
GLOBAL
EDITION

This is a special edition of an established
title widely used by colleges and universities
throughout the world. Pearson published this
exclusive edition for the benefit of students
outside the United States and Canada. If
you purchased this book within the United
States or Canada, you should be aware that
it has been imported without the approval of
the Publisher or Author. The Global Edition
is not supported in the United States and
Canada.

Pearson Global Edition

GLOBAL
EDITION

For these Global Editions, the editorial team at Pearson has
collaborated with educators across the world to address a
wide range of subjects and requirements, equipping students
with the best possible learning tools. This Global Edition
preserves the cutting-edge approach and pedagogy of the
original, but also features alterations, customization, and
adaptation from the North American version. Digital Image Processing

 FOURTH EDITION

 Rafael C. Gonzalez • Richard E. Woods

D
igital Im

age Processing
G

onzalez
W

oods
FO

U
RT

H

ED
IT

IO
N

G
LO

B
A

L
ED

IT
IO

N

Gonzalez_04_1292223049_Final.indd 1 11/08/17 5:27 PM

Support Package for Digital
Image Processing

Your new textbook provides access to support packages that may include reviews in areas
like probability and vectors, tutorials on topics relevant to the material in the book, an image
database, and more. Refer to the Preface in the textbook for a detailed list of resources.

Follow the instructions below to register for the Companion Website for Rafael C. Gonzalez and
Richard E. Woods’ Digital Image Processing, Fourth Edition, Global Edition.

1. Go to www.ImageProcessingPlace.com
2. Find the title of your textbook.
3. Click Support Materials and follow the on-screen instructions to create a login name and

password.

Use the login name and password you created during registration to start using the
digital resources that accompany your textbook.

IMPORTANT:
This serial code can only be used once. This subscription is not transferrable.

Gonzalez_04_1292223049_ifc_Final.indd 1 11/08/17 5:33 PM

www.ImageProcessingPlace.com

Processing
igital Image

4

D

F O U R T H
E D I T I O N

Rafael C. Gonzalez
University of Tennessee

Richard E. Woods
Interapptics

330 Hudson Street, New York, NY 10013

Global Edition

DIP4E_GLOBAL_Print_Ready.indb 1 7/6/2017 10:55:08 AM

Senior Vice President Courseware Portfolio Management: Marcia J. Horton
Director, Portfolio Management: Engineering, Computer Science & Global Editions: Julian Partridge
Portfolio Manager: Julie Bai
Field Marketing Manager: Demetrius Hall
Product Marketing Manager: Yvonne Vannatta
Marketing Assistant: Jon Bryant
Content Managing Producer, ECS and Math: Scott Disanno
Content Producer: Michelle Bayman
Project Manager: Rose Kernan
Assistant Project Editor, Global Editions: Vikash Tiwari
Operations Specialist: Maura Zaldivar-Garcia
Manager, Rights and Permissions: Ben Ferrini
Senior Manufacturing Controller, Global Editions: Trudy Kimber
Media Production Manager, Global Editions: Vikram Kumar
Cover Designer: Lumina Datamatics
Cover Photo: CT image—© zhuravliki.123rf.com/Pearson Asset Library; Gram-negative bacteria—© royaltystockphoto.com/
Shutterstock.com; Orion Nebula—© creativemarc/Shutterstock.com; Fingerprints—© Larysa Ray/Shutterstock.com; Cancer
cells—© Greenshoots Communications/Alamy Stock Photo

MATLAB is a registered trademark of The MathWorks, Inc., 1 Apple Hill Drive, Natick, MA 01760-2098.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2018

The rights of Rafael C. Gonzalez and Richard E. Woods to be identified as the authors of this work have been asserted by them
in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Digital Image Processing, Fourth Edition, ISBN 978-0-13-335672-4,
by Rafael C. Gonzalez and Richard E. Woods, published by Pearson Education © 2018.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the pub-
lisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron
House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the
author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation
with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-22304-9
ISBN 13: 978-1-292-22304-9

Typeset by Richard E. Woods

Printed and bound in Malaysia

DIP4E_GLOBAL_Print_Ready.indb 2 7/6/2017 10:55:08 AM

www.EBooksWorld.ir

http://www.pearsonglobaleditions.com

To Connie, Ralph, and Rob
and

To Janice, David, and Jonathan

DIP4E_GLOBAL_Print_Ready.indb 3 6/16/2017 2:01:57 PM

DIP4E_GLOBAL_Print_Ready.indb 4 6/16/2017 2:01:57 PM

This page intentionally left blank

Contents
Preface 9

Acknowledgments 12

The Book Website 13

The DIP4E Support Packages 13

About the Authors 14

1 Introduction 17
What is Digital Image Processing? 18
The Origins of Digital Image Processing 19
Examples of Fields that Use Digital Image Processing 23
Fundamental Steps in Digital Image Processing 41
Components of an Image Processing System 44

2 Digital Image Fundamentals 47
Elements of Visual Perception 48
Light and the Electromagnetic Spectrum 54
Image Sensing and Acquisition 57
Image Sampling and Quantization 63
Some Basic Relationships Between Pixels 79
Introduction to the Basic Mathematical Tools Used in Digital Image
Processing 83

3 Intensity Transformations and Spatial
Filtering 119
Background 120
Some Basic Intensity Transformation Functions 122
Histogram Processing 133
Fundamentals of Spatial Filtering 153
Smoothing (Lowpass) Spatial Filters 164
Sharpening (Highpass) Spatial Filters 175
Highpass, Bandreject, and Bandpass Filters from Lowpass Filters 188
Combining Spatial Enhancement Methods 191

DIP4E_GLOBAL_Print_Ready.indb 5 6/16/2017 2:01:57 PM

6 Contents

4 Filtering in the Frequency
Domain 203
Background 204
Preliminary Concepts 207
Sampling and the Fourier Transform of Sampled
Functions 215
The Discrete Fourier Transform of One Variable 225
Extensions to Functions of Two Variables 230
Some Properties of the 2-D DFT and IDFT 240
The Basics of Filtering in the Frequency Domain 260
Image Smoothing Using Lowpass Frequency Domain
Filters 272
Image Sharpening Using Highpass Filters 284
Selective Filtering 296
The Fast Fourier Transform 303

5 Image Restoration
and Reconstruction 317
A Model of the Image Degradation/Restoration
process 318
Noise Models 318
Restoration in the Presence of Noise Only—Spatial Filtering 327
Periodic Noise Reduction Using Frequency Domain Filtering 340
Linear, Position-Invariant Degradations 348
Estimating the Degradation Function 352
Inverse Filtering 356
Minimum Mean Square Error (Wiener) Filtering 358
Constrained Least Squares Filtering 363
Geometric Mean Filter 367
Image Reconstruction from Projections 368

6 Color Image Processing 399
Color Fundamentals 400
Color Models 405
Pseudocolor Image Processing 420
Basics of Full-Color Image Processing 429
Color Transformations 430

DIP4E_GLOBAL_Print_Ready.indb 6 6/16/2017 2:01:57 PM

Contents 7

Color Image Smoothing and Sharpening 442
Using Color in Image Segmentation 445
Noise in Color Images 452
Color Image Compression 455

7 Wavelet and Other Image Transforms 463
Preliminaries 464
Matrix-based Transforms 466
Correlation 478
Basis Functions in the Time-Frequency Plane 479
Basis Images 483
Fourier-Related Transforms 484
Walsh-Hadamard Transforms 496
Slant Transform 500
Haar Transform 502
Wavelet Transforms 504

8 Image Compression and
Watermarking 539
Fundamentals 540
Huffman Coding 553
Golomb Coding 556
Arithmetic Coding 561
LZW Coding 564
Run-length Coding 566
Symbol-based Coding 572
Bit-plane Coding 575
Block Transform Coding 576
Predictive Coding 594
Wavelet Coding 614
Digital Image Watermarking 624

9 Morphological Image Processing 635
Preliminaries 636
Erosion and Dilation 638
Opening and Closing 644
The Hit-or-Miss Transform 648

DIP4E_GLOBAL_Print_Ready.indb 7 6/16/2017 2:01:57 PM

8 Contents

Some Basic Morphological Algorithms 652
Morphological Reconstruction 667
Summary of Morphological Operations on Binary Images 673
Grayscale Morphology 674

10 Image Segmentation 699
Fundamentals 700
Point, Line, and Edge Detection 701
Thresholding 742
Segmentation by Region Growing and by Region Splitting and
Merging 764
Region Segmentation Using Clustering and
Superpixels 770
Region Segmentation Using Graph Cuts 777
Segmentation Using Morphological Watersheds 786
The Use of Motion in Segmentation 796

11 Feature Extraction 811
Background 812
Boundary Preprocessing 814
Boundary Feature Descriptors 831
Region Feature Descriptors 840
Principal Components as Feature Descriptors 859
Whole-Image Features 868
Scale-Invariant Feature Transform (SIFT) 881

12 Image Pattern Classification 903
Background 904
Patterns and Pattern Classes 906
Pattern Classification by Prototype Matching 910
Optimum (Bayes) Statistical Classifiers 923
Neural Networks and Deep Learning 931
Deep Convolutional Neural Networks 964
Some Additional Details of Implementation 987

Bibliography 995

Index 1009

DIP4E_GLOBAL_Print_Ready.indb 8 7/12/2017 10:23:39 AM

Preface
When something can be read without effort, great effort has gone into its writing.

Enrique Jardiel Poncela

This edition of Digital Image Processing is a major revision of the book. As in
the 1977 and 1987 editions by Gonzalez and Wintz, and the 1992, 2002, and 2008
editions by Gonzalez and Woods, this sixth-generation edition was prepared
with students and instructors in mind. The principal objectives of the book
continue to be to provide an introduction to basic concepts and methodologies
applicable to digital image processing, and to develop a foundation that can
be used as the basis for further study and research in this field. To achieve
these objectives, we focused again on material that we believe is fundamental
and whose scope of application is not limited to the solution of specialized
problems. The mathematical complexity of the book remains at a level well
within the grasp of college seniors and first-year graduate students who have
introductory preparation in mathematical analysis, vectors, matrices, probability,
statistics, linear systems, and computer programming. The book website pro-
vides tutorials to support readers needing a review of this background material.

One of the principal reasons this book has been the world leader in its field for
40 years is the level of attention we pay to the changing educational needs of our
readers. The present edition is based on an extensive survey that involved faculty,
students, and independent readers of the book in 150 institutions from 30 countries.
The survey revealed a need for coverage of new material that has matured since the
last edition of the book. The principal findings of the survey indicated a need for:

• Expanded coverage of the fundamentals of spatial filtering.
• A more comprehensive and cohesive coverage of image transforms.
• A more complete presentation of finite differences, with a focus on edge detec-

tion.
• A discussion of clustering, superpixels, and their use in region segmentation.
• Coverage of maximally stable extremal regions.
• Expanded coverage of feature extraction to include the Scale Invariant Feature

Transform (SIFT).
• Expanded coverage of neural networks to include deep neural networks, back-

propagation, deep learning, and, especially, deep convolutional neural networks.
• More homework exercises at the end of the chapters.

The new and reorganized material that resulted in the present edition is our
attempt at providing a reasonable balance between rigor, clarity of presentation,
and the findings of the survey. In addition to new material, earlier portions of the
text were updated and clarified. This edition contains 241 new images, 72 new draw-
ings, and 135 new exercises.

DIP4E_GLOBAL_Print_Ready.indb 9 6/16/2017 2:01:57 PM

10 Preface

New to This Edition
The highlights of this edition are as follows.

Chapter 1: Some figures were updated, and parts of the text were rewritten to cor-
respond to changes in later chapters.

Chapter 2: Many of the sections and examples were rewritten for clarity. We
added 14 new exercises.

Chapter 3: Fundamental concepts of spatial filtering were rewritten to include a
discussion on separable filter kernels, expanded coverage of the properties of low-
pass Gaussian kernels, and expanded coverage of highpass, bandreject, and band-
pass filters, including numerous new examples that illustrate their use. In addition to
revisions in the text, including 6 new examples, the chapter has 59 new images, 2 new
line drawings, and 15 new exercises.

Chapter 4: Several of the sections of this chapter were revised to improve the clar-
ity of presentation. We replaced dated graphical material with 35 new images and 4
new line drawings. We added 21 new exercises.

Chapter 5: Revisions to this chapter were limited to clarifications and a few cor-
rections in notation. We added 6 new images and 14 new exercises,

Chapter 6: Several sections were clarified, and the explanation of the CMY and
CMYK color models was expanded, including 2 new images.

Chapter 7: This is a new chapter that brings together wavelets, several new trans-
forms, and many of the image transforms that were scattered throughout the book.
The emphasis of this new chapter is on the presentation of these transforms from a
unified point of view. We added 24 new images, 20 new drawings, and 25 new exer-
cises.

Chapter 8: The material was revised with numerous clarifications and several
improvements to the presentation.

Chapter 9: Revisions of this chapter included a complete rewrite of several sec-
tions, including redrafting of several line drawings. We added 16 new exercises

Chapter 10: Several of the sections were rewritten for clarity. We updated the
chapter by adding coverage of finite differences, K-means clustering, superpixels,
and graph cuts. The new topics are illustrated with 4 new examples. In total, we
added 29 new images, 3 new drawings, and 6 new exercises.

Chapter 11: The chapter was updated with numerous topics, beginning with a more
detailed classification of feature types and their uses. In addition to improvements in
the clarity of presentation, we added coverage of slope change codes, expanded the
explanation of skeletons, medial axes, and the distance transform, and added sev-
eral new basic descriptors of compactness, circularity, and eccentricity. New mate-
rial includes coverage of the Harris-Stephens corner detector, and a presentation of
maximally stable extremal regions. A major addition to the chapter is a comprehen-
sive discussion dealing with the Scale-Invariant Feature Transform (SIFT). The new
material is complemented by 65 new images, 15 new drawings, and 12 new exercises.

DIP4E_GLOBAL_Print_Ready.indb 10 6/16/2017 2:01:57 PM

Preface 11

Chapter 12: This chapter underwent a major revision to include an extensive
rewrite of neural networks and deep learning, an area that has grown significantly
since the last edition of the book. We added a comprehensive discussion on fully
connected, deep neural networks that includes derivation of backpropagation start-
ing from basic principles. The equations of backpropagation were expressed in “tra-
ditional” scalar terms, and then generalized into a compact set of matrix equations
ideally suited for implementation of deep neural nets. The effectiveness of fully con-
nected networks was demonstrated with several examples that included a compari-
son with the Bayes classifier. One of the most-requested topics in the survey was
coverage of deep convolutional neural networks. We added an extensive section on
this, following the same blueprint we used for deep, fully connected nets. That is, we
derived the equations of backpropagation for convolutional nets, and showed how
they are different from “traditional” backpropagation. We then illustrated the use of
convolutional networks with simple images, and applied them to large image data-
bases of numerals and natural scenes. The written material is complemented by 23
new images, 28 new drawings, and 12 new exercises.

Also for the first time, we have created student and faculty support packages that
can be downloaded from the book website. The Student Support Package contains
many of the original images in the book and answers to selected exercises The Fac-
ulty Support Package contains solutions to all exercises, teaching suggestions, and all
the art in the book in the form of modifiable PowerPoint slides. One support pack-
age is made available with every new book, free of charge.

The book website, established during the launch of the 2002 edition, continues to
be a success, attracting more than 25,000 visitors each month. The site was upgraded
for the launch of this edition. For more details on site features and content, see The
Book Website, following the Acknowledgments section.

This edition of Digital Image Processing is a reflection of how the educational
needs of our readers have changed since 2008. As is usual in an endeavor such as
this, progress in the field continues after work on the manuscript stops. One of the
reasons why this book has been so well accepted since it first appeared in 1977 is its
continued emphasis on fundamental concepts that retain their relevance over time.
This approach, among other things, attempts to provide a measure of stability in a
rapidly evolving body of knowledge. We have tried to follow the same principle in
preparing this edition of the book.

R.C.G.
R.E.W.

DIP4E_GLOBAL_Print_Ready.indb 11 6/16/2017 2:01:57 PM

12 Acknowledgments

Acknowledgments
We are indebted to a number of individuals in academic circles, industry, and gov-
ernment who have contributed to this edition of the book. In particular, we wish
to extend our appreciation to Hairong Qi and her students, Zhifei Zhang and
Chengcheng Li, for their valuable review of the material on neural networks, and for
their help in generating examples for that material. We also want to thank Ernesto
Bribiesca Correa for providing and reviewing material on slope chain codes, and
Dirk Padfield for his many suggestions and review of several chapters in the book.
We appreciate Michel Kocher’s many thoughtful comments and suggestions over
the years on how to improve the book. Thanks also to Steve Eddins for his sugges-
tions on MATLAB and related software issues.

Numerous individuals have contributed to material carried over from the previ-
ous to the current edition of the book. Their contributions have been important in so
many different ways that we find it difficult to acknowledge them in any other way
but alphabetically. We thank Mongi A. Abidi, Yongmin Kim, Bryan Morse, Andrew
Oldroyd, Ali M. Reza, Edgardo Felipe Riveron, Jose Ruiz Shulcloper, and Cameron
H.G. Wright for their many suggestions on how to improve the presentation and/or
the scope of coverage in the book. We are also indebted to Naomi Fernandes at the
MathWorks for providing us with MATLAB software and support that were impor-
tant in our ability to create many of the examples and experimental results included
in this edition of the book.

A significant percentage of the new images used in this edition (and in some
cases their history and interpretation) were obtained through the efforts of indi-
viduals whose contributions are sincerely appreciated. In particular, we wish to
acknowledge the efforts of Serge Beucher, Uwe Boos, Michael E. Casey, Michael
W. Davidson, Susan L. Forsburg, Thomas R. Gest, Daniel A. Hammer, Zhong He,
Roger Heady, Juan A. Herrera, John M. Hudak, Michael Hurwitz, Chris J. Johannsen,
Rhonda Knighton, Don P. Mitchell, A. Morris, Curtis C. Ober, David. R. Pickens,
Michael Robinson, Michael Shaffer, Pete Sites, Sally Stowe, Craig Watson, David
K. Wehe, and Robert A. West. We also wish to acknowledge other individuals and
organizations cited in the captions of numerous figures throughout the book for
their permission to use that material.

We also thank Scott Disanno, Michelle Bayman, Rose Kernan, and Julie Bai for
their support and significant patience during the production of the book.

R.C.G.
R.E.W.

DIP4E_GLOBAL_Print_Ready.indb 12 6/16/2017 2:01:57 PM

The Book Website
www.ImageProcessingPlace.com

Digital Image Processing is a completely self-contained book. However, the compan-
ion website offers additional support in a number of important areas.

For the Student or Independent Reader the site contains
• Reviews in areas such as probability, statistics, vectors, and matrices.
• A Tutorials section containing dozens of tutorials on topics relevant to the mate-

rial in the book.
• An image database containing all the images in the book, as well as many other

image databases.

For the Instructor the site contains
• An Instructor’s Manual with complete solutions to all the problems.
• Classroom presentation materials in modifiable PowerPoint format.
• Material removed from previous editions, downloadable in convenient PDF

format.
• Numerous links to other educational resources.

For the Practitioner the site contains additional specialized topics such as
• Links to commercial sites.
• Selected new references.
• Links to commercial image databases.

The website is an ideal tool for keeping the book current between editions by includ-
ing new topics, digital images, and other relevant material that has appeared after
the book was published. Although considerable care was taken in the production
of the book, the website is also a convenient repository for any errors discovered
between printings.

The DIP4E Support Packages
In this edition, we created support packages for students and faculty to organize
all the classroom support materials available for the new edition of the book into
one easy download. The Student Support Package contains many of the original
images in the book, and answers to selected exercises, The Faculty Support Package
contains solutions to all exercises, teaching suggestions, and all the art in the book
in modifiable PowerPoint slides. One support package is made available with every
new book, free of charge. Applications for the support packages are submitted at
the book website.

DIP4E_GLOBAL_Print_Ready.indb 13 6/16/2017 2:01:57 PM

http://www.ImageProcessingPlace.com

About the Authors
RAFAEL C. GONZALEZ

R. C. Gonzalez received the B.S.E.E. degree from the University of Miami in 1965
and the M.E. and Ph.D. degrees in electrical engineering from the University of
Florida, Gainesville, in 1967 and 1970, respectively. He joined the Electrical and
Computer Science Department at the University of Tennessee, Knoxville (UTK) in
1970, where he became Associate Professor in 1973, Professor in 1978, and Distin-
guished Service Professor in 1984. He served as Chairman of the department from
1994 through 1997. He is currently a Professor Emeritus at UTK.

Gonzalez is the founder of the Image & Pattern Analysis Laboratory and the
Robotics & Computer Vision Laboratory at the University of Tennessee. He also
founded Perceptics Corporation in 1982 and was its president until 1992. The last
three years of this period were spent under a full-time employment contract with
Westinghouse Corporation, who acquired the company in 1989.

Under his direction, Perceptics became highly successful in image processing,
computer vision, and laser disk storage technology. In its initial ten years, Perceptics
introduced a series of innovative products, including: The world’s first commercially
available computer vision system for automatically reading license plates on moving
vehicles; a series of large-scale image processing and archiving systems used by the
U.S. Navy at six different manufacturing sites throughout the country to inspect the
rocket motors of missiles in the Trident II Submarine Program; the market-leading
family of imaging boards for advanced Macintosh computers; and a line of trillion-
byte laser disk products.

He is a frequent consultant to industry and government in the areas of pattern
recognition, image processing, and machine learning. His academic honors for work
in these fields include the 1977 UTK College of Engineering Faculty Achievement
Award; the 1978 UTK Chancellor’s Research Scholar Award; the 1980 Magnavox
Engineering Professor Award; and the 1980 M.E. Brooks Distinguished Professor
Award. In 1981 he became an IBM Professor at the University of Tennessee and
in 1984 he was named a Distinguished Service Professor there. He was awarded a
Distinguished Alumnus Award by the University of Miami in 1985, the Phi Kappa
Phi Scholar Award in 1986, and the University of Tennessee’s Nathan W. Dougherty
Award for Excellence in Engineering in 1992.

Honors for industrial accomplishment include the 1987 IEEE Outstanding Engi-
neer Award for Commercial Development in Tennessee; the 1988 Albert Rose
National Award for Excellence in Commercial Image Processing; the 1989 B. Otto
Wheeley Award for Excellence in Technology Transfer; the 1989 Coopers and
Lybrand Entrepreneur of the Year Award; the 1992 IEEE Region 3 Outstanding
Engineer Award; and the 1993 Automated Imaging Association National Award for
Technology Development.

Gonzalez is author or co-author of over 100 technical articles, two edited books,
and four textbooks in the fields of pattern recognition, image processing, and robot-
ics. His books are used in over 1000 universities and research institutions throughout

DIP4E_GLOBAL_Print_Ready.indb 14 6/16/2017 2:01:57 PM

the world. He is listed in the prestigious Marquis Who’s Who in America, Marquis
Who’s Who in Engineering, Marquis Who’s Who in the World, and in 10 other national
and international biographical citations. He is the co-holder of two U.S. Patents, and
has been an associate editor of the IEEE Transactions on Systems, Man and Cyber-
netics, and the International Journal of Computer and Information Sciences. He is a
member of numerous professional and honorary societies, including Tau Beta Pi, Phi
Kappa Phi, Eta Kappa Nu, and Sigma Xi. He is a Fellow of the IEEE.

RICHARD E. WOODS

R. E. Woods earned his B.S., M.S., and Ph.D. degrees in Electrical Engineering from
the University of Tennessee, Knoxville in 1975, 1977, and 1980, respectively. He
became an Assistant Professor of Electrical Engineering and Computer Science in
1981 and was recognized as a Distinguished Engineering Alumnus in 1986.

A veteran hardware and software developer, Dr. Woods has been involved in
the founding of several high-technology startups, including Perceptics Corporation,
where he was responsible for the development of the company’s quantitative image
analysis and autonomous decision-making products; MedData Interactive, a high-
technology company specializing in the development of handheld computer systems
for medical applications; and Interapptics, an internet-based company that designs
desktop and handheld computer applications.

Dr. Woods currently serves on several nonprofit educational and media-related
boards, including Johnson University, and was recently a summer English instructor
at the Beijing Institute of Technology. He is the holder of a U.S. Patent in the area
of digital image processing and has published two textbooks, as well as numerous
articles related to digital signal processing. Dr. Woods is a member of several profes-
sional societies, including Tau Beta Pi, Phi Kappa Phi, and the IEEE.

DIP4E_GLOBAL_Print_Ready.indb 15 6/16/2017 2:01:57 PM

DIP4E_GLOBAL_Print_Ready.indb 4 6/16/2017 2:01:57 PM

This page intentionally left blank

17

1 Introduction

One picture is worth more than ten thousand words.
Anonymous

Preview
Interest in digital image processing methods stems from two principal application areas: improvement
of pictorial information for human interpretation, and processing of image data for tasks such as storage,
transmission, and extraction of pictorial information. This chapter has several objectives: (1) to define
the scope of the field that we call image processing; (2) to give a historical perspective of the origins of
this field; (3) to present an overview of the state of the art in image processing by examining some of
the principal areas in which it is applied; (4) to discuss briefly the principal approaches used in digital
image processing; (5) to give an overview of the components contained in a typical, general-purpose
image processing system; and (6) to provide direction to the literature where image processing work is
reported. The material in this chapter is extensively illustrated with a range of images that are represen-
tative of the images we will be using throughout the book.

Upon completion of this chapter, readers should:

 Understand the concept of a digital image.

 Have a broad overview of the historical under-
pinnings of the field of digital image process-
ing.

 Understand the definition and scope of digi-
tal image processing.

 Know the fundamentals of the electromag-
netic spectrum and its relationship to image
generation.

 Be aware of the different fields in which digi-
tal image processing methods are applied.

 Be familiar with the basic processes involved
in image processing.

 Be familiar with the components that make
up a general-purpose digital image process-
ing system.

 Be familiar with the scope of the literature
where image processing work is reported.

DIP4E_GLOBAL_Print_Ready.indb 17 6/16/2017 2:01:58 PM

18 Chapter 1 Introduction

1.1 WHAT IS DIGITAL IMAGE PROCESSING?

An image may be defined as a two-dimensional function, f x y(,), where x and y are
spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (,)x y
is called the intensity or gray level of the image at that point. When x, y, and the
intensity values of f are all finite, discrete quantities, we call the image a digital image.
The field of digital image processing refers to processing digital images by means of
a digital computer. Note that a digital image is composed of a finite number of ele-
ments, each of which has a particular location and value. These elements are called
picture elements, image elements, pels, and pixels. Pixel is the term used most widely
to denote the elements of a digital image. We will consider these definitions in more
formal terms in Chapter 2.

Vision is the most advanced of our senses, so it is not surprising that images
play the single most important role in human perception. However, unlike humans,
who are limited to the visual band of the electromagnetic (EM) spectrum, imaging
machines cover almost the entire EM spectrum, ranging from gamma to radio waves.
They can operate on images generated by sources that humans are not accustomed
to associating with images. These include ultrasound, electron microscopy, and com-
puter-generated images. Thus, digital image processing encompasses a wide and var-
ied field of applications.

There is no general agreement among authors regarding where image process-
ing stops and other related areas, such as image analysis and computer vision, start.
Sometimes, a distinction is made by defining image processing as a discipline in
which both the input and output of a process are images. We believe this to be a
limiting and somewhat artificial boundary. For example, under this definition, even
the trivial task of computing the average intensity of an image (which yields a sin-
gle number) would not be considered an image processing operation. On the other
hand, there are fields such as computer vision whose ultimate goal is to use comput-
ers to emulate human vision, including learning and being able to make inferences
and take actions based on visual inputs. This area itself is a branch of artificial intel-
ligence (AI) whose objective is to emulate human intelligence. The field of AI is in its
earliest stages of infancy in terms of development, with progress having been much
slower than originally anticipated. The area of image analysis (also called image
understanding) is in between image processing and computer vision.

There are no clear-cut boundaries in the continuum from image processing at
one end to computer vision at the other. However, one useful paradigm is to con-
sider three types of computerized processes in this continuum: low-, mid-, and high-
level processes. Low-level processes involve primitive operations such as image
preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-
level process is characterized by the fact that both its inputs and outputs are images.
Mid-level processing of images involves tasks such as segmentation (partitioning
an image into regions or objects), description of those objects to reduce them to a
form suitable for computer processing, and classification (recognition) of individual
objects. A mid-level process is characterized by the fact that its inputs generally
are images, but its outputs are attributes extracted from those images (e.g., edges,
contours, and the identity of individual objects). Finally, higher-level processing

1.1

DIP4E_GLOBAL_Print_Ready.indb 18 6/16/2017 2:01:58 PM

1.2 The Origins of Digital Image Processing 19

involves “making sense” of an ensemble of recognized objects, as in image analysis,
and, at the far end of the continuum, performing the cognitive functions normally
associated with human vision.

Based on the preceding comments, we see that a logical place of overlap between
image processing and image analysis is the area of recognition of individual regions
or objects in an image. Thus, what we call in this book digital image processing encom-
passes processes whose inputs and outputs are images and, in addition, includes pro-
cesses that extract attributes from images up to, and including, the recognition of
individual objects. As an illustration to clarify these concepts, consider the area of
automated analysis of text. The processes of acquiring an image of the area con-
taining the text, preprocessing that image, extracting (segmenting) the individual
characters, describing the characters in a form suitable for computer processing, and
recognizing those individual characters are in the scope of what we call digital image
processing in this book. Making sense of the content of the page may be viewed as
being in the domain of image analysis and even computer vision, depending on the
level of complexity implied by the statement “making sense of.” As will become
evident shortly, digital image processing, as we have defined it, is used routinely in a
broad range of areas of exceptional social and economic value. The concepts devel-
oped in the following chapters are the foundation for the methods used in those
application areas.

1.2 THE ORIGINS OF DIGITAL IMAGE PROCESSING

One of the earliest applications of digital images was in the newspaper industry,
when pictures were first sent by submarine cable between London and New York.
Introduction of the Bartlane cable picture transmission system in the early 1920s
reduced the time required to transport a picture across the Atlantic from more than
a week to less than three hours. Specialized printing equipment coded pictures for
cable transmission, then reconstructed them at the receiving end. Figure 1.1 was
transmitted in this way and reproduced on a telegraph printer fitted with typefaces
simulating a halftone pattern.

Some of the initial problems in improving the visual quality of these early digital
pictures were related to the selection of printing procedures and the distribution of

1.2

FIGURE 1.1 A digital picture produced in 1921 from a coded tape by a telegraph printer with
special typefaces. (McFarlane.) [References in the bibliography at the end of the book are
listed in alphabetical order by authors’ last names.]

DIP4E_GLOBAL_Print_Ready.indb 19 6/16/2017 2:01:58 PM

20 Chapter 1 Introduction

intensity levels. The printing method used to obtain Fig. 1.1 was abandoned toward
the end of 1921 in favor of a technique based on photographic reproduction made
from tapes perforated at the telegraph receiving terminal. Figure 1.2 shows an image
obtained using this method. The improvements over Fig. 1.1 are evident, both in
tonal quality and in resolution.

The early Bartlane systems were capable of coding images in five distinct levels
of gray. This capability was increased to 15 levels in 1929. Figure 1.3 is typical of the
type of images that could be obtained using the 15-tone equipment. During this
period, introduction of a system for developing a film plate via light beams that were
modulated by the coded picture tape improved the reproduction process consider-
ably.

Although the examples just cited involve digital images, they are not considered
digital image processing results in the context of our definition, because digital com-
puters were not used in their creation. Thus, the history of digital image processing
is intimately tied to the development of the digital computer. In fact, digital images
require so much storage and computational power that progress in the field of digi-
tal image processing has been dependent on the development of digital computers
and of supporting technologies that include data storage, display, and transmission.

FIGURE 1.2
A digital picture
made in 1922
from a tape
punched after
the signals had
crossed the
Atlantic twice.
(McFarlane.)

FIGURE 1.3
Unretouched
cable picture of
Generals Pershing
(right) and Foch,
transmitted in
1929 from
London to New
York by 15-tone
equipment.
(McFarlane.)

DIP4E_GLOBAL_Print_Ready.indb 20 6/16/2017 2:01:58 PM

1.2 The Origins of Digital Image Processing 21

The concept of a computer dates back to the invention of the abacus in Asia
Minor, more than 5000 years ago. More recently, there have been developments
in the past two centuries that are the foundation of what we call a computer today.
However, the basis for what we call a modern digital computer dates back to only
the 1940s, with the introduction by John von Neumann of two key concepts: (1) a
memory to hold a stored program and data, and (2) conditional branching. These
two ideas are the foundation of a central processing unit (CPU), which is at the heart
of computers today. Starting with von Neumann, there were a series of key advanc-
es that led to computers powerful enough to be used for digital image processing.
Briefly, these advances may be summarized as follows: (1) the invention of the tran-
sistor at Bell Laboratories in 1948; (2) the development in the 1950s and 1960s of
the high-level programming languages COBOL (Common Business-Oriented Lan-
guage) and FORTRAN (Formula Translator); (3) the invention of the integrated
circuit (IC) at Texas Instruments in 1958; (4) the development of operating systems
in the early 1960s; (5) the development of the microprocessor (a single chip consist-
ing of a CPU, memory, and input and output controls) by Intel in the early 1970s;
(6) the introduction by IBM of the personal computer in 1981; and (7) progressive
miniaturization of components, starting with large-scale integration (LI) in the late
1970s, then very-large-scale integration (VLSI) in the 1980s, to the present use of
ultra-large-scale integration (ULSI) and experimental nonotechnologies. Concur-
rent with these advances were developments in the areas of mass storage and display
systems, both of which are fundamental requirements for digital image processing.

The first computers powerful enough to carry out meaningful image processing
tasks appeared in the early 1960s. The birth of what we call digital image processing
today can be traced to the availability of those machines, and to the onset of the
space program during that period. It took the combination of those two develop-
ments to bring into focus the potential of digital image processing for solving prob-
lems of practical significance. Work on using computer techniques for improving
images from a space probe began at the Jet Propulsion Laboratory (Pasadena, Cali-
fornia) in 1964, when pictures of the moon transmitted by Ranger 7 were processed
by a computer to correct various types of image distortion inherent in the on-board
television camera. Figure 1.4 shows the first image of the moon taken by Ranger
7 on July 31, 1964 at 9:09 A.M. Eastern Daylight Time (EDT), about 17 minutes
before impacting the lunar surface (the markers, called reseau marks, are used for
geometric corrections, as discussed in Chapter 2).This also is the first image of the
moon taken by a U.S. spacecraft. The imaging lessons learned with Ranger 7 served
as the basis for improved methods used to enhance and restore images from the Sur-
veyor missions to the moon, the Mariner series of flyby missions to Mars, the Apollo
manned flights to the moon, and others.

In parallel with space applications, digital image processing techniques began in
the late 1960s and early 1970s to be used in medical imaging, remote Earth resourc-
es observations, and astronomy. The invention in the early 1970s of computerized
axial tomography (CAT), also called computerized tomography (CT) for short, is
one of the most important events in the application of image processing in medical
diagnosis. Computerized axial tomography is a process in which a ring of detectors

DIP4E_GLOBAL_Print_Ready.indb 21 6/16/2017 2:01:58 PM

22 Chapter 1 Introduction

encircles an object (or patient) and an X-ray source, concentric with the detector
ring, rotates about the object. The X-rays pass through the object and are collected
at the opposite end by the corresponding detectors in the ring. This procedure is
repeated the source rotates. Tomography consists of algorithms that use the sensed
data to construct an image that represents a “slice” through the object. Motion of
the object in a direction perpendicular to the ring of detectors produces a set of
such slices, which constitute a three-dimensional (3-D) rendition of the inside of the
object. Tomography was invented independently by Sir Godfrey N. Hounsfield and
Professor Allan M. Cormack, who shared the 1979 Nobel Prize in Medicine for their
invention. It is interesting to note that X-rays were discovered in 1895 by Wilhelm
Conrad Roentgen, for which he received the 1901 Nobel Prize for Physics. These two
inventions, nearly 100 years apart, led to some of the most important applications of
image processing today.

From the 1960s until the present, the field of image processing has grown vigor-
ously. In addition to applications in medicine and the space program, digital image
processing techniques are now used in a broad range of applications. Computer pro-
cedures are used to enhance the contrast or code the intensity levels into color for
easier interpretation of X-rays and other images used in industry, medicine, and the
biological sciences. Geographers use the same or similar techniques to study pollu-
tion patterns from aerial and satellite imagery. Image enhancement and restoration
procedures are used to process degraded images of unrecoverable objects, or experi-
mental results too expensive to duplicate. In archeology, image processing meth-
ods have successfully restored blurred pictures that were the only available records
of rare artifacts lost or damaged after being photographed. In physics and related
fields, computer techniques routinely enhance images of experiments in areas such
as high-energy plasmas and electron microscopy. Similarly successful applications
of image processing concepts can be found in astronomy, biology, nuclear medicine,
law enforcement, defense, and industry.

FIGURE 1.4
The first picture
of the moon by
a U.S. spacecraft.
Ranger 7 took
this image on
July 31, 1964 at
9:09 A.M. EDT,
about 17 minutes
before impacting
the lunar surface.
(Courtesy of
NASA.)

DIP4E_GLOBAL_Print_Ready.indb 22 6/16/2017 2:01:59 PM

1.3 Examples of Fields that Use Digital Image Processing 23

These examples illustrate processing results intended for human interpretation.
The second major area of application of digital image processing techniques men-
tioned at the beginning of this chapter is in solving problems dealing with machine
perception. In this case, interest is on procedures for extracting information from
an image, in a form suitable for computer processing. Often, this information bears
little resemblance to visual features that humans use in interpreting the content
of an image. Examples of the type of information used in machine perception are
statistical moments, Fourier transform coefficients, and multidimensional distance
measures. Typical problems in machine perception that routinely utilize image pro-
cessing techniques are automatic character recognition, industrial machine vision
for product assembly and inspection, military recognizance, automatic processing of
fingerprints, screening of X-rays and blood samples, and machine processing of aer-
ial and satellite imagery for weather prediction and environmental assessment. The
continuing decline in the ratio of computer price to performance, and the expansion
of networking and communication bandwidth via the internet, have created unprec-
edented opportunities for continued growth of digital image processing. Some of
these application areas will be illustrated in the following section.

1.3 EXAMPLES OF FIELDS THAT USE DIGITAL IMAGE PROCESSING

Today, there is almost no area of technical endeavor that is not impacted in some
way by digital image processing. We can cover only a few of these applications in the
context and space of the current discussion. However, limited as it is, the material
presented in this section will leave no doubt in your mind regarding the breadth and
importance of digital image processing. We show in this section numerous areas of
application, each of which routinely utilizes the digital image processing techniques
developed in the following chapters. Many of the images shown in this section are
used later in one or more of the examples given in the book. Most images shown are
digital images.

The areas of application of digital image processing are so varied that some form
of organization is desirable in attempting to capture the breadth of this field. One
of the simplest ways to develop a basic understanding of the extent of image pro-
cessing applications is to categorize images according to their source (e.g., X-ray,
visual, infrared, and so on).The principal energy source for images in use today is
the electromagnetic energy spectrum. Other important sources of energy include
acoustic, ultrasonic, and electronic (in the form of electron beams used in electron
microscopy). Synthetic images, used for modeling and visualization, are generated
by computer. In this section we will discuss briefly how images are generated in
these various categories, and the areas in which they are applied. Methods for con-
verting images into digital form will be discussed in the next chapter.

Images based on radiation from the EM spectrum are the most familiar, espe-
cially images in the X-ray and visual bands of the spectrum. Electromagnetic waves
can be conceptualized as propagating sinusoidal waves of varying wavelengths, or
they can be thought of as a stream of massless particles, each traveling in a wavelike
pattern and moving at the speed of light. Each massless particle contains a certain
amount (or bundle) of energy. Each bundle of energy is called a photon. If spectral

1.3

DIP4E_GLOBAL_Print_Ready.indb 23 6/16/2017 2:01:59 PM

24 Chapter 1 Introduction

bands are grouped according to energy per photon, we obtain the spectrum shown
in Fig. 1.5, ranging from gamma rays (highest energy) at one end to radio waves
(lowest energy) at the other. The bands are shown shaded to convey the fact that
bands of the EM spectrum are not distinct, but rather transition smoothly from one
to the other.

GAMMA-RAY IMAGING

Major uses of imaging based on gamma rays include nuclear medicine and astro-
nomical observations. In nuclear medicine, the approach is to inject a patient with a
radioactive isotope that emits gamma rays as it decays. Images are produced from
the emissions collected by gamma-ray detectors. Figure 1.6(a) shows an image of a
complete bone scan obtained by using gamma-ray imaging. Images of this sort are
used to locate sites of bone pathology, such as infections or tumors. Figure 1.6(b)
shows another major modality of nuclear imaging called positron emission tomogra-
phy (PET). The principle is the same as with X-ray tomography, mentioned briefly
in Section 1.2. However, instead of using an external source of X-ray energy, the
patient is given a radioactive isotope that emits positrons as it decays. When a pos-
itron meets an electron, both are annihilated and two gamma rays are given off.
These are detected and a tomographic image is created using the basic principles of
tomography. The image shown in Fig. 1.6(b) is one sample of a sequence that con-
stitutes a 3-D rendition of the patient. This image shows a tumor in the brain and
another in the lung, easily visible as small white masses.

A star in the constellation of Cygnus exploded about 15,000 years ago, generat-
ing a superheated, stationary gas cloud (known as the Cygnus Loop) that glows in
a spectacular array of colors. Figure 1.6(c) shows an image of the Cygnus Loop in
the gamma-ray band. Unlike the two examples in Figs. 1.6(a) and (b), this image was
obtained using the natural radiation of the object being imaged. Finally, Fig. 1.6(d)
shows an image of gamma radiation from a valve in a nuclear reactor. An area of
strong radiation is seen in the lower left side of the image.

X-RAY IMAGING

X-rays are among the oldest sources of EM radiation used for imaging. The best
known use of X-rays is medical diagnostics, but they are also used extensively in
industry and other areas, such as astronomy. X-rays for medical and industrial imag-
ing are generated using an X-ray tube, which is a vacuum tube with a cathode and
anode. The cathode is heated, causing free electrons to be released. These electrons
flow at high speed to the positively charged anode. When the electrons strike a

10�910�810�710�610�510�410�310�2100 10�1101102103104105106

Energy of one photon (electron volts)

Gamma rays X-rays Ultraviolet Visible Infrared Microwaves Radio waves

FIGURE 1.5 The electromagnetic spectrum arranged according to energy per photon.

DIP4E_GLOBAL_Print_Ready.indb 24 6/16/2017 2:01:59 PM

1.3 Examples of Fields that Use Digital Image Processing 25

nucleus, energy is released in the form of X-ray radiation. The energy (penetrat-
ing power) of X-rays is controlled by a voltage applied across the anode, and by a
current applied to the filament in the cathode. Figure 1.7(a) shows a familiar chest
X-ray generated simply by placing the patient between an X-ray source and a film
sensitive to X-ray energy. The intensity of the X-rays is modified by absorption as
they pass through the patient, and the resulting energy falling on the film develops it,
much in the same way that light develops photographic film. In digital radiography,

ba
dc

FIGURE 1.6
Examples of
gamma-ray
imaging.
(a) Bone scan.
(b) PET image.
(c) Cygnus Loop.
(d) Gamma radia-
tion (bright spot)
from a reactor
valve.
(Images
courtesy of
(a) G.E. Medical
Systems; (b) Dr.
Michael E. Casey,
CTI PET Systems;
(c) NASA;
(d) Professors
Zhong He and
David K. Wehe,
University of
Michigan.)

DIP4E_GLOBAL_Print_Ready.indb 25 6/16/2017 2:01:59 PM

26 Chapter 1 Introduction

digital images are obtained by one of two methods: (1) by digitizing X-ray films; or;
(2) by having the X-rays that pass through the patient fall directly onto devices (such
as a phosphor screen) that convert X-rays to light. The light signal in turn is captured
by a light-sensitive digitizing system. We will discuss digitization in more detail in
Chapters 2 and 4.

b

a d
c

e

FIGURE 1.7
Examples of
X-ray imaging.
(a) Chest X-ray.
(b) Aortic
angiogram.
(c) Head CT.
(d) Circuit boards.
(e) Cygnus Loop.
(Images courtesy
of (a) and (c) Dr.
David R. Pickens,
Dept. of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center;
(b) Dr. Thomas
R. Gest, Division
of Anatomical
Sciences, Univ. of
Michigan Medical
School;
(d) Mr. Joseph
E. Pascente, Lixi,
Inc.; and
(e) NASA.)

DIP4E_GLOBAL_Print_Ready.indb 26 6/16/2017 2:01:59 PM

1.3 Examples of Fields that Use Digital Image Processing 27

Angiography is another major application in an area called contrast enhancement
radiography. This procedure is used to obtain images of blood vessels, called angio-
grams. A catheter (a small, flexible, hollow tube) is inserted, for example, into an
artery or vein in the groin. The catheter is threaded into the blood vessel and guided
to the area to be studied. When the catheter reaches the site under investigation,
an X-ray contrast medium is injected through the tube. This enhances the contrast
of the blood vessels and enables a radiologist to see any irregularities or blockages.
Figure 1.7(b) shows an example of an aortic angiogram. The catheter can be seen
being inserted into the large blood vessel on the lower left of the picture. Note the
high contrast of the large vessel as the contrast medium flows up in the direction of
the kidneys, which are also visible in the image. As we will discuss further in Chapter 2,
angiography is a major area of digital image processing, where image subtraction is
used to further enhance the blood vessels being studied.

Another important use of X-rays in medical imaging is computerized axial tomog-
raphy (CAT). Due to their resolution and 3-D capabilities, CAT scans revolution-
ized medicine from the moment they first became available in the early 1970s. As
noted in Section 1.2, each CAT image is a “slice” taken perpendicularly through
the patient. Numerous slices are generated as the patient is moved in a longitudinal
direction. The ensemble of such images constitutes a 3-D rendition of the inside of
the body, with the longitudinal resolution being proportional to the number of slice
images taken. Figure 1.7(c) shows a typical CAT slice image of a human head.

Techniques similar to the ones just discussed, but generally involving higher
energy X-rays, are applicable in industrial processes. Figure 1.7(d) shows an X-ray
image of an electronic circuit board. Such images, representative of literally hundreds
of industrial applications of X-rays, are used to examine circuit boards for flaws in
manufacturing, such as missing components or broken traces. Industrial CAT scans
are useful when the parts can be penetrated by X-rays, such as in plastic assemblies,
and even large bodies, such as solid-propellant rocket motors. Figure 1.7(e) shows an
example of X-ray imaging in astronomy. This image is the Cygnus Loop of Fig. 1.6(c),
but imaged in the X-ray band.

IMAGING IN THE ULTRAVIOLET BAND

Applications of ultraviolet “light” are varied. They include lithography, industrial
inspection, microscopy, lasers, biological imaging, and astronomical observations.
We illustrate imaging in this band with examples from microscopy and astronomy.

Ultraviolet light is used in fluorescence microscopy, one of the fastest growing
areas of microscopy. Fluorescence is a phenomenon discovered in the middle of the
nineteenth century, when it was first observed that the mineral fluorspar fluoresces
when ultraviolet light is directed upon it. The ultraviolet light itself is not visible, but
when a photon of ultraviolet radiation collides with an electron in an atom of a fluo-
rescent material, it elevates the electron to a higher energy level. Subsequently, the
excited electron relaxes to a lower level and emits light in the form of a lower-energy
photon in the visible (red) light region. Important tasks performed with a fluores-
cence microscope are to use an excitation light to irradiate a prepared specimen,
and then to separate the much weaker radiating fluorescent light from the brighter

DIP4E_GLOBAL_Print_Ready.indb 27 6/16/2017 2:01:59 PM

28 Chapter 1 Introduction

excitation light. Thus, only the emission light reaches the eye or other detector. The
resulting fluorescing areas shine against a dark background with sufficient contrast
to permit detection. The darker the background of the nonfluorescing material, the
more efficient the instrument.

Fluorescence microscopy is an excellent method for studying materials that can be
made to fluoresce, either in their natural form (primary fluorescence) or when treat-
ed with chemicals capable of fluorescing (secondary fluorescence). Figures 1.8(a)
and (b) show results typical of the capability of fluorescence microscopy. Figure
1.8(a) shows a fluorescence microscope image of normal corn, and Fig. 1.8(b) shows
corn infected by “smut,” a disease of cereals, corn, grasses, onions, and sorghum that
can be caused by any one of more than 700 species of parasitic fungi. Corn smut is
particularly harmful because corn is one of the principal food sources in the world.
As another illustration, Fig. 1.8(c) shows the Cygnus Loop imaged in the high-energy
region of the ultraviolet band.

IMAGING IN THE VISIBLE AND INFRARED BANDS
Considering that the visual band of the electromagnetic spectrum is the most famil-
iar in all our activities, it is not surprising that imaging in this band outweighs by far
all the others in terms of breadth of application. The infrared band often is used in
conjunction with visual imaging, so we have grouped the visible and infrared bands
in this section for the purpose of illustration. We consider in the following discus-
sion applications in light microscopy, astronomy, remote sensing, industry, and law
enforcement.

Figure 1.9 shows several examples of images obtained with a light microscope.
The examples range from pharmaceuticals and microinspection to materials char-
acterization. Even in microscopy alone, the application areas are too numerous to
detail here. It is not difficult to conceptualize the types of processes one might apply
to these images, ranging from enhancement to measurements.

ba c

FIGURE 1.8 Examples of ultraviolet imaging. (a) Normal corn. (b) Corn infected by smut. (c) Cygnus Loop. (Images
(a) and (b) courtesy of Dr. Michael W. Davidson, Florida State University, (c) NASA.)

DIP4E_GLOBAL_Print_Ready.indb 28 6/16/2017 2:01:59 PM

1.3 Examples of Fields that Use Digital Image Processing 29

Another major area of visual processing is remote sensing, which usually includes
several bands in the visual and infrared regions of the spectrum. Table 1.1 shows the
so-called thematic bands in NASA’s LANDSAT satellites. The primary function of
LANDSAT is to obtain and transmit images of the Earth from space, for purposes
of monitoring environmental conditions on the planet. The bands are expressed in
terms of wavelength, with 1mm being equal to 10 6− m (we will discuss the wave-
length regions of the electromagnetic spectrum in more detail in Chapter 2). Note
the characteristics and uses of each band in Table 1.1.

In order to develop a basic appreciation for the power of this type of multispec-
tral imaging, consider Fig. 1.10, which shows one image for each of the spectral bands
in Table 1.1. The area imaged is Washington D.C., which includes features such as
buildings, roads, vegetation, and a major river (the Potomac) going though the city.

ba c
ed f

FIGURE 1.9
Examples of light
microscopy images.
(a) Taxol (antican-
cer agent), magni-
fied 250 ×.
(b) Cholesterol—
40 ×.
(c) Microproces-
sor—60 ×.
(d) Nickel oxide
thin film—600 ×.
(e) Surface of audio
CD—1750 ×.
(f) Organic super-
conductor— 450 ×.
(Images courtesy of
Dr. Michael W.
Davidson, Florida
State University.)

DIP4E_GLOBAL_Print_Ready.indb 29 6/16/2017 2:02:00 PM

30 Chapter 1 Introduction

Images of population centers are used over time to assess population growth and
shift patterns, pollution, and other factors affecting the environment. The differenc-
es between visual and infrared image features are quite noticeable in these images.
Observe, for example, how well defined the river is from its surroundings in Bands
4 and 5.

Weather observation and prediction also are major applications of multispectral
imaging from satellites. For example, Fig. 1.11 is an image of Hurricane Katrina, one
of the most devastating storms in recent memory in the Western Hemisphere. This
image was taken by a National Oceanographic and Atmospheric Administration
(NOAA) satellite using sensors in the visible and infrared bands. The eye of the hur-
ricane is clearly visible in this image.

Band No. Name
Wavelength

(Mm)
Characteristics and Uses

1 Visible blue 0.45– 0.52 Maximum water penetration

2 Visible green 0.53– 0.61 Measures plant vigor

3 Visible red 0.63– 0.69 Vegetation discrimination

4 Near infrared 0.78– 0.90 Biomass and shoreline mapping

5 Middle infrared 1.55–1.75 Moisture content: soil/vegetation

6 Thermal infrared 10.4–12.5 Soil moisture; thermal mapping

7 Short-wave infrared 2.09–2.35 Mineral mapping

TABLE 1.1
Thematic bands
of NASA’s
LANDSAT
satellite.

1 2 3

4 5 6 7

FIGURE 1.10 LANDSAT satellite images of the Washington, D.C. area. The numbers refer to the thematic bands in
Table 1.1. (Images courtesy of NASA.)

DIP4E_GLOBAL_Print_Ready.indb 30 6/16/2017 2:02:00 PM

1.3 Examples of Fields that Use Digital Image Processing 31

Figures 1.12 and 1.13 show an application of infrared imaging. These images are
part of the Nighttime Lights of the World data set, which provides a global inventory
of human settlements. The images were generated by an infrared imaging system
mounted on a NOAA/DMSP (Defense Meteorological Satellite Program) satel-
lite. The infrared system operates in the band 10.0 to 13.4 mm, and has the unique
capability to observe faint sources of visible, near infrared emissions present on the
Earth’s surface, including cities, towns, villages, gas flares, and fires. Even without
formal training in image processing, it is not difficult to imagine writing a computer
program that would use these images to estimate the relative percent of total electri-
cal energy used by various regions of the world.

A major area of imaging in the visible spectrum is in automated visual inspection
of manufactured goods. Figure 1.14 shows some examples. Figure 1.14(a) is a con-
troller board for a CD-ROM drive. A typical image processing task with products
such as this is to inspect them for missing parts (the black square on the top, right
quadrant of the image is an example of a missing component).

Figure 1.14(b) is an imaged pill container. The objective here is to have a machine
look for missing, incomplete, or deformed pills. Figure 1.14(c) shows an application
in which image processing is used to look for bottles that are not filled up to an
acceptable level. Figure 1.14(d) shows a clear plastic part with an unacceptable num-
ber of air pockets in it. Detecting anomalies like these is a major theme of industrial
inspection that includes other products, such as wood and cloth. Figure 1.14(e) shows
a batch of cereal during inspection for color and the presence of anomalies such as
burned flakes. Finally, Fig. 1.14(f) shows an image of an intraocular implant (replace-
ment lens for the human eye). A “structured light” illumination technique was used
to highlight deformations toward the center of the lens, and other imperfections. For
example, the markings at 1 o’clock and 5 o’clock are tweezer damage. Most of the
other small speckle detail is debris. The objective in this type of inspection is to find
damaged or incorrectly manufactured implants automatically, prior to packaging.

FIGURE 1.11
Satellite image of
Hurricane Katrina
taken on August
29, 2005.
(Courtesy of
NOAA.)

DIP4E_GLOBAL_Print_Ready.indb 31 6/16/2017 2:02:00 PM

32 Chapter 1 Introduction

Figure 1.15 illustrates some additional examples of image processing in the vis-
ible spectrum. Figure 1.15(a) shows a thumb print. Images of fingerprints are rou-
tinely processed by computer, either to enhance them or to find features that aid
in the automated search of a database for potential matches. Figure 1.15(b) shows
an image of paper currency. Applications of digital image processing in this area

FIGURE 1.12
Infrared
satellite images of
the Americas. The
small shaded map
is provided for
reference.
(Courtesy of
NOAA.)

DIP4E_GLOBAL_Print_Ready.indb 32 6/16/2017 2:02:00 PM

1.3 Examples of Fields that Use Digital Image Processing 33

include automated counting and, in law enforcement, the reading of the serial num-
ber for the purpose of tracking and identifying currency bills. The two vehicle images
shown in Figs. 1.15(c) and (d) are examples of automated license plate reading. The
light rectangles indicate the area in which the imaging system detected the plate.
The black rectangles show the results of automatically reading the plate content by
the system. License plate and other applications of character recognition are used
extensively for traffic monitoring and surveillance.

IMAGING IN THE MICROWAVE BAND
The principal application of imaging in the microwave band is radar. The unique
feature of imaging radar is its ability to collect data over virtually any region at any
time, regardless of weather or ambient lighting conditions. Some radar waves can
penetrate clouds, and under certain conditions, can also see through vegetation, ice,
and dry sand. In many cases, radar is the only way to explore inaccessible regions of
the Earth’s surface. An imaging radar works like a flash camera in that it provides
its own illumination (microwave pulses) to illuminate an area on the ground and

FIGURE 1.13
Infrared
satellite images
of the remaining
populated parts
of the world. The
small shaded map
is provided for
reference.
(Courtesy of
NOAA.)

DIP4E_GLOBAL_Print_Ready.indb 33 6/16/2017 2:02:00 PM

34 Chapter 1 Introduction

take a snapshot image. Instead of a camera lens, a radar uses an antenna and digital
computer processing to record its images. In a radar image, one can see only the
microwave energy that was reflected back toward the radar antenna.

Figure 1.16 shows a spaceborne radar image covering a rugged mountainous area
of southeast Tibet, about 90 km east of the city of Lhasa. In the lower right cor-
ner is a wide valley of the Lhasa River, which is populated by Tibetan farmers and
yak herders, and includes the village of Menba. Mountains in this area reach about
5800 m (19,000 ft) above sea level, while the valley floors lie about 4300 m (14,000 ft)
above sea level. Note the clarity and detail of the image, unencumbered by clouds or
other atmospheric conditions that normally interfere with images in the visual band.

IMAGING IN THE RADIO BAND

As in the case of imaging at the other end of the spectrum (gamma rays), the major
applications of imaging in the radio band are in medicine and astronomy. In medicine,
radio waves are used in magnetic resonance imaging (MRI). This technique places a

ba c
ed f

FIGURE 1.14 Some examples of manufactured goods checked using digital image processing. (a) Circuit board con-
troller. (b) Packaged pills. (c) Bottles. (d) Air bubbles in a clear plastic product. (e) Cereal. (f) Image of intraocular
implant. (Figure (f) courtesy of Mr. Pete Sites, Perceptics Corporation.)

DIP4E_GLOBAL_Print_Ready.indb 34 6/16/2017 2:02:00 PM

1.3 Examples of Fields that Use Digital Image Processing 35

patient in a powerful magnet and passes radio waves through the individual’s body
in short pulses. Each pulse causes a responding pulse of radio waves to be emitted
by the patient’s tissues. The location from which these signals originate and their
strength are determined by a computer, which produces a two-dimensional image
of a section of the patient. MRI can produce images in any plane. Figure 1.17 shows
MRI images of a human knee and spine.

The rightmost image in Fig. 1.18 is an image of the Crab Pulsar in the radio band.
Also shown for an interesting comparison are images of the same region, but taken
in most of the bands discussed earlier. Observe that each image gives a totally dif-
ferent “view” of the pulsar.

OTHER IMAGING MODALITIES

Although imaging in the electromagnetic spectrum is dominant by far, there are a
number of other imaging modalities that are also important. Specifically, we discuss

ba

d
c

FIGURE 1.15
Some additional
examples of
imaging in the
visible spectrum.
(a) Thumb print.
(b) Paper
currency.
(c) and (d) Auto-
mated license
plate reading.
(Figure (a)
courtesy of the
National
Institute of
Standards and
Technology.
Figures (c) and
(d) courtesy of
Dr. Juan
Herrera,
Perceptics
Corporation.)

DIP4E_GLOBAL_Print_Ready.indb 35 6/16/2017 2:02:00 PM

36 Chapter 1 Introduction

in this section acoustic imaging, electron microscopy, and synthetic (computer-gen-
erated) imaging.

Imaging using “sound” finds application in geological exploration, industry, and
medicine. Geological applications use sound in the low end of the sound spectrum
(hundreds of Hz) while imaging in other areas use ultrasound (millions of Hz). The
most important commercial applications of image processing in geology are in min-
eral and oil exploration. For image acquisition over land, one of the main approaches
is to use a large truck and a large flat steel plate. The plate is pressed on the ground by

FIGURE 1.16
Spaceborne radar
image of
mountainous
region in
southeast Tibet.
(Courtesy of
NASA.)

ba

FIGURE 1.17 MRI images of a human (a) knee, and (b) spine. (Figure (a) courtesy of Dr. Thom-
as R. Gest, Division of Anatomical Sciences, University of Michigan Medical School, and
(b) courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center.)

DIP4E_GLOBAL_Print_Ready.indb 36 6/16/2017 2:02:01 PM

1.3 Examples of Fields that Use Digital Image Processing 37

the truck, and the truck is vibrated through a frequency spectrum up to 100 Hz. The
strength and speed of the returning sound waves are determined by the composi-
tion of the Earth below the surface. These are analyzed by computer, and images are
generated from the resulting analysis.

For marine image acquisition, the energy source consists usually of two air guns
towed behind a ship. Returning sound waves are detected by hydrophones placed
in cables that are either towed behind the ship, laid on the bottom of the ocean,
or hung from buoys (vertical cables). The two air guns are alternately pressurized
to ~2000 psi and then set off. The constant motion of the ship provides a transversal
direction of motion that, together with the returning sound waves, is used to gener-
ate a 3-D map of the composition of the Earth below the bottom of the ocean.

Figure 1.19 shows a cross-sectional image of a well-known 3-D model against
which the performance of seismic imaging algorithms is tested. The arrow points to a
hydrocarbon (oil and/or gas) trap. This target is brighter than the surrounding layers
because the change in density in the target region is larger. Seismic interpreters look
for these “bright spots” to find oil and gas. The layers above also are bright, but their
brightness does not vary as strongly across the layers. Many seismic reconstruction
algorithms have difficulty imaging this target because of the faults above it.

Although ultrasound imaging is used routinely in manufacturing, the best known
applications of this technique are in medicine, especially in obstetrics, where fetuses
are imaged to determine the health of their development. A byproduct of this

Gamma X-ray Optical Infrared Radio

FIGURE 1.18 Images of the Crab Pulsar (in the center of each image) covering the electromagnetic spectrum. (Cour-
tesy of NASA.)

FIGURE 1.19
Cross-sectional
image of a
seismic model.
The arrow points
to a hydrocarbon
(oil and/or gas)
trap. (Courtesy of
Dr. Curtis Ober,
Sandia National
Laboratories.)

DIP4E_GLOBAL_Print_Ready.indb 37 6/16/2017 2:02:01 PM

38 Chapter 1 Introduction

examination is determining the sex of the baby. Ultrasound images are generated
using the following basic procedure:

1. The ultrasound system (a computer, ultrasound probe consisting of a source, a
receiver, and a display) transmits high-frequency (1 to 5 MHz) sound pulses
into the body.

2. The sound waves travel into the body and hit a boundary between tissues (e.g.,
between fluid and soft tissue, soft tissue and bone). Some of the sound waves
are reflected back to the probe, while some travel on further until they reach
another boundary and are reflected.

3. The reflected waves are picked up by the probe and relayed to the computer.
4. The machine calculates the distance from the probe to the tissue or organ bound-

aries using the speed of sound in tissue (1540 m/s) and the time of each echo’s
return.

5. The system displays the distances and intensities of the echoes on the screen,
forming a two-dimensional image.

In a typical ultrasound image, millions of pulses and echoes are sent and received
each second. The probe can be moved along the surface of the body and angled to
obtain various views. Figure 1.20 shows several examples of medical uses of ultra-
sound.

We continue the discussion on imaging modalities with some examples of elec-
tron microscopy. Electron microscopes function as their optical counterparts, except

ba
dc

FIGURE 1.20
Examples of
ultrasound
imaging. (a) A
fetus. (b) Another
view of the fetus.
(c) Thyroids.
(d) Muscle layers
showing lesion.
(Courtesy of
Siemens
Medical Systems,
Inc., Ultrasound
Group.)

DIP4E_GLOBAL_Print_Ready.indb 38 6/16/2017 2:02:01 PM

1.3 Examples of Fields that Use Digital Image Processing 39

that they use a focused beam of electrons instead of light to image a specimen. The
operation of electron microscopes involves the following basic steps: A stream
of electrons is produced by an electron source and accelerated toward the speci-
men using a positive electrical potential. This stream is confined and focused using
metal apertures and magnetic lenses into a thin, monochromatic beam. This beam is
focused onto the sample using a magnetic lens. Interactions occur inside the irradi-
ated sample, affecting the electron beam. These interactions and effects are detected
and transformed into an image, much in the same way that light is reflected from,
or absorbed by, objects in a scene. These basic steps are carried out in all electron
microscopes.

A transmission electron microscope (TEM) works much like a slide projector. A
projector transmits a beam of light through a slide; as the light passes through the
slide, it is modulated by the contents of the slide. This transmitted beam is then
projected onto the viewing screen, forming an enlarged image of the slide. TEMs
work in the same way, except that they shine a beam of electrons through a spec-
imen (analogous to the slide). The fraction of the beam transmitted through the
specimen is projected onto a phosphor screen. The interaction of the electrons with
the phosphor produces light and, therefore, a viewable image. A scanning electron
microscope (SEM), on the other hand, actually scans the electron beam and records
the interaction of beam and sample at each location. This produces one dot on a
phosphor screen. A complete image is formed by a raster scan of the beam through
the sample, much like a TV camera. The electrons interact with a phosphor screen
and produce light. SEMs are suitable for “bulky” samples, while TEMs require very
thin samples.

Electron microscopes are capable of very high magnification. While light micros-
copy is limited to magnifications on the order of 1000 ×, electron microscopes can
achieve magnification of 10 000, × or more. Figure 1.21 shows two SEM images of
specimen failures due to thermal overload.

We conclude the discussion of imaging modalities by looking briefly at images
that are not obtained from physical objects. Instead, they are generated by computer.
Fractals are striking examples of computer-generated images. Basically, a fractal is
nothing more than an iterative reproduction of a basic pattern according to some
mathematical rules. For instance, tiling is one of the simplest ways to generate a frac-
tal image. A square can be subdivided into four square subregions, each of which can
be further subdivided into four smaller square regions, and so on. Depending on the
complexity of the rules for filling each subsquare, some beautiful tile images can be
generated using this method. Of course, the geometry can be arbitrary. For instance,
the fractal image could be grown radially out of a center point. Figure 1.22(a) shows
a fractal grown in this way. Figure 1.22(b) shows another fractal (a “moonscape”)
that provides an interesting analogy to the images of space used as illustrations in
some of the preceding sections.

A more structured approach to image generation by computer lies in 3-D model-
ing. This is an area that provides an important intersection between image process-
ing and computer graphics, and is the basis for many 3-D visualization systems (e.g.,
flight simulators). Figures 1.22(c) and (d) show examples of computer-generated
images. Because the original object is created in 3-D, images can be generated in any

DIP4E_GLOBAL_Print_Ready.indb 39 6/16/2017 2:02:01 PM

40 Chapter 1 Introduction

perspective from plane projections of the 3-D volume. Images of this type can be
used for medical training and for a host of other applications, such as criminal foren-
sics and special effects.

ba

FIGURE 1.21 (a) 250 × SEM image of a tungsten filament following thermal failure (note the
shattered pieces on the lower left). (b) 2500 × SEM image of a damaged integrated circuit.
The white fibers are oxides resulting from thermal destruction. (Figure (a) courtesy of Mr.
Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene; (b) cour-
tesy of Dr. J. M. Hudak, McMaster University, Hamilton, Ontario, Canada.)

ba
dc

FIGURE 1.22
(a) and (b) Fractal
images.
(c) and (d) Images
generated from
3-D computer
models of the
objects shown.
(Figures (a) and
(b) courtesy of
Ms. Melissa D.
Binde,
Swarthmore
College; (c) and
(d) courtesy of
NASA.)

DIP4E_GLOBAL_Print_Ready.indb 40 6/16/2017 2:02:01 PM

1.4 Fundamental Steps in Digital Image Processing 41

1.4 FUNDAMENTAL STEPS IN DIGITAL IMAGE PROCESSING

It is helpful to divide the material covered in the following chapters into the two
broad categories defined in Section 1.1: methods whose input and output are images,
and methods whose inputs may be images, but whose outputs are attributes extract-
ed from those images. This organization is summarized in Fig. 1.23. The diagram
does not imply that every process is applied to an image. Rather, the intention is to
convey an idea of all the methodologies that can be applied to images for different
purposes, and possibly with different objectives. The discussion in this section may
be viewed as a brief overview of the material in the remainder of the book.

Image acquisition is the first process in Fig. 1.23. The discussion in Section 1.3
gave some hints regarding the origin of digital images. This topic will be considered
in much more detail in Chapter 2, where we also introduce a number of basic digital
image concepts that are used throughout the book. Acquisition could be as simple as
being given an image that is already in digital form. Generally, the image acquisition
stage involves preprocessing, such as scaling.

Image enhancement is the process of manipulating an image so the result is more
suitable than the original for a specific application. The word specific is important
here, because it establishes at the outset that enhancement techniques are problem
oriented. Thus, for example, a method that is quite useful for enhancing X-ray images
may not be the best approach for enhancing satellite images taken in the infrared
band of the electromagnetic spectrum.

There is no general “theory” of image enhancement. When an image is processed
for visual interpretation, the viewer is the ultimate judge of how well a particular

1.4

Knowledge base

CHAPTER 7

Wavelets and
other image
transforms

Outputs of these processes generally are images

CHAPTER 5

Image
restoration

CHAPTERS 3 & 4

Image
filtering and
enhancement

Problem
domain

O
ut

pu
ts

 o
f t

he
se

 p
ro

ce
ss

es
 g

en
er

al
ly

 a
re

 im
ag

e
at

tr
ib

ut
es

CHAPTER 8

Compression and
watermarking

CHAPTER 2

Image
acquisition

CHAPTER 9

Morphological
processing

 CHAPTERS 10

Segmentation

 CHAPTER 11

Feature
extraction

CHAPTER 12

Image
pattern
classification

Wavelets and
multiresolution
processing

Color Image
Processing

CHAPTER 6

FIGURE 1.23
Fundamental
steps in digital
image processing.
The chapter(s)
indicated in the
boxes is where
the material
described in the
box is discussed.

DIP4E_GLOBAL_Print_Ready.indb 41 6/16/2017 2:02:01 PM

42 Chapter 1 Introduction

method works. Enhancement techniques are so varied, and use so many different
image processing approaches, that it is difficult to assemble a meaningful body of
techniques suitable for enhancement in one chapter without extensive background
development. For this reason, and also because beginners in the field of image pro-
cessing generally find enhancement applications visually appealing, interesting, and
relatively simple to understand, we will use image enhancement as examples when
introducing new concepts in parts of Chapter 2 and in Chapters 3 and 4. The mate-
rial in the latter two chapters span many of the methods used traditionally for image
enhancement. Therefore, using examples from image enhancement to introduce new
image processing methods developed in these early chapters not only saves having
an extra chapter in the book dealing with image enhancement but, more importantly,
is an effective approach for introducing newcomers to the details of processing tech-
niques early in the book. However, as you will see in progressing through the rest
of the book, the material developed in Chapters 3 and 4 is applicable to a much
broader class of problems than just image enhancement.

Image restoration is an area that also deals with improving the appearance of
an image. However, unlike enhancement, which is subjective, image restoration
is objective, in the sense that restoration techniques tend to be based on mathe-
matical or probabilistic models of image degradation. Enhancement, on the other
hand, is based on human subjective preferences regarding what constitutes a “good”
enhancement result.

Color image processing is an area that has been gaining in importance because of
the significant increase in the use of digital images over the internet. Chapter 6 cov-
ers a number of fundamental concepts in color models and basic color processing
in a digital domain. Color is used also as the basis for extracting features of interest
in an image.

Wavelets are the foundation for representing images in various degrees of reso-
lution. In particular, this material is used in the book for image data compression
and for pyramidal representation, in which images are subdivided successively into
smaller regions. The material in Chapters 4 and 5 is based mostly on the Fourier
transform. In addition to wavelets, we will also discuss in Chapter 7 a number of
other transforms that are used routinely in image processing.

Compression, as the name implies, deals with techniques for reducing the storage
required to save an image, or the bandwidth required to transmit it. Although stor-
age technology has improved significantly over the past decade, the same cannot be
said for transmission capacity. This is true particularly in uses of the internet, which
are characterized by significant pictorial content. Image compression is familiar
(perhaps inadvertently) to most users of computers in the form of image file exten-
sions, such as the jpg file extension used in the JPEG (Joint Photographic Experts
Group) image compression standard.

Morphological processing deals with tools for extracting image components that
are useful in the representation and description of shape. The material in this chap-
ter begins a transition from processes that output images to processes that output
image attributes, as indicated in Section 1.1.

Segmentation partitions an image into its constituent parts or objects. In gen-
eral, autonomous segmentation is one of the most difficult tasks in digital image

DIP4E_GLOBAL_Print_Ready.indb 42 6/16/2017 2:02:01 PM

1.4 Fundamental Steps in Digital Image Processing 43

processing. A rugged segmentation procedure brings the process a long way toward
successful solution of imaging problems that require objects to be identified indi-
vidually. On the other hand, weak or erratic segmentation algorithms almost always
guarantee eventual failure. In general, the more accurate the segmentation, the
more likely automated object classification is to succeed.

Feature extraction almost always follows the output of a segmentation stage, which
usually is raw pixel data, constituting either the boundary of a region (i.e., the set
of pixels separating one image region from another) or all the points in the region
itself. Feature extraction consists of feature detection and feature description. Fea-
ture detection refers to finding the features in an image, region, or boundary. Feature
description assigns quantitative attributes to the detected features. For example, we
might detect corners in a region, and describe those corners by their orientation
and location; both of these descriptors are quantitative attributes. Feature process-
ing methods discussed in this chapter are subdivided into three principal categories,
depending on whether they are applicable to boundaries, regions, or whole images.
Some features are applicable to more than one category. Feature descriptors should
be as insensitive as possible to variations in parameters such as scale, translation,
rotation, illumination, and viewpoint.

Image pattern classification is the process that assigns a label (e.g., “vehicle”) to an
object based on its feature descriptors. In the last chapter of the book, we will discuss
methods of image pattern classification ranging from “classical” approaches such as
minimum-distance, correlation, and Bayes classifiers, to more modern approaches
implemented using deep neural networks. In particular, we will discuss in detail deep
convolutional neural networks, which are ideally suited for image processing work.

So far, we have said nothing about the need for prior knowledge or about the
interaction between the knowledge base and the processing modules in Fig. 1.23.
Knowledge about a problem domain is coded into an image processing system in the
form of a knowledge database. This knowledge may be as simple as detailing regions
of an image where the information of interest is known to be located, thus limiting
the search that has to be conducted in seeking that information. The knowledge base
can also be quite complex, such as an interrelated list of all major possible defects
in a materials inspection problem, or an image database containing high-resolution
satellite images of a region in connection with change-detection applications. In
addition to guiding the operation of each processing module, the knowledge base
also controls the interaction between modules. This distinction is made in Fig. 1.23
by the use of double-headed arrows between the processing modules and the knowl-
edge base, as opposed to single-headed arrows linking the processing modules.

Although we do not discuss image display explicitly at this point, it is important to
keep in mind that viewing the results of image processing can take place at the out-
put of any stage in Fig. 1.23. We also note that not all image processing applications
require the complexity of interactions implied by Fig. 1.23. In fact, not even all those
modules are needed in many cases. For example, image enhancement for human
visual interpretation seldom requires use of any of the other stages in Fig. 1.23. In
general, however, as the complexity of an image processing task increases, so does
the number of processes required to solve the problem.

DIP4E_GLOBAL_Print_Ready.indb 43 6/16/2017 2:02:02 PM

44 Chapter 1 Introduction

1.5 COMPONENTS OF AN IMAGE PROCESSING SYSTEM

As recently as the mid-1980s, numerous models of image processing systems being
sold throughout the world were rather substantial peripheral devices that attached
to equally substantial host computers. Late in the 1980s and early in the 1990s, the
market shifted to image processing hardware in the form of single boards designed
to be compatible with industry standard buses and to fit into engineering work-
station cabinets and personal computers. In the late 1990s and early 2000s, a new
class of add-on boards, called graphics processing units (GPUs) were introduced for
work on 3-D applications, such as games and other 3-D graphics applications. It was
not long before GPUs found their way into image processing applications involving
large-scale matrix implementations, such as training deep convolutional networks.
In addition to lowering costs, the market shift from substantial peripheral devices to
add-on processing boards also served as a catalyst for a significant number of new
companies specializing in the development of software written specifically for image
processing.

The trend continues toward miniaturizing and blending of general-purpose small
computers with specialized image processing hardware and software. Figure 1.24
shows the basic components comprising a typical general-purpose system used for
digital image processing. The function of each component will be discussed in the
following paragraphs, starting with image sensing.

Two subsystems are required to acquire digital images. The first is a physical sen-
sor that responds to the energy radiated by the object we wish to image. The second,
called a digitizer, is a device for converting the output of the physical sensing device
into digital form. For instance, in a digital video camera, the sensors (CCD chips)
produce an electrical output proportional to light intensity. The digitizer converts
these outputs to digital data. These topics will be covered in Chapter 2.

Specialized image processing hardware usually consists of the digitizer just men-
tioned, plus hardware that performs other primitive operations, such as an arithme-
tic logic unit (ALU), that performs arithmetic and logical operations in parallel on
entire images. One example of how an ALU is used is in averaging images as quickly
as they are digitized, for the purpose of noise reduction. This type of hardware some-
times is called a front-end subsystem, and its most distinguishing characteristic is
speed. In other words, this unit performs functions that require fast data through-
puts (e.g., digitizing and averaging video images at 30 frames/s) that the typical main
computer cannot handle. One or more GPUs (see above) also are common in image
processing systems that perform intensive matrix operations.

The computer in an image processing system is a general-purpose computer and
can range from a PC to a supercomputer. In dedicated applications, sometimes cus-
tom computers are used to achieve a required level of performance, but our interest
here is on general-purpose image processing systems. In these systems, almost any
well-equipped PC-type machine is suitable for off-line image processing tasks.

Software for image processing consists of specialized modules that perform
specific tasks. A well-designed package also includes the capability for the user to
write code that, as a minimum, utilizes the specialized modules. More sophisticated

1.5

DIP4E_GLOBAL_Print_Ready.indb 44 6/16/2017 2:02:02 PM

1.5 Components of an Image Processing System 45

software packages allow the integration of those modules and general-purpose
software commands from at least one computer language. Commercially available
image processing software, such as the well-known MATLAB® Image Processing
Toolbox, is also common in a well-equipped image processing system.

Mass storage is a must in image processing applications. An image of size 1024 1024×
pixels, in which the intensity of each pixel is an 8-bit quantity, requires one megabyte
of storage space if the image is not compressed. When dealing with image databases
that contain thousands, or even millions, of images, providing adequate storage in
an image processing system can be a challenge. Digital storage for image processing
applications falls into three principal categories: (1) short-term storage for use dur-
ing processing; (2) on-line storage for relatively fast recall; and (3) archival storage,
characterized by infrequent access. Storage is measured in bytes (eight bits), Kbytes
(103 bytes), Mbytes (106 bytes), Gbytes (109 bytes), and Tbytes (1012 bytes).

oududCloud

Image displays Computer Mass storage

Hardcopy
Specialized
image processing
hardware

Image sensors

Problem
domain

Image processing
software

Network

Cloud

FIGURE 1.24
Components of a
general-purpose
image processing
system.

DIP4E_GLOBAL_Print_Ready.indb 45 6/16/2017 2:02:02 PM

46 Chapter 1 Introduction

One method of providing short-term storage is computer memory. Another is by
specialized boards, called frame buffers, that store one or more images and can be
accessed rapidly, usually at video rates (e.g., at 30 complete images per second). The
latter method allows virtually instantaneous image zoom, as well as scroll (vertical
shifts) and pan (horizontal shifts). Frame buffers usually are housed in the special-
ized image processing hardware unit in Fig. 1.24. On-line storage generally takes
the form of magnetic disks or optical-media storage. The key factor characterizing
on-line storage is frequent access to the stored data. Finally, archival storage is char-
acterized by massive storage requirements but infrequent need for access. Magnetic
tapes and optical disks housed in “jukeboxes” are the usual media for archival appli-
cations.

Image displays in use today are mainly color, flat screen monitors. Monitors are
driven by the outputs of image and graphics display cards that are an integral part of
the computer system. Seldom are there requirements for image display applications
that cannot be met by display cards and GPUs available commercially as part of the
computer system. In some cases, it is necessary to have stereo displays, and these are
implemented in the form of headgear containing two small displays embedded in
goggles worn by the user.

Hardcopy devices for recording images include laser printers, film cameras, heat-
sensitive devices, ink-jet units, and digital units, such as optical and CD-ROM disks.
Film provides the highest possible resolution, but paper is the obvious medium of
choice for written material. For presentations, images are displayed on film trans-
parencies or in a digital medium if image projection equipment is used. The latter
approach is gaining acceptance as the standard for image presentations.

Networking and cloud communication are almost default functions in any com-
puter system in use today. Because of the large amount of data inherent in image
processing applications, the key consideration in image transmission is bandwidth. In
dedicated networks, this typically is not a problem, but communications with remote
sites via the internet are not always as efficient. Fortunately, transmission bandwidth
is improving quickly as a result of optical fiber and other broadband technologies.
Image data compression continues to play a major role in the transmission of large
amounts of image data.

Summary, References, and Further Reading
The main purpose of the material presented in this chapter is to provide a sense of perspective about the origins
of digital image processing and, more important, about current and future areas of application of this technology.
Although the coverage of these topics in this chapter was necessarily incomplete due to space limitations, it should
have left you with a clear impression of the breadth and practical scope of digital image processing. As we proceed
in the following chapters with the development of image processing theory and applications, numerous examples
are provided to keep a clear focus on the utility and promise of these techniques. Upon concluding the study of the
final chapter, a reader of this book will have arrived at a level of understanding that is the foundation for most of
the work currently underway in this field.

In past editions, we have provided a long list of journals and books to give readers an idea of the breadth of the
image processing literature, and where this literature is reported. The list has been updated, and it has become so
extensive that it is more practical to include it in the book website: www.ImageProcessingPlace.com, in the section
entitled Publications.

DIP4E_GLOBAL_Print_Ready.indb 46 6/16/2017 2:02:02 PM

http://www.ImageProcessingPlace.com

47

2 Digital Image Fundamentals

Preview
This chapter is an introduction to a number of basic concepts in digital image processing that are used
throughout the book. Section 2.1 summarizes some important aspects of the human visual system, includ-
ing image formation in the eye and its capabilities for brightness adaptation and discrimination. Section
2.2 discusses light, other components of the electromagnetic spectrum, and their imaging characteristics.
Section 2.3 discusses imaging sensors and how they are used to generate digital images. Section 2.4 intro-
duces the concepts of uniform image sampling and intensity quantization. Additional topics discussed
in that section include digital image representation, the effects of varying the number of samples and
intensity levels in an image, the concepts of spatial and intensity resolution, and the principles of image
interpolation. Section 2.5 deals with a variety of basic relationships between pixels. Finally, Section 2.6
is an introduction to the principal mathematical tools we use throughout the book. A second objective
of that section is to help you begin developing a “feel” for how these tools are used in a variety of basic
image processing tasks.

Upon completion of this chapter, readers should:
 Have an understanding of some important

functions and limitations of human vision.

 Be familiar with the electromagnetic energy
spectrum, including basic properties of light.

 Know how digital images are generated and
represented.

 Understand the basics of image sampling and
quantization.

 Be familiar with spatial and intensity resolu-
tion and their effects on image appearance.

 Have an understanding of basic geometric
relationships between image pixels.

 Be familiar with the principal mathematical
tools used in digital image processing.

 Be able to apply a variety of introductory dig-
ital image processing techniques.

Those who wish to succeed must ask the right preliminary
questions.

Aristotle

DIP4E_GLOBAL_Print_Ready.indb 47 6/16/2017 2:02:02 PM

48 Chapter 2 Digital Image Fundamentals

2.1 ELEMENTS OF VISUAL PERCEPTION

Although the field of digital image processing is built on a foundation of mathemat-
ics, human intuition and analysis often play a role in the choice of one technique
versus another, and this choice often is made based on subjective, visual judgments.
Thus, developing an understanding of basic characteristics of human visual percep-
tion as a first step in our journey through this book is appropriate. In particular, our
interest is in the elementary mechanics of how images are formed and perceived
by humans. We are interested in learning the physical limitations of human vision
in terms of factors that also are used in our work with digital images. Factors such
as how human and electronic imaging devices compare in terms of resolution and
ability to adapt to changes in illumination are not only interesting, they are also
important from a practical point of view.

STRUCTURE OF THE HUMAN EYE

Figure 2.1 shows a simplified cross section of the human eye. The eye is nearly a
sphere (with a diameter of about 20 mm) enclosed by three membranes: the cornea
and sclera outer cover; the choroid; and the retina. The cornea is a tough, transparent
tissue that covers the anterior surface of the eye. Continuous with the cornea, the
sclera is an opaque membrane that encloses the remainder of the optic globe.

The choroid lies directly below the sclera. This membrane contains a network of
blood vessels that serve as the major source of nutrition to the eye. Even superficial

2.1

Retina

Blind spot
Sclera

Choroid

Nerve & sheath

Fovea

Vitreous humor

Visual axis

Ciliary fibers

Ciliary muscle

Iris

Cornea

Lens

Anterior chamber

Cili
ar

y b
ody

FIGURE 2.1
Simplified
diagram of a
cross section of
the human eye.

DIP4E_GLOBAL_Print_Ready.indb 48 6/16/2017 2:02:02 PM

2.1 Elements of Visual Perception 49

injury to the choroid can lead to severe eye damage as a result of inflammation that
restricts blood flow. The choroid coat is heavily pigmented, which helps reduce the
amount of extraneous light entering the eye and the backscatter within the optic
globe. At its anterior extreme, the choroid is divided into the ciliary body and the
iris. The latter contracts or expands to control the amount of light that enters the eye.
The central opening of the iris (the pupil) varies in diameter from approximately 2
to 8 mm. The front of the iris contains the visible pigment of the eye, whereas the
back contains a black pigment.

The lens consists of concentric layers of fibrous cells and is suspended by fibers
that attach to the ciliary body. It is composed of 60% to 70% water, about 6% fat,
and more protein than any other tissue in the eye. The lens is colored by a slightly
yellow pigmentation that increases with age. In extreme cases, excessive clouding of
the lens, referred to as cataracts, can lead to poor color discrimination and loss of
clear vision. The lens absorbs approximately 8% of the visible light spectrum, with
higher absorption at shorter wavelengths. Both infrared and ultraviolet light are
absorbed by proteins within the lens and, in excessive amounts, can damage the eye.

The innermost membrane of the eye is the retina, which lines the inside of the
wall’s entire posterior portion. When the eye is focused, light from an object is
imaged on the retina. Pattern vision is afforded by discrete light receptors distrib-
uted over the surface of the retina. There are two types of receptors: cones and rods.
There are between 6 and 7 million cones in each eye. They are located primarily in
the central portion of the retina, called the fovea, and are highly sensitive to color.
Humans can resolve fine details because each cone is connected to its own nerve end.
Muscles rotate the eye until the image of a region of interest falls on the fovea. Cone
vision is called photopic or bright-light vision.

The number of rods is much larger: Some 75 to 150 million are distributed over
the retina. The larger area of distribution, and the fact that several rods are connect-
ed to a single nerve ending, reduces the amount of detail discernible by these recep-
tors. Rods capture an overall image of the field of view. They are not involved in
color vision, and are sensitive to low levels of illumination. For example, objects that
appear brightly colored in daylight appear as colorless forms in moonlight because
only the rods are stimulated. This phenomenon is known as scotopic or dim-light
vision.

Figure 2.2 shows the density of rods and cones for a cross section of the right eye,
passing through the region where the optic nerve emerges from the eye. The absence
of receptors in this area causes the so-called blind spot (see Fig. 2.1). Except for this
region, the distribution of receptors is radially symmetric about the fovea. Receptor
density is measured in degrees from the visual axis. Note in Fig. 2.2 that cones are
most dense in the center area of the fovea, and that rods increase in density from
the center out to approximately 20° off axis. Then, their density decreases out to the
periphery of the retina.

The fovea itself is a circular indentation in the retina of about 1.5 mm in diameter,
so it has an area of approximately 1.77 mm2. As Fig. 2.2 shows, the density of cones
in that area of the retina is on the order of 150,000 elements per mm2. Based on
these figures, the number of cones in the fovea, which is the region of highest acuity

DIP4E_GLOBAL_Print_Ready.indb 49 6/16/2017 2:02:03 PM

50 Chapter 2 Digital Image Fundamentals

in the eye, is about 265,000 elements. Modern electronic imaging chips exceed this
number by a large factor. While the ability of humans to integrate intelligence and
experience with vision makes purely quantitative comparisons somewhat superficial,
keep in mind for future discussions that electronic imaging sensors can easily exceed
the capability of the eye in resolving image detail.

IMAGE FORMATION IN THE EYE
In an ordinary photographic camera, the lens has a fixed focal length. Focusing at
various distances is achieved by varying the distance between the lens and the imag-
ing plane, where the film (or imaging chip in the case of a digital camera) is located.
In the human eye, the converse is true; the distance between the center of the lens
and the imaging sensor (the retina) is fixed, and the focal length needed to achieve
proper focus is obtained by varying the shape of the lens. The fibers in the ciliary
body accomplish this by flattening or thickening the lens for distant or near ob-
jects, respectively. The distance between the center of the lens and the retina along
the visual axis is approximately 17 mm. The range of focal lengths is approximately
14 mm to 17 mm, the latter taking place when the eye is relaxed and focused at dis-
tances greater than about 3 m. The geometry in Fig. 2.3 illustrates how to obtain the
dimensions of an image formed on the retina. For example, suppose that a person
is looking at a tree 15 m high at a distance of 100 m. Letting h denote the height
of that object in the retinal image, the geometry of Fig. 2.3 yields 15 100 17= h or
h = 2 5. mm. As indicated earlier in this section, the retinal image is focused primar-
ily on the region of the fovea. Perception then takes place by the relative excitation
of light receptors, which transform radiant energy into electrical impulses that ulti-
mately are decoded by the brain.

BRIGHTNESS ADAPTATION AND DISCRIMINATION

Because digital images are displayed as sets of discrete intensities, the eye’s abil-
ity to discriminate between different intensity levels is an important consideration

FIGURE 2.2
Distribution of
rods and cones in
the retina.

Blind spot Cones
Rods

N
o.

 o
f r

od
s

or
 c

on
es

 p
er

 m
m

2

Degrees from visual axis (center of fovea)

180,000

135,000

90,000

45,000

80� 60� 40� 20� 0� 20� 40� 60� 80�

DIP4E_GLOBAL_Print_Ready.indb 50 6/16/2017 2:02:03 PM

2.1 Elements of Visual Perception 51

in presenting image processing results. The range of light intensity levels to which
the human visual system can adapt is enormous—on the order of 1010— from the
scotopic threshold to the glare limit. Experimental evidence indicates that subjec-
tive brightness (intensity as perceived by the human visual system) is a logarithmic
function of the light intensity incident on the eye. Figure 2.4, a plot of light inten-
sity versus subjective brightness, illustrates this characteristic. The long solid curve
represents the range of intensities to which the visual system can adapt. In photopic
vision alone, the range is about 106. The transition from scotopic to photopic vision
is gradual over the approximate range from 0.001 to 0.1 millilambert (−3 to −1 mL
in the log scale), as the double branches of the adaptation curve in this range show.

The key point in interpreting the impressive dynamic range depicted in Fig. 2.4
is that the visual system cannot operate over such a range simultaneously. Rather, it
accomplishes this large variation by changing its overall sensitivity, a phenomenon
known as brightness adaptation. The total range of distinct intensity levels the eye
can discriminate simultaneously is rather small when compared with the total adap-
tation range. For a given set of conditions, the current sensitivity level of the visual
system is called the brightness adaptation level, which may correspond, for example,

FIGURE 2.3
Graphical
representation of
the eye looking at
a palm tree. Point
C is the focal
center of the lens.

15 m
C

17 mm100 m

FIGURE 2.4
Range of subjec-
tive brightness
sensations
showing a
particular
adaptation level,
Ba .

Glare limit

Su
bj

ec
ti

ve
 b

ri
gh

tn
es

s

A
da

pt
at

io
n

ra
ng

e

Scotopic
threshold

Log of intensity (mL)

Scotopic

Photopic

�6 �4 �2 0 2 4

Ba

Bb

DIP4E_GLOBAL_Print_Ready.indb 51 6/16/2017 2:02:03 PM

52 Chapter 2 Digital Image Fundamentals

to brightness Ba in Fig. 2.4. The short intersecting curve represents the range of sub-
jective brightness that the eye can perceive when adapted to this level. This range is
rather restricted, having a level Bb at, and below which, all stimuli are perceived as
indistinguishable blacks. The upper portion of the curve is not actually restricted but,
if extended too far, loses its meaning because much higher intensities would simply
raise the adaptation level higher than Ba.

The ability of the eye to discriminate between changes in light intensity at any
specific adaptation level is of considerable interest. A classic experiment used to
determine the capability of the human visual system for brightness discrimination
consists of having a subject look at a flat, uniformly illuminated area large enough to
occupy the entire field of view. This area typically is a diffuser, such as opaque glass,
illuminated from behind by a light source, I, with variable intensity. To this field is
added an increment of illumination, �I , in the form of a short-duration flash that
appears as a circle in the center of the uniformly illuminated field, as Fig. 2.5 shows.

If �I is not bright enough, the subject says “no,” indicating no perceivable change.
As �I gets stronger, the subject may give a positive response of “yes,” indicating a
perceived change. Finally, when �I is strong enough, the subject will give a response
of “yes” all the time. The quantity �I Ic , where �Ic is the increment of illumination
discriminable 50% of the time with background illumination I, is called the Weber
ratio. A small value of �I Ic means that a small percentage change in intensity is
discriminable. This represents “good” brightness discrimination. Conversely, a large
value of �I Ic means that a large percentage change in intensity is required for the
eye to detect the change. This represents “poor” brightness discrimination.

A plot of �I Ic as a function of log I has the characteristic shape shown in Fig. 2.6.
This curve shows that brightness discrimination is poor (the Weber ratio is large) at
low levels of illumination, and it improves significantly (the Weber ratio decreases)
as background illumination increases. The two branches in the curve reflect the fact
that at low levels of illumination vision is carried out by the rods, whereas, at high
levels, vision is a function of cones.

If the background illumination is held constant and the intensity of the other
source, instead of flashing, is now allowed to vary incrementally from never being
perceived to always being perceived, the typical observer can discern a total of one
to two dozen different intensity changes. Roughly, this result is related to the num-
ber of different intensities a person can see at any one point or small area in a mono-
chrome image. This does not mean that an image can be represented by such a small
number of intensity values because, as the eye roams about the image, the average

FIGURE 2.5
Basic
experimental
setup used to
characterize
brightness
discrimination.

I

I �I+

DIP4E_GLOBAL_Print_Ready.indb 52 6/16/2017 2:02:04 PM

2.1 Elements of Visual Perception 53

background changes, thus allowing a different set of incremental changes to be detect-
ed at each new adaptation level. The net result is that the eye is capable of a broader
range of overall intensity discrimination. In fact, as we will show in Section 2.4, the eye
is capable of detecting objectionable effects in monochrome images whose overall
intensity is represented by fewer than approximately two dozen levels.

Two phenomena demonstrate that perceived brightness is not a simple function
of intensity. The first is based on the fact that the visual system tends to undershoot
or overshoot around the boundary of regions of different intensities. Figure 2.7(a)
shows a striking example of this phenomenon. Although the intensity of the stripes

FIGURE 2.6
A typical plot of
the Weber ratio
as a function of
intensity.

�1.5

�2.0
�4 �3 �2 �1 0

log I
lo

g
�

I c
/I

1 2 3 4

�1.0

�0.5

0.5

1.0

0

Actual intensity

Perceived intensity

FIGURE 2.7
Illustration of the
Mach band effect.
Perceived
intensity is not a
simple function of
actual intensity.

b
a

c

DIP4E_GLOBAL_Print_Ready.indb 53 6/16/2017 2:02:05 PM

54 Chapter 2 Digital Image Fundamentals

is constant [see Fig. 2.7(b)], we actually perceive a brightness pattern that is strongly
scalloped near the boundaries, as Fig. 2.7(c) shows. These perceived scalloped bands
are called Mach bands after Ernst Mach, who first described the phenomenon in 1865.

The second phenomenon, called simultaneous contrast, is that a region’s per-
ceived brightness does not depend only on its intensity, as Fig. 2.8 demonstrates. All
the center squares have exactly the same intensity, but each appears to the eye to
become darker as the background gets lighter. A more familiar example is a piece of
paper that looks white when lying on a desk, but can appear totally black when used
to shield the eyes while looking directly at a bright sky.

Other examples of human perception phenomena are optical illusions, in which
the eye fills in nonexisting details or wrongly perceives geometrical properties of
objects. Figure 2.9 shows some examples. In Fig. 2.9(a), the outline of a square is
seen clearly, despite the fact that no lines defining such a figure are part of the image.
The same effect, this time with a circle, can be seen in Fig. 2.9(b); note how just a few
lines are sufficient to give the illusion of a complete circle. The two horizontal line
segments in Fig. 2.9(c) are of the same length, but one appears shorter than the other.
Finally, all long lines in Fig. 2.9(d) are equidistant and parallel. Yet, the crosshatching
creates the illusion that those lines are far from being parallel.

2.2 LIGHT AND THE ELECTROMAGNETIC SPECTRUM

The electromagnetic spectrum was introduced in Section 1.3. We now consider this
topic in more detail. In 1666, Sir Isaac Newton discovered that when a beam of
sunlight passes through a glass prism, the emerging beam of light is not white but
consists instead of a continuous spectrum of colors ranging from violet at one end
to red at the other. As Fig. 2.10 shows, the range of colors we perceive in visible light
is a small portion of the electromagnetic spectrum. On one end of the spectrum are
radio waves with wavelengths billions of times longer than those of visible light. On
the other end of the spectrum are gamma rays with wavelengths millions of times
smaller than those of visible light. We showed examples in Section 1.3 of images in
most of the bands in the EM spectrum.

2.2

ba c

FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity,
but they appear progressively darker as the background becomes lighter.

DIP4E_GLOBAL_Print_Ready.indb 54 6/16/2017 2:02:05 PM

2.2 Light and the Electromagnetic Spectrum 55

The electromagnetic spectrum can be expressed in terms of wavelength, frequency,
or energy. Wavelength (l) and frequency (n) are related by the expression

 l
n

= c
 (2-1)

where c is the speed of light (2 998 108. * m/s). Figure 2.11 shows a schematic repre-
sentation of one wavelength.

The energy of the various components of the electromagnetic spectrum is given
by the expression

 E h= n (2-2)

where h is Planck’s constant. The units of wavelength are meters, with the terms
microns (denoted mm and equal to 10 6− m) and nanometers (denoted nm and equal
to 10 9− m) being used just as frequently. Frequency is measured in Hertz (Hz), with
one Hz being equal to one cycle of a sinusoidal wave per second. A commonly used
unit of energy is the electron-volt.

Electromagnetic waves can be visualized as propagating sinusoidal waves with
wavelength l (Fig. 2.11), or they can be thought of as a stream of massless particles,

ba
dc

FIGURE 2.9 Some
well-known
optical illusions.

DIP4E_GLOBAL_Print_Ready.indb 55 6/16/2017 2:02:06 PM

56 Chapter 2 Digital Image Fundamentals

each traveling in a wavelike pattern and moving at the speed of light. Each mass-
less particle contains a certain amount (or bundle) of energy, called a photon. We
see from Eq. (2-2) that energy is proportional to frequency, so the higher-frequency
(shorter wavelength) electromagnetic phenomena carry more energy per photon.
Thus, radio waves have photons with low energies, microwaves have more energy
than radio waves, infrared still more, then visible, ultraviolet, X-rays, and finally
gamma rays, the most energetic of all. High-energy electromagnetic radiation, espe-
cially in the X-ray and gamma ray bands, is particularly harmful to living organisms.

Light is a type of electromagnetic radiation that can be sensed by the eye. The
visible (color) spectrum is shown expanded in Fig. 2.10 for the purpose of discussion
(we will discuss color in detail in Chapter 6). The visible band of the electromag-
netic spectrum spans the range from approximately 0.43 mm (violet) to about 0.79
mm (red). For convenience, the color spectrum is divided into six broad regions:
violet, blue, green, yellow, orange, and red. No color (or other component of the

Radio wavesMicrowavesInfrared

Visible spectrum

UltravioletGamma rays X-rays

0.4 � 10�6 0.5 � 10�6 0.6 � 10�6 0.7 � 10�6

InfraredUltraviolet Violet Blue Green Yellow RedOrange

105106107108109101010111012101310141015101610171018101910201021

Frequency (Hz)

10�910�810�710�610�510�410�310�210�11101102103104105106

Energy of one photon (electron volts)

103102101110�110�210�310�410�510�610�710�810�910�1010�1110�12

Wavelength (meters)

FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanations, but note
that it encompasses a very narrow range of the total EM spectrum.

lFIGURE 2.11
Graphical
representation of
one wavelength.

DIP4E_GLOBAL_Print_Ready.indb 56 6/16/2017 2:02:06 PM

2.3 Image Sensing and Acquisition 57

electromagnetic spectrum) ends abruptly; rather, each range blends smoothly into
the next, as Fig. 2.10 shows.

The colors perceived in an object are determined by the nature of the light reflect-
ed by the object. A body that reflects light relatively balanced in all visible wave-
lengths appears white to the observer. However, a body that favors reflectance in
a limited range of the visible spectrum exhibits some shades of color. For example,
green objects reflect light with wavelengths primarily in the 500 to 570 nm range,
while absorbing most of the energy at other wavelengths.

Light that is void of color is called monochromatic (or achromatic) light. The
only attribute of monochromatic light is its intensity. Because the intensity of mono-
chromatic light is perceived to vary from black to grays and finally to white, the
term gray level is used commonly to denote monochromatic intensity (we use the
terms intensity and gray level interchangeably in subsequent discussions). The range
of values of monochromatic light from black to white is usually called the gray scale,
and monochromatic images are frequently referred to as grayscale images.

Chromatic (color) light spans the electromagnetic energy spectrum from approxi-
mately 0.43 to 0.79 mm, as noted previously. In addition to frequency, three other
quantities are used to describe a chromatic light source: radiance, luminance, and
brightness. Radiance is the total amount of energy that flows from the light source,
and it is usually measured in watts (W). Luminance, measured in lumens (lm), gives
a measure of the amount of energy an observer perceives from a light source. For
example, light emitted from a source operating in the far infrared region of the
spectrum could have significant energy (radiance), but an observer would hardly
perceive it; its luminance would be almost zero. Finally, as discussed in Section 2.1,
brightness is a subjective descriptor of light perception that is practically impossible
to measure. It embodies the achromatic notion of intensity and is one of the key fac-
tors in describing color sensation.

In principle, if a sensor can be developed that is capable of detecting energy
radiated in a band of the electromagnetic spectrum, we can image events of inter-
est in that band. Note, however, that the wavelength of an electromagnetic wave
required to “see” an object must be of the same size as, or smaller than, the object.
For example, a water molecule has a diameter on the order of 10 10− m. Thus, to study
these molecules, we would need a source capable of emitting energy in the far (high-
energy) ultraviolet band or soft (low-energy) X-ray bands.

Although imaging is based predominantly on energy from electromagnetic wave
radiation, this is not the only method for generating images. For example, we saw in
Section 1.3 that sound reflected from objects can be used to form ultrasonic images.
Other sources of digital images are electron beams for electron microscopy, and
software for generating synthetic images used in graphics and visualization.

2.3 IMAGE SENSING AND ACQUISITION

Most of the images in which we are interested are generated by the combination of
an “illumination” source and the reflection or absorption of energy from that source
by the elements of the “scene” being imaged. We enclose illumination and scene
in quotes to emphasize the fact that they are considerably more general than the

2.3

DIP4E_GLOBAL_Print_Ready.indb 57 6/16/2017 2:02:06 PM

58 Chapter 2 Digital Image Fundamentals

familiar situation in which a visible light source illuminates a familiar 3-D scene. For
example, the illumination may originate from a source of electromagnetic energy,
such as a radar, infrared, or X-ray system. But, as noted earlier, it could originate
from less traditional sources, such as ultrasound or even a computer-generated illu-
mination pattern. Similarly, the scene elements could be familiar objects, but they
can just as easily be molecules, buried rock formations, or a human brain. Depend-
ing on the nature of the source, illumination energy is reflected from, or transmitted
through, objects. An example in the first category is light reflected from a planar
surface. An example in the second category is when X-rays pass through a patient’s
body for the purpose of generating a diagnostic X-ray image. In some applications,
the reflected or transmitted energy is focused onto a photo converter (e.g., a phos-
phor screen) that converts the energy into visible light. Electron microscopy and
some applications of gamma imaging use this approach.

Figure 2.12 shows the three principal sensor arrangements used to transform inci-
dent energy into digital images. The idea is simple: Incoming energy is transformed
into a voltage by a combination of the input electrical power and sensor material
that is responsive to the type of energy being detected. The output voltage wave-
form is the response of the sensor, and a digital quantity is obtained by digitizing that
response. In this section, we look at the principal modalities for image sensing and
generation. We will discuss image digitizing in Section 2.4.

IMAGE ACQUISITION USING A SINGLE SENSING ELEMENT
Figure 2.12(a) shows the components of a single sensing element. A familiar sensor
of this type is the photodiode, which is constructed of silicon materials and whose
output is a voltage proportional to light intensity. Using a filter in front of a sensor
improves its selectivity. For example, an optical green-transmission filter favors light
in the green band of the color spectrum. As a consequence, the sensor output would
be stronger for green light than for other visible light components.

In order to generate a 2-D image using a single sensing element, there has to
be relative displacements in both the x- and y-directions between the sensor and
the area to be imaged. Figure 2.13 shows an arrangement used in high-precision
scanning, where a film negative is mounted onto a drum whose mechanical rotation
provides displacement in one dimension. The sensor is mounted on a lead screw
that provides motion in the perpendicular direction. A light source is contained
inside the drum. As the light passes through the film, its intensity is modified by
the film density before it is captured by the sensor. This "modulation" of the light
intensity causes corresponding variations in the sensor voltage, which are ultimately
converted to image intensity levels by digitization.

This method is an inexpensive way to obtain high-resolution images because
mechanical motion can be controlled with high precision. The main disadvantages
of this method are that it is slow and not readily portable. Other similar mechanical
arrangements use a flat imaging bed, with the sensor moving in two linear direc-
tions. These types of mechanical digitizers sometimes are referred to as transmission
microdensitometers. Systems in which light is reflected from the medium, instead
of passing through it, are called reflection microdensitometers. Another example
of imaging with a single sensing element places a laser source coincident with the

DIP4E_GLOBAL_Print_Ready.indb 58 6/16/2017 2:02:06 PM

2.3 Image Sensing and Acquisition 59

Sensing material

Voltage waveform out

Filter

Energy

Power in

Housing

b
a

c

FIGURE 2.12
(a) Single sensing
element.
(b) Line sensor.
(c) Array sensor.

Sensor

Linear motion

One image line out
per increment of rotation
and full linear displacement
of sensor from left to right

Film

Rotation

FIGURE 2.13
Combining a
single sensing
element with
mechanical
motion to
generate a 2-D
image.

DIP4E_GLOBAL_Print_Ready.indb 59 6/16/2017 2:02:07 PM

60 Chapter 2 Digital Image Fundamentals

sensor. Moving mirrors are used to control the outgoing beam in a scanning pattern
and to direct the reflected laser signal onto the sensor.

IMAGE ACQUISITION USING SENSOR STRIPS

A geometry used more frequently than single sensors is an in-line sensor strip, as in
Fig. 2.12(b). The strip provides imaging elements in one direction. Motion perpen-
dicular to the strip provides imaging in the other direction, as shown in Fig. 2.14(a).
This arrangement is used in most flat bed scanners. Sensing devices with 4000 or
more in-line sensors are possible. In-line sensors are used routinely in airborne
imaging applications, in which the imaging system is mounted on an aircraft that
flies at a constant altitude and speed over the geographical area to be imaged. One-
dimensional imaging sensor strips that respond to various bands of the electromag-
netic spectrum are mounted perpendicular to the direction of flight. An imaging
strip gives one line of an image at a time, and the motion of the strip relative to
the scene completes the other dimension of a 2-D image. Lenses or other focusing
schemes are used to project the area to be scanned onto the sensors.

Sensor strips in a ring configuration are used in medical and industrial imaging
to obtain cross-sectional (“slice”) images of 3-D objects, as Fig. 2.14(b) shows. A
rotating X-ray source provides illumination, and X-ray sensitive sensors opposite
the source collect the energy that passes through the object. This is the basis for
medical and industrial computerized axial tomography (CAT) imaging, as indicated
in Sections 1.2 and 1.3. The output of the sensors is processed by reconstruction
algorithms whose objective is to transform the sensed data into meaningful cross-
sectional images (see Section 5.11). In other words, images are not obtained directly

Sensor strip

Linear
motionImaged area

One image line out per
increment of linear motion

Image
reconstruction

3-D object

Linear m
otio

n

Sensor ring

X-ray source

Cross-sectional images
of 3-D object

Source
rotation

ba

FIGURE 2.14
(a) Image
acquisition using
a linear sensor
strip. (b) Image
acquisition using
a circular sensor
strip.

DIP4E_GLOBAL_Print_Ready.indb 60 6/16/2017 2:02:07 PM

2.3 Image Sensing and Acquisition 61

from the sensors by motion alone; they also require extensive computer process-
ing. A 3-D digital volume consisting of stacked images is generated as the object is
moved in a direction perpendicular to the sensor ring. Other modalities of imaging
based on the CAT principle include magnetic resonance imaging (MRI) and posi-
tron emission tomography (PET). The illumination sources, sensors, and types of
images are different, but conceptually their applications are very similar to the basic
imaging approach shown in Fig. 2.14(b).

IMAGE ACQUISITION USING SENSOR ARRAYS
Figure 2.12(c) shows individual sensing elements arranged in the form of a 2-D array.
Electromagnetic and ultrasonic sensing devices frequently are arranged in this man-
ner. This is also the predominant arrangement found in digital cameras. A typical
sensor for these cameras is a CCD (charge-coupled device) array, which can be
manufactured with a broad range of sensing properties and can be packaged in rug-
ged arrays of 4000 4000* elements or more. CCD sensors are used widely in digital
cameras and other light-sensing instruments. The response of each sensor is pro-
portional to the integral of the light energy projected onto the surface of the sensor,
a property that is used in astronomical and other applications requiring low noise
images. Noise reduction is achieved by letting the sensor integrate the input light
signal over minutes or even hours. Because the sensor array in Fig. 2.12(c) is two-
dimensional, its key advantage is that a complete image can be obtained by focusing
the energy pattern onto the surface of the array. Motion obviously is not necessary,
as is the case with the sensor arrangements discussed in the preceding two sections.

Figure 2.15 shows the principal manner in which array sensors are used. This
figure shows the energy from an illumination source being reflected from a scene
(as mentioned at the beginning of this section, the energy also could be transmit-
ted through the scene). The first function performed by the imaging system in Fig.
2.15(c) is to collect the incoming energy and focus it onto an image plane. If the illu-
mination is light, the front end of the imaging system is an optical lens that projects
the viewed scene onto the focal plane of the lens, as Fig. 2.15(d) shows. The sensor
array, which is coincident with the focal plane, produces outputs proportional to the
integral of the light received at each sensor. Digital and analog circuitry sweep these
outputs and convert them to an analog signal, which is then digitized by another sec-
tion of the imaging system. The output is a digital image, as shown diagrammatically
in Fig. 2.15(e). Converting images into digital form is the topic of Section 2.4.

A SIMPLE IMAGE FORMATION MODEL
As introduced in Section 1.1, we denote images by two-dimensional functions of the
form f x y(,). The value of f at spatial coordinates (,)x y is a scalar quantity whose
physical meaning is determined by the source of the image, and whose values are
proportional to energy radiated by a physical source (e.g., electromagnetic waves).
As a consequence, f x y(,) must be nonnegative† and finite; that is,

† Image intensities can become negative during processing, or as a result of interpretation. For example, in radar
images, objects moving toward the radar often are interpreted as having negative velocities while objects moving
away are interpreted as having positive velocities. Thus, a velocity image might be coded as having both positive
and negative values. When storing and displaying images, we normally scale the intensities so that the smallest
negative value becomes 0 (see Section 2.6 regarding intensity scaling).

In some cases, the source
is imaged directly, as
in obtaining images of
the sun.

DIP4E_GLOBAL_Print_Ready.indb 61 6/16/2017 2:02:07 PM

62 Chapter 2 Digital Image Fundamentals

 0 ≤ <f x y(,) � (2-3)

Function f x y(,) is characterized by two components: (1) the amount of source illu-
mination incident on the scene being viewed, and (2) the amount of illumination
reflected by the objects in the scene. Appropriately, these are called the illumination
and reflectance components, and are denoted by i x y(,) and r x y(,), respectively. The
two functions combine as a product to form f x y(,):

 f x y i x y r x y(,) (,) (,)= (2-4)

where

 0 ≤ <i x y(,) � (2-5)

and

 0 1≤ ≤r x y(,) (2-6)

Thus, reflectance is bounded by 0 (total absorption) and 1 (total reflectance). The
nature of i x y(,) is determined by the illumination source, and r x y(,) is determined
by the characteristics of the imaged objects. These expressions are applicable also
to images formed via transmission of the illumination through a medium, such as a

Illumination (energy)
source

Imaging system

(Internal) image plane

Output (digitized) image

Scene

b
a dc e

FIGURE 2.15 An example of digital image acquisition. (a) Illumination (energy) source. (b) A scene. (c) Imaging
system. (d) Projection of the scene onto the image plane. (e) Digitized image.

DIP4E_GLOBAL_Print_Ready.indb 62 6/16/2017 2:02:08 PM

2.4 Image Sampling and Quantization 63

chest X-ray. In this case, we would deal with a transmissivity instead of a reflectivity
function, but the limits would be the same as in Eq. (2-6), and the image function
formed would be modeled as the product in Eq. (2-4).

EXAMPLE 2.1 : Some typical values of illumination and reflectance.

The following numerical quantities illustrate some typical values of illumination and reflectance for
visible light. On a clear day, the sun may produce in excess of 90 000, lm/m2 of illumination on the sur-
face of the earth. This value decreases to less than 10 000, lm/m2 on a cloudy day. On a clear evening, a
full moon yields about 0 1. lm/m2 of illumination. The typical illumination level in a commercial office
is about 1 000, lm/m2. Similarly, the following are typical values of r x y(,): 0.01 for black velvet, 0.65 for
stainless steel, 0.80 for flat-white wall paint, 0.90 for silver-plated metal, and 0.93 for snow.

Let the intensity (gray level) of a monochrome image at any coordinates (,)x y
be denoted by

 / = f x y(,) (2-7)

From Eqs. (2-4) through (2-6) it is evident that / lies in the range

 L Lmin max≤ ≤/ (2-8)

In theory, the requirement on Lmin is that it be nonnegative, and on Lmax that it
be finite. In practice, L i rmin min min= and L i rmax max max= . From Example 2.1, using
average office illumination and reflectance values as guidelines, we may expect
Lmin ≈ 10 and Lmax ≈ 1000 to be typical indoor values in the absence of additional
illumination. The units of these quantities are lum/m2. However, actual units sel-
dom are of interest, except in cases where photometric measurements are being
performed.

The interval [,]min maxL L is called the intensity (or gray) scale. Common practice is
to shift this interval numerically to the interval [,],0 1 or [,],0 C where / = 0 is consid-
ered black and / = 1 (or)C is considered white on the scale. All intermediate values
are shades of gray varying from black to white.

2.4 IMAGE SAMPLING AND QUANTIZATION

As discussed in the previous section, there are numerous ways to acquire images, but
our objective in all is the same: to generate digital images from sensed data. The out-
put of most sensors is a continuous voltage waveform whose amplitude and spatial
behavior are related to the physical phenomenon being sensed. To create a digital
image, we need to convert the continuous sensed data into a digital format. This
requires two processes: sampling and quantization.

BASIC CONCEPTS IN SAMPLING AND QUANTIZATION

Figure 2.16(a) shows a continuous image f that we want to convert to digital form.
An image may be continuous with respect to the x- and y-coordinates, and also in

2.4

The discussion of sam-
pling in this section is of
an intuitive nature. We
will discuss this topic in
depth in Chapter 4.

DIP4E_GLOBAL_Print_Ready.indb 63 6/16/2017 2:02:10 PM

64 Chapter 2 Digital Image Fundamentals

amplitude. To digitize it, we have to sample the function in both coordinates and
also in amplitude. Digitizing the coordinate values is called sampling. Digitizing the
amplitude values is called quantization.

The one-dimensional function in Fig. 2.16(b) is a plot of amplitude (intensity
level) values of the continuous image along the line segment AB in Fig. 2.16(a). The
random variations are due to image noise. To sample this function, we take equally
spaced samples along line AB, as shown in Fig. 2.16(c). The samples are shown as
small dark squares superimposed on the function, and their (discrete) spatial loca-
tions are indicated by corresponding tick marks in the bottom of the figure. The set
of dark squares constitute the sampled function. However, the values of the sam-
ples still span (vertically) a continuous range of intensity values. In order to form a
digital function, the intensity values also must be converted (quantized) into discrete
quantities. The vertical gray bar in Fig. 2.16(c) depicts the intensity scale divided
into eight discrete intervals, ranging from black to white. The vertical tick marks
indicate the specific value assigned to each of the eight intensity intervals. The con-
tinuous intensity levels are quantized by assigning one of the eight values to each
sample, depending on the vertical proximity of a sample to a vertical tick mark. The
digital samples resulting from both sampling and quantization are shown as white
squares in Fig. 2.16(d). Starting at the top of the continuous image and carrying out
this procedure downward, line by line, produces a two-dimensional digital image.
It is implied in Fig. 2.16 that, in addition to the number of discrete levels used, the
accuracy achieved in quantization is highly dependent on the noise content of the
sampled signal.

ba
dc

FIGURE 2.16
(a) Continuous
image. (b) A
scan line show-
ing intensity
variations along
line AB in the
continuous image.
(c) Sampling and
quantization.
(d) Digital scan
line. (The black
border in (a) is
included for
clarity. It is not
part of the image).

A B

A B

Sampling

A B A B

Q
ua

nt
iz

at
io

n

DIP4E_GLOBAL_Print_Ready.indb 64 6/16/2017 2:02:10 PM

2.4 Image Sampling and Quantization 65

In practice, the method of sampling is determined by the sensor arrangement
used to generate the image. When an image is generated by a single sensing element
combined with mechanical motion, as in Fig. 2.13, the output of the sensor is quan-
tized in the manner described above. However, spatial sampling is accomplished by
selecting the number of individual mechanical increments at which we activate the
sensor to collect data. Mechanical motion can be very exact so, in principle, there is
almost no limit on how fine we can sample an image using this approach. In practice,
limits on sampling accuracy are determined by other factors, such as the quality of
the optical components used in the system.

When a sensing strip is used for image acquisition, the number of sensors in the
strip establishes the samples in the resulting image in one direction, and mechanical
motion establishes the number of samples in the other. Quantization of the sensor
outputs completes the process of generating a digital image.

When a sensing array is used for image acquisition, no motion is required. The
number of sensors in the array establishes the limits of sampling in both directions.
Quantization of the sensor outputs is as explained above. Figure 2.17 illustrates this
concept. Figure 2.17(a) shows a continuous image projected onto the plane of a 2-D
sensor. Figure 2.17(b) shows the image after sampling and quantization. The quality
of a digital image is determined to a large degree by the number of samples and dis-
crete intensity levels used in sampling and quantization. However, as we will show
later in this section, image content also plays a role in the choice of these parameters.

REPRESENTING DIGITAL IMAGES

Let f s t(,) represent a continuous image function of two continuous variables, s and
t. We convert this function into a digital image by sampling and quantization, as
explained in the previous section. Suppose that we sample the continuous image
into a digital image, f x y(,), containing M rows and N columns, where (,)x y are
discrete coordinates. For notational clarity and convenience, we use integer values
for these discrete coordinates: x M= −0 1 2 1, , , ,… and y N= −0 1 2 1, , , ,… . Thus,
for example, the value of the digital image at the origin is f (,)0 0 , and its value at
the next coordinates along the first row is f (,)0 1 . Here, the notation (0, 1) is used

ba

FIGURE 2.17
(a) Continuous
image projected
onto a sensor
array. (b) Result
of image sampling
and quantization.

DIP4E_GLOBAL_Print_Ready.indb 65 6/16/2017 2:02:10 PM

66 Chapter 2 Digital Image Fundamentals

to denote the second sample along the first row. It does not mean that these are
the values of the physical coordinates when the image was sampled. In general, the
value of a digital image at any coordinates (,)x y is denoted f x y(,), where x and y
are integers. When we need to refer to specific coordinates (,)i j , we use the notation
f i j(,), where the arguments are integers. The section of the real plane spanned by
the coordinates of an image is called the spatial domain, with x and y being referred
to as spatial variables or spatial coordinates.

Figure 2.18 shows three ways of representing f x y(,). Figure 2.18(a) is a plot of
the function, with two axes determining spatial location and the third axis being the
values of f as a function of x and y. This representation is useful when working with
grayscale sets whose elements are expressed as triplets of the form (, ,)x y z , where
x and y are spatial coordinates and z is the value of f at coordinates (,).x y We will
work with this representation briefly in Section 2.6.

The representation in Fig. 2.18(b) is more common, and it shows f x y(,) as it would
appear on a computer display or photograph. Here, the intensity of each point in the
display is proportional to the value of f at that point. In this figure, there are only
three equally spaced intensity values. If the intensity is normalized to the interval
[,],0 1 then each point in the image has the value 0, 0.5, or 1. A monitor or printer con-
verts these three values to black, gray, or white, respectively, as in Fig. 2.18(b). This
type of representation includes color images, and allows us to view results at a glance.

As Fig. 2.18(c) shows, the third representation is an array (matrix) composed of
the numerical values of f x y(,). This is the representation used for computer process-
ing. In equation form, we write the representation of an M N* numerical array as

 f x y

f f f N

f f f N

f M

(,)

(,) (,) (,)

(,) (,) (,)

(,

=

−
−

−

0 0 0 1 0 1

1 0 1 1 1 1

1

�
�

� � �
00 1 1 1 1) (,) (,)f M f M N− − −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥�

 (2-9)

The right side of this equation is a digital image represented as an array of real
numbers. Each element of this array is called an image element, picture element, pixel,
or pel. We use the terms image and pixel throughout the book to denote a digital
image and its elements. Figure 2.19 shows a graphical representation of an image
array, where the x- and y-axis are used to denote the rows and columns of the array.
Specific pixels are values of the array at a fixed pair of coordinates. As mentioned
earlier, we generally use f i j(,) when referring to a pixel with coordinates (,).i j

We can also represent a digital image in a traditional matrix form:

 A =

⎡

⎣

−

−

− − − −

a a a

a a a

a a a

N

N

M M M N

0 0 0 1 0 1

1 0 1 1 1 1

1 0 1 1 1 1

, , ,

, , ,

, , ,

�
�

� � �
�

⎢⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (2-10)

Clearly, a f i jij = (,), so Eqs. (2-9) and (2-10) denote identical arrays.

DIP4E_GLOBAL_Print_Ready.indb 66 6/16/2017 2:02:12 PM

2.4 Image Sampling and Quantization 67

As Fig. 2.19 shows, we define the origin of an image at the top left corner. This is
a convention based on the fact that many image displays (e.g., TV monitors) sweep
an image starting at the top left and moving to the right, one row at a time. More
important is the fact that the first element of a matrix is by convention at the top
left of the array. Choosing the origin of f x y(,) at that point makes sense mathemati-
cally because digital images in reality are matrices. In fact, as you will see, sometimes
we use x and y interchangeably in equations with the rows (r) and columns (c) of a
matrix.

It is important to note that the representation in Fig. 2.19, in which the positive
x-axis extends downward and the positive y-axis extends to the right, is precisely the
right-handed Cartesian coordinate system with which you are familiar,† but shown
rotated by 90° so that the origin appears on the top, left.

† Recall that a right-handed coordinate system is such that, when the index of the right hand points in the direc-
tion of the positive x-axis and the middle finger points in the (perpendicular) direction of the positive y-axis, the
thumb points up. As Figs. 2.18 and 2.19 show, this indeed is the case in our image coordinate system. In practice,
you will also find implementations based on a left-handed system, in which the x- and y-axis are interchanged
from the way we show them in Figs. 2.18 and 2.19. For example, MATLAB uses a left-handed system for image
processing. Both systems are perfectly valid, provided they are used consistently.

x

y

f(x, y)

.5

y

x

Origin

0
0
0
0
0
0

0
0
0
0
0

0
0

0
0

0
0

0
0

0

1

1

11
1

.5

.5

.5
.5
.5

.5

b
a

c

FIGURE 2.18
(a) Image plotted
as a surface.
(b) Image displayed
as a visual intensity
array. (c) Image
shown as a 2-D nu-
merical array. (The
numbers 0, .5, and
1 represent black,
gray, and white,
respectively.)

DIP4E_GLOBAL_Print_Ready.indb 67 6/16/2017 2:02:16 PM

68 Chapter 2 Digital Image Fundamentals

The center of an M N× digital image with origin at (,)0 0 and range to (,)M N− −1 1
is obtained by dividing M and N by 2 and rounding down to the nearest integer.
This operation sometimes is denoted using the floor operator, J Ki , as shown in Fig.
2.19. This holds true for M and N even or odd. For example, the center of an image
of size 1023 1024× is at (,).511 512 Some programming languages (e.g., MATLAB)
start indexing at 1 instead of at 0. The center of an image in that case is found at
(,) () , () .x y M Nc c = + +()floor floor2 1 2 1

To express sampling and quantization in more formal mathematical terms, let
Z and R denote the set of integers and the set of real numbers, respectively. The
sampling process may be viewed as partitioning the xy-plane into a grid, with the
coordinates of the center of each cell in the grid being a pair of elements from the
Cartesian product Z2 (also denoted Z Z×) which, as you may recall, is the set of
all ordered pairs of elements (,)z zi j with zi and zj being integers from set Z. Hence,
f x y(,) is a digital image if (,)x y are integers from Z2 and f is a function that assigns
an intensity value (that is, a real number from the set of real numbers, R) to each
distinct pair of coordinates (,)x y . This functional assignment is the quantization pro-
cess described earlier. If the intensity levels also are integers, then R Z= , and a
digital image becomes a 2-D function whose coordinates and amplitude values are
integers. This is the representation we use in the book.

Image digitization requires that decisions be made regarding the values for M, N,
and for the number, L, of discrete intensity levels. There are no restrictions placed
on M and N, other than they have to be positive integers. However, digital storage
and quantizing hardware considerations usually lead to the number of intensity lev-
els, L, being an integer power of two; that is

L k= 2 (2-11)

where k is an integer. We assume that the discrete levels are equally spaced and that
they are integers in the range [,]0 1L − .

The floor of z, sometimes
denoted JzK, is the largest
integer that is less than
or equal to z. The ceiling
of z, denoted LzM, is the
smallest integer that is
greater than or equal
to z.

See Eq. (2-41) in
Section 2.6 for a formal
definition of the
Cartesian product.

FIGURE 2.19
Coordinate
convention used
to represent digital
images. Because
coordinate values
are integers, there
is a one-to-one
correspondence
between x and y
and the rows (r)
and columns (c) of
a matrix.

Origin

0 N - 1

- 1M

0 y

x

i

j

pixel f(i, j)

Image f(x, y)

1

1

2

Center

The coordinates of the
image center are

xc

yc

xc, yc = N
2Q RfloorM

2Q Rfloor ,a bBA

DIP4E_GLOBAL_Print_Ready.indb 68 6/16/2017 2:02:18 PM

2.4 Image Sampling and Quantization 69

Sometimes, the range of values spanned by the gray scale is referred to as the
dynamic range, a term used in different ways in different fields. Here, we define the
dynamic range of an imaging system to be the ratio of the maximum measurable
intensity to the minimum detectable intensity level in the system. As a rule, the
upper limit is determined by saturation and the lower limit by noise, although noise
can be present also in lighter intensities. Figure 2.20 shows examples of saturation
and slight visible noise. Because the darker regions are composed primarily of pixels
with the minimum detectable intensity, the background in Fig. 2.20 is the noisiest
part of the image; however, dark background noise typically is much harder to see.

The dynamic range establishes the lowest and highest intensity levels that a system
can represent and, consequently, that an image can have. Closely associated with this
concept is image contrast, which we define as the difference in intensity between
the highest and lowest intensity levels in an image. The contrast ratio is the ratio of
these two quantities. When an appreciable number of pixels in an image have a high
dynamic range, we can expect the image to have high contrast. Conversely, an image
with low dynamic range typically has a dull, washed-out gray look. We will discuss
these concepts in more detail in Chapter 3.

The number, b, of bits required to store a digital image is

 b M N k= * * (2-12)

When M N= , this equation becomes

 b N k= 2 (2-13)

Noise

Saturation

FIGURE 2.20
An image exhibit-
ing saturation and
noise. Saturation
is the highest val-
ue beyond which
all intensity values
are clipped (note
how the entire
saturated area has
a high, constant
intensity level).
Visible noise in
this case appears
as a grainy texture
pattern. The dark
background is
noisier, but the
noise is difficult
to see.

DIP4E_GLOBAL_Print_Ready.indb 69 6/16/2017 2:02:18 PM

70 Chapter 2 Digital Image Fundamentals

Figure 2.21 shows the number of megabytes required to store square images for
various values of N and k (as usual, one byte equals 8 bits and a megabyte equals
106 bytes).

When an image can have 2k possible intensity levels, it is common practice to
refer to it as a “k-bit image,” (e,g., a 256-level image is called an 8-bit image). Note
that storage requirements for large 8-bit images (e.g., 10 000 10 000, ,* pixels) are
not insignificant.

LINEAR VS. COORDINATE INDEXING

The convention discussed in the previous section, in which the location of a pixel is
given by its 2-D coordinates, is referred to as coordinate indexing, or subscript index-
ing. Another type of indexing used extensively in programming image processing
algorithms is linear indexing, which consists of a 1-D string of nonnegative integers
based on computing offsets from coordinates (,)0 0 . There are two principal types of
linear indexing, one is based on a row scan of an image, and the other on a column scan.

Figure 2.22 illustrates the principle of linear indexing based on a column scan.
The idea is to scan an image column by column, starting at the origin and proceeding
down and then to the right. The linear index is based on counting pixels as we scan
the image in the manner shown in Fig. 2.22. Thus, a scan of the first (leftmost) column
yields linear indices 0 through M − 1. A scan of the second column yields indices M
through 2 1M − , and so on, until the last pixel in the last column is assigned the linear
index value MN − 1. Thus, a linear index, denoted by a , has one of MN possible
values: 0 1 2 1, , , ,… MN − , as Fig. 2.22 shows. The important thing to notice here is
that each pixel is assigned a linear index value that identifies it uniquely.

The formula for generating linear indices based on a column scan is straightfor-
ward and can be determined by inspection. For any pair of coordinates (,)x y , the
corresponding linear index value is

 a = +My x (2-14)

N

* 103

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

k = 8

7

6

5

4

3

2

1

0
0

M
eg

ab
yt

es
 (

)

*
b 8

10
6

FIGURE 2.21
Number of
megabytes
required to store
images for
various values of
N and k.

DIP4E_GLOBAL_Print_Ready.indb 70 6/16/2017 2:02:19 PM

2.4 Image Sampling and Quantization 71

Conversely, the coordinate indices for a given linear index value a are given by the
equations†

x M= a mod (2-15)

and

 y x M= ()a - (2-16)

Recall that a mod M means “the remainder of the division of a by M.” This is a
formal way of stating that row numbers repeat themselves at the start of every col-
umn. Thus, when a = 0, the remainder of the division of 0 by M is 0, so x = 0. When
a = 1, the remainder is 1, and so x = 1. You can see that x will continue to be equal
to a until a = −M 1. When a = M (which is at the beginning of the second column),
the remainder is 0, and thus x = 0 again, and it increases by 1 until the next column
is reached, when the pattern repeats itself. Similar comments apply to Eq. (2-16). See
Problem 2.11 for a derivation of the preceding two equations.

SPATIAL AND INTENSITY RESOLUTION

Intuitively, spatial resolution is a measure of the smallest discernible detail in an
image. Quantitatively, spatial resolution can be stated in several ways, with line
pairs per unit distance, and dots (pixels) per unit distance being common measures.
Suppose that we construct a chart with alternating black and white vertical lines,
each of width W units (W can be less than 1). The width of a line pair is thus 2W, and
there are W 2 line pairs per unit distance. For example, if the width of a line is 0.1 mm,
there are 5 line pairs per unit distance (i.e., per mm). A widely used definition of
image resolution is the largest number of discernible line pairs per unit distance (e.g.,
100 line pairs per mm). Dots per unit distance is a measure of image resolution used
in the printing and publishing industry. In the U.S., this measure usually is expressed
as dots per inch (dpi). To give you an idea of quality, newspapers are printed with a

†When working with modular number systems, it is more accurate to write x M≡ a mod , where the symbol ≡
means congruence. However, our interest here is just on converting from linear to coordinate indexing, so we
use the more familiar equal sign.

x

y

Image f(x, y)

(0, 0) α = 0

(M - 1, 0) α = M - 1 (M - 1, N - 1) α = MN - 1

(0, 1) α = M
(0, 2) α = 2M

(M - 1, 1) α = 2M - 1

Image f(ff x, y)

FIGURE 2.22
Illustration of
column scanning
for generating
linear indices.
Shown are several
2-D coordinates (in
parentheses) and
their corresponding
linear indices.

DIP4E_GLOBAL_Print_Ready.indb 71 6/16/2017 2:02:20 PM

72 Chapter 2 Digital Image Fundamentals

resolution of 75 dpi, magazines at 133 dpi, glossy brochures at 175 dpi, and the book
page at which you are presently looking was printed at 2400 dpi.

To be meaningful, measures of spatial resolution must be stated with respect to
spatial units. Image size by itself does not tell the complete story. For example, to say
that an image has a resolution of 1024 1024* pixels is not a meaningful statement
without stating the spatial dimensions encompassed by the image. Size by itself is
helpful only in making comparisons between imaging capabilities. For instance, a
digital camera with a 20-megapixel CCD imaging chip can be expected to have a
higher capability to resolve detail than an 8-megapixel camera, assuming that both
cameras are equipped with comparable lenses and the comparison images are taken
at the same distance.

Intensity resolution similarly refers to the smallest discernible change in inten-
sity level. We have considerable discretion regarding the number of spatial samples
(pixels) used to generate a digital image, but this is not true regarding the number
of intensity levels. Based on hardware considerations, the number of intensity levels
usually is an integer power of two, as we mentioned when discussing Eq. (2-11). The
most common number is 8 bits, with 16 bits being used in some applications in which
enhancement of specific intensity ranges is necessary. Intensity quantization using
32 bits is rare. Sometimes one finds systems that can digitize the intensity levels of
an image using 10 or 12 bits, but these are not as common.

Unlike spatial resolution, which must be based on a per-unit-of-distance basis to
be meaningful, it is common practice to refer to the number of bits used to quan-
tize intensity as the “intensity resolution.” For example, it is common to say that an
image whose intensity is quantized into 256 levels has 8 bits of intensity resolution.
However, keep in mind that discernible changes in intensity are influenced also by
noise and saturation values, and by the capabilities of human perception to analyze
and interpret details in the context of an entire scene (see Section 2.1). The following
two examples illustrate the effects of spatial and intensity resolution on discernible
detail. Later in this section, we will discuss how these two parameters interact in
determining perceived image quality.

EXAMPLE 2.2 : Effects of reducing the spatial resolution of a digital image.

Figure 2.23 shows the effects of reducing the spatial resolution of an image. The images in Figs. 2.23(a)
through (d) have resolutions of 930, 300, 150, and 72 dpi, respectively. Naturally, the lower resolution
images are smaller than the original image in (a). For example, the original image is of size 2136 2140*
pixels, but the 72 dpi image is an array of only 165 166* pixels. In order to facilitate comparisons, all the
smaller images were zoomed back to the original size (the method used for zooming will be discussed
later in this section). This is somewhat equivalent to “getting closer” to the smaller images so that we can
make comparable statements about visible details.

There are some small visual differences between Figs. 2.23(a) and (b), the most notable being a slight
distortion in the seconds marker pointing to 60 on the right side of the chronometer. For the most part,
however, Fig. 2.23(b) is quite acceptable. In fact, 300 dpi is the typical minimum image spatial resolution
used for book publishing, so one would not expect to see much difference between these two images.
Figure 2.23(c) begins to show visible degradation (see, for example, the outer edges of the chronometer

DIP4E_GLOBAL_Print_Ready.indb 72 6/16/2017 2:02:20 PM

2.4 Image Sampling and Quantization 73

case and compare the seconds marker with the previous two images). The numbers also show visible
degradation. Figure 2.23(d) shows degradation that is visible in most features of the image. When print-
ing at such low resolutions, the printing and publishing industry uses a number of techniques (such as
locally varying the pixel size) to produce much better results than those in Fig. 2.23(d). Also, as we will
show later in this section, it is possible to improve on the results of Fig. 2.23 by the choice of interpola-
tion method used.

EXAMPLE 2.3 : Effects of varying the number of intensity levels in a digital image.

Figure 2.24(a) is a 774 640× CT projection image, displayed using 256 intensity levels (see Chapter 1
regarding CT images). The objective of this example is to reduce the number of intensities of the image
from 256 to 2 in integer powers of 2, while keeping the spatial resolution constant. Figures 2.24(b)
through (d) were obtained by reducing the number of intensity levels to 128, 64, and 32, respectively (we
will discuss in Chapter 3 how to reduce the number of levels).

ba
dc

FIGURE 2.23
Effects of
reducing spatial
resolution. The
images shown
are at:
(a) 930 dpi,
(b) 300 dpi,
(c) 150 dpi, and
(d) 72 dpi.

DIP4E_GLOBAL_Print_Ready.indb 73 6/16/2017 2:02:21 PM

74 Chapter 2 Digital Image Fundamentals

The 128- and 64-level images are visually identical for all practical purposes. However, the 32-level image
in Fig. 2.24(d) has a set of almost imperceptible, very fine ridge-like structures in areas of constant inten-
sity. These structures are clearly visible in the 16-level image in Fig. 2.24(e). This effect, caused by using
an insufficient number of intensity levels in smooth areas of a digital image, is called false contouring, so
named because the ridges resemble topographic contours in a map. False contouring generally is quite
objectionable in images displayed using 16 or fewer uniformly spaced intensity levels, as the images in
Figs. 2.24(e)-(h) show.

As a very rough guideline, and assuming integer powers of 2 for convenience, images of size 256 256*
pixels with 64 intensity levels, and printed on a size format on the order of 5 5* cm, are about the lowest
spatial and intensity resolution images that can be expected to be reasonably free of objectionable sam-
pling distortions and false contouring.

ba
dc

FIGURE 2.24
(a) 774 × 640,
256-level image.
(b)-(d) Image
displayed in 128,
64, and 32 inten-
sity levels, while
keeping the
spatial resolution
constant.
(Original image
courtesy of the
Dr. David R.
Pickens,
Department of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

DIP4E_GLOBAL_Print_Ready.indb 74 6/16/2017 2:02:22 PM

2.4 Image Sampling and Quantization 75

The results in Examples 2.2 and 2.3 illustrate the effects produced on image qual-
ity by varying spatial and intensity resolution independently. However, these results
did not consider any relationships that might exist between these two parameters.
An early study by Huang [1965] attempted to quantify experimentally the effects on
image quality produced by the interaction of these two variables. The experiment
consisted of a set of subjective tests. Images similar to those shown in Fig. 2.25 were
used. The woman’s face represents an image with relatively little detail; the picture
of the cameraman contains an intermediate amount of detail; and the crowd picture
contains, by comparison, a large amount of detail.

Sets of these three types of images of various sizes and intensity resolution were
generated by varying N and k [see Eq. (2-13)]. Observers were then asked to rank

fe
hg

FIGURE 2.24
(Continued)
(e)-(h) Image
displayed in 16, 8,
4, and 2 intensity
levels.

DIP4E_GLOBAL_Print_Ready.indb 75 6/16/2017 2:02:22 PM

76 Chapter 2 Digital Image Fundamentals

them according to their subjective quality. Results were summarized in the form of
so-called isopreference curves in the Nk-plane. (Figure 2.26 shows average isopref-
erence curves representative of the types of images in Fig. 2.25.) Each point in the
Nk-plane represents an image having values of N and k equal to the coordinates
of that point. Points lying on an isopreference curve correspond to images of equal
subjective quality. It was found in the course of the experiments that the isoprefer-
ence curves tended to shift right and upward, but their shapes in each of the three
image categories were similar to those in Fig. 2.26. These results were not unexpect-
ed, because a shift up and right in the curves simply means larger values for N and k,
which implies better picture quality.

ba c

FIGURE 2.25 (a) Image with a low level of detail. (b) Image with a medium level of detail. (c) Image with a relatively
large amount of detail. (Image (b) courtesy of the Massachusetts Institute of Technology.)

Face

2561286432

4

5

k

N

Crowd

Cameraman

FIGURE 2.26
Representative
isopreference
curves for the
three types of
images in
Fig. 2.25.

DIP4E_GLOBAL_Print_Ready.indb 76 6/16/2017 2:02:22 PM

2.4 Image Sampling and Quantization 77

Observe that isopreference curves tend to become more vertical as the detail in
the image increases. This result suggests that for images with a large amount of detail
only a few intensity levels may be needed. For example, the isopreference curve in
Fig. 2.26 corresponding to the crowd is nearly vertical. This indicates that, for a fixed
value of N, the perceived quality for this type of image is nearly independent of the
number of intensity levels used (for the range of intensity levels shown in Fig. 2.26).
The perceived quality in the other two image categories remained the same in some
intervals in which the number of samples was increased, but the number of intensity
levels actually decreased. The most likely reason for this result is that a decrease in k
tends to increase the apparent contrast, a visual effect often perceived as improved
image quality.

