Although we show
sinusoidal functions for
simplicity, aliasing occurs
between any arbitrary
signals whose values are
the same at the sample
points.

ab
cd

FIGURE 4.9

The functions in
(a) and (c) are
totally different,
but their digi-
tized versions in
(b) and (d) are
identical. Aliasing
occurs when the
samples of two or
more functions
coincide, but the
functions are dif-
ferent elsewhere.
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ALIASING

Literally, the word alias means “a false identity.” In the field of signal processing,
aliasing refers to sampling phenomena that cause different signals to become indis-
tinguishable from one another after sampling; or, viewed another way, for one signal
to “masquerade” as another.

Conceptually, the relationship between sampling and aliasing is not difficult to
grasp. The foundation of aliasing phenomena as it relates to sampling is that we
can describe a digitized function only by the values of its samples. This means that
it is possible for two (or more) totally different continuous functions to coincide at
the values of their respective samples, but we would have no way of knowing the
characteristics of the functions between those samples. To illustrate, Fig. 4.9 shows
two completely different sine functions sampled at the same rate. As you can see
in Figs. 4.9(a) and (c), there are numerous places where the sampled values are the
same in the two functions, resulting in identical sampled functions, as Figs. 4.9(b)
and (d) show.

Two continuous functions having the characteristics just described are called an
aliased pair,and such pairs are indistinguishable after sampling. Note that the reason
these functions are aliased is because we used a sampling rate that is too coarse. That
is, the functions were under-sampled. It is intuitively obvious that if sampling were
refined, more and more of the differences between the two continuous functions
would be revealed in the sampled signals. The principal objective of the following
discussion is to answer the question: What is the minimum sampling rate required
to avoid (or reduce) aliasing? This question has both a theoretical and a practical
answer and, in the process of arriving at the answers, we will establish the conditions
under which aliasing occurs.

We can use the tools developed earlier in this section to formally answer the
question we just posed. All we have to do is ask it in a different form: What happens
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If we cannot isolate one
period of the transform,
we cannot recover the
signal without aliasing,

if a band-limited function is sampled at less than the Nyquist rate (i.e., at less than
twice its highest frequency)? This is precisely the under-sampled situation discussed
earlier in this section and mentioned in the previous paragraph.

Figure 4.10(a) is the same as Fig. 4.6(d); it shows schematically the Fourier trans-
form of an under-sampled, band-limited function. This figure illustrates that the net
effect of lowering the sampling rate below the Nyquist rate is that the periods of the
Fourier transform now overlap, and it becomes impossible to isolate a single period
of the transform, regardless of the filter used. For instance, using the ideal lowpass
filter in Fig. 4.10(b) would result in a transform that is corrupted by frequencies from
adjacent periods, as Fig. 4.10(c) shows. The inverse transform would then yield a
function, f,(¢), different from the original. That is, f,(¢) would be an aliased function
because it would contain frequency components not present in the original. Using
our earlier terminology, f,(¢) would masquerade as a different function. It is pos-
sible for aliased functions to bear no resemblance whatsoever to the functions from
which they originated.

Unfortunately, except in some special cases mentioned below, aliasing is always
present in sampled signals. This is because, even if the original sampled function is
band-limited, infinite frequency components are introduced the moment we limit
the duration of the function, which we always have to do in practice. As an illustra-
tion, suppose that we want to limit the duration of a band-limited function, f(z), to a
finite interval, say [0, T']. We can do this by multiplying f(¢) by the function

h(t)={1 0<t<T (4-36)

0 otherwise

This function has the same basic shape as Fig. 4.4(a), whose Fourier transform, H(w),
has frequency components extending to infinity in both directions, as Fig. 4.4(b) shows.
From the convolution theorem, we know that the transform of the product A(z)f(t)
is the convolution in the frequency domain of the transforms F(u) and H(w). Even
if F(w)is band-limited, convolving it with H(u) , which involves sliding one function
across the other, will yield a result with frequency components extending to infinity
in both directions (see Problem 4.12). From this we conclude that no function of
finite duration can be band-limited. Conversely, a function that is band-limited must
extend from —o to o."

Although aliasing is an inevitable fact of working with sampled records of finite
length, the effects of aliasing can be reduced by smoothing (lowpass filtering) the
input function to attenuate its higher frequencies. This process, called anti-aliasing,
has to be done before the function is sampled because aliasing is a sampling issue
that cannot be “undone after the fact” using computational techniques.

+An important special case is when a function that extends from — to % is band-limited and periodic. In this
case, the function can be truncated and still be band-limited, provided that the truncation encompasses exactly
an integral number of periods. A single truncated period (and thus the function) can be represented by a set of
discrete samples satisfying the sampling theorem, taken over the truncated interval.
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FIGURE 4.10 (a) Fourier transform of an under-sampled, band-limited function. (Interference between adjacent peri-
ods is shown dashed). (b) The same ideal lowpass filter used in Fig. 4.8. (c¢) The product of (a) and (b).The interfer-
ence from adjacent periods results in aliasing that prevents perfect recovery of F(u) and, consequently, of f(z).

EXAMPLE 4.3: Aliasing.

Figure 4.11 shows a classic illustration of aliasing. A pure sine wave extending infinitely in both direc-
tions has a single frequency so, obviously, it is band-limited. Suppose that the sine wave in the figure
(ignore the large dots for now) has the equation f(¢) = sin(rt), and that the horizontal axis corresponds
to time, £, in seconds. The function crosses the axis at t = 0,£1,+2,... .

Recall that a function f(¢) is periodic with period P if f(t + P) = f(t) for all values of ¢. The period
is the number (including fractions) of units of the independent variable that it takes for the function
to complete one cycle. The frequency of a periodic function is the number of periods (cycles) that the
function completes in one unit of the independent variable. Thus, the frequency of a periodic function
is the reciprocal of the period. As before, the sampling rate is the number of samples taken per unit of
the independent variable.

In the present example, the independent variable is time, and its units are seconds. The period, P,
of sin(art) is 2 s, and its frequency is 1/P, or 1/2 cycles/s. According to the sampling theorem, we can
recover this signal from a set of its samples if the sampling rate exceeds twice the highest frequency
of the signal. This means that a sampling rate greater than 1 sample/s (2 x1/2 =1) is required to
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P t
c+0 1234 5"

FIGURE 4.11 Tllustration of aliasing. The under-sampled function (dots) looks like a sine wave having a frequency
much lower than the frequency of the continuous signal. The period of the sine wave is 2 s, so the zero crossings of
the horizontal axis occur every second. AT is the separation between samples.

recover the signal. Viewed another way, the separation, AT, between samples has to be less than 1 s.
Observe that sampling this signal at exactly twice the frequency (1 sample/s), with samples taken at
t=0,£1,%2,..., results in ... sin(—m), sin(0), sin(7)..., all of which are 0. This illustrates the reason
why the sampling theorem requires a sampling rate that exceeds twice the highest frequency of the
function, as mentioned earlier.

The large dots in Fig. 4.11 are samples taken uniformly at a rate below the required 1 sample/s (i.e.,
the samples are taken more than 1 s apart; in fact, the separation between samples exceeds 2 s). The
sampled signal looks like a sine wave, but its frequency is about one-tenth the frequency of the original
function. This sampled signal, having a frequency well below anything present in the original continu-
ous function, is an example of aliasing. If the signal had been sampled at a rate slightly exceeding the
Nyquist rate, the samples would not look like a sine wave at all (see Problem 4.6).

Figure 4.11 also illustrates how aliasing can be extremely problematic in musical recordings by intro-
ducing frequencies not present in the original sound. In order to mitigate this, signals with frequencies
above half the sampling rate must be filtered out to reduce the effect of aliased signals introduced into
digital recordings. This is the reason why digital recording equipment contains lowpass filters specifically
designed to remove frequency components above half the sampling rate used by the equipment.

If we were given just the samples in Fig. 4.11, another issue illustrating the seriousness of aliasing is
that we would have no way of knowing that these samples are not a true representation of the original
function. As you will see later in this chapter, aliasing in images can produce similarly misleading results.

FUNCTION RECONSTRUCTION (RECOVERY) FROM SAMPLED DATA

In this section, we show that reconstructing a function from a set of its samples
reduces in practice to interpolating between the samples. Even the simple act of
displaying an image requires reconstruction of the image from its samples by the dis-
play medium. Therefore, it is important to understand the fundamentals of sampled
data reconstruction. Convolution is central to developing this understanding, dem-
onstrating again the importance of this concept.

The discussion of Fig. 4.8 and Eq. (4-34) outlines the procedure for perfect recov-
ery of a band-limited function from its samples using frequency domain methods.
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Using the convolution theorem, we can obtain the equivalent result in the spatial
domain. From Eq. (4-34), F(u) = H(w)F(w), so it follows that

) =3 {F(w)}
SHH@WF (W)} (4-37)
h(t) % 7(0)

where, as before, f(¢) denotes the sampled function, and the last step follows from
the convolution theorem, Eq. (4-25). It can be shown (see Problem 4.13), that sub-
stituting Eq. (4-27) for f(¢) into Eq. (4-37), and then using Eq. (4-24), leads to the
following spatial domain expression for f(¢):

f(ty=", f(nAT)sinc[(r — nAT)/AT] (4-38)
where the sinc function is defined in Eq. (4-23). This result is not unexpected because
the inverse Fourier transform of the ideal (box) filter, H(u), is a sinc function (see
Example 4.1). Equation (4-38) shows that the perfectly reconstructed function, f(¢),
is an infinite sum of sinc functions weighted by the sample values. It has the impor-
tant property that the reconstructed function is identically equal to the sample val-
ues at multiple integer increments of AT That is, for any ¢ = kAT, where k is an inte-
ger, f(t) is equal to the kth sample, f(kAT). This follows from Eq. (4-38) because
sinc(0) = 1 and sinc(m) = 0 for any other integer value of m. Between sample points,
values of f(¢) are interpolations formed by the sum of the sinc functions.

Equation (4-38) requires an infinite number of terms for the interpolations
between samples. In practice, this implies that we have to look for approximations
that are finite interpolations between the samples. As we discussed in Section 2.6, the
principal interpolation approaches used in image processing are nearest-neighbor,
bilinear, and bicubic interpolation. We will discuss the effects of interpolation on
images in Section 4.5.

4.4 THE DISCRETE FOURIER TRANSFORM OF ONE VARIABLE I

One of the principal goals of this chapter is the derivation of the discrete Fourier
transform (DFT) starting from basic principles. The material up to this point may
be viewed as the foundation of those basic principles, so now we have in place the
necessary tools to derive the DFT.

OBTAINING THE DFT FROM THE CONTINUOUS TRANSFORM OF A
SAMPLED FUNCTION

As we discussed in Section 4.3, the Fourier transform of a sampled, band-limited func-
tion extending from —« to % is a continuous, periodic function that also extends from
—o to 0. In practice, we work with a finite number of samples, and the objective of
this section is to derive the DFT of such finite sample sets.

Equation (4-31) gives the transform, F(u), of sampled data in terms of the trans-
form of the original function, but it does not give us an expression for F(uw) in terms
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of the sampled function f(¢) itself. We find that expression directly from the defini-
tion of the Fourier transform in Eq. (4-19):

F(p) = / oof(t)e"'z”“’dt (4-39)
By substituting Eq. (4-27) for f(¢), we obtain
F(p) = / ) f(t)e > ™dr = ) i f(t)8(t — nAT)e *™ dt
= i ) f(6)8(t — nAT)e™>™ dt (4-40)
n=—e J oo
_ i fne—jZW;LnAT

n=—w

The last step follows from Eq. (4-28) and the sifting property of the impulse.
Although f, is a discrete function, its Fourier transform, F(u), is continuous and
infinitely periodic with period 1/AT, as we know from Eq. (4-31). Therefore, all we
need to characterize F(u) is one period, and sampling one period of this function is
the basis for the DFT. §

Suppose that we want to obtain M equally spaced samples of F(u) taken over the
one period interval from w =0 to u=1/AT (see Fig. 4.8). This is accomplished by
taking the samples at the following frequencies:

m

=— m=0,1,2,...M-1 (4-41)
MAT

w
Substituting this result for u into Eq. (4-40) and letting F,, denote the result yields
M-1 )
F, = ane—jzwmn/M m=0,1,2,....M -1 (4-42)
n=0

This expression is the discrete Fourier transform we are seeking.” Given a set {f,}
consisting of M samples of f(¢), Eq. (4-42) yields a set {F,,} of M complex values
corresponding to the discrete Fourier transform of the input sample set. Conversely,

Referring back to Fig. 4.6(b), note that the interval [0, 1/AT] over which we sampled one period of F(u) covers
two adjacent half periods of the transform (but with the lowest half of period appearing at higher frequencies).
This means that the data in F,, requires re-ordering to obtain samples that are ordered from the lowest to the
highest frequency of the period. This is the price paid for the notational convenience of taking the samples at
m=0,1,2,..., M —1, instead of using samples on either side of the origin, which would require the use of nega-
tive notation. The procedure used to order the transform data will be discussed in Section 4.6.



4.4 The Discrete Fourier Transform of One Variable 227

given {F,}, we can recover the sample set {f,,} by using the inverse discrete Fourier
transform (IDFT)

M
:%2 e]27'rmn/M n=0,1,2,...,M—1 (4_43)

}’l

It is not difficult to show (see Problem 4.15) that substituting Eq. (4-43) for f, into
Eq.(4-42) gives the identity F,, = F, . Similarly, substituting Eq. (4-42) into Eq. (4-43)
for F, yields f, = f,. This implies that Eqs. (4-42) and (4-43) constitute a discrete
Fourier transform pair. Furthermore, these identities indicate that the forward and
inverse Fourier transforms exist for any set of samples whose values are finite. Note
that neither expression depends explicitly on the sampling interval AT, nor on the
frequency intervals of Eq. (4-41). Therefore, the DFT pair is applicable to any finite
set of discrete samples taken uniformly.

We used m and n in the preceding development to denote discrete variables
because it is typical to do so for derivations. However, it is more intuitive, especially
in two dimensions, to use the notation x and y for image coordinate variables and
u and v for frequency variables, where these are understood to be integers.” Then,
Eqgs. (4-42) and (4-43) become

M-1
F(u)=Y f(x)e?™ ™ 4 =0,1,2,...M-1 (4-44)
x=0
and
1 M-1
f(x)= i S Fwye™™™ ™ x=0,1,2,....M -1 (4-45)
u=0

where we used functional notation instead of subscripts for simplicity. Comparing
Egs. (4-42) through (4-45),you can see that F(u) = F,, and f(x) = f,. From this point
on, we use Egs. (4-44) and (4-45) to denote the 1-D DFT pair. As in the continuous
case, we often refer to Eq. (4-44) as the forward DFT of f(x), and to Eq. (4-45) as
the inverse DFT of F(u). As before, we use the notation f(x) < F(u) to denote a
Fourier transform pair. Sometimes you will encounter in the literature the 1/M term
in front of Eq. (4-44) instead. That does not affect the proof that the two equations
form a Fourier transform pair (see Problem 4.15).

Knowledge that f(x) and F(u) are a transform pair is useful in proving relation-
ships between functions and their transforms. For example, you are asked in Prob-
lem 4.17 to show that f(x — x,) & F(u)e/>™/™ is a Fourier transform pair. That is,
you have to show that the DFT of f(x — x,) is F(u)e>™/™ and, conversely, that
the inverse DFT of F(u)e>™ /™ is f(x - x,). Because this is done by substituting

"We have been careful in using ¢ for continuous spatial variables and u for the corresponding continuous fre-
quency variables. From this point on, we will use x and u to denote 1-D discrete spatial and frequency variables,
respectively. When working in 2-D, we will use (#,z), and (u,v), to denote continuous spatial and frequency
domain variables, respectively. Similarly, we will use (x,y) and (u,v) to denote their discrete counterparts.
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directly into Eqgs. (4-44) and (4-45), and you will have proved already that these two
equations constitute a Fourier transform pair (Problem 4.15), if you prove that one
side of “<”is the DFT (IDFT) of the other, then it must be true the other side is the
IDFT (DFT) of the side you just proved. It turns out that having the option to prove
one side or the other often simplifies proofs significantly. This is true also of the 1-D
continuous and 2-D continuous and discrete Fourier transform pairs.

It can be shown (see Problem 4.16) that both the forward and inverse discrete
transforms are infinitely periodic, with period M. That is,

F(u)=F(u+kM) (4-46)
and
f(x)=f(x+kM) (4-47)

where k is an integer.
The discrete equivalent of the 1-D convolution in Eq. (4-24) is

f(x)*h(x) = Iglf(m)h(x -m) x=0,1,2,....,M -1 (4-48)
m=0

Because in the preceding formulations the functions are periodic, their convolu-
tion also is periodic. Equation (4-48) gives one period of the periodic convolution.
For this reason, this equation often is referred to as circular convolution. This is a
direct result of the periodicity of the DFT and its inverse. This is in contrast with the
convolution you studied in Section 3.4, in which values of the displacement, x, were
determined by the requirement of sliding one function completely past the other,
and were not fixed to the range [0, M — 1] as in circular convolution. We will discuss
this difference and its significance in Section 4.6 and in Fig. 4.27.

Finally, we point out that the convolution theorem given in Egs. (4-25) and (4-26)
is applicable also to discrete variables, with the exception that the right side of
Eq. (4-26) is multiplied by 1/M (Problem 4.18).

RELATIONSHIP BETWEEN THE SAMPLING AND FREQUENCY
INTERVALS
If f(x) consists of M samples of a function f(¢) taken AT units apart, the length of
the record comprising the set { f(x)},x=0,1,2,...., M -1, is

T = MAT (4-49)
The corresponding spacing, Au, in the frequency domain follows from Eq. (4-41):

Au 1 =l

- 4-50
MAT T (4-50)
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The entire frequency range spanned by the M components of the DFT is then

R=MAu=—— (4-51)
AT
Thus, we see from Egs. (4-50) and (4-51) that the resolution in frequency, Au, of
the DFT depends inversely on the length (duration, if ¢ is time) of the record, 7,
over which the continuous function, f(¢), is sampled; and the range of frequencies
spanned by the DFT depends on the sampling interval A7. Keep in mind these
inverse relationships between Au and AT.

EXAMPLE 4.4: The mechanics of computing the DFT.

Figure 4.12(a) shows four samples of a continuous function, f(¢), taken AT units apart. Figure 4.12(b)

shows the samples in the x-domain. The values of x are 0, 1, 2, and 3, which refer to the number of the

samples in sequence, counting up from 0. For example, f(2) = f(¢, + 2AT), the third sample of f(¢).
From Eq. (4-44), the first value of F(u) [i.e., F(0)] is

3
F(0) = Zaf(x) =[fO)+f)+fQ2)+fB)]=1+2+4+4=11
The next value of F(u) is
F()= i F(x)e PO 2 160 4 26712 4 4eTI™ 4 4o P2 = 342
x=0

Similarly, F(2) = —(1 + 0j) and F(3) = —(3 + 2j). Observe that all values of f(x) are used in computing
each value of F(u).

If we were given F(u) instead, and were asked to compute its inverse, we would proceed in the same
manner, but using the inverse Fourier transform. For instance,

3 3
£(0)= 12F(u)ef2’"’<°> = lZF(M) = l[11 -3+2j-1-3-2j]= l[4] =1
4= 4= 4 4

which agrees with Fig. 4.12(b). The other values of f(x) are obtained in a similar manner.

ab 1@ f(x)
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4.5 EXTENSIONS TO FUNCTIONS OF TWO VARIABLES NN

In the following discussion we extend to two variables the concepts introduced in
the previous sections of this chapter.

THE 2-D IMPULSE AND ITS SIFTING PROPERTY

The impulse, 8(z,z), of two continuous variables, ¢ and z, is defined as before:

1 ifr=2z=0

0 otherwise

/ / 8(t,z)dtdz =1 (4-53)

As in the 1-D case, the 2-D impulse exhibits the sifting property under integration,

8(t,2) = { (4-52)

and

oo 0
/ / f(t,z)8(t,z)dtdz = £(0,0) (4-54)
or. more generally for an impulse located at (#,,z,),

/ / F(.2)81 .2 - z9)didz = F(t.7) (4-55)

As before, we see that the sifting property yields the value of the function at the
location of the impulse.
For discrete variables x and y, the 2-D discrete unit impulse is defined as

1 ifx=y=0
8(x,y) = 4-56
(x.7) {0 otherwise (4-56)
and its sifting property is
z z f(an)a(x,Y):f(O,O) (4_57)

X=—00 y=—00

where f(x,y) is a function of discrete variables x and y. For an impulse located at
coordinates (x,, y,) (see Fig. 4.13) the sifting property is

S X =50 = 0) = Fi0o0) (4-58)

When working with an image of finite dimensions, the limits in the two preceding
equations are replaced by the dimensions of the image.
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FIGURE 4.13 8

2-D unit discrete

impulse. Variables

x and y are 8(x — X9,y ~ Yo)

discrete, and 6 is ®

zero everywhere |
|
|

except at
coordinates
(x9,¥,), where its
value is 1 Yo e TS
) X ~~do-- Yo

THE 2-D CONTINUOUS FOURIER TRANSFORM PAIR

Let f(t,z) be a continuous function of two continuous variables, ¢ and z. The two-
dimensional, continuous Fourier transform pair is given by the expressions

oo oo
F(p,v) = / / f(t,2)e” P dr dg (4-59)

and

[oe] [0e]
rea= [ [ Fwner e du (460)

where p and v are the frequency variables. When referring to images, ¢t and z are
interpreted to be continuous spatial variables. As in the 1-D case, the domain of the
variables u and v defines the continuous frequency domain.

EXAMPLE 4.5: Obtaining the Fourier transform of a 2-D box function.

Figure 4.14(a) shows the 2-D equivalent of the 1-D box function in Example 4.1. Following a procedure
similar to the one used in that example gives the result

00 00 T2 pZ2
F(u,v) = / / f(t,2)e ™) drdy = / Ae P g dy
—00 J—00 - /2

T2 J-z
—ATZ [ sin(muT) } { sin('n'VZ)}
(muT) (mvZ)

Figure 4.14(b) shows a portion of the spectrum about the origin. As in the 1-D case, the locations of the
zeros in the spectrum are inversely proportional to the values of T and Z. In this example, T is larger
than Z, so the spectrum is the more “contracted” along the p-axis.

2-D SAMPLING AND THE 2-D SAMPLING THEOREM

In a manner similar to the 1-D case, sampling in two dimensions can be modeled
using a sampling function (i.e., a 2-D impulse train):
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FIGURE 4.14 1.2)
(a) A 2-D function
and (b) a section
of its spectrum.
The box is longer
along the r-axis,

so the spectrum is
more contracted
along the p-axis.

Saraz(t,2) = i i 8(t —mAT, z — nAZ) (4-61)

m=—0o p=—w

where AT and AZ are the separations between samples along the - and z-axis of
the continuous function f(¢,z). Equation (4-61) describes a set of periodic impulses
extending infinitely along the two axes (see Fig. 4.15). As in the 1-D case illustrated
in Fig. 4.5, multiplying f(t,z) by s,;4,(t,z) yields the sampled function.

Function f(¢,z) is said to be band limited if its Fourier transform is 0 outside a
rectangle established in the frequency domain by the intervals [ — ... My | and
[ = Vs vmax]; that is,

F(u,v)=0 for |M|2Mmax and |v|2v (4-62)

max

The two-dimensional sampling theorem states that a continuous, band-limited func-
tion f(¢,z) can be recovered with no error from a set of its samples if the sampling
intervals are

1
2I"Lmax

AT <

(4-63)

and
1

vaax

AZ < (4-64)

or, expressed in terms of the sampling rate, if

FIGURE 4.15 Saraz(t, 2)
2-D impulse train.
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FIGURE 4.16
Two-dimensional
Fourier

transforms of (a) an
over-sampled, and
(b) an under-sam-
pled, band-limited
function.
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Footprint of a

2-D ideal lowpass
> (box) filter

1
—>2 4-65
AT Mmax ( )
and
1
— > 2 (4-66)
AZ

Stated another way, we say that no information is lost if a 2-D, band-limited, con-
tinuous function is represented by samples acquired at rates greater than twice the
highest frequency content of the function in both the u- and v-directions.

Figure 4.16 shows the 2-D equivalents of Figs. 4.6(b) and (d). A 2-D ideal fil-
ter transfer function has the form illustrated in Fig. 4.14(a) (but in the frequency
domain). The dashed portion of Fig. 4.16(a) shows the location of the filter function
to achieve the necessary isolation of a single period of the transform for recon-
struction of a band-limited function from its samples, as in Fig. 4.8. From Fig 4.10,
we know that if the function is under-sampled, the periods overlap, and it becomes
impossible to isolate a single period, as Fig. 4.16(b) shows. Aliasing would result
under such conditions.

ALIASING IN IMAGES

In this section, we extend the concept of aliasing to images, and discuss in detail sev-
eral aspects of aliasing related to image sampling and resampling.

Extensions from 1-D Aliasing

As in the 1-D case, a continuous function f(¢,z) of two continuous variables, ¢ and z,
can be band-limited in general only if it extends infinitely in both coordinate direc-
tions. The very act of limiting the spatial duration of the function (e.g., by multiply-
ing it by a box function) introduces corrupting frequency components extending to
infinity in the frequency domain, as explained in Section 4.3 (see also Problem 4.12).
Because we cannot sample a function infinitely, aliasing is always present in digital
images, just as it is present in sampled 1-D functions. There are two principal mani-
festations of aliasing in images: spatial aliasing and temporal aliasing. Spatial aliasing
is caused by under-sampling, as discussed in Section 4.3, and tends to be more visible
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FIGURE 4.17
Various aliasing
effects resulting
from the
interaction
between the
frequency of 2-D
signals and the
sampling rate
used to digitize
them. The regions
outside the
sampling grid are
continuous and
free of aliasing.

(and objectionable) in images with repetitive patterns. Temporal aliasing is related
to time intervals between images of a sequence of dynamic images. One of the most
common examples of temporal aliasing is the “wagon wheel” effect, in which wheels
with spokes in a sequence of images (for example, in a movie) appear to be rotating
backwards. This is caused by the frame rate being too low with respect to the speed
of wheel rotation in the sequence, and is similar to the phenomenon described in
Fig. 4.11, in which under sampling produced a signal that appeared to be of much
lower frequency than the original.

Our focus in this chapter is on spatial aliasing. The key concerns with spatial alias-
ing in images are the introduction of artifacts such as jaggedness in line features, spu-
rious highlights, and the appearance of frequency patterns not present in the original
image. Just as we used Fig. 4.9 to explain aliasing in 1-D functions, we can develop
an intuitive grasp of the nature of aliasing in images using some simple graphics. The
sampling grid in the center section of Fig. 4.17 is a 2-D representation of the impulse
train in Fig. 4.15. In the grid, the little white squares correspond to the location of the
impulses (where the image is sampled) and black represents the separation between
samples. Superimposing the sampling grid on an image is analogous to multiplying
the image by an impulse train, so the same sampling concepts we discussed in con-
nection with the impulse train in Fig. 4.15 are applicable here. The focus now is to
analyze graphically the interaction between sampling rate (the separation of the
sampling points in the grid) and the frequency of the 2-D signals being sampled.

Figure 4.17 shows a sampling grid partially overlapping three 2-D signals (regions
of an image) of low, mid, and high spatial frequencies (relative to the separation
between sampling cells in the grid). Note that the level of spatial “detail” in the
regions is proportional to frequency (i.e., higher-frequency signals contain more
bars). The sections of the regions inside the sampling grip are rough manifestations
of how they would appear after sampling. As expected, all three digitized regions

)

H High frequency

Low frequency

- Sampling grid

Mid frequency
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exhibit aliasing to some degree, but the effects are dramatically different, worsening
as the discrepancy between detail (frequency) and sampling rate increases. The low-
frequency region is rendered reasonably well, with some mild jaggedness around
the edges. The jaggedness increases as the frequency of the region increases to the
mid-range because the sampling rate is the same. This edge distortion (appropriately
called jaggies) is common in images with strong line and/or edge content.

The digitized high-frequency region in the top right of Fig. 4.17 exhibits totally
different and somewhat surprising behavior. Additional stripes (of lower frequen-
cy) appear in the digitized section, and these stripes are rotated significantly with
respect to the direction of the stripes in the continuous region. These stripes are an
alias of a totally different signal. As the following example shows, this type of behav-
ior can result in images that appear “normal” and yet bear no relation to the original.

EXAMPLE 4.6: Aliasing in images.

Consider an imaging system that is perfect, in the sense that it is noiseless and produces an exact digi-
tal image of what it sees, but the number of samples it can take is fixed at 96 x 96 pixels. For simplicity,
assume that pixels are little squares of unit width and length. We want to use this system to digitize
checkerboard images of alternating black and white squares. Checkerboard images can be interpreted
as periodic, extending infinitely in both dimensions, where one period is equal to adjacent black/white
pairs. If we specify “valid” digitized images as being those extracted from an infinite sequence in such
a way that the image contains an integer multiple of periods, then, based on our earlier comments, we
know that properly sampled periodic images will be free of aliasing. In the present example, this means
that the sizes of the squares must be such that dividing 96 by the size yields an even number. This will
give an integer number of periods (pairs of black/white squares). The smallest size of squares under the
stated conditions is 1 pixel.

The principal objective of this example is to examine what happens when checkerboard images with
squares of sizes less than 1 pixel on the side are presented to the system. This will correspond to the
undersampled case discussed earlier, which will result in aliasing. A horizontal or vertical scan line of the
checkerboard images results in a 1-D square wave, so we can focus the analysis on 1-D signals.

To understand the capabilities of our imaging system in terms of sampling, recall from the discussion
of the 1-D sampling theorem that, given the sampling rate, the maximum frequency allowed before
aliasing occurs in the sampled signal has to be less than one-half the sampling rate. Our sampling rate is
fixed, at one sample per unit of the independent variable (the units are pixels). Therefore, the maximum
frequency our signal can have in order to avoid aliasing is 1/2 cycle/pixel.

We can arrive at the same conclusion by noting that the most demanding image our system can
handle is when the squares are 1 unit (pixel) wide, in which case the period (cycle) is two pixels. The
frequency is the reciprocal of the period, or 1/2 cycle/pixel, as in the previous paragraph.

Figures 4.18(a) and (b) show the result of sampling checkerboard images whose squares are of sizes
16 x 16 and 6 x 6 pixels, respectively. The frequencies of scan lines in either direction of these two images
are 1/32 and 1/6 cycles/pixel. These are well below the 1/2 cycles/pixel allowed for our system. Because, as
mentioned earlier, the images are perfectly registered in the field of view of the system, the results are free
of aliasing, as expected.

When the size of the squares is reduced to slightly less than one pixel, a severely aliased image results,
as Fig. 4.18(c) shows (the squares used were approximately of size 0.95 x 0.95 pixels). Finally, reducing
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FIGURE 4.18
Aliasing. In (a) and
(b) the squares are
of sizes 16 and 6
pixels on the side.
In (c) and (d) the
squares are of sizes
0.95 and 0.48 pixels,
respectively. Each
small square in (c)
is one pixel. Both
(c) and (d) are
aliased. Note how
(d) masquerades as
a “normal” image.

the size of the squares to slightly less than 0.5 pixels on the side yielded the image in Fig. 4.18(d). In
this case, the aliased result looks like a normal checkerboard pattern. In fact, this image would result
from sampling a checkerboard image whose squares are 12 pixels on the side. This last image is a good
reminder that aliasing can create results that may be visually quite misleading.

The effects of aliasing can be reduced by slightly defocusing the image to be digi-
tized so that high frequencies are attenuated. As explained in Section 4.3, anti-alias-
ing filtering has to be done at the “front-end,” before the image is sampled. There
are no such things as after-the-fact software anti-aliasing filters that can be used to
reduce the effects of aliasing caused by violations of the sampling theorem. Most
commercial digital image manipulation packages do have a feature called “anti-
aliasing.” However, as illustrated in Example 4.8 below, this term is related to blur-
ring a digital image to reduce additional aliasing artifacts caused by resampling. The
term does not apply to reducing aliasing in the original sampled image. A significant
number of commercial digital cameras have true anti-aliasing filtering built in, either
in the lens or on the surface of the sensor itself. Even nature uses this approach to
reduce the effects of aliasing in the human eye, as the following example shows.

EXAMPLE 4.7: Nature obeys the limits of the sumpling theorem.

When discussing Figs. 2.1 and 2.2, we mentioned that cones are the sensors responsible for sharp vision.
Cones are concentrated in the fovea, in line with the visual axis of the lens, and their concentration is
measured in degrees off that axis. A standard test of visual acuity (the ability to resolve fine detail) in
humans is to place a pattern of alternating black and white stripes in one degree of the visual field. If the
total number of stripes exceeds 120 (i.e., a frequency of 60 cycles/degree), experimental evidence shows
that the observer will perceive the image as a single gray mass. That is, the lens in the eye automatically
lowpass filters spatial frequencies higher than 60 cycles/degree. Sampling in the eye is done by the cones,
so, based on the sampling theorem, we would expect the eye to have on the order of 120 cones/degree
in order to avoid the effects of aliasing. As it turns out, that is exactly what we have!
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Image Resampling and Interpolation

Asin the 1-D case, perfect reconstruction of a band-limited image function from a set
of its samples requires 2-D convolution in the spatial domain with a sinc function. As
explained in Section 4.3, this theoretically perfect reconstruction requires interpola-
tion using infinite summations which, in practice, forces us to look for approximate
interpolation methods. One of the most common applications of 2-D interpolation
in image processing is in image resizing (zooming and shrinking). Zooming may
be viewed as over-sampling, while shrinking may be viewed as under-sampling. The
key difference between these two operations and the sampling concepts discussed
in previous sections is that we are applying zooming and shrinking to digital images.

We introduced interpolation in Section 2.4. Our interest there was to illustrate the
performance of nearest neighbor, bilinear, and bicubic interpolation. In this section,
the focus is on sampling and anti-aliasing issues. Aliasing generally is introduced
when an image is scaled, either by zooming or by shrinking. For example, a special
case of nearest neighbor interpolation is zooming by pixel replication, which we use
to increase the size of an image an integer number of times. To double the size of
an image, we duplicate each column. This doubles the image size in the horizontal
direction. Then, we duplicate each row of the enlarged image to double the size in
the vertical direction. The same procedure is used to enlarge the image any integer
number of times. The intensity level assignment of each pixel is predetermined by
the fact that new locations are exact duplicates of old locations. In this crude method
of enlargement, one of the principal aliasing effects is the introduction of jaggies
on straight lines that are not horizontal or vertical. The effects of aliasing in image
enlargement often are reduced significantly by using more sophisticated interpola-
tion, as we discussed in Section 2.4. We show in the following example that aliasing
can also be a serious problem in image shrinking.

EXAMPLE 4.8: lllustration of aliasing in resampled natural images.

The effects of aliasing generally are worsened when the size of a digital image is reduced. Figure 4.19(a)
is an image containing regions purposely selected to illustrate the effects of aliasing (note the thinly
spaced parallel lines in all garments worn by the subject). There are no objectionable aliasing artifacts
in Fig. 4.19(a), indicating that the sampling rate used initially was sufficient to mitigate visible aliasing.

In Fig. 4.19(b), the image was reduced to 33% of its original size using row/column deletion. The
effects of aliasing are quite visible in this image (see, for example, the areas around scarf and the sub-
ject’s knees). Images (a) and (b) are shown in the same size because the reduced image was brought
back to its original size by pixel replication (the replication did not alter appreciably the effects of alias-
ing just discussed.

The digital “equivalent” of the defocusing of continuous images mentioned earlier for reducing alias-
ing, is to attenuate the high frequencies of a digital image by smoothing it with a lowpass filter before
resampling. Figure 4.19(c) was processed in the same manner as Fig. 4.19(b), but the original image was
smoothed using a 5 x 5 spatial averaging filter (see Section 3.5) before reducing its size. The improve-
ment over Fig. 4.19(b) is evident. The image is slightly more blurred than (a) and (b), but aliasing is no
longer objectionable.
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FIGURE 4.19 Tllustration of aliasing on resampled natural images. (a) A digital image of size 772 x 548 pixels with visu-
ally negligible aliasing. (b) Result of resizing the image to 33% of its original size by pixel deletion and then restor-
ing it to its original size by pixel replication. Aliasing is clearly visible. (c) Result of blurring the image in (a) with an
averaging filter prior to resizing. The image is slightly more blurred than (b), but aliasing is not longer objectionable.
(Original image courtesy of the Signal Compression Laboratory, University of California, Santa Barbara.)

The term moiré is a
French word (not the
name of a person) that
appears to have

originated with weavers,

who first noticed what
appeared to be interfer-
ence patterns visible on
some fabrics. The root
of the word is from the
word mohair, a cloth
made from Angora goat
hairs.

Aliasing and Moiré Patterns

In optics, a moiré pattern is a secondary, visual phenomenon produced, for example,
by superimposing two gratings of approximately equal spacing. These patterns are
common, everyday occurrences. For instance, we see them in overlapping insect win-
dow screens and on the interference between TV raster lines and striped or high-
ly textured materials in the background, or worn by individuals. In digital image
processing, moiré-like patterns arise routinely when sampling media print, such as
newspapers and magazines, or in images with periodic components whose spacing
is comparable to the spacing between samples. It is important to note that moiré
patterns are more general than sampling artifacts. For instance, Fig. 4.20 shows the
moiré effect using vector drawings that have not been digitized. Separately, the pat-
terns are clean and void of interference. However, the simple acts of superimposing
one pattern on the other creates a pattern with frequencies not present in either of
the original patterns. Note in particular the moiré effect produced by two patterns
of dots, as this is the effect of interest in the following discussion.

EXAMPLE 4.9: Sampling printed media.

Newspapers and other printed materials use so called halftone dots, which are black dots or ellipses
whose sizes and various grouping schemes are used to simulate gray tones. As a rule, the following num-
bers are typical: newspapers are printed using 75 halftone dots per inch (dpi), magazines use 133 dpi, and
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FIGURE 4.20
Examples of the
moiré effect.
These are vector
drawings, not
digitized patterns.
Superimposing
one pattern on the
other is analogous
to multiplying the
patterns.

high-quality brochures use 175 dpi. Figure 4.21 shows what happens when a newspaper image is (under)
sampled at 75 dpi. The sampling lattice (which is oriented vertically and horizontally) and dot patterns
on the newspaper image (oriented at +45°) interact to create a uniform moiré-like pattern that makes
the image look blotchy. (We will discuss a technique in Section 4.10 for reducing the effects of moiré
patterns in under-sampled print media.)

FIGURE 4.21

A newspaper

image digitized at b »

75 dpi. Note the g AR o
moiré-like pattern e T . o

resulting from

the interaction
between the £45°
orientation of the
half-tone dots and
the north-south
orientation of the
sampling elements
used to digitized
the image.
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Sometimes you will find
in the literature the
1/MN constant in front
of the DFT instead of
the IDFT. At times,

the square root of this
constant is included in
front of the forward
and inverse transforms,
thus creating a more
symmetrical pair. Any
of these formulations is
correct, provided they
are used consistently.

THE 2-D DISCRETE FOURIER TRANSFORM AND ITS INVERSE

A development similar to the material in Sections 4.3 and 4.4 would yield the follow-
ing 2-D discrete Fourier transform (DFT):

1N-
F(u,v) = Z fx,yye 2maipte i) (4-67)

.. ME

where f(x,y) is a digital image of size M x N. As in the 1-D case, Eq. (4-67) must be
evaluated for values of the discrete variables # and v intherangesu = 0,1,2,..., M -1
andv=0,1,2,....,N-1.7

Given the transform F(u,v), we can obtain f(x,y) by using the inverse discrete
Fourier transform (IDFT):

1 MIN-I '
flx,y) = YN 2 N F(u,v)e/>7M+w/N) (4-68)
=0 2=0

for x=0,1,2,...,M-1 and y=0,1,2,..., N-1. As in the 1-D case, [Eqs. (4-44)
and (4-45)], Egs. (4-67) and (4-68) constitute a 2-D discrete Fourier transform pair,
f(x,y) © F(u,v). (The proof is a straightforward extension of the 1-D case in Prob-
lem 4.15.) The rest of this chapter is based on properties of these two equations and
their use for image filtering in the frequency domain. The comments made in con-
nection with Egs. (4-44) and (4-45) are applicable to Egs. (4-67) and (4-68); that is,
knowing that f(x,y) and F(u,v) are a Fourier transform pair can be quite useful in
proving relationships between functions and their transforms.

4.6 SOME PROPERTIES OF THE 2-D DFT AND IDFT I

In this section, we introduce several properties of the 2-D discrete Fourier transform
and its inverse.

RELATIONSHIPS BETWEEN SPATIAL AND FREQUENCY INTERVALS

The relationships between spatial sampling and the corresponding frequency
domain intervals are as explained in Section 4.4. Suppose that a continuous func-
tion f(z,z) is sampled to form a digital image, f(x,y), consisting of M x N samples
taken in the ¢- and z-directions, respectively. Let AT and AZ denote the separations
between samples (see Fig. 4.15). Then, the separations between the corresponding
discrete, frequency domain variables are given by

Au=_L (4-69)
MAT

"As mentioned in Section 4.4, keep in mind that in this chapter we use (¢,z) and (u,v) to denote 2-D continuous
spatial and frequency-domain variables. In the 2-D discrete case, we use (x,y) for spatial variables and (u,v) for
frequency-domain variables, all of which are discrete.
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and
1
v=——
NAZ
respectively. Note the important property that the separations between samples in

the frequency domain are inversely proportional both to the spacing between spa-
tial samples and to the number of samples.

(4-70)

TRANSLATION AND ROTATION

The validity of the following Fourier transform pairs can be demonstrated by direct
substitution into Egs. (4-67) and (4-68) (see Problem 4.27):

Fx,y)e/ 2 IM = wyIN) oy By — 1,0 — ;) (4-71)
and

Fx =X,y = yg) & Fluyv)e 2meo/M ot (4-72)
That is, multiplying f(x,y) by the exponential shown shifts the origin of the DFT to
(uy,v,) and, conversely, multiplying F(u,v) by the negative of that exponential shifts
the origin of f(x,y) to (x,,y,). As we illustrate in Example 4.13, translation has no

effect on the magnitude (spectrum) of F(u,v).
Using the polar coordinates

X =rcosf y=rsinf U= wcose v = wsin
results in the following transform pair:
f(r,6+6,) < F(w,0+0,) (4-73)

which indicates that rotating f(x,y) by an angle 6, rotates F'(«,v) by the same angle.
Conversely, rotating F(u,v) rotates f(x,y) by the same angle.

PERIODICITY

As in the 1-D case, the 2-D Fourier transform and its inverse are infinitely periodic
in the u and v directions; that is,

F(u,v) = F(u+kM,v)= F(u,v+ k,N) = F(u+kM,v+ k,N) (4-74)
and

fy)=flx+kM.y) = flx.y + k,N) = f(x+ k,M,y + k,N) - (475)

where k; and k, are integers.

The periodicities of the transform and its inverse are important issues in the
implementation of DFT-based algorithms. Consider the 1-D spectrum in Fig. 4.22(a).
As explained in Section 4.4 [see the footnote to Eq. (4-42)], the transform data in the
interval from 0 to M — 1 consists of two half periods meeting at point M/2, but with
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FIGURE 4.22
Centering the
Fourier transform.
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periods meet here.
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as the input. This
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array obtained

by multiplying
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before computing
F(u,v). The data
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complete, centered
period, as in (b).

N£(0,0)

N/2—~N -1~

Four adjacent quarter
periods meet here

% = M X N data array computed by the DFT with f(x, y) as input

D = M X N data array computed by the DFT with f(x,y)(-1)**” as input

= Periods of the DFT

the lower part of the period appearing at higher frequencies. For display and filter-
ing purposes, it is more convenient to have in this interval a complete period of the
transform in which the data are contiguous and ordered properly, as in Fig. 4.22(b).

It follows from Eq. (4-71) that

Fx)e 7 e Flu = uy)

In other words, multiplying f(x) by the exponential term shown shifts the transform
data so that the origin, F(0), is moved to u,. If we let u, = M/2, the exponential
term becomes ¢/™, which is equal to (—1)* because x is an integer. In this case,
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f(x)(-1)' & Flu-M/2)

That is, multiplying f(x) by (—1)* shifts the data so that F(u) is centered on the inter-
val [0, M — 1], which corresponds to Fig. 4.22(b), as desired.

In 2-D the situation is more difficult to graph, but the principle is the same, as
Fig. 4.22(c) shows. Instead of two half periods, there are now four quarter periods
meeting at the point (M/2,N/2). As in the 1-D case, we want to shift the data so
that F(0,0) is at (M/2,N/2). Letting (u,,v,) = (M/2,N/2) in Eq. (4-71) results in
the expression

f, )™ < F(u— M/2,0—N/2) (4-76)

Using this equation shifts the data so that F(0,0) is moved to the center of
the frequency rectangle (i.e., the rectangle defined by the intervals [0,M — 1] and
[0,N —1] in the frequency domain). Figure 4.22(d) shows the result.