IMAGE INTERPOLATION

Interpolation is used in tasks such as zooming, shrinking, rotating, and geometrically
correcting digital images. Our principal objective in this section is to introduce inter-
polation and apply it to image resizing (shrinking and zooming), which are basically
image resampling methods. Uses of interpolation in applications such as rotation
and geometric corrections will be discussed in Section 2.6.

Interpolation is the process of using known data to estimate values at unknown
locations. We begin the discussion of this topic with a short example. Suppose that
an image of size 500 500* pixels has to be enlarged 1.5 times to 750 750* pixels. A
simple way to visualize zooming is to create an imaginary 750 750* grid with the
same pixel spacing as the original image, then shrink it so that it exactly overlays the
original image. Obviously, the pixel spacing in the shrunken 750 750* grid will be
less than the pixel spacing in the original image. To assign an intensity value to any
point in the overlay, we look for its closest pixel in the underlying original image and
assign the intensity of that pixel to the new pixel in the 750 750* grid. When intensi-
ties have been assigned to all the points in the overlay grid, we expand it back to the
specified size to obtain the resized image.

The method just discussed is called nearest neighbor interpolation because it
assigns to each new location the intensity of its nearest neighbor in the original
image (see Section 2.5 regarding neighborhoods). This approach is simple but, it has
the tendency to produce undesirable artifacts, such as severe distortion of straight
edges. A more suitable approach is bilinear interpolation, in which we use the four
nearest neighbors to estimate the intensity at a given location. Let (,)x y denote the
coordinates of the location to which we want to assign an intensity value (think of
it as a point of the grid described previously), and let v(,)x y denote that intensity
value. For bilinear interpolation, the assigned value is obtained using the equation

 v(,)x y ax by cxy d= + + + (2-17)

where the four coefficients are determined from the four equations in four
unknowns that can be written using the four nearest neighbors of point (,)x y .
Bilinear interpolation gives much better results than nearest neighbor interpolation,
with a modest increase in computational burden.

Contrary to what the
name suggests, bilinear
interpolation is not a
linear operation because
it involves multiplication
of coordinates (which is
not a linear operation).
See Eq. (2-17).

DIP4E_GLOBAL_Print_Ready.indb 77 6/16/2017 2:02:23 PM

78 Chapter 2 Digital Image Fundamentals

The next level of complexity is bicubic interpolation, which involves the sixteen
nearest neighbors of a point. The intensity value assigned to point (,)x y is obtained
using the equation

 v(,)x y a x yij
i j

ji

=
==
∑∑

0

3

0

3

 (2-18)

The sixteen coefficients are determined from the sixteen equations with six-
teen unknowns that can be written using the sixteen nearest neighbors of point
(,)x y . Observe that Eq. (2-18) reduces in form to Eq. (2-17) if the limits of both
summations in the former equation are 0 to 1. Generally, bicubic interpolation does
a better job of preserving fine detail than its bilinear counterpart. Bicubic interpola-
tion is the standard used in commercial image editing applications, such as Adobe
Photoshop and Corel Photopaint.

Although images are displayed with integer coordinates, it is possible during pro-
cessing to work with subpixel accuracy by increasing the size of the image using
interpolation to “fill the gaps” between pixels in the original image.

EXAMPLE 2.4 : Comparison of interpolation approaches for image shrinking and zooming.

Figure 2.27(a) is the same as Fig. 2.23(d), which was obtained by reducing the resolution of the 930 dpi
image in Fig. 2.23(a) to 72 dpi (the size shrank from 2136 2140* to 165 166* pixels) and then zooming
the reduced image back to its original size. To generate Fig. 2.23(d) we used nearest neighbor interpola-
tion both to shrink and zoom the image. As noted earlier, the result in Fig. 2.27(a) is rather poor. Figures
2.27(b) and (c) are the results of repeating the same procedure but using, respectively, bilinear and bicu-
bic interpolation for both shrinking and zooming. The result obtained by using bilinear interpolation is a
significant improvement over nearest neighbor interpolation, but the resulting image is blurred slightly.
Much sharper results can be obtained using bicubic interpolation, as Fig. 2.27(c) shows.

FIGURE 2.27 (a) Image reduced to 72 dpi and zoomed back to its original 930 dpi using nearest neighbor interpolation.
This figure is the same as Fig. 2.23(d). (b) Image reduced to 72 dpi and zoomed using bilinear interpolation. (c) Same
as (b) but using bicubic interpolation.

ba c

DIP4E_GLOBAL_Print_Ready.indb 78 6/16/2017 2:02:24 PM

2.5 Some Basic Relationships Between Pixels 79

It is possible to use more neighbors in interpolation, and there are more complex
techniques, such as using splines or wavelets, that in some instances can yield better
results than the methods just discussed. While preserving fine detail is an exception-
ally important consideration in image generation for 3-D graphics (for example, see
Hughes and Andries [2013]), the extra computational burden seldom is justifiable
for general-purpose digital image processing, where bilinear or bicubic interpola-
tion typically are the methods of choice.

2.5 SOME BASIC RELATIONSHIPS BETWEEN PIXELS

In this section, we discuss several important relationships between pixels in a digital
image. When referring in the following discussion to particular pixels, we use lower-
case letters, such as p and q.

NEIGHBORS OF A PIXEL

A pixel p at coordinates (,)x y has two horizontal and two vertical neighbors with
coordinates

 (,), (,), (,), (,)x y x y x y x y+ − + −1 1 1 1

This set of pixels, called the 4-neighbors of p, is denoted N p4().
The four diagonal neighbors of p have coordinates

 (,), (,), (,), (,)x y x y x y x y+ + + − − + − −1 1 1 1 1 1 1 1

and are denoted N pD(). These neighbors, together with the 4-neighbors, are called
the 8-neighbors of p, denoted by N p8(). The set of image locations of the neighbors
of a point p is called the neighborhood of p. The neighborhood is said to be closed if
it contains p. Otherwise, the neighborhood is said to be open.

ADJACENCY, CONNECTIVITY, REGIONS, AND BOUNDARIES

Let V be the set of intensity values used to define adjacency. In a binary image,
V = { }1 if we are referring to adjacency of pixels with value 1. In a grayscale image,
the idea is the same, but set V typically contains more elements. For example, if we
are dealing with the adjacency of pixels whose values are in the range 0 to 255, set V
could be any subset of these 256 values. We consider three types of adjacency:

1. 4-adjacency. Two pixels p and q with values from V are 4-adjacent if q is in the
set N p4().

2. 8-adjacency. Two pixels p and q with values from V are 8-adjacent if q is in the
set N p8().

3. m-adjacency (also called mixed adjacency). Two pixels p and q with values from
V are m-adjacent if

2.5

DIP4E_GLOBAL_Print_Ready.indb 79 6/16/2017 2:02:24 PM

80 Chapter 2 Digital Image Fundamentals

(a) q is in N p4(), or
(b) q is in N pD() and the set N p N q4 4() ()¨ has no pixels whose values are

from V.

Mixed adjacency is a modification of 8-adjacency, and is introduced to eliminate the
ambiguities that may result from using 8-adjacency. For example, consider the pixel
arrangement in Fig. 2.28(a) and let V = { }1 . The three pixels at the top of Fig. 2.28(b)
show multiple (ambiguous) 8-adjacency, as indicated by the dashed lines. This ambi-
guity is removed by using m-adjacency, as in Fig. 2.28(c). In other words, the center
and upper-right diagonal pixels are not m-adjacent because they do not satisfy con-
dition (b).

A digital path (or curve) from pixel p with coordinates (,)x y0 0 to pixel q with
coordinates (,)x yn n is a sequence of distinct pixels with coordinates

 (,), (,), , (,)x y x y x yn n0 0 1 1 …

where points (,)x yi i and (,)x yi i− −1 1 are adjacent for 1 ≤ ≤i n. In this case, n is the
length of the path. If (,) (,)x y x yn n0 0 = the path is a closed path. We can define 4-, 8-,
or m-paths, depending on the type of adjacency specified. For example, the paths in
Fig. 2.28(b) between the top right and bottom right points are 8-paths, and the path
in Fig. 2.28(c) is an m-path.

Let S represent a subset of pixels in an image. Two pixels p and q are said to be
connected in S if there exists a path between them consisting entirely of pixels in S.
For any pixel p in S, the set of pixels that are connected to it in S is called a connected
component of S. If it only has one component, and that component is connected,
then S is called a connected set.

Let R represent a subset of pixels in an image. We call R a region of the image if R
is a connected set. Two regions, Ri and Rj are said to be adjacent if their union forms
a connected set. Regions that are not adjacent are said to be disjoint. We consider 4-
and 8-adjacency when referring to regions. For our definition to make sense, the type
of adjacency used must be specified. For example, the two regions of 1’s in Fig. 2.28(d)
are adjacent only if 8-adjacency is used (according to the definition in the previous

We use the symbols
¨ and ´ to denote set
intersection and union,
respectively. Given sets
A and B, recall that
their intersection is the
set of elements that
are members of both
A and B. The union of
these two sets is the set
of elements that are
members of A, of B, or
of both. We will discuss
sets in more detail in
Section 2.6.

0 1 1
0 1 0
0 0 1

0
0
0
0
0
0

0
1
1
1
1
0

0
0
0
0
0
0

1 1 1
1 0 1
0 1 0

Ri

Rj

0 0 1
1 1 1
1 1 1

0
0
0
0
0
0

0
1
1
1
1
0

0
1
1
1
1
0

0
0
0
1
1
0

0
0
0
0
0
0

0 1 1
0 1 0
0 0 1

0
0
0

1 1
1 0
0 1

ba c ed f

FIGURE 2.28 (a) An arrangement of pixels. (b) Pixels that are 8-adjacent (adjacency is shown by dashed lines).
(c) m-adjacency. (d) Two regions (of 1’s) that are 8-adjacent. (e) The circled point is on the boundary of the 1-valued
pixels only if 8-adjacency between the region and background is used. (f) The inner boundary of the 1-valued region
does not form a closed path, but its outer boundary does.

DIP4E_GLOBAL_Print_Ready.indb 80 6/16/2017 2:02:25 PM

2.5 Some Basic Relationships Between Pixels 81

paragraph, a 4-path between the two regions does not exist, so their union is not a
connected set).

Suppose an image contains K disjoint regions, R k Kk , , , , ,=1 2 … none of which
touches the image border.† Let Ru denote the union of all the K regions, and let
Ru

c() denote its complement (recall that the complement of a set A is the set of
points that are not in A). We call all the points in Ru the foreground, and all the
points in Ru

c() the background of the image.
The boundary (also called the border or contour) of a region R is the set of pixels in

R that are adjacent to pixels in the complement of R. Stated another way, the border
of a region is the set of pixels in the region that have at least one background neigh-
bor. Here again, we must specify the connectivity being used to define adjacency. For
example, the point circled in Fig. 2.28(e) is not a member of the border of the 1-val-
ued region if 4-connectivity is used between the region and its background, because
the only possible connection between that point and the background is diagonal.
As a rule, adjacency between points in a region and its background is defined using
8-connectivity to handle situations such as this.

The preceding definition sometimes is referred to as the inner border of the
region to distinguish it from its outer border, which is the corresponding border in
the background. This distinction is important in the development of border-follow-
ing algorithms. Such algorithms usually are formulated to follow the outer boundary
in order to guarantee that the result will form a closed path. For instance, the inner
border of the 1-valued region in Fig. 2.28(f) is the region itself. This border does not
satisfy the definition of a closed path. On the other hand, the outer border of the
region does form a closed path around the region.

If R happens to be an entire image, then its boundary (or border) is defined as the
set of pixels in the first and last rows and columns of the image. This extra definition
is required because an image has no neighbors beyond its border. Normally, when
we refer to a region, we are referring to a subset of an image, and any pixels in the
boundary of the region that happen to coincide with the border of the image are
included implicitly as part of the region boundary.

The concept of an edge is found frequently in discussions dealing with regions
and boundaries. However, there is a key difference between these two concepts. The
boundary of a finite region forms a closed path and is thus a “global” concept. As we
will discuss in detail in Chapter 10, edges are formed from pixels with derivative val-
ues that exceed a preset threshold. Thus, an edge is a “local” concept that is based on
a measure of intensity-level discontinuity at a point. It is possible to link edge points
into edge segments, and sometimes these segments are linked in such a way that
they correspond to boundaries, but this is not always the case. The one exception in
which edges and boundaries correspond is in binary images. Depending on the type
of connectivity and edge operators used (we will discuss these in Chapter 10), the
edge extracted from a binary region will be the same as the region boundary. This is

† We make this assumption to avoid having to deal with special cases. This can be done without loss of generality
because if one or more regions touch the border of an image, we can simply pad the image with a 1-pixel-wide
border of background values.

DIP4E_GLOBAL_Print_Ready.indb 81 6/16/2017 2:02:26 PM

82 Chapter 2 Digital Image Fundamentals

intuitive. Conceptually, until we arrive at Chapter 10, it is helpful to think of edges
as intensity discontinuities, and of boundaries as closed paths.

DISTANCE MEASURES

For pixels p, q, and s, with coordinates (,)x y , (,)u v , and (,),w z respectively, D
is a distance function or metric if

(a) D p q D p q p q(,) ((,))≥ 0 0= =iff ,
(b) D p q D q p(,) (,)= , and
(c) D p s D p q D q s(,) (,) (,).≤ +

The Euclidean distance between p and q is defined as

 D p q x ye(,) () ()= − + −⎡⎣ ⎤⎦u v2 2
1
2 (2-19)

For this distance measure, the pixels having a distance less than or equal to some
value r from (,)x y are the points contained in a disk of radius r centered at (,)x y .

The D4 distance, (called the city-block distance) between p and q is defined as

 D p q x y4(,) = − −u v+ (2-20)

In this case, pixels having a D4 distance from (,)x y that is less than or equal to some
value d form a diamond centered at (,)x y . For example, the pixels with D4 distance ≤ 2
from (,)x y (the center point) form the following contours of constant distance:

2

2 1 2

2 1 0 1 2

2 1 2

2

The pixels with D4 1= are the 4-neighbors of (,)x y .
The D8 distance (called the chessboard distance) between p and q is defined as

 D p q x y8(,) max(,)= − −u v (2-21)

In this case, the pixels with D8 distance from (,)x y less than or equal to some value d
form a square centered at (,)x y . For example, the pixels with D8 distance ≤ 2 form
the following contours of constant distance:

2 2 2 2 2

2 1 1 1 2

2 1 0 1 2

2 1 1 1 2

2 2 2 2 2

The pixels with D8 1= are the 8-neighbors of the pixel at (,)x y .

DIP4E_GLOBAL_Print_Ready.indb 82 6/16/2017 2:02:28 PM

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 83

Note that the D4 and D8 distances between p and q are independent of any paths
that might exist between these points because these distances involve only the coor-
dinates of the points. In the case of m-adjacency, however, the Dm distance between
two points is defined as the shortest m-path between the points. In this case, the
distance between two pixels will depend on the values of the pixels along the path,
as well as the values of their neighbors. For instance, consider the following arrange-
ment of pixels and assume that p, p2 , and p4 have a value of 1, and that p1 and p3
can be 0 or 1:

p p

p p

p

3 4

1 2

Suppose that we consider adjacency of pixels valued 1 (i.e.,V = { }1). If p1 and p3 are 0,
the length of the shortest m-path (the Dm distance) between p and p4 is 2. If p1 is 1,
then p2 and p will no longer be m-adjacent (see the definition of m-adjacency given
earlier) and the length of the shortest m-path becomes 3 (the path goes through the
points pp p p1 2 4). Similar comments apply if p3 is 1 (and p1 is 0); in this case, the
length of the shortest m-path also is 3. Finally, if both p1 and p3 are 1, the length of
the shortest m-path between p and p4 is 4. In this case, the path goes through the
sequence of points pp p p p1 2 3 4.

2.6 INTRODUCTION TO THE BASIC MATHEMATICAL TOOLS USED IN
DIGITAL IMAGE PROCESSING

This section has two principal objectives: (1) to introduce various mathematical
tools we use throughout the book; and (2) to help you begin developing a “feel” for
how these tools are used by applying them to a variety of basic image-processing
tasks, some of which will be used numerous times in subsequent discussions.

ELEMENTWISE VERSUS MATRIX OPERATIONS

An elementwise operation involving one or more images is carried out on a pixel-by-
pixel basis. We mentioned earlier in this chapter that images can be viewed equiva-
lently as matrices. In fact, as you will see later in this section, there are many situ-
ations in which operations between images are carried out using matrix theory. It
is for this reason that a clear distinction must be made between elementwise and
matrix operations. For example, consider the following 2 2* images (matrices):

a a

a a

b b

b b
11 12

21 22

11 12

21 22

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥and

The elementwise product (often denoted using the symbol } or z) of these two
images is

a a

a a

b b

b b

a b a b

a b a
11 12

21 22

11 12

21 22

11 11 12 12

21 21 2

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =}

22 22b
⎡

⎣
⎢

⎤

⎦
⎥

2.6

You may find it helpful
to download and study
the review material
dealing with probability,
vectors, linear algebra,
and linear systems. The
review is available in the
Tutorials section of the
book website.

The elementwise product
of two matrices is also
called the Hadamard
product of the matrices.

The symbol | is often
used to denote element-
wise division.

DIP4E_GLOBAL_Print_Ready.indb 83 6/16/2017 2:02:29 PM

84 Chapter 2 Digital Image Fundamentals

That is, the elementwise product is obtained by multiplying pairs of corresponding
pixels. On the other hand, the matrix product of the images is formed using the rules
of matrix multiplication:

a a

a a

b b

b b

a b a b a b a11 12

21 22

11 12

21 22

11 11 12 21 11 12⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

+ + 112 22

21 11 22 21 21 12 22 22

b

a b a b a b a b+ +
⎡

⎣
⎢

⎤

⎦
⎥

We assume elementwise operations throughout the book, unless stated otherwise.
For example, when we refer to raising an image to a power, we mean that each indi-
vidual pixel is raised to that power; when we refer to dividing an image by another,
we mean that the division is between corresponding pixel pairs, and so on. The terms
elementwise addition and subtraction of two images are redundant because these are
elementwise operations by definition. However, you may see them used sometimes
to clarify notational ambiguities.

LINEAR VERSUS NONLINEAR OPERATIONS

One of the most important classifications of an image processing method is whether
it is linear or nonlinear. Consider a general operator, �, that produces an output
image, g x y(,), from a given input image, f x y(,):

 � f x y g x y(,) (,)[] = (2-22)

Given two arbitrary constants, a and b, and two arbitrary images f x y1(,) and f x y2(,),
� is said to be a linear operator if

� � �a f x y b f x y a f x y b f x y

ag x y bg
1 2 1 2

1 2

(,) (,) (,) (,)

(,) (

+[] = [] + []
= + xx y,)

 (2-23)

This equation indicates that the output of a linear operation applied to the sum of
two inputs is the same as performing the operation individually on the inputs and
then summing the results. In addition, the output of a linear operation on a con-
stant multiplied by an input is the same as the output of the operation due to the
original input multiplied by that constant. The first property is called the property
of additivity, and the second is called the property of homogeneity. By definition, an
operator that fails to satisfy Eq. (2-23) is said to be nonlinear.

As an example, suppose that � is the sum operator, Σ. The function performed
by this operator is simply to sum its inputs. To test for linearity, we start with the left
side of Eq. (2-23) and attempt to prove that it is equal to the right side:

a f x y b f x y a f x y b f x y

a f x y b f x y

1 2 1 2

1 2

(,) (,) (,) (,)

(,) (,)

+[] = +

= +
∑ ∑∑

∑∑∑
= +ag x y bg x y1 2(,) (,)

where the first step follows from the fact that summation is distributive. So, an
expansion of the left side is equal to the right side of Eq. (2-23), and we conclude
that the sum operator is linear.

These are image
summations, not the
sums of all the elements
of an image.

DIP4E_GLOBAL_Print_Ready.indb 84 6/16/2017 2:02:30 PM

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 85

On the other hand, suppose that we are working with the max operation, whose
function is to find the maximum value of the pixels in an image. For our purposes
here, the simplest way to prove that this operator is nonlinear is to find an example
that fails the test in Eq. (2-23). Consider the following two images

 f f1 2

0 2

2 3

6 5

4 7
=

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥and

and suppose that we let a = 1 and b = −1. To test for linearity, we again start with the
left side of Eq. (2-23):

max () () max1

0 2

2 3
1

6 5

4 7

6 3

2 4
⎡

⎣
⎢

⎤

⎦
⎥ + −

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

=
− −
− −

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫⎫
⎬
⎭

= −2

Working next with the right side, we obtain

 ()max ()max ()1
0 2

2 3
1

6 5

4 7
3 1 7 4

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

+ −
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

= + − = −

The left and right sides of Eq. (2-23) are not equal in this case, so we have proved
that the max operator is nonlinear.

As you will see in the next three chapters, linear operations are exceptionally impor-
tant because they encompass a large body of theoretical and practical results that are
applicable to image processing. The scope of nonlinear operations is considerably
more limited. However, you will encounter in the following chapters several nonlin-
ear image processing operations whose performance far exceeds what is achievable
by their linear counterparts.

ARITHMETIC OPERATIONS

Arithmetic operations between two images f x y(,) and g x y(,) are denoted as

s x y f x y g x y

d x y f x y g x y

p x y f x y g x

(,) (,) (,)

(,) (,) (,)

(,) (,) (,

= +
= −
= × yy

x y f x y g x y

)

(,) (,) (,)v = ÷

 (2-24)

These are elementwise operations which, as noted earlier in this section, means
that they are performed between corresponding pixel pairs in f and g for
x M= −0 1 2 1, , , ,… and y N= −0 1 2 1, , , , .… As usual, M and N are the row and
column sizes of the images. Clearly, s, d, p, and v are images of size M N× also.
Note that image arithmetic in the manner just defined involves images of the same
size. The following examples illustrate the important role of arithmetic operations
in digital image processing.

DIP4E_GLOBAL_Print_Ready.indb 85 6/16/2017 2:02:31 PM

86 Chapter 2 Digital Image Fundamentals

EXAMPLE 2.5 : Using image addition (averaging) for noise reduction.

Suppose that g x y(,) is a corrupted image formed by the addition of noise, h(,)x y , to a noiseless image
f x y(,) ; that is,

 g x y f x y x y(,) (,) (,)= + h (2-25)

where the assumption is that at every pair of coordinates (,)x y the noise is uncorrelated† and has
zero average value. We assume also that the noise and image values are uncorrelated (this is a typical
assumption for additive noise). The objective of the following procedure is to reduce the noise content
of the output image by adding a set of noisy input images, g x yi(,) .{ } This is a technique used frequently
for image enhancement.

If the noise satisfies the constraints just stated, it can be shown (Problem 2.26) that if an image g x y(,)
is formed by averaging K different noisy images,

 g x y
K

g x yi
i

K

(,) (,)=
=
∑1

1

 (2-26)

then it follows that

 E g x y f x y(,) (,){ } = (2-27)

and

 s shg x y x yK(,) (,)
2 21= (2-28)

where E g x y(,){ } is the expected value of g x y(,), and sg x y(,)
2 and sh(,)x y

2 are the variances of g x y(,) and
h(,)x y , respectively, all at coordinates (,)x y . These variances are arrays of the same size as the input
image, and there is a scalar variance value for each pixel location.

The standard deviation (square root of the variance) at any point (,)x y in the average image is

 s shg x y x y
K

(,) (,)= 1
 (2-29)

As K increases, Eqs. (2-28) and (2-29) indicate that the variability (as measured by the variance or the
standard deviation) of the pixel values at each location (,)x y decreases. Because E g x y f x y(,) (,),{ } =
this means that g x y(,) approaches the noiseless image f x y(,) as the number of noisy images used in the
averaging process increases. In order to avoid blurring and other artifacts in the output (average) image,
it is necessary that the images g x yi(,) be registered (i.e., spatially aligned).

An important application of image averaging is in the field of astronomy, where imaging under
very low light levels often cause sensor noise to render individual images virtually useless for analysis
(lowering the temperature of the sensor helps reduce noise). Figure 2.29(a) shows an 8-bit image of the
Galaxy Pair NGC 3314, in which noise corruption was simulated by adding to it Gaussian noise with
zero mean and a standard deviation of 64 intensity levels. This image, which is representative of noisy
astronomical images taken under low light conditions, is useless for all practical purposes. Figures
2.29(b) through (f) show the results of averaging 5, 10, 20, 50, and 100 images, respectively. We see from
Fig. 2.29(b) that an average of only 10 images resulted in some visible improvement. According to Eq.

† The variance of a random variable z with mean z is defined as E z z{() }− 2 , where E{ }� is the expected value of the argument. The covari-
ance of two random variables zi and zj is defined as E z z z zi i j j{()()}.− − If the variables are uncorrelated, their covariance is 0, and vice
versa. (Do not confuse correlation and statistical independence. If two random variables are statistically independent, their correlation is
zero. However, the converse is not true in general.)

DIP4E_GLOBAL_Print_Ready.indb 86 6/16/2017 2:02:33 PM

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 87

(2-29), the standard deviation of the noise in Fig. 2.29(b) is less than half (.)1 5 0 45= the standard
deviation of the noise in Fig. 2.29(a), or (.)()0 45 64 29≈ intensity levels. Similarly, the standard devia-
tions of the noise in Figs. 2.29(c) through (f) are 0.32, 0.22, 0.14, and 0.10 of the original, which translates
approximately into 20, 14, 9, and 6 intensity levels, respectively. We see in these images a progression
of more visible detail as the standard deviation of the noise decreases. The last two images are visually
identical for all practical purposes. This is not unexpected, as the difference between the standard devia-
tions of their noise level is only about 3 intensity levels According to the discussion in connection with
Fig. 2.5, this difference is below what a human generally is able to detect.

EXAMPLE 2.6 : Comparing images using subtraction.

Image subtraction is used routinely for enhancing differences between images. For example, the image
in Fig. 2.30(b) was obtained by setting to zero the least-significant bit of every pixel in Fig. 2.30(a).
Visually, these images are indistinguishable. However, as Fig. 2.30(c) shows, subtracting one image from

ba c
ed f

FIGURE 2.29 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)-(f) Result of averaging
5, 10, 20, 50, and 1,00 noisy images, respectively. All images are of size 566 598× pixels, and all were scaled so that
their intensities would span the full [0, 255] intensity scale. (Original image courtesy of NASA.)

DIP4E_GLOBAL_Print_Ready.indb 87 6/16/2017 2:02:34 PM

88 Chapter 2 Digital Image Fundamentals

the other clearly shows their differences. Black (0) values in the difference image indicate locations
where there is no difference between the images in Figs. 2.30(a) and (b).

We saw in Fig. 2.23 that detail was lost as the resolution was reduced in the chronometer image
shown in Fig. 2.23(a). A vivid indication of image change as a function of resolution can be obtained
by displaying the differences between the original image and its various lower-resolution counterparts.
Figure 2.31(a) shows the difference between the 930 dpi and 72 dpi images. As you can see, the dif-
ferences are quite noticeable. The intensity at any point in the difference image is proportional to the
magnitude of the numerical difference between the two images at that point. Therefore, we can analyze
which areas of the original image are affected the most when resolution is reduced. The next two images
in Fig. 2.31 show proportionally less overall intensities, indicating smaller differences between the 930 dpi
image and 150 dpi and 300 dpi images, as expected.

ba c

FIGURE 2.30 (a) Infrared image of the Washington, D.C. area. (b) Image resulting from setting to zero the least
significant bit of every pixel in (a). (c) Difference of the two images, scaled to the range [0, 255] for clarity. (Original
image courtesy of NASA.)

ba c

FIGURE 2.31 (a) Difference between the 930 dpi and 72 dpi images in Fig. 2.23. (b) Difference between the 930 dpi and
150 dpi images. (c) Difference between the 930 dpi and 300 dpi images.

DIP4E_GLOBAL_Print_Ready.indb 88 6/16/2017 2:02:35 PM

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 89

As a final illustration, we discuss briefly an area of medical imaging called mask mode radiography, a
commercially successful and highly beneficial use of image subtraction. Consider image differences of
the form

 g x y f x y h x y(,) (,) (,)= − (2-30)

In this case h x y(,), the mask, is an X-ray image of a region of a patient’s body captured by an intensified
TV camera (instead of traditional X-ray film) located opposite an X-ray source. The procedure consists
of injecting an X-ray contrast medium into the patient’s bloodstream, taking a series of images called
live images [samples of which are denoted as f x y(,)] of the same anatomical region as h x y(,), and sub-
tracting the mask from the series of incoming live images after injection of the contrast medium. The net
effect of subtracting the mask from each sample live image is that the areas that are different between
f x y(,) and h x y(,) appear in the output image, g x y(,), as enhanced detail. Because images can be cap-
tured at TV rates, this procedure outputs a video showing how the contrast medium propagates through
the various arteries in the area being observed.

Figure 2.32(a) shows a mask X-ray image of the top of a patient’s head prior to injection of an iodine
medium into the bloodstream, and Fig. 2.32(b) is a sample of a live image taken after the medium was

ba
dc

FIGURE 2.32
Digital
subtraction
angiography.
(a) Mask image.
(b) A live image.
(c) Difference
between (a) and
(b). (d) Enhanced
difference image.
(Figures (a) and
(b) courtesy of
the Image
Sciences
Institute,
University
Medical Center,
Utrecht, The
Netherlands.)

DIP4E_GLOBAL_Print_Ready.indb 89 6/16/2017 2:02:35 PM

90 Chapter 2 Digital Image Fundamentals

injected. Figure 2.32(c) is the difference between (a) and (b). Some fine blood vessel structures are vis-
ible in this image. The difference is clear in Fig. 2.32(d), which was obtained by sharpening the image and
enhancing its contrast (we will discuss these techniques in the next chapter). Figure 2.32(d) is a “snap-
shot” of how the medium is propagating through the blood vessels in the subject’s brain.

EXAMPLE 2.7 : Using image multiplication and division for shading correction and for masking.

An important application of image multiplication (and division) is shading correction. Suppose that an
imaging sensor produces images that can be modeled as the product of a “perfect image,” denoted by
f x y(,), times a shading function, h x y(,); that is, g x y f x y h x y(,) (,) (,)= . If h x y(,) is known or can be
estimated, we can obtain f x y(,) (or an estimate of it) by multiplying the sensed image by the inverse of
h x y(,) (i.e., dividing g by h using elementwise division). If access to the imaging system is possible, we
can obtain a good approximation to the shading function by imaging a target of constant intensity. When
the sensor is not available, we often can estimate the shading pattern directly from a shaded image using
the approaches discussed in Sections 3.5 and 9.8. Figure 2.33 shows an example of shading correction
using an estimate of the shading pattern. The corrected image is not perfect because of errors in the
shading pattern (this is typical), but the result definitely is an improvement over the shaded image in Fig.
2.33 (a). See Section 3.5 for a discussion of how we estimated Fig. 2.33 (b). Another use of image mul-
tiplication is in masking, also called region of interest (ROI), operations. As Fig. 2.34 shows, the process
consists of multiplying a given image by a mask image that has 1’s in the ROI and 0’s elsewhere. There
can be more than one ROI in the mask image, and the shape of the ROI can be arbitrary.

A few comments about implementing image arithmetic operations are in order
before we leave this section. In practice, most images are displayed using 8 bits (even
24-bit color images consist of three separate 8-bit channels). Thus, we expect image
values to be in the range from 0 to 255. When images are saved in a standard image
format, such as TIFF or JPEG, conversion to this range is automatic. When image
values exceed the allowed range, clipping or scaling becomes necessary. For example,
the values in the difference of two 8-bit images can range from a minimum of −255

ba c

FIGURE 2.33 Shading correction. (a) Shaded test pattern. (b) Estimated shading pattern. (c) Product of (a) by the
reciprocal of (b). (See Section 3.5 for a discussion of how (b) was estimated.)

DIP4E_GLOBAL_Print_Ready.indb 90 6/16/2017 2:02:37 PM

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 91

to a maximum of 255, and the values of the sum of two such images can range from 0
to 510. When converting images to eight bits, many software applications simply set
all negative values to 0 and set to 255 all values that exceed this limit. Given a digital
image g resulting from one or more arithmetic (or other) operations, an approach
guaranteeing that the full range of a values is “captured” into a fixed number of bits
is as follows. First, we perform the operation

 g g gm = − min() (2-31)

which creates an image whose minimum value is 0. Then, we perform the operation

 g K g gs m m= []max() (2-32)

which creates a scaled image, gs , whose values are in the range [0, K]. When working
with 8-bit images, setting K = 255 gives us a scaled image whose intensities span the
full 8-bit scale from 0 to 255. Similar comments apply to 16-bit images or higher. This
approach can be used for all arithmetic operations. When performing division, we
have the extra requirement that a small number should be added to the pixels of the
divisor image to avoid division by 0.

SET AND LOGICAL OPERATIONS

In this section, we discuss the basics of set theory. We also introduce and illustrate
some important set and logical operations.

Basic Set Operations

A set is a collection of distinct objects. If a is an element of set A, then we write

 a A∈ (2-33)

Similarly, if a is not an element of A we write

 a Ax (2-34)

The set with no elements is called the null or empty set, and is denoted by ∅ .

These are elementwise
subtraction and division.

ba c

FIGURE 2.34 (a) Digital dental X-ray image. (b) ROI mask for isolating teeth with fillings (white corresponds to 1 and
black corresponds to 0). (c) Product of (a) and (b).

DIP4E_GLOBAL_Print_Ready.indb 91 6/16/2017 2:02:37 PM

92 Chapter 2 Digital Image Fundamentals

A set is denoted by the contents of two braces: { }.i For example, the expression

 C c c d d D= ={ }- H,

means that C is the set of elements, c, such that c is formed by multiplying each of
the elements of set D by −1.

If every element of a set A is also an element of a set B, then A is said to be a
subset of B, denoted as

 A B8 (2-35)

The union of two sets A and B, denoted as

 C A B= ´ (2-36)

is a set C consisting of elements belonging either to A, to B, or to both. Similarly, the
intersection of two sets A and B, denoted by

 D A B= ¨ (2-37)

is a set D consisting of elements belonging to both A and B. Sets A and B are said to
be disjoint or mutually exclusive if they have no elements in common, in which case,

 A B¨ = ∅ (2-38)

The sample space, Æ, (also called the set universe) is the set of all possible set
elements in a given application. By definition, these set elements are members of
the sample space for that application. For example, if you are working with the set
of real numbers, then the sample space is the real line, which contains all the real
numbers. In image processing, we typically define Æ to be the rectangle containing
all the pixels in an image.

The complement of a set A is the set of elements that are not in A:

 A Ac = { }w w x (2-39)

The difference of two sets A and B, denoted A B− , is defined as

 A B A B A Bc− = { } =w w wH x ¨, (2-40)

This is the set of elements that belong to A, but not to B. We can define Ac in terms
of Æ and the set difference operation; that is, A Ac = −Æ . Table 2.1 shows several
important set properties and relationships.

Figure 2.35 shows diagrammatically (in so-called Venn diagrams) some of the set
relationships in Table 2.1. The shaded areas in the various figures correspond to the
set operation indicated above or below the figure. Figure 2.35(a) shows the sample
set, Æ. As no earlier, this is the set of all possible elements in a given application. Fig-
ure 2.35(b) shows that the complement of a set A is the set of all elements in Æ that
are not in A, which agrees with our earlier definition. Observe that Figs. 2.35(e) and
(g) are identical, which proves the validity of Eq. (2-40) using Venn diagrams. This

DIP4E_GLOBAL_Print_Ready.indb 92 6/16/2017 2:02:38 PM

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 93

is an example of the usefulness of Venn diagrams for proving equivalences between
set relationships.

When applying the concepts just discussed to image processing, we let sets repre-
sent objects (regions) in a binary image, and the elements of the sets are the (,)x y
coordinates of those objects. For example, if we want to know whether two objects,
A and B, of a binary image overlap, all we have to do is compute A B¨ . If the result
is not the empty set, we know that some of the elements of the two objects overlap.
Keep in mind that the only way that the operations illustrated in Fig. 2.35 can make
sense in the context of image processing is if the images containing the sets are
binary, in which case we can talk about set membership based on coordinates, the
assumption being that all members of the sets have the same intensity value (typi-
cally denoted by 1). We will discuss set operations involving binary images in more
detail in the following section and in Chapter 9.

The preceding concepts are not applicable when dealing with grayscale images,
because we have not defined yet a mechanism for assigning intensity values to the
pixels resulting from a set operation. In Sections 3.8 and 9.6 we will define the union
and intersection operations for grayscale values as the maximum and minimum of
corresponding pixel pairs, respectively. We define the complement of a grayscale
image as the pairwise differences between a constant and the intensity of every pixel
in the image. The fact that we deal with corresponding pixel pairs tells us that gray-
scale set operations are elementwise operations, as defined earlier. The following
example is a brief illustration of set operations involving grayscale images. We will
discuss these concepts further in the two sections just mentioned.

Description Expressions

Operations between the
sample space and null sets

Æ Æ Æ´ Æ Æ ¨c c= ∅ ∅ = ∅ = ∅ = ∅; ; ;

Union and intersection with
the null and sample space sets

A A A A A A´ ¨ ´ Æ Æ ¨ Æ∅ = ∅ = ∅ = =; ; ;

Union and intersection of a
set with itself

A A A A A A´ ¨= =;

Union and intersection of a
set with its complement

A A A Ac c´ Æ ¨= = ∅;

Commutative laws A B B A
A B B A

´ ´
¨ ¨

=
=

Associative laws () ()
() ()
A B C A B C
A B C A B C

´ ´ ´ ´
¨ ¨ ¨ ¨

=
=

Distributive laws () () ()
() () ()
A B C A C B C
A B C A C B C

´ ¨ ¨ ´ ¨
¨ ´ ´ ¨ ´

=
=

DeMorgan’s laws
()
()
A B A B
A B A B

c c c

c c c
´ ¨
¨ ´

=
=

TABLE 2.1
Some important
set operations
and relationships.

DIP4E_GLOBAL_Print_Ready.indb 93 6/16/2017 2:02:39 PM

94 Chapter 2 Digital Image Fundamentals

EXAMPLE 2.8 : Illustration of set operations involving grayscale images.

Let the elements of a grayscale image be represented by a set A whose elements are triplets of the form
(, ,)x y z , where x and y are spatial coordinates, and z denotes intensity values. We define the complement
of A as the set

 A x y K z x y z Ac = −{ }(, ,) (, ,) H

which is the set of pixels of A whose intensities have been subtracted from a constant K. This constant
is equal to the maximum intensity value in the image, 2 1k − , where k is the number of bits used to
represent z. Let A denote the 8-bit grayscale image in Fig. 2.36(a), and suppose that we want to form
the negative of A using grayscale set operations. The negative is the set complement, and this is an 8-bit
image, so all we have to do is let K = 255 in the set defined above:

 A x y z x y z Ac = −{ }(, ,) (, ,)255 H

Figure 2.36(b) shows the result. We show this only for illustrative purposes. Image negatives generally
are computed using an intensity transformation function, as discussed later in this section.

A
c

A B¨

A A

B

A B− Bc

B

C

A

A Bc¨ A B C¨ ´()

´A BΩ

B

ba dc
f he g

FIGURE 2.35 Venn diagrams corresponding to some of the set operations in Table 2.1. The results of the operations,
such as Ac , are shown shaded. Figures (e) and (g) are the same, proving via Venn diagrams that A B A Bc− = ¨
[see Eq. (2-40)].

DIP4E_GLOBAL_Print_Ready.indb 94 6/16/2017 2:02:40 PM

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 95

The union of two grayscale sets A and B with the same number of elements is defined as the set

 A B a b a A b B
z

´ H H= { }max(,) ,

where it is understood that the max operation is applied to pairs of corresponding elements. If A and B
are grayscale images of the same size, we see that their the union is an array formed from the maximum
intensity between pairs of spatially corresponding elements. As an illustration, suppose that A again
represents the image in Fig. 2.36(a), and let B denote a rectangular array of the same size as A, but in
which all values of z are equal to 3 times the mean intensity, z, of the elements of A. Figure 2.36(c) shows
the result of performing the set union, in which all values exceeding 3z appear as values from A and all
other pixels have value 3z, which is a mid-gray value.

Before leaving the discussion of sets, we introduce some additional concepts that
are used later in the book. The Cartesian product of two sets X and Y, denoted
X Y× , is the set of all possible ordered pairs whose first component is a member of
X and whose second component is a member of Y. In other words,

 X Y x y x X y Y* = H H(,) and{ } (2-41)

For example, if X is a set of M equally spaced values on the x-axis and Y is a set of N
equally spaced values on the y-axis, we see that the Cartesian product of these two
sets define the coordinates of an M-by-N rectangular array (i.e., the coordinates of
an image). As another example, if X and Y denote the specific x- and y-coordinates
of a group of 8-connected, 1-valued pixels in a binary image, then set X Y× repre-
sents the region (object) comprised of those pixels.

We follow convention
in using the symbol ×
to denote the Cartesian
product. This is not to
be confused with our
use of the same symbol
throughout the book
to denote the size of
an M-by-N image (i.e.,
M × N).

ba c

FIGURE 2.36
Set operations
involving grayscale
images. (a) Original
image. (b) Image
negative obtained
using grayscale set
complementation.
(c) The union of
image (a) and a
constant image.
(Original image
courtesy of G.E.
Medical Systems.)

DIP4E_GLOBAL_Print_Ready.indb 95 6/16/2017 2:02:41 PM

96 Chapter 2 Digital Image Fundamentals

A relation (or, more precisely, a binary relation) on a set A is a collection of
ordered pairs of elements from A. That is, a binary relation is a subset of the Carte-
sian product A A× . A binary relation between two sets, A and B, is a subset of A B× .

A partial order on a set S is a relation on S such that is:

(a) reflexive: for any a SH , a a;
(b) transitive: for any a b c S, , H , a b and b c implies that a c;
(c) antisymmetric: for any a b S, ,H a b and b a implies that a b= .

where, for example, a b reads “a is related to b.” This means that a and b are in set
, which itself is a subset of S S× according to the preceding definition of a relation.

A set with a partial order is called a partially ordered set.
Let the symbol denote an ordering relation. An expression of the form

 a a a an1 2 3 �

reads: a1 precedes a2 or is the same as a2 , a2 precedes a3 or is the same as a3 , and so on.
When working with numbers, the symbol typically is replaced by more traditional
symbols. For example, the set of real numbers ordered by the relation “less than or
equal to” (denoted by ≤) is a partially ordered set (see Problem 2.33). Similarly, the
set of natural numbers, paired with the relation “divisible by” (denoted by ÷), is a
partially ordered set.

Of more interest to us later in the book are strict orderings. A strict ordering on a
set S is a relation on S, such that is:

(a) antireflexive: for any a S a aH , ;¬
(b) transitive: for any a b c S, , ,H a b and b c implies that a c.

where ¬a a means that a is not related to a. Let the symbol denote a strict
ordering relation. An expression of the form

 a a a an1 2 3 �

reads a1 precedes a2 , a2 precedes a3, and so on. A set with a strict ordering is called
a strict-ordered set.

As an example, consider the set composed of the English alphabet of lowercase
letters, S a b c z= { }, , , ,� . Based on the preceding definition, the ordering

 a b c z�

is strict because no member of the set can precede itself (antireflexivity) and, for any
three letters in S, if the first precedes the second, and the second precedes the third,
then the first precedes the third (transitivity). Similarly, the set of integers paired
with the relation “less than (<)” is a strict-ordered set.

Logical Operations
Logical operations deal with TRUE (typically denoted by 1) and FALSE (typically
denoted by 0) variables and expressions. For our purposes, this means binary images

DIP4E_GLOBAL_Print_Ready.indb 96 6/16/2017 2:02:44 PM

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 97

composed of foreground (1-valued) pixels, and a background composed of 0-valued
pixels.

We work with set and logical operators on binary images using one of two basic
approaches: (1) we can use the coordinates of individual regions of foreground pix-
els in a single image as sets, or (2) we can work with one or more images of the same
size and perform logical operations between corresponding pixels in those arrays.

In the first category, a binary image can be viewed as a Venn diagram in which
the coordinates of individual regions of 1-valued pixels are treated as sets. The
union of these sets with the set composed of 0-valued pixels comprises the set uni-
verse, Æ. In this representation, we work with single images using all the set opera-
tions defined in the previous section. For example, given a binary image with two
1-valued regions, R1 and R2 , we can determine if the regions overlap (i.e., if they
have at least one pair of coordinates in common) by performing the set intersec-
tion operation R R1 2¨ (see Fig. 2.35). In the second approach, we perform logical
operations on the pixels of one binary image, or on the corresponding pixels of two
or more binary images of the same size.

Logical operators can be defined in terms of truth tables, as Table 2.2 shows for
two logical variables a and b. The logical AND operation (also denoted ¿) yields a 1
(TRUE) only when both a and b are 1. Otherwise, it yields 0 (FALSE). Similarly,
the logical OR (¡) yields 1 when both a or b or both are 1, and 0 otherwise. The
NOT ()� operator is self explanatory. When applied to two binary images, AND
and OR operate on pairs of corresponding pixels between the images. That is, they
are elementwise operators (see the definition of elementwise operators given earlier
in this chapter) in this context. The operators AND, OR, and NOT are functionally
complete, in the sense that they can be used as the basis for constructing any other
logical operator.

Figure 2.37 illustrates the logical operations defined in Table 2.2 using the second
approach discussed above. The NOT of binary image B1 is an array obtained by
changing all 1-valued pixels to 0, and vice versa. The AND of B1 and B2 contains a
1 at all spatial locations where the corresponding elements of B1 and B2 are 1; the
operation yields 0’s elsewhere. Similarly, the OR of these two images is an array
that contains a 1 in locations where the corresponding elements of B1, or B2 , or
both, are 1. The array contains 0’s elsewhere. The result in the fourth row of Fig. 2.37
corresponds to the set of 1-valued pixels in B1 but not in B2. The last row in the
figure is the XOR (exclusive OR) operation, which yields 1 in the locations where
the corresponding elements of B1 or B2 , (but not both) are 1. Note that the logical

a b a bAND a bOR NOT(a)

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

TABLE 2.2
Truth table
defining the
logical operators
AND(),¿
OR(),¡ and
NOT().�

DIP4E_GLOBAL_Print_Ready.indb 97 6/16/2017 2:02:46 PM

98 Chapter 2 Digital Image Fundamentals

expressions in the last two rows of Fig. 2.37 were constructed using operators from
Table 2.2; these are examples of the functionally complete nature of these operators.

We can arrive at the same results in Fig. 2.37 using the first approach discussed
above. To do this, we begin by labeling the individual 1-valued regions in each of
the two images (in this case there is only one such region in each image). Let A
and B denote the set of coordinates of all the 1-valued pixels in images B1 and B2 ,
respectively. Then we form a single array by ORing the two images, while keeping
the labels A and B. The result would look like the array B B1 2OR in Fig. 2.37, but
with the two white regions labeled A and B. In other words, the resulting array
would look like a Venn diagram. With reference to the Venn diagrams and set opera-
tions defined in the previous section, we obtain the results in the rightmost column
of Fig. 2.37 using set operations as follows: A Bc = NOT(),1 A B B B¨ = 1 2AND ,
A B B B´ = 1 2OR , and similarly for the other results in Fig. 2.37. We will make
extensive use in Chapter 9 of the concepts developed in this section.

SPATIAL OPERATIONS

Spatial operations are performed directly on the pixels of an image. We classify
spatial operations into three broad categories: (1) single-pixel operations, (2) neigh-
borhood operations, and (3) geometric spatial transformations.

FIGURE 2.37
Illustration of
logical operations
involving
foreground
(white) pixels.
Black represents
binary 0’s and
white binary 1’s.
The dashed lines
are shown for
reference only.
They are not part
of the result.

NOT

NOT(B1)

B1 AND B2

B1 OR B2

B1 AND [NOT (B2)]

B1 XOR B2

AND

B1

B1 B2

OR

XOR

AND-
NOT

DIP4E_GLOBAL_Print_Ready.indb 98 6/16/2017 2:02:46 PM

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 99

Single-Pixel Operations

The simplest operation we perform on a digital image is to alter the intensity of its
pixels individually using a transformation function, T, of the form:

 s T z= () (2-42)

where z is the intensity of a pixel in the original image and s is the (mapped) inten-
sity of the corresponding pixel in the processed image. For example, Fig. 2.38 shows
the transformation used to obtain the negative (sometimes called the complement)
of an 8-bit image. This transformation could be used, for example, to obtain the
negative image in Fig. 2.36, instead of using sets.

Neighborhood Operations

Let Sxy denote the set of coordinates of a neighborhood (see Section 2.5 regarding
neighborhoods) centered on an arbitrary point (,)x y in an image, f. Neighborhood
processing generates a corresponding pixel at the same coordinates in an output
(processed) image, g, such that the value of that pixel is determined by a specified
operation on the neighborhood of pixels in the input image with coordinates in the
set Sxy . For example, suppose that the specified operation is to compute the average
value of the pixels in a rectangular neighborhood of size m n× centered on (,)x y .
The coordinates of pixels in this region are the elements of set Sxy . Figures 2.39(a)
and (b) illustrate the process. We can express this averaging operation as

 g x y
mn

f r c
r c Sxy

(,) (,)
(,)

= ∑1

H
 (2-43)

where r and c are the row and column coordinates of the pixels whose coordinates
are in the set Sxy . Image g is created by varying the coordinates (,)x y so that the
center of the neighborhood moves from pixel to pixel in image f, and then repeat-
ing the neighborhood operation at each new location. For instance, the image in
Fig. 2.39(d) was created in this manner using a neighborhood of size 41 41× . The

Our use of the word
“negative” in this context
refers to the digital
equivalent of a
photographic negative,
not to the numerical
negative of the pixels in
the image.

s � T(z)

z

s0

0 255z0

255

FIGURE 2.38
Intensity
transformation
function used to
obtain the digital
equivalent of
photographic
negative of an
8-bit image..

DIP4E_GLOBAL_Print_Ready.indb 99 6/16/2017 2:02:47 PM

100 Chapter 2 Digital Image Fundamentals

net effect is to perform local blurring in the original image. This type of process is
used, for example, to eliminate small details and thus render “blobs” correspond-
ing to the largest regions of an image. We will discuss neighborhood processing in
Chapters 3 and 5, and in several other places in the book.

Geometric Transformations

We use geometric transformations modify the spatial arrangement of pixels in an
image. These transformations are called rubber-sheet transformations because they
may be viewed as analogous to “printing” an image on a rubber sheet, then stretch-
ing or shrinking the sheet according to a predefined set of rules. Geometric transfor-
mations of digital images consist of two basic operations:

The value of this pixel
is the average value of the
pixels in Sxy

Image f Image g

(x, y)(x, y)

Sxy

m

n
ba
dc

FIGURE 2.39
Local averaging
using neighbor-
hood processing.
The procedure is
illustrated in (a)
and (b) for a
rectangular
neighborhood.
(c) An aortic
angiogram (see
Section 1.3).
(d) The result of
using Eq. (2-43)
with m n= = 41.
The images are
of size 790 686×
pixels. (Original
image courtesy
of Dr. Thomas R.
Gest, Division of
Anatomical
Sciences,
University of
Michigan Medical
School.)

DIP4E_GLOBAL_Print_Ready.indb 100 6/16/2017 2:02:47 PM

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 101

1. Spatial transformation of coordinates.
2. Intensity interpolation that assigns intensity values to the spatially transformed

pixels.

The transformation of coordinates may be expressed as

′
′

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

x

y

x

y

t t

t t

x

y
T 11 12

21 22

 (2-44)

where (,)x y are pixel coordinates in the original image and (,)′ ′x y are the
corresponding pixel coordinates of the transformed image. For example, the
transformation (,) (,)′ ′ =x y x y2 2 shrinks the original image to half its size in both
spatial directions.

Our interest is in so-called affine transformations, which include scaling, translation,
rotation, and shearing. The key characteristic of an affine transformation in 2-D is
that it preserves points, straight lines, and planes. Equation (2-44) can be used to
express the transformations just mentioned, except translation, which would require
that a constant 2-D vector be added to the right side of the equation. However, it is
possible to use homogeneous coordinates to express all four affine transformations
using a single 3 3× matrix in the following general form:

′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤x

y

x

y

a a a

a a a

1 1 0 0 1

11 12 13

21 22 23A

⎦⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x

y

1

 (2-45)

This transformation can scale, rotate, translate, or sheer an image, depending on the
values chosen for the elements of matrix A. Table 2.3 shows the matrix values used
to implement these transformations. A significant advantage of being able to per-
form all transformations using the unified representation in Eq. (2-45) is that it pro-
vides the framework for concatenating a sequence of operations. For example, if we
want to resize an image, rotate it, and move the result to some location, we simply
form a 3 3× matrix equal to the product of the scaling, rotation, and translation
matrices from Table 2.3 (see Problems 2.36 and 2.37).

The preceding transformation moves the coordinates of pixels in an image to new
locations. To complete the process, we have to assign intensity values to those loca-
tions. This task is accomplished using intensity interpolation. We already discussed
this topic in Section 2.4. We began that discussion with an example of zooming an
image and discussed the issue of intensity assignment to new pixel locations. Zoom-
ing is simply scaling, as detailed in the second row of Table 2.3, and an analysis simi-
lar to the one we developed for zooming is applicable to the problem of assigning
intensity values to the relocated pixels resulting from the other transformations in
Table 2.3. As in Section 2.4, we consider nearest neighbor, bilinear, and bicubic inter-
polation techniques when working with these transformations.

We can use Eq. (2-45) in two basic ways. The first, is a forward mapping, which
consists of scanning the pixels of the input image and, at each location (,),x y com-

DIP4E_GLOBAL_Print_Ready.indb 101 6/16/2017 2:02:48 PM

102 Chapter 2 Digital Image Fundamentals

puting the spatial location (,)′ ′x y of the corresponding pixel in the output image
using Eq. (2-45) directly. A problem with the forward mapping approach is that two
or more pixels in the input image can be transformed to the same location in the
output image, raising the question of how to combine multiple output values into a
single output pixel value. In addition, it is possible that some output locations may
not be assigned a pixel at all. The second approach, called inverse mapping, scans
the output pixel locations and, at each location (,),′ ′x y computes the corresponding
location in the input image using (,) (,).x y = ′ ′−A x y1 It then interpolates (using one
of the techniques discussed in Section 2.4) among the nearest input pixels to deter-
mine the intensity of the output pixel value. Inverse mappings are more efficient to
implement than forward mappings, and are used in numerous commercial imple-
mentations of spatial transformations (for example, MATLAB uses this approach).

Transformation
Name Affine Matrix, A Coordinate

Equations Example

Identity 1

0

0

0

1

0

0

0

1
x′

y′
x x=′
y y=′

Translation

yy y t= +′
xx x t= +′1 0

0 1

0 0 1

x

y

t

t
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Shear (vertical) 1 0

0 1 0

0 0 1

s⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

v

y y=′
x x s y= +′ v

Shear (horizontal) 1 0 0

1 0

0 0 1
hs

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x x=′
hy s x y= +′

Scaling/Reflection
(For reflection, set one
scaling factor to −1
and the other to 0)

cx

0

0

0

cy

0

0

0

1

xx c x=′
yy c y=′

Rotation (about the
origin)

0cos u �sin u

sin u cos u 0

0 0 1

cos sinx x y= −′ u u

sin cosy x y= +′ u u

x′

y′

x′

x′

x′

x′

y′

y′

y′

y′

TABLE 2.3
Affine
transformations
based on
Eq. (2-45).

DIP4E_GLOBAL_Print_Ready.indb 102 6/16/2017 2:02:48 PM

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 103

EXAMPLE 2.9 : Image rotation and intensity interpolation.

The objective of this example is to illustrate image rotation using an affine transform. Figure 2.40(a)
shows a simple image and Figs. 2.40(b)–(d) are the results (using inverse mapping) of rotating the
original image by −21° (in Table 2.3, clockwise angles of rotation are negative). Intensity assignments
were computed using nearest neighbor, bilinear, and bicubic interpolation, respectively. A key issue in
image rotation is the preservation of straight-line features. As you can see in the enlarged edge sections
in Figs. 2.40(f) through (h), nearest neighbor interpolation produced the most jagged edges and, as in
Section 2.4, bilinear interpolation yielded significantly improved results. As before, using bicubic inter-
polation produced slightly better results. In fact, if you compare the progression of enlarged detail in
Figs. 2.40(f) to (h), you can see that the transition from white (255) to black (0) is smoother in the last
figure because the edge region has more values, and the distribution of those values is better balanced.
Although the small intensity differences resulting from bilinear and bicubic interpolation are not always
noticeable in human visual analysis, they can be important in processing image data, such as in auto-
mated edge following in rotated images.

The size of the spatial rectangle needed to contain a rotated image is larger than the rectangle of the
original image, as Figs. 2.41(a) and (b) illustrate. We have two options for dealing with this: (1) we can
crop the rotated image so that its size is equal to the size of the original image, as in Fig. 2.41(c), or we
can keep the larger image containing the full rotated original, an Fig. 2.41(d). We used the first option in
Fig. 2.40 because the rotation did not cause the object of interest to lie outside the bounds of the original
rectangle. The areas in the rotated image that do not contain image data must be filled with some value, 0
(black) being the most common. Note that counterclockwise angles of rotation are considered positive.
This is a result of the way in which our image coordinate system is set up (see Fig. 2.19), and the way in
which rotation is defined in Table 2.3.

Image Registration

Image registration is an important application of digital image processing used to
align two or more images of the same scene. In image registration, we have avail-
able an input image and a reference image. The objective is to transform the input
image geometrically to produce an output image that is aligned (registered) with the
reference image. Unlike the discussion in the previous section where transformation
functions are known, the geometric transformation needed to produce the output,
registered image generally is not known, and must be estimated.

Examples of image registration include aligning two or more images taken at
approximately the same time, but using different imaging systems, such as an MRI
(magnetic resonance imaging) scanner and a PET (positron emission tomography)
scanner. Or, perhaps the images were taken at different times using the same instru-
ments, such as satellite images of a given location taken several days, months, or even
years apart. In either case, combining the images or performing quantitative analysis
and comparisons between them requires compensating for geometric distortions
caused by differences in viewing angle, distance, orientation, sensor resolution, shifts
in object location, and other factors.

DIP4E_GLOBAL_Print_Ready.indb 103 6/16/2017 2:02:49 PM

104 Chapter 2 Digital Image Fundamentals

One of the principal approaches for solving the problem just discussed is to use tie
points (also called control points). These are corresponding points whose locations
are known precisely in the input and reference images. Approaches for selecting tie
points range from selecting them interactively to using algorithms that detect these
points automatically. Some imaging systems have physical artifacts (such as small
metallic objects) embedded in the imaging sensors. These produce a set of known
points (called reseau marks or fiducial marks) directly on all images captured by the
system. These known points can then be used as guides for establishing tie points.

The problem of estimating the transformation function is one of modeling. For
example, suppose that we have a set of four tie points each in an input and a refer-
ence image. A simple model based on a bilinear approximation is given by

 x c c c c= + + +1 2 3 4v w vw (2-46)

and

ba dc
f he g

FIGURE 2.40 (a) A 541 421× image of the letter T. (b) Image rotated −21° using nearest-neighbor interpolation for
intensity assignments. (c) Image rotated −21° using bilinear interpolation. (d) Image rotated −21° using bicubic
interpolation. (e)-(h) Zoomed sections (each square is one pixel, and the numbers shown are intensity values).

45

154

247

0

0

255

255 255

255 0

0 0

77

168

255

0 0

255

DIP4E_GLOBAL_Print_Ready.indb 104 6/16/2017 2:02:49 PM

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 105

x ¿

y ¿ y ¿

x ¿

y ¿

x ¿

y

x

Origin

Image f(x, y)

Positive
angle of
rotation

Positive
angle of
rotation

ba
dc

FIGURE 2.41
(a) A digital
image.
(b) Rotated image
(note the
counterclockwise
direction for a
positive angle of
rotation).
(c) Rotated image
cropped to fit the
same area as the
original image.
(d) Image
enlarged to
accommodate
the entire rotated
image.

y c c c c= + + +5 6 7 8v w vw (2-47)

During the estimation phase, (,)v w and (,)x y are the coordinates of tie points in the
input and reference images, respectively. If we have four pairs of corresponding tie
points in both images, we can write eight equations using Eqs. (2-46) and (2-47) and
use them to solve for the eight unknown coefficients, c1 through c8.

Once we have the coefficients, Eqs. (2-46) and (2-47) become our vehicle for trans-
forming all the pixels in the input image. The result is the desired registered image.
After the coefficients have been computed, we let (v,w) denote the coordinates of
each pixel in the input image, and (,)x y become the corresponding coordinates of the
output image. The same set of coefficients, c1 through c8, are used in computing all
coordinates (,)x y ; we just step through all (,)v w in the input image to generate the
corresponding (,)x y in the output, registered image. If the tie points were selected
correctly, this new image should be registered with the reference image, within the
accuracy of the bilinear approximation model.

In situations where four tie points are insufficient to obtain satisfactory regis-
tration, an approach used frequently is to select a larger number of tie points and
then treat the quadrilaterals formed by groups of four tie points as subimages. The
subimages are processed as above, with all the pixels within a quadrilateral being
transformed using the coefficients determined from the tie points corresponding
to that quadrilateral. Then we move to another set of four tie points and repeat the

DIP4E_GLOBAL_Print_Ready.indb 105 6/16/2017 2:02:50 PM

106 Chapter 2 Digital Image Fundamentals

procedure until all quadrilateral regions have been processed. It is possible to use
more complex regions than quadrilaterals, and to employ more complex models,
such as polynomials fitted by least squares algorithms. The number of control points
and sophistication of the model required to solve a problem is dependent on the
severity of the geometric distortion. Finally, keep in mind that the transformations
defined by Eqs. (2-46) and (2-47), or any other model for that matter, only map the
spatial coordinates of the pixels in the input image. We still need to perform inten-
sity interpolation using any of the methods discussed previously to assign intensity
values to the transformed pixels.

EXAMPLE 2.10 : Image registration.

Figure 2.42(a) shows a reference image and Fig. 2.42(b) shows the same image, but distorted geometri-
cally by vertical and horizontal shear. Our objective is to use the reference image to obtain tie points
and then use them to register the images. The tie points we selected (manually) are shown as small white
squares near the corners of the images (we needed only four tie points because the distortion is linear
shear in both directions). Figure 2.42(c) shows the registration result obtained using these tie points in
the procedure discussed in the preceding paragraphs. Observe that registration was not perfect, as is
evident by the black edges in Fig. 2.42(c). The difference image in Fig. 2.42(d) shows more clearly the
slight lack of registration between the reference and corrected images. The reason for the discrepancies
is error in the manual selection of the tie points. It is difficult to achieve perfect matches for tie points
when distortion is so severe.

VECTOR AND MATRIX OPERATIONS

Multispectral image processing is a typical area in which vector and matrix opera-
tions are used routinely. For example, you will learn in Chapter 6 that color images
are formed in RGB color space by using red, green, and blue component images, as
Fig. 2.43 illustrates. Here we see that each pixel of an RGB image has three compo-
nents, which can be organized in the form of a column vector

 z =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

z

z

z

1

2

3

 (2-48)

where z1 is the intensity of the pixel in the red image, and z2 and z3 are the corre-
sponding pixel intensities in the green and blue images, respectively. Thus, an RGB
color image of size M N× can be represented by three component images of this
size, or by a total of MN vectors of size 3 1× . A general multispectral case involving
n component images (e.g., see Fig. 1.10) will result in n-dimensional vectors:

 z =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

z

z

zn

1

2

�
 (2-49)

Recall that an
n-dimensional vector
can be thought of as a
point in n-dimensional
Euclidean space.

DIP4E_GLOBAL_Print_Ready.indb 106 6/16/2017 2:02:51 PM

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 107

 We will use this type of vector representation throughout the book.
The inner product (also called the dot product) of two n-dimensional column vec-

tors a and b is defined as

a b a bi �
�

T

n n

i i
i

n

a b a b a b

a b

= + + +

=
=
∑

1 1 2 2

1

 (2-50)

where T indicates the transpose. The Euclidean vector norm, denoted by z , is
defined as the square root of the inner product:

 z z z= ()T
1
2 (2-51)

The product abT is called
the outer product of a
and b. It is a matrix of
size n × n.

ba
dc

FIGURE 2.42
Image
registration.
(a) Reference
image. (b) Input
(geometrically
distorted image).
Corresponding tie
points are shown
as small white
squares near the
corners.
(c) Registered
(output) image
(note the errors
in the border).
(d) Difference
between (a) and
(c), showing more
registration errors.

DIP4E_GLOBAL_Print_Ready.indb 107 6/16/2017 2:02:51 PM

108 Chapter 2 Digital Image Fundamentals

Component image 3 (Blue)

Component image 2 (Green)

Component image 1 (Red)

z �
z1
z2
z3

FIGURE 2.43
Forming a vector
from
corresponding
pixel values in
three RGB
component
images.

We recognize this expression as the length of vector z.
We can use vector notation to express several of the concepts discussed earlier.

For example, the Euclidean distance, D(,)z a , between points (vectors) z and a in
n-dimensional space is defined as the Euclidean vector norm:

D

z a z a z a

T

n n

(,)

() () ()

z a z a z a z a= − = −() −()⎡
⎣

⎤
⎦

= − − −⎡

1
2

1 1
2

2 2
2 2+ + +�⎣⎣ ⎤⎦

1
2

 (2-52)

This is a generalization of the 2-D Euclidean distance defined in Eq. (2-19).
Another advantage of pixel vectors is in linear transformations, represented as

 w A z a= −() (2-53)

where A is a matrix of size m n× , and z and a are column vectors of size n × 1.
As noted in Eq. (2-10), entire images can be treated as matrices (or, equivalently,

as vectors), a fact that has important implication in the solution of numerous image
processing problems. For example, we can express an image of size M N× as a col-
umn vector of dimension MN × 1 by letting the first M elements of the vector equal
the first column of the image, the next M elements equal the second column, and
so on. With images formed in this manner, we can express a broad range of linear
processes applied to an image by using the notation

 g Hf n= + (2-54)

where f is an MN × 1 vector representing an input image, n is an MN × 1 vector rep-
resenting an M N× noise pattern, g is an MN × 1 vector representing a processed
image, and H is an MN MN× matrix representing a linear process applied to the
input image (see the discussion earlier in this chapter regarding linear processes).
It is possible, for example, to develop an entire body of generalized techniques for
image restoration starting with Eq. (2-54), as we discuss in Section 5.9. We will men-
tion the use of matrices again in the following section, and show other uses of matri-
ces for image processing in numerous chapters in the book.

DIP4E_GLOBAL_Print_Ready.indb 108 6/16/2017 2:02:52 PM

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 109

IMAGE TRANSFORMS

All the image processing approaches discussed thus far operate directly on the pixels
of an input image; that is, they work directly in the spatial domain. In some cases,
image processing tasks are best formulated by transforming the input images, carry-
ing the specified task in a transform domain, and applying the inverse transform to
return to the spatial domain. You will encounter a number of different transforms
as you proceed through the book. A particularly important class of 2-D linear trans-
forms, denoted T(,)u v , can be expressed in the general form

 T f x y r x y
y

N

x

M

(,) (,) (, , ,)u v u v=
==

∑∑
0

1

0

1 --
 (2-55)

where f x y(,) is an input image, r x y(, , ,)u v is called a forward transformation ker-
nel, and Eq. (2-55) is evaluated for u = −0 1 2 1, , , ,… M and v = −0 1 2 1, , , ,… N . As
before, x and y are spatial variables, while M and N are the row and column dimen-
sions of f. Variables u and v are called the transform variables. T(,)u v is called the
forward transform of f x y(,). Given T(,),u v we can recover f x y(,) using the inverse
transform of T(,):u v

 f x y T s x y
NM

(,) (,) (, , ,)=
==
∑∑ u v u v
vu 0

1

0

1 --
 (2-56)

for x M= −0 1 2 1, , , ,… and y N= −0 1 2 1, , , ,… , where s x y(, , ,)u v is called an inverse
transformation kernel. Together, Eqs. (2-55) and (2-56) are called a transform pair.

Figure 2.44 shows the basic steps for performing image processing in the linear
transform domain. First, the input image is transformed, the transform is then modi-
fied by a predefined operation and, finally, the output image is obtained by computing
the inverse of the modified transform. Thus, we see that the process goes from the
spatial domain to the transform domain, and then back to the spatial domain.

The forward transformation kernel is said to be separable if

 r x y r y(, , ,) (,)u v)=r (x, u v1 2 (2-57)

In addition, the kernel is said to be symmetric if r x1(,)u is functionally equal to
r y2(,)v , so that

 r x y r x r y(, , ,) (,) (,)u v u v= 1 1 (2-58)

Identical comments apply to the inverse kernel.
The nature of a transform is determined by its kernel. A transform of particular

importance in digital image processing is the Fourier transform, which has the fol-
lowing forward and inverse kernels:

 r x y e j ux M y N(, , ,) ()u v v= − +2p (2-59)

and

 s x y
MN

ej ux M y N(, , ,) ()u v v= +1 2p (2-60)

DIP4E_GLOBAL_Print_Ready.indb 109 6/16/2017 2:02:54 PM

110 Chapter 2 Digital Image Fundamentals

respectively, where j = −1, so these kernels are complex functions. Substituting the
preceding kernels into the general transform formulations in Eqs. (2-55) and (2-56)
gives us the discrete Fourier transform pair:

 T f x y e j ux M y N

y

N

x

M

(,) (,) ()u v v= − +

==
∑∑ 2

0

1

0

1
p

--
(2-61)

and

 f x y
MN

T ej ux M y N
NM

(,) (,) ()= +

==
∑∑1 2

0

1

0

1

u v v

vu

p
--

 (2-62)

It can be shown that the Fourier kernels are separable and symmetric (Problem 2.39),
and that separable and symmetric kernels allow 2-D transforms to be computed using
1-D transforms (see Problem 2.40). The preceding two equations are of fundamental
importance in digital image processing, as you will see in Chapters 4 and 5.

EXAMPLE 2.11 : Image processing in the transform domain.

Figure 2.45(a) shows an image corrupted by periodic (sinusoidal) interference. This type of interference
can be caused, for example, by a malfunctioning imaging system; we will discuss it in Chapter 5. In the
spatial domain, the interference appears as waves of intensity. In the frequency domain, the interference
manifests itself as bright bursts of intensity, whose location is determined by the frequency of the sinu-
soidal interference (we will discuss these concepts in much more detail in Chapters 4 and 5). Typi-
cally, the bursts are easily observable in an image of the magnitude of the Fourier transform, T(,) .u v
With reference to the diagram in Fig. 2.44, the corrupted image is f x y(,), the transform in the leftmost
box is the Fourier transform, and Fig. 2.45(b) is T(,)u v displayed as an image. The bright dots shown
are the bursts of intensity mentioned above. Figure 2.45(c) shows a mask image (called a filter) with
white and black representing 1 and 0, respectively. For this example, the operation in the second box of
Fig. 2.44 is to multiply the filter by the transform to remove the bursts associated with the interference.
Figure 2.45(d) shows the final result, obtained by computing the inverse of the modified transform. The
interference is no longer visible, and previously unseen image detail is now made quite clear. Observe,
for example, the fiducial marks (faint crosses) that are used for image registration, as discussed earlier.

When the forward and inverse kernels of a transform are separable and sym-
metric, and f x y(,) is a square image of size M M× , Eqs. (2-55) and (2-56) can be
expressed in matrix form:

The exponential terms
in the Fourier transform
kernels can be expanded
as sines and cosines of
various frequencies. As
a result, the domain of
the Fourier transform
is called the frequency
domain.

T(u, v)
Transform

Operation
R

Inverse
transform

Transform domain

R[T(u, v)]
f(x, y) g(x, y)

Spatial
domain

Spatial
domain

FIGURE 2.44
General approach
for working in the
linear transform
domain.

DIP4E_GLOBAL_Print_Ready.indb 110 6/16/2017 2:02:55 PM

2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing 111

 T AFA= (2-63)

where F is an M M× matrix containing the elements of f x y(,) [see Eq. (2-9)], A is
an M M× matrix with elements a r i jij = 1(,), and T is an M M× transform matrix
with elements T(,),u v for u,v = −0 1 2 1, , , , .… M

To obtain the inverse transform, we pre- and post-multiply Eq. (2-63) by an
inverse transformation matrix B:

 BTB BAFAB= (2-64)

If B A= −1,

 F BTB= (2-65)

indicating that F or, equivalently, f x y(,), can be recovered completely from its
forward transform. If B is not equal to A−1, Eq. (2-65) yields an approximation:

 F̂ BAFAB= (2-66)

In addition to the Fourier transform, a number of important transforms, including
the Walsh, Hadamard, discrete cosine, Haar, and slant transforms, can be expressed
in the form of Eqs. (2-55) and (2-56), or, equivalently, in the form of Eqs. (2-63) and
(2-65). We will discuss these and other types of image transforms in later chapters.

ba
dc

FIGURE 2.45
(a) Image
corrupted by
sinusoidal
interference.
(b) Magnitude of
the Fourier
transform
showing the
bursts of energy
caused by the
interference
(the bursts were
enlarged for
display purposes).
(c) Mask used
to eliminate the
energy bursts.
(d) Result of
computing the
inverse of the
modified Fourier
transform.
(Original
image courtesy of
NASA.)

DIP4E_GLOBAL_Print_Ready.indb 111 6/16/2017 2:02:56 PM

112 Chapter 2 Digital Image Fundamentals

IMAGE INTENSITIES AS RANDOM VARIABLES

We treat image intensities as random quantities in numerous places in the book. For
example, let z i Li , , , , , ,= −0 1 2 1… denote the values of all possible intensities in an
M N× digital image. The probability, p zk(), of intensity level zk occurring in the im-
age is estimated as

 p z
n

MNk
k() = (2-67)

where nk is the number of times that intensity zk occurs in the image and MN is the
total number of pixels. Clearly,

 p zk
k

L

()
=

−

∑ =
0

1

1 (2-68)

Once we have p zk(), we can determine a number of important image characteristics.
For example, the mean (average) intensity is given by

 m z p zk k
k

L

=
=

−

∑ ()
0

1

 (2-69)

Similarly, the variance of the intensities is

 s2 2

0

1

= −
=

−

∑ () ()z m p zk k
k

L

 (2-70)

The variance is a measure of the spread of the values of z about the mean, so it is
a useful measure of image contrast. In general, the nth central moment of random
variable z about the mean is defined as

 mn k
n

k
k

L

z z m p z() () ()= −
=

−

∑
0

1

 (2-71)

We see that m0 1() ,z = m1 0() ,z = and m s2
2() .z = Whereas the mean and variance

have an immediately obvious relationship to visual properties of an image, higher-
order moments are more subtle. For example, a positive third moment indicates
that the intensities are biased to values higher than the mean, a negative third mo-
ment would indicate the opposite condition, and a zero third moment would tell us
that the intensities are distributed approximately equally on both sides of the mean.
These features are useful for computational purposes, but they do not tell us much
about the appearance of an image in general.

As you will see in subsequent chapters, concepts from probability play a central
role in a broad range of image processing applications. For example, Eq. (2-67) is
utilized in Chapter 3 as the basis for image enhancement techniques based on his-
tograms. In Chapter 5, we use probability to develop image restoration algorithms,
in Chapter 10 we use probability for image segmentation, in Chapter 11 we use it
to describe texture, and in Chapter 12 we use probability as the basis for deriving
optimum pattern recognition algorithms.

You may find it useful
to consult the tutorials
section in the book
website for a brief review
of probability.

DIP4E_GLOBAL_Print_Ready.indb 112 6/16/2017 2:02:58 PM

 Summary, References, and Further Reading 113

Problems

Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book
website: www.ImageProcessingPlace.com).

2.1 If you use a sheet of white paper to shield your
eyes when looking directly at the sun, the side of
the sheet facing you appears black. Which of the
visual processes discussed in Section 2.1 is respon-
sible for this?

2.2 * Using the background information provided in
Section 2.1, and thinking purely in geometrical
terms, estimate the diameter of the smallest
printed dot that the eye can discern if the page
on which the dot is printed is 0.2 m away from the
eyes. Assume for simplicity that the visual system
ceases to detect the dot when the image of the dot
on the fovea becomes smaller than the diameter
of one receptor (cone) in that area of the retina.
Assume further that the fovea can be modeled as
a square array of dimension 1 5. mm on the side,
and that the cones and spaces between the cones
are distributed uniformly throughout this array.

2.3 Although it is not shown in Fig. 2.10, alternating
current is part of the electromagnetic spectrum.
Commercial alternating current in the United
States has a frequency of 60 Hz. What is the wave-
length in kilometers of this component of the
spectrum?

2.4 You are hired to design the front end of an imag-
ing system for studying the shapes of cells, bacteria,
viruses, and proteins. The front end consists in
this case of the illumination source(s) and cor-
responding imaging camera(s).The diameters of
circles required to fully enclose individual speci-
mens in each of these categories are 50, 1, 0.1, and
0 01. mm, respectively. In order to perform auto-
mated analysis, the smallest detail discernible on a
specimen must be 0 001. mm.

(a) * Can you solve the imaging aspects of this
problem with a single sensor and camera?
If your answer is yes, specify the illumina-
tion wavelength band and the type of camera
needed. By “type,” we mean the band of the
electromagnetic spectrum to which the cam-
era is most sensitive (e.g., infrared).

(b) If your answer in (a) is no, what type of illu-
mination sources and corresponding imaging
sensors would you recommend? Specify the
light sources and cameras as requested in
part (a). Use the minimum number of illumi-
nation sources and cameras needed to solve
the problem. (Hint: From the discussion in

Summary, References, and Further Reading
The material in this chapter is the foundation for the remainder of the book. For additional reading on visual per-
ception, see Snowden et al. [2012], and the classic book by Cornsweet [1970]. Born and Wolf [1999] discuss light in
terms of electromagnetic theory. A basic source for further reading on image sensing is Trussell and Vrhel [2008].
The image formation model discussed in Section 2.3 is from Oppenheim et al. [1968]. The IES Lighting Handbook
[2011] is a reference for the illumination and reflectance values used in that section. The concepts of image sampling
introduced in Section 2.4 will be covered in detail in Chapter 4. The discussion on experiments dealing with the
relationship between image quality and sampling is based on results from Huang [1965]. For further reading on the
topics discussed in Section 2.5, see Rosenfeld and Kak [1982], and Klette and Rosenfeld [2004].

See Castleman [1996] for additional reading on linear systems in the context of image processing. The method of
noise reduction by image averaging was first proposed by Kohler and Howell [1963]. See Ross [2014] regarding the
expected value of the mean and variance of the sum of random variables. See Schröder [2010] for additional read-
ing on logic and sets. For additional reading on geometric spatial transformations see Wolberg [1990] and Hughes
and Andries [2013]. For further reading on image registration see Goshtasby [2012]. Bronson and Costa [2009] is a
good reference for additional reading on vectors and matrices. See Chapter 4 for a detailed treatment of the Fourier
transform, and Chapters 7, 8, and 11 for details on other image transforms. For details on the software aspects of
many of the examples in this chapter, see Gonzalez, Woods, and Eddins [2009].

DIP4E_GLOBAL_Print_Ready.indb 113 6/16/2017 2:02:58 PM

http://www.ImageProcessingPlace.com

114 Chapter 2 Digital Image Fundamentals

Section 2.2, the illumination required to “see”
an object must have a wavelength the same
size or smaller than the object.)

2.5 You are preparing a report and have to insert in it
an image of size 2048 2048× pixels.

(a) * Assuming no limitations on the printer, what
would the resolution in line pairs per mm
have to be for the image to fit in a space of
size 5 5× cm?

(b) What would the resolution have to be in dpi
for the image to fit in 2 2× inches?

2.6 * A CCD camera chip of dimensions 7 7× mm and
1024 1024× sensing elements, is focused on a
square, flat area, located 0.5 m away. The camera
is equipped with a 35-mm lens. How many line
pairs per mm will this camera be able to resolve?
(Hint: Model the imaging process as in Fig. 2.3,
with the focal length of the camera lens substitut-
ing for the focal length of the eye.)

2.7 An automobile manufacturer is automating the
placement of certain components on the bumpers
of a limited-edition line of sports cars. The com-
ponents are color-coordinated, so the assembly
robots need to know the color of each car in order
to select the appropriate bumper component.
Models come in only four colors: blue, green, red,
and white. You are hired to propose a solution
based on imaging. How would you solve the prob-
lem of determining the color of each car, keeping
in mind that cost is the most important consider-
ation in your choice of components?

2.8 * Suppose that a given automated imaging applica-
tion requires a minimum resolution of 5 line pairs
per mm to be able to detect features of interest
in objects viewed by the camera. The distance
between the focal center of the camera lens and
the area to be imaged is 1 m. The area being
imaged is 0 5 5. × 0. m. You have available a 200
mm lens, and your job is to pick an appropriate
CCD imaging chip. What is the minimum number
of sensing elements and square size, d d× , of the
CCD chip that will meet the requirements of this
application? (Hint: Model the imaging process
as in Fig. 2.3, and assume for simplicity that the
imaged area is square.)

2.9 A common measure of transmission for digital
data is the baud rate, defined as symbols (bits in
our case) per second. As a minimum, transmission
is accomplished in packets consisting of a start
bit, a byte (8 bits) of information, and a stop bit.
Using these facts, answer the following:

(a) * How many seconds would it take to transmit
a sequence of 500 images of size 1024 1024×
pixels with 256 intensity levels using a 3
M-baud (106 bits/sec) baud modem? (This
is a representative medium speed for a DSL
(Digital Subscriber Line) residential line.

(b) What would the time be using a 30 G-baud
(109 bits/sec) modem? (This is a represen-
tative medium speed for a commercial line.)

2.10 * High-definition television (HDTV) generates
images with 1125 horizontal TV lines interlaced
(i.e., where every other line is “painted” on the
screen in each of two fields, each field being
1 60th of a second in duration). The width-to-
height aspect ratio of the images is 16:9. The
fact that the number of horizontal lines is fixed
determines the vertical resolution of the images.
A company has designed a system that extracts
digital images from HDTV video. The resolution
of each horizontal line in their system is propor-
tional to vertical resolution of HDTV, with the
proportion being the width-to-height ratio of the
images. Each pixel in the color image has 24 bits
of intensity, 8 bits each for a red, a green, and a
blue component image. These three “primary”
images form a color image. How many bits would
it take to store the images extracted from a two-
hour HDTV movie?

2.11 When discussing linear indexing in Section 2.4,
we arrived at the linear index in Eq. (2-14) by
inspection. The same argument used there can be
extended to a 3-D array with coordinates x, y, and
z, and corresponding dimensions M, N, and P. The
linear index for any (, ,)x y z is

s x M y Nz= + +()

Start with this expression and

(a) * Derive Eq. (2-15).

(b) Derive Eq. (2-16).

2.12 * Suppose that a flat area with center at (,)x y0 0 is

DIP4E_GLOBAL_Print_Ready.indb 114 6/16/2017 2:02:59 PM

 Problems 115

illuminated by a light source with intensity distri-
bution

 i x y Ke x x y y(,) [() ()]= − − + −0
2

0
2

Assume for simplicity that the reflectance of
the area is constant and equal to 1.0, and let
K = 255. If the intensity of the resulting image is
quantized using k bits, and the eye can detect an
abrupt change of eight intensity levels between
adjacent pixels, what is the highest value of k that
will cause visible false contouring?

2.13 Sketch the image in Problem 2.12 for k = 2.

2.14 Consider the two image subsets, S1 and S2 in the
following figure. With reference to Section 2.5,
and assuming that V = { }1 , determine whether
these two subsets are:

(a) * 4-adjacent.

(b) 8-adjacent.

(c) m-adjacent.

1S
2S

0 0000000 11

1 1100100 00

1 0110100 00

0 0001110 00

0 1001110 11

2.15 * Develop an algorithm for converting a one-pixel-
thick 8-path to a 4-path.

2.16 Develop an algorithm for converting a one-pixel-
thick m-path to a 4-path.

2.17 Refer to the discussion toward the end of Sec-
tion 2.5, where we defined the background of an
image as () ,Ru

c the complement of the union of
all the regions in the image. In some applications,
it is advantageous to define the background as the
subset of pixels of ()Ru

c that are not hole pixels
(informally, think of holes as sets of background
pixels surrounded by foreground pixels). How
would you modify the definition to exclude hole
pixels from ()Ru

c? An answer such as “the back-
ground is the subset of pixels of ()Ru

c that are not
hole pixels” is not acceptable. (Hint: Use the con-
cept of connectivity.)

2.18 Consider the image segment shown in the figure
that follows.

(a) * As in Section 2.5, let V = { , }0 1 be the set
of intensity values used to define adjacency.
Compute the lengths of the shortest 4-, 8-,
and m-path between p and q in the follow-
ing image. If a particular path does not exist
between these two points, explain why.

3 1 2 1

2 2 0 2

1 2 1 1

1 0 1 2(p)

(q)

(b) Repeat (a) but using V = { , }.1 2

2.19 Consider two points p and q.

(a) * State the condition(s) under which the D4
distance between p and q is equal to the
shortest 4-path between these points.

(b) Is this path unique?

2.20 Repeat problem 2.19 for the D8 distance.

2.21 Consider two one-dimensional images f and g of
the same size. What has to be true about the ori-
entation of these images for the elementwise and
matrix products discussed in Section 2.6 to make
sense? Either of the two images can be first in
forming the product.

2.22 * In the next chapter, we will deal with operators
whose function is to compute the sum of pixel val-
ues in a small subimage area, Sxy , as in Eq. (2-43).
Show that these are linear operators.

2.23 Refer to Eq. (2-24) in answering the following:

(a) * Show that image summation is a linear opera-
tion.

(b) Show that image subtraction is a linear oper-
ation.

(c) * Show that image multiplication in a nonlinear
operation.

(d) Show that image division is a nonlinear opera-
tion.

2.24 The median, z, of a set of numbers is such that

DIP4E_GLOBAL_Print_Ready.indb 115 6/16/2017 2:03:00 PM

116 Chapter 2 Digital Image Fundamentals

half the values in the set are below z and the oth-
er half are above it. For example, the median of
the set of values { , , , , , , }2 3 8 20 21 25 31 is 20. Show
that an operator that computes the median of a
subimage area, S, is nonlinear. (Hint: It is suffi-
cient to show that z fails the linearity test for a
simple numerical example.)

2.25 * Show that image averaging can be done recur-
sively. That is, show that if a k()is the average of
k images, then the average of k + 1 images can
be obtained from the already-computed average,
a k(), and the new image, fk+1 .

2.26 With reference to Example 2.5:

(a) * Prove the validity of Eq. (2-27).

(b) Prove the validity of Eq. (2-28).

For part (b) you will need the following facts from
probability: (1) the variance of a constant times a
random variable is equal to the constant squared
times the variance of the random variable. (2) The
variance of the sum of uncorrelated random vari-
ables is equal to the sum of the variances of the
individual random variables.

2.27 Consider two 8-bit images whose intensity levels
span the full range from 0 to 255.

(a) * Discuss the limiting effect of repeatedly sub-
tracting image (2) from image (1). Assume
that the results have to be represented also
in eight bits.

(b) Would reversing the order of the images
yield a different result?

2.28 * Image subtraction is used often in industrial appli-
cations for detecting missing components in prod-
uct assembly. The approach is to store a “golden”
image that corresponds to a correct assembly; this
image is then subtracted from incoming images of
the same product. Ideally, the differences would
be zero if the new products are assembled cor-
rectly. Difference images for products with miss-
ing components would be nonzero in the area
where they differ from the golden image. What
conditions do you think have to be met in prac-
tice for this method to work?

2.29 With reference to Eq. (2-32),

(a) * Give a general formula for the value of K
as a function of the number of bits, k, in an

image, such that K results in a scaled image
whose intensities span the full k-bit range.

(b) Find K for 16- and 32-bit images.

2.30 Give Venn diagrams for the following expres-
sions:

(a) * () ().A C A B C¨ ¨ ¨−

(b) () ().A C B C¨ ´ ¨
(c) B A B A B C− −[]() ()¨ ¨ ¨
(d) B B A C A C− = ∅¨ ´ ¨(); .Given that

2.31 Use Venn diagrams to prove the validity of the
following expressions:

(a) * () () ()A B A C A B C A B C¨ ´ ¨ ¨ ¨ ¨ ´−[] =

(b) ()A B C A B Cc c c c´ ´ ¨ ¨=

(c) () ()A C B B A Cc´ ¨ = − −

(d) ()A B C A B Cc c c c¨ ¨ ´ ´=
2.32 Give expressions (in terms of sets A, B, and C)

for the sets shown shaded in the following figures.
The shaded areas in each figure constitute one set,
so give only one expression for each of the four
figures.

(a)* (b) (c) (d)

A

B

C

2.33 With reference to the discussion on sets in Section
2.6, do the following:

(a) * Let S be a set of real numbers ordered by the
relation “less than or equal to” ().≤ Show
that S is a partially ordered set; that is, show
that the reflexive, transitive, and antisymmet-
ric properties hold.

(b) * Show that changing the relation “less than or
equal to” to “less than” ()< produces a strict
ordered set.

(c) Now let S be the set of lower-case letters in
the English alphabet. Show that, under (),<
S is a strict ordered set.

2.34 For any nonzero integers m and n, we say that m

DIP4E_GLOBAL_Print_Ready.indb 116 6/16/2017 2:03:01 PM

 Problems 117

is divisible by n, written m n, if there exists an
integer k such that kn m= . For example, 42 (m)
is divisible by 7 (n) because there exists an inte-
ger k = 6 such that kn m= . Show that the set of
positive integers is a partially ordered set under
the relation “divisible by.” In other words, do the
following:

(a) * Show that the property of reflectivity holds
under this relation.

(b) Show that the property of transitivity holds.

(c) Show that anti symmetry holds.

2.35 In general, what would the resulting image, g x y(,),
look like if we modified Eq. (2-43), as follows:

g x y
mn

T f r c
r c Sxy

(,) (,)
(,)

= []∑1

H

where T is the intensity transformation function
in Fig. 2.38(b)?

2.36 With reference to Table 2.3, provide single, com-
posite transformation functions for performing
the following operations:

(a) * Scaling and translation.

(b) * Scaling, translation, and rotation.

(c) Vertical shear, scaling, translation, and rota-
tion.

(d) Does the order of multiplication of the indi-
vidual matrices to produce a single transfor-
mations make a difference? Give an example
based on a scaling/translation transforma-
tion to support your answer.

2.37 We know from Eq. (2-45) that an affine transfor-
mation of coordinates is given by

′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤x

y

x

y

a a a

a a a

1 1 0 0 1

11 12 13

21 22 23A

⎦⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x

y

1

where (,)′ ′x y are the transformed coordinates,
(,)x y are the original coordinates, and the ele-
ments of A are given in Table 2.3 for various
types of transformations. The inverse transforma-
tion, A−1, to go from the transformed back to the
original coordinates is just as important for per-
forming inverse mappings.

(a) * Find the inverse scaling transformation.

(b) Find the inverse translation transformation.

(c) Find the inverse vertical and horizontal
shearing transformations.

(d) * Find the inverse rotation transformation.

(e) * Show a composite inverse translation/rota-
tion transformation.

2.38 What are the equations, analogous to Eqs. (2-46)
and (2-47), that would result from using triangu-
lar instead of quadrilateral regions?

2.39 Do the following.

(a) * Prove that the Fourier kernel in Eq. (2-59) is
separable and symmetric.

(b) Repeat (a) for the kernel in Eq. (2-60).

2.40 * Show that 2-D transforms with separable, sym-
metric kernels can be computed by: (1) comput-
ing 1-D transforms along the individual rows (col-
umns) of the input image; and (2) computing 1-D
transforms along the columns (rows) of the result
from step (1).

2.41 A plant produces miniature polymer squares that
have to undergo 100% visual inspection. Inspec-
tion is semi-automated. At each inspection sta-
tion, a robot places each polymer square over an
optical system that produces a magnified image
of the square. The image completely fills a view-
ing screen of size 80 80× mm. Defects appear as
dark circular blobs, and the human inspector’s job
is to look at the screen and reject any sample that
has one or more dark blobs with a diameter of 0.8
mm or greater, as measured on the scale of the
screen. The manufacturing manager believes that
if she can find a way to fully automate the process,
profits will increase by 50%, and success in this
project will aid her climb up the corporate ladder.
After extensive investigation, the manager decides
that the way to solve the problem is to view each
inspection screen with a CCD TV camera and feed
the output of the camera into an image processing
system capable of detecting the blobs, measuring
their diameter, and activating the accept/reject
button previously operated by a human inspec-
tor. She is able to find a suitable system, provided
that the smallest defect occupies an area of at
least 2 2× pixels in the digital image. The manager
hires you to help her specify the camera and lens

DIP4E_GLOBAL_Print_Ready.indb 117 6/16/2017 2:03:02 PM

118 Chapter 2 Digital Image Fundamentals

system to satisfy this requirement, using off-the-
shelf components. Available off-the-shelf lenses
have focal lengths that are integer multiples of
25 mm or 35 mm, up to 200 mm. Available cam-
eras yield image sizes of 512 512× , 1024 1024× ,
or 2048 2048× pixels. The individual imaging
elements in these cameras are squares measuring
8 8× m,m and the spaces between imaging ele-
ments are 2 m.m For this application, the cameras

cost much more than the lenses, so you should use
the lowest-resolution camera possible, consistent
with a suitable lens. As a consultant, you have
to provide a written recommendation, showing
in reasonable detail the analysis that led to your
choice of components. Use the imaging geometry
suggested in Problem 2.6.

DIP4E_GLOBAL_Print_Ready.indb 118 6/16/2017 2:03:03 PM

119

3 Intensity Transformations and
Spatial Filtering

Preview
The term spatial domain refers to the image plane itself, and image processing methods in this category
are based on direct manipulation of pixels in an image. This is in contrast to image processing in a trans-
form domain which, as we will discuss in Chapters 4 and 6, involves first transforming an image into the
transform domain, doing the processing there, and obtaining the inverse transform to bring the results
back into the spatial domain. Two principal categories of spatial processing are intensity transforma-
tions and spatial filtering. Intensity transformations operate on single pixels of an image for tasks such
as contrast manipulation and image thresholding. Spatial filtering performs operations on the neighbor-
hood of every pixel in an image. Examples of spatial filtering include image smoothing and sharpening.
In the sections that follow, we discuss a number of “classical” techniques for intensity transformations
and spatial filtering.

Upon completion of this chapter, readers should:
 Understand the meaning of spatial domain

processing, and how it differs from transform
domain processing.

 Be familiar with the principal techniques used
for intensity transformations.

 Understand the physical meaning of image
histograms and how they can be manipulated
for image enhancement.

 Understand the mechanics of spatial filtering,
and how spatial filters are formed.

 Understand the principles of spatial convolu-
tion and correlation.

 Be familiar with the principal types of spatial
filters, and how they are applied.

 Be aware of the relationships between spatial
filters, and the fundamental role of lowpass
filters.

 Understand how to use combinations of
enhancement methods in cases where a single
approach is insufficient.

It makes all the difference whether one sees darkness through
the light or brightness through the shadows.

David Lindsay

DIP4E_GLOBAL_Print_Ready.indb 119 6/16/2017 2:03:03 PM

120 Chapter 3 Intensity Transformations and Spatial Filtering

3.1 BACKGROUND

All the image processing techniques discussed in this chapter are implemented in
the spatial domain, which we know from the discussion in Section 2.4 is the plane
containing the pixels of an image. Spatial domain techniques operate directly on the
pixels of an image, as opposed, for example, to the frequency domain (the topic of
Chapter 4) in which operations are performed on the Fourier transform of an image,
rather than on the image itself. As you will learn in progressing through the book,
some image processing tasks are easier or more meaningful to implement in the
spatial domain, while others are best suited for other approaches.

THE BASICS OF INTENSITY TRANSFORMATIONS AND SPATIAL
FILTERING

The spatial domain processes we discuss in this chapter are based on the expression

 g x y T f x y(,) (,)= [] (3-1)

where f x y(,) is an input image, g x y(,) is the output image, and T is an operator on f
defined over a neighborhood of point (,)x y . The operator can be applied to the pix-
els of a single image (our principal focus in this chapter) or to the pixels of a set of
images, such as performing the elementwise sum of a sequence of images for noise
reduction, as discussed in Section 2.6. Figure 3.1 shows the basic implementation of
Eq. (3-1) on a single image. The point (,)x y0 0 shown is an arbitrary location in the
image, and the small region shown is a neighborhood of (,),x y0 0 as explained in Sec-
tion 2.6. Typically, the neighborhood is rectangular, centered on (,)x y0 0 , and much
smaller in size than the image.

The process that Fig. 3.1 illustrates consists of moving the center of the neighbor-
hood from pixel to pixel, and applying the operator T to the pixels in the neighbor-
hood to yield an output value at that location. Thus, for any specific location (,),x y0 0

3.1

FIGURE 3.1
A 3 3×
neighborhood
about a point
(,)x y0 0 in an image.
The neighborhood
is moved from
pixel to pixel in the
image to generate
an output image.
Recall from
Chapter 2 that the
value of a pixel at
location (,)x y0 0 is
f x y(,),0 0 the value
of the image at that
location.

Origin

0 0

3 3 neighborhood

of point (,)x y

×

Image f

y

x

x0

y0

0 0Pixel [its value is (,)]f x y

DIP4E_GLOBAL_Print_Ready.indb 120 6/16/2017 2:03:04 PM

3.1 Background 121

the value of the output image g at those coordinates is equal to the result of apply-
ing T to the neighborhood with origin at (,)x y0 0 in f. For example, suppose that
the neighborhood is a square of size 3 3× and that operator T is defined as “com-
pute the average intensity of the pixels in the neighborhood.” Consider an arbitrary
location in an image, say (,).100 150 The result at that location in the output image,
g(,),100 150 is the sum of f (,)100 150 and its 8-neighbors, divided by 9. The center of
the neighborhood is then moved to the next adjacent location and the procedure
is repeated to generate the next value of the output image g. Typically, the process
starts at the top left of the input image and proceeds pixel by pixel in a horizontal
(vertical) scan, one row (column) at a time. We will discuss this type of neighbor-
hood processing beginning in Section 3.4.

The smallest possible neighborhood is of size 1 1× . In this case, g depends only
on the value of f at a single point (,)x y and T in Eq. (3-1) becomes an intensity (also
called a gray-level, or mapping) transformation function of the form

 s T r= () (3-2)

where, for simplicity in notation, we use s and r to denote, respectively, the intensity
of g and f at any point (,).x y For example, if T r() has the form in Fig. 3.2(a), the
result of applying the transformation to every pixel in f to generate the correspond-
ing pixels in g would be to produce an image of higher contrast than the original, by
darkening the intensity levels below k and brightening the levels above k. In this
technique, sometimes called contrast stretching (see Section 3.2), values of r lower
than k reduce (darken) the values of s, toward black. The opposite is true for values
of r higher than k. Observe how an intensity value r0 is mapped to obtain the cor-
responding value s0. In the limiting case shown in Fig. 3.2(b), T r() produces a two-
level (binary) image. A mapping of this form is called a thresholding function. Some
fairly simple yet powerful processing approaches can be formulated with intensity
transformation functions. In this chapter, we use intensity transformations princi-
pally for image enhancement. In Chapter 10, we will use them for image segmenta-
tion. Approaches whose results depend only on the intensity at a point sometimes
are called point processing techniques, as opposed to the neighborhood processing
techniques discussed in the previous paragraph.

Depending on the size
of a neighborhood and
its location, part of the
neighborhood may lie
outside the image. There
are two solutions to this:
(1) to ignore the values
outside the image, or
(2) to pad image, as
discussed in Section 3.4.
The second approach is
preferred.

ba

FIGURE 3.2
Intensity
transformation
functions.
(a) Contrast
stretching
function.
(b) Thresholding
function.

kk r0

 s0 � T(r0)

D
ar

k
L

ig
ht

D
ar

k
L

ig
ht

Dark LightDark Light

r r

s � T(r)s � T(r)

T(r)T(r)

DIP4E_GLOBAL_Print_Ready.indb 121 6/16/2017 2:03:05 PM

122 Chapter 3 Intensity Transformations and Spatial Filtering

ABOUT THE EXAMPLES IN THIS CHAPTER

Although intensity transformation and spatial filtering methods span a broad range
of applications, most of the examples in this chapter are applications to image
enhancement. Enhancement is the process of manipulating an image so that the
result is more suitable than the original for a specific application. The word specific
is important, because it establishes at the outset that enhancement techniques are
problem-oriented. Thus, for example, a method that is quite useful for enhancing
X-ray images may not be the best approach for enhancing infrared images. There is
no general “theory” of image enhancement. When an image is processed for visual
interpretation, the viewer is the ultimate judge of how well a particular method
works. When dealing with machine perception, enhancement is easier to quantify.
For example, in an automated character-recognition system, the most appropriate
enhancement method is the one that results in the best recognition rate, leaving
aside other considerations such as computational requirements of one method
versus another. Regardless of the application or method used, image enhancement
is one of the most visually appealing areas of image processing. Beginners in image
processing generally find enhancement applications interesting and relatively sim-
ple to understand. Therefore, using examples from image enhancement to illustrate
the spatial processing methods developed in this chapter not only saves having an
extra chapter in the book dealing with image enhancement but, more importantly, is
an effective approach for introducing newcomers to image processing techniques in
the spatial domain. As you progress through the remainder of the book, you will find
that the material developed in this chapter has a scope that is much broader than
just image enhancement.

3.2 SOME BASIC INTENSITY TRANSFORMATION FUNCTIONS

Intensity transformations are among the simplest of all image processing techniques.
As noted in the previous section, we denote the values of pixels, before and after
processing, by r and s, respectively. These values are related by a transformation T,
as given in Eq. (3-2), that maps a pixel value r into a pixel value s. Because we deal
with digital quantities, values of an intensity transformation function typically are
stored in a table, and the mappings from r to s are implemented via table lookups.
For an 8-bit image, a lookup table containing the values of T will have 256 entries.

As an introduction to intensity transformations, consider Fig. 3.3, which shows
three basic types of functions used frequently in image processing: linear (negative
and identity transformations), logarithmic (log and inverse-log transformations),
and power-law (nth power and nth root transformations). The identity function is
the trivial case in which the input and output intensities are identical.

IMAGE NEGATIVES

The negative of an image with intensity levels in the range [,]0 1L − is obtained by
using the negative transformation function shown in Fig. 3.3, which has the form:

 s L r= − −1 (3-3)

3.2

DIP4E_GLOBAL_Print_Ready.indb 122 6/16/2017 2:03:05 PM

3.2 Some Basic Intensity Transformation Functions 123

Reversing the intensity levels of a digital image in this manner produces the
equivalent of a photographic negative. This type of processing is used, for example,
in enhancing white or gray detail embedded in dark regions of an image, especially
when the black areas are dominant in size. Figure 3.4 shows an example. The origi-
nal image is a digital mammogram showing a small lesion. Despite the fact that the
visual content is the same in both images, some viewers find it easier to analyze the
fine details of the breast tissue using the negative image.

Identity

0 L/4 L/2 3L/4 L � 1

Input intensity levels, r

0

L/4

L/2

3L/4

L � 1

O
ut

pu
t i

nt
en

si
ty

 le
ve

ls
, s

Log

Negative

nth power

nth root

Inverse log
(exponential)

FIGURE 3.3
Some basic
intensity
transformation
functions. Each
curve was scaled
independently so
that all curves
would fit in the
same graph. Our
interest here is
on the shapes of
the curves, not
on their relative
values.

ba

FIGURE 3.4
(a) A
digital
mammogram.
(b) Negative
image obtained
using Eq. (3-3).
(Image (a)
Courtesy of
General Electric
Medical Systems.)

DIP4E_GLOBAL_Print_Ready.indb 123 6/16/2017 2:03:06 PM

124 Chapter 3 Intensity Transformations and Spatial Filtering

LOG TRANSFORMATIONS

The general form of the log transformation in Fig. 3.3 is

 s c r= +log()1 (3-4)

where c is a constant and it is assumed that r ≥ 0. The shape of the log curve in Fig. 3.3
shows that this transformation maps a narrow range of low intensity values in the
input into a wider range of output levels. For example, note how input levels in the
range [,]0 4L map to output levels to the range [,].0 3 4L Conversely, higher values
of input levels are mapped to a narrower range in the output. We use a transformation
of this type to expand the values of dark pixels in an image, while compressing the
higher-level values. The opposite is true of the inverse log (exponential) transformation.

Any curve having the general shape of the log function shown in Fig. 3.3 would
accomplish this spreading/compressing of intensity levels in an image, but the pow-
er-law transformations discussed in the next section are much more versatile for
this purpose. The log function has the important characteristic that it compresses
the dynamic range of pixel values. An example in which pixel values have a large
dynamic range is the Fourier spectrum, which we will discuss in Chapter 4. It is not
unusual to encounter spectrum values that range from 0 to 106 or higher. Processing
numbers such as these presents no problems for a computer, but image displays can-
not reproduce faithfully such a wide range of values. The net effect is that intensity
detail can be lost in the display of a typical Fourier spectrum.

Figure 3.5(a) shows a Fourier spectrum with values in the range 0 to 1 5 106. .×
When these values are scaled linearly for display in an 8-bit system, the brightest
pixels dominate the display, at the expense of lower (and just as important) values
of the spectrum. The effect of this dominance is illustrated vividly by the relatively
small area of the image in Fig. 3.5(a) that is not perceived as black. If, instead of
displaying the values in this manner, we first apply Eq. (3-4) (with c = 1 in this case)
to the spectrum values, then the range of values of the result becomes 0 to 6.2. Trans-
forming values in this way enables a greater range of intensities to be shown on the
display. Figure 3.5(b) shows the result of scaling the intensity range linearly to the

ba

FIGURE 3.5
(a) Fourier
spectrum
displayed as a
grayscale image.
(b) Result of
applying the log
transformation
in Eq. (3-4) with
c = 1. Both images
are scaled to the
range [0, 255].

DIP4E_GLOBAL_Print_Ready.indb 124 6/16/2017 2:03:06 PM

3.2 Some Basic Intensity Transformation Functions 125

interval [,]0 255 and showing the spectrum in the same 8-bit display. The level of
detail visible in this image as compared to an unmodified display of the spectrum
is evident from these two images. Most of the Fourier spectra in image processing
publications, including this book, have been scaled in this manner.

POWER-LAW (GAMMA) TRANSFORMATIONS

Power-law transformations have the form

 s cr= g (3-5)

where c and g are positive constants. Sometimes Eq. (3-5) is written as s c r= +()e g
to account for offsets (that is, a measurable output when the input is zero). However,
offsets typically are an issue of display calibration, and as a result they are normally
ignored in Eq. (3-5). Figure 3.6 shows plots of s as a function of r for various values
of g. As with log transformations, power-law curves with fractional values of g map
a narrow range of dark input values into a wider range of output values, with the
opposite being true for higher values of input levels. Note also in Fig. 3.6 that a fam-
ily of transformations can be obtained simply by varying g. Curves generated with
values of g > 1 have exactly the opposite effect as those generated with values of
g < 1. When c = =g 1 Eq. (3-5) reduces to the identity transformation.

The response of many devices used for image capture, printing, and display obey
a power law. By convention, the exponent in a power-law equation is referred to as
gamma [hence our use of this symbol in Eq. (3-5)]. The process used to correct these
power-law response phenomena is called gamma correction or gamma encoding.
For example, cathode ray tube (CRT) devices have an intensity-to-voltage response
that is a power function, with exponents varying from approximately 1.8 to 2.5. As
the curve for g = 2 5. in Fig. 3.6 shows, such display systems would tend to produce

g � 0.04

g � 0.10

g � 0.20

g � 0.40

g � 0.67

g � 1

g � 1.5

g � 2.5

g � 5.0

g � 10.0

g � 25.0

0 L/4 L/2 3L/4 L � 1

Input intensity levels, r

0

L/4

L/2

3L/4

L � 1

O
ut

pu
t i

nt
en

si
ty

 le
ve

ls
, s

FIGURE 3.6
Plots of the
gamma equation
s cr= g for various
values of g (c = 1
in all cases). Each
curve was scaled
independently so
that all curves
would fit in the
same graph. Our
interest here is
on the shapes of
the curves, not
on their relative
values.

DIP4E_GLOBAL_Print_Ready.indb 125 6/16/2017 2:03:07 PM

126 Chapter 3 Intensity Transformations and Spatial Filtering

images that are darker than intended. Figure 3.7 illustrates this effect. Figure 3.7(a)
is an image of an intensity ramp displayed in a monitor with a gamma of 2.5. As
expected, the output of the monitor appears darker than the input, as Fig. 3.7(b)
shows.

In this case, gamma correction consists of using the transformation s r r= =1 2 5 0 4. .
to preprocess the image before inputting it into the monitor. Figure 3.7(c) is the result.
When input into the same monitor, the gamma-corrected image produces an output
that is close in appearance to the original image, as Fig. 3.7(d) shows. A similar analysis
as above would apply to other imaging devices, such as scanners and printers, the dif-
ference being the device-dependent value of gamma (Poynton [1996]).

EXAMPLE 3.1 : Contrast enhancement using power-law intensity transformations.

In addition to gamma correction, power-law transformations are useful for general-purpose contrast
manipulation. Figure 3.8(a) shows a magnetic resonance image (MRI) of a human upper thoracic spine
with a fracture dislocation. The fracture is visible in the region highlighted by the circle. Because the
image is predominantly dark, an expansion of intensity levels is desirable. This can be accomplished
using a power-law transformation with a fractional exponent. The other images shown in the figure were
obtained by processing Fig. 3.8(a) with the power-law transformation function of Eq. (3-5). The values

Sometimes, a higher
gamma makes the
displayed image look
better to viewers than
the original because of
an increase in contrast.
However, the objective
of gamma correction is to
produce a faithful display
of an input image.

ba
dc

FIGURE 3.7
(a) Intensity ramp
image. (b) Image
as viewed on a
simulated monitor
with a gamma of
2.5. (c) Gamma-
corrected image.
(d) Corrected
image as viewed
on the same
monitor. Compare
(d) and (a).

Original image as viewed on a monitor with
a gamma of 2.5

Original image Gamma Correction

Gamma-corrected image Gamma-corrected image as viewed on the
same monitor

DIP4E_GLOBAL_Print_Ready.indb 126 6/16/2017 2:03:07 PM

3.2 Some Basic Intensity Transformation Functions 127

of gamma corresponding to images (b) through (d) are 0.6, 0.4, and 0.3, respectively (c = 1 in all cases).
Observe that as gamma decreased from 0.6 to 0.4, more detail became visible. A further decrease of
gamma to 0.3 enhanced a little more detail in the background, but began to reduce contrast to the point
where the image started to have a very slight “washed-out” appearance, especially in the background.
The best enhancement in terms of contrast and discernible detail was obtained with g = 0 4. . A value of
g = 0 3. is an approximate limit below which contrast in this particular image would be reduced to an
unacceptable level.

EXAMPLE 3.2 : Another illustration of power-law transformations.

Figure 3.9(a) shows the opposite problem of that presented in Fig. 3.8(a). The image to be processed

ba
dc

FIGURE 3.8
(a) Magnetic
resonance
image (MRI) of a
fractured human
spine (the region
of the fracture is
enclosed by the
circle).
(b)–(d) Results of
applying the
transformation
in Eq. (3-5)
with c = 1 and
g = 0 6. , 0.4, and
0.3, respectively.
(Original image
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

DIP4E_GLOBAL_Print_Ready.indb 127 6/16/2017 2:03:08 PM

128 Chapter 3 Intensity Transformations and Spatial Filtering

ba
dc

FIGURE 3.9
(a) Aerial image.
(b)–(d) Results
of applying the
transformation
in Eq. (3-5) with
g = 3 0. , 4.0, and
5.0, respectively.
(c = 1 in all cases.)
(Original image
courtesy of
NASA.)

now has a washed-out appearance, indicating that a compression of intensity levels is desirable. This can
be accomplished with Eq. (3-5) using values of g greater than 1. The results of processing Fig. 3.9(a) with
g = 3 0. , 4.0, and 5.0 are shown in Figs. 3.9(b) through (d), respectively. Suitable results were obtained
using gamma values of 3.0 and 4.0. The latter result has a slightly more appealing appearance because it
has higher contrast. This is true also of the result obtained with g = 5 0. . For example, the airport runways
near the middle of the image appears clearer in Fig. 3.9(d) than in any of the other three images.

PIECEWISE LINEAR TRANSFORMATION FUNCTIONS

An approach complementary to the methods discussed in the previous three sec-
tions is to use piecewise linear functions. The advantage of these functions over those
discussed thus far is that the form of piecewise functions can be arbitrarily complex.
In fact, as you will see shortly, a practical implementation of some important trans-
formations can be formulated only as piecewise linear functions. The main disadvan-
tage of these functions is that their specification requires considerable user input.

DIP4E_GLOBAL_Print_Ready.indb 128 6/16/2017 2:03:08 PM

3.2 Some Basic Intensity Transformation Functions 129

Contrast Stretching

Low-contrast images can result from poor illumination, lack of dynamic range in the
imaging sensor, or even the wrong setting of a lens aperture during image acquisi-
tion. Contrast stretching expands the range of intensity levels in an image so that it
spans the ideal full intensity range of the recording medium or display device.

Figure 3.10(a) shows a typical transformation used for contrast stretching. The
locations of points (,)r s1 1 and (,)r s2 2 control the shape of the transformation function.
If r s1 1= and r s2 2= the transformation is a linear function that produces no changes
in intensity. If r r1 2= , s1 0= , and s L2 1= − the transformation becomes a threshold-
ing function that creates a binary image [see Fig. 3.2(b)]. Intermediate values of (,)r s1 1
and (,)s r2 2 produce various degrees of spread in the intensity levels of the output
image, thus affecting its contrast. In general, r r1 2≤ and s s1 2≤ is assumed so that
the function is single valued and monotonically increasing. This preserves the order
of intensity levels, thus preventing the creation of intensity artifacts. Figure 3.10(b)
shows an 8-bit image with low contrast. Figure 3.10(c) shows the result of contrast
stretching, obtained by setting (,) (,)minr s r1 1 0= and (,) (,),maxr s r L2 2 1= − where
rmin and rmax denote the minimum and maximum intensity levels in the input image,

0 L/4 L/2 3L/4 L � 1
Input intensities, r

0

L/4

L/2

3L/4

L � 1

O
ut

pu
t i

nt
en

si
ti

es
, s

(r2, s2)

(r1, s1)

T(r)

ba
dc

FIGURE 3.10
Contrast stretching.
(a) Piecewise linear
transformation
function. (b) A low-
contrast electron
microscope image
of pollen, magnified
700 times.
(c) Result of
contrast stretching.
(d) Result of
thresholding.
(Original image
courtesy of Dr.
Roger Heady,
Research School of
Biological Sciences,
Australian National
University,
Canberra,
Australia.)

DIP4E_GLOBAL_Print_Ready.indb 129 6/16/2017 2:03:10 PM

130 Chapter 3 Intensity Transformations and Spatial Filtering

respectively. The transformation stretched the intensity levels linearly to the full
intensity range, [,].0 1L − Finally, Fig. 3.10(d) shows the result of using the thresh-
olding function, with (,) (,)r s m1 1 0= and (,) (,),r s m L2 2 1= − where m is the mean
intensity level in the image.

Intensity-Level Slicing

There are applications in which it is of interest to highlight a specific range of inten-
sities in an image. Some of these applications include enhancing features in satellite
imagery, such as masses of water, and enhancing flaws in X-ray images. The method,
called intensity-level slicing, can be implemented in several ways, but most are varia-
tions of two basic themes. One approach is to display in one value (say, white) all the
values in the range of interest and in another (say, black) all other intensities. This
transformation, shown in Fig. 3.11(a), produces a binary image. The second approach,
based on the transformation in Fig. 3.11(b), brightens (or darkens) the desired range
of intensities, but leaves all other intensity levels in the image unchanged.

EXAMPLE 3.3 : Intensity-level slicing.

Figure 3.12(a) is an aortic angiogram near the kidney area (see Section 1.3 for details on this image). The
objective of this example is to use intensity-level slicing to enhance the major blood vessels that appear
lighter than the background, as a result of an injected contrast medium. Figure 3.12(b) shows the result
of using a transformation of the form in Fig. 3.11(a). The selected band was near the top of the intensity
scale because the range of interest is brighter than the background. The net result of this transformation
is that the blood vessel and parts of the kidneys appear white, while all other intensities are black. This
type of enhancement produces a binary image, and is useful for studying the shape characteristics of the
flow of the contrast medium (to detect blockages, for example).

If interest lies in the actual intensity values of the region of interest, we can use the transformation of
the form shown in Fig. 3.11(b). Figure 3.12(c) shows the result of using such a transformation in which
a band of intensities in the mid-gray region around the mean intensity was set to black, while all other
intensities were left unchanged. Here, we see that the gray-level tonality of the major blood vessels and
part of the kidney area were left intact. Such a result might be useful when interest lies in measuring the
actual flow of the contrast medium as a function of time in a sequence of images.

T(r) T(r)

0 A B

 L � 1 L � 1

s s

r r
L � 1 0 A B L � 1

ba

FIGURE 3.11
(a) This transfor-
mation function
highlights range
[,]A B and reduces
all other intensities
to a lower level.
(b) This function
highlights range
[,]A B and leaves
other intensities
unchanged.

DIP4E_GLOBAL_Print_Ready.indb 130 6/16/2017 2:03:10 PM

3.2 Some Basic Intensity Transformation Functions 131

Bit-Plane Slicing

Pixel values are integers composed of bits. For example, values in a 256-level gray-
scale image are composed of 8 bits (one byte). Instead of highlighting intensity-level
ranges, as 3.3, we could highlight the contribution made to total image appearance
by specific bits. As Fig. 3.13 illustrates, an 8-bit image may be considered as being
composed of eight one-bit planes, with plane 1 containing the lowest-order bit of all
pixels in the image, and plane 8 all the highest-order bits.

Figure 3.14(a) shows an 8-bit grayscale image and Figs. 3.14(b) through (i) are
its eight one-bit planes, with Fig. 3.14(b) corresponding to the highest-order bit.
Observe that the four higher-order bit planes, especially the first two, contain a sig-
nificant amount of the visually-significant data. The lower-order planes contribute
to more subtle intensity details in the image. The original image has a gray border
whose intensity is 194. Notice that the corresponding borders of some of the bit

ba c

FIGURE 3.12 (a) Aortic angiogram. (b) Result of using a slicing transformation of the type illustrated in Fig. 3.11(a),
with the range of intensities of interest selected in the upper end of the gray scale. (c) Result of using the transfor-
mation in Fig. 3.11(b), with the selected range set near black, so that the grays in the area of the blood vessels and
kidneys were preserved. (Original image courtesy of Dr. Thomas R. Gest, University of Michigan Medical School.)

One 8-bit byte Bit plane 8
(most significant)

Bit plane 1
(least significant)

FIGURE 3.13
Bit-planes of an
8-bit image.

DIP4E_GLOBAL_Print_Ready.indb 131 6/16/2017 2:03:10 PM

132 Chapter 3 Intensity Transformations and Spatial Filtering

planes are black (0), while others are white (1). To see why, consider a pixel in, say,
the middle of the lower border of Fig. 3.14(a). The corresponding pixels in the bit
planes, starting with the highest-order plane, have values 1 1 0 0 0 0 1 0, which is the
binary representation of decimal 194. The value of any pixel in the original image
can be similarly reconstructed from its corresponding binary-valued pixels in the bit
planes by converting an 8-bit binary sequence to decimal.

The binary image for the 8th bit plane of an 8-bit image can be obtained by thresh-
olding the input image with a transformation function that maps to 0 intensity values
between 0 and 127, and maps to 1 values between 128 and 255. The binary image in
Fig. 3.14(b) was obtained in this manner. It is left as an exercise (see Problem 3.3) to
obtain the transformation functions for generating the other bit planes.

Decomposing an image into its bit planes is useful for analyzing the relative
importance of each bit in the image, a process that aids in determining the adequacy
of the number of bits used to quantize the image. Also, this type of decomposition
is useful for image compression (the topic of Chapter 8), in which fewer than all
planes are used in reconstructing an image. For example, Fig. 3.15(a) shows an image
reconstructed using bit planes 8 and 7 of the preceding decomposition. The recon-
struction is done by multiplying the pixels of the nth plane by the constant 2 1n− . This
converts the nth significant binary bit to decimal. Each bit plane is multiplied by the
corresponding constant, and all resulting planes are added to obtain the grayscale
image. Thus, to obtain Fig. 3.15(a), we multiplied bit plane 8 by 128, bit plane 7 by 64,
and added the two planes. Although the main features of the original image were
restored, the reconstructed image appears flat, especially in the background. This

ba c
ed f
hg i

FIGURE 3.14 (a) An 8-bit gray-scale image of size 550 1192× pixels. (b) through (i) Bit planes 8 through 1, with bit
plane 1 corresponding to the least significant bit. Each bit plane is a binary image..

DIP4E_GLOBAL_Print_Ready.indb 132 6/16/2017 2:03:11 PM

3.3 Histogram Processing 133

is not surprising, because two planes can produce only four distinct intensity lev-
els. Adding plane 6 to the reconstruction helped the situation, as Fig. 3.15(b) shows.
Note that the background of this image has perceptible false contouring. This effect
is reduced significantly by adding the 5th plane to the reconstruction, as Fig. 3.15(c)
illustrates. Using more planes in the reconstruction would not contribute significant-
ly to the appearance of this image. Thus, we conclude that, in this example, storing
the four highest-order bit planes would allow us to reconstruct the original image
in acceptable detail. Storing these four planes instead of the original image requires
50% less storage.

3.3 HISTOGRAM PROCESSING

Let rk , fork L= −0 1 2 1, , , , ,… denote the intensities of an L-level digital image,
f x y(,). The unnormalized histogram of f is defined as

 h r n k Lk k() , , , ,= = −for 0 1 2 1… (3-6)

where nk is the number of pixels in f with intensity rk , and the subdivisions of the
intensity scale are called histogram bins. Similarly, the normalized histogram of f is
defined as

 p r
h r
MN

n
MNk

k k()
()= = (3-7)

where, as usual, M and N are the number of image rows and columns, respectively.
Mostly, we work with normalized histograms, which we refer to simply as histograms
or image histograms. The sum of p rk() for all values of k is always 1. The components
of p rk() are estimates of the probabilities of intensity levels occurring in an image.
As you will learn in this section, histogram manipulation is a fundamental tool in
image processing. Histograms are simple to compute and are also suitable for fast
hardware implementations, thus making histogram-based techniques a popular tool
for real-time image processing.

Histogram shape is related to image appearance. For example, Fig. 3.16 shows
images with four basic intensity characteristics: dark, light, low contrast, and high
contrast; the image histograms are also shown. We note in the dark image that the
most populated histogram bins are concentrated on the lower (dark) end of the
intensity scale. Similarly, the most populated bins of the light image are biased
toward the higher end of the scale. An image with low contrast has a narrow histo-

3.3

ba c FIGURE 3.15 Image reconstructed from bit planes: (a) 8 and 7; (b) 8, 7, and 6; (c) 8, 7, 6, and 5.

DIP4E_GLOBAL_Print_Ready.indb 133 6/16/2017 2:03:12 PM

134 Chapter 3 Intensity Transformations and Spatial Filtering

gram located typically toward the middle of the intensity scale, as Fig. 3.16(c) shows.
For a monochrome image, this implies a dull, washed-out gray look. Finally, we see
that the components of the histogram of the high-contrast image cover a wide range
of the intensity scale, and the distribution of pixels is not too far from uniform, with
few bins being much higher than the others. Intuitively, it is reasonable to conclude
that an image whose pixels tend to occupy the entire range of possible intensity lev-
els and, in addition, tend to be distributed uniformly, will have an appearance of high
contrast and will exhibit a large variety of gray tones. The net effect will be an image
that shows a great deal of gray-level detail and has a high dynamic range. As you will
see shortly, it is possible to develop a transformation function that can achieve this
effect automatically, using only the histogram of an input image.

HISTOGRAM EQUALIZATION

Assuming initially continuous intensity values, let the variable r denote the intensi-
ties of an image to be processed. As usual, we assume that r is in the range [,],0 1L −
with r = 0 representing black and r L= − 1 representing white. For r satisfying these
conditions, we focus attention on transformations (intensity mappings) of the form

 s T r r L= −() 0 1≤ ≤ (3-8)

Histogram of
high-contrast image

Histogram of
low-contrast image

Histogram of
dark image

Histogram of
light image

ba c d

FIGURE 3.16 Four image types and their corresponding histograms. (a) dark; (b) light; (c) low contrast; (d) high con-
trast. The horizontal axis of the histograms are values of rk and the vertical axis are values of p rk().

DIP4E_GLOBAL_Print_Ready.indb 134 6/16/2017 2:03:13 PM

3.3 Histogram Processing 135

that produce an output intensity value, s, for a given intensity value r in the input
image. We assume that

(a) T r() is a monotonic† increasing function in the interval 0 1≤ ≤r L − ; and
(b) 0 1≤ ≤T r L() − for 0 1≤ ≤r L − .

In some formulations to be discussed shortly, we use the inverse transformation

 r T s s L= −−1 0 1() ≤ ≤ (3-9)

in which case we change condition (a) to:

(a�) T r() is a strictly monotonic increasing function in the interval 0 1≤ ≤r L − .

The condition in (a) that T r() be monotonically increasing guarantees that output
intensity values will never be less than corresponding input values, thus preventing
artifacts created by reversals of intensity. Condition (b) guarantees that the range of
output intensities is the same as the input. Finally, condition (a)� guarantees that the
mappings from s back to r will be one-to-one, thus preventing ambiguities.

Figure 3.17(a) shows a function that satisfies conditions (a) and (b). Here, we see
that it is possible for multiple input values to map to a single output value and still
satisfy these two conditions. That is, a monotonic transformation function performs
a one-to-one or many-to-one mapping. This is perfectly fine when mapping from r
to s. However, Fig. 3.17(a) presents a problem if we wanted to recover the values of
r uniquely from the mapped values (inverse mapping can be visualized by revers-
ing the direction of the arrows). This would be possible for the inverse mapping
of sk in Fig. 3.17(a), but the inverse mapping of sq is a range of values, which, of
course, prevents us in general from recovering the original value of r that resulted

† A function T r() is a monotonic increasing function if T r T r() ()2 1≥ for r r2 1> . T r() is a strictly monotonic increas-
ing function if T r T r() ()2 1> for r r2 1> . Similar definitions apply to a monotonic decreasing function.

Single
value, sk

rk

skSingle
value, sq

Single
value

Multiple
values

r

T(r)

T(r)
T(r)

0

L � 1

L � 1 0 L � 1

L � 1

r

T(r)

. . .

ba

FIGURE 3.17
(a) Monotonic
increasing function,
showing how
multiple values can
map to a single
value. (b) Strictly
monotonic increas-
ing function. This is
a one-to-one map-
ping, both ways.

DIP4E_GLOBAL_Print_Ready.indb 135 6/16/2017 2:03:14 PM

136 Chapter 3 Intensity Transformations and Spatial Filtering

in sq. As Fig. 3.17(b) shows, requiring that T r() be strictly monotonic guarantees
that the inverse mappings will be single valued (i.e., the mapping is one-to-one in
both directions).This is a theoretical requirement that will allow us to derive some
important histogram processing techniques later in this chapter. Because images are
stored using integer intensity values, we are forced to round all results to their near-
est integer values. This often results in strict monotonicity not being satisfied, which
implies inverse transformations that may not be unique. Fortunately, this problem is
not difficult to handle in the discrete case, as Example 3.7 in this section illustrates.

The intensity of an image may be viewed as a random variable in the interval
[,].0 1L − Let p rr () and p ss() denote the PDFs of intensity values r and s in two dif-
ferent images. The subscripts on p indicate that pr and ps are different functions. A
fundamental result from probability theory is that if p rr () and T r() are known, and
T r() is continuous and differentiable over the range of values of interest, then the
PDF of the transformed (mapped) variable s can be obtained as

 p s p r
dr
dss r() ()= (3-10)

Thus, we see that the PDF of the output intensity variable, s, is determined by the
PDF of the input intensities and the transformation function used [recall that r and
s are related by T r()].

A transformation function of particular importance in image processing is

 s T r L p d
r

r= = −() () ()1
02 w w (3-11)

where w is a dummy variable of integration. The integral on the right side is the
cumulative distribution function (CDF) of random variable r. Because PDFs always
are positive, and the integral of a function is the area under the function, it follows
that the transformation function of Eq. (3-11) satisfies condition (a). This is because
the area under the function cannot decrease as r increases. When the upper limit in
this equation is r L= −()1 the integral evaluates to 1, as it must for a PDF. Thus, the
maximum value of s is L − 1, and condition (b) is satisfied also.

We use Eq. (3-10) to find the p ss() corresponding to the transformation just dis-
cussed. We know from Leibniz’s rule in calculus that the derivative of a definite
integral with respect to its upper limit is the integrand evaluated at the limit. That is,

ds
dr

dT r
dr

L
d
dr

p d

L p r

r

r

r

=

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −

()

() ()

() ()

1

1

02 w w (3-12)

DIP4E_GLOBAL_Print_Ready.indb 136 6/16/2017 2:03:15 PM

3.3 Histogram Processing 137

Substituting this result for dr ds in Eq. (3-10), and noting that all probability values
are positive, gives the result

p s p r
dr
ds

p r
L p r

L
s L

s r

r
r

() ()

()
() ()

=

=
−

=
−

−

1
1

1
1

0 1≤ ≤

 (3-13)

We recognize the form of p ss() in the last line of this equation as a uniform prob-
ability density function. Thus, performing the intensity transformation in Eq. (3-11)
yields a random variable, s, characterized by a uniform PDF. What is important is
that p ss() in Eq. (3-13) will always be uniform, independently of the form of p rr ().
Figure 3.18 and the following example illustrate these concepts.

EXAMPLE 3.4 : Illustration of Eqs. (3-11) and (3-13).

Suppose that the (continuous) intensity values in an image have the PDF

 p r

r

L
r L

r () ()= −
−⎧

⎨
⎪

⎩⎪

2
1

0 1

0

2 for

otherwise

≤ ≤

From Eq. (3-11)

 s T r L p d
L

d
r

L

r r

r= = − =
−

=
−

() () ()1
2

1 10 0

2

2 2w w w w

Eq. (3-11)

r

pr(r)

0

A

L � 1
s

ps(s)

0 L � 1

L � 1
1

ba

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying Eq. (3-11) to the input PDF. The
resulting PDF is always uniform, independently of the shape of the input.

DIP4E_GLOBAL_Print_Ready.indb 137 6/16/2017 2:03:16 PM

138 Chapter 3 Intensity Transformations and Spatial Filtering

Suppose that we form a new image with intensities, s, obtained using this transformation; that is, the s
values are formed by squaring the corresponding intensity values of the input image, then dividing them
by L − 1. We can verify that the PDF of the intensities in the new image, p ss(), is uniform by substituting
p rr () into Eq. (3-13), and using the fact that s r L= −2 1(); that is,

p s p r
dr
ds

r

L

ds
dr

r

L

d
dr

r
L

s r() ()
()

()

= =
−

⎡
⎣⎢

⎤
⎦⎥

=
− −

⎡

⎣
⎢

⎤

⎦

−2
1

2
1 1

2

1

2

2

⎥⎥ =
−

− =
−

−1

2

2
1

1
2

1
1

r

L

L
r L()

()

The last step follows because r is nonnegative and L > 1. As expected, the result is a uniform PDF.

For discrete values, we work with probabilities and summations instead of prob-
ability density functions and integrals (but the requirement of monotonicity stated
earlier still applies). Recall that the probability of occurrence of intensity level rk in
a digital image is approximated by

 p r
n

MNr k
k() = (3-14)

where MN is the total number of pixels in the image, and nk denotes the number of
pixels that have intensity rk . As noted in the beginning of this section, p rr k(), with
r Lk ∈ −[,],0 1 is commonly referred to as a normalized image histogram.

The discrete form of the transformation in Eq. (3-11) is

 s T r L p r k Lk k r j
j

k

= = − = −
=
∑() () () , , , ,1 0 1 2 1

0

… (3-15)

where, as before, L is the number of possible intensity levels in the image (e.g., 256
for an 8-bit image). Thus, a processed (output) image is obtained by using Eq. (3-15)
to map each pixel in the input image with intensity rk into a corresponding pixel with
level sk in the output image, This is called a histogram equalization or histogram
linearization transformation. It is not difficult to show (see Problem 3.9) that this
transformation satisfies conditions (a) and (b) stated previously in this section.

EXAMPLE 3.5 : Illustration of the mechanics of histogram equalization.

It will be helpful to work through a simple example. Suppose that a 3-bit image ()L = 8 of size 64 64×
pixels ()MN = 4096 has the intensity distribution in Table 3.1, where the intensity levels are integers in
the range [,] [,].0 1 0 7L − = The histogram of this image is sketched in Fig. 3.19(a).Values of the histo-
gram equalization transformation function are obtained using Eq. (3-15). For instance,

 s T r p r p rr j r
j

0 0 0
0

0

7 7 1 33= = = =
=
∑() () () .

DIP4E_GLOBAL_Print_Ready.indb 138 6/16/2017 2:03:18 PM

3.3 Histogram Processing 139

Similarly, s T r1 1 3 08= =() . , s2 4 55= . , s3 5 67= . , s4 6 23= . , s5 6 65= . , s6 6 86= . , and s7 7 00= . . This trans-
formation function has the staircase shape shown in Fig. 3.19(b).

At this point, the s values are fractional because they were generated by summing probability values,
so we round them to their nearest integer values in the range [,] :0 7

s s s s

s s s
0 2 4 6

1 3 5

1 33 1 4 55 5 6 23 6 6 86 7

3 08 3 5 67 6 6

= → = → = → = →
= → = → =

. . . .

.65 7 7 00 77→ = →s

These are the values of the equalized histogram. Observe that the transformation yielded only five
distinct intensity levels. Because r0 0= was mapped to s0 1= , there are 790 pixels in the histogram
equalized image with this value (see Table 3.1). Also, there are 1023 pixels with a value of s1 3= and 850
pixels with a value of s2 5= . However, both r3 and r4 were mapped to the same value, 6, so there are
()656 329 985+ = pixels in the equalized image with this value. Similarly, there are ()245 122 81 448+ + =
pixels with a value of 7 in the histogram equalized image. Dividing these numbers by MN = 4096 yield-
ed the equalized histogram in Fig. 3.19(c).

Because a histogram is an approximation to a PDF, and no new allowed intensity levels are created
in the process, perfectly flat histograms are rare in practical applications of histogram equalization using
the method just discussed. Thus, unlike its continuous counterpart, it cannot be proved in general that
discrete histogram equalization using Eq. (3-15) results in a uniform histogram (we will introduce later in

rk nk p r n MNr k k() =

r0 0= 790 0.19

r1 1= 1023 0.25

r2 2= 850 0.21

r3 3= 656 0.16

r4 4= 329 0.08

r5 5= 245 0.06

r6 6= 122 0.03

r7 7= 81 0.02

TABLE 3.1
Intensity
distribution and
histogram values
for a 3-bit, 64 64×
digital image.

rk

pr(rk)

.05

.10

.15

.20

.25

1.4

2.8

4.2

7.0

5.6

.05

.10

.15

.25

.20

0 1 2 3 4 5 6 7 sk

ps(sk)

0 1 2 3 4 5 6 7rk

sk

0 1 2 3 4 5 6 7

T(r)

ba c

FIGURE 3.19
Histogram
equalization.
(a) Original
histogram.
(b) Transformation
function.
(c) Equalized
histogram.

DIP4E_GLOBAL_Print_Ready.indb 139 6/16/2017 2:03:20 PM

140 Chapter 3 Intensity Transformations and Spatial Filtering

this section an approach for removing this limitation). However, as you will see shortly, using Eq. (3-15)
has the general tendency to spread the histogram of the input image so that the intensity levels of the
equalized image span a wider range of the intensity scale. The net result is contrast enhancement.

We discussed earlier the advantages of having intensity values that span the entire
gray scale. The method just derived produces intensities that have this tendency, and
also has the advantage that it is fully automatic. In other words, the process of his-
togram equalization consists entirely of implementing Eq. (3-15), which is based on
information that can be extracted directly from a given image, without the need for
any parameter specifications. This automatic, “hands-off” characteristic is important.

The inverse transformation from s back to r is denoted by

 r T sk k= −1() (3-16)

It can be shown (see Problem 3.9) that this inverse transformation satisfies conditions
(a�) and (b) defined earlier only if all intensity levels are present in the input image.
This implies that none of the bins of the image histogram are empty. Although the
inverse transformation is not used in histogram equalization, it plays a central role
in the histogram-matching scheme developed after the following example.

EXAMPLE 3.6 : Histogram equalization.

The left column in Fig. 3.20 shows the four images from Fig. 3.16, and the center column shows the result
of performing histogram equalization on each of these images. The first three results from top to bottom
show significant improvement. As expected, histogram equalization did not have much effect on the
fourth image because its intensities span almost the full scale already. Figure 3.21 shows the transforma-
tion functions used to generate the equalized images in Fig. 3.20. These functions were generated using
Eq. (3-15). Observe that transformation (4) is nearly linear, indicating that the inputs were mapped to
nearly equal outputs. Shown is the mapping of an input value rk to a corresponding output value sk . In
this case, the mapping was for image 1 (on the top left of Fig. 3.21), and indicates that a dark value was
mapped to a much lighter one, thus contributing to the brightness of the output image.

The third column in Fig. 3.20 shows the histograms of the equalized images. While all the histograms
are different, the histogram-equalized images themselves are visually very similar. This is not totally
unexpected because the basic difference between the images on the left column is one of contrast, not
content. Because the images have the same content, the increase in contrast resulting from histogram
equalization was enough to render any intensity differences between the equalized images visually
indistinguishable. Given the significant range of contrast differences in the original images, this example
illustrates the power of histogram equalization as an adaptive, autonomous contrast-enhancement tool.

HISTOGRAM MATCHING (SPECIFICATION)
As explained in the last section, histogram equalization produces a transformation
function that seeks to generate an output image with a uniform histogram. When
automatic enhancement is desired, this is a good approach to consider because the

DIP4E_GLOBAL_Print_Ready.indb 140 6/16/2017 2:03:20 PM

3.3 Histogram Processing 141

FIGURE 3.20 Left column: Images from Fig. 3.16. Center column: Corresponding histogram-equalized images. Right
column: histograms of the images in the center column (compare with the histograms in Fig. 3.16).

DIP4E_GLOBAL_Print_Ready.indb 141 6/16/2017 2:03:20 PM

142 Chapter 3 Intensity Transformations and Spatial Filtering

255

192

128

64

0
0 64 128 192 255

(2)

(1) (3)

(4)

Intensity values of original images
r

In
te

ns
it

y
va

lu
es

 o
f h

is
to

gr
am

-e
qu

al
iz

ed
 im

ag
es

s

rk

sk

FIGURE 3.21
Transformation
functions for histo-
gram equalization.
Transformations (1)
through (4) were
obtained using
Eq. (3-15) and the
histograms of the
images on the left
column of Fig. 3.20.
Mapping of one
intensity value rk in
image 1 to its cor-
responding value sk
is shown.

results from this technique are predictable and the method is simple to implement.
However, there are applications in which histogram equalization is not suitable. In
particular, it is useful sometimes to be able to specify the shape of the histogram that
we wish the processed image to have. The method used to generate images that have
a specified histogram is called histogram matching or histogram specification.

Consider for a moment continuous intensities r and z which, as before, we treat
as random variables with PDFs p rr () and p zz(), respectively. Here, r and z denote
the intensity levels of the input and output (processed) images, respectively. We can
estimate p rr () from the given input image, and p zz() is the specified PDF that we
wish the output image to have.

Let s be a random variable with the property

 s T r L p d
r

r= = −() () ()1
02 w w (3-17)

where w is dummy variable of integration. This is the same as Eq. (3-11), which we
repeat here for convenience.

Define a function G on variable z with the property

 G z L p d
z

z() () ()= − 1
02 v v=s (3-18)

where v is a dummy variable of integration. It follows from the preceding two equa-
tions that G z s T r() ()= = and, therefore, that z must satisfy the condition

 z G s G T r= = []− −1 1() () (3-19)

DIP4E_GLOBAL_Print_Ready.indb 142 6/16/2017 2:03:21 PM

3.3 Histogram Processing 143

The transformation function T r() can be obtained using Eq. (3-17) after p rr () has
been estimated using the input image. Similarly, function G z() can be obtained from
Eq. (3-18) because p zz() is given.

Equations (3-17) through (3-19) imply that an image whose intensity levels have
a specified PDF can be obtained using the following procedure:

1. Obtain p rr () from the input image to use in Eq. (3-17).
2. Use the specified PDF, p zz(), in Eq. (3-18) to obtain the function G z().
3. Compute the inverse transformation z G s= −1(); this is a mapping from s to z,

the latter being the values that have the specified PDF.
4. Obtain the output image by first equalizing the input image using Eq. (3-17); the

pixel values in this image are the s values. For each pixel with value s in the equal-
ized image, perform the inverse mapping z G s= −1() to obtain the corresponding
pixel in the output image. When all pixels have been processed with this trans-
formation, the PDF of the output image, p zz(), will be equal to the specified PDF.

Because s is related to r by T r(), it is possible for the mapping that yields z from s
to be expressed directly in terms of r. In general, however, finding analytical expres-
sions for G−1 is not a trivial task. Fortunately, this is not a problem when working
with discrete quantities, as you will see shortly.

As before, we have to convert the continuous result just derived into a discrete
form. This means that we work with histograms instead of PDFs. As in histogram
equalization, we lose in the conversion the ability to be able to guarantee a result that
will have the exact specified histogram. Despite this, some very useful results can be
obtained even with approximations.

The discrete formulation of Eq. (3-17) is the histogram equalization transforma-
tion in Eq. (3-15), which we repeat here for convenience:

 s T r L p r k Lk k r j
j

k

= = − = −
=
∑() () () , , , ,1 0 1 2 1

0

… (3-20)

where the components of this equation are as before. Similarly, given a specific value
of sk , the discrete formulation of Eq. (3-18) involves computing the transformation
function

 G z L p zq z i
i

q

() () ()= −
=
∑1

0

 (3-21)

for a value of q so that

 G z sq k() = (3-22)

where p zz i() is the ith value of the specified histogram. Finally, we obtain the desired
value zq from the inverse transformation:

DIP4E_GLOBAL_Print_Ready.indb 143 6/16/2017 2:03:23 PM

144 Chapter 3 Intensity Transformations and Spatial Filtering

 z G sq k= −1() (3-23)

When performed over all pixels, this is a mapping from the s values in the histogram-
equalized image to the corresponding z values in the output image.

In practice, there is no need to compute the inverse of G. Because we deal with
intensity levels that are integers, it is a simple matter to compute all the possible
values of G using Eq. (3-21) for q L= −0 1 2 1, , , , .… These values are rounded to their
nearest integer values spanning the range [,]0 1L − and stored in a lookup table.
Then, given a particular value of sk , we look for the closest match in the table. For
example, if the 27th entry in the table is the closest value to sk , then q = 26 (recall
that we start counting intensities at 0) and z26 is the best solution to Eq. (3-23).
Thus, the given value sk would map to z26. Because the z’s are integers in the range
[,],0 1L − it follows that z0 0= , z LL− = −1 1, and, in general, z qq = . Therefore, z26
would equal intensity value 26. We repeat this procedure to find the mapping from
each value sk to the value zq that is its closest match in the table. These mappings are
the solution to the histogram-specification problem.

Given an input image, a specified histogram, p zz i(), i L= −0 1 2 1, , , , ,… and recall-
ing that the s sk’ are the values resulting from Eq. (3-20), we may summarize the
procedure for discrete histogram specification as follows:

1. Compute the histogram, p rr (), of the input image, and use it in Eq. (3-20) to map
the intensities in the input image to the intensities in the histogram-equalized
image. Round the resulting values, sk , to the integer range [,].0 1L −

2. Compute all values of function G zq() using the Eq. (3-21) for q L= −0 1 2 1, , , , ,…
where p zz i() are the values of the specified histogram. Round the values of G to
integers in the range [,].0 1L − Store the rounded values of G in a lookup table.

3. For every value of s k Lk , , , , , ,= −0 1 2 1… use the stored values of G from Step 2
to find the corresponding value of zq so that G zq() is closest to sk . Store these
mappings from s to z. When more than one value of zq gives the same match
(i.e., the mapping is not unique), choose the smallest value by convention.

4. Form the histogram-specified image by mapping every equalized pixel with val-
ue sk to the corresponding pixel with value zq in the histogram-specified image,
using the mappings found in Step 3.

As in the continuous case, the intermediate step of equalizing the input image is
conceptual. It can be skipped by combining the two transformation functions, T and
G −1, as Example 3.7 below shows.

We mentioned at the beginning of the discussion on histogram equalization that,
in addition to condition (b), inverse functions (G−1 in the present discussion) have to
be strictly monotonic to satisfy condition (a�). In terms of Eq. (3-21), this means that
none of the values p zz i() in the specified histogram can be zero (see Problem 3.9).
When this condition is not satisfied, we use the “work-around” procedure in Step 3.
The following example illustrates this numerically.

DIP4E_GLOBAL_Print_Ready.indb 144 6/16/2017 2:03:25 PM

3.3 Histogram Processing 145

EXAMPLE 3.7 : Illustration of the mechanics of histogram specification.

Consider the 64 64× hypothetical image from Example 3.5, whose histogram is repeated in Fig. 3.22(a).
It is desired to transform this histogram so that it will have the values specified in the second column of
Table 3.2. Figure 3.22(b) shows this histogram.

The first step is to obtain the histogram-equalized values, which we did in Example 3.5:

 s s s s s s s s0 1 2 3 4 5 6 71 3 5 6 6 7 7 7= = = = = = = =; ; ; ; ; ; ;

In the next step, we compute the values of G zq() using the values of p zz q() from Table 3.2 in Eq. (3-21):

G z G z G z G z

G z G z

() . () . () . () .

() . () .
0 2 4 6

1 3

0 00 0 00 2 45 5 95

0 00 1

= = = =
= = 005 4 55 7 005 7G z G z() . () .= =

As in Example 3.5, these fractional values are rounded to integers in the range [,] :0 7

G z G z

G z G z

G z

() . () .

() . () .

() .

0 4

1 5

2

0 00 0 2 45 2

0 00 0 4 55 5

0 00

= → = →
= → = →
= →→ = →
= → = →

0 5 95 6

1 05 1 7 00 7
6

3 7

G z

G z G z

() .

() . () .

These results are summarized in Table 3.3. The transformation function, G zq(), is sketched in Fig. 3.23(c).
Because its first three values are equal, G is not strictly monotonic, so condition (a�) is violated. Therefore,
we use the approach outlined in Step 3 of the algorithm to handle this situation. According to this step,
we find the smallest value of zq so that the value G zq() is the closest to sk . We do this for every value of

rk

pr(rk)

.05

.10

.15

.20

.25

.30

0 1 2 3 4 5 6 7
zq

pz(zq)

.05

.10

.15

.20

.25

.30

0 1 2 3 4 5 6 7

zq

pz(zq)

.05

.10

.15

.20

.25

0 1 2 3 4 5 6 7
zq

G(zq)

1
2
3
4

7
6
5

0 1 2 3 4 5 6 7

ba
dc

FIGURE 3.22
(a) Histogram of a
3-bit image.
(b) Specified
histogram.
(c) Transformation
function obtained
from the specified
histogram.
(d) Result of
histogram
specification.
Compare the
histograms in (b)
and (d).

DIP4E_GLOBAL_Print_Ready.indb 145 6/16/2017 2:03:26 PM

146 Chapter 3 Intensity Transformations and Spatial Filtering

TABLE 3.3
Rounded values
of the
transformation
function G zq().

zq G zq()

z0 0= 0

z1 1= 0

z2 2= 0

z3 3= 1

z4 4= 2

z5 5= 5

z6 6= 6

z7 7= 7

sk to create the required mappings from s to z. For example, s0 1= , and we see that G z() ,3 1= which is
a perfect match in this case, so we have the correspondence s z0 3→ . Every pixel whose value is 1 in the
histogram equalized image would map to a pixel valued 3 in the histogram-specified image. Continuing
in this manner, we arrive at the mappings in Table 3.4.

In the final step of the procedure, we use the mappings in Table 3.4 to map every pixel in the his-
togram equalized image into a corresponding pixel in the newly created histogram-specified image.
The values of the resulting histogram are listed in the third column of Table 3.2, and the histogram is
shown in Fig. 3.22(d). The values of p zz q() were obtained using the same procedure as in Example 3.5.
For instance, we see in Table 3.4 that sk = 1 maps to zq = 3, and there are 790 pixels in the histogram-
equalized image with a value of 1. Therefore, p zz() . .3 790 4096 0 19= =

Although the final result in Fig. 3.22(d) does not match the specified histogram exactly, the gen-
eral trend of moving the intensities toward the high end of the intensity scale definitely was achieved.
As mentioned earlier, obtaining the histogram-equalized image as an intermediate step is useful for

zq

Specified
p zz q()

Actual
p zz q()

z0 0= 0.00 0.00

z1 1= 0.00 0.00

z2 2= 0.00 0.00

z3 3= 0.15 0.19

z4 4= 0.20 0.25

z5 5= 0.30 0.21

z6 6= 0.20 0.24

z7 7= 0.15 0.11

TABLE 3.2
Specified and
actual histograms
(the values in
the third column
are computed in
Example 3.7).

DIP4E_GLOBAL_Print_Ready.indb 146 6/16/2017 2:03:28 PM

3.3 Histogram Processing 147

explaining the procedure, but this is not necessary. Instead, we could list the mappings from the r’s to
the s’s and from the s’s to the z’s in a three-column table. Then, we would use those mappings to map
the original pixels directly into the pixels of the histogram-specified image.

EXAMPLE 3.8 : Comparison between histogram equalization and histogram specification.

Figure 3.23(a) shows an image of the Mars moon, Phobos, taken by NASA’s Mars Global Surveyor.
Figure 3.23(b) shows the histogram of Fig. 3.23(a). The image is dominated by large, dark areas, result-
ing in a histogram characterized by a large concentration of pixels in the dark end of the gray scale. At
first glance, one might conclude that histogram equalization would be a good approach to enhance this
image, so that details in the dark areas become more visible. It is demonstrated in the following discus-
sion that this is not so.

Figure 3.24(a) shows the histogram equalization transformation [Eq. (3-20)] obtained using the histo-
gram in Fig. 3.23(b). The most relevant characteristic of this transformation function is how fast it rises
from intensity level 0 to a level near 190. This is caused by the large concentration of pixels in the input
histogram having levels near 0. When this transformation is applied to the levels of the input image to
obtain a histogram-equalized result, the net effect is to map a very narrow interval of dark pixels into the

TABLE 3.4
Mapping of
values sk into
corresponding
values zq.

s zk q→

1 3→

3 4→

5 5→

6 6→

7 7→

7.00

5.25

3.50

1.75

0
0 64 128 192 255

N
um

be
r

of
 p

ix
el

s
(

�
 1

0
4)

ba

FIGURE 3.23
(a) An image, and
(b) its histogram.

DIP4E_GLOBAL_Print_Ready.indb 147 6/16/2017 2:03:29 PM

148 Chapter 3 Intensity Transformations and Spatial Filtering

255

192

128

64

0
0 64 128 192 255

Input intensity

O
ut

pu
t i

nt
en

si
ty

7.00

5.25

3.50

1.75

0
0 64 128 192 255

Intensity

N
um

be
r

of
 p

ix
el

s
(

�
 1

0
4)

ba
c

FIGURE 3.24
(a) Histogram
equalization
transformation
obtained using
the histogram
in Fig. 3.23(b).
(b) Histogram
equalized image.
(c) Histogram of
equalized image.

upper end of the gray scale of the output image. Because numerous pixels in the input image have levels
precisely in this interval, we would expect the result to be an image with a light, washed-out appearance.
As Fig. 3.24(b) shows, this is indeed the case. The histogram of this image is shown in Fig. 3.24(c). Note
how all the intensity levels are biased toward the upper one-half of the gray scale.

Because the problem with the transformation function in Fig. 3.24(a) was caused by a large con-
centration of pixels in the original image with levels near 0, a reasonable approach is to modify the
histogram of that image so that it does not have this property. Figure 3.25(a) shows a manually speci-
fied function that preserves the general shape of the original histogram, but has a smoother transition
of levels in the dark region of the gray scale. Sampling this function into 256 equally spaced discrete
values produced the desired specified histogram. The transformation function, G zq(), obtained from this
histogram using Eq. (3-21) is labeled transformation (1) in Fig. 3.25(b). Similarly, the inverse transfor-
mation G sk

−1(), from Eq. (3-23) (obtained using the step-by-step procedure discussed earlier) is labeled
transformation (2) in Fig. 3.25(b). The enhanced image in Fig. 3.25(c) was obtained by applying trans-
formation (2) to the pixels of the histogram-equalized image in Fig. 3.24(b). The improvement of the
histogram-specified image over the result obtained by histogram equalization is evident by comparing
these two images. It is of interest to note that a rather modest change in the original histogram was all
that was required to obtain a significant improvement in appearance. Figure 3.25(d) shows the histo-
gram of Fig. 3.25(c). The most distinguishing feature of this histogram is how its low end has shifted right
toward the lighter region of the gray scale (but not excessively so), as desired.

DIP4E_GLOBAL_Print_Ready.indb 148 6/16/2017 2:03:29 PM

3.3 Histogram Processing 149

LOCAL HISTOGRAM PROCESSING

The histogram processing methods discussed thus far are global, in the sense that
pixels are modified by a transformation function based on the intensity distribution
of an entire image. This global approach is suitable for overall enhancement, but
generally fails when the objective is to enhance details over small areas in an image.
This is because the number of pixels in small areas have negligible influence on
the computation of global transformations. The solution is to devise transformation
functions based on the intensity distribution of pixel neighborhoods.

The histogram processing techniques previously described can be adapted to local
enhancement. The procedure is to define a neighborhood and move its center from

7.00

5.25

3.50

1.75

0
0 64 128 192 255

Intensity

255

192

128

64

0
0 64 128 192 255

Input intensity

O
ut

pu
t i

nt
en

si
ty

(2)

(1)

7.00

5.25

3.50

1.75

0
0 64 128 192 255

Intensity

N
um

be
r

of
 p

ix
el

s
(

�
 1

0
4)

N
um

be
r

of
 p

ix
el

s
(

�
 1

04)

a
b

c

d

FIGURE 3.25
Histogram
specification.
(a) Specified histo-
gram.
(b) Transformation
G zq(), labeled (1),
and G sk

−1(),
labeled (2).
(c) Result of
histogram
specification.
(d) Histogram of
image (c).

DIP4E_GLOBAL_Print_Ready.indb 149 6/16/2017 2:03:30 PM

150 Chapter 3 Intensity Transformations and Spatial Filtering

pixel to pixel in a horizontal or vertical direction. At each location, the histogram of
the points in the neighborhood is computed, and either a histogram equalization or
histogram specification transformation function is obtained. This function is used to
map the intensity of the pixel centered in the neighborhood. The center of the neigh-
borhood is then moved to an adjacent pixel location and the procedure is repeated.
Because only one row or column of the neighborhood changes in a one-pixel trans-
lation of the neighborhood, updating the histogram obtained in the previous loca-
tion with the new data introduced at each motion step is possible (see Problem 3.14).
This approach has obvious advantages over repeatedly computing the histogram of
all pixels in the neighborhood region each time the region is moved one pixel loca-
tion. Another approach used sometimes to reduce computation is to utilize nonover-
lapping regions, but this method usually produces an undesirable “blocky” effect.

EXAMPLE 3.9 : Local histogram equalization.

Figure 3.26(a) is an 8-bit, 512 512× image consisting of five black squares on a light gray background.
The image is slightly noisy, but the noise is imperceptible. There are objects embedded in the dark
squares, but they are invisible for all practical purposes. Figure 3.26(b) is the result of global histogram
equalization. As is often the case with histogram equalization of smooth, noisy regions, this image shows
significant enhancement of the noise. However, other than the noise, Fig. 3.26(b) does not reveal any
new significant details from the original. Figure 3.26(c) was obtained using local histogram equaliza-
tion of Fig. 3.26(a) with a neighborhood of size 3 3× . Here, we see significant detail within all the dark
squares. The intensity values of these objects are too close to the intensity of the dark squares, and their
sizes are too small, to influence global histogram equalization significantly enough to show this level of
intensity detail.

USING HISTOGRAM STATISTICS FOR IMAGE ENHANCEMENT

Statistics obtained directly from an image histogram can be used for image enhance-
ment. Let r denote a discrete random variable representing intensity values in the range
[,]0 1L − , and let p ri() denote the normalized histogram component corresponding to
intensity value ri . As indicated earlier, we may view p ri() as an estimate of the prob-
ability that intensity ri occurs in the image from which the histogram was obtained.

ba c

FIGURE 3.26
(a) Original
image. (b) Result
of global
histogram
equalization.
(c) Result of local
histogram
equalization.

DIP4E_GLOBAL_Print_Ready.indb 150 6/16/2017 2:03:30 PM

3.3 Histogram Processing 151

For an image with intensity levels in the range [,],0 1L − the nth moment of r
about its mean, m, is defined as

 mn i
n

i
i

L

r m p r= −
=

−

∑ () ()
0

1

 (3-24)

where m is given by

 m r p ri i
i

L

=
=

−

∑ ()
0

1

 (3-25)

The mean is a measure of average intensity and the variance (or standard deviation,
s), given by

 s m2
2

2

0

1

= = −
=

−

∑ () ()r m p ri i
i

L

 (3-26)

is a measure of image contrast.
We consider two uses of the mean and variance for enhancement purposes. The

global mean and variance [Eqs. (3-25) and (3-26)] are computed over an entire
image and are useful for gross adjustments in overall intensity and contrast. A more
powerful use of these parameters is in local enhancement, where the local mean and
variance are used as the basis for making changes that depend on image character-
istics in a neighborhood about each pixel in an image.

Let (,)x y denote the coordinates of any pixel in a given image, and let Sxy denote
a neighborhood of specified size, centered on (,).x y The mean value of the pixels in
this neighborhood is given by the expression

 m r p rS i S i
i

L

xy xy
=

=

−

∑ ()
0

1

 (3-27)

where pSxy
 is the histogram of the pixels in region Sxy. This histogram has L bins,

corresponding to the L possible intensity values in the input image. However, many
of the bins will have 0 counts, depending on the size of Sxy. For example, if the neigh-
borhood is of size 3 3× and L = 256, only between 1 and 9 of the 256 bins of the
histogram of the neighborhood will be nonzero (the maximum number of possible
different intensities in a 3 3× region is 9, and the minimum is 1). These non-zero
values will correspond to the number of different intensities in Sxy .

The variance of the pixels in the neighborhood is similarly given by

 sS i S S i
i

L

xy xy xy
r m p r2 2

0

1

= −
=

−

∑ () () (3-28)

As before, the local mean is a measure of average intensity in neighborhood Sxy , and
the local variance (or standard deviation) is a measure of intensity contrast in that
neighborhood.

See the tutorials section
in the book website for a
review of probability.

We follow convention
in using m for the mean
value. Do not confuse it
with our use of the same
symbol to denote the
number of rows in an
m � n neighborhood.

DIP4E_GLOBAL_Print_Ready.indb 151 6/16/2017 2:03:31 PM

152 Chapter 3 Intensity Transformations and Spatial Filtering

As the following example illustrates, an important aspect of image processing
using the local mean and variance is the flexibility these parameters afford in devel-
oping simple, yet powerful enhancement rules based on statistical measures that
have a close, predictable correspondence with image appearance.

EXAMPLE 3.10 : Local enhancement using histogram statistics.

Figure 3.27(a) is the same image as Fig. 3.26(a), which we enhanced using local histogram equalization.
As noted before, the dark squares contain embedded symbols that are almost invisible. As before, we
want to enhance the image to bring out these hidden features.

We can use the concepts presented in this section to formulate an approach for enhancing low-con-
trast details embedded in a background of similar intensity. The problem at hand is to enhance the low-
contrast detail in the dark areas of the image, while leaving the light background unchanged.

A method used to determine whether an area is relatively light or dark at a point (,)x y is to com-
pare the average local intensity, mSxy

, to the average image intensity (the global mean), denoted by
mG. We obtain mG using Eq. (3-25) with the histogram of the entire image. Thus, we have the first ele-
ment of our enhancement scheme: We will consider the pixel at (,)x y as a candidate for processing if
k m m k mG S Gxy0 1≤ ≤ , where k0 and k1 are nonnegative constants and k k0 1< . For example, if our focus is
on areas that are darker than one-quarter of the mean intensity, we would choose k0 0= and k1 0 25= . .

Because we are interested in enhancing areas that have low contrast, we also need a measure to
determine whether the contrast of an area makes it a candidate for enhancement. We consider the
pixel at (,)x y as a candidate if k kG S Gxy2 3s s s≤ ≤ , where sG is the global standard deviation obtained
with Eq. (3-26) using the histogram of the entire image, and k2 and k3 are nonnegative constants, with
k k2 3< . For example, to enhance a dark area of low contrast, we might choose k2 0= and k3 0 1= . . A
pixel that meets all the preceding conditions for local enhancement is processed by multiplying it by a
specified constant, C, to increase (or decrease) the value of its intensity level relative to the rest of the
image. Pixels that do not meet the enhancement conditions are not changed.

We summarize the preceding approach as follows. Let f x y(,) denote the value of an image at any
image coordinates (,),x y and let g x y(,) be the corresponding value in the enhanced image at those
coordinates. Then,

 g x y
C f x y k m m k m k k

f x y

G S G G S Gxy xy

(,)
(,)

(,)
=

if AND

ot

20 1 3≤ ≤ ≤ ≤s s s

hherwise

⎧
⎨
⎪

⎩⎪
 (3-29)

ba

FIGURE 3.27
(a) Original
image. (b) Result
of local
enhancement
based on local
histogram
statistics.
Compare (b) with
Fig. 3.26(c).

DIP4E_GLOBAL_Print_Ready.indb 152 6/16/2017 2:03:33 PM

3.4 Fundamentals of Spatial Filtering 153

for x M= −0 1 2 1, , , ,… and y N= −0 1 2 1, , , , ,… where, as indicated above, C, k0 , k1, k2 , and k3 are
specified constants, mG is the global mean of the input image, and sG is its standard deviation. Param-
eters mSxy

 and sSxy
 are the local mean and standard deviation, respectively, which change for every loca-

tion (,).x y As usual, M and N are the number of rows and columns in the input image.
Factors such as the values of the global mean and variance relative to values in the areas to be

enhanced play a key role in selecting the parameters in Eq. (3-29), as does the range of differences
between the intensities of the areas to be enhanced and their background. In the case of Fig. 3.27(a),
mG = 161, sG = 103, the maximum intensity values of the image and areas to be enhanced are 228 and
10, respectively, and the minimum values are 0 in both cases.

We would like for the maximum value of the enhanced features to be the same as the maximum value
of the image, so we select C = 22 8. . The areas to be enhanced are quite dark relative to the rest of the
image, and they occupy less than a third of the image area; thus, we expect the mean intensity in the
dark areas to be much less than the global mean. Based on this, we let k0 0= and k1 0 1= . . Because the
areas to be enhanced are of very low contrast, we let k2 0= . For the upper limit of acceptable values
of standard deviation we set k3 0 1= . , which gives us one-tenth of the global standard deviation. Figure
3.27(b) is the result of using Eq. (3-29) with these parameters. By comparing this figure with Fig. 3.26(c),
we see that the method based on local statistics detected the same hidden features as local histogram
equalization. But the present approach extracted significantly more detail. For example, we see that all
the objects are solid, but only the boundaries were detected by local histogram equalization. In addition,
note that the intensities of the objects are not the same, with the objects in the top-left and bottom-right
being brighter than the others. Also, the horizontal rectangles in the lower left square evidently are of
different intensities. Finally, note that the background in both the image and dark squares in Fig. 3.27(b)
is nearly the same as in the original image; by comparison, the same regions in Fig. 3.26(c) exhibit more
visible noise and have lost their gray-level content. Thus, the additional complexity required to use local
statistics yielded results in this case that are superior to local histogram equalization.

3.4 FUNDAMENTALS OF SPATIAL FILTERING

In this section, we discuss the use of spatial filters for image processing. Spatial filter-
ing is used in a broad spectrum of image processing applications, so a solid under-
standing of filtering principles is important. As mentioned at the beginning of this
chapter, the filtering examples in this section deal mostly with image enhancement.
Other applications of spatial filtering are discussed in later chapters.

The name filter is borrowed from frequency domain processing (the topic of
Chapter 4) where “filtering” refers to passing, modifying, or rejecting specified fre-
quency components of an image. For example, a filter that passes low frequencies
is called a lowpass filter. The net effect produced by a lowpass filter is to smooth an
image by blurring it. We can accomplish similar smoothing directly on the image
itself by using spatial filters.

Spatial filtering modifies an image by replacing the value of each pixel by a func-
tion of the values of the pixel and its neighbors. If the operation performed on the
image pixels is linear, then the filter is called a linear spatial filter. Otherwise, the
filter is a nonlinear spatial filter. We will focus attention first on linear filters and then
introduce some basic nonlinear filters. Section 5.3 contains a more comprehensive
list of nonlinear filters and their application.

3.4

See Section 2.6 regarding
linearity.

DIP4E_GLOBAL_Print_Ready.indb 153 6/16/2017 2:03:34 PM

154 Chapter 3 Intensity Transformations and Spatial Filtering

THE MECHANICS OF LINEAR SPATIAL FILTERING

A linear spatial filter performs a sum-of-products operation between an image f and a
filter kernel, w. The kernel is an array whose size defines the neighborhood of opera-
tion, and whose coefficients determine the nature of the filter. Other terms used to
refer to a spatial filter kernel are mask, template, and window. We use the term filter
kernel or simply kernel.

Figure 3.28 illustrates the mechanics of linear spatial filtering using a 3 3× ker-
nel. At any point (,)x y in the image, the response, g x y(,), of the filter is the sum of
products of the kernel coefficients and the image pixels encompassed by the kernel:

g x y f x y f x y

f x y

(,) (,) (,) (,) (,)

(,) (,)

= − − − − + − − +
+ +

w w

w

1 1 1 1 1 0 1

0 0

…
… ++ + +w(,) (,)1 1 1 1f x y

 (3-30)

As coordinates x and y are varied, the center of the kernel moves from pixel to pixel,
generating the filtered image, g, in the process.†

Observe that the center coefficient of the kernel, w(,)0 0 , aligns with the pixel at
location (,).x y For a kernel of size m n× , we assume that m a= +2 1 and n b= +2 1,
where a and b are nonnegative integers. This means that our focus is on kernels of
odd size in both coordinate directions. In general, linear spatial filtering of an image
of size M N× with a kernel of size m n× is given by the expression

 g x y s t f x s y t
t b

b

s a

a

(,) (,) (,)= + +
= −= −
∑∑ w (3-31)

where x and y are varied so that the center (origin) of the kernel visits every pixel in
f once. For a fixed value of (,),x y Eq. (3-31) implements the sum of products of the
form shown in Eq. (3-30), but for a kernel of arbitrary odd size. As you will learn in
the following section, this equation is a central tool in linear filtering.

SPATIAL CORRELATION AND CONVOLUTION

Spatial correlation is illustrated graphically in Fig. 3.28, and it is described mathemati-
cally by Eq. (3-31). Correlation consists of moving the center of a kernel over an
image, and computing the sum of products at each location. The mechanics of spatial
convolution are the same, except that the correlation kernel is rotated by 180°. Thus,
when the values of a kernel are symmetric about its center, correlation and convolu-
tion yield the same result. The reason for rotating the kernel will become clear in
the following discussion. The best way to explain the differences between the two
concepts is by example.

We begin with a 1-D illustration, in which case Eq. (3-31) becomes

 g x s f x s
s a

a

() () ()= +
= −
∑ w (3-32)

† A filtered pixel value typically is assigned to a corresponding location in a new image created to hold the results
of filtering. It is seldom the case that filtered pixels replace the values of the corresponding location in the origi-
nal image, as this would change the content of the image while filtering is being performed.

It certainly is possible
to work with kernels of
even size, or mixed even
and odd sizes. However,
working with odd sizes
simplifies indexing and
is also more intuitive
because the kernels have
centers falling on integer
values, and they are
spatially symmetric.

DIP4E_GLOBAL_Print_Ready.indb 154 6/16/2017 2:03:36 PM

3.4 Fundamentals of Spatial Filtering 155

Figure 3.29(a) shows a 1-D function, f, and a kernel, w. The kernel is of size 1 5× , so
a = 2 and b = 0 in this case. Figure 3.29(b) shows the starting position used to per-
form correlation, in which w is positioned so that its center coefficient is coincident
with the origin of f.

The first thing we notice is that part of w lies outside f, so the summation is
undefined in that area. A solution to this problem is to pad function f with enough
0’s on either side. In general, if the kernel is of size 1 × m, we need ()m − 1 2 zeros
on either side of f in order to handle the beginning and ending configurations of w
with respect to f. Figure 3.29(c) shows a properly padded function. In this starting
configuration, all coefficients of the kernel overlap valid values.

Zero padding is not the
only padding option, as
we will discuss in detail
later in this chapter.

Pixel values under kernel
when it is centered on (x, y)

f(x � 1, y � 1) f(x � 1, y 	 1)f(x � 1, y)

f(x 	 1, y 	 1)f(x 	 1, y � 1) f(x 	 1, y)

f(x, y � 1) f(x, y 	 1)f(x, y)

w(�1,�1)

w(0,�1)

w(�1,0) w(�1,1)

w(0,1)

w(1,1)

w(0,0)

w(1,0)w(1,�1)

Kernel coefficients

x

Image f

y

Image origin

Filter kernel,

Magnified view showing filter kernel
coefficients and corresponding pixels
in the image

Filter kernel

Kernel origin

Image pixels

w(s, t)

FIGURE 3.28
The mechanics
of linear spatial
filtering
using a 3 3×
kernel. The pixels
are shown as
squares to sim-
plify the graph-
ics. Note that
the origin of the
image is at the top
left, but the origin
of the kernel is at
its center. Placing
the origin at the
center of spatially
symmetric kernels
simplifies writing
expressions for
linear filtering.

DIP4E_GLOBAL_Print_Ready.indb 155 6/16/2017 2:03:36 PM

156 Chapter 3 Intensity Transformations and Spatial Filtering

The first correlation value is the sum of products in this initial position, computed
using Eq. (3-32) with x = 0 :

 g s f s
s

() () ()0 0 0
2

2

= + =
= −
∑ w

This value is in the leftmost location of the correlation result in Fig. 3.29(g).
To obtain the second value of correlation, we shift the relative positions of w and

f one pixel location to the right [i.e., we let x = 1 in Eq. (3-32)] and compute the sum
of products again. The result is g() ,1 8= as shown in the leftmost, nonzero location
in Fig. 3.29(g). When x = 2, we obtain g() .2 2= When x = 3, we get g()3 4= [see Fig.
3.29(e)]. Proceeding in this manner by varying x one shift at a time, we “build” the
correlation result in Fig. 3.29(g). Note that it took 8 values of x (i.e., x = 0 1 2 7, , , ,…)
to fully shift w past f so the center coefficient in w visited every pixel in f. Sometimes,
it is useful to have every element of w visit every pixel in f. For this, we have to start

(i)

(j)

(k)

(l)

(m)

(n)

(a)

(b)

(c)

(d)

(e)

(f)

0 0 0 1 0 0 0 0 0 0 1 0 0 0 00
1 2 4 2 8 8 2 4 2 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00
1 2 4 2 8 8 2 4 2 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00
1 2 4 2 8 8 2 4 2 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00
1 2 4 2 8 8 2 4 2 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00
1 2 4 2 8 8 2 4 2 1

Correlation Convolution

Starting position alignment

Position after 1 shift

Final position

(h) 0 0 0 8 2 4 2 1 0 0 00

Extended (full) correlation result

(p)0 0 0 1 2 4 2 8 0 0 0 0

Extended (full) convolution result

(g) 0 8 2 4 2 1 00

 Correlation result

(o)0 1 2 4 2 8 0 0

 Convolution result

0 0 0 1 0 0 0 0
Origin f

8 2 4 2 1
w rotated 180�

0 0 0 1 0 0 0 0
Origin f

2 4 2 81
w

Position after 3 shifts

Zero padding

Starting position

Zero padding

Starting position

Starting position alignment

Position after 1 shift

Position after 3 shifts

Final position

FIGURE 3.29
Illustration of 1-D
correlation and
convolution of a
kernel, w, with a
function f
consisting of a
discrete unit
impulse. Note that
correlation and
convolution are
functions of the
variable x, which
acts to displace
one function with
respect to the
other. For the
extended
correlation and
convolution
results, the
starting
configuration
places the right-
most element of
the kernel to be
coincident with
the origin of f.
Additional
padding must be
used.

DIP4E_GLOBAL_Print_Ready.indb 156 6/16/2017 2:03:38 PM

3.4 Fundamentals of Spatial Filtering 157

with the rightmost element of w coincident with the origin of f, and end with the
leftmost element of w being coincident the last element of f (additional padding
would be required). Figure Fig. 3.29(h) shows the result of this extended, or full, cor-
relation. As Fig. 3.29(g) shows, we can obtain the “standard” correlation by cropping
the full correlation in Fig. 3.29(h).

There are two important points to note from the preceding discussion. First, cor-
relation is a function of displacement of the filter kernel relative to the image. In
other words, the first value of correlation corresponds to zero displacement of the
kernel, the second corresponds to one unit displacement, and so on.† The second
thing to notice is that correlating a kernel w with a function that contains all 0’s and
a single 1 yields a copy of w, but rotated by 180°. A function that contains a single 1
with the rest being 0’s is called a discrete unit impulse. Correlating a kernel with a dis-
crete unit impulse yields a rotated version of the kernel at the location of the impulse.

The right side of Fig. 3.29 shows the sequence of steps for performing convolution
(we will give the equation for convolution shortly). The only difference here is that
the kernel is pre-rotated by 180° prior to performing the shifting/sum of products
operations. As the convolution in Fig. 3.29(o) shows, the result of pre-rotating the
kernel is that now we have an exact copy of the kernel at the location of the unit
impulse. In fact, a foundation of linear system theory is that convolving a function
with an impulse yields a copy of the function at the location of the impulse. We will
use this property extensively in Chapter 4.

The 1-D concepts just discussed extend easily to images, as Fig. 3.30 shows. For a
kernel of size m n× , we pad the image with a minimum of ()m − 1 2 rows of 0’s at
the top and bottom and ()n − 1 2 columns of 0’s on the left and right. In this case,
m and n are equal to 3, so we pad f with one row of 0’s above and below and one
column of 0’s to the left and right, as Fig. 3.30(b) shows. Figure 3.30(c) shows the
initial position of the kernel for performing correlation, and Fig. 3.30(d) shows the
final result after the center of w visits every pixel in f, computing a sum of products
at each location. As before, the result is a copy of the kernel, rotated by 180°. We will
discuss the extended correlation result shortly.

For convolution, we pre-rotate the kernel as before and repeat the sliding sum of
products just explained. Figures 3.30(f) through (h) show the result. You see again
that convolution of a function with an impulse copies the function to the location
of the impulse. As noted earlier, correlation and convolution yield the same result if
the kernel values are symmetric about the center.

The concept of an impulse is fundamental in linear system theory, and is used in
numerous places throughout the book. A discrete impulse of strength (amplitude) A
located at coordinates (,)x y0 0 is defined as

 d(,)x x y y
A x x y y

− − =
= =⎧

⎨
⎪

⎩⎪
0 0

0 0

0

if and

otherwise
 (3-33)

† In reality, we are shifting f to the left of w every time we increment x in Eq. (3-32). However, it is more intuitive
to think of the smaller kernel moving right over the larger array f. The motion of the two is relative, so either
way of looking at the motion is acceptable. The reason we increment f and not w is that indexing the equations
for correlation and convolution is much easier (and clearer) this way, especially when working with 2-D arrays.

Rotating a 1-D kernel
by 180° is equivalent to
flipping the kernel about
its axis.

In 2-D, rotation by 180°
is equivalent to flipping
the kernel about one axis
and then the other.

DIP4E_GLOBAL_Print_Ready.indb 157 6/16/2017 2:03:39 PM

158 Chapter 3 Intensity Transformations and Spatial Filtering

For example, the unit impulse in Fig. 3.29(a) is given by d()x − 3 in the 1-D version of
the preceding equation. Similarly, the impulse in Fig. 3.30(a) is given by d(,)x y− −2 2
[remember, the origin is at (,)0 0].

 Summarizing the preceding discussion in equation form, the correlation of a
kernel w of size m n× with an image f x y(,), denoted as (w � f x y)(,), is given by
Eq. (3-31), which we repeat here for convenience:

 (w w� f x y s t f x s y t
t b

b

s a

a

)(,) (,) (,)= + +
= −= −
∑∑ (3-34)

Because our kernels do not depend on (,),x y we will sometimes make this fact explic-
it by writing the left side of the preceding equation as w � f x y(,). Equation (3-34) is
evaluated for all values of the displacement variables x and y so that the center point
of w visits every pixel in f,† where we assume that f has been padded appropriately.

† As we mentioned earlier, the minimum number of required padding elements for a 2-D correlation is ()m − 1 2
rows above and below f, and ()n − 1 2 columns on the left and right. With this padding, and assuming that f
is of size M N× , the values of x and y required to obtain a complete correlation are x M= −0 1 2 1, , , ,… and
y N= −0 1 2 1, , , , .… This assumes that the starting configuration is such that the center of the kernel coincides
with the origin of the image, which we have defined to be at the top, left (see Fig. 2.19).

Recall that A = 1 for a
unit impulse.

0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Origin

Rotated w

0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0

0 0 0 0 0

Convolution result

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 9 8 7 0 0
0 0 6 5 4 0 0
0 0 3 2 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Full correlation result

0 9 8 7 0
0 6 5 4 0
0 3 2 1 0
0 0 0 0 0

0 0 0 0 0

Correlation result

4 5 6
7 8 9

1 2 3
w

(a)

Padded f

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

(b)

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 2 3 0 0
0 0 4 5 6 0 0
0 0 7 8 9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Full convolution result

(d)

(g) (h)(f)

(e)(c)

4 5 6
7 8 9

1 2 3

6 5 4
3 2 1

9 8 7

Initial position for w

f

FIGURE 3.30
Correlation
(middle row) and
convolution (last
row) of a 2-D
kernel with an
image consisting
of a discrete unit
impulse. The 0’s
are shown in gray
to simplify visual
analysis. Note that
correlation and
convolution are
functions of x and
y. As these
variable change,
they
displace one
function with
respect to the
other. See the
discussion of Eqs.
(3-36) and (3-37)
regarding full
correlation and
convolution.

DIP4E_GLOBAL_Print_Ready.indb 158 6/16/2017 2:03:40 PM

3.4 Fundamentals of Spatial Filtering 159

As explained earlier, a m= −() ,1 2 b n= −() ,1 2 and we assume that m and n are
odd integers.

In a similar manner, the convolution of a kernel w of size m n× with an image
f x y(,), denoted by (w � f x y)(,), is defined as

 (w w� f x y s t f x s y t
t b

b

s a

a

)(,) (,) (,)= − −
= −= −
∑∑ (3-35)

where the minus signs align the coordinates of f and w when one of the functions is
rotated by 180° (see Problem 3.17). This equation implements the sum of products
process to which we refer throughout the book as linear spatial filtering. That is, lin-
ear spatial filtering and spatial convolution are synonymous.

Because convolution is commutative (see Table 3.5), it is immaterial whether w
or f is rotated, but rotation of the kernel is used by convention. Our kernels do not
depend on (,),x y a fact that we sometimes make explicit by writing the left side
of Eq. (3-35) as w � f x y(,). When the meaning is clear, we let the dependence of
the previous two equations on x and y be implied, and use the simplified notation
w � f and w � f . As with correlation, Eq. (3-35) is evaluated for all values of the
displacement variables x and y so that the center of w visits every pixel in f, which
we assume has been padded. The values of x and y needed to obtain a full convolu-
tion are x M= −0 1 2 1, , , ,… and y N= −0 1 2 1, , , , .… The size of the result is M N× .

We can define correlation and convolution so that every element of w (instead of
just its center) visits every pixel in f. This requires that the starting configuration be
such that the right, lower corner of the kernel coincides with the origin of the image.
Similarly, the ending configuration will be with the top left corner of the kernel coin-
ciding with the lower right corner of the image. If the kernel and image are of sizes
m n× and M N× , respectively, the padding would have to increase to ()m − 1 pad-
ding elements above and below the image, and ()n − 1 elements to the left and right.
Under these conditions, the size of the resulting full correlation or convolution array
will be of size S Sv h× , where (see Figs. 3.30(e) and (h), and Problem 3.19),

 S m Mv = + − 1 (3-36)

and

 S n Nh = + − 1 (3-37)

Often, spatial filtering algorithms are based on correlation and thus implement
Eq. (3-34) instead. To use the algorithm for correlation, we input w into it; for con-
volution, we input w rotated by 180°. The opposite is true for an algorithm that
implements Eq. (3-35). Thus, either Eq. (3-34) or Eq. (3-35) can be made to perform
the function of the other by rotating the filter kernel. Keep in mind, however, that
the order of the functions input into a correlation algorithm does make a difference,
because correlation is neither commutative nor associative (see Table 3.5).

DIP4E_GLOBAL_Print_Ready.indb 159 6/16/2017 2:03:42 PM

160 Chapter 3 Intensity Transformations and Spatial Filtering

Figure 3.31 shows two kernels used for smoothing the intensities of an image. To
filter an image using one of these kernels, we perform a convolution of the kernel
with the image in the manner just described. When talking about filtering and ker-
nels, you are likely to encounter the terms convolution filter, convolution mask, or
convolution kernel to denote filter kernels of the type we have been discussing. Typi-
cally, these terms are used in the literature to denote a spatial filter kernel, and not
to imply necessarily that the kernel is used for convolution. Similarly, “convolving a
kernel with an image” often is used to denote the sliding, sum-of-products process
we just explained, and does not necessarily differentiate between correlation and
convolution. Rather, it is used generically to denote either of the two operations.
This imprecise terminology is a frequent source of confusion. In this book, when we
use the term linear spatial filtering, we mean convolving a kernel with an image.

Sometimes an image is filtered (i.e., convolved) sequentially, in stages, using a dif-
ferent kernel in each stage. For example, suppose than an image f is filtered with a
kernel w1, the result filtered with kernel w2 , that result filtered with a third kernel,
and so on, for Q stages. Because of the commutative property of convolution, this
multistage filtering can be done in a single filtering operation, w � f , where

 w w w w w= 1 2 3� � � �� Q (3-38)

The size of w is obtained from the sizes of the individual kernels by successive
applications of Eqs. (3-36) and (3-37). If all the individual kernels are of size m n× ,
it follows from these equations that w will be of size W Wv h× , where

 W Q m mv = − +× ()1 (3-39)

and

 W Q n nh = − +× ()1 (3-40)

These equations assume that every value of a kernel visits every value of the array
resulting from the convolution in the previous step. That is, the initial and ending
configurations, are as described in connection with Eqs. (3-36) and (3-37).

Because the values of
these kernels are sym-
metric about the center,
no rotation is required
before convolution.

We could not write a
similar equation for
correlation because it is
not commutative.

11

1 1

11

1

1

1

1
9

� 1.0000

0.3679 0.6065

0.3679

0.3679

0.3679

0.6065 0.6065

0.6065

�
4.8976

1

ba

FIGURE 3.31
Examples of
smoothing kernels:
(a) is a box kernel;
(b) is a Gaussian
kernel.

Property Convolution Correlation

Commutative f g g f� �= —

Associative f g f g hh� � � �() = () —

Distributive f g h f g f h� � �+() = () + () f g h f g f h� � �+() = () + ()

TABLE 3.5
Some fundamen-
tal properties of
convolution and
correlation. A
dash means that
the property does
not hold.

DIP4E_GLOBAL_Print_Ready.indb 160 6/16/2017 2:03:43 PM

3.4 Fundamentals of Spatial Filtering 161

SEPARABLE FILTER KERNELS

As noted in Section 2.6, a 2-D function G x y(,) is said to be separable if it can be written
as the product of two 1-D functions, G x1() and G x2(); that is, G x y G x G y(,) () ().= 1 2
A spatial filter kernel is a matrix, and a separable kernel is a matrix that can be
expressed as the outer product of two vectors. For example, the 2 3* kernel

 w =
⎡

⎣
⎢

⎤

⎦
⎥

1 1 1

1 1 1

is separable because it can be expressed as the outer product of the vectors

 c r= =
1

1

1

1

1

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and

That is,

 c rT = = =
1

1
1 1 1

1 1 1

1 1 1
⎡

⎣
⎢

⎤

⎦
⎥ [] ⎡

⎣
⎢

⎤

⎦
⎥ w

A separable kernel of size m n× can be expressed as the outer product of two vec-
tors, v and w:

 w = vwT (3-41)

where v and w are vectors of size m × 1 and n × 1, respectively. For a square kernel
of size m m× , we write

 w = vvT (3-42)

It turns out that the product of a column vector and a row vector is the same as the
2-D convolution of the vectors (see Problem 3.24).

The importance of separable kernels lies in the computational advantages that
result from the associative property of convolution. If we have a kernel w that can
be decomposed into two simpler kernels, such that w w w1 2= � , then it follows
from the commutative and associative properties in Table 3.5 that

 w f w w w w w w w w� � � � � � � � �= = = =() ()))((1 2 2 1 2 1 1 2f f f f (3-43)

This equation says that convolving a separable kernel with an image is the same as
convolving w1 with f first, and then convolving the result with w2.

For an image of size M N× and a kernel of size m n× , implementation of Eq.
(3-35) requires on the order of MNmn multiplications and additions. This is because
it follows directly from that equation that each pixel in the output (filtered) image
depends on all the coefficients in the filter kernel. But, if the kernel is separable and
we use Eq. (3-43), then the first convolution, w1 � f , requires on the order of MNm

To be strictly consistent
in notation, we should
use uppercase, bold
symbols for kernels when
we refer to them as
matrices. However,
kernels are mostly
treated in the book as
2-D functions, which we
denote in italics. To avoid
confusion, we continue
to use italics for kernels
in this short section, with
the understanding that
the two notations are
intended to be equivalent
in this case.

We assume that the
values of M and N
include any padding of
f prior to performing
convolution.

DIP4E_GLOBAL_Print_Ready.indb 161 6/16/2017 2:03:45 PM

162 Chapter 3 Intensity Transformations and Spatial Filtering

multiplications and additions because w1 is of size m × 1. The result is of size M N× ,
so the convolution of w2 with the result requires MNn such operations, for a total of
MN m n()+ multiplication and addition operations. Thus, the computational advan-
tage of performing convolution with a separable, as opposed to a nonseparable, ker-
nel is defined as

 C
MNmn

MN m n
mn

m n
=

+
=

+() (3-44)

For a kernel of modest size, say 11 11× , the computational advantage (and thus exe-
cution-time advantage) is a respectable 5.2. For kernels with hundreds of elements,
execution times can be reduced by a factor of a hundred or more, which is significant.
We will illustrate the use of such large kernels in Example 3.16.

We know from matrix theory that a matrix resulting from the product of a column
vector and a row vector always has a rank of 1. By definition, a separable kernel is
formed by such a product. Therefore, to determine if a kernel is separable, all we
have to do is determine if its rank is 1. Typically, we find the rank of a matrix using a
pre-programmed function in the computer language being used. For example, if you
use MATLAB, function rank will do the job.

Once you have determined that the rank of a kernel matrix is 1, it is not difficult
to find two vectors v and w such that their outer product, vwT, is equal to the kernel.
The approach consists of only three steps:

1. Find any nonzero element in the kernel and let E denote its value.
2. Form vectors c and r equal, respectively, to the column and row in the kernel

containing the element found in Step 1.
3. With reference to Eq. (3-41), let v c= and w rT E= .

The reason why this simple three-step method works is that the rows and columns
of a matrix whose rank is 1 are linearly dependent. That is, the rows differ only by a
constant multiplier, and similarly for the columns. It is instructive to work through
the mechanics of this procedure using a small kernel (see Problems 3.20 and 3.22).

As we explained above, the objective is to find two 1-D kernels, w1 and w2 , in
order to implement 1-D convolution. In terms of the preceding notation, w1 = =c v
and w2 = =r wE T. For circularly symmetric kernels, the column through the center
of the kernel describes the entire kernel; that is, w = vvT c , where c is the value of
the center coefficient. Then, the 1-D components are w1 = v and w2 = vT c .

SOME IMPORTANT COMPARISONS BETWEEN FILTERING IN THE
SPATIAL AND FREQUENCY DOMAINS

Although filtering in the frequency domain is the topic of Chapter 4, we introduce
at this junction some important concepts from the frequency domain that will help
you master the material that follows.

The tie between spatial- and frequency-domain processing is the Fourier trans-
form. We use the Fourier transform to go from the spatial to the frequency domain;

As we will discuss later
in this chapter, the only
kernels that are sepa-
rable and whose values
are circularly symmetric
about the center are
Gaussian kernels, which
have a nonzero center
coefficient (i.e., c > 0 for
these kernels).

DIP4E_GLOBAL_Print_Ready.indb 162 6/16/2017 2:03:46 PM

3.4 Fundamentals of Spatial Filtering 163

to return to the spatial domain we use the inverse Fourier transform. This will be
covered in detail in Chapter 4. The focus here is on two fundamental properties
relating the spatial and frequency domains:

1. Convolution, which is the basis for filtering in the spatial domain, is equivalent
to multiplication in the frequency domain, and vice versa.

2. An impulse of strength A in the spatial domain is a constant of value A in the
frequency domain, and vice versa.

As explained in Chapter 4, a function (e.g., an image) satisfying some mild condi-
tions can be expressed as the sum of sinusoids of different frequencies and ampli-
tudes. Thus, the appearance of an image depends on the frequencies of its sinusoidal
components—change the frequencies of those components, and you will change the
appearance of the image. What makes this a powerful concept is that it is possible to
associate certain frequency bands with image characteristics. For example, regions
of an image with intensities that vary slowly (e.g., the walls in an image of a room)
are characterized by sinusoids of low frequencies. Similarly, edges and other sharp
intensity transitions are characterized by high frequencies. Thus, reducing the high-
frequency components of an image will tend to blur it.

Linear filtering is concerned with finding suitable ways to modify the frequency
content of an image. In the spatial domain we do this via convolution filtering. In
the frequency domain we do it with multiplicative filters. The latter is a much more
intuitive approach, which is one of the reasons why it is virtually impossible to truly
understand spatial filtering without having at least some rudimentary knowledge of
the frequency domain.

An example will help clarify these ideas. For simplicity, consider a 1-D func-
tion (such as an intensity scan line through an image) and suppose that we want to
eliminate all its frequencies above a cutoff value, u0 , while “passing” all frequen-
cies below that value. Figure 3.32(a) shows a frequency-domain filter function for
doing this. (The term filter transfer function is used to denote filter functions in the
frequency domain—this is analogous to our use of the term “filter kernel” in the
spatial domain.) Appropriately, the function in Fig. 3.32(a) is called a lowpass filter
transfer function. In fact, this is an ideal lowpass filter function because it eliminates
all frequencies above u0 , while passing all frequencies below this value.† That is, the

† All the frequency domain filters in which we are interested are symmetrical about the origin and encompass
both positive and negative frequencies, as we will explain in Section 4.3 (see Fig. 4.8). For the moment, we show
only the right side (positive frequencies) of 1-D filters for simplicity in this short explanation.

See the explanation of
Eq. (3-33) regarding
impulses.

As we did earlier with
spatial filters, when the
meaning is clear we use
the term filter inter-
changeably with filter
transfer function when
working in the frequency
domain.

0u
u

Passband

frequency

Stopband

Frequency domain

1

x

Spatial domain

0uba

FIGURE 3.32
(a) Ideal 1-D low-
pass filter transfer
function in the
frequency domain.
(b) Corresponding
filter kernel in the
spatial domain.

DIP4E_GLOBAL_Print_Ready.indb 163 6/16/2017 2:03:47 PM

164 Chapter 3 Intensity Transformations and Spatial Filtering

transition of the filter between low and high frequencies is instantaneous. Such filter
functions are not realizable with physical components, and have issues with “ringing”
when implemented digitally. However, ideal filters are very useful for illustrating
numerous filtering phenomena, as you will learn in Chapter 4.

To lowpass-filter a spatial signal in the frequency domain, we first convert it to the
frequency domain by computing its Fourier transform, and then multiply the result
by the filter transfer function in Fig. 3.32(a) to eliminate frequency components with
values higher than u0. To return to the spatial domain, we take the inverse Fourier
transform of the filtered signal. The result will be a blurred spatial domain function.

Because of the duality between the spatial and frequency domains, we can obtain
the same result in the spatial domain by convolving the equivalent spatial domain
filter kernel with the input spatial function. The equivalent spatial filter kernel
is the inverse Fourier transform of the frequency-domain filter transfer function.
Figure 3.32(b) shows the spatial filter kernel corresponding to the frequency domain
filter transfer function in Fig. 3.32(a). The ringing characteristics of the kernel are
evident in the figure. A central theme of digital filter design theory is obtaining faith-
ful (and practical) approximations to the sharp cut off of ideal frequency domain
filters while reducing their ringing characteristics.

A WORD ABOUT HOW SPATIAL FILTER KERNELS ARE CONSTRUCTED

We consider three basic approaches for constructing spatial filters in the following
sections of this chapter. One approach is based on formulating filters based on
mathematical properties. For example, a filter that computes the average of pixels
in a neighborhood blurs an image. Computing an average is analogous to integra-
tion. Conversely, a filter that computes the local derivative of an image sharpens the
image. We give numerous examples of this approach in the following sections.

A second approach is based on sampling a 2-D spatial function whose shape has
a desired property. For example, we will show in the next section that samples from
a Gaussian function can be used to construct a weighted-average (lowpass) filter.
These 2-D spatial functions sometimes are generated as the inverse Fourier trans-
form of 2-D filters specified in the frequency domain. We will give several examples
of this approach in this and the next chapter.

A third approach is to design a spatial filter with a specified frequency response.
This approach is based on the concepts discussed in the previous section, and falls
in the area of digital filter design. A 1-D spatial filter with the desired response is
obtained (typically using filter design software). The 1-D filter values can be expressed
as a vector v, and a 2-D separable kernel can then be obtained using Eq. (3-42). Or the
1-D filter can be rotated about its center to generate a 2-D kernel that approximates a
circularly symmetric function. We will illustrate these techniques in Section 3.7.

3.5 SMOOTHING (LOWPASS) SPATIAL FILTERS

Smoothing (also called averaging) spatial filters are used to reduce sharp transi-
tions in intensity. Because random noise typically consists of sharp transitions in

3.5

DIP4E_GLOBAL_Print_Ready.indb 164 6/16/2017 2:03:47 PM

3.5 Smoothing (Lowpass) Spatial Filters 165

intensity, an obvious application of smoothing is noise reduction. Smoothing prior
to image resampling to reduce aliasing, as will be discussed in Section 4.5, is also
a common application. Smoothing is used to reduce irrelevant detail in an image,
where “irrelevant” refers to pixel regions that are small with respect to the size of
the filter kernel. Another application is for smoothing the false contours that result
from using an insufficient number of intensity levels in an image, as discussed in Sec-
tion 2.4. Smoothing filters are used in combination with other techniques for image
enhancement, such as the histogram processing techniques discussed in Section 3.3,
and unsharp masking, as discussed later in this chapter. We begin the discussion
of smoothing filters by considering linear smoothing filters in some detail. We will
introduce nonlinear smoothing filters later in this section.

As we discussed in Section 3.4, linear spatial filtering consists of convolving an
image with a filter kernel. Convolving a smoothing kernel with an image blurs the
image, with the degree of blurring being determined by the size of the kernel and
the values of its coefficients. In addition to being useful in countless applications of
image processing, lowpass filters are fundamental, in the sense that other impor-
tant filters, including sharpening (highpass), bandpass, and bandreject filters, can be
derived from lowpass filters, as we will show in Section 3.7.

We discuss in this section lowpass filters based on box and Gaussian kernels,
both of which are separable. Most of the discussion will center on Gaussian kernels
because of their numerous useful properties and breadth of applicability. We will
introduce other smoothing filters in Chapters 4 and 5.

BOX FILTER KERNELS

The simplest, separable lowpass filter kernel is the box kernel, whose coefficients
have the same value (typically 1). The name “box kernel” comes from a constant
kernel resembling a box when viewed in 3-D. We showed a 3 3× box filter in Fig.
3.31(a). An m n× box filter is an m n× array of 1’s, with a normalizing constant in
front, whose value is 1 divided by the sum of the values of the coefficients (i.e., 1 mn
when all the coefficients are 1’s). This normalization, which we apply to all lowpass
kernels, has two purposes. First, the average value of an area of constant intensity
would equal that intensity in the filtered image, as it should. Second, normalizing
the kernel in this way prevents introducing a bias during filtering; that is, the sum
of the pixels in the original and filtered images will be the same (see Problem 3.31).
Because in a box kernel all rows and columns are identical, the rank of these kernels
is 1, which, as we discussed earlier, means that they are separable.

EXAMPLE 3.11 : Lowpass filtering with a box kernel.

Figure 3.33(a) shows a test pattern image of size 1024 1024× pixels. Figures 3.33(b)-(d) are the results
obtained using box filters of size m m× with m = 3 11, , and 21, respectively. For m = 3, we note a slight
overall blurring of the image, with the image features whose sizes are comparable to the size of the
kernel being affected significantly more. Such features include the thinner lines in the image and the
noise pixels contained in the boxes on the right side of the image. The filtered image also has a thin gray
border, the result of zero-padding the image prior to filtering. As indicated earlier, padding extends the
boundaries of an image to avoid undefined operations when parts of a kernel lie outside the border of

DIP4E_GLOBAL_Print_Ready.indb 165 6/16/2017 2:03:47 PM

166 Chapter 3 Intensity Transformations and Spatial Filtering

the image during filtering. When zero (black) padding is used, the net result of smoothing at or near the
border is a dark gray border that arises from including black pixels in the averaging process. Using the
11 11× kernel resulted in more pronounced blurring throughout the image, including a more prominent
dark border. The result with the 21 21× kernel shows significant blurring of all components of the image,
including the loss of the characteristic shape of some components, including, for example, the small
square on the top left and the small character on the bottom left. The dark border resulting from zero
padding is proportionally thicker than before. We used zero padding here, and will use it a few more
times, so that you can become familiar with its effects. In Example 3.14 we discuss two other approaches
to padding that eliminate the dark-border artifact that usually results from zero padding.

LOWPASS GAUSSIAN FILTER KERNELS

Because of their simplicity, box filters are suitable for quick experimentation and
they often yield smoothing results that are visually acceptable. They are useful also
when it is desired to reduce the effect of smoothing on edges (see Example 3.13).
However, box filters have limitations that make them poor choices in many appli-
cations. For example, a defocused lens is often modeled as a lowpass filter, but
box filters are poor approximations to the blurring characteristics of lenses (see
Problem 3.33). Another limitation is the fact that box filters favor blurring along
perpendicular directions. In applications involving images with a high level of detail,

ba
dc

FIGURE 3.33
(a) Test pattern of
size 1024 1024×
pixels.
(b)-(d) Results of
lowpass filtering
with box kernels
of sizes 3 3× ,
11 11× ,
and 21 21× ,
respectively.

DIP4E_GLOBAL_Print_Ready.indb 166 6/16/2017 2:03:48 PM

3.5 Smoothing (Lowpass) Spatial Filters 167

or with strong geometrical components, the directionality of box filters often pro-
duces undesirable results. (Example 3.13 illustrates this issue.) These are but two
applications in which box filters are not suitable.

The kernels of choice in applications such as those just mentioned are circularly
symmetric (also called isotropic, meaning their response is independent of orienta-
tion). As it turns out, Gaussian kernels of the form

 w(,) (,)s t G s t Ke
s t

= =
− +2 2

22s (3-45)

are the only circularly symmetric kernels that are also separable (Sahoo [1990]).
Thus, because Gaussian kernels of this form are separable, Gaussian filters enjoy the
same computational advantages as box filters, but have a host of additional proper-
ties that make them ideal for image processing, as you will learn in the following
discussion. Variables s and t in Eq. (3-45), are real (typically discrete) numbers.

By letting r s t= +[]2 2 1 2 we can write Eq. (3-45) as

 G r Ke
r

() =
−

2

22s (3-46)

This equivalent form simplifies derivation of expressions later in this section. This
form also reminds us that the function is circularly symmetric. Variable r is the dis-
tance from the center to any point on function G. Figure 3.34 shows values of r for
several kernel sizes using integer values for s and t. Because we work generally with
odd kernel sizes, the centers of such kernels fall on integer values, and it follows that
all values of r2 are integers also. You can see this by squaring the values in Fig. 3.34

Our interest here is
strictly on the bell shape
of the Gaussian function;
thus, we dispense with
the traditional multiplier
of the Gaussian PDF and
use a general constant,
K, instead. Recall that s
controls the “spread” of a
Gaussian function about
its mean.

FIGURE 3.34
Distances from
the center for
various sizes of
square kernels.

0

1 2

2 2

3 2

4 2

5 10 17

132

3

4

1 2 3 4

2 5

5

5

10 13

17 2 5 5

1234

1

2

3

4 4 217 2 5 5

3 2 510 13

2 2 13 2 55

2 5 10 17251017

2 2132 5 5

3 25 1013

4 2 172 55

251017

2 2132 5 5

3 25 1013

4 2 172 55

.

. .
 .

. .
. .

 .
. .

2
1

2
m()−

2
1

2
m()−

2
1

2
m()−

2
1

2
m()−

*m m

9*9

3 3*

5 5*

7 7*

DIP4E_GLOBAL_Print_Ready.indb 167 6/16/2017 2:03:49 PM

168 Chapter 3 Intensity Transformations and Spatial Filtering

(for a formal proof, see Padfield [2011]). Note in particular that the distance squared
to the corner points for a kernel of size m m× is

 r
m m

max

() ()2
2 21

2
2

1
2

= ⎡
⎣⎢

⎤
⎦⎥

=- -
 (3-47)

The kernel in Fig. 3.31(b) was obtained by sampling Eq. (3-45) (with K = 1 and
s = 1). Figure 3.35(a) shows a perspective plot of a Gaussian function, and illustrates
that the samples used to generate that kernel were obtained by specifying values of
s and t, then “reading” the values of the function at those coordinates. These values
are the coefficients of the kernel. Normalizing the kernel by dividing its coefficients
by the sum of the coefficients completes the specification of the kernel. The reasons
for normalizing the kernel are as discussed in connection with box kernels. Because
Gaussian kernels are separable, we could simply take samples along a cross section
through the center and use the samples to form vector v in Eq. (3-42), from which
we obtain the 2-D kernel.

Separability is one of many fundamental properties of circularly symmetric
Gaussian kernels. For example, we know that the values of a Gaussian function at a
distance larger than 3s from the mean are small enough that they can be ignored.
This means that if we select the size of a Gaussian kernel to be L M L M6 6s s× (the nota-
tion L Mc is used to denote the ceiling of c; that is, the smallest integer not less than
c), we are assured of getting essentially the same result as if we had used an arbi-
trarily large Gaussian kernel. Viewed another way, this property tells us that there
is nothing to be gained by using a Gaussian kernel larger than L M L M6 6s s× for image
processing. Because typically we work with kernels of odd dimensions, we would use
the smallest odd integer that satisfies this condition (e.g., a 43 43× kernel if s = 7).

Two other fundamental properties of Gaussian functions are that the product
and convolution of two Gaussians are Gaussian functions also. Table 3.6 shows the
mean and standard deviation of the product and convolution of two 1-D Gaussian
functions, f and g (remember, because of separability, we only need a 1-D Gauss-
ian to form a circularly symmetric 2-D function). The mean and standard deviation

Small Gaussian kernels
cannot capture the char-
acteristic Gaussian bell
shape, and thus behave
more like box kernels. As
we discuss below, a prac-
tical size for Gaussian
kernels is on the order of
6s�6s.

As we explained in
Section 2.6, the symbols
<⋅= and :⋅; denote the
ceiling and floor func-
tions. That is, the ceiling
and floor functions map
a real number to the
smallest following, or the
largest previous, integer,
respectively.

Proofs of the results in
Table 3.6 are simplified
by working with the
Fourier transform and
the frequency domain,
both of which are topics
in Chapter 4.

0.3679 0.6065 0.3679

1.00000.6065 0.6065

0.36790.3679 0.6065

�
4.8976

1

s

t

1

1

1�1

G(s, t)ba

FIGURE 3.35
(a) Sampling a
Gaussian function
to obtain a discrete
Gaussian kernel.
The values shown
are for K = 1 and
s = 1. (b) Resulting
3 3× kernel [this
is the same as Fig.
3.31(b)].

DIP4E_GLOBAL_Print_Ready.indb 168 6/16/2017 2:03:50 PM

3.5 Smoothing (Lowpass) Spatial Filters 169

completely define a Gaussian, so the parameters in Table 3.6 tell us all there is to
know about the functions resulting from multiplication and convolution of Gauss-
ians. As indicated by Eqs. (3-45) and (3-46), Gaussian kernels have zero mean, so our
interest here is in the standard deviations.

The convolution result is of particular importance in filtering. For example, we
mentioned in connection with Eq. (3-43) that filtering sometimes is done in succes-
sive stages, and that the same result can be obtained by one stage of filtering with a
composite kernel formed as the convolution of the individual kernels. If the kernels
are Gaussian, we can use the result in Table 3.6 (which, as noted, generalizes directly
to more than two functions) to compute the standard deviation of the composite
kernel (and thus completely define it) without actually having to perform the con-
volution of all the individual kernels.

EXAMPLE 3.12 : Lowpass filtering with a Gaussian kernel.

To compare Gaussian and box kernel filtering, we repeat Example 3.11 using a Gaussian kernel. Gauss-
ian kernels have to be larger than box filters to achieve the same degree of blurring. This is because,
whereas a box kernel assigns the same weight to all pixels, the values of Gaussian kernel coefficients
(and hence their effect) decreases as a function of distance from the kernel center. As explained earlier,
we use a size equal to the closest odd integer to L M L M6 6s s× . Thus, for a Gaussian kernel of size 21 21× ,
which is the size of the kernel we used to generate Fig. 3.33(d), we need s = 3 5. . Figure 3.36(b) shows the
result of lowpass filtering the test pattern with this kernel. Comparing this result with Fig. 3.33(d), we see
that the Gaussian kernel resulted in significantly less blurring. A little experimentation would show that
we need s = 7 to obtain comparable results. This implies a Gaussian kernel of size 43 43× . Figure 3.36(c)
shows the results of filtering the test pattern with this kernel. Comparing it with Fig. 3.33(d), we see that
the results indeed are very close.

We mentioned earlier that there is little to be gained by using a Gaussian kernel larger than L M L M6 6s s× .
To demonstrate this, we filtered the test pattern in Fig. 3.36(a) using a Gaussian kernel with s = 7 again,
but of size 85 85× . Figure 3.37(a) is the same as Fig. 3.36(c), which we generated using the smallest
odd kernel satisfying the L M L M6 6× condition (43 43× , for s = 7). Figure 3.37(b) is the result of using the
85 85× kernel, which is double the size of the other kernel. As you can see, not discernible additional

f g f g× f g�

Mean

Standard deviation sf sg

mf mg m
m m

f g
f g g f

f g
× =

+
+

s s

s s

2 2

2 2 m m mf g f g� = +

s
s s

s s
f g

f g

f g
× =

+

2 2

2 2 s s sf g f g� = +2 2

TABLE 3.6 Mean and standard deviation of the product ()× and convolution ()� of two 1-D Gaussian functions, f
and g. These results generalize directly to the product and convolution of more than two 1-D Gaussian functions
(see Problem 3.25).

DIP4E_GLOBAL_Print_Ready.indb 169 6/16/2017 2:03:51 PM

170 Chapter 3 Intensity Transformations and Spatial Filtering

blurring occurred. In fact, the difference image in Fig 3.37(c) indicates that the two images are nearly
identical, their maximum difference being 0.75, which is less than one level out of 256 (these are 8-bit
images).

 EXAMPLE 3.13 : Comparison of Gaussian and box filter smoothing characteristics.

The results in Examples 3.11 and 3.12 showed little visual difference in blurring. Despite this, there are
some subtle differences that are not apparent at first glance. For example, compare the large letter “a”
in Figs. 3.33(d) and 3.36(c); the latter is much smoother around the edges. Figure 3.38 shows this type
of different behavior between box and Gaussian kernels more clearly. The image of the rectangle was

ba c
FIGURE 3.36 (a)A test pattern of size 1024 1024× . (b) Result of lowpass filtering the pattern with a Gaussian kernel
of size 21 21× , with standard deviations s = 3 5. . (c) Result of using a kernel of size 43 43× , with s = 7. This result
is comparable to Fig. 3.33(d). We used K = 1 in all cases.

ba c

FIGURE 3.37 (a) Result of filtering Fig. 3.36(a) using a Gaussian kernels of size 43 43× , with s = 7. (b) Result of using
a kernel of 85 85× , with the same value of s. (c) Difference image.

DIP4E_GLOBAL_Print_Ready.indb 170 6/16/2017 2:03:53 PM

3.5 Smoothing (Lowpass) Spatial Filters 171

smoothed using a box and a Gaussian kernel with the sizes and parameters listed in the figure. These
parameters were selected to give blurred rectangles of approximately the same width and height, in
order to show the effects of the filters on a comparable basis. As the intensity profiles show, the box filter
produced linear smoothing, with the transition from black to white (i.e., at an edge) having the shape
of a ramp. The important features here are hard transitions at the onset and end of the ramp. We would
use this type of filter when less smoothing of edges is desired. Conversely, the Gaussian filter yielded
significantly smoother results around the edge transitions. We would use this type of filter when gener-
ally uniform smoothing is desired.

As the results in Examples 3.11, 3.12, and 3.13 show, zero padding an image intro-
duces dark borders in the filtered result, with the thickness of the borders depending
on the size and type of the filter kernel used. Earlier, when discussing correlation
and convolution, we mentioned two other methods of image padding: mirror (also
called symmetric) padding, in which values outside the boundary of the image are
obtained by mirror-reflecting the image across its border; and replicate padding, in
which values outside the boundary are set equal to the nearest image border value.
The latter padding is useful when the areas near the border of the image are con-
stant. Conversely, mirror padding is more applicable when the areas near the border
contain image details. In other words, these two types of padding attempt to “extend”
the characteristics of an image past its borders.

Figure 3.39 illustrates these padding methods, and also shows the effects of more
aggressive smoothing. Figures 3.39(a) through 3.39(c) show the results of filtering
Fig. 3.36(a) with a Gaussian kernel of size 187 187× elements with K = 1 and s = 31,
using zero, mirror, and replicate padding, respectively. The differences between the
borders of the results with the zero-padded image and the other two are obvious,

ba c
FIGURE 3.38 (a) Image of a white rectangle on a black background, and a horizontal intensity profile along the scan
line shown dotted. (b) Result of smoothing this image with a box kernel of size 71 71× , and corresponding intensity
profile. (c) Result of smoothing the image using a Gaussian kernel of size 151 151× , with K = 1 and s = 25. Note
the smoothness of the profile in (c) compared to (b). The image and rectangle are of sizes 1024 1024× and 768 128×
pixels, respectively.

DIP4E_GLOBAL_Print_Ready.indb 171 6/16/2017 2:03:54 PM

172 Chapter 3 Intensity Transformations and Spatial Filtering

and indicate that mirror and replicate padding yield more visually appealing results
by eliminating the dark borders resulting from zero padding.

EXAMPLE 3.14 : Smoothing performance as a function of kernel and image size.

The amount of relative blurring produced by a smoothing kernel of a given size depends directly on
image size. To illustrate, Fig. 3.40(a) shows the same test pattern used earlier, but of size 4096 4096×
pixels, four times larger in each dimension than before. Figure 3.40(b) shows the result of filtering this
image with the same Gaussian kernel and padding used in Fig. 3.39(b). By comparison, the former
image shows considerably less blurring for the same size filter. In fact, Fig. 3.40(b) looks more like the

ba c

FIGURE 3.39 Result of filtering the test pattern in Fig. 3.36(a) using (a) zero padding, (b) mirror padding, and (c) rep-
licate padding. A Gaussian kernel of size 187 187× , with K = 1 and s = 31 was used in all three cases.

ba c

FIGURE 3.40 (a) Test pattern of size 4096 4096× pixels. (b) Result of filtering the test pattern with the same Gaussian
kernel used in Fig. 3.39. (c) Result of filtering the pattern using a Gaussian kernel of size 745 745× elements, with
K = 1 and s = 124. Mirror padding was used throughout.

DIP4E_GLOBAL_Print_Ready.indb 172 6/16/2017 2:03:55 PM

3.5 Smoothing (Lowpass) Spatial Filters 173

image in Fig. 3.36(d), which was filtered using a 43 43× Gaussian kernel. In order to obtain results that
are comparable to Fig. 3.39(b) we have to increase the size and standard deviation of the Gaussian
kernel by four, the same factor as the increase in image dimensions. This gives a kernel of (odd) size
745 745× (with K = 1 and s = 124). Figure 3.40(c) shows the result of using this kernel with mirror pad-
ding. This result is quite similar to Fig. 3.39(b). After the fact, this may seem like a trivial observation, but
you would be surprised at how frequently not understanding the relationship between kernel size and
the size of objects in an image can lead to ineffective performance of spatial filtering algorithms.

EXAMPLE 3.15 : Using lowpass filtering and thresholding for region extraction.

Figure 3.41(a) is a 2566 2758× Hubble Telescope image of the Hickson Compact Group (see figure
caption), whose intensities were scaled to the range [,].0 1 Our objective is to illustrate lowpass filtering
combined with intensity thresholding for eliminating irrelevant detail in this image. In the present con-
text, “irrelevant” refers to pixel regions that are small compared to kernel size.

Figure 3.41(b) is the result of filtering the original image with a Gaussian kernel of size 151 151×
(approximately 6% of the image width) and standard deviation s = 25. We chose these parameter val-
ues in order generate a sharper, more selective Gaussian kernel shape than we used in earlier examples.
The filtered image shows four predominantly bright regions. We wish to extract only those regions from
the image. Figure 3.41(c) is the result of thresholding the filtered image with a threshold T = 0 4. (we will
discuss threshold selection in Chapter 10). As the figure shows, this approach effectively extracted the
four regions of interest, and eliminated details deemed irrelevant in this application.

EXAMPLE 3.16 : Shading correction using lowpass filtering.

One of the principal causes of image shading is nonuniform illumination. Shading correction (also
called flat-field correction) is important because shading is a common cause of erroneous measurements,
degraded performance of automated image analysis algorithms, and difficulty of image interpretation

ba c

FIGURE 3.41 (a) A 2566 2758× Hubble Telescope image of the Hickson Compact Group. (b) Result of lowpass filter-
ing with a Gaussian kernel. (c) Result of thresholding the filtered image (intensities were scaled to the range [0, 1]).
The Hickson Compact Group contains dwarf galaxies that have come together, setting off thousands of new star
clusters. (Original image courtesy of NASA.)

DIP4E_GLOBAL_Print_Ready.indb 173 6/16/2017 2:03:56 PM

174 Chapter 3 Intensity Transformations and Spatial Filtering

by humans. We introduced shading correction in Example 2.7, where we corrected a shaded image by
dividing it by the shading pattern. In that example, the shading pattern was given. Often, that is not the
case in practice, and we are faced with having to estimate the pattern directly from available samples of
shaded images. Lowpass filtering is a rugged, simple method for estimating shading patterns.

Consider the 2048 2048× checkerboard image in Fig. 3.42(a), whose inner squares are of size 128 128×
pixels. Figure 3.42(b) is the result of lowpass filtering the image with a 512 512× Gaussian kernel (four
times the size of the squares), K = 1, and s = 128 (equal to the size of the squares). This kernel is just
large enough to blur-out the squares (a kernel three times the size of the squares is too small to blur
them out sufficiently). This result is a good approximation to the shading pattern visible in Fig. 3.42(a).
Finally, Fig. 3.42(c) is the result of dividing (a) by (b). Although the result is not perfectly flat, it definitely
is an improvement over the shaded image.

In the discussion of separable kernels in Section 3.4, we pointed out that the computational advan-
tage of separable kernels can be significant for large kernels. It follows from Eq. (3-44) that the compu-
tational advantage of the kernel used in this example (which of course is separable) is 262 to 1. Thinking
of computation time, if it took 30 sec to process a set of images similar to Fig. 3.42(b) using the two 1-D
separable components of the Gaussian kernel, it would have taken 2.2 hrs to achieve the same result
using a nonseparable lowpass kernel, or if we had used the 2-D Gaussian kernel directly, without decom-
posing it into its separable parts.

ORDER-STATISTIC (NONLINEAR) FILTERS

Order-statistic filters are nonlinear spatial filters whose response is based on ordering
(ranking) the pixels contained in the region encompassed by the filter. Smoothing is
achieved by replacing the value of the center pixel with the value determined by the
ranking result. The best-known filter in this category is the median filter, which, as
its name implies, replaces the value of the center pixel by the median of the intensity
values in the neighborhood of that pixel (the value of the center pixel is included

ba c

FIGURE 3.42 (a) Image shaded by a shading pattern oriented in the −45° direction. (b) Estimate of the shading
patterns obtained using lowpass filtering. (c) Result of dividing (a) by (b). (See Section 9.8 for a morphological
approach to shading correction).

DIP4E_GLOBAL_Print_Ready.indb 174 6/16/2017 2:03:58 PM

3.6 Sharpening (Highpass) Spatial Filters 175

in computing the median). Median filters provide excellent noise reduction capa-
bilities for certain types of random noise, with considerably less blurring than lin-
ear smoothing filters of similar size. Median filters are particularly effective in the
presence of impulse noise (sometimes called salt-and-pepper noise, when it manis-
fests itself as white and black dots superimposed on an image).

The median, j, of a set of values is such that half the values in the set are less than
or equal to j and half are greater than or equal to j. In order to perform median
filtering at a point in an image, we first sort the values of the pixels in the neighbor-
hood, determine their median, and assign that value to the pixel in the filtered image
corresponding to the center of the neighborhood. For example, in a 3 3× neighbor-
hood the median is the 5th largest value, in a 5 5× neighborhood it is the 13th largest
value, and so on. When several values in a neighborhood are the same, all equal val-
ues are grouped. For example, suppose that a 3 3× neighborhood has values (10, 20,
20, 20, 15, 20, 20, 25, 100). These values are sorted as (10, 15, 20, 20, 20, 20, 20, 25, 100),
which results in a median of 20. Thus, the principal function of median filters is to
force points to be more like their neighbors. Isolated clusters of pixels that are light
or dark with respect to their neighbors, and whose area is less than m2 2 (one-half
the filter area), are forced by an m m× median filter to have the value of the median
intensity of the pixels in the neighborhood (see Problem 3.36).

The median filter is by far the most useful order-statistic filter in image processing,
but is not the only one. The median represents the 50th percentile of a ranked set
of numbers, but ranking lends itself to many other possibilities. For example, using
the 100th percentile results in the so-called max filter, which is useful for finding the
brightest points in an image or for eroding dark areas adjacent to light regions. The
response of a 3 3× max filter is given by R z kk= ={ }max , , , , .1 2 3 9… The 0th per-
centile filter is the min filter, used for the opposite purpose. Median, max, min, and
several other nonlinear filters will be considered in more detail in Section 5.3.

EXAMPLE 3.17 : Median filtering.

Figure 3.43(a) shows an X-ray image of a circuit board heavily corrupted by salt-and-pepper noise. To
illustrate the superiority of median filtering over lowpass filtering in situations such as this, we show in
Fig. 3.43(b) the result of filtering the noisy image with a Gaussian lowpass filter, and in Fig. 3.43(c) the
result of using a median filter. The lowpass filter blurred the image and its noise reduction performance
was poor. The superiority in all respects of median over lowpass filtering in this case is evident.

3.6 SHARPENING (HIGHPASS) SPATIAL FILTERS

Sharpening highlights transitions in intensity. Uses of image sharpening range from
electronic printing and medical imaging to industrial inspection and autonomous
guidance in military systems. In Section 3.5, we saw that image blurring could be
accomplished in the spatial domain by pixel averaging (smoothing) in a neighbor-
hood. Because averaging is analogous to integration, it is logical to conclude that
sharpening can be accomplished by spatial differentiation. In fact, this is the case,
and the following discussion deals with various ways of defining and implementing
operators for sharpening by digital differentiation. The strength of the response of

3.6

DIP4E_GLOBAL_Print_Ready.indb 175 6/16/2017 2:03:58 PM

176 Chapter 3 Intensity Transformations and Spatial Filtering

a derivative operator is proportional to the magnitude of the intensity discontinuity
at the point at which the operator is applied. Thus, image differentiation enhances
edges and other discontinuities (such as noise) and de-emphasizes areas with slowly
varying intensities. As noted in Section 3.5, smoothing is often referred to as lowpass
filtering, a term borrowed from frequency domain processing. In a similar manner,
sharpening is often referred to as highpass filtering. In this case, high frequencies
(which are responsible for fine details) are passed, while low frequencies are attenu-
ated or rejected.

FOUNDATION

In the two sections that follow, we will consider in some detail sharpening filters that
are based on first- and second-order derivatives, respectively. Before proceeding
with that discussion, however, we stop to look at some of the fundamental properties
of these derivatives in a digital context. To simplify the explanation, we focus atten-
tion initially on one-dimensional derivatives. In particular, we are interested in the
behavior of these derivatives in areas of constant intensity, at the onset and end of
discontinuities (step and ramp discontinuities), and along intensity ramps. As you will
see in Chapter 10, these types of discontinuities can be used to model noise points,
lines, and edges in an image.

Derivatives of a digital function are defined in terms of differences. There are
various ways to define these differences. However, we require that any definition we
use for a first derivative:

1. Must be zero in areas of constant intensity.
2. Must be nonzero at the onset of an intensity step or ramp.
3. Must be nonzero along intensity ramps.

Similarly, any definition of a second derivative

ba c

FIGURE 3.43 (a) X-ray image of a circuit board, corrupted by salt-and-pepper noise. (b) Noise reduction using a
19 19× Gaussian lowpass filter kernel with s = 3. (c) Noise reduction using a 7 7× median filter. (Original image
courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

DIP4E_GLOBAL_Print_Ready.indb 176 6/16/2017 2:03:59 PM

3.6 Sharpening (Highpass) Spatial Filters 177

1. Must be zero in areas of constant intensity.
2. Must be nonzero at the onset and end of an intensity step or ramp.
3. Must be zero along intensity ramps.

We are dealing with digital quantities whose values are finite. Therefore, the maxi-
mum possible intensity change also is finite, and the shortest distance over which
that change can occur is between adjacent pixels.

A basic definition of the first-order derivative of a one-dimensional function f x()
is the difference

∂
∂

= + −f
x

f x f x() ()1 (3-48)

We used a partial derivative here in order to keep the notation consistent when we
consider an image function of two variables, f x y(,), at which time we will be deal-
ing with partial derivatives along the two spatial axes. Clearly, ∂ ∂ =f x df dx when
there is only one variable in the function; the same is true for the second derivative.

We define the second-order derivative of f x() as the difference

∂
∂

= + + − −
2

2 1 1 2
f

x
f x f x f x() () () (3-49)

These two definitions satisfy the conditions stated above, as we illustrate in Fig. 3.44,
where we also examine the similarities and differences between first- and second-
order derivatives of a digital function.

The values denoted by the small squares in Fig. 3.44(a) are the intensity values
along a horizontal intensity profile (the dashed line connecting the squares is includ-
ed to aid visualization). The actual numerical values of the scan line are shown inside
the small boxes in 3.44(b). As Fig. 3.44(a) shows, the scan line contains three sections
of constant intensity, an intensity ramp, and an intensity step. The circles indicate the
onset or end of intensity transitions. The first- and second-order derivatives, com-
puted using the two preceding definitions, are shown below the scan line values in
Fig. 3.44(b), and are plotted in Fig. 3.44(c).When computing the first derivative at a
location x, we subtract the value of the function at that location from the next point,
as indicated in Eq. (3-48), so this is a “look-ahead” operation. Similarly, to compute
the second derivative at x, we use the previous and the next points in the computa-
tion, as indicated in Eq. (3-49). To avoid a situation in which the previous or next
points are outside the range of the scan line, we show derivative computations in Fig.
3.44 from the second through the penultimate points in the sequence.

As we traverse the profile from left to right we encounter first an area of constant
intensity and, as Figs. 3.44(b) and (c) show, both derivatives are zero there, so condi-
tion (1) is satisfied by both. Next, we encounter an intensity ramp followed by a step,
and we note that the first-order derivative is nonzero at the onset of the ramp and
the step; similarly, the second derivative is nonzero at the onset and end of both the
ramp and the step; therefore, property (2) is satisfied by both derivatives. Finally, we

We will return to Eq.
(3-48) in Section 10.2 and
show how it follows from
a Taylor series expansion.
For now, we accept it as a
definition.

DIP4E_GLOBAL_Print_Ready.indb 177 6/16/2017 2:03:59 PM

178 Chapter 3 Intensity Transformations and Spatial Filtering

see that property (3) is satisfied also by both derivatives because the first derivative
is nonzero and the second is zero along the ramp. Note that the sign of the second
derivative changes at the onset and end of a step or ramp. In fact, we see in Fig.
3.44(c) that in a step transition a line joining these two values crosses the horizontal
axis midway between the two extremes. This zero crossing property is quite useful
for locating edges, as you will see in Chapter 10.

Edges in digital images often are ramp-like transitions in intensity, in which case
the first derivative of the image would result in thick edges because the derivative
is nonzero along a ramp. On the other hand, the second derivative would produce a
double edge one pixel thick, separated by zeros. From this, we conclude that the sec-
ond derivative enhances fine detail much better than the first derivative, a property
ideally suited for sharpening images. Also, second derivatives require fewer opera-
tions to implement than first derivatives, so our initial attention is on the former.

USING THE SECOND DERIVATIVE FOR IMAGE SHARPENING—THE
LAPLACIAN

In this section we discuss the implementation of 2-D, second-order derivatives and
their use for image sharpening. The approach consists of defining a discrete formu-
lation of the second-order derivative and then constructing a filter kernel based on

We will return to the
second derivative in
Chapter 10, where we use
it extensively for image
segmentation.

b
a

c

FIGURE 3.44
(a) A section of a
horizontal scan
line from an
image, showing
ramp and step
edges, as well as
constant
segments.
(b)Values of the
scan line and its
derivatives.
(c) Plot of the
derivatives, show-
ing a zero cross-
ing. In (a) and (c)
points were joined
by dashed lines as
a visual aid.

4

5

6

3

2

1

0

Constant
intensity

Values of
scan line
1st derivative
2nd derivative

Intensity transition

In
te

ns
it

y Ramp Step

x

x6 6

0 0 �1�1�1 �1 0 00 0 0 5 0 00 0�1
0

Zero crossing

First derivative
Second derivative

In
te

ns
it

y

x

5

4

3

2

1

0

�5

�4

�3

�2

�1

0 000 0 1 00 0 0 5 �5 00 0�1

6 5 4 3 2 1 1 1 1 1 1 6 6 6 6 66

Data points

DIP4E_GLOBAL_Print_Ready.indb 178 6/16/2017 2:03:59 PM

3.6 Sharpening (Highpass) Spatial Filters 179

that formulation. As in the case of Gaussian lowpass kernels in Section 3.5, we are
interested here in isotropic kernels, whose response is independent of the direction
of intensity discontinuities in the image to which the filter is applied.

It can be shown (Rosenfeld and Kak [1982]) that the simplest isotropic deriva-
tive operator (kernel) is the Laplacian, which, for a function (image) f x y(,) of two
variables, is defined as

2
2

2

2

2f
f

x

f

y
= ∂

∂
+ ∂

∂
 (3-50)

Because derivatives of any order are linear operations, the Laplacian is a linear oper-
ator. To express this equation in discrete form, we use the definition in Eq. (3-49),
keeping in mind that we now have a second variable. In the x-direction, we have

∂
∂

= + + − −
2

2 1 1 2
f

x
f x y f x y f x y(,) (,) (,) (3-51)

and, similarly, in the y-direction, we have

∂
∂

= + + − −
2

2 1 1 2
f

y
f x y f x y f x y(,) (,) (,) (3-52)

It follows from the preceding three equations that the discrete Laplacian of two
variables is

2 1 1 1 1 4f x y f x y f x y f x y f x y f x y(,) (,) (,) (,) (,) (,)= + + − + + + − − (3-53)

This equation can be implemented using convolution with the kernel in Fig. 3.45(a);
thus, the filtering mechanics for image sharpening are as described in Section 3.5 for
lowpass filtering; we are simply using different coefficients here.

The kernel in Fig. 3.45(a) is isotropic for rotations in increments of 90° with respect
to the x- and y-axes. The diagonal directions can be incorporated in the definition of
the digital Laplacian by adding four more terms to Eq. (3-53). Because each diagonal
term would contains a −2 f x y(,) term, the total subtracted from the difference terms

ba c d

FIGURE 3.45 (a) Laplacian kernel used to implement Eq. (3-53). (b) Kernel used to implement
an extension of this equation that includes the diagonal terms. (c) and (d) Two other Lapla-
cian kernels.

�41

0 0

00

1

1

1

�81

1 1

11

1

1

1

4�1

0 0

00

�1

�1

�1

8�1

�1 �1

�1�1

�1

�1

�1

DIP4E_GLOBAL_Print_Ready.indb 179 6/16/2017 2:04:00 PM

180 Chapter 3 Intensity Transformations and Spatial Filtering

now would be −8 f x y(,). Figure 3.45(b) shows the kernel used to implement this
new definition. This kernel yields isotropic results in increments of 45°. The kernels
in Figs. 3.45(c) and (d) also are used to compute the Laplacian. They are obtained
from definitions of the second derivatives that are the negatives of the ones we used
here. They yield equivalent results, but the difference in sign must be kept in mind
when combining a Laplacian-filtered image with another image.

Because the Laplacian is a derivative operator, it highlights sharp intensity tran-
sitions in an image and de-emphasizes regions of slowly varying intensities. This
will tend to produce images that have grayish edge lines and other discontinuities,
all superimposed on a dark, featureless background. Background features can be

“recovered” while still preserving the sharpening effect of the Laplacian by adding
the Laplacian image to the original. As noted in the previous paragraph, it is impor-
tant to keep in mind which definition of the Laplacian is used. If the definition used
has a negative center coefficient, then we subtract the Laplacian image from the
original to obtain a sharpened result. Thus, the basic way in which we use the Lapla-
cian for image sharpening is

 g x y f x y c f x y(,) (,) (,)= + ⎡⎣ ⎤⎦
2 (3-54)

where f x y(,) and g x y(,) are the input and sharpened images, respectively. We let
c = −1 if the Laplacian kernels in Fig. 3.45(a) or (b) is used, and c = 1 if either of the
other two kernels is used.

EXAMPLE 3.18 : Image sharpening using the Laplacian.

Figure 3.46(a) shows a slightly blurred image of the North Pole of the moon, and Fig. 3.46(b) is the result
of filtering this image with the Laplacian kernel in Fig. 3.45(a) directly. Large sections of this image are
black because the Laplacian image contains both positive and negative values, and all negative values
are clipped at 0 by the display.

Figure 3.46(c) shows the result obtained using Eq. (3-54), with c = −1, because we used the kernel in
Fig. 3.45(a) to compute the Laplacian. The detail in this image is unmistakably clearer and sharper than
in the original image. Adding the Laplacian to the original image restored the overall intensity varia-
tions in the image. Adding the Laplacian increased the contrast at the locations of intensity discontinui-
ties. The net result is an image in which small details were enhanced and the background tonality was
reasonably preserved. Finally, Fig. 3.46(d) shows the result of repeating the same procedure but using
the kernel in Fig. 3.45(b). Here, we note a significant improvement in sharpness over Fig. 3.46(c). This is
not unexpected because using the kernel in Fig. 3.45(b) provides additional differentiation (sharpening)
in the diagonal directions. Results such as those in Figs. 3.46(c) and (d) have made the Laplacian a tool
of choice for sharpening digital images.

Because Laplacian images tend to be dark and featureless, a typical way to scale these images for dis-
play is to use Eqs. (2-31) and (2-32). This brings the most negative value to 0 and displays the full range
of intensities. Figure 3.47 is the result of processing Fig. 3.46(b) in this manner. The dominant features of
the image are edges and sharp intensity discontinuities. The background, previously black, is now gray as
a result of scaling. This grayish appearance is typical of Laplacian images that have been scaled properly.

DIP4E_GLOBAL_Print_Ready.indb 180 6/16/2017 2:04:00 PM

3.6 Sharpening (Highpass) Spatial Filters 181

Observe in Fig. 3.45 that the coefficients of each kernel sum to zero. Convolution-
based filtering implements a sum of products, so when a derivative kernel encom-
passes a constant region in a image, the result of convolution in that location must be
zero. Using kernels whose coefficients sum to zero accomplishes this.

In Section 3.5, we normalized smoothing kernels so that the sum of their coef-
ficients would be one. Constant areas in images filtered with these kernels would
be constant also in the filtered image. We also found that the sum of the pixels in
the original and filtered images were the same, thus preventing a bias from being
introduced by filtering (see Problem 3.31). When convolving an image with a kernel

ba
dc

FIGURE 3.46
(a) Blurred
image of the
North Pole of the
moon.
(b) Laplacian
image obtained
using the kernel
in Fig. 3.45(a).
(c) Image
sharpened
using Eq. (3-54)
with c = −1.
(d) Image
sharpened using
the same
procedure, but
with the kernel
in Fig. 3.45(b).
(Original
image courtesy of
NASA.)

DIP4E_GLOBAL_Print_Ready.indb 181 6/16/2017 2:04:01 PM

182 Chapter 3 Intensity Transformations and Spatial Filtering

whose coefficients sum to zero, it turns out that the pixels of the filtered image will
sum to zero also (see Problem 3.32). This implies that images filtered with such ker-
nels will have negative values, and sometimes will require additional processing to
obtain suitable visual results. Adding the filtered image to the original, as we did in
Eq. (3-54), is an example of such additional processing.

UNSHARP MASKING AND HIGHBOOST FILTERING

Subtracting an unsharp (smoothed) version of an image from the original image is
process that has been used since the 1930s by the printing and publishing industry to
sharpen images. This process, called unsharp masking, consists of the following steps:

1. Blur the original image.

2. Subtract the blurred image from the original (the resulting difference is called
the mask.)

3. Add the mask to the original.

Letting f x y(,) denote the blurred image, the mask in equation form is given by:

 g x y f x y f x ymask(,) (,) (,)= − (3-55)

Then we add a weighted portion of the mask back to the original image:

 g x y f x y kg x y(,) (,) (,)= + mask (3-56)

The photographic pro-
cess of unsharp masking
is based on creating a
blurred positive and
using it along with the
original negative to
create a sharper image.
Our interest is in the
digital equivalent of this
process.

FIGURE 3.47
The Laplacian
image from
Fig. 3.46(b), scaled
to the full [0, 255]
range of intensity
values. Black pixels
correspond to the
most negative
value in the
unscaled
Laplacian image,
grays are inter-
mediate values,
and white pixels
corresponds to the
highest positive
value.

DIP4E_GLOBAL_Print_Ready.indb 182 6/16/2017 2:04:01 PM

3.6 Sharpening (Highpass) Spatial Filters 183

where we included a weight, k k(),≥ 0 for generality. When k = 1 we have unsharp
masking, as defined above. When k > 1, the process is referred to as highboost filter-
ing. Choosing k < 1 reduces the contribution of the unsharp mask.

Figure 3.48 illustrates the mechanics of unsharp masking. Part (a) is a horizontal
intensity profile across a vertical ramp edge that transitions from dark to light. Fig-
ure 3.48(b) shows the blurred scan line superimposed on the original signal (shown
dashed). Figure 3.48(c) is the mask, obtained by subtracting the blurred signal from
the original. By comparing this result with the section of Fig. 3.44(c) corresponding
to the ramp in Fig. 3.44(a), we note that the unsharp mask in Fig. 3.48(c) is similar
to what we would obtain using a second-order derivative. Figure 3.48(d) is the final
sharpened result, obtained by adding the mask to the original signal. The points
at which a change of slope occurs in the signal are now emphasized (sharpened).
Observe that negative values were added to the original. Thus, it is possible for the
final result to have negative intensities if the original image has any zero values, or if
the value of k is chosen large enough to emphasize the peaks of the mask to a level
larger than the minimum value in the original signal. Negative values cause dark
halos around edges that can become objectionable if k is too large.

EXAMPLE 3.19 : Unsharp masking and highboost filtering.

Figure 3.49(a) shows a slightly blurred image of white text on a dark gray background. Figure 3.49(b)
was obtained using a Gaussian smoothing filter of size 31 31× with s = 5. As explained in our earlier
discussion of Gaussian lowpass kernels, the size of the kernel we used here is the smallest odd integer
no less than 6 6s s× . Figure 3.49(c) is the unsharp mask, obtained using Eq. (3-55). To obtain the im-

Original signal

Blurred signal

Unsharp mask

Sharpened signal

b
a

c
d

FIGURE 3.48
1-D illustration of
the mechanics of
unsharp masking.
(a) Original
signal. (b) Blurred
signal with original
shown dashed for
reference.
(c) Unsharp mask.
(d) Sharpened
signal, obtained by
adding (c) to (a).

DIP4E_GLOBAL_Print_Ready.indb 183 6/16/2017 2:04:02 PM

184 Chapter 3 Intensity Transformations and Spatial Filtering

age in Fig. 3.49(d) was used the unsharp masking expression room Eq. (3-56) with k = 1. This image is
significantly sharper than the original image in Fig. 3.49(a), but we can do better, as we show in the fol-
lowing paragraph.

Figure 3.49(e) shows the result of using Eq. (3-56) with k = 4 5. . This value is almost at the extreme of
what we can use without introducing some serious artifacts in the image. The artifacts are dark, almost
black, halos around the border of the characters. This is caused by the lower “blip” in Fig. 3.48(d) be-
coming negative, as we explained earlier. When scaling the image so that it only has positive values for
display, the negative values are either clipped at 0, or scaled so that the most negative values become 0,
depending on the scaling method used. In either case, the blips will be the darkest values in the image.

The results in Figs. 3.49(d) and 3.49(e) would be difficult to generate using the traditional film pho-
tography explained earlier, and it illustrates the power and versatility of image processing in the context
of digital photography.

USING FIRST-ORDER DERIVATIVES FOR IMAGE SHARPENING—THE
GRADIENT

First derivatives in image processing are implemented using the magnitude of the
gradient. The gradient of an image f at coordinates (,)x y is defined as the two-
dimensional column vector

f f
g

g

f
x
f
y

x

y
≡ =

⎡

⎣
⎢

⎤

⎦
⎥ =

∂
∂
∂
∂

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

grad() (3-57)

We will discuss the
gradient in more detail
in Section 10.2. Here,
we are interested only
in using it for image
sharpening.

ba c
ed

FIGURE 3.49 (a) Original image of size 600 259× pixels. (b) Image blurred using a 31 31× Gaussian lowpass filter with
s = 5. (c) Mask. (d) Result of unsharp masking using Eq. (3-56) with k = 1. (e) Result of highboost filtering with
k = 4 5. .

DIP4E_GLOBAL_Print_Ready.indb 184 6/16/2017 2:04:02 PM

3.6 Sharpening (Highpass) Spatial Filters 185

This vector has the important geometrical property that it points in the direction of
the greatest rate of change of f at location (,).x y

The magnitude (length) of vector
f , denoted as M x y(,) (the vector norm nota-
tion
f is also used frequently), where

 M x y f f g gx y(,) = () = +

= mag 2 2 (3-58)

is the value at (,)x y of the rate of change in the direction of the gradient vector. Note
that M x y(,) is an image of the same size as the original, created when x and y are
allowed to vary over all pixel locations in f. It is common practice to refer to this
image as the gradient image (or simply as the gradient when the meaning is clear).

Because the components of the gradient vector are derivatives, they are linear
operators. However, the magnitude of this vector is not, because of the squaring and
square root operations. On the other hand, the partial derivatives in Eq. (3-57) are
not rotation invariant, but the magnitude of the gradient vector is.

In some implementations, it is more suitable computationally to approximate the
squares and square root operations by absolute values:

 M x y g gx y(,) ≈ +@ @ @ @ (3-59)

This expression still preserves the relative changes in intensity, but the isotropic
property is lost in general. However, as in the case of the Laplacian, the isotropic
properties of the discrete gradient defined in the following paragraph are preserved
only for a limited number of rotational increments that depend on the kernels used
to approximate the derivatives. As it turns out, the most popular kernels used to
approximate the gradient are isotropic at multiples of 90°. These results are inde-
pendent of whether we use Eq. (3-58) or (3-59), so nothing of significance is lost in
using the latter equation if we choose to do so.

As in the case of the Laplacian, we now define discrete approximations to the
preceding equations, and from these formulate the appropriate kernels. In order
to simplify the discussion that follows, we will use the notation in Fig. 3.50(a) to
denote the intensities of pixels in a 3 3× region. For example, the value of the center
point, z5, denotes the value of f x y(,) at an arbitrary location, (,);x y z1 denotes the
value of f x y(,);− −1 1 and so on. As indicated in Eq. (3-48), the simplest approxi-
mations to a first-order derivative that satisfy the conditions stated at the beginning
of this section are g z zx = −()8 5 and g z zy = −().6 5 Two other definitions, proposed
by Roberts [1965] in the early development of digital image processing, use cross
differences:

 g z z g z zx y= − = −() ()9 5 8 6and (3-60)

If we use Eqs. (3-58) and (3-60), we compute the gradient image as

 M x y z z z z(,) () ()= − + −⎡⎣ ⎤⎦9 5
2

8 6
2 1 2

 (3-61)

The vertical bars denote
absolute values.

DIP4E_GLOBAL_Print_Ready.indb 185 6/16/2017 2:04:04 PM

186 Chapter 3 Intensity Transformations and Spatial Filtering

If we use Eqs. (3-59) and (3-60), then

 M x y z z z z(,) ≈ − + −@ @ @ @9 5 8 6 (3-62)

where it is understood that x and y vary over the dimensions of the image in the
manner described earlier. The difference terms needed in Eq. (3-60) can be imple-
mented using the two kernels in Figs. 3.50(b) and (c). These kernels are referred to
as the Roberts cross-gradient operators.

As noted earlier, we prefer to use kernels of odd sizes because they have a unique,
(integer) center of spatial symmetry. The smallest kernels in which we are interested
are of size 3 3× . Approximations to gx and gy using a 3 3× neighborhood centered
on z5 are as follows:

 g
f
x

z z z z z zx = ∂
∂

= + + − + +() ()7 8 9 1 2 32 2 (3-63)

and

 g
f
y

z z z z z zy = ∂
∂

= + + − + +() ()3 6 9 1 4 72 2 (3-64)

These equations can be implemented using the kernels in Figs. 3.50(d) and (e). The
difference between the third and first rows of the 3 3× image region approximates the
partial derivative in the x-direction, and is implemented using the kernel in Fig. 3.50(d).

�1 �2 �1

0 0 0

1 2 1

�1 0 1

�2 0 2

�1 0 1

0 �1

1 0

�1 0

0 1

z1 z2 z3

z4 z5 z6

z7 z8 z9

a
b c
d e

FIGURE 3.50
(a) A 3 3× region
of an image,
where the zs are
intensity values.
(b)–(c) Roberts
cross-gradient
operators.
(d)–(e) Sobel
operators. All the
kernel
coefficients sum
to zero, as expect-
ed of a derivative
operator.

DIP4E_GLOBAL_Print_Ready.indb 186 6/16/2017 2:04:05 PM

3.6 Sharpening (Highpass) Spatial Filters 187

The difference between the third and first columns approximates the partial deriva-
tive in the y-direction and is implemented using the kernel in Fig. 3.50(e). The partial
derivatives at all points in an image are obtained by convolving the image with these
kernels. We then obtain the magnitude of the gradient as before. For example, substitut-
ing gx and gy into Eq. (3-59) yields

M x y g g z z z z z z

z z

x y(,) () ()

(

= +⎡⎣ ⎤⎦ = + + − + +[]⎡
⎣

+ + +

2 2
1
2

7 8 9 1 2 3
2

3 6

2 2

2 zz z z z9 1 4 7
2

1
22) ()− + +[] ⎤

⎦

 (3-65)

This equation indicates that the value of M at any image coordinates (,)x y is given
by squaring values of the convolution of the two kernels with image f at those coor-
dinates, summing the two results, and taking the square root.

The kernels in Figs. 3.50(d) and (e) are called the Sobel operators. The idea behind
using a weight value of 2 in the center coefficient is to achieve some smoothing by
giving more importance to the center point (we will discuss this in more detail in
Chapter 10). The coefficients in all the kernels in Fig. 3.50 sum to zero, so they would
give a response of zero in areas of constant intensity, as expected of a derivative
operator. As noted earlier, when an image is convolved with a kernel whose coef-
ficients sum to zero, the elements of the resulting filtered image sum to zero also, so
images convolved with the kernels in Fig. 3.50 will have negative values in general.

The computations of gx and gy are linear operations and are implemented using
convolution, as noted above. The nonlinear aspect of sharpening with the gradient is
the computation of M x y(,) involving squaring and square roots, or the use of abso-
lute values, all of which are nonlinear operations. These operations are performed
after the linear process (convolution) that yields gx and gy.

EXAMPLE 3.20 : Using the gradient for edge enhancement.

The gradient is used frequently in industrial inspection, either to aid humans in the detection of defects
or, what is more common, as a preprocessing step in automated inspection. We will have more to say
about this in Chapter 10. However, it will be instructive now to consider a simple example to illustrate
how the gradient can be used to enhance defects and eliminate slowly changing background features.

Figure 3.51(a) is an optical image of a contact lens, illuminated by a lighting arrangement designed
to highlight imperfections, such as the two edge defects in the lens boundary seen at 4 and 5 o’clock.
Figure 3.51(b) shows the gradient obtained using Eq. (3-65) with the two Sobel kernels in Figs. 3.50(d)
and (e). The edge defects are also quite visible in this image, but with the added advantage that constant
or slowly varying shades of gray have been eliminated, thus simplifying considerably the computational
task required for automated inspection. The gradient can be used also to highlight small specs that may
not be readily visible in a gray-scale image (specs like these can be foreign matter, air pockets in a sup-
porting solution, or miniscule imperfections in the lens). The ability to enhance small discontinuities in
an otherwise flat gray field is another important feature of the gradient.

DIP4E_GLOBAL_Print_Ready.indb 187 6/16/2017 2:04:05 PM

188 Chapter 3 Intensity Transformations and Spatial Filtering

3.7 HIGHPASS, BANDREJECT, AND BANDPASS FILTERS FROM LOW-
PASS FILTERS

Spatial and frequency-domain linear filters are classified into four broad categories:
lowpass and highpass filters, which we introduced in Sections 3.5 and 3.6, and band-
pass and bandreject filters, which we introduce in this section. We mentioned at the
beginning of Section 3.5 that the other three types of filters can be constructed from
lowpass filters. In this section we explore methods for doing this. Also, we illustrate
the third approach discussed at the end of Section 3.4 for obtaining spatial filter ker-
nels. That is, we use a filter design software package to generate 1-D filter functions.
Then, we use these to generate 2-D separable filters functions either via Eq.(3-42),
or by rotating the 1-D functions about their centers to generate 2-D kernels. The
rotated versions are approximations of circularly symmetric (isotropic) functions.

Figure 3.52(a) shows the transfer function of a 1-D ideal lowpass filter in the
frequency domain [this is the same as Fig. 3.32(a)]. We know from earlier discus-
sions in this chapter that lowpass filters attenuate or delete high frequencies, while
passing low frequencies. A highpass filter behaves in exactly the opposite manner.
As Fig. 3.52(b) shows, a highpass filter deletes or attenuates all frequencies below a
cut-off value, u0 , and passes all frequencies above this value. Comparing Figs. 3.52(a)
and (b), we see that a highpass filter transfer function is obtained by subtracting a
lowpass function from 1. This operation is in the frequency domain. As you know
from Section 3.4, a constant in the frequency domain is an impulse in the spatial
domain. Thus, we obtain a highpass filter kernel in the spatial domain by subtracting
a lowpass filter kernel from a unit impulse with the same center as the kernel. An
image filtered with this kernel is the same as an image obtained by subtracting a low-
pass-filtered image from the original image. The unsharp mask defined by Eq. (3-55)
is precisely this operation. Therefore, Eqs. (3-54) and (3-56) implement equivalent
operations (see Problem 3.42).

Figure 3.52(c) shows the transfer function of a bandreject filter. This transfer
function can be constructed from the sum of a lowpass and a highpass function with

3.7

Recall from the discus-
sion of Eq. (3-33) that a
unit impulse is an array
of 0’s with a single 1.

ba

FIGURE 3.51
(a) Image of a
contact lens (note
defects on the
boundary at 4 and
5 o’clock).
(b) Sobel gradient.
(Original image
courtesy of
Perceptics
Corporation.)

DIP4E_GLOBAL_Print_Ready.indb 188 6/16/2017 2:04:06 PM

3.7 Highpass, Bandreject, and Bandpass Filters from Lowpass Filters 189

different cut-off frequencies (the highpass function can be constructed from a dif-
ferent lowpass function). The bandpass filter transfer function in Fig. 3.52(d) can be
obtained by subtracting the bandreject function from 1 (a unit impulse in the spatial
domain). Bandreject filters are also referred to as notch filters, but the latter tend
to be more locally oriented, as we will show in Chapter 4. Table 3.7 summarizes the
preceding discussion.

The key point in Fig. 3.52 and Table 3.7 is that all transfer functions shown can
be obtained starting with a lowpass filter transfer function. This is important. It is
important also to realize that we arrived at this conclusion via simple graphical
interpretations in the frequency domain. To arrive at the same conclusion based on
convolution in the spatial domain would be a much harder task.

EXAMPLE 3.21 : Lowpass, highpass, bandreject, and bandpass filtering.

In this example we illustrate how we can start with a 1-D lowpass filter transfer function generated
using a software package, and then use that transfer function to generate spatial filter kernels based on
the concepts introduced in this section. We also examine the spatial filtering properties of these kernels.

11

0u
u

PassbandStopband

Highpass filter

1

u

Passband

Stopband

1u 2u

Stopband

Bandpass filter

0u
u

Passband Stopband

Lowpass filter

1

u

Passband

Stopband

1u 2u

Passband

Bandreject filter

ba
dc

FIGURE 3.52
Transfer functions
of ideal 1-D filters
in the frequency
domain (u denotes
frequency).
(a) Lowpass filter.
(b) Highpass filter.
(c) Bandreject filter.
(d) Bandpass filter.
(As before, we
show only positive
frequencies for
simplicity.)

Filter type Spatial kernel in terms of lowpass kernel, lp

Lowpass lp x y(,)

Highpass hp x y x y lp x y(,) (,) (,)= −d

Bandreject br x y lp x y hp x y

lp x y x y lp x y

(,) (,) (,)

(,) (,) (,)

= +
= + −[]

1 2

1 2d

Bandpass bp x y x y br x y

x y lp x y x y lp x y

(,) (,) (,)

(,) (,) (,) (,)

= −

= − + −[]⎡

d

d d1 2⎣⎣ ⎤⎦

TABLE 3.7
Summary of the
four principal
spatial filter types
expressed in
terms of low-
pass filters. The
centers of the
unit impulse and
the filter kernels
coincide.

DIP4E_GLOBAL_Print_Ready.indb 189 6/16/2017 2:04:06 PM

190 Chapter 3 Intensity Transformations and Spatial Filtering

Figure 3.53 shows a so-called zone plate image that is used frequently for testing the characteristics of
filtering approaches. There are various versions of zone plates; the one in Fig. 3.53 was generated using
the equation

 z x y x y(,) cos= + +()⎡
⎣

⎤
⎦

1
2

1 2 2 (3-66)

with x and y varying in the range [. , .],−8 2 8 2 in increments of 0.0275. This resulted in an image of size
597 597× pixels. The bordering black region was generated by setting to 0 all pixels with distance great-
er than 8.2 from the image center. The key characteristic of a zone plate is that its spatial frequency
increases as a function of distance from the center, as you can see by noting that the rings get narrower
the further they are from the center. This property makes a zone plate an ideal image for illustrating the
behavior of the four filter types just discussed.

Figure 3.54(a) shows a 1-D, 128-element spatial lowpass filter function designed using MATLAB
[compare with Fig. 3.32(b)]. As discussed earlier, we can use this 1-D function to construct a 2-D, separa-
ble lowpass filter kernel based on Eq. (3-42), or we can rotate it about its center to generate a 2-D, isotro-
pic kernel. The kernel in Fig. 3.54(b) was obtained using the latter approach. Figures 3.55(a) and (b) are
the results of filtering the image in Fig. 3.53 with the separable and isotropic kernels, respectively. Both
filters passed the low frequencies of the zone plate while attenuating the high frequencies significantly.
Observe, however, that the separable filter kernel produced a “squarish” (non-radially symmetric) result
in the passed frequencies. This is a consequence of filtering the image in perpendicular directions with
a separable kernel that is not isotropic. Using the isotropic kernel yielded a result that is uniform in all
radial directions. This is as expected, because both the filter and the image are isotropic.

FIGURE 3.53
A zone plate
image of size
597 597× pixels.

0

0.04

0.06

0.12

-0.02
0 32 64 96 128

ba

FIGURE 3.54
(a) A 1-D spatial
lowpass filter
function. (b) 2-D
kernel obtained
by rotating the
1-D profile about
its center.

DIP4E_GLOBAL_Print_Ready.indb 190 6/16/2017 2:04:10 PM

3.8 Combining Spatial Enhancement Methods 191

Figure 3.56 shows the results of filtering the zone plate with the four filters described in Table 3.7. We
used the 2-D lowpass kernel in Fig. 3.54(b) as the basis for the highpass filter, and similar lowpass ker-
nels for the bandreject filter. Figure 3.56(a) is the same as Fig. 3.55(b), which we repeat for convenience.
Figure 3.56(b) is the highpass-filtered result. Note how effectively the low frequencies were filtered out.
As is true of highpass-filtered images, the black areas were caused by negative values being clipped at 0
by the display. Figure 3.56(c) shows the same image scaled using Eqs. (2-31) and (2-32). Here we see
clearly that only high frequencies were passed by the filter. Because the highpass kernel was constructed
using the same lowpass kernel that we used to generate Fig. 3.56(a), it is evident by comparing the two
results that the highpass filter passed the frequencies that were attenuated by the lowpass filter.

Figure 3.56(d) shows the bandreject-filtered image, in which the attenuation of the mid-band of
frequencies is evident. Finally, Fig. 33.56(e) shows the result of bandpass filtering. This image also has
negative values, so it is shown scaled in Fig. 3.56(f). Because the bandpass kernel was constructed by
subtracting the bandreject kernel from a unit impulse, we see that the bandpass filter passed the fre-
quencies that were attenuated by the bandreject filter. We will give additional examples of bandpass and
bandreject filtering in Chapter 4.

3.8 COMBINING SPATIAL ENHANCEMENT METHODS

With a few exceptions, such as combining blurring with thresholding (Fig. 3.41), we
have focused attention thus far on individual spatial-domain processing approaches.
Frequently, a given task will require application of several complementary tech-
niques in order to achieve an acceptable result. In this section, we illustrate how to
combine several of the approaches developed thus far in this chapter to address a
difficult image enhancement task.

The image in Fig. 3.57(a) is a nuclear whole body bone scan, used to detect dis-
eases such as bone infections and tumors. Our objective is to enhance this image by
sharpening it and by bringing out more of the skeletal detail. The narrow dynamic
range of the intensity levels and high noise content make this image difficult to
enhance. The strategy we will follow is to utilize the Laplacian to highlight fine detail,
and the gradient to enhance prominent edges. For reasons that will be explained
shortly, a smoothed version of the gradient image will be used to mask the Laplacian

3.8

In this context, masking
refers to multiplying two
images, as in Fig. 2.34.
This is not be confused
with the mask used in
unsharp masking.

ba

FIGURE 3.55
(a) Zone plate
image filtered
with a separable
lowpass kernel.
(b) Image filtered
with the isotropic
lowpass kernel in
Fig. 3.54(b).

DIP4E_GLOBAL_Print_Ready.indb 191 6/16/2017 2:04:10 PM

192 Chapter 3 Intensity Transformations and Spatial Filtering

image. Finally, we will attempt to increase the dynamic range of the intensity levels
by using an intensity transformation.

Figure 3.57(b) shows the Laplacian of the original image, obtained using the
kernel in Fig. 3.45(d). This image was scaled (for display only) using the same
technique as in Fig. 3.47. We can obtain a sharpened image at this point simply by
adding Figs. 3.57(a) and (b), according to Eq. (3-54). Just by looking at the noise
level in Fig. 3.57(b), we would expect a rather noisy sharpened image if we added
Figs. 3.57(a) and (b). This is confirmed by the result in Fig. 3.57(c). One way that
comes immediately to mind to reduce the noise is to use a median filter. However,
median filtering is an aggressive nonlinear process capable of removing image fea-
tures. This is unacceptable in medical image processing.

An alternate approach is to use a mask formed from a smoothed version of the
gradient of the original image. The approach is based on the properties of first- and

ba c
ed f

FIGURE 3.56
Spatial filtering of the zone plate image. (a) Lowpass result; this is the same as Fig. 3.55(b). (b) Highpass result.
(c) Image (b) with intensities scaled. (d) Bandreject result. (e) Bandpass result. (f) Image (e) with intensities scaled.

DIP4E_GLOBAL_Print_Ready.indb 192 6/16/2017 2:04:10 PM

3.8 Combining Spatial Enhancement Methods 193

ba
dc

FIGURE 3.57
(a) Image of whole
body bone scan.
(b) Laplacian of (a).
(c) Sharpened image
obtained by adding
(a) and (b).
(d) Sobel gradient of
image (a). (Original
image courtesy of
G.E. Medical Sys-
tems.)

DIP4E_GLOBAL_Print_Ready.indb 193 6/16/2017 2:04:11 PM

194 Chapter 3 Intensity Transformations and Spatial Filtering

second-order derivatives we discussed when explaining Fig. 3.44. The Laplacian, is
a second-order derivative operator and has the definite advantage that it is superior
for enhancing fine detail. However, this causes it to produce noisier results than
the gradient. This noise is most objectionable in smooth areas, where it tends to be
more visible. The gradient has a stronger response in areas of significant intensity
transitions (ramps and steps) than does the Laplacian. The response of the gradient
to noise and fine detail is lower than the Laplacian’s and can be lowered further by
smoothing the gradient with a lowpass filter. The idea, then, is to smooth the gradient
and multiply it by the Laplacian image. In this context, we may view the smoothed
gradient as a mask image. The product will preserve details in the strong areas, while
reducing noise in the relatively flat areas. This process can be interpreted roughly as
combining the best features of the Laplacian and the gradient. The result is added to
the original to obtain a final sharpened image.

Figure 3.57(d) shows the Sobel gradient of the original image, computed using
Eq. (3-59). Components gx and gy were obtained using the kernels in Figs. 3.50(d)
and (e), respectively. As expected, the edges are much more dominant in this image
than in the Laplacian image. The smoothed gradient image in Fig. 3.57(e) was
obtained by using a box filter of size 5 5× . The fact that Figs. 3.57(d) and (e) are
much brighter than Fig. 3.57(b) is further evidence that the gradient of an image
with significant edge content has values that are higher in general than in a Lapla-
cian image.

Figure 3.57(f) shows the product of the Laplacian and smoothed gradient image.
Note the dominance of the strong edges and the relative lack of visible noise, which
is the reason for masking the Laplacian with a smoothed gradient image. Adding the
product image to the original resulted in the sharpened image in Fig. 3.57(g). The
increase in sharpness of detail in this image over the original is evident in most parts
of the image, including the ribs, spinal cord, pelvis, and skull. This type of improve-
ment would not have been possible by using the Laplacian or the gradient alone.

The sharpening procedure just discussed did not affect in an appreciable way the
dynamic range of the intensity levels in an image. Thus, the final step in our enhance-
ment task is to increase the dynamic range of the sharpened image. As we discussed
in some detail in Sections 3.2 and 3.3, there are several intensity transformation
functions that can accomplish this objective. Histogram processing is not a good
approach on images whose histograms are characterized by dark and light compo-
nents, which is the case here. The dark characteristics of the images with which we
are dealing lend themselves much better to a power-law transformation. Because
we wish to spread the intensity levels, the value of g in Eq. (3-5) has to be less than 1.
After a few trials with this equation, we arrived at the result in Fig. 3.57(h), obtained
with g = 0 5. and c = 1. Comparing this image with Fig. 3.57(g), we note that signifi-
cant new detail is visible in Fig. 3.57(h). The areas around the wrists, hands, ankles,
and feet are good examples of this. The skeletal bone structure also is much more
pronounced, including the arm and leg bones. Note the faint definition of the outline
of the body, and of body tissue. Bringing out detail of this nature by expanding the
dynamic range of the intensity levels also enhanced noise, but Fig. 3.57(h) is a signifi-
cant visual improvement over the original image.

DIP4E_GLOBAL_Print_Ready.indb 194 6/16/2017 2:04:11 PM

3.8 Combining Spatial Enhancement Methods 195

fe
hg

FIGURE 3.57
(Continued)
(e) Sobel image
smoothed with a
5 5× box filter.
(f) Mask image
formed by the
product of (b)
and (e).
(g) Sharpened
image obtained
by the adding
images (a) and (f).
(h) Final result
obtained by
applying a power-
law transformation
to (g). Compare
images (g) and (h)
with (a). (Original
image courtesy
of G.E. Medical
Systems.)

DIP4E_GLOBAL_Print_Ready.indb 195 6/16/2017 2:04:11 PM

196 Chapter 3 Intensity Transformations and Spatial Filtering

Summary, References, and Further Reading
The material in this chapter is representative of current techniques used for intensity transformations and spatial
filtering. The topics were selected for their value as fundamental material that would serve as a foundation in an
evolving field. Although most of the examples used in this chapter deal with image enhancement, the techniques
presented are perfectly general, and you will encounter many of them again throughout the remaining chapters in
contexts unrelated to enhancement.

The material in Section 3.1 is from Gonzalez [1986]. For additional reading on the material in Section 3.2, see
Schowengerdt [2006] and Poyton [1996]. Early references on histogram processing (Section 3.3) are Gonzalez and
Fittes [1977], and Woods and Gonzalez [1981]. Stark [2000] gives some interesting generalizations of histogram
equalization for adaptive contrast enhancement.

For complementary reading on linear spatial filtering (Sections 3.4-3.7), see Jain [1989], Rosenfeld and Kak
[1982], Schowengerdt [2006], Castleman [1996], and Umbaugh [2010]. For an interesting approach for generating
Gaussian kernels with integer coefficients see Padfield [2011]. The book by Pitas and Venetsanopoulos [1990] is a
good source for additional reading on median and other nonlinear spatial filters.

For details on the software aspects of many of the examples in this chapter, see Gonzalez, Woods, and Eddins
[2009].

Problems
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book
website: www.ImageProcessingPlace.com).

3.1 Give a single intensity transformation function
for spreading the intensities of an image so the
lowest intensity is 0 and the highest is L − 1.

3.2 Do the following:

(a) * Give a continuous function for implement-
ing the contrast stretching transformation in
Fig. 3.2(a). In addition to m, your function
must include a parameter, E, for control-
ling the slope of the function as it transi-
tions from low to high intensity values. Your
function should be normalized so that its
minimum and maximum values are 0 and 1,
respectively.

(b) Sketch a family of transformations as a
function of parameter E, for a fixed value
m L= 2, where L is the number of intensity
levels in the image..

3.3 Do the following:

(a) * Propose a set of intensity-slicing transforma-
tion functions capable of producing all the
individual bit planes of an 8-bit monochrome
image. For example, applying to an image a
transformation function with the property
T r() = 0 if r is 0 or even, and T r() = 1 if r is
odd, produces an image of the least signifi-

cant bit plane (see Fig. 3.13). (Hint: Use an
8-bit truth table to determine the form of
each transformation function.)

(b) How many intensity transformation functions
would there be for 16-bit images?

(c) Is the basic approach in (a) limited to images
in which the number of intensity levels is an
integer power of 2, or is the method general
for any number of integer intensity levels?

(d) If the method is general, how would it be dif-
ferent from your solution in (a)?

3.4 Do the following:

(a) Propose a method for extracting the bit planes
of an image based on converting the value of
its pixels to binary.

(b) Find all the bit planes of the following 4-bit
image:

0 1 8 6

2 2 1 1

1 15 14 12

3 6 9 10

3.5 In general:

(a) * What effect would setting to zero the lower-

DIP4E_GLOBAL_Print_Ready.indb 196 6/16/2017 2:04:12 PM

http://www.ImageProcessingPlace.com

 Problems 197

order bit planes have on the histogram of an
image?

(b) What would be the effect on the histogram
if we set to zero the higher-order bit planes
instead?

3.6 Explain why the discrete histogram equalization
technique does not yield a flat histogram in gen-
eral.

3.7 Suppose that a digital image is subjected to histo-
gram equalization. Show that a second pass of his-
togram equalization (on the histogram-equalized
image) will produce exactly the same result as the
first pass.

3.8 Assuming continuous values, show by an exam-
ple that it is possible to have a case in which the
transformation function given in Eq. (3-11) satis-
fies conditions (a) and (b) discussed in Section 3.3,
but its inverse may fail condition (a�).

3.9 Do the following:

(a) Show that the discrete transformation func-
tion given in Eq. (3-15) for histogram equal-
ization satisfies conditions (a) and (b) stated
at the beginning of Section 3.3.

(b) * Show that the inverse discrete transforma-
tion in Eq. (3-16) satisfies conditions (a�)
and (b) in Section 3.3 only if none of the
intensity levels rk , k L= −0 1 2 1, , , , ,… are
missing in the original image.

3.10 Two images, f x y(,) and g x y(,) have unnormalized
histograms hf and hg . Give the conditions (on the
values of the pixels in f and g) under which you
can determine the histograms of images formed
as follows:

(a) * f x y g x y(,) (,)+

(b) f x y g x y(,) (,)−

(c) f x y g x y(,) (,)×

(d) f x y g x y(,) (,)÷

Show how the histograms would be formed in
each case. The arithmetic operations are element-
wise operations, as defined in Section 2.6.

3.11 Assume continuous intensity values, and sup-
pose that the intensity values of an image have
the PDF p r r Lr () ()= −2 1 2 for 0 1≤ ≤r L − , and
p rr () = 0 for other values of r.

(a) * Find the transformation function that will
map the input intensity values, r, into values,
s, of a histogram-equalized image.

(b) * Find the transformation function that (when
applied to the histogram-equalized intensi-
ties, s) will produce an image whose intensity
PDF is p z z Lz() ()= −3 12 3 for 0 1≤ ≤z L −
and p zz() = 0 for other values of z.

(c) Express the transformation function from (b)
directly in terms of r, the intensities of the
input image.

3.12 An image with intensities in the range [,]0 1 has
the PDF, p rr (), shown in the following figure. It
is desired to transform the intensity levels of this
image so that they will have the specified p zz()
shown in the figure. Assume continuous quantities,
and find the transformation (expressed in terms
of r and z) that will accomplish this.

2

1

2

1

pr(r) pz(z)

r z

3.13 * In Fig. 3.25(b), the transformation function labeled (2)
[G sk

−1() from Eq. (3-23)] is the mirror image of
(1) [G zq() in Eq. (3-21)] about a line joining the
two end points. Does this property always hold
for these two transformation functions? Explain.

3.14 * The local histogram processing method discussed
in Section 3.3 requires that a histogram be com-
puted at each neighborhood location. Propose
a method for updating the histogram from one
neighborhood to the next, rather than computing
a new histogram each time.

3.15 What is the behavior of Eq. (3-35) when a b= = 0?
Explain.

3.16 You are given a computer chip that is capable of
performing linear filtering in real time, but you
are not told whether the chip performs correla-
tion or convolution. Give the details of a test you
would perform to determine which of the two
operations the chip performs.

3.17 * We mentioned in Section 3.4 that to perform con-

DIP4E_GLOBAL_Print_Ready.indb 197 6/16/2017 2:04:13 PM

198 Chapter 3 Intensity Transformations and Spatial Filtering

volution we rotate the kernel by 180°. The rota-
tion is “built” into Eq. (3-35). Figure 3.28 corre-
sponds to correlation. Draw the part of the figure
enclosed by the large ellipse, but with w rotated
180°. Expand Eq. (3-35) for a general 3 3× kernel
and show that the result of your expansion corre-
sponds to your figure. This shows graphically that
convolution and correlation differ by the rotation
of the kernel.

3.18 You are given the following kernel and image:

w =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

1 2 1

2 4 2

1 2 1

0 0 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 0 0

f

⎥⎥
⎥
⎥
⎥
⎥
⎥

(a) * Give a sketch of the area encircled by the
large ellipse in Fig. 3.28 when the kernel is
centered at point (,)2 3 (2nd row, 3rd col) of
the image shown above. Show specific values
of w and f.

(b) * Compute the convolution w� f using the
minimum zero padding needed. Show the
details of your computations when the ker-
nel is centered on point (,)2 3 of f; and then
show the final full convolution result.

(c) Repeat (b), but for correlation, w� f .

3.19 * Prove the validity of Eqs. (3-36) and (3-37).

3.20 The kernel, w, in Problem 3.18 is separable.

(a) * By inspection, find two kernels, w1 and w2 so
that w w w= 1 2� .

(b) Using the image in Problem 3.18, compute
w1 � f using the minimum zero padding (see
Fig. 3.30). Show the details of your compu-
tation when the kernel is centered at point
(,)2 3 (2nd row, 3rd col) of f and then show
the full convolution.

(c) Compute the convolution of w2 with the
result from (b). Show the details of your
computation when the kernel is centered at
point (,)3 3 of the result from (b), and then
show the full convolution. Compare with the
result in Problem 3.18(b).

3.21 Given the following kernel and image:

w =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

1 2 1

2 4 2

1 2 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

f

⎥⎥
⎥
⎥
⎥
⎥
⎥

(a) Give the convolution of the two.

(b) Does your result have a bias?

3.22 Answer the following:

(a) * If v = []1 2 1 T and wT = []2 1 1 3 , is the
kernel formed by vwT separable?

(b) The following kernel is separable. Find w1
and w2 such that w w w= 1 2� .

w =
⎡

⎣
⎢

⎤

⎦
⎥

1 3 1

2 6 2

3.23 Do the following:

(a) * Show that the Gaussian kernel, G s t(,), in
Eq. (3-45) is separable. (Hint: Read the first
paragraph in the discussion of separable fil-
ter kernels in Section 3.4.)

(b) Because G is separable and circularly sym-
metric, it can be expressed in the form
G T= vv . Assume that the kernel form in
Eq. (3-46) is used, and that the function is
sampled to yield an m m× kernel. What is v
in this case?

3.24 * Show that the product of a column vector with a
row vector is equivalent to the 2-D convolution
of the two vectors. The vectors do not have to
be of the same length. You may use a graphical
approach (as in Fig. 3.30) to support the explana-
tion of your proof.

3.25 Given K, 1-D Gaussian kernels, g g gK1 2, , , ,… with
arbitrary means and standard deviations:

(a) * Determine what the entries in the third col-
umn of Table 3.6 would be for the product
g g gK1 2× × ×� .

(b) What would the fourth column look like for
the convolution g g gK1 2� � �� ?

(Hint: It is easier to work with the variance; the
standard deviation is just the square root of your
result.)

DIP4E_GLOBAL_Print_Ready.indb 198 6/16/2017 2:04:16 PM

 Problems 199

3.26 The two images shown in the following figure are
quite different, but their histograms are the same.
Suppose that each image is blurred using a 3 3×
box kernel.

(a) * Would the histograms of the blurred images
still be equal? Explain.

(b) If your answer is no, either sketch the two
histograms or give two tables detailing the
histogram components.

3.27 An image is filtered four times using a Gaussian
kernel of size 3 3× with a standard deviation of
1.0. Because of the associative property of con-
volution, we know that equivalent results can be
obtained using a single Gaussian kernel formed
by convolving the individual kernels.

(a) * What is the size of the single Gaussian ker-
nel?

(b) What is its standard deviation?

3.28 An image is filtered with three Gaussian lowpass
kernels of sizes 3 3× , 5 5× , and 7 7× , and stan-
dard deviations 1.5, 2, and 4, respectively. A com-
posite filter, w, is formed as the convolution of
these three filters.

(a) * Is the resulting filter Gaussian? Explain.

(b) What is its standard deviation?

(c) What is its size?

3.29 * Discuss the limiting effect of repeatedly filtering
an image with a 3 3× lowpass filter kernel. You
may ignore border effects.

3.30 In Fig. 3.42(b) the corners of the estimated shad-
ing pattern appear darker or lighter than their
surrounding areas. Explain the reason for this.

3.31 * An image is filtered with a kernel whose coeffi-
cients sum to 1. Show that the sum of the pixel
values in the original and filtered images is the
same.

3.32 An image is filtered with a kernel whose coeffi-

cients sum to 0. Show that the sum of the pixel
values in the filtered image also is 0.

3.33 A single point of light can be modeled by a digital
image consisting of all 0’s, with a 1 in the location
of the point of light. If you view a single point of
light through a defocused lens, it will appear as a
fuzzy blob whose size depends on the amount by
which the lens is defocused. We mentioned in Sec-
tion 3.5 that filtering an image with a box kernel
is a poor model for a defocused lens, and that a
better approximation is obtained with a Gauss-
ian kernel. Using the single-point-of-light analogy,
explain why this is so.

3.34 In the original image used to generate the three
blurred images shown, the vertical bars are 5 pix-
els wide, 100 pixels high, and their separation is
20 pixels. The image was blurred using square box
kernels of sizes 23, 25, and 45 elements on the side,
respectively. The vertical bars on the left, lower
part of (a) and (c) are blurred, but a clear separa-
tion exists between them.

(a) (b)

(c)

However, the bars have merged in image (b), de-
spite the fact that the kernel used to generate this
image is much smaller than the kernel that pro-
duced image (c). Explain the reason for this.

3.35 Consider an application such as in Fig. 3.41, in
which it is desired to eliminate objects smaller
than those enclosed by a square of size q q× pix-
els. Suppose that we want to reduce the average

DIP4E_GLOBAL_Print_Ready.indb 199 6/16/2017 2:04:16 PM

200 Chapter 3 Intensity Transformations and Spatial Filtering

intensity of those objects to one-tenth of their
original average value. In this way, their intensity
will be closer to the intensity of the background
and they can be eliminated by thresholding. Give
the (odd) size of the smallest box kernel that will
yield the desired reduction in average intensity in
only one pass of the kernel over the image.

3.36 With reference to order-statistic filters (see Sec-
tion 3.5):

(a) * We mentioned that isolated clusters of dark
or light (with respect to the background) pix-
els whose area is less than one-half the area
of a median filter are forced to the median
value of the neighbors by the filter. Assume
a filter of size n n× (n odd) and explain why
this is so.

(b) Consider an image having various sets of
pixel clusters. Assume that all points in a
cluster are lighter or darker than the back-
ground (but not both simultaneously in the
same cluster), and that the area of each clus-
ter is less than or equal to n2 2. In terms of
n, under what condition would one or more
of these clusters cease to be isolated in the
sense described in part (a)?

3.37 Do the following:

(a) * Develop a procedure for computing the median
of an n n× neighborhood.

(b) Propose a technique for updating the median
as the center of the neighborhood is moved
from pixel to pixel.

3.38 In a given application, a smoothing kernel is
applied to input images to reduce noise, then a
Laplacian kernel is applied to enhance fine details.
Would the result be the same if the order of these
operations is reversed?

3.39 * Show that the Laplacian defined in Eq. (3-50) is
isotropic (invariant to rotation). Assume continu-
ous quantities. From Table 2.3, coordinate rota-
tion by an angle u is given by

 x x y y x y� �= − = +cos sin sin cosu u u u and

where (,)x y and (,)x y� � are the unrotated and
rotated coordinates, respectively.

3.40 * You saw in Fig. 3.46 that the Laplacian with a −8

in the center yields sharper results than the one
with a −4 in the center. Explain the reason why.

3.41 * Give a 3 3× kernel for performing unsharp mask-
ing in a single pass through an image. Assume that
the average image is obtained using a box filter of
size 3 3× .

3.42 Show that subtracting the Laplacian from an im-
age gives a result that is proportional to the un-
sharp mask in Eq. (3-55). Use the definition for
the Laplacian given in Eq. (3-53).

3.43 Do the following:

(a) * Show that the magnitude of the gradient giv-
en in Eq. (3-58) is an isotropic operation (see
the statement of Problem 3.39).

(b) Show that the isotropic property is lost in
general if the gradient is computed using
Eq. (3-59).

3.44 Are any of the following highpass (sharpening)
kernels separable? For those that are, find vectors
v and w such that vwT equals the kernel(s).

(a) The Laplacian kernels in Figs. 3.45(a) and (b).

(b) The Roberts cross-gradient kernels shown in
Figs. 3.50(b) and (c).

(c) * The Sobel kernels in Figs. 3.50(d) and (e).

3.45 In a character recognition application, text pages
are reduced to binary using a thresholding trans-
formation function of the form in Fig. 3.2(b). This
is followed by a procedure that thins the charac-
ters until they become strings of binary 1’s on a
background of 0’s. Due to noise, binarization and
thinning result in broken strings of characters
with gaps ranging from 1 to 3 pixels. One way
to “repair” the gaps is to run a smoothing kernel
over the binary image to blur it, and thus create
bridges of nonzero pixels between gaps.

(a) * Give the (odd) size of the smallest box ker-
nel capable of performing this task.

(b) After bridging the gaps, the image is thresh-
olded to convert it back to binary form. For
your answer in (a), what is the minimum val-
ue of the threshold required to accomplish
this, without causing the segments to break
up again?

DIP4E_GLOBAL_Print_Ready.indb 200 6/16/2017 2:04:17 PM

 Problems 201

3.46 A manufacturing company purchased an imag-
ing system whose function is to either smooth
or sharpen images. The results of using the sys-
tem on the manufacturing floor have been poor,
and the plant manager suspects that the system
is not smoothing and sharpening images the way
it should. You are hired as a consultant to deter-
mine if the system is performing these functions
properly. How would you determine if the system
is working correctly? (Hint: Study the statements
of Problems 3.31 and 3.32).

3.47 A CCD TV camera is used to perform a long-term
study by observing the same area 24 hours a day, for
30 days. Digital images are captured and transmit-
ted to a central location every 5 minutes. The illu-

mination of the scene changes from natural day-
light to artificial lighting. At no time is the scene
without illumination, so it is always possible to
obtain an acceptable image. Because the range of
illumination is such that it is always in the linear
operating range of the camera, it is decided not
to employ any compensating mechanisms on the
camera itself. Rather, it is decided to use image
processing techniques to post-process, and thus
normalize, the images to the equivalent of con-
stant illumination. Propose a method to do this.
You are at liberty to use any method you wish,
but state clearly all the assumptions you made in
arriving at your design.

DIP4E_GLOBAL_Print_Ready.indb 201 6/16/2017 2:04:17 PM

DIP4E_GLOBAL_Print_Ready.indb 4 6/16/2017 2:01:57 PM

This page intentionally left blank

203

4 Filtering in the Frequency
Domain

Preview
After a brief historical introduction to the Fourier transform and its importance in image processing, we
start from basic principles of function sampling, and proceed step-by-step to derive the one- and two-
dimensional discrete Fourier transforms. Together with convolution, the Fourier transform is a staple of
frequency-domain processing. During this development, we also touch upon several important aspects
of sampling, such as aliasing, whose treatment requires an understanding of the frequency domain and
thus are best covered in this chapter. This material is followed by a formulation of filtering in the fre-
quency domain, paralleling the spatial filtering techniques discussed in Chapter 3. We conclude the
chapter with a derivation of the equations underlying the fast Fourier transform (FFT), and discuss its
computational advantages. These advantages make frequency-domain filtering practical and, in many
instances, superior to filtering in the spatial domain.

Upon completion of this chapter, readers should:
 Understand the meaning of frequency domain

filtering, and how it differs from filtering in the
spatial domain.

 Be familiar with the concepts of sampling, func-
tion reconstruction, and aliasing.

 Understand convolution in the frequency
domain, and how it is related to filtering.

 Know how to obtain frequency domain filter
functions from spatial kernels, and vice versa.

 Be able to construct filter transfer functions
directly in the frequency domain.

 Understand why image padding is important.

 Know the steps required to perform filtering
in the frequency domain.

 Understand when frequency domain filtering
is superior to filtering in the spatial domain.

 Be familiar with other filtering techniques in
the frequency domain, such as unsharp mask-
ing and homomorphic filtering.

 Understand the origin and mechanics of the
fast Fourier transform, and how to use it effec-
tively in image processing.

Filter: A device or material for suppressing or minimizing waves or
oscillations of certain frequencies.

Frequency: The number of times that a periodic function repeats
the same sequence of values during a unit variation of the
independent variable.

Webster’s New Collegiate Dictionary

DIP4E_GLOBAL_Print_Ready.indb 203 6/16/2017 2:04:18 PM

204 Chapter 4 Filtering in the Frequency Domain

4.1 BACKGROUND

We begin the discussion with a brief outline of the origins of the Fourier transform
and its impact on countless branches of mathematics, science, and engineering.

A BRIEF HISTORY OF THE FOURIER SERIES AND TRANSFORM

The French mathematician Jean Baptiste Joseph Fourier was born in 1768 in the
town of Auxerre, about midway between Paris and Dijon. The contribution for
which he is most remembered was outlined in a memoir in 1807, and later pub-
lished in 1822 in his book, La Théorie Analitique de la Chaleur (The Analytic Theory
of Heat). This book was translated into English 55 years later by Freeman (see
Freeman [1878]). Basically, Fourier’s contribution in this field states that any peri-
odic function can be expressed as the sum of sines and/or cosines of different fre-
quencies, each multiplied by a different coefficient (we now call this sum a Fourier
series). It does not matter how complicated the function is; if it is periodic and satis-
fies some mild mathematical conditions, it can be represented by such a sum. This
is taken for granted now but, at the time it first appeared, the concept that compli-
cated functions could be represented as a sum of simple sines and cosines was not
at all intuitive (see Fig. 4.1). Thus, it is not surprising that Fourier’s ideas were met
initially with skepticism.

Functions that are not periodic (but whose area under the curve is finite) can be
expressed as the integral of sines and/or cosines multiplied by a weighting function.
The formulation in this case is the Fourier transform, and its utility is even greater
than the Fourier series in many theoretical and applied disciplines. Both representa-
tions share the important characteristic that a function, expressed in either a Fourier
series or transform, can be reconstructed (recovered) completely via an inverse pro-
cess, with no loss of information. This is one of the most important characteristics of
these representations because it allows us to work in the Fourier domain (generally
called the frequency domain) and then return to the original domain of the function
without losing any information. Ultimately, it is the utility of the Fourier series and
transform in solving practical problems that makes them widely studied and used as
fundamental tools.

The initial application of Fourier’s ideas was in the field of heat diffusion, where
they allowed formulation of differential equations representing heat flow in such
a way that solutions could be obtained for the first time. During the past century,
and especially in the past 60 years, entire industries and academic disciplines have
flourished as a result of Fourier’s initial ideas. The advent of digital computers and
the “discovery” of a fast Fourier transform (FFT) algorithm in the early 1960s revo-
lutionized the field of signal processing. These two core technologies allowed for the
first time practical processing of a host of signals of exceptional importance, ranging
from medical monitors and scanners to modern electronic communications.

As you learned in Section 3.4, it takes on the order of MNmn operations (multi-
plications and additions) to filter an M N× image with a kernel of size m n× ele-
ments. If the kernel is separable, the number of operations is reduced to MN m n().+
In Section 4.11, you will learn that it takes on the order of 2 2MN MNlog operations
to perform the equivalent filtering process in the frequency domain, where the 2 in
front arises from the fact that we have to compute a forward and an inverse FFT.