Keep in mind that in all our discussions, coordinate values in both the spatial and
frequency domains are integers. As we explained in Section 2.4 (see Fig. 2.19) if, as
in our case), the origin of an M x N image or transform is at (0,0), then the center of
that image or transform is at (floor(M/2),floor(N/2)). This expression is applicable
to both even and odd values of M and N. For example, the center of an array of size
20 x 15 is at point (10,7). Because we start counting from 0, these are the 11th and
8th points in the first and second coordinate axes of the array, respectively.

SYMMETRY PROPERTIES

An important result from functional analysis is that any real or complex function,
w(x,y), can be expressed as the sum of an even and an odd part, each of which can
be real or complex:

?/U()C,y) = we(x’ y) + wo(x’y) (4'77)

where the even and odd parts are defined as

w, (3, ) & HED L) (478)
and
w()(x’y) A w(xs y) _zu)(_x’ _y) (4_79)

for all valid values of x and y. Substituting Egs. (4-78) and (4-79) into Eq. (4-77) gives
the identity w(x,y) = w(x,y), thus proving the validity of the latter equation. It fol-
lows from the preceding definitions that

we(x>y) = we(_x’ _y) (4'80)

and
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In the context of this dis-
cussion, the locations of
elements in a sequence
are denoted by integers.

wo(x’y) = _wo(_x’ _y) (4_81)
Even functions are said to be symmetric and odd functions antisymmetric. Because
all indices in the DFT and IDFT are nonnegative integers, when we talk about sym-
metry (antisymmetry) we are referring to symmetry (antisymmetry) about the cen-
ter point of a sequence, in which case the definitions of even and odd become:

Therefore, the same
observations made a few
paragraphs back about
the centers of arrays of
even and odd sizes are
applicable to sequences.
But, do not confuse the
concepts of even/odd
numbers and even/odd
functions.

we(x9y):we(M_x’N_y) (4_82)

and

w,(x,y) = —w,(M = x,N - y) (4-83)

forx=0,1,2,...,M—1and y=0,1,2,..., N — 1. As usual, M and N are the number
of rows and columns of a 2-D array.

We know from elementary mathematical analysis that the product of two even or
two odd functions is even, and that the product of an even and an odd function is

odd. In addition, the only way that a discrete function can be odd is if all its samples

To convinee yoursell that —qyym to zero. These properties lead to the important result that
the samples of an odd

function sum to zero,

sketch one period of MoIN-]

a 1-D sine wave about 2 Z w, (X, y)wo (X, y) =0

the origin or any other x=0 y=0

interval spanning one
period.

(4-84)

for any two discrete even and odd functions w, and w,. In other words, because the
argument of Eq. (4-84) is odd, the result of the summations is 0. The functions can
be real or complex.

EXAMPLE 4.10: Even and odd functions.

Although evenness and oddness are visualized easily for continuous functions, these concepts are not as
intuitive when dealing with discrete sequences. The following illustrations will help clarify the preceding
ideas. Consider the 1-D sequence

f={10), f), f2). fR)} ={2.1.1,1}

in which M = 4. To test for evenness, the condition f(x)= f(4 — x) must be satisfied for x =0,1,2,3.
That is, we require that

fO)=f@, [fM=f3), =12, [OG)=f1)

Because f(4) is outside the range being examined and can be any value, the value of f(0) is immaterial
in the test for evenness. We see that the next three conditions are satisfied by the values in the array, so
the sequence is even. In fact, we conclude that any 4-point even sequence has to have the form

{a,b,c,b}

That is, only the second and last points must be equal in a 4-point even sequence. In general, when M
is an even number, a 1-D even sequence has the property that the points at locations 0 and M/2 have
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arbitrary values. When M is odd, the first point of an even sequence is still arbitrary, but the others form
pairs with equal values.

Odd sequences have the interesting property that their first term, w,(0,0), is always 0, a fact that fol-
lows directly from Eq. (4-79). Consider the 1-D sequence

g =1{5(0), g(1), g(2), g(3)} = {0,-1,0,1}

We can confirm that this is an odd sequence by noting that the terms in the sequence satisfy the condi-
tion g(x)=—g(4 — x) for x =1,2,3. All we have to do for x = 0 is to check that g(0) = 0. We check the
other terms using the definition. For example, g(1) = —g(3). Any 4-point odd sequence has the form

{0,-b,0, b}

In general, when M is an even number, a 1-D odd sequence has the property that the points at locations
0 and M/2 are always zero. When M is odd, the first term still has to be 0, but the remaining terms form
pairs with equal value but opposite signs.

The preceding discussion indicates that evenness and oddness of sequences depend also on the length
of the sequences. For example, we showed already that the sequence {O,— 1,0, 1} is odd. However, the
sequence {O,— 1,0,1, 0} is neither odd nor even, although the “basic” structure appears to be odd. This
is an important issue in interpreting DFT results. We will show later in this section that the DFTs of even
and odd functions have some very important characteristics. Thus, it often is the case that understanding
when a function is odd or even plays a key role in our ability to interpret image results based on DFTs.

The same basic considerations hold in 2-D. For example, the 6 X 6 2-D array with center at location
(3,3), shown bold in the figure [remember, we start counting at (0,0)],

o O O O o o

S O O o o O
R

o o @ O o O

S = N = O O

o O O O o O

is odd, as you can prove using Eq. (4-83). However, adding another row or column of 0’s would give
a result that is neither odd nor even. In general, inserting a 2-D array of even dimensions into a larger
array of zeros, also of even dimensions, preserves the symmetry of the smaller array, provided that the
centers coincide. Similarly, a 2-D array of odd dimensions can be inserted into a larger array of zeros of
odd dimensions without affecting the symmetry. Note that the inner structure of the preceding array is
a Sobel kernel (see Fig. 3.50). We return to this kernel in Example 4.15, where we embed it in a larger
array of zeros for filtering purposes.

Conjugate symmetry . . . .
e e e Armed with the preceding concepts, we can establish a number of important sym-

symmetry. The term metry properties of the DFT and its inverse. A property used frequently is that the
antihermitian is used . . . . .
Fourier transform of a real function, f(x,y), is conjugate symmetric:

sometimes to refer to
conjugate antisymmetry.
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TABLE 4.1

Some symmetry
properties of the
2-D DFT and its
inverse. R(u,v)
and I(u,v) are
the real and
imaginary parts of
F(u,v),
respectively.

Use of the word
complex indicates
that a function
has nonzero real
and imaginary
parts.

F'(u,v) = F(~u,—v)

(4-85)

We show the validity of this equation as follows:

<

N -1 N-1
F (u,v) =

x=0 y=0

= f (x’y)

*

f(x,y) e—jZ'fr(ux/M +vy/N)

s

eij(ux/M +vy/N)

where the third step follows from the fact that f(x,y) is real. A similar approach
can be used to prove that, if f(x,y) is imaginary, its Fourier transform is conjugate

antisymmetric; that is, F*(—u, -v) =—-F(u,v).

Table 4.1 lists symmetries and related properties of the DFT that are useful in
digital image processing. Recall that the double arrows indicate Fourier transform
pairs; that is, for any row in the table, the properties on the right are satisfied by the
Fourier transform of the function having the properties listed on the left, and vice
versa. For example, entry 5 reads: The DFT of a real function f(x,y), in which (x,y)

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)

"Recall that x, y, u, and v are discrete (integer) variables, with x and u in the range [0, M —

Spatial Domain’

f(x,y) real

f(x,y) imaginary

f(x,y) real

f(x,y) imaginary
f(=x,—y) real

f(=x,—y) complex

£ (x,y) complex

f(x,y) real and even
f(x,y) real and odd
f(x,y) imaginary and even
f(x,y) imaginary and odd
f(x,y) complex and even

f(x,y) complex and odd

(A A T T

=14

Frequency Domain’
F"(u,v) = F(-u,~v)
F*(~u,-v) = —=F(u,v)
R(u,v) even; I(u,v) odd
R(u,v) odd; I(u,v) even
F"(u,v) complex
F(-u,—v) complex
F*(-u,-v) complex
F(u,v) real and even
F(u,v) imaginary and odd
F(u,v) imaginary and even
F(u,v) real and odd
F(u,v) complex and even

F(u,v) complex and odd

1], and y and v in

the range [0, N — 1]. To say that a complex function is even means that its real and imaginary parts are even, and

similarly for an odd complex function. As before, “&

” indicates a Fourier transform pair.
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is replaced by (—x,—y), is ‘F*(u,v), the complex conjugate of the DFT of f(x,y).
Conversely, the IDFT of F (u,v) is f(-x,-y).

EXAMPLE 4.11: 1-D illustrations of the properties in Table 4.1.

The 1-D sequences (functions) and their transforms in Table 4.2 are short examples of the properties
listed in Table 4.1. For example, in property 3 we see that a real function with elements {1, 2, 3, 4} hasa
Fourier transform whose real part, {10, — 2, — 2, — 2}, is even and whose imaginary part, {0, 2, 0, - 2}, is
odd. Property 8 tells us that a real even function has a transform that is real and even also. Property 12
shows that an even complex function has a transform that is also complex and even. The other listings
in the table are analyzed in a similar manner.

EXAMPLE 4.12: Proving some of the DFT symmetry properties from Table 4.1.

In this example, we prove several of the properties in Table 4.1 to help you develop familiarity with
manipulating these important properties, and to establish a basis for solving some of the problems at
the end of the chapter. We prove only the properties on the right given the properties on the left. The
converse is proved in a manner similar to the proofs we give here.

Consider property 3, which reads: If f(x,y) is a real function, the real part of its DFT is even and the
imaginary partis odd.We prove this property as follows: F(u,v) iscomplexin general, soitcan be expressed
as the sum of a real and an imaginary part: F(u,v) = R(,v) + jI(u,v). Then, F" (u,v) = R(u,v) — jI(u,v).
Also, F(-u,—v) = R(—u,—v) + jl(-u,—v). But, as we proved earlier for Eq. (4-85), if f(x,y) is real then
F"(u,v) = F(~u,~v), which, based on the preceding two equations, means that R(u,v) = R(—u,~v) and
I(u,v) = —I(—u,—v). In view of the definitions in Egs. (4-80) and (4-81), this proves that R is an even
function and that / is an odd function.

Next, we prove property 8. If f(x,y) is real, we know from property 3 that the real part of F(u,v) is
even, so to prove property 8 all we have to do is show that if f(x,y) is real and even then the imaginary
part of F(u,v) is O (i.e., F is real). The steps are as follows:

TABLE 4.2
1-D examples of Property f) L)
some of the prop- 3 1.2.3.4l < ). (= . (= N.(=2—-27
erties in Table 4.1. {1.2.3,4} {10+05).(=2+2)).(-2+0j).(-2 -2/}
4 {1j,2,3j,4j} © {(0+2.5/).(.5-.5/).(0~.5).(-5-.5/)}
8 {2.1,1,1} < [5LL1}
9 {0.-1,0,1} & {(0+0/).(0+2/).(0+0;).(0-2/)}
10 {2117 = {5).4.4. 7}
1 {0/.-17.05, 17} = {0,-2,0,2}

120(4+4j),(3+2j).(0+2/).3+2/)} & {(10+10/),(4+2/).(-2+2/).(4+2/)}

13 0+0/),(1+17),(0+0)).(-1= )} & {(0+0)).(2-2/).(0+0/).(-2+2/)}



248 Chapter 4 Filtering in the Frequency Domain

“S{f(x y)} F(u,v) = MZ Nzlf(x’y)e—jzﬂT(ux/MJrvy/N)
X=0 y=0

M-1N-1
— [ (X y)] —j2m(ux/M + vy/N)
x=0 y=0
M=1N-1 A
— [f (x, y)] —j2m(ux/M) ,=j2m(vy/N)
x=0 y=0

We can expand the last line of this expression in terms of even and odd parts

T
=

F(u,v) = [even|[even — jodd][even — jodd]

x=0 y=0
M=1N-1

= [even|[even - even — 2jeven - odd — odd - odd |
x=0 y=0
M-1N-1 M-1N-1 M=1N-

= [even-even]-2;) > [even-odd]- 2 2 even - even|
x=0 y=0 x=0 y=0 x=0 y=0

=real.

The first step follows from Euler’s equation, and the fact that the cos and sin are even and odd functions,
respectively. We also know from property 8 that, in addition to being real, f(x,y) is an even function.
The only term in the penultimate line containing imaginary components is the second term, which is 0
according to Eq. (4-84). Therefore, if f(x,y) is real and even, then F(u,v) is real. As noted earlier, F(u,v)
is even also because f(x,y) is real. This concludes the proof.

Finally, we demonstrate the validity of property 6. From the definition of the DFT,

S{f( X, y) = ME‘ Nz‘lf(_x’_y)e—jZW(ux/MJrvy/N)
x=0 y=0

We are not making a change of variable here. We are evaluating the DFT of f(-x,—y), so we sim-
ply insert this function into the equation, as we would any other function. Because of periodicity,
f(=x,—y)= f(M - x,N —y). If we now define m =M —x and n= N — y, then

M-1N-1
3 f( X, y) = f(m’ n) e—j2'n'(u[M—m]/M+7J[N—n]/N)

To convince yourself that the summations are correct, try a 1-D transform and expand a few terms by
hand. Because exp[—j2(integer)] = 1, it follows that
M-1N-1 .
g {f(—x,—y)} — f(m, n)efzw(mu/M+vn/N) = F(-u,~v)

m=0n=0

This concludes the proof.
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FOURIER SPECTRUM AND PHASE ANGLE

Because the 2-D DFT is complex in general, it can be expressed in polar form:

F(u,v) = R(u,v) + jl(u,v)

: 4-86
=|F(u,v)| /) (+86)
where the magnitude
|F ()| = [ R (u0)+ P(u0) ] (4-87)
is called the Fourier (or frequency) spectrum, and
I(u,v)
u,v) = arctan 2 4-88
() { R(u,v) } (4-88)

is the phase angle or phase spectrum. Recall from the discussion in Section 4.2 that
the arctan must be computed using a four-quadrant arctangent function, such as
MATLARB’s atan2(Imag, Real) function.
Finally, the power spectrum is defined as
2
P(u,v) = |F(u,v)| (4-89)
= R*(u,v) + I*(u,v)

As before, R and I are the real and imaginary parts of F(u,v), and all computations
are carried out for the discrete variablesu =0,1,2,..., M —landv=0,1,2,..., N — 1.
Therefore, |[F(u,v)|, ¢(u,v), and P(u,v) are arrays of size M x N.

The Fourier transform of a real function is conjugate symmetric [see Eq. (4-85)],
which implies that the spectrum has even symmetry about the origin:

|F(u,0)| =|F(-u,—v)| (4-90)
The phase angle exhibits odd symmetry about the origin:

D(u,0) = —d(-u,—v) (4-91)
It follows from Eq. (4-67) that

F(0,0) = 20 Z_z)f(x,y)

which indicates that the zero-frequency term of the DFT is proportional to the aver-
age of f(x,y). That is,

M-1

FO.0)= MN 353, 3 1)

= MNf

(4-92)
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where f (a scalar) denotes the average value of f(x,y). Then,
|F(0,0)|= MN|f | (4-93)

Because the proportionality constant MN usually is large, |F (0,0)| typically is the
largest component of the spectrum by a factor that can be several orders of magni-
tude larger than other terms. Because frequency components u and v are zero at the
origin, F(0,0) sometimes is called the dc component of the transform. This terminol-
ogy is from electrical engineering, where “dc” signifies direct current (i.e., current of
zero frequency).

EXAMPLE 4.13: The spectrum of a rectangle.

Figure 4.23(a) shows an image of a rectangle and Fig. 4.23(b) shows its spectrum, whose values were
scaled to the range [0,255] and displayed in image form. The origins of both the spatial and frequency
domains are at the top left. This is the right-handed coordinate system convention we defined in Fig. 2.19.
Two things are apparent in Fig. 4.23(b). As expected, the area around the origin of the transform con-
tains the highest values (and thus appears brighter in the image). However, note that the four corners

ab
cd

FIGURE 4.23

(a) Image.

(b) Spectrum,
showing small,
bright areas in the
four corners (you
have to look care-
fully to see them).
(c) Centered
spectrum.

(d) Result after a
log transformation.
The zero crossings
of the spectrum

are closer in the
vertical direction
because the rectan-
gle in (a) is longer
in that direction.
The right-handed
coordinate
convention used in
the book places the
origin of the spatial
and frequency
domains at the top
left (see Fig.2.19).

N
N
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ab
cd

FIGURE 4.24

(a) The rectangle
in Fig. 4.23(a)
translated.

(b) Corresponding
spectrum.

(c) Rotated
rectangle.

(d) Corresponding
spectrum.

The spectrum of
the translated
rectangle is
identical to the
spectrum of the
original image in
Fig. 4.23(a).

of the spectrum contain similarly high values. The reason is the periodicity property discussed in the
previous section. To center the spectrum, we simply multiply the image in (a) by (=1)*** before comput-
ing the DFT, as indicated in Eq. (4-76). Figure 4.23(c) shows the result, which clearly is much easier to
visualize (note the symmetry about the center point). Because the dc term dominates the values of the
spectrum, the dynamic range of other intensities in the displayed image are compressed. To bring out
those details, we used the log transformation defined in Eq. (3-4) with ¢ = 1. Figure 4.23(d) shows the
display of log(1 +|F(u,v)|). The increased rendition of detail is evident. Most spectra shown in this and
subsequent chapters are scaled in this manner.

It follows from Egs. (4-72) and (4-73) that the spectrum is insensitive to image translation (the abso-
lute value of the exponential term is 1), but it rotates by the same angle of a rotated image. Figure
4.24 illustrates these properties. The spectrum in Fig. 4.24(b) is identical to the spectrum in Fig. 4.23(d).

allbl e

FIGURE 4.25
Phase angle
images of

(a) centered,
(b) translated,
and (c) rotated
rectangles.
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Clearly, the images in Figs. 4.23(a) and 4.24(a) are different so, if their Fourier spectra are the same,
then, based on Eq. (4-86), their phase angles must be different. Figure 4.25 confirms this. Figures 4.25(a)
and (b) are the phase angle arrays (shown as images) of the DFTs of Figs. 4.23(a) and 4.24(a). Note the
lack of similarity between the phase images, in spite of the fact that the only differences between their
corresponding images is simple translation. In general, visual analysis of phase angle images yields little
intuitive information. For instance, because of its 45° orientation, one would expect intuitively that the
phase angle in Fig. 4.25(a) should correspond to the rotated image in Fig. 4.24(c), rather than to the
image in Fig. 4.23(a). In fact, as Fig. 4.25(c) shows, the phase angle of the rotated image has a strong
orientation that is much less than 45°.

The components of the spectrum of the DFT determine the amplitudes of the
sinusoids that combine to form an image. At any given frequency in the DFT of
an image, a large amplitude implies a greater prominence of a sinusoid of that fre-
quency in the image. Conversely, a small amplitude implies that less of that sinu-
soid is present in the image. Although, as Fig. 4.25 shows, the contribution of the
phase components is less intuitive, it is just as important. The phase is a measure of
displacement of the various sinusoids with respect to their origin. Thus, while the
magnitude of the 2-D DFT is an array whose components determine the intensities
in the image, the corresponding phase is an array of angles that carry much of the
information about where discernible objects are located in the image. The following
example illustrates these ideas in more detail.

EXAMPLE 4.14: Contributions of the spectrum and phase angle to image formation.

Figure 4.26(b) shows as an image the phase-angle array, ¢(u,v), of the DFT of Fig. 4.26(a), computed
using Eq. (4-88). Although there is no detail in this array that would lead us by visual analysis to associ-
ate it with the structure of its corresponding image, the information in this array is crucial in determin-
ing shape features of the image. To illustrate this, we reconstructed the boy’s image using only its phase
angle. The reconstruction consisted of computing the inverse DFT of Eq. (4-86) using ¢(u,v), but setting
|F(u,v)| = 1. Figure Fig.4.26(c) shows the result (the original result had much less contrast than is shown;
to bring out details important in this discussion, we scaled the result using Egs. (2-31) and (2-32), and
then enhanced it using histogram equalization). However, even after enhancement, it is evident that
much of the intensity information has been lost (remember, that information is carried by the spectrum,
which we did not use in the reconstruction). However, the shape features in 4.26(c) are unmistakably
from Fig. 4.26(a). This illustrates vividly the importance of the phase angle in determining shape char-
acteristics in an image.

Figure 4.26(d) was obtained by computing the inverse DFT Eq. (4-86), but using only the spectrum.
This means setting the exponential term to 1, which in turn implies setting the phase angle to 0. The
result is not unexpected. It contains only intensity information, with the dc term being the most domi-
nant. There is no shape information in the image because the phase was set to zero.

Finally, Figs. 4.26(e) and (f) show yet again the dominance of the phase in determining the spatial
feature content of an image. Figure 4.26(e) was obtained by computing the inverse DFT of Eq. (4-86)
using the spectrum of the rectangle from Fig. 4.23(a) and the phase angle from the boy’s image. The
boy’s features clearly dominate this result. Conversely, the rectangle dominates Fig. 4.26(f), which was
computed using the spectrum of the boy’s image and the phase angle of the rectangle.
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abc
difel it

FIGURE 4.26 (a) Boy image. (b) Phase angle. (c) Boy image reconstructed using only its phase angle (all shape features
are there, but the intensity information is missing because the spectrum was not used in the reconstruction). (d) Boy
image reconstructed using only its spectrum. (¢) Boy image reconstructed using its phase angle and the spectrum of
the rectangle in Fig. 4.23(a). (f) Rectangle image reconstructed using its phase and the spectrum of the boy’s image.

You will find it helpful
to review Eq. (4-48),
and the comments made
there regarding circular
convolution, as opposed
to the convolution we
studied in Section 3.4.

THE 2-D DISCRETE CONVOLUTION THEOREM

Extending Eq. (4-48) to two variables results in the following expression for 2-D
circular convolution:

M-1N-1
(FxW(EY) = Y, 3. Fommh(x=m.y=n) (+-94)

for x=0,1,2,...,M—-1and y=0,1,2,..., N -1. As in Eq. (4-48), Eq. (4-94) gives
one period of a 2-D periodic sequence. The 2-D convolution theorem is give by

(f*h)(x.y) & (F+H)(u,v) (4-95)
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The function products
are elementwise products,
as defined in Section 2.6.

We will discuss efficient
ways for computing the
DEFT in Section 4.11.

and, conversely,
(F(53) & < (Fx H)(w0) (4-96)

where F and H are the Fourier transforms of f and 4, respectively, obtained using
Eq. (4-67). As before, the double arrow is used to indicate that the left and right sides
of the expressions constitute a Fourier transform pair. Our interest in the remainder
of this chapter is in Eq. (4-95), which states that the Fourier transform of the spatial
convolution of fand 4, is the product of their transforms. Similarly, the inverse DFT
of the product (F« H)(u,v) yields (f * h)(x, y).

Equation (4-95) is the foundation of linear filtering in the frequency domain and,
as we will explain in Section 4.7, is the basis for all the filtering techniques discussed
in this chapter. As you will recall from Chapter 3, spatial convolution is the foun-
dation for spatial filtering, so Eq. (4-95) is the tie that establishes the equivalence
between spatial and frequency-domain filtering, as we have mentioned several times
before.

Ultimately, we are interested in the results of convolution in the spatial domain,
where we analyze images. However, the convolution theorem tell us that we have
two ways of computing the spatial convolution of two functions. We can do it directly
in the spatial domain with Eq. (3-35), using the approach described in Section 3.4
or, according to Eq. (4-95), we can compute the Fourier transform of each function,
multiply the transforms, and compute the inverse Fourier transform. Because we are
dealing with discrete quantities, computation of the Fourier transforms is carried
out using a DFT algorithm. This automatically implies periodicity, which means that
when we take the inverse Fourier transform of the product of the two transforms we
would get a circular (i.e., periodic) convolution, one period of which is given by Eq.
(4-94). The question is: under what conditions will the direct spatial approach and
the inverse Fourier transform method yield the same result? We arrive at the answer
by looking at a 1-D example first, and then extending the results to two variables.

The left column of Fig. 4.27 implements convolution of two functions, f and A,
using the 1-D equivalent of Eq. (3-35), which, because the two functions are of same
size, is written as

399

(f*m(x) = 3, f()h(x=m)

Recall from our explanation of Figs. 3.29 and 3.30 that the procedure consists of (1)
rotating (flipping) & by 180°, [see Fig. 4.27(c)], (2) translating the resulting function
by an amount x [Fig. 4.27(d)], and (3) for each value x of translation, computing the
entire sum of products in the right side of the equation. In terms of Fig. 4.27, this
means multiplying the function in Fig. 4.27(a) by the function in Fig. 4.27(d) for each
value of x. The displacement x ranges over all values required to completely slide &
across f. Figure 4.27(e) shows the convolution of these two functions. As you know,
convolution is a function of the displacement variable, x, and the range of x required
in this example to completely slide /4 past fis from 0 to 799.



00 o
bl =nllt =B

e
FIGURE 4.27
Left column:
Spatial
convolution
computed with
Eq. (3-35), using
the approach
discussed in
Section 3.4.
Right column:
Circular
convolution. The
solid line in (j)
is the result we
would obtain
using the DFT,
or, equivalently,
Eq. (4-48). This
erroneous result
can be remedied
by using zero
padding.
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If we use the DFT and the convolution theorem to try to obtain the same result
as in the left column of Fig. 4.27, we must take into account the periodicity inher-
ent in the expression for the DFT. This is equivalent to convolving the two periodic
functions in Figs. 4.27(f) and (g) (i.e., as Eqs. (4-46) and (4-47) indicate, the func-
tions their transforms have implied periodicity). The convolution procedure is the
same as we just discussed, but the two functions now are periodic. Proceeding with
these two functions as in the previous paragraph would yield the result in Fig. 4.27(j),
which obviously is incorrect. Because we are convolving two periodic functions, the
convolution itself is periodic. The closeness of the periods in Fig. 4.27 is such that
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The padding zeros could
be appended also at

the beginning of the
functions, or they could
be divided between the
beginning and end of the
functions. It is simpler to
append them at the end.

We use zero-padding
here for simplicity. Recall
from the discussion of
Fig. 3.39 that replicate
and mirror padding
generally yield better
results.

they interfere with each other to cause what is commonly referred to as wraparound
error. According to the convolution theorem, if we had computed the DFT of the
two 400-point functions, f and 4, multiplied the two transforms, and then computed
the inverse DFT, we would have obtained the erroneous 400-point segment of the
periodic convolution shown as a solid line in Fig. 4.27(j) (remember the limits of the
1-DDFTare u=0,1,2,..., M —1). This is also the result we would obtain if we used
Eq. (4-48) [the 1-D equivalent of Eq. (4-94)] to compute one period of the circular
convolution.

Fortunately, the solution to the wraparound error problem is simple. Consider
two functions, f(x) and A(x) composed of A and B samples, respectively. It can be
shown (Brigham [1988]) that if we append zeros to both functions so that they have
the same length, denoted by P, then wraparound is avoided by choosing

P>A+B-1 (4-97)

In our example, each function has 400 points, so the minimum value we could use is
P =799, which implies that we would append 399 zeros to the trailing edge of each
function. This procedure is called zero padding, as we discussed in Section 3.4. As
an exercise, you should convince yourself that if the periods of the functions in Figs.
4.27(f) and (g) were lengthened by appending to each period at least 399 zeros, the
result would be a periodic convolution in which each period is identical to the cor-
rect result in Fig. 4.27(e). Using the DFT via the convolution theorem would result
in a 799-point spatial function identical to Fig. 4.27(e). The conclusion, then, is that
to obtain the same convolution result between the “straight” representation of the
convolution equation approach in Chapter 3, and the DFT approach, functions in
the latter must be padded prior to computing their transforms.

Visualizing a similar example in 2-D is more difficult, but we would arrive at the
same conclusion regarding wraparound error and the need for appending zeros to
the functions. Let f(x,y) and A(x,y) be two image arrays of sizes A x B and C x D
pixels, respectively. Wraparound error in their circular convolution can be avoided
by padding these functions with zeros, as follows:

f(x,y) 0<x<A-1land 0Sy<B-1
fp(x’ Y) = (4_98)
0 A<x<Por BSy<Q
and
h 0<x<C-1and 0y<D-1
hy(y) = 1050) * el (4-99)
P 0 C<x<PorD<y<Q
with
P>A+C-1 (4-100)

and
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0>B+D-1 (4-101)

The resulting padded images are of size P x Q. If both arrays are of the same size,
M x N, then we require that P >22M —1and Q > 2N — 1. As arule, DFT algorithms
tend to execute faster with arrays of even size, so it is good practice to select P and
Q as the smallest even integers that satisty the preceding equations. If the two arrays
are of the same size, this means that P and Q are selected as:

P=2M (4-102)
and
0=2N (4-103)

Figure 4.31 in the next section illustrates the effects of wraparound error on images.

The two functions in Figs. 4.27(a) and (b) conveniently become zero before the
end of the sampling interval. If one or both of the functions were not zero at the end
of the interval, then a discontinuity would be created when zeros were appended
to the function to eliminate wraparound error. This is analogous to multiplying a
function by a box, which in the frequency domain would imply convolution of the
original transform with a sinc function (see Example 4.1). This, in turn, would create
so-called frequency leakage, caused by the high-frequency components of the sinc
function. Leakage produces a blocky effect on images. Although leakage can never
be totally eliminated, it can be reduced significantly by multiplying the sampled
function by another function that tapers smoothly to near zero at both ends of the
sampled record. This idea is to dampen the sharp transitions (and thus the high fre-
quency components) of the box. This approach, called windowing or apodizing,is an
important consideration when fidelity in image reconstruction (as in high-definition
graphics) is desired.

SUMMARY OF 2-D DISCRETE FOURIER TRANSFORM PROPERTIES

Table 4.3 summarizes the principal DFT definitions introduced in this chapter. We
will discuss the separability property in Section 4.11, where we also show how to
obtain the inverse DFT using a forward transform algorithm. Correlation will be
discussed in detail Chapter 12.

Table 4.4 summarizes some important DFT pairs. Although our focus is on dis-
crete functions, the last two entries in the table are Fourier transform pairs that can
be derived only for continuous variables (note the use of continuous variable nota-
tion).We include them here because, with proper interpretation, they are quite use-
ful in digital image processing. The differentiation pair can be used to derive the fre-
quency-domain equivalent of the Laplacian defined in Eq. (3-50) (see Problem 4.52).
The Gaussian pair is discussed in Section 4.7. Tables 4.1, 4.3 and 4.4 provide a sum-
mary of properties useful when working with the DFT. Many of these properties
are key elements in the development of the material in the rest of this chapter, and
some are used in subsequent chapters.
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TABLE 4.3
Summary of DFT
definitions and
corresponding
expressions.

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)
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Name

Discrete Fourier
transform (DFT) of

f(x,y)

Inverse discrete
Fourier transform
(IDFT) of F(u,v)

Spectrum

Phase angle

Polar representation

Power spectrum

Average value

Periodicity (k, and
k, are integers)

Convolution

Correlation

Separability

Obtaining the IDFT
using a DFT
algorithm

Expression(s)
M-1N-1
F(Lt 'U) f(x y)e—ij(w(/MH)y/N)
x=0y=0
1 M-1N-1
(x y) — F(u7v)ej277(ux/M+vy/N)
MN 0 v=0

u=

|F(u,v)| = [Rz(u,v) + Iz(u,v)T/2

_ -1 1(”71))
¢(u,v) = tan |:R(u,v)}

R = Real(F); I = Imag(F)

F(u,0) = |[F(u,v)|e )

P(u,v) = |F(u,0)|

_ 1 M-1N-1 1
f= W;};}f(xd) = WF(O,O)

F(u,v)=F(u+kM,v)=F(u,v+k,N)
=F(u+kj,v+k,N)

fy)=fx+kM.y) = f(x.y + k,N)
=f(x+kM,y+k,N)

M-1N-1

(fxm)(x.y)=> Y f(mn)h(x—m,y-n)
m=0n=0
M-1N-1 .

(fom)(xy) =D Y [ (mn)h(x+m,y+n)
m=0n=0

The 2-D DFT can be computed by computing 1-D DFT
transforms along the rows (columns) of the image, followed
by 1-D transforms along the columns (rows) of the result.
See Section 4.11.

M-1N-1 )
MNf (x.9)= 3, 3 F (e 2ty
u=0 v=0

This equation indicates that inputting F~ (u,v) into an
algorithm that computes the forward transform (right side
of above equation) yields MNf"(x, y). Taking the complex
conjugate and dividing by MN gives the desired inverse. See
Section 4.11.
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closed-form
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continuous
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Name DEFT Pairs
1) Symmetry See Table 4.1
properties
2) Linearity afi(x,y)+bf,(x,y) < aF (u,v) + bF, (u,v)
3) Translation F(x,y)e 2 M=o /N) oy By — g 0 — ;)
(general) Fx=x,y-y) & F(u’v)e—jZﬂ-(uxn/M +vy0/N)
4) Translation FO) (=)™ & F(u—M/2,v - N/2)
to center of e
the frequency f(x=M/2,y-N/2) & F(u,0)(-1)
rectangle,
(M/2,N/2)
5) Rotation f(r,0+6,) < F(w,0+86,)

r=yx*+y>  O=tan(y/x) w=yu*+v*  @=tan"(v/u)

6) Convolution fxh)(x,y) & (FeH)(u,v)

+
theorem (F+h)(x.y) & (1 MN)[(F % H)(w0)]
7) Correlation (f e h)(x,y) & (F'« H)(u,v)
+ )
theorem (F'+ m)(x.y) & (Y MN)[(F 5 H)(w0)]
8) Discrete unit 8(x,y) =1
impulse 1o MN&(u,v)
9) Rectangle rec[a,b] & qb SCTUA) SI(TVD) o)
(rua)  (wob)
. . JMN
10) Sine sin(2mux/ M + 277110y/N)<:>T[6(u + 14y, 0+ 0) = 8(u — uy,v - vy)]
11) Cosine cos(2muyx/M + 2wv0y/N)<:>%[8(u + 1y, 0+ vy) + 8(u — 1y, 0 — v, |

The following Fourier transform pairs are derivable only for continuous variables, denoted
as before by r and z for spatial variables and by u and v for frequency variables. These
results can be used for DFT work by sampling the continuous forms.

12) Differentiation N/ 9
(the expressions (E) (aiz

) 1(6.2) & (2 (2 F )
on the right

assume that 9" f(t,2) . m 0" f(t,2) . n
< (j2mpw)" F(u,v); < (j2mv)" F(u,v
f(Foo, £0) = 0. o™ (2me)" F(p.v) 7" (j2mv)" F(u.v)
13) Gaussian A2 e 7 () o A P27 (4 s a constant)

T Assumes that f(x,y) and h(x,y) have been properly padded. Convolution is associative, commutative, and
distributive. Correlation is distributive (see Table 3.5). The products are elementwise products (see Section 2.6).
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4.7 THE BASICS OF FILTERING IN THE FREQUENCY DOMAIN 1IN

In this section, we lay the groundwork for all the filtering techniques discussed in the
remainder of the chapter.

ADDITIONAL CHARACTERISTICS OF THE FREQUENCY DOMAIN

We begin by observing in Eq. (4-67) that each term of F(u,v) contains all values of
f(x,y), modified by the values of the exponential terms. Thus, with the exception
of trivial cases, it is usually impossible to make direct associations between specific
components of an image and its transform. However, some general statements can
be made about the relationship between the frequency components of the Fourier
transform and spatial features of an image. For instance, because frequency is direct-
ly related to spatial rates of change, it is not difficult intuitively to associate frequen-
cies in the Fourier transform with patterns of intensity variations in an image. We
showed in Section 4.6 that the slowest varying frequency component (1 = v = 0)
is proportional to the average intensity of an image. As we move away from the
origin of the transform, the low frequencies correspond to the slowly varying inten-
sity components of an image. In an image of a room, for example, these might cor-
respond to smooth intensity variations on the walls and floor. As we move further
away from the origin, the higher frequencies begin to correspond to faster and faster
intensity changes in the image. These are the edges of objects and other components
of an image characterized by abrupt changes in intensity.

Filtering techniques in the frequency domain are based on modifying the Fourier
transform to achieve a specific objective, and then computing the inverse DFT to get
us back to the spatial domain, as introduced in Section 2.6. It follows from Eq. (4-87)
that the two components of the transform to which we have access are the transform
magnitude (spectrum) and the phase angle. We learned in Section 4.6 that visual
analysis of the phase component generally is not very useful. The spectrum, however,
provides some useful guidelines as to the gross intensity characteristics of the image
from which the spectrum was generated. For example, consider Fig. 4.28(a), which
is a scanning electron microscope image of an integrated circuit, magnified approxi-
mately 2500 times.

Aside from the interesting construction of the device itself, we note two principal
features in this image: strong edges that run approximately at £45°, and two white,
oxide protrusions resulting from thermally induced failure. The Fourier spectrum
in Fig. 4.28(b) shows prominent components along the £45° directions that corre-
spond to the edges just mentioned. Looking carefully along the vertical axis in Fig.
4.28(b), we see a vertical component of the transform that is off-axis, slightly to the
left. This component was caused by the edges of the oxide protrusions. Note how the
angle of the frequency component with respect to the vertical axis corresponds to
the inclination (with respect to the horizontal axis of the image) of the long white
element. Note also the zeros in the vertical frequency component, corresponding to
the narrow vertical span of the oxide protrusions.

These are typical of the types of associations we can make in general between
the frequency and spatial domains. As we will show later in this chapter, even these
types of gross associations, coupled with the relationships mentioned previously
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FIGURE 4.28 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of (a).
(Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materials Research,
McMaster University, Hamilton, Ontario, Canada.)

between frequency content and rate of change of intensity levels in an image, can
lead to some very useful results. We will show in Section 4.8 the effects of modifying
various frequency ranges in the transform of Fig. 4.28(a).

FREQUENCY DOMAIN FILTERING FUNDAMENTALS

Filtering in the frequency domain consists of modifying the Fourier transform of an
image, then computing the inverse transform to obtain the spatial domain represen-
tation of the processed result. Thus, given (a padded) digital image, f(x,y), of size
P x Q pixels, the basic filtering equation in which we are interested has the form:

g(x,y) = Real {3 [H(u,0)F(u,v)]} (4-104)

where I is the IDFT, F(u,v) is the DFT of the input image, f(x,y), H(u,v) is a
filter transfer function (which we often call just a filter or filter function), and g(x,y)
is the filtered (output) image. Functions F, H,and g are arrays of size P x Q, the same
as the padded input image. The product H(u,v)F(u,v) is formed using elementwise
multiplication, as defined in Section 2.6. The filter transfer function modifies the
transform of the input image to yield the processed output, g(x, y). The task of speci-
fying H(u,v) is simplified considerably by using functions that are symmetric about
their center, which requires that F(u,v) be centered also. As explained in Section 4.6,
this is accomplished by multiplying the input image by (-1)**" prior to computing
its transform.”

"Some software implementations of the 2-D DFT (e.g., MATLAB) do not center the transform. This implies
that filter functions must be arranged to correspond to the same data format as the uncentered transform (i.e.,
with the origin at the top left). The net result is that filter transfer functions are more difficult to generate and
display. We use centering in our discussions to aid in visualization, which is crucial in developing a clear under-
standing of filtering concepts. Either method can be used in practice, provided that consistency is maintained.
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FIGURE 4.29

Result of filter-
ing the image in
Fig. 4.28(a) with
a filter transfer
function that sets
to 0 the dc term,
F(P/2,0/2),

in the centered
Fourier transform,
while leaving all
other transform
terms unchanged.

We are now in a position to consider filtering in detail. One of the simplest filter
transfer functions we can construct is a function H(u,v) that is 0 at the center of
the (centered) transform, and 1’s elsewhere. This filter would reject the dc term and

“pass” (i.e., leave unchanged) all other terms of F(u,v) when we form the product
H(u,v)F(u,v). We know from property 7 in Table 4.3 that the dc term is responsible
for the average intensity of an image, so setting it to zero will reduce the average
intensity of the output image to zero. Figure 4.29 shows the result of this operation
using Eq. (4-104). As expected, the image became much darker. An average of zero
implies the existence of negative intensities. Therefore, although it illustrates the
principle, Fig. 4.29 is not a true representation of the original, as all negative intensi-
ties were clipped (set to 0) by the display.

As noted earlier, low frequencies in the transform are related to slowly varying
intensity components in an image, such as the walls of a room or a cloudless sky in
an outdoor scene. On the other hand, high frequencies are caused by sharp transi-
tions in intensity, such as edges and noise. Therefore, we would expect that a func-
tion H(u,v) that attenuates high frequencies while passing low frequencies (called a
lowpass filter, as noted before) would blur an image, while a filter with the opposite
property (called a highpass filter) would enhance sharp detail, but cause a reduction
in contrast in the image. Figure 4.30 illustrates these effects. For example, the first
column of this figure shows a lowpass filter transfer function and the corresponding
filtered image. The second column shows similar results for a highpass filter. Note
the similarity between Figs. 4.30(e) and Fig. 4.29. The reason is that the highpass
filter function shown eliminates the dc term, resulting in the same basic effect that
led to Fig. 4.29. As illustrated in the third column, adding a small constant to the
filter does not affect sharpening appreciably, but it does prevent elimination of the
dc term and thus preserves tonality.

Equation (4-104) involves the product of two functions in the frequency domain
which, by the convolution theorem, implies convolution in the spatial domain. We
know from the discussion in Section 4.6 that we can expect wraparound error if
the functions in question are not padded. Figure 4.31 shows what happens when
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FIGURE 4.30 Top row: Frequency domain filter transfer functions of (a) a lowpass filter, (b) a highpass filter, and (c)

an offset highpass filter. Bottom row: Corresponding filtered images obtained using Eq. (4-104). The offset in (c) is
a = 0.85, and the height of H(u,v) is 1. Compare (f) with Fig. 4.28(a).

—————
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FIGURE 4.31 (a) A simple image. (b) Result of blurring with a Gaussian lowpass filter without padding. (c) Result of
lowpass filtering with zero padding. Compare the vertical edges in (b) and (c).
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we apply Eq. (4-104) without padding. Figure 4.31(a) shows a simple image, and
Fig. 4.31(b) is the result of lowpass filtering the image with a Gaussian lowpass filter
of the form shown in Fig. 4.30(a). As expected, the image is blurred. However, the
blurring is not uniform; the top white edge is blurred, but the sides are not. Pad-
ding the input image with zeros according to Egs. (4-98) and (4-99) before applying
Eq. (4-104) resulted in the filtered image in Fig. 4.31(c). This result is as expected,
with a uniform dark border resulting from zero padding (see Fig. 3.33 for an expla-
nation of this effect).

Figure 4.32 illustrates the reason for the discrepancy between Figs. 4.31(b) and (c).
The dashed area in Fig. 4.32(a) corresponds to the image in Fig. 4.31(a). The other
copies of the image are due to the implied periodicity of the image (and its trans-
form) implicit when we use the DFT, as explained in Section 4.6. Imagine convolving
the spatial representation of the blurring filter (i.e., the corresponding spatial ker-
nel) with this image. When the kernel is centered on the top of the dashed image, it
will encompass part of the image and also part of the bottom of the periodic image
immediately above it. When a dark and a light region reside under the filter, the
result is a mid-gray, blurred output. However, when the kernel is centered on the top
right side of the image, it will encompass only light areas in the image and its right
region. Because the average of a constant value is that same value, filtering will have
no effect in this area, giving the result in Fig. 4.31(b). Padding the image with 0’s cre-
ates a uniform border around each image of the periodic sequence, as Fig. 4.32(b)
shows. Convolving the blurring kernel with the padded “mosaic” of Fig. 4.32(b) gives
the correct result in Fig. 4.31(c). You can see from this example that failure to pad an
image prior to filtering can lead to unexpected results.

Thus far, the discussion has centered on padding the input image. However,
Eq. (4-104) also involves a filter transfer function that can be specified either in the

ab

FIGURE 4.32 (a) Image periodicity without image padding. (b) Periodicity after padding with 0’s (black). The dashed
areas in the center correspond to the image in Fig. 4.31(a). Periodicity is inherent when using the DFT. (The thin
white lines in both images are superimposed for clarity; they are not part of the data.)



Padding the two ends of
a function is the same
as padding one end,
provided that the total
number of zeros is the
same.
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FIGURE 4.33

(a) Filter transfer
function specified in
the (centered)
frequency domain.
(b) Spatial
representation (filter
kernel) obtained by
computing the IDFT
of (a).

(c) Result of
padding (b) to twice
its length (note the
discontinuities).

(d) Corresponding
filter in the frequen-
cy domain obtained
by computing the
DFT of (c). Note the
ringing caused by
the discontinuities
in (c). Part (b) of the
figure is below (a),
and (d) is below (c).
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spatial or in the frequency domain. But padding is done in the spatial domain, which
raises an important question about the relationship between spatial padding and
filter functions specified directly in the frequency domain.