4.1

DIP4E_GLOBAL_Print_Ready.indb 204 6/16/2017 2:04:18 PM

4.1 Background 205

To get an idea of the relative computational advantages of filtering in the frequency
versus the spatial domain, consider square images and kernels, of sizes M M× and
m m× , respectively. The computational advantage (as a function of kernel size) of
filtering one such image with the FFT as opposed to using a nonseparable kernel is
defined as

C m
M m

M M

m
M

n()
log

log

=

=

2 2

2
2

2

2

2

2

4

 (4-1)

If the kernel is separable, the advantage becomes

C m

M m

M M

m
M

s()
log

log

=

=

2
2

2

2

2
2

2

2

 (4-2)

In either case, when C m() > 1 the advantage (in terms of fewer computations)
belongs to the FFT approach; otherwise the advantage favors spatial filtering.

FIGURE 4.1
The function at
the bottom is the
sum of the four
functions above it.
Fourier’s idea in
1807 that periodic
functions could be
represented as a
weighted sum of
sines and cosines
was met with
skepticism.

DIP4E_GLOBAL_Print_Ready.indb 205 6/16/2017 2:04:18 PM

206 Chapter 4 Filtering in the Frequency Domain

Figure 4.2(a) shows a plot of C mn() as a function of m for an image of intermedi-
ate size ().M = 2048 The inset table shows a more detailed look for smaller kernel
sizes. As you can see, the FFT has the advantage for kernels of sizes 7 7× and larger.
The advantage grows rapidly as a function of m, being over 200 for m = 101, and
close to 1000 for m = 201. To give you a feel for the meaning of this advantage, if
filtering a bank of images of size 2048 2048× takes 1 minute with the FFT, it would
take on the order of 17 hours to filter the same set of images with a nonseparable
kernel of size 201 201× elements. This is a significant difference, and is a clear indica-
tor of the importance of frequency-domain processing using the FFT.

In the case of separable kernels, the computational advantage is not as dramatic,
but it is still meaningful. The “cross over” point now is around m = 27, and when
m = 101 the difference between frequency- and spatial-domain filtering is still man-
ageable. However, you can see that with m = 201 the advantage of using the FFT
approaches a factor of 10, which begins to be significant. Note in both graphs that
the FFT is an overwhelming favorite for large spatial kernels.

Our focus in the sections that follow is on the Fourier transform and its properties.
As we progress through this chapter, it will become evident that Fourier techniques
are useful in a broad range of image processing applications. We conclude the chap-
ter with a discussion of the FFT.

ABOUT THE EXAMPLES IN THIS CHAPTER

As in Chapter 3, most of the image filtering examples in this chapter deal with image
enhancement. For example, smoothing and sharpening are traditionally associated
with image enhancement, as are techniques for contrast manipulation. By its very
nature, beginners in digital image processing find enhancement to be interesting
and relatively simple to understand. Therefore, using examples from image enhance-
ment in this chapter not only saves having an extra chapter in the book but, more
importantly, is an effective tool for introducing newcomers to filtering techniques in
the frequency domain. We will use frequency domain processing methods for other
applications in Chapters 5, 7, 8, 10, and 11.

The computational
advantages given by Eqs.
(4-1) and (4-2) do not
take into account the fact
that the FFT performs
operations between
complex numbers, and
other secondary (but
small in comparison)
computations discussed
later in the chapter. Thus,
comparisons should be
interpreted only as
guidelines,

C
s(

m
)

�
 1

0

C
n(

m
)

�
 1

03

5

10

15

20

25

3 511 1023767255

m Cn(m)

m

1

2

3

4

5

3

7

11

15

21

27

m Cs(m)

3 511 1023767255
m

M = 2048M = 2048

3

7

11

15

21

27

101

201

0.2

1.1

2.8

5.1

10.0

16.6

232

918

101

201

0.1

0.3

0.5

0.7

0.9

1.2

4.6

9.1

ba

FIGURE 4.2
(a) Computational
advantage of the
FFT over non-
separable spatial
kernels.
(b) Advantage over
separable kernels.
The numbers for
C m() in the inset
tables are not to be
multiplied by the
factors of 10 shown
for the curves.

DIP4E_GLOBAL_Print_Ready.indb 206 6/16/2017 2:04:19 PM

4.2 Preliminary Concepts 207

4.2 PRELIMINARY CONCEPTS

We pause briefly to introduce several of the basic concepts that underlie the mate-
rial in later sections.

COMPLEX NUMBERS

A complex number, C, is defined as

 C R jI= + (4-3)

where R and I are real numbers and j = −1. Here, R denotes the real part of the
complex number and I its imaginary part. Real numbers are a subset of complex
numbers in which I = 0. The conjugate of a complex number C, denoted C*, is
defined as

 C R jI* = − (4-4)

Complex numbers can be viewed geometrically as points on a plane (called the com-
plex plane) whose abscissa is the real axis (values of R) and whose ordinate is the
imaginary axis (values of I). That is, the complex number R jI+ is point (,)R I in the
coordinate system of the complex plane.

Sometimes it is useful to represent complex numbers in polar coordinates,

 C C j= +(cos sin)u u (4-5)

where C R I= +2 2 is the length of the vector extending from the origin of the
complex plane to point (,),R I and u is the angle between the vector and the real axis.
Drawing a diagram of the real and complex axes with the vector in the first quadrant
will show that tan ()u = I R or u = arctan().I R The arctan function returns angles
in the range [,].−p p2 2 But, because I and R can be positive and negative inde-
pendently, we need to be able to obtain angles in the full range [,].−p p We do this
by keeping track of the sign of I and R when computing u. Many programming
languages do this automatically via so called four-quadrant arctangent functions. For
example, MATLAB provides the function atan2(Imag, Real) for this purpose.

Using Euler’s formula,

 e jju u u= +cos sin (4-6)

where e = 2 71828. ..., gives the following familiar representation of complex num-
bers in polar coordinates,

 C C ej= u (4-7)

where C and u are as defined above. For example, the polar representation of the
complex number 1 2+ j is 5eju , where u = 63 4. ° or 1.1 radians. The preceding equa-
tions are applicable also to complex functions. A complex function, F(),u of a real
variable u, can be expressed as the sum F R jI() () (u u u),= + where R u() and I u() are
the real and imaginary component functions of F u(). As previously noted, the com-
plex conjugate is F u R u jI u*() () (),= − the magnitude is F u R u I u() [() ()] ,= +2 2 1 2

4.2

DIP4E_GLOBAL_Print_Ready.indb 207 6/16/2017 2:04:22 PM

208 Chapter 4 Filtering in the Frequency Domain

and the angle is u() arctan[() ()].u I u R u= We will return to complex functions sev-
eral times in the course of this and the next chapter.

FOURIER SERIES

As indicated in the previous section, a function f t() of a continuous variable, t,
that is periodic with a period, T, can be expressed as the sum of sines and cosines
multiplied by appropriate coefficients. This sum, known as a Fourier series, has the
form

 f t c en

j
n

T
t

n

() =
= −
∑

2p

�

�

 (4-8)

where

 c
T

f t e dt nn

j
n

T
t

T

T

= =
−

−1
0 1 2

2

2 2

2 () , , , . . .
p

for ± ± (4-9)

are the coefficients. The fact that Eq. (4-8) is an expansion of sines and cosines fol-
lows from Euler’s formula, Eq. (4-6).

IMPULSES AND THEIR SIFTING PROPERTIES

Central to the study of linear systems and the Fourier transform is the concept of an
impulse and its sifting property. A unit impulse of a continuous variable t, located at
t = 0, and denoted d(),t is defined as

 d()t
t

t
=

=⎧
⎨
⎩

� if

if

0

0 0≠
 (4-10)

and is constrained to satisfy the identity

-�

�

2 d()t dt = 1 (4-11)

Physically, if we interpret t as time, an impulse may be viewed as a spike of infinity
amplitude and zero duration, having unit area. An impulse has the so-called sifting
property with respect to integration,

-�

�

2 f t t dt f() () ()d = 0 (4-12)

provided that f t() is continuous at t = 0, a condition typically satisfied in practice.
Sifting simply yields the value of the function f t() at the location of the impulse (i.e.,
at t = 0 in the previous equation). A more general statement of the sifting property
involves an impulse located at an arbitrary point, t0 , denoted as, d().t t− 0 In this case,

-�

�

2 f t t t dt f t() () ()d − =0 0 (4-13)

An impulse is not a
function in the usual
sense. A more accurate
name is a distribution
or generalized function.
However, one often
finds in the literature the
names impulse function,
delta function, and Dirac
delta function, despite the
misnomer.

To sift means literally to
separate, or to separate
out, by putting something
through a sieve.

DIP4E_GLOBAL_Print_Ready.indb 208 6/16/2017 2:04:23 PM

4.2 Preliminary Concepts 209

which simply gives the value of the function at the location of the impulse. For
example, if f t t() cos(),= using the impulse d p()t − in Eq. (4-13) yields the result
f () cos() .p p= = −1 The power of the sifting concept will become evident shortly.

Of particular interest later in this section is an impulse train, s tT� (), defined as the
sum of infinitely many impulses �T units apart:

 s t t k TT
k

�
�

�

�() ()= −
= −
∑ d (4-14)

Figure 4.3(a) shows a single impulse located at t t= 0 , and Fig. 4.3(b) shows an
impulse train. Impulses for continuous variables are denoted by up-pointing arrows
to simulate infinite height and zero width. For discrete variables the height is finite,
as we will show next.

Let x represent a discrete variable. As you learned in Chapter 3, the unit discrete
impulse, d(),x serves the same purposes in the context of discrete systems as the
impulse d()t does when working with continuous variables. It is defined as

 d()x
x

x
=

=⎧
⎨
⎩

1 0

0 0

if

if ≠
 (4-15)

Clearly, this definition satisfies the discrete equivalent of Eq. (4-11):

 d()x
x

=
= −
∑ 1

�

�

 (4-16)

The sifting property for discrete variables has the form

 f x x f
x

() () ()d =
= −
∑ 0

�

�

 (4-17)

ba
dc

FIGURE 4.3
(a) Continuous
impulse located
at t t= 0 . (b) An
impulse train
consisting of
continuous
impulses. (c) Unit
discrete impulse
located at x x= 0 .
(d) An impulse
train consisting
of discrete unit
impulses.

t
0

s�T(t)

. . .

. . .�T��T�2�T 2�T 3�T

x

1

x00

d(x � x0)

d(x)

. . .

. . . �3�T
t

t00

d(t � t0)

d(t)

x
0

s�X(x)

.

. �X��X�2�X�3�X 2�X 3�X

1

DIP4E_GLOBAL_Print_Ready.indb 209 6/16/2017 2:04:25 PM

210 Chapter 4 Filtering in the Frequency Domain

or, more generally using a discrete impulse located at x x= 0 (see Eq. 3-33),

 f x x x f x
x

() () ()d − =
= −
∑ 0 0

�

�

 (4-18)

As before, we see that the sifting property yields the value of the function at the
location of the impulse. Figure 4.3(c) shows the unit discrete impulse diagrammati-
cally, and Fig. 4.3(d) shows a train of discrete unit impulses, Unlike its continuous
counterpart, the discrete impulse is an ordinary function.

THE FOURIER TRANSFORM OF FUNCTIONS OF ONE CONTINUOUS
VARIABLE

The Fourier transform of a continuous function f t() of a continuous variable, t,
denoted � f t() ,{ } is defined by the equation

 � f t f t e dtj t() (){ } = −

-�

�

2
2pm (4-19)

where m is a continuous variable also.† Because t is integrated out, � f t(){ } is a func-
tion only of m. That is � f t F() ();{ } = m therefore, we write the Fourier transform of
f t() as

F f t e dtj t() ()m pm= −

-�

�

2
2

 (4-20)

Conversely, given F(),m we can obtain f t() back using the inverse Fourier transform,
written as

 f t F e dj t() ()=
-�

�

2 m mpm2 (4-21)

where we made use of the fact that variable m is integrated out in the inverse
transform and wrote simply f t(), rather than the more cumbersome notation
f t F() () .= { }−� 1 m Equations (4-20) and (4-21) comprise the so-called Fourier
transform pair, often denoted as f t F() ().⇔ m The double arrow indicates that the
expression on the right is obtained by taking the forward Fourier transform of the
expression on the left, while the expression on the left is obtained by taking the
inverse Fourier transform of the expression on the right.

Using Euler’s formula, we can write Eq. (4-20) as

 F f t t j t dt() () cos() sin()m pm pm= −[]
-�

�

2 2 2 (4-22)

† Conditions for the existence of the Fourier transform are complicated to state in general (Champeney [1987]),
but a sufficient condition for its existence is that the integral of the absolute value of f t(), or the integral of the
square of f t(), be finite. Existence is seldom an issue in practice, except for idealized signals, such as sinusoids
that extend forever. These are handled using generalized impulses. Our primary interest is in the discrete Fourier
transform pair which, as you will see shortly, is guaranteed to exist for all finite functions.

Equation (4-21) indicates
the important fact men-
tioned in Section 4.1 that
a function can be recov-
ered from its transform.

Because t is integrated
out in this equation, the
only variable left is m,
which is the frequency of
the sine and cosine terms.

DIP4E_GLOBAL_Print_Ready.indb 210 6/16/2017 2:04:26 PM

4.2 Preliminary Concepts 211

If f t() is real, we see that its transform in general is complex. Note that the Fourier
transform is an expansion of f t() multiplied by sinusoidal terms whose frequencies
are determined by the values of m. Thus, because the only variable left after integra-
tion is frequency, we say that the domain of the Fourier transform is the frequency
domain. We will discuss the frequency domain and its properties in more detail later
in this chapter. In our discussion, t can represent any continuous variable, and the
units of the frequency variable m depend on the units of t. For example, if t repre-
sents time in seconds, the units of m are cycles/sec or Hertz (Hz). If t represents
distance in meters, then the units of m are cycles/meter, and so on. In other words,
the units of the frequency domain are cycles per unit of the independent variable of
the input function.

EXAMPLE 4.1 : Obtaining the Fourier transform of a simple continuous function.

The Fourier transform of the function in Fig. 4.4(a) follows from Eq. (4-20):

F f t e dt Ae dt

A
j

e

j t j t

j t

W

W

() ()m

pm

pm pm

pm

= =

= − ⎡⎣ ⎤⎦

− −

−
−

−-�

�

2 2
2 2

2

2

2

2 WW

W j W j W

j W j W

A
j

e e

A
j

e e

AW

2

2

2

2

= − −⎡⎣ ⎤⎦

= −⎡⎣ ⎤⎦

=

−

−

pm

pm

p

pm pm

pm pm

sin(mm

pm

W
W

)
()

t
0

f(t)

A

0�W/2 W/2 0

 �1/W 1/W

 �1/W 1/W

F(m)

AW

�F(m)�

AW

 �2/W . . . 2/W . . . �2/W . . . 2/W . . .
m m

ba c

FIGURE 4.4 (a) A box function, (b) its Fourier transform, and (c) its spectrum. All functions extend to infinity in both
directions. Note the inverse relationship between the width, W, of the function and the zeros of the transform.

DIP4E_GLOBAL_Print_Ready.indb 211 6/16/2017 2:04:27 PM

212 Chapter 4 Filtering in the Frequency Domain

where we used the trigonometric identity sin () .u u u= − −e e jj j 2 In this case, the complex terms of the
Fourier transform combined nicely into a real sine function. The result in the last step of the preceding
expression is known as the sinc function, which has the general form

 sinc()
sin()

()
m

m
m

= p

p
 (4-23)

where sinc()0 1= and sinc()m = 0 for all other integer values of m. Figure 4.4(b) shows a plot of F().m

In general, the Fourier transform contains complex terms, and it is customary for display purposes to
work with the magnitude of the transform (a real quantity), which is called the Fourier spectrum or the
frequency spectrum:

 F AW
W

W
()

sin()
()

m
pm

pm
=

Figure 4.4(c) shows a plot of F()m as a function of frequency. The key properties to note are (1) that
the locations of the zeros of both F()m and F()m are inversely proportional to the width,W, of the “box”
function; (2) that the height of the lobes decreases as a function of distance from the origin; and (3) that
the function extends to infinity for both positive and negative values of m. As you will see later, these
properties are quite helpful in interpreting the spectra of two dimensional Fourier transforms of images.

EXAMPLE 4.2 : Fourier transform of an impulse and an impulse train.

The Fourier transform of a unit impulse located at the origin follows from Eq. (4-20):

 � d m d dpm pm pm() () () ()t F t e dt e t dt ej t j t j{ } = = = =− − −

- -�

�

�

�

2 2
2 2 2

where we used the sifting property from Eq. (4-12). Thus, we see that the Fourier transform of an
impulse located at the origin of the spatial domain is a constant in the frequency domain (we discussed
this briefly in Section 3.4 in connection with Fig. 3.30).

Similarly, the Fourier transform of an impulse located at t t= 0 is

 � d m d dpm pm() () () ()t t F t t e dt e t t dtj t j t−{ } = = − = − =− −
0 0

2 2
0

- -�

�

�

�

2 2 ee j t− 2 0pm

where we used the sifting property from Eq. (4-13). The term e j t− 2 0pm represents a unit circle centered on
the origin of the complex plane, as you can easily see by using Euler’s formula to expand the exponential
into its sine and cosine components.

In Section 4.3, we will use the Fourier transform of a periodic impulse train. Obtaining this transform
is not as straightforward as we just showed for individual impulses. However, understanding how to
derive the transform of an impulse train is important, so we take the time to derive it here. We start by
noting that the only basic difference in the form of Eqs. (4-20) and (4-21) is the sign of the exponential.
Thus, if a function f t() has the Fourier transform F(),m then evaluating this function at t, F t(), must
have the transform f ().−m Using this symmetry property and given, as we showed above, that the Fou-
rier transform of an impulse d()t t− 0 is e j t− 2 0pm , it follows that the function e j t− 2 0pm has the transform

DIP4E_GLOBAL_Print_Ready.indb 212 6/16/2017 2:04:29 PM

4.2 Preliminary Concepts 213

d m().− − t0 By letting − =t a0 , it follows that the transform of e j at2p is d m d m() (),− + = −a a where the last
step is true because d is zero unless m = a, which is the same condition for either d m()− + a or d m().− a

The impulse train s tT� () in Eq. (4-14) is periodic with period �T, so it can be expressed as a Fourier
series:

 s t c eT n

j
n

T
t

n
�

�

�

�

() =
= −
∑

2p

where

 c
T

s t e dtn T

j
n

T
t

T

T

=
−

1

2

2 2

� �

�

�
�

2 ()
− p

With reference to Fig. 4.3(b), we see that the integral in the interval [,]−� �T T2 2 encompasses only
the impulse located at the origin. Therefore, the preceding equation becomes

 c
T

t e dt
T

e
Tn

j
n

T
t

T

T

= = =
−

−1 1 1

2

2 2
0

� � ��

�

�

2 d

p

()

where we used the sifting property of d().t The Fourier series then becomes

 s t
T

eT

j
n

T
t

n
�

�

�

�

�
() =

= −
∑1 2p

Our objective is to obtain the Fourier transform of this expression. Because summation is a linear pro-
cess, obtaining the Fourier transform of a sum is the same as obtaining the sum of the transforms of the
individual components of the sum. These components are exponentials, and we established earlier in
this example that

 �U Ve
n
T

j
n

T
t

2p
d m�

�
= −Q R

So, S(),m the Fourier transform of the periodic impulse train, is

 S s t
T

e
T

eT
j

n
T

t

n

j
n

T
t

n

() ()m
p p

= { } = = =
= − = −
∑ ∑� � �� �

�

�

�

�

�

� �
U V U V1 1 12 2

�� ��

�

T
n
Tn

d mQ R−
= −
∑

This fundamental result tells us that the Fourier transform of an impulse train with period �T is also
an impulse train, whose period is 1 �T . This inverse proportionality between the periods of s tT� () and
S()m is analogous to what we found in Fig. 4.4 in connection with a box function and its transform. This
inverse relationship plays a fundamental role in the remainder of this chapter.

CONVOLUTION

We showed in Section 3.4 that convolution of two functions involves flipping (rotat-
ing by 180°) one function about its origin and sliding it past the other. At each dis-
placement in the sliding process, we perform a computation, which, for discrete
variables, is a sum of products [see Eq. (3-35)]. In the present discussion, we are

As in Section 3.4, the
fact that convolution of a
function with an impulse
shifts the origin of the
function to the location of
the impulse is also true for
continuous convolution.
(See Figs. 3.29 and 3.30.)

DIP4E_GLOBAL_Print_Ready.indb 213 6/16/2017 2:04:31 PM

214 Chapter 4 Filtering in the Frequency Domain

interested in the convolution of two continuous functions, f t() and h t(), of one con-
tinuous variable, t, so we have to use integration instead of a summation. The con-
volution of these two functions, denoted as before by the operator �, is defined as

 ()() () ()f h t f h t d� = −
-�

�

2 t t t (4-24)

where the minus sign accounts for the flipping just mentioned, t is the displacement
needed to slide one function past the other, and t is a dummy variable that is inte-
grated out. We assume for now that the functions extend from −� to � .

We illustrated the basic mechanics of convolution in Section 3.4, and we will do
so again later in this chapter and in Chapter 5. At the moment, we are interested in
finding the Fourier transform of Eq. (4-24). We start with Eq. (4-19):

� ()() () ()

()

f h t f h t d e dt

f

j t
�{ } = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

−

- -

-

�

�

�

�

�

�

2 2

2

t t t

t

pm2

--�

�

2 h t e dt dj t()−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−t tpm2

The term inside the brackets is the Fourier transform of h t().− t We will show later
in this chapter that � h t H e j() () ,−{ } = −t m pmt2 where H()m is the Fourier transform
of h t(). Using this in the preceding equation gives us

� ()() () ()

() ()

f h t f H e d

H f e d

j

j

�{ } = ⎡⎣ ⎤⎦

=

−

−

-

-

�

�

�

�
2

2

t m t

m t

pmt

pmt

2

2 tt

m m

m

=
=

H F

H F

() ()

()()i

where “ i ” indicates multiplication. As noted earlier, if we refer to the domain of t
as the spatial domain, and the domain of m as the frequency domain, the preceding
equation tells us that the Fourier transform of the convolution of two functions in
the spatial domain is equal to the product in the frequency domain of the Fourier
transforms of the two functions. Conversely, if we have the product of the two trans-
forms, we can obtain the convolution in the spatial domain by computing the inverse
Fourier transform. In other words, f h� and H Fi are a Fourier transform pair. This
result is one-half of the convolution theorem and is written as

 ()() ()()f h t H F� ⇔ i m (4-25)

As noted earlier, the double arrow indicates that the expression on the right is
obtained by taking the forward Fourier transform of the expression on the left, while

Remember, convolution
is commutative, so the
order of the functions in
convolution expressions
does not matter.

DIP4E_GLOBAL_Print_Ready.indb 214 6/16/2017 2:04:32 PM

4.3 Sampling and the Fourier Transform of Sampled Functions 215

the expression on the left is obtained by taking the inverse Fourier transform of the
expression on the right.

Following a similar development would result in the other half of the convolution
theorem:

 ()() ()()f h t H Fi ⇔ � m (4-26)

which states that convolution in the frequency domain is analogous to multiplica-
tion in the spatial domain, the two being related by the forward and inverse Fourier
transforms, respectively. As you will see later in this chapter, the convolution theo-
rem is the foundation for filtering in the frequency domain.

4.3 SAMPLING AND THE FOURIER TRANSFORM OF SAMPLED
FUNCTIONS

In this section, we use the concepts from Section 4.2 to formulate a basis for express-
ing sampling mathematically. Starting from basic principles, this will lead us to the
Fourier transform of sampled functions. That is, the discrete Fourier transform.

SAMPLING

Continuous functions have to be converted into a sequence of discrete values before
they can be processed in a computer. This requires sampling and quantization, as
introduced in Section 2.4. In the following discussion, we examine sampling in more
detail.

Consider a continuous function, f t(), that we wish to sample at uniform intervals,
�T, of the independent variable t (see Fig. 4.5). We assume initially that the function
extends from −� to � with respect to t. One way to model sampling is to multiply
f t() by a sampling function equal to a train of impulses �T units apart. That is,

 �f t f t s t f t t n TT
n

() () () () ()= = −
= −
∑�

�

�

�d (4-27)

where �f t() denotes the sampled function. Each component of this summation is an
impulse weighted by the value of f t() at the location of the impulse, as Fig. 4.5(c)
shows. The value of each sample is given by the “strength” of the weighted impulse,
which we obtain by integration. That is, the value, fk , of an arbitrary sample in the
sampled sequence is given by

f f t t k T dt

f k T

k = −

=
-�

�

�

�

2 () ()

()

d
 (4-28)

where we used the sifting property of d in Eq. (4-13). Equation (4-28) holds for any
integer value k = − −. . . , , , , , ,2 1 0 1 2 Figure 4.5(d) shows the result, which con-
sists of equally spaced samples of the original function.

These two expressions
also hold for discrete
variables, with the
exception that the right
side of Eq. (4-26) is
multiplied by (1/M),
where M is the number
of discrete samples (see
Problem 4.18).

4.3

Taking samples ΔΤ units
apart implies a sampling
rate equal to 1/ΔΤ. If the
units of ΔΤ are seconds,
then the sampling rate is
in samples/s. If the units
of ΔΤ are meters, then
the sampling rate is in
samples/m, and so on.

DIP4E_GLOBAL_Print_Ready.indb 215 6/16/2017 2:04:33 PM

216 Chapter 4 Filtering in the Frequency Domain

THE FOURIER TRANSFORM OF SAMPLED FUNCTIONS

Let F()m denote the Fourier transform of a continuous function f t(). As discussed
in the previous section, the corresponding sampled function, �f t(), is the product of
f t() and an impulse train. We know from the convolution theorem that the Fourier
transform of the product of two functions in the spatial domain is the convolution
of the transforms of the two functions in the frequency domain. Thus, the Fourier
transform of the sampled function is:

� �F f t f t s t

F S

T() () () ()

()()

m

m

= { } = { }
=

� � �

�
 (4-29)

where, from Example 4.2,

 S
T

n
Tn

()m d m= −
= −
∑1

� ��

�

Q R (4-30)

t
0

f(t)

t

s�T (t)

.

. . .
. . .

0 �T��T�2�T 2�T

t

f(t)s�T(t)

.

0 �T��T�2�T 2�T

k

fk � f(k�T)

.

0 1�1�2 2

. .

. .

b
a

c
d

FIGURE 4.5
(a) A continuous
function. (b) Train
of impulses used to
model sampling.
(c) Sampled
function formed as
the product of (a)
and (b). (d) Sample
values obtained by
integration and
using the sifting
property of
impulses. (The
dashed line in (c) is
shown for refer-
ence. It is not part
of the data.)

DIP4E_GLOBAL_Print_Ready.indb 216 6/16/2017 2:04:34 PM

4.3 Sampling and the Fourier Transform of Sampled Functions 217

is the Fourier transform of the impulse train s tT� (). We obtain the convolution of
F()m and S()m directly from the 1-D definition of convolution in Eq. (4-24):

�F F S F S d

T
F

n
Tn

() ()() () ()

()

m m t m t t

t d m t

= = −

= − −
= −

�

-

-

�

�

�

�

� ��

�

2

2
1 Q R∑∑

∑

∑

= − −

= −

= −

= −

d

T
F

n
T

d

T
F

n
T

n

n

t

t d m t t

m

1

1

� �

� �

�

�

�

�

�

�

-2 () Q R

Q R

 (4-31)

where the final step follows from the sifting property of the impulse, Eq. (4-13).
The summation in the last line of Eq. (4-31) shows that the Fourier transform
�F()m of the sampled function �f t() is an infinite, periodic sequence of copies of the
transform of the original, continuous function. The separation between copies is
determined by the value of 1 �T. Observe that although �f t() is a sampled function,
its transform, �F(),m is continuous because it consists of copies of F(),m which is a
continuous function.

Figure 4.6 is a graphical summary of the preceding results.† Figure 4.6(a) is a
sketch of the Fourier transform, F(),m of a function f t(), and Fig. 4.6(b) shows the
transform, �F(),m of the sampled function, �f t(). As mentioned in the previous sec-
tion, the quantity 1 �T is the sampling rate used to generate the sampled function.
So, in Fig. 4.6(b) the sampling rate was high enough to provide sufficient separation
between the periods, and thus preserve the integrity (i.e., perfect copies) of F().m In
Fig. 4.6(c), the sampling rate was just enough to preserve F(),m but in Fig. 4.6(d), the
sampling rate was below the minimum required to maintain distinct copies of F(),m
and thus failed to preserve the original transform. Figure 4.6(b) is the result of an
over-sampled signal, while Figs. 4.6(c) and (d) are the results of critically sampling
and under-sampling the signal, respectively. These concepts are the basis that will
help you grasp the fundamentals of the sampling theorem, which we discuss next.

THE SAMPLING THEOREM

We introduced the idea of sampling intuitively in Section 2.4. Now we consider sam-
pling formally, and establish the conditions under which a continuous function can
be recovered uniquely from a set of its samples.

A function f t() whose Fourier transform is zero for values of frequencies outside
a finite interval (band) [,]max max−m m about the origin is called a band-limited func-
tion. Figure 4.7(a), which is a magnified section of Fig. 4.6(a), is such a function. Simi-
larly, Fig. 4.7(b) is a more detailed view of the transform of the critically sampled

† For the sake of clarity in sketches of Fourier transforms in Fig. 4.6, and other similar figures in this chapter, we
ignore the fact that Fourier transforms typically are complex functions. Our interest here is on concepts.

DIP4E_GLOBAL_Print_Ready.indb 217 6/16/2017 2:04:36 PM

218 Chapter 4 Filtering in the Frequency Domain

function [see Fig. 4.6(c)]. A higher value of �T would cause the periods in �F()m to
merge; a lower value would provide a clean separation between the periods.

We can recover f t() from its samples if we can isolate a single copy of F()m from
the periodic sequence of copies of this function contained in �F(),m the transform of
the sampled function �f t(). Recall from the discussion in the previous section that
�F()m is a continuous, periodic function with period 1 �T. Therefore, all we need is
one complete period to characterize the entire transform. In other words, we can
recover f t() from that single period by taking its inverse Fourier transform.

Extracting from �F()m a single period that is equal to F()m is possible if the sepa-
ration between copies is sufficient (see Fig. 4.6). In terms of Fig. 4.7(b), sufficient
separation is guaranteed if 1 2�T > mmax or

1

2
�T

> mmax (4-32)

This equation indicates that a continuous, band-limited function can be recovered
completely from a set of its samples if the samples are acquired at a rate exceeding

Remember, the sampling
rate is the number of
samples taken per unit of
the independent variable.

.

.

0

F(m)

m

F(m)
~

F(m)
~

F(m)
~

m

m

m

.

0

0

0

1/�T�1/�T

�1/�T

�2/�T

�2/�T

�3/�T �1/�T�2/�T

2/�T

1/�T 2/�T

3/�T1/�T 2/�T

.

b
a

c
d

FIGURE 4.6
(a) Illustrative
sketch of the
Fourier transform
of a band-limited
function.
(b)–(d) Trans-
forms of the
corresponding
sampled functions
under the
conditions of
over-sampling,
critically
sampling, and
under-sampling,
respectively.

DIP4E_GLOBAL_Print_Ready.indb 218 6/16/2017 2:04:37 PM

4.3 Sampling and the Fourier Transform of Sampled Functions 219

twice the highest frequency content of the function. This exceptionally important
result is known as the sampling theorem.† We can say based on this result that no
information is lost if a continuous, band-limited function is represented by samples
acquired at a rate greater than twice the highest frequency content of the function.
Conversely, we can say that the maximum frequency that can be “captured” by sam-
pling a signal at a rate 1 �T is mmax .= 1 2�T A sampling rate exactly equal to twice
the highest frequency is called the Nyquist rate. Sampling at exactly the Nyquist rate
sometimes is sufficient for perfect function recovery, but there are cases in which
this leads to difficulties, as we will illustrate later in Example 4.3. This is the reason
why the sampling theorem specifies that sampling must exceed the Nyquist rate.

Figure 4.8 illustrates the procedure for recovering F()m from �F()m when a function
is sampled at a rate higher than the Nyquist rate. The function in Fig. 4.8(b) is defined
by the equation

 H
T

() max max
m

m m m
=

−⎧
⎨
⎩

� ≤ ≤
0 otherwise

 (4-33)

When multiplied by the periodic sequence in Fig. 4.8(a), this function isolates the
period centered on the origin. Then, as Fig. 4.8(c) shows, we obtain F()m by multiply-
ing �F()m by H() :m

† The sampling theorem is a cornerstone of digital signal processing theory. It was first formulated in 1928 by
Harry Nyquist, a Bell Laboratories scientist and engineer. Claude E. Shannon, also from Bell Labs, proved the
theorem formally in 1949. The renewed interest in the sampling theorem in the late 1940s was motivated by the
emergence of early digital computing systems and modern communications, which created a need for methods
dealing with digital (sampled) data.

The ΔΤ in Eq. (4-33)
cancels out the 1/ΔΤ in
Eq. (4-31).

0

F(m)

m

0

F(m)

m

mmax

mmax

�mmax

�mmax

1

2�T
–––

� 1

�T
––

1

2�T
–––

~

.

b
a

FIGURE 4.7
(a) Illustrative
sketch of the
Fourier
transform of a
band-limited
function.
(b) Transform
resulting from
critically sampling
that band-limited
function.

DIP4E_GLOBAL_Print_Ready.indb 219 6/16/2017 2:04:38 PM

220 Chapter 4 Filtering in the Frequency Domain

 F H F() () ()m m m= � (4-34)

Once we have F(),m we can recover f t() using the inverse Fourier transform:

 f t F e dj t() ()=
-�

�

2 m mpm2 (4-35)

Equations (4-33) through (4-35) prove that, theoretically, it is possible to recover a
band-limited function from samples obtained at a rate exceeding twice the highest
frequency content of the function. As we will discuss in the following section, the
requirement that f t() must be band-limited implies in general that f t() must extend
from −� to � , a condition that cannot be met in practice. As you will see shortly,
having to limit the duration of a function prevents perfect recovery of the function
from its samples, except in some special cases.

Function H()m is called a lowpass filter because it passes frequencies in the low
end of the frequency range, but it eliminates (filters out) higher frequencies. It is
called also an ideal lowpass filter because of its instantaneous transitions in ampli-
tude (between 0 and �T at location −mmax and the reverse at mmax), a characteristic
that cannot be implemented physically in hardware. We can simulate ideal filters
in software, but even then there are limitations (see Section 4.8). Because they are
instrumental in recovering (reconstructing) the original function from its samples,
filters used for the purpose just discussed are also called reconstruction filters.

In Fig. 3.32 we sketched
the radial cross sections
of filter transfer functions
using only positive fre-
quencies, for simplicity.
Now you can see that
frequency domain filter
functions encompass
both positive and nega-
tive frequencies.

F(m)
~

m

.

0 1/�T

�T

�1/�T�2/�T 2/�T

H(m)

m

0

~
F(m) � H(m)F(m)

m
0

mmax

mmax

�mmax

�mmax

.

.

b
a

c

FIGURE 4.8
(a) Fourier
transform of a
sampled,
band-limited
function.
(b) Ideal lowpass
filter transfer
function.
(c) The product
of (b) and (a),
used to extract
one period of the
infinitely periodic
sequence in (a).

DIP4E_GLOBAL_Print_Ready.indb 220 6/16/2017 2:04:39 PM

4.3 Sampling and the Fourier Transform of Sampled Functions 221

ALIASING

Literally, the word alias means “a false identity.” In the field of signal processing,
aliasing refers to sampling phenomena that cause different signals to become indis-
tinguishable from one another after sampling; or, viewed another way, for one signal
to “masquerade” as another.

Conceptually, the relationship between sampling and aliasing is not difficult to
grasp. The foundation of aliasing phenomena as it relates to sampling is that we
can describe a digitized function only by the values of its samples. This means that
it is possible for two (or more) totally different continuous functions to coincide at
the values of their respective samples, but we would have no way of knowing the
characteristics of the functions between those samples. To illustrate, Fig. 4.9 shows
two completely different sine functions sampled at the same rate. As you can see
in Figs. 4.9(a) and (c), there are numerous places where the sampled values are the
same in the two functions, resulting in identical sampled functions, as Figs. 4.9(b)
and (d) show.

Two continuous functions having the characteristics just described are called an
aliased pair, and such pairs are indistinguishable after sampling. Note that the reason
these functions are aliased is because we used a sampling rate that is too coarse. That
is, the functions were under-sampled. It is intuitively obvious that if sampling were
refined, more and more of the differences between the two continuous functions
would be revealed in the sampled signals. The principal objective of the following
discussion is to answer the question: What is the minimum sampling rate required
to avoid (or reduce) aliasing? This question has both a theoretical and a practical
answer and, in the process of arriving at the answers, we will establish the conditions
under which aliasing occurs.

We can use the tools developed earlier in this section to formally answer the
question we just posed. All we have to do is ask it in a different form: What happens

Although we show
sinusoidal functions for
simplicity, aliasing occurs
between any arbitrary
signals whose values are
the same at the sample
points.

ba
dc

FIGURE 4.9
The functions in
(a) and (c) are
totally different,
but their digi-
tized versions in
(b) and (d) are
identical. Aliasing
occurs when the
samples of two or
more functions
coincide, but the
functions are dif-
ferent elsewhere.

DIP4E_GLOBAL_Print_Ready.indb 221 6/16/2017 2:04:39 PM

222 Chapter 4 Filtering in the Frequency Domain

if a band-limited function is sampled at less than the Nyquist rate (i.e., at less than
twice its highest frequency)? This is precisely the under-sampled situation discussed
earlier in this section and mentioned in the previous paragraph.

Figure 4.10(a) is the same as Fig. 4.6(d); it shows schematically the Fourier trans-
form of an under-sampled, band-limited function. This figure illustrates that the net
effect of lowering the sampling rate below the Nyquist rate is that the periods of the
Fourier transform now overlap, and it becomes impossible to isolate a single period
of the transform, regardless of the filter used. For instance, using the ideal lowpass
filter in Fig. 4.10(b) would result in a transform that is corrupted by frequencies from
adjacent periods, as Fig. 4.10(c) shows. The inverse transform would then yield a
function, f ta(), different from the original. That is, f ta() would be an aliased function
because it would contain frequency components not present in the original. Using
our earlier terminology, f ta() would masquerade as a different function. It is pos-
sible for aliased functions to bear no resemblance whatsoever to the functions from
which they originated.

Unfortunately, except in some special cases mentioned below, aliasing is always
present in sampled signals. This is because, even if the original sampled function is
band-limited, infinite frequency components are introduced the moment we limit
the duration of the function, which we always have to do in practice. As an illustra-
tion, suppose that we want to limit the duration of a band-limited function, f t(), to a
finite interval, say [,].0 T We can do this by multiplying f t() by the function

 h t
t T

() =
⎧
⎨
⎩

1 0

0

≤ ≤
otherwise

 (4-36)

This function has the same basic shape as Fig. 4.4(a), whose Fourier transform, H(),m
has frequency components extending to infinity in both directions, as Fig. 4.4(b) shows.
From the convolution theorem, we know that the transform of the product h t f t() ()
is the convolution in the frequency domain of the transforms F()m and H().m Even
if F()m is band-limited, convolving it with H()m , which involves sliding one function
across the other, will yield a result with frequency components extending to infinity
in both directions (see Problem 4.12). From this we conclude that no function of
finite duration can be band-limited. Conversely, a function that is band-limited must
extend from −� to �.†

Although aliasing is an inevitable fact of working with sampled records of finite
length, the effects of aliasing can be reduced by smoothing (lowpass filtering) the
input function to attenuate its higher frequencies. This process, called anti-aliasing,
has to be done before the function is sampled because aliasing is a sampling issue
that cannot be “undone after the fact” using computational techniques.

† An important special case is when a function that extends from −� to � is band-limited and periodic. In this
case, the function can be truncated and still be band-limited, provided that the truncation encompasses exactly
an integral number of periods. A single truncated period (and thus the function) can be represented by a set of
discrete samples satisfying the sampling theorem, taken over the truncated interval.

If we cannot isolate one
period of the transform,
we cannot recover the
signal without aliasing,

DIP4E_GLOBAL_Print_Ready.indb 222 6/16/2017 2:04:40 PM

4.3 Sampling and the Fourier Transform of Sampled Functions 223

EXAMPLE 4.3 : Aliasing.

Figure 4.11 shows a classic illustration of aliasing. A pure sine wave extending infinitely in both direc-
tions has a single frequency so, obviously, it is band-limited. Suppose that the sine wave in the figure
(ignore the large dots for now) has the equation f t t() sin(),= p and that the horizontal axis corresponds
to time, t, in seconds. The function crosses the axis at t = 0 1 2, , , .± ± …

Recall that a function f t() is periodic with period P if f t P f t() ()+ = for all values of t. The period
is the number (including fractions) of units of the independent variable that it takes for the function
to complete one cycle. The frequency of a periodic function is the number of periods (cycles) that the
function completes in one unit of the independent variable. Thus, the frequency of a periodic function
is the reciprocal of the period. As before, the sampling rate is the number of samples taken per unit of
the independent variable.

 In the present example, the independent variable is time, and its units are seconds. The period, P,
of sin()pt is 2 s, and its frequency is 1 P , or 1 2 cycles/s. According to the sampling theorem, we can
recover this signal from a set of its samples if the sampling rate exceeds twice the highest frequency
of the signal. This means that a sampling rate greater than 1 sample/s ()2 1 2 1× = is required to

.

m
0�3/�T �1/�T�2/�T 3/�T1/�T 2/�T

F(m)
~

0

H(m)

m
0

~
F(m) � H(m)F(m)

m
0

mmax

mmax

�mmax

�mmax

.

.

�T

b
a

c

FIGURE 4.10 (a) Fourier transform of an under-sampled, band-limited function. (Interference between adjacent peri-
ods is shown dashed). (b) The same ideal lowpass filter used in Fig. 4.8. (c) The product of (a) and (b).The interfer-
ence from adjacent periods results in aliasing that prevents perfect recovery of F()m and, consequently, of f t().

DIP4E_GLOBAL_Print_Ready.indb 223 6/16/2017 2:04:41 PM

224 Chapter 4 Filtering in the Frequency Domain

recover the signal. Viewed another way, the separation, �T, between samples has to be less than 1 s.
Observe that sampling this signal at exactly twice the frequency (1 sample/s), with samples taken at
t = 0 1 2, , , ,± ± … results in … …sin(), sin(), sin() ,−p p0 all of which are 0. This illustrates the reason
why the sampling theorem requires a sampling rate that exceeds twice the highest frequency of the
function, as mentioned earlier.

The large dots in Fig. 4.11 are samples taken uniformly at a rate below the required 1 sample/s (i.e.,
the samples are taken more than 1 s apart; in fact, the separation between samples exceeds 2 s). The
sampled signal looks like a sine wave, but its frequency is about one-tenth the frequency of the original
function. This sampled signal, having a frequency well below anything present in the original continu-
ous function, is an example of aliasing. If the signal had been sampled at a rate slightly exceeding the
Nyquist rate, the samples would not look like a sine wave at all (see Problem 4.6).

Figure 4.11 also illustrates how aliasing can be extremely problematic in musical recordings by intro-
ducing frequencies not present in the original sound. In order to mitigate this, signals with frequencies
above half the sampling rate must be filtered out to reduce the effect of aliased signals introduced into
digital recordings. This is the reason why digital recording equipment contains lowpass filters specifically
designed to remove frequency components above half the sampling rate used by the equipment.

If we were given just the samples in Fig. 4.11, another issue illustrating the seriousness of aliasing is
that we would have no way of knowing that these samples are not a true representation of the original
function. As you will see later in this chapter, aliasing in images can produce similarly misleading results.

FUNCTION RECONSTRUCTION (RECOVERY) FROM SAMPLED DATA

In this section, we show that reconstructing a function from a set of its samples
reduces in practice to interpolating between the samples. Even the simple act of
displaying an image requires reconstruction of the image from its samples by the dis-
play medium. Therefore, it is important to understand the fundamentals of sampled
data reconstruction. Convolution is central to developing this understanding, dem-
onstrating again the importance of this concept.

The discussion of Fig. 4.8 and Eq. (4-34) outlines the procedure for perfect recov-
ery of a band-limited function from its samples using frequency domain methods.

. . .

. . .

t

�T

0 4 . . .1 2 3 5. . .

FIGURE 4.11 Illustration of aliasing. The under-sampled function (dots) looks like a sine wave having a frequency
much lower than the frequency of the continuous signal. The period of the sine wave is 2 s, so the zero crossings of
the horizontal axis occur every second. �T is the separation between samples.

DIP4E_GLOBAL_Print_Ready.indb 224 6/16/2017 2:04:41 PM

4.4 The Discrete Fourier Transform of One Variable 225

Using the convolution theorem, we can obtain the equivalent result in the spatial
domain. From Eq. (4-34), F H F() () (),m m m= � so it follows that

f t F

H F

h t f t

() ()

() ()

() ()

= { }
= { }
=

−

−

�

�

1

1

m

m m�

��

 (4-37)

where, as before, �f t() denotes the sampled function, and the last step follows from
the convolution theorem, Eq. (4-25). It can be shown (see Problem 4.13), that sub-
stituting Eq. (4-27) for �f t() into Eq. (4-37), and then using Eq. (4-24), leads to the
following spatial domain expression for f t():

 f t f n T t n T T
n

() () ()= −[]
= −
∑ � � �

�

�

sinc (4-38)

where the sinc function is defined in Eq. (4-23). This result is not unexpected because
the inverse Fourier transform of the ideal (box) filter, H(),m is a sinc function (see
Example 4.1). Equation (4-38) shows that the perfectly reconstructed function, f t(),
is an infinite sum of sinc functions weighted by the sample values. It has the impor-
tant property that the reconstructed function is identically equal to the sample val-
ues at multiple integer increments of �T. That is, for any t k T= � , where k is an inte-
ger, f t() is equal to the kth sample, f k T().� This follows from Eq. (4-38) because
sinc()0 1= and sinc()m = 0 for any other integer value of m. Between sample points,
values of f t() are interpolations formed by the sum of the sinc functions.

Equation (4-38) requires an infinite number of terms for the interpolations
between samples. In practice, this implies that we have to look for approximations
that are finite interpolations between the samples. As we discussed in Section 2.6, the
principal interpolation approaches used in image processing are nearest-neighbor,
bilinear, and bicubic interpolation. We will discuss the effects of interpolation on
images in Section 4.5.

4.4 THE DISCRETE FOURIER TRANSFORM OF ONE VARIABLE

One of the principal goals of this chapter is the derivation of the discrete Fourier
transform (DFT) starting from basic principles. The material up to this point may
be viewed as the foundation of those basic principles, so now we have in place the
necessary tools to derive the DFT.

OBTAINING THE DFT FROM THE CONTINUOUS TRANSFORM OF A
SAMPLED FUNCTION

As we discussed in Section 4.3, the Fourier transform of a sampled, band-limited func-
tion extending from −� to � is a continuous, periodic function that also extends from
−� to �. In practice, we work with a finite number of samples, and the objective of
this section is to derive the DFT of such finite sample sets.

Equation (4-31) gives the transform, �F(),m of sampled data in terms of the trans-
form of the original function, but it does not give us an expression for �F()m in terms

See Section 2.4 regard-
ing interpolation.

4.4

DIP4E_GLOBAL_Print_Ready.indb 225 6/16/2017 2:04:43 PM

226 Chapter 4 Filtering in the Frequency Domain

of the sampled function �f t() itself. We find that expression directly from the defini-
tion of the Fourier transform in Eq. (4-19):

 � �F f t e dtj t() ()m pm= −

-�

�

2
2 (4-39)

By substituting Eq. (4-27) for �f t(), we obtain

� �F f t e dt f t t n T e dtj t j t

n

() () () ()m dpm pm= = −

=

− −

= −
∑

- -

-

�

�

�

�

�
�

�

2 2
2 2

��

�

�

�

�

�

�

�2n

j t

n
j n T

n

f t t n T e dt

f e

= −

−

−

= −

∑

∑

−

=

() ()d pm

pm

2

2

 (4-40)

The last step follows from Eq. (4-28) and the sifting property of the impulse.
Although fn is a discrete function, its Fourier transform, �F(),m is continuous and
infinitely periodic with period 1 �T, as we know from Eq. (4-31). Therefore, all we
need to characterize �F()m is one period, and sampling one period of this function is
the basis for the DFT.

Suppose that we want to obtain M equally spaced samples of �F()m taken over the
one period interval from m = 0 to m = 1 �T (see Fig. 4.8). This is accomplished by
taking the samples at the following frequencies:

 m = = −m
M T

m M
�

0 1 2 1, , , ,… (4-41)

Substituting this result for m into Eq. (4-40) and letting Fm denote the result yields

 F f e m Mm n
n

M
j mn M= = −

=

−
−∑

0

1
2 0 1 2 1p , , , ,… (4-42)

This expression is the discrete Fourier transform we are seeking.† Given a set { }fm
consisting of M samples of f t(), Eq. (4-42) yields a set { }Fm of M complex values
corresponding to the discrete Fourier transform of the input sample set. Conversely,

† Referring back to Fig. 4.6(b), note that the interval [,]0 1 �T over which we sampled one period of �F()m covers
two adjacent half periods of the transform (but with the lowest half of period appearing at higher frequencies).
This means that the data in Fm requires re-ordering to obtain samples that are ordered from the lowest to the
highest frequency of the period. This is the price paid for the notational convenience of taking the samples at
m M= −0 1 2 1, , , , ,… instead of using samples on either side of the origin, which would require the use of nega-
tive notation. The procedure used to order the transform data will be discussed in Section 4.6.

DIP4E_GLOBAL_Print_Ready.indb 226 6/16/2017 2:04:45 PM

4.4 The Discrete Fourier Transform of One Variable 227

given { },Fm we can recover the sample set { }fm by using the inverse discrete Fourier
transform (IDFT)

 f
M

F e n Mn m
m

M
j mn M= = −

=

−

∑1
0 1 2 1

0

1
2p , , , ,… (4-43)

It is not difficult to show (see Problem 4.15) that substituting Eq. (4-43) for fn into
Eq. (4-42) gives the identity F Fm m≡ . Similarly, substituting Eq. (4-42) into Eq. (4-43)
for Fm yields f fn n≡ . This implies that Eqs. (4-42) and (4-43) constitute a discrete
Fourier transform pair. Furthermore, these identities indicate that the forward and
inverse Fourier transforms exist for any set of samples whose values are finite. Note
that neither expression depends explicitly on the sampling interval �T, nor on the
frequency intervals of Eq. (4-41). Therefore, the DFT pair is applicable to any finite
set of discrete samples taken uniformly.

We used m and n in the preceding development to denote discrete variables
because it is typical to do so for derivations. However, it is more intuitive, especially
in two dimensions, to use the notation x and y for image coordinate variables and
u and v for frequency variables, where these are understood to be integers.† Then,
Eqs. (4-42) and (4-43) become

 F u f x e u Mj ux M

x

M

() () , , , ,= = −−

=

−

∑ 2

0

1

0 1 2 1p … (4-44)

and

 f x
M

F u e x Mj ux M

u

M

() () , , , ,= = −
=

−

∑1
0 1 2 12

0

1
p … (4-45)

where we used functional notation instead of subscripts for simplicity. Comparing
Eqs. (4-42) through (4-45), you can see that F u Fm() ≡ and f x fn() .≡ From this point
on, we use Eqs. (4-44) and (4-45) to denote the 1-D DFT pair. As in the continuous
case, we often refer to Eq. (4-44) as the forward DFT of f x(), and to Eq. (4-45) as
the inverse DFT of F u(). As before, we use the notation f x F u() ()⇔ to denote a
Fourier transform pair. Sometimes you will encounter in the literature the 1 M term
in front of Eq. (4-44) instead. That does not affect the proof that the two equations
form a Fourier transform pair (see Problem 4.15).

Knowledge that f x() and F u() are a transform pair is useful in proving relation-
ships between functions and their transforms. For example, you are asked in Prob-
lem 4.17 to show that f x x F u e j ux M() ()− ⇔ −

0
2 0p is a Fourier transform pair. That is,

you have to show that the DFT of f x x()− 0 is F u e j ux M() − 2 0p and, conversely, that
the inverse DFT of F u e j ux M() − 2 0p is f x x().− 0 Because this is done by substituting

† We have been careful in using t for continuous spatial variables and m for the corresponding continuous fre-
quency variables. From this point on, we will use x and u to denote 1-D discrete spatial and frequency variables,
respectively. When working in 2-D, we will use (,)t z , and (,),m n to denote continuous spatial and frequency
domain variables, respectively. Similarly, we will use (,)x y and (,)u v to denote their discrete counterparts.

DIP4E_GLOBAL_Print_Ready.indb 227 6/16/2017 2:04:47 PM

228 Chapter 4 Filtering in the Frequency Domain

directly into Eqs. (4-44) and (4-45), and you will have proved already that these two
equations constitute a Fourier transform pair (Problem 4.15), if you prove that one
side of “⇔” is the DFT (IDFT) of the other, then it must be true the other side is the
IDFT (DFT) of the side you just proved. It turns out that having the option to prove
one side or the other often simplifies proofs significantly. This is true also of the 1-D
continuous and 2-D continuous and discrete Fourier transform pairs.

It can be shown (see Problem 4.16) that both the forward and inverse discrete
transforms are infinitely periodic, with period M. That is,

 F u F u kM() ()= + (4-46)

and

 f x f x kM() ()= + (4-47)

where k is an integer.
The discrete equivalent of the 1-D convolution in Eq. (4-24) is

 f x f m h x m x Mh x
m

M

() () () , , , ,()� = − = −
=

−

∑
0

1

0 1 2 1… (4-48)

Because in the preceding formulations the functions are periodic, their convolu-
tion also is periodic. Equation (4-48) gives one period of the periodic convolution.
For this reason, this equation often is referred to as circular convolution. This is a
direct result of the periodicity of the DFT and its inverse. This is in contrast with the
convolution you studied in Section 3.4, in which values of the displacement, x, were
determined by the requirement of sliding one function completely past the other,
and were not fixed to the range [,]0 1M − as in circular convolution. We will discuss
this difference and its significance in Section 4.6 and in Fig. 4.27.

Finally, we point out that the convolution theorem given in Eqs. (4-25) and (4-26)
is applicable also to discrete variables, with the exception that the right side of
Eq. (4-26) is multiplied by 1 M (Problem 4.18).

RELATIONSHIP BETWEEN THE SAMPLING AND FREQUENCY
INTERVALS

If f x() consists of M samples of a function f t() taken �T units apart, the length of
the record comprising the set f x x M() , , , , , ,{ } = −0 1 2 1… is

 T M T= � (4-49)

The corresponding spacing, �u, in the frequency domain follows from Eq. (4-41):

 �
�

u = =1 1
M T T

 (4-50)

DIP4E_GLOBAL_Print_Ready.indb 228 6/16/2017 2:04:48 PM

4.4 The Discrete Fourier Transform of One Variable 229

The entire frequency range spanned by the M components of the DFT is then

 R M u
T

= =�
�

1
 (4-51)

Thus, we see from Eqs. (4-50) and (4-51) that the resolution in frequency, �u, of
the DFT depends inversely on the length (duration, if t is time) of the record, T,
over which the continuous function, f t(), is sampled; and the range of frequencies
spanned by the DFT depends on the sampling interval �T. Keep in mind these
inverse relationships between �u and �T.

EXAMPLE 4.4 : The mechanics of computing the DFT.

Figure 4.12(a) shows four samples of a continuous function, f t(), taken �T units apart. Figure 4.12(b)
shows the samples in the x-domain. The values of x are 0, 1, 2, and 3, which refer to the number of the
samples in sequence, counting up from 0. For example, f f t T() (),2 20= + � the third sample of f t().

From Eq. (4-44), the first value of F u() [i.e., F()]0 is

 F f x f f f f
x

() () () () () ()0 0 1 2 3 1 2 4 4 11
0

3

= = + + +[] = + + + =
=

∑

The next value of F u() is

 F f x e e e e e jj x

x

j j j() () ()1 1 2 4 4 3 22 1 4

0

3
0 2 3 2= = + + + = − +−

=

− − −∑ p p p p

Similarly, F j() ()2 1 0= − + and F j() ().3 3 2= − + Observe that all values of f x() are used in computing
each value of F u().

If we were given F u() instead, and were asked to compute its inverse, we would proceed in the same
manner, but using the inverse Fourier transform. For instance,

 f F u e F u j jj u

u u

() () ()()0
1
4

1
4

1
4

11 3 2 1 3 2
1
4

2 0

0

3

0

3

= = = − + − − −[] =
= =

∑ ∑p [[]4 1=

which agrees with Fig. 4.12(b). The other values of f x() are obtained in a similar manner.

10 2 3
t

f(t)

0

1

2

3

4

5

f(x)

0

1

2

3

4

5

x
t0 t0 	 �T t0 	 2�T t0 	 3�T0

ba

FIGURE 4.12
(a) A continuous
function sampled
�T units apart.
(b) Samples in the
x-domain.
Variable t is
continuous, while
x is discrete.

DIP4E_GLOBAL_Print_Ready.indb 229 6/16/2017 2:04:50 PM

230 Chapter 4 Filtering in the Frequency Domain

4.5 EXTENSIONS TO FUNCTIONS OF TWO VARIABLES

In the following discussion we extend to two variables the concepts introduced in
the previous sections of this chapter.

THE 2-D IMPULSE AND ITS SIFTING PROPERTY

The impulse, d(,),t z of two continuous variables, t and z, is defined as before:

 d(,)t z
t z

=
= =⎧

⎨
⎩

1 0

0

if

otherwise
 (4-52)

and

- -�

�

�

�

2 2 d(,)t z dtdz = 1 (4-53)

As in the 1-D case, the 2-D impulse exhibits the sifting property under integration,

- -�

�

�

�

2 2 f t z t z dtdz f(,) (,) (,)d = 0 0 (4-54)

or. more generally for an impulse located at (,),t z0 0

- -�

�

�

�

2 2 f t z t t z z dtdz f t z(,) (,) (,)d − − =0 0 0 0 (4-55)

As before, we see that the sifting property yields the value of the function at the
location of the impulse.

For discrete variables x and y, the 2-D discrete unit impulse is defined as

 d(,)x y
x y

=
= =⎧

⎨
⎩

1 0

0

if

otherwise
 (4-56)

and its sifting property is

 f x y x y f
yx

(,) (,) (,)d =
= −= −
∑∑ 0 0

�

�

�

�

 (4-57)

where f x y(,) is a function of discrete variables x and y. For an impulse located at
coordinates (,)x y0 0 (see Fig. 4.13) the sifting property is

 f x y x x y y f x y
yx

(,) (,) (,)d − − =
= −= −
∑∑ 0 0 0 0

�

�

�

�

 (4-58)

When working with an image of finite dimensions, the limits in the two preceding
equations are replaced by the dimensions of the image.

4.5

DIP4E_GLOBAL_Print_Ready.indb 230 6/16/2017 2:04:51 PM

4.5 Extensions to Functions of Two Variables 231

THE 2-D CONTINUOUS FOURIER TRANSFORM PAIR

Let f t z(,) be a continuous function of two continuous variables, t and z. The two-
dimensional, continuous Fourier transform pair is given by the expressions

 F f t z e dt dzj t z(,) (,) ()m n p m n= − +

- -�

�

�

�

2 2
2 (4-59)

and

 f t z F e d dj t z(,) (,) ()= +

- -�

�

�

�

2 2 m n m np m n2 (4-60)

where m and n are the frequency variables. When referring to images, t and z are
interpreted to be continuous spatial variables. As in the 1-D case, the domain of the
variables m and n defines the continuous frequency domain.

EXAMPLE 4.5 : Obtaining the Fourier transform of a 2-D box function.

Figure 4.14(a) shows the 2-D equivalent of the 1-D box function in Example 4.1. Following a procedure
similar to the one used in that example gives the result

F f t z e dt dz Aej t z j

T

T

Z

Z

(,) (,) () (m n p m n p m= =− + −

− −- -�

�

�

�

2 2 2 2
2 2

2

2

2

2
tt z dt dz

ATZ
T

T
Z

Z

+

=
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

n

pm

pm

pn

pn

)

sin()
()

sin()
()

Figure 4.14(b) shows a portion of the spectrum about the origin. As in the 1-D case, the locations of the
zeros in the spectrum are inversely proportional to the values of T and Z. In this example, T is larger
than Z, so the spectrum is the more “contracted” along the m-axis.

2-D SAMPLING AND THE 2-D SAMPLING THEOREM

In a manner similar to the 1-D case, sampling in two dimensions can be modeled
using a sampling function (i.e., a 2-D impulse train):

x0
y0 x

d(x � x0, y � y0)

y

1

dFIGURE 4.13
2-D unit discrete
impulse. Variables
x and y are
discrete, and d is
zero everywhere
except at
coordinates
(,),x y0 0 where its
value is 1.

DIP4E_GLOBAL_Print_Ready.indb 231 6/16/2017 2:04:52 PM

232 Chapter 4 Filtering in the Frequency Domain

 s t z t m T z n ZT Z
nm

� �
�

�

�

�

� �(,) (,)= − −
= −= −
∑∑ d (4-61)

where �T and �Z are the separations between samples along the t- and z-axis of
the continuous function f t z(,). Equation (4-61) describes a set of periodic impulses
extending infinitely along the two axes (see Fig. 4.15). As in the 1-D case illustrated
in Fig. 4.5, multiplying f t z(,) by s t zT Z� � (,) yields the sampled function.

Function f t z(,) is said to be band limited if its Fourier transform is 0 outside a
rectangle established in the frequency domain by the intervals m m−[]max max, and

n n−[]max max, ; that is,

 F(,) max maxm n m m n n= 0 for and ≥ ≥ (4-62)

The two-dimensional sampling theorem states that a continuous, band-limited func-
tion f t z(,) can be recovered with no error from a set of its samples if the sampling
intervals are

 �T < 1
2mmax

 (4-63)

and

 �Z < 1
2nmax

 (4-64)

or, expressed in terms of the sampling rate, if

ZT

T/2 Z/2 t

f(t, z)

z m n

ATZ

�F(m, n)�

A

ba

FIGURE 4.14
(a) A 2-D function
and (b) a section
of its spectrum.
The box is longer
along the t-axis,
so the spectrum is
more contracted
along the m-axis.

 t

�Z �T

s�T�Z(t, z)

. . .

.

. . .

z

FIGURE 4.15
2-D impulse train.

DIP4E_GLOBAL_Print_Ready.indb 232 6/16/2017 2:04:57 PM

4.5 Extensions to Functions of Two Variables 233

1
2

�T
> mmax (4-65)

and

1

2
�Z

> nmax (4-66)

Stated another way, we say that no information is lost if a 2-D, band-limited, con-
tinuous function is represented by samples acquired at rates greater than twice the
highest frequency content of the function in both the m- and n-directions.

Figure 4.16 shows the 2-D equivalents of Figs. 4.6(b) and (d). A 2-D ideal fil-
ter transfer function has the form illustrated in Fig. 4.14(a) (but in the frequency
domain). The dashed portion of Fig. 4.16(a) shows the location of the filter function
to achieve the necessary isolation of a single period of the transform for recon-
struction of a band-limited function from its samples, as in Fig. 4.8. From Fig 4.10,
we know that if the function is under-sampled, the periods overlap, and it becomes
impossible to isolate a single period, as Fig. 4.16(b) shows. Aliasing would result
under such conditions.

ALIASING IN IMAGES

In this section, we extend the concept of aliasing to images, and discuss in detail sev-
eral aspects of aliasing related to image sampling and resampling.

Extensions from 1-D Aliasing

As in the 1-D case, a continuous function f t z(,) of two continuous variables, t and z,
can be band-limited in general only if it extends infinitely in both coordinate direc-
tions. The very act of limiting the spatial duration of the function (e.g., by multiply-
ing it by a box function) introduces corrupting frequency components extending to
infinity in the frequency domain, as explained in Section 4.3 (see also Problem 4.12).
Because we cannot sample a function infinitely, aliasing is always present in digital
images, just as it is present in sampled 1-D functions. There are two principal mani-
festations of aliasing in images: spatial aliasing and temporal aliasing. Spatial aliasing
is caused by under-sampling, as discussed in Section 4.3, and tends to be more visible

m m

v

vmax

v

mmax

Footprint of a
2-D ideal lowpass
(box) filter

ba

FIGURE 4.16
Two-dimensional
Fourier
transforms of (a) an
over-sampled, and
(b) an under-sam-
pled, band-limited
function.

DIP4E_GLOBAL_Print_Ready.indb 233 6/16/2017 2:04:58 PM

234 Chapter 4 Filtering in the Frequency Domain

(and objectionable) in images with repetitive patterns. Temporal aliasing is related
to time intervals between images of a sequence of dynamic images. One of the most
common examples of temporal aliasing is the “wagon wheel” effect, in which wheels
with spokes in a sequence of images (for example, in a movie) appear to be rotating
backwards. This is caused by the frame rate being too low with respect to the speed
of wheel rotation in the sequence, and is similar to the phenomenon described in
Fig. 4.11, in which under sampling produced a signal that appeared to be of much
lower frequency than the original.

Our focus in this chapter is on spatial aliasing. The key concerns with spatial alias-
ing in images are the introduction of artifacts such as jaggedness in line features, spu-
rious highlights, and the appearance of frequency patterns not present in the original
image. Just as we used Fig. 4.9 to explain aliasing in 1-D functions, we can develop
an intuitive grasp of the nature of aliasing in images using some simple graphics. The
sampling grid in the center section of Fig. 4.17 is a 2-D representation of the impulse
train in Fig. 4.15. In the grid, the little white squares correspond to the location of the
impulses (where the image is sampled) and black represents the separation between
samples. Superimposing the sampling grid on an image is analogous to multiplying
the image by an impulse train, so the same sampling concepts we discussed in con-
nection with the impulse train in Fig. 4.15 are applicable here. The focus now is to
analyze graphically the interaction between sampling rate (the separation of the
sampling points in the grid) and the frequency of the 2-D signals being sampled.

Figure 4.17 shows a sampling grid partially overlapping three 2-D signals (regions
of an image) of low, mid, and high spatial frequencies (relative to the separation
between sampling cells in the grid). Note that the level of spatial “detail” in the
regions is proportional to frequency (i.e., higher-frequency signals contain more
bars). The sections of the regions inside the sampling grip are rough manifestations
of how they would appear after sampling. As expected, all three digitized regions

Sampling grid

Low frequency

Mid frequency

High frequency

FIGURE 4.17
Various aliasing
effects resulting
from the
interaction
between the
frequency of 2-D
signals and the
sampling rate
used to digitize
them. The regions
outside the
sampling grid are
continuous and
free of aliasing.

DIP4E_GLOBAL_Print_Ready.indb 234 6/16/2017 2:04:58 PM

4.5 Extensions to Functions of Two Variables 235

exhibit aliasing to some degree, but the effects are dramatically different, worsening
as the discrepancy between detail (frequency) and sampling rate increases. The low-
frequency region is rendered reasonably well, with some mild jaggedness around
the edges. The jaggedness increases as the frequency of the region increases to the
mid-range because the sampling rate is the same. This edge distortion (appropriately
called jaggies) is common in images with strong line and/or edge content.

The digitized high-frequency region in the top right of Fig. 4.17 exhibits totally
different and somewhat surprising behavior. Additional stripes (of lower frequen-
cy) appear in the digitized section, and these stripes are rotated significantly with
respect to the direction of the stripes in the continuous region. These stripes are an
alias of a totally different signal. As the following example shows, this type of behav-
ior can result in images that appear “normal” and yet bear no relation to the original.

EXAMPLE 4.6 : Aliasing in images.

Consider an imaging system that is perfect, in the sense that it is noiseless and produces an exact digi-
tal image of what it sees, but the number of samples it can take is fixed at 96 96× pixels. For simplicity,
assume that pixels are little squares of unit width and length. We want to use this system to digitize
checkerboard images of alternating black and white squares. Checkerboard images can be interpreted
as periodic, extending infinitely in both dimensions, where one period is equal to adjacent black/white
pairs. If we specify “valid” digitized images as being those extracted from an infinite sequence in such
a way that the image contains an integer multiple of periods, then, based on our earlier comments, we
know that properly sampled periodic images will be free of aliasing. In the present example, this means
that the sizes of the squares must be such that dividing 96 by the size yields an even number. This will
give an integer number of periods (pairs of black/white squares). The smallest size of squares under the
stated conditions is 1 pixel.

The principal objective of this example is to examine what happens when checkerboard images with
squares of sizes less than 1 pixel on the side are presented to the system. This will correspond to the
undersampled case discussed earlier, which will result in aliasing. A horizontal or vertical scan line of the
checkerboard images results in a 1-D square wave, so we can focus the analysis on 1-D signals.

To understand the capabilities of our imaging system in terms of sampling, recall from the discussion
of the 1-D sampling theorem that, given the sampling rate, the maximum frequency allowed before
aliasing occurs in the sampled signal has to be less than one-half the sampling rate. Our sampling rate is
fixed, at one sample per unit of the independent variable (the units are pixels). Therefore, the maximum
frequency our signal can have in order to avoid aliasing is 1/2 cycle/pixel.

We can arrive at the same conclusion by noting that the most demanding image our system can
handle is when the squares are 1 unit (pixel) wide, in which case the period (cycle) is two pixels. The
frequency is the reciprocal of the period, or 1/2 cycle/pixel, as in the previous paragraph.

Figures 4.18(a) and (b) show the result of sampling checkerboard images whose squares are of sizes
16 16× and 6 6× pixels, respectively. The frequencies of scan lines in either direction of these two images
are 1/32 and 1/6 cycles/pixel. These are well below the 1/2 cycles/pixel allowed for our system. Because, as
mentioned earlier, the images are perfectly registered in the field of view of the system, the results are free
of aliasing, as expected.

When the size of the squares is reduced to slightly less than one pixel, a severely aliased image results,
as Fig. 4.18(c) shows (the squares used were approximately of size 0 95 0 95. .× pixels). Finally, reducing

DIP4E_GLOBAL_Print_Ready.indb 235 6/16/2017 2:04:58 PM

236 Chapter 4 Filtering in the Frequency Domain

the size of the squares to slightly less than 0.5 pixels on the side yielded the image in Fig. 4.18(d). In
this case, the aliased result looks like a normal checkerboard pattern. In fact, this image would result
from sampling a checkerboard image whose squares are 12 pixels on the side. This last image is a good
reminder that aliasing can create results that may be visually quite misleading.

The effects of aliasing can be reduced by slightly defocusing the image to be digi-
tized so that high frequencies are attenuated. As explained in Section 4.3, anti-alias-
ing filtering has to be done at the “front-end,” before the image is sampled. There
are no such things as after-the-fact software anti-aliasing filters that can be used to
reduce the effects of aliasing caused by violations of the sampling theorem. Most
commercial digital image manipulation packages do have a feature called “anti-
aliasing.” However, as illustrated in Example 4.8 below, this term is related to blur-
ring a digital image to reduce additional aliasing artifacts caused by resampling. The
term does not apply to reducing aliasing in the original sampled image. A significant
number of commercial digital cameras have true anti-aliasing filtering built in, either
in the lens or on the surface of the sensor itself. Even nature uses this approach to
reduce the effects of aliasing in the human eye, as the following example shows.

EXAMPLE 4.7 : Nature obeys the limits of the sampling theorem.

When discussing Figs. 2.1 and 2.2, we mentioned that cones are the sensors responsible for sharp vision.
Cones are concentrated in the fovea, in line with the visual axis of the lens, and their concentration is
measured in degrees off that axis. A standard test of visual acuity (the ability to resolve fine detail) in
humans is to place a pattern of alternating black and white stripes in one degree of the visual field. If the
total number of stripes exceeds 120 (i.e., a frequency of 60 cycles/degree), experimental evidence shows
that the observer will perceive the image as a single gray mass. That is, the lens in the eye automatically
lowpass filters spatial frequencies higher than 60 cycles/degree. Sampling in the eye is done by the cones,
so, based on the sampling theorem, we would expect the eye to have on the order of 120 cones/degree
in order to avoid the effects of aliasing. As it turns out, that is exactly what we have!

ba
dc

FIGURE 4.18
Aliasing. In (a) and
(b) the squares are
of sizes 16 and 6
pixels on the side.
In (c) and (d) the
squares are of sizes
0.95 and 0.48 pixels,
respectively. Each
small square in (c)
is one pixel. Both
(c) and (d) are
aliased. Note how
(d) masquerades as
a “normal” image.

DIP4E_GLOBAL_Print_Ready.indb 236 6/16/2017 2:04:59 PM

4.5 Extensions to Functions of Two Variables 237

Image Resampling and Interpolation

As in the 1-D case, perfect reconstruction of a band-limited image function from a set
of its samples requires 2-D convolution in the spatial domain with a sinc function. As
explained in Section 4.3, this theoretically perfect reconstruction requires interpola-
tion using infinite summations which, in practice, forces us to look for approximate
interpolation methods. One of the most common applications of 2-D interpolation
in image processing is in image resizing (zooming and shrinking). Zooming may
be viewed as over-sampling, while shrinking may be viewed as under-sampling. The
key difference between these two operations and the sampling concepts discussed
in previous sections is that we are applying zooming and shrinking to digital images.

We introduced interpolation in Section 2.4. Our interest there was to illustrate the
performance of nearest neighbor, bilinear, and bicubic interpolation. In this section,
the focus is on sampling and anti-aliasing issues. Aliasing generally is introduced
when an image is scaled, either by zooming or by shrinking. For example, a special
case of nearest neighbor interpolation is zooming by pixel replication, which we use
to increase the size of an image an integer number of times. To double the size of
an image, we duplicate each column. This doubles the image size in the horizontal
direction. Then, we duplicate each row of the enlarged image to double the size in
the vertical direction. The same procedure is used to enlarge the image any integer
number of times. The intensity level assignment of each pixel is predetermined by
the fact that new locations are exact duplicates of old locations. In this crude method
of enlargement, one of the principal aliasing effects is the introduction of jaggies
on straight lines that are not horizontal or vertical. The effects of aliasing in image
enlargement often are reduced significantly by using more sophisticated interpola-
tion, as we discussed in Section 2.4. We show in the following example that aliasing
can also be a serious problem in image shrinking.

EXAMPLE 4.8 : Illustration of aliasing in resampled natural images.

The effects of aliasing generally are worsened when the size of a digital image is reduced. Figure 4.19(a)
is an image containing regions purposely selected to illustrate the effects of aliasing (note the thinly
spaced parallel lines in all garments worn by the subject). There are no objectionable aliasing artifacts
in Fig. 4.19(a), indicating that the sampling rate used initially was sufficient to mitigate visible aliasing.

In Fig. 4.19(b), the image was reduced to 33% of its original size using row/column deletion. The
effects of aliasing are quite visible in this image (see, for example, the areas around scarf and the sub-
ject’s knees). Images (a) and (b) are shown in the same size because the reduced image was brought
back to its original size by pixel replication (the replication did not alter appreciably the effects of alias-
ing just discussed.

The digital “equivalent” of the defocusing of continuous images mentioned earlier for reducing alias-
ing, is to attenuate the high frequencies of a digital image by smoothing it with a lowpass filter before
resampling. Figure 4.19(c) was processed in the same manner as Fig. 4.19(b), but the original image was
smoothed using a 5 5× spatial averaging filter (see Section 3.5) before reducing its size. The improve-
ment over Fig. 4.19(b) is evident. The image is slightly more blurred than (a) and (b), but aliasing is no
longer objectionable.

DIP4E_GLOBAL_Print_Ready.indb 237 6/16/2017 2:04:59 PM

238 Chapter 4 Filtering in the Frequency Domain

Aliasing and Moiré Patterns

In optics, a moiré pattern is a secondary, visual phenomenon produced, for example,
by superimposing two gratings of approximately equal spacing. These patterns are
common, everyday occurrences. For instance, we see them in overlapping insect win-
dow screens and on the interference between TV raster lines and striped or high-
ly textured materials in the background, or worn by individuals. In digital image
processing, moiré-like patterns arise routinely when sampling media print, such as
newspapers and magazines, or in images with periodic components whose spacing
is comparable to the spacing between samples. It is important to note that moiré
patterns are more general than sampling artifacts. For instance, Fig. 4.20 shows the
moiré effect using vector drawings that have not been digitized. Separately, the pat-
terns are clean and void of interference. However, the simple acts of superimposing
one pattern on the other creates a pattern with frequencies not present in either of
the original patterns. Note in particular the moiré effect produced by two patterns
of dots, as this is the effect of interest in the following discussion.

EXAMPLE 4.9 : Sampling printed media.

Newspapers and other printed materials use so called halftone dots, which are black dots or ellipses
whose sizes and various grouping schemes are used to simulate gray tones. As a rule, the following num-
bers are typical: newspapers are printed using 75 halftone dots per inch (dpi), magazines use 133 dpi, and

The term moiré is a
French word (not the
name of a person) that
appears to have
originated with weavers,
who first noticed what
appeared to be interfer-
ence patterns visible on
some fabrics. The root
of the word is from the
word mohair, a cloth
made from Angora goat
hairs.

ba c

FIGURE 4.19 Illustration of aliasing on resampled natural images. (a) A digital image of size 772 548× pixels with visu-
ally negligible aliasing. (b) Result of resizing the image to 33% of its original size by pixel deletion and then restor-
ing it to its original size by pixel replication. Aliasing is clearly visible. (c) Result of blurring the image in (a) with an
averaging filter prior to resizing. The image is slightly more blurred than (b), but aliasing is not longer objectionable.
(Original image courtesy of the Signal Compression Laboratory, University of California, Santa Barbara.)

DIP4E_GLOBAL_Print_Ready.indb 238 6/16/2017 2:04:59 PM

4.5 Extensions to Functions of Two Variables 239

ba c
ed f

FIGURE 4.20
Examples of the
moiré effect.
These are vector
drawings, not
digitized patterns.
Superimposing
one pattern on the
other is analogous
to multiplying the
patterns.

high-quality brochures use 175 dpi. Figure 4.21 shows what happens when a newspaper image is (under)
sampled at 75 dpi. The sampling lattice (which is oriented vertically and horizontally) and dot patterns
on the newspaper image (oriented at ± °45) interact to create a uniform moiré-like pattern that makes
the image look blotchy. (We will discuss a technique in Section 4.10 for reducing the effects of moiré
patterns in under-sampled print media.)

FIGURE 4.21
A newspaper
image digitized at
75 dpi. Note the
moiré-like pattern
resulting from
the interaction
between the ± °45
orientation of the
half-tone dots and
the north-south
orientation of the
sampling elements
used to digitized
the image.

DIP4E_GLOBAL_Print_Ready.indb 239 6/16/2017 2:04:59 PM

240 Chapter 4 Filtering in the Frequency Domain

THE 2-D DISCRETE FOURIER TRANSFORM AND ITS INVERSE

A development similar to the material in Sections 4.3 and 4.4 would yield the follow-
ing 2-D discrete Fourier transform (DFT):

 F f x y e j x M y N

y

N

x

M

(,) (,) ()u v u v= − +

=

−

=

−

∑∑ 2

0

1

0

1
p (4-67)

where f x y(,) is a digital image of size M N× . As in the 1-D case, Eq. (4-67) must be
evaluated for values of the discrete variables u and v in the ranges u = −0 1 2 1, , , ,… M
and v = −0 1 2 1, , , , .… N †

 Given the transform F(,),u v we can obtain f x y(,) by using the inverse discrete
Fourier transform (IDFT):

 f x y
MN

F u e j ux M y N
NM

(,) (,) ()= +

=

−

=

−

∑∑1 2

0

1

0

1

v v

vu

p (4-68)

for x M= −0 1 2 1, , , ,… and y N= −0 1 2 1, , , , .… As in the 1-D case, [Eqs. (4-44)
and (4-45)], Eqs. (4-67) and (4-68) constitute a 2-D discrete Fourier transform pair,
f x y F(,) (,).⇔ u v (The proof is a straightforward extension of the 1-D case in Prob-
lem 4.15.) The rest of this chapter is based on properties of these two equations and
their use for image filtering in the frequency domain. The comments made in con-
nection with Eqs. (4-44) and (4-45) are applicable to Eqs. (4-67) and (4-68); that is,
knowing that f x y(,) and F(,)u v are a Fourier transform pair can be quite useful in
proving relationships between functions and their transforms.

4.6 SOME PROPERTIES OF THE 2-D DFT AND IDFT

In this section, we introduce several properties of the 2-D discrete Fourier transform
and its inverse.

RELATIONSHIPS BETWEEN SPATIAL AND FREQUENCY INTERVALS

The relationships between spatial sampling and the corresponding frequency
domain intervals are as explained in Section 4.4. Suppose that a continuous func-
tion f t z(,) is sampled to form a digital image, f x y(,), consisting of M N× samples
taken in the t- and z-directions, respectively. Let �T and �Z denote the separations
between samples (see Fig. 4.15). Then, the separations between the corresponding
discrete, frequency domain variables are given by

 �
�

u = 1
M T

 (4-69)

† As mentioned in Section 4.4, keep in mind that in this chapter we use (,)t z and (,)m n to denote 2-D continuous
spatial and frequency-domain variables. In the 2-D discrete case, we use (,)x y for spatial variables and (,)u v for
frequency-domain variables, all of which are discrete.

Sometimes you will find
in the literature the
1�MN constant in front
of the DFT instead of
the IDFT. At times,
the square root of this
constant is included in
front of the forward
and inverse transforms,
thus creating a more
symmetrical pair. Any
of these formulations is
correct, provided they
are used consistently.

4.6

DIP4E_GLOBAL_Print_Ready.indb 240 6/16/2017 2:05:01 PM

4.6 Some Properties of the 2-D DFT and IDFT 241

and

 �
�

v = 1
N Z

 (4-70)

respectively. Note the important property that the separations between samples in
the frequency domain are inversely proportional both to the spacing between spa-
tial samples and to the number of samples.

TRANSLATION AND ROTATION

The validity of the following Fourier transform pairs can be demonstrated by direct
substitution into Eqs. (4-67) and (4-68) (see Problem 4.27):

 f x y e F u uj x M y N(,) (,)()2
0 0

0 0p u v v v+ ⇔ − − (4-71)

and

 f x x y y F e j x M y N(,) (,) ()− − ⇔ − +
0 0

2 0 0u v u vp (4-72)

That is, multiplying f x y(,) by the exponential shown shifts the origin of the DFT to
(,)u v0 0 and, conversely, multiplying F(,)u v by the negative of that exponential shifts
the origin of f x y(,) to (,).x y0 0 As we illustrate in Example 4.13, translation has no
effect on the magnitude (spectrum) of F(,).u v

Using the polar coordinates

 x r y r u= = = =cos sin cos sinu u v w v wv

results in the following transform pair:

 f r F(,) (,)u u v w u+ ⇔ +0 0 (4-73)

which indicates that rotating f x y(,) by an angle u0 rotates F(,)u v by the same angle.
Conversely, rotating F(,)u v rotates f x y(,) by the same angle.

PERIODICITY

As in the 1-D case, the 2-D Fourier transform and its inverse are infinitely periodic
in the u and v directions; that is,

 F F k M F k N F k M k N(,) (,) (,) (,)u v u v u v u v= + = + = + +1 2 1 2 (4-74)

and

 f x y f x k M y f x y k N f x k M y k N(,) (,) (,) (,)= + = + = + +1 2 1 2 (4-75)

where k1 and k2 are integers.
The periodicities of the transform and its inverse are important issues in the

implementation of DFT-based algorithms. Consider the 1-D spectrum in Fig. 4.22(a).
As explained in Section 4.4 [see the footnote to Eq. (4-42)], the transform data in the
interval from 0 to M − 1 consists of two half periods meeting at point M 2, but with

Recall that we use the
symbol “⇔” to denote
Fourier transform pairs.
That is, the term on the
right is the transform
of the term on the left,
and the term on the left
is the inverse Fourier
transform of the term on
the right.

DIP4E_GLOBAL_Print_Ready.indb 241 6/16/2017 2:05:03 PM

242 Chapter 4 Filtering in the Frequency Domain

the lower part of the period appearing at higher frequencies. For display and filter-
ing purposes, it is more convenient to have in this interval a complete period of the
transform in which the data are contiguous and ordered properly, as in Fig. 4.22(b).
It follows from Eq. (4-71) that

f x e F u uj u x M() ()()2 0p ⇔ − 0

In other words, multiplying f x() by the exponential term shown shifts the transform
data so that the origin, F(),0 is moved to u0. If we let u M0 2= , the exponential
term becomes e j xp , which is equal to ()−1 x because x is an integer. In this case,

b
a

dc

FIGURE 4.22
Centering the
Fourier transform.
(a) A 1-D DFT
showing an infinite
number of peri-
ods. (b) Shifted
DFT obtained
by multiplying
f x() by ()−1 x
before computing
F u(). (c) A 2-D
DFT showing an
infinite number of
periods. The area
within the dashed
rectangle is the
data array, F(,),u v
obtained with
Eq. (4-67) with
an image f x y(,)
as the input. This
array consists of
four quarter peri-
ods. (d) Shifted
array obtained
by multiplying
f x y(,) by ()− +1 x y
before computing
F(,).u v The data
now contains one
complete, centered
period, as in (b).

�M/2 M/2 � 10

0

M/2

M/2

M � 1

M � 1

M

Two adjacent half
periods meet here.

F(u)

F(u)

u

u

Two adjacent half
periods meet here.

One period (M samples)

M/2

M � 1

(0, 0) N/2 N � 1

u

vv

u

N/2 N � 1

M/2

 M � 1

(0, 0)

� M � N data array computed by the DFT with as input (,)f x y

� M � N data array computed by the DFT with as input (,)(1)x yf x y +−
= Periods of the DFT

Four adjacent quarter
periods meet here

(0,0)F

DIP4E_GLOBAL_Print_Ready.indb 242 6/16/2017 2:05:05 PM

4.6 Some Properties of the 2-D DFT and IDFT 243

 f x F u Mx()() (/)− ⇔ −1 2

That is, multiplying f x() by ()−1 x shifts the data so that F u() is centered on the inter-
val [,],0 1M − which corresponds to Fig. 4.22(b), as desired.

In 2-D the situation is more difficult to graph, but the principle is the same, as
Fig. 4.22(c) shows. Instead of two half periods, there are now four quarter periods
meeting at the point (,).M N2 2 As in the 1-D case, we want to shift the data so
that F(,)0 0 is at (,).M N2 2 Letting (,) (,)u M N0 0 2 2v = in Eq. (4-71) results in
the expression

 f x y F u M Nx y(,)() (,)− ⇔ − −+1 2 2v (4-76)

Using this equation shifts the data so that F(,)0 0 is moved to the center of
the frequency rectangle (i.e., the rectangle defined by the intervals [,]0 1M − and
[,]0 1N − in the frequency domain). Figure 4.22(d) shows the result.

Keep in mind that in all our discussions, coordinate values in both the spatial and
frequency domains are integers. As we explained in Section 2.4 (see Fig. 2.19) if, as
in our case), the origin of an M N× image or transform is at (,),0 0 then the center of
that image or transform is at floor floor(), () .M N2 2() This expression is applicable
to both even and odd values of M and N. For example, the center of an array of size
20 15× is at point (,).10 7 Because we start counting from 0, these are the 11th and
8th points in the first and second coordinate axes of the array, respectively.

SYMMETRY PROPERTIES

An important result from functional analysis is that any real or complex function,
w(,),x y can be expressed as the sum of an even and an odd part, each of which can
be real or complex:

 w w w(,) (,) (,)x y x y x ye o= + (4-77)

where the even and odd parts are defined as

 w
w w

e x y
x y x y

(,)
(,) (,)

�
+ − −

2
 (4-78)

and

 w
w w

o x y
x y x y

(,)
(,) (,)

�
− − −

2
 (4-79)

for all valid values of x and y. Substituting Eqs. (4-78) and (4-79) into Eq. (4-77) gives
the identity w w(,) (,),x y x y≡ thus proving the validity of the latter equation. It fol-
lows from the preceding definitions that

 w we ex y x y(,) (,)= − − (4-80)

and

DIP4E_GLOBAL_Print_Ready.indb 243 6/16/2017 2:05:07 PM

244 Chapter 4 Filtering in the Frequency Domain

 w wo ox y x y(,) (,)= − − − (4-81)

Even functions are said to be symmetric and odd functions antisymmetric. Because
all indices in the DFT and IDFT are nonnegative integers, when we talk about sym-
metry (antisymmetry) we are referring to symmetry (antisymmetry) about the cen-
ter point of a sequence, in which case the definitions of even and odd become:

 w we ex y M x N y(,) (,)= − − (4-82)

and

 w wo ox y M x N y(,) (,)= − − − (4-83)

for x M= −0 1 2 1, , , ,… and y N= −0 1 2 1, , , , .… As usual, M and N are the number
of rows and columns of a 2-D array.

We know from elementary mathematical analysis that the product of two even or
two odd functions is even, and that the product of an even and an odd function is
odd. In addition, the only way that a discrete function can be odd is if all its samples
sum to zero. These properties lead to the important result that

 w we o
y

N

x

M

x y x y(,) (,) =
=

−

=

−

∑∑ 0
0

1

0

1

 (4-84)

for any two discrete even and odd functions we and wo. In other words, because the
argument of Eq. (4-84) is odd, the result of the summations is 0. The functions can
be real or complex.

EXAMPLE 4.10 : Even and odd functions.

Although evenness and oddness are visualized easily for continuous functions, these concepts are not as
intuitive when dealing with discrete sequences. The following illustrations will help clarify the preceding
ideas. Consider the 1-D sequence

 f f f f f= { } = { }(), (), (), () , , ,0 1 2 3 2 1 1 1

in which M = 4. To test for evenness, the condition f x f x() ()= −4 must be satisfied for x = 0 1 2 3, , , .
That is, we require that

 f f f f f f f f() (), () (), () (), () ()0 4 1 3 2 2 3 1= = = =

Because f ()4 is outside the range being examined and can be any value, the value of f ()0 is immaterial
in the test for evenness. We see that the next three conditions are satisfied by the values in the array, so
the sequence is even. In fact, we conclude that any 4-point even sequence has to have the form

 a b c b, , ,{ }

That is, only the second and last points must be equal in a 4-point even sequence. In general, when M
is an even number, a 1-D even sequence has the property that the points at locations 0 and M 2 have

In the context of this dis-
cussion, the locations of
elements in a sequence
are denoted by integers.
Therefore, the same
observations made a few
paragraphs back about
the centers of arrays of
even and odd sizes are
applicable to sequences.
But, do not confuse the
concepts of even/odd
numbers and even/odd
functions.

To convince yourself that
the samples of an odd
function sum to zero,
sketch one period of
a 1-D sine wave about
the origin or any other
interval spanning one
period.

DIP4E_GLOBAL_Print_Ready.indb 244 6/16/2017 2:05:08 PM

4.6 Some Properties of the 2-D DFT and IDFT 245

arbitrary values. When M is odd, the first point of an even sequence is still arbitrary, but the others form
pairs with equal values.

Odd sequences have the interesting property that their first term, wo(,),0 0 is always 0, a fact that fol-
lows directly from Eq. (4-79). Consider the 1-D sequence

 g g g g g= { } = −{ }(), (), (), () , , ,0 1 2 3 0 1 0 1

We can confirm that this is an odd sequence by noting that the terms in the sequence satisfy the condi-
tion g x g x() ()= − −4 for x = 1 2 3, , . All we have to do for x = 0 is to check that g() .0 0= We check the
other terms using the definition. For example, g g() ().1 3= − Any 4-point odd sequence has the form

 0 0, , ,−{ }b b

In general, when M is an even number, a 1-D odd sequence has the property that the points at locations
0 and M 2 are always zero. When M is odd, the first term still has to be 0, but the remaining terms form
pairs with equal value but opposite signs.

The preceding discussion indicates that evenness and oddness of sequences depend also on the length
of the sequences. For example, we showed already that the sequence 0 1 0 1, , ,−{ } is odd. However, the
sequence 0 1 0 1 0, , , ,−{ } is neither odd nor even, although the “basic” structure appears to be odd. This
is an important issue in interpreting DFT results. We will show later in this section that the DFTs of even
and odd functions have some very important characteristics. Thus, it often is the case that understanding
when a function is odd or even plays a key role in our ability to interpret image results based on DFTs.

The same basic considerations hold in 2-D. For example, the 6 6× 2-D array with center at location
(,),3 3 shown bold in the figure [remember, we start counting at (,)],0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 1 0

0 0 2 2 0

0 0 1 0 1 0

0 0 0 0 0 0

−
−
−

0

is odd, as you can prove using Eq. (4-83). However, adding another row or column of 0’s would give
a result that is neither odd nor even. In general, inserting a 2-D array of even dimensions into a larger
array of zeros, also of even dimensions, preserves the symmetry of the smaller array, provided that the
centers coincide. Similarly, a 2-D array of odd dimensions can be inserted into a larger array of zeros of
odd dimensions without affecting the symmetry. Note that the inner structure of the preceding array is
a Sobel kernel (see Fig. 3.50). We return to this kernel in Example 4.15, where we embed it in a larger
array of zeros for filtering purposes.

Armed with the preceding concepts, we can establish a number of important sym-
metry properties of the DFT and its inverse. A property used frequently is that the
Fourier transform of a real function, f x y(,), is conjugate symmetric:

Conjugate symmetry
is also called hermitian
symmetry. The term
antihermitian is used
sometimes to refer to
conjugate antisymmetry.

DIP4E_GLOBAL_Print_Ready.indb 245 6/16/2017 2:05:09 PM

246 Chapter 4 Filtering in the Frequency Domain

 F F*(,) (,)u v u v= − − (4-85)

We show the validity of this equation as follows:

F u f x y e

f x y

y

N

x

M
j ux M y N* ()

*

*

(,) (,)

(,

v v=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

=

−

=

−
− +∑∑

0

1

0

1
2p

))

(,)

()

([

y

N

x

M
j ux M y N

y

N

x

M
j

e

f x y e

=

−

=

−
+

=

−

=

−
− −

∑∑

∑∑=

0

1

0

1
2

0

1

0

1
2

p

p

v

uu x M y N

F u

] [])

(,)

+ −

= − −

v

v

where the third step follows from the fact that f x y(,) is real. A similar approach
can be used to prove that, if f x y(,) is imaginary, its Fourier transform is conjugate
antisymmetric; that is, F F*(,) (,).− − = −u v u v

Table 4.1 lists symmetries and related properties of the DFT that are useful in
digital image processing. Recall that the double arrows indicate Fourier transform
pairs; that is, for any row in the table, the properties on the right are satisfied by the
Fourier transform of the function having the properties listed on the left, and vice
versa. For example, entry 5 reads: The DFT of a real function f x y(,), in which (,)x y

Spatial Domain† Frequency Domain†

1) f x y(,) real ⇔ F F*(,) (,)u v u v= − −

2) f x y(,) imaginary ⇔ F F*(,) (,)− − = −u v u v

3) f x y(,) real ⇔ R I u(,) (,)u v v even; odd

4) f x y(,) imaginary ⇔ R I u(,) (,)u v v odd; even

5) f x y(,)− − real ⇔ F *(,)u v complex

6) f x y(,)− − complex ⇔ F(,)− −u v complex

7) f x y*(,) complex ⇔ F *(,)− −u v complex

8) f x y(,) real and even ⇔ F(,)u v real and even

9) f x y(,) real and odd ⇔ F(,)u v imaginary and odd

10) f x y(,) imaginary and even ⇔ F(,)u v imaginary and even

11) f x y(,) imaginary and odd ⇔ F(,)u v real and odd

12) f x y(,) complex and even ⇔ F(,)u v complex and even

13) f x y(,) complex and odd ⇔ F(,)u v complex and odd

TABLE 4.1
Some symmetry
properties of the
2-D DFT and its
inverse. R(,)u v
and I(,)u v are
the real and
imaginary parts of
F(,),u v
respectively.
Use of the word
complex indicates
that a function
has nonzero real
and imaginary
parts.

†Recall that x, y, u, and v are discrete (integer) variables, with x and u in the range [,],0 1M − and y and v in
the range [,].0 1N − To say that a complex function is even means that its real and imaginary parts are even, and
similarly for an odd complex function. As before, “⇔” indicates a Fourier transform pair.

DIP4E_GLOBAL_Print_Ready.indb 246 6/16/2017 2:05:13 PM

4.6 Some Properties of the 2-D DFT and IDFT 247

is replaced by (,),− −x y is F *(,),u v the complex conjugate of the DFT of f x y(,).
Conversely, the IDFT of F *(,)u v is f x y(,).− −

EXAMPLE 4.11 : 1-D illustrations of the properties in Table 4.1.

The 1-D sequences (functions) and their transforms in Table 4.2 are short examples of the properties
listed in Table 4.1. For example, in property 3 we see that a real function with elements 1 2 3 4, , ,{ } has a
Fourier transform whose real part, 10 2 2 2, , , ,− − −{ } is even and whose imaginary part, 0 2 0 2, , , ,−{ } is
odd. Property 8 tells us that a real even function has a transform that is real and even also. Property 12
shows that an even complex function has a transform that is also complex and even. The other listings
in the table are analyzed in a similar manner.

EXAMPLE 4.12 : Proving some of the DFT symmetry properties from Table 4.1.

In this example, we prove several of the properties in Table 4.1 to help you develop familiarity with
manipulating these important properties, and to establish a basis for solving some of the problems at
the end of the chapter. We prove only the properties on the right given the properties on the left. The
converse is proved in a manner similar to the proofs we give here.

Consider property 3, which reads: If f x y(,) is a real function, the real part of its DFT is even and the
imaginary part is odd. We prove this property as follows: F(,)u v is complex in general, so it can be expressed
as the sum of a real and an imaginary part: F R jI(,) (,) (,).u v u v u v= + Then, F R jI*(,) (,) (,).u v u v u v= −
Also, F R jI(,) (,) (,).− − = − − + − −u v u v u v But, as we proved earlier for Eq. (4-85), if f x y(,) is real then
F F*(,) (,),u v u v= − − which, based on the preceding two equations, means that R R(,) (,)u v u v= − − and
I I(,) (,).u v u v= − − − In view of the definitions in Eqs. (4-80) and (4-81), this proves that R is an even
function and that I is an odd function.

Next, we prove property 8. If f x y(,) is real, we know from property 3 that the real part of F(,)u v is
even, so to prove property 8 all we have to do is show that if f x y(,) is real and even then the imaginary
part of F(,)u v is 0 (i.e., F is real). The steps are as follows:

Property f(x) F(u)

3 1 2 3 4, , ,{ } ⇔ 10 0 2 2 2 0 2 2+() − +() − +() − −(){ }j j j j, , ,

4 1 2 3 4j j j j, , ,{ } ⇔ 0 2 5 5 5 0 5 5 5+() −() −() − −(){ }. , . . , . , . .j j j j

8 2 1 1 1, , ,{ } ⇔ 5 1 1 1, , ,{ }
9 0 1 0 1, , ,−{ } ⇔ 0 0 0 2 0 0 0 2+() +() +() −(){ }j j j j, , ,

10 2 1 1 1j j j j, , ,{ } ⇔ 5 j j j j, , ,{ }
11 0 1 0 1j j j j, , ,−{ } ⇔ 0 2 0 2, , ,−{ }
12 4 4 3 2 0 2 3 2+() +() +() +(){ }j j j j, , , ⇔ 10 10 4 2 2 2 4 2+() +() − +() +(){ }j j j j, , ,

13 0 0 1 1 0 0 1+() +() +() − −(){ }j j j j, , , ⇔ 0 0 2 2 0 0 2 2+() −() +() − +(){ }j j j j, , ,

TABLE 4.2
1-D examples of
some of the prop-
erties in Table 4.1.

DIP4E_GLOBAL_Print_Ready.indb 247 6/16/2017 2:05:22 PM

248 Chapter 4 Filtering in the Frequency Domain

� f x y F f x y e

f x y

j ux M y N

y

N

x

M

r

(,) (,) (,)

(,

(){ } = =

=

− +

=

−

=

−

∑∑u v v2

0

1

0

1
p

))

(,)

()[]

= []
=

−

=

−
− +

=

−

=

−
−

∑∑

∑∑
y

N

x

M
j ux M y N

r
y

N

x

M

e

f x y e

0

1

0

1
2

0

1

0

1

p v

jj ux M j y Ne2 2p p() ()− v

We can expand the last line of this expression in terms of even and odd parts

F j j
y

N

x

M

y

(,)u v = [] −[] −[]

= []

=

−

=

−

=

∑∑ even even odd even odd

even

0

1

0

1

00

1

0

1

0

2
N

x

M

y

j
−

=

−

=

∑∑ ⋅ − ⋅ − ⋅[]

= ⋅[]

even even even odd odd odd

even even
NN

x

M

y

N

x

M

y

N

j
−

=

−

=

−

=

−

=

−

∑∑ ∑∑ ∑− ⋅[] − ⋅[]
1

0

1

0

1

0

1

0

1

2 even odd even even
xx

M

=

−

∑
=

0

1

real.

The first step follows from Euler’s equation, and the fact that the cos and sin are even and odd functions,
respectively. We also know from property 8 that, in addition to being real, f x y(,) is an even function.
The only term in the penultimate line containing imaginary components is the second term, which is 0
according to Eq. (4-84). Therefore, if f x y(,) is real and even, then F(,)u v is real. As noted earlier, F(,)u v
is even also because f x y(,) is real. This concludes the proof.

Finally, we demonstrate the validity of property 6. From the definition of the DFT,

 ℑ − −{ } = − −
=

−

=

−
− +∑∑f x y f x y e

y

N

x

M
j ux M y N(,) (,) ()

0

1

0

1
2p v

We are not making a change of variable here. We are evaluating the DFT of f x y(,),− − so we sim-
ply insert this function into the equation, as we would any other function. Because of periodicity,
f x y f M x N y(,) (,).− − = − − If we now define m M x= − and n N y= − , then

 ℑ − −{ } =
=

−

=

−
− − + −∑∑f x y f m n e

n

N

m

M
j u M m M N n N(,) (,) ([] [])

0

1

0

1
2p v

To convince yourself that the summations are correct, try a 1-D transform and expand a few terms by
hand. Because exp[()] ,− =j2 1p integer it follows that

 ℑ − −{ } = = − −
=

−

=

−
+∑∑f x y f m n e F u

n

N

m

M
j mu M n N(,) (,) (,)()

0

1

0

1
2p v v

This concludes the proof.

DIP4E_GLOBAL_Print_Ready.indb 248 6/16/2017 2:05:23 PM

4.6 Some Properties of the 2-D DFT and IDFT 249

FOURIER SPECTRUM AND PHASE ANGLE

Because the 2-D DFT is complex in general, it can be expressed in polar form:

F u R jI

F u ej u

(,) (,) (,)

(,) (,)

v u v u v

v v

= +

= f
 (4-86)

where the magnitude

 F u R u I u(,) (,) (,)
/

v v v= +⎡⎣ ⎤⎦
2 2 1 2

 (4-87)

is called the Fourier (or frequency) spectrum, and

 f(,) arctan
(,)
(,)

u
I u
R u

v
v

v
=

⎡

⎣
⎢

⎤

⎦
⎥ (4-88)

is the phase angle or phase spectrum. Recall from the discussion in Section 4.2 that
the arctan must be computed using a four-quadrant arctangent function, such as
MATLAB’s atan2(Imag, Real) function.

Finally, the power spectrum is defined as

P u F u

R u I u

(,) (,)

(,) (,)

v v

v v

=

= +

2

2 2
 (4-89)

As before, R and I are the real and imaginary parts of F(,),u v and all computations
are carried out for the discrete variables u = −0 1 2 1, , , ,… M and v = −0 1 2 1, , , , .… N
Therefore, F(,) ,u v f(,),u v and P(,)u v are arrays of size M N× .

The Fourier transform of a real function is conjugate symmetric [see Eq. (4-85)],
which implies that the spectrum has even symmetry about the origin:

 F u F u(,) (,)v v= − − (4-90)

The phase angle exhibits odd symmetry about the origin:

 f f(,) (,)u uv v= − − − (4-91)

It follows from Eq. (4-67) that

 F f x y
y

N

x

M

(,) (,)0 0
0

1

0

1

=
=

−

=

−

∑∑

which indicates that the zero-frequency term of the DFT is proportional to the aver-
age of f x y(,). That is,

F MN

MN
f x y

MNf

y

N

x

M

(,) (,)0 0
1

0

1

0

1

=

=
=

−

=

−

∑∑
 (4-92)

DIP4E_GLOBAL_Print_Ready.indb 249 6/16/2017 2:05:25 PM

250 Chapter 4 Filtering in the Frequency Domain

where f (a scalar) denotes the average value of f x y(,). Then,

 F MN f(,)0 0 = (4-93)

Because the proportionality constant MN usually is large, F(,)0 0 typically is the
largest component of the spectrum by a factor that can be several orders of magni-
tude larger than other terms. Because frequency components u and v are zero at the
origin, F(,)0 0 sometimes is called the dc component of the transform. This terminol-
ogy is from electrical engineering, where “dc” signifies direct current (i.e., current of
zero frequency).

EXAMPLE 4.13 : The spectrum of a rectangle.

Figure 4.23(a) shows an image of a rectangle and Fig. 4.23(b) shows its spectrum, whose values were
scaled to the range [,]0 255 and displayed in image form. The origins of both the spatial and frequency
domains are at the top left. This is the right-handed coordinate system convention we defined in Fig. 2.19.
Two things are apparent in Fig. 4.23(b). As expected, the area around the origin of the transform con-
tains the highest values (and thus appears brighter in the image). However, note that the four corners

x u

u u

y

v

v

v

ba
dc

FIGURE 4.23
(a) Image.
(b) Spectrum,
showing small,
bright areas in the
four corners (you
have to look care-
fully to see them).
(c) Centered
spectrum.
(d) Result after a
log transformation.
The zero crossings
of the spectrum
are closer in the
vertical direction
because the rectan-
gle in (a) is longer
in that direction.
The right-handed
coordinate
convention used in
the book places the
origin of the spatial
and frequency
domains at the top
left (see Fig. 2.19).

DIP4E_GLOBAL_Print_Ready.indb 250 6/16/2017 2:05:26 PM

4.6 Some Properties of the 2-D DFT and IDFT 251

of the spectrum contain similarly high values. The reason is the periodicity property discussed in the
previous section. To center the spectrum, we simply multiply the image in (a) by ()− +1 x y before comput-
ing the DFT, as indicated in Eq. (4-76). Figure 4.23(c) shows the result, which clearly is much easier to
visualize (note the symmetry about the center point). Because the dc term dominates the values of the
spectrum, the dynamic range of other intensities in the displayed image are compressed. To bring out
those details, we used the log transformation defined in Eq. (3-4) with c = 1. Figure 4.23(d) shows the
display of log((,)).1 + F u v The increased rendition of detail is evident. Most spectra shown in this and
subsequent chapters are scaled in this manner.

It follows from Eqs. (4-72) and (4-73) that the spectrum is insensitive to image translation (the abso-
lute value of the exponential term is 1), but it rotates by the same angle of a rotated image. Figure
4.24 illustrates these properties. The spectrum in Fig. 4.24(b) is identical to the spectrum in Fig. 4.23(d).

ba
dc

FIGURE 4.24
(a) The rectangle
in Fig. 4.23(a)
translated.
(b) Corresponding
spectrum.
(c) Rotated
rectangle.
(d) Corresponding
 spectrum.
The spectrum of
the translated
rectangle is
identical to the
spectrum of the
original image in
Fig. 4.23(a).

ba c

FIGURE 4.25
Phase angle
images of
(a) centered,
(b) translated,
and (c) rotated
rectangles.

DIP4E_GLOBAL_Print_Ready.indb 251 6/16/2017 2:05:26 PM

252 Chapter 4 Filtering in the Frequency Domain

Clearly, the images in Figs. 4.23(a) and 4.24(a) are different so, if their Fourier spectra are the same,
then, based on Eq. (4-86), their phase angles must be different. Figure 4.25 confirms this. Figures 4.25(a)
and (b) are the phase angle arrays (shown as images) of the DFTs of Figs. 4.23(a) and 4.24(a). Note the
lack of similarity between the phase images, in spite of the fact that the only differences between their
corresponding images is simple translation. In general, visual analysis of phase angle images yields little
intuitive information. For instance, because of its 45° orientation, one would expect intuitively that the
phase angle in Fig. 4.25(a) should correspond to the rotated image in Fig. 4.24(c), rather than to the
image in Fig. 4.23(a). In fact, as Fig. 4.25(c) shows, the phase angle of the rotated image has a strong
orientation that is much less than 45°.

The components of the spectrum of the DFT determine the amplitudes of the
sinusoids that combine to form an image. At any given frequency in the DFT of
an image, a large amplitude implies a greater prominence of a sinusoid of that fre-
quency in the image. Conversely, a small amplitude implies that less of that sinu-
soid is present in the image. Although, as Fig. 4.25 shows, the contribution of the
phase components is less intuitive, it is just as important. The phase is a measure of
displacement of the various sinusoids with respect to their origin. Thus, while the
magnitude of the 2-D DFT is an array whose components determine the intensities
in the image, the corresponding phase is an array of angles that carry much of the
information about where discernible objects are located in the image. The following
example illustrates these ideas in more detail.

EXAMPLE 4.14 : Contributions of the spectrum and phase angle to image formation.

Figure 4.26(b) shows as an image the phase-angle array, f(,),u v of the DFT of Fig. 4.26(a), computed
using Eq. (4-88). Although there is no detail in this array that would lead us by visual analysis to associ-
ate it with the structure of its corresponding image, the information in this array is crucial in determin-
ing shape features of the image. To illustrate this, we reconstructed the boy’s image using only its phase
angle. The reconstruction consisted of computing the inverse DFT of Eq. (4-86) using f(,),u v but setting
F(,) .u v = 1 Figure Fig. 4.26(c) shows the result (the original result had much less contrast than is shown;
to bring out details important in this discussion, we scaled the result using Eqs. (2-31) and (2-32), and
then enhanced it using histogram equalization). However, even after enhancement, it is evident that
much of the intensity information has been lost (remember, that information is carried by the spectrum,
which we did not use in the reconstruction). However, the shape features in 4.26(c) are unmistakably
from Fig. 4.26(a). This illustrates vividly the importance of the phase angle in determining shape char-
acteristics in an image.

Figure 4.26(d) was obtained by computing the inverse DFT Eq. (4-86), but using only the spectrum.
This means setting the exponential term to 1, which in turn implies setting the phase angle to 0. The
result is not unexpected. It contains only intensity information, with the dc term being the most domi-
nant. There is no shape information in the image because the phase was set to zero.

Finally, Figs. 4.26(e) and (f) show yet again the dominance of the phase in determining the spatial
feature content of an image. Figure 4.26(e) was obtained by computing the inverse DFT of Eq. (4-86)
using the spectrum of the rectangle from Fig. 4.23(a) and the phase angle from the boy’s image. The
boy’s features clearly dominate this result. Conversely, the rectangle dominates Fig. 4.26(f), which was
computed using the spectrum of the boy’s image and the phase angle of the rectangle.

DIP4E_GLOBAL_Print_Ready.indb 252 6/16/2017 2:05:27 PM

4.6 Some Properties of the 2-D DFT and IDFT 253

THE 2-D DISCRETE CONVOLUTION THEOREM

Extending Eq. (4-48) to two variables results in the following expression for 2-D
circular convolution:

 ()(,) (,) (,)f h x y f m n h x m y n
n

N

m

M

� = − −
=

−

=

−

∑∑
0

1

0

1

 (4-94)

for x M= −0 1 2 1, , , ,… and y N= −0 1 2 1, , , , .… As in Eq. (4-48), Eq. (4-94) gives
one period of a 2-D periodic sequence. The 2-D convolution theorem is give by

 ()(,) ()(,)f h x y F H u� ⇔ i v (4-95)

You will find it helpful
to review Eq. (4-48),
and the comments made
there regarding circular
convolution, as opposed
to the convolution we
studied in Section 3.4.

ba c
ed f

FIGURE 4.26 (a) Boy image. (b) Phase angle. (c) Boy image reconstructed using only its phase angle (all shape features
are there, but the intensity information is missing because the spectrum was not used in the reconstruction). (d) Boy
image reconstructed using only its spectrum. (e) Boy image reconstructed using its phase angle and the spectrum of
the rectangle in Fig. 4.23(a). (f) Rectangle image reconstructed using its phase and the spectrum of the boy’s image.

DIP4E_GLOBAL_Print_Ready.indb 253 6/16/2017 2:05:28 PM

254 Chapter 4 Filtering in the Frequency Domain

and, conversely,

 ()(,) ()(,)f h x y
MN

F Hi ⇔ 1
� u v (4-96)

where F and H are the Fourier transforms of f and h, respectively, obtained using
Eq. (4-67). As before, the double arrow is used to indicate that the left and right sides
of the expressions constitute a Fourier transform pair. Our interest in the remainder
of this chapter is in Eq. (4-95), which states that the Fourier transform of the spatial
convolution of f and h, is the product of their transforms. Similarly, the inverse DFT
of the product ()(,)F Hi u v yields ()(,).f h x y�

Equation (4-95) is the foundation of linear filtering in the frequency domain and,
as we will explain in Section 4.7, is the basis for all the filtering techniques discussed
in this chapter. As you will recall from Chapter 3, spatial convolution is the foun-
dation for spatial filtering, so Eq. (4-95) is the tie that establishes the equivalence
between spatial and frequency-domain filtering, as we have mentioned several times
before.

Ultimately, we are interested in the results of convolution in the spatial domain,
where we analyze images. However, the convolution theorem tell us that we have
two ways of computing the spatial convolution of two functions. We can do it directly
in the spatial domain with Eq. (3-35), using the approach described in Section 3.4
or, according to Eq. (4-95), we can compute the Fourier transform of each function,
multiply the transforms, and compute the inverse Fourier transform. Because we are
dealing with discrete quantities, computation of the Fourier transforms is carried
out using a DFT algorithm. This automatically implies periodicity, which means that
when we take the inverse Fourier transform of the product of the two transforms we
would get a circular (i.e., periodic) convolution, one period of which is given by Eq.
(4-94). The question is: under what conditions will the direct spatial approach and
the inverse Fourier transform method yield the same result? We arrive at the answer
by looking at a 1-D example first, and then extending the results to two variables.

The left column of Fig. 4.27 implements convolution of two functions, f and h,
using the 1-D equivalent of Eq. (3-35), which, because the two functions are of same
size, is written as

 ()() () ()f f x h x mh x
m

� =
=

∑ −
0

399

Recall from our explanation of Figs. 3.29 and 3.30 that the procedure consists of (1)
rotating (flipping) h by 180°, [see Fig. 4.27(c)], (2) translating the resulting function
by an amount x [Fig. 4.27(d)], and (3) for each value x of translation, computing the
entire sum of products in the right side of the equation. In terms of Fig. 4.27, this
means multiplying the function in Fig. 4.27(a) by the function in Fig. 4.27(d) for each
value of x. The displacement x ranges over all values required to completely slide h
across f. Figure 4.27(e) shows the convolution of these two functions. As you know,
convolution is a function of the displacement variable, x, and the range of x required
in this example to completely slide h past f is from 0 to 799.

The function products
are elementwise products,
as defined in Section 2.6.

We will discuss efficient
ways for computing the
DFT in Section 4.11.

DIP4E_GLOBAL_Print_Ready.indb 254 6/16/2017 2:05:29 PM

4.6 Some Properties of the 2-D DFT and IDFT 255

If we use the DFT and the convolution theorem to try to obtain the same result
as in the left column of Fig. 4.27, we must take into account the periodicity inher-
ent in the expression for the DFT. This is equivalent to convolving the two periodic
functions in Figs. 4.27(f) and (g) (i.e., as Eqs. (4-46) and (4-47) indicate, the func-
tions their transforms have implied periodicity). The convolution procedure is the
same as we just discussed, but the two functions now are periodic. Proceeding with
these two functions as in the previous paragraph would yield the result in Fig. 4.27(j),
which obviously is incorrect. Because we are convolving two periodic functions, the
convolution itself is periodic. The closeness of the periods in Fig. 4.27 is such that

f(m)

m m

33

200 4000 0 200 400

f(m)

2

m m
200 4000

2

0 200 400

h(m) h(m)

m m
200 4000 0 200 400

h(�m) h(�m)

m m
200 4000 0 200 400

xx

h(x � m) h(x � m)

x x

Range of
Fourier transform

computation

200 400 600 8000

600

1200

600

1200

0 200 400

()()gf x�()()gf x�

b
a

c

e
d

f

h
g

i
j

FIGURE 4.27
Left column:
Spatial
convolution
computed with
Eq. (3-35), using
the approach
discussed in
Section 3.4.
Right column:
Circular
convolution. The
solid line in (j)
is the result we
would obtain
using the DFT,
or, equivalently,
Eq. (4-48). This
erroneous result
can be remedied
by using zero
padding.

DIP4E_GLOBAL_Print_Ready.indb 255 6/16/2017 2:05:29 PM

256 Chapter 4 Filtering in the Frequency Domain

they interfere with each other to cause what is commonly referred to as wraparound
error. According to the convolution theorem, if we had computed the DFT of the
two 400-point functions, f and h, multiplied the two transforms, and then computed
the inverse DFT, we would have obtained the erroneous 400-point segment of the
periodic convolution shown as a solid line in Fig. 4.27(j) (remember the limits of the
1-D DFT are u = −0 1 2 1, , , ,).… M This is also the result we would obtain if we used
Eq. (4-48) [the 1-D equivalent of Eq. (4-94)] to compute one period of the circular
convolution.

Fortunately, the solution to the wraparound error problem is simple. Consider
two functions, f x() and h x() composed of A and B samples, respectively. It can be
shown (Brigham [1988]) that if we append zeros to both functions so that they have
the same length, denoted by P, then wraparound is avoided by choosing

 P A B≥ + − 1 (4-97)

In our example, each function has 400 points, so the minimum value we could use is
P = 799, which implies that we would append 399 zeros to the trailing edge of each
function. This procedure is called zero padding, as we discussed in Section 3.4. As
an exercise, you should convince yourself that if the periods of the functions in Figs.
4.27(f) and (g) were lengthened by appending to each period at least 399 zeros, the
result would be a periodic convolution in which each period is identical to the cor-
rect result in Fig. 4.27(e). Using the DFT via the convolution theorem would result
in a 799-point spatial function identical to Fig. 4.27(e). The conclusion, then, is that
to obtain the same convolution result between the “straight” representation of the
convolution equation approach in Chapter 3, and the DFT approach, functions in
the latter must be padded prior to computing their transforms.

Visualizing a similar example in 2-D is more difficult, but we would arrive at the
same conclusion regarding wraparound error and the need for appending zeros to
the functions. Let f x y(,) and h x y(,) be two image arrays of sizes A B× and C D×
pixels, respectively. Wraparound error in their circular convolution can be avoided
by padding these functions with zeros, as follows:

 f x y
f x y x A y B

A x P B y Qp(,)
(,)

=
≤ ≤ − ≤ ≤ −
≤ ≤ ≤ ≤

⎧
⎨
⎩

0 1 0 1

0

 and

 or
 (4-98)

and

 h x y
h x y x C y D

C x P D y Qp(,)
(,)

=
≤ ≤ − ≤ ≤ −
≤ ≤ ≤ ≤

⎧
⎨
⎩

0 1 0 1

0

 and

 or
 (4-99)

with

 P A C≥ + − 1 (4-100)

and

The padding zeros could
be appended also at
the beginning of the
functions, or they could
be divided between the
beginning and end of the
functions. It is simpler to
append them at the end.

We use zero-padding
here for simplicity. Recall
from the discussion of
Fig. 3.39 that replicate
and mirror padding
generally yield better
results.

DIP4E_GLOBAL_Print_Ready.indb 256 6/16/2017 2:05:30 PM

4.6 Some Properties of the 2-D DFT and IDFT 257

 Q B D≥ + − 1 (4-101)

The resulting padded images are of size P Q× . If both arrays are of the same size,
M N× , then we require that P M≥ −2 1 and Q N≥ −2 1. As a rule, DFT algorithms
tend to execute faster with arrays of even size, so it is good practice to select P and
Q as the smallest even integers that satisfy the preceding equations. If the two arrays
are of the same size, this means that P and Q are selected as:

 P M= 2 (4-102)

and

 Q N= 2 (4-103)

Figure 4.31 in the next section illustrates the effects of wraparound error on images.
The two functions in Figs. 4.27(a) and (b) conveniently become zero before the

end of the sampling interval. If one or both of the functions were not zero at the end
of the interval, then a discontinuity would be created when zeros were appended
to the function to eliminate wraparound error. This is analogous to multiplying a
function by a box, which in the frequency domain would imply convolution of the
original transform with a sinc function (see Example 4.1). This, in turn, would create
so-called frequency leakage, caused by the high-frequency components of the sinc
function. Leakage produces a blocky effect on images. Although leakage can never
be totally eliminated, it can be reduced significantly by multiplying the sampled
function by another function that tapers smoothly to near zero at both ends of the
sampled record. This idea is to dampen the sharp transitions (and thus the high fre-
quency components) of the box. This approach, called windowing or apodizing, is an
important consideration when fidelity in image reconstruction (as in high-definition
graphics) is desired.

SUMMARY OF 2-D DISCRETE FOURIER TRANSFORM PROPERTIES

Table 4.3 summarizes the principal DFT definitions introduced in this chapter. We
will discuss the separability property in Section 4.11, where we also show how to
obtain the inverse DFT using a forward transform algorithm. Correlation will be
discussed in detail Chapter 12.

Table 4.4 summarizes some important DFT pairs. Although our focus is on dis-
crete functions, the last two entries in the table are Fourier transform pairs that can
be derived only for continuous variables (note the use of continuous variable nota-
tion).We include them here because, with proper interpretation, they are quite use-
ful in digital image processing. The differentiation pair can be used to derive the fre-
quency-domain equivalent of the Laplacian defined in Eq. (3-50) (see Problem 4.52).
The Gaussian pair is discussed in Section 4.7. Tables 4.1, 4.3 and 4.4 provide a sum-
mary of properties useful when working with the DFT. Many of these properties
are key elements in the development of the material in the rest of this chapter, and
some are used in subsequent chapters.

A simple apodizing
function is a triangle, cen-
tered on the data record,
which tapers to 0 at both
ends of the record. This is
called a Bartlett window.
Other common windows
are the Gaussian, the
Hamming and the Hann
windows.

DIP4E_GLOBAL_Print_Ready.indb 257 6/16/2017 2:05:31 PM

258 Chapter 4 Filtering in the Frequency Domain

Name Expression(s)

1) Discrete Fourier
transform (DFT) of
f x y(,)

F f x y e j ux M y N

y

N

x

M

(,) (,) ()u v v= − +

=

−

=

−

∑∑ 2

0

1

0

1
p

2) Inverse discrete
Fourier transform
(IDFT) of F(,)u v

f x y
MN

F e j ux M y N
NM

(,) (,) ()= +

=

−

=

−

∑∑1 2

0

1

0

1

u v v

vu

p

3) Spectrum F R I R F I F(,) (,) (,) (); ()u v u v u v= +⎡⎣ ⎤⎦ = =2 2 1 2
Real Imag

4) Phase angle f(,) tan
(,)
(,)

u v
u v

u v
=

⎡

⎣
⎢

⎤

⎦
⎥

−1 I
R

5) Polar representation F F e j(,) (,) (,)u v u v u v= f

6) Power spectrum P F(,) (,)u v u v= 2

7) Average value f
MN

f x y
MN

F
y

N

x

M

= =
=

−

=

−

∑∑1 1
0 0

0

1

0

1

(,) (,)

8) Periodicity (k1 and
k2 are integers)

F F k M F k N

F k k N

f x y f x k M y

(,) (,) (,)

(,)

(,) (,

u v u v u v

u v

= + = +
= + +
= +

1 2

1 2

1)) (,)

(,)

= +
= + +

f x y k N

f x k M y k N
2

1 2

9) Convolution ((,) (,))(,)f f m n h x m y nh x y
n

N

m

M

� = − −
=

−

=

−

∑∑
0

1

0

1

10) Correlation ((,) (,))(,) *f f m n h x m y nh x y
n

N

m

M

� = + +
=

−

=

−

∑∑
0

1

0

1

11) Separability The 2-D DFT can be computed by computing 1-D DFT
transforms along the rows (columns) of the image, followed
by 1-D transforms along the columns (rows) of the result.
See Section 4.11.

12) Obtaining the IDFT
using a DFT
algorithm

MNf x y F e j ux M y N
NM

* * ()(,) (,)= − +

=

−

=

−

∑∑ u v v

vu

2

0

1

0

1
p

This equation indicates that inputting F *(,)u v into an
algorithm that computes the forward transform (right side
of above equation) yields MNf x y*(,). Taking the complex
conjugate and dividing by MN gives the desired inverse. See
Section 4.11.

TABLE 4.3
Summary of DFT
definitions and
corresponding
expressions.

DIP4E_GLOBAL_Print_Ready.indb 258 6/16/2017 2:05:32 PM

4.6 Some Properties of the 2-D DFT and IDFT 259

TABLE 4.4
Summmary of
DFT pairs. The
closed-form
expressions in 12
and 13 are valid
only for
continuous
variables. They
can be used with
discrete variables
by sampling the
continuous
expressions.

Name DFT Pairs

1) Symmetry
properties

See Table 4.1

2) Linearity a f x y b f x y aF bF1 2 1 2(,) (,) (,) (,)+ ⇔ +u v u v

3) Translation
(general)

f x y e F u u

f x x y y F e

j u x M y N

j

(,) (,)

(,) (,)

()2
0 0

0 0
2

0p

p

+

−

⇔ − −

− − ⇔

v0 v v

u v (()ux M y N0 + v 0

4) Translation
to center of
the frequency
rectangle,
(,)M N2 2

f x y F M N

f x M N F

x y(,)() (,)

(,) (,)()

− ⇔ − −

− − ⇔ −

+

+

1 2 2

2 2 1

u v

y u v u v

5) Rotation f r F

r x y y x

(,) (,)

tan () tan ()

u u v w u

u v w

+ ⇔ +

= + = = + =− −

0 0

2 2 1 2 2 1u v v u

6) Convolution
theorem†

f F H

f h x y MN F H

h x y�

�

)(,)

() (

()(,)

()(,))(,)

⇔

⇔ []
i

i

u v

u v1

7) Correlation
theorem†

()(,) ()(,)

()(,) () ()(,)

*

*

f h x y F H

f h x y MN F H

�

�

⇔

⇔ []
i

i

u v

u v1

8) Discrete unit
impulse

d(,)x y ⇔ 1
1 ⇔ MNd(,)u v

9) Rectangle rec a b ab
a

a
b

b
e j a b,

sin()
()

sin()
()

()[] ⇔ − +p

p

p

p

pu

u

v

v
u v

10) Sine sin() (,) (,)2 2
20 0 0 0 0 0p p d du v u u v v u u v vx M y N

jMN+ ⇔ + + − − −[]

11) Cosine cos() (,) (,)2 2
1
20 0 0 0 0 0p p d du v u u v v u u v vx M y N+ ⇔ + + + − −[]

The following Fourier transform pairs are derivable only for continuous variables, denoted
as before by t and z for spatial variables and by m and n for frequency variables. These
results can be used for DFT work by sampling the continuous forms.

12) Differentiation
(the expressions
on the right
assume that
f (,) .± ±� � = 0

a b a b∂
∂

∂
∂

⇔

∂
∂

⇔

t z
f t z j j F

f t z

t
j

m n
m n

m

m
m

(,) () () (,)

(,)
()

2 2

2

pm pn m n

pm FF
f t z

z
j F

n

m
n(,);

(,)
() (,)m n pn m n

∂
∂

⇔ 2

13) Gaussian A e Ae At z2 2 2 22 2 2 2 2 2 2

ps p s m n s− + − +⇔() () (is a constant)

† Assumes that f x y(,) and h x y(,) have been properly padded. Convolution is associative, commutative, and
distributive. Correlation is distributive (see Table 3.5). The products are elementwise products (see Section 2.6).

DIP4E_GLOBAL_Print_Ready.indb 259 6/16/2017 2:05:34 PM

260 Chapter 4 Filtering in the Frequency Domain

4.7 THE BASICS OF FILTERING IN THE FREQUENCY DOMAIN

In this section, we lay the groundwork for all the filtering techniques discussed in the
remainder of the chapter.

ADDITIONAL CHARACTERISTICS OF THE FREQUENCY DOMAIN

We begin by observing in Eq. (4-67) that each term of F(,)u v contains all values of
f x y(,), modified by the values of the exponential terms. Thus, with the exception
of trivial cases, it is usually impossible to make direct associations between specific
components of an image and its transform. However, some general statements can
be made about the relationship between the frequency components of the Fourier
transform and spatial features of an image. For instance, because frequency is direct-
ly related to spatial rates of change, it is not difficult intuitively to associate frequen-
cies in the Fourier transform with patterns of intensity variations in an image. We
showed in Section 4.6 that the slowest varying frequency component ()u v= = 0
is proportional to the average intensity of an image. As we move away from the
origin of the transform, the low frequencies correspond to the slowly varying inten-
sity components of an image. In an image of a room, for example, these might cor-
respond to smooth intensity variations on the walls and floor. As we move further
away from the origin, the higher frequencies begin to correspond to faster and faster
intensity changes in the image. These are the edges of objects and other components
of an image characterized by abrupt changes in intensity.

Filtering techniques in the frequency domain are based on modifying the Fourier
transform to achieve a specific objective, and then computing the inverse DFT to get
us back to the spatial domain, as introduced in Section 2.6. It follows from Eq. (4-87)
that the two components of the transform to which we have access are the transform
magnitude (spectrum) and the phase angle. We learned in Section 4.6 that visual
analysis of the phase component generally is not very useful. The spectrum, however,
provides some useful guidelines as to the gross intensity characteristics of the image
from which the spectrum was generated. For example, consider Fig. 4.28(a), which
is a scanning electron microscope image of an integrated circuit, magnified approxi-
mately 2500 times.

Aside from the interesting construction of the device itself, we note two principal
features in this image: strong edges that run approximately at ± °,45 and two white,
oxide protrusions resulting from thermally induced failure. The Fourier spectrum
in Fig. 4.28(b) shows prominent components along the ± °45 directions that corre-
spond to the edges just mentioned. Looking carefully along the vertical axis in Fig.
4.28(b), we see a vertical component of the transform that is off-axis, slightly to the
left. This component was caused by the edges of the oxide protrusions. Note how the
angle of the frequency component with respect to the vertical axis corresponds to
the inclination (with respect to the horizontal axis of the image) of the long white
element. Note also the zeros in the vertical frequency component, corresponding to
the narrow vertical span of the oxide protrusions.

These are typical of the types of associations we can make in general between
the frequency and spatial domains. As we will show later in this chapter, even these
types of gross associations, coupled with the relationships mentioned previously

4.7

DIP4E_GLOBAL_Print_Ready.indb 260 6/16/2017 2:05:34 PM

4.7 The Basics of Filtering in the Frequency Domain 261

between frequency content and rate of change of intensity levels in an image, can
lead to some very useful results. We will show in Section 4.8 the effects of modifying
various frequency ranges in the transform of Fig. 4.28(a).

FREQUENCY DOMAIN FILTERING FUNDAMENTALS

Filtering in the frequency domain consists of modifying the Fourier transform of an
image, then computing the inverse transform to obtain the spatial domain represen-
tation of the processed result. Thus, given (a padded) digital image, f x y(,), of size
P Q× pixels, the basic filtering equation in which we are interested has the form:

 g x y H F(,) (,) (,)= []{ }−Real � 1 u v u v (4-104)

where �−1 is the IDFT, F(,)u v is the DFT of the input image, f x y(,), H(,)u v is a
filter transfer function (which we often call just a filter or filter function), and g x y(,)
is the filtered (output) image. Functions F, H, and g are arrays of size P Q× , the same
as the padded input image. The product H F(,) (,)u v u v is formed using elementwise
multiplication, as defined in Section 2.6. The filter transfer function modifies the
transform of the input image to yield the processed output, g x y(,). The task of speci-
fying H(,)u v is simplified considerably by using functions that are symmetric about
their center, which requires that F(,)u v be centered also. As explained in Section 4.6,
this is accomplished by multiplying the input image by ()− +1 x y prior to computing
its transform.†

† Some software implementations of the 2-D DFT (e.g., MATLAB) do not center the transform. This implies
that filter functions must be arranged to correspond to the same data format as the uncentered transform (i.e.,
with the origin at the top left). The net result is that filter transfer functions are more difficult to generate and
display. We use centering in our discussions to aid in visualization, which is crucial in developing a clear under-
standing of filtering concepts. Either method can be used in practice, provided that consistency is maintained.

If H is real and
symmetric and f is real
(as is typically the case),
then the IDFT in Eq.
(4-104) should yield
real quantities in theory.
In practice, the inverse
often contains para-
sitic complex terms from
roundoff error and other
computational inaccura-
cies. Thus, it is customary
to take the real part of
the IDFT to form g.

ba

FIGURE 4.28 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of (a).
(Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materials Research,
McMaster University, Hamilton, Ontario, Canada.)

DIP4E_GLOBAL_Print_Ready.indb 261 6/16/2017 2:05:36 PM

262 Chapter 4 Filtering in the Frequency Domain

We are now in a position to consider filtering in detail. One of the simplest filter
transfer functions we can construct is a function H(,)u v that is 0 at the center of
the (centered) transform, and 1’s elsewhere. This filter would reject the dc term and

“pass” (i.e., leave unchanged) all other terms of F(,)u v when we form the product
H F(,) (,).u v u v We know from property 7 in Table 4.3 that the dc term is responsible
for the average intensity of an image, so setting it to zero will reduce the average
intensity of the output image to zero. Figure 4.29 shows the result of this operation
using Eq. (4-104). As expected, the image became much darker. An average of zero
implies the existence of negative intensities. Therefore, although it illustrates the
principle, Fig. 4.29 is not a true representation of the original, as all negative intensi-
ties were clipped (set to 0) by the display.

As noted earlier, low frequencies in the transform are related to slowly varying
intensity components in an image, such as the walls of a room or a cloudless sky in
an outdoor scene. On the other hand, high frequencies are caused by sharp transi-
tions in intensity, such as edges and noise. Therefore, we would expect that a func-
tion H(,)u v that attenuates high frequencies while passing low frequencies (called a
lowpass filter, as noted before) would blur an image, while a filter with the opposite
property (called a highpass filter) would enhance sharp detail, but cause a reduction
in contrast in the image. Figure 4.30 illustrates these effects. For example, the first
column of this figure shows a lowpass filter transfer function and the corresponding
filtered image. The second column shows similar results for a highpass filter. Note
the similarity between Figs. 4.30(e) and Fig. 4.29. The reason is that the highpass
filter function shown eliminates the dc term, resulting in the same basic effect that
led to Fig. 4.29. As illustrated in the third column, adding a small constant to the
filter does not affect sharpening appreciably, but it does prevent elimination of the
dc term and thus preserves tonality.

Equation (4-104) involves the product of two functions in the frequency domain
which, by the convolution theorem, implies convolution in the spatial domain. We
know from the discussion in Section 4.6 that we can expect wraparound error if
the functions in question are not padded. Figure 4.31 shows what happens when

FIGURE 4.29
Result of filter-
ing the image in
Fig. 4.28(a) with
a filter transfer
function that sets
to 0 the dc term,
F P Q(,),2 2
in the centered
Fourier transform,
while leaving all
other transform
terms unchanged.

DIP4E_GLOBAL_Print_Ready.indb 262 6/16/2017 2:05:36 PM

4.7 The Basics of Filtering in the Frequency Domain 263

v vu u
a

H(u, v)
H(u, v)

M/2 M/2N/2 N/2

H(u, v)

v
u

M/2 N/2

ba c
ed f

FIGURE 4.30 Top row: Frequency domain filter transfer functions of (a) a lowpass filter, (b) a highpass filter, and (c)
an offset highpass filter. Bottom row: Corresponding filtered images obtained using Eq. (4-104). The offset in (c) is
a = 0 85. , and the height of H(,)u v is 1. Compare (f) with Fig. 4.28(a).

ba c

FIGURE 4.31 (a) A simple image. (b) Result of blurring with a Gaussian lowpass filter without padding. (c) Result of
lowpass filtering with zero padding. Compare the vertical edges in (b) and (c).

DIP4E_GLOBAL_Print_Ready.indb 263 6/16/2017 2:05:44 PM

264 Chapter 4 Filtering in the Frequency Domain

ba

FIGURE 4.32 (a) Image periodicity without image padding. (b) Periodicity after padding with 0’s (black). The dashed
areas in the center correspond to the image in Fig. 4.31(a). Periodicity is inherent when using the DFT. (The thin
white lines in both images are superimposed for clarity; they are not part of the data.)

we apply Eq. (4-104) without padding. Figure 4.31(a) shows a simple image, and
Fig. 4.31(b) is the result of lowpass filtering the image with a Gaussian lowpass filter
of the form shown in Fig. 4.30(a). As expected, the image is blurred. However, the
blurring is not uniform; the top white edge is blurred, but the sides are not. Pad-
ding the input image with zeros according to Eqs. (4-98) and (4-99) before applying
Eq. (4-104) resulted in the filtered image in Fig. 4.31(c). This result is as expected,
with a uniform dark border resulting from zero padding (see Fig. 3.33 for an expla-
nation of this effect).

Figure 4.32 illustrates the reason for the discrepancy between Figs. 4.31(b) and (c).
The dashed area in Fig. 4.32(a) corresponds to the image in Fig. 4.31(a). The other
copies of the image are due to the implied periodicity of the image (and its trans-
form) implicit when we use the DFT, as explained in Section 4.6. Imagine convolving
the spatial representation of the blurring filter (i.e., the corresponding spatial ker-
nel) with this image. When the kernel is centered on the top of the dashed image, it
will encompass part of the image and also part of the bottom of the periodic image
immediately above it. When a dark and a light region reside under the filter, the
result is a mid-gray, blurred output. However, when the kernel is centered on the top
right side of the image, it will encompass only light areas in the image and its right
region. Because the average of a constant value is that same value, filtering will have
no effect in this area, giving the result in Fig. 4.31(b). Padding the image with 0’s cre-
ates a uniform border around each image of the periodic sequence, as Fig. 4.32(b)
shows. Convolving the blurring kernel with the padded “mosaic” of Fig. 4.32(b) gives
the correct result in Fig. 4.31(c). You can see from this example that failure to pad an
image prior to filtering can lead to unexpected results.

Thus far, the discussion has centered on padding the input image. However,
Eq. (4-104) also involves a filter transfer function that can be specified either in the

DIP4E_GLOBAL_Print_Ready.indb 264 6/16/2017 2:05:46 PM

4.7 The Basics of Filtering in the Frequency Domain 265

spatial or in the frequency domain. But padding is done in the spatial domain, which
raises an important question about the relationship between spatial padding and
filter functions specified directly in the frequency domain.

It would be reasonable to conclude that the way to handle padding of a frequency
domain transfer function is to construct the function the same size as the unpad-
ded image, compute the IDFT of the function to obtain the corresponding spatial
representation, pad that representation in the spatial domain, and then compute its
DFT to return to the frequency domain. The 1-D example in Fig. 4.33 illustrates the
pitfalls in this approach.

Figure 4.33(a) shows a 1-D ideal lowpass filter transfer function in the frequency
domain. The function is real and has even symmetry, so we know from property 8
in Table 4.1 that its IDFT will be real and symmetric also. Figure 4.33(b) shows the
result of multiplying the elements of the transfer function by ()−1 u and computing
its IDFT to obtain the corresponding spatial filter kernel. The result is shown in
Fig. 4.33(b). It is evident in this figure that the extremes of this spatial function are
not zero. Zero-padding the function would create two discontinuities, as Fig. 4.33(c)
shows. To return to the frequency domain, we compute the forward DFT of the
spatial, padded function. As Fig. 4.33(d) shows, the discontinuities in the padded
function caused ringing in its frequency domain counterpart.

Padding the two ends of
a function is the same
as padding one end,
provided that the total
number of zeros is the
same.

0.01

0.02

0.03

0.04

0 128 256 384 5110 128 255

0

1.2

1

0.8

0.6

0.4

0.2

0

�0.2�0.01

0 128 255 0 128 256 384 511

1.2

1

0.8

0.6

0.4

0.2

0

�0.2

0.01

0.02

0.03

0.04

0

�0.01

b
a

d
c

FIGURE 4.33
(a) Filter transfer
function specified in
the (centered)
frequency domain.
(b) Spatial
representation (filter
kernel) obtained by
computing the IDFT
of (a).
(c) Result of
padding (b) to twice
its length (note the
discontinuities).
(d) Corresponding
filter in the frequen-
cy domain obtained
by computing the
DFT of (c). Note the
ringing caused by
the discontinuities
in (c). Part (b) of the
figure is below (a),
and (d) is below (c).

DIP4E_GLOBAL_Print_Ready.indb 265 6/16/2017 2:05:46 PM

266 Chapter 4 Filtering in the Frequency Domain

The preceding results tell us that we cannot pad the spatial representation of a
frequency domain transfer function in order to avoid wraparound error. Our objec-
tive is to work with specified filter shapes in the frequency domain without having to
be concerned with truncation issues. An alternative is to pad images and then create
the desired filter transfer function directly in the frequency domain, this function
being of the same size as the padded images (remember, images and filter transfer
functions must be of the same size when using the DFT). Of course, this will result
in wraparound error because no padding is used for the filter transfer function, but
this error is mitigated significantly by the separation provided by padding the image,
and it is preferable to ringing. Smooth transfer functions (such as those in Fig. 4.30)
present even less of a problem. Specifically, then, the approach we will follow in this
chapter is to pad images to size P Q× and construct filter transfer functions of the
same dimensions directly in the frequency domain. As explained earlier, P and Q
are given by Eqs. (4-100) and (4-101).

We conclude this section by analyzing the phase angle of filtered images. We can
express the DFT in terms of its real and imaginary parts: F R jI(,) (,) (,).u v u v u v= +
Equation (4-104) then becomes

 g x y H R jH I(,) (,) (,) (,) (,)= +[]−� 1 u v u v u v u v (4-105)

The phase angle is computed as the arctangent of the ratio of the imaginary and the
real parts of a complex number [see Eq. (4-88)]. Because H(,)u v multiplies both
R and I, it will cancel out when this ratio is formed. Filters that affect the real and
imaginary parts equally, and thus have no effect on the phase angle, are appropri-
ately called zero-phase-shift filters. These are the only types of filters considered in
this chapter.

The importance of the phase angle in determining the spatial structure of an
image was vividly illustrated in Fig. 4.26. Thus, it should be no surprise that even
small changes in the phase angle can have dramatic (and usually undesirable) effects
on the filtered output. Figures 4.34(b) and (c) illustrate the effect of changing the
phase angle array of the DFT of Fig. 4.34(a) (the F(,)u v term was not changed in
either case). Figure 4.34(b) was obtained by multiplying the phase angle, f(,),u v in
Eq. (4-86) by −1 and computing the IDFT. The net result is a reflection of every pixel
in the image about both coordinate axes. Figure 4.34(c) was obtained by multiply-
ing the phase term by 0.25 and computing the IDFT. Even a scale change rendered
the image almost unrecognizable. These two results illustrate the advantage of using
frequency-domain filters that do not alter the phase angle.

SUMMARY OF STEPS FOR FILTERING IN THE FREQUENCY DOMAIN

The process of filtering in the frequency domain can be summarized as follows:

1. Given an input image f x y(,) of size M N× , obtain the padding sizes P and Q
using Eqs. (4-102) and (4-103); that is, P M= 2 and Q N= 2 .

DIP4E_GLOBAL_Print_Ready.indb 266 6/16/2017 2:05:47 PM

4.7 The Basics of Filtering in the Frequency Domain 267

2. Form a padded† image f x yp(,) of size P Q× using zero-, mirror-, or replicate
padding (see Fig. 3.39 for a comparison of padding methods).

3. Multiply f x yp(,) by ()−1 x y+ to center the Fourier transform on the P Q× fre-
quency rectangle.

4. Compute the DFT, F(,),u v of the image from Step 3.

5. Construct a real, symmetric filter transfer function, H(,),u v of size P Q× with
center at (,).P Q2 2

6. Form the product G H F(,) (,) (,)u v u v u v= using elementwise multiplication; that
is, G i k H i k F i k(,) (,) (,)= for i M= −0 1 2 1, , , ,… and k = −0 1 2 1, , , , .… N

7. Obtain the filtered image (of size P Q×) by computing the IDFT of G(,) :u v

 g x y Gp
x y(,) (,) ()= { }⎡⎣ ⎤⎦ −− +Q Rreal � 1 1u v

8. Obtain the final filtered result, g x y(,), of the same size as the input image, by
extracting the M N× region from the top, left quadrant of g x yp(,).

We will discuss the construction of filter transfer functions (Step 5) in the following
sections of this chapter. In theory, the IDFT in Step 7 should be real because f x y(,)
is real and H(,)u v is real and symmetric. However, parasitic complex terms in the
IDFT resulting from computational inaccuracies are not uncommon. Taking the real
part of the result takes care of that. Multiplication by ()− +1 x y cancels out the multi-
plication by this factor in Step 3.

† Sometimes we omit padding when doing “quick” experiments to get an idea of filter performance, or when
trying to determine quantitative relationships between spatial features and their effect on frequency domain
components, particularly in band and notch filtering, as explained later in Section 4.10 and in Chapter 5.

See Section 2.6 for a
definition of elementwise
operations.

ba c

FIGURE 4.34 (a) Original image. (b) Image obtained by multiplying the phase angle array by −1 in Eq. (4-86) and
computing the IDFT. (c) Result of multiplying the phase angle by 0.25 and computing the IDFT. The magnitude of
the transform, F(,) ,u v used in (b) and (c) was the same.

DIP4E_GLOBAL_Print_Ready.indb 267 6/16/2017 2:05:50 PM

268 Chapter 4 Filtering in the Frequency Domain

Figure 4.35 illustrates the preceding steps using zero padding. The figure legend
explains the source of each image. If enlarged, Fig. 4.35(c) would show black dots
interleaved in the image because negative intensities, resulting from the multiplica-
tion of fp by () ,− +1 x y are clipped at 0 by the display. Note in Fig. 4.35(h) the charac-
teristic dark border of by lowpass filtered images obtained using zero padding.

CORRESPONDENCE BETWEEN FILTERING IN THE SPATIAL AND
FREQUENCY DOMAINS

As mentioned several times before, the link between filtering in the spatial and fre-
quency domains is the convolution theorem. Earlier in this section, we defined fil-
tering in the frequency domain as the elementwise product of a filter transfer func-
tion, H(,),u v and F(,),u v the Fourier transform of the input image. Given H(,),u v
suppose that we want to find its equivalent kernel in the spatial domain. If we let
f x y x y(,) (,),= d it follows from Table 4.4 that F(,) .u v = 1 Then, from Eq. (4-104),
the filtered output is �− { }1 H(,) .u v This expression as the inverse transform of the
frequency domain filter transfer function, which is the corresponding kernel in the

See Section 2.6 for a
definition of elementwise
operations.

ba c
ed f
hg

FIGURE 4.35
(a) An M N×
image, f .
(b) Padded image,
fp of size P Q× .
(c) Result of
multiplying fp by
() .− +1 x y
(d) Spectrum of
F . (e) Centered
Gaussian lowpass
filter transfer
function, H, of size
P Q× .
(f) Spectrum of
the product HF .
(g) Image gp , the
real part of the
IDFT of HF, mul-
tiplied by () .− +1 x y
(h) Final result,
g, obtained by
extracting the first
M rows and N
columns of gp.

DIP4E_GLOBAL_Print_Ready.indb 268 6/16/2017 2:05:53 PM

4.7 The Basics of Filtering in the Frequency Domain 269

spatial domain. Conversely, it follows from a similar analysis and the convolution
theorem that, given a spatial filter kernel, we obtain its frequency domain repre-
sentation by taking the forward Fourier transform of the kernel. Therefore, the two
filters form a Fourier transform pair:

 h x y H(,) (,)⇔ u v (4-106)

where h x y(,) is the spatial kernel. Because this kernel can be obtained from the
response of a frequency domain filter to an impulse, h x y(,) sometimes is referred to
as the impulse response of H(,).u v Also, because all quantities in a discrete imple-
mentation of Eq. (4-106) are finite, such filters are called finite impulse response
(FIR) filters. These are the only types of linear spatial filters considered in this book.

We discussed spatial convolution in Section 3.4, and its implementation in
Eq. (3-35), which involved convolving functions of different sizes. When we use the
DFT to compute the transforms used in the convolution theorem, it is implied that
we are convolving periodic functions of the same size, as explained in Fig. 4.27. For
this reason, as explained earlier, Eq. (4-94) is referred to as circular convolution.

When computational speed, cost, and size are important parameters, spatial con-
volution filtering using Eq. (3-35) is well suited for small kernels using hardware
and/or firmware, as explained in Section 4.1. However, when working with general-
purpose machines, frequency-domain methods in which the DFT is computed using
a fast Fourier transform (FFT) algorithm can be hundreds of times faster than using
spatial convolution, depending on the size of the kernels used, as you saw in Fig. 4.2.
We will discuss the FFT and its computational advantages in Section 4.11.

Filtering concepts are more intuitive in the frequency domain, and filter design
often is easier there. One way to take advantage of the properties of both domains
is to specify a filter in the frequency domain, compute its IDFT, and then use the
properties of the resulting, full-size spatial kernel as a guide for constructing smaller
kernels. This is illustrated next (keep in mind that the Fourier transform and its
inverse are linear processes (see Problem 4.24), so the discussion is limited to linear
filtering). In Example 4.15, we illustrate the converse, in which a spatial kernel is
given, and we obtain its full-size frequency domain representation. This approach is
useful for analyzing the behavior of small spatial kernels in the frequency domain.

Frequency domain filters can be used as guides for specifying the coefficients of
some of the small kernels we discussed in Chapter 3. Filters based on Gaussian func-
tions are of particular interest because, as noted in Table 4.4, both the forward and
inverse Fourier transforms of a Gaussian function are real Gaussian functions. We
limit the discussion to 1-D to illustrate the underlying principles. Two-dimensional
Gaussian transfer functions are discussed later in this chapter.

Let H u() denote the 1-D frequency domain Gaussian transfer function

 H u Ae u() = − 2 22s (4-107)

where s is the standard deviation of the Gaussian curve. The kernel in the spatial
domain is obtained by taking the inverse DFT of H u() (see Problem 4.48):

 h x Ae x() = −2 2 2 2 2

ps p s (4-108)

As mentioned in Table
4.4, the forward and
inverse Fourier trans-
forms of Gaussians are
valid only for continuous
variables. To use discrete
formulations, we sample
the continuous forms.

DIP4E_GLOBAL_Print_Ready.indb 269 6/16/2017 2:05:54 PM

270 Chapter 4 Filtering in the Frequency Domain

These two equations are important for two reasons: (1) They are a Fourier trans-
form pair, both components of which are Gaussian and real. This facilitates analysis
because we do not have to be concerned with complex numbers. In addition, Gauss-
ian curves are intuitive and easy to manipulate. (2) The functions behave recipro-
cally. When H u() has a broad profile (large value of s), h x() has a narrow profile,
and vice versa. In fact, as s approaches infinity, H u() tends toward a constant func-
tion and h x() tends toward an impulse, which implies no filtering in either domain.

Figures 4.36(a) and (b) show plots of a Gaussian lowpass filter transfer function
in the frequency domain and the corresponding function in the spatial domain. Sup-
pose that we want to use the shape of h x() in Fig. 4.36(b) as a guide for specifying
the coefficients of a small kernel in the spatial domain. The key characteristic of the
function in Fig. 4.36(b) is that all its values are positive. Thus, we conclude that we
can implement lowpass filtering in the spatial domain by using a kernel with all posi-
tive coefficients (as we did in Section 3.5). For reference, Fig. 4.36(b) also shows two
of the kernels discussed in that section. Note the reciprocal relationship between
the width of the Gaussian functions, as discussed in the previous paragraph. The nar-
rower the frequency domain function, the more it will attenuate the low frequencies,
resulting in increased blurring. In the spatial domain, this means that a larger kernel
must be used to increase blurring, as we illustrated in Example 3.11.

As you know from Section 3.7, we can construct a highpass filter from a lowpass
filter by subtracting a lowpass function from a constant. We working with Gauss-
ian functions, we can gain a little more control over filter function shape by using
a so-called difference of Gaussians, which involves two lowpass functions. In the
frequency domain, this becomes

 H u Ae Beu u() / /= −− −2
1
2 2

2
22 2s s (4-109)

with A B≥ and s s1 2> . The corresponding function in the spatial domain is

H(u)

u u

x x

H(u)

h(x)

1
16
–– �

h(x)

�1 �1 �1

�1 8 �1

�1 �1 �1

0 �1 0

�1 4 �1

0 �1 0

1 2 1

2

1
9
–– �

4 2

1 2 1

1 1 1

1 1 1

1 1 1

b
a

d
c

FIGURE 4.36
(a) A 1-D Gaussian
lowpass transfer
function in the
frequency domain.
(b) Corresponding
kernel in the spatial
domain. (c) Gauss-
ian highpass trans-
fer function in the
frequency domain.
(d) Corresponding
kernel. The small
2-D kernels shown
are kernels we used
in Chapter 3.

DIP4E_GLOBAL_Print_Ready.indb 270 6/16/2017 2:05:55 PM

4.7 The Basics of Filtering in the Frequency Domain 271

 h x Ae Bex x() = −− −2 21
2

2
22

1
2 2 2

2
2 2

ps psp s p s (4-110)

Figures 4.36(c) and (d) show plots of these two equations. We note again the reci-
procity in width, but the most important feature here is that h x() has a positive cen-
ter term with negative terms on either side. The small kernels shown in Fig. 4.36(d),
which we used in Chapter 3 for sharpening, “capture” this property, and thus illus-
trate how knowledge of frequency domain filtering can be used as the basis for
choosing coefficients of spatial kernels.

Although we have gone through significant effort to get here, be assured that it is
impossible to truly understand filtering in the frequency domain without the foun-
dation we have just established. In practice, the frequency domain can be viewed as
a “laboratory” in which we take advantage of the correspondence between frequen-
cy content and image appearance. As will be demonstrated numerous times later in
this chapter, some tasks that would be exceptionally difficult to formulate direct-
ly in the spatial domain become almost trivial in the frequency domain. Once we
have selected a specific filter transfer function via experimentation in the frequency
domain, we have the option of implementing the filter directly in that domain using
the FFT, or we can take the IDFT of the transfer function to obtain the equivalent
spatial domain function. As we showed in Fig. 4.36, one approach is to specify a
small spatial kernel that attempts to capture the “essence” of the full filter function
in the spatial domain. A more formal approach is to design a 2-D digital filter by
using approximations based on mathematical or statistical criteria, as we discussed
in Section 3.7.

EXAMPLE 4.15 : Obtaining a frequency domain transfer function from a spatial kernel.

In this example, we start with a spatial kernel and show how to generate its corresponding filter trans-
fer function in the frequency domain. Then, we compare the filtering results obtained using frequency
domain and spatial techniques. This type of analysis is useful when one wishes to compare the perfor-
mance of a given kernel against one or more “full” filter candidates in the frequency domain, or to gain a
deeper understanding about the performance of a kernel in the spatial domain. To keep matters simple,
we use the 3 3× vertical Sobel kernel from Fig. 3.50(e). Figure 4.37(a) shows a 600 600× -pixel image,
f x y(,), that we wish to filter, and Fig. 4.37(b) shows its spectrum.

Figure 4.38(a) shows the Sobel kernel, h x y(,) (the perspective plot is explained below). Because
the input image is of size 600 600× pixels and the kernel is of size 3 3× , we avoid wraparound error in
the frequency domain by padding f and h with zeros to size 602 602× pixels, according to Eqs. (4-100)
and (4-101). At first glance, the Sobel kernel appears to exhibit odd symmetry. However, its first element
is not 0, as required by Eq. (4-81). To convert the kernel to the smallest size that will satisfy Eq. (4-83),
we have to add to it a leading row and column of 0’s, which turns it into an array of size 4 4× . We can
embed this array into a larger array of zeros and still maintain its odd symmetry if the larger array is of
even dimensions (as is the 4 4× kernel) and their centers coincide, as explained in Example 4.10. The
preceding comments are an important aspect of filter generation. If we preserve the odd symmetry with
respect to the padded array in forming h x yp(,), we know from property 9 in Table 4.1 that H(,)u v will
be purely imaginary. As we show at the end of this example, this will yield results that are identical to
filtering the image spatially using the original kernel h x y(,). If the symmetry were not preserved, the
results would no longer be the same.

DIP4E_GLOBAL_Print_Ready.indb 271 6/16/2017 2:05:56 PM

272 Chapter 4 Filtering in the Frequency Domain

The procedure used to generate H(,)u v is: (1) multiply h x yp(,) by ()− +1 x y to center the frequency
domain filter; (2) compute the forward DFT of the result in (1) to generate H(,);u v (3) set the real
part of H(,)u v to 0 to account for parasitic real parts (we know that H has to be purely imaginary
because hp is real and odd); and (4) multiply the result by () .− +1 u v This last step reverses the multiplica-
tion of H(,)u v by () ,− +1 u v which is implicit when h x y(,) was manually placed in the center of h x yp(,).
Figure 4.38(a) shows a perspective plot of H(,),u v and Fig. 4.38(b) shows H(,)u v as an image. Note
the antisymmetry in this image about its center, a result of H(,)u v being odd. Function H(,)u v is used
as any other frequency domain filter transfer function. Figure 4.38(c) is the result of using the filter
transfer function just obtained to filter the image in Fig. 4.37(a) in the frequency domain, using the step-
by-step filtering procedure outlined earlier. As expected from a derivative filter, edges were enhanced
and all the constant intensity areas were reduced to zero (the grayish tone is due to scaling for display).
Figure 4.38(d) shows the result of filtering the same image in the spatial domain with the Sobel kernel
h x y(,), using the procedure discussed in Section 3.6. The results are identical.

4.8 IMAGE SMOOTHING USING LOWPASS FREQUENCY DOMAIN
FILTERS

The remainder of this chapter deals with various filtering techniques in the frequency
domain, beginning with lowpass filters. Edges and other sharp intensity transitions
(such as noise) in an image contribute significantly to the high frequency content
of its Fourier transform. Hence, smoothing (blurring) is achieved in the frequency
domain by high-frequency attenuation; that is, by lowpass filtering. In this section,
we consider three types of lowpass filters: ideal, Butterworth, and Gaussian. These
three categories cover the range from very sharp (ideal) to very smooth (Gaussian)
filtering. The shape of a Butterworth filter is controlled by a parameter called the
filter order. For large values of this parameter, the Butterworth filter approaches
the ideal filter. For lower values, the Butterworth filter is more like a Gaussian filter.
Thus, the Butterworth filter provides a transition between two “extremes.” All filter-
ing in this section follows the procedure outlined in the previous section, so all filter
transfer functions, H(,),u v are understood to be of size P Q× ; that is, the discrete

4.8

ba

FIGURE 4.37
(a) Image of a
building, and
(b) its Fourier
spectrum.

DIP4E_GLOBAL_Print_Ready.indb 272 6/16/2017 2:05:58 PM

4.8 Image Smoothing Using Lowpass Frequency Domain Filters 273

�1

�2

�1

0

0

0

1

2

1

ba
dc

FIGURE 4.38
(a) A spatial
kernel and per-
spective plot of
its corresponding
frequency domain
filter transfer
function.
(b) Transfer
function shown as
an image.
(c) Result of
filtering
Fig. 4.37(a) in the
frequency domain
with the transfer
function in (b).
(d) Result of
filtering the same
image in the
spatial domain
with the kernel
in (a). The results
are identical.

frequency variables are in the range u = −0 1 2 1, , , ,… P and v = −0 1 2 1, , , , ,… Q
where P and Q are the padded sizes given by Eqs. (4-100) and (4-101).

IDEAL LOWPASS FILTERS

A 2-D lowpass filter that passes without attenuation all frequencies within a circle of
radius from the origin, and “cuts off” all frequencies outside this, circle is called an
ideal lowpass filter (ILPF); it is specified by the transfer function

 H
D D

D D
(,)

(,)

(,)
u v

u v

u v
=

⎧
⎨
⎩

1

0
0

0

if

if

≤
>

 (4-111)

where D0 is a positive constant, and D(,)u v is the distance between a point (,)u v in
the frequency domain and the center of the P Q× frequency rectangle; that is,

 D u P Q(,)
/

u v v= −() + −()⎡
⎣

⎤
⎦2 22 2 1 2

 (4-112)

DIP4E_GLOBAL_Print_Ready.indb 273 6/16/2017 2:06:01 PM

274 Chapter 4 Filtering in the Frequency Domain

where, as before, P and Q are the padded sizes from Eqs. (4-102) and (4-103).
Figure 4.39(a) shows a perspective plot of transfer function H(,)u v and Fig. 4.39(b)
shows it displayed as an image. As mentioned in Section 4.3, the name ideal indicates
that all frequencies on or inside a circle of radius D0 are passed without attenuation,
whereas all frequencies outside the circle are completely attenuated (filtered out).
The ideal lowpass filter transfer function is radially symmetric about the origin. This
means that it is defined completely by a radial cross section, as Fig. 4.39(c) shows. A
2-D representation of the filter is obtained by rotating the cross section 360°.

For an ILPF cross section, the point of transition between the values H(,)u v = 1
and H(,)u v = 0 is called the cutoff frequency. In Fig. 4.39, the cutoff frequency is D0.
The sharp cutoff frequency of an ILPF cannot be realized with electronic compo-
nents, although they certainly can be simulated in a computer (subject to the con-
strain that the fastest possible transition is limited by the distance between pixels).

The lowpass filters in this chapter are compared by studying their behavior as a
function of the same cutoff frequencies. One way to establish standard cutoff fre-
quency loci using circles that enclose specified amounts of total image power PT ,
which we obtain by summing the components of the power spectrum of the padded
images at each point (,),u v for u = −0 1 2 1, , , ,… P and v = −0 1 2 1, , , , ;… Q that is,

 P PT

Q

u

P

=
=

−

=

−

∑∑ (,)u v
v 0

1

0

1

 (4-113)

where P(,)u v is given by Eq. (4-89). If the DFT has been centered, a circle of radius
D0 with origin at the center of the frequency rectangle encloses a percent of the
power, where

 a = ⎡
⎣
⎢

⎤
⎦
⎥∑∑100 P PT

u

(,)u v
v

 (4-114)

and the summation is over values of (,)u v that lie inside the circle or on its boundary.
Figures 4.40(a) and (b) show a test pattern image and its spectrum. The cir-

cles superimposed on the spectrum have radii of 10, 30, 60, 160, and 460 pixels,

v

u

H(u, v)

D(u, v)
D0

1

H(u, v)

u
v

ba c

FIGURE 4.39 (a) Perspective plot of an ideal lowpass-filter transfer function. (b) Function displayed as an image.
(c) Radial cross section.

DIP4E_GLOBAL_Print_Ready.indb 274 6/16/2017 2:06:04 PM

4.8 Image Smoothing Using Lowpass Frequency Domain Filters 275

respectively, and enclosed the percentages of total power listed in the figure caption.
The spectrum falls off rapidly, with close to 87% of the total power being enclosed
by a relatively small circle of radius 10. The significance of this will become evident
in the following example.

EXAMPLE 4.16 : Image smoothing in the frequency domain using lowpass filters.

Figure 4.41 shows the results of applying ILPFs with cutoff frequencies at the radii shown in Fig. 4.40(b).
Figure 4.41(b) is useless for all practical purposes, unless the objective of blurring is to eliminate all
detail in the image, except the “blobs” representing the largest objects. The severe blurring in this image
is a clear indication that most of the sharp detail information in the image is contained in the 13% power
removed by the filter. As the filter radius increases, less and less power is removed, resulting in less blur-
ring. Note that the images in Figs. 4.41(c) through (e) contain significant “ringing,” which becomes finer
in texture as the amount of high frequency content removed decreases. Ringing is visible even in the
image in which only 2% of the total power was removed [Fig. 4.41(e)]. This ringing behavior is a char-
acteristic of ideal filters, as we have mentioned several times before. Finally, the result for a = 99 4. % in
Fig. 4.41(f) shows very slight blurring and almost imperceptible ringing but, for the most part, this image
is close to the original. This indicates that little edge information is contained in the upper 0.6% of the
spectrum power removed by the ILPF.

It is clear from this example that ideal lowpass filtering is not practical. However, it is useful to study
the behavior of ILPFs as part of our development of filtering concepts. Also, as shown in the discussion
that follows, some interesting insight is gained by attempting to explain the ringing property of ILPFs
in the spatial domain.

ba

FIGURE 4.40 (a) Test pattern of size 688 688× pixels, and (b) its spectrum. The spectrum is dou-
ble the image size as a result of padding, but is shown half size to fit. The circles have radii of
10, 30, 60, 160, and 460 pixels with respect to the full-size spectrum. The radii enclose 86.9, 92.8,
95.1, 97.6, and 99.4% of the padded image power, respectively.

DIP4E_GLOBAL_Print_Ready.indb 275 6/16/2017 2:06:04 PM

276 Chapter 4 Filtering in the Frequency Domain

The blurring and ringing properties of ILPFs can be explained using the convolu-
tion theorem. Figure 4.42(a) shows an image of a frequency-domain ILPF transfer
function of radius 15 and size 1000 1000× pixels. Figure 4.42(b) is the spatial repre-
sentation, h x y(,), of the ILPF, obtained by taking the IDFT of (a) (note the ringing).
Figure 4.42(c) shows the intensity profile of a line passing through the center of (b).
This profile resembles a sinc function.† Filtering in the spatial domain is done by
convolving the function in Fig. 4.42(b) with an image. Imagine each pixel in an image
as being a discrete impulse whose strength is proportional to the intensity of the
image at that location. Convolving this sinc-like function with an impulse copies (i.e.,
shifts the origin of) the function to the location of the impulse. That is, convolution

† Although this profile resembles a sinc function, the transform of an ILPF is actually a Bessel function whose
derivation is beyond the scope of this discussion. The important point to keep in mind is that the inverse propor-
tionality between the “width” of the filter function in the frequency domain, and the “spread” of the width of the
lobes in the spatial function, still holds.

ba c
ed f

FIGURE 4.41 (a) Original image of size 688 688× pixels. (b)–(f) Results of filtering using ILPFs with cutoff frequencies
set at radii values 10, 30, 60, 160, and 460, as shown in Fig. 4.40(b). The power removed by these filters was 13.1, 7.2,
4.9, 2.4, and 0.6% of the total, respectively. We used mirror padding to avoid the black borders characteristic of zero
padding, as illustrated in Fig. 4.31(c).

DIP4E_GLOBAL_Print_Ready.indb 276 6/16/2017 2:06:04 PM

4.8 Image Smoothing Using Lowpass Frequency Domain Filters 277

makes a copy of the function in Fig. 4.42(b) centered on each pixel location in the
image. The center lobe of this spatial function is the principal cause of blurring, while
the outer, smaller lobes are mainly responsible for ringing. Because the “spread” of
the spatial function is inversely proportional to the radius of H(,),u v the larger D0
becomes (i,e, the more frequencies that are passed), the more the spatial function
approaches an impulse which, in the limit, causes no blurring at all when convolved
with the image. The converse happens as D0 becomes smaller. This type of recipro-
cal behavior should be routine to you by now. In the next two sections, we show that
it is possible to achieve blurring with little or no ringing, an important objective in
lowpass filtering.

GAUSSIAN LOWPASS FILTERS

Gaussian lowpass filter (GLPF) transfer functions have the form

 H e D(,) (,)/u v u v= − 2 22s (4-115)

where, as in Eq. (4-112), D(,)u v is the distance from the center of the P Q× fre-
quency rectangle to any point, (,)u v , contained by the rectangle. Unlike our earlier
expressions for Gaussian functions, we do not use a multiplying constant here in
order to be consistent with the filters discussed in this and later sections, whose
highest value is 1. As before, s is a measure of spread about the center. By letting
s = D0 , we can express the Gaussian transfer function in the same notation as other
functions in this section:

 H e D D(,) (,)/u v u v= − 2
0
22 (4-116)

where D0 is the cutoff frequency. When D D(,) ,u v = 0 the GLPF transfer function is
down to 0.607 of its maximum value of 1.0.

From Table 4.4, we know that the inverse Fourier transform of a frequency-
domain Gaussian function is Gaussian also. This means that a spatial Gaussian filter
kernel, obtained by computing the IDFT of Eq. (4-115) or (4-116), will have no
ringing. As property 13 of Table 4.4 shows, the same inverse relationship explained
earlier for ILPFs is true also of GLPFs. Narrow Gaussian transfer functions in the
frequency domain imply broader kernel functions in the spatial domain, and vice

ba c

FIGURE 4.42
(a) Frequency
domain ILPF
transfer function.
(b) Corresponding
spatial domain
kernel function.
(c) Intensity profile
of a horizontal line
through the center
of (b).

DIP4E_GLOBAL_Print_Ready.indb 277 6/16/2017 2:06:05 PM

278 Chapter 4 Filtering in the Frequency Domain

versa. Figure 4.43 shows a perspective plot, image display, and radial cross sections
of a GLPF transfer function.

EXAMPLE 4.17 : Image smoothing in the frequency domain using Gaussian lowpass filters.

Figure 4.44 shows the results of applying the GLPF of Eq. (4-116) to Fig. 4.44(a), with D0 equal to the five
radii in Fig. 4.40(b). Compared to the results obtained with an ILPF (Fig. 4.41), we note a smooth transi-
tion in blurring as a function of increasing cutoff frequency. The GLPF achieved slightly less smoothing
than the ILPF. The key difference is that we are assured of no ringing when using a GLPF. This is an
important consideration in practice, especially in situations in which any type of artifact is unacceptable,
as in medical imaging. In cases where more control of the transition between low and high frequencies
about the cutoff frequency are needed, the Butterworth lowpass filter discussed next presents a more
suitable choice. The price of this additional control over the filter profile is the possibility of ringing, as
you will see shortly.

BUTTERWORTH LOWPASS FILTERS

The transfer function of a Butterworth lowpass filter (BLPF) of order n, with cutoff
frequency at a distance D0 from the center of the frequency rectangle, is defined as

 H
D D

n(,)
(,)

u v
u v

=
+ []

1

1 0
2 (4-117)

where D(,)u v is given by Eq. (4-112). Figure 4.45 shows a perspective plot, image
display, and radial cross sections of the BLPF function. Comparing the cross section
plots in Figs. 4.39, 4.43, and 4.45, we see that the BLPF function can be controlled to
approach the characteristics of the ILPF using higher values of n, and the GLPF for
lower values of n, while providing a smooth transition in from low to high frequen-
cies. Thus, we can use a BLPF to approach the sharpness of an ILPF function with
considerably less ringing.

u

v
1.0

0.607
D0 � 10

D0 � 20

D0 � 40

D0 � 60

H(u, v)

D(u, v)

v
u

H(u, v)

0

ba c

FIGURE 4.43 (a) Perspective plot of a GLPF transfer function. (b) Function displayed as an image. (c) Radial cross
sections for various values of D0 .

DIP4E_GLOBAL_Print_Ready.indb 278 6/16/2017 2:06:07 PM

4.8 Image Smoothing Using Lowpass Frequency Domain Filters 279

ba c
ed f

FIGURE 4.44 (a) Original image of size 688 688× pixels. (b)–(f) Results of filtering using GLPFs with cutoff frequen-
cies at the radii shown in Fig. 4.40. Compare with Fig. 4.41. We used mirror padding to avoid the black borders
characteristic of zero padding.

0.5

D0

n � 1
n � 2

n � 3

n � 4

1.0

H(u, v)

D(u, v)

v
u

H(u, v)

u

v

ba c

FIGURE 4.45 (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Function displayed as an image.
(c) Radial cross sections of BLPFs of orders 1 through 4.

DIP4E_GLOBAL_Print_Ready.indb 279 6/16/2017 2:06:09 PM

280 Chapter 4 Filtering in the Frequency Domain

ba c
ed f

FIGURE 4.46 (a) Original image of size 688 688× pixels. (b)–(f) Results of filtering using BLPFs with cutoff frequen-
cies at the radii shown in Fig. 4.40 and n = 2 25. . Compare with Figs. 4.41 and 4.44. We used mirror padding to avoid
the black borders characteristic of zero padding.

EXAMPLE 4.18 : Image smoothing using a Butterworth lowpass filter.

Figures 4.46(b)-(f) show the results of applying the BLPF of Eq. (4-117) to Fig. 4.46(a), with cutoff
frequencies equal to the five radii in Fig. 4.40(b), and with n = 2 25. . The results in terms of blurring are
between the results obtained with using ILPFs and GLPFs. For example, compare Fig. 4.46(b), with
Figs. 4.41(b) and 4.44(b). The degree of blurring with the BLPF was less than with the ILPF, but more
than with the GLPF.

The spatial domain kernel obtainable from a BLPF of order 1 has no ringing.
Generally, ringing is imperceptible in filters of order 2 or 3, but can become sig-
nificant in filters of higher orders. Figure 4.47 shows a comparison between the spa-
tial representation (i.e., spatial kernels) corresponding to BLPFs of various orders
(using a cutoff frequency of 5 in all cases). Shown also is the intensity profile along

The kernels in Figs. 4.47(a)
through (d) were obtained
using the procedure out-
lined in the explanation of
Fig. 4.42.

DIP4E_GLOBAL_Print_Ready.indb 280 6/16/2017 2:06:09 PM

4.8 Image Smoothing Using Lowpass Frequency Domain Filters 281

ba dc
f he g

FIGURE 4.47 (a)–(d) Spatial representations (i.e., spatial kernels) corresponding to BLPF transfer functions of size
1000 1000× pixels, cut-off frequency of 5, and order 1, 2, 5, and 20, respectively. (e)–(h) Corresponding intensity
profiles through the center of the filter functions.

a horizontal scan line through the center of each spatial kernel. The kernel corre-
sponding to the BLPF of order 1 [see Fig. 4.47(a)] has neither ringing nor negative
values. The kernel corresponding to a BLPF of order 2 does show mild ringing and
small negative values, but they certainly are less pronounced than would be the case
for an ILPF. As the remaining images show, ringing becomes significant for higher-
order filters. A BLPF of order 20 has a spatial kernel that exhibits ringing charac-
teristics similar to those of the ILPF (in the limit, both filters are identical). BLPFs
of orders 2 to 3 are a good compromise between effective lowpass filtering and
acceptable spatial-domain ringing. Table 4.5 summarizes the lowpass filter transfer
functions discussed in this section.

ADDITIONAL EXAMPLES OF LOWPASS FILTERING

In the following discussion, we show several practical applications of lowpass filter-
ing in the frequency domain. The first example is from the field of machine per-
ception with application to character recognition; the second is from the printing
and publishing industry; and the third is related to processing satellite and aerial
images. Similar results can be obtained using the lowpass spatial filtering techniques
discussed in Section 3.5. We use GLPFs in all examples for consistency, but simi-
lar results can be obtained using BLPFs. Keep in mind that images are padded to
double size for filtering, as indicated by Eqs. (4-102) and (4-103), and filter transfer
functions have to match padded-image size. The values of D0 used in the following
examples reflect this doubled filter size.

DIP4E_GLOBAL_Print_Ready.indb 281 6/16/2017 2:06:10 PM

282 Chapter 4 Filtering in the Frequency Domain

Ideal Gaussian Butterworth

H
D D

D D
(,)

(,)

(,)
u v

u v

u v
=

≤
>

⎧
⎨
⎩

1

0
0

0

if

if
H e D D

(,)
(,)u v u v= − 2

0

22
H

D D
n(,)

(,)
u v

u v
=

+ []
1

1 0
2

TABLE 4.5
Lowpass filter transfer functions. D0 is the cutoff frequency, and n is the order of the Butterworth filter.

Figure 4.48 shows a sample of text of low resolution. One encounters text like
this, for example, in fax transmissions, duplicated material, and historical records.
This particular sample is free of additional difficulties like smudges, creases, and
torn sections. The magnified section in Fig. 4.48(a) shows that the characters in this
document have distorted shapes due to lack of resolution, and many of the charac-
ters are broken. Although humans fill these gaps visually without difficulty, machine
recognition systems have real difficulties reading broken characters. One approach
for handling this problem is to bridge small gaps in the input image by blurring
it. Figure 4.48(b) shows how well characters can be “repaired” by this simple pro-
cess using a Gaussian lowpass filter with D0 120= . It is typical to follow the type of

“repair” just described with additional processing, such as thresholding and thinning,
to yield cleaner characters. We will discuss thinning in Chapter 9 and thresholding
in Chapter 10.

Lowpass filtering is a staple in the printing and publishing industry, where it is
used for numerous preprocessing functions, including unsharp masking, as discussed
in Section 3.6. “Cosmetic” processing is another use of lowpass filtering prior to print-
ing. Figure 4.49 shows an application of lowpass filtering for producing a smoother,
softer-looking result from a sharp original. For human faces, the typical objective is
to reduce the sharpness of fine skin lines and small blemishes. The magnified sec-
tions in Figs. 4.49(b) and (c) clearly show a significant reduction in fine skin lines
around the subject’s eyes. In fact, the smoothed images look quite soft and pleasing.

Figure 4.50 shows two applications of lowpass filtering on the same image, but
with totally different objectives. Figure 4.50(a) is an 808 754× segment of a very high

We will cover unsharp
masking in the frequency
domain in Section 4.9.

ba

FIGURE 4.48
(a) Sample text
of low resolution
(note the broken
characters in the
magnified view).
(b) Result of
filtering with a
GLPF,
showing that gaps
in the broken
characters were
joined.

DIP4E_GLOBAL_Print_Ready.indb 282 6/16/2017 2:06:11 PM

4.8 Image Smoothing Using Lowpass Frequency Domain Filters 283

ba c

FIGURE 4.49 (a) Original 785 732× image. (b) Result of filtering using a GLPF with D0 150= . (c) Result of filtering
using a GLPF with D0 130= . Note the reduction in fine skin lines in the magnified sections in (b) and (c).

resolution radiometer (VHRR) image showing part of the Gulf of Mexico (dark)
and Florida (light) (note the horizontal sensor scan lines). The boundaries between
bodies of water were caused by loop currents. This image is illustrative of remotely
sensed images in which sensors have the tendency to produce pronounced scan lines
along the direction in which the scene is being scanned. (See Example 4.24 for an

ba c

FIGURE 4.50 (a) 808 754× satellite image showing prominent horizontal scan lines. (b) Result of filtering using a
GLPF with D0 50= . (c) Result of using a GLPF with D0 20= . (Original image courtesy of NOAA.)

DIP4E_GLOBAL_Print_Ready.indb 283 6/16/2017 2:06:12 PM

284 Chapter 4 Filtering in the Frequency Domain

illustration of imaging conditions that can lead for such degradations.) Lowpass fil-
tering is a crude (but simple) way to reduce the effect of these lines, as Fig. 4.50(b)
shows (we consider more effective approaches in Sections 4.10 and 5.4). This image
was obtained using a GLFP with D0 50= . The reduction in the effect of the scan
lines in the smoothed image can simplify the detection of macro features, such as the
interface boundaries between ocean currents.

Figure 4.50(c) shows the result of significantly more aggressive Gaussian lowpass
filtering with D0 20= . Here, the objective is to blur out as much detail as possible
while leaving large features recognizable. For instance, this type of filtering could be
part of a preprocessing stage for an image analysis system that searches for features
in an image bank. An example of such features could be lakes of a given size, such
as Lake Okeechobee in the lower eastern region of Florida, shown in Fig. 4.50(c) as
a nearly round dark region surrounded by a lighter region. Lowpass filtering helps
to simplify the analysis by averaging out features smaller than the ones of interest.

4.9 IMAGE SHARPENING USING HIGHPASS FILTERS

We showed in the previous section that an image can be smoothed by attenuating
the high-frequency components of its Fourier transform. Because edges and other
abrupt changes in intensities are associated with high-frequency components, image
sharpening can be achieved in the frequency domain by highpass filtering, which
attenuates low-frequencies components without disturbing high-frequencies in the
Fourier transform. As in Section 4.8, we consider only zero-phase-shift filters that
are radially symmetric. All filtering in this section is based on the procedure outlined
in Section 4.7, so all images are assumed be padded to size P Q× [see Eqs. (4-102)
and (4-103)], and filter transfer functions, H(,),u v are understood to be centered,
discrete functions of size P Q× .

IDEAL, GAUSSIAN, AND BUTTERWORTH HIGHPASS FILTERS FROM
LOWPASS FILTERS

As was the case with kernels in the spatial domain (see Section 3.7), subtracting a
lowpass filter transfer function from 1 yields the corresponding highpass filter trans-
fer function in the frequency domain:

 H HHP LP(,) (,)u v u v= −1 (4-118)

where HLP(,)u v is the transfer function of a lowpass filter. Thus, it follows from
Eq. (4-111) that an ideal highpass filter (IHPF) transfer function is given by

 H
D D

D D
(,)

(,)

(,)
u v

u v

u v
=

⎧
⎨
⎩

0

1
0

0

if

if

≤
>

 (4-119)

where, as before, D(,)u v is the distance from the center of the P Q× frequency rect-
angle, as given in Eq. (4-112). Similarly, it follows from Eq. (4-116) that the transfer
function of a Gaussian highpass filter (GHPF) transfer function is given by

4.9

In some applications of
highpass filtering, it is
advantageous to enhance
the high-frequencies of
the Fourier transform.

DIP4E_GLOBAL_Print_Ready.indb 284 6/16/2017 2:06:12 PM

4.9 Image Sharpening Using Highpass Filters 285

 H e D D(,) (,)u v u v= − −1
2

0
22 (4-120)

and, from Eq. (4-117), that the transfer function of a Butterworth highpass filter
(BHPF) is

 H
D D

n(,)
(,)

u v
u v

=
+ []

1

1 0
2 (4-121)

Figure 4.51 shows 3-D plots, image representations, and radial cross sections for
the preceding transfer functions. As before, we see that the BHPF transfer function
in the third row of the figure represents a transition between the sharpness of the
IHPF and the broad smoothness of the GHPF transfer function.

It follows from Eq. (4-118) that the spatial kernel corresponding to a highpass
filter transfer function in the frequency domain is given by

1

H(u, v)

D(u, v)

1

H(u, v)

D(u, v)

1

H(u, v)

D(u, v)

u
v

H(u, v)

u
v

H(u, v)

u
v

H(u, v) u

v

u

v

u

v

ba c
ed f
hg i

FIGURE 4.51
Top row:
Perspective plot,
image, and, radial
cross section of
an IHPF transfer
function. Middle
and bottom
rows: The same
sequence for
GHPF and BHPF
transfer functions.
(The thin image
borders were
added for clarity.
They are not part
of the data.)

DIP4E_GLOBAL_Print_Ready.indb 285 6/16/2017 2:06:16 PM

286 Chapter 4 Filtering in the Frequency Domain

h x y H

H

x y h x y

HP HP

LP

LP

(,) (,)

(,)

(,) (,)

= []
= −[]
= −

−

−

�

�

1

1 1

u v

u v

d

 (4-122)

where we used the fact that the IDFT of 1 in the frequency domain is a unit impulse
in the spatial domain (see Table 4.4). This equation is precisely the foundation for
the discussion in Section 3.7, in which we showed how to construct a highpass kernel
by subtracting a lowpass kernel from a unit impulse.

Figure 4.52 shows highpass spatial kernels constructed in just this manner, using
Eq. (4-122) with ILPF, GLPF, and BLPF transfer functions (the values of M, N, and
D0 used in this figure are the same as those we used for Fig. 4.42, and the BLPF is of
order 2). Figure 4.52(a) shows the resulting ideal highpass kernel obtained using Eq.
(4-122), and Fig. 4.52(b) is a horizontal intensity profile through the center of the ker-
nel. The center element of the profile is a unit impulse, visible as a bright dot in the
center of Fig. 4.52(a). Note that this highpass kernel has the same ringing properties
illustrated in Fig. 4.42(b) for its corresponding lowpass counterpart. As you will see
shortly, ringing is just as objectionable as before, but this time in images sharpened
with ideal highpass filters. The other images and profiles in Fig. 4.52 are for Gaussian
and Butterworth kernels. We know from Fig. 4.51 that GHPF transfer functions in
the frequency domain tend to have a broader “skirt” than Butterworth functions of
comparable size and cutoff frequency. Thus, we would expect Butterworth spatial

Recall that a unit impulse
in the spatial domain is
an array of 0’s with a 1 in
the center.

ba c
ed f

FIGURE 4.52 (a)–(c): Ideal, Gaussian, and Butterworth highpass spatial kernels obtained from
IHPF, GHPF, and BHPF frequency-domain transfer functions. (The thin image borders are
not part of the data.) (d)–(f): Horizontal intensity profiles through the centers of the kernels.

DIP4E_GLOBAL_Print_Ready.indb 286 6/16/2017 2:06:17 PM

4.9 Image Sharpening Using Highpass Filters 287

kernels to be “broader” than comparable Gaussian kernels, a fact that is confirmed
by the images and their profiles in Figs. 4.52. Table 4.6 summarizes the three highpass
filter transfer functions discussed in the preceding paragraphs.

EXAMPLE 4.19 : Highpass filtering of the character test pattern.

The first row of Fig. 4.53 shows the result of filtering the test pattern in Fig. 4.37(a) using IHPF, GHPF, and
BHPF transfer functions with D0 60= [see Fig. 4.37(b)] and n = 2 for the Butterworth filter. We know
from Chapter 3 that highpass filtering produces images with negative values. The images in Fig. 4.53 are
not scaled, so the negative values are clipped by the display at 0 (black). The key objective of highpass
filtering is to sharpen. Also, because the highpass filters used here set the DC term to zero, the images
have essentially no tonality, as explained earlier in connection with Fig. 4.30.

Our main objective in this example is to compare the behavior of the three highpass filters. As
Fig. 4.53(a) shows, the ideal highpass filter produced results with severe distortions caused by ringing.
For example, the blotches inside the strokes of the large letter “a” are ringing artifacts. By comparison,
neither Figs. 4.53(b) or (c) have such distortions. With reference to Fig. 4.37(b), the filters removed or
attenuated approximately 95% of the image energy. As you know, removing the lower frequencies of an
image reduces its gray-level content significantly, leaving mostly edges and other sharp transitions, as is
evident in Fig. 4.53. The details you see in the first row of the figure are contained in only the upper 5%
of the image energy.

The second row, obtained with D0 160= , is more interesting. The remaining energy of those images
is about 2.5%, or half, the energy of the images in the first row. However, the difference in fine detail
is striking. See, for example, how much cleaner the boundary of the large “a” is now, especially in the
Gaussian and Butterworth results. The same is true for all other details, down to the smallest objects.
This is the type of result that is considered acceptable when detection of edges and boundaries is impor-
tant.

Figure 4.54 shows the images in the second row of Fig. 4.53, scaled using Eqs. (2-31) and (2-32) to
display the full intensity range of both positive and negative intensities. The ringing in Fig. 4.54(a) shows
the inadequacy of ideal highpass filters. In contrast, notice the smoothness of the background on the
other two images, and the crispness of their edges.

EXAMPLE 4.20 : Using highpass filtering and thresholding for image enhancement.

Figure 4.55(a) is a 962 1026× image of a thumbprint in which smudges (a typical problem) are evident.
A key step in automated fingerprint recognition is enhancement of print ridges and the reduction of
smudges. In this example, we use highpass filtering to enhance the ridges and reduce the effects of

Ideal Gaussian Butterworth

H
D D

D D
(,)

(,)

(,)
u v

u v

u v
=

⎧
⎨
⎩

0

1
0

0

if

if

≤
>

H e D D(,) (,)u v u v= − −1
2

0
22 H

D D
n(,)

(,)
u v

u v
=

+ []
1

1 0
2

TABLE 4.6
Highpass filter transfer functions. D0 is the cutoff frequency and n is the order of the Butterworth transfer function.

DIP4E_GLOBAL_Print_Ready.indb 287 6/16/2017 2:06:18 PM

288 Chapter 4 Filtering in the Frequency Domain

ba c
ed f

FIGURE 4.53 Top row: The image from Fig. 4.40(a) filtered with IHPF, GHPF, and BHPF transfer functions using
D0 60= in all cases (n = 2 for the BHPF). Second row: Same sequence, but using D0 160= .

ba c

FIGURE 4.54 The images from the second row of Fig. 4.53 scaled using Eqs. (2-31) and (2-32) to show both positive
and negative values.

DIP4E_GLOBAL_Print_Ready.indb 288 6/16/2017 2:06:18 PM

4.9 Image Sharpening Using Highpass Filters 289

smudging. Enhancement of the ridges is accomplished by the fact that their boundaries are character-
ized by high frequencies, which are unchanged by a highpass filter. On the other hand, the filter reduces
low frequency components, which correspond to slowly varying intensities in the image, such as the
background and smudges. Thus, enhancement is achieved by reducing the effect of all features except
those with high frequencies, which are the features of interest in this case.

Figure 4.55(b) is the result of using a Butterworth highpass filter of order 4 with a cutoff frequency
of 50. A fourth-order filter provides a sharp (but smooth) transition from low to high frequencies, with
filtering characteristics between an ideal and a Gaussian filter. The cutoff frequency chosen is about 5%
of the long dimension of the image. The idea is for D0 to be close to the origin so that low frequencies are
attenuated but not completely eliminated, except for the DC term which is set to 0, so that tonality dif-
ferences between the ridges and background are not lost completely. Choosing a value for D0 between
5% and 10% of the long dimension of the image is a good starting point. Choosing a large value of
D0 would highlight fine detail to such an extent that the definition of the ridges would be affected. As
expected, the highpass filtered image has negative values, which are shown as black by the display.

A simple approach for highlighting sharp features in a highpass-filtered image is to threshold it by set-
ting to black (0) all negative values and to white (1) the remaining values. Figure 4.55(c) shows the result
of this operation. Note how the ridges are clear, and how the effect of the smudges has been reduced
considerably. In fact, ridges that are barely visible in the top, right section of the image in Fig. 4.55(a) are
nicely enhanced in Fig. 4.55(c). An automated algorithm would find it much easier to follow the ridges
on this image than it would on the original.

THE LAPLACIAN IN THE FREQUENCY DOMAIN

In Section 3.6, we used the Laplacian for image sharpening in the spatial domain. In
this section, we revisit the Laplacian and show that it yields equivalent results using
frequency domain techniques. It can be shown (see Problem 4.52) that the Laplacian
can be implemented in the frequency domain using the filter transfer function

 H u(,) ()u v v= − +4 2 2 2p (4-123)

ba c

FIGURE 4.55 (a) Smudged thumbprint. (b) Result of highpass filtering (a). (c) Result of thresholding (b). (Original
image courtesy of the U.S. National Institute of Standards and Technology.)

DIP4E_GLOBAL_Print_Ready.indb 289 6/16/2017 2:06:19 PM

290 Chapter 4 Filtering in the Frequency Domain

or, with respect to the center of the frequency rectangle, using the transfer function

H u P Q

D

(,)

(,)

u v v

u v

= − −() + −()⎡
⎣

⎤
⎦

= −

4 2 2

4

2 2 2

2 2

p

p

 (4-124)

where D(,)u v is the distance function defined in Eq. (4-112). Using this transfer
function, the Laplacian of an image, f x y(,), is obtained in the familiar manner:

2 1f x y H F(,) (,) (,)= []−� u v u v (4-125)

where F(,)u v is the DFT of f x y(,). As in Eq. (3-54), enhancement is implemented
using the equation

 g x y f x y c f x y(,) (,) (,)= + ∇2 (4-126)

Here, c = −1 because H(,)u v is negative. In Chapter 3, f x y(,) and
2 f x y(,) had
comparable values. However, computing
2 f x y(,) with Eq. (4-125) introduces DFT
scaling factors that can be several orders of magnitude larger than the maximum
value of f. Thus, the differences between f and its Laplacian must be brought into
comparable ranges. The easiest way to handle this problem is to normalize the val-
ues of f x y(,) to the range [,]0 1 (before computing its DFT) and divide
2 f x y(,) by
its maximum value, which will bring it to the approximate range [,].−1 1 (Remember,
the Laplacian has negative values.) Equation (4-126) can then be used.

We can write Eq. (4-126) directly in the frequency domain as

g x y F H F

H F

(,) (,) (,) (,)

(,) (,)

= −{ }
= −[]{ }
=

−

−

−

�

�

�

1

1

1

1

1

u v u v u v

u v u v

++⎡⎣ ⎤⎦{ }4 2 2p D F(,) (,)u v u v

 (4-127)

Although this result is elegant, it has the same scaling issues just mentioned, com-
pounded by the fact that the normalizing factor is not as easily computed. For this
reason, Eq. (4-126) is the preferred implementation in the frequency domain, with

2 f x y(,) computed using Eq. (4-125) and scaled using the approach mentioned in
the previous paragraph.

EXAMPLE 4.21 : Image sharpening in the frequency domain using the Laplacian.

Figure 4.56(a) is the same as Fig. 3.46(a), and Fig. 4.56(b) shows the result of using Eq. (4-126), in which
the Laplacian was computed in the frequency domain using Eq. (4-125). Scaling was done as described
in connection with Eq. (4-126). We see by comparing Figs. 4.56(b) and 3.46(d) that the frequency-domain
result is superior. The image in Fig. 4.56(b) is much sharper, and shows details that are barely visible in
3.46(d), which was obtained using the Laplacian kernel in Fig. 3.45(b), with a −8 in the center. The sig-
nificant improvement achieved in the frequency domain is not unexpected. The spatial Laplacian kernel

DIP4E_GLOBAL_Print_Ready.indb 290 6/16/2017 2:06:20 PM

4.9 Image Sharpening Using Highpass Filters 291

encompasses a very small neighborhood, while the formulation in Eqs. (4-125) and (4-126) encompasses
the entire image.

UNSHARP MASKING, HIGH-BOOST FILTERING, AND HIGH-
FREQUENCY-EMPHASIS FILTERING

In this section, we discuss frequency domain formulations of the unsharp mask-
ing and high-boost filtering image sharpening techniques introduced in Section 3.6.
Using frequency domain methods, the mask defined in Eq. (3-55) is given by

 g x y f x y f x ymask LP(,) (,) (,)= − (4-128)

with

 f x y H FLP LP(,) (,) (,)= []−� 1 u v u v (4-129)

where HLP(,)u v is a lowpass filter transfer function, and F(,)u v is the DFT of f x y(,).
Here, f x yLP(,) is a smoothed image analogous to f x y(,) in Eq. (3-55). Then, as in
Eq. (3-56),

 g x y f x y kg x y(,) (,) (,)= + mask (4-130)

This expression defines unsharp masking when k = 1 and high-boost filtering when
k > 1. Using the preceding results, we can express Eq. (4-130) entirely in terms of
frequency domain computations involving a lowpass filter:

 g x y k H F(,) (,) (,)= + −[]{ }−� 1 1 1Q RLP u v u v (4-131)

ba

FIGURE 4.56
(a) Original,
blurry image.
(b) Image
enhanced using
the Laplacian in
the frequency
domain.
Compare with
Fig. 3.46(d).
(Original image
courtesy of
NASA.)

DIP4E_GLOBAL_Print_Ready.indb 291 6/16/2017 2:06:22 PM

292 Chapter 4 Filtering in the Frequency Domain

We can express this result in terms of a highpass filter using Eq. (4-118):

 g x y kH FP(,) (,) (,)= +[]{ }−� 1 1 H u v u v (4-132)

The expression contained within the square brackets is called a high-frequency-
emphasis filter transfer function. As noted earlier, highpass filters set the dc term
to zero, thus reducing the average intensity in the filtered image to 0. The high-fre-
quency-emphasis filter does not have this problem because of the 1 that is added to
the highpass filter transfer function. Constant k gives control over the proportion of
high frequencies that influences the final result. A slightly more general formulation
of high-frequency-emphasis filtering is the expression

 g x y k k H F(,) (,) (,)= +[]{ }−� 1
1 2 HP u v u v (4-133)

where k1 0≥ offsets the value the transfer function so as not to zero-out the dc term
[see Fig. 4.30(c)], and k2 0> controls the contribution of high frequencies.

EXAMPLE 4.22 : Image enhancement using high-frequency-emphasis filtering.

Figure 4.57(a) shows a 503 720× -pixel chest X-ray image with a narrow range of intensity levels. The
objective of this example is to enhance the image using high-frequency-emphasis filtering. X-rays can-
not be focused in the same manner that optical lenses can, and the resulting images generally tend to be
slightly blurred. Because the intensities in this particular image are biased toward the dark end of the

ba
dc

FIGURE 4.57
(a) A chest X-ray.
(b) Result of
filtering with a
GHPF function.
(c) Result of
high-frequency-
emphasis filtering
using the same
GHPF. (d) Result
of performing
histogram
equalization on (c).
(Original image
courtesy of Dr.
Thomas R. Gest,
Division of
Anatomical
Sciences,
University of
Michigan Medical
School.)

DIP4E_GLOBAL_Print_Ready.indb 292 6/16/2017 2:06:22 PM

4.9 Image Sharpening Using Highpass Filters 293

gray scale, we also take this opportunity to give an example of how spatial domain processing can be
used to complement frequency-domain filtering.

Image artifacts, such as ringing, are unacceptable in medical image processing, so we use a Gaussian
highpass filter transfer function. Because the spatial representation of a GHPF function is Gaussian also,
we know that ringing will not be an issue. The value chosen for D0 should provide enough filtering to
sharpen boundaries while at the same time not over-sharpening minute details (such as noise). We used
D0 70= , approximately 10% of the long image dimension, but other similar values would work also.
Figure 4.57(b) is the result of highpass filtering the original image (scaled as the images in Fig. 4.54). As
expected, the image is rather featureless, but the important boundaries (e.g., the edges of the ribs) are
clearly delineated. Figure 4.57(c) shows the advantage of high-frequency-emphasis filtering, where we
used Eq. (4-133) with k1 0 5= . and k2 0 75= . . Although the image is still dark, the gray-level tonality has
been restored, with the added advantage of sharper features.

As we discussed in Section 3.3, an image characterized by intensity levels in a narrow range of the
gray scale is an ideal candidate for histogram equalization. As Fig. 4.57(d) shows, this was indeed an
appropriate method to further enhance the image. Note the clarity of the bone structure and other
details that simply are not visible in any of the other three images. The final enhanced image is a little
noisy, but this is typical of X-ray images when their gray scale is expanded. The result obtained using a
combination of high-frequency-emphasis and histogram equalization is superior to the result that would
be obtained by using either method alone.

HOMOMORPHIC FILTERING

The illumination-reflectance model introduced in Section 2.3 can be used to develop
a frequency domain procedure for improving the appearance of an image by simul-
taneous intensity range compression and contrast enhancement. From the discus-
sion in that section, an image f x y(,) can be expressed as the product of its illumina-
tion, i x y(,), and reflectance, r x y(,), components:

 f x y i x y r x y(,) (,) (,)= (4-134)

This equation cannot be used directly to operate on the frequency components of
illumination and reflectance because the Fourier transform of a product is not the
product of the transforms:

 � � �f x y i x y r x y(,) (,) (,)[] [] []≠ (4-135)

However, suppose that we define

z x y f x y

i x y r x y

(,) ln (,)

ln (,) ln (,)

=
= +

 (4-136)

Then,

� �

� �

z x y f x y

i x y r x y

(,) ln (,)

ln (,) ln (,)

[] = []
= [] + []

 (4-137)

If f(x, y) has any zero
values, a 1 must be added
to the image to avoid
having to deal with ln(0).
The 1 is then subtracted
from the final result.

DIP4E_GLOBAL_Print_Ready.indb 293 6/16/2017 2:06:23 PM

294 Chapter 4 Filtering in the Frequency Domain

or

 Z F Fi r(,) (,) (,)u v u v u v= + (4-138)

where Fi(,)u v and Fr (,)u v are the Fourier transforms of ln (,)i x y and ln (,),r x y
respectively.

We can filter Z(,)u v using a filter transfer function H(,)u v so that

S H Z

H F H Fi r

(,) (,) (,)

(,) (,) (,) (,)

u v u v u v

u v u v u v u v

=
= +

 (4-139)

The filtered image in the spatial domain is then

s x y S

H F H Fi r

(,) (,)

(,) (,) (,) (,)

= []
= [] + []

−

− −

�

� �

1

1 1

u v

u v u v u v u v
 (4-140)

By defining

 ′ = []−i x y H Fi(,) (,) (,)� 1 u v u v (4-141)

and

 ′ = []−r x y H Fr(,) (,) (,)� 1 u v u v (4-142)

we can express Eq. (4-140) in the form

 s x y i x y r x y(,) (,) (,)= ′ + ′ (4-143)

Finally, because z x y(,) was formed by taking the natural logarithm of the input
image, we reverse the process by taking the exponential of the filtered result to form
the output image:

g x y e

e e

i x y r x y

s x y

i x y r x y

(,)

(,) (,)

(,)

(,) (,)

=

=
=

′ ′

0 0

 (4-144)

where

 i x y ei x y
0(,) (,)= ′ (4-145)

and

 r x y er x y
0(,) (,)= ′ (4-146)

are the illumination and reflectance components of the output (processed) image.
Figure 4.58 is a summary of the filtering approach just derived. This method is

based on a special case of a class of systems known as homomorphic systems. In this
particular application, the key to the approach is the separation of the illumination

DIP4E_GLOBAL_Print_Ready.indb 294 6/16/2017 2:06:25 PM

4.9 Image Sharpening Using Highpass Filters 295

and reflectance components achieved in the form shown in Eq. (4-138). The homo-
morphic filter transfer function, H(,),u v then can operate on these components sepa-
rately, as indicated by Eq. (4-139).

The illumination component of an image generally is characterized by slow spa-
tial variations, while the reflectance component tends to vary abruptly, particularly
at the junctions of dissimilar objects. These characteristics lead to associating the low
frequencies of the Fourier transform of the logarithm of an image with illumination,
and the high frequencies with reflectance. Although these associations are rough
approximations, they can be used to advantage in image filtering, as illustrated in
Example 4.23.

A good deal of control can be gained over the illumination and reflectance com-
ponents with a homomorphic filter. This control requires specification of a filter
transfer function H(,)u v that affects the low- and high-frequency components of
the Fourier transform in different, controllable ways. Figure 4.59 shows a cross sec-
tion of such a function. If the parameters gL and gH are chosen so that gL < 1 and
gH ≥ 1, the filter function in Fig. 4.59 will attenuate the contribution made by the
low frequencies (illumination) and amplify the contribution made by high frequen-
cies (reflectance). The net result is simultaneous dynamic range compression and
contrast enhancement.

The shape of the function in Fig. 4.59 can be approximated using a highpass filter
transfer function. For example, using a slightly modified form of the GHPF function
yields the homomorphic function

H eH L
cD D

L(,) (,)u v u v= −() −⎡
⎣

⎤
⎦ +−g g g1

2
0
2

(4-147)

where D(,)u v is defined in Eq. (4-112) and constant c controls the sharpness of the
slope of the function as it transitions between gL and gH . This filter transfer function
is similar to the high-frequency-emphasis function discussed in the previous section.

A BHPF function would
work well too, with the
added advantage of more
control over the sharp-
ness of the transition
between gL and gH. The
disadvantage is the
possibility of ringing for
high values of n.

ln expDFT (DFT)�1H(u, v) g(x, y)f(x, y)

FIGURE 4.58
Summary of steps
in homomorphic
filtering.

gH

gL

(,)D u v

(,)H u vFIGURE 4.59
Radial cross
section of a
homomorphic
filter transfer
function..

DIP4E_GLOBAL_Print_Ready.indb 295 6/16/2017 2:06:26 PM

296 Chapter 4 Filtering in the Frequency Domain

EXAMPLE 4.23 : Homomorphic filtering.

Figure 4.60(a) shows a full body PET (Positron Emission Tomography) scan of size 1162 746× pixels.
The image is slightly blurred and many of its low-intensity features are obscured by the high intensity of
the “hot spots” dominating the dynamic range of the display. (These hot spots were caused by a tumor in
the brain and one in the lungs.) Figure 4.60(b) was obtained by homomorphic filtering Fig. 4.60(a) using
the filter transfer function in Eq. (4-147) with gL = 0 4. , gH = 3 0. , c = 5, and D0 20= . A radial cross sec-
tion of this function looks just like Fig. 4.59, but with a much sharper slope, and the transition between
low and high frequencies much closer to the origin.

Note in Fig. 4.60(b) how much sharper the hot spots, the brain, and the skeleton are in the processed
image, and how much more detail is visible in this image, including, for example, some of the organs, the
shoulders, and the pelvis region. By reducing the effects of the dominant illumination components (the
hot spots), it became possible for the dynamic range of the display to allow lower intensities to become
more visible. Similarly, because the high frequencies are enhanced by homomorphic filtering, the reflec-
tance components of the image (edge information) were sharpened considerably. The enhanced image
in Fig. 4.60(b) is a significant improvement over the original.

4.10 SELECTIVE FILTERING

The filters discussed in the previous two sections operate over the entire frequency
rectangle. There are applications in which it is of interest to process specific bands of
frequencies or small regions of the frequency rectangle. Filters in the first category

4.10

ba

FIGURE 4.60
(a) Full body PET
scan. (b) Image
enhanced using
homomorphic
filtering. (Original
image courtesy
of Dr. Michael E.
Casey, CTI Pet
Systems.)

DIP4E_GLOBAL_Print_Ready.indb 296 6/16/2017 2:06:26 PM

4.10 Selective Filtering 297

are called band filters. If frequencies in the band are filtered out, the band filter is
called a bandreject filter; similarly, if the frequencies are passed, the filter is called
a bandpass filter. Filters in the second category are called notch filters. These filters
are further qualified as being notch reject or notch pass filters, depending on whether
frequencies in the notch areas are rejected or passed.

BANDREJECT AND BANDPASS FILTERS

As you learned in Section 3.7, bandpass and bandreject filter transfer functions in
the frequency domain can be constructed by combining lowpass and highpass filter
transfer functions, with the latter also being derivable from lowpass functions (see
Fig. 3.52). In other words, lowpass filter transfer functions are the basis for forming
highpass, bandreject, and bandpass filter functions. Furthermore, a bandpass filter
transfer function is obtained from a bandreject function in the same manner that we
obtained a highpass from a lowpass transfer function:

 H HBP BR(,) (,)u v u v= −1 (4-148)

Figure 4.61(a) shows how to construct an ideal bandreject filter (IBRF) transfer
function. It consists of an ILPF and an IHPF function with different cutoff frequen-
cies. When dealing with bandpass functions, the parameters of interest are the width,
W, and the center, C0 , of the band. An equation for the IBRF function is easily
obtained by inspection from Fig, 4.61(a), as the leftmost entry in Table 4.7 shows.
The key requirements of a bandpass transfer function are: (1) the values of the func-
tion must be in the range [,];0 1 (2) the value of the function must be zero at a dis-
tance C0 from the origin (center) of the function; and (3) we must be able to specify
a value for W. Clearly, the IBRF function just developed satisfies these requirements.

Adding lowpass and highpass transfer functions to form Gaussian and Butter-
worth bandreject functions presents some difficulties. For example, Fig. 4.61(b)
shows a bandpass function formed as the sum of lowpass and highpass Gaussian
functions with different cutoff points. Two problems are immediately obvious: we
have no direct control over W, and the value of H(,)u v is not 0 at C0. We could

1.0

0C

(,)H u v

(,)D u v

W

1.0

0C

(,)H u v

(,)D u v

1.0

0C

(,)H u v

(,)D u v

1.0

0C

(,)H u v

(,)D u v

ba c d

FIGURE 4.61 Radial cross sections. (a) Ideal bandreject filter transfer function. (b) Bandreject transfer function formed
by the sum of Gaussian lowpass and highpass filter functions. (The minimum is not 0 and does not align with C0 .)
(c) Radial plot of Eq. (4-149). (The minimum is 0 and is properly aligned with C0 , but the value at the origin is
not 1.) (d) Radial plot of Eq. (4-150); this Gaussian-shape plot meets all the requirements of a bandreject filter
transfer function.

DIP4E_GLOBAL_Print_Ready.indb 297 6/16/2017 2:06:27 PM

298 Chapter 4 Filtering in the Frequency Domain

offset the function and scale it so that values fall in the range [,],0 1 but finding an
analytical solution for the point where the lowpass and highpass Gaussian functions
intersect is impossible, and this intersection would be required to solve for the cutoff
points in terms of C0. The only alternatives are trial-and-error or numerical methods.

Fortunately, instead of adding lowpass and highpass transfer function, an alterna-
tive is to modify the expressions for the Gaussian and Butterworth highpass transfer
functions so that they will satisfy the three requirements stated earlier. We illustrate
the procedure for a Gaussian function. In this case, we begin by changing the point
at which H(,)u v = 0 from D(,)u v = 0 to D C(,)u v = 0 in Eq. (4-120):

 H e

D C

W
(,)

(,)

u v

u v

= −
−

−()⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

0
2

2

 (4-149)

A plot of this function [Fig. 4.61(c)] shows that, below C0 , the function behaves as a
lowpass Gaussian function, at C0 the function will always be 0, and for values higher
than C0 the function behaves as a highpass Gaussian function. Parameter W is pro-
portional to the standard deviation and thus controls the “width” of the band. The
only problem remaining is that the function is not always 1 at the origin. A simple
modification of Eq. (4-149) removes this shortcoming:

 H e

D C
D W(,)

(,)
(,)

u v

u v

u v= −
− −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥1

2
0
2 2

 (4-150)

Now, the exponent is infinite when D(,) ,u v = 0 which makes the exponential term go
to zero and H(,)u v = 1 at the origin, as desired. In this modification of Eq. (4-149),
the basic Gaussian shape is preserved and the three requirements stated earlier are
satisfied. Figure 4.61(d) shows a plot of Eq. (4-150). A similar analysis leads to the
form of a Butterworth bandreject filter transfer function shown in Table 4.7.

Figure 4.62 shows perspective plots of the filter transfer functions just discussed.
At first glance the Gaussian and Butterworth functions appear to be about the same,
but, as before, the behavior of the Butterworth function is between the ideal and
Gaussian functions. As Fig. 4.63 shows, this is easier to see by viewing the three filter

The overall ratio in this
equation is squared so
that, as the distance
increases, Eqs. (4-149)
and (4-150) behave
approximately the same.

Ideal (IBRF) Gaussian (GBRF) Butterworth (BBRF)

H
C

W
D C

W
(,)

(,)
u v

u v
=

− +⎧
⎨
⎪

⎩⎪

0
2 2

1

0 0if

otherwise

≤ ≤
H e

D C
D W

(,)

(,)

(,)
u v

u v

u v= −
−

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

2
0
2

2

H
D W

D C

n(,)
(,)

(,)

u v
u v

u v

=

+
−

⎡

⎣
⎢

⎤

⎦
⎥

1

1 2
0
2

2

TABLE 4.7
Bandreject filter transfer functions. C0 is the center of the band, W is the width of the band, and D(,)u v is the dis-
tance from the center of the transfer function to a point (,)u v in the frequency rectangle.

DIP4E_GLOBAL_Print_Ready.indb 298 6/16/2017 2:06:29 PM

4.10 Selective Filtering 299

functions as images. Increasing the order of the Butterworth function would bring it
closer to the ideal bandreject transfer function.

NOTCH FILTERS

Notch filters are the most useful of the selective filters. A notch filter rejects (or
passes) frequencies in a predefined neighborhood of the frequency rectangle. Zero-
phase-shift filters must be symmetric about the origin (center of the frequency
rectangle), so a notch filter transfer function with center at (,)u v0 0 must have a
corresponding notch at location (,).− −u v0 0 Notch reject filter transfer functions are
constructed as products of highpass filter transfer functions whose centers have
been translated to the centers of the notches. The general form is:

 H H Hk
k

Q

kNR(,) (,) (,)u v u v u v=
=

−∏
1

 (4-151)

where Hk(,)u v and H k− (,)u v are highpass filter transfer functions whose centers are
at (,)u vk k and (,),− −u vk k respectively. These centers are specified with respect to
the center of the frequency rectangle, M N2 2, ,() where, as usual, M and N are the

ba c

FIGURE 4.62 Perspective plots of (a) ideal, (b) modified Gaussian, and (c) modified Butterworth (of order 1) bandre-
ject filter transfer functions from Table 4.7. All transfer functions are of size 512 512× elements, with C0 128= and
W = 60.

u
v

(,)H u v

u
v

H u v

u
v

(,)H u v (,)

ba c

FIGURE 4.63
(a) The ideal,
(b) Gaussian, and
(c) Butterworth
bandpass transfer
functions from
Fig. 4.62, shown
as images. (The
thin border lines
are not part of the
image data.)

DIP4E_GLOBAL_Print_Ready.indb 299 6/16/2017 2:06:34 PM

300 Chapter 4 Filtering in the Frequency Domain

number of rows and columns in the input image. Thus, the distance computations for
each filter transfer function are given by

 D u M u Nk k k(,) () ()
/

u v v v= − − + − −⎡⎣ ⎤⎦2 22 2 1 2
 (4-152)

and

 D u M u Nk k k− = − + + − +⎡⎣ ⎤⎦(,) () ()
/

u v v v2 22 2 1 2
 (4-153)

For example, the following is a Butterworth notch reject filter transfer function of
order n, containing three notch pairs:

 H
D D D Dk k

n
k k k

nNR(,)
(,) (,)

u v
u v u v

=
+ []

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ + []

⎡

⎣
⎢

= −
∏ 1

1

1

101

3

0⎢⎢

⎤

⎦
⎥
⎥

 (4-154)

where Dk(,)u v and D k− (,)u v are given by Eqs. (4-152) and (4-153). The constant D k0
is the same for each pair of notches, but it can be different for different pairs. Other
notch reject filter functions are constructed in the same manner, depending on the
highpass filter function chosen. As with the filters discussed earlier, a notch pass
filter transfer function is obtained from a notch reject function using the expression

 H HNP NR(,) (,)u v u v= −1 (4-155)

As the next two examples show, one of the principal applications of notch filter-
ing is for selectively modifying local regions of the DFT. Often, this type of pro-
cessing is done interactively, working directly with DFTs obtained without padding.
The advantages of working interactively with actual DFTs (as opposed to having to

“translate” from padded to actual frequency values) generally outweigh any wrap-
around errors that may result from not using padding in the filtering process. If nec-
essary, after an acceptable solution is obtained, a final result using padding can be
generated by adjusting all filter parameters to compensate for the padded DFT size.
The following two examples were done without padding. To get an idea of how DFT
values change as a function of padding, see Problem 4.42.

EXAMPLE 4.24 : Using notch filtering to remove moiré patterns from digitized printed media images.

Figure 4.64(a) is the scanned newspaper image used in Fig. 4.21, showing a prominent moiré pattern, and
Fig. 4.64(b) is its spectrum. The Fourier transform of a pure sine, which is a periodic function, is a pair of
conjugate symmetric impulses (see Table 4.4). The symmetric “impulse-like” bursts in Fig. 4.64(b) are a
result of the near periodicity of the moiré pattern. We can attenuate these bursts by using notch filtering.

Figure 4.64(c) shows the result of multiplying the DFT of Fig. 4.64(a) by a Butterworth notch reject
transfer function with D0 9= and n = 4 for all notch pairs (the centers of the notches are coincide with
the centers of the black circular regions in the figure). The value of the radius was selected (by visual
inspection of the spectrum) to encompass the energy bursts completely, and the value of n was selected
to produce notches with sharp transitions. The locations of the center of the notches were determined

DIP4E_GLOBAL_Print_Ready.indb 300 6/16/2017 2:06:35 PM

4.10 Selective Filtering 301

interactively from the spectrum. Figure 4.64(d) shows the result obtained with this filter transfer func-
tion, using the filtering procedure outlined in Section 4.7. The improvement is significant, considering
the low resolution and degree of degradation of the original image.

ba
dc

FIGURE 4.64
 (a) Sampled
newspaper
image showing a
moiré pattern.
(b) Spectrum.
(c) Fourier
transform
multiplied by
a Butterworth
notch reject filter
transfer function.
(d) Filtered image.

DIP4E_GLOBAL_Print_Ready.indb 301 6/16/2017 2:06:35 PM

302 Chapter 4 Filtering in the Frequency Domain

EXAMPLE 4.25 : Using notch filtering to remove periodic interference.

Figure 4.65(a) shows an image of part of the rings surrounding the planet Saturn. This image was cap-
tured by Cassini, the first spacecraft to enter the planet’s orbit. The nearly sinusoidal pattern visible in
the image was caused by an AC signal superimposed on the camera video signal just prior to digitizing
the image. This was an unexpected problem that corrupted some images from the mission. Fortunately,
this type of interference is fairly easy to correct by postprocessing. One approach is to use notch filtering.

Figure 4.65(b) shows the DFT spectrum. Careful analysis of the vertical axis reveals a series of
small bursts of energy near the origin which correspond to the nearly sinusoidal interference. A simple
approach is to use a narrow notch rectangle filter starting with the lowest frequency burst, and extending
for the remainder of the vertical axis. Figure 4.65(c) shows the transfer function of such a filter (white
represents 1 and black 0). Figure 4.65(d) shows the result of processing the corrupted image with this
filter. This result is a significant improvement over the original image.

To obtain and image of just the interference pattern, we isolated the frequencies in the vertical axis
using a notch pass transfer function, obtained by subtracting the notch reject function from 1 [see
Fig. 4.66(a)]. Then, as Fig. 4.66(b) shows, the IDFT of the filtered image is the spatial interference pattern.

ba
dc

FIGURE 4.65
(a) Image of
Saturn rings
showing nearly
periodic
interference.
(b) Spectrum.
(The bursts of
energy in the
vertical axis
near the origin
correspond to
the interference
pattern).
(c) A vertical
notch reject filter
transfer function.
(d) Result of
filtering.
(The thin black
border in (c) is
not part of the
data.) (Original
image courtesy
of Dr. Robert A.
West, NASA/
JPL.)

DIP4E_GLOBAL_Print_Ready.indb 302 6/16/2017 2:06:36 PM

4.11 The Fast Fourier Transform 303

4.11 THE FAST FOURIER TRANSFORM

We have focused attention thus far on theoretical concepts and on examples of fil-
tering in the frequency domain. One thing that should be clear by now is that com-
putational requirements in this area of image processing are not trivial. Thus, it is
important to develop a basic understanding of methods by which Fourier transform
computations can be simplified and speeded up. This section deals with these issues.

SEPARABILITY OF THE 2-D DFT

As mentioned in Table 4.3, the 2-D DFT is separable into 1-D transforms. We can
write Eq. (4-67) as

F e f x y e

F x e

j ux M

y

N

x

M
j y N

j ux M

(,) (,)

(,)

u v

v

v=

=

−

=

−

=

−
−

−

∑∑ 2

0

1

0

1
2

2

p p

p

xx

M

=

−

∑
0

1
 (4-156)

where

 F x f x y e
y

N
j y N(,) (,)v v=

=

−
−∑

0

1
2p (4-157)

For one value of x, and for v = −0 1 2 1, , , , ,… N we see that F x(,)v is the 1-D DFT of
one row of f x y(,). By varying x from 0 to M − 1 in Eq. (4-157), we compute a set of
1-D DFTs for all rows of f x y(,). The computations in Eq. (4-156) similarly are 1-D
transforms of the columns of F x(,).v Thus, we conclude that the 2-D DFT of f x y(,)
can be obtained by computing the 1-D transform of each row of f x y(,) and then
computing the 1-D transform along each column of the result. This is an important
simplification because we have to deal only with one variable at a time. A similar
development applies to computing the 2-D IDFT using the 1-D IDFT. However,
as we show in the following section, we can compute the IDFT using an algorithm

4.11

We could have formu-
lated the preceding
two equations to show
that a 2-D DFT can be
obtained by computing
the 1-D DFT of each
column of the input
image followed by 1-D
computations on the
rows of the result.

ba

FIGURE 4.66
(a) Notch pass
filter function
used to isolate
the vertical axis
of the DFT of Fig.
4.65(a).
(b) Spatial pattern
obtained by
computing the
IDFT of (a).

DIP4E_GLOBAL_Print_Ready.indb 303 6/16/2017 2:06:37 PM

304 Chapter 4 Filtering in the Frequency Domain

designed to compute the forward DFT, so all 2-D Fourier transform computations
are reduced to multiple passes of a 1-D algorithm designed for computing the 1-D
DFT.

COMPUTING THE IDFT USING A DFT ALGORITHM

Taking the complex conjugate of both sides of Eq. (4-68) and multiplying the results
by MN yields

 MNf x y F e j ux M y N
N

u

M
* * ()(,) (,)= − +

=

−

=

−

∑∑ u v v

v

2

0

1

0

1
p (4-158)

But, we recognize the form of the right side of this result as the DFT of F *(,).u v There-
fore, Eq. (4-158) indicates that if we substitute F *(,)u v into an algorithm designed to
compute the 2-D forward Fourier transform, the result will be MNf x y*(,). Taking
the complex conjugate and dividing this result by MN yields f x y(,), which is the
inverse of F(,).u v

Computing the 2-D inverse from a 2-D forward DFT algorithm that is based on
successive passes of 1-D transforms (as in the previous section) is a frequent source
of confusion involving the complex conjugates and multiplication by a constant, nei-
ther of which is done in the 1-D algorithms. The key concept to keep in mind is that
we simply input F *(,)u v into whatever forward algorithm we have. The result will be
MNf x y*(,). All we have to do with this result to obtain f x y(,) is to take its complex
conjugate and divide it by the constant MN. Of course, when f x y(,) is real, as typi-
cally is the case, then f x y f x y*(,) (,).=

THE FAST FOURIER TRANSFORM (FFT)

Work in the frequency domain would not be practical if we had to implement
Eqs. (4-67) and (4-68) directly. Brute-force implementation of these equations
requires on the order of MN()2 multiplications and additions. For images of moder-
ate size (say, 2048 2048× pixels), this means on the order of 17 trillion multiplica-
tions and additions for just one 2-D DFT, excluding the exponentials, which could be
computed once and stored in a look-up table. Without the discovery of the fast Fou-
rier transform (FFT), which reduces computations to the order of MN MNlog2 mul-
tiplications and additions, it is safe to say that the material presented in this chapter
would be of little practical value. The computational reductions afforded by the FFT
are impressive indeed. For example, computing the 2-D FFT of a 2048 2048× image
would require on the order of 92 million multiplication and additions, which is a
significant reduction from the one trillion computations mentioned above.

Although the FFT is a topic covered extensively in the literature on signal pro-
cessing, this subject matter is of such significance in our work that this chapter would
be incomplete if we did not provide an introduction explaining why the FFT works
as it does. The algorithm we selected to accomplish this objective is the so-called
successive-doubling method, which was the original algorithm that led to the birth
of an entire industry. This particular algorithm assumes that the number of samples
is an integer power of 2, but this is not a general requirement of other approaches

DIP4E_GLOBAL_Print_Ready.indb 304 6/16/2017 2:06:38 PM

4.11 The Fast Fourier Transform 305

(Brigham [1988]).We know from the previous section that 2-D DFTs can be imple-
mented by successive passes of the 1-D transform, so we need to focus only on the
FFT of one variable.

In derivations of the FFT, it is customary to express Eq. (4-44) in the form

 F u f x WM
ux

x

M

() = ()
=

−

∑
0

1

 (4-159)

for u = −0 1 2 1, , , , ,… M where

 W eM
j M= − 2p (4-160)

and M is assumed to be of the form

 M p= 2 (4-161)

where p is a positive integer. Then it follows that M can be expressed as

 M K= 2 (4-162)

with K being a positive integer also. Substituting Eq. (4-162) into Eq. (4-159) yields

F u f x W

f x W f x W

K
ux

x

K

K
u x

x

K

K
u x

() ()

() ()

=

= + +

=

−

()

=

−
+

∑

∑

2
0

2 1

2
2

0

1

2
22 2 1 11

0

1
()

=

−

∑
x

K
 (4-163)

However, it can be shown using Eq. (4-160) that W WK
ux

K
ux

2
2 = , so Eq. (4-163) can be

written as

 F u f x W f x W WK
ux

K
ux

x

K

K
u

x

K

() () ()= + +
=

−

=

−

∑∑ 2 2 1
0

1

2
0

1

 (4-164)

Defining

 F u f x WK
ux

x

K

even() ()=
=

−

∑ 2
0

1

 (4-165)

for u = −0 1 2 1, , , , ,… K and

 F u f x WK
ux

x

K

odd() ()= +
=

−

∑ 2 1
0

1

 (4-166)

for u = −0 1 2 1, , , , ,… K reduces Eq. (4-164) to

 F u F u F u W K
u() () ()= +even odd 2 (4-167)

DIP4E_GLOBAL_Print_Ready.indb 305 6/16/2017 2:06:39 PM

306 Chapter 4 Filtering in the Frequency Domain

Also, because W WM
u K

K
u+ = and W WK

u K
K

u
2 2

+ = − , it follows that

 F u K F u F u W K
u() () ()+ = −even odd 2 (4-168)

Analysis of Eqs. (4-165) through (4-168) reveals some important (and surprising)
properties of these expressions. An M-point DFT can be computed by dividing the
original expression into two parts, as indicated in Eqs. (4-167) and (4-168). Comput-
ing the first half of F u() requires evaluation of the two ()M 2 -point transforms giv-
en in Eqs. (4-165) and (4-166). The resulting values of F ueven() and F uodd() are then
substituted into Eq. (4-167) to obtain F u() for u = −0 1 2 2 1, , , , ().… M The other
half then follows directly from Eq. (4-168) without additional transform evaluations.

 It is of interest to examine the computational implications of the preceding pro-
cedure. Let �()p and �()p represent the number of complex multiplications and
additions, respectively, required to implement the method. As before, the number
of samples is 2p, where p is a positive integer. Suppose first that p = 1 so that the
number of samples is two. A two-point transform requires the evaluation of F();0
then F()1 follows from Eq. (4-168). To obtain F()0 requires computing Feven()0 and
Fodd().0 In this case K = 1 and Eqs. (4-165) and (4-166) are one-point transforms.
However, because the DFT of a single sample point is the sample itself, no multipli-
cations or additions are required to obtain Feven()0 and Fodd().0 One multiplication
of Fodd()0 by W2

0 and one addition yields F()0 from Eq. (4-167). Then F()1 follows
from Eq. (4-168) with one more addition (subtraction is considered to be the same
as addition). Because F Wodd()0 2

0 has been computed already, the total number of
operations required for a two-point transform consists of �()1 1= multiplication
and �()1 2= additions.

The next allowed value for p is 2. According to the preceding development, a four-
point transform can be divided into two parts. The first half of F u() requires evaluation
of two, two-point transforms, as given in Eqs. (4-165) and (4-166) for K = 2. A two-point
transform requires �()1 multiplications and �()1 additions. Therefore, evaluation of
these two equations requires a total of 2 1�() multiplications and 2 1�() additions. Two
further multiplications and additions are necessary to obtain F()0 and F()1 from Eq.
(4-167). Because F u W K

u
odd() 2 has been computed already for u = { }0 1, , two more

additions give F()2 and F().3 The total is then � �() ()2 2 1 2= + and � �() () .2 2 1 4= +
When p is equal to 3, two four-point transforms are needed to evaluate F ueven()

and F uodd(). They require 2 2�() multiplications and 2 2�() additions. Four more
multiplications and eight more additions yield the complete transform. The total
then is then � �() ()3 2 2 4= + multiplication and � �() ()3 2 2 8= + additions.

Continuing this argument for any positive integer p leads to recursive expressions
for the number of multiplications and additions required to implement the FFT:

 � �() ()p p pp= − + −2 1 2 11 ≥ (4-169)

and

DIP4E_GLOBAL_Print_Ready.indb 306 6/16/2017 2:06:43 PM

4.11 The Fast Fourier Transform 307

 � �() ()p p pp= − +2 1 2 1≥ (4-170)

where �()0 0= and �()0 0= because the transform of a single point does not
require any multiplication or additions.

The method just developed is called the successive doubling FFT algorithm
because it is based on computing a two-point transform from two one-point trans-
forms, a four-point transform from two two-point transforms, and so on, for any M
equal to an integer power of 2. It is left as an exercise (see Problem 4.63) to show
that

 �() logp M M= 1
2 2 (4-171)

and

 �() logn M M= 2 (4-172)

where M p= 2 .
The computational advantage of the FFT over a direct implementation of the 1-D

DFT is defined as

C M

M
M M

M
M

()
log

log

=

=

2

2

2

 (4-173)

where M2 is the number of operations required for a “brute force” implementation
of the 1-D DFT. Because it is assumed that M p= 2 , we can write Eq. (4-173) in
terms of p:

 C p
p

p

() = 2
 (4-174)

A plot of this function (Fig. 4.67) shows that the computational advantage increases
rapidly as a function of p. For example, when p = 15 (32,768 points), the FFT has
nearly a 2,200 to 1 advantage over a brute-force implementation of the DFT. Thus,
we would expect that the FFT can be computed nearly 2,200 times faster than the
DFT on the same machine. As you learned in Section 4.1, the FFT also offers signifi-
cant computational advantages over spatial filtering, with the cross-over between
the two approaches being for relatively small kernels.

There are many excellent sources that cover details of the FFT so we will not
dwell on this topic further (see, for example, Brigham [1988]). Most comprehensive
signal and image processing software packages contain generalized implementa-
tions of the FFT that do not require the number of points to be an integer power

DIP4E_GLOBAL_Print_Ready.indb 307 6/16/2017 2:06:44 PM

308 Chapter 4 Filtering in the Frequency Domain

1

C(p)

0

600

1200

1800

2400

2 3 4 5 6 7
p
8 9 10 11 12 13 14 15

2
()

p

C p p=

FIGURE 4.67
Computational
advantage of the
FFT over a direct
implementation
of the 1-D DFT.
The number of
samples is M p= 2 .
The computational
advantage increases
rapidly as a
function of p.

of 2 (at the expense of slightly less efficient computation). Free FFT programs also
are readily available, principally over the internet.

Summary, References, and Further Reading
The material in this chapter is a progression from sampling to the Fourier transform, and then to filtering in the
frequency domain. Some of the concepts, such as the sampling theorem, make very little sense if not explained in
the context of the frequency domain. The same is true of effects such as aliasing. Thus, the material developed in
the preceding sections is a solid foundation for understanding the fundamentals of 2-D digital signal processing. We
took special care to develop the material starting with basic principles, so that any reader with a modest mathemati-
cal background would be in a position not only to absorb the material, but also to apply it.

For complementary reading on the 1-D and 2-D continuous Fourier transforms, see the books by Bracewell
[1995, 2003]. These two books, together with Castleman [1996], Petrou and Petrou [2010], Brigham [1988], and
Smith [2003], provide additional background for the material in Sections 4.2 through 4.6. Sampling phenomena
such as aliasing and moiré patterns are topics amply illustrated in books on computer graphics, as exemplified by
Hughes and Andries [2013]. For additional general background on the material in Sections 4.7 through 4.11 see
Hall [1979], Jain [1989], Castleman [1996], and Pratt [2014]. For details on the software aspects of many of the ex-
amples in this chapter, see Gonzalez, Woods, and Eddins [2009].

Problems
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book
website: www.ImageProcessingPlace.com)

4.1 Answer the following:

(a) * Give an equation similar to Eq. (4-10), but
for an impulse located at t t= 0 .

(b) Repeat for Eq. (4-15).

(c) * Is it correct to say that d d() ()t a a t− = − in
general? Explain.

4.2 Repeat Example 4.1, but using the function

f t A() = for 0 ≤ <t T and f t() = 0 for all other
values of t. Explain the reason for any differences
between your results and the results in the exam-
ple.

4.3 What is the convolution of two, 1-D impulses:

(a) * d()t and d()?t t− 0

(b) d()t t− 0 and d()?t t+ 0

DIP4E_GLOBAL_Print_Ready.indb 308 6/16/2017 2:06:45 PM

http://www.ImageProcessingPlace.com

 Problems 309

4.4 * Use the sifting property of the impulse to show
that convolving a 1-D continuous function, f t(),
with an impulse located at t0 shifts the function
so that its origin is moved to the location of the
impulse (if the impulse is at the origin, the func-
tion is not shifted).

4.5 * With reference to Fig. 4.9, give a graphical illustra-
tion of an aliased pair of functions that are not
periodic.

4.6 With reference to Fig. 4.11:

(a) * Redraw the figure, showing what the dots
would look like for a sampling rate that
exceeds the Nyquist rate slightly.

(b) What is the approximate sampling rate repre-
sented by the large dots in Fig. 4.11?

(c) Approximately, what would be the lowest
sampling rate that you would use so that (1)
the Nyquist rate is satisfied, and (2) the sam-
ples look like a sine wave?

4.7 A function, f t(), is formed by the sum of three
functions, f t A t1() sin(),= p f t B t2 4() sin(),= p
and f t C t3 8() cos().= p

(a) Assuming that the functions extend to infin-
ity in both directions, what is the highest fre-
quency of f t()? (Hint: Start by finding the
period of the sum of the three functions.)

(b) * What is the Nyquist rate corresponding to
your result in (a)? (Give a numerical answer.)

(c) At what rate would you sample f t() so that
perfect recovery of the function from its
samples is possible?

4.8 * Show that �{ } (),e tj t t2
0

0p d m= − where t0 is a con-
stant. (Hint: Study Example 4.2.)

4.9 Show that the following expressions are true.
(Hint: Make use of the solution to Problem 4.8):

(a) * � cos() () ()2
1
20 0 0pm d m m d m mt{ } = − + +[]

(b) � sin() () ()2
1
20 0 0pm d m m d m mt

j
{ } = − − +[]

4.10 Consider the function f t nt() sin(),= 2p where
n is an integer. Its Fourier transform, F(),m is
purely imaginary (see Problem 4.9). Because the
transform, �F(),m of sampled data consists of peri-
odic copies of F(),m it follows that �F()m will also
be purely imaginary. Draw a diagram similar to

Fig. 4.6, and answer the following questions based
on your diagram (assume that sampling starts at
t = 0).

(a) * What is the period of f t()?

(b) * What is the frequency of f t()?

(c) * What would the sampled function and its
Fourier transform look like in general if f t()
is sampled at a rate higher than the Nyquist
rate?

(d) What would the sampled function look like
in general if f t() is sampled at a rate lower
than the Nyquist rate?

(e) What would the sampled function look like
if f t() is sampled at the Nyquist rate, with
samples taken at t T T= 0 2, , ,± ±� � … ?

4.11 * Prove the validity of the convolution theorem of
one continuous variable, as given in Eqs. (4-25)
and (4-26).

4.12 We explained in the paragraph after Eq. (4-36) that
arbitrarily limiting the duration of a band-limit-
ed function by multiplying it by a box function
would cause the function to cease being band
limited. Show graphically why this is so by limit-
ing the duration of the function f t t() cos()= 2 0pm
[the Fourier transform of this function is given in
Problem 4.9(a)]. (Hint: The transform of a box
function is given in Example 4.1. Use that result
in your solution, and also the fact that convolu-
tion of a function with an impulse shifts the func-
tion to the location of the impulse, in the sense
discussed in the solution of Problem 4.4.)

4.13 * Complete the steps that led from Eq. (4-37) to
Eq. (4-38).

4.14 Show that �F()m in Eq. (4-40) is infinitely periodic
in both directions, with period 1 �T .

4.15 Do the following:

(a) Show that Eqs. (4-42) and (4-43) are a Fou-
rier transform pair: f Fn m⇔ .

(b) * Show that Eqs. (4-44) and (4-45) also are a
Fourier transform pair: f x F u() ().⇔

You will need the following orthogonality prop-
erty in both parts of this problem:

 e e
M r uj rx M

x

M
j ux M2

0

1
2

0
p p

=

−
−∑ =

=⎧
⎨
⎩

if

otherwise

DIP4E_GLOBAL_Print_Ready.indb 309 6/16/2017 2:06:47 PM

310 Chapter 4 Filtering in the Frequency Domain

4.16 Show that both F u() and f x() in Eqs. (4-44) and
(4-45) are infinitely periodic with period M; that is,
F u F u kM() ()= + and f x f x M() (),= + where k
is an integer. [See Eqs. (4-46) and (4-47).]

4.17 Demonstrate the validity of the translation (shift)
properties of the following 1-D, discrete Fourier
transform pairs. (Hint: It is easier in part (b) to
work with the IDFT.)

(a) * f x e F u uj u x M() ()2
0

0p ⇔ −

(b) f x x F u e j ux M() ()− ⇔ −
0

2 0p

4.18 Show that the 1-D convolution theorem given in
Eqs. (4-25) and (4-26) also holds for discrete vari-
ables, but with the right side of Eq. (4-26) multi-
plied by 1 M. That is, show that

(a) * ()() ()(),f h x F H u� ⇔ i and

(b) ()() ()()f h x
M

F H ui ⇔ 1
�

4.19 * Extend the expression for 1-D convolution [see
Eq. (4-24)] to two continuous variables. Use t and
z for the variables on the left side of the expression
and a and b for the variables in the 2-D integral.

4.20 Use the sifting property of the 2-D impulse to
show that convolution of a 2-D continuous func-
tion, f t z(,), with an impulse shifts the function
so that its origin is located at the location of the
impulse. (If the impulse is at the origin, the func-
tion is copied exactly as it was.) (Hint: Study the
solution to Problem 4.4).

4.21 The image on the left in the figure below consists
of alternating stripes of black/white, each stripe

being two pixels wide. The image on the right
is the Fourier spectrum of the image on the left,
showing the dc term and the frequency terms cor-
responding to the stripes. (Remember, the spec-
trum is symmetric so all components, other than
the dc term, appear in two symmetric locations.)

(a) * Suppose that the stripes of an image of the

same size are four pixels wide. Sketch what
the spectrum of the image would look like,
including only the dc term and the two high-
est-value frequency terms, which correspond
to the two spikes in the spectrum above.

(b) Why are the components of the spectrum
limited to the horizontal axis?

(c) What would the spectrum look like for an
image of the same size but having stripes that
are one pixel wide? Explain the reason for
your answer.

(d) Are the dc terms in (a) and (c) the same, or
are they different? Explain.

4.22 A high-technology company specializes in devel-
oping imaging systems for digitizing images of
commercial cloth. The company has a new order
for 1,000 systems for digitizing cloth consisting of
repeating black and white vertical stripes, each
of width 2 cm. Optical and mechanical engineers
have already designed the front-end optics and
mechanical positioning mechanisms so that you
are guaranteed that every image your system digi-
tizes starts with a complete black vertical stripe
and ends with a complete white stripe. Every
image acquired will contain exactly 250 vertical
stripes. Noise and optical distortions are negligi-
ble. Having learned of your success in taking an
image processing course, the company employs
you to specify the resolution of the imaging chip
to be used in the new system. The optics can be
adjusted to project the field of view accurately
onto the area defined by the size of the chip you
specify. Your design will be implemented in hun-
dreds of locations, so cost is an important consid-
eration. What resolution chip (in terms of number
of imaging elements per horizontal line) would
you specify to avoid aliasing?

4.23 * We know from the discussion in Section 4.5 that
zooming or shrinking a digital image generally
causes aliasing. Give an example of an image that
would be free of aliasing if it were zoomed by
pixel replication.

4.24 With reference to the discussion on linearity in
Section 2.6, demonstrate that

(a) * The 2-D continuous Fourier transform is a
linear operator.

(b) The 2-D DFT is a linear operator also.

DIP4E_GLOBAL_Print_Ready.indb 310 6/16/2017 2:06:49 PM

 Problems 311

4.25 With reference to Eqs. (4-59) and (4-60), show the
validity of the following translation (shift) prop-
erties of 2-D, continuous Fourier transform pairs.
(Hint: Study the solutions to Problem 4.11.)

(a) * f t z e Fj t z(,) (,)()2
0 0

0 0p m n m m n n+ ⇔ − −

(b) f t t z z F e j t z(,) (,) ()− − ⇔ − +
0 0

2 0 0m n p m n

4.26 Show the validity of the following 2-D continuous
Fourier transform pairs.

(a) * d(,)t z ⇔ 1

(b) * 1 ⇔ d m n(,)

(c) * d p m n(,) ()t t z z e j t z− − ⇔ − +
0 0

2 0 0

(d) e t zj t t z z2
0 0

0 0p d m n() (,)+ ⇔ − −

(e) * cos()2 20 0pm pnt z+ ⇔

() (,) (,)1 2 0 0 0 0d m m n n d m m n n− − + + +[]
(f) sin()2 20 0pm pnt z+ ⇔

() (,) (,)1 2 0 0 0 0j d m m n n d m m n n− − − + +[]
4.27 With reference to Eqs. (4-71) and (4-72), dem-

onstrate the validity of the following translation
(shifting) properties of 2-D, discrete Fourier trans-
form pairs from Table 4.4. (Hint: Study the solu-
tions to Problem 4.17.)

(a) f x y e F u uj x M y N(,) (,)()2
0 0

0 0p u v v v+ ⇔ − −

(b) * f x x y y F e j x M y N(,) (,) ()− − ⇔ − +
0 0

2 0 0u v u vp

4.28 Show the validity of the following 2-D discrete
Fourier transform pairs from Table 4.4:

(a) * d(,)x y ⇔ 1

(b) * 1 ⇔ MNd(,)u v

(c) d p(,) ()x x y y e j ux M y N− − ⇔ − +
0 0

2 0 0v

(d) * e MN u uj u x M y N2
0 0

0p d() (,)+ ⇔ − −v0 v v

(e) cos()2 20 0pm pnx M y N+ ⇔

() (,) (,)MN u u u2 0 0 0 0d m d+ + + − −[]v v v v

(f) * sin()2 20 0pm pnx M y N+ ⇔

() (,) (,)jMN u u u2 0 0 0 0d m d+ + − − −[]v v v v

4.29 You are given a “canned” program that computes
the 2-D, DFT pair. However, it is not known
in which of the two equations the 1 MN term
is included or if it was split as two constants,
1 MN , in front of both the forward and inverse
transforms. How can you find where the term(s)
is (are) included if this information is not avail-
able in the documentation?

4.30 What is period and frequency of each of following
digital sequences (Hint: Think of these as square
waves.)

(a) * 0 1 0 1 0 1 0 1 . . .

(b) 0 0 1 0 0 1 0 0 1

(c) 0 0 1 1 0 0 1 1 0 0 1 1 . . .

4.31 With reference to the 1-D sequences in Example
4.10:

(a) * When M is even, why is the point at M 2 in
an even sequence always arbitrary?

(b) When M is even, why is the point at M 2 in
an odd sequence always 0?

4.32 We mentioned in Example 4.10 that embedding a
2-D array of even (odd) dimensions into a larger
array of zeros of even (odd) dimensions keeps the
symmetry of the original array, provided that the
centers coincide. Show that this is true also for
the following 1-D arrays (i.e., show that the larger
arrays have the same symmetry as the smaller
arrays). For arrays of even length, use arrays of
0’s ten elements long. For arrays of odd lengths,
use arrays of 0’s nine elements long.

(a) * a b c c b, , , ,{ }
(b) 0 0, , , , ,− −{ }b c c b

(c) a b c d c b, , , , ,{ }
(d) 0, , , ,− −{ }b c c b

4.33 In Example 4.10 we showed a Sobel kernel
embedded in a field of zeros. The kernel is of size
3 3× and its structure appears to be odd. However,
its first element is −1, and we know that in order
to be odd, the first (top, left) element a 2-D array
must be zero. Show the smallest field of zeros in
which you can embed the Sobel kernel so that it
satisfies the condition of oddness.

4.34 Do the following:

(a) * Show that the 6 6× array in Example 4.10 is
odd.

(b) What would happen if the minus signs are
changed to pluses?

(c) Explain why, as stated at the end of the exam-
ple, adding to the array another row of 0’s on
the top and column of 0’s to the left would
give a result that is neither even nor odd.

(d) Suppose that the row is added to the bot-

DIP4E_GLOBAL_Print_Ready.indb 311 6/16/2017 2:06:51 PM

312 Chapter 4 Filtering in the Frequency Domain

tom and the column to the right? Would that
change your answer in (c)?

4.35 The following problems are related to the proper-
ties in Table 4.1.

(a) * Demonstrate the validity of property 2.

(b) * Demonstrate the validity of property 4.

(c) Demonstrate the validity of property 5.

(d) * Demonstrate the validity of property 7.

(e) Demonstrate the validity of property 9.

4.36 You know from Table 4.3 that the dc term, F(,),0 0
of a DFT is proportional to the average value of
its corresponding spatial image. Assume that the
image is of size M N× . Suppose that you pad the
image with zeros to size P Q× , where P and Q
are given in Eqs. (4-102) and (4-103). Let Fp(,)0 0
denote the dc term of the DFT of the padded
function.

(a) * What is the ratio of the average values of the
original and padded images?

(b) Is F Fp(,) (,)?0 0 0 0= Support your answer
mathematically.

4.37 Demonstrate the validity of the periodicity prop-
erties (entry 8) in Table 4.3.

4.38 With reference to the 2-D discrete convolution
theorem in Eqs. (4-95) and (4-96) (entry 6 in
Table 4.4), show that

(a) (()(,))(,)f F Hh x y� ⇔ i u v

(b) * ()(,) () ()(,)f h x y MN F Hi ⇔ []1 � u v

(Hint: Study the solution to Problem 4.18.)

4.39 With reference to the 2-D discrete correlation
theorem (entry 7 in Table 4.4), show that

(a) * (()(,))(,) *f F Hh x y� ⇔ i u v

(b) ()(,) () ()(,)*f h x y MN F Hi ⇔ []1 � u v

4.40 * Demonstrate validity of the differentiation pairs
in entry 12 of Table 4.4.

4.41 We discussed in Section 4.6 the need for image
padding when filtering in the frequency domain.
We showed in that section that images could be
padded by appending zeros to the ends of rows
and columns in the image (see the following
image, on the left). Do you think it would make a
difference if we centered the image and surround-

ed it by a border of zeros instead (see image on
the right), but without changing the total number
of zeros used? Explain.

4.42 * The two Fourier spectra shown are of the same
image. The spectrum on the left corresponds to
the original image, and the spectrum on the right
was obtained after the image was padded with
zeros. Explain the significant increase in signal
strength along the vertical and horizontal axes of
the spectrum shown on the right.

4.43 Consider the images shown. The image on the
right was obtained by: (a) multiplying the image
on the left by () ;− +1 x y (b) computing the DFT; (c)
taking the complex conjugate of the transform;
(d) computing the inverse DFT; and (e) multiply-
ing the real part of the result by () .− +1 x y Explain
(mathematically) why the image on the right
appears as it does.

DIP4E_GLOBAL_Print_Ready.indb 312 6/16/2017 2:06:52 PM

 Problems 313

4.44 * The image in Fig. 4.34(b) was obtained by mul-
tiplying by −1 the phase angle of the image in
Fig. 4.34(a), and then computing the IDFT. With
reference to Eq. (4-86) and entry 5 in Table 4.1,
explain why this operation caused the image to be
reflected about both coordinate axes.

4.45 In Fig. 4.34(b) we saw that multiplying the phase
angle by −1 flipped the image with respect to both
coordinate axes. Suppose that instead we multi-
plied the magnitude of the transform by −1 and
then took the inverse DFT using the equation:
g x y F ej(,) (,) .(,)= −{ }−� 1 u v u vf

(a) * What would be the difference between the
two images g x y(,) and f x y(,)? [Remember,
F(,)u v is the DFT of f x y(,).]

(b) Assuming that they are both 8-bit images,
what would g x y(,) look like in terms of
f x y(,) if we scaled the intensity values of
g x y(,) using Eqs. (2-31) and (2-32), with
K = 255?

4.46 What is the source of the nearly periodic bright
spots on the horizontal axis of Fig. 4.40(b)?

4.47 * Consider a 3 3× spatial kernel that averages
the four closest neighbors of a point (,),x y but
excludes the point itself from the average.

(a) Find the equivalent filter transfer function,
H(,),u v in the frequency domain.

(b) Show that your result is a lowpass filter trans-
fer function.

4.48 * A continuous Gaussian lowpass filter in the con-
tinuous frequency domain has the transfer func-
tion

H Ae(,) ()m n m n s= − +2 2 22

Show that the corresponding filter kernel in the
continuous spatial domain is

h t z A e t z(,) ()= − +2 2 2 2 2 2 2

ps p s

4.49 Given an image of size M N× , you are asked to
perform an experiment that consists of repeat-
edly lowpass filtering the image in the frequency
domain using a Gaussian lowpass filter transfer
function with a cutoff frequency, D0 . You may
ignore computational round-off errors.

(a) * Let K denote the number of applications of

the filter. Can you predict (without doing the
experiment) what the result (image) will be
for a sufficiently large value of K? If so, what
is that result?

(b) Let cmin denote the smallest positive num-
ber representable in the machine in which
the proposed experiment will be conducted
(any number < cmin is automatically set to 0).
Derive an expression (in terms of cmin) for
the minimum value of K that will guarantee
the result that you predicted in (a).

4.50 As explained in Section 3.6, first-order deriva-
tives can be approximated by the spatial differ-
ences g f x y x f x y f x yx = ∂ ∂ = + −(,) (,) (,)1 and
g f x y y f x y f x yy = ∂ ∂ = + −(,) (,) (,).1

(a) Find the equivalent filter transfer func-
tions Hx(,)u v and Hy(,)u v in the frequency
domain.

(b) Show that these are highpass filter transfer
functions.

(Hint: Study the solution to Problem 4.47.)

4.51 Find the equivalent frequency-domain filter
transfer function for the Laplacian kernel shown
in Fig. 3.45(a). Show that your result behaves as a
highpass filter transfer function. (Hint: Study the
solution to Problem 4.47.)

4.52 Do the following:

(a) Show that the Laplacian of a continuous
function f t z(,) of two continuous variables,
t and z, satisfies the following Fourier trans-
form pair:

2 2 2 24f t z F(,) () (,)⇔ − +p m n m n

(Hint: See Eq. (3-50) and study entry 12 in
Table 4.4.)

(b) * The result in (a) is valid only for continuous
variables. How would you implement the
continuous frequency domain transfer func-
tion H(,) ()m n p m n= − +4 2 2 2 for discrete
variables?

(c) As you saw in Example 4.21, the Laplacian
result in the frequency domain was similar to
the result in Fig. 3.46(d), which was obtained
using a spatial kernel with a center coeffi-
cient equal to −8. Explain why the frequency
domain result was not similar instead to the

DIP4E_GLOBAL_Print_Ready.indb 313 6/16/2017 2:06:55 PM

314 Chapter 4 Filtering in the Frequency Domain

result in Fig. 3.46(c), which was obtained
using a kernel with a center coefficient of −4.

4.53 * Can you think of a way to use the Fourier trans-
form to compute (or partially compute) the
magnitude of the gradient [Eq. (3-58)] for use in
image differentiation? If your answer is yes, give
a method to do it. If your answer is no, explain
why.

4.54 As explained in Eq. (4-118), it is possible to obtain
the transfer function of a highpass filter from the
transfer function of a lowpass filter by subtract-
ing the latter from 1. What is the highpass spatial
kernel corresponding to the lowpass Gaussian
transfer function given in Problem 4.48?

4.55 Each spatial highpass kernel in Fig. 4.52 has a
strong spike in the center. Explain the source of
this spikes.

4.56 * Show how the Butterworth highpass filter trans-
fer function in Eq. (4-121) follows from its low-
pass counterpart in Eq. (4-117).

4.57 Consider the hand X-ray images shown below.
The image on the right was obtained by lowpass

(Original image courtesy of Dr. Thomas R. Gest, Division
of Anatomical Sciences, University of Michigan Medical
School.)

filtering the image on the left with a Gaussian
lowpass filter, and then highpass filtering the
result with a Gaussian highpass filter. The images
are of size 420 344× pixels and D0 25= was used
for both filter transfer functions.

(a) * Explain why the center part of the finger ring
in the figure on the right appears so bright
and solid, considering that the dominant
characteristic of the filtered image consists
of edges of the fingers and wrist bones, with
darker areas in between. In other words,
would you not expect the highpass filter to
render the constant area inside the ring as

dark, since a highpass filter eliminates the dc
term and reduces low frequencies?

(b) Do you think the result would have been dif-
ferent if the order of the filtering process had
been reversed?

4.58 Consider the sequence of images shown below.
The image on the top left is a segment of an X-ray
image of a commercial printed circuit board. The
images following it are, respectively, the results of
subjecting the image to 1, 10, and 100 passes of a
Gaussian highpass filter with D0 30= . The images
are of size 330 334× pixels, with each pixel being
represented by 8 bits of gray. The images were
scaled for display, but this has no effect on the
problem statement.

(Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

(a) It appears from the images that changes will
cease to take place after a finite number of
passes. Show whether or not this is the case.
You may ignore computational round-off
errors. Let cmin denote the smallest positive
number representable in the machine in
which the computations are conducted.

(b) If you determined in (a) that changes would
cease after a finite number of iterations,
determine the minimum value of that num-
ber.

(Hint: Study the solution to Problem 4.49.)

4.59 As illustrated in Fig. 4.57, combining high-fre-
quency emphasis and histogram equalization is

DIP4E_GLOBAL_Print_Ready.indb 314 6/16/2017 2:06:55 PM

 Problems 315

an effective method for achieving edge sharpen-
ing and contrast enhancement.

(a) * Show whether or not it matters which pro-
cess is applied first.

(b) If the order does matter, give a rationale for
using one or the other method first.

4.60 Use a Butterworth highpass filter to construct a
homomorphic filter transfer function that has the
same general shape as the function in Fig. 4.59.

4.61 Suppose that you are given a set of images gener-
ated by an experiment dealing with the analysis of
stellar events. Each image contains a set of bright,
widely scattered dots corresponding to stars in
a sparsely occupied region of the universe. The
problem is that the stars are barely visible as a
result of superimposed illumination from atmo-
spheric dispersion. If these images are modeled as
the product of a constant illumination component
with a set of impulses, give an enhancement pro-
cedure based on homomorphic filtering designed
to bring out the image components due to the
stars themselves.

4.62 How would you generate an image of only the
interference pattern visible in Fig. 4.64(a)?

4.63 * Show the validity of Eqs. (4-171) and (4-172).
(Hint: Use proof by induction.)

4.64 A skilled medical technician is assigned the job of
inspecting a set of images generated by an elec-
tron microscope experiment. In order to simplify
the inspection task, the technician decides to use
digital image enhancement and, to this end, exam-
ines a set of representative images and finds the
following problems: (1) bright, isolated dots that
are of no interest; (2) lack of sharpness; (3) not
enough contrast in some images; and (4) shifts
in the average intensity to values other than A0 ,
which is the average value required to perform
correctly certain intensity measurements. The
technician wants to correct these problems and
then display in white all intensities in a band
between intensities I1 and I2 , while keeping nor-
mal tonality in the remaining intensities. Propose
a sequence of processing steps that the technician
can follow to achieve the desired goal. You may
use techniques from both Chapters 3 and 4.

DIP4E_GLOBAL_Print_Ready.indb 315 6/16/2017 2:06:56 PM

DIP4E_GLOBAL_Print_Ready.indb 4 6/16/2017 2:01:57 PM

This page intentionally left blank

317

5 Image Restoration
and Reconstruction

Preview
As in image enhancement, the principal goal of restoration techniques is to improve an image in some
predefined sense. Although there are areas of overlap, image enhancement is largely a subjective pro-
cess, while image restoration is for the most part an objective process. Restoration attempts to recover
an image that has been degraded by using a priori knowledge of the degradation phenomenon. Thus,
restoration techniques are oriented toward modeling the degradation and applying the inverse process
in order to recover the original image. In this chapter, we consider linear, space invariant restoration
models that are applicable in a variety of restoration situations. We also discuss fundamental tech-
niques of image reconstruction from projections, and their application to computed tomography (CT),
one of the most important commercial applications of image processing, especially in health care.

Upon completion of this chapter, readers should:
 Be familiar with the characteristics of various

noise models used in image processing, and
how to estimate from image data the param-
eters that define those models.

 Be familiar with linear, nonlinear, and adap-
tive spatial filters used to restore (denoise)
images that have been degraded only by noise.

 Know how to apply notch filtering in the fre-
quency domain for removing periodic noise
in an image.

 Understand the foundation of linear, space
invariant system concepts, and how they can

be applied in formulating image restoration
solutions in the frequency domain.

 Be familiar with direct inverse filtering and its
limitations.

 Understand minimum mean-square-error (Wie-
ner) filtering and its advantages over direct
inverse filtering.

 Understand constrained, least-squares filter-
ing.

 Be familiar with the fundamentals of image
reconstruction from projections, and their
application to computed tomography.

Things which we see are not themselves what we see . . .
It remains completely unknown to us what the objects may be
by themselves and apart from the receptivity of our senses.
We know only but our manner of perceiving them.

Immanuel Kant

DIP4E_GLOBAL_Print_Ready.indb 317 6/16/2017 2:06:56 PM

318 Chapter 5 Image Restoration and Reconstruction

5.1 A MODEL OF THE IMAGE DEGRADATION/RESTORATION
PROCESS

In this chapter, we model image degradation as an operator � that, together with an
additive noise term, operates on an input image f x y(,) to produce a degraded image
g x y(,) (see Fig. 5.1). Given g x y(,), some knowledge about �, and some knowledge
about the additive noise term h(,),x y the objective of restoration is to obtain an
estimate ˆ(,)f x y of the original image. We want the estimate to be as close as possible
to the original image and, in general, the more we know about � and h, the closer
ˆ(,)f x y will be to f x y(,).

We will show in Section 5.5 that, if � is a linear, position-invariant operator, then
the degraded image is given in the spatial domain by

 g x y h f x y x y(,) ()(,) (,)= +� h (5-1)

where h x y(,) is the spatial representation of the degradation function. As in Chapters
3 and 4, the symbol “�” indicates convolution. It follows from the convolution theorem
that the equivalent of Eq. (5-1) in the frequency domain is

 G H F N(,) (,) (,) (,)u v u v u v u v= + (5-2)

where the terms in capital letters are the Fourier transforms of the corresponding
terms in Eq. (5-1). These two equations are the foundation for most of the restora-
tion material in this chapter.

In the following three sections, we work only with degradations caused by noise.
Beginning in Section 5.5 we look at several methods for image restoration in the
presence of both � and h.

5.2 NOISE MODELS

The principal sources of noise in digital images arise during image acquisition and/or
transmission. The performance of imaging sensors is affected by a variety of environ-
mental factors during image acquisition, and by the quality of the sensing elements
themselves. For instance, in acquiring images with a CCD camera, light levels and
sensor temperature are major factors affecting the amount of noise in the resulting
image. Images are corrupted during transmission principally by interference in the
transmission channel. For example, an image transmitted using a wireless network
might be corrupted by lightning or other atmospheric disturbance.

5.1

5.2

Degradation

DEGRADATION RESTORATION

Restoration
filter(s)

f(x, y)

g(x, y)

f(x, y)ˆ

Noise
h(x, y)

	�

FIGURE 5.1
A model of the
image
degradation/
restoration
process.

DIP4E_GLOBAL_Print_Ready.indb 318 6/16/2017 2:06:57 PM

5.2 Noise Models 319

SPATIAL AND FREQUENCY PROPERTIES OF NOISE

Relevant to our discussion are parameters that define the spatial characteristics of
noise, and whether the noise is correlated with the image. Frequency properties refer
to the frequency content of noise in the Fourier (frequency) domain discussed in
detail in Chapter 4. For example, when the Fourier spectrum of noise is constant, the
noise is called white noise. This terminology is a carryover from the physical prop-
erties of white light, which contains all frequencies in the visible spectrum in equal
proportions.

With the exception of spatially periodic noise, we assume in this chapter that
noise is independent of spatial coordinates, and that it is uncorrelated with respect
to the image itself (that is, there is no correlation between pixel values and the values
of noise components). Although these assumptions are at least partially invalid in
some applications (quantum-limited imaging, such as in X-ray and nuclear-medicine
imaging, is a good example), the complexities of dealing with spatially dependent
and correlated noise are beyond the scope of our discussion.

SOME IMPORTANT NOISE PROBABILITY DENSITY FUNCTIONS

In the discussion that follows, we shall be concerned with the statistical behavior of
the intensity values in the noise component of the model in Fig. 5.1. These may be
considered random variables, characterized by a probability density function (PDF),
as noted briefly as noted earlier. The noise component of the model in Fig. 5.1 is an
image, h(,),x y of the same size as the input image. We create a noise image for simu-
lation purposes by generating an array whose intensity values are random numbers
with a specified probability density function. This approach is true for all the PDFs
to be discussed shortly, with the exception of salt-and-pepper noise, which is applied
differently. The following are among the most common noise PDFs found in image
processing applications.

Gaussian Noise

Because of its mathematical tractability in both the spatial and frequency domains,
Gaussian noise models are used frequently in practice. In fact, this tractability is so
convenient that it often results in Gaussian models being used in situations in which
they are marginally applicable at best.

The PDF of a Gaussian random variable, z, is defined by the following familiar
expression:

 p z e z
z z

()
()

= −
− −

1

2

2

22

ps
s � �< < (5-3)

where z represents intensity, z is the mean (average) value of z, and s is its standard
deviation. Figure 5.2(a) shows a plot of this function. We know that for a Gaussian
random variable, the probability that values of z are in the range z ± s is approxi-
mately 0.68; the probability is about 0.95 that the values of z are in the range z ± 2s.

You may find it helpful
to take a look at the
Tutorials section of the
book website for a brief
review of probability.

DIP4E_GLOBAL_Print_Ready.indb 319 6/16/2017 2:06:58 PM

320 Chapter 5 Image Restoration and Reconstruction

Rayleigh Noise

The PDF of Rayleigh noise is given by

 p z b
z a e z a

z a

z a b

()
() ()

=
−⎧

⎨
⎪

⎩⎪

− −2

0

2

≥

<
 (5-4)

The mean and variance of z when this random variable is characterized by a Ray-
leigh PDF are

 z a b= + p 4 (5-5)

and

 s
p2 4

4
=

−()b
 (5-6)

Figure 5.2(b) shows a plot of the Rayleigh density. Note the displacement from the
origin, and the fact that the basic shape of the density is skewed to the right. The
Rayleigh density can be quite useful for modeling the shape of skewed histograms.

z

Rayleigh

p(z)

K
Erlang (Gamma)

z(b � 1)/a

z

p(z)

z

a
Exponential

p(z)

Pp

Salt-and-
pepper

p(z)

1
2ps

0.607
2ps

_
z � s

_
z 	 s

_
z

p(z)

2
b

0.607

za b
2

a 	

a(b � 1)b�1

(b � 1)!
K � e�(b�1)

Uniform

za b

p(z)

1
b � a

Gaussian

Ps

0 2 1k −V

1 ()s pP P− +

ba c
ed f

FIGURE 5.2 Some important probability density functions.

DIP4E_GLOBAL_Print_Ready.indb 320 6/16/2017 2:06:58 PM

5.2 Noise Models 321

Erlang (Gamma) Noise

The PDF of Erlang noise is

 p z
a z
b

e z

z

b b
az

() ()!= −
<

⎧

⎨
⎪

⎩
⎪

−
−

1

1
0

0 0

≥
 (5-7)

where the parameters are such that a b> , b is a positive integer, and “!” indicates
factorial. The mean and variance of z are

 z
b
a

= (5-8)

and

 s2
2= b

a
 (5-9)

Figure 5.2(c) shows a plot of this density. Although Eq. (5-9) often is referred to as
the gamma density, strictly speaking this is correct only when the denominator is
the gamma function, �().b When the denominator is as shown, the density is more
appropriately called the Erlang density.

Exponential Noise

The PDF of exponential noise is given by

 p z
ae z

z

az

() =
<

⎧
⎨
⎪

⎩⎪

− ≥ 0

0 0
 (5-10)

where a > 0. The mean and variance of z are

 z
a

= 1
 (5-11)

and

 s2
2

1=
a

 (5-12)

Note that this PDF is a special case of the Erlang PDF with b = 1. Figure 5.2(d)
shows a plot of the exponential density function.

Uniform Noise

The PDF of uniform noise is

 p z b a
a z b

() = −
⎧
⎨
⎪

⎩⎪

1

0

≤ ≤

otherwise
 (5-13)

DIP4E_GLOBAL_Print_Ready.indb 321 6/16/2017 2:07:00 PM

322 Chapter 5 Image Restoration and Reconstruction

The mean and variance of z are

 z
a b= +

2
 (5-14)

and

 s2
2

12
= −()b a

 (5-15)

Figure 5.2(e) shows a plot of the uniform density.

Salt-and-Pepper Noise

If k represents the number of bits used to represent the intensity values in a digital
image, then the range of possible intensity values for that image is [,]0 2 1k − (e.g.,
[,]0 255 for an 8-bit image). The PDF of salt-and-pepper noise is given by

 p z

P z

P z

P P z V

s
k

p

s p

()

()

=
= −
=

− + =

⎧

⎨
⎪

⎩
⎪

for

for

for

2 1

0

1

 (5-16)

where V is any integer value in the range 0 2 1< < −V k .
Let h(,)x y denote a salt-and-pepper noise image, whose intensity values satisfy

Eq. (5-16). Given an image, f x y(,), of the same size as h(,),x y we corrupt it with salt-
and-pepper noise by assigning a 0 to all locations in f where a 0 occurs in h. Similarly,
we assign a value of 2 1k − to all location in f where that value appears in h. Finally,
we leave unchanged all location in f where V occurs in h.

If neither Ps nor Pp is zero, and especially if they are equal, noise values satisfy-
ing Eq. (5-16) will be white ()2 1k − or black (0), and will resemble salt and pepper
granules distributed randomly over the image; hence the name of this type of noise.
Other names you will find used in the literature are bipolar impulse noise (unipolar
if either Ps or Pp is 0), data-drop-out noise, and spike noise. We use the terms impulse
and salt-and-pepper noise interchangeably.

The probability, P, that a pixel is corrupted by salt or pepper noise is P P Ps p= + .
It is common terminology to refer to P as the noise density. If, for example, Ps = 0 02.
and Pp = 0 01. , then P = 0 03. and we say that approximately 2% of the pixels in an
image are corrupted by salt noise, 1% are corrupted by pepper noise, and the noise
density is 3%, meaning that approximately 3% of the pixels in the image are cor-
rupted by salt-and-pepper noise.

Although, as you have seen, salt-and-pepper noise is specified by the probability
of each, and not by the mean and variance, we include the latter here for complete-
ness. The mean of salt-and-pepper noise is given by

 z P K P P Pp s p
k

s= + − − + −() () ()0 1 2 1 (5-17)

and the variance by

When image intensities
are scaled to the range
[0, 1], we replace by 1 the
value of salt in this equa-
tion. V then becomes a
fractional value in the
open interval (0, 1).

DIP4E_GLOBAL_Print_Ready.indb 322 6/16/2017 2:07:01 PM

5.2 Noise Models 323

 s2 2 2 20 1 2 1= − + − − − + −() () () ()z P K z P P Pp s p
k

s (5-18)

where we have included 0 as a value explicit in both equations to indicate that the
value of pepper noise is assumed to be zero.

As a group, the preceding PDFs provide useful tools for modeling a broad range
of noise corruption situations found in practice. For example, Gaussian noise arises
in an image due to factors such as electronic circuit noise and sensor noise caused by
poor illumination and/or high temperature. The Rayleigh density is helpful in char-
acterizing noise phenomena in range imaging. The exponential and gamma densities
find application in laser imaging. Impulse noise is found in situations where quick
transients, such as faulty switching, take place during imaging. The uniform density
is perhaps the least descriptive of practical situations. However, the uniform density
is quite useful as the basis for numerous random number generators that are used
extensively in simulations (Gonzalez, Woods, and Eddins [2009]).

EXAMPLE 5.1 : Noisy images and their histograms.

Figure 5.3 shows a test pattern used for illustrating the noise models just discussed. This is a suitable pat-
tern to use because it is composed of simple, constant areas that span the gray scale from black to near
white in only three increments. This facilitates visual analysis of the characteristics of the various noise
components added to an image.

Figure 5.4 shows the test pattern after addition of the six types of noise in Fig. 5.2. Below each image
is the histogram computed directly from that image. The parameters of the noise were chosen in each
case so that the histogram corresponding to the three intensity levels in the test pattern would start to
merge. This made the noise quite visible, without obscuring the basic structure of the underlying image.

We see a close correspondence in comparing the histograms in Fig. 5.4 with the PDFs in Fig. 5.2.
The histogram for the salt-and-pepper example does not contain a specific peak for V because, as you
will recall, V is used only during the creation of the noise image to leave values in the original image
unchanged. Of course, in addition to the salt and pepper peaks, there are peaks for the other intensi-
ties in the image. With the exception of slightly different overall intensity, it is difficult to differentiate

FIGURE 5.3
Test pattern used
to illustrate the
characteristics of
the PDFs from
Fig. 5.2.

DIP4E_GLOBAL_Print_Ready.indb 323 6/16/2017 2:07:01 PM

324 Chapter 5 Image Restoration and Reconstruction

ba c
ed f

FIGURE 5.4 Images and histograms resulting from adding Gaussian, Rayleigh, and Erlanga noise to the image in
Fig. 5.3.

visually between the first five images in Fig. 5.4, even though their histograms are significantly different.
The salt-and-pepper appearance of the image in Fig. 5.4(i) is the only one that is visually indicative of
the type of noise causing the degradation.

PERIODIC NOISE

Periodic noise in images typically arises from electrical or electromechanical inter-
ference during image acquisition. This is the only type of spatially dependent noise
we will consider in this chapter. As we will discuss in Section 5.4, periodic noise can
be reduced significantly via frequency domain filtering. For example, consider the
image in Fig. 5.5(a). This image is corrupted by additive (spatial) sinusoidal noise.
The Fourier transform of a pure sinusoid is a pair of conjugate impulses† located at

† Be careful not to confuse the term impulse in the frequency domain with the use of the same term in impulse
noise discussed earlier, which is in the spatial domain.

DIP4E_GLOBAL_Print_Ready.indb 324 6/16/2017 2:07:02 PM

5.2 Noise Models 325

hg i
k lj

FIGURE 5.4 (continued) Images and histograms resulting from adding exponential, uniform, and salt-and-pepper noise
to the image in Fig. 5.3. In the salt-and-pepper histogram, the peaks in the origin (zero intensity) and at the far end
of the scale are shown displaced slightly so that they do not blend with the page background.

the conjugate frequencies of the sine wave (see Table 4.4). Thus, if the amplitude of
a sine wave in the spatial domain is strong enough, we would expect to see in the
spectrum of the image a pair of impulses for each sine wave in the image. As shown
in Fig. 5.5(b), this is indeed the case. Eliminating or reducing these impulses in the
frequency domain will eliminate or reduce the sinusoidal noise in the spatial domain.
We will have much more to say in Section 5.4 about this and other examples of peri-
odic noise.

ESTIMATING NOISE PARAMETERS

The parameters of periodic noise typically are estimated by inspection of the Fourier
spectrum. Periodic noise tends to produce frequency spikes that often can be detect-
ed even by visual analysis. Another approach is to attempt to infer the periodicity

DIP4E_GLOBAL_Print_Ready.indb 325 6/16/2017 2:07:02 PM

326 Chapter 5 Image Restoration and Reconstruction

ba

FIGURE 5.5
(a) Image
corrupted by
additive
sinusoidal noise.
(b) Spectrum
showing two
conjugate
impulses caused
by the sine wave.
(Original
image courtesy of
NASA.)

of noise components directly from the image, but this is possible only in simplis-
tic cases. Automated analysis is possible in situations in which the noise spikes are
either exceptionally pronounced, or when knowledge is available about the general
location of the frequency components of the interference (see Section 5.4).

The parameters of noise PDFs may be known partially from sensor specifications,
but it is often necessary to estimate them for a particular imaging arrangement. If
the imaging system is available, one simple way to study the characteristics of system
noise is to capture a set of “flat” images. For example, in the case of an optical sen-
sor, this is as simple as imaging a solid gray board that is illuminated uniformly. The
resulting images typically are good indicators of system noise.

When only images already generated by a sensor are available, it is often possible
to estimate the parameters of the PDF from small patches of reasonably constant
background intensity. For example, the vertical strips shown in Fig. 5.6 were cropped
from the Gaussian, Rayleigh, and uniform images in Fig. 5.4. The histograms shown
were calculated using image data from these small strips. The histograms in Fig. 5.4
that correspond to the histograms in Fig. 5.6 are the ones in the middle of the group
of three in Figs. 5.4(d), (e), and (k).We see that the shapes of these histograms cor-
respond quite closely to the shapes of the corresponding histograms in Fig. 5.6. Their
heights are different due to scaling, but the shapes are unmistakably similar.

The simplest use of the data from the image strips is for calculating the mean and
variance of intensity levels. Consider a strip (subimage) denoted by S, and let p zS i(),
i L= −0 1 2 1, , , , ,… denote the probability estimates (normalized histogram values)
of the intensities of the pixels in S, where L is the number of possible intensities in
the entire image (e.g., 256 for an 8-bit image). As in Eqs. (2-69) and (2-70), we esti-
mate the mean and variance of the pixel values in S as follows:

 z z p zi S i
i

L

=
=

−

∑ ()
0

1

 (5-19)

and

DIP4E_GLOBAL_Print_Ready.indb 326 6/16/2017 2:07:03 PM

5.3 Restoration in the Presence of Noise Only—Spatial Filtering 327

ba c

FIGURE 5.6 Histograms computed using small strips (shown as inserts) from (a) the Gaussian, (b) the Rayleigh, and
(c) the uniform noisy images in Fig. 5.4.

 s2 2

0

1

= −
=

−

∑ () ()z z p zi S i
i

L

 (5-20)

The shape of the histogram identifies the closest PDF match. If the shape is approxi-
mately Gaussian, then the mean and variance are all we need because the Gaussian
PDF is specified completely by these two parameters. For the other shapes discussed
earlier, we use the mean and variance to solve for the parameters a and b. Impulse
noise is handled differently because the estimate needed is of the actual probability
of occurrence of white and black pixels. Obtaining this estimate requires that both
black and white pixels be visible, so a mid-gray, relatively constant area is needed in
the image in order to be able to compute a meaningful histogram of the noise. The
heights of the peaks corresponding to black and white pixels are the estimates of Pa

and Pb in Eq. (5-16).

5.3 RESTORATION IN THE PRESENCE OF NOISE ONLY—SPATIAL
FILTERING

When an image is degraded only by additive noise, Eqs. (5-1) and (5-2) become

 g x y f x y x y(,) (,) (,)= + h (5-21)

and

 G F N(,) (,) (,)u v u v u v= + (5-22)

The noise terms generally are unknown, so subtracting them from g x y(,) [(,)]G u v
to obtain f x y(,) [(,)]F u v typically is not an option. In the case of periodic noise,

5.3

DIP4E_GLOBAL_Print_Ready.indb 327 6/16/2017 2:07:03 PM

328 Chapter 5 Image Restoration and Reconstruction

sometimes it is possible to estimate N(,)u v from the spectrum of G(,),u v as noted
in Section 5.2. In this case N(,)u v can be subtracted from G(,)u v to obtain an esti-
mate of the original image, but this type of knowledge is the exception, rather than
the rule.

Spatial filtering is the method of choice for estimating f x y(,) [i.e., denoising
image g x y(,)] in situations when only additive random noise is present. Spatial fil-
tering was discussed in detail in Chapter 3. With the exception of the nature of the
computation performed by a specific filter, the mechanics for implementing all the
filters that follow are exactly as discussed in Sections 3.4 through 3.7.

MEAN FILTERS

In this section, we discuss briefly the noise-reduction capabilities of the spatial filters
introduced in Section 3.5 and develop several other filters whose performance is in
many cases superior to the filters discussed in that section.

Arithmetic Mean Filter

The arithmetic mean filter is the simplest of the mean filters (the arithmetic mean
filter is the same as the box filter we discussed in Chapter 3). Let Sxy represent the
set of coordinates in a rectangular subimage window (neighborhood) of size m n× ,
centered on point (,).x y The arithmetic mean filter computes the average value of
the corrupted image, g x y(,), in the area defined by Sxy. The value of the restored
image f̂ at point (,)x y is the arithmetic mean computed using the pixels in the
region defined by Sxy.In other words,

 ˆ(,) (,)
(,)

f x y
mn

g r c
r c Sxy

=
∈

∑1
 (5-23)

where, as in Eq. (2-43), r and c are the row and column coordinates of the pixels
contained in the neighborhood Sxy. This operation can be implemented using a spa-
tial kernel of size m n× in which all coefficients have value 1 mn. A mean filter
smooths local variations in an image, and noise is reduced as a result of blurring.

Geometric Mean Filter

An image restored using a geometric mean filter is given by the expression

 ˆ(,) (,)
(,)

f x y g r c
r c S

mn

xy

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∈

∏
1

 (5-24)

where indicates multiplication. Here, each restored pixel is given by the product of
all the pixels in the subimage area, raised to the power 1 mn. As Example 5.2 below
illustrates, a geometric mean filter achieves smoothing comparable to an arithmetic
mean filter, but it tends to lose less image detail in the process.

We assume that m and
n are odd integers. The
size of a mean filter is
the same as the size of
neighborhood Sxy; that
is, m � n.

DIP4E_GLOBAL_Print_Ready.indb 328 6/16/2017 2:07:05 PM

5.3 Restoration in the Presence of Noise Only—Spatial Filtering 329

Harmonic Mean Filter

The harmonic mean filtering operation is given by the expression

 ˆ(,)

(,)(,)

f x y
mn

g r cr c Sxy

=

∈
∑ 1

 (5-25)

The harmonic mean filter works well for salt noise, but fails for pepper noise. It does
well also with other types of noise like Gaussian noise.

Contraharmonic Mean Filter

The contraharmonic mean filter yields a restored image based on the expression

 ˆ(,)

(,)

(,)
(,)

(,)

f x y

g r c

g r c

Q

r c S

Q

r c S

xy

xy

=

+

∈

∈

∑
∑

1

 (5-26)

where Q is called the order of the filter. This filter is well suited for reducing or vir-
tually eliminating the effects of salt-and-pepper noise. For positive values of Q, the
filter eliminates pepper noise. For negative values of Q, it eliminates salt noise. It
cannot do both simultaneously. Note that the contraharmonic filter reduces to the
arithmetic mean filter if Q = 0, and to the harmonic mean filter if Q = −1.

EXAMPLE 5.2 : Image denoising using spatial mean filters.

Figure 5.7(a) shows an 8-bit X-ray image of a circuit board, and Fig. 5.7(b) shows the same image, but
corrupted with additive Gaussian noise of zero mean and variance of 400. For this type of image, this is
a significant level of noise. Figures 5.7(c) and (d) show, respectively, the result of filtering the noisy image
with an arithmetic mean filter of size 3 3× and a geometric mean filter of the same size. Although both
filters did a reasonable job of attenuating the contribution due to noise, the geometric mean filter did
not blur the image as much as the arithmetic filter. For instance, the connector fingers at the top of the
image are sharper in Fig. 5.7(d) than in (c). The same is true in other parts of the image.

Figure 5.8(a) shows the same circuit image, but corrupted now by pepper noise with probability of
0.1. Similarly, Fig. 5.8(b) shows the image corrupted by salt noise with the same probability. Figure 5.8(c)
shows the result of filtering Fig. 5.8(a) using a contraharmonic mean filter with Q = 1 5. , and Fig. 5.8(d)
shows the result of filtering Fig. 5.8(b) with Q = −1 5. . Both filters did a good job of reducing the effect of
the noise. The positive-order filter did a better job of cleaning the background, at the expense of slightly
thinning and blurring the dark areas. The opposite was true of the negative order filter.

In general, the arithmetic and geometric mean filters (particularly the latter) are well suited for ran-
dom noise like Gaussian or uniform noise. The contraharmonic filter is well suited for impulse noise, but
it has the disadvantage that it must be known whether the noise is dark or light in order to select the
proper sign for Q. The results of choosing the wrong sign for Q can be disastrous, as Fig. 5.9 shows. Some
of the filters discussed in the following sections eliminate this shortcoming.

DIP4E_GLOBAL_Print_Ready.indb 329 6/16/2017 2:07:06 PM

330 Chapter 5 Image Restoration and Reconstruction

ORDER-STATISTIC FILTERS

We introduced order-statistic filters in Section 3.6. We now expand the discussion
in that section and introduce some additional order-statistic filters. As noted in Sec-
tion 3.6, order-statistic filters are spatial filters whose response is based on ordering
(ranking) the values of the pixels contained in the neighborhood encompassed by
the filter. The ranking result determines the response of the filter.

Median Filter

The best-known order-statistic filter in image processing is the median filter, which,
as its name implies, replaces the value of a pixel by the median of the intensity levels
in a predefined neighborhood of that pixel:

 ˆ(,) (,)
(,)

f x y g r c
r c Sxy

= { }
∈

median (5-27)

where, as before, Sxy is a subimage (neighborhood) centered on point (,).x y The val-
ue of the pixel at (,)x y is included in the computation of the median. Median filters

ba
dc

FIGURE 5.7
(a) X-ray image
of circuit board.
(b) Image
corrupted by
additive Gaussian
noise. (c) Result
of filtering with
an arithmetic
mean filter of size
3 3× . (d) Result
of filtering with a
geometric mean
filter of the same
size. (Original
image courtesy of
Mr. Joseph E.
Pascente, Lixi,
Inc.)

DIP4E_GLOBAL_Print_Ready.indb 330 6/16/2017 2:07:06 PM

5.3 Restoration in the Presence of Noise Only—Spatial Filtering 331

ba
dc

FIGURE 5.8
(a) Image
corrupted by
pepper noise with
a probability of
0.1. (b) Image
corrupted by salt
noise with the
same
probability.
(c) Result of
filtering (a) with
a 3 3× contra-
harmonic filter
Q = 1 5. . (d) Result
of filtering (b)
with Q = −1 5. .

ba
FIGURE 5.9
Results of
selecting the
wrong sign in
contraharmonic
filtering.
(a) Result of
filtering Fig. 5.8(a)
with a
contraharmonic
filter of size 3 3×
and Q = −1 5. .
(b) Result of
filtering Fig. 5.8(b)
using Q = 1 5. .

DIP4E_GLOBAL_Print_Ready.indb 331 6/16/2017 2:07:07 PM

332 Chapter 5 Image Restoration and Reconstruction

are quite popular because, for certain types of random noise, they provide excellent
noise-reduction capabilities, with considerably less blurring than linear smoothing
filters of similar size. Median filters are particularly effective in the presence of both
bipolar and unipolar impulse noise, as Example 5.3 below shows. Computation of
the median and implementation of this filter are discussed in Section 3.6.

Max and Min Filters

Although the median filter is by far the order-statistic filter most used in image pro-
cessing, it is by no means the only one. The median represents the 50th percentile of
a ranked set of numbers, but you will recall from basic statistics that ranking lends
itself to many other possibilities. For example, using the 100th percentile results in
the so-called max filter, given by

 ˆ(,) max (,)
(,)

f x y g r c
r c Sxy

= { }
∈

 (5-28)

This filter is useful for finding the brightest points in an image or for eroding dark
regions adjacent to bright areas. Also, because pepper noise has very low values, it
is reduced by this filter as a result of the max selection process in the subimage area
Sxy.

The 0th percentile filter is the min filter:

 ˆ(,) min (,)
(,)

f x y g r c
r c Sxy

= { }
∈

 (5-29)

This filter is useful for finding the darkest points in an image or for eroding light
regions adjacent to dark areas. Also, it reduces salt noise as a result of the min opera-
tion.

Midpoint Filter

The midpoint filter computes the midpoint between the maximum and minimum
values in the area encompassed by the filter:

 ˆ(,) max (,) min (,)
(,) (,)

f x y g r c g r c
r c S r c Sxy xy

= { } + { }⎡
⎣⎢

⎤
⎦⎥∈ ∈

1
2

 (5-30)

Note that this filter combines order statistics and averaging. It works best for ran-
domly distributed noise, like Gaussian or uniform noise.