It would be reasonable to conclude that the way to handle padding of a frequency
domain transfer function is to construct the function the same size as the unpad-
ded image, compute the IDFT of the function to obtain the corresponding spatial
representation, pad that representation in the spatial domain, and then compute its
DFT to return to the frequency domain. The 1-D example in Fig. 4.33 illustrates the
pitfalls in this approach.

Figure 4.33(a) shows a 1-D ideal lowpass filter transfer function in the frequency
domain. The function is real and has even symmetry, so we know from property 8§
in Table 4.1 that its IDFT will be real and symmetric also. Figure 4.33(b) shows the
result of multiplying the elements of the transfer function by (-1)* and computing
its IDFT to obtain the corresponding spatial filter kernel. The result is shown in
Fig. 4.33(b). It is evident in this figure that the extremes of this spatial function are
not zero. Zero-padding the function would create two discontinuities, as Fig. 4.33(c)
shows. To return to the frequency domain, we compute the forward DFT of the
spatial, padded function. As Fig. 4.33(d) shows, the discontinuities in the padded
function caused ringing in its frequency domain counterpart.
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The preceding results tell us that we cannot pad the spatial representation of a
frequency domain transfer function in order to avoid wraparound error. Our objec-
tive is to work with specified filter shapes in the frequency domain without having to
be concerned with truncation issues. An alternative is to pad images and then create
the desired filter transfer function directly in the frequency domain, this function
being of the same size as the padded images (remember, images and filter transfer
functions must be of the same size when using the DFT). Of course, this will result
in wraparound error because no padding is used for the filter transfer function, but
this error is mitigated significantly by the separation provided by padding the image,
and it is preferable to ringing. Smooth transfer functions (such as those in Fig. 4.30)
present even less of a problem. Specifically, then, the approach we will follow in this
chapter is to pad images to size P x Q and construct filter transfer functions of the
same dimensions directly in the frequency domain. As explained earlier, P and Q
are given by Egs. (4-100) and (4-101).

We conclude this section by analyzing the phase angle of filtered images. We can
express the DFT in terms of its real and imaginary parts: F(u,v) = R(u,v) + jI(u,v).
Equation (4-104) then becomes

g(x,y) = [ H(u,v)R(u,v) + jH (u,0) (1,0)] (4-105)

The phase angle is computed as the arctangent of the ratio of the imaginary and the
real parts of a complex number [see Eq. (4-88)]. Because H(u,v) multiplies both
R and I, it will cancel out when this ratio is formed. Filters that affect the real and
imaginary parts equally, and thus have no effect on the phase angle, are appropri-
ately called zero-phase-shift filters. These are the only types of filters considered in
this chapter.

The importance of the phase angle in determining the spatial structure of an
image was vividly illustrated in Fig. 4.26. Thus, it should be no surprise that even
small changes in the phase angle can have dramatic (and usually undesirable) effects
on the filtered output. Figures 4.34(b) and (c) illustrate the effect of changing the
phase angle array of the DFT of Fig. 4.34(a) (the |F(u,v)| term was not changed in
either case). Figure 4.34(b) was obtained by multiplying the phase angle, ¢(u,v), in
Eq. (4-86) by —1 and computing the IDFT. The net result is a reflection of every pixel
in the image about both coordinate axes. Figure 4.34(c) was obtained by multiply-
ing the phase term by 0.25 and computing the IDFT. Even a scale change rendered
the image almost unrecognizable. These two results illustrate the advantage of using
frequency-domain filters that do not alter the phase angle.

SUMMARY OF STEPS FOR FILTERING IN THE FREQUENCY DOMAIN

The process of filtering in the frequency domain can be summarized as follows:

1. Given an input image f(x,y) of size M x N, obtain the padding sizes P and Q
using Egs. (4-102) and (4-103); thatis, P =2M and Q = 2N.
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FIGURE 4.34 (a) Original image. (b) Image obtained by multiplying the phase angle array by —1 in Eq. (4-86) and
computing the IDFT. (c¢) Result of multiplying the phase angle by 0.25 and computing the IDFT. The magnitude of
the transform, |F(u,v)|, used in (b) and (c) was the same.

See Section 2.6 for a
definition of elementwise
operations.

. Form a padded’ image f,(x,y) of size Px Q using zero-, mirror-, or replicate

padding (see Fig. 3.39 for a comparison of padding methods).

- Multiply f,(x,y) by (=1)*" to center the Fourier transform on the P x Q fre-

quency rectangle.

. Compute the DFT, F(u,v), of the image from Step 3.
. Construct a real, symmetric filter transfer function, H(u,v), of size P x Q with

center at (P/2,0/2).

. Form the product G(u,v) = H(u,v)F(u,v) using elementwise multiplication; that

is, G(i,k) = H(i,k)F(i,k) fori=0,1,2,...., M—1 and k=0,1,2,...,N - 1.

. Obtain the filtered image (of size P x Q) by computing the IDFT of G(u,v) :

g, (x,y)= (real [S"l {G(u, v)}] )(—1)*”

. Obtain the final filtered result, g(x,y), of the same size as the input image, by

extracting the M x N region from the top, left quadrant of g,(x,y).

We will discuss the construction of filter transfer functions (Step 5) in the following
sections of this chapter. In theory, the IDFT in Step 7 should be real because f(x,y)
is real and H(u,v) is real and symmetric. However, parasitic complex terms in the
IDFT resulting from computational inaccuracies are not uncommon. Taking the real
part of the result takes care of that. Multiplication by (-1)** cancels out the multi-
plication by this factor in Step 3.

"Sometimes we omit padding when doing “quick” experiments to get an idea of filter performance, or when
trying to determine quantitative relationships between spatial features and their effect on frequency domain
components, particularly in band and notch filtering, as explained later in Section 4.10 and in Chapter 5.
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FIGURE 4.35
(a) An M x N
image, f.
(b) Padded image,
f, of size Px Q.
(c) Result of
multiplying f, by
(_1)X+y.
(d) Spectrum of
F. (e) Centered
Gaussian lowpass
filter transfer
function, H, of size
PxQ.
(f) Spectrum of
the product HF.
(g) Image g, the
real part of the
IDFT of HF, mul-
tiplied by (-1)**”.
(h) Final result,
g, obtained by
extracting the first
M rows and N
columns of g,,.

See Section 2.6 for a
definition of elementwise
operations.

Figure 4.35 illustrates the preceding steps using zero padding. The figure legend
explains the source of each image. If enlarged, Fig. 4.35(c) would show black dots
interleaved in the image because negative intensities, resulting from the multiplica-
tion of f, by (1), are clipped at 0 by the display. Note in Fig. 4.35(h) the charac-
teristic dark border of by lowpass filtered images obtained using zero padding.

CORRESPONDENCE BETWEEN FILTERING IN THE SPATIAL AND
FREQUENCY DOMAINS

As mentioned several times before, the link between filtering in the spatial and fre-
quency domains is the convolution theorem. Earlier in this section, we defined fil-
tering in the frequency domain as the elementwise product of a filter transfer func-
tion, H(u,v), and F(u,v), the Fourier transform of the input image. Given H (u,v),
suppose that we want to find its equivalent kernel in the spatial domain. If we let
f(x,y)=46(x,y), it follows from Table 4.4 that F(u,v) =1. Then, from Eq. (4-104),
the filtered output is I™'{ H(u,v)}. This expression as the inverse transform of the
frequency domain filter transfer function, which is the corresponding kernel in the



As mentioned in Table
4.4, the forward and
inverse Fourier trans-
forms of Gaussians are
valid only for continuous
variables. To use discrete
formulations, we sample
the continuous forms.
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spatial domain. Conversely, it follows from a similar analysis and the convolution
theorem that, given a spatial filter kernel, we obtain its frequency domain repre-
sentation by taking the forward Fourier transform of the kernel. Therefore, the two
filters form a Fourier transform pair:

h(x,y) © H(u,v) (4-106)

where h(x,y) is the spatial kernel. Because this kernel can be obtained from the
response of a frequency domain filter to an impulse, 4(x, y) sometimes is referred to
as the impulse response of H(u,v). Also, because all quantities in a discrete imple-
mentation of Eq. (4-106) are finite, such filters are called finite impulse response
(FIR) filters. These are the only types of linear spatial filters considered in this book.

We discussed spatial convolution in Section 3.4, and its implementation in
Eq. (3-35), which involved convolving functions of different sizes. When we use the
DFT to compute the transforms used in the convolution theorem, it is implied that
we are convolving periodic functions of the same size, as explained in Fig. 4.27. For
this reason, as explained earlier, Eq. (4-94) is referred to as circular convolution.

When computational speed, cost, and size are important parameters, spatial con-
volution filtering using Eq. (3-35) is well suited for small kernels using hardware
and/or firmware, as explained in Section 4.1. However, when working with general-
purpose machines, frequency-domain methods in which the DFT is computed using
a fast Fourier transform (FFT) algorithm can be hundreds of times faster than using
spatial convolution, depending on the size of the kernels used, as you saw in Fig. 4.2.
We will discuss the FFT and its computational advantages in Section 4.11.

Filtering concepts are more intuitive in the frequency domain, and filter design
often is easier there. One way to take advantage of the properties of both domains
is to specify a filter in the frequency domain, compute its IDFT, and then use the
properties of the resulting, full-size spatial kernel as a guide for constructing smaller
kernels. This is illustrated next (keep in mind that the Fourier transform and its
inverse are linear processes (see Problem 4.24), so the discussion is limited to linear
filtering). In Example 4.15, we illustrate the converse, in which a spatial kernel is
given, and we obtain its full-size frequency domain representation. This approach is
useful for analyzing the behavior of small spatial kernels in the frequency domain.

Frequency domain filters can be used as guides for specifying the coefficients of
some of the small kernels we discussed in Chapter 3. Filters based on Gaussian func-
tions are of particular interest because, as noted in Table 4.4, both the forward and
inverse Fourier transforms of a Gaussian function are real Gaussian functions. We
limit the discussion to 1-D to illustrate the underlying principles. Two-dimensional
Gaussian transfer functions are discussed later in this chapter.

Let H(u) denote the 1-D frequency domain Gaussian transfer function

H(u)= Ae™* (4-107)

where o is the standard deviation of the Gaussian curve. The kernel in the spatial
domain is obtained by taking the inverse DFT of H(u) (see Problem 4.48):

h(x) =~2moA e (4-108)
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FIGURE 4.36

(a) A 1-D Gaussian
lowpass transfer
function in the
frequency domain.
(b) Corresponding
kernel in the spatial
domain. (c) Gauss-
ian highpass trans-
fer function in the
frequency domain.
(d) Corresponding
kernel. The small
2-D kernels shown
are kernels we used
in Chapter 3.

These two equations are important for two reasons: (1) They are a Fourier trans-
form pair, both components of which are Gaussian and real. This facilitates analysis
because we do not have to be concerned with complex numbers. In addition, Gauss-
ian curves are intuitive and easy to manipulate. (2) The functions behave recipro-
cally. When H(u) has a broad profile (large value of o), i(x) has a narrow profile,
and vice versa. In fact, as o approaches infinity, H () tends toward a constant func-
tion and A(x) tends toward an impulse, which implies no filtering in either domain.

Figures 4.36(a) and (b) show plots of a Gaussian lowpass filter transfer function
in the frequency domain and the corresponding function in the spatial domain. Sup-
pose that we want to use the shape of A(x) in Fig. 4.36(b) as a guide for specifying
the coefficients of a small kernel in the spatial domain. The key characteristic of the
function in Fig. 4.36(b) is that all its values are positive. Thus, we conclude that we
can implement lowpass filtering in the spatial domain by using a kernel with all posi-
tive coefficients (as we did in Section 3.5). For reference, Fig. 4.36(b) also shows two
of the kernels discussed in that section. Note the reciprocal relationship between
the width of the Gaussian functions, as discussed in the previous paragraph. The nar-
rower the frequency domain function, the more it will attenuate the low frequencies,
resulting in increased blurring. In the spatial domain, this means that a larger kernel
must be used to increase blurring, as we illustrated in Example 3.11.

As you know from Section 3.7, we can construct a highpass filter from a lowpass
filter by subtracting a lowpass function from a constant. We working with Gauss-
ian functions, we can gain a little more control over filter function shape by using
a so-called difference of Gaussians, which involves two lowpass functions. In the
frequency domain, this becomes

B e—u2 1203

H(u)= Ae " - (4-109)

with A > B and o, > 0,. The corresponding function in the spatial domain is

H (1) H(u)
\\ u u
h(x) h(x)
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h(x) = 270, Ae?™ 7 = 2ma,Be T (4-110)

Figures 4.36(c) and (d) show plots of these two equations. We note again the reci-
procity in width, but the most important feature here is that /4(x) has a positive cen-
ter term with negative terms on either side. The small kernels shown in Fig. 4.36(d),
which we used in Chapter 3 for sharpening, “capture” this property, and thus illus-
trate how knowledge of frequency domain filtering can be used as the basis for
choosing coefficients of spatial kernels.

Although we have gone through significant effort to get here, be assured that it is
impossible to truly understand filtering in the frequency domain without the foun-
dation we have just established. In practice, the frequency domain can be viewed as
a “laboratory” in which we take advantage of the correspondence between frequen-
cy content and image appearance. As will be demonstrated numerous times later in
this chapter, some tasks that would be exceptionally difficult to formulate direct-
ly in the spatial domain become almost trivial in the frequency domain. Once we
have selected a specific filter transfer function via experimentation in the frequency
domain, we have the option of implementing the filter directly in that domain using
the FFT, or we can take the IDFT of the transfer function to obtain the equivalent
spatial domain function. As we showed in Fig. 4.36, one approach is to specify a
small spatial kernel that attempts to capture the “essence” of the full filter function
in the spatial domain. A more formal approach is to design a 2-D digital filter by
using approximations based on mathematical or statistical criteria, as we discussed
in Section 3.7.

EXAMPLE 4.15: Obtaining a frequency domain transfer function from a spatial kernel.

In this example, we start with a spatial kernel and show how to generate its corresponding filter trans-
fer function in the frequency domain. Then, we compare the filtering results obtained using frequency
domain and spatial techniques. This type of analysis is useful when one wishes to compare the perfor-
mance of a given kernel against one or more “full” filter candidates in the frequency domain, or to gain a
deeper understanding about the performance of a kernel in the spatial domain. To keep matters simple,
we use the 3 x 3 vertical Sobel kernel from Fig. 3.50(e). Figure 4.37(a) shows a 600 x 600-pixel image,
f(x,y), that we wish to filter, and Fig. 4.37(b) shows its spectrum.

Figure 4.38(a) shows the Sobel kernel, i(x,y) (the perspective plot is explained below). Because
the input image is of size 600 x 600 pixels and the kernel is of size 3 x 3, we avoid wraparound error in
the frequency domain by padding f and 4 with zeros to size 602 x 602 pixels, according to Egs. (4-100)
and (4-101). At first glance, the Sobel kernel appears to exhibit odd symmetry. However, its first element
is not 0, as required by Eq. (4-81). To convert the kernel to the smallest size that will satisfy Eq. (4-83),
we have to add to it a leading row and column of 0’s, which turns it into an array of size 4 x 4. We can
embed this array into a larger array of zeros and still maintain its odd symmetry if the larger array is of
even dimensions (as is the 4 x 4 kernel) and their centers coincide, as explained in Example 4.10. The
preceding comments are an important aspect of filter generation. If we preserve the odd symmetry with
respect to the padded array in forming /,(x, y), we know from property 9 in Table 4.1 that H (u,v) will
be purely imaginary. As we show at the end of this example, this will yield results that are identical to
filtering the image spatially using the original kernel A(x,y). If the symmetry were not preserved, the
results would no longer be the same.
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FIGURE 4.37

(a) Image of a
building, and
(b) its Fourier
spectrum.

The procedure used to generate H(u,v) is: (1) multiply /,(x,y) by (=1)*" to center the frequency
domain filter; (2) compute the forward DFT of the result in (1) to generate H(u,v); (3) set the real
part of H(u,v) to 0 to account for parasitic real parts (we know that H has to be purely imaginary
because /1, is real and odd); and (4) multiply the result by (—1)“"". This last step reverses the multiplica-
tion of H(u,v) by (-1)**", which is implicit when A(x, y) was manually placed in the center of /,(x, y).
Figure 4.38(a) shows a perspective plot of H(u,v), and Fig. 4.38(b) shows H(u,v) as an image. Note
the antisymmetry in this image about its center, a result of H(u,v) being odd. Function H(u,v) is used
as any other frequency domain filter transfer function. Figure 4.38(c) is the result of using the filter
transfer function just obtained to filter the image in Fig. 4.37(a) in the frequency domain, using the step-
by-step filtering procedure outlined earlier. As expected from a derivative filter, edges were enhanced
and all the constant intensity areas were reduced to zero (the grayish tone is due to scaling for display).
Figure 4.38(d) shows the result of filtering the same image in the spatial domain with the Sobel kernel
h(x,y), using the procedure discussed in Section 3.6. The results are identical.

4.8 IMAGE SMOOTHING USING LOWPASS FREQUENCY DOMAIN
FILTERS |

The remainder of this chapter deals with various filtering techniques in the frequency
domain, beginning with lowpass filters. Edges and other sharp intensity transitions
(such as noise) in an image contribute significantly to the high frequency content
of its Fourier transform. Hence, smoothing (blurring) is achieved in the frequency
domain by high-frequency attenuation; that is, by lowpass filtering. In this section,
we consider three types of lowpass filters: ideal, Butterworth, and Gaussian. These
three categories cover the range from very sharp (ideal) to very smooth (Gaussian)
filtering. The shape of a Butterworth filter is controlled by a parameter called the
filter order. For large values of this parameter, the Butterworth filter approaches
the ideal filter. For lower values, the Butterworth filter is more like a Gaussian filter.
Thus, the Butterworth filter provides a transition between two “extremes.” All filter-
ing in this section follows the procedure outlined in the previous section, so all filter
transfer functions, H(u,v), are understood to be of size P x Q; that is, the discrete
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FIGURE 4.38

(a) A spatial
kernel and per-
spective plot of
its corresponding
frequency domain
filter transfer
function.

(b) Transfer
function shown as
an image.

(c) Result of
filtering

Fig. 4.37(a) in the
frequency domain
with the transfer
function in (b).
(d) Result of
filtering the same
image in the
spatial domain
with the kernel

in (a). The results
are identical.
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frequency variables are in the range ©=0,1,2,...,P—1 and v=0,1,2,...,0-1,
where P and Q are the padded sizes given by Egs. (4-100) and (4-101).

IDEAL LOWPASS FILTERS

A 2-D lowpass filter that passes without attenuation all frequencies within a circle of
radius from the origin, and “cuts off” all frequencies outside this, circle is called an
ideal lowpass filter (1ILPF); it is specified by the transfer function

1 if D(u,v) < D,

H(u,v) = .
W= it Duw) > D,

(4-111)

where D, is a positive constant, and D(u,v) is the distance between a point (,v) in
the frequency domain and the center of the P x Q frequency rectangle; that is,

D(u,v) = [(u - P2) +(v - Q/Z)ZT/Z (4-112)
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FIGURE 4.39 (a) Perspective plot of an ideal lowpass-filter transfer function. (b) Function displayed as an image.
(c) Radial cross section.

where, as before, P and Q are the padded sizes from Egs. (4-102) and (4-103).
Figure 4.39(a) shows a perspective plot of transfer function H(u,v) and Fig. 4.39(b)
shows it displayed as an image. As mentioned in Section 4.3, the name ideal indicates
that all frequencies on or inside a circle of radius D, are passed without attenuation,
whereas all frequencies outside the circle are completely attenuated (filtered out).
The ideal lowpass filter transfer function is radially symmetric about the origin. This
means that it is defined completely by a radial cross section, as Fig. 4.39(c) shows. A
2-D representation of the filter is obtained by rotating the cross section 360°.

For an ILPF cross section, the point of transition between the values H(u,v) =1
and H(u,v) = 0 is called the cutoff frequency. In Fig. 4.39, the cutoff frequency is D,,.
The sharp cutoff frequency of an ILPF cannot be realized with electronic compo-
nents, although they certainly can be simulated in a computer (subject to the con-
strain that the fastest possible transition is limited by the distance between pixels).

The lowpass filters in this chapter are compared by studying their behavior as a
function of the same cutoff frequencies. One way to establish standard cutoff fre-
quency loci using circles that enclose specified amounts of total image power P,
which we obtain by summing the components of the power spectrum of the padded
images at each point (u,v), foru=0,1,2,...,P-1land v=0,1,2,...,0 —1; that is,

1

P = PZ_()QZ_;P(u,v) (4-113)

where P(u,v) is given by Eq. (4-89). If the DFT has been centered, a circle of radius
D, with origin at the center of the frequency rectangle encloses a percent of the
power, where

a= 100{22 P(u,v)/PT} (4-114)

and the summation is over values of (u,v) that lie inside the circle or on its boundary.
Figures 4.40(a) and (b) show a test pattern image and its spectrum. The cir-
cles superimposed on the spectrum have radii of 10, 30, 60, 160, and 460 pixels,
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FIGURE 4.40 (a) Test pattern of size 688 x 688 pixels, and (b) its spectrum. The spectrum is dou-
ble the image size as a result of padding, but is shown half size to fit. The circles have radii of
10,30, 60, 160, and 460 pixels with respect to the full-size spectrum. The radii enclose 86.9,92.8,
95.1,97.6, and 99.4% of the padded image power, respectively.

respectively, and enclosed the percentages of total power listed in the figure caption.
The spectrum falls off rapidly, with close to 87% of the total power being enclosed
by a relatively small circle of radius 10. The significance of this will become evident
in the following example.

EXAMPLE 4.16: Image smoothing in the frequency domain using lowpass filters.

Figure 4.41 shows the results of applying ILPFs with cutoff frequencies at the radii shown in Fig. 4.40(b).
Figure 4.41(b) is useless for all practical purposes, unless the objective of blurring is to eliminate all
detail in the image, except the “blobs” representing the largest objects. The severe blurring in this image
is a clear indication that most of the sharp detail information in the image is contained in the 13% power
removed by the filter. As the filter radius increases, less and less power is removed, resulting in less blur-
ring. Note that the images in Figs. 4.41(c) through (e) contain significant “ringing,” which becomes finer
in texture as the amount of high frequency content removed decreases. Ringing is visible even in the
image in which only 2% of the total power was removed [Fig. 4.41(e)]. This ringing behavior is a char-
acteristic of ideal filters, as we have mentioned several times before. Finally, the result for « = 99.4% in
Fig. 4.41(f) shows very slight blurring and almost imperceptible ringing but, for the most part, this image
is close to the original. This indicates that little edge information is contained in the upper 0.6% of the
spectrum power removed by the ILPF.

It is clear from this example that ideal lowpass filtering is not practical. However, it is useful to study
the behavior of ILPFs as part of our development of filtering concepts. Also, as shown in the discussion
that follows, some interesting insight is gained by attempting to explain the ringing property of ILPFs
in the spatial domain.
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FIGURE 4.41 (a) Original image of size 688 x 688 pixels. (b)—(f) Results of filtering using ILPFs with cutoff frequencies
set at radii values 10, 30, 60, 160, and 460, as shown in Fig. 4.40(b). The power removed by these filters was 13.1,7.2,
4.9,2.4,and 0.6% of the total, respectively. We used mirror padding to avoid the black borders characteristic of zero
padding, as illustrated in Fig. 4.31(c).

The blurring and ringing properties of ILPFs can be explained using the convolu-
tion theorem. Figure 4.42(a) shows an image of a frequency-domain ILPF transfer
function of radius 15 and size 1000 x 1000 pixels. Figure 4.42(b) is the spatial repre-
sentation, A(x, y), of the ILPF, obtained by taking the IDFT of (a) (note the ringing).
Figure 4.42(c) shows the intensity profile of a line passing through the center of (b).
This profile resembles a sinc function.” Filtering in the spatial domain is done by
convolving the function in Fig. 4.42(b) with an image. Imagine each pixel in an image
as being a discrete impulse whose strength is proportional to the intensity of the
image at that location. Convolving this sinc-like function with an impulse copies (i.e.,
shifts the origin of) the function to the location of the impulse. That is, convolution

TAlthough this profile resembles a sinc function, the transform of an ILPF is actually a Bessel function whose
derivation is beyond the scope of this discussion. The important point to keep in mind is that the inverse propor-
tionality between the “width” of the filter function in the frequency domain, and the “spread” of the width of the
lobes in the spatial function, still holds.
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FIGURE 4.42

(a) Frequency
domain ILPF
transfer function.
(b) Corresponding
spatial domain
kernel function.
(c) Intensity profile
of a horizontal line
through the center
of (b).
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makes a copy of the function in Fig. 4.42(b) centered on each pixel location in the
image. The center lobe of this spatial function is the principal cause of blurring, while
the outer, smaller lobes are mainly responsible for ringing. Because the “spread” of
the spatial function is inversely proportional to the radius of H(u,v), the larger D,
becomes (i,e, the more frequencies that are passed), the more the spatial function
approaches an impulse which, in the limit, causes no blurring at all when convolved
with the image. The converse happens as D, becomes smaller. This type of recipro-
cal behavior should be routine to you by now. In the next two sections, we show that
it is possible to achieve blurring with little or no ringing, an important objective in
lowpass filtering.

GAUSSIAN LOWPASS FILTERS

Gaussian lowpass filter (GLPF) transfer functions have the form

H(u,v) = e 2 (=02 (4-115)
where, as in Eq. (4-112), D(u,v) is the distance from the center of the P x Q fre-
quency rectangle to any point, (#,v), contained by the rectangle. Unlike our earlier
expressions for Gaussian functions, we do not use a multiplying constant here in
order to be consistent with the filters discussed in this and later sections, whose
highest value is 1. As before, o is a measure of spread about the center. By letting
o = D,, we can express the Gaussian transfer function in the same notation as other
functions in this section:

H(u,v) = ¢ 270200 (4-116)
where D, is the cutoff frequency. When D(u,v) = D, the GLPF transfer function is
down to 0.607 of its maximum value of 1.0.

From Table 4.4, we know that the inverse Fourier transform of a frequency-
domain Gaussian function is Gaussian also. This means that a spatial Gaussian filter
kernel, obtained by computing the IDFT of Eq. (4-115) or (4-116), will have no
ringing. As property 13 of Table 4.4 shows, the same inverse relationship explained
earlier for ILPFs is true also of GLPFs. Narrow Gaussian transfer functions in the
frequency domain imply broader kernel functions in the spatial domain, and vice
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FIGURE 4.43 (a) Perspective plot of a GLPF transfer function. (b) Function displayed as an image. (c) Radial cross
sections for various values of D,,.

versa. Figure 4.43 shows a perspective plot, image display, and radial cross sections
of a GLPF transfer function.

EXAMPLE 4.17: Image smoothing in the frequency domain using Gaussian lowpass filters.

Figure 4.44 shows the results of applying the GLPF of Eq. (4-116) to Fig. 4.44(a), with D, equal to the five
radii in Fig. 4.40(b). Compared to the results obtained with an ILPF (Fig. 4.41), we note a smooth transi-
tion in blurring as a function of increasing cutoff frequency. The GLPF achieved slightly less smoothing
than the ILPF. The key difference is that we are assured of no ringing when using a GLPF. This is an
important consideration in practice, especially in situations in which any type of artifact is unacceptable,
as in medical imaging. In cases where more control of the transition between low and high frequencies
about the cutoff frequency are needed, the Butterworth lowpass filter discussed next presents a more
suitable choice. The price of this additional control over the filter profile is the possibility of ringing, as
you will see shortly.

BUTTERWORTH LOWPASS FILTERS

The transfer function of a Butterworth lowpass filter (BLPF) of order #n, with cutoff
frequency at a distance D, from the center of the frequency rectangle, is defined as

1
1+ [D(u,v)/D, |

H(u,v) (4-117)

where D(u,v) is given by Eq. (4-112). Figure 4.45 shows a perspective plot, image
display, and radial cross sections of the BLPF function. Comparing the cross section
plots in Figs. 4.39,4.43, and 4.45, we see that the BLPF function can be controlled to
approach the characteristics of the ILPF using higher values of n, and the GLPF for
lower values of n, while providing a smooth transition in from low to high frequen-
cies. Thus, we can use a BLPF to approach the sharpness of an ILPF function with
considerably less ringing.
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FIGURE 4.44 (a) Original image of size 688 x 688 pixels. (b)—(f) Results of filtering using GLPFs with cutoff frequen-
cies at the radii shown in Fig. 4.40. Compare with Fig. 4.41. We used mirror padding to avoid the black borders
characteristic of zero padding.
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FIGURE 4.45 (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Function displayed as an image.
(c) Radial cross sections of BLPFs of orders 1 through 4.
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EXAMPLE 4.18: Image smoothing using a Butterworth lowpass filter.

Figures 4.46(b)-(f) show the results of applying the BLPF of Eq. (4-117) to Fig. 4.46(a), with cutoff
frequencies equal to the five radii in Fig. 4.40(b), and with n = 2.25. The results in terms of blurring are
between the results obtained with using ILPFs and GLPFs. For example, compare Fig. 4.46(b), with
Figs. 4.41(b) and 4.44(b). The degree of blurring with the BLPF was less than with the ILPF, but more
than with the GLPFE.

The kernels in Figs. 4.47(a) The spatial domain kernel obtainable from a BLPF of order 1 has no ringing.

thfougﬂ (d) vere obtained  (Generally, ringing is imperceptible in filters of order 2 or 3, but can become sig-
t t- . . . . .

o fh'zrfiili,r;ﬁfn o nificant in filters of higher orders. Figure 4.47 shows a comparison between the spa-

Fig. 4.42. tial representation (i.e., spatial kernels) corresponding to BLPFs of various orders

(using a cutoff frequency of 5 in all cases). Shown also is the intensity profile along
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FIGURE 4.46 (a) Original image of size 688 x 688 pixels. (b)-(f) Results of filtering using BLPFs with cutoff frequen-
cies at the radii shown in Fig. 4.40 and n = 2.25. Compare with Figs. 4.41 and 4.44. We used mirror padding to avoid
the black borders characteristic of zero padding.




4.8 Image Smoothing Using Lowpass Frequency Domain Filters 281

J \V 4
abcd

efg&h

FIGURE 4.47 (a)—(d) Spatial representations (i.e., spatial kernels) corresponding to BLPF transfer functions of size
1000 x 1000 pixels, cut-off frequency of 5, and order 1, 2, 5, and 20, respectively. (e)-(h) Corresponding intensity
profiles through the center of the filter functions.

a horizontal scan line through the center of each spatial kernel. The kernel corre-
sponding to the BLPF of order 1 [see Fig. 4.47(a)] has neither ringing nor negative
values. The kernel corresponding to a BLPF of order 2 does show mild ringing and
small negative values, but they certainly are less pronounced than would be the case
for an ILPF. As the remaining images show, ringing becomes significant for higher-
order filters. A BLPF of order 20 has a spatial kernel that exhibits ringing charac-
teristics similar to those of the ILPF (in the limit, both filters are identical). BLPFs
of orders 2 to 3 are a good compromise between effective lowpass filtering and
acceptable spatial-domain ringing. Table 4.5 summarizes the lowpass filter transfer
functions discussed in this section.

ADDITIONAL EXAMPLES OF LOWPASS FILTERING

In the following discussion, we show several practical applications of lowpass filter-
ing in the frequency domain. The first example is from the field of machine per-
ception with application to character recognition; the second is from the printing
and publishing industry; and the third is related to processing satellite and aerial
images. Similar results can be obtained using the lowpass spatial filtering techniques
discussed in Section 3.5. We use GLPFs in all examples for consistency, but simi-
lar results can be obtained using BLPFs. Keep in mind that images are padded to
double size for filtering, as indicated by Egs. (4-102) and (4-103), and filter transfer
functions have to match padded-image size. The values of D, used in the following
examples reflect this doubled filter size.
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TABLE 4.5

Lowpass filter transfer functions. D, is the cutoff frequency, and » is the order of the Butterworth filter.

Ideal

H(u,v)= {

We will cover unsharp
masking in the frequency
domain in Section 4.9.

ab

FIGURE 4.48

(a) Sample text
of low resolution
(note the broken
characters in the
magnified view).
(b) Result of
filtering with a
GLPF,

showing that gaps
in the broken
characters were
joined.

1 if D(uw)< D,
0 if D(u,v)> D,

Gaussian Butterworth

~D*(u,v)/2D; 1

Hu,v)=e H(u,v) = o
1+ [D(u,v)/Dy ]

Figure 4.48 shows a sample of text of low resolution. One encounters text like
this, for example, in fax transmissions, duplicated material, and historical records.
This particular sample is free of additional difficulties like smudges, creases, and
torn sections. The magnified section in Fig. 4.48(a) shows that the characters in this
document have distorted shapes due to lack of resolution, and many of the charac-
ters are broken. Although humans fill these gaps visually without difficulty, machine
recognition systems have real difficulties reading broken characters. One approach
for handling this problem is to bridge small gaps in the input image by blurring
it. Figure 4.48(b) shows how well characters can be “repaired” by this simple pro-
cess using a Gaussian lowpass filter with D, = 120. It is typical to follow the type of

“repair” just described with additional processing, such as thresholding and thinning,
to yield cleaner characters. We will discuss thinning in Chapter 9 and thresholding
in Chapter 10.

Lowpass filtering is a staple in the printing and publishing industry, where it is
used for numerous preprocessing functions, including unsharp masking, as discussed
in Section 3.6.“Cosmetic” processing is another use of lowpass filtering prior to print-
ing. Figure 4.49 shows an application of lowpass filtering for producing a smoother,
softer-looking result from a sharp original. For human faces, the typical objective is
to reduce the sharpness of fine skin lines and small blemishes. The magnified sec-
tions in Figs. 4.49(b) and (c) clearly show a significant reduction in fine skin lines
around the subject’s eyes. In fact, the smoothed images look quite soft and pleasing.

Figure 4.50 shows two applications of lowpass filtering on the same image, but
with totally different objectives. Figure 4.50(a) is an 808 x 754 segment of a very high

Historically, certain computer
programs wetre written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the r

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the year

2000.
£

2000. .
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FIGURE 4.49 (a) Original 785 x 732 image. (b) Result of filtering using a GLPF with D, = 150. (c) Result of filtering
using a GLPF with D, = 130. Note the reduction in fine skin lines in the magnified sections in (b) and (c).

resolution radiometer (VHRR) image showing part of the Gulf of Mexico (dark)
and Florida (light) (note the horizontal sensor scan lines). The boundaries between
bodies of water were caused by loop currents. This image is illustrative of remotely
sensed images in which sensors have the tendency to produce pronounced scan lines
along the direction in which the scene is being scanned. (See Example 4.24 for an

abc

FIGURE 4.50 (a) 808 x 754 satellite image showing prominent horizontal scan lines. (b) Result of filtering using a
GLPF with D, = 50. (c) Result of using a GLPF with D, = 20. (Original image courtesy of NOAA.)
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In some applications of
highpass filtering, it is
advantageous to enhance
the high-frequencies of
the Fourier transform.

illustration of imaging conditions that can lead for such degradations.) Lowpass fil-
tering is a crude (but simple) way to reduce the effect of these lines, as Fig. 4.50(b)
shows (we consider more effective approaches in Sections 4.10 and 5.4). This image
was obtained using a GLFP with D, = 50. The reduction in the effect of the scan
lines in the smoothed image can simplify the detection of macro features, such as the
interface boundaries between ocean currents.

Figure 4.50(c) shows the result of significantly more aggressive Gaussian lowpass
filtering with D, = 20. Here, the objective is to blur out as much detail as possible
while leaving large features recognizable. For instance, this type of filtering could be
part of a preprocessing stage for an image analysis system that searches for features
in an image bank. An example of such features could be lakes of a given size, such
as Lake Okeechobee in the lower eastern region of Florida, shown in Fig. 4.50(c) as
a nearly round dark region surrounded by a lighter region. Lowpass filtering helps
to simplify the analysis by averaging out features smaller than the ones of interest.

4.9 IMAGE SHARPENING USING HIGHPASS FILTERS NN

We showed in the previous section that an image can be smoothed by attenuating
the high-frequency components of its Fourier transform. Because edges and other
abrupt changes in intensities are associated with high-frequency components, image
sharpening can be achieved in the frequency domain by highpass filtering, which
attenuates low-frequencies components without disturbing high-frequencies in the
Fourier transform. As in Section 4.8, we consider only zero-phase-shift filters that
are radially symmetric. All filtering in this section is based on the procedure outlined
in Section 4.7, so all images are assumed be padded to size P x Q [see Egs. (4-102)
and (4-103)], and filter transfer functions, H(u,v), are understood to be centered,
discrete functions of size P x Q.

IDEAL, GAUSSIAN, AND BUTTERWORTH HIGHPASS FILTERS FROM
LOWPASS FILTERS

As was the case with kernels in the spatial domain (see Section 3.7), subtracting a
lowpass filter transfer function from 1 yields the corresponding highpass filter trans-
fer function in the frequency domain:

Hyp(u,v)=1- Hp(u,v) (4-118)

where H|,(u,v) is the transfer function of a lowpass filter. Thus, it follows from
Eq. (4-111) that an ideal highpass filter (IHPF) transfer function is given by

0 if D(u,v)<D,

. (4-119)
1 if D(u,v)> D,

H(u,v) = {

where, as before, D(u,v) is the distance from the center of the P x Q frequency rect-
angle, as given in Eq. (4-112). Similarly, it follows from Eq. (4-116) that the transfer
function of a Gaussian highpass filter (GHPF) transfer function is given by



abc
dlle  f
g hi
FIGURE 4.51
Top row:
Perspective plot,
image, and, radial
cross section of
an IHPF transfer
function. Middle
and bottom
rows: The same
sequence for
GHPF and BHPF
transfer functions.
(The thin image
borders were
added for clarity.
They are not part
of the data.)
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H (u, v) H(u, v)
>V 1
D(u, v)
H(u,v)
>V 1
D(u, v)
H(u,v)
>V 1
D(u, v)
H(uw)=1- oD ww)/2D} (4-120)

and, from Eq. (4-117), that the transfer function of a Butterworth highpass filter
(BHPF) is

1

Hawv)= 17 [Dy/ D)

(4-121)

Figure 4.51 shows 3-D plots, image representations, and radial cross sections for
the preceding transfer functions. As before, we see that the BHPF transfer function
in the third row of the figure represents a transition between the sharpness of the
IHPF and the broad smoothness of the GHPF transfer function.

It follows from Eq. (4-118) that the spatial kernel corresponding to a highpass
filter transfer function in the frequency domain is given by
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Recall that a unit impulse
in the spatial domain is
an array of 0’s with a 1 in
the center.

hHP(x’ y) = ‘(\5_1 [HHP(uvv)]
S - Hyp(u,v)] (4-122)
8(x9y) - hLP(x’ y)

where we used the fact that the IDFT of 1 in the frequency domain is a unit impulse
in the spatial domain (see Table 4.4). This equation is precisely the foundation for
the discussion in Section 3.7, in which we showed how to construct a highpass kernel
by subtracting a lowpass kernel from a unit impulse.

Figure 4.52 shows highpass spatial kernels constructed in just this manner, using
Eq. (4-122) with ILPF, GLPF, and BLPF transfer functions (the values of M, N, and
D, used in this figure are the same as those we used for Fig. 4.42, and the BLPF is of
order 2). Figure 4.52(a) shows the resulting ideal highpass kernel obtained using Eq.
(4-122), and Fig. 4.52(b) is a horizontal intensity profile through the center of the ker-
nel. The center element of the profile is a unit impulse, visible as a bright dot in the
center of Fig. 4.52(a). Note that this highpass kernel has the same ringing properties
illustrated in Fig. 4.42(b) for its corresponding lowpass counterpart. As you will see
shortly, ringing is just as objectionable as before, but this time in images sharpened
with ideal highpass filters. The other images and profiles in Fig. 4.52 are for Gaussian
and Butterworth kernels. We know from Fig. 4.51 that GHPF transfer functions in
the frequency domain tend to have a broader “skirt” than Butterworth functions of
comparable size and cutoff frequency. Thus, we would expect Butterworth spatial
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FIGURE 4.52 (a)—(c): Ideal, Gaussian, and Butterworth highpass spatial kernels obtained from
IHPF, GHPF, and BHPF frequency-domain transfer functions. (The thin image borders are
not part of the data.) (d)—(f): Horizontal intensity profiles through the centers of the kernels.
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TABLE 4.6
Highpass filter transfer functions. D, is the cutoff frequency and # is the order of the Butterworth transfer function.

Ideal Gaussian Butterworth

0 if D(u,v)< D,
1 if D(u,v)> D,

1
1+ [Dy/D(u,0)["

H(u,v) ={ H(up)=1 — P wn/20 H(u,v) =

kernels to be “broader” than comparable Gaussian kernels, a fact that is confirmed
by the images and their profiles in Figs. 4.52. Table 4.6 summarizes the three highpass
filter transfer functions discussed in the preceding paragraphs.

EXAMPLE 4.19: Highpass filtering of the character test pattern.

The first row of Fig.4.53 shows the result of filtering the test pattern in Fig.4.37(a) using IHPF, GHPF, and
BHPF transfer functions with D, = 60 [see Fig. 4.37(b)] and n = 2 for the Butterworth filter. We know
from Chapter 3 that highpass filtering produces images with negative values. The images in Fig. 4.53 are
not scaled, so the negative values are clipped by the display at 0 (black). The key objective of highpass
filtering is to sharpen. Also, because the highpass filters used here set the DC term to zero, the images
have essentially no tonality, as explained earlier in connection with Fig. 4.30.

Our main objective in this example is to compare the behavior of the three highpass filters. As
Fig. 4.53(a) shows, the ideal highpass filter produced results with severe distortions caused by ringing.
For example, the blotches inside the strokes of the large letter “a” are ringing artifacts. By comparison,
neither Figs. 4.53(b) or (c) have such distortions. With reference to Fig. 4.37(b), the filters removed or
attenuated approximately 95% of the image energy. As you know, removing the lower frequencies of an
image reduces its gray-level content significantly, leaving mostly edges and other sharp transitions, as is
evident in Fig. 4.53. The details you see in the first row of the figure are contained in only the upper 5%
of the image energy.

The second row, obtained with D, = 160, is more interesting. The remaining energy of those images
is about 2.5%, or half, the energy of the images in the first row. However, the difference in fine detail
is striking. See, for example, how much cleaner the boundary of the large “a” is now, especially in the
Gaussian and Butterworth results. The same is true for all other details, down to the smallest objects.
This is the type of result that is considered acceptable when detection of edges and boundaries is impor-
tant.

Figure 4.54 shows the images in the second row of Fig. 4.53, scaled using Egs. (2-31) and (2-32) to
display the full intensity range of both positive and negative intensities. The ringing in Fig. 4.54(a) shows
the inadequacy of ideal highpass filters. In contrast, notice the smoothness of the background on the
other two images, and the crispness of their edges.

EXAMPLE 4.20: Using highpass filtering and thresholding for image enhancement.

Figure 4.55(a) is a 962 x 1026 image of a thumbprint in which smudges (a typical problem) are evident.
A key step in automated fingerprint recognition is enhancement of print ridges and the reduction of
smudges. In this example, we use highpass filtering to enhance the ridges and reduce the effects of
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FIGURE 4.53 Top row: The image from Fig. 4.40(a) filtered with IHPF, GHPF, and BHPF transfer functions using
D, =60 in all cases (n = 2 for the BHPF). Second row: Same sequence, but using D,, = 160.
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FIGURE 4.54 The images from the second row of Fig. 4.53 scaled using Egs. (2-31) and (2-32) to show both positive
and negative values.
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FIGURE 4.55 (a) Smudged thumbprint. (b) Result of highpass filtering (a). (c) Result of thresholding (b). (Original
image courtesy of the U.S. National Institute of Standards and Technology.)

smudging. Enhancement of the ridges is accomplished by the fact that their boundaries are character-
ized by high frequencies, which are unchanged by a highpass filter. On the other hand, the filter reduces
low frequency components, which correspond to slowly varying intensities in the image, such as the
background and smudges. Thus, enhancement is achieved by reducing the effect of all features except
those with high frequencies, which are the features of interest in this case.

Figure 4.55(b) is the result of using a Butterworth highpass filter of order 4 with a cutoff frequency
of 50. A fourth-order filter provides a sharp (but smooth) transition from low to high frequencies, with
filtering characteristics between an ideal and a Gaussian filter. The cutoff frequency chosen is about 5%
of the long dimension of the image. The idea is for D, to be close to the origin so that low frequencies are
attenuated but not completely eliminated, except for the DC term which is set to 0, so that tonality dif-
ferences between the ridges and background are not lost completely. Choosing a value for D, between
5% and 10% of the long dimension of the image is a good starting point. Choosing a large value of
D, would highlight fine detail to such an extent that the definition of the ridges would be affected. As
expected, the highpass filtered image has negative values, which are shown as black by the display.