Alpha-Trimmed Mean Filter

Suppose that we delete the d 2 lowest and the d 2 highest intensity values of g r c(,)
in the neighborhood Sxy. Let g r cR(,) represent the remaining mn d− pixels in Sxy.
A filter formed by averaging these remaining pixels is called an alpha-trimmed mean
filter. The form of this filter is

DIP4E_GLOBAL_Print_Ready.indb 332 6/16/2017 2:07:08 PM

5.3 Restoration in the Presence of Noise Only—Spatial Filtering 333

 ˆ(,) (,)
(,)

f x y
mn d

g r cR
r c Sxy

=
− ∈

∑1
 (5-31)

where the value of d can range from 0 to mn − 1. When d = 0 the alpha-trimmed fil-
ter reduces to the arithmetic mean filter discussed earlier. If we choose d mn= − 1,
the filter becomes a median filter. For other values of d, the alpha-trimmed filter is
useful in situations involving multiple types of noise, such as a combination of salt-
and-pepper and Gaussian noise.

EXAMPLE 5.3 : Image denoising using order-statistic filters.

Figure 5.10(a) shows the circuit board image corrupted by salt-and-pepper noise with probabilities
P Ps p= = 0 1. . Figure 5.10(b) shows the result of median filtering with a filter of size 3 3× . The improve-
ment over Fig. 5.10(a) is significant, but several noise points still are visible. A second pass [on the im-
age in Fig. 5.10(b)] with the median filter removed most of these points, leaving only few, barely visible
noise points. These were removed with a third pass of the filter. These results are good examples of the
power of median filtering in handling impulse-like additive noise. Keep in mind that repeated passes
of a median filter will blur the image, so it is desirable to keep the number of passes as low as possible.

Figure 5.11(a) shows the result of applying the max filter to the pepper noise image of Fig. 5.8(a). The
filter did a reasonable job of removing the pepper noise, but we note that it also removed (set to a light
intensity level) some dark pixels from the borders of the dark objects. Figure 5.11(b) shows the result
of applying the min filter to the image in Fig. 5.8(b). In this case, the min filter did a better job than the
max filter on noise removal, but it removed some white points around the border of light objects. These
made the light objects smaller and some of the dark objects larger (like the connector fingers in the top
of the image) because white points around these objects were set to a dark level.

The alpha-trimmed filter is illustrated next. Figure 5.12(a) shows the circuit board image corrupted
this time by additive, uniform noise of variance 800 and zero mean. This is a high level of noise corrup-
tion that is made worse by further addition of salt-and-pepper noise with P Ps p= = 0 1. , as Fig. 5.12(b)
shows. The high level of noise in this image warrants use of larger filters. Figures 5.12(c) through (f) show
the results, respectively, obtained using arithmetic mean, geometric mean, median, and alpha-trimmed
mean (with d = 6) filters of size 5 5× . As expected, the arithmetic and geometric mean filters (especially
the latter) did not do well because of the presence of impulse noise. The median and alpha-trimmed
filters performed much better, with the alpha-trimmed filter giving slightly better noise reduction. For
example, note in Fig. 5.12(f) that the fourth connector finger from the top left is slightly smoother in
the alpha-trimmed result. This is not unexpected because, for a high value of d, the alpha-trimmed filter
approaches the performance of the median filter, but still retains some smoothing capabilities.

ADAPTIVE FILTERS

Once selected, the filters discussed thus far are applied to an image without regard
for how image characteristics vary from one point to another. In this section, we
take a look at two adaptive filters whose behavior changes based on statistical char-
acteristics of the image inside the filter region defined by the m n× rectangular
neighborhood Sxy. As the following discussion shows, adaptive filters are capable
of performance superior to that of the filters discussed thus far. The price paid for

DIP4E_GLOBAL_Print_Ready.indb 333 6/16/2017 2:07:09 PM

334 Chapter 5 Image Restoration and Reconstruction

ba

FIGURE 5.11
(a) Result of
filtering Fig. 5.8(a)
with a max filter
of size 3 3× .
(b) Result of
filtering Fig. 5.8(b)
with a min filter of
the same size.

ba
dc

FIGURE 5.10
(a) Image
corrupted by salt-
and- pepper noise
with probabilities
P Ps p= = 0 1. .
(b) Result of one
pass with a medi-
an filter of size
3 3× . (c) Result
of processing (b)
with this filter.
(d) Result of
processing (c)
with the same
filter.

DIP4E_GLOBAL_Print_Ready.indb 334 6/16/2017 2:07:09 PM

5.3 Restoration in the Presence of Noise Only—Spatial Filtering 335

ba
dc
fe

FIGURE 5.12
(a) Image
corrupted by
additive uniform
noise. (b) Image
additionally
corrupted by
additive salt-and-
pepper noise.
(c)-(f) Image (b)
filtered with a
5 5× :
(c) arithmetic
mean filter;
(d) geometric
mean filter;
(e) median filter;
(f) alpha-trimmed
mean filter, with
d = 6.

DIP4E_GLOBAL_Print_Ready.indb 335 6/16/2017 2:07:10 PM

336 Chapter 5 Image Restoration and Reconstruction

improved filtering power is an increase in filter complexity. Keep in mind that we
still are dealing with the case in which the degraded image is equal to the original
image plus noise. No other types of degradations are being considered yet.

Adaptive, Local Noise Reduction Filter

The simplest statistical measures of a random variable are its mean and variance.
These are reasonable parameters on which to base an adaptive filter because they
are quantities closely related to the appearance of an image. The mean gives a mea-
sure of average intensity in the region over which the mean is computed, and the
variance gives a measure of image contrast in that region.

Our filter is to operate on a neighborhood, Sxy , centered on coordinates (,).x y
The response of the filter at (,)x y is to be based on the following quantities: g x y(,),
the value of the noisy image at (,);x y sh

2 , the variance of the noise; zSxy
, the local

average intensity of the pixels in Sxy ; and sSxy

2 , the local variance of the intensities of
pixels in Sxy. We want the behavior of the filter to be as follows:

1. If sh
2 is zero, the filter should return simply the value of g at (,).x y This is the

trivial, zero-noise case in which g is equal to f at (,).x y

2. If the local variance sSxy

2 is high relative to sh
2 , the filter should return a value

close to g at (,).x y A high local variance typically is associated with edges, and
these should be preserved.

3. If the two variances are equal, we want the filter to return the arithmetic mean
value of the pixels in Sxy. This condition occurs when the local area has the same
properties as the overall image, and local noise is to be reduced by averaging.

An adaptive expression for obtaining ˆ(,)f x y based on these assumptions may be
written as

 ˆ(,) (,) (,)f x y g x y g x y z
S

S

xy

xy
= − −⎡

⎣
⎤
⎦

s

s

h
2

2 (5-32)

The only quantity that needs to be known a priori is sh
2 , the variance of the noise

corrupting image f x y(,). This is a constant that can be estimated from sample noisy
images using Eq. (3-26). The other parameters are computed from the pixels in
neighborhood Sxy using Eqs. (3-27) and (3-28).

An assumption in Eq. (5-32) is that the ratio of the two variances does not exceed 1,
which implies that s sh

2 2≤ Sxy
. The noise in our model is additive and position indepen-

dent, so this is a reasonable assumption to make because Sxy is a subset of g x y(,).
However, we seldom have exact knowledge of sh

2 . Therefore, it is possible for this
condition to be violated in practice. For that reason, a test should be built into an
implementation of Eq. (5-32) so that the ratio is set to 1 if the condition s sh

2 2> Sxy

occurs. This makes this filter nonlinear. However, it prevents nonsensical results (i.e.,
negative intensity levels, depending on the value of zSxy

) due to a potential lack of
knowledge about the variance of the image noise. Another approach is to allow the
negative values to occur, and then rescale the intensity values at the end. The result
then would be a loss of dynamic range in the image.

DIP4E_GLOBAL_Print_Ready.indb 336 6/16/2017 2:07:12 PM

5.3 Restoration in the Presence of Noise Only—Spatial Filtering 337

ba
dc

FIGURE 5.13
(a) Image
corrupted by
additive
Gaussian noise of
zero mean and a
variance of 1000.
(b) Result of
arithmetic mean
filtering.
(c) Result of
geometric mean
filtering.
(d) Result of
adaptive noise-
reduction filtering.
All filters used
were of size 7 7× .

EXAMPLE 5.4 : Image denoising using adaptive, local noise-reduction filtering.

Figure 5.13(a) shows the circuit-board image, corrupted this time by additive Gaussian noise of zero
mean and a variance of 1000. This is a significant level of noise corruption, but it makes an ideal test bed
on which to compare relative filter performance. Figure 5.13(b) is the result of processing the noisy im-
age with an arithmetic mean filter of size 7 7× . The noise was smoothed out, but at the cost of significant
blurring. Similar comments apply to Fig. 5.13(c), which shows the result of processing the noisy image
with a geometric mean filter, also of size 7 7× . The differences between these two filtered images are
analogous to those we discussed in Example 5.2; only the degree of blurring is different.

Figure 5.13(d) shows the result of using the adaptive filter of Eq. (5-32) with sh
2 1000= . The improve-

ments in this result compared with the two previous filters are significant. In terms of overall noise
reduction, the adaptive filter achieved results similar to the arithmetic and geometric mean filters. How-
ever, the image filtered with the adaptive filter is much sharper. For example, the connector fingers at the
top of the image are significantly sharper in Fig. 5.13(d). Other features, such as holes and the eight legs
of the dark component on the lower left-hand side of the image, are much clearer in Fig. 5.13(d).These
results are typical of what can be achieved with an adaptive filter. As mentioned earlier, the price paid
for the improved performance is additional filter complexity.

DIP4E_GLOBAL_Print_Ready.indb 337 6/16/2017 2:07:12 PM

338 Chapter 5 Image Restoration and Reconstruction

The preceding results used a value for sh
2 that matched the variance of the noise exactly. If this

quantity is not known, and the estimate used is too low, the algorithm will return an image that closely
resembles the original because the corrections will be smaller than they should be. Estimates that are
too high will cause the ratio of the variances to be clipped at 1.0, and the algorithm will subtract the
mean from the image more frequently than it would normally. If negative values are allowed and the
image is rescaled at the end, the result will be a loss of dynamic range, as mentioned previously.

Adaptive Median Filter

The median filter in Eq. (5-27) performs well if the spatial density of the salt-and-
pepper noise is low (as a rule of thumb, Ps and Pp less than 0.2). We show in the fol-
lowing discussion that adaptive median filtering can handle noise with probabilities
larger than these. An additional benefit of the adaptive median filter is that it seeks
to preserve detail while simultaneously smoothing non-impulse noise, something
that the “traditional” median filter does not do. As in all the filters discussed in the
preceding sections, the adaptive median filter also works in a rectangular neighbor-
hood, Sxy. Unlike those filters, however, the adaptive median filter changes (increas-
es) the size of Sxy during filtering, depending on certain conditions to be listed short-
ly. Keep in mind that the output of the filter is a single value used to replace the
value of the pixel at (,),x y the point on which region Sxy is centered at a given time.

We use the following notation:

z S

z
xymin

max

=

=

minimum intensity value in

maximum intensity vvalue in

median of intensity values in

int
med

S

z S

z

xy

xy

xy

=

= eensity at coordinates

maximum allowed size of

(,)

max

x y

S S= xxy

The adaptive median-filtering algorithm uses two processing levels, denoted level A
and level B, at each point (,) :x y

Level If go to Level

Else, increase the
medA z z z B: ,min max< <

 size of

If , repeat level

Else, output
max

med

S

S S A

z

xy

xy ≤

.

LLevel If output

Else output med

B z z z z

z
xy xy: ,

.
min max< <

where Sxy and Smax are odd, positive integers greater than 1. Another option in the
last step of level A is to output zxy instead of zmed. This produces a slightly less
blurred result, but can fail to detect salt (pepper) noise embedded in a constant
background having the same value as pepper (salt) noise.

DIP4E_GLOBAL_Print_Ready.indb 338 6/16/2017 2:07:13 PM

5.3 Restoration in the Presence of Noise Only—Spatial Filtering 339

This algorithm has three principal objectives: to remove salt-and-pepper (impulse)
noise, to provide smoothing of other noise that may not be impulsive, and to reduce
distortion, such as excessive thinning or thickening of object boundaries. The values
zmin and zmax are considered statistically by the algorithm to be “impulse-like” noise
components in region Sxy , even if these are not the lowest and highest possible pixel
values in the image.

With these observations in mind, we see that the purpose of level A is to deter-
mine if the median filter output, zmed, is an impulse (salt or pepper) or not. If the
condition z z zmin max< <med holds, then zmed cannot be an impulse for the reason
mentioned in the previous paragraph. In this case, we go to level B and test to see
if the point in the center of the neighborhood is itself an impulse (recall that (,)x y
is the location of the point being processed, and zxy is its intensity). If the condition
z z zxymin max< < is true, then the pixel at zxy cannot be the intensity of an impulse for
the same reason that zmed was not. In this case, the algorithm outputs the unchanged
pixel value, zxy. By not changing these “intermediate-level” points, distortion is
reduced in the filtered image. If the condition z z zxymin max< < is false, then either
z zxy = min or z zxy = max. In either case, the value of the pixel is an extreme value and
the algorithm outputs the median value, zmed, which we know from level A is not a
noise impulse. The last step is what the standard median filter does. The problem is
that the standard median filter replaces every point in the image by the median of
the corresponding neighborhood. This causes unnecessary loss of detail.

Continuing with the explanation, suppose that level A does find an impulse (i.e.,
it fails the test that would cause it to branch to level B). The algorithm then increas-
es the size of the neighborhood and repeats level A. This looping continues until
the algorithm either finds a median value that is not an impulse (and branches to
stage B), or the maximum neighborhood size is reached. If the maximum size is
reached, the algorithm returns the value of zmed. Note that there is no guarantee
that this value is not an impulse. The smaller the noise probabilities Pa and/or Pb are,
or the larger Smax is allowed to be, the less likely it is that a premature exit will occur.
This is plausible. As the density of the noise impulses increases, it stands to reason
that we would need a larger window to “clean up” the noise spikes.

Every time the algorithm outputs a value, the center of neighborhood Sxy is
moved to the next location in the image. The algorithm then is reinitialized and
applied to the pixels in the new region encompassed by the neighborhood. As indi-
cated in Problem 3.37, the median value can be updated iteratively from one loca-
tion to the next, thus reducing computational load.

EXAMPLE 5.5 : Image denoising using adaptive median filtering.

Figure 5.14(a) shows the circuit-board image corrupted by salt-and-pepper noise with probabilities
P Ps p= = 0 25. , which is 2.5 times the noise level used in Fig. 5.10(a). Here the noise level is high enough
to obscure most of the detail in the image. As a basis for comparison, the image was filtered first using a
7 7× median filter, the smallest filter required to remove most visible traces of impulse noise in this case.
Figure 5.14(b) shows the result. Although the noise was effectively removed, the filter caused significant

DIP4E_GLOBAL_Print_Ready.indb 339 6/16/2017 2:07:15 PM

340 Chapter 5 Image Restoration and Reconstruction

loss of detail in the image. For instance, some of the connector fingers at the top of the image appear
distorted or broken. Other image details are similarly distorted.

Figure 5.14(c) shows the result of using the adaptive median filter with Smax .= 7 Noise removal
performance was similar to the median filter. However, the adaptive filter did a much better job of pre-
serving sharpness and detail. The connector fingers are less distorted, and some other features that were
either obscured or distorted beyond recognition by the median filter appear sharper and better defined
in Fig. 5.14(c). Two notable examples are the feed-through small white holes throughout the board, and
the dark component with eight legs in the bottom, left quadrant of the image.

Considering the high level of noise in Fig. 5.14(a), the adaptive algorithm performed quite well. The
choice of maximum allowed size for Sxy depends on the application, but a reasonable starting value can
be estimated by experimenting with various sizes of the standard median filter first. This will establish a
visual baseline regarding expectations on the performance of the adaptive algorithm.

5.4 PERIODIC NOISE REDUCTION USING FREQUENCY DOMAIN
FILTERING

Periodic noise can be analyzed and filtered quite effectively using frequency domain
techniques. The basic idea is that periodic noise appears as concentrated bursts of
energy in the Fourier transform, at locations corresponding to the frequencies of
the periodic interference. The approach is to use a selective filter (see Section 4.10)
to isolate the noise. The three types of selective filters (bandreject, bandpass, and
notch) were discussed in detail in Section 4.10. There is no difference between how
these filters were used in Chapter 4, and the way they are used for image restora-
tion. In restoration of images corrupted by periodic interference, the tool of choice
is a notch filter. In the following discussion we will expand on the notch filtering
approach introduced in Section 4.10, and also develop a more powerful optimum
notch filtering method.

5.4

ba c

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities P Ps p= = 0 25. . (b) Result of filtering
with a 7 7× median filter. (c) Result of adaptive median filtering with Smax .= 7

DIP4E_GLOBAL_Print_Ready.indb 340 6/16/2017 2:07:16 PM

5.4 Periodic Noise Reduction Using Frequency Domain Filtering 341

MORE ON NOTCH FILTERING

As explained in Section 4.10, notch reject filter transfer functions are constructed
as products of highpass filter transfer functions whose centers have been translated
to the centers of the notches. The general form of a notch filter transfer function is

 H H Hk
k

Q

kNR(,) (,) (,)u v u v u v=
=

−∏
1

 (5-33)

where Hk(,)u v and H k− (,)u v are highpass filter transfer functions whose centers
are at (,)u vk k and (,),− −u vk k respectively.† These centers are specified with respect
to the center of the frequency rectangle, floor(floorM N2 2), () ,[] where, as usual,
M and N are the number of rows and columns in the input image. Thus, the distance
computations for the filter transfer functions are given by

 D u M u Nk k k(,) () ()
/

u v v v= − − + − −⎡⎣ ⎤⎦2 22 2 1 2
 (5-34)

and

 D u M u Nk k k− = − + + − +⎡⎣ ⎤⎦(,) () ()
/

u v v v2 22 2 1 2
 (5-35)

For example, the following is a Butterworth notch reject filter transfer function of
order n with three notch pairs:

 H
D D D Dk k

n
k k k

nNR(,)
(,) (,)

u v
u v u v

=
+ []

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ + []

⎡

⎣
⎢

= −
∏ 1

1

1

101

3

0⎢⎢

⎤

⎦
⎥
⎥

 (5-36)

Because notches are specified as symmetric pairs, the constant D k0 is the same for
each pair. However, this constant can be different from one pair to another. Other
notch reject filter functions are constructed in the same manner, depending on the
highpass filter function chosen. As explained in Section 4.10, a notch pass filter
transfer function is obtained from a notch reject function using the expression

 H HNP NR(,) (,)u v u v= −1 (5-37)

where HNP(,)u v is the transfer function of the notch pass filter corresponding to
the notch reject filter with transfer function HNR(,).u v Figure 5.15 shows perspec-
tive plots of the transfer functions of ideal, Gaussian, and Butterworth notch reject
filters with one notch pair. As we discussed in Chapter 4, we see again that the shape
of the Butterworth transfer function represents a transition between the sharpness
of the ideal function and the broad, smooth shape of the Gaussian transfer function.

As we show in the second part of the following example, we are not limited to
notch filter transfer functions of the form just discussed. We can construct notch

† Remember, frequency domain transfer functions are symmetric about the center of the frequency rectangle, so
the notches are specified as symmetric pairs. Also, recall from Section 4.10 that we use unpadded images when
working with notch filters in order to simplify the specification of notch locations.

DIP4E_GLOBAL_Print_Ready.indb 341 6/16/2017 2:07:17 PM

342 Chapter 5 Image Restoration and Reconstruction

filters of arbitrary shapes, provided that they are zero-phase-shift functions, as
defined in Section 4.7.

EXAMPLE 5.6 : Image denoising (interference reduction) using notch filtering.

Figure 5.16(a) is the same as Fig. 2.45(a), which we used in Section 2.6 to introduce the concept of filter-
ing in the frequency domain. We now look in more detail at the process of denoising this image, which is
corrupted by a single, 2-D additive sine wave. You know from Table 4.4 that the Fourier transform of a
pure sine wave is a pair of complex, conjugate impulses, so we would expect the spectrum to have a pair
of bright dots at the frequencies of the sine wave. As Fig. 5.16(b) shows, this is indeed is the case. Because
we can determine the location of these impulses accurately, eliminating them is a simple task, consisting
of using a notch filter transfer function whose notches coincide with the location of the impulses.

Figure 5.16(c) shows an ideal notch reject filter transfer function, which is an array of 1's (shown in
white) and two small circular regions of 0's (shown in black). Figure 5.16(d) shows the result of filtering
the noisy image this transfer function. The sinusoidal noise was virtually eliminated, and a number of
details that were previously obscured by the interference are clearly visible in the filtered image (see, for
example, the thin fiducial marks and the fine detail in the terrain and rock formations). As we showed
in Example 4.25, obtaining an image of the interference pattern is straightforward. We simply turn the
reject filter into a pass filter by subtracting it from 1, and filter the input image with it. Figure 5.17 shows
the result.

Figure 5.18(a) shows the same image as Fig. 4.50(a), but covering a larger area (the interference
pattern is the same). When we discussed lowpass filtering of that image in Chapter 4, we indicated that
there were better ways to reduce the effect of the scan lines. The notch filtering approach that follows
reduces the scan lines significantly, without introducing blurring. Unless blurring is desirable for reasons
we discussed in Section 4.9, notch filtering generally gives much better results.

Just by looking at the nearly horizontal lines of the noise pattern in Fig. 5.18(a), we expect its con-
tribution in the frequency domain to be concentrated along the vertical axis of the DFT. However,
the noise is not dominant enough to have a clear pattern along this axis, as is evident in the spectrum
shown in Fig. 5.18(b). The approach to follow in cases like this is to use a narrow, rectangular notch filter
function that extends along the vertical axis, and thus eliminates all components of the interference
along that axis. We do not filter near the origin to avoid eliminating the dc term and low frequencies,

(,)H u v

u
v

(,)H u v

u
v

(,)H u v

u
v

Ideal Gaussian Butterworth

ba c

FIGURE 5.15 Perspective plots of (a) ideal, (b) Gaussian, and (c) Butterworth notch reject filter transfer functions.

DIP4E_GLOBAL_Print_Ready.indb 342 6/16/2017 2:07:20 PM

5.4 Periodic Noise Reduction Using Frequency Domain Filtering 343

ba
dc

FIGURE 5.16
(a) Image cor-
rupted by sinusoi-
dal interference.
(b) Spectrum
showing the
bursts of energy
caused by the
interference. (The
bursts were
enlarged for
display purposes.)
(c) Notch filter
(the radius of the
circles is 2 pixels)
used to eliminate
the energy bursts.
(The thin borders
are not part of the
data.)
(d) Result of
notch reject
filtering.
(Original
image courtesy of
NASA.)

FIGURE 5.17
Sinusoidal
pattern extracted
from the DFT
of Fig. 5.16(a)
using a notch pass
filter.

which, as you know from Chapter 4, are responsible for the intensity differences between smooth areas.
Figure 5.18(c) shows the filter transfer function we used, and Fig. 5.18(d) shows the filtered result. Most
of the fine scan lines were eliminated or significantly attenuated. In order to get an image of the noise
pattern, we proceed as before by converting the reject filter into a pass filter, and then filtering the input
image with it. Figure 5.19 shows the result.

DIP4E_GLOBAL_Print_Ready.indb 343 6/16/2017 2:07:22 PM

344 Chapter 5 Image Restoration and Reconstruction

FIGURE 5.19
Noise pattern
extracted from
Fig. 5.18(a) by
notch pass
filtering.

ba
dc

FIGURE 5.18
(a) Satellite image
of Florida and the
Gulf of Mexico.
(Note horizontal
sensor scan lines.)
(b) Spectrum of
(a). (c) Notch
reject filter
transfer
function. (The
thin black border
is not part of the
data.) (d) Filtered
image. (Original
image courtesy of
NOAA.)

DIP4E_GLOBAL_Print_Ready.indb 344 6/16/2017 2:07:22 PM

5.4 Periodic Noise Reduction Using Frequency Domain Filtering 345

OPTIMUM NOTCH FILTERING

In the examples of notch filtering given thus far, the interference patterns have been
simple to identify and characterize in the frequency domain, leading to the specifica-
tion of notch filter transfer functions that also are simple to define heuristically.

When several interference components are present, heuristic specifications of
filter transfer functions are not always acceptable because they may remove too
much image information in the filtering process (a highly undesirable feature when
images are unique and/or expensive to acquire). In addition, the interference com-
ponents generally are not single-frequency bursts. Instead, they tend to have broad
skirts that carry information about the interference pattern. These skirts are not
always easily detectable from the normal transform background. Alternative filter-
ing methods that reduce the effect of these degradations are quite useful in practice.
The method discussed next is optimum, in the sense that it minimizes local variances
of the restored estimate ˆ(,).f x y

The procedure consists of first isolating the principal contributions of the interfer-
ence pattern and then subtracting a variable, weighted portion of the pattern from
the corrupted image. Although we develop the procedure in the context of a specific
application, the basic approach is general and can be applied to other restoration
tasks in which multiple periodic interference is a problem.

We begin by extracting the principal frequency components of the interfer-
ence pattern. As before, we do this by placing a notch pass filter transfer function,
HNP(,),u v at the location of each spike. If the filter is constructed to pass only com-
ponents associated with the interference pattern, then the Fourier transform of the
interference noise pattern is given by the expression

 N H G(,) (,) (,)u v u v u v= NP (5-38)

where, as usual, G(,)u v is the DFT of the corrupted image.
Specifying HNP(,)u v requires considerable judgment about what is or is not an

interference spike. For this reason, the notch pass filter generally is constructed inter-
actively by observing the spectrum of G(,)u v on a display. After a particular filter
function has been selected, the corresponding noise pattern in the spatial domain is
obtained using the familiar expression

 h(,) (,) (,)x y H G= { }−� 1
NP u v u v (5-39)

Because the corrupted image is assumed to be formed by the addition of the uncor-
rupted image f x y(,) and the interference, h(,),x y if the latter were known com-
pletely, subtracting the pattern from g x y(,) to obtain f x y(,) would be a simple mat-
ter. The problem, of course, is that this filtering procedure usually yields only an
approximation of the true noise pattern. The effect of incomplete components not
present in the estimate of h(,)x y can be minimized by subtracting from g x y(,) a
weighted portion of h(,)x y to obtain an estimate of f x y(,) :

 ˆ(,) (,) (,) (,)f x y g x y x y x y= − w h (5-40)

DIP4E_GLOBAL_Print_Ready.indb 345 6/16/2017 2:07:23 PM

346 Chapter 5 Image Restoration and Reconstruction

where, as before, ˆ(,)f x y is the estimate of f x y(,) and w(,)x y is to be determined.
This function is called a weighting or modulation function, and the objective of the
procedure is to select w(,)x y so that the result is optimized in some meaningful way.
One approach is to select w(,)x y so that the variance of ˆ(,)f x y is minimized over a
specified neighborhood of every point (,).x y

Consider a neighborhood Sxy of (odd) size m n× , centered on (,).x y The “local”
variance of ˆ(,)f x y at point (,)x y can be estimated using the samples in Sxy , as fol-
lows:

 s2 21
(,) [(,)]

_

(,)

x y
mn

f r c f
r c Sxy

= −
∈

∑ ^ ^ (5-41)

where f̂ is the average value of f̂ in neighborhood Sxy ; that is,

 ˆ ˆ(,)
(,)

f
mn

f r c
r c Sxy

=
∈

∑1
 (5-42)

Points on or near the edge of the image can be treated by considering partial neigh-
borhoods or by padding the border with 0's.

Substituting Eq. (5-40) into Eq. (5-41) we obtain

 s h h2 1
(,) [(,) (,) (,)] []

(,)

x y
mn

g r c r c r c g
r c Sxy

= − − −⎧
⎨
⎩

⎫
⎬
⎭∈

w w∑∑
2

 (5-43)

where g and wh

 denote the average values of g and of the product wh in neighbor-
hood Sxy , respectively.

If we assume that w is approximately constant in Sxy we can replace w(,)r c by
the value of w at the center of the neighborhood:

 w w(,) (,)r c x y= (5-44)

Because w(,)x y is assumed to be constant in Sxy , it follows that w=w
__

(,)x y and,
therefore, that

 w wh h
____ __

(,)= x y (5-45)

in Sxy , where h is the average value of h in the neighborhood. Using these approxi-
mations, Eq. (5-43) becomes

s h h2 1
(,) [(,) (,) (,)] [(,)]

__

(,)

x y
mn

g r c x y r c g x y
r c

= − − −⎧
⎨
⎩

⎫
⎬
⎭∈

w w
SSxy

∑
2

 (5-46)

DIP4E_GLOBAL_Print_Ready.indb 346 6/16/2017 2:07:26 PM

5.4 Periodic Noise Reduction Using Frequency Domain Filtering 347

ba

FIGURE 5.20
(a) Image of the
Martian
terrain taken by
Mariner 6.
(b) Fourier
spectrum showing
periodic
interference.
(Courtesy of
NASA.)

To minimize s2(,)x y with respect to w(,)x y we solve

∂
∂

=s2

0
(,)
(,)

x y
x yw

 (5-47)

for w(,).x y The result is (see Problem 5.17):

 w(,)

___ __x y
g g= −

−

h h

h h2 2
 (5-48)

To obtain the value of the restored image at point (,)x y we use this equation to com-
pute w(,)x y and then substitute it into Eq. (5-40). To obtain the complete restored
image, we perform this procedure at every point in the noisy image, g.

EXAMPLE 5.7 : Denoising (interference removal) using optimum notch filtering.

Figure 5.20(a) shows a digital image of the Martian terrain taken by the Mariner 6 spacecraft. The image
is corrupted by a semi-periodic interference pattern that is considerably more complex (and much more
subtle) than those we have studied thus far. The Fourier spectrum of the image, shown in Fig. 5.20(b),
has a number of “starlike” bursts of energy caused by the interference. As expected, these components
are more difficult to detect than those we have seen before. Figure 5.21 shows the spectrum again, but
without centering. This image offers a somewhat clearer view of the interference components because
the more prominent dc term and low frequencies are “out of way,” in the top left of the spectrum.

Figure 5.22(a) shows the spectrum components that, in the judgement of an experienced image ana-
lyst, are associated with the interference. Applying a notch pass filter to these components and using
Eq. (5-39) yielded the spatial noise pattern, h(,),x y shown in Fig. 5.22(b). Note the similarity between
this pattern and the structure of the noise in Fig. 5.20(a).

DIP4E_GLOBAL_Print_Ready.indb 347 6/16/2017 2:07:27 PM

348 Chapter 5 Image Restoration and Reconstruction

ba

FIGURE 5.22
(a) Fourier spec-
trum of N(,),u v
and
(b) corresponding
spatial noise
interference
pattern, h(,).x y
(Courtesy of
NASA.)

Finally, Fig. 5.23 shows the restored image, obtained using Eq. (5-40) with the interference pattern just
discussed. Function w(,)x y was computed using the procedure explained in the preceding paragraphs.
As you can see, the periodic interference was virtually eliminated from the noisy image in Fig. 5.20(a).

5.5 LINEAR, POSITION-INVARIANT DEGRADATIONS

The input-output relationship in Fig. 5.1 before the restoration stage is expressed as

 g x y f x y x y(,) (,) (,)= [] +� h (5-49)

For the moment, let us assume that h(,)x y = 0 so that g x y f x y(,) (,) .= []� Based on
the discussion in Section 2.6, � is linear if

5.5

FIGURE 5.21
Uncentered
Fourier spectrum
of the image
in Fig. 5.20(a).
(Courtesy of
NASA.)

DIP4E_GLOBAL_Print_Ready.indb 348 6/16/2017 2:07:28 PM

5.5 Linear, Position-Invariant Degradations 349

FIGURE 5.23
Restored image.
(Courtesy of
NASA.)

 � � �af x y bf x y a f x y b f x y1 2 1 2(,) (,) (,) (,)+[] = [] + [] (5-50)

where a and b are scalars and f x y1(,) and f x y2(,) are any two input images.
If a b= = 1, Eq. (5-50) becomes

 � � �f x y f x y f x y f x y1 2 1 2(,) (,) (,) (,)+[] = [] + [] (5-51)

which is called the property of additivity. This property says that, if � is a linear
operator, the response to a sum of two inputs is equal to the sum of the two responses.

With f x y2 0(,) ,= Eq. (5-50) becomes

 � �af x y a f x y1 1(,) (,)[] = [] (5-52)

which is called the property of homogeneity. It says that the response to a constant
multiple of any input is equal to the response to that input multiplied by the same
constant. Thus, a linear operator possesses both the property of additivity and the
property of homogeneity.

An operator having the input-output relationship g x y f x y(,) (,)= []� is said to
be position (or space) invariant if

 � f x y g x y(,) (,)− −[] = − −a b a b (5-53)

for any f x y(,) and any two scalars a and b. This definition indicates that the
response at any point in the image depends only on the value of the input at that
point, not on its position.

Using the sifting property of the 2-D continuous impulse [see Eq. (4-55)], we can
write f x y(,) as

DIP4E_GLOBAL_Print_Ready.indb 349 6/16/2017 2:07:29 PM

350 Chapter 5 Image Restoration and Reconstruction

 f x y f x y d d(,) (,) (,)= − −
- -�

�

�

�

2 2 a b d a b a b (5-54)

Assuming again that h(,) ,x y = 0 substituting this equation into Eq. (5-49) yields

 g x y f x y f x y d d(,) (,) (,) (,)= [] = − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� �
- -�

�

�

�

2 2 a b d a b a b (5-55)

If � is a linear operator and we extend the additivity property to integrals, then

 g x y f x y d d(,) (,) (,)= − −[]
- -�

�

�

�

2 2 � a b d a b a b (5-56)

Because f (,)a b is independent of x and y, and using the homogeneity property, it
follows that

 g x y f x y d d(,) (,) (,)= − −[]
- -�

�

�

�

2 2 a b d a b a b� (5-57)

The term

 h x y x y(, , ,) (,)a b d a b= − −[]� (5-58)

is called the impulse response of �. In other words, if h(,)x y = 0 in Eq. (5-49), then
h x y(, , ,)a b is the response of � to an impulse at coordinates (,).x y In optics, the
impulse becomes a point of light and h x y(, , ,)a b is commonly referred to as the
point spread function (PSF). This name is based on the fact that all physical optical
systems blur (spread) a point of light to some degree, with the amount of blurring
being determined by the quality of the optical components.

Substituting Eq. (5-58) into Eq. (5-57) we obtain the expression

 g x y f h x y d d(,) (,) (, , ,)=
- -�

�

�

�

2 2 a b a b a b (5-59)

which is called the superposition (or Fredholm) integral of the first kind. This expres-
sion is a fundamental result that is at the core of linear system theory. It states that
if the response of � to an impulse is known, the response to any input f (,)a b can
be calculated using Eq. (5-59). In other words, a linear system � is characterized
completely by its impulse response.

If � is position invariant, then it follows from Eq. (5-53) that

 � d a b a b(,) (,)x y h x y− −[] = − − (5-60)

In this case, Eq. (5-59) reduces to

 g x y f h x y d d(,) (,) (,)= − −
- -�

�

�

�

2 2 a b a b a b (5-61)

DIP4E_GLOBAL_Print_Ready.indb 350 6/16/2017 2:07:31 PM

5.5 Linear, Position-Invariant Degradations 351

This expression is the convolution integral introduced for one variable in Eq. (4-24)
and extended to 2-D in Problem 4.19. Equation (5-61) tells us that the output of a
linear, position invariant system to any input, is obtained by convolving the input
and the system’s impulse response.

In the presence of additive noise, the expression of the linear degradation model
[Eq. (5-59)] becomes

 g x y f h x y d d x y(,) (,) (, , ,) (,)= +
- -�

�

�

�

2 2 a b a b a b h (5-62)

If � is position invariant, then this equation becomes

 g x y f h x y d d x y(,) (,) (,) (,)= − − +
- -�

�

�

�

2 2 a b a b a b h (5-63)

The values of the noise term h(,)x y are random, and are assumed to be independent
of position. Using the familiar notation for convolution introduced in Chapters 3
and 4, we can write Eq. (5-63) as

 g x y h x yf x y(,) ((,))(,)= +� h (5-64)

or, using the convolution theorem, we write the equivalent result in the frequency
domain as

 G H F N(,) (,) (,) (,)u v u v u v u v= + (5-65)

These two expressions agree with Eqs. (5-1) and (5-2). Keep in mind that, for dis-
crete quantities, all products are elementwise products, as defined in Section 2.6.

In summary, the preceding discussion indicates that a linear, spatially invariant
degradation system with additive noise can be modeled in the spatial domain as
the convolution of an image with the system’s degradation (point spread) function,
followed by the addition of noise. Based on the convolution theorem, the same pro-
cess can be expressed in the frequency domain as the product of the transforms of
the image and degradation, followed by the addition of the transform of the noise.
When working in the frequency domain, we make use of an FFT algorithm. Howev-
er, unlike in Chapter 4, we do not use image padding in the implementation of any of
the frequency domain restoration filters discussed in this chapter. The reason is that
in restoration work we usually have access only to degraded images. For padding
to be effective, it would have to be applied to images before they were degraded, a
condition that obviously cannot be met in practice. If we had access to the original
images, then restoration would be a mute point.

Many types of degradations can be approximated by linear, position-invariant
processes. The advantage of this approach is that the extensive tools of linear sys-
tem theory then become available for the solution of image restoration problems.

DIP4E_GLOBAL_Print_Ready.indb 351 6/16/2017 2:07:31 PM

352 Chapter 5 Image Restoration and Reconstruction

Nonlinear and position-dependent techniques, although more general (and usually
more accurate), introduce difficulties that often have no known solution or are very
difficult to solve computationally. This chapter focuses on linear, space-invariant res-
toration techniques. Because degradations are modeled as being the result of convo-
lution, and restoration seeks to find filters that apply the process in reverse, the term
image deconvolution is used frequently to signify linear image restoration. Similarly,
the filters used in the restoration process often are called deconvolution filters.

5.6 ESTIMATING THE DEGRADATION FUNCTION

There are three principal ways to estimate the degradation function for use in image
restoration: (1) observation, (2) experimentation, and (3) mathematical modeling.
These methods are discussed in the following sections. The process of restoring
an image by using a degradation function that has been estimated by any of these
approaches sometimes is called blind deconvolution, to emphasize the fact that the
true degradation function is seldom known completely.

ESTIMATION BY IMAGE OBSERVATION

Suppose that we are given a degraded image without any knowledge about the degra-
dation function �. Based on the assumption that the image was degraded by a lin-
ear, position-invariant process, one way to estimate � is to gather information from
the image itself. For example, if the image is blurred, we can look at a small rectan-
gular section of the image containing sample structures, like part of an object and
the background. In order to reduce the effect of noise, we would look for an area in
which the signal content is strong (e.g., an area of high contrast). The next step would
be to process the subimage to arrive at a result that is as unblurred as possible.

Let the observed subimage be denoted by g x ys(,), and let the processed subimage
(which in reality is our estimate of the original image in that area) be denoted by
ˆ (,).f x ys Then, assuming that the effect of noise is negligible because of our choice of
a strong-signal area, it follows from Eq. (5-65) that

 H
G

F
s

s

s

(,)
(,)

(,)
u v

u v

u v
= ⁄ (5-66)

From the characteristics of this function, we then deduce the complete degradation
function H(,)u v based on our assumption of position invariance. For example, sup-
pose that a radial plot of Hs(,)u v has the approximate shape of a Gaussian curve. We
can use that information to construct a function H(,)u v on a larger scale, but having
the same basic shape. We then use H(,)u v in one of the restoration approaches to
be discussed in the following sections. Clearly, this is a laborious process used only in
very specific circumstances, such as restoring an old photograph of historical value.

ESTIMATION BY EXPERIMENTATION

If equipment similar to the equipment used to acquire the degraded image is avail-
able, it is possible in principle to obtain an accurate estimate of the degradation.
Images similar to the degraded image can be acquired with various system settings

5.6

DIP4E_GLOBAL_Print_Ready.indb 352 6/16/2017 2:07:32 PM

5.6 Estimating the Degradation Function 353

ba

FIGURE 5.24
Estimating a
degradation by
impulse
characterization.
(a) An impulse
of light (shown
magnified).
(b) Imaged
(degraded)
impulse.

until they are degraded as closely as possible to the image we wish to restore. Then
the idea is to obtain the impulse response of the degradation by imaging an impulse
(small dot of light) using the same system settings. As noted in Section 5.5, a linear,
space-invariant system is characterized completely by its impulse response.

An impulse is simulated by a bright dot of light, as bright as possible to reduce the
effect of noise to negligible values. Then, recalling that the Fourier transform of an
impulse is a constant, it follows from Eq. (5-65) that

 H
G

A
(,)

(,)
u v

u v= (5-67)

where, as before, G(,)u v is the Fourier transform of the observed image, and A is a
constant describing the strength of the impulse. Figure 5.24 shows an example.

ESTIMATION BY MODELING

Degradation modeling has been used for many years because of the insight it affords
into the image restoration problem. In some cases, the model can even take into
account environmental conditions that cause degradations. For example, a degrada-
tion model proposed by Hufnagel and Stanley [1964] is based on the physical char-
acteristics of atmospheric turbulence. This model has a familiar form:

 H e k u(,) () /

u v v= − +2 2 5 6

 (5-68)

where k is a constant that depends on the nature of the turbulence. With the excep-
tion of the 5 6 power in the exponent, this equation has the same form as the Gauss-
ian lowpass filter transfer function discussed in Section 4.8. In fact, the Gaussian
LPF is used sometimes to model mild, uniform blurring. Figure 5.25 shows examples
obtained by simulating blurring an image using Eq. (5-68) with values k = 0 0025.

DIP4E_GLOBAL_Print_Ready.indb 353 6/16/2017 2:07:33 PM

354 Chapter 5 Image Restoration and Reconstruction

ba
dc

FIGURE 5.25
Modeling
turbulence.
(a) No visible
turbulence.
(b) Severe
turbulence,
k = 0 0025. .
(c) Mild
turbulence,
k = 0 001. .
(d) Low
turbulence,
k = 0 00025. .
All images are
of size 480 480×
pixels.
(Original
image courtesy of
NASA.)

(severe turbulence), k = 0 001. (mild turbulence), and k = 0 00025. (low turbulence).
We restore these images using various methods later in this chapter.

Another approach used frequently in modeling is to derive a mathematical model
starting from basic principles. We illustrate this procedure by treating in some detail
the case in which an image has been blurred by uniform linear motion between
the image and the sensor during image acquisition. Suppose that an image f x y(,)
undergoes planar motion and that x t0() and y t0() are the time-varying components
of motion in the x- and y-directions, respectively. We obtain the total exposure at
any point of the recording medium (say, film or digital memory) by integrating the
instantaneous exposure over the time interval during which the imaging system
shutter is open.

Assuming that shutter opening and closing takes place instantaneously, and that
the optical imaging process is perfect, lets us isolate the effects due to image motion.
Then, if T is the duration of the exposure, it follows that

DIP4E_GLOBAL_Print_Ready.indb 354 6/16/2017 2:07:33 PM

5.6 Estimating the Degradation Function 355

 g x y f x x t y y t dt
T

(,) [(), ()]= − −
0

0 02 (5-69)

where g x y(,) is the blurred image.
The continuous Fourier transform of this expression is

 G g x y e dxdyj ux y(,) (,) ()u v v= − +

- -�

�

�

�

2 2
2p (5-70)

Substituting Eq. (5-69) into Eq. (5-70) yields

G f x x t y y t dt e
T

j ux y(,) [(), ()] ()u v v= − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− +

- -�

�

�

�

2 2 20 0 0
2p ddxdy (5-71)

Reversing the order of integration results in the expression

G f x x t y y t e dxdy
T

j ux y(,) [(), ()] ()u v v= − −
⎡

⎣
⎢
⎢

⎤

⎦

− +

0
0 0

2

2 2 2- -�

�

�

�
p ⎥⎥

⎥
dt (5-72)

The term inside the outer brackets is the Fourier transform of the displaced function
f x x t y y t− −[]0 0(), () . Using entry 3 in Table 4.4 then yields the expression

G F dt

F

T

T

j ux t y t

j ux t

(,) (,)e

(,) e

() ()

(

u v u v

u v

v=

=

− +[]

−

0

0

2

2

0 0

0

2

2

p

p)) ()+[]vy t dt0

 (5-73)

By defining

 H dt
T

j ux t y t(,) e () ()u v v= − +[]
0

2 0 0

2
p (5-74)

we can express Eq. (5-73) in the familiar form

 G H F(,) (,) (,)u v u v u v= (5-75)

If the motion variables x t0() and y t0() are known, the transfer function H(,)u v can
be obtained directly from Eq. (5-74). As an illustration, suppose that the image in
question undergoes uniform linear motion in the x-direction only (i.e., y t0 0()),= at
a rate x t at T0() .= When t T= , the image has been displaced by a total distance a.
With y t0 0() ,= Eq. (5-74) yields

H dt dt

T
ua

ua e

T T
j ux t j uat T

j ua

(,) e e

sin()

()u v = =

=

− −

−

0 0

2 20

2 2
p p

p

p
p

 (5-76)

DIP4E_GLOBAL_Print_Ready.indb 355 6/16/2017 2:07:35 PM

356 Chapter 5 Image Restoration and Reconstruction

ba

FIGURE 5.26
(a) Original
image. (b) Result
of blurring using
the function in
Eq. (5-77) with
a b= = 0 1. and
T = 1.

If we allow the y-component to vary as well, with the motion given by y t bt T0() ,=
then the degradation function becomes

 H
T

ua b
ua b e j ua b(,)

()
sin () ()u v

v
v v=

+
+[] − +

p
p p (5-77)

To generate a discrete filter transfer function of size M N× , we sample this equation
for u = −0 1 2 1, , , ,… M and v = −0 1 2 1, , , , .… N

EXAMPLE 5.8 : Image blurring caused by motion.

Figure 5.26(b) is an image blurred by computing the Fourier transform of the image in Fig. 5.26(a), mul-
tiplying the transform by H(,)u v from Eq. (5-77), and taking the inverse transform. The images are of
size 688 688× pixels, and we used a b= = 0 1. and T = 1 in Eq. (5-77). As we will discuss in Sections 5.8
and 5.9, recovery of the original image from its blurred counterpart presents some interesting challenges,
particularly when noise is present in the degraded image. As mentioned at the end of Section 5.5, we
perform all DFT computations without padding.

5.7 INVERSE FILTERING

The material in this section is our first step in studying restoration of images degrad-
ed by a degradation function �, which is given, or is obtained by a method such
as those discussed in the previous section. The simplest approach to restoration is
direct inverse filtering, where we compute an estimate, ˆ (,),F u v of the transform of
the original image by dividing the transform of the degraded image, G(,),u v by the
degradation transfer function:

 ˆ (,)
(,)
(,)

F
G
H

u v
u v

u v
= (5-78)

5.7

DIP4E_GLOBAL_Print_Ready.indb 356 6/16/2017 2:07:37 PM

5.7 Inverse Filtering 357

The division is elementwise, as defined in Section 2.6 and in connection with Eq.
(5-65). Substituting the right side of Eq. (5-2) for G(,)u v in Eq. (5-78) yields

 ˆ (,) (,)
(,)
(,)

F F
N
H

u v u v
u v

u v
= + (5-79)

This is an interesting expression. It tells us that, even if we know the degradation
function, we cannot recover the undegraded image [the inverse Fourier transform
of F(,)u v] exactly because N(,)u v is not known. There is more bad news. If the deg-
radation function has zero or very small values, then the ratio N H(,) (,)u v u v could
easily dominate the term F(,).u v In fact, this is frequently the case, as you will see
shortly.

One approach to get around the zero or small-value problem is to limit the filter
frequencies to values near the origin. From the discussion of Eq. (4-92), we know
that H(,)0 0 is usually the highest value of H(,)u v in the frequency domain. Thus,
by limiting the analysis to frequencies near the origin, we reduce the likelihood of
encountering zero values. The following example illustrates this approach.

EXAMPLE 5.9 : Image deblurring by inverse filtering.

The image in Fig. 5.25(b) was inverse filtered with Eq. (5-78) using the exact inverse of the degradation
function that generated that image. That is, the degradation function used was

 H e k u M N
(,)

() ()
/

u v
v= − + + −⎡⎣ ⎤⎦2 22 2

5 6

with k = 0 0025. . The M 2 and N 2 constants are offset values; they center the function so that it will
correspond with the centered Fourier transform, as discussed in the previous chapter. (Remember, we
do not use padding with these functions.) In this case, M N= = 480. We know that a Gaussian function
has no zeros, so that will not be a concern here. However, despite this, the degradation values became so
small that the result of full inverse filtering [Fig. 5.27(a)] is useless. The reasons for this poor result are
as discussed in connection with Eq. (5-79).

Figures 5.27(b) through (d) show the results of cutting off values of the ratio G H(,) (,)u v u v outside
a radius of 40, 70, and 85, respectively. The cut off was implemented by applying to the ratio a Butter-
worth lowpass function of order 10. This provided a sharp (but smooth) transition at the desired radius.
Radii near 70 yielded the best visual results [Fig. 5.27(c)]. Radii below 70 resulted in blurred images, as
in Fig. 5.27(b), which was obtained using a radius of 40. Values above 70 started to produce degraded
images, as illustrated in Fig. 5.27(d), which was obtained using a radius of 85. The image content is almost
visible in this image behind a “curtain” of noise, but the noise definitely dominates the result. Further
increases in radius values produced images that looked more and more like Fig. 5.27(a).

The results in the preceding example are illustrative of the poor performance of
direct inverse filtering in general. The basic theme of the three sections that follow is
how to improve on direct inverse filtering.

DIP4E_GLOBAL_Print_Ready.indb 357 6/16/2017 2:07:38 PM

358 Chapter 5 Image Restoration and Reconstruction

5.8 MINIMUM MEAN SQUARE ERROR (WIENER) FILTERING

The inverse filtering approach discussed in the previous section makes no explicit
provision for handling noise. In this section, we discuss an approach that incorpo-
rates both the degradation function and statistical characteristics of noise into the
restoration process. The method is founded on considering images and noise as ran-
dom variables, and the objective is to find an estimate f̂ of the uncorrupted image f
such that the mean square error between them is minimized. This error measure is
defined as

e E f f2 2= −⎧

⎨
⎩

⎫
⎬
⎭

()
⁄

 (5-80)

where E i{ } is the expected value of the argument. We assume that the noise and the
image are uncorrelated, that one or the other has zero mean, and that the intensity
levels in the estimate are a linear function of the levels in the degraded image. Based

5.8

ba
dc

FIGURE 5.27
Restoring
Fig. 5.25(b)
using Eq. (5-78).
(a) Result of using
the full filter.
(b) Result with H
cut off outside a
radius of 40.
(c) Result with H
cut off outside a
radius of 70.
(d) Result with H
cut off outside a
radius of 85.

DIP4E_GLOBAL_Print_Ready.indb 358 6/16/2017 2:07:38 PM

5.8 Minimum Mean Square Error (Wiener) Filtering 359

on these assumptions, the minimum of the error function in Eq. (5-80) is given in the
frequency domain by the expression

ˆ (,)
(,) (,)

(,) (,) (,)
(,)

*

F
H u S u

S u H u S u v
G uf

f

u v
v v

v v
v=

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2

h

==
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

H u

H u S u S u
G u

H u

H u

f

*(,)

(,) (,) (,)
(,)

(,)

(,

v

v v v
v

v

v

2

1

h

))

(,) (,) (,)
(,)

2

2H u S u S u
G u

fv v v
v

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥h

 (5-81)

where we used the fact that the product of a complex quantity with its conjugate
is equal to the magnitude of the complex quantity squared. This result is known as
the Wiener filter, after N. Wiener [1942], who first proposed the concept in the year
shown. The filter, which consists of the terms inside the brackets, also is commonly
referred to as the minimum mean square error filter or the least square error filter.
We include references at the end of the chapter to sources containing detailed deri-
vations of the Wiener filter. Note from the first line in Eq. (5-81) that the Wiener
filter does not have the same problem as the inverse filter with zeros in the degrada-
tion function, unless the entire denominator is zero for the same value(s) of u and v.

The terms in Eq. (5-81) are as follows:

1. ˆ (,)F u v = Fourier transform of the estimate of the undegraded image.

2. G(,)u v = Fourier transform of the degraded image.

3. H(,)u v = degradation transfer function (Fourier transform of the spatial
degradation).

4. H∗(,)u v = complex conjugate of H(,)u v .

5. H H H(,) (,) (,)u v u v u v
2 = ∗ .

6. S Nh(,) (,)u v u v= =2 power spectrum of the noise [see Eq. (4-89)]†

7. S Ff (,) (,)u v u v= =2 power spectrum of the undegraded image.

The restored image in the spatial domain is given by the inverse Fourier transform
of the frequency-domain estimate ˆ (,).F u v Note that if the noise is zero, then the
noise power spectrum vanishes and the Wiener filter reduces to the inverse filter.
Also, keep in mind the discussion at the end of Section 5.5 regarding the fact that all
transform work in this chapter is done without padding.

† The term N(,)u v
2 also is referred to as the autocorrelation of the noise. This term comes from the correlation

theorem (first line of entry 7 in Table 4.4). When the two functions are the same, correlation becomes autocorrela-
tion and the right side of that entry becomes H H∗(,) (,),u v u v which is equal to H(,) .u v

2 Similar comments apply
to F(,) ,u v

2 which is the autocorrelation of the image. We will discuss correlation in more detail in Chapter 12.

DIP4E_GLOBAL_Print_Ready.indb 359 6/16/2017 2:07:40 PM

360 Chapter 5 Image Restoration and Reconstruction

A number of useful measures are based on the power spectra of noise and of the
undegraded image. One of the most important is the signal-to-noise ratio, approxi-
mated using frequency domain quantities such as

 SNR =
=

−

=

−

=

−

=

−

∑∑ ∑∑F N
N

u

M N

u

M

(,) (,)u v u v
v v

2

0

1

0

1
2

0

1

0

1

 (5-82)

This ratio gives a measure of the level of information-bearing signal power (i.e., of
the original, undegraded image) to the level of noise power. An image with low
noise would tend to have a high SNR and, conversely, the same image with a higher
level of noise would have a lower SNR. This ratio is an important measure used in
characterizing the performance of restoration algorithms.

The mean square error given in statistical form in Eq. (5-80) can be approximated
also in terms of a summation involving the original and restored images:

 MSE = −[]
=

−

=

−

∑∑1

0

1

0

1 2

MN
f x y f x y

y

N

x

M

(,) (,)
⁄

 (5-83)

In fact, if one considers the restored image to be “signal” and the difference between
this image and the original to be “noise,” we can define a signal-to-noise ratio in the
spatial domain as

 SNR = () −⎡⎣ ⎤⎦
=

−

=

−

=

−

=

−

∑∑ ∑ˆ , (,) ˆ(,)f x y f x y f x y
y

N

x

M

y

M

x

M
2

0

1

0

1 2

0

1

0

1

∑∑ (5-84)

The closer f and f̂ are, the larger this ratio will be. Sometimes the square root of the
preceding two measures is used instead, in which case they are referred to as the
root-mean-square-error and the root-mean-square-signal-to-noise ratio, respectively.
As we have mentioned before, keep in mind that quantitative measures do not nec-
essarily relate well to perceived image quality.

When dealing with white noise, the spectrum is a constant, which simplifies things
considerably. However, the power spectrum of the undegraded image seldom is
known. An approach frequently used when these quantities are not known, or can-
not be estimated, is to approximate Eq. (5-81) by the expression

 ˆ (,)
(,)

(,)

(,)
(,)F

H

H

H K
Gu v

u v

u v

u v
u v=

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

2 (5-85)

where K is a specified constant that is added to all terms of H(,) .u v
2 The following

examples illustrate the use of this expression.

DIP4E_GLOBAL_Print_Ready.indb 360 6/16/2017 2:07:40 PM

5.8 Minimum Mean Square Error (Wiener) Filtering 361

ba c

FIGURE 5.28 Comparison of inverse and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b). (b) Radially
limited inverse filter result. (c) Wiener filter result.

EXAMPLE 5.10 : Comparison of deblurring by inverse and Wiener filtering.

Figure 5.28 illustrates the advantage of Wiener filtering over direct inverse filtering. Figure 5.28(a) is the
full inverse-filtered result from Fig. 5.27(a). Similarly, Fig. 5.28(b) is the radially limited inverse filter result
of Fig, 5.27(c). These images are duplicated here for convenience in making comparisons. Figure 5.28(c)
shows the result obtained using Eq. (5-85) with the degradation function used in Example 5.9. The value
of K was chosen interactively to yield the best visual results. The advantage of Wiener filtering over the
direct inverse approach is evident in this example. By comparing Figs. 5.25(a) and 5.28(c), we see that
the Wiener filter yielded a result very close in appearance to the original, undegraded image.

EXAMPLE 5.11 : More deblurring examples using Wiener filtering.

The first row of Fig. 5.29 shows, from left to right, the blurred image of Fig. 5.26(b) heavily corrupted by
additive Gaussian noise of zero mean and variance of 650; the result of direct inverse filtering; and the
result of Wiener filtering. The Wiener filter of Eq. (5-85) was used, with H(,)u v from Example 5.8, and
with K chosen interactively to give the best possible visual result. As expected, direct inverse filtering
produced an unusable image. Note that the noise in the inverse filtered image is so strong that it masks
completely the content of the image. The Wiener filter result is by no means perfect, but it does give us
a hint as to image content. The text can be read with moderate effort.

The second row of Fig. 5.29 shows the same sequence just discussed, but with the level of the noise
variance reduced by one order of magnitude. This reduction had little effect on the inverse filter, but
the Wiener results are considerably improved. For example, the text is much easier to read now. In the
third row of Fig. 5.29, the noise variance was reduced more than five orders of magnitude from the first
row. In fact, image in Fig. 5.29(g) has no visible noise. The inverse filter result is interesting in this case.
The noise is still quite visible, but the text can be seen through a “curtain” of noise (see Problem 5.30).
The Wiener filter result in Fig. 5.29(i) is excellent, being quite close visually to the original image in Fig.

DIP4E_GLOBAL_Print_Ready.indb 361 6/16/2017 2:07:41 PM

362 Chapter 5 Image Restoration and Reconstruction

ba c
ed f
hg i

FIGURE 5.29 (a) 8-bit image corrupted by motion blur and additive noise. (b) Result of inverse filtering. (c) Result of
Wiener filtering. (d)–(f) Same sequence, but with noise variance one order of magnitude less. (g)–(i) Same sequence,
but noise variance reduced by five orders of magnitude from (a). Note in (h) how the deblurred image is quite vis-
ible through a “curtain” of noise.

DIP4E_GLOBAL_Print_Ready.indb 362 6/16/2017 2:07:41 PM

5.9 Constrained Least Squares Filtering 363

5.26(a). In practice, the results of restoration filtering are seldom this close to the original images. This
example, and Example 5.12 in the next section, were idealized slightly to focus on the effects of noise
on restoration algorithms.

5.9 CONSTRAINED LEAST SQUARES FILTERING

The problem of having to know something about the degradation function H is com-
mon to all methods discussed in this chapter. However, the Wiener filter presents
an additional difficulty: the power spectra of the undegraded image and noise must
be known also. We showed in the previous section that in some cases it is possible
to achieve acceptable results using the approximation in Eq. (5-85), but a constant
value for the ratio of the power spectra is not always a suitable solution.

The method discussed in this section requires knowledge of only the mean and
variance of the noise. As discussed in Section 5.2, these parameters generally can be
calculated from a given degraded image, so this is an important advantage. Another
difference is that the Wiener filter is based on minimizing a statistical criterion and,
as such, it is optimal in an average sense. The algorithm presented in this section
has the notable feature that it yields an optimal result for each image to which it
is applied. Of course, it is important to keep in mind that these optimality criteria,
although they are comforting from a theoretical point of view, are not related to
the dynamics of visual perception. As a result, the choice of one algorithm over the
other will almost always be determined by the perceived visual quality of the result-
ing images.

By using the definition of convolution given in Eq. (4-94), and as explained in
Section 2.6, we can express Eq. (5-64) in vector-matrix form:

 g Hf= + H (5-86)

For example, suppose that g x y(,) is of size M N× . We can form the first N elements
of vector g by using the image elements in the first row of g x y(,), the next N ele-
ments from the second row, and so on. The dimensionality of the resulting vector will
be MN × 1. These are also the dimensions of f and H, as these vectors are formed in
the same manner. Matrix H then has dimensions MN MN× . Its elements are given
by the elements of the convolution in Eq. (4-94).

It would be reasonable to arrive at the conclusion that the restoration problem
can now be reduced to simple matrix manipulations. Unfortunately, this is not the
case. For instance, suppose that we are working with images of medium size, say
M N= = 512. Then the vectors in Eq. (5-86) would be of dimension 262 144 1, ×
and matrix H would be of dimension 262 144 262 144, , .× Manipulating vectors and
matrices of such sizes is not a trivial task. The problem is complicated further by
the fact that H is highly sensitive to noise (after the experiences we had with the
effect of noise in the previous two sections, this should not be a surprise). The key
advantage of formulating the restoration problem in matrix form is that it facilitates
derivation of restoration algorithms.

Although we do not fully derive the method of constrained least squares that
we are about to present, this method has its roots in a matrix formulation. We give

5.9

See Gonzalez and Woods
[1992] for an entire chap-
ter devoted to the topic
of algebraic techniques
for image restoration.

DIP4E_GLOBAL_Print_Ready.indb 363 6/16/2017 2:07:42 PM

364 Chapter 5 Image Restoration and Reconstruction

references at the end of the chapter to sources where derivations are covered in
detail. Central to the method is the issue of the sensitivity of H to noise. One way
to reduce the effects of noise sensitivity, is to base optimality of restoration on a
measure of smoothness, such as the second derivative of an image (our old friend,
the Laplacian). To be meaningful, the restoration must be constrained by the param-
eters of the problems at hand. Thus, what is desired is to find the minimum of a
criterion function, C, defined as

 C f x y
y

N

x

M

= ⎡⎣ ⎤⎦
=

−

=

−

∑∑
2

0

1

0

1 2
(,) (5-87)

subject to the constraint

 g Hf− =ˆ 2 2
H (5-88)

where a a a2 � T is the Euclidean norm (see Section 2.6), and f̂ is the estimate of the
undegraded image. The Laplacian operator
2 is defined in Eq. (3-50).

The frequency domain solution to this optimization problem is given by the
expression

ˆ (,)
(,)

(,) (,)
(,)F

H

H P
Gu v

u v

u v u v
u v=

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∗

2 2
g (5-89)

where g is a parameter that must be adjusted so that the constraint in Eq. (5-88) is
satisfied, and P(,)u v is the Fourier transform of the function

 p x y(,) =
−

− −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 1 0

1 4 1

0 1 0

 (5-90)

We recognize this function as a Laplacian kernel from Fig. 3.45. Note that Eq. (5-89)
reduces to inverse filtering if g = 0.

Functions P(,)u v and H(,)u v must be of the same size. If H is of size M N× , this
means that p x y(,) must be embedded in the center of an M N× array of zeros. In
order to preserve the even symmetry of p x y(,), M and N must be even integers, as
explained in Examples 4.10 and 4.15. If a given degraded image from which H is
obtained is not of even dimensions, then a row and/or column, as appropriate, must
be deleted before computing H for use in Eq. (5-89).

EXAMPLE 5.12 : Comparison of deblurring by Wiener and constrained least squares filtering.

Figure 5.30 shows the result of processing Figs. 5.29(a), (d), and (g) with constrained least squares fil-
ters, in which the values of g were selected manually to yield the best visual results. This is the same
procedure we used to generate the Wiener filter results in Fig. 5.29(c), (f), and (i). By comparing the
constrained least squares and Wiener results, we see that the former yielded better results (especially in
terms of noise reduction) for the high- and medium-noise cases, with both filters generating essentially

The quantity in brackets
is the transfer function
of the constrained least
squares filter. Note that
it reduces to the inverse
filter transfer function
when g = 0.

DIP4E_GLOBAL_Print_Ready.indb 364 6/16/2017 2:07:43 PM

5.9 Constrained Least Squares Filtering 365

ba c

FIGURE 5.30 Results of constrained least squares filtering. Compare (a), (b), and (c) with the Wiener filtering results
in Figs. 5.29(c), (f), and (i), respectively.

equal results for the low-noise case. This is not surprising because parameter g in Eq. (5-89) is a true
scalar, whereas the value of K in Eq. (5-85) is a scalar approximation to the ratio of two unknown fre-
quency domain functions of size M N× . Thus, it stands to reason that a result based on manually select-
ing g would be a more accurate estimate of the undegraded image. As in Example 5.11, the results in
this example are better than one normally finds in practice. Our focus here was on the effects of noise
blurring on restoration. As noted earlier, you will encounter situations in which the restoration solutions
are not quite as close to the original images as we have shown in these two examples.

As discussed in the preceding example, it is possible to adjust the parameter g
interactively until acceptable results are achieved. However, if we are interested in
mathematical optimality, then this parameter must be adjusted so that the constraint
in Eq. (5-88) is satisfied. A procedure for computing g by iteration is as follows.

Define a “residual” vector r as

 r g Hf= − ˆ (5-91)

From Eq. (5-89), we see that ˆ (,)F u v (and by implication f̂) is a function of g. Then
it follows that r also is a function of this parameter. It can be shown (Hunt [1973],
Gonzalez and Woods [1992]) that

f g() =

=

r r

r

T

2 (5-92)

is a monotonically increasing function of g. What we want to do is adjust g so that

 r 2 2= H ± α (5-93)

DIP4E_GLOBAL_Print_Ready.indb 365 6/16/2017 2:07:44 PM

366 Chapter 5 Image Restoration and Reconstruction

where a is an accuracy factor. In view of Eq. (5-91), if r 2 2= H , the constraint in
Eq. (5-88) will be strictly satisfied.

Because f g() is monotonic, finding the desired value of g is not difficult. One
approach is to

1. Specify an initial value of g.

2. Compute r 2 .

3. Stop if Eq. (5-93) is satisfied; otherwise return to Step 2 after increasing g if
r 2 2< ()H a− or decreasing g if r 2 2> ().H a+ Use the new value of g in

Eq. (5-89) to recompute the optimum estimate ˆ (,).F u v

Other procedures, such as a Newton–Raphson algorithm, can be used to improve
the speed of convergence.

In order to use this algorithm, we need the quantities r 2 and H
2. To compute

r 2, we note from Eq. (5-91) that

 R G H F(,) (,) (,) (,)u v u v u v u v= − (5-94)

from which we obtain r x y(,) by computing the inverse Fourier transform of R(,).u v
Then, from the definition of the Euclidean norm, it follows that

 r r r2 2

0

1

0

1

= =
=

−

=

−

∑∑T

y

N

x

M

r x y(,) (5-95)

Computation of H
2 leads to an interesting result. First, consider the variance

of the noise over the entire image, which we estimate from the samples using the
expression

 s h hh
2 2

0

1

0

11= −[]
=

−

=

−

∑∑MN
x y

y

N

x

M

(,) (5-96)

where

 h h=
=

−

=

−

∑∑1

0

1

0

1

MN
x y

y

N

x

M

(,) (5-97)

is the sample mean. With reference to the form of Eq. (5-95), we note that the dou-
ble summation in Eq. (5-96) is proportional to H

2. This leads to the expression

 H s hh

2 2 2= +⎡⎣ ⎤⎦MN (5-98)

This is a most useful result. It tells us that we can estimate the unknown quantity
H

2 by having knowledge of only the mean and variance of the noise. These quanti-
ties are not difficult to estimate (see Section 5.2), assuming that the noise and image

DIP4E_GLOBAL_Print_Ready.indb 366 6/16/2017 2:07:46 PM

5.10 Geometric Mean Filter 367

ba

FIGURE 5.31
(a) Iteratively
determined
constrained
least squares
restoration of
Fig. 5.25(b), using
correct noise
parameters. (b)
Result obtained
with wrong noise
parameters.

intensity values are not correlated. This is an assumption of all the methods dis-
cussed in this chapter.

EXAMPLE 5.13 : Iterative estimation of the optimum constrained least squares filter.

Figure 5.31(a) shows the result obtained using the algorithm just described to estimate the optimum
filter for restoring Fig. 5.25(b). The initial value used for g was 10 5− , the correction factor for adjusting g
was 10 6− , and the value for a was 0.25. The noise parameters specified were the same used to generate
Fig. 5.25(a): a noise variance of 10 5− , and zero mean. The restored result is comparable to Fig. 5.28(c),
which was obtained by Wiener filtering with K manually specified for best visual results. Figure 5.31(b)
shows what can happen if the wrong estimate of noise parameters are used. In this case, the noise vari-
ance specified was 10 2− and the mean was left at 0. The result in this case is considerably more blurred.

5.10 GEOMETRIC MEAN FILTER

It is possible to generalize slightly the Wiener filter discussed in Section 5.8. The
generalization is in the form of the so-called geometric mean filter:

 ˆ (,)
(,)

(,)

(,)

(,)
(,)

(

* *

F
H

H

H

H
S

Sf

u v
u v

u v

u v

u v
u v

u

=

 +

2
2

a

h
b

,,)

(,)

v

u v

−1 a

G (5-99)

where a and b are nonnegative, real constants. The geometric mean filter transfer
function consists of the two expressions in brackets raised to the powers a and 1 − a,
respectively.

When a = 1 the geometric mean filter reduces to the inverse filter. With a = 0 the
filter becomes the so-called parametric Wiener filter, which reduces to the “standard”

5.10

DIP4E_GLOBAL_Print_Ready.indb 367 6/16/2017 2:07:47 PM

368 Chapter 5 Image Restoration and Reconstruction

Wiener filter when b = 1. If a = 1 2, the filter becomes a product of the two quanti-
ties raised to the same power, which is the definition of the geometric mean, thus
giving the filter its name. With b = 1, as a increases above 1 2, the filter performance
will tend more toward the inverse filter. Similarly, when a decreases below 1 2, the
filter will behave more like a Wiener filter. When a = 1 2 and b = 1 the filter is com-
monly referred to as a spectrum equalization filter. Equation (5-99) is useful when
implementing restoration filters because it represents a family of filters combined
into a single expression.

5.11 IMAGE RECONSTRUCTION FROM PROJECTIONS

In the previous sections of this chapter we discussed techniques for restoring degrad-
ed images. In this section, we examine the problem of reconstructing an image from
a series of projections, with a focus on X-ray computed tomography (CT). This is the
earliest and still the most-widely used type of CT, and is currently one of the princi-
pal applications of digital image processing in medicine.

INTRODUCTION

The reconstruction problem is simple in principle, and can be explained qualitatively
in a straightforward, intuitive manner, without using equations (we will deal with the
math later in this section. To begin, consider Fig. 5.32(a), which consists of a single
object on a uniform background. In order to bring physical meaning to the following
explanation, suppose that this image is a cross-section of a 3-D region of a human
body. Assume also that the background in the image represents soft, uniform tissue,
while the round object is a tumor, also uniform, but with higher X-ray absorption
characteristics.

Suppose next that we pass a thin, flat beam of X-rays from left to right (through
the plane of the image), as Fig. 5.32(b) shows, and assume that the energy of the
beam is absorbed more by the object than by the background, as typically is the case.
Using a strip of X-ray absorption detectors on the other side of the region will yield
the signal (absorption profile) shown, whose amplitude (intensity) is proportional to
absorption.† We may view any point in the signal as the sum of the absorption values
across the single ray in the beam corresponding spatially to that point (such a sum
often is referred to as a raysum). At this juncture, all the information we have about
the object is this 1-D absorption signal.

We have no way of determining from a single projection whether we are dealing
with a single object, or a multitude of objects along the path of the beam, but we
begin the reconstruction by creating an image based only on this information. The
approach is to project the 1-D signal back in the opposite direction from which the
beam came, as Fig. 5.32(c) shows. The process of backprojecting a 1-D signal across a
2-D area sometimes is referred to as smearing the projection back across the area. In

† A treatment of the physics of X-ray sources and detectors is beyond the scope of our discussion, which focuses
on the image processing aspects of CT. See Prince and Links [2006] for an excellent introduction to the physics
of X-ray image formation.

5.11

As noted in Chapter 1,
the term computerized
axial tomography (CAT)
is used interchangeably
to denote CT.

DIP4E_GLOBAL_Print_Ready.indb 368 6/16/2017 2:07:48 PM

5.11 Image Reconstruction from Projections 369

terms of digital images, this means duplicating the same 1-D signal across the image,
perpendicularly to the direction of the beam. For example, Fig. 5.32(c) was created
by duplicating the 1-D signal in all columns of the reconstructed image. For obvious
reasons, the approach just described is called backprojection.

Next, suppose that we rotate the position of the source-detector pair by 90°, as
in Fig. 5.32(d). Repeating the procedure explained in the previous paragraph yields
a backprojection image in the vertical direction, as Fig. 5.32(e) shows. We continue
the reconstruction by adding this result to the previous backprojection, resulting in
Fig. 5.32(f). Now, we begin to suspect that the object of interest is contained in the
square shown, whose amplitude is twice the amplitude of the individual backprojec-
tions because the signals were added. We should be able to learn more about the
shape of the object in question by taking more views in the manner just described,
as Fig. 5.33 shows. As the number of projections increases, the amplitude strength
of non-intersecting backprojections decreases relative to the strength of regions in
which multiple backprojections intersect. The net effect is that brighter regions will
dominate the result, and backprojections with few or no intersections will fade into
the background as the image is scaled for display.

Figure 5.33(f), which was formed from 32 backprojections, illustrates this concept.
Note, however, that while this reconstructed image is a reasonably good approxi-
mation to the shape of the original object, the image is blurred by a “halo” effect,
the formation of which can be seen in progressive stages in Fig. 5.33. For example,
the halo in Fig. 5.33(e) appears as a “star” whose intensity is lower than that of the

ba c
ed f

FIGURE 5.32
(a) Flat region
with a single
object. (b) Parallel
beam, detector
strip, and profile of
sensed 1-D
absorption signal.
(c) Result of back-
projecting the
absorption profile.
(d) Beam and
detectors rotated
by 90°.
(e) Backprojection.
(f) The sum of (c)
and (e), inten-
sity-scaled. The
intensity where the
backprojections
intersect is twice
the intensity of the
individual back-
projections.

Absorption profile (signal)

Ray Detector strip

B
ea

m

DIP4E_GLOBAL_Print_Ready.indb 369 6/16/2017 2:07:48 PM

370 Chapter 5 Image Restoration and Reconstruction

object, but higher than the background. As the number of views increases, the shape
of the halo becomes circular, as in Fig. 5.33(f). Blurring in CT reconstruction is an
important issue, whose solution is addressed later in this section. Finally, we con-
clude from the discussion of Figs. 5.32 and 5.33 that backprojections 180° apart are
mirror images of each other, so we have to consider only angle increments halfway
around a circle in order to generate all the backprojections required for reconstruc-
tion.

EXAMPLE 5.14 : Backprojections of a planar region containing two objects.

Figure 5.34 illustrates reconstruction using backprojections on a region that contains two objects with
different absorption properties (the larger object has higher absorption). Figure 5.34(b) shows the result
of using one backprojection. We note three principal features in this figure, from bottom to top: a thin
horizontal gray band corresponding to the unoccluded portion of the small object, a brighter (more
absorption) band above it corresponding to the area shared by both objects, and an upper band corre-
sponding to the rest of the elliptical object. Figures 5.34(c) and (d) show reconstruction using two pro-
jections 90° apart and four projections 45° apart, respectively. The explanation of these figures is similar
to the discussion of Figs. 5.33(c) through (e). Figures 5.34(e) and (f) show more accurate reconstructions
using 32 and 64 backprojections, respectively. The last two results are quite close visually, and they both
show the blurring problem mentioned earlier.

PRINCIPLES OF X-RAY COMPUTED TOMOGRAPHY (CT)

As with the Fourier transform discussed in the last chapter, the basic mathematical
concepts required for CT were in place many years before the availability of digital

ba c
ed f

FIGURE 5.33
(a) Same as
Fig. 5.32(a).
(b)-(e) Recon-
struction using 1,
2, 3, and 4 back-
projections 45°
apart.
(f) Reconstruction
with 32 backpro-
jections 5.625°
apart (note the
blurring).

DIP4E_GLOBAL_Print_Ready.indb 370 6/16/2017 2:07:48 PM

5.11 Image Reconstruction from Projections 371

ba c
ed f

FIGURE 5.34
(a) Two objects
with different
absorption charac-
teristics.
(b)–(d) Recon-
struction using 1, 2,
and 4 backprojec-
tions, 45° apart.
(e) Reconstruction
with 32 backprojec-
tions, 5.625° apart.
(f) Reconstruction
with 64 backprojec-
tions, 2.8125° apart.

computers made them practical. The theoretical foundation of CT dates back to
Johann Radon, a mathematician from Vienna who derived a method in 1917 for
projecting a 2-D object along parallel rays, as part of his work on line integrals (the
method now is referred to as the Radon transform, a topic we will discuss shortly).
Forty-five years later, Allan M. Cormack, a physicist at Tufts University, partially

“rediscovered” these concepts and applied them to CT. Cormack published his initial
findings in 1963 and 1964 and showed how his results could be used to reconstruct
cross-sectional images of the body from X-ray images taken in different angular
directions. He gave the mathematical formulae needed for the reconstruction and
built a CT prototype to show the practicality of his ideas. Working independently,
electrical engineer Godfrey N. Hounsfield and his colleagues at EMI in London
formulated a similar solution and built the first medical CT machine. Cormack and
Hounsfield shared the 1979 Nobel Prize in Medicine for their contributions to medi-
cal uses of tomography.

The goal of X-ray computed tomography is to obtain a 3-D representation of the
internal structure of an object by X-raying the object from many different directions.
Imagine a traditional chest X-ray, obtained by placing the subject against an X-ray
sensitive plate and “illuminating” the individual with an X-ray beam in the form of
a cone. The X-ray plate would produce an image whose intensity at a point would
be proportional to the X-ray energy impinging on that point after it passed through
the subject. This image is the 2-D equivalent of the projections we discussed in the
previous section. We could back-project this entire image and create a 3-D volume.
Repeating this process through many angles and adding the backprojections would
result in 3-D rendition of the structure of the chest cavity. Computed tomography
attempts to get that same information (or localized parts of it) by generating slices

DIP4E_GLOBAL_Print_Ready.indb 371 6/16/2017 2:07:49 PM

372 Chapter 5 Image Restoration and Reconstruction

Detector

Subject

Sourceba
dc

FIGURE 5.35
Four generations
of CT scanners.
The dotted arrow
lines indicate
incremental linear
motion. The
dotted arrow arcs
indicate
incremental
rotation. The
cross-mark on
the subject’s
head indicates
linear motion
perpendicular to
the plane of the
paper. The double
arrows in (a)
and (b) indicate
that the source/
detector unit is
translated and
then brought back
into its original
position.

through the body. A 3-D representation then can be obtained by stacking the slices.
A CT implementation is much more economical because the number of detectors
required to obtain a high resolution slice is much smaller than the number of detec-
tors needed to generate a complete 2-D projection of the same resolution. Compu-
tational burden and X-ray dosages are similarly reduced, making the 1-D projection
CT a more practical approach.

First-generation (G1) CT scanners employ a “pencil” X-ray beam and a single
detector, as Fig. 5.35(a) shows. For a given angle of rotation, the source/detector
pair is translated incrementally along the linear direction shown. A projection (like
the ones in Fig. 5.32), is generated by measuring the output of the detector at each
increment of translation. After a complete linear translation, the source/detector
assembly is rotated and the procedure is repeated to generate another projection
at a different angle. The procedure is repeated for all desired angles in the range [0°,
180°] to generate a complete set of projections images, from which one final cross-
sectional image (a slice through the 3-D object) is obtained, as explained in the

DIP4E_GLOBAL_Print_Ready.indb 372 6/16/2017 2:07:49 PM

5.11 Image Reconstruction from Projections 373

previous section. A set of cross sectional images (slices) is generated by moving the
subject incrementally (after each complete scan) past the source/detector plane (the
cross-mark on the head of the subject indicates motion in a direction perpendicular
to the plane of the source/detector pair). Stacking these images computationally
produces a 3-D volume of a section of the body. G1 scanners are no longer manu-
factured for medical imaging, but, because they produce a parallel-ray beam (as in
Fig. 5.32), their geometry is the one used predominantly for introducing the funda-
mentals of CT imaging, and serves as the starting point for deriving the equations
necessary to implement image reconstruction from projections.

Second-generation (G2) CT scanners [Fig. 5.35(b)] operate on the same principle
as G1 scanners, but the beam used is in the shape of a fan. This allows the use of mul-
tiple detectors, thus requiring fewer translations of the source/detector pair.

Third-generation (G3) scanners are a significant improvement over the earlier
two generations of CT geometries. As Fig. 5.35(c) shows, G3 scanners employ a bank
of detectors long enough (on the order of 1000 individual detectors) to cover the
entire field of view of a wider beam. Consequently, each increment of angle pro-
duces an entire projection, eliminating the need to translate the source/detector pair,
as in G1 and G2 scanners.

Fourth-generation (G4) scanners go a step further. By employing a circular ring of
detectors (on the order of 5000 individual detectors), only the source has to rotate.
The key advantage of G3 and G4 scanners is speed; key disadvantages are cost and
greater X-ray scatter. The latter implies higher X-ray doses than G1 and G2 scan-
ners to achieve comparable signal-to-noise characteristics.

Newer scanning modalities are beginning to be adopted. For example, fifth-gener-
ation (G5) CT scanners, also known as electron beam computed tomography (EBCT)
scanners, eliminate all mechanical motion by employing electron beams controlled
electromagnetically. By striking tungsten anodes that encircle the patient, these
beams generate X-rays that are then shaped into a fan beam that passes through the
patient and excites a ring of detectors, as in G4 scanners.

The conventional manner in which CT images are obtained is to keep the patient
stationary during the scanning time required to generate one image. Scanning is then
halted while the position of the patient is incremented in the direction perpendicu-
lar to the imaging plane, using a motorized table. The next image is then obtained
and the procedure is repeated for the number of increments required to cover a
specified section of the body. Although an image may be obtained in less than one
second, there are procedures (e.g., abdominal and chest scans) that require patient
to hold their breath during image acquisition. Completing these procedures for, say,
30 images, may require several minutes. An approach for which use is increasing is
helical CT, sometimes referred to as sixth-generation (G6) CT. In this approach, a
G3 or G4 scanner is configured using so-called slip rings that eliminate the need for
electrical and signal cabling between the source/detectors and the processing unit.
The source/detector pair then rotates continuously through 360° while the patient
is moved at a constant speed along the axis perpendicular to the scan. The result is
a continuous helical volume of data that is then processed to obtain individual slice
images.

DIP4E_GLOBAL_Print_Ready.indb 373 6/16/2017 2:07:49 PM

374 Chapter 5 Image Restoration and Reconstruction

y

x
u

r

FIGURE 5.36
Normal
representation of
a line.

Seventh-generation (G7) scanners (also called multislice CT scanners) are emerg-
ing in which “thick” fan beams are used in conjunction with parallel banks of detec-
tors to collect volumetric CT data simultaneously. That is, 3-D cross-sectional “slabs,”
rather than single cross-sectional images are generated per X-ray burst. In addition
to a significant increase in detail, this approach has the advantage that it utilizes
X-ray tubes more economically, thus reducing cost and potentially reducing dosage.

In the following discussion, we develop the mathematical tools necessary for for-
mulating image projection and reconstruction algorithms. Our focus is on the image-
processing fundamentals that underpin all the CT approaches just discussed. Infor-
mation regarding the mechanical and source/detector characteristics of CT systems
is provided in the references cited at the end of the chapter.

PROJECTIONS AND THE RADON TRANSFORM

Next, we develop in detail the mathematics needed for image reconstruction in the
context of X-ray computed tomography. The same basic principles apply to other
CT imaging modalities, such as SPECT (single photon emission tomography), PET
(positron emission tomography), MRI (magnetic resonance imaging), and some
modalities of ultrasound imaging.

A straight line in Cartesian coordinates can be described either by its slope-inter-
cept form, y ax b= + , or, as in Fig. 5.36, by its normal representation:

 x ycos sinu u r+ = (5-100)

The projection of a parallel-ray beam can be modeled by a set of such lines, as
Fig. 5.37 shows. An arbitrary point at coordinates (,)r uj k in the projection profile is
given by the raysum along the line x yk k jcos sin .u u r+ = Working with continuous
quantities for the moment, the raysum is a line integral, given by

 g f x y x y dxdyj k k k j(,) (,) (cos sin)r u d u u r= + −
- -�

�

�

�

2 2 (5-101)

where we used the properties of the impulse, d, discussed in Section 4.5. In other
words, the right side of Eq. (5-101) is zero unless the argument of d is zero, indicating

Throughout this section,
we follow CT convention
and place the origin
of the xy-plane in the
center, instead of at our
customary top left corner
(see Section 2.4). Both
are right-handed coor-
dinate systems, the only
difference being that our
image coordinate system
has no negative axes.
We can account for the
difference with a simple
translation of the origin,
so both representations
are interchangeable.

DIP4E_GLOBAL_Print_Ready.indb 374 6/16/2017 2:07:50 PM

5.11 Image Reconstruction from Projections 375

that the integral is computed only along the line x yk k jcos sin .u u r+ = If we con-
sider all values of r and u, the preceding equation generalizes to

 g f x y x y dxdy(,) (,) (cos sin)r u d u u r= + −
- -�

�

�

�

2 2 (5-102)

This equation, which gives the projection (line integral) of f x y(,) along an arbi-
trary line in the xy-plane, is the Radon transform mentioned earlier. The notation
� f x y(,){ } or � f{ } is used sometimes in place of g(,)r u in Eq. (5-102) to denote
the Radon transform of f x y(,), but the type of notation used in Eq. (5-102) is more
customary. As will become evident in the discussion that follows, the Radon trans-
form is the cornerstone of reconstruction from projections, with computed tomogra-
phy being its principal application in the field of image processing.

In the discrete case,† the Radon transform of Eq. (5-102) becomes

 g f x y x y
y

N

x

M

(,) (,) (cos sin)r u d u u r= + −
=

−

=

−

∑∑
0

1

0

1

 (5-103)

where x, y, and are now discrete variables, and M and N are the dimensions of a
rectangular area over which the transform is applied. If we fix u and allow r to
vary, we see that (5-103) simply sums the pixels of f x y(,) along the line defined by
the specified values of these two parameters. Incrementing through all values of r

† In Chapter 4, we exercised great care in denoting continuous image coordinates by (,)t z and discrete coordi-
nates by (,).x y At that time, the distinction was important because we were developing basic concepts to take us
from continuous to sampled quantities. In the present discussion, we go back and forth so many times between
continuous and discrete coordinates that adhering to this convention is likely to generate unnecessary confusion.
For this reason, and also to follow the published literature in this field (e.g., see Prince and Links [2006]), we let
the context determine whether coordinates (,)x y are continuous or discrete. When they are continuous, you will
see integrals; otherwise, you will see summations.

FIGURE 5.37
Geometry of a
parallel-ray beam.

r
Complete projection, g(r, uk),
for a fixed angle

A point g(rj, uk) in
the projection

(,)
cos sin

j k

k k j

L
x y

=
+ −

r u

u u r

y�

x�

x

rj

y

uk

DIP4E_GLOBAL_Print_Ready.indb 375 6/16/2017 2:07:51 PM

376 Chapter 5 Image Restoration and Reconstruction

required to span the M N× area (with u fixed) yields one projection. Changing u
and repeating this procedure yields another projection, and so forth. This is precisely
how the projections in Figs. 5.32-5.34 were generated.

EXAMPLE 5.15 : Using the Radon transform to obtain the projection of a circular region.

Before proceeding, we illustrate how to use the Radon transform to obtain an analytical expression for
the projection of the circular object in Fig. 5.38(a):

 f x y
A x y r

(,) =
+ ≤⎧

⎨
⎪

⎩⎪

2 2 2

0 otherwise

where A is a constant and r is the radius of the object. We assume that the circle is centered on the origin
of the xy-plane. Because the object is circularly symmetric, its projections are the same for all angles, so
all we have to do is obtain the projection for u = 0°. Equation (5-102) then becomes

g f x y x dxdy

f y dy

(,) (,) ()

(,)

r u d r

r

= −

=

- -

-

�

�

�

�

�

�
2 2

2
where the second expression follows from Eq. (4-13). As noted earlier, this is a line integral (along the
line L(,)r 0 in this case). Also, note that g(,)r u = 0 when r > r. When r ≤ r the integral is evaluated
from y r= −−()2 2 1 2

r to y r= −() .2 2 1 2
r Therefore,

y

0 r
r

g(r)

x

b
a

FIGURE 5.38
(a) A disk and,
(b) a plot of its Radon
transform, derived
analytically. Here we
were able to plot the
transform because it
depends only on one
variable. When g
depends on both r and
u, the Radon transform
becomes an image
whose axes are r and
u, and the intensity of
a pixel is proportional
to the value of g at the
location of that pixel.

DIP4E_GLOBAL_Print_Ready.indb 376 6/16/2017 2:07:52 PM

5.11 Image Reconstruction from Projections 377

g f y dy

Ady

r

r

r

r

(,) (,)r u r
r

r

r

r

=

=

− −

−

− −

−

2 2

2 2

2 2

2 2

2

2
Carrying out the integration yields

 g g
A r r(,) ()r u r

r r= = −⎧
⎨
⎪

⎩⎪

2

0

2 2 ≤
otherwise

where we used the fact that g(,)r u = 0 when r > r. Figure 5.38(b) shows a plot of this result. Note that
g g(,) ();r u r= that is, g is independent of u because the object is symmetric about the origin.

When the Radon transform, g(,),r u is displayed as an image with r and u as recti-
linear coordinates, the result is called a sinogram, similar in concept to displaying the
Fourier spectrum. Like the Fourier transform, a sinogram contains the data neces-
sary to reconstruct f x y(,). Unlike the Fourier transform, however, g(,)r u is always
a real function. As is the case with displays of the Fourier spectrum, sinograms can
be readily interpreted for simple regions, but become increasingly difficult to “read”
as the region being projected becomes more complex. For example, Fig. 5.39(b) is
the sinogram of the rectangle on the left. The vertical and horizontal axes corre-
spond to u and r, respectively. Thus, the bottom row is the projection of the rect-
angle in the horizontal direction (i.e., u = 0°), and the middle row is the projection
in the vertical direction ((u = 90°). The fact that the nonzero portion of the bottom
row is smaller than the nonzero portion of the middle row tells us that the object is
narrower in the horizontal direction. The fact that the sinogram is symmetric in both
directions about the center of the image tells us that we are dealing with an object
that is symmetric and parallel to the x and y axes. Finally, the sinogram is smooth,
indicating that the object has a uniform intensity. Other than these types of general
observations, we cannot say much more about this sinogram.

Figure 5.39(c) is an image of the Shepp-Logan phantom (Shepp and Logan [1974]),
a widely used synthetic image designed to simulate the absorption of major areas of
the brain, including small tumors. The sinogram of this image is considerably more
difficult to interpret, as Fig. 5.39(d) shows. We still can infer some symmetry prop-
erties, but that is about all we can say. Visual analyses of sinograms are of limited
practical use, but they can be helpful in tasks such as algorithm development.

BACKPROJECTIONS

To obtain a formal expression for a backprojected image from the Radon transform,
let us begin with a single point, g j k(,),r u of the complete projection, g k(,),r u for a
fixed value of rotation, uk (see Fig. 5.37). Forming part of an image by backproject-
ing this single point is nothing more than copying the line L j k(,)r u onto the image,

To generate arrays with
rows of the same size,
the minimum dimen-
sion of the r-axis in
sinograms corresponds
to the largest dimension
encountered during
projection. For example,
the minimum size of a
sinogram of a square
of size M × M obtained
using increments of 1° is
180 × Q where Q is the
smallest integer greater
than 2 M.

DIP4E_GLOBAL_Print_Ready.indb 377 6/16/2017 2:07:54 PM

378 Chapter 5 Image Restoration and Reconstruction

where the value (intensity) of each point in that line is g j k(,).r u Repeating this pro-
cess of all values of rj in the projected signal (but keeping the value of u fixed at uk)
results in the following expression:

f x y g

g x y
k k

k k k

u r u

u u u

(,) (,)

(cos sin ,)

=

= +

for the image due to backprojecting the projection obtained with a fixed angle, uk ,
as in Fig. 5.32(b). This equation holds for an arbitrary value of uk , so we may write
in general that the image formed from a single backprojection obtained at an angle
u is given by

 f x y g x yu u u u(,) (cos sin ,)= + (5-104)

We form the final image by integrating over all the backprojected images:

 f x y f x y d(,) (,)=
0

p

u u2 (5-105)

In the discrete case, the integral becomes a sum of all the backprojected images:

180

135

90u

u

45

0

180

135

90

45

0

r

r

ba
dc

FIGURE 5.39
Two images and
their sinograms
(Radon
transforms). Each
row of a sinogram
is a projection
along the
corresponding
angle on the
vertical axis.
(Note that the
horizontal axis
of the sinograms
are values of r.)
Image (c) is called
the Shepp-Logan
phantom. In its
original form, the
contrast of the
phantom is quite
low. It is shown
enhanced here to
facilitate viewing.

DIP4E_GLOBAL_Print_Ready.indb 378 6/16/2017 2:07:55 PM

5.11 Image Reconstruction from Projections 379

ba
FIGURE 5.40
Backprojections
of the sinograms
in Fig. 5.39.

 f x y f x y(,) (,)=
=
∑ u
u

p

0

 (5-106)

where, x, y, and u are now discrete quantities. As mentioned earlier, the projections
at 0° and 180° are mirror images of each other, so the summations are carried out
to the last angle increment before 180°. For example, if 0 5. ° increments are being
used, the summation is from 0° to 179 5. ° in half-degree increments. A backpro-
jected image formed in the manner just described sometimes is referred to as a
laminogram. It is understood implicitly that a laminogram is only an approximation
to the image from which the projections were generated, a fact that is illustrated in
the following example.

EXAMPLE 5.16 : Obtaining backprojected images from sinograms.

Equation (5-106) was used to generate the backprojected images in Figs. 5.32 through 5.34, from projec-
tions obtained with Eq. (5-103). Similarly, these equations were used to generate Figs. 5.40(a) and (b),
which show the backprojected images corresponding to the sinograms in Figs. 5.39(b) and (d), respec-
tively. As with the earlier figures, we note a significant amount of blurring, so it is obvious that a straight
use of Eqs. (5-103) and (5-106) will not yield acceptable results. Early, experimental CT systems were
based on these equations. However, as you will see later in our discussion, significant improvements in
reconstruction are possible by reformulating the backprojection approach.

THE FOURIER-SLICE THEOREM

In this section, we derive a fundamental equation that establishes a relationship
between the 1-D Fourier transform of a projection and the 2-D Fourier transform
of the region from which the projection was obtained. This relationship is the basis
for reconstruction methods capable of dealing with the blurring problems we have
encountered thus far.

The 1-D Fourier transform of a projection with respect to r is

 G g e dj(,) (,)v u r u rpvr= −

-�

�

2
2 (5-107)This equation has the

same form as Eq. (4-20).

DIP4E_GLOBAL_Print_Ready.indb 379 6/16/2017 2:07:56 PM

380 Chapter 5 Image Restoration and Reconstruction

where v is the frequency variable, and it is understood that this expression is based
on a fixed value of u. Substituting Eq. (5-102) for g(,)r u we obtain

G f x y x y e dxdydj(,) (,) (cos sin)v u d u u r rpvr= + −

=

−

- - -

-

�

�

�

�

�

�

�

�
2 2 2

2

22 2 2

2

- -

-

�

�

�

�

�

�

f x y x y e d dxdyj(,) (cos sin)d u u r rpvr+ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

− 2

--�

�

2 f x y e dxdyj x y(,) (cos sin)− +2pv u u

 (5-108)

where the last step follows from the sifting property of the impulse discussed in
Chapter 4. By letting u = v ucos and v = v usin , we can write Eq. (5-108) as

 G f x y e dxdyj ux y

u

(,) (,) ()

cos ; si

v u p

v u v

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− +

= =- -�

�

�

�

2 2
2 v

v nn u

 (5-109)

We recognize this expression as the 2-D Fourier transform of f x y(,) [see Eq. (4-59)]
evaluated at the values of u and v indicated. That is,

G F u

F
u

(,) (,)

(cos , sin)
cos ; sin

v u

v u v u

v u v u
= []
=

= =v
v (5-110)

where, as usual, F(,)u v denotes the 2-D Fourier transform of f x y(,).
The result in Eq. (5-110) is known as the Fourier-slice theorem (or the projection-

slice theorem). It states that the Fourier transform of a projection is a slice of the 2-D
Fourier transform of the region from which the projection was obtained. The reason
for this terminology can be explained with the aid of Fig. 5.41. As this figure shows,
the 1-D Fourier transform of an arbitrary projection is obtained by extracting the
values of F(,)u v along a line oriented at the same angle as the angle used in generat-
ing the projection.

In principle, we could obtain f x y(,) simply by obtaining the inverse Fourier trans-
form of F(,).u v However, this is expensive computationally, as it involves obtained
the inverse of a 2-D transform. The approach discussed in the following section is
much more efficient.

RECONSTRUCTION USING PARALLEL-BEAM FILTERED
BACKPROJECTIONS

As we saw in Figs. 5.33, 5.34, and 5.40, obtaining backprojections directly yields unac-
ceptably blurred results. Fortunately, there is a straightforward solution to this prob-
lem based simply on filtering the projections before computing the backprojections.
From Eq. (4-60), the 2-D inverse Fourier transform of F(,)u v is

DIP4E_GLOBAL_Print_Ready.indb 380 6/16/2017 2:07:57 PM

5.11 Image Reconstruction from Projections 381

2-D Fourier
transform

1-D Fourier
transform

F(u, v)

f(x, y)

v

uu

ux

y

Projection

Slice of F(u, v)

FIGURE 5.41
Illustration of
the Fourier-slice
theorem. The 1-D
Fourier transform
of a projection is
a slice of the 2-D
Fourier transform
of the region from
which the projec-
tion was obtained.
Note the corre-
spondence of the
angle u in the two
figures.

 f x y F e dudj ux y(,) (,) ()= +

- -�

�

�

�

2 2 u v vv2p (5-111)

If, as in Eqs. (5-109) and (5-110), we let u = v ucos and v = v usin , then the differen-
tials become dud d dv = v v u, and we can express Eq. (5-111) in polar coordinates:

 f x y F e d dj x y(,) (cos , sin) (cos sin)= +

0

2

0

2
p

v u v u v v upv u u

2 2
�

 (5-112)

Then, using the Fourier slice theorem,

 f x y G e d dj x y(,) (,) (cos sin)= +

0

2

0

2
p

v u v v upv u u

2 2
�

 (5-113)

By splitting this integral into two expressions, one for u in the range 0° to 180° and
the other in the range 180° to 360°, and using the fact that G G(,) (,)v u v u+ = −180°
(see Problem 5.46), we can express Eq. (5-113) as

 f x y G e d dj x y(,) (,) (cos sin)=
−

+

0

2
p

v v u v upv u u

2 2�

�

 (5-114)

The term x ycos sinu u+ is a constant with respect to v, and we recognize it as r
from Eq. (5-100). Therefore, we can write Eq. (5-114) as

 f x y G e d dj

x y

(,) (,)
cos sin

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = +0

2
p

v v u v upvr

r u u
2 2-�

�

 (5-115)

The relationship
dud d dv = v v u is from
basic integral calculus,
where the Jacobian is
used as the basis for a
change of variables.

DIP4E_GLOBAL_Print_Ready.indb 381 6/16/2017 2:07:59 PM

382 Chapter 5 Image Restoration and Reconstruction

The inner expression is in the form of an inverse 1-D Fourier transform [see
Eq. (4-21)], with the added term v which, based on the discussion in Section 4.7,
we recognize as a 1-D filter transfer function. Observe that v is a ramp function
[see Fig. 5.42(a)]. This function is not integrable because its amplitude extends to +�
in both directions, so the inverse Fourier transform is undefined. Theoretically, this
is handled by methods such as using so-called generalized delta functions. In practice,
the approach is to window the ramp so that it becomes zero outside of a defined
frequency interval. That is, a window band-limits the ramp filter transfer function.

The simplest approach to band-limit a function is to use a box in the frequency
domain. However, as we saw in Fig. 4.4, a box has undesirable ringing properties.
This is demonstrated by Figs. 5.42(b) and (c). The former shows a plot of the ramp
transfer function after it was band-limited by a box window, and the latter shows
its spatial domain representation, obtained by computing its inverse Fourier trans-
form. As expected, the resulting windowed filter exhibits noticeable ringing in the
spatial domain. We know from Chapter 4 that filtering in the frequency domain is
equivalent to convolution in the spatial domain, so spatial filtering with a function
that exhibits ringing will produce a result corrupted by ringing also. Windowing with
a smooth function helps this situation. An M-point discrete window function used
frequently for implementations with the 1-D FFT is given by

 H
c c

M
M

()
()cos ()

v

pv
v

=
+ − −⎧

⎨
⎪

⎩⎪

1
2

0 1

0

≤ ≤

otherwise
 (5-116)

When c = 0 54. , this function is called the Hamming window (named after Richard
Hamming) and, when c = 0 5. it is called the Hann window (named after Julius von
Hann). The key difference between the Hamming and Hann windows is that the

The ramp filter often
is referred to as the
Ram-Lak filter, after
Ramachandran and
Lakshminarayanan
[1971] who generally
are credited with having
been first to suggest it.

Sometimes the Hann
window is referred to as
the Hanning window in
analogy to the Hamming
window. However, this
terminology is incorrect
and is a frequent source
of confusion.

Frequency
domain

Frequency
domain

Frequency
domain

Spatial
domain

Spatial
domain

Frequency
domain

ba c
ed f

FIGURE 5.42
(a) Frequency domain
ramp filter transfer
function. (b) Function
after band-limiting
it with a box filter.
(c) Spatial domain
representation.
(d) Hamming
windowing func-
tion. (e) Windowed
ramp filter, formed
as the product of (b)
and (d). (f) Spatial
representation of the
product. (Note the
decrease in ringing.)

DIP4E_GLOBAL_Print_Ready.indb 382 6/16/2017 2:07:59 PM

5.11 Image Reconstruction from Projections 383

end points are zero in the latter. The difference between the two generally is visually
imperceptible in image processing applications.

Figure 5.42(d) is a plot of the Hamming window, and Fig. 5.42(e) shows the prod-
uct of this window and the band-limited ramp filter transfer function in Fig. 5.42(b).
Figure 5.42(f) shows the representation of the product in the spatial domain,
obtained as usual by computing the inverse FFT. It is evident by comparing this
figure and Fig. 5.42(c) that ringing was reduced in the windowed ramp (the ratios of
the peak to trough in Figs. 5.42(c) and (f) are 2.5 and 3.4, respectively). On the other
hand, because the width of the central lobe in Fig. 5.42(f) is slightly wider than in
Fig. 5.42(c), we would expect backprojections based on using a Hamming window to
have less ringing, but be slightly more blurred. As Example 5.17 below shows, this is
indeed the case.

Recall from Eq. (5-107) that G(,)v u is the 1-D Fourier transform of g(,),r u which
is a single projection obtained at a fixed angle, u. Equation (5-115) states that the
complete, backprojected image f x y(,) is obtained as follows:

1. Compute the 1-D Fourier transform of each projection.

2. Multiply each 1-D Fourier transform by the filter transfer function v which,
as explained above, has been multiplied by a suitable (e.g., Hamming) window.

3. Obtain the inverse 1-D Fourier transform of each resulting filtered transform.

4. Integrate (sum) all the 1-D inverse transforms from Step 3.

Because a filter function is used, this image reconstruction approach is appropri-
ately called filtered backprojection. In practice, the data are discrete, so all frequency
domain computations are carried out using a 1-D FFT algorithm, and filtering is
implemented using the same basic procedure explained in Chapter 4 for 2-D func-
tions. Alternatively, we can implement filtering in the spatial domain using convolu-
tion, as explained later.

 The preceding discussion addresses the windowing aspects of filtered backpro-
jections. As with any sampled data system, we also need to be concerned about
sampling rates. We know from Chapter 4 that the selection of sampling rates has a
profound influence on image processing results. In the present discussion, there are
two sampling considerations. The first is the number of rays used, which determines
the number of samples in each projection. The second is the number of rotation
angle increments, which determines the number of reconstructed images (whose
sum yields the final image). Under-sampling results in aliasing which, as we saw in
Chapter 4, can manifest itself as artifacts in the image, such as streaks. We address
CT sampling issues in more detail later in our discussion.

EXAMPLE 5.17 : Image reconstruction using filtered backprojections.

The focus of this example is to show reconstruction using filtered backprojections, first with a box-
limited ramp transfer function and then using a ramp limited by a Hamming window. These filtered
backprojections are compared against the results of “raw” backprojections from Fig. 5.40. In order to
focus on the difference due only to filtering, the results in this example were generated with 0.5° incre-
ments of rotation, the same we used to generate Fig. 5.40. The separation between rays was one pixel

DIP4E_GLOBAL_Print_Ready.indb 383 6/16/2017 2:08:00 PM

384 Chapter 5 Image Restoration and Reconstruction

in both cases. The images in both examples are of size 600 600× pixels, so the length of the diagonal
is 2 600 849× ≈ .Consequently, 849 rays were used to provide coverage of the entire region when the
angle of rotation was 45° and 135°.

Figure 5.43(a) shows the rectangle reconstructed using a ramp function band-limited by a box. The
most vivid feature of this result is the absence of any visually detectable blurring. However, as expected,
ringing is present, visible as faint lines, especially around the corners of the rectangle. These lines are
more visible in the zoomed section in Fig. 5.43(c). Using a Hamming window on the ramp helped con-
siderably with the ringing problem, at the expense of slight blurring, as Figs. 5.43(b) and (d) show. The
improvements (even with the box-windowed ramp) over Fig. 5.40(a) are evident. The phantom image
does not have transitions that are as sharp and prominent as the rectangle so ringing, even with the
box-windowed ramp, is imperceptible in this case, as you can see in Fig. 5.44(a). Using a Hamming
window resulted in a slightly smoother image, as Fig. 5.44(b) shows. Both of these results are consider-
able improvements over Fig. 5.40(b), illustrating again the significant advantage inherent in the filtered
backprojection approach.

In most applications of CT (especially in medicine), artifacts such as ringing are a serious concern, so
significant effort is devoted to minimizing them. Tuning the filtering algorithms and, as explained earlier,
using a large number of detectors are among the design considerations that help reduce these effects.

The preceding discussion is based on obtaining filtered backprojections via an
FFT implementation. However, we know from the convolution theorem in Chapter 4
that equivalent results can be obtained using spatial convolution. In particular, note

ba
dc

FIGURE 5.43
Filtered backpro-
jections of the
rectangle using
(a) a ramp filter,
and
(b) a Hamming
windowed ramp
filter. The second
row shows
zoomed details of
the images in the
first row. Compare
with Fig. 5.40(a).

DIP4E_GLOBAL_Print_Ready.indb 384 6/16/2017 2:08:00 PM

5.11 Image Reconstruction from Projections 385

ba

FIGURE 5.44
Filtered backpro-
jections of the
head phantom
using (a) a ramp
filter, and (b) a
Hamming
windowed ramp
filter. Compare
with Fig. 5.40(b)

that the term inside the brackets in Eq. (5-115) is the inverse Fourier transform of
the product of two frequency domain functions which, according to the convolu-
tion theorem, we know to be equal to the convolution of the spatial representa-
tions (inverse Fourier transforms) of these two functions. In other words, letting s()r
denote the inverse Fourier transform of v ,† we write Eq. (5-115) as

f x y G e d d

s

j

x y

(,) (,)

(

cos sin

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

= +0

0

2
p

p

v v u v upvr

r u u
2 2

2

-�

�

rr r u u

r u u u r

r u u

p

) (,)

(,) (cos sin)

cos sin
� g d

g s x y d

x y[]

= + −

= +

02 2-�

�

rr u
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

d

 (5-117)

where, as in Chapter 4, “�” denotes convolution. The second line follows from the
first for the reasons explained in the previous paragraph. The third line (including
the −r) follows from the definition of convolution in Eq. (4-24).

The last two lines of Eq. (5-117) say the same thing: individual backprojections at
an angle u can be obtained by convolving the corresponding projection, g(,),r u and
the inverse Fourier transform of the ramp filter transfer function, s().r As before,
the complete backprojected image is obtained by integrating (summing) all the indi-
vidual backprojected images. With the exception of roundoff differences in compu-
tation, the results of using convolution will be identical to the results using the FFT.
In actual CT implementations, convolution generally turns out to be more efficient
computationally, so most modern CT systems use this approach. The Fourier trans-
form does play a central role in theoretical formulations and algorithm development
(for example, CT image processing in MATLAB is based on the FFT). Also, we note
that there is no need to store all the backprojected images during reconstruction.

† If a windowing function, such as a Hamming window, is used, then the inverse Fourier transform is performed
on the windowed ramp.

DIP4E_GLOBAL_Print_Ready.indb 385 6/16/2017 2:08:01 PM

386 Chapter 5 Image Restoration and Reconstruction

Instead, a single running sum is updated with the latest backprojected image. At the
end of the procedure, the running sum will equal the sum total of all the backprojec-
tions.

Finally, we point out that, because the ramp filter (even when it is windowed)
zeros the dc term in the frequency domain, each backprojection image will have
zero average value (see Fig. 4.29). This means that the pixels in each backprojec-
tion image will have negative and positive values. When all the backprojections are
added to form the final image, some negative locations may become positive and the
average value may not be zero, but typically, the final image will still have negative
pixels.

There are several ways to handle this problem. The simplest approach, when
there is no knowledge regarding what the average values should be, is to accept the
fact that negative values are inherent in the approach and scale the result using the
procedure described in Eqs. (2-31) and (2-32). This is the approach followed in this
section. When knowledge about what a “typical” average value should be is avail-
able, that value can be added to the filter transfer function in the frequency domain,
thus offsetting the ramp and preventing zeroing the dc term [see Fig. 4.30(c)]. When
working in the spatial domain with convolution, the very act of truncating the length
of the spatial filter kernel (inverse Fourier transform of the ramp) prevents it from
having a zero average value, thus avoiding the zeroing problem altogether.

RECONSTRUCTION USING FAN-BEAM FILTERED BACKPROJECTIONS

The discussion thus far has centered on parallel beams. Because of its simplicity and
intuitiveness, this is the imaging geometry used traditionally to introduce computed
tomography. However, more modern CT systems use a fan-beam geometry (see Fig.
5.35), which is the topic of the following discussion.

Figure 5.45 shows a basic fan-beam imaging geometry in which the detectors are
arranged on a circular arc and the angular increments of the source are assumed to
be equal. Let p(,)a b denote a fan-beam projection, where a is the angular position
of a particular detector measured with respect to the center ray, and b is the angular
displacement of the source, measured with respect to the y-axis, as shown in the
figure. We also note in Fig. 5.45 that a ray in the fan beam can be represented as a
line, L(,),r u in normal form, which is the approach we used to represent a ray in the
parallel-beam imaging geometry discussed earlier. This allows us to utilize parallel-
beam results as the starting point for deriving the corresponding equations for the
fan-beam geometry. We proceed to show this by deriving the fan-beam filtered back-
projection based on convolution.†

We begin by noticing in Fig. 5.45 that the parameters of line L(,)r u are related to
the parameters of a fan-beam ray by

 u b a= + (5-118)

† The Fourier-slice theorem was derived for a parallel-beam geometry and is not directly applicable to fan beams.
However, Eqs. (5-118) and (5-119) provide the basis for converting a fan-beam geometry to a parallel-beam
geometry, thus allowing us to use the filtered parallel backprojection approach developed in the previous section,
for which the slice theorem is applicable. We will discuss this in more detail at the end of this section.

DIP4E_GLOBAL_Print_Ready.indb 386 6/16/2017 2:08:01 PM

5.11 Image Reconstruction from Projections 387

x

y

D

Source

Center ray

L(r, u)

r u

b

a

FIGURE 5.45
Basic fan-beam
geometry. The line
passing through
the center of the
source and the
origin (assumed
here to be the
center of rotation
of the source) is
called the center
ray.

and

 r a= Dsin (5-119)

where D is the distance from the center of the source to the origin of the xy-plane.
The convolution backprojection formula for the parallel-beam imaging geometry

is given by Eq. (5-117). Without loss of generality, suppose that we focus attention
on objects that are encompassed within a circular area of radius T about the origin
of the xy-plane. Then g(,)r u = 0 for r > T and Eq. (5-117) becomes

 f x y g s x y d d
T

T

(,) (,) (cos sin)= + −
−

1
2 0

2p

r u u u r r u2 2 (5-120)

where we used the fact mentioned earlier that projections 180° apart are mirror
images of each other. In this way, the limits of the outer integral in Eq. (5-120) are
made to span a full circle, as required by a fan-beam arrangement in which the
detectors are arranged in a circle.

We are interested in integrating with respect to a and b. To do this, we change
to polar coordinates, (,).r w That is, we let x r= cosw and y r= sin ,w from which it
follows that

x y r r

r

cos sin cos cos sin sin

cos()

u u w u w u

u w

+ = +
= −

 (5-121)

Using this result we can express Eq. (5-120) as

DIP4E_GLOBAL_Print_Ready.indb 387 6/16/2017 2:08:02 PM

388 Chapter 5 Image Restoration and Reconstruction

 f x y g s r d d
T

T

(,) (,) cos()= − −()
−

1
2 0

2p

r u u w r r u2 2 (5-122)

This expression is nothing more than the parallel-beam reconstruction formula writ-
ten in polar coordinates. However, integration still is with respect to r and u. To
integrate with respect to a and b requires a transformation of coordinates using
Eqs. (5-118) and (5-119):

f r g D

s r

T D

T D

(,) (sin ,)

cos(

sin (/)

sin (/)

w a a b

b

a

p a

= +

+
−

−

−−

−

1
2

2

1

1

2 2
aa w a a a b− −()) sin cosD D d d

 (5-123)

where we used d d D d dr u a a b= cos [see the explanation of Eq. (5-112)].
This equation can be simplified further. First, note that the limits −a to 2p a−

for variable b span the entire range of 360°. Because all functions of b are periodic
with period 2p, the limits of the outer integral can be replaced by 0 and 2p, respec-
tively. The term sin ()−1 T D has a maximum value, am , corresponding to r > T,
beyond which g = 0 (see Fig. 5.46), so we can replace the limits of the inner integral
by −am and am , respectively. Finally, consider the line L(,)r u in Fig. 5.45. A raysum
of a fan beam along this line must equal the raysum of a parallel beam along the
same line. This follows from the fact that a raysum is a sum of all values along a
line, so the result must be the same for a given ray, regardless of the coordinate sys-
tem is which it is expressed. This is true of any raysum for corresponding values of
(,)a b and (,).r u Thus, letting p(,)a b denote a fan-beam projection, it follows that
p g(,) (,)a b r u= and, from Eqs. (5-118) and (5-119), that p g D(,) (sin ,).a b a a b= +
Incorporating these observations into Eq. (5-123) results in the expression

 f r p s r D D d d
m

m

(,) (,) cos() sin cosw a b b a w a a a b

p

a

a

= + − −[]
−

1
2 0

2

2 2 (5-124)

This is the fundamental fan-beam reconstruction formula based on filtered backpro-
jections.

Equation (5-124) can be manipulated further to put it in a more familiar convolu-
tion form. With reference to Fig. 5.47, it can be shown (see Problem 5.47) that

 r D Rcos() sin sin()b a w a a a+ − − = ′ − (5-125)

where R is the distance from the source to an arbitrary point in a fan ray, and ′a is
the angle between this ray and the center ray. Note that R and ′a are determined by
the values of r, w, and b. Substituting Eq. (5-125) into Eq. (5-124) yields

 f r p s R D d d
m

m

(,) (,) sin[] cosw a b a a a a b

p

a

a

= ′ −()
−

1
2 0

2

2 2 (5-126)

DIP4E_GLOBAL_Print_Ready.indb 388 6/16/2017 2:08:05 PM

5.11 Image Reconstruction from Projections 389

x

y

D

am

�am

T

Source
b

FIGURE 5.46
Maximum value
of α needed to
encompass a
region of interest.

It can be shown (see Problem 5.48) that

 s R
R

s(sin)
sin

()a
a

a
a= ⎡

⎣⎢
⎤
⎦⎥

2

 (5-127)

Using this expression, we can write Eq. (5-126) as

 f r
R

q h d d
m

m

(,) (,) ()w a b a a a b

p

a

a

= ′ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥−

1
2

1

0

2

22 2 (5-128)

where

 h s()
sin

()a
a

a
a= ⎡

⎣⎢
⎤
⎦⎥

1
2

2

 (5-129)

and

 q p D(,) (,) cosa b a b a= (5-130)

We recognize the inner integral in Eq. (5-128) as a convolution expression, thus
showing that the image reconstruction formula in Eq. (5-124) can be implemented
as the convolution of functions q(,)a b and h().a Unlike the reconstruction formula
for parallel projections, reconstruction based on fan-beam projections involves a
term 1 2R , which is a weighting factor inversely proportional to the distance from
the source. The computational details of implementing Eq. (5-128) are beyond the
scope of the present discussion (see Kak and Slaney [2001] for a detailed treatment
of this subject).

DIP4E_GLOBAL_Print_Ready.indb 389 6/16/2017 2:08:05 PM

390 Chapter 5 Image Restoration and Reconstruction

Instead of implementing Eq. (5-128) directly, an approach used often, particularly
in software simulations, is to: (1) convert a fan-beam geometry to a parallel-beam
geometry using Eqs. (5-118) and (5-119), and (2) use the parallel-beam reconstruc-
tion approach developed earlier. We conclude this section with an example of how to
do this. As noted earlier, a fan-beam projection, p, taken at angle b has a correspond-
ing parallel-beam projection, g, taken at a corresponding angle u and, therefore,

p g

g D

(,) (,)

(sin ,)

a b r u

a a b

=
= +

 (5-131)

where the last line follows from Eqs. (5-118) and (5-119).
Let �b denote the angular increment between successive fan-beam projections,

and let �a be the angular increment between rays, which determines the number of
samples in each projection. We impose the restriction that

 � �b a g= = (5-132)

Then, b g= m and a g= n for some integer values of m and n, and we can write
Eq. (5-131) as

 p n m g D n m n(,) sin , ()g g g g= +() (5-133)

This equation indicates that the nth ray in the mth radial projection is equal to the
nth ray in the ()m n+ th parallel projection. The D nsin g term on the right side of
Eq. (5-133) implies that parallel projections converted from fan-beam projections

x

y

D

R

r

Source

b

w

a�

b � w

FIGURE 5.47
Polar
representation of
an arbitrary point
on a ray of a fan
beam.

DIP4E_GLOBAL_Print_Ready.indb 390 6/16/2017 2:08:06 PM

5.11 Image Reconstruction from Projections 391

ba
dc

FIGURE 5.48
Reconstruction of
the rectangle image
from filtered fan
backprojections.
(a) 1° increments of
a and b.
(b) 0.5° increments.
(c) 0.25° increments.
(d) 0.125° incre-
ments.
Compare (d) with
Fig. 5.43(b).

are not sampled uniformly, an issue that can lead to blurring, ringing, and aliasing
artifacts if the sampling intervals �a and �b are too coarse, as the following exam-
ple illustrates.

EXAMPLE 5.18 : Image reconstruction using filtered fan backprojections.

Figure 5.48(a) shows the results of : (1) generating fan projections of the rectangle image with � �a b= = 1°,
(2) converting each fan ray to the corresponding parallel ray using Eq. (5-133), and (3) using the filtered
backprojection approach developed earlier for parallel rays. Figures 5.48(b) through (d) show the results
using 0.5°, 0.25°, and 0.125° increments of �a and �b. A Hamming window was used in all cases. We used
this variety of angle increments to illustrate the effects of under-sampling.

The result in Fig. 5.48(a) is a clear indication that 1° increments are too coarse, as blurring and ring-
ing are quite evident. The result in Fig. 5.48(b) is interesting, in the sense that it compares poorly with
Fig. 5.43(b), which we generated using the same angle increment of 0.5°. In fact, as Fig. 5.48(c) shows,
even with angle increments of 0.25° the reconstruction still is not as good as in Fig. 5.43(b). We have to
use angle increments on the order of 0.125° before the two results become comparable, as Fig. 5.48(d)
shows. This angle increment results in projections with 180 1 0 125× () = 1440. samples, which is close to
double the 849 rays used in the parallel projections of Example 5.17. Thus, it is not unexpected that the
results are close in appearance when using �a = 0 125. .°

Similar results were obtained with the head phantom, except that aliasing in this case is much more
visible as sinusoidal interference. We see in Fig. 5.49(c) that even with � �a b= = 0 25. ° significant distor-
tion still is present, especially in the periphery of the ellipse. As with the rectangle, using increments of
0.125° finally produced results that are comparable with the backprojected image of the head phantom

DIP4E_GLOBAL_Print_Ready.indb 391 6/16/2017 2:08:07 PM

392 Chapter 5 Image Restoration and Reconstruction

ba
dc

FIGURE 5.49
Reconstruction of
the head phantom
image from filtered
fan backprojections.
(a) 1° increments of
a and b.
(b) 0.5° increments.
(c) 0.25° increments.
(d) 0.125° incre-
ments.
Compare (d) with
Fig. 5.44(b).

in Fig. 5.44(b). These results illustrate one of the principal reasons why thousands of detectors have to
be used in the fan-beam geometry of modern CT systems in order to reduce aliasing artifacts.

Summary, References, and Further Reading
The restoration results in this chapter are based on the assumption that image degradation can be modeled as a lin-
ear, position invariant process followed by additive noise that is not correlated with image values. Even when these
assumptions are not entirely valid, it is often possible to obtain useful results by using the methods developed in the
preceding sections. Our treatment of image reconstruction from projections, though introductory, is the foundation
for the image-processing aspects of this field. As noted in Section 5.11, computed tomography (CT) is the main ap-
plication area of image reconstruction from projections. Although we focused on X-ray tomography, the principles
established in Section 5.11 are applicable in other CT imaging modalities, such as SPECT (single photon emission
tomography), PET (positron emission tomography), MRI (magnetic resonance imaging), and some modalities of
ultrasound imaging.

For additional reading on the material in Section 5.1 see Pratt [2014]. The books by Ross [2014], and by Mont-
gomery and Runger [2011], are good sources for a more in-depth discussion of probability density functions and
their properties (Section 5.2). See Umbaugh [2010] for complementary reading on the material in Section 5.3, and
Eng and Ma [2001, 2006] regarding adaptive median filtering. The filters in Section 5.4 are direct extensions of the
material in Chapter 4. The material in Section 5.5 is fundamental linear system theory; for more advanced reading
on this topic see Hespanha [2009]. The topic of estimating image degradation functions (Section 5.6) is fundamental
in the field of image restoration. Some of the early techniques for estimating the degradation function are given in
Andrews and Hunt [1977], Rosenfeld and Kak [1982]. More recent methods are discussed by Gunturk and Li [2013].

DIP4E_GLOBAL_Print_Ready.indb 392 6/16/2017 2:08:08 PM

 Summary, References, and Further Reading 393

Problems
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book
website: www.ImageProcessingPlace.com).

5.1 * The white bars in the test pattern shown are 7
pixels wide and 210 pixels high. The separation
between bars is 17 pixels. What would this image
look like after application of

(a) A 3 3× arithmetic mean filter?

(b) A 7 7× arithmetic mean filter?

(c) A 9 9× arithmetic mean filter?

Note: This problem and the ones that follow it,
related to filtering this image, may seem a bit
tedious. However, they are worth the effort, as
they help develop a real understanding of how
these filters work. After you understand how a
particular filter affects the image, your answer
can be a brief verbal description of the result. For
example, “the resulting image will consist of ver-
tical bars 3 pixels wide and 206 pixels high.” Be
sure to describe any deformation of the bars, such
as rounded corners. You may ignore image bor-
der effects, in which the filter neighborhoods only
partially contain image pixels.

5.2 Repeat Problem 5.1 using a geometric mean filter.

5.3 * Repeat Problem 5.1 using a harmonic mean filter.

5.4 Repeat Problem 5.1 using a contraharmonic
mean filter with Q = 1.

5.5 * Repeat Problem 5.1 using a contraharmonic
mean filter with Q = −1.

5.6 Repeat Problem 5.1 using a median filter.

5.7 * Repeat Problem 5.1 using a max filter.

5.8 Repeat Problem 5.1 using a min filter.

5.9 * Repeat Problem 5.1 using a midpoint filter.

5.10 In answering the following, refer to the contra-
harmonic filter in Eq. (5-26) :

(a) * Explain why the filter is effective in eliminat-
ing pepper noise when Q is positive.

(b) Explain why the filter is effective in eliminat-
ing salt noise when Q is negative.

(c) * Explain why the filter gives poor results
(such as the results in Fig. 5.9) when the
wrong polarity is chosen for Q.

(d) Discuss the expected behavior of the filter
when Q = −1.

5.11 We mentioned when discussing Eq. (5-27)] that
using median filters generally results in less blur-
ring than using linear smoothing filters (e.g., box
lowpass filters) of the same size. Explain why this
is so. (Hint: In order to focus on the key differ-
ence between the filters, assume that noise is neg-
ligible, and consider the behavior of these filters
in the neighborhood of a binary edge.)

There are two major approaches to the methods developed in Sections 5.7–5.10. One is based on a general for-
mulation using matrix theory, as introduced by Andrews and Hunt [1977] and by Gonzalez and Woods [1992]. This
approach is elegant and general, but it tends to be difficult for first-time readers. Approaches based on frequency
domain filtering (the approach we followed in this chapter) are easier to follow by newcomers to image restoration,
but lack the unifying mathematical rigor of the matrix approach. Both approaches arrive at the same results, but our
experience in teaching this material in a variety of settings indicates that students first entering this field favor the
latter approach by a significant margin. Complementary readings for our coverage of these filtering concepts are
Castleman [1996], Umbaugh [2010], Petrou and Petrou [2010] and Gunturk and Li [2013]. For additional reading
on the material in Section 5.11 see Kak and Slaney [2001], Prince and Links [2006], and Buzug [2008]. For details on
the software aspects of many of the examples in this chapter, see Gonzalez, Woods, and Eddins [2009].

DIP4E_GLOBAL_Print_Ready.indb 393 6/16/2017 2:08:08 PM

http://www.ImageProcessingPlace.com

394 Chapter 5 Image Restoration and Reconstruction

5.12 With reference to the alpha-trimmed filter defined
in Eq. (5-31)]:

(a) * Explain why setting d = 0 in the filter reduces
it to an arithmetic mean filter.

(b) Explain why setting d mn= − 1 turns the fil-
ter into a median filter.

5.13 With reference to the bandreject filter transfer
functions in Table 4.7, obtain equations for the
transfer functions of:

(a) An ideal bandpass filter.

(b) * A Gaussian bandpass filter.

(c) A Butterworth bandpass filter.

5.14 With reference to Eq. (5-33), obtain equations for:

(a) * An ideal notch filter transfer function.

(b) A Gaussian notch filter transfer function.

(c) A Butterworth notch filter transfer function.

5.15 Show that the Fourier transform of the 2-D dis-
crete sine function

 f x y x M y N(,) sin()= +2 20 0pm pv

for x M= −0 1 2 1, , , ,… and y N= −0 1 2 1, , , ,…
is the pair of conjugate impulses

F

jMN
u u

u u

(,) [(,)

(,)]

u v v v

v v

= + +

− − −
2 0 0

0 0

d

d

5.16 With reference to f x y(,) in Problem 5.15, answer
the following:

(a) * If v0 0= , and u0 and M are integers (),u M0 <
what would a plot of f x y(,) look like along
the x-axis for x M= −0 1 2 1, , , , ?…

(b) * What would a plot of F(,)u v look like for
u = −0 1 2 1, , , , ?… M

(c) If v0 0= , M is the same integer as before,
but u0 is no longer an integer (),u M0 < how
would a plot of f x y(,) along the x-axis for
x M= −0 1 2 1, , , ,… be different from (a)?

5.17 * Start with Eq. (5-46) and derive Eq. (5-48).

5.18 An industrial plant manager has been promoted
to a new position. His first responsibility is to
characterize an image filtering system left by his
predecessor. In reading the documentation, the
manager discovers that his predecessor estab-
lished that the system is linear and position invari-

ant. Furthermore, he learns that experiments con-
ducted under negligible-noise conditions resulted
in an impulse response that could be expressed
analytically in the frequency domain as

H e

e

u

u

(,) []

[() ()]

u v v

v

= +

−

− +

− − + −

2 2

2 2

150 150

50 150 50 150

1

The manager is not a technical person, so he
employs you as a consultant to determine what,
if anything, he needs to do to complete the char-
acterization of the system. He also wants to know
the function that the system performs. What (if
anything) does the manager need to do to com-
plete the characterization of his system? What fil-
tering function does the system perform?

5.19 A linear, space invariant system has the impulse
response

h x y x a y b(,) (,)= − −d

where a and b are constants, and x and y are dis-
crete quantities. Answer the following, assuming
negligible noise in each case.

(a) * What is the system transfer function in the
frequency domain?

(b) * What would the spatial domain system response
be to a constant input, f x y K(,) ?=

(c) What would the spatial domain system response
be to an impulse input, f x y x y(,) (,)?= d

5.20 * Assuming now that x and y are continuous quanti-
ties, show how you would solve Problems 5.19(b)
and (c) using Eq. (5-61) directly. [Hint: Take a
look at the solution to Problem 4.1(c).]

5.21 * Consider a linear, position invariant image degra-
dation system with impulse response

h x y e
x y

(,)
() ()= − − + −⎡⎣ ⎤⎦a b2 2

where x and y are continuous variables. Suppose
that the input to the system is a binary image con-
sisting of a white vertical line of infinitesimal width
located at x a= , on a black background. Such
an image can be modeled as f x y x a(,) ().= −d
Assume negligible noise and use Eq. (5-61) to find
the output image, g x y(,).

5.22 How would you solve Problem 5.21 if x and y
were discrete quantities? You do not need to
solve the problem. All you have to do is list the

DIP4E_GLOBAL_Print_Ready.indb 394 6/16/2017 2:08:11 PM

 Problems 395

steps you would take to solve it. (Hint: Refer to
entry 13 in Table 4.4.)

5.23 The image shown consists of two infinitesimally
thin white lines on a black background, intersect-
ing at some point in the image. The image is input
into a linear, position invariant system with the
impulse response given in Problem 5.21. Assum-
ing continuous variables and negligible noise, find
an expression for the output image, g x y(,). (Hint:
Review linear operations in Section 2.6.)

5.24 Sketch (with arrow lines showing the direction of
blur) what the image in Fig. 5.26(a) would look
like if it were blurred using the transfer function
in Eq. (5-77)

(a) * With a = − 0 1. and b = 0 1. .

(b) With a = 0 and b = − 0 1. .

5.25 * During acquisition, an image undergoes uni-
form linear motion in the vertical direction for
a time T1. The direction of motion then switches
to the horizontal direction for a time interval
T2 . Assuming that the time it takes the image to
change directions is negligible, and that shutter
opening and closing times are negligible also, give
an expression for the blurring function, H(,).u v

5.26 During acquisition, an image undergoes uniform
linear motion in the vertical direction for a time
T. The direction of motion then switches 180° in
the opposite direction for a time T. Assume that
the time it takes the image to change directions
is negligible, and that shutter opening and clos-
ing times are negligible also. Is the final image
blurred, or did the reversal in direction “undo”
the first blur? Obtain the overall blurring func-
tion H(,)u v first, and then use it as the basis for
your answer.

5.27 * Consider image blurring caused by uniform accel-
eration in the x-direction. If the image is at rest at
time t = 0 and accelerates with a uniform acceler-

ation x t at0
2 2() = for a time T, find the blurring

function H(,).u v You may assume that shutter
opening and closing times are negligible.

5.28 A space probe is designed to transmit images
of a planet as it approaches it for landing. Dur-
ing the last stages of landing, one of the control
thrusters fails, resulting in rotation of the craft
about its vertical axis. The images sent during the
last two seconds prior to landing are blurred as
a consequence of this circular motion. The cam-
era is located in the bottom of the probe, along its
vertical axis, and pointing down. Fortunately, the
rotation of the craft is also about its vertical axis,
so the images are blurred by uniform rotational
motion. During the acquisition time of each image,
the craft rotation was p 8 radians. The image
acquisition process can be modeled as an ideal
shutter that is open only during the time the craft
rotated p 8 radians. You may assume that the
vertical motion was negligible during the image
acquisition. Formulate a solution for restoring the
images. You do not have to solve the problem, just
give an outline of how you would solve it using
the methods discussed in Section 5.6 through 5.9.
(Hint: Consider using polar coordinates. The blur
will then appear as one-dimensional, uniform
motion blur along the u-axis.)

5.29 * The image that follows is a blurred, 2-D projection
of a volumetric rendition of a heart. It is known
that each of the cross hairs on the right bottom
part of the image was (before blurring) 3 pixels
wide, 30 pixels long, and had an intensity value of
255. Provide a step-by-step procedure indicating
how you would use the information just given to
obtain the blurring function H(,).u v

(Original image courtesy of GE Medical Systems.)

DIP4E_GLOBAL_Print_Ready.indb 395 6/16/2017 2:08:12 PM

396 Chapter 5 Image Restoration and Reconstruction

5.30 The image in Fig. 5.29(h) was obtained by
inverse-filtering the image in Fig. 5.29(g), which
is a blurred image that, in addition, is corrupted
by additive Gaussian noise. The blurring itself
is corrected by the inverse filter, as is evident in
Fig. 5.29(h). However, the restored image has a
strong streak pattern that is not apparent in Fig.
5.29(g) [for example, compare the area of con-
stant white in the top right of Fig. 5.29(g) with the
corresponding are in Fig. 5.29(h)]. Explain how
this pattern originated.

5.31 A certain X-ray imaging geometry produces a
blurring degradation that can be modeled as the
convolution of the sensed image with the spatial,
circularly symmetric function

h x y
x y

e x y(,) ()= + − − +
2 2 2

4
22 2 2 2s

s

s

Assuming continuous variables, show that the
degradation in the frequency domain is given by
the expression

H u e u(,) () ()u v v v= − + − +8 4 2 2 2 2 2 2 2 2

p s p s

(Hint: Refer to the discussion of the Laplacian
in Section 4.9, entry 13 in Table 4.4, and review
Problem 4.52.)

5.32 * Using the transfer function in Problem 5.31, give
the expression for a Wiener filter transfer func-
tion, assuming that the ratio of power spectra of
the noise and undegraded images is a constant.

5.33 Given p x y(,) in Eq. (5-90), show that

P u M N(,) cos() cos()u v v= − −4 2 2 2 2p p

(Hint: Study the solution to Problem 4.47.)

5.34 Show how Eq. (5-98) follows from Eqs. (5-96) and
(5-97).

5.35 Using the transfer function in Problem 5.31, give
the resulting expression for the constrained least
squares filter transfer function.

5.36 * Assume that the model in Fig. 5.1 is linear and
position invariant, and that the noise and image
are uncorrelated. Show that the power spectrum
of the output is

G H F N(,) (,) (,) (,)u v u v u v u v
2 2 2 2= +

[Hint: Refer to Eqs. (5-65) and (4-89).]

5.37 Cannon [1974] suggested a restoration filter R(,)u v
satisfying the condition

ˆ (,) (,) (,)F R Gu v u v u v
2 2 2=

The restoration filter is based on the premise of
forcing the power spectrum of the restored image,
ˆ (,) ,F u v

2 to equal the spectrum of the original
image, F(,) .u v 2 Assume that the image and noise
are uncorrelated,

(a) * Find R(,)u v in terms of F(,) ,u v
2 H(,) ,u v

2
and N(,) .u v

2 (Hint: Take a look at Fig. 5.1,
Eq. (5-65), and Problem 5.36.)

(b) Use your result from (a) to state a result in a
form similar to the last line of Eq. (5-81), and
using the same terms.

5.38 Show that, when a = 1 in Eq. (5-99), the geomet-
ric mean filter reduces to the inverse filter.

5.39 * A professor of archeology doing research on
currency exchange practices during the Roman
Empire recently became aware that four Roman
coins crucial to his research are listed in the hold-
ings of the British Museum in London. Unfortu-
nately, he was told after arriving there that the
coins had been recently stolen. Further research
on his part revealed that the museum keeps pho-
tographs of every item for which it is responsible.
Unfortunately, the photos of the coins in question
are blurred to the point where the date and other
small markings are not readable. The cause of the
blurring was the camera being out of focus when
the pictures were taken. As an image processing
expert and friend of the professor, you are asked
as a favor to determine whether computer pro-
cessing can be utilized to restore the images to the
point where the professor can read the markings.
You are told that the original camera used to take
the photos is still available, as are other represen-
tative coins of the same era. Propose a step-by-
step solution to this problem.

5.40 An astronomer is working with an optical tele-
scope. The telescope lenses focus images onto
a high-resolution, CCD imaging array, and the
images are then converted by the telescope elec-
tronics into digital images. Working late one eve-
ning, the astronomer notices that her new images
are noisy and blurry. The manufacturer tells the
astronomer that the unit is operating within speci-
fications. Trying to improve the situation by con-

DIP4E_GLOBAL_Print_Ready.indb 396 6/16/2017 2:08:13 PM

 Problems 397

ducting controlled lab experiments with the lens-
es and imaging sensors is not possible because of
the size and weight of the telescope components.
Having heard about your success in restoring the
Roman coins, the astronomer calls you to help
her formulate a digital image processing solu-
tion for sharpening her images. How would you
go about solving this problem, given that the only
images you can obtain are images of stellar bod-
ies? (Hint: A single, bright star that appears as a
point of light in the field of view can be used to
approximate an impulse.)

5.41 * Sketch the Radon transform of the M M× binary
image shown below, which consists of a single
white pixel in the center of the image. Assume a
parallel-beam geometry, and label quantitatively
all the important elements of your sketch .

5.42 * A Sketch a cross section of the Radon transform
of the following white disk image containing a
smaller black disk in its center. (Hint: Take a look
at Fig. 5.38.)

5.43 Show that the Radon transform [Eq. (5-102)] of
the Gaussian shape f x y A x y(,) exp()= − −2 2 is
given by g A(,) exp().r u p r= − 2 (Hint: Refer to
Example 5.15, where we used symmetry to sim-
plify integration.)

5.44 Do the following:

(a) * Show that the Radon transform [Eq. (5-102)]
of the unit impulse d(,)x y is a straight ver-
tical line passing through the origin of the
ru-plane .

(b) Show that the radon transform of the
impulse d(,)x x y y− −0 0 is a sinusoidal curve
in the ru-plane.

5.45 Prove the validity of the following properties of
the Radon transform [Eq. (5-102)]:

(a) * Linearity: The Radon transform is a linear
operator. (See Section 2.6 regarding linear-
ity.)

(b) Translation property: The radon transform of
f x x y y(,)− −0 0 is g x y(cos sin ,).r u u u− −0 0

(c) * Convolution property: The Radon transform
of the convolution of two functions is equal
to the convolution of the Radon transforms
of the two functions.

5.46 Provide the steps that lead from Eq. (5-113) to
Eq. (5-114). [Hint: G G(,) (,).]v u v u+ = −180°

5.47 * Prove the validity of Eq. (5-125).

5.48 Prove the validity of Eq. (5-127).

DIP4E_GLOBAL_Print_Ready.indb 397 6/16/2017 2:08:14 PM

DIP4E_GLOBAL_Print_Ready.indb 4 6/16/2017 2:01:57 PM

This page intentionally left blank

399

6 Color Image Processing

Preview
Using color in image processing is motivated by two principal factors. First, color is a powerful descrip-
tor that often simplifies object identification and extraction from a scene. Second, humans can discern
thousands of color shades, compared to only about two dozen shades of gray. The latter factor is par-
ticularly important in manual image analysis. Color image processing is divided into two major areas:
pseudo- and full-color processing. In the first category, the issue is one of assigning color(s) to a par-
ticular grayscale intensity or range of intensities. In the second, images typically are acquired using a
full-color sensor, such as a digital camera, or color scanner. Until just a few years ago, most digital color
image processing was done at the pseudo- or reduced-color level. However, because color sensors and
processing hardware have become available at reasonable prices, full-color image processing techniques
are now used in a broad range of applications. In the discussions that follow, it will become evident that
some of the grayscale methods covered in previous chapters are applicable also to color images.

Upon completion of this chapter, readers should:
 Understand the fundamentals of color and

the color spectrum.

 Be familiar with several of the color models
used in digital image processing.

 Know how to apply basic techniques in pseudo-
color image processing, including intensity slic-
ing and intensity-to-color transformations.

 Be familiar with how to determine if a gray-
scale method is extendible to color images.

 Understand the basics of working with full-
color images, including color transformations,
color complements, and tone/color corrections.

 Be familiar with the role of noise in color
image processing.

 Know how to perform spatial filtering on col-
or images.

 Understand the advantages of using color in
image segmentation.

It is only after years of preparation that the young artist should
touch color—not color used descriptively, that is, but as a means of
personal expression. Henri Matisse

For a long time I limited myself to one color—as a form of discipline.
Pablo Picasso

DIP4E_GLOBAL_Print_Ready.indb 399 6/16/2017 2:08:15 PM

400 Chapter 6 Color Image Processing

6.1 COLOR FUNDAMENTALS

Although the process employed by the human brain in perceiving and interpreting
color is a physiopsychological phenomenon that is not fully understood, the physical
nature of color can be expressed on a formal basis supported by experimental and
theoretical results.

In 1666, Sir Isaac Newton discovered that when a beam of sunlight passes through
a glass prism, the emerging light is not white, but consists instead of a continuous
spectrum of colors ranging from violet at one end to red at the other. As Fig. 6.1
shows, the color spectrum may be divided into six broad regions: violet, blue, green,
yellow, orange, and red. When viewed in full color (see Fig. 6.2), no color in the spec-
trum ends abruptly; rather, each color blends smoothly into the next.

Basically, the colors that humans and some other animals perceive in an object
are determined by the nature of the light reflected from the object. As illustrated in
Fig. 6.2, visible light is composed of a relatively narrow band of frequencies in the
electromagnetic spectrum. A body that reflects light that is balanced in all visible
wavelengths appears white to the observer. However, a body that favors reflectance
in a limited range of the visible spectrum exhibits some shades of color. For example,
green objects reflect light with wavelengths primarily in the 500 to 570 nm range,
while absorbing most of the energy at other wavelengths.

Characterization of light is central to the science of color. If the light is achro-
matic (void of color), its only attribute is its intensity, or amount. Achromatic light
is what you see on movie films made before the 1930s. As defined in Chapter 2, and
used numerous times since, the term gray (or intensity) level refers to a scalar mea-
sure of intensity that ranges from black, to grays, and finally to white.

Chromatic light spans the electromagnetic spectrum from approximately 400
to 700 nm. Three basic quantities used to describe the quality of a chromatic light
source are: radiance, luminance, and brightness. Radiance is the total amount of
energy that flows from the light source, and it is usually measured in watts (W).
Luminance, measured in lumens (lm), is a measure of the amount of energy that
an observer perceives from a light source. For example, light emitted from a source
operating in the far infrared region of the spectrum could have significant energy
(radiance), but an observer would hardly perceive it; its luminance would be almost
zero. Finally, brightness is a subjective descriptor that is practically impossible to
measure. It embodies the achromatic notion of intensity, and is one of the key fac-
tors in describing color sensation.

6.1

FIGURE 6.1
Color spectrum
seen by passing
white light through
a prism.
(Courtesy of the
General Electric
Co., Lighting
Division.)

DIP4E_GLOBAL_Print_Ready.indb 400 6/16/2017 2:08:15 PM

6.1 Color Fundamentals 401

As noted in Section 2.1, cones are the sensors in the eye responsible for color
vision. Detailed experimental evidence has established that the 6 to 7 million cones in
the human eye can be divided into three principal sensing categories, corresponding
roughly to red, green, and blue. Approximately 65% of all cones are sensitive to red
light, 33% are sensitive to green light, and only about 2% are sensitive to blue. How-
ever, the blue cones are the most sensitive. Figure 6.3 shows average experimental
curves detailing the absorption of light by the red, green, and blue cones in the eye.
Because of these absorption characteristics, the human eye sees colors as variable
combinations of the so-called primary colors: red (R), green (G), and blue (B).

For the purpose of standardization, the CIE (Commission Internationale de
l’Eclairage—the International Commission on Illumination) designated in 1931 the
following specific wavelength values to the three primary colors: blue nm,= 435 8.
green nm,= 546 1. and red nm.= 700 This standard was set before results such as
those in Fig. 6.3 became available in 1965. Thus, the CIE standards correspond only
approximately with experimental data. It is important to keep in mind that defining
three specific primary color wavelengths for the purpose of standardization does

FIGURE 6.2
Wavelengths compris-
ing the visible range
of the electromagnetic
spectrum. (Courtesy of
the General Electric
Co., Lighting Division.)

FIGURE 6.3
Absorption of
light by the red,
green, and blue
cones in the
human eye as a
function of
wavelength.

A
bs

or
pt

io
n

(a
rb

it
ra

ry
 u

ni
ts

)

400 450 500 550 600 650 700 nm

B
lu

is
h

pu
rp

le

445 nm

Blue

535 nm

Green

575 nm

Red

P
ur

pl
is

h
bl

ue

B
lu

e

B
lu

e
gr

ee
n

G
re

en

Y
el

lo
w

is
h

gr
ee

n

Y
el

lo
w

O
ra

ng
e

R
ed

di
sh

 o
ra

ng
e

R
ed

DIP4E_GLOBAL_Print_Ready.indb 401 6/16/2017 2:08:16 PM

402 Chapter 6 Color Image Processing

not mean that these three fixed RGB components acting alone can generate all
spectrum colors. Use of the word primary has been widely misinterpreted to mean
that the three standard primaries, when mixed in various intensity proportions, can
produce all visible colors. As you will see shortly, this interpretation is not correct
unless the wavelength also is allowed to vary, in which case we would no longer have
three fixed primary colors.

The primary colors can be added together to produce the secondary colors of
light—magenta (red plus blue), cyan (green plus blue), and yellow (red plus green).
Mixing the three primaries, or a secondary with its opposite primary color, in the
right intensities produces white light. This result is illustrated in Fig. 6.4(a), which
shows also the three primary colors and their combinations to produce the second-
ary colors of light.

Differentiating between the primary colors of light and the primary colors of pig-
ments or colorants is important. In the latter, a primary color is defined as one that
subtracts or absorbs a primary color of light, and reflects or transmits the other two.
Therefore, the primary colors of pigments are magenta, cyan, and yellow, and the
secondary colors are red, green, and blue. These colors are shown in Fig. 6.4(b). A
proper combination of the three pigment primaries, or a secondary with its opposite
primary, produces black.

Color television reception is an example of the additive nature of light colors.
The interior of CRT (cathode ray tube) color TV screens used well into the 1990s is
composed of a large array of triangular dot patterns of electron-sensitive phosphor.
When excited, each dot in a triad produces light in one of the primary colors. The

In practice, pigments
seldom are pure. This
results in a muddy brown
instead of black when
primaries, or primaries
and secondaries, are
combined. We will
discuss this issue in
Section 6.2

b
a

FIGURE 6.4
Primary and
secondary colors
of light and
pigments.
(Courtesy of the
General Electric
Co., Lighting
Division.)

DIP4E_GLOBAL_Print_Ready.indb 402 6/16/2017 2:08:17 PM

6.1 Color Fundamentals 403

intensity of the red-emitting phosphor dots is modulated by an electron gun inside
the tube, which generates pulses corresponding to the “red energy” seen by the TV
camera. The green and blue phosphor dots in each triad are modulated in the same
manner. The effect, viewed on the television receiver, is that the three primary colors
from each phosphor triad are received and “added” together by the color-sensitive
cones in the eye and perceived as a full-color image. Thirty successive image changes
per second in all three colors complete the illusion of a continuous image display on
the screen.

CRT displays started being replaced in the late 1990s by flat-panel digital tech-
nologies, such as liquid crystal displays (LCDs) and plasma devices. Although they
are fundamentally different from CRTs, these and similar technologies use the same
principle in the sense that they all require three subpixels (red, green, and blue) to
generate a single color pixel. LCDs use properties of polarized light to block or pass
light through the LCD screen and, in the case of active matrix display technologies,
thin film transistors (TFTs) are used to provide the proper signals to address each
pixel on the screen. Light filters are used to produce the three primary colors of light
at each pixel triad location. In plasma units, pixels are tiny gas cells coated with phos-
phor to produce one of the three primary colors. The individual cells are addressed
in a manner analogous to LCDs. This individual pixel triad coordinate addressing
capability is the foundation of digital displays.

The characteristics generally used to distinguish one color from another are
brightness, hue, and saturation. As indicated earlier in this section, brightness
embodies the achromatic notion of intensity. Hue is an attribute associated with the
dominant wavelength in a mixture of light waves. Hue represents dominant color as
perceived by an observer. Thus, when we call an object red, orange, or yellow, we are
referring to its hue. Saturation refers to the relative purity or the amount of white
light mixed with a hue. The pure spectrum colors are fully saturated. Colors such
as pink (red and white) and lavender (violet and white) are less saturated, with the
degree of saturation being inversely proportional to the amount of white light added.

Hue and saturation taken together are called chromaticity and, therefore, a color
may be characterized by its brightness and chromaticity. The amounts of red, green,
and blue needed to form any particular color are called the tristimulus values, and
are denoted, X, Y, and Z, respectively. A color is then specified by its trichromatic
coefficients, defined as

 x
X

X Y Z
=

+ +
 (6-1)

 y
Y

X Y Z
=

+ +
 (6-2)

and

 z
Z

X Y Z
=

+ +
 (6-3)

DIP4E_GLOBAL_Print_Ready.indb 403 6/16/2017 2:08:17 PM

404 Chapter 6 Color Image Processing

We see from these equations that

 x y z+ + = 1 (6-4)

For any wavelength of light in the visible spectrum, the tristimulus values needed
to produce the color corresponding to that wavelength can be obtained directly
from curves or tables that have been compiled from extensive experimental results
(Poynton [1996, 2012]).

Another approach for specifying colors is to use the CIE chromaticity diagram (see
Fig. 6.5), which shows color composition as a function of x (red) and y (green). For
any value of x and y, the corresponding value of z (blue) is obtained from Eq. (6-4)
by noting that z x y= − +1 (). The point marked green in Fig. 6.5, for example, has
approximately 62% green and 25% red content. It follows from Eq. (6-4) that the
composition of blue is approximately 13%.

The positions of the various spectrum colors—from violet at 380 nm to red at
780 nm—are indicated around the boundary of the tongue-shaped chromaticity dia-
gram. These are the pure colors shown in the spectrum of Fig. 6.2. Any point not
actually on the boundary, but within the diagram, represents some mixture of the
pure spectrum colors. The point of equal energy shown in Fig. 6.5 corresponds to
equal fractions of the three primary colors; it represents the CIE standard for white
light. Any point located on the boundary of the chromaticity chart is fully saturated.
As a point leaves the boundary and approaches the point of equal energy, more
white light is added to the color, and it becomes less saturated. The saturation at the
point of equal energy is zero.

The chromaticity diagram is useful for color mixing because a straight-line seg-
ment joining any two points in the diagram defines all the different color variations
that can be obtained by combining these two colors additively. Consider, for exam-
ple, a straight line drawn from the red to the green points shown in Fig. 6.5. If there is
more red than green light, the exact point representing the new color will be on the
line segment, but it will be closer to the red point than to the green point. Similarly, a
line drawn from the point of equal energy to any point on the boundary of the chart
will define all the shades of that particular spectrum color.

Extending this procedure to three colors is straightforward. To determine the
range of colors that can be obtained from any three given colors in the chromatic-
ity diagram, we simply draw connecting lines to each of the three color points. The
result is a triangle, and any color inside the triangle, or on its boundary, can be pro-
duced by various combinations of the three vertex colors. A triangle with vertices at
any three fixed colors cannot enclose the entire color region in Fig. 6.5. This observa-
tion supports graphically the remark made earlier that not all colors can be obtained
with three single, fixed primaries, because three colors form a triangle.

The triangle in Fig. 6.6 shows a representative range of colors (called the color
gamut) produced by RGB monitors. The shaded region inside the triangle illustrates
the color gamut of today’s high-quality color printing devices. The boundary of the
color printing gamut is irregular because color printing is a combination of additive
and subtractive color mixing, a process that is much more difficult to control than

Our use of x, y, and z in
this context follows con-
vention. These should not
be confused with our use
of (x, y) throughout the
book to denote spatial
coordinates.

DIP4E_GLOBAL_Print_Ready.indb 404 6/16/2017 2:08:17 PM

6.2 Color Models 405

that of displaying colors on a monitor, which is based on the addition of three highly
controllable light primaries.

6.2 COLOR MODELS

The purpose of a color model (also called a color space or color system) is to facilitate the
specification of colors in some standard way. In essence, a color model is a specification
of (1) a coordinate system, and (2) a subspace within that system, such that each color in
the model is represented by a single point contained in that subspace.

Most color models in use today are oriented either toward hardware (such as for
color monitors and printers) or toward applications, where color manipulation is
a goal (the creation of color graphics for animation is an example of the latter). In
terms of digital image processing, the hardware-oriented models most commonly
used in practice are the RGB (red, green, blue) model for color monitors and a

6.2

FIGURE 6.5
The CIE
chromaticity
diagram.
(Courtesy of the
General Electric
Co., Lighting
Division.)

DIP4E_GLOBAL_Print_Ready.indb 405 6/16/2017 2:08:19 PM

406 Chapter 6 Color Image Processing

broad class of color video cameras; the CMY (cyan, magenta, yellow) and CMYK
(cyan, magenta, yellow, black) models for color printing; and the HSI (hue, satura-
tion, intensity) model, which corresponds closely with the way humans describe and
interpret color. The HSI model also has the advantage that it decouples the color
and gray-scale information in an image, making it suitable for many of the gray-scale
techniques developed in this book. There are numerous color models in use today.
This is a reflection of the fact that color science is a broad field that encompasses
many areas of application. It is tempting to dwell on some of these models here, sim-
ply because they are interesting and useful. However, keeping to the task at hand,
we focus attention on a few models that are representative of those used in image
processing. Having mastered the material in this chapter, you will have no difficulty
in understanding additional color models in use today.

G

R

B
380450

460

470

480

490

500

510

530

540

550

560

570

580

590

600

610

620

640
780

520

x-axis

y-
ax

is

0
0

.1 .2 .3 .4 .5 .6 .7 .8

.1

.2

.3

.4

.5

.6

.7

.8

.9FIGURE 6.6
Illustrative color
gamut of color
monitors
(triangle) and
color printing
devices (shaded
region).

DIP4E_GLOBAL_Print_Ready.indb 406 6/16/2017 2:08:20 PM

6.2 Color Models 407

THE RGB COLOR MODEL

In the RGB model, each color appears in its primary spectral components of red,
green, and blue. This model is based on a Cartesian coordinate system. The color
subspace of interest is the cube shown in Fig. 6.7, in which RGB primary values are
at three corners; the secondary colors cyan, magenta, and yellow are at three other
corners; black is at the origin; and white is at the corner farthest from the origin. In
this model, the grayscale (points of equal RGB values) extends from black to white
along the line joining these two points. The different colors in this model are points
on or inside the cube, and are defined by vectors extending from the origin. For con-
venience, the assumption is that all color values have been normalized so the cube
in Fig. 6.7 is the unit cube. That is, all values of R, G, and B in this representation are
assumed to be in the range [0, 1]. Note that the RGB primaries can be interpreted as
unit vectors emanating from the origin of the cube.

Images represented in the RGB color model consist of three component images,
one for each primary color. When fed into an RGB monitor, these three images
combine on the screen to produce a composite color image, as explained in Sec-
tion 6.1. The number of bits used to represent each pixel in RGB space is called the
pixel depth. Consider an RGB image in which each of the red, green, and blue imag-
es is an 8-bit image. Under these conditions, each RGB color pixel [that is, a triplet of
values (R, G, B)] has a depth of 24 bits (3 image planes times the number of bits per
plane). The term full-color image is used often to denote a 24-bit RGB color image.
The total number of possible colors in a 24-bit RGB image is () , , .2 16 777 2168 3 =
Figure 6.8 shows the 24-bit RGB color cube corresponding to the diagram in Fig. 6.7.
Note also that for digital images, the range of values in the cube are scaled to the

(1, 0, 0)
Red Yellow

Green
Black

White
Magenta

(0, 1, 0)

CyanBlue (0, 0, 1)

R

G

B

Grayscale

FIGURE 6.7
Schematic of the
RGB color cube.
Points along the
main diagonal
have gray values,
from black at the
origin to white at
point (1, 1, 1).

DIP4E_GLOBAL_Print_Ready.indb 407 6/16/2017 2:08:20 PM

408 Chapter 6 Color Image Processing

numbers representable by the number bits in the images. If, as above, the primary
images are 8-bit images, the limits of the cube along each axis becomes [,].0 255
Then, for example, white would be at point [, ,]255 255 255 in the cube.

EXAMPLE 6.1 : Generating a cross-section of the RGB color cube and its thee hidden planes.

The cube in Fig. 6.8 is a solid, composed of the ()28 3 colors mentioned in the preceding paragraph. A
useful way to view these colors is to generate color planes (faces or cross sections of the cube). This is
done by fixing one of the three colors and allowing the other two to vary. For instance, a cross-sectional
plane through the center of the cube and parallel to the GB-plane in Fig. 6.8 is the plane (127, G, B) for
G B, , , , , .= 0 1 2 255… Figure 6.9(a) shows that an image of this cross-sectional plane is generated by feed-
ing the three individual component images into a color monitor. In the component images, 0 represents
black and 255 represents white. Observe that each component image into the monitor is a grayscale
image. The monitor does the job of combining the intensities of these images to generate an RGB image.
Figure 6.9(b) shows the three hidden surface planes of the cube in Fig. 6.8, generated in a similar manner.

Acquiring a color image is the process shown in Fig. 6.9(a) in reverse. A color image can be acquired
by using three filters, sensitive to red, green, and blue, respectively. When we view a color scene with a
monochrome camera equipped with one of these filters, the result is a monochrome image whose inten-
sity is proportional to the response of that filter. Repeating this process with each filter produces three
monochrome images that are the RGB component images of the color scene. In practice, RGB color
image sensors usually integrate this process into a single device. Clearly, displaying these three RGB
component images as in Fig. 6.9(a) would yield an RGB color rendition of the original color scene.

THE CMY AND CMYK COLOR MODELS
As indicated in Section 6.1, cyan, magenta, and yellow are the secondary colors of
light or, alternatively, they are the primary colors of pigments. For example, when
a surface coated with cyan pigment is illuminated with white light, no red light is
reflected from the surface. That is, cyan subtracts red light from reflected white light,
which itself is composed of equal amounts of red, green, and blue light.

Most devices that deposit colored pigments on paper, such as color printers and
copiers, require CMY data input or perform an RGB to CMY conversion internally.
This conversion is performed using the simple operation

FIGURE 6.8
A 24-bit RGB
color cube.

DIP4E_GLOBAL_Print_Ready.indb 408 6/16/2017 2:08:20 PM

6.2 Color Models 409

C

M

Y

R

G

B

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

1

1

 (6-5)

where the assumption is that all RGB color values have been normalized to the
range [,].0 1 Equation (6-5) demonstrates that light reflected from a surface coated
with pure cyan does not contain red (that is, C R= −1 in the equation). Similarly,
pure magenta does not reflect green, and pure yellow does not reflect blue. Equa-
tion (6-5) also reveals that RGB values can be obtained easily from a set of CMY
values by subtracting the individual CMY values from 1.

According to Fig. 6.4, equal amounts of the pigment primaries, cyan, magenta, and
yellow, should produce black. In practice, because C, M, and Y inks seldom are pure
colors, combining these colors for printing black produces instead a muddy-looking
brown. So, in order to produce true black (which is the predominant color in print-
ing), a fourth color, black, denoted by K, is added, giving rise to the CMYK color
model. The black is added in just the proportions needed to produce true black. Thus,

Equation (6-5), as well as
all other equations in this
section, are applied on a
pixel-by-pixel basis.

Color
monitor

RGB

Red

(R � 0) (G � 0) (B � 0)

Green

Blue

b
a

FIGURE 6.9
(a) Generating
the RGB image of
the cross-sectional
color plane
(127, G, B).
(b) The three
hidden surface
planes in the color
cube of Fig. 6.8.

DIP4E_GLOBAL_Print_Ready.indb 409 6/16/2017 2:08:21 PM

410 Chapter 6 Color Image Processing

when publishers talk about “four-color printing,” they are referring to the three
CMY colors, plus a portion of black.

The conversion from CMY to CMYK begins by letting

 K C M Y= min(, ,) (6-6)

If K = 1, then we have pure black, with no color contributions, from which it follows
that

 C = 0 (6-7)

 M = 0 (6-8)

 Y = 0 (6-9)

Otherwise,

 C C K K= − −() ()1 (6-10)

 M M K K= − −() ()1 (6-11)

 Y Y K K= − −() ()1 (6-12)

where all values are assumed to be in the range [,].0 1 The conversions from CMYK
back to CMY are:

 C C K K= − +* ()1 (6-13)

 M M K K= − +* ()1 (6-14)

 Y Y Y K= − +* ()1 (6-15)

As noted at the beginning of this section, all operations in the preceding equations
are performed on a pixel-by-pixel basis. Because we can use Eq. (6-5) to convert
both ways between CMY and RGB, we can use that equation as a “bridge” to con-
vert between RGB and CMYK, and vice versa.

It is important to keep in mind that all the conversions just presented to go
between RGB, CMY, and CMYK are based on the preceding relationships as a
group. There are many other ways to convert between these color models, so you
cannot mix approaches and expect to get meaningful results. Also, colors seen on
monitors generally appear much different when printed, unless these devices are
calibrated (see the discussion of a device-independent color model later in this
section). The same holds true in general for colors converted from one model to
another. However, our interest in this chapter is not on color fidelity; rather, we are
interested in using the properties of color models to facilitate image processing tasks,
such as region detection.

The C, M, and Y on the
right side of Eqs. (6-6)-
(6-12) are in the CMY
color system. The C,
M, and Y on the left of
Eqs. (6-7)-(6-12) are in
the CMYK system.

The C, M, Y, and K
on the right side of
Eqs. (6-13)-(6-15) are in
the CMYK color system.
The C, M, and Y on the
left of these equations
are in the CMY system.

DIP4E_GLOBAL_Print_Ready.indb 410 6/16/2017 2:08:22 PM

6.2 Color Models 411

THE HSI COLOR MODEL

As we have seen, creating colors in the RGB, CMY, and CMYK models, and chang-
ing from one model to the other, is straightforward. These color systems are ideally
suited for hardware implementations. In addition, the RGB system matches nicely
with the fact that the human eye is strongly perceptive to red, green, and blue pri-
maries. Unfortunately, the RGB, CMY, and other similar color models are not well
suited for describing colors in terms that are practical for human interpretation. For
example, one does not refer to the color of an automobile by giving the percentage
of each of the primaries composing its color. Furthermore, we do not think of color
images as being composed of three primary images that combine to form a single
image.

When humans view a color object, we describe it by its hue, saturation, and
brightness. Recall from the discussion in Section 6.1 that hue is a color attribute
that describes a pure color (pure yellow, orange, or red), whereas saturation gives
a measure of the degree to which a pure color is diluted by white light. Brightness
is a subjective descriptor that is practically impossible to measure. It embodies the
achromatic notion of intensity and is one of the key factors in describing color sensa-
tion. We do know that intensity (gray level) is a most useful descriptor of achromatic
images. This quantity definitely is measurable and easily interpretable. The mod-
el we are about to present, called the HSI (hue, saturation, intensity) color model,
decouples the intensity component from the color-carrying information (hue and
saturation) in a color image. As a result, the HSI model is a useful tool for develop-
ing image processing algorithms based on color descriptions that are natural and
intuitive to humans, who, after all, are the developers and users of these algorithms.
We can summarize by saying that RGB is ideal for image color generation (as in
image capture by a color camera or image display on a monitor screen), but its use
for color description is much more limited. The material that follows provides an
effective way to do this.

We know from Example 6.1 that an RGB color image is composed three gray-
scale intensity images (representing red, green, and blue), so it should come as no
surprise that we can to extract intensity from an RGB image. This becomes clear if
we take the color cube from Fig. 6.7 and stand it on the black, (, ,),0 0 0 vertex, with
the white, (1, 1, 1), vertex directly above it [see Fig. 6.10(a)]. As noted in our discus-
sion of Fig. 6.7, the intensity (gray) scale is along the line joining these two vertices.
In Figs. 6.10(a) and (b), the line (intensity axis) joining the black and white vertices is
vertical. Thus, if we wanted to determine the intensity component of any color point
in Fig. 6.10, we would simply define a plane that contains the color point and, at the
same time, is perpendicular to the intensity axis. The intersection of the plane with
the intensity axis would give us a point with intensity value in the range [0, 1]. A little
thought would reveal that the saturation (purity) of a color increases as a function of
distance from the intensity axis. In fact, the saturation of points on the intensity axis
is zero, as evidenced by the fact that all points along this axis are gray.

Hue can be determined from an RGB value also. To see how, consider Fig. 6.10(b),
which shows a plane defined by three points (black, white, and cyan). The fact that

DIP4E_GLOBAL_Print_Ready.indb 411 6/16/2017 2:08:22 PM

412 Chapter 6 Color Image Processing

the black and white points are contained in the plane tells us that the intensity axis
also is contained in the plane. Furthermore, we see that all points contained in the
plane segment defined by the intensity axis and the boundaries of the cube have the
same hue (cyan in this case). We could arrive at the same conclusion by recalling
from Section 6.1 that all colors generated by three colors lie in the triangle defined
by those colors. If two of those points are black and white, and the third is a color
point, all points on the triangle would have the same hue, because the black and
white components cannot change the hue (of course, the intensity and saturation
of points in this triangle would be different). By rotating the shaded plane about
the vertical intensity axis, we would obtain different hues. From these concepts, we
arrive at the conclusion that the hue, saturation, and intensity values required to
form the HSI space can be obtained from the RGB color cube. That is, we can con-
vert any RGB point to a corresponding point in the HSI color space by working out
the formulas that describe the reasoning outlined in the preceding discussion.

The key point regarding the cube arrangement in Fig. 6.10, and its corresponding
HSI color space, is that the HSI space is represented by a vertical intensity axis, and
the locus of color points that lie on planes perpendicular to that axis. As the planes
move up and down the intensity axis, the boundaries defined by the intersection of
each plane with the faces of the cube have either a triangular or a hexagonal shape.
This can be visualized much more readily by looking at the cube straight down its
grayscale axis, as shown in Fig. 6.11(a). We see that the primary colors are separated
by 120°. The secondary colors are 60° from the primaries, which means that the angle
between secondaries is 120° also. Figure 6.11(b) shows the same hexagonal shape
and an arbitrary color point (shown as a dot). The hue of the point is determined by
an angle from some reference point. Usually (but not always) an angle of 0° from
the red axis designates 0 hue, and the hue increases counterclockwise from there.
The saturation (distance from the vertical axis) is the length of the vector from the
origin to the point. Note that the origin is defined by the intersection of the color
plane with the vertical intensity axis. The important components of the HSI color
space are the vertical intensity axis, the length of the vector to a color point, and the

ba

FIGURE 6.10
Conceptual
relationships
between the RGB
and HSI color
models.

White

Yellow
Magenta

Cyan

Blue Red

Green

Black

White

Yellow
Magenta

Cyan

Blue Red

Green

Black

DIP4E_GLOBAL_Print_Ready.indb 412 6/16/2017 2:08:22 PM

6.2 Color Models 413

Green Yellow

RedWhite

MagentaBlue

Cyan

Green Yellow

Red

MagentaBlue

Cyan

S
H

Green Yellow

Red

MagentaBlue

Cyan

S
H

Green

Yellow

RedMagentaBlue

Cyan S
H

b
a
c d

FIGURE 6.11
Hue and saturation
in the HSI color
model. The dot is
any color point.
The angle from the
red axis gives the
hue. The length of
the vector is the
saturation. The
intensity of all col-
ors in any of these
planes is given by
the position of the
plane on the verti-
cal intensity axis.

angle this vector makes with the red axis. Therefore, it is not unusual to see the HSI
planes defined in terms of the hexagon just discussed, a triangle, or even a circle, as
Figs. 6.11(c) and (d) show. The shape chosen does not matter because any one of
these shapes can be warped into one of the other two by a geometric transformation.
Figure 6.12 shows the HSI model based on color triangles, and on circles.

Converting Colors from RGB to HSI

Given an image in RGB color format, the H component of each RGB pixel is
obtained using the equation

 H
G

G
=

≤
− >

⎧
⎨
⎩

u

u

if

if

B
B360

 (6-16)

with†

 u =
−() + −()⎡⎣ ⎤⎦

−() + −() −()⎡
⎣

⎤
⎦

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

−cos /
1

1
2

2 1 2

R G R B

R G R B G B
 (6-17)

The saturation component is given by

 S
R G B

R G B= −
+ +() ()⎡⎣ ⎤⎦1

3
min , , (6-18)

† It is good practice to add a small number in the denominator of this expression to avoid dividing by 0 when
R G B= = , in which case u will be 90°. Note that when all RGB components are equal, Eq. (6-18) gives S = 0.
In addition, the conversion from HSI back to RGB in Eqs. (6-20) through (6-30) will give R G B I= = = , as
expected, because, when R G B= = , we are dealing with a grayscale image.

Computations from
RGB to HSI and back
are carried out on a
pixel-by-pixel basis. We
omitted the depen-
dence of the conversion
equations on (x, y) for
notational clarity.

DIP4E_GLOBAL_Print_Ready.indb 413 6/16/2017 2:08:23 PM

414 Chapter 6 Color Image Processing

Yellow

RedBlue

Cyan

White

Black

S
H

I � 0.75

I � 0.5

I

Magenta

Green

Green Yellow

Red

MagentaBlue

Cyan

White

Black

S
H

I � 0.75

I � 0.5

I

b
a

FIGURE 6.12
The HSI color
model based on
(a) triangular, and
(b) circular color
planes. The
triangles and
circles are
perpendicular to
the vertical
intensity axis.

DIP4E_GLOBAL_Print_Ready.indb 414 6/16/2017 2:08:24 PM

6.2 Color Models 415

Finally, the intensity component is obtained from the equation

 I R G B= + +()1
3

 (6-19)

These equations assume that the RGB values have been normalized to the range
[,],0 1 and that angle u is measured with respect to the red axis of the HSI space, as
in Fig. 6.11. Hue can be normalized to the range [,]0 1 by dividing by 360° all values
resulting from Eq. (6-16). The other two HSI components already are in this range if
the given RGB values are in the interval [,].0 1

The results in Eqs. (6-16) through (6-19) can be derived from the geometry in
Figs. 6.10 and 6.11. The derivation is tedious and would not add significantly to the
present discussion. You can find the proof for these equations (and for the equations
that follow for HSI to RGB conversion) in the Tutorials section of the book website.

Converting Colors from HSI to RGB

Given values of HSI in the interval [,],0 1 we now want to find the corresponding
RGB values in the same range. The applicable equations depend on the values of H.
There are three sectors of interest, corresponding to the 120° intervals in the separa-
tion of primaries (see Fig. 6.11). We begin by multiplying H by 360°, which returns
the hue to its original range of [,].0 360° °

RG sector 0 120° ≤ < °()H : When H is in this sector, the RGB components are given
by the equations

 B I S= −()1 (6-20)

 R I
S H

H
= +

° −()
⎡

⎣
⎢

⎤

⎦
⎥1

60
cos

cos
 (6-21)

and

 G I R B= − +()3 (6-22)

GB sector 120 240° ≤ < °()H : If the given value of H is in this sector, we first sub-
tract 120° from it:

 H H= − °120 (6-23)

Then, the RGB components are

 R I S= −()1 (6-24)

 G I
S H

H
= +

° −()
⎡

⎣
⎢

⎤

⎦
⎥1

60
cos

cos
 (6-25)

DIP4E_GLOBAL_Print_Ready.indb 415 6/16/2017 2:08:25 PM

416 Chapter 6 Color Image Processing

and

 B I R G= − +()3 (6-26)

BR sector 240 360° ≤ ≤ °()H : Finally, if H is in this range, we subtract 240° from it:

 H H= − °240 (6-27)

Then, the RGB components are

 G I S= −()1 (6-28)

 B I
S H

H
= +

° −()
⎡

⎣
⎢

⎤

⎦
⎥1

60
cos

cos
 (6-29)

and

 R I G B= − +()3 (6-30)

We discuss several uses of these equations in the following sections.

EXAMPLE 6.2 : The HSI values corresponding to the image of the RGB color cube.

Figure 6.13 shows the hue, saturation, and intensity images for the RGB values in Fig. 6.8. Figure 6.13(a)
is the hue image. Its most distinguishing feature is the discontinuity in value along a 45° line in the front
(red) plane of the cube. To understand the reason for this discontinuity, refer to Fig. 6.8, draw a line from
the red to the white vertices of the cube, and select a point in the middle of this line. Starting at that point,
draw a path to the right, following the cube around until you return to the starting point. The major
colors encountered in this path are yellow, green, cyan, blue, magenta, and back to red. According to
Fig. 6.11, the values of hue along this path should increase from 0° to 360° (i.e., from the lowest to highest

ba c

FIGURE 6.13 HSI components of the image in Fig. 6.8: (a) hue, (b) saturation, and (c) intensity images.

DIP4E_GLOBAL_Print_Ready.indb 416 6/16/2017 2:08:26 PM

6.2 Color Models 417

possible values of hue). This is precisely what Fig. 6.13(a) shows, because the lowest value is represented
as black and the highest value as white in the grayscale. In fact, the hue image was originally normalized
to the range [0, 1] and then scaled to 8 bits; that is, we converted it to the range [0, 255], for display.

The saturation image in Fig. 6.13(b) shows progressively darker values toward the white vertex of the
RGB cube, indicating that colors become less and less saturated as they approach white. Finally, every
pixel in the intensity image shown in Fig. 6.13(c) is the average of the RGB values at the corresponding
pixel in Fig. 6.8.

Manipulating HSI Component Images

In the following discussion, we take a look at some simple techniques for manipulating
HSI component images. This will help you develop familiarity with these comonents,
and deepen your understanding of the HSI color model. Figure 6.14(a) shows an
image composed of the primary and secondary RGB colors. Figures 6.14(b) through
(d) show the H, S, and I components of this image, generated using Eqs. (6-16) through
(6-19). Recall from the discussion earlier in this section that the gray-level values in
Fig. 6.14(b) correspond to angles; thus, for example, because red corresponds to 0°,
the red region in Fig. 6.14(a) is mapped to a black region in the hue image. Similarly,
the gray levels in Fig. 6.14(c) correspond to saturation (they were scaled to [0, 255] for
display), and the gray levels in Fig. 6.14(d) are average intensities.

To change the individual color of any region in the RGB image, we change the
values of the corresponding region in the hue image of Fig. 6.14(b). Then we convert

ba
dc

FIGURE 6.14
(a) RGB image
and the
components of
its corresponding
HSI image:
(b) hue,
(c) saturation, and
(d) intensity.

DIP4E_GLOBAL_Print_Ready.indb 417 6/16/2017 2:08:26 PM

418 Chapter 6 Color Image Processing

the new H image, along with the unchanged S and I images, back to RGB using the
procedure explained in Eqs. (6-20) through (6-30). To change the saturation (purity)
of the color in any region, we follow the same procedure, except that we make the
changes in the saturation image in HSI space. Similar comments apply to changing
the average intensity of any region. Of course, these changes can be made simulta-
neously. For example, the image in Fig. 6.15(a) was obtained by changing to 0 the
pixels corresponding to the blue and green regions in Fig. 6.14(b). In Fig. 6.15(b),
we reduced by half the saturation of the cyan region in component image S from
Fig. 6.14(c). In Fig. 6.15(c), we reduced by half the intensity of the central white
region in the intensity image of Fig. 6.14(d). The result of converting this modified
HSI image back to RGB is shown in Fig. 6.15(d). As expected, we see in this figure
that the outer portions of all circles are now red; the purity of the cyan region was
diminished, and the central region became gray rather than white. Although these
results are simple, they clearly illustrate the power of the HSI color model in allow-
ing independent control over hue, saturation, and intensity. These are quantities with
which humans are quite familiar when describing colors.

A DEVICE INDEPENDENT COLOR MODEL

As noted earlier, humans see a broad spectrum of colors and color shades. However,
color perception differs between individuals. Not only that, but color across devices
such as monitors and printers can vary significantly unless these devices are prop-
erly calibrated.

ba
dc

FIGURE 6.15
(a)-(c) Modified
HSI component
images.
(d) Resulting RGB
image. (See Fig.
6.14 for the original
HSI images.)

DIP4E_GLOBAL_Print_Ready.indb 418 6/16/2017 2:08:26 PM

6.2 Color Models 419

Color transformations can be performed on most desktop computers. In conjunc-
tion with digital cameras, flatbed scanners, and ink-jet printers, they turn a personal
computer into a digital darkroom. Also, commercial devices exist that use a combi-
nation of spectrometer measurements and software to develop color profiles that
can then be loaded on monitors and printers to calibrate their color responses.

The effectiveness of the transformations examined in this section is judged ulti-
mately in print. Because these transformations are developed, refined, and evaluated
on monitors, it is necessary to maintain a high degree of color consistency between
the monitors used and the eventual output devices. This is best accomplished with
a device-independent color model that relates the color gamuts (see Section 6.1)
of the monitors and output devices, as well as any other devices being used, to one
another. The success of this approach depends on the quality of the color profiles
used to map each device to the model, as well as the model itself. The model of
choice for many color management systems (CMS) is the CIE L a b* * * model, also
called CIELAB (CIE [1978], Robertson [1977]).

The L a b* * * color components are given by the following equations:

 L h
Y

YW

* = ⋅
⎛
⎝⎜

⎞
⎠⎟

−116 16 (6-31)

 a h
X

X
h

Y
YW W

* =
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥500 (6-32)

and

 b h
Y

Y
h

Z
ZW W

* =
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥200 (6-33)

where

 h q
q q

q q
() = >

+ ≤

⎧
⎨
⎪

⎩⎪

3 0 008856

7 787 16 116 0 008856

.

. / .
 (6-34)

and X YW W, , and ZW are reference white tristimulus values—typically the white
of a perfectly reflecting diffuser under CIE standard D65 illumination (defined by
x = 0 3127. and y = 0 3290. in the CIE chromaticity diagram of Fig. 6.5). The L a b* * *
color space is colorimetric (i.e., colors perceived as matching are encoded identically),
perceptually uniform (i.e., color differences among various hues are perceived uni-
formly—see the classic paper by MacAdams [1942]), and device independent. While
L a b* * * colors are not directly displayable (conversion to another color space is
required), the L a b* * * gamut encompasses the entire visible spectrum and can
represent accurately the colors of any display, print, or input device. Like the HSI
system, the L a b* * * system is an excellent decoupler of intensity (represented by
lightness L*) and color (represented by a * for red minus green and b * for green
minus blue), making it useful in both image manipulation (tone and contrast edit-
ing) and image compression applications. Studies indicate that the degree to which

DIP4E_GLOBAL_Print_Ready.indb 419 6/16/2017 2:08:28 PM

420 Chapter 6 Color Image Processing

the lightness information is separated from the color information in the L a b* * *
system is greater than in any other color system (see Kasson and Plouffe [1972]).
The principal benefit of calibrated imaging systems is that they allow tonal and color
imbalances to be corrected interactively and independently—that is, in two sequen-
tial operations. Before color irregularities, like over- and under-saturated colors, are
resolved, problems involving the image’s tonal range are corrected. The tonal range
of an image, also called its key type, refers to its general distribution of color intensi-
ties. Most of the information in high-key images is concentrated at high (or light)
intensities; the colors of low-key images are located predominantly at low intensi-
ties; middle-key images lie in between. As in the monochrome case, it is often desir-
able to distribute the intensities of a color image equally between the highlights and
the shadows. In Section 6.4, we give examples showing a variety of color transfor-
mations for the correction of tonal and color imbalances.

6.3 PSEUDOCOLOR IMAGE PROCESSING

Pseudocolor (sometimes called false color) image processing consists of assigning
colors to gray values based on a specified criterion. The term pseudo or false color is
used to differentiate the process of assigning colors to achromatic images from the
processes associated with true color images, a topic discussed starting in Section 6.4.
The principal use of pseudocolor is for human visualization and interpretation of
grayscale events in an image or sequence of images. As noted at the beginning of this
chapter, one of the principal motivations for using color is the fact that humans can
discern thousands of color shades and intensities, compared to less than two dozen
shades of gray.

INTENSITY SLICING AND COLOR CODING

The techniques of intensity (sometimes called density) slicing and color coding are
the simplest and earliest examples of pseudocolor processing of digital images. If an
image is interpreted as a 3-D function [see Fig. 2.18(a)], the method can be viewed
as one of placing planes parallel to the coordinate plane of the image; each plane
then “slices” the function in the area of intersection. Figure 6.16 shows an example
of using a plane at f x y li,() = to slice the image intensity function into two levels.

If a different color is assigned to each side of the plane in Fig. 6.16, any pixel
whose intensity level is above the plane will be coded with one color, and any pixel
below the plane will be coded with the other. Levels that lie on the plane itself may
be arbitrarily assigned one of the two colors, or they could be given a third color to
highlight all the pixels at that level. The result is a two- (or three-) color image whose
relative appearance can be controlled by moving the slicing plane up and down the
intensity axis.

In general, the technique for multiple colors may be summarized as follows. Let
[,]0 1L − represent the grayscale, let level l0 represent black [(,)],f x y = 0 and level
lL−1 represent white [(,)].f x y L= − 1 Suppose that P planes perpendicular to the
intensity axis are defined at levels l l lP1 2, , , .… Then, assuming that 0 1< < −P L ,
the P planes partition the grayscale into P + 1 intervals, I I IP1 2 1, , , .… + Intensity to
color assignments at each pixel location (,)x y are made according to the equation

6.3

DIP4E_GLOBAL_Print_Ready.indb 420 6/16/2017 2:08:29 PM

6.3 Pseudocolor Image Processing 421

if , let f x y I f x y ck k(,) ,∈ () = (6-35)

where ck is the color associated with the kth intensity interval Ik , defined by the
planes at l k= − 1 and l k= .

Figure 6.16 is not the only way to visualize the method just described. Figure 6.17
shows an equivalent approach. According to the mapping in this figure, any image
intensity below level li is assigned one color, and any level above is assigned another.
When more partitioning levels are used, the mapping function takes on a staircase
form.

EXAMPLE 6.3: Intensity slicing and color coding.

A simple but practical use of intensity slicing is shown in Fig. 6.18. Figure 6.18(a) is a grayscale image of
the Picker Thyroid Phantom (a radiation test pattern), and Fig. 6.18(b) is the result of intensity slicing
this image into eight colors. Regions that appear of constant intensity in the grayscale image are actually
quite variable, as shown by the various colors in the sliced image. For instance, the left lobe is a dull gray
in the grayscale image, and picking out variations in intensity is difficult. By contrast, the color image

Slicing plane

(Black) 0

(White) L � 1

Intensity
f(x, y)

x

y

li

FIGURE 6.16
Graphical
interpretation of
the intensity-
slicing technique.

FIGURE 6.17
An alternative
representation of
the intensity-
slicing technique.

Intensity levels

C
ol

or

c1

c2

li L�10

DIP4E_GLOBAL_Print_Ready.indb 421 6/16/2017 2:08:29 PM

422 Chapter 6 Color Image Processing

clearly shows eight different regions of constant intensity, one for each of the colors used. By varying the
number of colors and the span of the intensity intervals, one can quickly determine the characteristics
of intensity variations in a grayscale image. This is particularly true in situations such as the one shown
here, in which the object of interest has uniform texture with intensity variations that are difficult to
analyze visually. This example also illustrates the comments made in Section 6.1 about the eye’s superior
capability for detecting different color shades.

In the preceding simple example, the grayscale was divided into intervals and a different color was
assigned to each, with no regard for the meaning of the gray levels in the image. Interest in that case was
simply to view the different gray levels constituting the image. Intensity slicing assumes a much more
meaningful and useful role when subdivision of the grayscale is based on physical characteristics of the
image. For instance, Fig. 6.19(a) shows an X-ray image of a weld (the broad, horizontal dark region)
containing several cracks and porosities (the bright streaks running horizontally through the middle of
the image). When there is a porosity or crack in a weld, the full strength of the X-rays going through the
object saturates the imaging sensor on the other side of the object. Thus, intensity values of 255 in an
8-bit image coming from such a system automatically imply a problem with the weld. If human visual
analysis is used to inspect welds (still a common procedure today), a simple color coding that assigns

ba

FIGURE 6.19
(a) X-ray image
of a weld.
(b) Result of color
coding. (Original
image courtesy of
X-TEK Systems,
Ltd.)

ba

FIGURE 6.18
(a) Grayscale
image of the
Picker Thyroid
Phantom.
(b) Result of
intensity slicing
using eight colors.
(Courtesy of Dr.
J. L. Blankenship,
Oak Ridge
National
Laboratory.)

DIP4E_GLOBAL_Print_Ready.indb 422 6/16/2017 2:08:30 PM

6.3 Pseudocolor Image Processing 423

one color to level 255 and another to all other intensity levels can simplify the inspector’s job consider-
ably. Figure 6.19(b) shows the result. No explanation is required to arrive at the conclusion that human
error rates would be lower if images were displayed in the form of Fig. 6.19(b), instead of the form in
Fig. 6.19(a). In other words, if an intensity value, or range of values, one is looking for is known, intensity
slicing is a simple but powerful aid in visualization, especially if numerous images have to be inspected
on a routine basis.

EXAMPLE 6.4 : Use of color to highlight rainfall levels.

Measurement of rainfall levels, especially in the tropical regions of the Earth, is of interest in diverse
applications dealing with the environment. Accurate measurements using ground-based sensors are
difficult and expensive to acquire, and total rainfall figures are even more difficult to obtain because a
significant portion of precipitation occurs over the ocean. One approach for obtaining rainfall figures
remotely is to use satellites. The TRMM (Tropical Rainfall Measuring Mission) satellite utilizes, among
others, three sensors specially designed to detect rain: a precipitation radar, a microwave imager, and a
visible and infrared scanner (see Sections 1.3 and 2.3 regarding image sensing modalities).

The results from the various rain sensors are processed, resulting in estimates of average rainfall
over a given time period in the area monitored by the sensors. From these estimates, it is not difficult to
generate grayscale images whose intensity values correspond directly to rainfall, with each pixel repre-
senting a physical land area whose size depends on the resolution of the sensors. Such an intensity image
is shown in Fig. 6.20(a), where the area monitored by the satellite is the horizontal band highlighted in
the middle of the picture (these are tropical regions). In this particular example, the rainfall values are
monthly averages (in inches) over a three-year period.

Visual examination of this picture for rainfall patterns is difficult and prone to error. However, sup-
pose that we code intensity levels from 0 to 255 using the colors shown in Fig. 6.20(b). In this mode of
intensity slicing, each slice is one of the colors in the color band. Values toward the blues signify low val-
ues of rainfall, with the opposite being true for red. Note that the scale tops out at pure red for values of
rainfall greater than 20 inches. Figure 6.20(c) shows the result of color coding the grayscale image with
the color map just discussed. The results are much easier to interpret, as shown in this figure and in the
zoomed area of Fig. 6.20(d). In addition to providing global coverage, this type of data allows meteorolo-
gists to calibrate ground-based rain monitoring systems with greater precision than ever before.

INTENSITY TO COLOR TRANSFORMATIONS

Other types of transformations are more general, and thus are capable of achieving
a wider range of pseudocolor enhancement results than the simple slicing technique
discussed in the preceding section. Figure 6.21 shows an approach that is particularly
attractive. Basically, the idea underlying this approach is to perform three indepen-
dent transformations on the intensity of input pixels. The three results are then fed
separately into the red, green, and blue channels of a color monitor. This method
produces a composite image whose color content is modulated by the nature of the
transformation functions.

The method for intensity slicing discussed in the previous section is a special case
of the technique just described. There, piecewise linear functions of the intensity
levels (see Fig. 6.17) are used to generate colors. On the other hand, the method

DIP4E_GLOBAL_Print_Ready.indb 423 6/16/2017 2:08:30 PM

424 Chapter 6 Color Image Processing

Red
transformation

Green
transformation

Blue
transformation

fR(x, y)

fG(x, y)

fB(x, y)

f(x, y)

FIGURE 6.21
Functional block
diagram for
pseudocolor image
processing. Images
fR , fG ,and fB are
fed into the
corresponding red,
green, and blue
inputs of an RGB
color monitor.

ba
dc

FIGURE 6.20 (a) Grayscale image in which intensity (in the horizontal band shown) corresponds to average monthly
rainfall. (b) Colors assigned to intensity values. (c) Color-coded image. (d) Zoom of the South American region.
(Courtesy of NASA.)

DIP4E_GLOBAL_Print_Ready.indb 424 6/16/2017 2:08:32 PM

6.3 Pseudocolor Image Processing 425

discussed in this section can be based on smooth, nonlinear functions, which gives
the technique considerable flexibility.

EXAMPLE 6.5 : Using pseudocolor to highlight explosives in X-ray images.

Figure 6.22(a) shows two monochrome images of luggage obtained from an airport X-ray scanning sys-
tem. The image on the left contains ordinary articles. The image on the right contains the same articles,
as well as a block of simulated plastic explosives. The purpose of this example is to illustrate the use of
intensity to color transformations to facilitate detection of the explosives.

Figure 6.23 shows the transformation functions used. These sinusoidal functions contain regions
of relatively constant value around the peaks as well as regions that change rapidly near the valleys.
Changing the phase and frequency of each sinusoid can emphasize (in color) ranges in the grayscale. For
instance, if all three transformations have the same phase and frequency, the output will be a grayscale
image. A small change in the phase between the three transformations produces little change in pixels
whose intensities correspond to peaks in the sinusoids, especially if the sinusoids have broad profiles
(low frequencies). Pixels with intensity values in the steep section of the sinusoids are assigned a much
stronger color content as a result of significant differences between the amplitudes of the three sinu-
soids caused by the phase displacement between them.

The image in Fig. 6.22(b) was obtained using the transformation functions in Fig. 6.23(a), which shows
the gray-level bands corresponding to the explosive, garment bag, and background, respectively. Note
that the explosive and background have quite different intensity levels, but they were both coded with
approximately the same color as a result of the periodicity of the sine waves. The image in Fig. 6.22(c)
was obtained with the transformation functions in Fig. 6.23(b). In this case, the explosives and garment
bag intensity bands were mapped by similar transformations, and thus received essentially the same

b
a

c

FIGURE 6.22
Pseudocolor
enhancement by
using the gray
level to color
transformations in
Fig. 6.23. (Original
image courtesy of
Dr. Mike Hurwitz,
Westinghouse.)

DIP4E_GLOBAL_Print_Ready.indb 425 6/16/2017 2:08:32 PM

426 Chapter 6 Color Image Processing

color assignments. Note that this mapping allows an observer to “see” through the explosives. The back-
ground mappings were about the same as those used for Fig. 6.22(b), producing almost identical color
assignments for the two pseudocolor images.

The approach in Fig. 6.21 is based on a single grayscale image. Often, it is of
interest to combine several grayscale images into a single color composite, as illus-
trated in Fig. 6.24. A frequent use of this approach is in multispectral image process-
ing, where different sensors produce individual grayscale images, each in a different
spectral band (see Example 6.6 below). The types of additional processing shown in
Fig. 6.24 can be techniques such as color balancing and spatial filtering, as discussed
later in this chapter. When coupled with background knowledge about the physical
characteristics of each band, color-coding in the manner just explained is a powerful
aid for human visual analysis of complex multispectral images.

EXAMPLE 6.6 : Color coding of multispectral images.

Figures 6.25(a) through (d) show four satellite images of the Washington, D.C., area, including part of
the Potomac River. The first three images are in the visible red (R), green (G), and blue (B) bands, and

Transformation T1

Additional
processing

Transformation T2

Transformation TKfK(x, y)

f1(x, y)

f2(x, y)

gK(x, y)

g1(x, y)

g2(x, y)

hR(x, y)

hG(x, y)

hB(x, y)

FIGURE 6.24
A pseudocolor
coding approach
using multiple
grayscale images.
The inputs are
grayscale images.
The outputs are
the three
components of an
RGB composite
image.

ba

FIGURE 6.23
Transformation
functions used to
obtain the
pseudocolor
images in
Fig. 6.22.

Explosive
Background

Bag

Intensity

Red

Green

Blue

Explosive
Background

Bag

Intensity

C
ol

or

DIP4E_GLOBAL_Print_Ready.indb 426 6/16/2017 2:08:32 PM

6.3 Pseudocolor Image Processing 427

the fourth is in the near infrared (IR) band (see Table 1.1 and Fig. 1.10). The latter band is responsive
to the biomass content of a scene, and we want to use this fact to create a composite RGB color image
in which vegetation is emphasized and the other components of the scene are displayed in more muted
tones.

Figure 6.25(e) is an RGB composite obtained by replacing the red image by infrared. As you see, veg-
etation shows as a bright red, and the other components of the scene, which had a weaker response in
the near-infrared band, show in pale shades of blue-green. Figure 6.25(f) is a similar image, but with the
green replaced by infrared. Here, vegetation shows in a bright green color, and the other components of
the scene show in purplish color shades, indicating that their major components are in the red and blue
bands. Although the last two images do not introduce any new physical information, these images are
much easier to interpret visually once it is known that the dominant component of the images are pixels
of areas heavily populated by vegetation.

The type of processing just illustrated uses the physical characteristics of a single band in a multi-
spectral image to emphasize areas of interest. The same approach can help visualize events of interest

ba c
ed f

FIGURE 6.25 (a)–(d) Red (R), green (G), blue (B), and near-infrared (IR) components of a LANDSAT multispectral
image of the Washington, D.C. area. (e) RGB color composite image obtained using the IR, G, and B component
images. (f) RGB color composite image obtained using the R, IR, and B component images. (Original multispectral
images courtesy of NASA.)

DIP4E_GLOBAL_Print_Ready.indb 427 6/16/2017 2:08:32 PM

428 Chapter 6 Color Image Processing

in complex images in which the events are beyond human visual sensing capabilities. Figure 6.26 is an
excellent illustration of this. These are images of the Jupiter moon Io, shown in pseudocolor by combin-
ing several of the sensor images from the Galileo spacecraft, some of which are in spectral regions not
visible to the eye. However, by understanding the physical and chemical processes likely to affect sensor
response, it is possible to combine the sensed images into a meaningful pseudocolor map. One way to
combine the sensed image data is by how they show either differences in surface chemical composition
or changes in the way the surface reflects sunlight. For example, in the pseudocolor image in Fig. 6.26(b),
bright red depicts material newly ejected from an active volcano on Io, and the surrounding yellow
materials are older sulfur deposits. This image conveys these characteristics much more readily than
would be possible by analyzing the component images individually.

b
a

FIGURE 6.26
(a) Pseudocolor
rendition of
Jupiter Moon Io.
(b) A close-up.
(Courtesy of
NASA.)

DIP4E_GLOBAL_Print_Ready.indb 428 6/16/2017 2:08:33 PM

6.4 Basics of Full-Color Image Processing 429

6.4 BASICS OF FULL-COLOR IMAGE PROCESSING

In this section, we begin the study of processing methods for full-color images. The
techniques developed in the sections that follow are illustrative of how full-color
images are handled for a variety of image processing tasks. Full-color image process-
ing approaches fall into two major categories. In the first category, we process each
grayscale component image individually, then form a composite color image from
the individually processed components. In the second category, we work with color
pixels directly. Because full-color images have at least three components, color pix-
els are vectors. For example, in the RGB system, each color point can be interpreted
as a vector extending from the origin to that point in the RGB coordinate system
(see Fig. 6.7).

Let c represent an arbitrary vector in RGB color space:

 c =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

c

c

c

R

G

B

R

G

B

 (6-36)

This equation indicates that the components of c are the RGB components of a
color image at a point. We take into account the fact that the colors of the pixels in
an image are a function of spatial coordinates (,)x y by using the notation

 c x y

c x y

c x y

c x y

R x y

G x y

B x y

R

G

B

,

,

,

,

,

,

,
() =

()
()
()

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
()
()
()

⎡

⎣⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (6-37)

For an image of size M N× , there are MN such vectors, c(,),x y for x M= −0 1 2 1, , , ,…
and y N= −0 1 2 1, , , , .…

Equation (6-37) depicts a vector whose components are spatial variables x and
y. This is a frequent source of confusion that can be avoided by focusing on the fact
that our interest lies in spatial processes. That is, we are interested in image process-
ing techniques formulated in x and y. The fact that the pixels are now color pixels
introduces a factor that, in its easiest formulation, allows us to process a color image
by processing each of its component images separately, using standard grayscale
image processing methods. However, the results of individual color component pro-
cessing are not always equivalent to direct processing in color vector space, in which
case we must use approaches for processing the elements of color points directly.
When these points have more than two components, we call them voxels. We use the
terms vectors, points, and voxels interchangeably when the meaning is clear that we
are referring to images composed of more than one 2-D image.

In order for per-component-image and vector-based processing to be equivalent,
two conditions have to be satisfied: first, the process has to be applicable to both
vectors and scalars; second, the operation on each component of a vector (i.e., each
voxel) must be independent of the other components. As an illustration, Fig. 6.27
shows spatial neighborhood processing of grayscale and full-color images. Suppose

6.4

Although an RGB image
is composed of three
grayscale component
images, pixels in all three
images are registered
spatially. That is, a single
pair of spatial
coordinates, (x, y),
addresses the same
pixel location in all three
images, as illustrated in
Fig. 6.27(b) below.

DIP4E_GLOBAL_Print_Ready.indb 429 6/16/2017 2:08:36 PM

430 Chapter 6 Color Image Processing

that the process is neighborhood averaging. In Fig. 6.27(a), averaging would be done
by summing the intensities of all the pixels in the 2-D neighborhood, then dividing
the result by the total number of pixels in the neighborhood. In Fig. 6.27(b), averag-
ing would be done by summing all the voxels in the 3-D neighborhood, then divid-
ing the result by the total number of voxels in the neighborhood. Each of the three
component of the average voxel is the sum of the pixels in the single image neigh-
borhood centered on that location. But the same result would be obtained if the
averaging were done on the pixels of each image, independently, and then the sum of
the three values were added for each. Thus, spatial neighborhood averaging can be
carried out on a per-component-image or directly on RGB image voxels. The results
would be the same. In the following sections we develop methods for which the per-
component-image approach is suitable, and methods for which it is not.

6.5 COLOR TRANSFORMATIONS

The techniques described in this section, collectively called color transformations,
deal with processing the components of a color image within the context of a single
color model, as opposed to color transformations between color models, as in Sec-
tion 6.2.

FORMULATION

As with the intensity transformation techniques of Chapter 3, we model color trans-
formations for multispectral images using the general expression

 s T r i ni i i= () = 1 2, , ,… (6-38)

where n is the total number of component images, ri are the intensity values of the
input component images, si are the spatially corresponding intensities in the output
component images, and Ti are a set of transformation or color mapping functions
that operate on ri to produce si . Equation (6-38) is applied individually to all pixels
in the input image. For example, in the case of RGB color images, n = 3, r r r1 2 3, , are
the intensities values at a point in the input components images, and s s s1 2 3, , are

6.5

(x, y)
(x, y)

RGB color imageGrayscale image

Pixel Voxel

3-D neighborhood2-D neighborhood

ba

FIGURE 6.27
Spatial
neighborhoods
for grayscale
and RGB color
images. Observe
in (b) that a single
pair of spatial
coordinates, (,),x y
addresses the
same spatial
location in all
three images.

DIP4E_GLOBAL_Print_Ready.indb 430 6/16/2017 2:08:36 PM

6.5 Color Transformations 431

the corresponding transformed pixels in the output image. The fact that i is also a
subscript on T means that, in principle, we can implement a different transformation
for each input component image.

As an illustration, the first row of Fig. 6.28 shows a full color CMYK image of a
simple scene, and the second row shows its four component images, all normalized
to the range [,].0 1 We see that the strawberries are composed of large amounts of
magenta and yellow because the images corresponding to these two CMYK compo-
nents are the brightest. Black is used sparingly and is generally confined to the cof-
fee and shadows within the bowl of strawberries. The fourth row shows the equiva-
lent RGB images obtained from the CMYK images using Eqs. (6-13)-(6-15). Here
we see that the strawberries contain a large amount of red and very little (although
some) green and blue. From the RGB images, we obtained the CMY images in
the third row using Eq. (6-5). Note that these CMY images are slightly different
from the CMY images in the row above them. This is because the CMY images
in these two systems are different as a result of using K in one of them. The last
row of Fig. 6.28 shows the HSI components, obtained from the RGB images using
Eqs. (6-16)-(6-19). As expected, the intensity (I) component is a grayscale rendition
of the full-color original. The saturation image (S) is as expected also. The strawber-
ries are relatively pure in color; as a result, they show the highest saturation (least
dilution by white light) values of any of the other elements of the image. Finally,
we note some difficulty in interpreting the values of the hue (H) component image.
The problem is that (1) there is a discontinuity in the HSI model where 0° and 360°
meet [see Fig. 6.13(a)], and (2) hue is undefined for a saturation of 0 (i.e., for white,
black, and pure grays). The discontinuity of the model is most apparent around the
strawberries, which are depicted in gray level values near both black (0) and white
(1). The result is an unexpected mixture of highly contrasting gray levels to represent
a single color—red.

We can apply Eq. (6-38) to any of the color-space component images in Fig. 6.28.
In theory, any transformation can be performed in any color model. In practice, how-
ever, some operations are better suited to specific models. For a given transformation,
the effects of converting between representations must be factored into the decision
regarding the color space in which to implement it. For example, suppose that we
wish to modify the intensity of the full-color image in the first row of Fig. 6.28 by a
constant value, k in the range [,].0 1 In the HSI color space we need to modify only
the intensity component image:

 s kr3 3= (6-39)

and we let s r1 1= and s r2 2= . In terms of our earlier discussion note that we are using
two different transformation functions: T1 and T2 are identity transformations, and
T3 is a constant transformation.

In the RGB color space we need to modify all three components by the same
constant transformation:

 s kr ii i= = 1 2 3, , (6-40)

DIP4E_GLOBAL_Print_Ready.indb 431 6/16/2017 2:08:37 PM

432 Chapter 6 Color Image Processing

Full color image

Red Green Blue

Hue Saturation Intensity

Cyan Magenta Yellow Black

Cyan Magenta Yellow

FIGURE 6.28 A full-color image and its various color-space components. (Original image courtesy of MedData Interactive.)

DIP4E_GLOBAL_Print_Ready.indb 432 6/16/2017 2:08:38 PM

6.5 Color Transformations 433

The CMY space requires a similar set of linear transformations (see Problem 6.16):

 s kr k ii i= + −() =1 1 2 3, , (6-41)

Similarly, the transformations required to change the intensity of the CMYK image
is given by

 s
r i

kr k ii
i

i

=
=

+ − =
⎧
⎨
⎩

1 2 3

1 4

, ,

()
 (6-42)

This equation tells us that to change the intensity of a CMYK image, we only change
the fourth (K) component.

Figure 6.29(b) shows the result of applying the transformations in Eqs. (6-39)
through (6-42) to the full-color image of Fig. 6.28, using k = 0 7. . The mapping func-
tions themselves are shown graphically in Figs. 6.29(c) through (h). Note that the
mapping function for CMYK consist of two parts, as do the functions for HSI; one of
the transformations handles one component, and the other does the rest. Although

C,M,Y

1

0 1

1 � k

R,G,B

1

0 1

k

I

1

0 1

k

H,S
0 1

1

0 1
K H,S

0 1
C,M,Y

ba
c ed f g h

FIGURE 6.29 Adjusting the intensity of an image using color transformations. (a) Original image. (b) Result of decreas-
ing its intensity by 30% (i.e., letting k = 0 7.). (c) The required RGB mapping function. (d)–(e) The required CMYK
mapping functions. (f) The required CMY mapping function. (g)–(h) The required HSI mapping functions. (Origi-
nal image courtesy of MedData Interactive.)

DIP4E_GLOBAL_Print_Ready.indb 433 6/16/2017 2:08:39 PM

434 Chapter 6 Color Image Processing

we used several different transformations, the net result of changing the intensity of
the color by a constant value was the same for all.

It is important to note that each transformation defined in Eqs. (6-39) through
(6-42) depends only on one component within its color space. For example, the red
output component, s1, in Eq. (6-40) is independent of the green ()r2 and blue ()r3
inputs; it depends only on the red ()r1 input. Transformations of this type are among
the simplest and most frequently used color processing tools. They can be carried
out on a per-color-component basis, as mentioned at the beginning of our discussion.
In the remainder of this section, we will examine several such transformations and
discuss a case in which the component transformation functions are dependent on
all the color components of the input image and, therefore, cannot be done on an
individual color-component basis.

COLOR COMPLEMENTS

The color circle (also called the color wheel) shown in Fig. 6.30 originated with Sir
Isaac Newton, who in the seventeenth century created its first form by joining the
ends of the color spectrum. The color circle is a visual representation of colors that
are arranged according to the chromatic relationship between them. The circle is
formed by placing the primary colors equidistant from each other. Then, the sec-
ondary colors are placed between the primaries, also in an equidistant arrangement.
The net result is that hues directly opposite one another on the color circle are com-
plements. Our interest in complements stems from the fact that they are analogous
to the grayscale negatives we studied in Section 3.2. As in the grayscale case, color
complements are useful for enhancing detail that is embedded in dark regions of
a color image—particularly when the regions are dominant in size. The following
example illustrates some of these concepts.

Green Yellow

Red

MagentaBlue

Cyan
Complements

FIGURE 6.30
Color
complements on
the color circle.

DIP4E_GLOBAL_Print_Ready.indb 434 6/16/2017 2:08:39 PM

6.5 Color Transformations 435

EXAMPLE 6.7 : Computing color image complements.

Figures 6.31(a) and (c) show the full-color image from Fig. 6.28 and its color complement. The RGB
transformations used to compute the complement are plotted in Fig. 6.31(b). They are identical to the
grayscale negative transformation defined in Section 3.2. Note that the complement is reminiscent of
conventional photographic color film negatives. Reds of the original image are replaced by cyans in the
complement. When the original image is black, the complement is white, and so on. Each of the hues in
the complement image can be predicted from the original image using the color circle of Fig. 6.30, and
each of the RGB component transforms involved in the computation of the complement is a function
of only the corresponding input color component.

Unlike the intensity transformations of Fig. 6.29, the RGB complement transformation functions
used in this example do not have a straightforward HSI equivalent. It is left as an exercise (see Prob-
lem 6.19) to show that the saturation component of the complement cannot be computed from the satu-
ration component of the input image alone. Figure 6.31(d) shows an approximation of the complement
using the hue, saturation, and intensity transformations in Fig. 6.31(b). The saturation component of the
input image is unaltered; it is responsible for the visual differences between Figs. 6.31(c) and (d).

0
1

1

I0
1

1

S

0
1

1

R,G,B 0
1

1

H

ba
dc

FIGURE 6.31
Color
complement
transformations.
(a) Original
image.
(b) Complement
transformation
functions.
(c) Complement
of (a) based on
the RGB mapping
functions. (d) An
approximation of
the RGB
complement using
HSI
transformations.

DIP4E_GLOBAL_Print_Ready.indb 435 6/16/2017 2:08:40 PM

436 Chapter 6 Color Image Processing

COLOR SLICING

Highlighting a specific range of colors in an image is useful for separating objects
from their surroundings. The basic idea is either to: (1) display the colors of interest
so that they stand out from the background; or (2) use the region defined by the
colors as a mask for further processing. The most straightforward approach is to
extend the intensity slicing techniques of Section 3.2. However, because a color pixel
is an n-dimensional quantity, the resulting color transformation functions are more
complicated than their grayscale counterparts in Fig. 3.11. In fact, the required trans-
formations are more complex than the color component transforms considered thus
far. This is because all practical color-slicing approaches require each pixel’s trans-
formed color components to be a function of all n original pixel’s color components.

One of the simplest ways to “slice” a color image is to map the colors outside
some range of interest into a nonprominent neutral color. If the colors of interest
are enclosed by a cube (or hypercube for n > 3) of width W and centered at a pro-
totypical (e.g., average) color with components a a an1 2, , , ,…() the necessary set of
transformations are given by

 s
r a

W

r i n
i

j j
j n

i

=
− >⎡

⎣⎢
⎤
⎦⎥

⎧

⎨
⎪

⎩
⎪ =

≤ ≤
0 5

2
1 2

1

.

, , ,

if

otherwise

any

…
 (6-43)

These transformations highlight the colors around the prototype by forcing all
other colors to the midpoint of the reference color space (this is an arbitrarily cho-
sen neutral point). For the RGB color space, for example, a suitable neutral point
is middle gray or color (0.5, 0.5, 0.5).

If a sphere is used to specify the colors of interest, Eq. (6-43) becomes

 s
r a R

r

i ni
j j

j

n

i

=
−() >

⎧

⎨
⎪

⎩
⎪

==
∑0 5

1 2

2

0
2

1

.
, , ,

if

otherwise

… (6-44)

Here, R0 is the radius of the enclosing sphere (or hypersphere for n > 3) and
a a an1 2, , ,…() are the components of its center (i.e., the prototypical color). Other

useful variations of Eqs. (6-43) and (6-44) include implementing multiple color pro-
totypes and reducing the intensity of the colors outside the region of interest—rath-
er than setting them to a neutral constant.

EXAMPLE 6.8 : Color slicing.

Equations (6-43) and (6-44) can be used to separate the strawberries in Fig. 6.29(a) from their sepals, cup,
bowl, and other background elements. Figures 6.32(a) and (b) show the results of using both transfor-
mations. In each case, a prototype red with RGB color coordinate (0.6863, 0.1608, 0.1922) was selected
from the most prominent strawberry. Parameters W and R0 were chosen so that the highlighted region
would not expand to other portions of the image. The actual values used, W = 0 2549. and R0 0 1765= . ,
were determined interactively. Note that the sphere-based transformation of Eq. (6-44) performed
slightly better, in the sense that it includes more of the strawberries’ red areas. A sphere of radius 0.1765

DIP4E_GLOBAL_Print_Ready.indb 436 6/16/2017 2:08:41 PM

6.5 Color Transformations 437

does not completely enclose a cube of width 0.2549, but it is not small enough to be completely enclosed
by the cube either. In Section 6.7, and later in Chapter 10, you will learn more advanced techniques for
using color and other multispectral information to extract objects from their background.

TONE AND COLOR CORRECTIONS

Problems involving an image’s tonal range need to be corrected before color irregu-
larities, such as over- and under-saturated colors, can be resolved, The tonal range of
an image, also called its key type, refers to its general distribution of color intensities.
Most of the information in high-key images is concentrated at high (or light) intensi-
ties; the colors of low-key images are located predominantly at low intensities; and
middle-key images lie in between. As in the grayscale case, it is often desirable to
distribute the intensities of a color image equally between the highlights and the
shadows. The following examples illustrate a variety of color transformations for the
correction of tonal and color imbalances.

EXAMPLE 6.9 : Tonal transformations.

Transformations for modifying image tones normally are selected interactively. The idea is to adjust
experimentally the image’s brightness and contrast to provide maximum detail over a suitable range of
intensities. The colors themselves are not changed. In the RGB and CMY(K) spaces, this means map-
ping all the color components, except K, with the same transformation function (see Fig. 6.29); in the
HSI color space, only the intensity component is modified, as noted in the previous section.

Figure 6.33 shows typical RGB transformations used for correcting three common tonal imbalances—
flat, light, and dark images. The S-shaped curve in the first row of the figure is ideal for boosting contrast

ba

FIGURE 6.32 Color-slicing transformations that detect (a) reds within an RGB cube of width
W = 0 2549. centered at (0.6863, 0.1608, 0.1922), and (b) reds within an RGB sphere of radius
0.1765 centered at the same point. Pixels outside the cube and sphere were replaced by color
(0.5, 0.5, 0.5).

DIP4E_GLOBAL_Print_Ready.indb 437 6/16/2017 2:08:41 PM

438 Chapter 6 Color Image Processing

R,G,B

1

0 1

R,G,B

1

0 1

R,G,B

1

0 1

Flat

Light

Dark

Corrected

Corrected

Corrected

FIGURE 6.33 Tonal corrections for flat, light (high key), and dark (low key) color images. Adjusting the red, green, and
blue components equally does not always alter the image hues significantly.

DIP4E_GLOBAL_Print_Ready.indb 438 6/16/2017 2:08:41 PM

6.5 Color Transformations 439

[see Fig. 3.2(a)]. Its midpoint is anchored so that highlight and shadow areas can be lightened and dark-
ened, respectively. (The inverse of this curve can be used to correct excessive contrast.) The transforma-
tions in the second and third rows of the figure correct light and dark images, and are reminiscent of
the power-law transformations in Fig. 3.6. Although the color components are discrete, as are the actual
transformation functions, the transformation functions themselves are displayed and manipulated as
continuous quantities—typically constructed from piecewise linear or higher order (for smoother map-
pings) polynomials. Note that the keys of the images in Fig. 6.33 are visually evident; they could also be
determined using the histograms of the images’ color components.

EXAMPLE 6.10 : Color balancing.

Any color imbalances are addressed after the tonal characteristics of an image have been corrected.
Although color imbalances can be determined directly by analyzing a known color in an image with
a color spectrometer, accurate visual assessments are possible when white areas, where the RGB or
CMY(K) components should be equal, are present. As Fig. 6.34 shows, skin tones are excellent subjects
for visual color assessments because humans are highly perceptive of proper skin color. Vivid colors,
such as bright red objects, are of little value when it comes to visual color assessment.

There are a variety of ways to correct color imbalances. When adjusting the color components of an
image, it is important to realize that every action affects its overall color balance. That is, the perception
of one color is affected by its surrounding colors. The color wheel of Fig. 6.30 can be used to predict
how one color component will affect others. Based on the color wheel, for example, the proportion of
any color can be increased by decreasing the amount of the opposite (or complementary) color in the
image. Similarly, it can be increased by raising the proportion of the two immediately adjacent colors
or decreasing the percentage of the two colors adjacent to the complement. Suppose, for instance, that
there is too much magenta in an RGB image. It can be decreased: (1) by removing both red and blue, or
(2) by adding green.

Figure 6.34 shows the transformations used to correct simple CMYK output imbalances. Note that
the transformations depicted are the functions required for correcting the images; the inverses of these
functions were used to generate the associated color imbalances. Together, the images are analogous to
a color ring-around print of a darkroom environment and are useful as a reference tool for identifying
color printing problems. Note, for example, that too much red can be due to excessive magenta (per the
bottom left image) or too little cyan (as shown in the rightmost image of the second row).

HISTOGRAM PROCESSING OF COLOR IMAGES
Unlike the interactive enhancement approaches of the previous section, the gray-
level histogram processing transformations of Section 3.3 can be applied to color
images in an automated way. Recall that histogram equalization automatically
determines a transformation that seeks to produce an image with a uniform histo-
gram of intensity values. We showed in Section 3.3 that histogram processing can be
quite successful at handling low-, high-, and middle-key images (for example, see
Fig. 3.20). As you might suspect, it is generally unwise to histogram equalize the
component images of a color image independently. This results in erroneous color. A
more logical approach is to spread the color intensities uniformly, leaving the colors
themselves (e.g., hues) unchanged. The following example shows that the HSI color
space is ideally suited to this type of approach.

DIP4E_GLOBAL_Print_Ready.indb 439 6/16/2017 2:08:41 PM

440 Chapter 6 Color Image Processing

B

1

0 1

Heavy in
black

Original/Corrected

B

1

0 1

Weak in
black

C

1

0 1

Heavy in
cyan

C

1

0 1

Weak in
cyan

M

1

0 1

Heavy in
magenta

M

1

0 1

Weak in
magenta

Y

1

0 1

Heavy in
yellow

Y

1

0 1

Weak in
yellow

FIGURE 6.34 Color balancing a CMYK image.

DIP4E_GLOBAL_Print_Ready.indb 440 6/16/2017 2:08:42 PM

6.5 Color Transformations 441

EXAMPLE 6.11 : Histogram equalization in the HSI color space.

Figure 6.35(a) shows a color image of a caster stand containing cruets and shakers whose intensity com-
ponent spans the entire (normalized) range of possible values, [0, 1]. As can be seen in the histogram of
its intensity component prior to processing [see Fig. 6.35(b)], the image contains a large number of dark
colors that reduce the median intensity to 0.36. Histogram equalizing the intensity component, without
altering the hue and saturation, resulted in the image shown in Fig. 6.35(c). Note that the overall image
is significantly brighter, and that several moldings and the grain of the wooden table on which the caster
is sitting are now visible. Figure 6.35(b) shows the intensity histogram of the new image, as well as the
intensity transformation used to equalize the intensity component [see Eq. (3-15)].

Although intensity equalization did not alter the values of hue and saturation of the image, it did
impact the overall color perception. Note, in particular, the loss of vibrancy in the oil and vinegar in the
cruets. Figure 6.35(d) shows the result of partially correcting this by increasing the image’s saturation
component, subsequent to histogram equalization, using the transformation in Fig. 6.35(b). This type of

H

1

0 1

I

1

0 0.36

0.5

1

S

1

0 1

Histogram after processing
(median � 0.5)

Histogram before processing
(median � 0.36)

ba
dc

FIGURE 6.35
Histogram
equalization
(followed by
saturation
adjustment) in the
HSI color space.

DIP4E_GLOBAL_Print_Ready.indb 441 6/16/2017 2:08:42 PM

442 Chapter 6 Color Image Processing

adjustment is common when working with the intensity component in HSI space because changes in
intensity usually affect the relative appearance of colors in an image.

6.6 COLOR IMAGE SMOOTHING AND SHARPENING

The next step beyond transforming each pixel of a color image without regard to its
neighbors (as in the previous section) is to modify its value based on the character-
istics of the surrounding pixels. In this section, the basics of this type of neighbor-
hood processing will be illustrated within the context of color image smoothing and
sharpening.

COLOR IMAGE SMOOTHING

With reference to Fig. 6.27(a) and the discussion in Sections 3.4 and 3.5, grayscale
image smoothing can be viewed as a spatial filtering operation in which the coef-
ficients of the filtering kernel have the same value. As the kernel is slid across the
image to be smoothed, each pixel is replaced by the average of the pixels in the
neighborhood encompassed by the kernel. As Fig. 6.27(b) shows, this concept is eas-
ily extended to the processing of full-color images. The principal difference is that
instead of scalar intensity values, we must deal with component vectors of the form
given in Eq. (6-37).

Let Sxy denote the set of coordinates defining a neighborhood centered at (,)x y
in an RGB color image. The average of the RGB component vectors in this neigh-
borhood is

 c x y
K

s t
s t Sxy

, ,
,

() = ()
()∈

∑1 c (6-45)

It follows from Eq. (6-37) and the properties of vector addition that

 c x y

K
s t

K
s t

K
s

s t S

s t S

s t S

xy

xy

xy

,

,

,

,

,

,

,

() =

()

()

()∈

()∈

()∈

∑

∑

∑

1

1

1

R

G

B tt()

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (6-46)

We recognize the components of this vector as the scalar images that would be
obtained by independently smoothing each plane of the original RGB image using
conventional grayscale neighborhood processing. Thus, we conclude that smoothing
by neighborhood averaging can be carried out on a per-color-plane basis. The result
is the same as when the averaging is performed using RGB color vectors.

6.6

DIP4E_GLOBAL_Print_Ready.indb 442 6/16/2017 2:08:43 PM

6.6 Color Image Smoothing and Sharpening 443

EXAMPLE 6.12 : Color image smoothing by neighborhood averaging.

Consider the RGB color image in Fig. 6.36(a). Its three component images are shown in Figs. 6.36(b)
through (d). Figures 6.37(a) through (c) show the HSI components of the image. Based on the discus-
sion in the previous paragraph, we smoothed each component image of the RGB image in Fig. 6.36
independently using a 5 5× averaging kernel. We then combined the individually smoothed images
to form the smoothed, full-color RGB result in Fig. 6.38(a). Note that this image appears as we would
expect from performing a spatial smoothing operation, as in the examples given in Section 3.5.

In Section 6.2, we mentioned that an important advantage of the HSI color model is that it decouples
intensity and color information. This makes it suitable for many grayscale processing techniques and
suggests that it might be more efficient to smooth only the intensity component of the HSI repre-
sentation in Fig. 6.37. To illustrate the merits and/or consequences of this approach, we next smooth
only the intensity component (leaving the hue and saturation components unmodified) and convert the
processed result to an RGB image for display. The smoothed color image is shown in Fig. 6.38(b). Note

ba
dc

FIGURE 6.36
(a) RGB image.
(b) Red
component image.
(c)Green
component.
(d) Blue
component.

DIP4E_GLOBAL_Print_Ready.indb 443 6/16/2017 2:08:43 PM

444 Chapter 6 Color Image Processing

ba c

FIGURE 6.38 Image smoothing with a 5 5× averaging kernel. (a) Result of processing each RGB component image.
(b) Result of processing the intensity component of the HSI image and converting to RGB. (c) Difference between
the two results.

ba c

FIGURE 6.37 HSI components of the RGB color image in Fig. 6.36(a). (a) Hue. (b) Saturation. (c) Intensity.

that it is similar to Fig. 6.38(a), but, as you can see from the difference image in Fig. 6.38(c), the two
smoothed images are not identical. This is because in Fig. 6.38(a) the color of each pixel is the average
color of the pixels in the neighborhood. On the other hand, by smoothing only the intensity component
image in Fig. 6.38(b), the hue and saturation of each pixel was not affected and, therefore, the pixel
colors did not change. It follows from this observation that the difference between the two smoothing
approaches would become more pronounced as a function of increasing kernel size.

COLOR IMAGE SHARPENING

In this section we consider image sharpening using the Laplacian (see Section 3.6).
From vector analysis, we know that the Laplacian of a vector is defined as a vector

DIP4E_GLOBAL_Print_Ready.indb 444 6/16/2017 2:08:44 PM

6.7 Using Color in Image Segmentation 445

whose components are equal to the Laplacian of the individual scalar components
of the input vector. In the RGB color system, the Laplacian of vector c in Eq. (6-37)
is

 ∇ ()⎡⎣ ⎤⎦ =

∇ ()
∇ ()
∇ ()

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2

2

2

2

c x y

x y

x y

x y

,

,

,

,

R

G

B

 (6-47)

which, as in the previous section, tells us that we can compute the Laplacian of a
full-color image by computing the Laplacian of each component image separately.

EXAMPLE 6.13 : Image sharpening using the Laplacian.

Figure 6.39(a) was obtained using Eq. (3-54) and the kernel in Fig. 3.45(c) to compute the Laplacians of
the RGB component images in Fig. 6.36. These results were combined to produce the sharpened full-
color result. Figure 6.39(b) shows a similarly sharpened image based on the HSI components in Fig. 6.37.
This result was generated by combining the Laplacian of the intensity component with the unchanged
hue and saturation components. The difference between the RGB and HSI sharpened images is shown
in Fig. 6.39(c). The reason for the discrepancies between the two images is as in Example 6.12.

6.7 USING COLOR IN IMAGE SEGMENTATION

Segmentation is a process that partitions an image into regions. Although segmenta-
tion is the topic of Chapters 10 and 11, we consider color segmentation briefly here
for the sake of continuity. You will have no difficulty following the discussion.

6.7

ba c

FIGURE 6.39 Image sharpening using the Laplacian. (a) Result of processing each RGB channel. (b) Result of process-
ing the HSI intensity component and converting to RGB. (c) Difference between the two results.

DIP4E_GLOBAL_Print_Ready.indb 445 6/16/2017 2:08:44 PM

446 Chapter 6 Color Image Processing

SEGMENTATION IN HSI COLOR SPACE

If we wish to segment an image based on color and, in addition, we want to carry out
the process on individual planes, it is natural to think first of the HSI space because
color is conveniently represented in the hue image. Typically, saturation is used as a
masking image in order to isolate further regions of interest in the hue image. The
intensity image is used less frequently for segmentation of color images because it
carries no color information. The following example is typical of how segmentation
is performed in the HSI color space.

EXAMPLE 6.14 : Segmenting a color image in HSI color space.

Suppose that it is of interest to segment the reddish region in the lower left of the image in Fig. 6.40(a).
Figures 6.40(b) through (d) are its HSI component images. Note by comparing Figs. 6.40(a) and (b) that
the region in which we are interested has relatively high values of hue, indicating that the colors are on
the blue-magenta side of red (see Fig. 6.11). Figure 6.40(e) shows a binary mask generated by threshold-
ing the saturation image with a threshold equal to 10% of the maximum value in that image. Any pixel
value greater than the threshold was set to 1 (white). All others were set to 0 (black).

Figure 6.40(f) is the product of the mask with the hue image, and Fig. 6.40(g) is the histogram of the
product image (note that the grayscale is in the range [0, 1]). We see in the histogram that high values
(which are the values of interest) are grouped at the very high end of the grayscale, near 1.0. The result
of thresholding the product image with threshold value of 0.9 resulted in the binary image in Fig. 6.40(h).
The spatial location of the white points in this image identifies the points in the original image that
have the reddish hue of interest. This was far from a perfect segmentation because there are points in
the original image that we certainly would say have a reddish hue, but that were not identified by this
segmentation method. However, it can be determined by experimentation that the regions shown in
white in Fig. 6.40(h) are about the best this method can do in identifying the reddish components of the
original image. The segmentation method discussed in the following section is capable of yielding better
results.

SEGMENTATION IN RGB SPACE

Although working in HSI space is more intuitive in the sense of colors being repre-
sented in a more familiar format, segmentation is one area in which better results
generally are obtained by using RGB color vectors (see Fig. 6.7). The approach is
straightforward. Suppose that the objective is to segment objects of a specified color
range in an RGB image. Given a set of sample color points representative of the col-
ors of interest, we obtain an estimate of the “average” color that we wish to segment.
Let this average color be denoted by the RGB vector a. The objective of segmenta-
tion is to classify each RGB pixel in a given image as having a color in the specified
range or not. In order to perform this comparison, it is necessary to have a measure
of similarity. One of the simplest measures is the Euclidean distance. Let z denote
an arbitrary point in RGB space. We say that z is similar to a if the distance between
them is less than a specified threshold, D0. The Euclidean distance between z and a
is given by

DIP4E_GLOBAL_Print_Ready.indb 446 6/16/2017 2:08:44 PM

6.7 Using Color in Image Segmentation 447

FIGURE 6.40 Image segmentation in HSI space. (a) Original. (b) Hue. (c) Saturation.
(d) Intensity. (e) Binary saturation mask (black = 0). (f) Product of (b) and (e). (g) His-
togram of (f). (h) Segmentation of red components from (a).

ba
dc
fe
hg

DIP4E_GLOBAL_Print_Ready.indb 447 6/16/2017 2:08:45 PM

448 Chapter 6 Color Image Processing

D

T

R R G G B B

(,)z a z a

z a z a

z a z a z a

= −

= −() −()⎡
⎣

⎤
⎦

= −() + −() + −()⎡

� �
1
2

2 2 2

⎣⎣⎢
⎤
⎦⎥

1
2

 (6-48)

where the subscripts R, G, and B denote the RGB components of vectors a and z.
The locus of points such that D Dz a,() ≤ 0 is a solid sphere of radius D0 , as illustrated
in Fig. 6.41(a). Points contained within the sphere satisfy the specified color crite-
rion; points outside the sphere do not. Coding these two sets of points in the image
with, say, black and white, produces a binary segmented image.

A useful generalization of Eq. (6-48) is a distance measure of the form

 D Tz a z a C z a,() = −() −()⎡
⎣

⎤
⎦

−1
1
2

 (6-49)

where C is the covariance matrix (see Section 11.5) of the samples chosen to be
representative of the color range we wish to segment. The locus of points such that
D Dz a,() ≤ 0 describes a solid 3-D elliptical body [Fig. 6.41(b)] with the important
property that its principal axes are oriented in the direction of maximum data spread.
When C I= , the 3 3× identity matrix, Eq. (6-49) reduces to Eq. (6-48). Segmenta-
tion is as described in the preceding paragraph.

Because distances are positive and monotonic, we can work with the distance
squared instead, thus avoiding square root computations. However, implementing
Eq. (6-48) or (6-49) is computationally expensive for images of practical size, even
if the square roots are not computed. A compromise is to use a bounding box, as
illustrated in Fig. 6.41(c). In this approach, the box is centered on a, and its dimen-
sions along each of the color axes is chosen proportional to the standard deviation
of the samples along each of the axis. We use the sample data to compute the stan-
dard deviations, which are the parameters used for segmentation with this approach.
Given an arbitrary color point, we segment it by determining whether or not it is on
the surface or inside the box, as with the distance formulations. However, determin-
ing whether a color point is inside or outside a box is much simpler computationally

This equation is called
the Mahalanobis dis-
tance. You are seeing it
used here for multivariate
thresholding (see
Section 10.3 regarding
thresholding).

R

G

B

R

G

B

R

G

Bba c

FIGURE 6.41
Three approaches
for enclosing data
regions for RGB
vector
segmentation.

DIP4E_GLOBAL_Print_Ready.indb 448 6/16/2017 2:08:46 PM

6.7 Using Color in Image Segmentation 449

when compared to a spherical or elliptical enclosure. Note that the preceding discus-
sion is a generalization of the color-slicing method introduced in Section 6.5.

EXAMPLE 6.15 : Color segmentation in RGB color space.

The rectangular region shown Fig. 6.42(a) contains samples of reddish colors we wish to segment out
of the color image. This is the same problem we considered in Example 6.14 using hue, but now we
approach the problem using RGB color vectors. The approach followed was to compute the mean vec-
tor a using the color points contained within the rectangle in Fig. 6.42(a), and then to compute the
standard deviation of the red, green, and blue values of those samples. A box was centered at a, and its
dimensions along each of the RGB axes were selected as 1.25 times the standard deviation of the data
along the corresponding axis. For example, let sR denote the standard deviation of the red components

b
a

FIGURE 6.42
Segmentation in
RGB space.
(a) Original image
with colors of
interest shown
enclosed by a
rectangle.
(b) Result of
segmentation
in RGB vector
space. Compare
with Fig. 6.40(h).

DIP4E_GLOBAL_Print_Ready.indb 449 6/16/2017 2:08:46 PM

450 Chapter 6 Color Image Processing

of the sample points. Then the dimensions of the box along the R-axis extended from aR R−()1 25. s to
aR R+()1 25. ,s where aR is the red component of average vector a. Figure 6.42(b) shows the result of

coding each point in the color image as white if it was on the surface or inside the box, and as black
otherwise. Note how the segmented region was generalized from the color samples enclosed by the
rectangle. In fact, by comparing Figs. 6.42(b) and 6.40(h), we see that segmentation in the RGB vector
space yielded results that are much more accurate, in the sense that they correspond much more closely
with what we would define as “reddish” points in the original color image. This result is not unexpected,
because in the RGB space we used three color variables, as opposed to just one in the HSI space.

COLOR EDGE DETECTION

As we will discuss in Section 10.2, edge detection is an important tool for image
segmentation. In this section, we are interested in the issue of computing edges on
individual component images, as opposed to computing edges directly in color vec-
tor space.

We introduced edge detection by gradient operators in Section 3.6, when discuss-
ing image sharpening. Unfortunately, the gradient discussed there is not defined for
vector quantities. Thus, we know immediately that computing the gradient on indi-
vidual images and then using the results to form a color image will lead to erroneous
results. A simple example will help illustrate the reason why.

Consider the two M M× color images (M odd) in Figs. 6.43(d) and (h), com-
posed of the three component images in Figs. 6.43(a) through (c) and (e) through (g),
respectively. If, for example, we compute the gradient image of each of the com-
ponent images using Eq. (3-58), then add the results to form the two correspond-
ing RGB gradient images, the value of the gradient at point () , ()M M+ +[]1 2 1 2
would be the same in both cases. Intuitively, we would expect the gradient at that
point to be stronger for the image in Fig. 6.43(d) because the edges of the R, G,
and B images are in the same direction in that image, as opposed to the image
in Fig. 6.43(h), in which only two of the edges are in the same direction. Thus we
see from this simple example that processing the three individual planes to form
a composite gradient image can yield erroneous results. If the problem is one of
just detecting edges, then the individual-component approach can yield acceptable
results. If accuracy is an issue, however, then obviously we need a new definition of
the gradient applicable to vector quantities. We discuss next a method proposed by
Di Zenzo [1986] for doing this.

The problem at hand is to define the gradient (magnitude and direction) of the
vector c in Eq. (6-37) at any point (,).x y As we just mentioned, the gradient we
studied in Section 3.6 is applicable to a scalar function f x y(,); it is not applicable
to vector functions. The following is one of the various ways in which we can extend
the concept of a gradient to vector functions. Recall that for a scalar function f x y(,),
the gradient is a vector pointing in the direction of maximum rate of change of f at
coordinates (,).x y

Let r, g, and b be unit vectors along the R, G, and B axis of RGB color space (see
Fig. 6.7), and define the vectors

DIP4E_GLOBAL_Print_Ready.indb 450 6/16/2017 2:08:47 PM

6.7 Using Color in Image Segmentation 451

 u = ∂
∂

+ ∂
∂

∂
∂

R
x

G
x

B
x

r g + b (6-50)

and

 v = ∂
∂

+ ∂
∂

∂
∂

R
y

G
y

B
y

r g + b (6-51)

Let the quantities gxx , gyy , and gxy be defined in terms of the dot product of these
vectors, as follows:

 g
R
x

G
x

B
xxx

T= ⋅ = = ∂
∂

+ ∂
∂

+ ∂
∂

u u u u
2 2 2

 (6-52)

 g
R
y

G
y

B
yyy

T= ⋅ = = ∂
∂

+ ∂
∂

+ ∂
∂

v v v v
2 2 2

 (6-53)

and

 g
R
x

R
y

G
x

G
y

B
x

B
yxy

T= ⋅ = = ∂
∂

∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

∂
∂

u v u v (6-54)

ba dc
f he g

FIGURE 6.43 (a)–(c) R, G, and B component images, and (d) resulting RGB color image. (e)–(g) R, G, and B compo-
nent images, and (h) resulting RGB color image.

DIP4E_GLOBAL_Print_Ready.indb 451 6/16/2017 2:08:48 PM

452 Chapter 6 Color Image Processing

Keep in mind that R, G, and B, and consequently the g’s, are functions of x and y.
Using this notation, it can be shown (Di Zenzo [1986]) that the direction of maxi-
mum rate of change of c(,)x y is given by the angle

 u x y
g

g g
xy

xx yy

, tan() =
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1
2

21 (6-55)

and that the value of the rate of change at (,)x y in the direction of u(,)x y is given by

 F x y g g g g x y g x yxx yy xx yy xyu u u, cos , sin ,() = +() + −() () + ()⎡⎣ ⎤⎦
1
2

2 2 2⎧⎧
⎨
⎩

⎫
⎬
⎭

1
2

 (6-56)

Because tan tan ,a a p() = ±() if u0 is a solution to Eq. (6-55), so is u p0 2± . Fur-
thermore, F Fu u p= + , so F has to be computed only for values of u in the half-open
interval [,).0 p The fact that Eq. (6-55) gives two values 90° apart means that this
equation associates with each point (,)x y a pair of orthogonal directions. Along one
of those directions F is maximum, and it is minimum along the other. The deriva-
tion of these results is rather lengthy, and we would gain little in terms of the fun-
damental objective of our current discussion by detailing it here. Consult the paper
by Di Zenzo [1986] for details. The Sobel operators discussed in Section 3.6 can
be used to compute the partial derivatives required for implementing Eqs. (6-52)
through (6-54).

EXAMPLE 6.16 : Edge detection in RGB vector space.

Figure 6.44(b) is the gradient of the image in Fig. 6.44(a), obtained using the vector method just dis-
cussed. Figure 6.44(c) shows the image obtained by computing the gradient of each RGB component
image and forming a composite gradient image by adding the corresponding values of the three com-
ponent images at each coordinate (,).x y The edge detail of the vector gradient image is more complete
than the detail in the individual-plane gradient image in Fig. 6.44(c); for example, see the detail around
the subject’s right eye. The image in Fig. 6.44(d) shows the difference between the two gradient images
at each point (,).x y It is important to note that both approaches yielded reasonable results. Whether
the extra detail in Fig. 6.44(b) is worth the added computational burden over the Sobel operator com-
putations can only be determined by the requirements of a given problem. Figure 6.45 shows the three
component gradient images, which, when added and scaled, were used to obtain Fig. 6.44(c).

6.8 NOISE IN COLOR IMAGES

The noise models discussed in Section 5.2 are applicable to color images. Usually, the
noise content of a color image has the same characteristics in each color channel, but
it is possible for color channels to be affected differently by noise. One possibility is
for the electronics of a particular channel to malfunction. However, different noise
levels are more likely caused by differences in the relative strength of illumination
available to each of the color channels. For example, use of a red filter in a CCD
camera will reduce the strength of illumination detected by the red sensing elements.
CCD sensors are noisier at lower levels of illumination, so the resulting red com-

6.8

DIP4E_GLOBAL_Print_Ready.indb 452 6/16/2017 2:08:49 PM

6.8 Noise in Color Images 453

ba
dc

FIGURE 6.44
(a) RGB image.
(b) Gradient
computed in RGB
color vector space.
(c) Gradient
image formed by
the elementwise
sum of three
individual
gradient images,
each computed
using the Sobel
operators.
(d) Difference
between (b) and
(c).

ba c

FIGURE 6.45 Component gradient images of the color image in Fig. 6.44. (a) Red component, (b) green component,
and (c) blue component. These three images were added and scaled to produce the image in Fig. 6.44(c).

DIP4E_GLOBAL_Print_Ready.indb 453 6/16/2017 2:08:50 PM

454 Chapter 6 Color Image Processing

ponent of an RGB image would tend to be noisier than the other two component
images in this situation.

EXAMPLE 6.17 : Illustration of the effects of noise when converting noisy RGB images to HSI.

In this example, we take a brief look at noise in color images and how noise carries over when convert-
ing from one color model to another. Figures 6.46(a) through (c) show the three color planes of an RGB
image corrupted by additive Gaussian noise, and Fig. 6.46(d) is the composite RGB image. Note that
fine grain noise such as this tends to be less visually noticeable in a color image than it is in a grayscale
image. Figures 6.47(a) through (c) show the result of converting the RGB image in Fig. 6.46(d) to HSI.
Compare these results with the HSI components of the original image (see Fig. 6.37) and note how sig-
nificantly degraded the hue and saturation components of the noisy image are. This was caused by the
nonlinearity of the cos and min operations in Eqs. (6-17) and (6-18), respectively. On the other hand,
the intensity component in Fig. 6.47(c) is slightly smoother than any of the three noisy RGB component
images. This is because the intensity image is the average of the RGB images, as indicated in Eq. (6-19).
(Recall the discussion in Section 2.6 regarding the fact that image averaging reduces random noise.)

ba
dc

FIGURE 6.46
(a)–(c) Red,
green, and blue
8-bit component
images
corrupted by
additive
Gaussian noise of
mean 0 and stan-
dard deviation of
28 intensity levels.
(d) Resulting
RGB image.
[Compare (d)
with Fig. 6.44(a).]

DIP4E_GLOBAL_Print_Ready.indb 454 6/16/2017 2:08:50 PM

6.9 Color Image Compression 455

In cases when, say, only one RGB channel is affected by noise, conversion to HSI spreads the noise to
all HSI component images. Figure 6.48 shows an example. Figure 6.48(a) shows an RGB image whose
green component image is corrupted by salt-and-pepper noise, with a probability of either salt or pepper
equal to 0.05. The HSI component images in Figs. 6.48(b) through (d) show clearly how the noise spread
from the green RGB channel to all the HSI images. Of course, this is not unexpected because computa-
tion of the HSI components makes use of all RGB components, as discussed in Section 6.2.

As is true of the processes we have discussed thus far, filtering of full-color images
can be carried out on a per-image basis, or directly in color vector space, depending
on the process. For example, noise reduction by using an averaging filter is the pro-
cess discussed in Section 6.6, which we know gives the same result in vector space as
it does if the component images are processed independently. However, other filters
cannot be formulated in this manner. Examples include the class of order statistics
filters discussed in Section 5.3. For instance, to implement a median filter in color
vector space it is necessary to find a scheme for ordering vectors in a way that the
median makes sense. While this was a simple process when dealing with scalars, the
process is considerably more complex when dealing with vectors. A discussion of
vector ordering is beyond the scope of our discussion here, but the book by Platani-
otis and Venetsanopoulos [2000] is a good reference on vector ordering and some of
the filters based on the concept of ordering.

6.9 COLOR IMAGE COMPRESSION

Because the number of bits required to represent color is typically three to four
times greater than the number employed in the representation of gray levels, data
compression plays a central role in the storage and transmission of color images.
With respect to the RGB, CMY(K), and HSI images of the previous sections, the
data that are the object of any compression are the components of each color pixel
(e.g., the red, green, and blue components of the pixels in an RGB image); they are

6.9

ba c

FIGURE 6.47 HSI components of the noisy color image in Fig. 6.46(d). (a) Hue. (b) Saturation. (c) Intensity.

DIP4E_GLOBAL_Print_Ready.indb 455 6/16/2017 2:08:50 PM

456 Chapter 6 Color Image Processing

the means by which the color information is conveyed. Compression is the process
of reducing or eliminating redundant and/or irrelevant data. Although compression
is the topic of Chapter 8, we illustrate the concept briefly in the following example
using a color image.

EXAMPLE 6.18 : An example of color image compression.

Figure 6.49(a) shows a 24-bit RGB full-color image of an iris, in which 8 bits each are used to represent
the red, green, and blue components. Figure 6.49(b) was reconstructed from a compressed version of the
image in (a) and is, in fact, a compressed and subsequently decompressed approximation of it. Although
the compressed image is not directly displayable—it must be decompressed before input to a color
monitor—the compressed image contains only 1 data bit (and thus 1 storage bit) for every 230 bits of
data in the original image (you will learn about the origin of these numbers in Chapter 8). Suppose that
the image is of size 2000 × 3000 = 6 106⋅ pixels. The image is 24 bits/pixel, so it storage size is 144 106⋅ bits.

ba
dc

FIGURE 6.48
(a) RGB image
with green plane
corrupted by salt-
and-pepper noise.
(b) Hue
component of
HSI image.
(c) Saturation
component.
(d) Intensity
component.

DIP4E_GLOBAL_Print_Ready.indb 456 6/16/2017 2:08:51 PM

6.9 Color Image Compression 457

b
a

FIGURE 6.49
Color image
compression.
(a) Original RGB
image.
(b) Result of
compressing, then
decompressing
the image in (a).

Suppose that you are sitting at an airport waiting for your flight, and want to upload 100 such images
using the airport’s public WiFi connection. At a (relatively high) upload speed of 10 106⋅ bits/sec, it
would take you about 24 min to upload your images. In contrast, the compressed images would take
about 6 sec to upload. Of course, the transmitted data would have to be decompressed at the other end
for viewing, but the decompression can be done in a matter of seconds. Note that the reconstructed
approximation image is slightly blurred. This is a characteristic of many lossy compression techniques; it
can be reduced or eliminated by changing the level of compression. The JPEG 2000 compression algo-
rithm used to generate Fig. 6.49(b) is described in detail in Section 8.2.

DIP4E_GLOBAL_Print_Ready.indb 457 6/16/2017 2:08:52 PM

458 Chapter 6 Color Image Processing

Problems
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book
website: www.ImageProcessingPlace.com).

6.1 Give the percentages of red (X), green (Y), and
blue (Z) light required to generate the point labeled

“warm white” in Fig. 6.5.

6.2 * Consider any two valid colors c1 and c2 with coor-
dinates (,)x y1 1 and (,)x y2 2 in the chromaticity
diagram of Fig. 6.5. Derive the necessary general
expression(s) for computing the relative percent-
ages of colors c1 and c2 composing any color that
is known to lie on the straight line joining these two
colors.

6.3 Consider any three valid colors c1, c2 , and c3 with
coordinates (,),x y1 1 (,),x y2 2 and (,),x y3 3 in the

chromaticity diagram of Fig. 6.5. Derive the nec-
essary general expression(s) for computing the
relative percentages of c1, c2 , and c3 composing a
color that is known to lie within the triangle whose
vertices are at the coordinates of c1, c2 , and c3.

6.4 * In an automated assembly application, three types
of parts are to be color-coded to simplify detection.
However, only a monochrome TV camera is avail-
able to acquire digital images. Propose a technique
for using this camera to detect the three different
colors.

Summary, References, and Further Reading
The material in this chapter is an introduction to color image processing and covers topics selected to provide a
solid background in the techniques used in this branch of image processing. Our treatment of color fundamentals
and color models was prepared as foundation material for a field that is wide in technical scope and areas of applica-
tion. In particular, we focused on color models that we felt are not only useful in digital image processing but pro-
vide also the tools necessary for further study in this area of image processing. The discussion of pseudocolor and
full-color processing on an individual image basis provides a tie to techniques that were covered in some detail in
Chapters 3 through 5. The material on color vector spaces is a departure from methods that we had studied before
and highlights some important differences between grayscale and full-color processing. Our treatment of noise in
color images also points out that the vector nature of the problem, along with the fact that color images are rou-
tinely transformed from one working space to another, has implications on the issue of how to reduce noise in these
images. In some cases, noise filtering can be done on a per-image basis, but others, such as median filtering, require
special treatment to reflect the fact that color pixels are vector quantities, as mentioned earlier. Although segmenta-
tion is the topic of Chapters 10 and 11, and image data compression is the topic of Chapter 8, we introduced them
briefly in the context of color image processing.

For a comprehensive reference on the science of color, see Malacara [2011]. Regarding the physiology of color,
see Snowden et al. [2012]. These two references, together with the book by Kuehni [2012], provide ample supple-
mentary material for the discussion in Section 6.1. For further reading on color models (Section 6.2), see Fortner
and Meyer [1997], Poynton [1996], and Fairchild [1998]. For a detailed derivation of the equations for the HSI
model see the paper by Smith [1978] or consult the book website. The topic of pseudocolor (Section 6.3) is closely
tied to the general area of image data visualization. Wolff and Yaeger [1993] is a good basic reference on the use of
pseudocolor. See also Telea [2008]. For additional reading on the material in Sections 6.4 and 6.5, see Plataniotis and
Venetsanopoulos [2000]. The material on color image filtering (Section 6.6) is based on the vector formulation intro-
duced in Section 6.4 and on our discussion of spatial filtering in Chapter 3. The area of color image segmentation
(Section 6.7) is of significant current interest. For an overview of current trends in this field see the survey by Van-
taram and Saber [2012]. For more advanced color image processing techniques than those discussed in this chapter
see Fernandez-Maloigne [2012]. The discussion in Section 6.8 is based on the noise models introduced in Section 5.2.
References on color image compression (Section 6.9) are listed at the end of Chapter 8. For details of software
implementation of many of the techniques discussed in this chapter, see Gonzalez, Woods, and Eddins [2009].

DIP4E_GLOBAL_Print_Ready.indb 458 6/16/2017 2:08:53 PM

http://www.ImageProcessingPlace.com

 Problems 459

6.5 The R, G, and B component images of an RGB
image have the horizontal intensity profiles shown
in the following diagram. What color would a per-
son see in the middle column of this image?

1.0

0.5

0 N/2 N � 1
Position

C
ol

or Blue

1.0

0.5

0 N/2 N � 1
Position

C
ol

or Red

1.0

0.5

0 N/2 N � 1
Position

C
ol

or Green

6.6 * Sketch the RGB components of the following
image as they would appear on a monochrome
monitor. All colors are at maximum intensity and
saturation. In working this problem, consider the
gray border as part of the image.

B
la

ck

R
ed

Y
el

lo
w

G
re

en

C
ya

n

B
lu

e

M
ag

en
ta

W
hi

te

Gray (50% Black)

6.7 What is the maximum number of possible differ-
ent shades of gray in an RGB image whose three
component images are 8-bit images?

6.8 Consider the RGB cube in Fig. 6.8 and answer
each of the following questions.

(a) * Describe how the gray levels vary in each of
the R, G, and B primary images that make
up the front face of the color cube (this is the
face closer to you). Assume that each com-
ponent image is an 8-bit image.

(b) Suppose that we replace every color in the

RGB cube by its CMY color. This new cube
is displayed on an RGB monitor. Label with
a color name the eight vertices of the new
cube that you would see on the screen.

(c) What can you say about the colors on the
edges of the RGB color cube regarding satu-
ration?

6.9 Do the following.

(a) * Sketch the CMY components of the image
in Problem 6.6 as they would appear on a
monochrome monitor.

(b) If the CMY components sketched in (a) are
fed into the red, green, and blue inputs of
a color monitor, respectively, describe the
appearance of the resulting image.

6.10 * Sketch the HSI components of the image in
Problem 6.6 as they would appear on a mono-
chrome monitor.

6.11 Propose a method for generating a color band
similar to the one shown in the zoomed section
entitled Visible Spectrum in Fig. 6.2. Note that the
band starts at a dark purple on the left and pro-
ceeds toward pure red on the right. (Hint: Use
the HSI color model.)

6.12 * Propose a method for generating a color ver-
sion of the image shown diagrammatically in
Fig. 6.11(c). Give your answer in the form of a
flow chart. Assume that the intensity value is
fixed and given. (Hint: Use the HSI color model.)

6.13 Consider the following image composed of solid
color squares. For discussing your answer, choose
a gray scale consisting of eight shades of gray, 0
through 7, where 0 is black and 7 is white. Sup-
pose that the image is converted to HSI color
space. In answering the following questions, use
specific numbers for the gray shades if using
numbers makes sense. Otherwise, the relation-
ships “same as,” “lighter than,” or “darker than”
are sufficient. If you cannot assign a specific gray
level or one of these relationships to the image
you are discussing, give the reason.

(a) * Sketch the hue image.

(b) Sketch the saturation image.

(c) Sketch the intensity image.

DIP4E_GLOBAL_Print_Ready.indb 459 6/16/2017 2:08:53 PM

460 Chapter 6 Color Image Processing

Black

Red Green Blue

Magenta Cyan Yellow

White

6.14 The following 8-bit images are the H, S, and I com-
ponent images from Fig. 6.14. The numbers indi-
cate gray-level values. Answer the following ques-
tions, explaining the basis for your answer in each.
If it is not possible to answer a question based on
the given information, state why you cannot do so.

(a) * Give the gray-level values of all regions in
the hue image.

(b) Give the gray-level value of all regions in
the saturation image.

(c) Give the gray-level values of all regions in
the intensity image.

Hue Saturation

Intensity

6.15 * Compute the L a b* * * components of the image
in Problem 6.6 assuming:

X

Y

Z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢

0 588 0 179 0 183

0 29 0 606 0 105

0 0 068 1 021

. . .

. . .

. .⎢⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R

G

B

This matrix equation defines the tristimulus
values of the colors generated by the standard
National Television System Committee (NTSC)
color TV phosphors viewed under D65 standard
illumination (Benson [1985]).

6.16 * Derive the CMY intensity mapping function
of Eq. (6-41) from the RGB counterpart in
Eq. (6-40). [Hint: Start with Eq. (6-5).]

6.17 Start with Eqs. (6-6)-(6-12) and derive Eq. (6-42).
(Hint: The intensity of the CMYK image is
changed by changing the K component only.)

6.18 Refer to Fig. 6.25 in answering the following:

(a) * Why does the image in Fig. 6.25(e) exhibit
predominantly red tones?

(b) * Suggest an automated procedure for coding
the water in Fig. 6.25 in a bright-blue color.

(c) Suggest an automated procedure for coding
the predominantly man-made components
in a bright yellow color. [Hint: Work with
Fig. 6.25(e).]

6.19 * Show that the saturation component of the com-
plement of a color image cannot be computed
from the saturation component of the input
image alone.

6.20 Explain the shape of the hue transformation
function for the image complement approxima-
tion in Fig. 6.31(b) using the HSI color model.

6.21 * Derive the CMY transformations to generate the
complement of a color image.

6.22 Draw the general shape of the transformation
functions used to correct excessive contrast in
the RGB color space.

6.23 * Assume that the monitor and printer of an imag-
ing system are imperfectly calibrated. An image
that looks balanced on the monitor appears yel-
lowish in print. Describe general transformations
that might correct the imbalance. (Hints: Refer
to the color wheel in Fig. 6.30 and the discussion
of the L a b* * * color system in Section 6.2.)

DIP4E_GLOBAL_Print_Ready.indb 460 6/16/2017 2:08:54 PM

 Problems 461

6.24 * Given an image in the RGB, CMY, or CMYK
color system, how would you implement the col-
or equivalent of gray-scale histogram matching
(specification) from Section 3.3?

6.25 Consider the following 500 500× RGB image, in
which the squares are fully saturated red, green,
and blue, and each of the colors is at maximum
intensity. An HSI image is generated from this
image. Answer the following questions.

Green Red

Blue Green

(a) Describe the appearance of each HSI com-
ponent image.

(b) * The saturation component of the HSI image
is smoothed using an averaging kernel of
size 125 125× . Describe the appearance of
the result. (You may ignore image border
effects in the filtering operation.)

(c) Repeat (b) for the hue image.

6.26 Answer the following.

(a) * Refer to the discussion in Section 6.7 about
segmentation in the RGB color space. Give
a procedure (in flow chart form) for deter-

mining whether a color vector (point) z is
inside a cube with sides W, centered at an
average color vector a. Distance computa-
tions are not allowed.

(b) If the box is aligned with the axes this pro-
cess also can be implemented on an image-
by-image basis. Show how you would do it.

6.27 Show that Eq. (6-49) reduces to Eq. (6-48) when
C I= , the identity matrix.

6.28 Sketch the surface in RGB space for the points
that satisfy the equation

 D D
Tz,a z a C z a() = () ()⎡

⎣
⎤
⎦ =−− −1

0

1
2

where D0 is a positive constant. Assume that
a 0= , and that

 C =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

8 0 0

0 1 0

0 0 1

6.29 Refer to the discussion on color edge detection
in Section 6.7. One might think that a logical
approach for defining the gradient of an RGB
image at any point (,)x y would be to compute
the gradient vector (see Section 3.6) of each com-
ponent image and then form a gradient vector for
the color image by summing the three individual
gradient vectors. Unfortunately, this method can
at times yield erroneous results. Specifically, it is
possible for a color image with clearly defined
edges to have a zero gradient if this method were
used. Give an example of such an image. (Hint:
To simplify your analysis, set one of the color
planes to a constant value.)

DIP4E_GLOBAL_Print_Ready.indb 461 6/16/2017 2:08:55 PM

DIP4E_GLOBAL_Print_Ready.indb 4 6/16/2017 2:01:57 PM

This page intentionally left blank

463

7 Wavelet and Other Image
Transforms

Preview
The discrete Fourier transform of Chapter 4 is a member of an important class of linear transforms that
include the Hartley, sine, cosine, Walsh-Hadamard, Slant, Haar, and wavelet transforms. These trans-
forms, which are the subject of this chapter, decompose functions into weighted sums of orthogonal or
biorthogonal basis functions, and can be studied using the tools of linear algebra and functional analysis.
When approached from this point of view, images are vectors in the vector space of all images. Basis
functions determine the nature and usefulness of image transforms. Transforms are the coefficients of
linear expansions. And for a given image and transform (or set of basis functions), both the orthogo-
nality of the basis functions and the coefficients of the resulting transform are computed using inner
products. All of an image’s transforms are equivalent in the sense that they contain the same informa-
tion and total energy. They are reversible and differ only in the way that the information and energy is
distributed among the transform’s coefficients.

Upon competion of this chapter, readers should:
 Understand image transforms in the context

of series expansions.

 Be familiar with a variety of important image
transforms and transform basis functions.

 Know the difference between orthogonal and
biorthogonal basis functions.

 Be able to construct the transformation
matrices of the discrete Fourier, Hartley,
sine, cosine, Walsh-Hadamard, Slant, and
Haar transforms.

 Be able to compute traditional image trans-
forms, like the Fourier and Haar transforms,
using elementary matrix operations.

 Understand the time-frequency plane and its
relationship to wavelet transforms.

 Be able to compute 1-D and 2-D fast wavelet
transforms (FWTs) using filter banks.

 Understand wavelet packet representations.

 Be familiar with the use of discrete orthogo-
nal transforms in image processing.

Do not conform any longer to the pattern of this world, but be
transformed by the renewing of your mind.

Romans 12:2

DIP4E_GLOBAL_Print_Ready.indb 463 6/16/2017 2:08:55 PM

464 Chapter 7 Wavelet and Other Image Transforms

7.1 PRELIMINARIES

In linear algebra and functional analysis, a vector space (or more formally an abstract
vector space) is a set of mathematical objects or entities, called vectors, that can be
added together and multiplied by scalars. An inner product space is an abstract vec-
tor space over a field of numbers, together with an inner product function that maps
two vectors of the vector space to a scalar of the number field such that

(a) u v v u, , *=
(b) u v w u w v w+ +, , ,=
(c) a au v u v, ,=
(d) v v v v v, ,Ú 0 0 0 and if and only if = =

where u, v, and w are vectors, a is a scalar, and p denotes the inner product opera-
tion. A simple example of a vector space is the set of directed line segments in two
dimensions, where the line segments are represented mathematically as 2 1× col-
umn vectors, and the addition of vectors is the arithmetic equivalent of combining
the line segments in a head to tail manner. An example of an inner product space is
the set of real numbers R combined with inner product function u v uv, ,= where
the “vectors” are real numbers, the inner product function is multiplication, and axi-
oms (a) through (d) above correspond to the commutative, distributive, associative,
and “positivity of even powers” properties of multiplication, respectively.

Three inner product spaces are of particular interest in this chapter:

1. Euclidean space RN over real number field R with dot or scalar inner product

 u v u v, = = + =− −
=
∑T

N N i i
i

N

u v u v u v u v0 0 1 1 1 1
0

1

+ +
−

… (7-1)

where u and v are N × 1 column vectors.
2. Unitary space CN over complex number field C with inner product function

 u v u v v u, ,* * *= = =
=

−

∑T
i i

i

N

u v
0

1

 (7-2)

where * denotes the complex conjugate operation, and u and v are complex-
valued N × 1 column vectors.

3. Inner product space C([a, b]), where the vectors are continuous functions on the
interval a x b≤ ≤ and the inner product function is the integral inner product

 f x g x f x g x dx
a

b

(), () () ()*= 2 (7-3)

In all three inner product spaces, the norm or length of vector z, denoted as z , is

 z z z= , (7-4)

7.1

Consult the Tutorials sec-
tion of the book website
for a brief tutorial on
vectors and matrices.

In Chapter 2, the inner
product of two column
vectors, u and v, is
denoted u i v [see
Eq. (2-50)]. In this
chapter, u v, is used to
denote inner products
within any inner product
space satisfying condi-
tions (a)–(d), including
the Euclidean inner
product space and real-
valued column vectors of
Chapter 2.

Euclidean space RN is an
infinite set containing all
real N-tuples.

A complex vector space
with an inner product is
called a complex inner
product space or unitary
space.

The notation C[a, b}
is also used in the
literature.

Equations (7-4) through
(7-15) are valid for all
inner product spaces,
including those defined
by Eqs. (7-1) to (7-3).

DIP4E_GLOBAL_Print_Ready.indb 464 6/16/2017 2:08:56 PM

7.1 Preliminaries 465

and the angle between two nonzero vectors z and w is

 u = cos
,−1 z w

z w
 (7-5)

If the norm of z is 1, z is said to be normalized. If z w, = 0 in Eq. (7-5), u = 90° and
z and w are said to be orthogonal. A natural consequence of these definitions is that
a set of nonzero vectors w0, w1, w2, ... is mutually or pairwise orthogonal if and only if

 w w k lk l, = 0 for ≠ (7-6)

They are an orthogonal basis of the inner product space that they are said to span. If
the basis vectors are normalized, they are an orthonormal basis and

 w w
k l

k lk l kl, = =
=

⎧
⎨
⎩

d
0

1

 for

 for

≠
 (7-7)

Similarly, a set of vectors w0, w1, w2, ... and a complementary set of dual vectors
w w w0 1 2
' ' ' p, , , are said to be biorthogonal and a biorthogonal basis of the vector
space that they span if

 H Iw w k lk l
'

, = 0 for ≠ (7-8)

They are a biorthonormal basis if and only if

 H Iw w
k l

k lk l kl
'

, = =
≠
=

⎧
⎨
⎩

d
0

1

for

for
 (7-9)

As a mechanism for concisely describing an infinite set of vectors, the basis of
an inner product space is one of the most useful concepts in linear algebra. The
following derivation, which relies on the orthogonality of basis vectors, is founda-
tional to the matrix-based transforms of the next section. Let W w w w= { }0 1 2, , ,…
be an orthogonal basis of inner product space V, and let z V∈ . Vector z can then be
expressed as the following linear combination of basis vectors

 z w w w= + + +a a a0 0 1 1 2 2 … (7-10)

whose inner product with basis vector wi is

w z w w w w

w w w w w w
i i

i i i i i

, ,

, , ,

= + + +
= + + + +

a a a

a a a

0 0 1 1 2 2

0 0 1 1

…
… …

 (7-11)

Since the wi are mutually orthogonal, the inner products on the right side of
Eq. (7-11) are 0 unless the subscripts of the vectors whose inner products are being

While you must always
take the context into
account, we generally
use the word “vector”
for vectors in an abstract
sense. A vector can be
an N * 1 matrix (i.e.,
column vector) or a
continuous function.

Recall from linear
algebra that a basis of a
vector space is a set of
linearly independent vec-
tors for which any vector
in the space can be writ-
ten uniquely as a linear
combination of basis
vectors. The linear com-
binations are the span
of the basis vectors. A
set of vectors is linearly
independent if no vector
in the set can be written
as a linear combination
of the others.

While you must always
take to the context into
account, we often use
the phrase “orthogonal
basis” or “orthogonal
transform” to refer to
any basis or transform
that is orthogonal, ortho-
normal, biorthogonal, or
biorthonormal.

DIP4E_GLOBAL_Print_Ready.indb 465 6/16/2017 2:08:58 PM

466 Chapter 7 Wavelet and Other Image Transforms

computed match [see Eq. (7-7)]. Thus, the only nonzero term is ai i iw w, . Eliminat-
ing the zero terms and dividing both sides of the equation by w wi i, gives

 ai
i

i i

w z

w w
=

,

,
 (7-12)

which reduces to

 ai iw z= , (7-13)

if the norms of the basis vectors are 1. A similar derivation, which is left as an exer-
cise for the reader, yields

 ai
i

i i

w z

w w
=
H I
H I

'
'

,

,
 (7-14)

and

 ai iw z= H I'
, (7-15)

for biorthogonal and biorthonormal basis vectors, respectively. Note when a basis
and its dual are identical, biorthogonality reduces to orthogonality.

EXAMPLE 7.1 : Vector norms and angles.

The norm of vector f x x() cos= of inner product space C 0 2,)p[]() is

 f x f x f x x dx x x() (), () cos sin()= =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= +
⎡

⎣
⎢
⎢

⎤

0

2
2

1
2

0

21
2

1
4

2
p p

2 ⎦⎦
⎥
⎥

=

1
2

p

The angle between vectors z = []1 1 T and w = []1 0 T of Euclidean inner product space R2 is

 u =
⎛

⎝⎜
⎞

⎠⎟
= ⎛

⎝⎜
⎞
⎠⎟

=cos
,

cos− − °1 1 1

2
45

z w

z w

These results follow from Eqs. (7-1), (7-3), (7-4) and (7-5).

7.2 MATRIX-BASED TRANSFORMS

The 1-D discrete Fourier transform of Chapter 4 is one of a class of important trans-
forms that can be expressed in terms of the general relation

 T u f x r x u
x

N

() () (,)=
=

∑
0

1-
 (7-16)

7.2

In mathematics, the word
transform is used to
denote a change in form
without an accompany-
ing change in value.

DIP4E_GLOBAL_Print_Ready.indb 466 6/16/2017 2:08:59 PM

7.2 Matrix-based Transforms 467

where x is a spatial variable, T u() is the transform of f x(), r x u(,) is a forward trans-
formation kernel, and integer u is a transform variable with values in the range
0 1 1, , , .p -N Similarly, the inverse transform of T u() is

 f x T u s x u
u

N

() () (,)=
=
∑

0

1-
 (7-17)

where s x u(,) is an inverse transformation kernel and x takes on values in the range
0 1 1, , , .p -N Transformation kernels r x u(,) and s x u(,) in Eqs. (7-16) and (7-17),
which depend only on indices x and u and not on the values of f x() and T u(), deter-
mine the nature and usefulness of the transform pair that they define.

Equation (7-17) is depicted graphically in Fig. 7.1. Note that f x() is a weighted
sum of N inverse kernel functions (i.e., s x u(,) for u N= 0 1 1, , ,p -) and that T u()
for u N= 0 1 1, , ,p - are the weights. All N s x u(,) contribute to the value of f x() at
every x. If we expand the right side of Eq. (7-17) to obtain

 f x T s x T s x T N s x N() () (,) () (,) () (,)= 0 0 1 1 1 1+ + p + - - (7-18)

it is immediately apparent that the computation depicted in Fig. 7.1 is a linear expan-
sion like that of Eq. (7-10)—with the s x u(,) and T u() in Eq. (7-18) taking the place
of the wi (i.e., the basis vectors) and the ai in Eq. (7-10). If we assume the s x u(,) in
Eq. (7-18) are orthonormal basis vectors of an inner product space, Eq. (7-13) tells
us that

 T u s x u f x() (,), ()= (7-19)

and transform T u() for u N= 0 1 1, , ,p - can be computed via inner products.

FIGURE 7.1
A graphical
illustration of
Eq. (7-18). f(x)

x
0

=

+

+

+
x

x

x
0

E

f x T s x T s x T N s x N() () (,) () (,) () (,)= 0 0 1 1 1 1+ + + − −…

s x N(,)− 1

N − 1

N − 1

× −T N()1

× T()1

× T()0

s x(,)0

s x(,)1

DIP4E_GLOBAL_Print_Ready.indb 467 6/16/2017 2:09:01 PM

468 Chapter 7 Wavelet and Other Image Transforms

We are now ready to express Eqs. (7-16) and (7-17) in matrix form. We begin by
defining functions f x(), T u(), and s x u(,) as column vectors

 f =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

f

f

f N

f

f

fN

()

()

()

0

1

1

0

1

1

o
-

o

-

 (7-20)

 t =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

T

T

T N

t

t

tN

()

()

()

0

1

1

0

1

1

o
-

o

-

 (7-21)

and

 su

u

u

u N

s u

s u

s N u

s

s

s

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

(,)

(,)

(,)

,

,

,

0

1

1

0

1

1

o
-

o

-

⎤⎤

⎦

⎥
⎥
⎥
⎥

= for u N0 1 1, , ,… − (7-22)

and using them to rewrite Eq. (7-19) as

 T u u Nu() , , , ,= =s f for 0 1 1p - (7-23)

Combining the N basis vectors of the transform in an N N* transformation matrix

 A

s

s

s

s s s=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= []
0

1

1

0 1 1

T

T

N
T

N
T

o
p

-

- (7-24)

we can then substitute Eq. (7-23) into Eq. (7-21) and use Eq. (7-1) to get

t

s f

s f

s f

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

+ + +0

1

1

0 0 0 1 0 1 1 0 1,

,

,

, , ,

o

p

-

- -

N

N Ns f s f s f

ss f s f s f

s f s f s f

N N

N N N N N

0 1 0 1 1 1 1 1 1

0 1 0 1 1 1 1 1

, , ,

, , ,

+ + +

+ + +

p
o

p

- -

- - - - --

-

- -

- -

p

o

1

0 0 1 0 1 0

0 1 1 1

1 2

0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

s s s

s s

s

s s

N

N N

N N

, , ,

, ,

,

,

�

22 1 1 1

0

1

1, ,N N N Ns

f

f

f- - - -

o

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (7-25)

We will often use
subscripts to denote the
elements of a matrix or
vector. Thus, f0 denotes
the first element of
column vector f, which is
f(0), and s3,0 denotes the
first element of column
vector s3, which is s(0, 3).

By employing Eq. (7-1),
we assume the most
common case of real-
valued basis vectors.
Equation (7-2) must be
used for a complex inner
product space.

DIP4E_GLOBAL_Print_Ready.indb 468 6/16/2017 2:09:02 PM

7.2 Matrix-based Transforms 469

or

 t Af= (7-26)

The inverse of this equation follows from the observation that

AA

s

s

s

s s s

s s s s s s

T

T

T

N
T

N

T T T
N

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

[]

=

0

1

1

0 1 1

0 0 0 1 0

o
p

p
-

-

--

- - -

o
o

p

1

1 0 1 1

1 0 1 1

0 0 0 1

s s s s

s s s s

s s s s

T T

N
T

N
T

N

�

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

, , pp
o

o
p

p

-

- - -

s s

s s s s

s s s s

0 1

1 0 1 1

1 0 1 1

1 0 0

,

, ,

, ,

N

N N N

�

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
00 1

0 1

o
o

p
�

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= I

 (7-27)

where the last two steps are a consequence of Eqs. (7-1) and (7-7), respectively.
Since AAT = I, premultiplying Eq. (7-26) by AT and simplifying gives f = ATt. Thus,
Eqs. (7-16) and (7-17) become the matrix-based transform pair

 t Af= (7-28)

and

 f A t= T (7-29)

It is important to remember that, in the derivation of Eqs. (7-28) and (7-29), we
assumed the N transform basis vectors (i.e., the su for u N= 0 1 1, , ,… −) of transfor-
mation matrix A are real and orthonormal. In accordance with Eq. (7-7),

 H Is s s sk l k
T

l kl

k l

k l
, = = =

≠
=

⎧
⎨
⎩

d
0

1
 (7-30)

DIP4E_GLOBAL_Print_Ready.indb 469 6/16/2017 2:09:03 PM

470 Chapter 7 Wavelet and Other Image Transforms

The assumed orthonormality allows forward transforms to be computed without
explicit reference to a forward transformation kernel—that is, t = Af where A is a
function of the inverse transformation kernal s x u(,) alone. It is left as an exercise
for the reader (see Problem 7.3) to show that for real orthonormal basis vectors,
r x u s x u(,) (,).=

Because the basis vectors of A are real and orthonormal, the transform defined
in Eq. (7-28) is called an orthogonal transform. It preserves inner products—i.e.,
f f t t Af Af1 2 1 2 1 2, , ,= = —and thus the distances and angles between vectors

before and after transformation. Both the rows and the columns of A are ortho-
normal bases and AA A A IT T= = , so A A-1 = T . The result is that Eqs. (7-28) and
(7-29) are a reversible transform pair. Substituting Eq. (7-29) into (7-28) yields
t Af AA t t= = =T , while substituting Eq. (7-28) into (7-29) gives f A t A AF f= = =T T .

For 2-D square arrays or images, Eqs. (7-16) and (7-17) become

 T u v f x y r x y u v
y

N

x

N

(,) (,) (, , ,)=
==
∑∑

0

1

0

1 --

 (7-31)

and

 f x y T u v s x y u v
v

N

u

N

(,) (,) (, , ,)=
==
∑∑

0

1

0

1 --
 (7-32)

where r x y u v(, , ,) and s x y u v(, , ,) are forward and inverse transformation ker-
nels, respectively. Transform T u v(,) and inverse transformation kernel s x y u v(, , ,)
again can be viewed as weighting coefficients and basis vectors, respectively, with
Eq. (7-32) defining a linear expansion of f x y(,). As was noted in Chapter 2, forward
transformation kernel r x y u v(, , ,) is separable if

 r x y u v r x u r y v(, , ,) (,) (,)= 1 2 (7-33)

and symmetric if r1 is functionally equal to r2 so

 r x y u v r x u r y v(, , ,) (,) (,)= 1 1 (7-34)

If the transformation kernels are real and orthonormal, and both r and s are sepa-
rable and symmetric, the matrix equivalents of Eqs. (7-31) and (7-32) are

 T AFA= T (7-35)

and

 F A TA= T (7-36)

where F is an N N* matrix containing the elements of f x y(,), T is its N N* trans-
form, and A is as previously defined in Eq. (7-24). The pre- and post-multiplications
of F by A and AT in Eq. (7-35) compute the column and row transforms of F, respec-
tively. This, in effect, breaks the 2-D transform into two 1-D transforms, mirroring
the process described in Section 4.11 for the 2-D DFT.

Equations (7-31) and
(7-32) are simplified ver-
sions of Eqs. (2-55) and
(2-56) with M = N.

Substitute s for r in
Eqs. (7-33) and (7-34) for
separable and separable
symmetric inverse ker-
nals, respectively.

DIP4E_GLOBAL_Print_Ready.indb 470 6/16/2017 2:09:05 PM

7.2 Matrix-based Transforms 471

EXAMPLE 7.2 : A simple orthogonal transformation.

Consider the 2-element basis vectors

 s s0 1
1

2

1

1
1

2

1

1
=

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ and

-

 and note they are orthonormal in accordance with Eq. (7-30):

s s s s

s s s s

0 1 0 1

1 0 1 0

1
2

1 1
1

1
1
2

1 1 0

1
2

1 1
1

1

, ()

,

= = []⎡

⎣
⎢

⎤

⎦
⎥ = =

= = []

T

T

-
-

- ⎡⎡

⎣
⎢

⎤

⎦
⎥ = =

= = []⎡

⎣
⎢

⎤

⎦
⎥ = =

1
2

1 1 0

1
2

1 1
1

1
1
2

1 1 10 0 0 0

1 1

()

, ()

,

-

+s s s s

s s

T

== = []⎡

⎣
⎢

⎤

⎦
⎥ = =s s1 1

1
2

1 1
1

1
1
2

1 1 1T -
-

+()

Substitution of s0 and s1 into Eq. (7-24) with N = 2 yields transformation matrix

 A s s= [] =
⎡

⎣
⎢

⎤

⎦
⎥0 1

1

2

1 1

1 1
T

-
 (7-37)

and the transform of 2 2* matrix

 F =
⎡

⎣
⎢

⎤

⎦
⎥

20 63

21 128

follows from Eq. (7-35):

T = ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

=

1

2

1 1

1 1

20 63

21 128

1 1

1 1

1
2

41 191

2

- -

-

T

11 65

1 1

1 1
1
2

232 150

66 64

116 75

33 32

- -
-

-

-
-

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢

⎤⎤

⎦
⎥

In accordance with Eq. (7-36), the inverse of transform T is

 F = ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

1

2

1 1

1 1

116 75

33 32

1 1

1 1
1
2

83 42

-
-

- -
-T 33

149 107

1 1

1 1

20 63

21 128- -
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

DIP4E_GLOBAL_Print_Ready.indb 471 6/16/2017 2:09:05 PM

472 Chapter 7 Wavelet and Other Image Transforms

Finally, we note A is an orthogonal transformation matrix for which

 AA IT
T

=
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

1

2

1 1

1 1
1

2

1 1

1 1
1
2

2 0

0 2

1 0

0 1- -

and A-1 = AT. It is also interesting to note Eq. (7-37) is the transformation matrix of the discrete Fourier,
Hartley, Cosine, Sin, Walsh-Hadamard, Slant, and Haar transforms for 1- and 2-D inputs of size 2 1× and
2 2× , respectively. These transforms are discussed in detail in Sections 7.6 through 7.9.

Although formulated for real orthonormal bases and square arrays, Eqs. (7-35)
and (7-36) can be modified to accomodate a variety of situations, including rectan-
gular arrays, complex-valued basis vectors, and biorthonormal bases.

RECTANGULAR ARRAYS

When the arrays to be transformed are rectangular, as opposed to square, Eqs. (7-35)
and (7-36) become

 T A FA= M N
T (7-38)

and

 F A TA= M
T

N (7-39)

where F, AM, and AN are of size M N* , M M* , and N N* , respectively. Both AM
and AN are defined in accordance with Eq. (7-24).

EXAMPLE 7.3 : Computing the transform of a rectangular array.

A simple transformation in which M and N are 2 and 3, respectively, is

T A FA= =
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥2 3

1

2

1 1

1 1

5 100 44

6 103 40
1

3

1 1 1

1 0 366 1 366

1

T

-
-. .

--

- -
-

1 366 0 366

1

6

11 203 84

1 3 4

1 1 1

1 0 366 1 36

. .

. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

T

66

1 1 366 0 366

121 6580 12 0201 96 1657

0 3 0873 1
-

- -
-

. .

. . .

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
..8624

⎡

⎣
⎢

⎤

⎦
⎥

where matrices F, A2, and A3 are as defined in the first step of the computation. As would be expected,
2 3* output transform T is the same size as F. It is left as an exercise for the reader (see Problem 7.5)
to show that A3 is an orthogonal transformation matrix, and that the transformation is reversable using
Eq. (7-39). The orthonormality of A2 was established in Example 7.2.

DIP4E_GLOBAL_Print_Ready.indb 472 6/16/2017 2:09:06 PM

7.2 Matrix-based Transforms 473

COMPLEX ORTHONORMAL BASIS VECTORS

Complex-valued basis vectors are orthonormal if and only if

 s s s s s sk l l k k
T

l kl

k l

k l
, ,

* *= = = =
≠
=

⎧
⎨
⎩

d
0

1
 (7-40)

where * denotes the complex conjugate operation. When basis vectors are complex,
as opposed to real-valued, Eqs. (7-35) and (7-36) become

 T AFA= T (7-41)

and

 F A TA= * *T (7-42)

respectively. Transformation matrix A is then called a unitary matrix and Eqs. (7-41)
and (7-42) are a unitary transform pair. An important and useful property of A is
that A A AA A A A A I* * * * ,T T T T= = = = so A A-1 = * .T The 1-D counterparts of
Eq. (7-41) and (7-42) are:

 t Af= (7-43)

 f A t= *T (7-44)

EXAMPLE 7.4 : A transform with complex-valued basis vectors.

Unlike orthogonal transformation matrices, where the inverse of the transformation matrix is its trans-
pose, the inverse of unitary transformation matrix

 A =
⎡

⎣

⎢
⎢
⎢

1

3

1 1 1

1 0 5 0 866 0 5 0 866

1 0 5 0 866 0 5 0 866

- - - +
- + - -

. . . .

. . . .

j j

j j

⎤⎤

⎦

⎥
⎥
⎥

 (7-45)

is its conjugate transpose. Thus,

A A*

. . . .

T j j

j j

=
⎡

⎣

1

3

1 1 1

1 0 5 0 866 0 5 0 866

1 0 5 0 866 0 5 0 866

- - - +
- + - -

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

*

. . . .

. . .

T

j j

j j

1

3

1 1 1

1 0 5 0 866 0 5 0 866

1 0 5 0 866 0 5 0

- - - +
- + - - ..

. . . .

. .

866

1
3

1 1 1

1 0 5 0 866 0 5 0 866

1 0 5 0 866 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= - + - -
- - -

j j

j .. .

. . . .

. .5 0 866

1 1 1

1 0 5 0 866 0 5 0 866

1 0 5 0 866+
- - - +
- +j

j j

j

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ -- -0 5 0 866

1
3

3 0 0

0 3 0

0 0 3

. .j

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= I

where j = -1 and matrix A is a unitary matrix that can be used in Eqs. (7-41) through (7-44). It is easy

Orthogonal transforms
are a special case of
unitary transforms in
which the expansion
functions are real-valued.
Both transforms preserve
inner products.

DIP4E_GLOBAL_Print_Ready.indb 473 6/16/2017 2:09:07 PM

474 Chapter 7 Wavelet and Other Image Transforms

to show (see Problem 7.4) that when A*TA = I, the basis vectors in A satisfy Eq. (7-40) and are thus
orthonormal.

BIORTHONORMAL BASIS VECTORS

Expansion functions s s s0 1 1, , ,p -N in Eq. (7-24) are biorthonormal if there exists a
set of dual expansion functions s s s0 1 1

' ' p '
-, , , N such that

 H Is sk l kl

k l

k l
'

, = =
≠
=

⎧
⎨
⎩

d
0

1
 (7-46)

Neither the expansion functions nor their duals need be orthonormal themselves.
Given a set of biorthonormal expansion functions, Eqs. (7-35) and (7-36) become

 T A F A=
' ' T (7-47)

and

 F A TA= T (7-48)

Transformation matrix A remains as defined in Eq. (7-24); dual transformation
matrix A s s s

' ' ' 'p -= []0 1 1N
T is an N N* matrix whose rows are transposed dual

expansion functions. When the expansion functions and their duals are identical—
that is, when s su u

' = —Eqs. (7-47) and (7-48) reduce to Eqs. (7-35) and (7-36), respec-
tively. The 1-D counterparts of Eqs. (7-47) and (7-48) are:

 t A f=
'

 (7-49)

 f A t= T (7-50)

EXAMPLE 7.5 : A biorthonormal transform.

Consider the real biorthonormal transformation matrices

 A =

0 5 0 5 0 5 0 5

1 1 1 1

0 5303 0 5303 0 1768 0 1768

0 1768 0 176

. . . .

. . . .

. .

- -
- -
- 88 0 5303 0 5303

0 5 0 5 0 5 0 5

0 25 0

-

- -'

. .

. . . .

.
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= and A
.. . .

. . . .

. . .

25 0 25 0 25

1 0607 1 0607 0 3536 0 3536

0 3536 0 3536 1 0607

- -
- - 11 0607.

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

It is left as an exercise for the reader (see Problem 7.16) to show that A and A
'

 are biorthonormal. The
transform of 1-D column vector f = []30 11 210 6 T is

 t A f= =
' - -

- -

0 5 0 5 0 5 0 5

0 25 0 25 0 25 0 25

1 0607 1 0607 0 3536 0

. . . .

. . . .

. . . .33536

0 3536 0 3536 1 0607 1 0607

30

11

210

6. . . .- -

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

128 5

43 75

51 9723

209 6572

.

.

.

.-

DIP4E_GLOBAL_Print_Ready.indb 474 6/16/2017 2:09:08 PM

7.2 Matrix-based Transforms 475

Since

 f f f f, ,= = []
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=T 30 11 210 6

30

11

210

6

45 157

and t t t t, , ,= =T 65 084 which is not equal to f f, , the transformation does not preserve inner products.
It is, however, reversable:

 f A t= =T

0 5 0 5 0 5 0 5

1 1 1 1

0 5303 0 5303 0 1768 0 1768

0 1768 0

. . . .

. . . .

.

- -
- -
-

.

.

.

.1768 0 5303 0 5303

128 5

43 75

51 9723

209 6572- -

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

T ⎡⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

30

11

210

6

Here, the forward and inverse transforms were computed using Eqs. (7-49) and (7-50), respectively.

Finally, we note the bulk of the concepts presented in this section can be general-
ized to continuous expansions of the form

 f x s xu u
u

() ()=
-

a
=
∑

�

�

 (7-51)

where au and the s xu() for u = ± ±0 1 2, , , p represent expansion coefficients and
basis vectors of inner product space C([a, b]), respectively. For a given f x() and basis
s xu() for u = ± ±0 1 2, , , ,p the appropriate expansion coefficients can be computed
from the definition of the integral inner product of C([a, b])—i.e., Eq. (7-3)—and
the general properties of all inner product spaces—i.e, Eqs. (7-10) through (7-15).
Thus, for example, if s xu() for u = ± ±0 1 2, , , p are orthonormal basis vectors of
C([a, b]),

 au us x f x= (), () (7-52)

Here, we have simply replaced i, z, and wi in Eq. (7-13) with u, f x(), and s xu(). In
the next example, Eq. (7-52) will be used in the derivation of the continuous Fourier
series.

EXAMPLE 7.6 : The Fourier series and discrete Fourier transform.