A simple approach for highlighting sharp features in a highpass-filtered image is to threshold it by set-
ting to black (0) all negative values and to white (1) the remaining values. Figure 4.55(c) shows the result
of this operation. Note how the ridges are clear, and how the effect of the smudges has been reduced
considerably. In fact, ridges that are barely visible in the top, right section of the image in Fig. 4.55(a) are
nicely enhanced in Fig. 4.55(c). An automated algorithm would find it much easier to follow the ridges
on this image than it would on the original.

THE LAPLACIAN IN THE FREQUENCY DOMAIN

In Section 3.6, we used the Laplacian for image sharpening in the spatial domain. In
this section, we revisit the Laplacian and show that it yields equivalent results using
frequency domain techniques. It can be shown (see Problem 4.52) that the Laplacian
can be implemented in the frequency domain using the filter transfer function

H(u,v) = —4m*(u* +v%) (4-123)
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or, with respect to the center of the frequency rectangle, using the transfer function

H(u,v) = =47 | (u~ P/2)" +(v-0/2) |
= —47°D*(u,)

(4-124)

where D(u,v) is the distance function defined in Eq. (4-112). Using this transfer
function, the Laplacian of an image, f(x,y), is obtained in the familiar manner:

V2 f(x,y) = 37" [H(u,v)F(u,0)] (4-125)

where F(u,v) is the DFT of f(x,y). As in Eq. (3-54), enhancement is implemented
using the equation

g(x,y) = f(x,y) + ¢V f(x,y) (4-126)

Here, ¢ = —1 because H(u,v) is negative. In Chapter 3, f(x,y) and V*f(x,y) had
comparable values. However, computing V2 f(x, y) with Eq. (4-125) introduces DFT
scaling factors that can be several orders of magnitude larger than the maximum
value of f. Thus, the differences between f and its Laplacian must be brought into
comparable ranges. The easiest way to handle this problem is to normalize the val-
ues of f(x,y) to the range [0, 1] (before computing its DFT) and divide V* f(x, y) by
its maximum value, which will bring it to the approximate range [-1, 1]. (Remember,
the Laplacian has negative values.) Equation (4-126) can then be used.
We can write Eq. (4-126) directly in the frequency domain as

g(x,y) = 3 {F(u,0) — H(u,v)F(u,0)}
S - H(u,v)|F(u,0)} (4-127)

R {[1 + 47 D*(u, v):l F(u, v)}

Although this result is elegant, it has the same scaling issues just mentioned, com-
pounded by the fact that the normalizing factor is not as easily computed. For this
reason, Eq. (4-126) is the preferred implementation in the frequency domain, with
V2 f(x,y) computed using Eq. (4-125) and scaled using the approach mentioned in
the previous paragraph.

EXAMPLE 4.21: Image sharpening in the frequency domain using the Laplacian.

Figure 4.56(a) is the same as Fig. 3.46(a), and Fig. 4.56(b) shows the result of using Eq. (4-126), in which
the Laplacian was computed in the frequency domain using Eq. (4-125). Scaling was done as described
in connection with Eq. (4-126). We see by comparing Figs. 4.56(b) and 3.46(d) that the frequency-domain
result is superior. The image in Fig. 4.56(b) is much sharper, and shows details that are barely visible in
3.46(d), which was obtained using the Laplacian kernel in Fig. 3.45(b), with a —8 in the center. The sig-
nificant improvement achieved in the frequency domain is not unexpected. The spatial Laplacian kernel
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FIGURE 4.56

(a) Original,
blurry image.
(b) Image
enhanced using
the Laplacian in
the frequency
domain.
Compare with
Fig. 3.46(d).
(Original image
courtesy of
NASA))
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encompasses a very small neighborhood, while the formulation in Egs. (4-125) and (4-126) encompasses

the entire image.

UNSHARP MASKING, HIGH-BOOST FILTERING, AND HIGH-
FREQUENCY-EMPHASIS FILTERING

In this section, we discuss frequency domain formulations of the unsharp mask-
ing and high-boost filtering image sharpening techniques introduced in Section 3.6.
Using frequency domain methods, the mask defined in Eq. (3-55) is given by

gmask(x7Y):f(x7Y)_fLP(x’y) (4'128)

with

fp(xy) = 3 [HLP(uaU)F(”vv)] (4-129)
where H | p(u,v) is alowpass filter transfer function, and F(u,v) is the DFT of f(x,y).
Here, f;p(x,y) is a smoothed image analogous to f(x,y) in Eq. (3-55). Then, as in
Eq. (3-56),

g(x,y)= f(x’y)+kgmask(x’y) (4'130)

This expression defines unsharp masking when k =1 and high-boost filtering when
k > 1. Using the preceding results, we can express Eq. (4-130) entirely in terms of
frequency domain computations involving a lowpass filter:

g(xy) =3 {(1 k[l - HU,(u,v)])F(u,v)} (4-131)
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We can express this result in terms of a highpass filter using Eq. (4-118):

g(x,y) =3[ + kHyp(u,v)| F(u,0)} (4-132)
The expression contained within the square brackets is called a high-frequency-
emphasis filter transfer function. As noted earlier, highpass filters set the dc term
to zero, thus reducing the average intensity in the filtered image to 0. The high-fre-
quency-emphasis filter does not have this problem because of the 1 that is added to
the highpass filter transfer function. Constant k gives control over the proportion of
high frequencies that influences the final result. A slightly more general formulation
of high-frequency-emphasis filtering is the expression

g(x,y) =3[k, + kyHyp(u,0)| F(u,0)} (4-133)
where k, > 0 offsets the value the transfer function so as not to zero-out the dc term
[see Fig.4.30(c)], and k, > 0 controls the contribution of high frequencies.

EXAMPLE 4.22: Image enhancement using high-frequency-emphasis filtering.

Figure 4.57(a) shows a 503 x 720-pixel chest X-ray image with a narrow range of intensity levels. The
objective of this example is to enhance the image using high-frequency-emphasis filtering. X-rays can-
not be focused in the same manner that optical lenses can, and the resulting images generally tend to be
slightly blurred. Because the intensities in this particular image are biased toward the dark end of the
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FIGURE 4.57

(a) A chest X-ray.
(b) Result of
filtering with a
GHPF function.
(c) Result of
high-frequency-
emphasis filtering
using the same
GHPF. (d) Result
of performing
histogram
equalization on (c).
(Original image
courtesy of Dr.
Thomas R. Gest,
Division of
Anatomical
Sciences,
University of
Michigan Medical
School.)
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gray scale, we also take this opportunity to give an example of how spatial domain processing can be
used to complement frequency-domain filtering.

Image artifacts, such as ringing, are unacceptable in medical image processing, so we use a Gaussian
highpass filter transfer function. Because the spatial representation of a GHPF function is Gaussian also,
we know that ringing will not be an issue. The value chosen for D, should provide enough filtering to
sharpen boundaries while at the same time not over-sharpening minute details (such as noise). We used
D, =70, approximately 10% of the long image dimension, but other similar values would work also.
Figure 4.57(b) is the result of highpass filtering the original image (scaled as the images in Fig. 4.54). As
expected, the image is rather featureless, but the important boundaries (e.g., the edges of the ribs) are
clearly delineated. Figure 4.57(c) shows the advantage of high-frequency-emphasis filtering, where we
used Eq. (4-133) with k; = 0.5 and k, = 0.75. Although the image is still dark, the gray-level tonality has
been restored, with the added advantage of sharper features.

As we discussed in Section 3.3, an image characterized by intensity levels in a narrow range of the
gray scale is an ideal candidate for histogram equalization. As Fig. 4.57(d) shows, this was indeed an
appropriate method to further enhance the image. Note the clarity of the bone structure and other
details that simply are not visible in any of the other three images. The final enhanced image is a little
noisy, but this is typical of X-ray images when their gray scale is expanded. The result obtained using a
combination of high-frequency-emphasis and histogram equalization is superior to the result that would
be obtained by using either method alone.

HOMOMORPHIC FILTERING

The illumination-reflectance model introduced in Section 2.3 can be used to develop
a frequency domain procedure for improving the appearance of an image by simul-
taneous intensity range compression and contrast enhancement. From the discus-
sion in that section, an image f(x,y) can be expressed as the product of its illumina-
tion, i(x, y), and reflectance, r(x, y), components:

f(x,)/) = i(xsy)r(x’Y) (4'134)

This equation cannot be used directly to operate on the frequency components of
illumination and reflectance because the Fourier transform of a product is not the
product of the transforms:

S[fCey)] = [, )] r(x,y)] (4-135)

However, suppose that we define

If f(x, y) has any zero

values, a 1 st be added —
s b e 2(x,y) = In f(x.) (136)
having to deal with In(0). - 1
"};\:‘I}:isutjhe?su“t:trac‘:id) =In l(x’ y) +In r(x, y)
from the final result.
Then,
Slz(x,y)] = 3[In f(x,y)] (4-137)

= J[Ini(x, )]+ I[Inr(x,y)]
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or
Z(u,v) = F(u,v) + F.(u,v) (4-138)

where F;(u,v) and F,(u,v) are the Fourier transforms of Ini(x,y) and Inr(x,y),
respectively.
We can filter Z(u,v) using a filter transfer function H(u,v) so that

S(u,v) = H(u,v)Z(u,v)

= H(u,0)F,(u,v) + H(u,)F,(1,0) (4-139)
The filtered image in the spatial domain is then
s(x,) = 57 [S(w ) o)
= I H(u,v)F(u,v)] + I [H(u,0)F,(u,0)]
By defining
i'(x,y) = 37 [H(u,0)F,(u,v)] (4-141)
and
r(x,y) = 3" [H(u,0)F,(u,v)] (4-142)

we can express Eq. (4-140) in the form

s(x,y)=i"(x,y)+7'(x,y) (4-143)

Finally, because z(x,y) was formed by taking the natural logarithm of the input
image, we reverse the process by taking the exponential of the filtered result to form
the output image:

g(x.y) = e
o E)pr () (4-144)
= io(x’y)r()(x>y)
where
i xy) = ¢ (4-145)
and
B(x.y) =™ (4-146)

are the illumination and reflectance components of the output (processed) image.
Figure 4.58 is a summary of the filtering approach just derived. This method is

based on a special case of a class of systems known as homomorphic systems. In this

particular application, the key to the approach is the separation of the illumination



FIGURE 4.58
Summary of steps
in homomorphic
filtering.

A BHPF function would
work well too, with the
added advantage of more
control over the sharp-
ness of the transition
between y; and vy.The
disadvantage is the
possibility of ringing for
high values of n.

FIGURE 4.59
Radial cross
section of a
homomorphic
filter transfer
function..
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and reflectance components achieved in the form shown in Eq. (4-138). The homo-
morphic filter transfer function, H(u,v), then can operate on these components sepa-
rately, as indicated by Eq. (4-139).

The illumination component of an image generally is characterized by slow spa-
tial variations, while the reflectance component tends to vary abruptly, particularly
at the junctions of dissimilar objects. These characteristics lead to associating the low
frequencies of the Fourier transform of the logarithm of an image with illumination,
and the high frequencies with reflectance. Although these associations are rough
approximations, they can be used to advantage in image filtering, as illustrated in
Example 4.23.

A good deal of control can be gained over the illumination and reflectance com-
ponents with a homomorphic filter. This control requires specification of a filter
transfer function H(u,v) that affects the low- and high-frequency components of
the Fourier transform in different, controllable ways. Figure 4.59 shows a cross sec-
tion of such a function. If the parameters vy, and vy, are chosen so thaty, <1 and
vy 2 1, the filter function in Fig. 4.59 will attenuate the contribution made by the
low frequencies (illumination) and amplify the contribution made by high frequen-
cies (reflectance). The net result is simultaneous dynamic range compression and
contrast enhancement.

The shape of the function in Fig. 4.59 can be approximated using a highpass filter
transfer function. For example, using a slightly modified form of the GHPF function
yields the homomorphic function

H(u,v) = (v ~ n)[l — D) Dg] +7, (4-147)
where D(u,v) is defined in Eq. (4-112) and constant ¢ controls the sharpness of the
slope of the function as it transitions between vy, and y,,. This filter transfer function
is similar to the high-frequency-emphasis function discussed in the previous section.

H(u,v)

YHf=—————————— o

YL

D(u,v)
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FIGURE 4.60

(a) Full body PET
scan. (b) Image
enhanced using
homomorphic
filtering. (Original
image courtesy

of Dr. Michael E.
Casey, CTI Pet
Systems.)

EXAMPLE 4.23: Homomorphic filtering.

Figure 4.60(a) shows a full body PET (Positron Emission Tomography) scan of size 1162 x 746 pixels.
The image is slightly blurred and many of its low-intensity features are obscured by the high intensity of
the “hot spots” dominating the dynamic range of the display. (These hot spots were caused by a tumor in
the brain and one in the lungs.) Figure 4.60(b) was obtained by homomorphic filtering Fig. 4.60(a) using
the filter transfer function in Eq. (4-147) with y, =0.4, y,, =3.0, ¢ =5, and D, = 20. A radial cross sec-
tion of this function looks just like Fig. 4.59, but with a much sharper slope, and the transition between
low and high frequencies much closer to the origin.

Note in Fig. 4.60(b) how much sharper the hot spots, the brain, and the skeleton are in the processed
image, and how much more detail is visible in this image, including, for example, some of the organs, the
shoulders, and the pelvis region. By reducing the effects of the dominant illumination components (the
hot spots), it became possible for the dynamic range of the display to allow lower intensities to become
more visible. Similarly, because the high frequencies are enhanced by homomorphic filtering, the reflec-
tance components of the image (edge information) were sharpened considerably. The enhanced image
in Fig. 4.60(b) is a significant improvement over the original.

4.10 SELECTIVE FILTERING I

The filters discussed in the previous two sections operate over the entire frequency
rectangle. There are applications in which it is of interest to process specific bands of
frequencies or small regions of the frequency rectangle. Filters in the first category
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are called band filters. If frequencies in the band are filtered out, the band filter is
called a bandreject filter; similarly, if the frequencies are passed, the filter is called
a bandpass filter. Filters in the second category are called notch filters. These filters
are further qualified as being notch reject or notch pass filters, depending on whether
frequencies in the notch areas are rejected or passed.

BANDREJECT AND BANDPASS FILTERS

As you learned in Section 3.7, bandpass and bandreject filter transfer functions in
the frequency domain can be constructed by combining lowpass and highpass filter
transfer functions, with the latter also being derivable from lowpass functions (see
Fig. 3.52). In other words, lowpass filter transfer functions are the basis for forming
highpass, bandreject, and bandpass filter functions. Furthermore, a bandpass filter
transfer function is obtained from a bandreject function in the same manner that we
obtained a highpass from a lowpass transfer function:

Hygp(u,v) =1 — Hgg(u,v) (4-148)

Figure 4.61(a) shows how to construct an ideal bandreject filter (IBRF) transfer
function. It consists of an ILPF and an IHPF function with different cutoff frequen-
cies. When dealing with bandpass functions, the parameters of interest are the width,
W, and the center, C,, of the band. An equation for the IBRF function is easily
obtained by inspection from Fig, 4.61(a), as the leftmost entry in Table 4.7 shows.
The key requirements of a bandpass transfer function are: (1) the values of the func-
tion must be in the range [0, 1]; (2) the value of the function must be zero at a dis-
tance C, from the origin (center) of the function; and (3) we must be able to specify
a value for W. Clearly, the IBRF function just developed satisfies these requirements.

Adding lowpass and highpass transfer functions to form Gaussian and Butter-
worth bandreject functions presents some difficulties. For example, Fig. 4.61(b)
shows a bandpass function formed as the sum of lowpass and highpass Gaussian
functions with different cutoff points. Two problems are immediately obvious: we
have no direct control over W, and the value of H(u,v) is not 0 at C,. We could

H(u,v) H(u,v) H(u,v) H(u,v)
1.0 — 1.0 1.0 1.0

< W >

G D(u,v) G D(u,v) G D(u,v) G D(u,v)
abcd

FIGURE 4.61 Radial cross sections. (a) Ideal bandreject filter transfer function. (b) Bandreject transfer function formed
by the sum of Gaussian lowpass and highpass filter functions. (The minimum is not 0 and does not align with C,,.)
(c) Radial plot of Eq. (4-149). (The minimum is 0 and is properly aligned with C,, but the value at the origin is
not 1.) (d) Radial plot of Eq. (4-150); this Gaussian-shape plot meets all the requirements of a bandreject filter
transfer function.
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TABLE 4.7
Bandreject filter transfer functions. C; is the center of the band, W is the width of the band, and D(u,v) is the dis-
tance from the center of the transfer function to a point (u,v) in the frequency rectangle.

Ideal IBRF) Gaussian (GBRF) Butterworth (BBRF)
0 ifC - < Dluw)<Cy+ o {D*“w’*«‘é]z H(u,v) = - o
H(u,v) = 0 TR T Huwy=1-el """ 14| Duow
1 otherwise D?(u,v) - Cg

offset the function and scale it so that values fall in the range [0, 1], but finding an
analytical solution for the point where the lowpass and highpass Gaussian functions
intersect is impossible, and this intersection would be required to solve for the cutoff
points in terms of C,. The only alternatives are trial-and-error or numerical methods.

Fortunately, instead of adding lowpass and highpass transfer function, an alterna-
tive is to modify the expressions for the Gaussian and Butterworth highpass transfer
functions so that they will satisfy the three requirements stated earlier. We illustrate
the procedure for a Gaussian function. In this case, we begin by changing the point
at which H(u,v) = 0 from D(u,v) = 0 to D(u,v) = C, in Eq. (4-120):

(D(u) - Cu)z}
WZ

Hu,v)=1-e [ (4-149)

A plot of this function [Fig. 4.61(c)] shows that, below C,,, the function behaves as a
lowpass Gaussian function, at C, the function will always be 0, and for values higher
than C, the function behaves as a highpass Gaussian function. Parameter W is pro-
portional to the standard deviation and thus controls the “width” of the band. The
only problem remaining is that the function is not always 1 at the origin. A simple
modification of Eq. (4-149) removes this shortcoming:

The overall ratio in this 5 512
equation is squared so _{D () -Gy
that, as the distance _ D(u)W
increases, Eqs. (4-149) H(Lt, 7)) =1-e

and (4-150) behave

approximately the same.

(4-150)

Now, the exponent is infinite when D(u,v) = 0, which makes the exponential term go
to zero and H(u,v) =1 at the origin, as desired. In this modification of Eq. (4-149),
the basic Gaussian shape is preserved and the three requirements stated earlier are
satisfied. Figure 4.61(d) shows a plot of Eq. (4-150). A similar analysis leads to the
form of a Butterworth bandreject filter transfer function shown in Table 4.7.

Figure 4.62 shows perspective plots of the filter transfer functions just discussed.
At first glance the Gaussian and Butterworth functions appear to be about the same,
but, as before, the behavior of the Butterworth function is between the ideal and
Gaussian functions. As Fig. 4.63 shows, this is easier to see by viewing the three filter
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H(u,v) H(u,v) H(u,v)
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FIGURE 4.62 Perspective plots of (a) ideal, (b) modified Gaussian, and (c) modified Butterworth (of order 1) bandre-
ject filter transfer functions from Table 4.7. All transfer functions are of size 512 x 512 elements, with C; = 128 and
W = 60.

functions as images. Increasing the order of the Butterworth function would bring it
closer to the ideal bandreject transfer function.

NOTCH FILTERS

Notch filters are the most useful of the selective filters. A notch filter rejects (or
passes) frequencies in a predefined neighborhood of the frequency rectangle. Zero-
phase-shift filters must be symmetric about the origin (center of the frequency
rectangle), so a notch filter transfer function with center at (i,,v,) must have a
corresponding notch at location (—u,,—v,). Notch reject filter transfer functions are
constructed as products of highpass filter transfer functions whose centers have
been translated to the centers of the notches. The general form is:

Qo
Hyg(u,0) = [[H, (u,0) H_, (u,v) (4-151)
k=1
where H, (u,v) and H_, (u,v) are highpass filter transfer functions whose centers are

at (u,,v,) and (-u,,—v, ), respectively. These centers are specified with respect to
the center of the frequency rectangle, (M/2,N/2), where, as usual, M and N are the

abc

FIGURE 4.63

(a) The ideal,

(b) Gaussian, and
(c) Butterworth
bandpass transfer
functions from
Fig. 4.62, shown
as images. (The
thin border lines
are not part of the
image data.)
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number of rows and columns in the input image. Thus, the distance computations for
each filter transfer function are given by

D) =[(u-M/2-u ) +(w-N/2-v, )] (4-152)
and
D (uv)=[(u=M/2+u, P + (- N/2+v, )] (4-153)

For example, the following is a Butterworth notch reject filter transfer function of
order n, containing three notch pairs:

1
[DOk/ka(bhv)]n

Hyg(u,v) = H! } (4-154)

[ Ok/Dk(“ U)]

where D, (u,v) and D_, (u,v) are given by Egs. (4-152) and (4-153). The constant D,
is the same for each pair of notches, but it can be different for different pairs. Other
notch reject filter functions are constructed in the same manner, depending on the
highpass filter function chosen. As with the filters discussed earlier, a notch pass
filter transfer function is obtained from a notch reject function using the expression

Hyp(u,v) =1 - Hyg (1,0) (4-155)

As the next two examples show, one of the principal applications of notch filter-
ing is for selectively modifying local regions of the DFT. Often, this type of pro-
cessing is done interactively, working directly with DFTs obtained without padding.
The advantages of working interactively with actual DFTs (as opposed to having to

“translate” from padded to actual frequency values) generally outweigh any wrap-
around errors that may result from not using padding in the filtering process. If nec-
essary, after an acceptable solution is obtained, a final result using padding can be
generated by adjusting all filter parameters to compensate for the padded DFT size.
The following two examples were done without padding. To get an idea of how DFT
values change as a function of padding, see Problem 4.42.

EXAMPLE 4.24: Using notch filtering to remove moiré patterns from digitized printed media images.

Figure 4.64(a) is the scanned newspaper image used in Fig.4.21, showing a prominent moiré pattern, and
Fig. 4.64(b) is its spectrum. The Fourier transform of a pure sine, which is a periodic function, is a pair of
conjugate symmetric impulses (see Table 4.4). The symmetric “impulse-like” bursts in Fig. 4.64(b) are a
result of the near periodicity of the moiré pattern. We can attenuate these bursts by using notch filtering.

Figure 4.64(c) shows the result of multiplying the DFT of Fig. 4.64(a) by a Butterworth notch reject
transfer function with D, = 9 and n = 4 for all notch pairs (the centers of the notches are coincide with
the centers of the black circular regions in the figure). The value of the radius was selected (by visual
inspection of the spectrum) to encompass the energy bursts completely, and the value of n was selected
to produce notches with sharp transitions. The locations of the center of the notches were determined
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FIGURE 4.64

(a) Sampled
newspaper
image showing a
moiré pattern.
(b) Spectrum.

(c) Fourier
transform
multiplied by

a Butterworth
notch reject filter
transfer function.
(d) Filtered image.

interactively from the spectrum. Figure 4.64(d) shows the result obtained with this filter transfer func-
tion, using the filtering procedure outlined in Section 4.7. The improvement is significant, considering
the low resolution and degree of degradation of the original image.
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EXAMPLE 4.25: Using notch filtering to remove periodic interference.

Figure 4.65(a) shows an image of part of the rings surrounding the planet Saturn. This image was cap-
tured by Cassini, the first spacecraft to enter the planet’s orbit. The nearly sinusoidal pattern visible in
the image was caused by an AC signal superimposed on the camera video signal just prior to digitizing
the image. This was an unexpected problem that corrupted some images from the mission. Fortunately,
this type of interference is fairly easy to correct by postprocessing. One approach is to use notch filtering.

Figure 4.65(b) shows the DFT spectrum. Careful analysis of the vertical axis reveals a series of
small bursts of energy near the origin which correspond to the nearly sinusoidal interference. A simple
approach is to use a narrow notch rectangle filter starting with the lowest frequency burst, and extending
for the remainder of the vertical axis. Figure 4.65(c) shows the transfer function of such a filter (white
represents 1 and black 0). Figure 4.65(d) shows the result of processing the corrupted image with this
filter. This result is a significant improvement over the original image.

To obtain and image of just the interference pattern, we isolated the frequencies in the vertical axis
using a notch pass transfer function, obtained by subtracting the notch reject function from 1 [see
Fig. 4.66(a)]. Then, as Fig. 4.66(b) shows, the IDFT of the filtered image is the spatial interference pattern.

ab
cd

FIGURE 4.65

(a) Image of
Saturn rings
showing nearly
periodic
interference.

(b) Spectrum.
(The bursts of
energy in the
vertical axis
near the origin
correspond to
the interference
pattern).

(c) A vertical
notch reject filter
transfer function.
(d) Result of
filtering.

(The thin black
border in (c) is
not part of the
data.) (Original
image courtesy
of Dr. Robert A.
West, NASA/
JPL.)
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FIGURE 4.66

(a) Notch pass
filter function
used to isolate

the vertical axis
of the DFT of Fig.
4.65(a).

(b) Spatial pattern
obtained by
computing the
IDFT of (a).

We could have formu-
lated the preceding
two equations to show
that a 2-D DFT can be
obtained by computing
the 1-D DFT of each
column of the input
image followed by 1-D
computations on the
rows of the result.
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4.11 THE FAST FOURIER TRANSFORM I

We have focused attention thus far on theoretical concepts and on examples of fil-
tering in the frequency domain. One thing that should be clear by now is that com-
putational requirements in this area of image processing are not trivial. Thus, it is
important to develop a basic understanding of methods by which Fourier transform
computations can be simplified and speeded up. This section deals with these issues.

SEPARABILITY OF THE 2-D DFT

As mentioned in Table 4.3, the 2-D DFT is separable into 1-D transforms. We can
write Eq. (4-67) as

M-1 N-1
F(u,v) — z e—/Zﬂ'ux/M z f(x’y)e—jZmJy/N
x=0 y=0

o (4-156)
— F(x’,v)e—jZﬂ'ux/M
x=0
where
N-1 .
F(x,0)= Y f(x,y)e 2N (4-157)
y=0

For one value of x, and for v =0,1,2,..., N — 1, we see that F(x,v) is the 1-D DFT of
one row of f(x,y). By varying x from 0 to M —1 in Eq. (4-157), we compute a set of
1-D DFTs for all rows of f(x,y). The computations in Eq. (4-156) similarly are 1-D
transforms of the columns of F(x,v). Thus, we conclude that the 2-D DFT of f(x,y)
can be obtained by computing the 1-D transform of each row of f(x,y) and then
computing the 1-D transform along each column of the result. This is an important
simplification because we have to deal only with one variable at a time. A similar
development applies to computing the 2-D IDFT using the 1-D IDFT. However,
as we show in the following section, we can compute the IDFT using an algorithm
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designed to compute the forward DFT, so all 2-D Fourier transform computations
are reduced to multiple passes of a 1-D algorithm designed for computing the 1-D
DFT.

COMPUTING THE IDFT USING A DFT ALGORITHM

Taking the complex conjugate of both sides of Eq. (4-68) and multiplying the results
by MN yields

M-1N-1 .
MNF (x,y) = 3, 3 F (e 270 e/ (4-158)
u=0 v=0

But, we recognize the form of the right side of this result as the DFT of F" (,v). There-
fore, Eq. (4-158) indicates that if we substitute F(u,v) into an algorithm designed to
compute the 2-D forward Fourier transform, the result will be MNf"(x,y). Taking
the complex conjugate and dividing this result by MN yields f(x,y), which is the
inverse of F(u,v).

Computing the 2-D inverse from a 2-D forward DFT algorithm that is based on
successive passes of 1-D transforms (as in the previous section) is a frequent source
of confusion involving the complex conjugates and multiplication by a constant, nei-
ther of which is done in the 1-D algorithms. The key concept to keep in mind is that
we simply input F~ (u,v) into whatever forward algorithm we have. The result will be
MNf"(x,y). All we have to do with this result to obtain f(x,y) is to take its complex
conjugate and divide it by the constant MN. Of course, when f(x,y) is real, as typi-
cally is the case, then f"(x,y) = f(x,y).

THE FAST FOURIER TRANSFORM (FFT)

Work in the frequency domain would not be practical if we had to implement
Egs. (4-67) and (4-68) directly. Brute-force implementation of these equations
requires on the order of (MN )2 multiplications and additions. For images of moder-
ate size (say, 2048 x 2048 pixels), this means on the order of 17 trillion multiplica-
tions and additions for just one 2-D DFT, excluding the exponentials, which could be
computed once and stored in a look-up table. Without the discovery of the fast Fou-
rier transform (FFT), which reduces computations to the order of MN log, MN mul-
tiplications and additions, it is safe to say that the material presented in this chapter
would be of little practical value. The computational reductions afforded by the FFT
are impressive indeed. For example, computing the 2-D FFT of a 2048 x 2048 image
would require on the order of 92 million multiplication and additions, which is a
significant reduction from the one trillion computations mentioned above.
Although the FFT is a topic covered extensively in the literature on signal pro-
cessing, this subject matter is of such significance in our work that this chapter would
be incomplete if we did not provide an introduction explaining why the FFT works
as it does. The algorithm we selected to accomplish this objective is the so-called
successive-doubling method, which was the original algorithm that led to the birth
of an entire industry. This particular algorithm assumes that the number of samples
is an integer power of 2, but this is not a general requirement of other approaches
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(Brigham [1988]).We know from the previous section that 2-D DFTs can be imple-
mented by successive passes of the 1-D transform, so we need to focus only on the
FFT of one variable.

In derivations of the FFT, it is customary to express Eq. (4-44) in the form

F(u)= Ailf(x)W](}x (4-159)

foru=0,1,2,..., M — 1, where
W, =e?"M (4-160)
and M is assumed to be of the form
M =2" (4-161)
where p is a positive integer. Then it follows that M can be expressed as
M =2K (4-162)

with K being a positive integer also. Substituting Eq. (4-162) into Eq. (4-159) yields

Fuy =Y fxyw
=0 (4-163)

K-1 K-1
=3 feoWY + Y fex+ ywie Y
x=0 x=0

However, it can be shown using Eq. (4-160) that W,/ = W, so Eq. (4-163) can be
written as

K-1 K-1

Fu)= 3, fRoOWE + 3 fQx+ W Wi (4-164)
x=0 x=0
Defining
Foyen () = Kf feW (4-165)
x=0

foru=0,1,2,..., K -1, and

F . (u)= 1§ fRx+ )W (4-166)
x=0

foru=0,1,2,..., K —1, reduces Eq. (4-164) to

F(u) = Feven (Lt) + Fodd(u)WZUK (4'167)
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Also, because W™ = W and WX = —-W}%, it follows that
F(u + K) = Feven (u) - Fodd(u)WZMK (4']68)

Analysis of Egs. (4-165) through (4-168) reveals some important (and surprising)
properties of these expressions. An M-point DFT can be computed by dividing the
original expression into two parts, as indicated in Eqgs. (4-167) and (4-168). Comput-
ing the first half of F(u) requires evaluation of the two (M/2)-point transforms giv-
en in Egs. (4-165) and (4-166). The resulting values of F, . (u#) and F, () are then
substituted into Eq. (4-167) to obtain F(u) for u=0,1,2,...,(M/2—1). The other
half then follows directly from Eq. (4-168) without additional transform evaluations.

It is of interest to examine the computational implications of the preceding pro-
cedure. Let m(p) and a(p) represent the number of complex multiplications and
additions, respectively, required to implement the method. As before, the number
of samples is 27, where p is a positive integer. Suppose first that p =1 so that the
number of samples is two. A two-point transform requires the evaluation of F(0);
then F(1) follows from Eq. (4-168). To obtain F(0) requires computing F, ., (0) and
F,44(0). In this case K =1 and Egs. (4-165) and (4-166) are one-point transforms.
However, because the DFT of a single sample point is the sample itself, no multipli-
cations or additions are required to obtain F, . (0) and F,;,(0). One multiplication
of F,,,(0) by W, and one addition yields F(0) from Eq. (4-167). Then F(1) follows
from Eq. (4-168) with one more addition (subtraction is considered to be the same
as addition). Because F,,,(0)W, has been computed already, the total number of
operations required for a two-point transform consists of ni(1) = 1 multiplication
and a(1) = 2 additions.

The next allowed value for p is 2. According to the preceding development, a four-
point transform can be divided into two parts. The first half of F(u) requires evaluation
oftwo,two-point transforms,as givenin Egs.(4-165) and (4-166) for K = 2. A two-point
transform requires m(1) multiplications and a(1) additions. Therefore, evaluation of
these two equations requires a total of 2m(1) multiplications and 2a(1) additions. Two
further multiplications and additions are necessary to obtain F(0) and F(1) from Eq.
(4-167). Because F,4q ()W, has been computed already for u = {0,1}, two more
additions give F(2) and F(3). The totalis then n(2) = 2m(1) + 2 and a(2) = 2a(1) + 4.

When p is equal to 3, two four-point transforms are needed to evaluate F,,., ()
and F,,(u). They require 2m(2) multiplications and 2a(2) additions. Four more
multiplications and eight more additions yield the complete transform. The total
then is then m(3) = 2m(2) + 4 multiplication and a(3) = 2a(2) + 8 additions.

Continuing this argument for any positive integer p leads to recursive expressions
for the number of multiplications and additions required to implement the FFT:

m(p)=2m(p-1) + 2" p=>1 (4-169)

and
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a(p)=2a(p-1) + 27 p=1 (4-170)

where n1(0) =0 and a(0) =0 because the transform of a single point does not
require any multiplication or additions.

The method just developed is called the successive doubling FFT algorithm
because it is based on computing a two-point transform from two one-point trans-
forms, a four-point transform from two two-point transforms, and so on, for any M
equal to an integer power of 2. It is left as an exercise (see Problem 4.63) to show
that

m(p) = %Mlog2 M (4-171)
and
a(n) = Mlog, M (4-172)

where M = 27.
The computational advantage of the FFT over a direct implementation of the 1-D
DFT is defined as

M2
Mlog, M

M
log, M

C(M) =
(4-173)

where M? is the number of operations required for a “brute force” implementation
of the 1-D DFT. Because it is assumed that M =27, we can write Eq. (4-173) in
terms of p:

== (+174)
p

A plot of this function (Fig. 4.67) shows that the computational advantage increases
rapidly as a function of p. For example, when p =15 (32,768 points), the FFT has
nearly a 2,200 to 1 advantage over a brute-force implementation of the DFT. Thus,
we would expect that the FFT can be computed nearly 2,200 times faster than the
DFT on the same machine. As you learned in Section 4.1, the FFT also offers signifi-
cant computational advantages over spatial filtering, with the cross-over between
the two approaches being for relatively small kernels.

There are many excellent sources that cover details of the FFT so we will not
dwell on this topic further (see, for example, Brigham [1988]). Most comprehensive
signal and image processing software packages contain generalized implementa-
tions of the FFT that do not require the number of points to be an integer power
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FIGURE 4.67 2400
Computational
advantage of the
FFT over a direct
implementation
of the 1-D DFT.
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of 2 (at the expense of slightly less efficient computation). Free FFT programs also
are readily available, principally over the internet.

Summary, References, and Further Reading

The material in this chapter is a progression from sampling to the Fourier transform, and then to filtering in the
frequency domain. Some of the concepts, such as the sampling theorem, make very little sense if not explained in
the context of the frequency domain. The same is true of effects such as aliasing. Thus, the material developed in
the preceding sections is a solid foundation for understanding the fundamentals of 2-D digital signal processing. We
took special care to develop the material starting with basic principles, so that any reader with a modest mathemati-
cal background would be in a position not only to absorb the material, but also to apply it.

For complementary reading on the 1-D and 2-D continuous Fourier transforms, see the books by Bracewell
[1995, 2003]. These two books, together with Castleman [1996], Petrou and Petrou [2010], Brigham [1988], and
Smith [2003], provide additional background for the material in Sections 4.2 through 4.6. Sampling phenomena
such as aliasing and moiré patterns are topics amply illustrated in books on computer graphics, as exemplified by
Hughes and Andries [2013]. For additional general background on the material in Sections 4.7 through 4.11 see
Hall [1979], Jain [1989], Castleman [1996], and Pratt [2014]. For details on the software aspects of many of the ex-
amples in this chapter, see Gonzalez, Woods, and Eddins [2009].

Problems

Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book
website: www.ImageProcessing Place.com)

4.1 Answer the following: f(t)y=A for 0<t<T and f(t) =0 for all other
values of ¢. Explain the reason for any differences
between your results and the results in the exam-
ple.

(a)* Give an equation similar to Eq. (4-10), but
for an impulse located at ¢ = ¢,,.

(b) Repeat for Eq. (4-15).

(¢)* Is it correct to say that 8(t —a)=056(a—t) in
general? Explain.

4.3  What is the convolution of two, 1-D impulses:
(a)* 8(t) and 8(t —t,)?

4.2 Repeat Example 4.1, but using the function (b) 3t —1y) and 8( +1,)?


http://www.ImageProcessingPlace.com

4.4*

4.5%

4.6

4.7

4.8%

4.9

4.10

Use the sifting property of the impulse to show
that convolving a 1-D continuous function, f(z),
with an impulse located at ¢, shifts the function
so that its origin is moved to the location of the
impulse (if the impulse is at the origin, the func-
tion is not shifted).

With reference to Fig. 4.9, give a graphical illustra-
tion of an aliased pair of functions that are not
periodic.

With reference to Fig. 4.11:

(a)* Redraw the figure, showing what the dots
would look like for a sampling rate that
exceeds the Nyquist rate slightly.

(b) What is the approximate sampling rate repre-
sented by the large dots in Fig. 4.11?

(¢) Approximately, what would be the lowest
sampling rate that you would use so that (1)
the Nyquist rate is satisfied, and (2) the sam-
ples look like a sine wave?

A function, f(t), is formed by the sum of three
functions, f(¢t) = Asin(wt), f,(t) = Bsin(4t),
and f;(¢) = Ccos(8t).

(a) Assuming that the functions extend to infin-
ity in both directions, what is the highest fre-
quency of f(¢)? (Hint: Start by finding the
period of the sum of the three functions.)

(b)*What is the Nyquist rate corresponding to
your resultin (a)? (Give a numerical answer.)

(¢) At what rate would you sample f(¢) so that
perfect recovery of the function from its
samples is possible?

Show that J{e/>™'} = §(u —t,), where ¢, is a con-
stant. (Hint: Study Example 4.2.)

Show that the following expressions are true.
(Hint: Make use of the solution to Problem 4.8):

(@ S {eos )} = 280 = o) + 5(s + )]
(b) I{sin(2mp 1)} = 2%.[5@ — ko) = 8k + )]

Consider the function f(¢)=sin(27nt), where
n is an integer. Its Fourier transform, F(u), is
purely imaginary (see Problem 4.9). Because the
transform, F(u), of sampled data consists of peri-
odic copies of F(), it follows that F(u) will also
be purely imaginary. Draw a diagram similar to

4.11*

412

413+

4.14

4.15
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Fig. 4.6, and answer the following questions based
on your diagram (assume that sampling starts at
t=0).

(a)* What is the period of f(r)?
(b)*What is the frequency of f(¢)?

(¢)* What would the sampled function and its
Fourier transform look like in general if f(¢)
is sampled at a rate higher than the Nyquist
rate?

(d) What would the sampled function look like
in general if f(¢) is sampled at a rate lower
than the Nyquist rate?

(e) What would the sampled function look like
if f(z) is sampled at the Nyquist rate, with
samples taken at r = 0,=AT,£2AT,... ?

Prove the validity of the convolution theorem of
one continuous variable, as given in Egs. (4-25)
and (4-26).

We explained in the paragraph after Eq. (4-36) that
arbitrarily limiting the duration of a band-limit-
ed function by multiplying it by a box function
would cause the function to cease being band
limited. Show graphically why this is so by limit-
ing the duration of the function f(¢) = cos(2mut)
[the Fourier transform of this function is given in
Problem 4.9(a)]. (Hint: The transform of a box
function is given in Example 4.1. Use that result
in your solution, and also the fact that convolu-
tion of a function with an impulse shifts the func-
tion to the location of the impulse, in the sense
discussed in the solution of Problem 4.4.)

Complete the steps that led from Eq. (4-37) to
Eq. (4-38).

Show that F(u) in Eq. (4-40) is infinitely periodic
in both directions, with period 1/AT .

Do the following:

(a) Show that Egs. (4-42) and (4-43) are a Fou-
rier transform pair: f, & F,,.

(b)* Show that Egs. (4-44) and (4-45) also are a
Fourier transform pair: f(x) & F(u).

You will need the following orthogonality prop-
erty in both parts of this problem:

-1
j27rrx/Me—j21rux,M _ {M

e .
) 0 otherwise

N

ifr=u

X
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Show that both F(u) and f(x) in Egs. (4-44) and
(4-45) are infinitely periodic with period M; that s,
F(u)=F(u+kM) and f(x)= f(x+ M), where k
is an integer. [See Egs. (4-46) and (4-47).]

Demonstrate the validity of the translation (shift)
properties of the following 1-D, discrete Fourier
transform pairs. (Hint: It is easier in part (b) to
work with the IDFT.)

@* f(x)e”™ ™M < F(u—u,)
(b) f(x—x,) & F(u)e2mo/M

Show that the 1-D convolution theorem given in
Eqgs. (4-25) and (4-26) also holds for discrete vari-
ables, but with the right side of Eq. (4-26) multi-
plied by 1/M. That is, show that

(@)* (f*xh)(x) o (F+H)(u), and

1
() (f+h)(x) & ~(F* H)w)
Extend the expression for 1-D convolution [see
Eq. (4-24)] to two continuous variables. Use ¢ and
z for the variables on the left side of the expression
and « and S for the variables in the 2-D integral.

Use the sifting property of the 2-D impulse to
show that convolution of a 2-D continuous func-
tion, f(t,z), with an impulse shifts the function
so that its origin is located at the location of the
impulse. (If the impulse is at the origin, the func-
tion is copied exactly as it was.) (Hint: Study the
solution to Problem 4.4).

The image on the left in the figure below consists
of alternating stripes of black/white, each stripe

being two pixels wide. The image on the right
is the Fourier spectrum of the image on the left,
showing the dc term and the frequency terms cor-
responding to the stripes. (Remember, the spec-
trum is symmetric so all components, other than
the dc term, appear in two symmetric locations.)

(a)* Suppose that the stripes of an image of the

same size are four pixels wide. Sketch what
the spectrum of the image would look like,
including only the dc term and the two high-
est-value frequency terms, which correspond
to the two spikes in the spectrum above.

(b) Why are the components of the spectrum
limited to the horizontal axis?

(c) What would the spectrum look like for an
image of the same size but having stripes that
are one pixel wide? Explain the reason for
your answer.

(d) Are the dc terms in (a) and (c) the same, or
are they different? Explain.

4.22 A high-technology company specializes in devel-

oping imaging systems for digitizing images of
commercial cloth. The company has a new order
for 1,000 systems for digitizing cloth consisting of
repeating black and white vertical stripes, each
of width 2 cm. Optical and mechanical engineers
have already designed the front-end optics and
mechanical positioning mechanisms so that you
are guaranteed that every image your system digi-
tizes starts with a complete black vertical stripe
and ends with a complete white stripe. Every
image acquired will contain exactly 250 vertical
stripes. Noise and optical distortions are negligi-
ble. Having learned of your success in taking an
image processing course, the company employs
you to specify the resolution of the imaging chip
to be used in the new system. The optics can be
adjusted to project the field of view accurately
onto the area defined by the size of the chip you
specify. Your design will be implemented in hun-
dreds of locations, so cost is an important consid-
eration. What resolution chip (in terms of number
of imaging elements per horizontal line) would
you specify to avoid aliasing?

4.23* We know from the discussion in Section 4.5 that

zooming or shrinking a digital image generally
causes aliasing. Give an example of an image that
would be free of aliasing if it were zoomed by
pixel replication.

4.24 With reference to the discussion on linearity in

Section 2.6, demonstrate that

(a)* The 2-D continuous Fourier transform is a
linear operator.

(b) The 2-D DFT is a linear operator also.



4.25

4.26

4.27

4.28

4.29

With reference to Egs. (4-59) and (4-60), show the
validity of the following translation (shift) prop-
erties of 2-D, continuous Fourier transform pairs.
(Hint: Study the solutions to Problem 4.11.)

(@)* f(1,2)e”T ) o Fu— pg,v = v,)
(b) f(t—19,2=2)) & F(p,p)e 2o am

Show the validity of the following 2-D continuous
Fourier transform pairs.

(a)*8(t,2) = 1

(b)*1 & d(u,v)

(©)* 8(t — lys2 — Zo) o ¢ /2mlton + 27)
(d) ejZﬂ(tnt+ZnZ) PN 8(/—’« — oV — ZO)
(e)* cos(Lmruyt + 27y z) &

(1/2)[8(k = pgsv = o) + 81+ pro,v + )]
sinmruyt + 27y z) &

(1/2j)[5(ﬁ’«_ Rosv = V) = (1 + po,v + VO)]
With reference to Egs. (4-71) and (4-72), dem-
onstrate the validity of the following translation
(shifting) properties of 2-D, discrete Fourier trans-

form pairs from Table 4.4. (Hint: Study the solu-
tions to Problem 4.17.)

(3) f(x’y)ejZW(uox/M + va/N)<:> F(u —uy,v— 7)0)
b)* f(x = x5,y - ) & F(u,v)e*izﬂ(xﬂu/M+yuv/N)

Show the validity of the following 2-D discrete
Fourier transform pairs from Table 4.4:

@)*8(x,y) =1
(b)*1 < MN&(u,v)
(©) S(x=xp,y=y) &
(dy* e/ M0 IN) o MINS(u = 1,0 = ;)
(e) cosRmuyx/M +2mvyy/N) &

(MN [2)[8(u+ g, v +0) + 8(u — 1, v — )]

()

e*fz’”(w‘u/M +0yy/N)

(£)* sinQmuyx/M + 2mvyy/N) <
(JMN /2)[8(u + g, v +vy) — 8(u — 14y, v — 0,

You are given a “canned” program that computes
the 2-D, DFT pair. However, it is not known
in which of the two equations the 1/MN term
is included or if it was split as two constants,
1//MN , in front of both the forward and inverse
transforms. How can you find where the term(s)
is (are) included if this information is not avail-
able in the documentation?

4.30

4.31

4.32

4.33

4.34
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What is period and frequency of each of following
digital sequences (Hint: Think of these as square
waves.)

(2*01010101...
(b) 001001001....
(¢ 001100110011...

With reference to the 1-D sequences in Example
4.10:

(a)* When M is even, why is the point at M/2 in
an even sequence always arbitrary?

(b) When M is even, why is the point at M/2 in
an odd sequence always 0?

We mentioned in Example 4.10 that embedding a
2-D array of even (odd) dimensions into a larger
array of zeros of even (odd) dimensions keeps the
symmetry of the original array, provided that the
centers coincide. Show that this is true also for
the following 1-D arrays (i.e., show that the larger
arrays have the same symmetry as the smaller
arrays). For arrays of even length, use arrays of
0’s ten elements long. For arrays of odd lengths,
use arrays of 0’s nine elements long.

(@)*{a,b,c,c,b}

(b) {0, -b,—-¢,0,c, b}
(¢) {a,b,c,d, c,b}
(d) {0, -b,—c,c, b}

In Example 4.10 we showed a Sobel kernel
embedded in a field of zeros. The kernel is of size
3 x 3 and its structure appears to be odd. However,
its first element is —1, and we know that in order
to be odd, the first (top, left) element a 2-D array
must be zero. Show the smallest field of zeros in
which you can embed the Sobel kernel so that it
satisfies the condition of oddness.

Do the following:

(a)* Show that the 6 x 6 array in Example 4.10 is
odd.

(b) What would happen if the minus signs are
changed to pluses?

(¢) Explain why, as stated at the end of the exam-
ple, adding to the array another row of 0’s on
the top and column of 0’s to the left would

give a result that is neither even nor odd.
(d) Suppose that the row is added to the bot-
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4.35

4.36

4.37

4.38

4.39

4.40*
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tom and the column to the right? Would that
change your answer in (c)?

The following problems are related to the proper-
ties in Table 4.1.

(a)* Demonstrate the validity of property 2.
(b)* Demonstrate the validity of property 4.
(¢) Demonstrate the validity of property 5.
(d)* Demonstrate the validity of property 7.
(e) Demonstrate the validity of property 9.

You know from Table 4.3 that the dc term, F(0,0),
of a DFT is proportional to the average value of
its corresponding spatial image. Assume that the
image is of size M x N. Suppose that you pad the
image with zeros to size P X Q, where P and Q
are given in Egs. (4-102) and (4-103). Let F,(0,0)
denote the dc term of the DFT of the padded
function.

(a)* What is the ratio of the average values of the
original and padded images?

(b) Is F,(0,0)=F(0,0)? Support your answer
mathematically.

Demonstrate the validity of the periodicity prop-
erties (entry 8) in Table 4.3.

With reference to the 2-D discrete convolution
theorem in Egs. (4-95) and (4-96) (entry 6 in
Table 4.4), show that

(@) (fxh)(x.y) e (FeH)(u,v)
(b)* (f+h)(x.y) & (1/MN)[(F % H)(u,v)]
(Hint: Study the solution to Problem 4.18.)

With reference to the 2-D discrete correlation
theorem (entry 7 in Table 4.4), show that

(@)* (feh)(x.y) & (F«H)(u,v)
(b) (f+h)(x,y) & (/MN)[(F 3 H)(u,v)]

Demonstrate validity of the differentiation pairs
in entry 12 of Table 4.4.

We discussed in Section 4.6 the need for image
padding when filtering in the frequency domain.
We showed in that section that images could be
padded by appending zeros to the ends of rows
and columns in the image (see the following
image, on the left). Do you think it would make a
difference if we centered the image and surround-

ed it by a border of zeros instead (see image on
the right), but without changing the total number
of zeros used? Explain.

4.42* The two Fourier spectra shown are of the same

443

image. The spectrum on the left corresponds to
the original image, and the spectrum on the right
was obtained after the image was padded with
zeros. Explain the significant increase in signal
strength along the vertical and horizontal axes of
the spectrum shown on the right.

Consider the images shown. The image on the
right was obtained by: (a) multiplying the image
on the left by (-1)**”; (b) computing the DFT; (c)
taking the complex conjugate of the transform;
(d) computing the inverse DFT; and (e) multiply-
ing the real part of the result by (-1)***. Explain
(mathematically) why the image on the right
appears as it does.




4.44* The image in Fig. 4.34(b) was obtained by mul-

4.45

tiplying by —1 the phase angle of the image in
Fig. 4.34(a), and then computing the IDFT. With
reference to Eq. (4-86) and entry 5 in Table 4.1,
explain why this operation caused the image to be
reflected about both coordinate axes.

In Fig. 4.34(b) we saw that multiplying the phase
angle by —1 flipped the image with respect to both
coordinate axes. Suppose that instead we multi-
plied the magnitude of the transform by —1 and
then took the inverse DFT using the equation:
g(x,y) = R {—‘F(u,v)‘ej‘i’("”’)}.
(a)* What would be the difference between the
two images g(x,y) and f(x,y)? [Remember,
F(u,v) is the DFT of f(x,y).]

(b) Assuming that they are both 8-bit images,
what would g(x,y) look like in terms of
f(x,y) if we scaled the intensity values of
g(x,y) using Egs. (2-31) and (2-32), with
K =255?

4.46 What is the source of the nearly periodic bright

4.47%

spots on the horizontal axis of Fig. 4.40(b)?

Consider a 3x3 spatial kernel that averages
the four closest neighbors of a point (x,y), but
excludes the point itself from the average.

(a) Find the equivalent filter transfer function,
H(u,v), in the frequency domain.

(b) Show that your result is a lowpass filter trans-
fer function.

4.48* A continuous Gaussian lowpass filter in the con-

4.49

tinuous frequency domain has the transfer func-
tion

H(pp) = Ae™ 02

Show that the corresponding filter kernel in the
continuous spatial domain is

h(t,z) = A2mole ™ ()

Given an image of size M x N, you are asked to
perform an experiment that consists of repeat-
edly lowpass filtering the image in the frequency
domain using a Gaussian lowpass filter transfer
function with a cutoff frequency, D,. You may
ignore computational round-off errors.

(a)* Let K denote the number of applications of
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the filter. Can you predict (without doing the
experiment) what the result (image) will be
for a sufficiently large value of K? If so, what
is that result?

Let c,;, denote the smallest positive num-
ber representable in the machine in which
the proposed experiment will be conducted
(any number < ¢, is automatically set to 0).
Derive an expression (in terms of c,;,) for
the minimum value of K that will guarantee
the result that you predicted in (a).

(b)

4.50 As explained in Section 3.6, first-order deriva-

4.51

4.52

tives can be approximated by the spatial differ-

ences g, =df (x,y)/dx =f(x+1y)— f(x,y) and

g, =9f(x,y)/dy = f(x,y +1) = f(x,y).

(a) Find the equivalent filter transfer func-
tions H (u,v) and H  (u,v) in the frequency
domain.

(b) Show that these are highpass filter transfer
functions.

(Hint: Study the solution to Problem 4.47.)

Find the equivalent frequency-domain filter
transfer function for the Laplacian kernel shown
in Fig. 3.45(a). Show that your result behaves as a
highpass filter transfer function. (Hint: Study the
solution to Problem 4.47.)

Do the following:

(a) Show that the Laplacian of a continuous
function f(t,z) of two continuous variables,
t and z, satisfies the following Fourier trans-
form pair:

Vi f(t,2) & ~4m (1 +v*)F ()

(Hint: See Eq. (3-50) and study entry 12 in
Table 4.4.)

(b)*The result in (a) is valid only for continuous
variables. How would you implement the
continuous frequency domain transfer func-
tion H(u,v)=—47*(u> +v*) for discrete
variables?

(¢) As you saw in Example 4.21, the Laplacian
result in the frequency domain was similar to
the result in Fig. 3.46(d), which was obtained
using a spatial kernel with a center coeffi-
cient equal to —8. Explain why the frequency
domain result was not similar instead to the
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result in Fig. 3.46(c), which was obtained
using a kernel with a center coefficient of —4.

Can you think of a way to use the Fourier trans-
form to compute (or partially compute) the
magnitude of the gradient [Eq. (3-58)] for use in
image differentiation? If your answer is yes, give
a method to do it. If your answer is no, explain
why.

4.54 Asexplained in Eq. (4-118),it is possible to obtain

4.55

4.56*

4.57

the transfer function of a highpass filter from the
transfer function of a lowpass filter by subtract-
ing the latter from 1. What is the highpass spatial
kernel corresponding to the lowpass Gaussian
transfer function given in Problem 4.48?

Each spatial highpass kernel in Fig. 4.52 has a
strong spike in the center. Explain the source of
this spikes.

Show how the Butterworth highpass filter trans-
fer function in Eq. (4-121) follows from its low-
pass counterpart in Eq. (4-117).

Consider the hand X-ray images shown below.
The image on the right was obtained by lowpass

(Original image courtesy of Dr. Thomas R. Gest, Division
of Anatomical Sciences, University of Michigan Medical
School.)

filtering the image on the left with a Gaussian
lowpass filter, and then highpass filtering the
result with a Gaussian highpass filter. The images
are of size 420 x 344 pixels and D, = 25 was used
for both filter transfer functions.

(a)* Explain why the center part of the finger ring
in the figure on the right appears so bright
and solid, considering that the dominant
characteristic of the filtered image consists
of edges of the fingers and wrist bones, with
darker areas in between. In other words,
would you not expect the highpass filter to
render the constant area inside the ring as

4.58

dark, since a highpass filter eliminates the dc
term and reduces low frequencies?

(b) Do you think the result would have been dif-
ferent if the order of the filtering process had
been reversed?

Consider the sequence of images shown below.
The image on the top left is a segment of an X-ray
image of a commercial printed circuit board. The
images following it are, respectively, the results of
subjecting the image to 1, 10, and 100 passes of a
Gaussian highpass filter with D, = 30. The images
are of size 330 x 334 pixels, with each pixel being
represented by 8 bits of gray. The images were
scaled for display, but this has no effect on the
problem statement.

(Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

(a) It appears from the images that changes will
cease to take place after a finite number of
passes. Show whether or not this is the case.
You may ignore computational round-off
errors. Let ¢, denote the smallest positive
number representable in the machine in
which the computations are conducted.

(b) If you determined in (a) that changes would
cease after a finite number of iterations,
determine the minimum value of that num-

ber.
(Hint: Study the solution to Problem 4.49.)

4.59 As illustrated in Fig. 4.57, combining high-fre-

quency emphasis and histogram equalization is
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an effective method for achieving edge sharpen-
ing and contrast enhancement.

(a)* Show whether or not it matters which pro-
cess is applied first.

(b) If the order does matter, give a rationale for
using one or the other method first.

Use a Butterworth highpass filter to construct a
homomorphic filter transfer function that has the
same general shape as the function in Fig. 4.59.

Suppose that you are given a set of images gener-
ated by an experiment dealing with the analysis of
stellar events. Each image contains a set of bright,
widely scattered dots corresponding to stars in
a sparsely occupied region of the universe. The
problem is that the stars are barely visible as a
result of superimposed illumination from atmo-
spheric dispersion. If these images are modeled as
the product of a constant illumination component
with a set of impulses, give an enhancement pro-
cedure based on homomorphic filtering designed
to bring out the image components due to the
stars themselves.

4.62

4.63+
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Problems

How would you generate an image of only the
interference pattern visible in Fig. 4.64(a)?

Show the validity of Egs. (4-171) and (4-172).
(Hint: Use proof by induction.)

4.64 A skilled medical technician is assigned the job of

inspecting a set of images generated by an elec-
tron microscope experiment. In order to simplify
the inspection task, the technician decides to use
digital image enhancement and, to this end, exam-
ines a set of representative images and finds the
following problems: (1) bright, isolated dots that
are of no interest; (2) lack of sharpness; (3) not
enough contrast in some images; and (4) shifts
in the average intensity to values other than A,
which is the average value required to perform
correctly certain intensity measurements. The
technician wants to correct these problems and
then display in white all intensities in a band
between intensities /, and /,, while keeping nor-
mal tonality in the remaining intensities. Propose
a sequence of processing steps that the technician
can follow to achieve the desired goal. You may
use techniques from both Chapters 3 and 4.
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Image Restoration
and Reconstruction

Things which we see are not themselves what we see . . .

It remains completely unknown to us what the objects may be
by themselves and apart from the receptivity of our senses.
We know only but our manner of perceiving them.

Immanvel Kant

Preview

As in image enhancement, the principal goal of restoration techniques is to improve an image in some
predefined sense. Although there are areas of overlap, image enhancement is largely a subjective pro-
cess, while image restoration is for the most part an objective process. Restoration attempts to recover
an image that has been degraded by using a priori knowledge of the degradation phenomenon. Thus,
restoration techniques are oriented toward modeling the degradation and applying the inverse process
in order to recover the original image. In this chapter, we consider linear, space invariant restoration
models that are applicable in a variety of restoration situations. We also discuss fundamental tech-
niques of image reconstruction from projections, and their application to computed tomography (CT),
one of the most important commercial applications of image processing, especially in health care.

Upon completion of this chapter, readers should:

B Be familiar with the characteristics of various be applied in formulating image restoration

noise models used in image processing, and
how to estimate from image data the param-
eters that define those models.

Be familiar with linear, nonlinear, and adap-
tive spatial filters used to restore (denoise)
images that have been degraded only by noise.

Know how to apply notch filtering in the fre-
quency domain for removing periodic noise
in an image.

B Understand the foundation of linear, space

invariant system concepts, and how they can

solutions in the frequency domain.

Be familiar with direct inverse filtering and its
limitations.

Understand minimum mean-square-error (Wie-
ner) filtering and its advantages over direct
inverse filtering.

B Understand constrained, least-squares filter-

ing.

B Be familiar with the fundamentals of image

reconstruction from projections, and their
application to computed tomography.

317
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FIGURE 5.1

A model of the
image
degradation/
restoration
process.

5.1 A MODEL OF THE IMAGE DEGRADATION/RESTORATION
PROCESS N

In this chapter, we model image degradation as an operator # that, together with an
additive noise term, operates on an input image f(x, y) to produce a degraded image
g(x,y) (see Fig.5.1). Given g(x,y), some knowledge about #, and some knowledge
about the additive noise term n(x,y), the objective of restoration is to obtain an
estimate f(x,y) of the original image. We want the estimate to be as close as possible
to the original image and, in general, the more we know about # and 7, the closer
f(x,y) will be to f(x,y).

We will show in Section 5.5 that, if ¥ is a linear, position-invariant operator, then
the degraded image is given in the spatial domain by

g(x,y) = (h* f)(x,y) + n(x,y) (5-1)

where h(x,y) is the spatial representation of the degradation function. As in Chapters
3 and 4, the symbol “*” indicates convolution. It follows from the convolution theorem
that the equivalent of Eq. (5-1) in the frequency domain is

G(u,v) = H(u,v)F(u,v) + N(u,v) (5-2)

where the terms in capital letters are the Fourier transforms of the corresponding
terms in Eq. (5-1). These two equations are the foundation for most of the restora-
tion material in this chapter.

In the following three sections, we work only with degradations caused by noise.
Beginning in Section 5.5 we look at several methods for image restoration in the
presence of both ¥ and 7.

5.2 NOISE MODELS I

The principal sources of noise in digital images arise during image acquisition and/or
transmission. The performance of imaging sensors is affected by a variety of environ-
mental factors during image acquisition, and by the quality of the sensing elements
themselves. For instance, in acquiring images with a CCD camera, light levels and
sensor temperature are major factors affecting the amount of noise in the resulting
image. Images are corrupted during transmission principally by interference in the
transmission channel. For example, an image transmitted using a wireless network
might be corrupted by lightning or other atmospheric disturbance.

. g(x,y) )
| Deion (4 R L

Noise
n(x,y)

DEGRADATION RESTORATION
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review of probability.
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SPATIAL AND FREQUENCY PROPERTIES OF NOISE

Relevant to our discussion are parameters that define the spatial characteristics of
noise, and whether the noise is correlated with the image. Frequency properties refer
to the frequency content of noise in the Fourier (frequency) domain discussed in
detail in Chapter 4. For example, when the Fourier spectrum of noise is constant, the
noise is called white noise. This terminology is a carryover from the physical prop-
erties of white light, which contains all frequencies in the visible spectrum in equal
proportions.

With the exception of spatially periodic noise, we assume in this chapter that
noise is independent of spatial coordinates, and that it is uncorrelated with respect
to the image itself (that is, there is no correlation between pixel values and the values
of noise components). Although these assumptions are at least partially invalid in
some applications (quantum-limited imaging, such as in X-ray and nuclear-medicine
imaging, is a good example), the complexities of dealing with spatially dependent
and correlated noise are beyond the scope of our discussion.

SOME IMPORTANT NOISE PROBABILITY DENSITY FUNCTIONS

In the discussion that follows, we shall be concerned with the statistical behavior of
the intensity values in the noise component of the model in Fig. 5.1. These may be
considered random variables, characterized by a probability density function (PDF),
as noted briefly as noted earlier. The noise component of the model in Fig. 5.1 is an
image, 1(x, y), of the same size as the input image. We create a noise image for simu-
lation purposes by generating an array whose intensity values are random numbers
with a specified probability density function. This approach is true for all the PDFs
to be discussed shortly, with the exception of salt-and-pepper noise, which is applied
differently. The following are among the most common noise PDFs found in image
processing applications.

Gaussian Noise

Because of its mathematical tractability in both the spatial and frequency domains,
Gaussian noise models are used frequently in practice. In fact, this tractability is so
convenient that it often results in Gaussian models being used in situations in which
they are marginally applicable at best.

The PDF of a Gaussian random variable, z, is defined by the following familiar
expression:

(z-2)

e 20 —0 < 7 < ®© (5-3)

p(z)= J%U

where z represents intensity, Z is the mean (average) value of z,and o is its standard
deviation. Figure 5.2(a) shows a plot of this function. We know that for a Gaussian
random variable, the probability that values of z are in the range 7 + o is approxi-
mately 0.68; the probability is about 0.95 that the values of z are in the range 7 + 20
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FIGURE 5.2 Some important probability density functions.

Rayleigh Noise
The PDF of Rayleigh noise is given by

%(Z —a)e Ul 2 g

p(z)= (5-4)

0 z<a

The mean and variance of z when this random variable is characterized by a Ray-

leigh PDF are

T=a+ Jmb/4 (5-5)
and

o2 == (44_ ) (5-6)

Figure 5.2(b) shows a plot of the Rayleigh density. Note the displacement from the
origin, and the fact that the basic shape of the density is skewed to the right. The
Rayleigh density can be quite useful for modeling the shape of skewed histograms.
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Erlang (Gamma) Noise
The PDF of Erlang noise is

abzb 1 o .
p(2)=1(b - 1)! (5-7)
0 z2<0

where the parameters are such that a > b, b is a positive integer, and “!” indicates
factorial. The mean and variance of z are

b

7=— (5-8)
a
and
02:%. (5-9)
a

Figure 5.2(c) shows a plot of this density. Although Eq. (5-9) often is referred to as
the gamma density, strictly speaking this is correct only when the denominator is
the gamma function, I'(»). When the denominator is as shown, the density is more
appropriately called the Erlang density.

Exponential Noise

The PDF of exponential noise is given by

—az

_ Jae z20 i
ﬂ@—{o <0 (5-10)

where a > 0. The mean and variance of z are

=1 (5-11)
a
and
o’ = iz (5-12)
a

Note that this PDF is a special case of the Erlang PDF with b =1. Figure 5.2(d)
shows a plot of the exponential density function.

Uniform Noise

The PDF of uniform noise is

1 a<z<b
p(z)=1b-a (5-13)

0 otherwise
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When image intensities
are scaled to the range
[0, 1], we replace by 1 the
value of salt in this equa-
tion. V then becomes a
fractional value in the
open interval (0, 1).

The mean and variance of z are

2= b (5-14)
and
_ 2
ol = (”1—2“) (5-15)

Figure 5.2(e) shows a plot of the uniform density.

Salt-and-Pepper Noise

If k represents the number of bits used to represent the intensity values in a digital
image, then the range of possible intensity values for that image is [0,2* —1] (e.g.,
[0,255] for an 8-bit image). The PDF of salt-and-pepper noise is given by

P for z =2 -1

s

p(z)=1P, forz=0 (5-16)
1-(P,+P,) forz=V

where V is any integer value in the range 0 < V < 2% —1.

Let n(x,y) denote a salt-and-pepper noise image, whose intensity values satisfy
Eq. (5-16). Given an image, f(x,y), of the same size as n(x, y), we corrupt it with salt-
and-pepper noise by assigning a 0 to all locations in f where a 0 occurs in 7. Similarly,
we assign a value of 2* —1 to all location in f where that value appears in 7. Finally,
we leave unchanged all location in f where V occurs in 7.

If neither P, nor P, is zero, and especially if they are equal, noise values satisfy-
ing Eq. (5-16) will be white (2* —1) or black (0), and will resemble salt and pepper
granules distributed randomly over the image; hence the name of this type of noise.
Other names you will find used in the literature are bipolar impulse noise (unipolar
if either P, or P, is 0), data-drop-out noise, and spike noise. We use the terms impulse
and salt-and-pepper noise interchangeably.

The probability, P, that a pixel is corrupted by salt or pepper noise is P = P, + P,.
It is common terminology to refer to P as the noise density. If, for example, P, = 0.02
and P, = 0.01, then P = 0.03 and we say that approximately 2% of the pixels in an
image are corrupted by salt noise, 1% are corrupted by pepper noise, and the noise
density is 3%, meaning that approximately 3% of the pixels in the image are cor-
rupted by salt-and-pepper noise.

Although, as you have seen, salt-and-pepper noise is specified by the probability
of each, and not by the mean and variance, we include the latter here for complete-
ness. The mean of salt-and-pepper noise is given by

z=(0)P,+K(1-P,-P)+(2" - 1P, (5-17)

and the variance by
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o’ =(0-2)’P,+(K-2)’(1-P,-P)+(2" - 1)’P, (5-18)

where we have included 0 as a value explicit in both equations to indicate that the
value of pepper noise is assumed to be zero.

As a group, the preceding PDFs provide useful tools for modeling a broad range
of noise corruption situations found in practice. For example, Gaussian noise arises
in an image due to factors such as electronic circuit noise and sensor noise caused by
poor illumination and/or high temperature. The Rayleigh density is helpful in char-
acterizing noise phenomena in range imaging. The exponential and gamma densities
find application in laser imaging. Impulse noise is found in situations where quick
transients, such as faulty switching, take place during imaging. The uniform density
is perhaps the least descriptive of practical situations. However, the uniform density
is quite useful as the basis for numerous random number generators that are used
extensively in simulations (Gonzalez, Woods, and Eddins [2009]).

EXAMPLE 5.1: Noisy images and their histograms.

Figure 5.3 shows a test pattern used for illustrating the noise models just discussed. This is a suitable pat-
tern to use because it is composed of simple, constant areas that span the gray scale from black to near
white in only three increments. This facilitates visual analysis of the characteristics of the various noise
components added to an image.

Figure 5.4 shows the test pattern after addition of the six types of noise in Fig. 5.2. Below each image
is the histogram computed directly from that image. The parameters of the noise were chosen in each
case so that the histogram corresponding to the three intensity levels in the test pattern would start to
merge. This made the noise quite visible, without obscuring the basic structure of the underlying image.

We see a close correspondence in comparing the histograms in Fig. 5.4 with the PDFs in Fig. 5.2.
The histogram for the salt-and-pepper example does not contain a specific peak for V because, as you
will recall, V' is used only during the creation of the noise image to leave values in the original image
unchanged. Of course, in addition to the salt and pepper peaks, there are peaks for the other intensi-
ties in the image. With the exception of slightly different overall intensity, it is difficult to differentiate

FIGURE 5.3

Test pattern used
to illustrate the
characteristics of
the PDFs from
Fig.5.2.
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FIGURE 5.4 Images and histograms resulting from adding Gaussian, Rayleigh, and Erlanga noise to the image in
Fig.5.3.

visually between the first five images in Fig. 5.4, even though their histograms are significantly different.
The salt-and-pepper appearance of the image in Fig. 5.4(i) is the only one that is visually indicative of
the type of noise causing the degradation.

PERIODIC NOISE

Periodic noise in images typically arises from electrical or electromechanical inter-
ference during image acquisition. This is the only type of spatially dependent noise
we will consider in this chapter. As we will discuss in Section 5.4, periodic noise can
be reduced significantly via frequency domain filtering. For example, consider the
image in Fig. 5.5(a). This image is corrupted by additive (spatial) sinusoidal noise.
The Fourier transform of a pure sinusoid is a pair of conjugate impulses’ located at

+ Be careful not to confuse the term impulse in the frequency domain with the use of the same term in impulse
noise discussed earlier, which is in the spatial domain.
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ghi
j k1

FIGURE 5.4 (continued) Images and histograms resulting from adding exponential, uniform, and salt-and-pepper noise
to the image in Fig. 5.3. In the salt-and-pepper histogram, the peaks in the origin (zero intensity) and at the far end
of the scale are shown displaced slightly so that they do not blend with the page background.

the conjugate frequencies of the sine wave (see Table 4.4). Thus, if the amplitude of
a sine wave in the spatial domain is strong enough, we would expect to see in the
spectrum of the image a pair of impulses for each sine wave in the image. As shown
in Fig. 5.5(b), this is indeed the case. Eliminating or reducing these impulses in the
frequency domain will eliminate or reduce the sinusoidal noise in the spatial domain.
We will have much more to say in Section 5.4 about this and other examples of peri-
odic noise.

ESTIMATING NOISE PARAMETERS

The parameters of periodic noise typically are estimated by inspection of the Fourier
spectrum. Periodic noise tends to produce frequency spikes that often can be detect-
ed even by visual analysis. Another approach is to attempt to infer the periodicity
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ab

FIGURE 5.5

(a) Image
corrupted by
additive
sinusoidal noise.
(b) Spectrum
showing two
conjugate
impulses caused
by the sine wave.
(Original

image courtesy of
NASA.)

of noise components directly from the image, but this is possible only in simplis-
tic cases. Automated analysis is possible in situations in which the noise spikes are
either exceptionally pronounced, or when knowledge is available about the general
location of the frequency components of the interference (see Section 5.4).

The parameters of noise PDFs may be known partially from sensor specifications,
but it is often necessary to estimate them for a particular imaging arrangement. If
the imaging system is available, one simple way to study the characteristics of system
noise is to capture a set of “flat” images. For example, in the case of an optical sen-
sor, this is as simple as imaging a solid gray board that is illuminated uniformly. The
resulting images typically are good indicators of system noise.

When only images already generated by a sensor are available, it is often possible
to estimate the parameters of the PDF from small patches of reasonably constant
background intensity. For example, the vertical strips shown in Fig. 5.6 were cropped
from the Gaussian, Rayleigh, and uniform images in Fig. 5.4. The histograms shown
were calculated using image data from these small strips. The histograms in Fig. 5.4
that correspond to the histograms in Fig. 5.6 are the ones in the middle of the group
of three in Figs. 5.4(d), (e), and (k).We see that the shapes of these histograms cor-
respond quite closely to the shapes of the corresponding histograms in Fig. 5.6. Their
heights are different due to scaling, but the shapes are unmistakably similar.

The simplest use of the data from the image strips is for calculating the mean and
variance of intensity levels. Consider a strip (subimage) denoted by S, and let pg(z;),
i=0,1,2,..., L -1, denote the probability estimates (normalized histogram values)
of the intensities of the pixels in S, where L is the number of possible intensities in
the entire image (e.g., 256 for an 8-bit image). As in Egs. (2-69) and (2-70), we esti-
mate the mean and variance of the pixel values in § as follows:

L-1

z= z zps(2)

i=0

(5-19)

and
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FIGURE 5.6 Histograms computed using small strips (shown as inserts) from (a) the Gaussian, (b) the Rayleigh, and
(c) the uniform noisy images in Fig. 5.4.

L-1

o’ = (z,-2) ps(z) (5-20)

i=

The shape of the histogram identifies the closest PDF match. If the shape is approxi-
mately Gaussian, then the mean and variance are all we need because the Gaussian
PDF is specified completely by these two parameters. For the other shapes discussed
earlier, we use the mean and variance to solve for the parameters a and b. Impulse
noise is handled differently because the estimate needed is of the actual probability
of occurrence of white and black pixels. Obtaining this estimate requires that both
black and white pixels be visible, so a mid-gray, relatively constant area is needed in
the image in order to be able to compute a meaningful histogram of the noise. The
heights of the peaks corresponding to black and white pixels are the estimates of P,
and P, in Eq. (5-16).

5.3 RESTORATION IN THE PRESENCE OF NOISE ONLY — SPATIAL
FILTERING N

When an image is degraded only by additive noise, Egs. (5-1) and (5-2) become
8(x,y) = f(x,y) + n(x,y) (5-21)
and
G(u,v) = F(u,v) + N(u,v) (5-22)

The noise terms generally are unknown, so subtracting them from g(x,y) [G(u,v)]
to obtain f(x,y) [F(u,v)] typically is not an option. In the case of periodic noise,
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We assume that m and
n are odd integers. The
size of a mean filter is
the same as the size of
neighborhood S,; that
is,m X n.

sometimes it is possible to estimate N(u,v) from the spectrum of G(u,v), as noted
in Section 5.2. In this case N(u,v) can be subtracted from G(u,v) to obtain an esti-
mate of the original image, but this type of knowledge is the exception, rather than
the rule.

Spatial filtering is the method of choice for estimating f(x,y) [i.e., denoising
image g(x,y)] in situations when only additive random noise is present. Spatial fil-
tering was discussed in detail in Chapter 3. With the exception of the nature of the
computation performed by a specific filter, the mechanics for implementing all the
filters that follow are exactly as discussed in Sections 3.4 through 3.7.

MEAN FILTERS

In this section, we discuss briefly the noise-reduction capabilities of the spatial filters
introduced in Section 3.5 and develop several other filters whose performance is in
many cases superior to the filters discussed in that section.

Arithmetic Mean Filter

The arithmetic mean filter is the simplest of the mean filters (the arithmetic mean
filter is the same as the box filter we discussed in Chapter 3). Let S, represent the
set of coordinates in a rectangular subimage window (neighborhood) of size m x n,
centered on point (x,y). The arithmetic mean filter computes the average value of
the corrupted image, g(x,y), in the area defined by S, . The value of the restored
image f at point (x,y) is the arithmetic mean computed using the pixels in the
region defined by S,,.In other words,

fan=— 3 g0 (523

(r,c)eSXy
where, as in Eq. (2-43), r and c¢ are the row and column coordinates of the pixels
contained in the neighborhood §,,. This operation can be implemented using a spa-

tial kernel of size m x n in which all coefficients have value 1/mn. A mean filter
smooths local variations in an image, and noise is reduced as a result of blurring.

Geometric Mean Filter

An image restored using a geometric mean filter is given by the expression

7x) ={ I g(r,c)r" (5-24)

(r,c)ESXy

where II indicates multiplication. Here, each restored pixel is given by the product of
all the pixels in the subimage area, raised to the power 1/mn. As Example 5.2 below
illustrates, a geometric mean filter achieves smoothing comparable to an arithmetic
mean filter, but it tends to lose less image detail in the process.
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Harmonic Mean Filter

The harmonic mean filtering operation is given by the expression

feey) = —"F5— (5-25)

(r,c)eS,, g(r’ C)

The harmonic mean filter works well for salt noise, but fails for pepper noise. It does
well also with other types of noise like Gaussian noise.

Contraharmonic Mean Filter

The contraharmonic mean filter yields a restored image based on the expression

) ( )ZS g(r.o)?"!
flxy)= W (5-26)

(r,c)esS,,

where Q is called the order of the filter. This filter is well suited for reducing or vir-
tually eliminating the effects of salt-and-pepper noise. For positive values of Q, the
filter eliminates pepper noise. For negative values of Q, it eliminates salt noise. It
cannot do both simultaneously. Note that the contraharmonic filter reduces to the
arithmetic mean filter if Q = 0, and to the harmonic mean filter if Q = —1.

EXAMPLE 5.2: Image denoising using spatial mean filters.

Figure 5.7(a) shows an 8-bit X-ray image of a circuit board, and Fig. 5.7(b) shows the same image, but
corrupted with additive Gaussian noise of zero mean and variance of 400. For this type of image, this is
a significant level of noise. Figures 5.7(c) and (d) show, respectively, the result of filtering the noisy image
with an arithmetic mean filter of size 3 X 3 and a geometric mean filter of the same size. Although both
filters did a reasonable job of attenuating the contribution due to noise, the geometric mean filter did
not blur the image as much as the arithmetic filter. For instance, the connector fingers at the top of the
image are sharper in Fig. 5.7(d) than in (c). The same is true in other parts of the image.

Figure 5.8(a) shows the same circuit image, but corrupted now by pepper noise with probability of
0.1. Similarly, Fig. 5.8(b) shows the image corrupted by salt noise with the same probability. Figure 5.8(c)
shows the result of filtering Fig. 5.8(a) using a contraharmonic mean filter with Q = 1.5, and Fig. 5.8(d)
shows the result of filtering Fig. 5.8(b) with O = —1.5. Both filters did a good job of reducing the effect of
the noise. The positive-order filter did a better job of cleaning the background, at the expense of slightly
thinning and blurring the dark areas. The opposite was true of the negative order filter.

In general, the arithmetic and geometric mean filters (particularly the latter) are well suited for ran-
dom noise like Gaussian or uniform noise. The contraharmonic filter is well suited for impulse noise, but
it has the disadvantage that it must be known whether the noise is dark or light in order to select the
proper sign for Q. The results of choosing the wrong sign for Q can be disastrous, as Fig. 5.9 shows. Some
of the filters discussed in the following sections eliminate this shortcoming.
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FIGURE 5.7

(a) X-ray image
of circuit board.
(b) Image
corrupted by
additive Gaussian
noise. (c) Result
of filtering with
an arithmetic
mean filter of size
3x 3. (d) Result
of filtering with a
geometric mean
filter of the same
size. (Original
image courtesy of
Mr. Joseph E.
Pascente, Lixi,
Inc.)
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ORDER-STATISTIC FILTERS

We introduced order-statistic filters in Section 3.6. We now expand the discussion
in that section and introduce some additional order-statistic filters. As noted in Sec-
tion 3.6, order-statistic filters are spatial filters whose response is based on ordering
(ranking) the values of the pixels contained in the neighborhood encompassed by
the filter. The ranking result determines the response of the filter.

Median Filter

The best-known order-statistic filter in image processing is the median filter, which,
as its name implies, replaces the value of a pixel by the median of the intensity levels
in a predefined neighborhood of that pixel:

F(x.y) = median{g(r.c)} (5-27)

rc)

where, as before, S, is a subimage (neighborhood) centered on point (x, y). The val-

ue of the pixel at (x, y) is included in the computation of the median. Median filters
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FIGURE 5.8

(a) Image
corrupted by
pepper noise with
a probability of
0.1. (b) Image
corrupted by salt
noise with the
same

probability.

(c) Result of
filtering (a) with
a 3 x 3 contra-
harmonic filter

Q =1.5. (d) Result
of filtering (b)
with Q = -1.5.
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FIGURE 5.9

Results of
selecting the
wrong sign in
contraharmonic
filtering.

(a) Result of
filtering Fig. 5.8(a)
with a
contraharmonic
filter of size 3x 3
and Q = -1.5.

(b) Result of
filtering Fig. 5.8(b)
using Q =1.5.

5.3
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are quite popular because, for certain types of random noise, they provide excellent
noise-reduction capabilities, with considerably less blurring than linear smoothing
filters of similar size. Median filters are particularly effective in the presence of both
bipolar and unipolar impulse noise, as Example 5.3 below shows. Computation of
the median and implementation of this filter are discussed in Section 3.6.

Max and Min Filters

Although the median filter is by far the order-statistic filter most used in image pro-
cessing, it is by no means the only one. The median represents the 50th percentile of
a ranked set of numbers, but you will recall from basic statistics that ranking lends
itself to many other possibilities. For example, using the 100th percentile results in
the so-called max filter, given by

fey)= max {g(r.)} (5-28)

This filter is useful for finding the brightest points in an image or for eroding dark
regions adjacent to bright areas. Also, because pepper noise has very low values, it
is reduced by this filter as a result of the max selection process in the subimage area
S
xy
The Oth percentile filter is the min filter:

fr.y)= min {g(r.0)} (5-29)
This filter is useful for finding the darkest points in an image or for eroding light
regions adjacent to dark areas. Also, it reduces salt noise as a result of the min opera-
tion.

Midpoint Filter

The midpoint filter computes the midpoint between the maximum and minimum
values in the area encompassed by the filter:

flx,y) = %{ max {g(r,c)} +(r’rgierslx.{g(r,c)}} (5-30)

(}’,C)Esxy

Note that this filter combines order statistics and averaging. It works best for ran-
domly distributed noise, like Gaussian or uniform noise.

Alpha-Trimmed Mean Filter

Suppose that we delete the d/2 lowest and the d/2 highest intensity values of g(r,c)
in the neighborhood S, . Let gx(r,c) represent the remaining mn —d pixelsin S, .
A filter formed by averaging these remaining pixels is called an alpha-trimmed mean
filter. The form of this filter is
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fx,y) =

LS g0 (5-31)

mn — d(r,c)eSxy

where the value of d can range from 0 to mn — 1. When d = 0 the alpha-trimmed fil-
ter reduces to the arithmetic mean filter discussed earlier. If we choose d = mn —1,
the filter becomes a median filter. For other values of d, the alpha-trimmed filter is
useful in situations involving multiple types of noise, such as a combination of salt-
and-pepper and Gaussian noise.

EXAMPLE 5.3: Image denoising using order-statistic filters.

Figure 5.10(a) shows the circuit board image corrupted by salt-and-pepper noise with probabilities
P, = P, =0.1. Figure 5.10(b) shows the result of median filtering with a filter of size 3 x 3. The improve-
ment over Fig. 5.10(a) is significant, but several noise points still are visible. A second pass [on the im-
age in Fig. 5.10(b)] with the median filter removed most of these points, leaving only few, barely visible
noise points. These were removed with a third pass of the filter. These results are good examples of the
power of median filtering in handling impulse-like additive noise. Keep in mind that repeated passes
of a median filter will blur the image, so it is desirable to keep the number of passes as low as possible.

Figure 5.11(a) shows the result of applying the max filter to the pepper noise image of Fig. 5.8(a). The
filter did a reasonable job of removing the pepper noise, but we note that it also removed (set to a light
intensity level) some dark pixels from the borders of the dark objects. Figure 5.11(b) shows the result
of applying the min filter to the image in Fig. 5.8(b). In this case, the min filter did a better job than the
max filter on noise removal, but it removed some white points around the border of light objects. These
made the light objects smaller and some of the dark objects larger (like the connector fingers in the top
of the image) because white points around these objects were set to a dark level.

The alpha-trimmed filter is illustrated next. Figure 5.12(a) shows the circuit board image corrupted
this time by additive, uniform noise of variance 800 and zero mean. This is a high level of noise corrup-
tion that is made worse by further addition of salt-and-pepper noise with P, = P, = 0.1, as Fig. 5.12(b)
shows. The high level of noise in this image warrants use of larger filters. Figures 5.12(c) through (f) show
the results, respectively, obtained using arithmetic mean, geometric mean, median, and alpha-trimmed
mean (with d = 6) filters of size 5 x 5. As expected, the arithmetic and geometric mean filters (especially
the latter) did not do well because of the presence of impulse noise. The median and alpha-trimmed
filters performed much better, with the alpha-trimmed filter giving slightly better noise reduction. For
example, note in Fig. 5.12(f) that the fourth connector finger from the top left is slightly smoother in
the alpha-trimmed result. This is not unexpected because, for a high value of d, the alpha-trimmed filter
approaches the performance of the median filter, but still retains some smoothing capabilities.

ADAPTIVE FILTERS

Once selected, the filters discussed thus far are applied to an image without regard
for how image characteristics vary from one point to another. In this section, we
take a look at two adaptive filters whose behavior changes based on statistical char-
acteristics of the image inside the filter region defined by the m x n rectangular
neighborhood §,,. As the following discussion shows, adaptive filters are capable
of performance superior to that of the filters discussed thus far. The price paid for
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FIGURE 5.10

(a) Image
corrupted by salt-
and- pepper noise
with probabilities
P, =P, =01

(b) Result of one
pass with a medi-
an filter of size
3x3. (c) Result
of processing (b)
with this filter.
(d) Result of
processing (c)
with the same
filter.
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FIGURE 5.11

(a) Result of
filtering Fig. 5.8(a)
with a max filter
of size 3 x 3.

(b) Result of
filtering Fig. 5.8(b)
with a min filter of
the same size.
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FIGURE 5.12

(a) Image
corrupted by
additive uniform
noise. (b) Image
additionally
corrupted by
additive salt-and-
pepper noise.
(c)-(f) Image (b)
filtered with a
5x5:

(c) arithmetic
mean filter;

(d) geometric
mean filter;

(e) median filter;
(f) alpha-trimmed
mean filter, with

d=6.
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improved filtering power is an increase in filter complexity. Keep in mind that we
still are dealing with the case in which the degraded image is equal to the original
image plus noise. No other types of degradations are being considered yet.

Adaptive, Local Noise Reduction Filter

The simplest statistical measures of a random variable are its mean and variance.
These are reasonable parameters on which to base an adaptive filter because they
are quantities closely related to the appearance of an image. The mean gives a mea-
sure of average intensity in the region over which the mean is computed, and the
variance gives a measure of image contrast in that region.

Our filter is to operate on a neighborhood, S, , centered on coordinates (x,y).
The response of the filter at (x,y) is to be based on the following quantities: g(x, y),
the value of the noisy image at (x,y); o, the variance of the noise; Zg , the local
average intensity of the pixelsin §,,; and ‘Ts , the local variance of the intensities of
pixelsin S, . We want the behavior of the filter to be as follows:

1 If 0'127 is zero, the filter should return simply the value of g at (x,y). This is the
trivial, zero-noise case in which g is equal to f at (x,y).

2. If the local variance US2 is high relative to 0' , the filter should return a value
close to g at (x,y). A hlgh local variance typlcally is associated with edges, and
these should be preserved.

3. If the two variances are equal, we want the filter to return the arithmetic mean
value of the pixels in §,,. This condition occurs when the local area has the same
properties as the overall image, and local noise is to be reduced by averaging.

An adaptive expression for obtaining f(x, y) based on these assumptions may be

written as
2

fey)=glxy - [g(x,y) - sty] (5-32)

S

The only quantity that needs to be known a priori is af], the variance of the noise
corrupting image f(x,y). This is a constant that can be estimated from sample noisy
images using Eq. (3-26). The other parameters are computed from the pixels in
neighborhood S, using Egs. (3-27) and (3-28).

An assumption in Eq. (5-32) is that the ratio of the two variances does not exceed 1,
which implies that (72 < 0'52 The noise in our model is additive and position indepen-
dent, so this is a reasonable assumption to make because S, is a subset of g(x,y).
However, we seldom have exact knowledge of a Therefore it is possible for this
condition to be violated in practice. For that reason a test should be built 1nt0 an
implementation of Eq. (5-32) so that the ratio is set to 1 if the condition (r > O'S
occurs. This makes this filter nonlinear. However, it prevents nonsensical results (i. e.,
negative intensity levels, depending on the value of Zg ) due to a potential lack of
knowledge about the variance of the image noise. Another approach is to allow the
negative values to occur, and then rescale the intensity values at the end. The result
then would be a loss of dynamic range in the image.
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EXAMPLE 5.4: Image denoising using adaptive, local noise-reduction filtering.

Figure 5.13(a) shows the circuit-board image, corrupted this time by additive Gaussian noise of zero
mean and a variance of 1000. This is a significant level of noise corruption, but it makes an ideal test bed
on which to compare relative filter performance. Figure 5.13(b) is the result of processing the noisy im-
age with an arithmetic mean filter of size 7 x 7. The noise was smoothed out, but at the cost of significant
blurring. Similar comments apply to Fig. 5.13(c), which shows the result of processing the noisy image
with a geometric mean filter, also of size 7 x 7. The differences between these two filtered images are
analogous to those we discussed in Example 5.2; only the degree of blurring is different.

Figure 5.13(d) shows the result of using the adaptive filter of Eq. (5-32) with crf] =1000. The improve-
ments in this result compared with the two previous filters are significant. In terms of overall noise
reduction, the adaptive filter achieved results similar to the arithmetic and geometric mean filters. How-
ever, the image filtered with the adaptive filter is much sharper. For example, the connector fingers at the
top of the image are significantly sharper in Fig. 5.13(d). Other features, such as holes and the eight legs
of the dark component on the lower left-hand side of the image, are much clearer in Fig. 5.13(d).These
results are typical of what can be achieved with an adaptive filter. As mentioned earlier, the price paid
for the improved performance is additional filter complexity.

ab
cd

FIGURE 5.13

(a) Image
corrupted by
additive
Gaussian noise of
zero mean and a
variance of 1000.
(b) Result of
arithmetic mean
filtering.

(c) Result of
geometric mean
filtering.

(d) Result of
adaptive noise-
reduction filtering.
All filters used
were of size 7 X 7.
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The preceding results used a value for crf, that matched the variance of the noise exactly. If this
quantity is not known, and the estimate used is too low, the algorithm will return an image that closely
resembles the original because the corrections will be smaller than they should be. Estimates that are
too high will cause the ratio of the variances to be clipped at 1.0, and the algorithm will subtract the
mean from the image more frequently than it would normally. If negative values are allowed and the
image is rescaled at the end, the result will be a loss of dynamic range, as mentioned previously.

Adaptive Median Filter

The median filter in Eq. (5-27) performs well if the spatial density of the salt-and-
pepper noise is low (as a rule of thumb, P, and P, less than 0.2). We show in the fol-
lowing discussion that adaptive median filtering can handle noise with probabilities
larger than these. An additional benefit of the adaptive median filter is that it seeks
to preserve detail while simultaneously smoothing non-impulse noise, something
that the “traditional” median filter does not do. As in all the filters discussed in the
preceding sections, the adaptive median filter also works in a rectangular neighbor-
hood, S,,. Unlike those filters, however, the adaptive median filter changes (increas-
es) the size of S, during filtering, depending on certain conditions to be listed short-
ly. Keep in mind that the output of the filter is a single value used to replace the
value of the pixel at (x,y), the point on which region S, is centered at a given time.
We use the following notation:

Zmin = Minimum intensity value in S,

Zmay = Maximum intensity value in S,
Zpyea = median of intensity values in §,,
z,, = intensity at coordinates (x, )

m

Smax = maximum allowed size of S,

The adaptive median-filtering algorithm uses two processing levels, denoted level A
and level B, at each point (x, y):

Level A: If 20 < Zmed < Zmax> 20 to Level B
Else, increase the size of §,,

Its,, < 8§
Else, output z

repeat level A

max?

med*

Level B: If Z,n < 2y < Zyayo OUtPUL Z,,

Else output z

med *

where S, and S, are odd, positive integers greater than 1. Another option in the
last step of level A is to output z,, instead of z,.4. This produces a slightly less
blurred result, but can fail to detect salt (pepper) noise embedded in a constant
background having the same value as pepper (salt) noise.
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This algorithm has three principal objectives: to remove salt-and-pepper (impulse)
noise, to provide smoothing of other noise that may not be impulsive, and to reduce
distortion, such as excessive thinning or thickening of object boundaries. The values
Zan and z,,.. are considered statistically by the algorithm to be “impulse-like” noise
components in region S, , even if these are not the lowest and highest possible pixel
values in the image.

With these observations in mind, we see that the purpose of level A is to deter-
mine if the median filter output, z,,.4, iS an impulse (salt or pepper) or not. If the
condition z,;, < Zn.q < Zmax DOlds, then z_ ., cannot be an impulse for the reason
mentioned in the previous paragraph. In this case, we go to level B and test to see
if the point in the center of the neighborhood is itself an impulse (recall that (x,y)
is the location of the point being processed, and z,, is its intensity). If the condition
Zmin < Zyy < Zmax 1 true, then the pixel at z,, cannot be the intensity of an impulse for
the same reason that z, ., was not. In this case, the algorithm outputs the unchanged
pixel value, z,,. By not changing these “intermediate-level” points, distortion is
reduced in the filtered image. If the condition z,,, < z,, < Z,,, is false, then either
Zyy = Zmin OF Zyy, = Zimax- 1N €ither case, the value of the pixel is an extreme value and
the algorithm outputs the median value, z,.4, Which we know from level A is not a
noise impulse. The last step is what the standard median filter does. The problem is
that the standard median filter replaces every point in the image by the median of
the corresponding neighborhood. This causes unnecessary loss of detail.

Continuing with the explanation, suppose that level A does find an impulse (i.e.,
it fails the test that would cause it to branch to level B). The algorithm then increas-
es the size of the neighborhood and repeats level A. This looping continues until
the algorithm either finds a median value that is not an impulse (and branches to
stage B), or the maximum neighborhood size is reached. If the maximum size is
reached, the algorithm returns the value of z,.,. Note that there is no guarantee
that this value is not an impulse. The smaller the noise probabilities P, and/or P, are,
or the larger §,,,, is allowed to be, the less likely it is that a premature exit will occur.
This is plausible. As the density of the noise impulses increases, it stands to reason
that we would need a larger window to “clean up” the noise spikes.

Every time the algorithm outputs a value, the center of neighborhood §,, is
moved to the next location in the image. The algorithm then is reinitialized and
applied to the pixels in the new region encompassed by the neighborhood. As indi-
cated in Problem 3.37, the median value can be updated iteratively from one loca-
tion to the next, thus reducing computational load.

EXAMPLE 5.5: Image denoising using adaptive median filtering.

Figure 5.14(a) shows the circuit-board image corrupted by salt-and-pepper noise with probabilities
P, = P, = 0.25, which is 2.5 times the noise level used in Fig. 5.10(a). Here the noise level is high enough
to obscure most of the detail in the image. As a basis for comparison, the image was filtered first using a
7 x 7 median filter, the smallest filter required to remove most visible traces of impulse noise in this case.
Figure 5.14(b) shows the result. Although the noise was effectively removed, the filter caused significant
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FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities P, = P, = 0.25. (b) Result of filtering
with a 7 x 7 median filter. (c) Result of adaptive median filtering with S, = 7.

loss of detail in the image. For instance, some of the connector fingers at the top of the image appear
distorted or broken. Other image details are similarly distorted.

Figure 5.14(c) shows the result of using the adaptive median filter with S, .= 7. Noise removal
performance was similar to the median filter. However, the adaptive filter did a much better job of pre-
serving sharpness and detail. The connector fingers are less distorted, and some other features that were
either obscured or distorted beyond recognition by the median filter appear sharper and better defined
in Fig. 5.14(c). Two notable examples are the feed-through small white holes throughout the board, and
the dark component with eight legs in the bottom, left quadrant of the image.

Considering the high level of noise in Fig. 5.14(a), the adaptive algorithm performed quite well. The
choice of maximum allowed size for S,, depends on the application, but a reasonable starting value can
be estimated by experimenting with various sizes of the standard median filter first. This will establish a
visual baseline regarding expectations on the performance of the adaptive algorithm.

5.4 PERIODIC NOISE REDUCTION USING FREQUENCY DOMAIN
FILTERING |

Periodic noise can be analyzed and filtered quite effectively using frequency domain
techniques. The basic idea is that periodic noise appears as concentrated bursts of
energy in the Fourier transform, at locations corresponding to the frequencies of
the periodic interference. The approach is to use a selective filter (see Section 4.10)
to isolate the noise. The three types of selective filters (bandreject, bandpass, and
notch) were discussed in detail in Section 4.10. There is no difference between how
these filters were used in Chapter 4, and the way they are used for image restora-
tion. In restoration of images corrupted by periodic interference, the tool of choice
is a notch filter. In the following discussion we will expand on the notch filtering
approach introduced in Section 4.10, and also develop a more powerful optimum
notch filtering method.
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MORE ON NOTCH FILTERING

As explained in Section 4.10, notch reject filter transfer functions are constructed
as products of highpass filter transfer functions whose centers have been translated
to the centers of the notches. The general form of a notch filter transfer function is

HNR(u’v)ZﬁHk(u>v)H—k(u>v) (5'33)
k=1

where H,(u,v) and H_,(u,v) are highpass filter transfer functions whose centers
are at (u,,v, ) and (-u,,—v, ), respectively.” These centers are specified with respect
to the center of the frequency rectangle, [floor( M/2),floor(N/2)], where, as usual,
M and N are the number of rows and columns in the input image. Thus, the distance
computations for the filter transfer functions are given by

Do) =[(u=M/2~u,) + (- Nj2 -0, )] (5-34)
and
Dy (u0) =[ (- M2+, + (- N/2+v, )] (5-35)

For example, the following is a Butterworth notch reject filter transfer function of
order n with three notch pairs:

2 1 1
HNR(uav) = H

- - (5-36)
k=t| 1+ [ Dy /Dy (u,0)]" || 1+ [ Doy /D (u,0)]

Because notches are specified as symmetric pairs, the constant D, is the same for
each pair. However, this constant can be different from one pair to another. Other
notch reject filter functions are constructed in the same manner, depending on the
highpass filter function chosen. As explained in Section 4.10, a notch pass filter
transfer function is obtained from a notch reject function using the expression

Hyp(u,v) =1 - Hyg(u,0) (5-37)

where H,,(u,v) is the transfer function of the notch pass filter corresponding to
the notch reject filter with transfer function H y,(u,v). Figure 5.15 shows perspec-
tive plots of the transfer functions of ideal, Gaussian, and Butterworth notch reject
filters with one notch pair. As we discussed in Chapter 4, we see again that the shape
of the Butterworth transfer function represents a transition between the sharpness
of the ideal function and the broad, smooth shape of the Gaussian transfer function.

As we show in the second part of the following example, we are not limited to
notch filter transfer functions of the form just discussed. We can construct notch

+ Remember, frequency domain transfer functions are symmetric about the center of the frequency rectangle, so
the notches are specified as symmetric pairs. Also, recall from Section 4.10 that we use unpadded images when
working with notch filters in order to simplify the specification of notch locations.
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abc
FIGURE 5.15 Perspective plots of (a) ideal, (b) Gaussian, and (c) Butterworth notch reject filter transfer functions.

filters of arbitrary shapes, provided that they are zero-phase-shift functions, as
defined in Section 4.7.

EXAMPLE 5.6: Image denoising (interference reduction) using notch filtering.

Figure 5.16(a) is the same as Fig. 2.45(a), which we used in Section 2.6 to introduce the concept of filter-
ing in the frequency domain. We now look in more detail at the process of denoising this image, which is
corrupted by a single, 2-D additive sine wave. You know from Table 4.4 that the Fourier transform of a
pure sine wave is a pair of complex, conjugate impulses, so we would expect the spectrum to have a pair
of bright dots at the frequencies of the sine wave. As Fig. 5.16(b) shows, this is indeed is the case. Because
we can determine the location of these impulses accurately, eliminating them is a simple task, consisting
of using a notch filter transfer function whose notches coincide with the location of the impulses.

Figure 5.16(c) shows an ideal notch reject filter transfer function, which is an array of 1's (shown in
white) and two small circular regions of 0's (shown in black). Figure 5.16(d) shows the result of filtering
the noisy image this transfer function. The sinusoidal noise was virtually eliminated, and a number of
details that were previously obscured by the interference are clearly visible in the filtered image (see, for
example, the thin fiducial marks and the fine detail in the terrain and rock formations). As we showed
in Example 4.25, obtaining an image of the interference pattern is straightforward. We simply turn the
reject filter into a pass filter by subtracting it from 1, and filter the input image with it. Figure 5.17 shows
the result.

Figure 5.18(a) shows the same image as Fig. 4.50(a), but covering a larger area (the interference
pattern is the same). When we discussed lowpass filtering of that image in Chapter 4, we indicated that
there were better ways to reduce the effect of the scan lines. The notch filtering approach that follows
reduces the scan lines significantly, without introducing blurring. Unless blurring is desirable for reasons
we discussed in Section 4.9, notch filtering generally gives much better results.

Just by looking at the nearly horizontal lines of the noise pattern in Fig. 5.18(a), we expect its con-
tribution in the frequency domain to be concentrated along the vertical axis of the DFT. However,
the noise is not dominant enough to have a clear pattern along this axis, as is evident in the spectrum
shown in Fig. 5.18(b). The approach to follow in cases like this is to use a narrow, rectangular notch filter
function that extends along the vertical axis, and thus eliminates all components of the interference
along that axis. We do not filter near the origin to avoid eliminating the dc term and low frequencies,
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FIGURE 5.16

(a) Image cor-
rupted by sinusoi-
dal interference.
(b) Spectrum
showing the
bursts of energy
caused by the
interference. (The
bursts were
enlarged for
display purposes.)
(c) Notch filter
(the radius of the
circles is 2 pixels)
used to eliminate
the energy bursts.
(The thin borders
are not part of the
data.)

(d) Result of
notch reject
filtering.
(Original

image courtesy of
NASA.)
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which, as you know from Chapter 4, are responsible for the intensity differences between smooth areas.
Figure 5.18(c) shows the filter transfer function we used, and Fig. 5.18(d) shows the filtered result. Most
of the fine scan lines were eliminated or significantly attenuated. In order to get an image of the noise
pattern, we proceed as before by converting the reject filter into a pass filter, and then filtering the input
image with it. Figure 5.19 shows the result.

FIGURE 5.17
Sinusoidal
pattern extracted
from the DFT

of Fig. 5.16(a)
using a notch pass
filter.

Z

Z
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FIGURE 5.18

(a) Satellite image
of Florida and the
Gulf of Mexico.
(Note horizontal
sensor scan lines.)
(b) Spectrum of
(a). (c) Notch
reject filter
transfer

function. (The
thin black border
is not part of the ' LT ey

data.) (d) Filtered = - : -
image. (Original
image courtesy of
NOAA))

FIGURE 5.19
Noise pattern
extracted from
Fig.5.18(a) by
notch pass
filtering.
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OPTIMUM NOTCH FILTERING

In the examples of notch filtering given thus far, the interference patterns have been
simple to identify and characterize in the frequency domain, leading to the specifica-
tion of notch filter transfer functions that also are simple to define heuristically.

When several interference components are present, heuristic specifications of
filter transfer functions are not always acceptable because they may remove too
much image information in the filtering process (a highly undesirable feature when
images are unique and/or expensive to acquire). In addition, the interference com-
ponents generally are not single-frequency bursts. Instead, they tend to have broad
skirts that carry information about the interference pattern. These skirts are not
always easily detectable from the normal transform background. Alternative filter-
ing methods that reduce the effect of these degradations are quite useful in practice.
The method discussed next is optimum, in the sense that it minimizes local variances
of the restored estimate f(x,y).

The procedure consists of first isolating the principal contributions of the interfer-
ence pattern and then subtracting a variable, weighted portion of the pattern from
the corrupted image. Although we develop the procedure in the context of a specific
application, the basic approach is general and can be applied to other restoration
tasks in which multiple periodic interference is a problem.

We begin by extracting the principal frequency components of the interfer-
ence pattern. As before, we do this by placing a notch pass filter transfer function,
Hyp(u,v), at the location of each spike. If the filter is constructed to pass only com-
ponents associated with the interference pattern, then the Fourier transform of the
interference noise pattern is given by the expression

N(u,v) = Hyp(u,v)G(u,v) (5-38)

where, as usual, G(u,v) is the DFT of the corrupted image.

Specifying Hyp(u,v) requires considerable judgment about what is or is not an
interference spike. For this reason, the notch pass filter generally is constructed inter-
actively by observing the spectrum of G(u,v) on a display. After a particular filter
function has been selected, the corresponding noise pattern in the spatial domain is
obtained using the familiar expression

”f)(x, y) = ‘(\571 {HNP(M,’U)G(M,U)} (5'39)

Because the corrupted image is assumed to be formed by the addition of the uncor-
rupted image f(x,y) and the interference, n(x,y), if the latter were known com-
pletely, subtracting the pattern from g(x, y) to obtain f(x,y) would be a simple mat-
ter. The problem, of course, is that this filtering procedure usually yields only an
approximation of the true noise pattern. The effect of incomplete components not
present in the estimate of n(x,y) can be minimized by subtracting from g(x,y) a
weighted portion of n(x, y) to obtain an estimate of f(x,y):

A

f(x,y) = g(x,y) — w(x,y)n(x,y) (5-40)
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where, as before, f(x, y) is the estimate of f(x,y) and w(x,y) is to be determined.
This function is called a weighting or modulation function, and the objective of the
procedure is to select w(x, y) so that the result is optimized in some meaningful way.
One approach is to select w(x,y) so that the variance of f (x,y) is minimized over a
specified neighborhood of every point (x, y).

Consider a neighborhood S, of (0dd) size m X n, centered on (x,y). The “local”

variance of f (x,y) at point (x,y) can be estimated using the samples in S, , as fol-
lows:
l A A
ey =— ¥ [f(re) - fT (5-41)
m (r.c)es,,

where ; is the average value of f in neighborhood §,; that is,

= 1 ~

f=— % f(ro) (5-42)

mn . cyes,,

Points on or near the edge of the image can be treated by considering partial neigh-
borhoods or by padding the border with O's.
Substituting Eq. (5-40) into Eq. (5-41) we obtain

A= 3 {[g(ne) ~ wrem(ro)] - g - m} (5-43)

(r,c)eSx}.

where g and wn denote the average values of g and of the product wn in neighbor-
hood §,,, respectively.
If we assume that w is approximately constant in S,, we can replace w(r,c) by

the value of w at the center of the neighborhood:
w(r,c) =w(x,y) (5-44)

Because w(x,y) is assumed to be constant in §

4 it follows that w = w(x,y) and,
therefore, that

wn = w(x,y)n (5-43)

in §,,, where 7 is the average value of n in the neighborhood. Using these approxi-
mations, Eq. (5-43) becomes

=t 3 le00 - wlemrol - [ - wal] 646

(r,C)ESXy
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To minimize o(x, y) with respect to w(x, y) we solve

W )
Jw(x, y)

for w(x,y). The result is (see Problem 5.17):

w(x,y)=E1—E1 (5-48)
n°- 7

To obtain the value of the restored image at point (x, y) we use this equation to com-
pute w(x,y) and then substitute it into Eq. (5-40). To obtain the complete restored
image, we perform this procedure at every point in the noisy image, g.

EXAMPLE 5.7: Denoising (interference removal) using optimum notch filtering.

Figure 5.20(a) shows a digital image of the Martian terrain taken by the Mariner 6 spacecraft. The image
is corrupted by a semi-periodic interference pattern that is considerably more complex (and much more
subtle) than those we have studied thus far. The Fourier spectrum of the image, shown in Fig. 5.20(b),
has a number of “starlike” bursts of energy caused by the interference. As expected, these components
are more difficult to detect than those we have seen before. Figure 5.21 shows the spectrum again, but
without centering. This image offers a somewhat clearer view of the interference components because
the more prominent dc term and low frequencies are “out of way,” in the top left of the spectrum.

Figure 5.22(a) shows the spectrum components that, in the judgement of an experienced image ana-
lyst, are associated with the interference. Applying a notch pass filter to these components and using
Eq. (5-39) yielded the spatial noise pattern, n(x, y), shown in Fig. 5.22(b). Note the similarity between
this pattern and the structure of the noise in Fig. 5.20(a).

ab

FIGURE 5.20

(a) Image of the
Martian

terrain taken by
Mariner 6.

(b) Fourier
spectrum showing
periodic
interference.
(Courtesy of
NASA.)
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FIGURE 5.21
Uncentered
Fourier spectrum
of the image

in Fig. 5.20(a).
(Courtesy of
NASA.)

Finally, Fig. 5.23 shows the restored image, obtained using Eq. (5-40) with the interference pattern just
discussed. Function w(x,y) was computed using the procedure explained in the preceding paragraphs.
As you can see, the periodic interference was virtually eliminated from the noisy image in Fig. 5.20(a).

ab

FIGURE 5.22

(a) Fourier spec-
trum of N(u,v),
and

(b) corresponding
spatial noise
interference
pattern, n(x,y).
(Courtesy of
NASA.)

5.5 LINEAR, POSITION-INVARIANT DEGRADATIONS NN

The input-output relationship in Fig. 5.1 before the restoration stage is expressed as

g(x,y) =#[f(x,y)] + n(x,y) (5-49)

For the moment, let us assume that n(x, y) = 0 so that g(x,y) = %[ f(x,y)]. Based on
the discussion in Section 2.6, ¥ is linear if




FIGURE 5.23
Restored image.

(Courtesy of
NASA.)
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Hlaf,(x.y) + bf(x.y)] = a¥[fi(x,y)] + bH[fo(x,y)] (5-50)

where a and b are scalars and f;(x,y) and f,(x,y) are any two input images.
Ifa=>b=1, Eq.(5-50) becomes

KAy + L] =H[0] + K] fo(x,p)] (5-51)

which is called the property of additivity. This property says that, if ¥ is a linear
operator, the response to a sum of two inputs is equal to the sum of the two responses.
With f,(x,y) =0, Eq. (5-50) becomes

#[af,(x,y)] = a%[f,(x,y)] (5-52)

which is called the property of homogeneity. It says that the response to a constant
multiple of any input is equal to the response to that input multiplied by the same
constant. Thus, a linear operator possesses both the property of additivity and the
property of homogeneity.

An operator having the input-output relationship g(x,y) = %[ f(x,y)] is said to
be position (or space) invariant if

#[f(x—ay-B)]=glx—ay—-p) (5-53)

for any f(x,y) and any two scalars « and B. This definition indicates that the
response at any point in the image depends only on the value of the input at that
point, not on its position.

Using the sifting property of the 2-D continuous impulse [see Eq. (4-55)], we can
write f(x,y) as
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ﬂ%w=/‘/)ﬂmm&x—my—mﬁwﬁ (5-54)

Assuming again that n(x, y) = 0, substituting this equation into Eq. (5-49) yields

g(X,y)=%[f(X,y)]=%{/ / f(a’ B)S(X - a,y — B)dadﬁ (5_55)

If 7€ is a linear operator and we extend the additivity property to integrals, then

g(x,y)=/ / %[f(a,B)B(x -,y — B)]dadB (5_56)

Because f(a, B) is independent of x and y, and using the homogeneity property, it
follows that

g(xsy) =/ / f(a’ B)%[S(x - oy - B)]dadﬁ (5_57)
The term

h(x? a, y, B) = %[a(x -y - :B)] (5'58)

is called the impulse response of #. In other words, if n(x,y) = 0 in Eq. (5-49), then
h(x, e, y, B) is the response of ¥ to an impulse at coordinates (x,y). In optics, the
impulse becomes a point of light and A(x, «, y, B) is commonly referred to as the
point spread function (PSF). This name is based on the fact that all physical optical
systems blur (spread) a point of light to some degree, with the amount of blurring
being determined by the quality of the optical components.

Substituting Eq. (5-58) into Eq. (5-57) we obtain the expression

g(X,y)Z/ / f(Ol,,B)h(X, a, y, B)dadﬁ (5'59)

which is called the superposition (or Fredholm) integral of the first kind. This expres-
sion is a fundamental result that is at the core of linear system theory. It states that
if the response of 7€ to an impulse is known, the response to any input f(«,3) can
be calculated using Eq. (5-59). In other words, a linear system % is characterized
completely by its impulse response.

If %€ is position invariant, then it follows from Eq. (5-53) that

#[8(x — o,y = B)]=h(x — .y = B) (5-60)
In this case, Eq. (5-59) reduces to

ﬂ%w=/1/‘ﬂmmmx—my—mwmﬁ (5-61)
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This expression is the convolution integral introduced for one variable in Eq. (4-24)
and extended to 2-D in Problem 4.19. Equation (5-61) tells us that the output of a
linear, position invariant system to any input, is obtained by convolving the input
and the system’s impulse response.

In the presence of additive noise, the expression of the linear degradation model
[Eq. (5-59)] becomes

g(x,y) = / / fla, Bh(x, e, y, B)dadB + n(x,y) (5-62)

If ¥ is position invariant, then this equation becomes

¢(x.y) = / / faBh(x - avy - Bydadp + n(xy)  (5-63)

The values of the noise term n(x, y) are random, and are assumed to be independent
of position. Using the familiar notation for convolution introduced in Chapters 3
and 4, we can write Eq. (5-63) as

g(x,y)=(h* f)(x,y) + n(x,y) (5-64)

or, using the convolution theorem, we write the equivalent result in the frequency
domain as

G(u,v) = H(u,v)F(u,v) + N(u,v) (5-65)

These two expressions agree with Egs. (5-1) and (5-2). Keep in mind that, for dis-
crete quantities, all products are elementwise products, as defined in Section 2.6.

In summary, the preceding discussion indicates that a linear, spatially invariant
degradation system with additive noise can be modeled in the spatial domain as
the convolution of an image with the system’s degradation (point spread) function,
followed by the addition of noise. Based on the convolution theorem, the same pro-
cess can be expressed in the frequency domain as the product of the transforms of
the image and degradation, followed by the addition of the transform of the noise.
When working in the frequency domain, we make use of an FFT algorithm. Howev-
er, unlike in Chapter 4, we do not use image padding in the implementation of any of
the frequency domain restoration filters discussed in this chapter. The reason is that
in restoration work we usually have access only to degraded images. For padding
to be effective, it would have to be applied to images before they were degraded, a
condition that obviously cannot be met in practice. If we had access to the original
images, then restoration would be a mute point.

Many types of degradations can be approximated by linear, position-invariant
processes. The advantage of this approach is that the extensive tools of linear sys-
tem theory then become available for the solution of image restoration problems.
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Nonlinear and position-dependent techniques, although more general (and usually
more accurate), introduce difficulties that often have no known solution or are very
difficult to solve computationally. This chapter focuses on linear, space-invariant res-
toration techniques. Because degradations are modeled as being the result of convo-
lution, and restoration seeks to find filters that apply the process in reverse, the term
image deconvolution is used frequently to signify linear image restoration. Similarly,
the filters used in the restoration process often are called deconvolution filters.

5.6 ESTIMATING THE DEGRADATION FUNCTION I

There are three principal ways to estimate the degradation function for use in image
restoration: (1) observation, (2) experimentation, and (3) mathematical modeling.
These methods are discussed in the following sections. The process of restoring
an image by using a degradation function that has been estimated by any of these
approaches sometimes is called blind deconvolution, to emphasize the fact that the
true degradation function is seldom known completely.

ESTIMATION BY IMAGE OBSERVATION

Suppose that we are given a degraded image without any knowledge about the degra-
dation function #. Based on the assumption that the image was degraded by a lin-
ear, position-invariant process, one way to estimate # is to gather information from
the image itself. For example, if the image is blurred, we can look at a small rectan-
gular section of the image containing sample structures, like part of an object and
the background. In order to reduce the effect of noise, we would look for an area in
which the signal content is strong (e.g., an area of high contrast). The next step would
be to process the subimage to arrive at a result that is as unblurred as possible.

Let the observed subimage be denoted by g (x, y), and let the processed subimage
(which in reality is our estimate of the original image in that area) be denoted by
f,(x,y). Then, assuming that the effect of noise is negligible because of our choice of
a strong-signal area, it follows from Eq. (5-65) that

G,(u,v)
Fs(u,v)
From the characteristics of this function, we then deduce the complete degradation
function H(u,v) based on our assumption of position invariance. For example, sup-
pose that a radial plot of H (u,v) has the approximate shape of a Gaussian curve. We
can use that information to construct a function H(u,v) on a larger scale, but having
the same basic shape. We then use H(u,v) in one of the restoration approaches to
be discussed in the following sections. Clearly, this is a laborious process used only in
very specific circumstances, such as restoring an old photograph of historical value.

H(u,v) = (5-66)

ESTIMATION BY EXPERIMENTATION

If equipment similar to the equipment used to acquire the degraded image is avail-
able, it is possible in principle to obtain an accurate estimate of the degradation.
Images similar to the degraded image can be acquired with various system settings
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FIGURE 5.24
Estimating a
degradation by
impulse

characterization.

(a) An impulse
of light (shown
magnified).

(b) Imaged
(degraded)
impulse.
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until they are degraded as closely as possible to the image we wish to restore. Then
the idea is to obtain the impulse response of the degradation by imaging an impulse
(small dot of light) using the same system settings. As noted in Section 5.5, a linear,
space-invariant system is characterized completely by its impulse response.

An impulse is simulated by a bright dot of light, as bright as possible to reduce the
effect of noise to negligible values. Then, recalling that the Fourier transform of an
impulse is a constant, it follows from Eq. (5-65) that

G(u,v)

o (5-67)

H(u,v) =

where, as before, G(u,v) is the Fourier transform of the observed image, and A is a
constant describing the strength of the impulse. Figure 5.24 shows an example.

ESTIMATION BY MODELING

Degradation modeling has been used for many years because of the insight it affords
into the image restoration problem. In some cases, the model can even take into
account environmental conditions that cause degradations. For example, a degrada-
tion model proposed by Hufnagel and Stanley [1964] is based on the physical char-
acteristics of atmospheric turbulence. This model has a familiar form:

H(u,v) = e K+ 00" (5-68)
where k is a constant that depends on the nature of the turbulence. With the excep-
tion of the 5/6 power in the exponent, this equation has the same form as the Gauss-
ian lowpass filter transfer function discussed in Section 4.8. In fact, the Gaussian

LPF is used sometimes to model mild, uniform blurring. Figure 5.25 shows examples
obtained by simulating blurring an image using Eq. (5-68) with values k = 0.0025
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FIGURE 5.25
Modeling
turbulence.

(a) No visible
turbulence.

(b) Severe
turbulence,

k = 0.0025.

(c) Mild
turbulence,

k = 0.001.

(d) Low
turbulence,

k =0.00025.

All images are
of size 480 x 480
pixels.

(Original

image courtesy of
NASA.)

(severe turbulence), k = 0.001 (mild turbulence), and k = 0.00025 (low turbulence).
We restore these images using various methods later in this chapter.

Another approach used frequently in modeling is to derive a mathematical model
starting from basic principles. We illustrate this procedure by treating in some detail
the case in which an image has been blurred by uniform linear motion between
the image and the sensor during image acquisition. Suppose that an image f(x,y)
undergoes planar motion and that x, () and y,(¢) are the time-varying components
of motion in the x- and y-directions, respectively. We obtain the total exposure at
any point of the recording medium (say, film or digital memory) by integrating the
instantaneous exposure over the time interval during which the imaging system
shutter is open.

Assuming that shutter opening and closing takes place instantaneously, and that
the optical imaging process is perfect, lets us isolate the effects due to image motion.
Then, if T is the duration of the exposure, it follows that
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T
g(x,y) = / ITx = xo(0), y = yo()]dt (5-69)
0

where g(x,y) is the blurred image.
The continuous Fourier transform of this expression is

[ee] e¢]
G(u,v) =/ / g(x,y)e 2™ gy dy (5-70)
Substituting Eq. (5-69) into Eq. (5-70) yields

o} 0 T
G(u,v) = / / [ / flx = x,(t), y - yo(t)]dt]e‘ﬂ”(”“”y)dxdy (5-71)
—00 J—00 0

Reversing the order of integration results in the expression

T 0 L00
Gluv) = / [ / / Il = x0), y - m(r)]e‘ﬂﬂmﬂdxdy}dz (572)
0 —00 J—00

The term inside the outer brackets is the Fourier transform of the displaced function
f [x —Xx,(8),y— yo(t)]. Using entry 3 in Table 4.4 then yields the expression

T
G(u,v) = / F(u,v)e_jzw[’“o(’)“%(’)] dt
0

. (5-73)
— F(u,v)/ e—/’2‘n’[uxl,(r) +yy(1)] dt
0
By defining
T .
H(u,v) = / e /27l T 0l gy (5-74)
0
we can express Eq. (5-73) in the familiar form
G(u,v) = H(u,v)F(u,v) (5-75)

If the motion variables x,(¢) and y,(¢) are known, the transfer function H(u,v) can
be obtained directly from Eq. (5-74). As an illustration, suppose that the image in
question undergoes uniform linear motion in the x-direction only (i.e., y,(¢) = 0), at
arate x,(t) = at/T. When ¢ = T, the image has been displaced by a total distance a.
With y,(¢) = 0, Eq. (5-74) yields

T - T 4
H(u,v) = / e J2m () gy — / e i2muaT gy
; ’ (5-76)

T . i
= ——sin(mua)e”’™
Tua
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FIGURE 5.26

(a) Original
image. (b) Result
of blurring using
the function in
Eq. (5-77) with
a=b=0.1 and
T=1.

If we allow the y-component to vary as well, with the motion given by y,(¢) = bt/T,
then the degradation function becomes

H(u,v) = sin[7(ua + vb)]e /7 ) (5-77)

m(ua + vb)
To generate a discrete filter transfer function of size M x N, we sample this equation
foru=0,1,2,....M—-land v=0,1,2,..., N —1.

EXAMPLE 5.8: Image blurring caused by motion.

Figure 5.26(b) is an image blurred by computing the Fourier transform of the image in Fig. 5.26(a), mul-
tiplying the transform by H(u,v) from Eq. (5-77), and taking the inverse transform. The images are of
size 688 x 688 pixels,and we used a =b =0.1and T =1 in Eq. (5-77). As we will discuss in Sections 5.8
and 5.9, recovery of the original image from its blurred counterpart presents some interesting challenges,
particularly when noise is present in the degraded image. As mentioned at the end of Section 5.5, we
perform all DFT computations without padding.

5.7 INVERSE FILTERING I

The material in this section is our first step in studying restoration of images degrad-
ed by a degradation function J¢, which is given, or is obtained by a method such
as those discussed in the previous section. The simplest approach to restoration is
direct inverse filtering, where we compute an estimate, F(u,v), of the transform of
the original image by dividing the transform of the degraded image, G(u,v), by the
degradation transfer function:

Fluw) = % (5-78)
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The division is elementwise, as defined in Section 2.6 and in connection with Eq.
(5-65). Substituting the right side of Eq. (5-2) for G(u,v) in Eq. (5-78) yields

N(u,v)

F(u,v) = F(u,v) + Hn.0)

(5-79)
This is an interesting expression. It tells us that, even if we know the degradation
function, we cannot recover the undegraded image [the inverse Fourier transform
of F(u,v)] exactly because N(u,v) is not known. There is more bad news. If the deg-
radation function has zero or very small values, then the ratio N(u,v)/H (u,v) could
easily dominate the term F(u,v). In fact, this is frequently the case, as you will see
shortly.

One approach to get around the zero or small-value problem is to limit the filter
frequencies to values near the origin. From the discussion of Eq. (4-92), we know
that H(0,0) is usually the highest value of H(u,v) in the frequency domain. Thus,
by limiting the analysis to frequencies near the origin, we reduce the likelihood of
encountering zero values. The following example illustrates this approach.

EXAMPLE 5.9: Image deblurring by inverse filtering.

The image in Fig. 5.25(b) was inverse filtered with Eq. (5-78) using the exact inverse of the degradation
function that generated that image. That is, the degradation function used was

71{(14 + M2+ (v — N/2)2]5/6

H(u,v)=e

with k = 0.0025. The M/2 and N/2 constants are offset values; they center the function so that it will
correspond with the centered Fourier transform, as discussed in the previous chapter. (Remember, we
do not use padding with these functions.) In this case, M = N = 480. We know that a Gaussian function
has no zeros, so that will not be a concern here. However, despite this, the degradation values became so
small that the result of full inverse filtering [Fig. 5.27(a)] is useless. The reasons for this poor result are
as discussed in connection with Eq. (5-79).

Figures 5.27(b) through (d) show the results of cutting off values of the ratio G(u,v)/ H (u,v) outside
a radius of 40, 70, and 85, respectively. The cut off was implemented by applying to the ratio a Butter-
worth lowpass function of order 10. This provided a sharp (but smooth) transition at the desired radius.
Radii near 70 yielded the best visual results [Fig. 5.27(c)]. Radii below 70 resulted in blurred images, as
in Fig. 5.27(b), which was obtained using a radius of 40. Values above 70 started to produce degraded
images, as illustrated in Fig. 5.27(d), which was obtained using a radius of 85.The image content is almost
visible in this image behind a “curtain” of noise, but the noise definitely dominates the result. Further
increases in radius values produced images that looked more and more like Fig. 5.27(a).

The results in the preceding example are illustrative of the poor performance of
direct inverse filtering in general. The basic theme of the three sections that follow is
how to improve on direct inverse filtering.
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FIGURE 5.27
Restoring

Fig. 5.25(b)

using Eq. (5-78).
(a) Result of using
the full filter.

(b) Result with H
cut off outside a
radius of 40.

(c) Result with H
cut off outside a
radius of 70.

(d) Result with H
cut off outside a
radius of 85.

5.8 MINIMUM MEAN SQUARE ERROR (WIENER) FILTERING N

The inverse filtering approach discussed in the previous section makes no explicit
provision for handling noise. In this section, we discuss an approach that incorpo-
rates both the degradation function and statistical characteristics of noise into the
restoration process. The method is founded on considering images and noise as ran-
dom variables, and the objective is to find an estimate f of the uncorrupted image f
such that the mean square error between them is minimized. This error measure is
defined as

&= £{(r- /7 550

where E{-} is the expected value of the argument. We assume that the noise and the
image are uncorrelated, that one or the other has zero mean, and that the intensity
levels in the estimate are a linear function of the levels in the degraded image. Based



5.8 Minimum Mean Square Error (Wiener) Filtering 359

on these assumptions, the minimum of the error function in Eq. (5-80) is given in the
frequency domain by the expression

H*(u,v)Sf (u,v)
| S (u, )| H(u,0)] + S, (u,v)

F(u,v)

G(u,v)

_ _H () Glu,v) (5-81)
| [H @) + 8, (u,0) /S (u,0)

|t e o) G(u,v)
| H@wv) [Huo) +S,w)/S,wv) |

where we used the fact that the product of a complex quantity with its conjugate
is equal to the magnitude of the complex quantity squared. This result is known as
the Wiener filter, after N. Wiener [1942], who first proposed the concept in the year
shown. The filter, which consists of the terms inside the brackets, also is commonly
referred to as the minimum mean square error filter or the least square error filter.
We include references at the end of the chapter to sources containing detailed deri-
vations of the Wiener filter. Note from the first line in Eq. (5-81) that the Wiener
filter does not have the same problem as the inverse filter with zeros in the degrada-
tion function, unless the entire denominator is zero for the same value(s) of u and v.
The terms in Eq. (5-81) are as follows:

1. F (u,v) = Fourier transform of the estimate of the undegraded image.
2. G(u,v) = Fourier transform of the degraded image.

3. H(u,v) = degradation transfer function (Fourier transform of the spatial
degradation).

4. H"(u,v) = complex conjugate of H(u,v).
5. |H@w,0)[ = H" (u,v)H(,0).
6. S, (u,v)=|N (u,v)|2 = power spectrum of the noise [see Eq. (4-89)]"

7. 8p(u,v) = |F (u,v)|2 = power spectrum of the undegraded image.

The restored image in the spatial domain is given by the inverse Fourier transform
of the frequency-domain estimate F(u,v). Note that if the noise is zero, then the
noise power spectrum vanishes and the Wiener filter reduces to the inverse filter.
Also, keep in mind the discussion at the end of Section 5.5 regarding the fact that all
transform work in this chapter is done without padding.

"The term ‘N (u,v)‘2 also is referred to as the autocorrelation of the noise. This term comes from the correlation
theorem (first line of entry 7 in Table 4.4). When the two functions are the same, correlation becomes autocorrela-
tion and the right side of that entry becomes H “(u,v)H (u,v), which is equal to \H(u,v)\z. Similar comments apply
to \F (u,v) 2, which is the autocorrelation of the image. We will discuss correlation in more detail in Chapter 12.
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A number of useful measures are based on the power spectra of noise and of the
undegraded image. One of the most important is the signal-to-noise ratio, approxi-
mated using frequency domain quantities such as

M-1N-1 5 M-1N-1 )
SNR = Y Y |F(u,v)| > >IN, (5-82)
u=0 v=0 u=0 v=0

This ratio gives a measure of the level of information-bearing signal power (i.e., of
the original, undegraded image) to the level of noise power. An image with low
noise would tend to have a high SNR and, conversely, the same image with a higher
level of noise would have a lower SNR. This ratio is an important measure used in
characterizing the performance of restoration algorithms.

The mean square error given in statistical form in Eq. (5-80) can be approximated
also in terms of a summation involving the original and restored images:

—_

1 M-1N-

MN 2 Y[ f(xy)- f (x,y)]2 (5-83)

=0

MSE =

<

In fact, if one considers the restored image to be “signal” and the difference between
this image and the original to be “noise,” we can define a signal-to-noise ratio in the
spatial domain as

SNR= 3 3 (xy) / X X[ -ieen] (5-84)

The closer fand f are, the larger this ratio will be. Sometimes the square root of the
preceding two measures is used instead, in which case they are referred to as the
root-mean-square-error and the root-mean-square-signal-to-noise ratio, respectively.
As we have mentioned before, keep in mind that quantitative measures do not nec-
essarily relate well to perceived image quality.

When dealing with white noise, the spectrum is a constant, which simplifies things
considerably. However, the power spectrum of the undegraded image seldom is
known. An approach frequently used when these quantities are not known, or can-
not be estimated, is to approximate Eq. (5-81) by the expression

Fluw) = [ 1 |H (u,0)|

H(u,v) |H(u,v) + K]G(u,v) )

where K is a specified constant that is added to all terms of | (u,v)|2. The following
examples illustrate the use of this expression.
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FIGURE 5.28 Comparison of inverse and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b). (b) Radially
limited inverse filter result. (c) Wiener filter result.

EXAMPLE 5.10: Comparison of deblurring by inverse and Wiener filtering.

Figure 5.28 illustrates the advantage of Wiener filtering over direct inverse filtering. Figure 5.28(a) is the
full inverse-filtered result from Fig.5.27(a). Similarly, Fig.5.28(b) is the radially limited inverse filter result
of Fig,5.27(c). These images are duplicated here for convenience in making comparisons. Figure 5.28(c)
shows the result obtained using Eq. (5-85) with the degradation function used in Example 5.9.The value
of K was chosen interactively to yield the best visual results. The advantage of Wiener filtering over the
direct inverse approach is evident in this example. By comparing Figs. 5.25(a) and 5.28(c), we see that
the Wiener filter yielded a result very close in appearance to the original, undegraded image.

EXAMPLE 5.11: More deblurring examples using Wiener filtering.

The first row of Fig. 5.29 shows, from left to right, the blurred image of Fig. 5.26(b) heavily corrupted by
additive Gaussian noise of zero mean and variance of 650; the result of direct inverse filtering; and the
result of Wiener filtering. The Wiener filter of Eq. (5-85) was used, with H(u,v) from Example 5.8, and
with K chosen interactively to give the best possible visual result. As expected, direct inverse filtering
produced an unusable image. Note that the noise in the inverse filtered image is so strong that it masks
completely the content of the image. The Wiener filter result is by no means perfect, but it does give us
a hint as to image content. The text can be read with moderate effort.

The second row of Fig. 5.29 shows the same sequence just discussed, but with the level of the noise
variance reduced by one order of magnitude. This reduction had little effect on the inverse filter, but
the Wiener results are considerably improved. For example, the text is much easier to read now. In the
third row of Fig. 5.29, the noise variance was reduced more than five orders of magnitude from the first
row. In fact, image in Fig. 5.29(g) has no visible noise. The inverse filter result is interesting in this case.
The noise is still quite visible, but the text can be seen through a “curtain” of noise (see Problem 5.30).
The Wiener filter result in Fig. 5.29(i) is excellent, being quite close visually to the original image in Fig.



362 Chapter 5 Image Restoration and Reconstruction

(=
b
e

c

f

ghi
FIGURE 5.29 (a) 8-bit image corrupted by motion blur and additive noise. (b) Result of inverse filtering. (c) Result of
Wiener filtering. (d)—(f) Same sequence, but with noise variance one order of magnitude less. (g)—(i) Same sequence,
but noise variance reduced by five orders of magnitude from (a). Note in (h) how the deblurred image is quite vis-
ible through a “curtain” of noise.

a
d



5.9 Constrained Least Squares Filtering 363

5.26(a). In practice, the results of restoration filtering are seldom this close to the original images. This
example, and Example 5.12 in the next section, were idealized slightly to focus on the effects of noise
on restoration algorithms.

See Gonzalez and Woods
[1992] for an entire chap-
ter devoted to the topic
of algebraic techniques
for image restoration.

5.9 CONSTRAINED LEAST SQUARES FILTERING I

The problem of having to know something about the degradation function H is com-
mon to all methods discussed in this chapter. However, the Wiener filter presents
an additional difficulty: the power spectra of the undegraded image and noise must
be known also. We showed in the previous section that in some cases it is possible
to achieve acceptable results using the approximation in Eq. (5-85), but a constant
value for the ratio of the power spectra is not always a suitable solution.

The method discussed in this section requires knowledge of only the mean and
variance of the noise. As discussed in Section 5.2, these parameters generally can be
calculated from a given degraded image, so this is an important advantage. Another
difference is that the Wiener filter is based on minimizing a statistical criterion and,
as such, it is optimal in an average sense. The algorithm presented in this section
has the notable feature that it yields an optimal result for each image to which it
is applied. Of course, it is important to keep in mind that these optimality criteria,
although they are comforting from a theoretical point of view, are not related to
the dynamics of visual perception. As a result, the choice of one algorithm over the
other will almost always be determined by the perceived visual quality of the result-
ing images.

By using the definition of convolution given in Eq. (4-94), and as explained in
Section 2.6, we can express Eq. (5-64) in vector-matrix form:

g=Hf + 7 (5-86)

For example, suppose that g(x, y) is of size M x N. We can form the first N elements
of vector g by using the image elements in the first row of g(x,y), the next N ele-
ments from the second row, and so on. The dimensionality of the resulting vector will
be MN x 1. These are also the dimensions of f and 7, as these vectors are formed in
the same manner. Matrix H then has dimensions MN x MN. Its elements are given
by the elements of the convolution in Eq. (4-94).

It would be reasonable to arrive at the conclusion that the restoration problem
can now be reduced to simple matrix manipulations. Unfortunately, this is not the
case. For instance, suppose that we are working with images of medium size, say
M = N =512. Then the vectors in Eq. (5-86) would be of dimension 262,144 x 1
and matrix H would be of dimension 262,144 x 262,144. Manipulating vectors and
matrices of such sizes is not a trivial task. The problem is complicated further by
the fact that H is highly sensitive to noise (after the experiences we had with the
effect of noise in the previous two sections, this should not be a surprise). The key
advantage of formulating the restoration problem in matrix form is that it facilitates
derivation of restoration algorithms.

Although we do not fully derive the method of constrained least squares that
we are about to present, this method has its roots in a matrix formulation. We give
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The quantity in brackets
is the transfer function
of the constrained least
squares filter. Note that
it reduces to the inverse
filter transfer function
when y =0.

references at the end of the chapter to sources where derivations are covered in
detail. Central to the method is the issue of the sensitivity of H to noise. One way
to reduce the effects of noise sensitivity, is to base optimality of restoration on a
measure of smoothness, such as the second derivative of an image (our old friend,
the Laplacian). To be meaningful, the restoration must be constrained by the param-
eters of the problems at hand. Thus, what is desired is to find the minimum of a
criterion function, C, defined as

M-1N-

—_

C=Y Y[V ] (5-87)
x=0 y=0
subject to the constraint
NI
e - HE| =[n]’ (5-88)

where ||a|* 2 a”a is the Euclidean norm (see Section 2.6),and f is the estimate of the
undegraded image. The Laplacian operator V? is defined in Eq. (3-50).

The frequency domain solution to this optimization problem is given by the
expression

H(u,v) Gu,v)

F(u7 ): 2 2
Y |H(u,v)] + y|P(u,0)| (5-89)

where vy is a parameter that must be adjusted so that the constraint in Eq. (5-88) is
satisfied, and P(u,v) is the Fourier transform of the function

0 -1 0
px,y)=|-1 4 -1 (5-90)
0 -1 0

We recognize this function as a Laplacian kernel from Fig. 3.45. Note that Eq. (5-89)
reduces to inverse filtering if y = 0.

Functions P(u,v) and H(u,v) must be of the same size. If H is of size M x N, this
means that p(x,y) must be embedded in the center of an M x N array of zeros. In
order to preserve the even symmetry of p(x,y), M and N must be even integers, as
explained in Examples 4.10 and 4.15. If a given degraded image from which H is
obtained is not of even dimensions, then a row and/or column, as appropriate, must
be deleted before computing H for use in Eq. (5-89).

EXAMPLE 5.12: Comparison of deblurring by Wiener and constrained least squares filtering.

Figure 5.30 shows the result of processing Figs. 5.29(a), (d), and (g) with constrained least squares fil-
ters, in which the values of y were selected manually to yield the best visual results. This is the same
procedure we used to generate the Wiener filter results in Fig. 5.29(c), (f), and (i). By comparing the
constrained least squares and Wiener results, we see that the former yielded better results (especially in
terms of noise reduction) for the high- and medium-noise cases, with both filters generating essentially
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FIGURE 5.30 Results of constrained least squares filtering. Compare (a), (b), and (c) with the Wiener filtering results
in Figs. 5.29(c), (f), and (i), respectively.

equal results for the low-noise case. This is not surprising because parameter y in Eq. (5-89) is a true
scalar, whereas the value of K in Eq. (5-85) is a scalar approximation to the ratio of two unknown fre-
quency domain functions of size M x N. Thus, it stands to reason that a result based on manually select-
ing y would be a more accurate estimate of the undegraded image. As in Example 5.11, the results in
this example are better than one normally finds in practice. Our focus here was on the effects of noise
blurring on restoration. As noted earlier, you will encounter situations in which the restoration solutions
are not quite as close to the original images as we have shown in these two examples.

As discussed in the preceding example, it is possible to adjust the parameter y
interactively until acceptable results are achieved. However, if we are interested in
mathematical optimality, then this parameter must be adjusted so that the constraint
in Eq. (5-88) is satisfied. A procedure for computing y by iteration is as follows.

Define a “residual” vector r as

r=g — Hf (5-91)

From Eq. (5-89), we see that F(u,v) (and by implication f ) is a function of y. Then
it follows that r also is a function of this parameter. It can be shown (Hunt [1973],
Gonzalez and Woods [1992]) that

d(y)=r"r

, (5-92)
=]

is a monotonically increasing function of y. What we want to do is adjust y so that

el =l + (5-93)



366 Chapter 5 Image Restoration and Reconstruction

where a is an accuracy factor. In view of Eq. (5-91),if |r|* = »|’, the constraint in
Eq. (5-88) will be strictly satisfied.

Because ¢(y) is monotonic, finding the desired value of y is not difficult. One
approach is to

1. Specify an initial value of vy.

2. Compute [[r|.

3. Stop if Eq. (5-93) is satisfied; otherwise return to Step 2 after increasing vy if
It|” < (|| - @) or decreasing y if |r|* > (|n|” + a). Use the new value of y in
Eq. (5-89) to recompute the optimum estimate F(u,v).

Other procedures, such as a Newton—Raphson algorithm, can be used to improve
the speed of convergence.

In order to use this algorithm, we need the quantities |r || and ||11|| To compute
|¢|?, we note from Eq. (5-91) that

R(u,v) = G(u,v) — H(u,v)F(u,v) (5-94)

from which we obtain r(x, y) by computing the inverse Fourier transform of R(u,v).
Then, from the definition of the Euclidean norm, it follows that

I =rr=3 3 rey)
- - = y:() 7y (5-95)

Computation of |y[* leads to an interesting result. First, consider the variance
of the noise over the entire image, which we estimate from the samples using the

expression
2o LS l[ (x.y) - @il (5-96)
" MN S5
where
1 M-1N-1
7= S % 20 (5-97)

is the sample mean. With reference to the form of Eq (5-95), we note that the dou-
ble summation in Eq. (5-96) is proportional to || |. This leads to the expression

Inl’ = MN[o} + 7] (5-98)

Th1s is a most useful result. It tells us that we can estimate the unknown quantity
|m|* by having knowledge of only the mean and variance of the noise. These quanti-
ties are not difficult to estimate (see Section 5.2), assuming that the noise and image
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FIGURE 5.31

(a) Iteratively
determined
constrained

least squares
restoration of
Fig. 5.25(b), using
correct noise
parameters. (b)
Result obtained
with wrong noise
parameters.
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intensity values are not correlated. This is an assumption of all the methods dis-
cussed in this chapter.

EXAMPLE 5.13: lterative estimation of the optimum constrained least squares filter.

Figure 5.31(a) shows the result obtained using the algorithm just described to estimate the optimum
filter for restoring Fig. 5.25(b). The initial value used for y was 10~°, the correction factor for adjusting y
was 107, and the value for a was 0.25. The noise parameters specified were the same used to generate
Fig. 5.25(a): a noise variance of 107, and zero mean. The restored result is comparable to Fig. 5.28(c),
which was obtained by Wiener filtering with K manually specified for best visual results. Figure 5.31(b)
shows what can happen if the wrong estimate of noise parameters are used. In this case, the noise vari-
ance specified was 107 and the mean was left at 0. The result in this case is considerably more blurred.

5.10 GEOMETRIC MEAN FILTER I

It is possible to generalize slightly the Wiener filter discussed in Section 5.8. The
generalization is in the form of the so-called geometric mean filter:

Fuv) = { Ll *(”’”)2 } H (u,0) Guv) (599
O ot + g 502
f )

where « and B are nonnegative, real constants. The geometric mean filter transfer
function consists of the two expressions in brackets raised to the powers a and 1 — a,
respectively.

When « =1 the geometric mean filter reduces to the inverse filter. With a = 0 the
filter becomes the so-called parametric Wiener filter, which reduces to the “standard”
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As noted in Chapter 1,
the term computerized
axial tomography (CAT)
is used interchangeably
to denote CT.

Wiener filter when B =1. If @ = 1/2, the filter becomes a product of the two quanti-
ties raised to the same power, which is the definition of the geometric mean, thus
giving the filter its name. With 8 =1, as « increases above 1/2, the filter performance
will tend more toward the inverse filter. Similarly, when « decreases below 1/2, the
filter will behave more like a Wiener filter. When a =1/2 and 8 =1 the filter is com-
monly referred to as a spectrum equalization filter. Equation (5-99) is useful when
implementing restoration filters because it represents a family of filters combined
into a single expression.

5.11 IMAGE RECONSTRUCTION FROM PROJECTIONS I

In the previous sections of this chapter we discussed techniques for restoring degrad-
ed images. In this section, we examine the problem of reconstructing an image from
a series of projections, with a focus on X-ray computed tomography (CT). This is the
earliest and still the most-widely used type of CT, and is currently one of the princi-
pal applications of digital image processing in medicine.

INTRODUCTION

The reconstruction problem is simple in principle, and can be explained qualitatively
in a straightforward, intuitive manner, without using equations (we will deal with the
math later in this section. To begin, consider Fig. 5.32(a), which consists of a single
object on a uniform background. In order to bring physical meaning to the following
explanation, suppose that this image is a cross-section of a 3-D region of a human
body. Assume also that the background in the image represents soft, uniform tissue,
while the round object is a tumor, also uniform, but with higher X-ray absorption
characteristics.

Suppose next that we pass a thin, flat beam of X-rays from left to right (through
the plane of the image), as Fig. 5.32(b) shows, and assume that the energy of the
beam is absorbed more by the object than by the background, as typically is the case.
Using a strip of X-ray absorption detectors on the other side of the region will yield
the signal (absorption profile) shown, whose amplitude (intensity) is proportional to
absorption.” We may view any point in the signal as the sum of the absorption values
across the single ray in the beam corresponding spatially to that point (such a sum
often is referred to as a raysum). At this juncture, all the information we have about
the object is this 1-D absorption signal.

We have no way of determining from a single projection whether we are dealing
with a single object, or a multitude of objects along the path of the beam, but we
begin the reconstruction by creating an image based only on this information. The
approach is to project the 1-D signal back in the opposite direction from which the
beam came, as Fig. 5.32(c) shows. The process of backprojecting a 1-D signal across a
2-D area sometimes is referred to as smearing the projection back across the area. In

A treatment of the physics of X-ray sources and detectors is beyond the scope of our discussion, which focuses
on the image processing aspects of CT. See Prince and Links [2006] for an excellent introduction to the physics
of X-ray image formation.
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FIGURE 5.32

(a) Flat region
with a single
object. (b) Parallel
beam, detector
strip, and profile of
sensed 1-D
absorption signal.
(c) Result of back-
projecting the
absorption profile.
(d) Beam and
detectors rotated
by 90°.

(e) Backprojection.

(f) The sum of (c)
and (e), inten-
sity-scaled. The
intensity where the
backprojections
intersect is twice
the intensity of the
individual back-
projections.
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terms of digital images, this means duplicating the same 1-D signal across the image,
perpendicularly to the direction of the beam. For example, Fig. 5.32(c) was created
by duplicating the 1-D signal in all columns of the reconstructed image. For obvious
reasons, the approach just described is called backprojection.

Next, suppose that we rotate the position of the source-detector pair by 90°, as
in Fig. 5.32(d). Repeating the procedure explained in the previous paragraph yields
a backprojection image in the vertical direction, as Fig. 5.32(e) shows. We continue
the reconstruction by adding this result to the previous backprojection, resulting in
Fig. 5.32(f). Now, we begin to suspect that the object of interest is contained in the
square shown, whose amplitude is twice the amplitude of the individual backprojec-
tions because the signals were added. We should be able to learn more about the
shape of the object in question by taking more views in the manner just described,
as Fig. 5.33 shows. As the number of projections increases, the amplitude strength
of non-intersecting backprojections decreases relative to the strength of regions in
which multiple backprojections intersect. The net effect is that brighter regions will
dominate the result, and backprojections with few or no intersections will fade into
the background as the image is scaled for display.

Figure 5.33(f), which was formed from 32 backprojections, illustrates this concept.
Note, however, that while this reconstructed image is a reasonably good approxi-
mation to the shape of the original object, the image is blurred by a “halo” effect,
the formation of which can be seen in progressive stages in Fig. 5.33. For example,
the halo in Fig. 5.33(e) appears as a “star” whose intensity is lower than that of the
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FIGURE 5.33

(a) Same as

Fig. 5.32(a).
(b)-(e) Recon-
struction using 1,
2,3, and 4 back-
projections 45°
apart.

(f) Reconstruction
with 32 backpro-
jections 5.625°
apart (note the
blurring).

object, but higher than the background. As the number of views increases, the shape
of the halo becomes circular, as in Fig. 5.33(f). Blurring in CT reconstruction is an
important issue, whose solution is addressed later in this section. Finally, we con-
clude from the discussion of Figs. 5.32 and 5.33 that backprojections 180° apart are
mirror images of each other, so we have to consider only angle increments halfway
around a circle in order to generate all the backprojections required for reconstruc-
tion.

EXAMPLE 5.14: Backprojections of a planar region containing two objects.

Figure 5.34 illustrates reconstruction using backprojections on a region that contains two objects with
different absorption properties (the larger object has higher absorption). Figure 5.34(b) shows the result
of using one backprojection. We note three principal features in this figure, from bottom to top: a thin
horizontal gray band corresponding to the unoccluded portion of the small object, a brighter (more
absorption) band above it corresponding to the area shared by both objects, and an upper band corre-
sponding to the rest of the elliptical object. Figures 5.34(c) and (d) show reconstruction using two pro-
jections 90° apart and four projections 45° apart, respectively. The explanation of these figures is similar
to the discussion of Figs. 5.33(c) through (e). Figures 5.34(e) and (f) show more accurate reconstructions
using 32 and 64 backprojections, respectively. The last two results are quite close visually, and they both
show the blurring problem mentioned earlier.

PRINCIPLES OF X-RAY COMPUTED TOMOGRAPHY (CT)

As with the Fourier transform discussed in the last chapter, the basic mathematical
concepts required for CT were in place many years before the availability of digital
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FIGURE 5.34

(a) Two objects
with different
absorption charac-
teristics.

(b)-(d) Recon-
struction using 1, 2,
and 4 backprojec-
tions, 45° apart.

(e) Reconstruction
with 32 backprojec-
tions, 5.625° apart.
(f) Reconstruction
with 64 backprojec-
tions, 2.8125° apart.

5.11 Image Reconstruction from Projections 371

computers made them practical. The theoretical foundation of CT dates back to
Johann Radon, a mathematician from Vienna who derived a method in 1917 for
projecting a 2-D object along parallel rays, as part of his work on line integrals (the
method now is referred to as the Radon transform, a topic we will discuss shortly).
Forty-five years later, Allan M. Cormack, a physicist at Tufts University, partially
“rediscovered” these concepts and applied them to CT. Cormack published his initial
findings in 1963 and 1964 and showed how his results could be used to reconstruct
cross-sectional images of the body from X-ray images taken in different angular
directions. He gave the mathematical formulae needed for the reconstruction and
built a CT prototype to show the practicality of his ideas. Working independently,
electrical engineer Godfrey N. Hounsfield and his colleagues at EMI in London
formulated a similar solution and built the first medical CT machine. Cormack and
Hounsfield shared the 1979 Nobel Prize in Medicine for their contributions to medi-
cal uses of tomography.

The goal of X-ray computed tomography is to obtain a 3-D representation of the
internal structure of an object by X-raying the object from many different directions.
Imagine a traditional chest X-ray, obtained by placing the subject against an X-ray
sensitive plate and “illuminating” the individual with an X-ray beam in the form of
a cone. The X-ray plate would produce an image whose intensity at a point would
be proportional to the X-ray energy impinging on that point after it passed through
the subject. This image is the 2-D equivalent of the projections we discussed in the
previous section. We could back-project this entire image and create a 3-D volume.
Repeating this process through many angles and adding the backprojections would
result in 3-D rendition of the structure of the chest cavity. Computed tomography
attempts to get that same information (or localized parts of it) by generating slices
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FIGURE 5.35

Four generations
of CT scanners.
The dotted arrow
lines indicate
incremental linear
motion. The
dotted arrow arcs
indicate
incremental
rotation. The
cross-mark on

the subject’s

head indicates
linear motion
perpendicular to
the plane of the
paper. The double
arrows in (a)

and (b) indicate
that the source/
detector unit is
translated and
then brought back
into its original
position.

through the body. A 3-D representation then can be obtained by stacking the slices.
A CT implementation is much more economical because the number of detectors
required to obtain a high resolution slice is much smaller than the number of detec-
tors needed to generate a complete 2-D projection of the same resolution. Compu-
tational burden and X-ray dosages are similarly reduced, making the 1-D projection
CT a more practical approach.

First-generation (G1) CT scanners employ a “pencil” X-ray beam and a single
detector, as Fig. 5.35(a) shows. For a given angle of rotation, the source/detector
pair is translated incrementally along the linear direction shown. A projection (like
the ones in Fig. 5.32), is generated by measuring the output of the detector at each
increment of translation. After a complete linear translation, the source/detector
assembly is rotated and the procedure is repeated to generate another projection
at a different angle. The procedure is repeated for all desired angles in the range [0°,
180°] to generate a complete set of projections images, from which one final cross-
sectional image (a slice through the 3-D object) is obtained, as explained in the

Subject %1

s} a]
Detector
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previous section. A set of cross sectional images (slices) is generated by moving the
subject incrementally (after each complete scan) past the source/detector plane (the
cross-mark on the head of the subject indicates motion in a direction perpendicular
to the plane of the source/detector pair). Stacking these images computationally
produces a 3-D volume of a section of the body. G1 scanners are no longer manu-
factured for medical imaging, but, because they produce a parallel-ray beam (as in
Fig. 5.32), their geometry is the one used predominantly for introducing the funda-
mentals of CT imaging, and serves as the starting point for deriving the equations
necessary to implement image reconstruction from projections.

Second-generation (G2) CT scanners [Fig. 5.35(b)] operate on the same principle
as G1 scanners, but the beam used is in the shape of a fan. This allows the use of mul-
tiple detectors, thus requiring fewer translations of the source/detector pair.

Third-generation (G3) scanners are a significant improvement over the earlier
two generations of CT geometries. As Fig. 5.35(c) shows, G3 scanners employ a bank
of detectors long enough (on the order of 1000 individual detectors) to cover the
entire field of view of a wider beam. Consequently, each increment of angle pro-
duces an entire projection, eliminating the need to translate the source/detector pair,
as in G1 and G2 scanners.

Fourth-generation (G4) scanners go a step further. By employing a circular ring of
detectors (on the order of 5000 individual detectors), only the source has to rotate.
The key advantage of G3 and G4 scanners is speed; key disadvantages are cost and
greater X-ray scatter. The latter implies higher X-ray doses than G1 and G2 scan-
ners to achieve comparable signal-to-noise characteristics.

Newer scanning modalities are beginning to be adopted. For example, fifth-gener-
ation (G5) CT scanners, also known as electron beam computed tomography (EBCT)
scanners, eliminate all mechanical motion by employing electron beams controlled
electromagnetically. By striking tungsten anodes that encircle the patient, these
beams generate X-rays that are then shaped into a fan beam that passes through the
patient and excites a ring of detectors, as in G4 scanners.

The conventional manner in which CT images are obtained is to keep the patient
stationary during the scanning time required to generate one image. Scanning is then
halted while the position of the patient is incremented in the direction perpendicu-
lar to the imaging plane, using a motorized table. The next image is then obtained
and the procedure is repeated for the number of increments required to cover a
specified section of the body. Although an image may be obtained in less than one
second, there are procedures (e.g., abdominal and chest scans) that require patient
to hold their breath during image acquisition. Completing these procedures for, say,
30 images, may require several minutes. An approach for which use is increasing is
helical CT, sometimes referred to as sixth-generation (G6) CT. In this approach, a
G3 or G4 scanner is configured using so-called slip rings that eliminate the need for
electrical and signal cabling between the source/detectors and the processing unit.
The source/detector pair then rotates continuously through 360° while the patient
is moved at a constant speed along the axis perpendicular to the scan. The result is
a continuous helical volume of data that is then processed to obtain individual slice
images.
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Throughout this section,
we follow CT convention
and place the origin

of the xy-plane in the
center, instead of at our
customary top left corner
(see Section 2.4). Both
are right-handed coor-
dinate systems, the only
difference being that our
image coordinate system
has no negative axes.

We can account for the
difference with a simple
translation of the origin,
so both representations
are interchangeable.

FIGURE 5.36
Normal
representation of
a line.

Seventh-generation (G7) scanners (also called multislice CT scanners) are emerg-
ing in which “thick” fan beams are used in conjunction with parallel banks of detec-
tors to collect volumetric CT data simultaneously. That is, 3-D cross-sectional “slabs,”
rather than single cross-sectional images are generated per X-ray burst. In addition
to a significant increase in detail, this approach has the advantage that it utilizes
X-ray tubes more economically, thus reducing cost and potentially reducing dosage.

In the following discussion, we develop the mathematical tools necessary for for-
mulating image projection and reconstruction algorithms. Our focus is on the image-
processing fundamentals that underpin all the CT approaches just discussed. Infor-
mation regarding the mechanical and source/detector characteristics of CT systems
is provided in the references cited at the end of the chapter.

PROJECTIONS AND THE RADON TRANSFORM

Next, we develop in detail the mathematics needed for image reconstruction in the
context of X-ray computed tomography. The same basic principles apply to other
CT imaging modalities, such as SPECT (single photon emission tomography), PET
(positron emission tomography), MRI (magnetic resonance imaging), and some
modalities of ultrasound imaging.

A straight line in Cartesian coordinates can be described either by its slope-inter-
cept form, y = ax + b, or, as in Fig. 5.36, by its normal representation:

xcosf + ysinf =p (5-100)
The projection of a parallel-ray beam can be modeled by a set of such lines, as
Fig. 5.37 shows. An arbitrary point at coordinates (p;,0, ) in the projection profile is
given by the raysum along the line xcos6, + ysin6, = p;. Working with continuous
quantities for the moment, the raysum is a line integral, given by

8(p;,0,) = / / f(x,y)8(xcosb, + ysin6, — p;)dxdy (5-101)

where we used the properties of the impulse, §, discussed in Section 4.5. In other
words, the right side of Eq. (5-101) is zero unless the argument of § is zero, indicating




FIGURE 5.37
Geometry of a
parallel-ray beam.
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A point g(p;, 0;) in

the projection
Complete projection, g(p, 6;), ¢ proy

for a fixed angle —

that the integral is computed only along the line xcos6, + ysin6, = p;. If we con-
sider all values of p and 0, the preceding equation generalizes to

g(p, 0) =/ / f(x,y)8(xcos6 + ysinb — p)dxdy (5-102)

This equation, which gives the projection (line integral) of f(x,y) along an arbi-
trary line in the xy-plane, is the Radon transform mentioned earlier. The notation
R{f(x,y)} or R{f} is used sometimes in place of g(p, #) in Eq. (5-102) to denote
the Radon transform of f(x,y), but the type of notation used in Eq. (5-102) is more
customary. As will become evident in the discussion that follows, the Radon trans-
form is the cornerstone of reconstruction from projections, with computed tomogra-
phy being its principal application in the field of image processing.
In the discrete case,” the Radon transform of Eq. (5-102) becomes

g(p,0)= Aiuilf(x,y)é(xcose + ysinf — p) (5-103)
x=0y=0

where x, y, and are now discrete variables, and M and N are the dimensions of a
rectangular area over which the transform is applied. If we fix 6 and allow p to
vary, we see that (5-103) simply sums the pixels of f(x,y) along the line defined by
the specified values of these two parameters. Incrementing through all values of p

"In Chapter 4, we exercised great care in denoting continuous image coordinates by (¢,z) and discrete coordi-
nates by (x, y). At that time, the distinction was important because we were developing basic concepts to take us
from continuous to sampled quantities. In the present discussion, we go back and forth so many times between
continuous and discrete coordinates that adhering to this convention is likely to generate unnecessary confusion.
For this reason, and also to follow the published literature in this field (e.g., see Prince and Links [2006]), we let
the context determine whether coordinates (x,y) are continuous or discrete. When they are continuous, you will
see integrals; otherwise, you will see summations.
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required to span the M x N area (with 6 fixed) yields one projection. Changing 6
and repeating this procedure yields another projection, and so forth. This is precisely
how the projections in Figs. 5.32-5.34 were generated.

EXAMPLE 5.15: Using the Radon transform to obtain the projection of a circular region.

Before proceeding, we illustrate how to use the Radon transform to obtain an analytical expression for
the projection of the circular object in Fig. 5.38(a):

A x2+y?r<r?
f(x,y)= {0 Y

otherwise

where A is a constant and r is the radius of the object. We assume that the circle is centered on the origin
of the xy-plane. Because the object is circularly symmetric, its projections are the same for all angles, so
all we have to do is obtain the projection for § = 0°. Equation (5-102) then becomes

/ / F(x.y)8(x — p)dxdy

/ f(p,y)dy

where the second expression follows from Eq. (4-13). As noted earlier, this is a line integral (along the
line L(p, 0) in this case). Also, note that g(p, #) = 0 when |p| > r. When |p| < r the integral is evaluated
from y = —(> — p?)"?toy = (> — p?)". Therefore,

g(p,0)

a y
b

FIGURE 5.38

(a) A disk and,

(b) a plot of its Radon
transform, derived
analytically. Here we
were able to plot the
transform because it
depends only on one
variable. When g g(p)
depends on both p and
0, the Radon transform
becomes an image
whose axes are p and
0, and the intensity of
a pixel is proportional
to the value of g at the
location of that pixel.
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r=p

g(p,0) = f(p,y)dy
=7
2 2

/ -
_ r2_p2

Ady

Carrying out the integration yields

o <r
otherwise

2(p.0)= g(p) = {3‘” e

where we used the fact that g(p, 8) = 0 when |p| > r. Figure 5.38(b) shows a plot of this result. Note that
g(p, 0) = g(p); that is, g is independent of § because the object is symmetric about the origin.

To generate arrays with
rows of the same size,
the minimum dimen-
sion of the p-axis in
sinograms corresponds
to the largest dimension
encountered during
projection. For example,
the minimum size of a
sinogram of a square

of size M x M obtained
using increments of 1° is
180 x O where Q is the
smallest integer greater
than /2 M.

When the Radon transform, g(p, ), is displayed as an image with p and 6 as recti-
linear coordinates, the result is called a sinogram, similar in concept to displaying the
Fourier spectrum. Like the Fourier transform, a sinogram contains the data neces-
sary to reconstruct f(x,y). Unlike the Fourier transform, however, g(p, 0) is always
a real function. As is the case with displays of the Fourier spectrum, sinograms can
be readily interpreted for simple regions, but become increasingly difficult to “read”
as the region being projected becomes more complex. For example, Fig. 5.39(b) is
the sinogram of the rectangle on the left. The vertical and horizontal axes corre-
spond to 6 and p, respectively. Thus, the bottom row is the projection of the rect-
angle in the horizontal direction (i.e., 8 = 0°), and the middle row is the projection
in the vertical direction ((0 = 90°). The fact that the nonzero portion of the bottom
row is smaller than the nonzero portion of the middle row tells us that the object is
narrower in the horizontal direction. The fact that the sinogram is symmetric in both
directions about the center of the image tells us that we are dealing with an object
that is symmetric and parallel to the x and y axes. Finally, the sinogram is smooth,
indicating that the object has a uniform intensity. Other than these types of general
observations, we cannot say much more about this sinogram.

Figure 5.39(c) is an image of the Shepp-Logan phantom (Shepp and Logan [1974]),
a widely used synthetic image designed to simulate the absorption of major areas of
the brain, including small tumors. The sinogram of this image is considerably more
difficult to interpret, as Fig. 5.39(d) shows. We still can infer some symmetry prop-
erties, but that is about all we can say. Visual analyses of sinograms are of limited
practical use, but they can be helpful in tasks such as algorithm development.

BACKPROJECTIONS

To obtain a formal expression for a backprojected image from the Radon transform,
let us begin with a single point, g(p;, 0, ), of the complete projection, g(p, 6, ), for a
fixed value of rotation, 0, (see Fig. 5.37). Forming part of an image by backproject-
ing this single point is nothing more than copying the line L(p;, 6, ) onto the image,
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FIGURE 5.39
Two images and

their sinograms
(Radon

transforms). Each
row of a sinogram

is a projection
along the
corresponding
angle on the
vertical axis.
(Note that the
horizontal axis
of the sinograms
are values of p.)

Image (c) is called

the Shepp-Logan
phantom. In its
original form, the
contrast of the
phantom is quite
low. It is shown
enhanced here to
facilitate viewing.
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where the value (intensity) of each point in that line is g(p;, 6, ). Repeating this pro-
cess of all values of p; in the projected signal (but keeping the value of 6 fixed at 6, )
results in the following expression:

fek(x’y) = g(p, Gk)
= g(xcosf, + ysinb,,6,)

for the image due to backprojecting the projection obtained with a fixed angle, 6, ,
as in Fig. 5.32(b). This equation holds for an arbitrary value of 0, , so we may write
in general that the image formed from a single backprojection obtained at an angle
0 is given by

fy(x,y) = g(xcos0 + ysinb,0) (5-104)
We form the final image by integrating over all the backprojected images:
fly)= / fo(x,y)db (5-105)
0

In the discrete case, the integral becomes a sum of all the backprojected images:
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fxy) = iofeoc,y) (5-106)

where, x, y, and 6 are now discrete quantities. As mentioned earlier, the projections
at 0° and 180° are mirror images of each other, so the summations are carried out
to the last angle increment before 180°. For example, if 0.5° increments are being
used, the summation is from 0° to 179.5° in half-degree increments. A backpro-
jected image formed in the manner just described sometimes is referred to as a
laminogram. It is understood implicitly that a laminogram is only an approximation
to the image from which the projections were generated, a fact that is illustrated in
the following example.

EXAMPLE 5.16: Obtaining backprojected images from sinograms.

Equation (5-106) was used to generate the backprojected images in Figs. 5.32 through 5.34, from projec-
tions obtained with Eq. (5-103). Similarly, these equations were used to generate Figs. 5.40(a) and (b),
which show the backprojected images corresponding to the sinograms in Figs. 5.39(b) and (d), respec-
tively. As with the earlier figures, we note a significant amount of blurring, so it is obvious that a straight
use of Egs. (5-103) and (5-106) will not yield acceptable results. Early, experimental CT systems were
based on these equations. However, as you will see later in our discussion, significant improvements in
reconstruction are possible by reformulating the backprojection approach.

This equation has the

same form as Eq. (4-20).

ab

FIGURE 5.40
Backprojections
of the sinograms
in Fig. 5.39.

THE FOURIER-SLICE THEOREM

In this section, we derive a fundamental equation that establishes a relationship
between the 1-D Fourier transform of a projection and the 2-D Fourier transform
of the region from which the projection was obtained. This relationship is the basis
for reconstruction methods capable of dealing with the blurring problems we have
encountered thus far.

The 1-D Fourier transform of a projection with respect to p is

0
G(w,0) = / g(p,0)e ¥ ™" dp (5-107)
—00
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where w is the frequency variable, and it is understood that this expression is based
on a fixed value of 0. Substituting Eq. (5-102) for g(p, 6) we obtain

(o] e¢] oo
G(w, 0) =/ / / f(x,y)8(xcos + ysin® — p)e /™ dxdydp
—00 J—00 J—00

=/ / f(x,y)[/ &(xcosf + ysinf — p)e""z”“’pdp}dxdy (5-108)

[ee] o]
— / / f(x’y)e—jZTrm(xcose + ysin(-}‘)dxdy
—00 J—00

where the last step follows from the sifting property of the impulse discussed in
Chapter 4. By letting u = wcos and v = wsin6, we can write Eq. (5-108) as

G(w,0) = [ / / F(x,y)e 2™y 1 (5-109)

U=wcosf;v=wsinf

We recognize this expression as the 2-D Fourier transform of f(x,y) [see Eq. (4-59)]
evaluated at the values of # and v indicated. That is,

Gl@.0) = [F0)] . cos0r sweing (5-110)
= F(wcos6, wsinh)

where, as usual, F(u,v) denotes the 2-D Fourier transform of f(x,y).

The result in Eq. (5-110) is known as the Fourier-slice theorem (or the projection-
slice theorem). It states that the Fourier transform of a projection is a slice of the 2-D
Fourier transform of the region from which the projection was obtained. The reason
for this terminology can be explained with the aid of Fig. 5.41. As this figure shows,
the 1-D Fourier transform of an arbitrary projection is obtained by extracting the
values of F(u,v) along a line oriented at the same angle as the angle used in generat-
ing the projection.

In principle, we could obtain f(x,y) simply by obtaining the inverse Fourier trans-
form of F(u,v). However, this is expensive computationally, as it involves obtained
the inverse of a 2-D transform. The approach discussed in the following section is
much more efficient.

RECONSTRUCTION USING PARALLEL-BEAM FILTERED
BACKPROJECTIONS

As we saw in Figs. 5.33,5.34, and 5.40, obtaining backprojections directly yields unac-
ceptably blurred results. Fortunately, there is a straightforward solution to this prob-
lem based simply on filtering the projections before computing the backprojections.
From Eq. (4-60), the 2-D inverse Fourier transform of F(u,v) is



FIGURE 5.41
Illustration of

the Fourier-slice
theorem. The 1-D
Fourier transform
of a projection is
a slice of the 2-D
Fourier transform
of the region from
which the projec-
tion was obtained.
Note the corre-
spondence of the
angle 6 in the two
figures.

The relationship

dudv = wdwdf is from
basic integral calculus,
where the Jacobian is
used as the basis for a
change of variables.
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2-D Fourier
= transform
F(u,v)
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I y)\ . \ ) 9\ .
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transform

Slice of F(u, 1:)X

Projection ~

flxy) = / / F(u,0)e>™ ™) dy dy (5-111)

If, as in Egs. (5-109) and (5-110), we let u = wcos6 and v = wsin 6, then the differen-
tials become dudv = wdwdh, and we can express Eq. (5-111) in polar coordinates:

2@ poe
f(x,y)= / / F(wcosf, wsin @) e/>mx0s0 +ysind) 4oy dg (5-112)
o Jo

Then, using the Fourier slice theorem,

27 po
f(x,y) = / / G(w, e)ejZ‘n-w(xcose + ysmo)wdwd@ (5_113)
0 0

By splitting this integral into two expressions, one for 6 in the range 0° to 180° and
the other in the range 180° to 360°, and using the fact that G(w,6 + 180°) = G(~w, 0)
(see Problem 5.46), we can express Eq. (5-113) as

flxy)= / / |o|G(w, §)>mxes0 + y5n0 g4, dg (5-114)
0 —o0

The term xcosf + ysin6 is a constant with respect to w, and we recognize it as p
from Eq. (5-100). Therefore, we can write Eq. (5-114) as

f(x,y)z/w{/‘ |w|G(a),0)e<’2”‘°pdw:| de
0 —00

p=xcosf + ysinf

(5-115)
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The ramp filter often

is referred to as the
Ram-Lalk filter, after
Ramachandran and
Lakshminarayanan
[1971] who generally
are credited with having
been first to suggest it.

Sometimes the Hann
window is referred to as
the Hanning window in
analogy to the Hamming
window. However, this
terminology is incorrect
and is a frequent source
of confusion.
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FIGURE 5.42

The inner expression is in the form of an inverse 1-D Fourier transform [see
Eq. (4-21)], with the added term |w| which, based on the discussion in Section 4.7,
we recognize as a 1-D filter transfer function. Observe that |w| is a ramp function
[see Fig.5.42(a)]. This function is not integrable because its amplitude extends to +o°
in both directions, so the inverse Fourier transform is undefined. Theoretically, this
is handled by methods such as using so-called generalized delta functions. In practice,
the approach is to window the ramp so that it becomes zero outside of a defined
frequency interval. That is, a window band-limits the ramp filter transfer function.

The simplest approach to band-limit a function is to use a box in the frequency
domain. However, as we saw in Fig. 4.4, a box has undesirable ringing properties.
This is demonstrated by Figs. 5.42(b) and (c). The former shows a plot of the ramp
transfer function after it was band-limited by a box window, and the latter shows
its spatial domain representation, obtained by computing its inverse Fourier trans-
form. As expected, the resulting windowed filter exhibits noticeable ringing in the
spatial domain. We know from Chapter 4 that filtering in the frequency domain is
equivalent to convolution in the spatial domain, so spatial filtering with a function
that exhibits ringing will produce a result corrupted by ringing also. Windowing with
a smooth function helps this situation. An M-point discrete window function used
frequently for implementations with the 1-D FFT is given by

c+(c—1)c052777w 0w (M-1)

H(w) = (5-116)

0 otherwise

When ¢ = 0.54, this function is called the Hamming window (named after Richard
Hamming) and, when ¢ = 0.5 it is called the Hann window (named after Julius von
Hann). The key difference between the Hamming and Hann windows is that the

(a) Frequency domain
ramp filter transfer
function. (b) Function
after band-limiting

it with a box filter.

(c) Spatial domain
representation.

(d) Hamming
windowing func-

tion. (¢) Windowed
ramp filter, formed

as the product of (b)
and (d). (f) Spatial
representation of the
product. (Note the
decrease in ringing.)

Frequency
domain

Frequency
domain

N

Frequency
domain

[N

Frequency
domain

Spatial
domain

VSpatial
domain
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end points are zero in the latter. The difference between the two generally is visually
imperceptible in image processing applications.

Figure 5.42(d) is a plot of the Hamming window, and Fig. 5.42(e) shows the prod-
uct of this window and the band-limited ramp filter transfer function in Fig. 5.42(b).
Figure 5.42(f) shows the representation of the product in the spatial domain,
obtained as usual by computing the inverse FFT. It is evident by comparing this
figure and Fig. 5.42(c) that ringing was reduced in the windowed ramp (the ratios of
the peak to trough in Figs. 5.42(c) and (f) are 2.5 and 3.4, respectively). On the other
hand, because the width of the central lobe in Fig. 5.42(f) is slightly wider than in
Fig. 5.42(c), we would expect backprojections based on using a Hamming window to
have less ringing, but be slightly more blurred. As Example 5.17 below shows, this is
indeed the case.

Recall from Eq. (5-107) that G(w, 0) is the 1-D Fourier transform of g(p, ), which
is a single projection obtained at a fixed angle, §. Equation (5-115) states that the
complete, backprojected image f(x,y) is obtained as follows:

1. Compute the 1-D Fourier transform of each projection.

2. Multiply each 1-D Fourier transform by the filter transfer function || which,
as explained above, has been multiplied by a suitable (e.g., Hamming) window.

3. Obtain the inverse 1-D Fourier transform of each resulting filtered transform.

4. Integrate (sum) all the 1-D inverse transforms from Step 3.

Because a filter function is used, this image reconstruction approach is appropri-
ately called filtered backprojection. In practice, the data are discrete, so all frequency
domain computations are carried out using a 1-D FFT algorithm, and filtering is
implemented using the same basic procedure explained in Chapter 4 for 2-D func-
tions. Alternatively, we can implement filtering in the spatial domain using convolu-
tion, as explained later.

The preceding discussion addresses the windowing aspects of filtered backpro-
jections. As with any sampled data system, we also need to be concerned about
sampling rates. We know from Chapter 4 that the selection of sampling rates has a
profound influence on image processing results. In the present discussion, there are
two sampling considerations. The first is the number of rays used, which determines
the number of samples in each projection. The second is the number of rotation
angle increments, which determines the number of reconstructed images (whose
sum yields the final image). Under-sampling results in aliasing which, as we saw in
Chapter 4, can manifest itself as artifacts in the image, such as streaks. We address
CT sampling issues in more detail later in our discussion.

EXAMPLE 5.17: Image reconstruction using filtered backprojections.

The focus of this example is to show reconstruction using filtered backprojections, first with a box-
limited ramp transfer function and then using a ramp limited by a Hamming window. These filtered
backprojections are compared against the results of “raw” backprojections from Fig. 5.40. In order to
focus on the difference due only to filtering, the results in this example were generated with 0.5° incre-
ments of rotation, the same we used to generate Fig. 5.40. The separation between rays was one pixel
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in both cases. The images in both examples are of size 600 x 600 pixels, so the length of the diagonal
is V2 x 600 = 849.Consequently, 849 rays were used to provide coverage of the entire region when the
angle of rotation was 45° and 135°.

Figure 5.43(a) shows the rectangle reconstructed using a ramp function band-limited by a box. The
most vivid feature of this result is the absence of any visually detectable blurring. However, as expected,
ringing is present, visible as faint lines, especially around the corners of the rectangle. These lines are
more visible in the zoomed section in Fig. 5.43(c). Using a Hamming window on the ramp helped con-
siderably with the ringing problem, at the expense of slight blurring, as Figs. 5.43(b) and (d) show. The
improvements (even with the box-windowed ramp) over Fig. 5.40(a) are evident. The phantom image
does not have transitions that are as sharp and prominent as the rectangle so ringing, even with the
box-windowed ramp, is imperceptible in this case, as you can see in Fig. 5.44(a). Using a Hamming
window resulted in a slightly smoother image, as Fig. 5.44(b) shows. Both of these results are consider-
able improvements over Fig. 5.40(b), illustrating again the significant advantage inherent in the filtered
backprojection approach.

In most applications of CT (especially in medicine), artifacts such as ringing are a serious concern, so
significant effort is devoted to minimizing them. Tuning the filtering algorithms and, as explained earlier,
using a large number of detectors are among the design considerations that help reduce these effects.

The preceding discussion is based on obtaining filtered backprojections via an
FFT implementation. However, we know from the convolution theorem in Chapter 4
that equivalent results can be obtained using spatial convolution. In particular, note
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FIGURE 5.43
Filtered backpro-
jections of the
rectangle using
(a) a ramp filter,
and

(b) a Hamming
windowed ramp
filter. The second
row shows

zoomed details of

the images in the
first row. Compare
with Fig. 5.40(a).
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FIGURE 5.44
Filtered backpro-
jections of the
head phantom
using (a) a ramp
filter, and (b) a
Hamming
windowed ramp
filter. Compare
with Fig. 5.40(b)
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that the term inside the brackets in Eq. (5-115) is the inverse Fourier transform of
the product of two frequency domain functions which, according to the convolu-
tion theorem, we know to be equal to the convolution of the spatial representa-
tions (inverse Fourier transforms) of these two functions. In other words, letting s(p)
denote the inverse Fourier transform of ||, we write Eq. (5-115) as

f(x,y)= / { / |w|G(w,0)ej2’"""dw} o
0 —00

p=xcosf + ysinf

= / [S(p)*g(p, 0)]p:xcos6 + ysinede (5_117)

0

:/ {/ g(p,0)s(xcosf + ysinh — p)dp}de
0 —00

where, as in Chapter 4, “*” denotes convolution. The second line follows from the
first for the reasons explained in the previous paragraph. The third line (including
the —p) follows from the definition of convolution in Eq. (4-24).

The last two lines of Eq. (5-117) say the same thing: individual backprojections at
an angle 0 can be obtained by convolving the corresponding projection, g(p, ), and
the inverse Fourier transform of the ramp filter transfer function, s(p). As before,
the complete backprojected image is obtained by integrating (summing) all the indi-
vidual backprojected images. With the exception of roundoff differences in compu-
tation, the results of using convolution will be identical to the results using the FFT.
In actual CT implementations, convolution generally turns out to be more efficient
computationally, so most modern CT systems use this approach. The Fourier trans-
form does play a central role in theoretical formulations and algorithm development
(for example, CT image processing in MATLAB is based on the FFT). Also, we note
that there is no need to store all the backprojected images during reconstruction.

If a windowing function, such as a Hamming window, is used, then the inverse Fourier transform is performed
on the windowed ramp.
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Instead, a single running sum is updated with the latest backprojected image. At the
end of the procedure, the running sum will equal the sum total of all the backprojec-
tions.

Finally, we point out that, because the ramp filter (even when it is windowed)
zeros the dc term in the frequency domain, each backprojection image will have
zero average value (see Fig. 4.29). This means that the pixels in each backprojec-
tion image will have negative and positive values. When all the backprojections are
added to form the final image, some negative locations may become positive and the
average value may not be zero, but typically, the final image will still have negative
pixels.

There are several ways to handle this problem. The simplest approach, when
there is no knowledge regarding what the average values should be, is to accept the
fact that negative values are inherent in the approach and scale the result using the
procedure described in Egs. (2-31) and (2-32). This is the approach followed in this
section. When knowledge about what a “typical” average value should be is avail-
able, that value can be added to the filter transfer function in the frequency domain,
thus offsetting the ramp and preventing zeroing the dc term [see Fig. 4.30(c)]. When
working in the spatial domain with convolution, the very act of truncating the length
of the spatial filter kernel (inverse Fourier transform of the ramp) prevents it from
having a zero average value, thus avoiding the zeroing problem altogether.

RECONSTRUCTION USING FAN-BEAM FILTERED BACKPROJECTIONS

The discussion thus far has centered on parallel beams. Because of its simplicity and
intuitiveness, this is the imaging geometry used traditionally to introduce computed
tomography. However, more modern CT systems use a fan-beam geometry (see Fig.
5.35), which is the topic of the following discussion.

Figure 5.45 shows a basic fan-beam imaging geometry in which the detectors are
arranged on a circular arc and the angular increments of the source are assumed to
be equal. Let p(«,B) denote a fan-beam projection, where « is the angular position
of a particular detector measured with respect to the center ray, and B is the angular
displacement of the source, measured with respect to the y-axis, as shown in the
figure. We also note in Fig. 5.45 that a ray in the fan beam can be represented as a
line, L(p, 6), in normal form, which is the approach we used to represent a ray in the
parallel-beam imaging geometry discussed earlier. This allows us to utilize parallel-
beam results as the starting point for deriving the corresponding equations for the
fan-beam geometry. We proceed to show this by deriving the fan-beam filtered back-
projection based on convolution.

We begin by noticing in Fig. 5.45 that the parameters of line L(p, 6) are related to
the parameters of a fan-beam ray by

=5 + a (5-118)

"The Fourier-slice theorem was derived for a parallel-beam geometry and is not directly applicable to fan beams.
However, Egs. (5-118) and (5-119) provide the basis for converting a fan-beam geometry to a parallel-beam
geometry, thus allowing us to use the filtered parallel backprojection approach developed in the previous section,
for which the slice theorem is applicable. We will discuss this in more detail at the end of this section.



FIGURE 5.45

Basic fan-beam
geometry. The line
passing through
the center of the
source and the
origin (assumed
here to be the
center of rotation
of the source) is
called the center
ray.
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p=Dsina (5-119)
where D is the distance from the center of the source to the origin of the xy-plane.

The convolution backprojection formula for the parallel-beam imaging geometry
is given by Eq. (5-117). Without loss of generality, suppose that we focus attention
on objects that are encompassed within a circular area of radius 7" about the origin
of the xy-plane. Then g(p, 0) = 0 for |p| > T and Eq. (5-117) becomes

20 T
fx,y)= %/ / g(p,0)s(xcos® + ysinf — p)dpdo (5-120)
0 J-r

where we used the fact mentioned earlier that projections 180° apart are mirror
images of each other. In this way, the limits of the outer integral in Eq. (5-120) are
made to span a full circle, as required by a fan-beam arrangement in which the
detectors are arranged in a circle.

We are interested in integrating with respect to @ and B. To do this, we change
to polar coordinates, (r,¢). That is, we let x = rcos¢ and y = rsin¢, from which it
follows that

xcosf + ysinf = rcosecosf + rsin@sinf
Y ¢ ¢ (5-121)
=rcos(0 — ¢)

Using this result we can express Eq. (5-120) as
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2@ pT
fx,y)= %/ / g(p,0)s(rcos(0 — ¢) — p)dpdo (5-122)
0o J-r

This expression is nothing more than the parallel-beam reconstruction formula writ-
ten in polar coordinates. However, integration still is with respect to p and 6. To
integrate with respect to @ and B requires a transformation of coordinates using
Egs. (5-118) and (5-119):

1 27—a psin” (T/D)

f(”’@):—/ / g(Dsina, a + B)
2) sin”}(~T/D)

(

s(rcos(B + a — ¢) — Dsina)Dcosadadp

(5-123)

where we used dpdf = Dcosa dadp [see the explanation of Eq. (5-112)].

This equation can be simplified further. First, note that the limits —a to 27—«
for variable B span the entire range of 360°. Because all functions of B8 are periodic
with period 27, the limits of the outer integral can be replaced by 0 and 27, respec-
tively. The term sin”'(7/D) has a maximum value, «,,, corresponding to |p| > 7,
beyond which g = 0 (see Fig. 5.46), so we can replace the limits of the inner integral
by —«a,, and «,,, respectively. Finally, consider the line L(p, #) in Fig. 5.45. A raysum
of a fan beam along this line must equal the raysum of a parallel beam along the
same line. This follows from the fact that a raysum is a sum of all values along a
line, so the result must be the same for a given ray, regardless of the coordinate sys-
tem is which it is expressed. This is true of any raysum for corresponding values of
(o, B) and (p, 0). Thus, letting p(«, B) denote a fan-beam projection, it follows that
pla, B) = g(p, 6) and, from Egs. (5-118) and (5-119), that p(«, B) = g(Dsine, a + B).
Incorporating these observations into Eq. (5-123) results in the expression

27 pa,
f(r, (,D)=%/ / pla, B)s[rcos(B + a — ¢) — Dsina]|Dcosa da dB (5-124)
0 -,

This is the fundamental fan-beam reconstruction formula based on filtered backpro-
jections.

Equation (5-124) can be manipulated further to put it in a more familiar convolu-
tion form. With reference to Fig. 5.47, it can be shown (see Problem 5.47) that

rcos(B + a — ¢) — Dsina = Rsin(a’ — «) (5-125)

where R is the distance from the source to an arbitrary point in a fan ray, and «’ is
the angle between this ray and the center ray. Note that R and o are determined by
the values of r, ¢, and B. Substituting Eq. (5-125) into Eq. (5-124) yields

27 pa,
flr,o)= %/ / pla, B)s(Rsin[a’ — a])Dcosa da df (5-1206)
0 -a,,



FIGURE 5.46
Maximum value
of oo needed to
encompass a

region of interest.
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/
Source

It can be shown (see Problem 5.48) that

SIn «

s(Rsina) = [R e T s(a) (5-127)

Using this expression, we can write Eq. (5-126) as

1 21 1 a, )
fr.0)= 1 /0 R—[ | e - a)da} B 1)
where
h(a)zl[ < } s(a) (5-129)
2| sina
and
q(e, B) = p(a, B) Dcosa (5-130)

We recognize the inner integral in Eq. (5-128) as a convolution expression, thus
showing that the image reconstruction formula in Eq. (5-124) can be implemented
as the convolution of functions g(«, 8) and A(«). Unlike the reconstruction formula
for parallel projections, reconstruction based on fan-beam projections involves a
term 1/R? which is a weighting factor inversely proportional to the distance from
the source. The computational details of implementing Eq. (5-128) are beyond the
scope of the present discussion (see Kak and Slaney [2001] for a detailed treatment
of this subject).
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FIGURE 5.47

Polar
representation of
an arbitrary point
on aray of a fan
beam.

Instead of implementing Eq. (5-128) directly, an approach used often, particularly
in software simulations, is to: (1) convert a fan-beam geometry to a parallel-beam
geometry using Egs. (5-118) and (5-119), and (2) use the parallel-beam reconstruc-
tion approach developed earlier. We conclude this section with an example of how to
do this. As noted earlier, a fan-beam projection, p, taken at angle 8 has a correspond-
ing parallel-beam projection, g, taken at a corresponding angle 6 and, therefore,

PlaB) = g(p.6) 10,
=g(Dsina, a + B)

where the last line follows from Egs. (5-118) and (5-119).

Let AB denote the angular increment between successive fan-beam projections,
and let Aa be the angular increment between rays, which determines the number of
samples in each projection. We impose the restriction that

AB=Aa=vy (5-132)

Then, B = my and «a = ny for some integer values of m and n, and we can write
Eq. (5-131) as

p(ny, my) = g(Dsinny,(m + n)y) (5-133)

This equation indicates that the nth ray in the mth radial projection is equal to the

nth ray in the (m + n)th parallel projection. The Dsinny term on the right side of
Eq. (5-133) implies that parallel projections converted from fan-beam projections
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are not sampled uniformly, an issue that can lead to blurring, ringing, and aliasing
artifacts if the sampling intervals Aa and AB are too coarse, as the following exam-
ple illustrates.

EXAMPLE 5.18: Image reconstruction using filtered fan backprojections.

Figure 5.48(a) shows the results of : (1) generating fan projections of the rectangle image with Aa = AB = 1°,
(2) converting each fan ray to the corresponding parallel ray using Eq. (5-133), and (3) using the filtered
backprojection approach developed earlier for parallel rays. Figures 5.48(b) through (d) show the results
using 0.5°,0.25°, and 0.125° increments of Aa and AB. A Hamming window was used in all cases. We used
this variety of angle increments to illustrate the effects of under-sampling.

The result in Fig. 5.48(a) is a clear indication that 1° increments are too coarse, as blurring and ring-
ing are quite evident. The result in Fig. 5.48(Db) is interesting, in the sense that it compares poorly with
Fig. 5.43(b), which we generated using the same angle increment of 0.5°. In fact, as Fig. 5.48(c) shows,
even with angle increments of 0.25° the reconstruction still is not as good as in Fig. 5.43(b). We have to
use angle increments on the order of 0.125° before the two results become comparable, as Fig. 5.48(d)
shows. This angle increment results in projections with 180 x (1/0.125) = 1440 samples, which is close to
double the 849 rays used in the parallel projections of Example 5.17. Thus, it is not unexpected that the
results are close in appearance when using A« = 0.125°.

Similar results were obtained with the head phantom, except that aliasing in this case is much more
visible as sinusoidal interference. We see in Fig. 5.49(c) that even with Aa = AB = 0.25° significant distor-
tion still is present, especially in the periphery of the ellipse. As with the rectangle, using increments of
0.125° finally produced results that are comparable with the backprojected image of the head phantom

ab
cd

FIGURE 5.48
Reconstruction of
the rectangle image
from filtered fan
backprojections.

(a) 1° increments of
a and B.

(b) 0.5° increments.
(c) 0.25° increments.
(d) 0.125° incre-
ments.

Compare (d) with
Fig. 5.43(b).
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in Fig. 5.44(b). These results illustrate one of the principal reasons why thousands of detectors have to
be used in the fan-beam geometry of modern CT systems in order to reduce aliasing artifacts.

ab
cd

FIGURE 5.49
Reconstruction of
the head phantom
image from filtered
fan backprojections.
(a) 1° increments of
a and B.

(b) 0.5° increments.
(c) 0.25° increments.
(d) 0.125° incre-
ments.

Compare (d) with
Fig. 5.44(D).

Summary, References, and Further Reading

The restoration results in this chapter are based on the assumption that image degradation can be modeled as a lin-
ear, position invariant process followed by additive noise that is not correlated with image values. Even when these
assumptions are not entirely valid, it is often possible to obtain useful results by using the methods developed in the
preceding sections. Our treatment of image reconstruction from projections, though introductory, is the foundation
for the image-processing aspects of this field. As noted in Section 5.11, computed tomography (CT) is the main ap-
plication area of image reconstruction from projections. Although we focused on X-ray tomography, the principles
established in Section 5.11 are applicable in other CT imaging modalities, such as SPECT (single photon emission
tomography), PET (positron emission tomography), MRI (magnetic resonance imaging), and some modalities of
ultrasound imaging.

For additional reading on the material in Section 5.1 see Pratt [2014]. The books by Ross [2014], and by Mont-
gomery and Runger [2011], are good sources for a more in-depth discussion of probability density functions and
their properties (Section 5.2). See Umbaugh [2010] for complementary reading on the material in Section 5.3, and
Eng and Ma [2001, 2006] regarding adaptive median filtering. The filters in Section 5.4 are direct extensions of the
material in Chapter 4. The material in Section 5.5 is fundamental linear system theory; for more advanced reading
on this topic see Hespanha [2009]. The topic of estimating image degradation functions (Section 5.6) is fundamental
in the field of image restoration. Some of the early techniques for estimating the degradation function are given in
Andrews and Hunt [1977], Rosenfeld and Kak [1982]. More recent methods are discussed by Gunturk and Li [2013].
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There are two major approaches to the methods developed in Sections 5.7-5.10. One is based on a general for-
mulation using matrix theory, as introduced by Andrews and Hunt [1977] and by Gonzalez and Woods [1992]. This
approach is elegant and general, but it tends to be difficult for first-time readers. Approaches based on frequency
domain filtering (the approach we followed in this chapter) are easier to follow by newcomers to image restoration,
but lack the unifying mathematical rigor of the matrix approach. Both approaches arrive at the same results, but our
experience in teaching this material in a variety of settings indicates that students first entering this field favor the
latter approach by a significant margin. Complementary readings for our coverage of these filtering concepts are
Castleman [1996], Umbaugh [2010], Petrou and Petrou [2010] and Gunturk and Li [2013]. For additional reading
on the material in Section 5.11 see Kak and Slaney [2001], Prince and Links [2006], and Buzug [2008]. For details on
the software aspects of many of the examples in this chapter, see Gonzalez, Woods, and Eddins [2009].

Problems

Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book
website: www.ImageProcessingPlace.com).

5.1*% The white bars in the test pattern shown are 7 5.2 Repeat Problem 5.1 using a geometric mean filter.
pixels wide and 210 pixels high. The separation 5.3+

between bars is 17 pixels. What would this image ) ]
look like after application of 5.4 Repeat Problem 5.1 using a contraharmonic

mean filter with Q = 1.

Repeat Problem 5.1 using a harmonic mean filter.

A 3 %3 arithmeti filter? . .
@ * 2 arthmetic mean fter 5.5% Repeat Problem 5.1 using a contraharmonic

(b) A 7x7 arithmetic mean filter? mean filter with Q = —1.
(¢) A 9x9 arithmetic mean filter? 5.6 Repeat Problem 5.1 using a median filter.

Note: This problem and the ones that follow it, 5.7% Repeat Problem 5.1 using a max filter.
related to filtering this image, may seem a bit 58 Repeat Problem 5.1 using a min filter.
tedious. However, they are worth the effort, as
they help develop a real understanding of how
these filters work. After you understand how a  5.10 In answering the following, refer to the contra-

5.9*% Repeat Problem 5.1 using a midpoint filter.

particular filter affects the image, your answer harmonic filter in Eq. (5-26) :
can be a brief verbal description of the result. For (a)* Explain why the filter is effective in eliminat-
example, “the resulting image will consist of ver- ing pepper noise when Q is positive.

tical bars 3 pixels wide and 206 pixels high.” Be

sure to describe any deformation of the bars, such

as rounded corners. You may ignore image bor-

der effects, in which the filter neighborhoods only (¢)* Explain why the filter gives poor results

partially contain image pixelsh (Such as the results in Flg 5.9) when the
wrong polarity is chosen for Q.

(d) Discuss the expected behavior of the filter
when Q = -1.

5.11 We mentioned when discussing Eq. (5-27)] that
using median filters generally results in less blur-
ring than using linear smoothing filters (e.g., box
lowpass filters) of the same size. Explain why this
is so. (Hint: In order to focus on the key differ-
ence between the filters, assume that noise is neg-
ligible, and consider the behavior of these filters
in the neighborhood of a binary edge.)

(b) Explain why the filter is effective in eliminat-
ing salt noise when Q is negative.
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5.14

5.15

5.16

5.17*
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With reference to the alpha-trimmed filter defined
in Eq. (5-31)]:

(a)* Explain why setting d = 0 in the filter reduces
it to an arithmetic mean filter.

(b) Explain why setting d = mn —1 turns the fil-
ter into a median filter.

With reference to the bandreject filter transfer
functions in Table 4.7, obtain equations for the
transfer functions of:

(a) An ideal bandpass filter.

(b)*A Gaussian bandpass filter.

(¢) A Butterworth bandpass filter.

With reference to Eq. (5-33), obtain equations for:
(a)* An ideal notch filter transfer function.

(b) A Gaussian notch filter transfer function.

(¢) A Butterworth notch filter transfer function.

Show that the Fourier transform of the 2-D dis-
crete sine function

f(x,y) =sinQmpyx/M + 2mv,y/N)

for x=0,1,2,...,M—1 and y=0,1,2,...,N-1
is the pair of conjugate impulses

F(u,v) = @[5(14 + Uy, v + V)
—6(u — uy,v — vy)]
With reference to f(x,y) in Problem 5.15, answer

the following:

(a)*If v, = 0, and u, and M are integers (1, < M),
what would a plot of f(x,y) look like along
the x-axis for x =0,1,2,..., M —1?

(b)*What would a plot of F(u,v) look like for
u=0,1,2,....M—-1?

(¢) If vy =0, M is the same integer as before,
but i, is no longer an integer (¢, < M), how
would a plot of f(x,y) along the x-axis for
x=0,1,2,..., M —1 be different from (a)?

Start with Eq. (5-46) and derive Eq. (5-48).

5.18 An industrial plant manager has been promoted

to a new position. His first responsibility is to
characterize an image filtering system left by his
predecessor. In reading the documentation, the
manager discovers that his predecessor estab-
lished that the system is linear and position invari-

5.19

5.20*

5.21%

5.22

ant. Furthermore, he learns that experiments con-
ducted under negligible-noise conditions resulted
in an impulse response that could be expressed
analytically in the frequency domain as

H(u ’U) = e—[UZ/ISO +22/150) 1

el 50)2/150 + (v — 50)%/150]

The manager is not a technical person, so he
employs you as a consultant to determine what,
if anything, he needs to do to complete the char-
acterization of the system. He also wants to know
the function that the system performs. What (if
anything) does the manager need to do to com-
plete the characterization of his system? What fil-
tering function does the system perform?

A linear, space invariant system has the impulse
response

h(x’y) = 6(x_a7y_b)

where a and b are constants, and x and y are dis-
crete quantities. Answer the following, assuming
negligible noise in each case.

(a)* What is the system transfer function in the
frequency domain?

(b)* What would the spatial domain system response
be to a constant input, f(x,y) = K?

(¢) What would the spatial domain system response
be to an impulse input, f(x,y) = 8(x,y)?

Assuming now that x and y are continuous quanti-
ties, show how you would solve Problems 5.19(b)
and (c) using Eq. (5-61) directly. [Hint: Take a
look at the solution to Problem 4.1(c).]

Consider a linear, position invariant image degra-
dation system with impulse response

h(x,y)=e

where x and y are continuous variables. Suppose
that the input to the system is a binary image con-
sisting of a white vertical line of infinitesimal width
located at x =a, on a black background. Such
an image can be modeled as f(x,y)=8(x —a).
Assume negligible noise and use Eq. (5-61) to find
the output image, g(x,y).

(-0 + (v-8)]

How would you solve Problem 5.21 if x and y
were discrete quantities? You do not need to
solve the problem. All you have to do is list the
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5.24

5.25%

5.26

5.27*

steps you would take to solve it. (Hint: Refer to
entry 13 in Table 4.4.)

The image shown consists of two infinitesimally
thin white lines on a black background, intersect-
ing at some point in the image. The image is input
into a linear, position invariant system with the
impulse response given in Problem 5.21. Assum-
ing continuous variables and negligible noise, find
an expression for the output image, g(x,y). (Hint:
Review linear operations in Section 2.6.)

Sketch (with arrow lines showing the direction of
blur) what the image in Fig. 5.26(a) would look
like if it were blurred using the transfer function
in Eq. (5-77)

(a)*With a=-0.1 and b = 0.1.

(b) Witha=0andb=-0.1.

During acquisition, an image undergoes uni-
form linear motion in the vertical direction for
a time 7;. The direction of motion then switches
to the horizontal direction for a time interval
T,. Assuming that the time it takes the image to
change directions is negligible, and that shutter
opening and closing times are negligible also, give
an expression for the blurring function, H(u,v).

During acquisition, an image undergoes uniform
linear motion in the vertical direction for a time
T. The direction of motion then switches 180° in
the opposite direction for a time 7. Assume that
the time it takes the image to change directions
is negligible, and that shutter opening and clos-
ing times are negligible also. Is the final image
blurred, or did the reversal in direction “undo”
the first blur? Obtain the overall blurring func-
tion H(u,v) first, and then use it as the basis for
your answer.

Consider image blurring caused by uniform accel-
eration in the x-direction. If the image is at rest at
time ¢t = 0 and accelerates with a uniform acceler-
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ation x,(¢) = at*/2 for a time 7, find the blurring
function H(u,v). You may assume that shutter
opening and closing times are negligible.

5.28 A space probe is designed to transmit images

of a planet as it approaches it for landing. Dur-
ing the last stages of landing, one of the control
thrusters fails, resulting in rotation of the craft
about its vertical axis. The images sent during the
last two seconds prior to landing are blurred as
a consequence of this circular motion. The cam-
era is located in the bottom of the probe, along its
vertical axis, and pointing down. Fortunately, the
rotation of the craft is also about its vertical axis,
so the images are blurred by uniform rotational
motion. During the acquisition time of each image,
the craft rotation was /8 radians. The image
acquisition process can be modeled as an ideal
shutter that is open only during the time the craft
rotated 77/8 radians. You may assume that the
vertical motion was negligible during the image
acquisition. Formulate a solution for restoring the
images. You do not have to solve the problem, just
give an outline of how you would solve it using
the methods discussed in Section 5.6 through 5.9.
(Hint: Consider using polar coordinates. The blur
will then appear as one-dimensional, uniform
motion blur along the 6-axis.)

The image that follows is a blurred,2-D projection
of a volumetric rendition of a heart. It is known
that each of the cross hairs on the right bottom
part of the image was (before blurring) 3 pixels
wide, 30 pixels long, and had an intensity value of
255. Provide a step-by-step procedure indicating
how you would use the information just given to
obtain the blurring function H (u,v).

(Original image courtesy of GE Medical Systems.)
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5.30

531

5.32%

5.33

5.34

5.35

5.36*
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The image in Fig. 5.29(h) was obtained by
inverse-filtering the image in Fig. 5.29(g), which
is a blurred image that, in addition, is corrupted
by additive Gaussian noise. The blurring itself
is corrected by the inverse filter, as is evident in
Fig. 5.29(h). However, the restored image has a
strong streak pattern that is not apparent in Fig.
5.29(g) [for example, compare the area of con-
stant white in the top right of Fig. 5.29(g) with the
corresponding are in Fig. 5.29(h)]. Explain how
this pattern originated.

A certain X-ray imaging geometry produces a
blurring degradation that can be modeled as the
convolution of the sensed image with the spatial,
circularly symmetric function
2 2 2
X° 4y =207 (242002
h(x,y)=———F——€"" "%
o
Assuming continuous variables, show that the
degradation in the frequency domain is given by
the expression

H(u,v) = —87T40'2(u2 + 2 )e-Zﬂzfrz(u%nz)

(Hint: Refer to the discussion of the Laplacian
in Section 4.9, entry 13 in Table 4.4, and review
Problem 4.52.)

Using the transfer function in Problem 5.31, give
the expression for a Wiener filter transfer func-
tion, assuming that the ratio of power spectra of
the noise and undegraded images is a constant.

Given p(x,y) in Eq. (5-90), show that
P(u,v) =4 —2cos(2mu/M)—2cos(2mv/N)

(Hint: Study the solution to Problem 4.47.)
Show how Eq. (5-98) follows from Egs. (5-96) and
(5-97).

Using the transfer function in Problem 5.31, give
the resulting expression for the constrained least
squares filter transfer function.

Assume that the model in Fig. 5.1 is linear and
position invariant, and that the noise and image
are uncorrelated. Show that the power spectrum
of the output is

Gw,v) = |H(u)] |[Fu,0)] + [N(uv)]
[Hint: Refer to Egs. (5-65) and (4-89).]

5.37

5.38

5.39*

5.40

Cannon [1974] suggested a restoration filter R(u,v)
satisfying the condition

‘ﬁ(u,v)‘z =R, ) |G(u,v)’

The restoration filter is based on the premise of
forcing the power spectrum of the restored image,
F(u,v) 2, to equal the spectrum of the original
image, |F(u,v)]> Assume that the image and noise
are uncorrelated,

(a)* Find R(u,v) in terms of |F(u,v)|, |H(u,v)
and \N(u,v)\z. (Hint: Take a look at Fig. 5.1,
Eq. (5-65), and Problem 5.36.)

Use your result from (a) to state a result in a
form similar to the last line of Eq. (5-81), and
using the same terms.

2 2
5 5

(b)

Show that, when @ =1 in Eq. (5-99), the geomet-
ric mean filter reduces to the inverse filter.

A professor of archeology doing research on
currency exchange practices during the Roman
Empire recently became aware that four Roman
coins crucial to his research are listed in the hold-
ings of the British Museum in London. Unfortu-
nately, he was told after arriving there that the
coins had been recently stolen. Further research
on his part revealed that the museum keeps pho-
tographs of every item for which it is responsible.
Unfortunately, the photos of the coins in question
are blurred to the point where the date and other
small markings are not readable. The cause of the
blurring was the camera being out of focus when
the pictures were taken. As an image processing
expert and friend of the professor, you are asked
as a favor to determine whether computer pro-
cessing can be utilized to restore the images to the
point where the professor can read the markings.
You are told that the original camera used to take
the photos is still available, as are other represen-
tative coins of the same era. Propose a step-by-
step solution to this problem.

An astronomer is working with an optical tele-
scope. The telescope lenses focus images onto
a high-resolution, CCD imaging array, and the
images are then converted by the telescope elec-
tronics into digital images. Working late one eve-
ning, the astronomer notices that her new images
are noisy and blurry. The manufacturer tells the
astronomer that the unit is operating within speci-
fications. Trying to improve the situation by con-
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ducting controlled lab experiments with the lens-
es and imaging sensors is not possible because of
the size and weight of the telescope components.
Having heard about your success in restoring the
Roman coins, the astronomer calls you to help
her formulate a digital image processing solu-
tion for sharpening her images. How would you
go about solving this problem, given that the only
images you can obtain are images of stellar bod-
ies? (Hint: A single, bright star that appears as a
point of light in the field of view can be used to
approximate an impulse.)

Sketch the Radon transform of the M x M binary
image shown below, which consists of a single
white pixel in the center of the image. Assume a
parallel-beam geometry, and label quantitatively
all the important elements of your sketch .

5.42*% A Sketch a cross section of the Radon transform

of the following white disk image containing a
smaller black disk in its center. (Hint: Take a look
at Fig. 5.38.)
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5.43 Show that the Radon transform [Eq. (5-102)] of

the Gaussian shape f(x,y) = Aexp(-x’ —y?) is
given by g(p,0) = AN exp(—p*). (Hint: Refer to
Example 5.15, where we used symmetry to sim-
plify integration.)
Do the following:

(a)* Show that the Radon transform [Eq. (5-102)]
of the unit impulse 8(x,y) is a straight ver-
tical line passing through the origin of the
pb-plane .

(b) Show that the radon transform of the
impulse &(x — x,,y — ¥,) is a sinusoidal curve
in the pf-plane.

Prove the validity of the following properties of
the Radon transform [Eq. (5-102)]:

(a)* Linearity: The Radon transform is a linear
operator. (See Section 2.6 regarding linear-
ity.)

(b) Translation property: The radon transform of
f(x—=x5y—y,) is g(p — x,cosf — y,sinb, 6).

(¢)* Convolution property: The Radon transform
of the convolution of two functions is equal
to the convolution of the Radon transforms
of the two functions.

5.46 Provide the steps that lead from Eq. (5-113) to

Eq. (5-114). [Hint: G(w,0 +180°) = G(-w,0).]

5.47* Prove the validity of Eq. (5-125).
5.48 Prove the validity of Eq. (5-127).
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Color Image Processing

It is only after years of preparation that the young artist should
touch color—not color used descriptively, that is, but as a means of

personal expression. Henri Matisse

For a long time | limited myself to one color—as a form of discipline.
Pablo Picasso

Preview

Using color in image processing is motivated by two principal factors. First, color is a powerful descrip-
tor that often simplifies object identification and extraction from a scene. Second, humans can discern
thousands of color shades, compared to only about two dozen shades of gray. The latter factor is par-
ticularly important in manual image analysis. Color image processing is divided into two major areas:
pseudo- and full-color processing. In the first category, the issue is one of assigning color(s) to a par-
ticular grayscale intensity or range of intensities. In the second, images typically are acquired using a
full-color sensor, such as a digital camera, or color scanner. Until just a few years ago, most digital color
image processing was done at the pseudo- or reduced-color level. However, because color sensors and
processing hardware have become available at reasonable prices, full-color image processing techniques
are now used in a broad range of applications. In the discussions that follow, it will become evident that
some of the grayscale methods covered in previous chapters are applicable also to color images.

Upon completion of this chapter, readers should:

B Understand the fundamentals of color and B Understand the basics of working with full-
the color spectrum. color images, including color transformations,
B Be familiar with several of the color models color complements, and tone/color corrections.
used in digital image processing. B Be familiar with the role of noise in color
B Know how to apply basic techniques in pseudo- Image processing.
color image processing, including intensity slic- B Know how to perform spatial filtering on col-
ing and intensity-to-color transformations. or images.
B Be familiar with how to determine if a gray- B Understand the advantages of using color in
scale method is extendible to color images. image segmentation.

399
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FIGURE 6.1

Color spectrum
seen by passing
white light through
a prism.

(Courtesy of the
General Electric
Co., Lighting
Division.)

6.1 COLOR FUNDAMENTALS I

Although the process employed by the human brain in perceiving and interpreting
color is a physiopsychological phenomenon that is not fully understood, the physical
nature of color can be expressed on a formal basis supported by experimental and
theoretical results.

In 1666, Sir Isaac Newton discovered that when a beam of sunlight passes through
a glass prism, the emerging light is not white, but consists instead of a continuous
spectrum of colors ranging from violet at one end to red at the other. As Fig. 6.1
shows, the color spectrum may be divided into six broad regions: violet, blue, green,
yellow, orange, and red. When viewed in full color (see Fig. 6.2), no color in the spec-
trum ends abruptly; rather, each color blends smoothly into the next.

Basically, the colors that humans and some other animals perceive in an object
are determined by the nature of the light reflected from the object. As illustrated in
Fig. 6.2, visible light is composed of a relatively narrow band of frequencies in the
electromagnetic spectrum. A body that reflects light that is balanced in all visible
wavelengths appears white to the observer. However, a body that favors reflectance
in a limited range of the visible spectrum exhibits some shades of color. For example,
green objects reflect light with wavelengths primarily in the 500 to 570 nm range,
while absorbing most of the energy at other wavelengths.

Characterization of light is central to the science of color. If the light is achro-
matic (void of color), its only attribute is its intensity, or amount. Achromatic light
is what you see on movie films made before the 1930s. As defined in Chapter 2, and
used numerous times since, the term gray (or intensity) level refers to a scalar mea-
sure of intensity that ranges from black, to grays, and finally to white.

Chromatic light spans the electromagnetic spectrum from approximately 400
to 700 nm. Three basic quantities used to describe the quality of a chromatic light
source are: radiance, luminance, and brightness. Radiance is the total amount of
energy that flows from the light source, and it is usually measured in watts (W).
Luminance, measured in lumens (Im), is a measure of the amount of energy that
an observer perceives from a light source. For example, light emitted from a source
operating in the far infrared region of the spectrum could have significant energy
(radiance), but an observer would hardly perceive it; its luminance would be almost
zero. Finally, brightness is a subjective descriptor that is practically impossible to
measure. [t embodies the achromatic notion of intensity, and is one of the key fac-
tors in describing color sensation.




FIGURE 6.2

Wavelengths compris-
ing the visible range

of the electromagnetic
spectrum. (Courtesy of
the General Electric
Co., Lighting Division.)

FIGURE 6.3
Absorption of
light by the red,
green, and blue
cones in the
human eye as a
function of
wavelength.
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As noted in Section 2.1, cones are the sensors in the eye responsible for color
vision. Detailed experimental evidence has established that the 6 to 7 million cones in
the human eye can be divided into three principal sensing categories, corresponding
roughly to red, green, and blue. Approximately 65% of all cones are sensitive to red
light, 33% are sensitive to green light, and only about 2% are sensitive to blue. How-
ever, the blue cones are the most sensitive. Figure 6.3 shows average experimental
curves detailing the absorption of light by the red, green, and blue cones in the eye.
Because of these absorption characteristics, the human eye sees colors as variable
combinations of the so-called primary colors: red (R), green (G), and blue (B).

For the purpose of standardization, the CIE (Commission Internationale de
I’Eclairage —the International Commission on Illumination) designated in 1931 the
following specific wavelength values to the three primary colors: blue = 435.8 nm,
green = 546.1 nm, and red = 700 nm. This standard was set before results such as
those in Fig. 6.3 became available in 1965. Thus, the CIE standards correspond only
approximately with experimental data. It is important to keep in mind that defining
three specific primary color wavelengths for the purpose of standardization does
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In practice, pigments
seldom are pure. This
results in a muddy brown
instead of black when
primaries, or primaries
and secondaries, are
combined. We will
discuss this issue in
Section 6.2

a
b

FIGURE 6.4
Primary and
secondary colors
of light and
pigments.
(Courtesy of the
General Electric
Co., Lighting
Division.)

not mean that these three fixed RGB components acting alone can generate all
spectrum colors. Use of the word primary has been widely misinterpreted to mean
that the three standard primaries, when mixed in various intensity proportions, can
produce all visible colors. As you will see shortly, this interpretation is not correct
unless the wavelength also is allowed to vary, in which case we would no longer have
three fixed primary colors.

The primary colors can be added together to produce the secondary colors of
light —magenta (red plus blue), cyan (green plus blue), and yellow (red plus green).
Mixing the three primaries, or a secondary with its opposite primary color, in the
right intensities produces white light. This result is illustrated in Fig. 6.4(a), which
shows also the three primary colors and their combinations to produce the second-
ary colors of light.

Differentiating between the primary colors of light and the primary colors of pig-
ments or colorants is important. In the latter, a primary color is defined as one that
subtracts or absorbs a primary color of light, and reflects or transmits the other two.
Therefore, the primary colors of pigments are magenta, cyan, and yellow, and the
secondary colors are red, green, and blue. These colors are shown in Fig. 6.4(b). A
proper combination of the three pigment primaries, or a secondary with its opposite
primary, produces black.

Color television reception is an example of the additive nature of light colors.
The interior of CRT (cathode ray tube) color TV screens used well into the 1990s is
composed of a large array of triangular dot patterns of electron-sensitive phosphor.
When excited, each dot in a triad produces light in one of the primary colors. The

MIXTURES OF LIGHT
{(Additive primaries)

MIXTURES OF PIGMENTS
(Subtractive primaries)

PRIMARY AND SECONDARY COLORS
OF LIGHT AND PIGMENT
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intensity of the red-emitting phosphor dots is modulated by an electron gun inside
the tube, which generates pulses corresponding to the “red energy” seen by the TV
camera. The green and blue phosphor dots in each triad are modulated in the same
manner. The effect, viewed on the television receiver, is that the three primary colors
from each phosphor triad are received and “added” together by the color-sensitive
cones in the eye and perceived as a full-color image. Thirty successive image changes
per second in all three colors complete the illusion of a continuous image display on
the screen.

CRT displays started being replaced in the late 1990s by flat-panel digital tech-
nologies, such as liquid crystal displays (LCDs) and plasma devices. Although they
are fundamentally different from CRTs, these and similar technologies use the same
principle in the sense that they all require three subpixels (red, green, and blue) to
generate a single color pixel. LCDs use properties of polarized light to block or pass
light through the LCD screen and, in the case of active matrix display technologies,
thin film transistors (TFTs) are used to provide the proper signals to address each
pixel on the screen. Light filters are used to produce the three primary colors of light
at each pixel triad location. In plasma units, pixels are tiny gas cells coated with phos-
phor to produce one of the three primary colors. The individual cells are addressed
in a manner analogous to LCDs. This individual pixel triad coordinate addressing
capability is the foundation of digital displays.

The characteristics generally used to distinguish one color from another are
brightness, hue, and saturation. As indicated earlier in this section, brightness
embodies the achromatic notion of intensity. Hue is an attribute associated with the
dominant wavelength in a mixture of light waves. Hue represents dominant color as
perceived by an observer. Thus, when we call an object red, orange, or yellow, we are
referring to its hue. Saturation refers to the relative purity or the amount of white
light mixed with a hue. The pure spectrum colors are fully saturated. Colors such
as pink (red and white) and lavender (violet and white) are less saturated, with the
degree of saturation being inversely proportional to the amount of white light added.

Hue and saturation taken together are called chromaticity and, therefore, a color
may be characterized by its brightness and chromaticity. The amounts of red, green,
and blue needed to form any particular color are called the tristimulus values, and
are denoted, X, Y, and Z, respectively. A color is then specified by its trichromatic
coefficients, defined as

X

x=—— (6-1)
X+Y+Z

Y
_— — 6-2
Y Xiv+z (6-2)

and

VA

z (6-3)

T X+Y+Z
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Our use of x, y,and z in
this context follows con-
vention. These should not
be confused with our use
of (x,y) throughout the
book to denote spatial
coordinates.

We see from these equations that
x+y+z=1 (6-4)

For any wavelength of light in the visible spectrum, the tristimulus values needed
to produce the color corresponding to that wavelength can be obtained directly
from curves or tables that have been compiled from extensive experimental results
(Poynton [1996,2012]).

Another approach for specifying colors is to use the CIE chromaticity diagram (see
Fig. 6.5), which shows color composition as a function of x (red) and y (green). For
any value of x and y, the corresponding value of z (blue) is obtained from Eq. (6-4)
by noting that z =1—(x + y). The point marked green in Fig. 6.5, for example, has
approximately 62% green and 25% red content. It follows from Eq. (6-4) that the
composition of blue is approximately 13%.

The positions of the various spectrum colors—from violet at 380 nm to red at
780 nm—are indicated around the boundary of the tongue-shaped chromaticity dia-
gram. These are the pure colors shown in the spectrum of Fig. 6.2. Any point not
actually on the boundary, but within the diagram, represents some mixture of the
pure spectrum colors. The point of equal energy shown in Fig. 6.5 corresponds to
equal fractions of the three primary colors; it represents the CIE standard for white
light. Any point located on the boundary of the chromaticity chart is fully saturated.
As a point leaves the boundary and approaches the point of equal energy, more
white light is added to the color, and it becomes less saturated. The saturation at the
point of equal energy is zero.

The chromaticity diagram is useful for color mixing because a straight-line seg-
ment joining any two points in the diagram defines all the different color variations
that can be obtained by combining these two colors additively. Consider, for exam-
ple, a straight line drawn from the red to the green points shown in Fig. 6.5. If there is
more red than green light, the exact point representing the new color will be on the
line segment, but it will be closer to the red point than to the green point. Similarly, a
line drawn from the point of equal energy to any point on the boundary of the chart
will define all the shades of that particular spectrum color.

Extending this procedure to three colors is straightforward. To determine the
range of colors that can be obtained from any three given colors in the chromatic-
ity diagram, we simply draw connecting lines to each of the three color points. The
result is a triangle, and any color inside the triangle, or on its boundary, can be pro-
duced by various combinations of the three vertex colors. A triangle with vertices at
any three fixed colors cannot enclose the entire color region in Fig. 6.5. This observa-
tion supports graphically the remark made earlier that not all colors can be obtained
with three single, fixed primaries, because three colors form a triangle.

The triangle in Fig. 6.6 shows a representative range of colors (called the color
gamut) produced by RGB monitors. The shaded region inside the triangle illustrates
the color gamut of today’s high-quality color printing devices. The boundary of the
color printing gamut is irregular because color printing is a combination of additive
and subtractive color mixing, a process that is much more difficult to control than



FIGURE 6.5

The CIE
chromaticity
diagram.
(Courtesy of the
General Electric
Co., Lighting
Division.)
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that of displaying colors on a monitor, which is based on the addition of three highly
controllable light primaries.

6.2 COLOR MODELS I

The purpose of a color model (also called a color space or color system) is to facilitate the
specification of colors in some standard way. In essence, a color model is a specification
of (1) a coordinate system, and (2) a subspace within that system, such that each color in
the model is represented by a single point contained in that subspace.

Most color models in use today are oriented either toward hardware (such as for
color monitors and printers) or toward applications, where color manipulation is
a goal (the creation of color graphics for animation is an example of the latter). In
terms of digital image processing, the hardware-oriented models most commonly
used in practice are the RGB (red, green, blue) model for color monitors and a
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FIGURE 6.6
Ilustrative color
gamut of color
monitors
(triangle) and
color printing
devices (shaded
region).
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broad class of color video cameras; the CMY (cyan, magenta, yellow) and CMYK
(cyan, magenta, yellow, black) models for color printing; and the HSI (hue, satura-
tion, intensity) model, which corresponds closely with the way humans describe and
interpret color. The HSI model also has the advantage that it decouples the color
and gray-scale information in an image, making it suitable for many of the gray-scale
techniques developed in this book. There are numerous color models in use today.
This is a reflection of the fact that color science is a broad field that encompasses
many areas of application. It is tempting to dwell on some of these models here, sim-
ply because they are interesting and useful. However, keeping to the task at hand,
we focus attention on a few models that are representative of those used in image
processing. Having mastered the material in this chapter, you will have no difficulty
in understanding additional color models in use today.



FIGURE 6.7
Schematic of the
RGB color cube.
Points along the
main diagonal
have gray values,
from black at the
origin to white at
point (1,1, 1).
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THE RGB COLOR MODEL

In the RGB model, each color appears in its primary spectral components of red,
green, and blue. This model is based on a Cartesian coordinate system. The color
subspace of interest is the cube shown in Fig. 6.7, in which RGB primary values are
at three corners; the secondary colors cyan, magenta, and yellow are at three other
corners; black is at the origin; and white is at the corner farthest from the origin. In
this model, the grayscale (points of equal RGB values) extends from black to white
along the line joining these two points. The different colors in this model are points
on or inside the cube, and are defined by vectors extending from the origin. For con-
venience, the assumption is that all color values have been normalized so the cube
in Fig. 6.7 is the unit cube. That is, all values of R, G, and B in this representation are
assumed to be in the range [0, 1]. Note that the RGB primaries can be interpreted as
unit vectors emanating from the origin of the cube.

Images represented in the RGB color model consist of three component images,
one for each primary color. When fed into an RGB monitor, these three images
combine on the screen to produce a composite color image, as explained in Sec-
tion 6.1. The number of bits used to represent each pixel in RGB space is called the
pixel depth. Consider an RGB image in which each of the red, green, and blue imag-
es is an 8-bit image. Under these conditions,each RGB color pixel [that is, a triplet of
values (R, G, B)] has a depth of 24 bits (3 image planes times the number of bits per
plane). The term full-color image is used often to denote a 24-bit RGB color image.
The total number of possible colors in a 24-bit RGB image is (2°)’ = 16,777,216.
Figure 6.8 shows the 24-bit RGB color cube corresponding to the diagram in Fig. 6.7.
Note also that for digital images, the range of values in the cube are scaled to the
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FIGURE 6.8
A 24-bit RGB
color cube.

numbers representable by the number bits in the images. If, as above, the primary
images are 8-bit images, the limits of the cube along each axis becomes [0, 255].
Then, for example, white would be at point [255, 255, 255] in the cube.

EXAMPLE 6.1: Generating a cross-section of the RGB color cube and its thee hidden planes.

The cube in Fig. 6.8 is a solid, composed of the (2%)* colors mentioned in the preceding paragraph. A
useful way to view these colors is to generate color planes (faces or cross sections of the cube). This is
done by fixing one of the three colors and allowing the other two to vary. For instance, a cross-sectional
plane through the center of the cube and parallel to the GB-plane in Fig. 6.8 is the plane (127, G, B) for
G,B =0,1,2,...,255. Figure 6.9(a) shows that an image of this cross-sectional plane is generated by feed-
ing the three individual component images into a color monitor. In the component images, 0 represents
black and 255 represents white. Observe that each component image into the monitor is a grayscale
image. The monitor does the job of combining the intensities of these images to generate an RGB image.
Figure 6.9(b) shows the three hidden surface planes of the cube in Fig. 6.8, generated in a similar manner.
Acquiring a color image is the process shown in Fig. 6.9(a) in reverse. A color image can be acquired
by using three filters, sensitive to red, green, and blue, respectively. When we view a color s