Consider the representation of a continuous periodic function of period T as a linear expansion of
orthonormal basis vectors of the form

 s x
T

e uu
j ux T() , , ,= = ± ±

1
0 1 22p for p (7-53)

DIP4E_GLOBAL_Print_Ready.indb 475 6/16/2017 2:09:10 PM

476 Chapter 7 Wavelet and Other Image Transforms

In accordance with Eqs. (7-51) and (7-52),

f x
T

e

T
e

u
j ux T

u

u
j ux T

u

() =

=

-

-

a

a

p

p

1

1

2

2

⎡
⎣⎢

⎤
⎦⎥=

=

∑

∑

�

�

�

�
 (7-54)

and

a

p

u u

T

T
j ux T

T

T
j

s x f x

T
e f x dx

T
f x e

=

= ⎡
⎣⎢

⎤
⎦⎥

=

(), ()

()

()

*

-

-

-

2

2
2

2

2

1

1

2

2
22pux T dx

 (7-55)

With the exception of the variable names and normalization (i.e., the use of 1 T in the above two
equations as opposed to 1 T in only one of them), Eqs. (7-54) and (7-55) are the familiar Fourier series
of Eqs. (4-8) and (4-9) in Chapter 4. An almost identical derivation, which is left as an exercise for the
reader (see Problem 7.22), yields the following discrete counterparts of Eqs. (7-53) through (7-55):

 s x u
N

e u Nj ux N(,) , , ,= =
1

0 1 12p for p - (7-56)

 f x
N

T u e j ux N

u

N

() ()=
=
∑1 2

0

1
p

−

 (7-57)

and

 T u
N

f x e j ux N

x

N

() ()=
=

∑1 2

0

1
−

−
p (7-58)

The discrete complex basis vectors of Eq. (7-56) are an orthonormal basis of inner product space CN.
Equations (7-58) and (7-57), except for the variable names and normalization, are the familiar discrete
Fourier transform of Eqs. (4-44) and (4-45) in Chapter 4.

Now consider the use of Eqs. (7-55) and (7-58) in the computation of both the Fourier series and
discrete Fourier transform of f x x() sin()= 2p of period T = 1. In accordance with Eq. (7-55),

a p

p

p

p

1
1 2

1 2
2 1 1

1 2

1 2
2

1

1
2

2

= ⎡
⎣⎢

⎤
⎦⎥

=

-

-

-

2

2

e x dx

e x

j x

j x

()
*

sin()

sin() ddx x j x x dx

x j
x

= []

=

-
-

- -

1 2

1 2

2

2 2 2

1
4

2
2

2 cos() sin() sin()

sin ()

p p p

p
p

11
8

4 0 5
1 2

1 2

p
psin() .x j⎡

⎣⎢
⎤
⎦⎥

=
-

-

DIP4E_GLOBAL_Print_Ready.indb 476 6/16/2017 2:09:11 PM

7.2 Matrix-based Transforms 477

and, in the same way, a-1 0 5= j . . Since all other coefficients are zero, the resulting Fourier series is

f x j e j ej x j x() . .= 0 5 0 52 2- -p p (7-59)

Equation (7-58) with N = 8 and f x x() sin()= 2p for x = 0 1 7, , , ,… on the other hand, yields

T u

j u

j u()

.

.=
=
=

⎧
⎨
⎪

⎩⎪

−
+

1 414 1

1 414 7

0 otherwise

 (7-60)

Figure 7.2 depicts both computations as “matrix multiplications” in which continuous or discrete basis
vectors (the rows of matrix A) are multiplied by a continuous or discrete function (column vector f)
and integrated or summed to produce a set of discrete expansion or transform coefficients (column
vector t). For the Fourier series, the expansion coefficients are integral inner products of sin()2px and
one of a potentially infinite set of continuous basis vectors. For the DFT, each transform coefficient is a
discrete inner product of f and one of eight discrete basis vectors using Eq. (7-2). Note since the DFT is
based on complex orthonormal basis vectors, the transform can be computed as a matrix multiplication
[in accordance with Eq. (7-43)]. Thus, the inner products that generate the elements of transform t are
embedded in matrix multiplication Af. That is, each element of t is formed by multiplying one row of
A—i.e., one discrete expansion function—element by element by f and summing the resulting products.

FIGURE 7.2 Depicting the continuous Fourier series and 8-point DFT of f x x() sin()= 2p as “matrix multiplications.”
The real and imaginary parts of all complex quantities are shown in blue and black, respectively. Continuous
and discrete functions are represented using lines and dots, respectively. Dashed lines are included to show that
s s5 3= * , s s6 2= * , and s s7 1= *, effectively cutting the maximum frequency of the DFT in half. The negative indices to
the left of t are for the Fourier series computation alone.

=

1 2 3 4 5 6 7x = 0

1

2

3

4

5

6

7

u = 0

1

2

3

4

5

6

7

x = 0

1

2

3

4

-3 or 5

-2 or 6

-1 or 7

u = 0

au T u⇔ () or t f x f x() ()⇔ or fs x s x u s s su
T() (,) []⇔ = or A 0 1 7…

DIP4E_GLOBAL_Print_Ready.indb 477 6/16/2017 2:09:12 PM

478 Chapter 7 Wavelet and Other Image Transforms

7.3 CORRELATION

Example 7.6 highlights the role of inner products in the computation of orthogo-
nal transform coefficients. In this section, we turn our attention to the relationship
between those coefficients and correlation.

Given two continuous functions f x() and g x(), the correlation of f and g, denoted
f xg� (),� is defined as

f x f x g x x dx

f x g x x

g� () *() ()

(), (

� �

�

�

�

=

=
−2 +

+
 (7-61)

where the final step follows from Eq. (7-3) with a = -� and b = �. Sometimes called
the sliding inner product of f and g, correlation measures the similarity of f x() and
g x() as a function of their relative displacement �x. If �x = 0,

 f f x g xg� () (), ()0 = (7-62)

and Eq. (7-52), which defines the coefficients of the continuous orthonormal expan-
sion in Eq. (7-51), can be alternately written as

 au u uf s f s= =, ()� 0 (7-63)

Thus, the expansion coefficients are single-point correlations in which the displace-
ment �x is zero. Each au measures the similarity of f x() and one s xu().

The discrete equivalents of Eqs. (7-61) through (7-63) are

 f g� () *m f gn n m
x

=
=
∑ +

-�

�

 (7-64)

 f g f g� () ,0 = (7-65)

and

 T u u u() , ()= =s f s f� 0 (7-66)

respectively. Comments similar to those made in regard to Eq. (7-63) and contin-
uous series expansions also can be made with respect to Eq. (7-66) and discrete
orthogonal transforms. Each element of an orthogonal transform [i.e., transform
coefficient T u() of Eq. (7-23)] is a single-point correlation that measures the similar-
ity of f and vector su . This powerful property of orthogonal transforms is the basis
upon which the sinusoidal interference in Fig. 2.45(a) of Example 2.11 in Chapter 2
and Fig. 4.65(a) of Example 4.25 in Chapter 4 was identified and eliminated.

7.3

To be precise, we should
use the term cross-corre-
lation when f x g x() ()≠
and auto-correlation
when f x g x() ().= Equa-
tion (7-61) is valid for
both cases.

As the name sliding inner
product suggests, visual-
ize sliding one function
over another, multiplying
them together, and
computing the area.
As the area increases,
the functions become
increasingly similar.

The equation for 2-D dis-
crete correlation is given
in Table 4.3. In Eq. (7-64),
n and m are integers, fn
denotes the nth element
of f, and gn+m denotes the
()n m+ th element of g.
Equation (7-66) follows
from Eqs. (7-65)
and (7-23).

DIP4E_GLOBAL_Print_Ready.indb 478 6/16/2017 2:09:14 PM

7.4 Basis Functions in the Time-Frequency Plane 479

EXAMPLE 7.7 : Correlation in the DFT of Example 7.6.

Consider again the 8-point DFT in Example 7.6 and note, in accordance with Eq. (7-56), the basis vec-
tors are complex exponentials of the following harmonically related angular frequencies: 0, 2p, 4p, 6p,
8p, 6p, 4p, and 2p (aliasing reduces the last three frequencies from 10p, 12p, and 14p, respectively).
Since discrete input f x x() sin()= 2p is a single frequency sinusoid of angular frequency 2p, f should be
highly correlated with basis vectors s1 and s7. As can be seen in Fig. 7.2, transform t does indeed reach its
maximum at u = 1 and 7; it is nonzero at these two frequencies alone.

7.4 BASIS FUNCTIONS IN THE TIME-FREQUENCY PLANE

Because transforms measure the degree to which a function resembles a selected
set of basis vectors, we now turn our attention to the basis vectors themselves. In
the following discussions, the terms basis vector and basis function are synonomous.

As can be seen in Fig. 7.3, where the basis vectors of some commonly encoun-
tered transforms are depicted, most orthogonal bases are mathematically related
sets of sinusoids, square waves, ramps, and other small waves called wavelets. If h t()
is a basis vector and g t() is the function being transformed, transform coefficient
g h� (),0 as noted in the previous section, is a measure of the similarity of g and h.
Large values of g h� ()0 indicate that g and h share important characteristics in time
and frequency (e.g., shape and bandwidth). Thus, if h is the ramp-shaped basis func-
tion at u = 1 in Fig. 7.3(d), transform coefficient g h� ()0 can be used to detect linear
brightness gradients across a row of an image. If h is a sinusoidal basis function like
those of Fig. 7.3(a), on the other hand, g h� ()0 can be used to spot sinusoidal inter-
ference patterns. Plots like those of Fig. 7.3, together with a similarity measure like
g h� (),0 can reveal a great deal about the time and frequency characteristics of the
function being transformed.

A purely objective descriptor of h, and thus of g for large values of g h� (),0 is the
location of h on the time-frequency plane of Fig. 7.4(a). Let p t h t h th() () ()= 2 2 be
a probability density function with mean

 mt
h t

t h t dt=
−

1
2

2

()
()

�

�

2 (7-67)

and variance

 s mt t
h t

t h t d t2
2

2 21
=

−()
() ()

�

�

2 - (7-68)

and let p f H f H fH () () ()= 2 2 be a probability density function with mean

 m f
H f

f H f df=
−

1
2

2

()
()

�

�

2 (7-69)

and variance

 s mf f
H f

f H f df2
2

2 21
=

−()
() ()

�

�

2 - (7-70)

7.4

In our introduction to
the time-frequency plane,
independent variables t
and f, rather than spatial
variables x and u, are
employed. Continuous
functions g t() and h f()
take the place of f x()
and s xu() in the previous
sections. Though the
concepts are presented
using continuous func-
tions and variables, they
are equally applicable
to discrete functions and
variables.

In Eq. (7-67), each value
of t is weighted by p th()
to compute a weighted
mean with respect to
coordinate t.

DIP4E_GLOBAL_Print_Ready.indb 479 6/16/2017 2:09:15 PM

480 Chapter 7 Wavelet and Other Image Transforms

u = 0

u = 1

u = 2

u = 3

u = 4

u = 5

u = 6

u = 7

u = 8

u = 9

u = 10

u = 11

u = 12

u = 13

u = 14

u = 15

u = 0

u = 1

u = 2

u = 3

u = 4

u = 5

u = 6

u = 7

u = 8

u = 9

u = 10

u = 11

u = 12

u = 13

u = 14

u = 15

DFT DCT SLTWHT

HAAR DB4 STDBIOR3.1

ba c
gf h

d
e

FIGURE 7.3
Basis vectors
(for N = 16) of
some commonly
encountered
transforms:
(a) Fourier basis
(real and imagi-
nary parts),
(b) discrete
Cosine basis,
(c) Walsh-Had-
amard basis,
(d) Slant basis,
(e) Haar basis,
(f) Daubechies
basis,
(g) Biorthogonal
B-spline basis and
its dual, and
(h) the standard
basis, which is
included for refer-
ence only (i.e., not
used as the basis
of a transform).

DIP4E_GLOBAL_Print_Ready.indb 480 6/16/2017 2:09:16 PM

7.4 Basis Functions in the Time-Frequency Plane 481

where f denotes frequency and H f() is the Fourier transform of h t(). Then the
energy† of basis function h, as illustrated in Fig. 7.4(a), is concentrated at (,)m mt f

on the time-frequency plane. The majority of the energy falls in a rectangular region,
called a Heisenberg box or cell, of area 4s st f such that

s s
p

t f
2 2

2

1

16
Ú (7-71)

Since the support of a function can be defined as the set of points where the func-
tion is nonzero, Heisenberg’s uncertainity principle tells us that it is impossible for a
function to have finite support in both time and frequency. Equation (7-71), called
the Heisenberg-Gabor inequaltiy, places a lower bound on the area of the Heisen-
berg cell in Fig. 7.4(a), revealing that st and s f cannot both be arbitrarily small.
Thus, while basis function d()t t- 0 in Fig. 7.4(b) is perfectly localized in time [that is,
st = 0 since the width of d()t t- 0 is zero], its spectrum is nonzero on the entire f-axis.
That is, since � d p() exp()t t j ft- -0 02{ } = and exp()− =j ft2 10p for all f, s f = �.
The result is an infinitesimally narrow, infinitely high Heisenberg cell on the time-
frequency plane. Basis function exp()2 0pf t of Fig. 7.4(c), on the other hand, is essen-
tially nonzero on the entire time axis, but is perfectly localized in frequency. Because
� exp() (),2 0 0p df t f f{ } = - spectrum d()f f- 0 is zero at all frequencies other than
f = f0. The resulting Heisenberg cell is infinitely wide ()st = � and infinitesimally
small in height ().s f = 0 As Figs. 7.4(b) and (c) illustrate, perfect localization in time
is accompanied by a loss of localization in frequency and vice versa.

Returning again to Fig. 7.3, note the DFT basis in Fig. 7.3(a) and the standard
basis in Fig. 7.3(h) are discrete examples (for N = 16) of the impulse and complex

† The energy of continuous function h t() is
-�

�

2 h t dt() .2

The constant on the right
side of Eq. (7-71) is ¼ if
stated in terms of angular
frequency v. Equality is
possible, but only with a
Gaussian basis function,
whose transform is also a
Gaussian function.

ba c

FIGURE 7.4 (a) Basis function localization in the time-frequency plane. (b) A standard basis function, its spectrum,
and location in the time-frequency plane. (c) A complex sinusoidal basis function (with its real and imaginary parts
shown as solid and dashed lines, respectively), its spectrum, and location in the time-frequency plane.

+

1

0

1.2

0

1

-1 0

0

t

t

f

f

f

t

f

t

f

t

Time-frequency Plane Time-frequency Plane

1

2s f

2st

m f

mt

p fH ()

p th()

d()t t− 0

d()f f− 0exp()2 0pf t

exp()2 0pt f

DIP4E_GLOBAL_Print_Ready.indb 481 6/16/2017 2:09:18 PM

482 Chapter 7 Wavelet and Other Image Transforms

exponential functions in Figs. 7.4(c) and (b), respectively. Every other basis in the
top half of Fig. 7.3 is both frequency ordered on index u and of width or support 16.
For a given u, their locations in the time-frequency plane are similar. This is particu-
larly evident when u is 8 and the basis functions are identical—as are their Heisen-
berg cells. For all other u, Heisenberg cell parameters mt , st , m f , and s f are close
in value, with small differences accounting for the distinctive shapes of the cosine,
ramp, and square wave. In a similar manner, the basis functions in the bottom half of
Fig. 7.3, with the exception of the standard basis already discussed, are also similar
for a given u. These basis functions are scaled and shifted small waves, called wave-
lets, of the form

 c c tts
s st t, () ()= 2 22 - (7-72)

where s and t are integers and mother wavelet c()t is a real, square-integrable func-
tion with a bandpass-like spectrum. Parameter t determines the position of c ts t, () on
the t-axis, s determines its width—that is, how broad or narrow it is along the t-axis,
and 2 2s controls its amplitude.

In conjunction with a properly designed mother wavelet, Eq. (7-72) generates a
basis that is characterized by the Heisenberg cells on the right side of Fig. 7.5. Let-
ting � f() be the Fourier transform of c(),t the transform of time-scaled wavelet
c()2s t is

 � c()2
1

2 2
s

s s
t

f{ } = ⎛
⎝⎜

⎞
⎠⎟

� (7-73)

and for positive values of s, the spectrum is stretched—shifting each frequency
component higher by a factor of 2s . As was the case for the rectangular pulse in
Example 4.1, compressing time expands the spectrum. This is illustrated graphically
in Figs. 7.5(b)–(d). Note the width of the basis function in Fig. 7.5(c) is half of that
in (d), while the width of its spectrum is double that of (d). It is shifted higher in fre-
quency by a factor of two. The same can be said for the basis function and spectrum
in Fig. 7.5(b) when compared to (c). This halving of support in time and doubling of
support in frequency produces Heisenberg cells of differing widths and heights, but
of equal area. Moreover, each row of cells on the right of Fig. 7.5 represents a unique
scale s and range of frequencies. The cells within a row are shifted with respect to
one another in time. In accordance with Eq. (4-71) and Table 4.4 of Chapter 4, if c()t
is shifted in time by t,

 � c t pt()t e fj f- -{ } = ()2 � (7-74)

Thus, � c t()t f-{ } = ()� and the spectra of the time-shifted wavelets are identical.
This is demonstrated by the basis functions in Figs. 7.5(a) and (b). Note their Heisen-
berg cells are identical in size and differ only in position.

A principle consequence of the preceding comments is that each wavelet basis
function is characterized by a unique spectrum and location in time. Thus, the
transform coefficients of a wavelet-based transform, as inner products measuring

The DFT basis func-
tions do not appear to
be frequency ordered
because of aliasing. See
Example. 7.6.

As will be seen in
Section 7.10, the func-
tions corresponding to
u = 0 in Fig. 7.3 have
lowpass spectra and are
called scaling functions.

The proof of Eq. (7-73)
is left as an exercise for
the reader (see Prob-
lem 7.24).

DIP4E_GLOBAL_Print_Ready.indb 482 6/16/2017 2:09:19 PM

7.5 Basis Images 483

the similarity of the function being transformed and the associated wavelet basis
functions, provide both frequency and temporal information. They furnish the
equivalent of a musical score for the function being transformed, revealing not
only what notes to play but also when to play them. This is true for all the wavelet
bases depicted in the bottom half of Fig. 7.3. The bases in the top half of the figure
provide only the notes; temporal information is lost in the transformation process or
is difficult to extract from the transform coefficients (e.g., from the phase component
of a Fourier transform).

7.5 BASIS IMAGES

Since inverse transformation kernel s x y u v(, , ,) in Eq. (7-32) of Section 7.2 depends
only on indices x, y, u, v, and not on the values of f x y(,) or T u v(,), Eq. (7-32) can be
alternately written as the matrix sum

 F S=
==
∑∑ T u v u v
v

N

u

N

(,) ,
0

1

0

1 --
 (7-75)

where F is an N N* matrix containing the elements of f x y(,) and

 Su v

s u v s u v s N u v

s u v

,

(, , ,) (, , ,) (, , ,)

(, , ,)

=

0 0 0 1 0 1

1 0

p -
o p o

o o p o
o o p oo
o

- - p - -s N u v s N u v s N N u v(, , ,) (, , ,) (, , ,)1 0 1 1 1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥

 (7-76)

7.5

b
a

c
d

FIGURE 7.5
Time and
frequency
localization
of 128-point
Daubechies basis
functions.

SpectrumBasis Function

Time-Frequency Plane
0.6

-0.6
0.6

-0.6

0.4

-0.4

-0.4

0.6

0

2

0

0

3

4

0

2

0

0

0

0 t

f

t

t

t

f

f

f

DIP4E_GLOBAL_Print_Ready.indb 483 6/16/2017 2:09:20 PM

484 Chapter 7 Wavelet and Other Image Transforms

for u v N, , , , .= 0 1 1p - F is then explicitly defined as a linear combination of N 2
matrices of size N N* —that is, the Su v, for u v N, , , , .= 0 1 1p - If the underlying
s x y u v(, , ,) are real-valued, separable, and symmetric,

 S s su v u v
T

, = (7-77)

where su and sv are as previously defined by Eq. (7-22). In the context of digital
image processing, F is a 2-D image and the Su v, are called basis images. They can be
arranged in an N N* array, as shown in Fig. 7.6(a), to provide a concise visual rep-
resentation of the 2-D basis functions they represent.

EXAMPLE 7.8 : The basis images of the standard basis.

The basis in Fig. 7.3(h) is a specific instance (for N = 16) of standard basis e e e0 1 1, , , ,p -N{ } where en
is an N * 1 column vector whose nth element is 1 and all other elements are 0. Because it is real and
orthonormal, the corresponding orthogonal transformation matrix [see Eq. (7-24)] is A = I, while the
corresponding 2-D transform [see Eq. (7-35)] is T AFA IFI F= = =T T . That is, the transform of F with
respect to the standard basis is F—a confirmation of the fact that when a discrete function is written in
vector form, it is represented implicitly with respect to the standard basis.

Figure 7.6(b) shows the basis images of a 2-D standard basis of size 8 8* . Like the 1-D basis vectors
in Fig. 7.3(h), which are nonzero at only one instant of time (or value of x), the basis images in Fig. 7.6(b)
are nonzero at only one point on the xy-plane. This follows from Eq. (7-77), since S e e Eu v u v

T
u v, , ,= =

where Eu,v is an N N* matrix of zeros with a 1 in the uth row and vth column. In the same way, the DFT
basis images in Fig. 7.7 follow from Eq. (7-77), Eq. (7-22), and the defining equation of the 1-D DFT
expansion functions [i.e., Eq. (7-56)]. Note the DFT basis image of maximum frequency occurs when u
and v are 4, just as the 1-D DFT basis function of maximum frequency occurred at u = 4 in Fig. 7.2.

7.6 FOURIER-RELATED TRANSFORMS

As was noted in Chapter 4, the Fourier transform of a real function is complex-valued.
In this section, we examine three Fourier-related transforms that are real rather

7.6

ba

FIGURE 7.6
(a) Basis image
organization and
(b) a standard
basis of size 8 8* .
For clarity, a gray
border has been
added around
each basis image.
The origin of each
basis image (i.e.,
x = y = 0) is at its
top left.

S S S

S

S S

0 0 0 1 0 1

1 0

1 0 1 1

, , ,

,

, ,

p p
o

o

o
p p

-

- - -

N

N N N

�

�

u
v

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

DIP4E_GLOBAL_Print_Ready.indb 484 6/16/2017 2:09:22 PM

7.6 Fourier-Related Transforms 485

than complex-valued—the discrete Hartley transform, discrete cosine transform, and
discrete sine transform. All three transforms avoid the computational complexity of
complex numbers and can be implemented via fast FFT-like algorithms.

THE DISCRETE HARTLEY TRANSFORM

The transformation matrix of the discrete Hartley transform (DHT) is obtained by
substituting the inverse transformation kernel

s x u
N

ux
N

N

ux
N

ux
N

(,)

cos sin

= ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢

1 2

1 2 2

cas
p

p p ⎤⎤
⎦
⎥

 (7-78)

whose separable 2-D counterpart is

 s x y u v
N

ux
N N

vy
N

(, , ,) = ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥

1 2 1 2
cas cas

p p
 (7-79)

into Eqs. (7-22) and (7-24). Since the resulting DHT transformation matrix—denoted
AHY in Fig. 7.8—is real, orthogonal, and symmetric, A A AHY HY HY= =T -1 and AHY can
be used in the computation of both forward and inverse transforms. For 1-D trans-
forms, AHY is used in conjunction with Eqs. (7-28) and (7-29) of Section 7.2; for 2-D
transforms, Eqs. (7-35) and (7-36) are used. Since AHY is symmetric, the forward and
inverse transforms are identical.

Function cas, an acronym
for the cosine-and-sin
function, is defined as
cas() cos() sin().u u u= +

We will not consider
the non-separable form

s x y u v

N
ux vy

N

(, , ,)

()
.

=

⎛
⎝⎜

⎞
⎠⎟

1 2
cas

p +

1

1

1

1

1

1

1

1

1

1

v

-j

-jv

-1

-v

j

jv

1

-j

-1

j

1

-j

-1

j

1

-jv

j

v

-1

jv

-j

-v

1

-1

1

-1

1

-1

1

-1

1

-v

-j

jv

-1

v

j

-jv

1

j

-1

-j

1

j

-1

-j

1

jv

j

-v

-1

-jv

-j

v

ba c

FIGURE 7.7 (a) Tranformation matrix AF of the discrete Fourier transform for N = 8, where v p= e j- 2 8 or () .1 2- j
(b) and (c) The real and imaginary parts of the DFT basis images of size 8 8* . For clarity, a black border has been
added around each basis image. For 1-D transforms, matrix AF is used in conjunction with Eqs. (7-43) and (7-44);
for 2-D transforms, it is used with Eqs. (7-41) and (7-42).

DIP4E_GLOBAL_Print_Ready.indb 485 6/16/2017 2:09:23 PM

486 Chapter 7 Wavelet and Other Image Transforms

Note the similarity of the harmonically related DHT basis functions in Fig. 7.8(a)
and the real part of the DFT basis functions in Fig. 7.2. It is easy to show that

A A A

A
HY F F

F

al ag

al

= { } { }
= { }

Re Im

Re ()

-
+1 j

 (7-80)

where AF denotes the unitary transformation matrix of the DFT. Furthermore, since
the real part of the DFT kernel [see Eq. (7-56)] is

 Re (,) Re coss x u
N

e
N

ux
N

j ux N
F{ } = ⎧

⎨
⎩

⎫
⎬
⎭

= ⎛
⎝⎜

⎞
⎠⎟

1 1 22p p
 (7-81)

and triginometric identity cas u u p() = ()2 4cos - can be used to rewrite the dis-
crete Hartley kernel [see Eq. (7-78)] as

 s x u
N

ux
NH (,) cos= ⎛

⎝⎜
⎞
⎠⎟

2 2
4

p p- (7-82)

the basis functions of the discrete Fourier and Hartley transforms are scaled and
shifted versions of one another—i.e., scaled by the 2 and shifted by p 4. The
shift is clearly evident when comparing Figs. 7.2 and 7.8(a). Additionally, for a
given value of N and sampling interal �T , the Fourier and Hartley transforms
have the same frequency resolution � �u N T= 1 (), same range of frequencies
0 5 0 5 1 1 2. . () (),R T T= =� � and are both undersampled when u N7 2. Compare
Figs. 7.2 and 7.8(a) for u = 5 6 7, , . Finally, we note the 8 8* basis images of the two
transforms are also similar. As can be seen in Figs. 7.8(c) and 7.7(b), for example, the
basis images of maximum frequency occur when u and v are N 2 or 4.

In Eqs. (7-81) and (7-82),
subscripts HY and F are
used to denote the
Hartley and Fourier
kernels, respectively.

Aliasing reduces the
frequency range to 0 5. ,R
where R is as defined by
Eq. (4.51).

ba c

FIGURE 7.8 The transformation matrix and basis images of the discrete Hartley transform for N = 8: (a) Graphical
representation of orthogonal transformation matrix AHY, (b) AHY rounded to two decimal places, and (c) 2-D basis
images. For 1-D transforms, matrix AHY is used in conjunction with Eqs. (7-28) and (7-29); for 2-D transforms, it is
used with Eqs. (7-35) and (7-36).

 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

 0.35 0.50 0.35 0 -0.35 -0.50 -0.35 0

 0.35 0.35 -0.35 -0.35 0.35 0.35 -0.35 -0.35

 0.35 0 -0.35 0.50 -0.35 0 0.35 -0.50

 0.35 -0.35 0.35 -0.35 0.35 -0.35 0.35 -0.35

 0.35 -0.50 0.35 0 -0.35 0.50 -0.35 0

 0.35 -0.35 -0.35 0.35 0.35 -0.35 -0.35 0.35

 0.35 0 -0.35 -0.50 -0.35 0 0.35 0.50

DIP4E_GLOBAL_Print_Ready.indb 486 6/16/2017 2:09:24 PM

7.6 Fourier-Related Transforms 487

EXAMPLE 7.9 : DHT and DFT reconstruction.

Consider discrete function f = []1 1 0 0 0 0 0 0 T and its discrete Fourier transform

 tF = 0 71 0 6 0 25 0 35 0 35 0 1 0 25 0 0 1 0 25 0 35 0 35 0 6.− − − + +j j j j j ++ j T0 25.[]

where t A fF F= and A A AF Fr Fj= + j is the 8 8× unitary transformation matrix of Fig. 7.7(a). The real
and imaginary parts of tF, denoted tFr and tFj, are

t

t

Fr

Fj

= []
=

0 71 0 60 0 35 0 10 0 0 10 0 35 0 60

0 0 25 0 35 0 25 0 0

.

. . .

T

- - -25 0 35 0 25[]T

and discrete Hartley transform t A f A A f A f A f t tHY HY Fr Fj Fr Fj Fr Fj= = = =()− − − is

 tHY = []0 71 0 85 0 71 0 35 0 0 15 0 0 35.- T

In accordance with Eq. (7-17), f can be written as

 f x T u s x u x
u

() () (,) , , ,= =
=
∑ HY HY for

0

7

0 1 7…

where f = []f f f T() () ()0 1 7… and tHY HY HY HY= []T T T
T

() () () .0 1 7… Thus, f can be recon-
structed from tHY as a sum of products involving the computed transform coefficients and correspond-
ing basis functions. In Fig. 6.9(a), such a reconstruction is done progressively, beginning with the average
or DC value of f (for u = 0) at the top of the figure and converging to f (for u = 0, 1, …, 7) at the bottom
of the figure. As higher frequency basis functions are included in the sum, the reconstructed function
becomes a better approximation of f, with perfect reconstruction achieved when all eight weighted basis
functions are summed to generate the equivalent of inverse discrete Hartley transform f A t= HY HY

T . A
similar progression is shown in Fig. 7.9(b) for the DFT.

THE DISCRETE COSINE TRANSFORM

The transformation matrix of the most commonly encountered form of the discrete
cosine transform (DCT) is obtained by substituting the inverse transformation
kernal

 s x u u
x u

N
(,) ()cos

()
= ⎛

⎝⎜
⎞
⎠⎟

a
p2 1

2
+

 (7-83)

where

 a()

, , ,

u
N

u

N
u N

=
=

=

⎧

⎨
⎪⎪

⎩
⎪
⎪

1
0

2
1 2 1

for

for … -
 (7-84)

There are eight standard
DCT variants and they
assume different sym-
metry conditions. For
example, the input could
be assumed to be even
about a sample or about
a point halfway between
two samples.

DIP4E_GLOBAL_Print_Ready.indb 487 6/16/2017 2:09:26 PM

488 Chapter 7 Wavelet and Other Image Transforms

into Eqs. (7-22) and (7-24). The resulting transformation matrix, denoted as AC
in Fig. 7.10, is real and orthogonal, but not symmetric. The underlying basis func-
tions are harmonically related cosines of frequency 0 to R N N T= [][]() () ;- 1 1 2�
the spacing between adjacent frequencies (i.e., the frequency resolution) is
� �u N T= 1 2(). A comparison of Fig. 7.10(a) to either Figs. 7.8(a) or 7.2 reveals
that the spectrum of a discrete cosine transform has roughly the same frequency
range as that of the Fourier and Hartley transforms, but twice the frequency resolu-
tion. If N = 4 and �T = 1, for example, the resulting DCT coefficients are at frequen-
cies 0 0 5 1 1 5, . , , . ,{ } while the DFT spectral components correspond to frequencies
0 1 2 1, , , .{ } Figures 7.10(c) and 7.8(c) further illustrate the point. Note that the

DCT basis image of maximum frequency occurs when u and v are 7, as opposed to
4 for the DFT. Since 2-D DCTs are based on the separable inverse transformation
kernel

 s x y u v u v
x u

N
y v

N
(, , ,) () ()cos

()
cos

()
= ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

a a
p p2 1

2
2 1

2
+ +

 (7-85)

0 1 2 3 4 5 6 7 8

0
0.5

-0.5

1

0
0.5

-0.5

1

0
0.5

-0.5

1

0
0.5

-0.5

1

0
0.5

-0.5

1

0
0.5

-0.5

1

0
0.5

-0.5

1

0
0.5

-0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0 1 2 3 4 5 6 7 8

ba

FIGURE 7.9
Reconstructions
of a discrete
function by the
addition of pro-
gressively higher
frequency com-
ponents: (a) DHT
and (b) DFT.

DIP4E_GLOBAL_Print_Ready.indb 488 6/16/2017 2:09:27 PM

7.6 Fourier-Related Transforms 489

where a()u and a()v are defined in accordance with Eq. (7-84), transformation
matrix AC can be used in the computation of both 1- and 2-D transforms (see the
caption of Fig. 7.10 for the appropriate transform equations).

While sharing several attributes of the discrete Fourier transform, the discrete
cosine transform imposes a entirely different set of assumptions on the functions
being processed. Rather than N-point periodicity, the underlying assumption of the
DFT, the discrete cosine transform assumes 2N-point periodicity and even sym-
metry. As can be seen in Fig. 7.11, while N-point periodicity can cause boundary
discontinuities that introduce “artificial” high-frequency components into a trans-
form, 2N-point periodicity and even symmetry minimize discontinuity, as well as the
accompanying high-frequency artifact. As will be seen in Chapter 8, this is an impor-
tant advantage of the DCT in image compression. In light of the above comments, it
should come as no surprise that the DCT of N-point function f x() can be obtained
from the DFT of a 2N-point symmetrically extended version of f x() :

1. Symmetrically extend N-point discrete function f x() to obtain

 g x
f x x N

f N x N x N
()

()

()
=

− −
⎧
⎨
⎩

for

for

0

2 1 2

… 6
… 6

 (7-86)

where f = []f f f N T() () ()0 1 1p - and g = []g g g N T() () () .0 1 2 1p -
2. Compute the 2N-point discrete Fourier transform of g:

 t A g
t

tF F= =
⎡

⎣
⎢

⎤

⎦
⎥

1

2

(7-87)

ba c

FIGURE 7.10 The transformation matrix and basis images of the discrete cosine transform for N = 8. (a) Graphical
representation of orthogonal transformation matrix AC, (b) AC rounded to two decimal places, and (c) basis images.
For 1-D transforms, matrix AC is used in conjunction with Eqs. (7-28) and (7-29); for 2-D transforms, it is used with
Eqs. (7-35) and (7-36).

 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

 0.49 0.42 0.28 0.10 -0.10 -0.28 -0.42 -0.49

 0.46 0.19 -0.19 -0.46 -0.46 -0.19 0.19 0.46

 0.42 -0.10 -0.49 -0.28 0.28 0.49 0.10 -0.42

 0.35 -0.35 -0.35 0.35 0.35 -0.35 -0.35 0.35

 0.28 -0.49 0.10 0.42 -0.42 -0.10 0.49 -0.28

 0.19 -0.46 0.46 -0.19 -0.19 0.46 -0.46 0.19

 0.10 -0.28 0.42 -0.49 0.49 -0.42 0.28 -0.10

DIP4E_GLOBAL_Print_Ready.indb 489 6/16/2017 2:09:28 PM

490 Chapter 7 Wavelet and Other Image Transforms

where AF is the transformation matrix of the DFT and 2N-element transform tF
is partitioned into two equal-length N-element column vectors, t1 and t2.

3. Let N-element column vector h = []h h h N T() () ()0 1 1p - where

 h u e u Nj u N() , , ,= =- p -p 2 0 1 1for (7-88)

and let s = ⎡⎣ ⎤⎦1 2 1 1 1p
T
.

4. The discrete cosine transform of f is then

 t s h tC = { }Re � � 1 (7-89)

where � denotes the Hadamard product, a matrix multiplication in which the
corresponding elements of two vectors or matrices are multiplied together—for
example, 3 0 5 2 6 6 3−[] [] = −[]. .°

EXAMPLE 7.10 : Computing a 4-point DCT from a 8-point DFT.

In this example, we use Eqs. (7-86) through (7-89) to compute the discrete cosine transform of 1-D func-
tion f x x() = 2 for x = 0 1 2 3, , , .

1. Let f = []0 1 4 9 T and use Eq. (7-86) to create an 8-point extension of f with even symmetry.
Extended function g = []0 1 4 9 9 4 1 0 T is one period of an even symmetric function like
the one in Fig. 7.11(b).

2. Substituting the 8 8* unitary transformation matrix from Fig. 7.7(a) into Eq. (7-87), the discrete
Fourier transform of g is

 t A gF F= =

-
- -

+
- -

- +

9 9

6 18 2 56

1 41 1 41

0 18 0 44

0

0 18 0 44

1 4

.

. .

. .

. .

. .

.

j

j

j

j

11 1 41

6 18 2 56

9 9

6
1

-
- +

-
-

j

j

.

. .

.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= so t
.. .

. .

. .

.18 2 56

1 41 1 41

0 18 0 44

0

0 18
2

-
+

- -

- +j

j

j

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= and t
jj

j

j

0 44

1 41 1 41

6 18 2 56

.

. .

. .

-
- +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

3. In accordance with Eq. (7-88),

 h =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

1 1

0 92 0 38

0 71 0 71

0 3

4

2

3 4

e

e

e

j

j

j

j

j

-

-

-

-
-

p

p

p

. .

. .

. 88 0 92- j .

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

DIP4E_GLOBAL_Print_Ready.indb 490 6/16/2017 2:09:29 PM

7.6 Fourier-Related Transforms 491

and s = ⎡⎣ ⎤⎦ = []1 2 1 1 1 0 71 1 1 1
T T. .

4. The discrete cosine transform of f is then

t s h tC = { } =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Re Re

.

. .

. .
� � 1

0 71

1

1

1

1

0 92 0 38

0 71 0 71

0

°
-
-

j

j

.. .

.

. .

. .

. .38 0 92

9 9

6 18 2 56

1 41 1 41

0 18 0 4-

-
- -

+
- -j

j

j

j

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

°

44

7

6 69

2

0 48

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

-

-

.

.

To validate the result, we substitute Eq. (7-83) into Eqs. (7-22) and (7-24) with N = 4 and use the result-
ing 4 4* DCT transformation matrix in Eq. (7-28) to obtain

 t A fC C

0.5 0.5 0.5 0.5

0.65 0.27 0.27 0.65

0.5 0.5 0.5 0.5

0.27 0.

= =
- -

- -
- 665 0.65 0.27-

-

-

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

0

1

4

9

7

6 69

2

0 48

.

.
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥

Figure 7.12 illustrates the reconstruction of f by the inverse discrete cosine transform. Like the recon-
structions in Fig. 7.9, the DC component at the top of the figure [i.e., Fig. 7.12(a)] is the average value of
the discrete function—in this case, () . .0 1 4 9 4 3 5+ + + = It is an initial but crude approximation of f. As
three additional cosines of increasing frequency are added in the (b), (c), and (d) parts of the figure, the
accuracy of the approximation increases until a perfect reconstruction is achieved in (d). Note the x-axis
has been extended to show that the resulting DCT expansion is indeed periodic with period 2N (in this
case 8) and exhibits the even symmetry that is required of all discrete cosine transforms.

b
a

FIGURE 7.11
The periodicity
implicit in the 1-D
(a) DFT and
(b) DCT.

Discontinuity

N

2N

Discontinuity

DIP4E_GLOBAL_Print_Ready.indb 491 6/16/2017 2:09:30 PM

492 Chapter 7 Wavelet and Other Image Transforms

THE DISCRETE SINE TRANSFORM

The transformation matrix of the discrete sine transform (DST) is obtained by sub-
stituting the inverse transformation kernal

 s x u
N

x u
N

(,) sin
()()

= ⎛
⎝⎜

⎞
⎠⎟

2
1

1 1
1+ +

+ + p
 (7-90)

whose separable 2-D counterpart is

 s x y u v
N

x u
N

y v
N

(, , ,) sin
()()

sin
()()

= ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

2
1

1 1
1

1 1
1+ + +

+ + + +p p⎞⎞
⎠⎟ (7-91)

into Eqs. (7-22) and (7-24). The resulting transformation matrix, denoted as AS in
Fig. 7.13, is real, orthogonal, and symmetric. As can be seen in the (a) part of the
figure, the underlying basis functions are harmonically related sines of frequency
1 2 2()N T+ �[] to N N T2 2() ;+ �[] the frequency resolution or the spacing
between adjacent frequencies is � �u N T= []1 2 2() .+ Like the DCT, the DST has
roughly the same frequency range as the DFT, but twice the frequency resolution.
If N = 4 and �T = 1, for example, the resulting DST coefficients are at frequencies

0 4 0 8 1 2 1 6. , . , . , . .{ } Note unlike both the DCT and DFT, the DST has no DC (at
u = 0) component. This results from an underlying assumption that the function
being transformed is 2 1()N + -point periodic and odd symmetric, making its average
value zero. In contrast to the DCT, where the function is assumed to be even, the
odd symmetry that is imposed by the DST does not reduce boundary discontinuity.
This is clear in Fig. 6.14, where the result of computing the forward and inverse
DCT of f x x() = 2 for x = 0 1 2 3, , , is shown. Note that the underlying continuous

Like the DCT, there are
eight variants and they
assume different sym-
metry conditions—for
instance, is the input odd
about a sample or about
a point halfway between
two samples?

0 2 4 6 8 10 12 14 16

0
5

-5

10

0
5

-5

10

0

5

10

0

5

10
b
a

c
d

FIGURE 7.12
DCT recon-
struction of a
discrete function
by the addition
of progressively
higher frequency
components. Note
the 2N-point
periodicity and
even symmetry
imposed by the
DCT .

DIP4E_GLOBAL_Print_Ready.indb 492 6/16/2017 2:09:31 PM

7.6 Fourier-Related Transforms 493

ba c

FIGURE 7.13 The transformation matrix and basis images of the discrete sine transform for N = 8. (a) Graphical rep-
resentation of orthogonal transformation matrix AS, (b) AS rounded to two decimal places, and (c) basis images.
For 1-D transforms, matrix AS is used in conjunction with Eqs. (7-28) and (7-29); for 2-D transforms, it is used with
Eqs. (7-35) and (7-36).

 0.16 0.30 0.41 0.46 0.46 0.41 0.30 0.16

 0.30 0.46 0.41 0.16 -0.16 -0.41 -0.46 -0.30

 0.41 0.41 0.00 -0.41 -0.41 0.00 0.41 0.41

 0.46 0.16 -0.41 -0.30 0.30 0.41 -0.16 -0.46

 0.46 -0.16 -0.41 0.30 0.30 -0.41 -0.16 0.46

 0.41 -0.41 0.00 0.41 -0.41 -0.00 0.41 -0.41

 0.30 -0.46 0.41 -0.16 -0.16 0.41 -0.46 0.30

 0.16 -0.30 0.41 -0.46 0.46 -0.41 0.30 -0.16

reconstruction, which was obtained by the same process that led to Fig. 6.12(d),
exhibits the aforementioned periodicity, odd symmetry, and boundary discontinuity.

The discrete sine transform of an N-point function f x() can be obtained from the
DFT of a 2 1()N + -point symmetrically extended version of f x() with odd symmetry:

1. Symmetrically extend N-point function f(x) to obtain

 g x

x

f x x N

x N

f N x N x

()
()

()

=

=

=
−

0 0

1 1

0 1

2 2

for

for

for

for

− ≤ ≤
+

− + 1 + ≤ ≤ 22 2N +

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (7-92)

where f = []f f f N T() () ()0 1 1p - and g = []g g g N T() () () .0 1 2p + 2
2. Compute the 2 1()N + -point discrete Fourier transform of g:

 t A g
t

t

F F= =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0

0
1

2

 (7-93)

0 2 4 6 8 10 12 14 16

0

-10

10FIGURE 7.14
A reconstruction
of the DST of the
function defined
in Example 6.10.

DIP4E_GLOBAL_Print_Ready.indb 493 6/16/2017 2:09:32 PM

494 Chapter 7 Wavelet and Other Image Transforms

where AF is the transformation matrix of the DFT and 2 1()N + -element trans-
form tF is partitioned into two single-element zero vectors, 0 = [],0 and two
N-element column vectors t1 and t2.

3. The discrete sine transform of f, denoted tS, is then

 t tS Imag= { }− 1 (7-94)

EXAMPLE 7.11 : Computing a 4-point DST from a 10-point DFT.

In this example, we use Eqs. (7-92) through (7-94) to find the DST of f = []0 1 4 9 T from Example 7.10:

1. Create a 2 1()N + -point extended version of f with odd symmetry. In accordance with Eq. (7-92),
g = []0 0 1 4 9 0 9 4 1 0− − − T.

2. Compute the discrete Fourier transform of g using Eq. (7-93). Matrix AF is a unitary DFT transfor-
mation matrix of size 10 10× and the resulting transform is

 t A gF F= = []0 6 35 6 53 3 56 1 54 0 6 35 6 53 3 56 1 54− − − −j j j j j j j j T.

Note the real part of tF is zero and block t1 of tF is − −j j j j T6 35 6 53 3 56 1 54.[]
3. In accordance with Eq. (7-94), the DST of f is then

 t tS Imag= − { } = []1 6 35 6 53 3 56 1 54. . . .− − T

Alternately, the DST can be computed directly as

 t A fS S

0.37 0.60 0.60 0.37

0.60 0.37 0.37 0.60

0.60 0.37 0.37 0.6
= =

- -
- - 00

0.37 0.60 0.60 0.37- -

-
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

0

1

4

9

6 35

6 53

.

.

33 56

1 54

.

.-

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

where AS is obtained by substituting Eq. (7-90) into Eqs. (7-22) and (7-24) with N = 4.

EXAMPLE 7.12 : Ideal lowpass filtering with Fourier-related transforms.

Figure 7.15 shows the results of applying an ideal lowpass filter to the test image that was used in
Example 4.16 with all of the Fourier-related transforms that have been covered in this chapter. As in the
Chapter 4 example, the test image shown in Fig. 7.15(a) is of size 688 688× and is padded to 1376 1376×
before computing any transforms. For reference, the Fourier transform of the test image is shown in
Fig. 7.15(b), where a blue overlay has been superimposed to show the lowpass filter function. Only the
frequencies that are not shaded blue are passed by the filter. Since we are again using a cutoff frequency
with a radius of 60, the filtered result in Fig. 7.15(c) is similar to that of Fig. 4.41(d), with any differences
due to the use of zero padding rather than mirror padding. Note once more the blurring and ringing that
was discussed in Example 4.16.

Figures 7.15(d)–(i) provide comparable results using the three Fourier-related transforms covered
in this chapter. As was done for the Fourier transform in Fig. 6.15(b), Figs. 6.15(d)–(f) show the

DIP4E_GLOBAL_Print_Ready.indb 494 6/16/2017 2:09:34 PM

7.6 Fourier-Related Transforms 495

ba c
ed f
hg i

FIGURE 7.15 (a) Original image of the 688 688× test pattern from Fig. 4.41(a). (b) Discrete Fourier transform (DFT)
of the test pattern in (a) after padding to size 1376 1376× . The blue overlay is an ideal lowpass filter (ILPF) with
a radius of 60. (c) Result of Fourier filtering. (d)–(f) Discrete Hartley transform, discrete cosine transform (DCT),
and discrete sine transform (DST) of the test pattern in (a) after padding. The blue overlay is the same ILPF in (b),
but appears bigger in (e) and (f) because of the higher frequency resolution of the DCT and DST. (g)–(i) Results of
filtering for the Hartley, cosine, and sine transforms, respectively.

DIP4E_GLOBAL_Print_Ready.indb 495 6/16/2017 2:09:35 PM

496 Chapter 7 Wavelet and Other Image Transforms

discrete Hartley, cosine, and sine transforms of the test image in Fig. 7.15(a) after zero-padding to size
1376 1376× , respectively. Although the filter functions for the cosine and sine transforms, which are
again superimposed in blue, appear to have twice the radii of the filters used with the Fourier and
Hartley transforms, the same range of frequencies are passed by all filters. The apparent increase in size
is due to the greater frequency resolution of the sine and cosine transforms, which has already been
discussed. Note the spectra of these transforms do not need to be centered for easy interpretation, as
is the case for the Fourier and Hartley spectra. Finally, we note for all practical purposes the filtered
images in Figs. 7.15(g)–(i) are equivalent to the Fourier filtered result in Fig. 7.15(c).

To conclude the example, we note while Fourier-related transforms can be implemented in FFT-
like algorithms or computed from the FFT itself, we used the matrix implementations that have been
presented in this section to compute both the forward and inverse transforms. Using MATLAB®, Win-
dows® 10, and a notebook PC with an Intel® i7-4600U processor at 2.1 GHz, the total times required to
compute the Fourier-related transforms in this example were 2 to 5 times longer than the corresponding
FFT computations. All computations, however, took less than a second.

7.7 WALSH-HADAMARD TRANSFORMS

Walsh-Hadamard transforms (WHTs) are non-sinusoidal transformations that
decompose a function into a linear combination of rectangular basis functions, called
Walsh functions, of value + −1 1 and . The ordering of the basis functions within a
Walsh-Hadamard transformation matrix determines the variant of the transform
that is being computed. For Hadamard ordering (also called natural ordering), the
transformation matrix is obtained by substituting the inverse transformation kernal

 s x u
N

b x b ui i
i

n

(,) ()
() ()

=
∑
=1

1 0

1

−

−

 (7-95)

into Eqs. (7-22) and (7-24), where the summation in the exponent of Eq. (7-95) is
performed in modulo 2 arithmetic, N n= 2 , and b zk () is the kth bit in the binary rep-
resentation of z. For example, if n = 3 and z = 6 (110 in binary), b z0 0() ,= b z1 1() ,=
and b z2 1() .= If N = 2, the resulting Hadamard-ordered transformation matrix is

 AW =
⎡

⎣
⎢

⎤

⎦
⎥

1

2

1 1

1 1−
 (7-96)

where the matrix on the right (without the scalar multiplier) is called a Hadamard
matrix of order 2. Letting HN denote the Hadamard matrix of order N, a simple
recursive relationship for generating Hadamard-ordered transfomation matrices is

 A HW =
1

N
N (7-97)

where

 H
H H

H H2N
N N

N N

=
⎡

⎣
⎢

⎤

⎦
⎥−

 (7-98)

7.7

AW is used to denote the
transformation matrix
of the Hadamard- or
natural-ordered WHT.
Although of size 2 2×
here, it is more generally
of size N N× , where N
is the dimension of the
discrete function being
transformed.

DIP4E_GLOBAL_Print_Ready.indb 496 6/16/2017 2:09:36 PM

7.7 Walsh-Hadamard Transforms 497

and

 H2

1 1

1 1
=

⎡

⎣
⎢

⎤

⎦
⎥−

 (7-99)

Thus, Eq. (7-96) follows from Eqs. (7-97) and (7-99). In the same way,

H
H H

H H4
2 2

2 2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

=
⎡

⎣
⎢

⎤

⎦
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−

− −
− −

− −

 (7-100)

and

H
H H

H H8
4 4

4 4

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1

=
⎡

⎣
⎢

⎤

⎦
⎥

=

−

− − − −
− − − −

− − −− −
− − − −

− − − −
− − − −

− − − −

1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

⎡

⎣

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (7-101)

The corresponding Hadamard-ordered transformation matrices are obtained by sub-
stituting H4 and H8 into Eq. (7-97).

The number of sign changes along a row of a Hadamard matrix is known as the
sequency of the row. Like frequency, sequency measures the rate of change of a
function, and like the sinusoidal basis functions of the Fourier transform, every
Walsh function has a unique sequency. Since the elements of a Hadamard matrix are
derived from inverse kernal values, the sequency concept applies to basis functions
s x u(,) for u N= 0 1 1, , ,… − as well. For instance, the sequencies of the H4 basis vec-
tors in Eq. (7-100) are 0, 3, 1, 2; the sequencies of the H8 basis vectors in Eq. (7-101)
are 0, 7, 3, 4, 1, 6, 2, and 5. This arrangement of sequencies is the defining character-
istic of a Hadamard-ordered Walsh-Hadamard transform.

Arranging the basis vectors of a Hadamard matrix so the sequency increases
as a function of u is both desirable and common in signal and image processing

DIP4E_GLOBAL_Print_Ready.indb 497 6/16/2017 2:09:37 PM

498 Chapter 7 Wavelet and Other Image Transforms

applications. The transformation matrix of the resulting sequency-ordered Walsh-
Hadamard transform is obtained by substituting the inverse transformation kernal

 s x u
N

b x p ui i
i

n

(,) ()
() ()

=
∑
=1

1 0

1

−

−

 (7-102)

where

p u b u

p u b u b u

p u b u b u

p

n

n n

n n

n

0 1

1 1 2

2 2 3

() ()

() () ()

() () ()

=
=
=

−

− −

− −

+
+

�

−− +1 1 0() () ()u b u b u=

 (7-103)

into Eqs. (7-22) and (7-24). As before, the summations in Eqs. (7-102) and (7-103)
are performed in modulo 2 arithmetic. Thus, for example,

 ′ =H8

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

− − − −
− − − −
− − − −

− − − −11 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

− − − −
− − − −
− − − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (7-104)

where the apostrophe ′() has been added to indicate sequency ordering as opposed
to Hadamard ordering. Note the sequencies of the rows of ′H8 match their row num-
bers—i.e., 0, 1, 2, 3, 4, 5, 6, and 7. An alternate way to generate ′H8 is to rearrange the
rows of Hadamard-ordered H8, noting that row s of ′H8 corresponds to the row of
H8 that is the bit-reversed gray code of s. Since the n-bit gray code corresponding to
()s s s sn−1 2 1 0 2… can be computed as

g s s i n

g s i n
i i i

n n

=
=

{ +

− −

≤ ≤ −
= −

1

1 1

0 2

1

for

for
 (7-105)

where { denotes the exclusive OR operation, row s of ′H8 is the same as row
()g g g gn0 1 2 1 2… − of H8. For example, row 4 or (100)2 of ′H8 , whose gray code is (110)2,
comes from row (011)2 or 3 of H8. Note row 4 of ′H8 in Eq. (7-104) is indeed identical
to row 3 of H8 in Eq. (7-101).

Figures 7.16(a) and (b) depict graphically and numerically the sequency-ordered
WHT transformation matrix for the case of N = 8. Note the sequency of the discrete

Recall that N = 2n, so
n = log2 N.

DIP4E_GLOBAL_Print_Ready.indb 498 6/16/2017 2:09:38 PM

7.7 Walsh-Hadamard Transforms 499

basis functions in Fig. 7.16(a) increase as u goes from 0 to 7, as does the sequency
of the underlying square wave functions. Note also the transformation matrix in
Fig. 7.16(b) is real, symmetric, and follows from Eqs. (7-105) and (7-97) as

 A H′ = ′W
1

8
N

 (7-106)

It is left as an exercise for the reader to show that it is orthogonal and that
A A A′ ′ ′= =W W W

T −1 . Finally, note the similarity of the sequency-ordered basis images
in Fig. 7.16(c), which are based on the separable 2-D inverse transformation kernal

s x y u v
N

b x p u b y p vi i i i
i

n

(, , ,) ()
() () () ()

=
∑ []
=1

1 0

1

−
+

−

 (7-107)

to the basis images of the 2-D DCT in Fig. 7.10(c). Sequency increases as a function
of both u and v, like frequency in the DCT basis images, but does not have as useful
a physical interpretation.

EXAMPLE 7.13 : A simple sequency-ordered Walsh-Hadamard transform.

To compute the sequency-ordered Walsh-Hadamard transform of the 1-D function f = [] ,2 3 4 5 T we
begin with the Hadamard-ordered Hadamard matrix H4 of Eq. (7-100) and use the procedure described
in conjunction with Eq. (7-105) to reorder the basis vectors. The mapping of the Hadamard-ordered
basis vectors of H4 to the sequency-ordered basis vectors of ′H4 is computed as follows:

 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

 0.35 0.35 0.35 0.35 -0.35 -0.35 -0.35 -0.35

 0.35 0.35 -0.35 -0.35 -0.35 -0.35 0.35 0.35

 0.35 0.35 -0.35 -0.35 0.35 0.35 -0.35 -0.35

 0.35 -0.35 -0.35 0.35 0.35 -0.35 -0.35 0.35

 0.35 -0.35 -0.35 0.35 -0.35 0.35 0.35 -0.35

 0.35 -0.35 0.35 -0.35 -0.35 0.35 -0.35 0.35

 0.35 -0.35 0.35 -0.35 0.35 -0.35 0.35 -0.35

ba c

FIGURE 7.16 The transformation matrix and basis images of the sequency-ordered Walsh-Hadamard transform for
N = 8. (a) Graphical representation of orthogonal transformation matrix A ′W , (b) A ′W rounded to two decimal
places, and (c) basis images. For 1-D transforms, matrix A ′W is used in conjunction with Eqs. (7-28) and (7-29); for
2-D transforms, it is used with Eqs. (7-35) and (7-36).

DIP4E_GLOBAL_Print_Ready.indb 499 6/16/2017 2:09:39 PM

500 Chapter 7 Wavelet and Other Image Transforms

Row of ′H4 Binary Code Gray Code
Bit-Reversed
Gray Code

Row of H4

0 00 00 00 0

1 01 01 10 2

2 10 11 11 3

3 11 10 01 1

Thus, in accordance with Eqs. (7-106), the sequency-ordered Walsh-Hadamard transformation matrix
of size 4 4× is

 A H′ ′= =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

W W
1

4

1
2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

− −
− −
− −

and the sequency-ordered transform is t A f′ ′= =W W [] .7 2 0 1− − T

7.8 SLANT TRANSFORM

Many monochrome images have large areas of uniform intensity and areas of lin-
early increasing or decreasing brightness. With the exception of the discrete sine
transform, all of the transforms that we have presented to this point include a basis
vector (at frequency or sequency u = 0) for representing efficiently constant gray
level areas, but none has a basis function that is targeted specifically at the represen-
tation of linearly increasing or decreasing intensity values. The transform considered
in this section, called the slant transform, includes such a basis function. The trans-
formation matrix of the slant transform of order N N× where N n= 2 is generated
recursively using

 A SSl =
1

N
N (7-108)

where slant matrix

 S

0 0

0 I 0 I

0 0

0 I

N

N N N N

N N

N N N N

N

a b a b

b a b a

=

1 0 1 0

0 1 0 1
2 2 2 2

2 2

−

−

−

− −

−

() ()

() 00 I

S 0

0 S

− −()N

N

N

2 2

2

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (7-109)

7.8

DIP4E_GLOBAL_Print_Ready.indb 500 6/16/2017 2:09:39 PM

7.8 Slant Transform 501

Here, IN is the identity matrix of order N N× ,

 S2

1 1

1 1
=

⎡

⎣
⎢

⎤

⎦
⎥−

 (7-110)

and coefficients aN and bN are

 a
N

NN =
⎡

⎣
⎢

⎤

⎦
⎥

3

4 1

2

2

1 2

()−
 (7-111)

and

 b
N

NN =
⎡

⎣
⎢

⎤

⎦
⎥

2

2

1 2
4

4 1

−
−()

 (7-112)

for N > 1. When N ≥ 8, matrix SN is not sequency ordered, but can be made so using
the procedure demonstrated in Example 6.13 for the WHT. An example of the use
of Eqs. (7-108) through (7-112) is Slant transformation matrix

 A SSl = =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1

4

1
2

1 1 1 1

3

5

1

5

1

5

3

5
1 1 1 1

1

5

3

5

3

5

1

5

4

− −

− −
− −

⎥⎥

 (7-113)

Since N = 4, the basis vectors of ASl (and the rows of slant matrix of S4) are sequency
ordered.

EXAMPLE 7.14 : A simple 1-D slant transform.

Using Eqs. (7-28) and (7-113), the slant transform of function f = []2 3 4 5 T from Example 7.13 is
t A fSl Sl= = [.] .7 2 24 0 0− T Note the transform contains only two nonzero terms, while the Walsh-Had-
amard transform in the previous example had three nonzero terms. The slant transform represents f
more efficiently because f is a linearly increasing function—that is, f is highly correlated with the slant
basis vector of sequency one. Thus, there are fewer terms in a linear expansion using slant basis func-
tions as opposed to Walsh basis functions.

Figures 7.17(a) and (b) depict graphically and numerically the sequency-ordered
slant transformation matrix for the case of N = 8. Just as apostrophes ′() were used
to denote sequency ordering in Walsh-Hadamard transforms, ′S8 and ASl′ are used
to denote sequency-ordered versions of Eqs. (7-108) and (7-109). Note the slant
transformation matrix in Fig. 7.16(b) is real, but not symmetric. Thus, A ASl Sl′ ′=−1 T
but A ASl Sl′ ′

T ≠ . Matrix ASl′ is also orthogonal and can be used in conjunction with

Note I1 is a 1 1× identity
matrix 1[] and I0 is the
empty matrix of size
0 0× .

DIP4E_GLOBAL_Print_Ready.indb 501 6/16/2017 2:09:41 PM

502 Chapter 7 Wavelet and Other Image Transforms

Eqs. (7-35) and (7-36) to implement 2-D separable slant transforms. Figure 6.17(c)
shows the 2-D slant basis images of size 8 8× . Note for 4 5≤ ≤u and 4 5≤ ≤v , they
are identical to the corresponding basis images of the WHT in Fig. 7.16(c). This is
also evident in Figs. 7.16(a) and 7.17(a) when 4 5≤ ≤u . In fact, all of the slant basis
vectors bear a striking resemblance to the basis vectors of the Walsh-Hadamard
transform. Finally, we note slant matrices have the necessary properties to allow
implementation of a fast slant transform algorithm similar to the FFT.

7.9 HAAR TRANSFORM

Discovered in 1910, the basis functions of the Haar transform (Haar [1910]) were
later recognized to be the oldest and simplest orthonormal wavelets. We will look
at Haar’s functions in the context of wavelets in the next section. In this section, we
approach Haar’s transform as another matrix-based transformation that employs a
set of rectangular-shaped basis functions.

The Haar transform is based on Haar functions, h xu(), that are defined over the
continuous, half-open interval x ∈[)0 1, . Variable u is an integer that for u > 0 can be
decomposed uniquely as

 u qp= 2 + (7-114)

where p is the largest power of 2 contained in u and q is the remainder—that is,
q up= −2 . The Haar basis functions are then

h x

u x

u q x q

u
u

p p p

p
()

(.)
=

=

+

1 0 0 1

2 0 2 0 5 2

2 0

2

2

 and

 and

 and

≤ <

> ≤ <

− > ((.) ()q x qp p+ +

⎧

⎨
⎪
⎪

⎩
⎪
⎪

0 5 2 1 2

0

≤ <
otherwise

 (7-115)

7.9

 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

 0.54 0.39 0.23 0.08 -0.08 -0.23 -0.39 -0.54

 0.47 0.16 -0.16 -0.47 -0.47 -0.16 0.16 0.47

 0.24 -0.04 -0.31 -0.59 0.59 0.31 0.04 -0.24

 0.35 -0.35 -0.35 0.35 0.35 -0.35 -0.35 0.35

 0.35 -0.35 -0.35 0.35 -0.35 0.35 0.35 -0.35

 0.16 -0.47 0.47 -0.16 -0.16 0.47 -0.47 0.16

 0.16 -0.47 0.47 -0.16 0.16 -0.47 0.47 -0.16

ba c

FIGURE 7.17 The transformation matrix and basis images of the slant transform for N = 8. (a) Graphical representa-
tion of orthogonal transformation matrix ASl′ , (b) ASl′ rounded to two decimal places, and (c) basis images. For
1-D transforms, matrix ASl′ is used in conjunction with Eqs. (7-28) and (7-29); for 2-D transforms, it is used with
Eqs. (7-35) and (7-36).

DIP4E_GLOBAL_Print_Ready.indb 502 6/16/2017 2:09:42 PM

7.9 Haar Transform 503

When u is 0, h x0 1() = for all x; the first Haar function is independent of continu-
ous variable x. For all other values of u, h xu() = 0 except in the half-open intervals
C Bq qp p2 0 5 2, (.)+ and C B(.) , () ,q qp p+ +0 5 2 1 2 where it is a rectangular wave
of magnitude 2 2p and −2 2p , respectively. Parameter p determines the amplitude
and width of both rectangular waves, while q determines their position along x. As
u increases, the rectangular waves become narrower and the number of functions
that can be represented as linear combinations of the Haar functions increases. Fig-
ure 7.18(a) shows the first eight Haar functions (i.e., the curves depicted in blue).

The transformation matrix of the discrete Haar transform can be obtained by sub-
stituting the inverse transformation kernal

 s x u
N

h x N x Nu(,) () , , ,= =
1

0 1 1 for … − (7-116)

for u N= 0 1 1, , , ,… − where N = 2n, into Eqs. (7-22) and (7-24). The resulting trans-
formation matrix, denoted AH, can be written as a function of the N N× Haar matrix

 HN

N N

h N h N h N N

h N h N

h N h N N

=

0 0 0

1 1

1 1

0 1 1

0 1

0 1

() () ()

() ()

() ()

p -
o

o
p -- -

�

⎡⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (7-117)

as

 A HH =
1

N
N (7-118)

For example, if N = 2,

 AH =
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

1

2

0 1 2

0 1 2
1

2

1 1

1 1
0 0

1 1

h h

h h

() ()

() () −
 (7-119)

In the computation of AH, x and u of Eq. (7-116) are 0 and 1, so Eqs. (7-114),
(7-115), and (7-116) give s h(,) () ,0 0 0 2 1 20= = s h(,) (.) ,1 0 0 5 2 1 20= =
s h(,) () ,0 1 0 2 1 21= = and s h(,) (.) .1 1 0 5 2 1 21= = − For N = 4, u, q, and p of
Eq. (7-114) assume the values

u p q

1 0 0

2 1 0

3 1 1

Variables p and q are
analogous to s and t in
Eq. (7-72).

Do not confuse the
Haar matrix with the
Hadamard matrix of Sec-
tion 7.7. Since the same
variable is used for both,
the proper matrix must
be determined from the
context of the discussion.

When u is 0, h xu() is
independent of p and q.

DIP4E_GLOBAL_Print_Ready.indb 503 6/16/2017 2:09:44 PM

504 Chapter 7 Wavelet and Other Image Transforms

and the Haar transformation matrix of size 4 4× becomes

 AH =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1
2

1 1 1 1

1 1 1 1

2 2 0 0

0 0 2 2

− −

−

−

 (7-120)

The transformation matrix for N = 8 is shown in Fig. 7.18(b). AH is real, orthogonal,
and sequency ordered. An important property of the Haar transformation matrix
is that it can be decomposed into products of matrices with fewer nonzero entries
than the original matrix. This is true of all of the transforms we have discussed to this
point. They can be implemented in FFT-like alogrithms of complexity O N N(log).2
The Haar transformation matrix, however, has fewer nonzero entries before the
decomposition process begins, making less complex algorithms on the order of O(N)
possible. As can be seen in Fig. 7.18(c), the basis images of the separable 2-D Haar
transform for images of size 8 8× also have few nonzero entries.

7.10 WAVELET TRANSFORMS

In 1987, wavelets were shown to be the foundation of a powerful new approach
to signal processing and analysis called multiresolution theory (Mallat [1987]).
Multiresolution theory incorporates and unifies techniques from a variety of
disciplines, including subband coding from signal processing, quadrature mirror
filtering from digital speech recognition, and pyramidal image processing. As its
name implies, it is concerned with the representation and analysis of signals (or
images) at more than one resolution. A scaling function is used to create a series of
approximations of a function or image, each differing by a factor of 2 in resolution

7.10

As was noted in Sec-
tion 7.1, wavelets are
small waves with band-
pass spectra as defined in
Eq. (7-72).

 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

 0.35 0.35 0.35 0.35 -0.35 -0.35 -0.35 -0.35

 0.50 0.50 -0.50 -0.50 0 0 0 0

 0 0 0 0 0.50 0.50 -0.50 -0.50

 0.71 -0.71 0 0 0 0 0 0

 0 0 0.71 -0.71 0 0 0 0

 0 0 0 0 0.71 -0.71 0 0

 0 0 0 0 0 0 0.71 -0.71

ba c

FIGURE 7.18 The transformation matrix and basis images of the discrete Haar transform for N = 8. (a) Graphical rep-
resentation of orthogonal transformation matrix AH, (b) AH rounded to two decimal places, and (c) basis images.
For 1-D transforms, matrix AH is used in conjunction with Eqs. (7-28) and (7-29); for 2-D transforms, it is used with
Eqs. (7-35) and (7-36).

DIP4E_GLOBAL_Print_Ready.indb 504 6/16/2017 2:09:44 PM

7.10 Wavelet Transforms 505

from its nearest neighboring approximations, and complementary functions, called
wavelets, are used to encode the differences between adjacent approximations. The
discrete wavelet transform (DWT) uses those wavelets, together with a single scaling
function, to represent a function or image as a linear combination of the wavelets
and scaling function. Thus, the wavelets and scaling function serve as an othonormal
or biorthonormal basis of the DWT expansion. The Daubechies and Biorthogonal
B-splines of Figs. 7.3(f) and (g) and the Haar basis functions of the previous section
are but three of the many bases that can be used in DWTs.

In this section, we present a mathematical framework for the interpretation and
application of discrete wavelet transforms. We use the discrete wavelet transform
with respect to Haar basis functions to illustrate the concepts introduced. As you
proceed through the material, remember that the discrete wavelet transform of a
function with respect to Haar basis functions is not the Haar transform of the func-
tion (although the two are intimately related).

SCALING FUNCTIONS

Consider the set of basis functions composed of all integer translations and binary
scalings of the real, square-integrable father scaling function w()x —that is, the set of
scaled and translated functions E Fw j k x j k, () | , H Z where

 w wj k
j jx x k, () ()= 2 22 - (7-121)

In this equation, integer translation k determines the position of w j k x, () along the
x-axis and scale j determines its shape—i.e., its width and amplitude. If we restrict j
to some value, say j = j0, then E Fw j k k

0 , | H Z is the basis of the function space spanned
by the w j k x, () for j = j0 and k = …, −1, 0, 1, 2, …, denoted Vj0

. Increasing j0 increases
the number of representable functions in Vj0

, allowing functions with smaller varia-
tions and finer detail to be included in the space. As is demonstrated in Fig. 6.19 with
Haar scaling functions, this is a consequence of the fact that as j0 increases, the scal-
ing functions used to represent the functions in Vj0

 become narrower and separated
by smaller changes in x.

EXAMPLE 7.15 : The Haar scaling function.

Consider the unit-height, unit-width scaling function

 w()x
x

=
⎧
⎨
⎩

1 0 1

0

≤ <
otherwise

 (7-122)

and note it is the Haar basis function h x0 () from Eq. (7-115). Figure 7.19 shows a few of the pulse-
shaped scaling functions that can be generated by substituting Eq. (7-122) into Eq. (7-121). Note when
the scale is 1 [i.e., when j = 1 as in Figs. 7.19(d) and (e)], the scaling functions are half as wide as when
the scale is 0 (i.e., when j = 0 as in Figs. 7.19(a) and (b)]. Moreover, for a given interval on x, there are

The discrete wavelet
transform, like all
transforms considered in
this chapter, generates
linear expansions of
functions with respect to
sets of orthonormal or
biorthonormal expansion
functions.

The coefficients of a 1-D
full-scale DWT with
respect to Haar wavelets
and a 1-D Haar trans-
form are the same.

Z is the set of integers.

Recall from Section 7.1
that the span of a basis is
the set of functions that
can be represented as
linear combinations of
the basis functions.

DIP4E_GLOBAL_Print_Ready.indb 505 6/16/2017 2:09:45 PM

506 Chapter 7 Wavelet and Other Image Transforms

twice as many scale 1 as scale 0 scaling functions. For example, two V1 scaling functions, w1 0, and w1 1, , are
located in interval 0 1≤ <x , while only one V0 scaling function, w0 0, , occupies the same interval.

Figure 7.19(f) shows a member of scaling space V1 that does not belong in V0 . The scaling func-
tions in Figs. 7.19(a) and (b) are too coarse to represent it. Higher-resolution functions, like those in
Figs. 7.19(d) and (e), are required. They can be used, as is shown in Fig. 7.19(f), to represent the function
as the three-term expansion f x x x x() = () + () ()0 5 0 251 0 1 1 1 4. . ., , ,w w w− In a similar manner, scaling func-
tion w0 0, , which is both a basis function and member of V0 , can be represented by a linear combination
of V1 scaling functions [see Fig. 7.19(c)] as follows:

 w w w0 1 2 1 2 1
1

2

1

2
, , ,k k kx x x() = () + ()+

The Haar scaling function of the preceding example, like the scaling functions of
all discrete wavelet transforms, obeys the four fundamental requirements of multi-
resolution analysis (Mallat [1989a]):

1. The scaling function is orthogonal to its integer tranlates.
2. The function spaces spanned by the scaling function at low scales are nested

within those spanned at higher scales. That is,

 V V V V V V− −� �(((((((… …1 0 1 2 (7-123)

where (is used to denote “a subspace of.” The scaling functions satisfy the
intuitive condition that if f x Vj() ,H then f x Vj() .2 1H +

x

x

x

x

x

x0 1 2 3

0

1

0 1 2 3

0

1

0 1 2 3

0

1

0 1 2 3

0

1

0 1 2 3

0

1

0 1 2 3

0

1

0 5 1 0. ,w

−0 25 1 4. ,w

w w0 0, () ()x x= w w0 1 1, () ()x x= − w0 0 1, ()x VH

w w1 0 2 2, () ()x x= w w1 1 2 2 1, () ()x x= − f x V() H 1

w1 0 2,

w1 1 2,

w1 1,

ba c
ed f

FIGURE 7.19 The Haar scaling function.

DIP4E_GLOBAL_Print_Ready.indb 506 6/16/2017 2:09:47 PM

7.10 Wavelet Transforms 507

3. The only function representable at every scale is f x() .= 0
4. All measureable, square-integrable functions can be represented as a linear

combination of the scaling function as j → �. In other words,

 V L� = 2 ()R (7-124)

where L2(R) is the set of measureable, square-integrable, 1-D functions.

Under the above conditions, w()x can be expressed as a linear combination of
double-resolution copies of itself:

 w ww() () ()x h k x k
k

= ∑
H

-
Z

2 2 (7-125)

Called the refinement or dilation equation, Eq. (7-125) defines a series expan-
sion in which the expansion functions, in accordance with Eq. (7-121), are scal-
ing functions from one scale higher than w()x and the h kw() are expansion coef-
ficients. The expansion coefficients, which can be collected into an ordered set
h k k h hw w w() , , , (), (), ,={ } = { }0 1 2 0 1… … are commonly called scaling function coef-

ficients. For orthonormal scaling functions, it follows from Eqs. (7-51) and (7-52) that

 h k x x kw w w() (), ()= −2 2 (7-126)

EXAMPLE 7.16 : Haar scaling function coefficients.

The coefficients of the Haar scaling function [i.e., Eq. (7-122)] are h n nw() , , ,={ } = { }0 1 1 2 1 2 the
first row of Haar matrix AH for N = 2 in Eq. (7-119). It is left as an exercise for the reader (see Prob-
lem 7.33) to compute these coefficients using Eq. (7-126). Equation (7-125) then yields

w w w

w w

x x x

x x

() = ()⎡⎣ ⎤⎦ + ()⎡⎣ ⎤⎦

= +

1

2
2 2

1

2
2 2 1

2 2 1

−

−() ()

This expansion is illustrated graphically in Fig. 7.19(c), where the bracketed terms of the preceding
expression are seen to be w1 0, ()x and w1 1, ().x

WAVELET FUNCTIONS

Given a father scaling function that meets the MRA requirements of the previous
section, there exists a mother wavelet function c()x whose integer translations and
binary scalings,

 c cj k
j jx x k, () ()= 2 22 - (7-127)

for all j k, ,H Z span the difference between any two adjacent scaling spaces. If we
let Wj0

 denote the function space spanned by wavelet functions c j k k
0 , | ,H Z{ } then

 V V Wj j j0 0 01+ = { (7-128)

Recall that R is the set of
real numbers.

Scaling function coef-
ficients can also be
combined in a scaling
vector.

DIP4E_GLOBAL_Print_Ready.indb 507 6/16/2017 2:09:48 PM

508 Chapter 7 Wavelet and Other Image Transforms

where { denotes the union of function spaces (like the union of sets). The orthogo-
nal complement of Vj0

 in Vj0 1+ is Wj0
, and the scaling functions that are the basis of

Vj0
 are orthogonal to the wavelet functions that are the basis of Wj0

:

 w cj k j lx x k l
0 0

0, ,(), () = ≠ for (7-129)

Figure 7.20 illustrates graphically the relationship between scaling and wavelet
spaces. Each oval in the figure is a scaling space that, in accordance with Eq. (7-123),
is nested or contained within the next higher resolution scaling space. The difference
between adjacent scaling spaces is a wavelet space. Since wavelet space Wj resides
within scaling space Vj+1 and c j k j jx W V, () ,H (+1 wavelet function c()x —like its scal-
ing function counterpart in Eq. (7-125)—can be written as a weighted sum of shifted,
double-resolution scaling functions. That is, we can write

 c wc() () ()x h k x k
k

= ∑ 2 2 - (7-130)

where the h kc() coefficients, called wavelet function coefficients, can be combined
into the ordered set h k k h hc c c() , , , (), (), .={ } = { }0 1 2 0 1… … Since integer wavelet
translates are orthogonal to one another and to their complementary scaling func-
tions, it can be shown (see, for example, Burrus, Gopinath, and Guo [1998]) that the
h kc() of Eq. (7-130) are related to the h kw() of Eq. (7-125) by

 h k h kk
c w() () ()= − −1 1 (7-131)

EXAMPLE 7.17 : The Haar wavelet function and coefficients.

In the previous example, the Haar scaling coefficients were defined as h n nw() , , .={ } = { }0 1 1 2 1 2
Using Eq. (7-131), the corresponding wavelet function coefficients are

h h

h h

c w

c w

() () ()

() () ()

0 1 1 0 1 2

1 1 1 1 1 2

0

1

= =

= =

− −

− − −

so h n nc() , , .={ } = { }0 1 1 2 1 2− These coefficients correspond to the second row of matrix AH for

The orthogonal comple-
ment of vector space
V WH is the set of
vectors in V that are
orthogonal to every
vector in W.

Wavelet function
coefficients can also be
combined in a wavelet
vector.

FIGURE 7.20
The relationship
between scaling
and wavelet func-
tion spaces.

V0

V V W1 0 0= {

V V W V W W2 1 1 0 0 1= ={ { {

W0

W1

DIP4E_GLOBAL_Print_Ready.indb 508 6/16/2017 2:09:50 PM

7.10 Wavelet Transforms 509

N = 2 in Eq. (7-119). Substituting these values into Eq. (7-130), we get c w w() () (),x x x= 2 2 1− − which is
plotted in Fig. 7.21(a). Thus, the Haar mother wavelet function is

 c()

.

.x

x

x=
⎧
⎨
⎪

⎩⎪

1 0 0 5

1 0 5 1

0

≤ <
− ≤ <

elsewhere

 (7-132)

Note it is also the Haar basis function h x1() of Eq. (7-115). Using Eq. (7-127), we can now generate the
universe of scaled and translated Haar wavelets. Two such wavelets, c0 2, ()x and c1 0, (),x are plotted in
Figs. 7.21(b) and (c), respectively. Note wavelet c1 0 1, ()x WH is narrower than c0 2 0, ()x WH and as such can
be used to represent functions of finer detail.

Figure 7.21(d) shows a member of function space V1 that is not in V0 . This function was consid-
ered in Example 7.15 [see Fig. 7.19(f)]. Although the function cannot be represented accurately in V0 ,
Eq. (7-128) indicates that it can be written as a function of V0 and W0 scaling and wavelet functions. The
resulting expansion is

 f x f x f xa d() () ()= +

where

 f x x xa() () (), ,=
3 2

4
2

80 0 0 2w w−

and

 f x x xd () () (), ,=
−

−
2

4
2

80 0 0 2c c

0 1 2 3

0

1

−1

0 1 2 3

0

1

−1

0 1 2 3

0

1

−1

0 1 2 3

0

1

−1

0 1 2 3

0

1

−1

0 1 2 3

0

1

−1

x

x

x

x

x

x

f x V V W() H {1 0 0= f x Va() H 0 f x Wd() H 0

3 2 4 0 0w , ()x

− 2 8 0 2w , ()x

c c() (),x x= 0 0 c c0 2 0 0 2, ,() ()x x= − c c1 0 2 2, () ()x x=

− 2 4 0 0c , ()x

− 2 8 0 2c , ()x

ba c
ed f

FIGURE 7.21 Haar wavelet functions.

DIP4E_GLOBAL_Print_Ready.indb 509 6/16/2017 2:09:52 PM

510 Chapter 7 Wavelet and Other Image Transforms

Here, f xa() is an approximation of f x() using V0 scaling functions, while f xd () is difference f x f xa() ()−
as a sum of W0 wavelets. These approximations and differences, which are shown in Figs. 7.19(e)
and (f), divide f x() in a manner similar to lowpass and highpass filtering. The low frequencies of f x()
are captured in f xa()—it assumes the average value of f x() in each integer interval—while the higher-
frequency details are encoded in f xd ().

WAVELET SERIES EXPANSION

Combining Eqs. (7-124) and (7-128), the space of all measureable, square-integra-
ble functions can be defined as L V W Wj j j

2
10 0 0

() ,R = +{ { { … where j0 is an arbi-
trary starting scale. We can then define the wavelet series expansion of function
f x L() ()H 2 R with respect to wavelet c()x and scaling function w()x as

 f x c k x d k xj
k

j k j j k
kj j

() = () () + () ()∑ ∑∑
=

∞

0 0

0

w c, , (7-133)

where cj0
 and dj for j j≥ 0 are called approximation and detail coefficients, respec-

tively. Any measureable, square-integrable, 1-D function can be expressed as a
weighted sum of Vj0

 scaling functions and Wj wavelets for j j≥ 0 . The first sum in
Eq. (7-133) produces an approximation of f x() from scale j0 scaling functions; each
successive scale of the second sum provides increasing detail as a sum of higher-
resolution wavelets. If the scaling and wavlet functions are orthonormal,

 c f x xj j k0 0
= (), (),w (7-134)

and
 d f x xj j k= (), (),c (7-135)

Here, we have used Eq. (7-13). If they are part of a biorthogonal basis, the w and c
terms must be replaced by their dual functions, w

'
 and c

'
, respectively.

EXAMPLE 7.18 : The Haar wavelet series expansion of y = x2.

Consider the simple function

 y
x x

=
⎧
⎨
⎪

⎩⎪

2 0 1

0

≤ ≤
otherwise

shown in Fig. 7.22(a). Using Haar wavelets—see Eqs. (7-122) and (7-132)—and starting scale j0 = 0,
Eqs. (7-134) and (7-135) can be used to compute the following expansion coefficients:

c x x dx x dx
x

d x x dx

0
2

0 0
2

3

0

1

0
2

0 0

0
3

1
3

0

0

1

0

1

0

1

() = () = = =

() = () =

2 2

2

w

c

,

,
00

0 5

0 5

1
2 2 1

4

.

.2 2x dx x dx− −=

DIP4E_GLOBAL_Print_Ready.indb 510 6/16/2017 2:09:54 PM

7.10 Wavelet Transforms 511

d x x dx x dx x dx

d

1
2

1 0
2 2

1

0 2 2
2

32

1

0

1

0

0 25

0 25

0 5

0

() = () = − =

() =

2 2 2c ,

.

.

.

−

11

0 5

0 75

0 75

1
2

1 1
2 22 2

3 2
322 2 2x x dx x dx x dxc ,

.

.

.
() = − = −

Substituting these values into Eq. (7-133), we get the wavelet series expansion

 y x x

V W

V V W

= () + ()⎡
⎣⎢

⎤
⎦⎥

= ⊕

1
3

1
40 0 0 0

0 0

1 0 0

w c, ,
� �	
	 � �		
		
� �				

−

				
� �					
					

+ () − ()⎡

⎣
⎢

⎤

⎦
⎥

= ⊕

−
2

32
3 2
321 0 1 1

1

2 1

c c, ,x x

W

V V W11 0 0 1= ⊕ ⊕

+

V W W
� �											
											

�

The first term in this expansion employs c0 0() to generate a V0 approximation of the function being
expanded. This approximation is shown in Fig. 7.22(b) and is the average value of the original function.
The second term uses d0 0() to refine the approximation by adding a level of detail from wavelet space
W0 . The added detail and resulting V1 approximation are shown in Figs. 7.22(c) and (d), respectively.
Another level of detail is formed from the products of d1 0() and d1 1() with the corresponding wavelets
of W1. This additional detail is shown in Fig. 7.22(e), and the resulting V2 approximation is depicted
in Fig. 7.22(f). Note the expansion is now beginning to resemble the original function. As higher scales
(greater levels of detail) are added, the approximation becomes a more precise representation of the
function, realizing it in the limit as j → �.

ba c
ed f

FIGURE 7.22 A wavelet series expansion of y = x2 using Haar wavelets.

x
0.25 0.5 0.75 10

0.5

1

0

−0 5. x
0.25 0.5 0.75 10

0.5

1

0

−0 5. x
0.25 0.5 0.75 10

0.5

1

0

−0 5.

x
0.25 0.5 0.75 10

0.5

1

0

−0 5. x
0.25 0.5 0.75 10

0.5

1

0

−0 5. x
0.25 0.5 0.75 10

0.5

1

0

−0 5.

y x= 2

1 3 0 0w ,
−1 4 0 0c ,

− 2 32 1 0c ,

−3 2 32 1 1c ,

W0

W1

V0

V1 V2

DIP4E_GLOBAL_Print_Ready.indb 511 6/16/2017 2:09:55 PM

512 Chapter 7 Wavelet and Other Image Transforms

DISCRETE WAVELET TRANSFORM IN ONE DIMENSION

Like a Fourier series expansion, the wavelet series expansion of the previous section
maps a function of a single continuous variable into a sequence of discrete coef-
ficients. If the function being expanded is discrete, the coefficients of the expansion
are its discrete wavelet transform (DWT) and the expansion itself is the function’s
inverse discrete wavelet transform. Letting j0 = 0 in Eqs. (7-133) through (7-135) and
restricting attention to N-point discrete functions in which N is a power of 2 (i.e.,
N = 2J), we get

 f x
N

T x T j k xj k
kj

J j

() (,) () (,) (),= +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥==

∑∑1
0 0

0

2 1

0

1

w cw c
−−

 (7-136)

where

 T f x x f x x
N

f x x
x

N

w w w w(,) (), () (), () () (),
*0 0

1
0 0

0

1

= = =
=

−

∑ (7-137)

and

 T j k f x x
N

f x xj k j k
x

N

c c c(,) (), () () (), ,
*= =

=
∑1

0

1−

 (7-138)

for j J= 0 1 1, , ,… − and k j= 0 1 2 1, , , .… − The transform coefficients defined by
Eqs. (7-137) and (7-138) are called approximation and detail coefficients, respec-
tively. They correspond to the c kj0

() and d kj () of the wavelet series expansion in the
previous section. Note the integrations of the series expansion have been replaced
by summations in Eqs. (7-137) through (7-138). In the discrete case, inner products
like those of Eqs. (7-1) and (7-2), as opposed to Eq. (7-3), are used. In addition, a
1 N normalizing factor, reminiscent of the DFT in Example 7.6, has been added
to both the forward and inverse transforms. This factor alternately could be incor-
porated into the forward or inverse alone as 1 N . Finally, it should be remembered
that Eqs. (7-137) through (7-138) are valid for orthonormal bases. If the scaling and
wavelet functions are real-valued, the conjugations can be dropped. If the basis is
biorthogonal, the w and c terms in Eqs. (7-137) and (7-138) must be replaced by
their duals, w

'
 and c

'
, respectively.

EXAMPLE 7.19 : A 1-D discrete wavelet transform.

To illustrate the use of Eqs. (7-137) through (7-138), consider a discrete function of four points in which
f () ,0 1= f () ,1 4= f () ,2 3= − and f () .3 0= Since N = 4, J is 2 and the summations in Eqs. (7-136) through
(7-138) are performed for x = 0, 1, 2, 3. When j is 0, k is 0; when j is 1, k is 0 or 1. If we use Haar scaling
and wavelet functions and assume the four samples of f x() are distributed over the support of the scal-
ing function, which is 1, Eq. (7-137) gives

 T f x x
x

w w0 0
1
2

1
2

1 1 4 1 3 1 0 1
0

3

, () ()() = = ()() + ()() + ()() + ()()⎡⎣ ⎤⎦
=

∑ − == 1

Remember that for
discrete inputs, x is a
discrete variable that
takes on integer values
between 0 and N − 1.

DIP4E_GLOBAL_Print_Ready.indb 512 6/16/2017 2:09:57 PM

7.10 Wavelet Transforms 513

Note we have employed uniformly spaced samples of the Haar scaling function for j = k = 0—i.e.,
w()x = 1 for x = 0, 1, 2, 3. The sampled values match the elements of the first row of Haar transformation
matrix AH in Eq. (7-120) of Section 7.9. Using Eq. (7-138) and similarly spaced samples of c j k x, (), which
are the elements of rows 2, 3, and 4 of AH, we get

T

T

c

c

0 0
1
2

1 1 4 1 3 1 0 1 4

1 0
1
2

1

,

,

() = ()() + ()() + ()() + ()()⎡⎣ ⎤⎦ =

() = (

− − −

))() + ()() ()() + ()()⎡
⎣

⎤
⎦ =

() = ()() + ()

2 4 2 3 0 0 0 1 5 2

1 1
1
2

1 0 4

− + − − .

,Tc 00 3 2 0 2 1 5 2() + ()() + ()()⎡
⎣

⎤
⎦ =− − − .

Thus, the discrete wavelet transform of our simple four-sample function relative to Haar scaling and
wavelet functions is 1 4 1 5 2 1 5 2, , . , . .− −{ } Since the transform coeffcients are a function of two vari-
ables—scale j and translation k—we combine them into an ordered set. The elements of this set turn out
to be identical to the elements of the sequency-ordered Haar transform of the function:

 t A fH H= =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥1

2

1 1 1 1

1 1 1 1

2 2 0 0

0 0 2 2

1

4

3

0

− −

−

−

− ⎥⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1

4

1 5 2

1 5 2

−

−

.

.

Recall from the previous section that Haar transforms are a function of a single transform domain vari-
able, denoted u.

Equation (7-136) enables the reconstruction of the original function from its wavelet transform coef-
ficients. Expanding the summation, we get

 f x T x T x T x T() (,) () (,) () (,) () (,), ,= + + +
1
2

0 0 0 0 1 0 1 10 0 1 0 1w c c cw c c c ,, ()1 x⎡⎣ ⎤⎦

for x = 0, 1, 2, 3. If x = 0, for instance,

 f 0
1
2

1 1 4 1 1 5 2 2 1 5 2 0 1() = ()() + ()() + ()() ()()⎡
⎣

⎤
⎦ =− + −. .

As in the forward case, uniformly spaced samples of the scaling and wavelet functions are used in the
computation of the inverse.

The Fast Wavelet Transform

The multiresolution refinement equation and its wavelet counterpart, Eqs. (7-125)
and (7-130), make it possible to define the scaling and wavelet functions at any scale
as a function of shifted, double-resolution copies of the scaling functions at the next
higher scale. In the same way, the expansion coefficients of the wavelet series expan-

DIP4E_GLOBAL_Print_Ready.indb 513 6/16/2017 2:09:58 PM

514 Chapter 7 Wavelet and Other Image Transforms

sion and discrete wavelet transform can be computed recursively (see Problem 7.35)
using

 c k h n k c nj j
n

() () ()= +∑ w − 2 1 (7-139)

 d k h n k c nj j
n

() () ()= +∑ c − 2 1 (7-140)

and

 T j k h n k T j n
n

w w w(,) () (,)= ∑ − +2 1 (7-141)

 T j k h n k T j n
n

c c w(,) () (,)= ∑ − +2 1 (7-142)

respectively. In contrast to Eqs. (7-133) and (7-136), where the only scaling coef-
ficients that are needed in the computations are at scale j0, Eqs. (7-139) through
(7-142) require the computation of all scaling coefficients up to the highest scale of
interest. Comparing these equations to the equation defining discrete convolution
[i.e., Eq. (4-48)], we see that n is a dummy variable of convolution and the remaining
minus signs and 2k terms reverse the order of the hw and hc coefficients and sample
the convolution results at n = 0, 2, 4, ..., respectively. Thus, for the discrete wavelet
transform, we can rewrite Eqs. (7-141) and (7-142) as

 T j k T j n h nw w w(,) (,) ()= + −1 � (7-143)

 T j k T j n h nc w c(,) (,) ()= + −1 � (7-144)

where the convolutions are evaluated at instants n j= 0 2 2 21, , , .… + − As indicated
in Fig. 7.23, evaluating convolutions at nonnegative, even indices is equivalent to
filtering and downsampling by 2 (i.e., discarding every other convolved value). For
a 1-D sequence of samples y n() for n = 0, 1, 2, …, downsampled sequence y n2↓ () is
defined as

 y n y n n2 2 0 1↓ = =() () , , for … (7-145)

Equations (7-143) and (7-144) are the defining equations of a computationally
efficient form of the DWT called the fast wavelet transform (FWT). For an input
sequence of length N = 2J, the number of mathematical operations involved is on

Recall from Section 3.4
that the use of
correlation or
convolution in spatial
filtering is a matter of
personal preference.

FIGURE 7.23
A FWT analysis
filter bank for
orthonormal
filters. The �
and 2 ↓ denote
convolution and
downsampling
by 2, respectively.

2 ↓

2 ↓

T j kw()+ ,1

T j kc(),

T j kw(),� h nw()−

� h nc()−

DIP4E_GLOBAL_Print_Ready.indb 514 6/16/2017 2:09:59 PM

7.10 Wavelet Transforms 515

the order of O(N). That is, the number of multiplications and additions is linear with
respect to the length of the input sequence—because the number of multiplications
and additions involved in the convolutions performed by the FWT filter bank in
Fig. 7.23 is proportional to the length of the sequences being convolved. Thus, the
FWT compares favorably with the FFT algorithm, which requires on the order of
O N N(log)2 operations.

Figure 7.24(a) shows a three-scale filter bank in which the FWT analysis filter of
Fig. 7.23 has been “iterated” three times to create a three-stage structure for com-
puting transform coefficients at scales J − 1, J − 2, and J − 3. Note the highest scale
coefficients are assumed to be samples of the function itself.† Otherwise, the approx-
imation and detail coefficients at scale j are computed by convolving T j kw(,),+ 1
the scale j + 1 approximation coefficients, with the order-reversed scaling and wave-
let coefficients, h nw()− and h nc(),− and subsampling the results. If there are K scal-
ing and wavelet function coefficients, the order reversed scaling and wavelet coeffi-
cients are E Fh K m m Kw() | , , ,− − −1 0 1 1= … and E Fh K m m Kc() | , , , ,− − −1 0 1 1= …
respectively. For a discrete input of length N = 2J, the filter bank in Fig. 7.23 can

† If function f x() is sampled above the Nyquist rate, as is usually the case, its samples are good approximations
of the scaling coefficients at the sampling resolution and can be used as the starting high-resolution scaling
coefficient inputs. In other words, no wavelet or detail coefficients are needed at the sampling scale. The highest-
resolution scaling functions act as unit discrete impulse functions in Eqs. (7-141) and (7-142), allowing f x() to
be used as the scaling (approximation) input to the first two-band filter bank (Odegard, Gopinath, and Burrus
[1992]).

A P-scale FWT employs
P filter banks to generate
a P-scale transform at
scales J − 1, J − 2, …,
J P− , where P J≤ .

b
a

FIGURE 7.24
(a) A three-stage
or three-scale
FWT analysis
filter bank and
(b) its frequency-
splitting
characteristics.
Because of sym-
metry in the DFT
of the filter’s
impulse response,
it is common to
display only the
0,p[] region.

� h nw()−

� h nc()− 2 ↓

2 ↓

� h nw()−

� h nc()− 2 ↓

2 ↓

� h nw()−

� h nc()− 2 ↓

2 ↓

T J kc()− 3,

T J kc()− 2,

T J kc()− 1,

T J kw()− 3,

T J kw()− 2,

T J kw()− 1,

v

H()v

pp 2p 4p 8

WJ −3 WJ −2VJ −3

VJ −2

VJ −1

VJ

0

WJ −1

f x
T J k
()

(,)
=

w

DIP4E_GLOBAL_Print_Ready.indb 515 6/16/2017 2:10:01 PM

516 Chapter 7 Wavelet and Other Image Transforms

be iterated up to J times. In operation, the leftmost filter bank of Fig. 7.24(a) splits
the input function into a lowpass approximation component that corresponds to
scaling coefficients T J kw(,)− 1 and a highpass detail component corresponding to
coefficients T J kc(,).− 1 This is illustrated graphically in Fig. 7.24(b), where scaling
space VJ is split into wavelet space WJ −1 and scaling space VJ −1. The spectrum of
the original function is split into two half-band components. The second filter bank
in Fig. 7.24(a) splits the spectrum of scaling space VJ −1, the lower half-band of the
first filter bank, into quarter-band spaces WJ −2 and VJ −2 and corresponding FWT
coefficients T J kc(,)− 2 and T J kw(,),− 2 respectively. Finally, the third filter bank
generates eigth-band spaces WJ −3 and VJ −3 with FWT coefficients T J kc(,)− 3 and
T J kw(,).− 3 As was noted in connection with Eq. (7-73) of Section 7.4 and demon-
strated in Fig. 7.5, as the scale of the wavelet functions increases, the spectra of the
wavelets are stretched (i.e., their bandwidth is doubled and shifted higher by a fac-
tor of two). In Fig. 7.24(b), this is evidenced by the fact that the bandwidth of WJ −1
is p 2, while the bandwidths of WJ −2 and WJ −3 are p 4 and p 8, respectively. For
higher-scale transforms, the spectra of the wavelets would continue to decrease in
bandwidth, but would never reach radian frequency v = 0. A lowpass scaling func-
tion is always needed to capture the frequencies around DC.

EXAMPLE 7.20 : Computing a 1-D fast wavelet transform.

To illustrate the preceding concepts, consider the discrete function f x() , , ,= { }1 4 3 0− from Exam-
ple 7.19. As in that example, we will compute its wavelet transform with respect to Haar scaling and
wavelet functions. Here, however, we will not use the Haar basis functions directly. Instead, we will use
the corresponding scaling and wavelet coefficients from Examples 7.16 and 7.17:

 h n nw() , ,={ } = { }0 1 1 2 1 2 (7-146)

and

 h n nc() , ,={ } = { }0 1 1 2 1 2− (7-147)

Since the transform computed in Example 7.19 was the ordered set E FT T T Tw c c c(,), (,), (,), (,) ,0 0 0 0 1 0 1 1
we will compute the corresponding two-scale FWT for scales j = { }0 1, . Recall from the previous exam-
ple that k = 0 when j = 0, while k is 0 and 1 when j = 1. The transform will be computed using a two-stage
filter bank that parallels the three-stage filter bank of Fig. 7.24(a). Figure 7.25 shows the resulting filter
bank and the sequences that follow from the required FWT convolutions and downsamplings. Note
input function f x() serves as the scaling (or approximation) input to the left most filter bank. To com-
pute the T nc(,)1 coefficients that appear at the end of the upper branch of Fig. 7.25, we first convolve
f x() with h nc().− For Haar scaling and wavelet coefficients, K = 2 and the order reversed wavelet coef-
ficients are E F E F E Fh K m m K h m mc c() | , , , () | , , .− − − − −1 0 1 1 1 0 1 1 2 1 2= = = =… As explained
in Section 3.4, convolution requires flipping one of the convolved functions about the origin, sliding it
past the other, and computing the sum of the point-wise product of the two functions. Flipping order-
reversed wavelet coefficients E F−1 2 1 2, to get E F1 2 1 2, − and sliding them from left-to-right
across input sequence 1 4 3 0, , , ,−{ } we get

 − − −1 2 3 2 7 2 3 2 0, , , ,{ }

DIP4E_GLOBAL_Print_Ready.indb 516 6/16/2017 2:10:04 PM

7.10 Wavelet Transforms 517

where the first term corresponds to convolution index n = −1. In Fig. 7.25, convolution values that are
associated with a negative dummy variable of convolution (i.e., n < 0) are denoted in blue. Since scale
j = 1, the downsampled convolutions correspond to the even indices of n up to 2 21j+ − . Thus, n = 0 and
2 and T nc 1 3 2 3 2, , .() = E F− − The remaining convolutions and downsamplings are performed in a
similar manner.

In digital signal processing (DSP), filters like those in Figs. 7.23 through 7.25 are
known as finite impulse response (FIR) filters. Their response to a unit impulse is
a finite sequence of outputs that assumes the values of the filter coefficients. Fig-
ure 7.26(a) shows one well-known arrangement of real-coefficient, FIR filters that
has been studied extensively in the literature. Called a two-band subband coding
and decoding system, it is composed of two analysis filters, h n0 () and h n1(), and two
synthesis filters, g n0 () and g n1(). The analysis filters decompose the input into two
half-length sequences f n0 () and f n1(). As can be seen in Fig. 7.26(a), filter h n0 ()
is a lowpass filter whose output is an approximation of f x(); filter h n1() is a high-
pass filter whose output is the difference between the lowpass approximation and
f x(). As Fig. 7.26(b) shows, the spectrum of the input sequence is split into two
half-bands, H0 ()v and H1().v Synthesis bank filters g n0 () and g n1() are then used
to reconstruct ˆ()f x from upsampled versions of f n0 () and f n1(). For a 1-D sequence
of samples y n(), upsampled sequence y n2↑ () can be defined as

 y n
y n n

2

2

0↑ =
⎧
⎨
⎩

()
() if is even

otherwise
 (7-148)

where the upsampling is by a factor of 2. Upsampling by a factor of 2 can be thought
of as inserting a 0 after every sample of y n().

The blocks containing
a � in Figs. 7.23
through 7.25 are FIR
filters. FIR filters are also
discussed in Section 4.7.

Note we use h n() for
analysis or decomposi-
tion filters, which include
one scaling filter and one
wavelet filter, and g n()
for synthesis or recon-
struction filters, which
also include a scaling and
wavelet filter. The scaling
filters are sometimes
called approximation or
lowpass filters and have a
subscript of 0 in Fig. 7.26,
while the wavelet filters
are called detail or high-
pass filters and have a
subscript of 1.

Tw(,)0 0 1= { }

Tc(,)0 0 4= { }

T nc(,) , ,1 3 2 3 2= { }− −

f x T n() (,)

, , ,

=

= { }
w 2

1 4 3 0−

2 ↓

2 ↓

2 ↓

2 ↓

T nw(,) ,1 5 2 3 2= { }−

� 1 2 1 2,{ }

� 1 2 1 2,{ }

� −1 2 1 2,{ }

� −1 2 1 2,{ }

− − −1 2 3 2 7 2 3 2 0, , , ,{ }

1 2 5 2 1 2 3 2 0, , , ,−{ }

− −2 5 4 1 5. , , .{ }

2 5 1 1 5. , , .−{ }
FIGURE 7.25 Computing a two-scale fast wavelet transform of sequence 1 4 3 0, , ,−{ } using Haar scaling and wavelet
coefficients.

DIP4E_GLOBAL_Print_Ready.indb 517 6/16/2017 2:10:06 PM

518 Chapter 7 Wavelet and Other Image Transforms

The goal in subband coding is to choose the analysis and synthesis filters so
ˆ() ().f x f x= When this is accomplished, the system is said to employ perfect recon-
struction filters and the filters are, up to some constant factors, related as follows:

 g n h nn
0 1() () ()= −1 (7-149)

and

 g n h nn
1 0() () ()= −1 (7-150)

In these equations, ()−1 n changes the signs of the odd-indexed analysis filter coef-
ficients and is called modulation. Each synthesis filter is a modulated version of the
analysis filter that opposes it diagonally in Fig. 7.26(a). Thus, the analysis and synthe-
sis filters are said to be cross-modulated. Their impulse responses are biorthogonal.
If they are also orthonormal and of length K, where K is divisible by 2, they satisfy
the additional constraints that

g n g K n

h n g K n

h n g K n

n
1 0

0 0

1 1

() = () ()
() = ()
() = ()

− − −

− −

− −

1 1

1

1

(7-151)

Noting the similarity between the FWT analysis filter bank in Fig. 7.23 and the
subband analysis filter bank of Fig. 7.26(a), we can postulate the inverse FWT synthe-
sis filter bank of Fig. 7.27. For the case of orthonormal filters, Eq. (7-151) constrains
the synthesis filters to be order-reversed versions of the analysis filters. Comparing
the filters in Figs. 7.23 and 7.27, we see this is indeed the case. It must be remembered,
however, that perfect reconstruction is also possible with biorthogonal analysis and
synthesis filters, which are not order-reversed versions of one another. Biorthogonal
analysis and synthesis filters are cross-modulated in accordance with Eqs. (7-149)
and (7-150). Finally, we note the inverse filter bank of Fig. 7.27, like the forward FWT

Equations (7-149) and
(7-151) are described
in detail in the filter
bank literature (see, for
example, Vetterli and
Kovacevic [1995]).
For many biorthogonal
filters, g0 and g1 are dif-
ferent in length, requir-
ing the shorter filter to
be zero-padded. In causal
filters, n ≥ 0 and the
ouput depends only on
current and past inputs.

ba

FIGURE 7.26
(a) A two-band
digital filtering
system for sub-
band coding and
decoding and
(b) its spectrum-
splitting
properties.

2 ↓

2 ↓ 2 ↑

2 ↑

f x() +
Analysis

filter bank
Synthesis
filter bank

� h n0()

� h n1()

� g n0()

� g n1()

Low band High band

0

H1()vH0()v

v
pp 2

ˆ()f x

f n1()

f n0()

DIP4E_GLOBAL_Print_Ready.indb 518 6/16/2017 2:10:07 PM

7.10 Wavelet Transforms 519

filter bank of Fig. 6.23, can be iterated for the computation of multiscale inverse
FWTs. In the next example, a two-scale inverse FWT structure is considered. The
coefficient combining process demonstrated there can be extended to any number
of scales.

EXAMPLE 7.21 : Computing a 1-D inverse fast wavelet transform.

Computation of the inverse fast wavelet transform mirrors its forward counterpart. Figure 7.28 illustrates
the process for the sequence considered in Example 7.20. To begin the calculation, the level 0 approxi-
mation and detail coefficients are upsampled to yield 1 0,{ } and 4 0, ,{ } respectively. Convolution with
filters h nw() ,= E F1 2 1 2 and h nc() ,= E F1 2 1 2− produces E F1 2 1 2 0, , and E F4 2 4 2 0, , ,−
which when added give T nw(,) , .1 5 2 3 2= E F− Thus, the level 1 approximation of Fig. 7.28, which
matches the computed approximation in Fig. 7.25, is reconstructed. Continuing in this manner, f x() is
formed at the right of the second synthesis filter bank.

2 ↑

2 ↑

+

� h nw()

� h nc()

T j kw(),

T j kc(),

T j kw()+ ,1

FIGURE 7.27
An inverse FWT
synthesis filter
bank for ortho-
normal filters.

Tc(,)0 0 4= { }

Tw(,)0 0 1= { }

T nc(,) , ,1 3 2 3 2= { }− −

f x T n() (,)

, , ,

=

= { }
w 2

1 4 3 0−

2 ↑

2 ↑

2 ↑

2 ↑

T nw(,) ,1 5 2 3 2= { }−

� 1 2 1 2,{ }

� 1 2 1 2,{ }

� 1 2 1 2,−{ }

� 1 2 1 2,−{ }

+

+

1 0,{ }

− −3 2 0 3 2 0, , ,{ }

5 2 0 3 2 0, , ,−{ }

4 0,{ }

4 2 4 2 0, ,−{ }

2 5 2 5 1 5 1 5 0. , . , . , . ,− −{ }

1 2 1 2 0, ,{ }

− −1 5 1 5 1 5 1 5 0. , . , . , . ,{ }

FIGURE 7.28 Computing a two-scale inverse fast wavelet transform of sequence 1 4 1 5 2 1 5 2, , . , .− −{ } with Haar
scaling and wavelet functions.

DIP4E_GLOBAL_Print_Ready.indb 519 6/16/2017 2:10:08 PM

520 Chapter 7 Wavelet and Other Image Transforms

WAVELET TRANSFORMS IN TWO DIMENSIONS

The 1-D wavelet transform of the previous section is easily extended to 2-D func-
tions such as images. In two dimensions, a two-dimensional scaling function, w(,),x y
and three 2-D wavelets, cH (,),x y cV (,),x y and cD(,),x y are required. Each is the
product of two 1-D functions. Excluding products that produce 1-D results, like
w c() (),x x the four remaining products produce the separable scaling function

f

1 �

2
 (7-152)

and separable, “directionally sensitive” wavelets

 c c wH (,) () ()x y x y= (7-153)

 c w cV (,) () ()x y x y= (7-154)

 c c cD(,) () ()x y x y= (7-155)

These wavelets measure functional variations—intensity changes in images—along
different directions: cH measures variations along columns (for example, horizontal
edges), cV responds to variations along rows (like vertical edges), and cD corre-
sponds to variations along diagonals. The directional sensitivity is a natural conse-
quence of the separability in Eqs. (7-153) to (7-155); it does not increase the compu-
tational complexity of the 2-D transform discussed in this section.

Like the 1-D discrete wavelet transform, the 2-D DWT can be implemented using
digital filters and downsamplers. With separable 2-D scaling and wavelet functions,
we simply take the 1-D FWT of the rows of f x y(,), followed by the 1-D FWT of
the resulting columns. Figure 7.29(a) shows the process in block diagram form. Note,
like its 1-D counterpart in Fig. 7.23, the 2-D FWT “filters” the scale j + 1 approxima-
tion coefficients, denoted T j k lw(, ,)+ 1 in the figure, to construct the scale j approxi-
mation and detail coefficients. In the 2-D case, however, we get three sets of detail
coefficients—horizontal details T j k lc

H (, ,), vertical details T j k lc
V (, ,), and diagonal

details T j k lc
D(, ,).

The single-scale filter bank of Fig. 7.29(a) can be “iterated” (by tying the approxi-
mation output to the input of another filter bank) to produce a P J≤ scale trans-
form in which scale j is equal to J J J P− − −1 2, , , .… As in the 1-D case, image
f x y(,) is used as the T J k lw(, ,) input. Convolving its rows with h nw()− and h nc()−
and downsampling its columns, we get two subimages whose horizontal resolutions
are reduced by a factor of 2. The highpass or detail component characterizes the
image’s high-frequency information with vertical orientation; the lowpass, approxi-
mation component contains its low-frequency, vertical information. Both subimages
are then filtered columnwise and downsampled to yield four quarter-size output
subimages—Tw , Tc

H, Tc
V, and Tc

D. These subimages, which are normally arranged as
in Fig. 7.29(b), are the inner products of f x y(,) and the two-dimensional scaling and

DIP4E_GLOBAL_Print_Ready.indb 520 6/16/2017 2:10:10 PM

7.10 Wavelet Transforms 521

T j k lw(, ,)+ 1

T j k lw(, ,)

T j k lc
D(, ,)

T j k lc
H(, ,)

T j k lc
V(, ,)

2 ↓

2 ↓

2 ↓

2 ↓

2 ↓

2 ↓

� h nc()−

� h nw()−

� h mc()−

� h mc()−

� h mw()−

� h mw()−
Columns
(along n)

Columns

Rows
(along m)

Rows

Rows

Rows

T j k lw(, ,)

T j k lc
D(, ,)

T j k lc
H(, ,)

T j k lc
V(, ,)

T j k lw(, ,)+ 1

2 ↑

2 ↑

2 ↑

2 ↑

2 ↑

2 ↑ � h nw()

� h nc()

� h mc()

� h mc()

� h mw()

� h mw()

+

+

+

Columns
(along n)

Columns

Rows
(along m)

Rows

Rows

Rows

T j k lw(, ,)+ 1

T j k lw(, ,)

T j k lc
D(, ,)T j k lc

V(, ,)

T j k lc
H(, ,)

b
a

c

FIGURE 7.29
The 2-D fast
wavelet trans-
form: (a) the
analysis filter
bank; (b) the
resulting decom-
position; and
(c) the synthesis
filter bank.

Note m and n are
dummy variables
of convolution,
while j, like in the
1-D case, is scale,
and k and l are
translations.

DIP4E_GLOBAL_Print_Ready.indb 521 6/16/2017 2:10:11 PM

522 Chapter 7 Wavelet and Other Image Transforms

wavelet functions in Eqs. (7-152) through (7-155), followed by downsampling by two
in each dimension.

Figure 7.29(c) shows the synthesis filter bank that reverses the process just
described. As would be expected, the reconstruction algorithm is similar to the 1-D
case. At each iteration, four-scale j approximation and detail subimages are upsam-
pled and convolved with two 1-D filters—one operating on the subimages’ columns
and the other on its rows. Addition of the results yields the scale j + 1 approximation,
and the process is repeated until the original image is reconstructed.

EXAMPLE 7.22 : Computing 2-D fast wavelet transforms.

In this example, we compute a 2-D, multiscale FWT with respect to Haar basis functions and compare
it to the traditional Haar transform of Section 7.9. Figures 7.30(a)–(d) show a 512 512× monochrome
image of a vase on a windowsill, its one- and two-scale discrete wavelet transforms with respect to Haar
basis functions, and its Haar transform, respectively. The computation of the wavelet transforms will be
discussed shortly. The Haar transform in Fig. 7.30(d) is computed using a 512 512× Haar transformation
matrix [see Eqs. (7-114) through (7-118)] and the matrix-based operations defined in Eq. (7-35). The
detail coefficients in Figs. 7.30(b) and (c), as well as the Haar transform coefficients in Fig. 7.30(d), are
scaled to make their underlying structure more visible. When the same area of any two transforms is
shaded in blue, the corresponding pixels within those areas are identical in value.

To compute the one-scale FWT of Fig. 7.30(b), the image in Fig. 7.30(a) is used as the input to a filter
bank like that of Fig. 7.29(a). Since J = =log2 512 9 and P = 1, T k l f x yw(, ,) (,)9 = and the four resulting
quarter-size decomposition outputs [i.e., approximation T k lw(, ,)8 and horizontal, vertical, and diagonal
details T k lc

H (, ,),8 T k lc
V (, ,),8 and T k lc

D(, ,)8] are then arranged in accordance with Fig. 7.29(b) to pro-
duce Fig. 7.30(b). A similar process is used to generate the two-scale transform in Fig. 7.30(c), but the
input to the filter bank is a quarter-size approximation subimage T k lw(, ,),8 from the upper left-hand
corner of Fig. 7.30(b). As can be seen in Fig. 7.30(c), the quarter-size approximation subimage is then
replaced by the four quarter-size (now 1 16th of the size of the original image) decomposition results
that were generated by the second filtering pass. Each pass through the filter bank produces four quar-
ter-size output images which are substituted for the input from which they were derived. The process is
repeatable until P = J = 9, which produces a nine-scale transform.

Note the directional nature of the subimages associated with Tc
H, Tc

V, and Tc
D in Figs. 7.30(b) and

(c). The diagonal details in these images (i.e., the Tc
D areas shaded in blue) are identical to the corre-

spondingly shaded areas of the Haar transform in Fig. 7.30(d). In the 1-D case, as was demonstrated
in Example 7.19, a J-scale 1-D FWT with respect to Haar basis functions is the same as its 1-D Haar
transform counterpart. This is due to the fact that the basis functions of the two transforms are identical;
both contain one scaling function and a series of scaled and translated wavelet functions. In the 2-D case,
however, the basis images differ. The 2-D separable scaling and wavelet functions defined in Eqs. (7-153)
through (7-155) introduce horizontal and vertical directionality that is not present in a traditional Haar
transform. Figures 7.31(a) and (b), for example, are the basis images of an 8 8× Haar transform and
three-scale FWT with respect to Haar basis functions. Note the blue highlighted regions along the main
diagonals in which the basis images match. The same pattern occurs in Fig. 7.30(b) through (d). If a nine-
scale wavelet transform of the vase were computed, it would match the Haar transform in Fig. 7.30(d)
in all of its shaded areas.

DIP4E_GLOBAL_Print_Ready.indb 522 6/16/2017 2:10:12 PM

7.10 Wavelet Transforms 523

ba
dc

FIGURE 7.30
(a) A 512 512×
image of a vase;
(b) a one-scale
FWT; (c) a two-
scale FWT; and
(d) the Haar
transform of the
original image.
All transforms
have been scaled
to highlight their
underlying struc-
ture. When cor-
responding areas
of two transforms
are shaded in
blue, the corre-
spondent pixels
are identical.

ba

FIGURE 7.31
(a) Haar basis
images of size
8 8× [from
Fig. 7.18(c)] and
(b) the basis
images of a
three-scale 8 8×
discrete wavelet
transform with
respect to Haar
basis functions.

DIP4E_GLOBAL_Print_Ready.indb 523 6/16/2017 2:10:13 PM

524 Chapter 7 Wavelet and Other Image Transforms

We conclude the section with a simple example that demonstrates the use of
wavelets in image processing. As in the Fourier domain, the basic approach is to:

1. Compute the 2-D wavelet transform of an image with respect to a selected
wavelet basis. Table 7.1 shows some representative bases, including their scal-
ing and wavelet functions and corrresponding filter coefficients. The filter coef-
ficients are given in the context of Fig. 7.26. For orthonormal wavelets, lowpass
synthesis coefficients are specified; the remaining filters must be computed
using Eq. (7-151). For biorthonormal wavelets, two analysis filters are given and
the synthesis filters must be computed using Eqs. (7-149) and (7-150).

2. Alter the computed transform to take advantage of the DWT’s ability to
(1) decorrelate image pixels, (2) reveal important frequency and temporal char-
acteristics, and/or (3) measure the image’s similarity to the transform’s basis
images. Modifications designed for image smoothing, sharpening, noise reduc-
tion, edge detection, and compression (to name only a few) are possible.

3. Compute the inverse wavelet transform.

Since the discrete wavelet transform decomposes an image into a weighted sum of
spatially limited, bandlimited basis images, most Fourier-based imaging techniques
have an equivalent “wavelet domain” counterpart.

EXAMPLE 7.23 : Wavelet-based edge detection.

Figure 7.32 provides a simple illustration of the preceding three steps. Figure 7.32(a) shows a 128 128×
computer-generated image of 2-D sine-shaped pulses on a black background. Figure 7.32(b) is the two-
scale discrete wavelet transform of the image with respect to 4th-order symlets, short for “symmetrical
wavelets.” Although they are not perfectly symmetrical, they are designed to have the least asymmetry
and highest number of vanishing moments† for a given compact support (Daubechies [1992]). Row 4 of
Table 7.1 shows the wavelet and scaling functions of the symlets, as well as the coefficients of the cor-
responding lowpass synthesis filter. The remaining filter coefficients are obtained using Eq. (7-151) with
K, the number of filter coefficients, set to 8:

g n g nn
1 01 7 0 0758 0 0296 0 4976 0 8037 0 2979 0() () () . , . , . , . , . , .= − =− − − 00992 0 0126 0 0322

7 0 0758 0 0296 0 4970 0

, . , .

() () . , . , .

− −
− −

{ }
= − =h n g n 66 0 8037 0 2979 0 0992 0 0126 0 0322

7 01 1

, . , . , . , . , .

() () .

− −
−

{ }
= − =h n g n 00322 0 0126 0 0992 0 2979 0 8037 0 4976 0 0296 0 0758, . , . , . , . , . , . , .− − −{ }}

In Fig. 7.32(c), the approximation component of the discrete wavelet transform has been eliminated
by setting its values to zero. As Fig. 7.32(d) shows, the net effect of computing the inverse transform
using these modified coefficients is edge enhancement, reminiscent of the Fourier-based image sharpen-
ing results discussed in Section 4.9. Note how well the transitions between signal and background are
delineated, despite the fact that they are relatively soft, sinusoidal transitions. By zeroing the horizontal
details as well—see Figs. 7.32(e) and (f)—we can isolate vertical edges.

† The kth moment of wavelet c()x is m k x x dxk() () .= ∫ c Vanishing moments impact the smoothness of the scal-
ing and wavelet functions and our ability to represent them as polynomials. An order-N symlet has N vanishing
moments.

DIP4E_GLOBAL_Print_Ready.indb 524 6/16/2017 2:10:13 PM

7.10 Wavelet Transforms 525

Wavelet Name or Family Scaling Function Wavelet Function Filter Coefficients

Haar

The oldest and simplest
wavelets. Orthogonal and
discontinuous.

10 1.2

1
1.2

0
10 1.2

1

0

1.5

−1
−1 5.

g n0 1 2 1 2() ,= { }

Daubechies family

Orthogonal with the most
vanishing moments for a
given support. Denoted
dbN, where N is the num-
ber of vanishing moments;
db2 and db4 shown; db1 is
the Haar of the previous
row.

1

1.4

0

−0 4.
10 32

20 6431 75

1
1.2

0

−0 4.

10 32

1

0

2

−1
−1 5.

1

0

1.5

−1
20 6431 75

g n0 0 482963

0 836516 0 224144

0 129410

() . ,

. , . ,

.

= {

}−

g n0 0 230372

0 714847 0 630881

0 027984 0 187035

0 03

() . ,

. , . ,

. , . ,

.

= {

− −
00841 0 032883

0 010597

, . ,

.− }

Symlet family

Orthogonal with the least
asymmetry and most
vanishing moments for a
given support (sym4 or
4th order shown).

1

0

1.4

−0 2.
20 6431 75 20 6431 75

1

0

2

−1
−1 5.

g n0 0 032231

0 012604 0 099220

0 297858 0 803739

0 49

() . ,

. , . ,

. , . ,

.

= {
− −

77619 0 029636

0 075766

, . ,

.

−
− }

Cohen-Daubechies-
Feauveau 9/7

Biorthogonal B-spline
used in the irreversable
JPEG2000 compression
standard (see Chapter 8).

1

1.4

0

−0 4.

1

0

2

−1
−1 5.

20 6431 75 8 9

1

0

1.4

−0 2.

1

0

2

−1
20 6431 75 8 9

h n0 0 026749

0 016864 0 078223

0 266864 0 602949

0 26

() . ,

. , . ,

. , . ,

.

= {
− −

66864 0 078223

0 016864 0 026749

0 091271

0 057
1

, . ,

. , .

() . ,

.

−
−

−
−

}

= {h n

5544 0 591272

1 115087 0 591272

0 057544 0 091271 0

, . ,

. , . ,

. , . ,

−
− }

TABLE 7.1
Some representative wavelets.

DIP4E_GLOBAL_Print_Ready.indb 525 6/16/2017 2:10:14 PM

526 Chapter 7 Wavelet and Other Image Transforms

WAVELET PACKETS

A fast wavelet transform decomposes a function into a sum of scaling and wavelet
functions whose bandwidths are logarithmically related. That is, the low-frequency
content of the function is represented using scaling and wavelet functions with nar-
row bandwidths, while the high-frequency content is represented using functions
with wider bandwidths. This is apparent in Fig. 6.5. Each horizontal strip of constant
height tiles, which are the basis functions of a single FWT scale, increases logarithmi-
cally in height as you move up the frequency axis. To obtain greater control over the
partitioning of the time-frequency plane (e.g., to get smaller bandwidths for higher
frequencies), the FWT must be generalized to yield a more flexible decomposition

ba
dc
fe

FIGURE 7.32
Modifying a DWT
for edge
detection:
(a) orginal image;
(b) two-scale
DWT with respect
to 4th-order sym-
lets; (c) modified
DWT with the
approximation set
to zero; (d) the
inverse DWT
of (c); (e) modi-
fied DWT with
the approximation
and horizontal
details set to zero;
and (f) the inverse
DWT of (e).
(Note when the
detail coefficients
are zero, they
are displayed as
middle gray; when
the approxima-
tion coefficients
are zeroed, they
display as black.)

DIP4E_GLOBAL_Print_Ready.indb 526 6/16/2017 2:10:15 PM

7.10 Wavelet Transforms 527

called a wavelet packet (Coifman and Wickerhauser [1992]). The cost of this gen-
eralization is an increase in computational complexity from O(N) for the FWT to
O(N log2 N) for a wavelet packet.

Consider again the three-scale filter bank of Fig. 7.24(a), but imagine the decom-
position as a binary tree. Figure 7.33(a) details the structure of that tree, and links
the appropriate FWT scaling and wavelet coefficients from Fig. 7.24(a) to the tree’s
nodes. The root node is assigned the highest-scale approximation coefficients, which
are samples of the function itself, while the leaves inherit the transform’s approxi-
mation and detail coefficient outputs. Two intermediate nodes, T J kw(,)− 1 and
T J kw(,),− 2 are filter-bank approximations that are subsequently filtered to become
four additional leaf nodes. Note the coefficients of each node are the weights of a
linear expansion that produces a bandlimited “piece” of root node f x(). Because
any such piece is an element of a known scaling or wavelet subspace, we can replace
the generating coefficients in Fig. 7.33(a) by the corresponding subspace. The result
is the subspace analysis tree of Fig. 7.33(b).

Analysis trees provide a compact and informative way of representing multiscale
wavelet transforms. They are simple to draw, take less space than their correspond-
ing filter and subsampler-based block diagrams, and make it relatively easy to detect
valid decompositions. The three-scale analysis tree of Fig. 7.33(b), for example, sug-
gests three possible expansion options:

 V V WJ J J= − −1 1{ (7-156)

 V V W WJ J J J= − − −2 2 1{ { (7-157)

 V V W W WJ J J J J= − − − −3 3 2 1{ { { (7-158)

They correspond to the one-, two-, and three-scale FWT decompositions of a 1-D
function. A valid decomposition requires one approximation term (or scaling sub-
space) and enough detail components (or wavelet subspaces) to cover the spectrum
of Fig. 7.24(b). In general, a P-scale FWT analysis tree supports P unique decompo-
sitions.

Analysis trees are also an efficient mechanism for representing wavelet packets,
which are nothing more than conventional wavelet transforms with the details fil-
tered iteratively. Thus, the three-scale FWT analysis tree of Fig. 7.33(b) becomes the

Recall that { denotes
the union of spaces (like
the union of sets). Equa-
tions (7-156) through
(7-158) can be derived by
the repeated application
of Eq. (7-128).

ba

FIGURE 7.33
An (a) coef-
ficient tree and
(b) analysis tree
for the two-scale
FWT analysis
bank of Fig. 7.24.

VJ

VJ −1 WJ −1

VJ −2 WJ −2

VJ −3 WJ −3

T J k f xw(,) ()=

T J kw(,)− 1 T J kc(,)− 1

T J kw(,)− 2 T J kc(,)− 2

T J kw(,)− 3 T J kc(,)− 3

DIP4E_GLOBAL_Print_Ready.indb 527 6/16/2017 2:10:16 PM

528 Chapter 7 Wavelet and Other Image Transforms

three-scale wavelet packet tree of Fig. 7.34. Note the additional subscripting that
must be introduced. The first subscript of each double-subscripted node identifies
the scale of the FWT parent node from which it is descended. The second, a variable
length string of “A”s and “D”s, encodes the path from the parent node to the node
being examined. An “A” designates approximation filtering, while a “D” indicates
detail filtering. Subspace node WJ −1, ,DA for example, is obtained by “filtering” the
scale J − 1 FWT coefficients (i.e., parent WJ −1 in Fig. 7.34) through an additional
detail filter (yielding WJ −1,D), followed by an approximation filter (giving WJ −1,DA).
Figures 7.35(a) and (b) are the filter-bank and spectrum-splitting characteristics of
the analysis tree in Fig. 7.34, respectively. Note the “naturally ordered” outputs of
the filter bank in Fig. 7.35(a) have been reordered based on frequency content in
Fig. 7.35(b) (see Problem 7.46 for more on “frequency ordered” wavelets).

The three-scale packet tree in Fig. 7.34 almost triples the number of decomposi-
tions (and associated time-frequency tilings) that are possible with the three-scale
FWT tree. Recall that in a normal FWT, we split, filter, and downsample the lowpass
bands alone. This creates a fixed logarithmic (base 2) relationship between the band-
widths of the scaling and wavelet spaces used in the representation of a function [see
Figure 7.24(b)]. Thus, while the three-scale FWT analysis tree of Fig. 7.24(a) offers
three possible decompositions—defined by Eqs. (7-156) to (7-158)—the wavelet
packet tree of Fig. 7.34 supports 26 different decompositions. For instance, VJ and
therefore function f x() can be expanded as

V V W W W W

W W W
J J J J J J

J J J

= − − − − −

− − −

3 3 2 2 1

1 1 1

{ { { {
{ { {

, , ,

, , ,

A D AA

AD DA DD

 (7-159)

whose spectrum is shown in Fig. 7.35(b), or as

 V V W W WJ J J J J= − − − −1 1 1 1{ { {, , ,A DA DD (7-160)

whose spectrum is depicted in Fig. 7.36. Note the difference between this last spec-
trum and the full packet spectrum of Fig. 7.35(b), or the three-scale FWT spectrum

Recall that { denotes
the union of spaces (like
the union of sets). The 26
decompositions associ-
ated with Fig. 7.34 are
determined by various
combinations of nodes
(spaces) that can be
combined to represent
the root node (space)
at the top of the tree.
Eqs. (7-159) and (7-160)
define two of them.

FIGURE 7.34
A three-scale
wavelet packet
analysis tree.

VJ

VJ −1 WJ −1

VJ −2 WJ −2

VJ −3 WJ −3

WJ −1,A WJ −1,D

WJ −2,A WJ −2,D WJ −1,AA WJ −1,AD WJ −1,DA WJ −1,DD

DIP4E_GLOBAL_Print_Ready.indb 528 6/16/2017 2:10:16 PM

7.10 Wavelet Transforms 529

of Fig. 7.24(b). In general, P-scale, 1-D wavelet packet transforms (and associated
P + 1-level analysis trees) support

 D P D P() ()+ = [] +1 12 (7-161)

unique decompositions, where D(1) = 1. With such a large number of valid expan-
sions, packet-based transforms provide improved control over the partitioning of the

b
a

FIGURE 7.35
The (a) filter
bank and
(b) spectrum-
splitting char-
acteristics of a
three-scale full
wavelet packet
analysis tree.

� h n1() 2 ↓

2 ↓

2 ↓� h n0() VJ −1

WJ −1

WJ −1,D

WJ −1,A

WJ −2

VJ −2

WJ −1,DD

WJ −1,DA

WJ −1,AD

WJ −1,AA

WJ −2,D

WJ −2,A

WJ −3

VJ −3

H()v

v
pp 2p 4p 80

VJ

VJ −1 WJ −1

VJ −2 WJ −2 WJ −1,D WJ −1,A

VJ −3 WJ −3 WJ −2,D WJ −2,A WJ −1,DA WJ −1,DD WJ −1,AD WJ −1,AA

f x VJ() H

� h n1() 2 ↓

� h n1() 2 ↓

� h n1()

� h n1() 2 ↓

� h n1() 2 ↓

� h n1() 2 ↓

2 ↓� h n0()

2 ↓� h n0()

2 ↓� h n0()

2 ↓� h n0()

2 ↓� h n0()

2 ↓� h n0()

FIGURE 7.36
The spectrum of
the decomposition
in Eq. (7-160).

0

H()v

v
pp 2

VJ −1 WJ −1,AWJ −1,DA WJ −1,DD

3 4p5 8p

DIP4E_GLOBAL_Print_Ready.indb 529 6/16/2017 2:10:17 PM

530 Chapter 7 Wavelet and Other Image Transforms

spectrum of the decomposed function. The cost of this control is an increase in com-
putational complexity. Compare the filter bank in Fig. 7.35(a) to that of Fig. 7.24(a).

Now consider the 2-D, four-band filter bank of Fig. 7.29(a). As was noted earlier, it
splits approximation T j k lw(, ,)+ 1 into outputs T j k lw(, ,), T j k lc

H (, ,), T j k lc
V (, ,), and

T j k lc
D(, ,). As in the 1-D case, it can be “iterated” to generate P-scale transforms

at scales j J J J P= − − −1 2, , , ,… with T J k l f x yw(, ,) (,).= The spectrum resulting
from the first iteration, with j J+ =1 in Fig. 7.29(a), is shown in Fig. 7.37(a). Note it
divides the frequency plane into four equal areas. The low-frequency quarter-band
in the center of the plane coincides with transform coefficients T J k lw(, ,)− 1 and
scaling space VJ −1. This nomenclature is consistent with the 1-D case. To accom-
modate the 2-D nature of the input, however, we now have three (rather than one)
wavelet subspaces. They are denoted WJ −1

H , WJ −1
V , and WJ −1

D and correspond to coef-
ficients T J k lc

H (, ,),− 1 T J k lc
V (, ,),− 1 and T J k lc

D(, ,),− 1 respectively. Figure 7.37(b)
shows the resulting four-band, single-scale quaternary FWT analysis tree. Note the
superscripts that link the wavelet subspace designations to their transform coef-
ficient counterparts.

Figure 7.38 shows a portion of a three-scale, 2-D wavelet packet analysis tree. Like
its 1-D counterpart in Fig. 6.34, the first subscript of every node that is a descendant
of a conventional FWT detail node is the scale of the parent detail node. The second
subscript, a variable length string of “A”s, “H”s, “V”s, and “D”s, encodes the path
from the parent node to the node under consideration. The node labeled WJ −1, ,VD

H
for example, is obtained by “row/column filtering” the scale J − 1 FWT horizontal
detail coefficients (i.e., parent WJ −1

H in Fig. 7.38) through an additional detail/approx-
imation filter (yielding WJ −1,V

H), followed by a detail/detail filter (giving WJ −1,VD
H). A

P-scale, 2-D wavelet packet tree supports

 D P D P() ()+ = [] +1 14 (7-162)

unique expansions, where D(1) = 1. Thus, the three-scale tree of Fig. 7.38 offers
83,522 possible decompositions. The problem of selecting among them is the subject
of the next example.

−p

−p

p

p

vhorizontal

vvertical

VJ

VJ −1 WJ −1
DWJ −1

H WJ −1
V

VJ −1WJ −1
H WJ −1

H

WJ −1
V

WJ −1
VWJ −1

D WJ −1
D

WJ −1
DWJ −1

D

ba

FIGURE 7.37
The first decom-
position of a 2-D
FWT: (a) the
spectrum and
(b) the subspace
analysis tree.

DIP4E_GLOBAL_Print_Ready.indb 530 6/16/2017 2:10:19 PM

7.10 Wavelet Transforms 531

EXAMPLE 7.24 : Two-dimensional wavelet packet decompositions.

As noted in the above discussion, a single wavelet packet tree presents numerous decomposition options.
In fact, the number of possible decompositions is often so large that it is impractical, if not impossible,
to enumerate or examine them individually. An efficient algorithm for finding optimal decompositions
with respect to application specific criteria is highly desirable. As will be seen, classical entropy- and
energy-based cost functions are applicable in many situations and are well-suited for use in binary and
quaternary tree searching algorithms.

Consider the problem of reducing the amount of data needed to represent the 400 480× fingerprint
image in Fig. 7.39(a). Image compression is discussed in detail in Chapter 8. In this example, we want to
select the “best” three-scale wavelet packet decomposition as a starting point for the compression pro-
cess. Using three-scale wavelet packet trees, there are 83,522 [per Eq. (7-162)] potential decompositions.
Figure 7.39(b) shows one of them—a full wavelet packet, 64-leaf decomposition like the analysis tree
of Fig. 7.38. Note the leaves of the tree correspond to the subbands of the 8 8× array of decomposed
subimages in Fig. 7.39(b). The probability that this particular 64-leaf decomposition is in some way opti-
mal for the purpose of compression, however, is relatively low. In the absence of a suitable optimality
criterion, we can neither confirm nor deny it.

One reasonable criterion for selecting a decomposition for the compression of the image of Fig. 7.39(a)
is the additive cost function

 E f f x y
x y

() = ()∑ ,
,

 (7-163)

This function provides one possible measure† of the energy content of 2-D function f. Under this mea-
sure, the energy of function f x y(,) = 0 for all x and y is 0. High values of E on the other hand, are indica-
tive of functions with many nonzero values. Since most transform-based compression schemes work
by truncating or thresholding the small coefficients to zero, a cost function that maximizes the number
of near-zero values is a reasonable criterion for selecting a “good” decomposition from a compression
point of view.

† Other possible energy measures include the sum of the squares of f x y(,), the sum of the log of the squares, etc.
Problem 7.48 defines one possible entropy-based cost function.

FIGURE 7.38 A three-scale, full wavelet packet decomposition tree. Only a portion of the tree is provided.

VJ

VJ −1 WJ −1
DWJ −1

H WJ −1
V

VJ −2

VJ −3

WJ −2
H

WJ −3
H WJ −3

V WJ −3
D

WJ −1,V
H

WJ −2,A
H WJ −2,H

H WJ −1,VA
H WJ −1,VD

HWJ −1,VH
H WJ −1,VV

HWJ −2,V
H WJ −2,D

H

DIP4E_GLOBAL_Print_Ready.indb 531 6/16/2017 2:10:20 PM

532 Chapter 7 Wavelet and Other Image Transforms

The cost function just described is both computationally simple and easily adapted to tree optimi-
zation routines. The optimization algorithm must use the function to minimize the “cost” of the leaf
nodes in the decomposition tree. Minimal energy leaf nodes should be favored because they have more
near-zero values, which leads to greater compression. Because the cost function of Eq. (7-163) is a local
measure that uses only the information available at the node under consideration, an efficient algorithm
for finding minimal energy solutions is easily constructed as follows:

For each node of the analysis tree, beginning with the root and proceeding level by level to the leaves:

1. Compute both the energy of the node, denoted EP (for parent energy), and the energy of its four
offspring—denoted as EA, EH, EV, and ED. For two-dimensional wavelet packet decompositions,
the parent is a two-dimensional array of approximation or detail coefficients; the offspring are the
filtered approximation, horizontal, vertical, and diagonal details.

2. If the combined energy of the offspring is less than the energy of the parent (that is, EA + EH + EV
+ ED < EP), include the offspring in the analysis tree. If the combined energy of the offspring is
greater than or equal to that of the parent, prune the offspring, keeping only the parent. It is a leaf
of the optimized analysis tree.

The preceding algorithm can be used to (1) prune wavelet packet trees or (2) design procedures for com-
puting optimal trees from scratch. In the latter case, nonessential siblings—descendants of nodes that

ba

FIGURE 7.39 (a) A scanned fingerprint and (b) its three-scale, full wavelet packet decomposition. Although the 64
subimages of the packet decomposition appear to be square (e.g., note the approximation subimage), this is merely
an aberration of the program used to produce the result. (Original image courtesy of the National Institute of Stan-
dards and Technology.)

DIP4E_GLOBAL_Print_Ready.indb 532 6/16/2017 2:10:20 PM

 Summary, References, and Further Reading 533

would be eliminated in Step 2 of the algorithm—would not be computed. Figure 7.40 shows the opti-
mized decomposition that results from applying the algorithm just described to the image of Fig. 7.39(a)
with the cost function of Eq. (7-163). Note many of the original full packet decomposition’s 64 subbands
in Fig. 7.39(b) have been eliminated. In addition, the subimages that are not split (further decomposed)
in Fig. 7.40 are relatively smooth and composed of pixels that are middle gray in value. Because all
but the approximation subimage of this figure have been scaled so that gray level 128 indicates a zero-
valued coefficient, these subimages contain little energy. There would be no overall decrease in energy
realized by splitting them.

The preceding example is based on a real-world problem that was solved through the use of wave-
lets. The Federal Bureau of Investigation (FBI) currently maintains a large database of fingerprints,
and has established a wavelet-based national standard for the digitization and compression of finger-
print images (FBI [1993]). Using Cohen-Daubechies-Feauveau (CDF) biorthogonal wavelets (Cohen,
Daubechies, and Feauveau [1992]), the standard achieves a typical compression ratio of 15:1. Table 7.2
details the required analysis filter coefficients. Because the scaling and wavelet functions of the CDF
family are symmetrical and have similar lengths, they are among the most widely used biorthogonal
wavelets. The advantages of wavelet-based compression over the more traditional JPEG approach are
examined in Chapter 8.

Summary, References, and Further Reading
The material in this chapter establishes a solid mathematical foundation for understanding and accessing the role
of image transforms, including the discrete wavelet transform, in image processing. We approach transforms as
series expansions in which the transform coefficients are inner products of a set of orthonormal or biorthonormal
basis functions and the images being transformed. For many transforms, these inner products can be implemented

FIGURE 7.40
An optimal
wavelet packet
decomposition for
the fingerprint of
Fig. 7.39(a).

DIP4E_GLOBAL_Print_Ready.indb 533 6/16/2017 2:10:20 PM

534 Chapter 7 Wavelet and Other Image Transforms

as straightforward matrix operations. Further reading on the matrix formulation of image transforms is available in
books like those of Andrews [1970] and Wang [2012], and in the original papers on the transforms themselves. See,
for example, the original papers on the Haar transform (Haar [1910]), Walsh transform (Walsh [1923]), Hadamard
transform (Hadamard [1893]), and the slant transform (Pratt, Chen, and Welch [1974]).

There are many good texts on wavelets and their application. Several complement our treatment and were relied
upon during the development of the wavelet transform section of the chapter. Included among them are the books
by Vetterli and Kovacevic [1995] and Burrus, Gopinath, and Guo [1998]. A partial listing of the imaging applica-
tions that have been approached from a wavelet point of view includes image matching, registration, segmentation,
denoising, restoration, enhancement, compression (see Chapter 8), morphological filtering, and computed tomog-
raphy. The history of wavelet analysis is recorded in a book by Hubbard [1998]. The early predecessors of wavelets
were developed simultaneously in different fields and unified in a paper by Mallat [1987]. It brought a mathematical
framework to the field. Much of the history of wavelets can be traced through the works of Meyer [1987] [1990]
[1992a, 1992b] [1993], Mallat [1987] [1989a–c] [1998], and Daubechies [1988] [1990] [1992] [1993] [1996]. Finally,
there have been a number of special issues devoted to wavelets, including a special issue on wavelet transforms and
multiresolution signal anaysis in the IEEE Transactions on Information Theory [1992], a special issue on wavelets
and signal processing in the IEEE Transactions on Signal Processing [1993], and a special section on multiresolution
representation in the IEEE Transactions on Pattern Analysis and Machine Intelligence [1989]. All of the examples in
the chapter were done using MATLAB (see Gonzalez et al. [2004]).

Problems
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book
website: www.ImageProcessingPlace.com).

7.1 Given column vectors

 s s s0 1 2

1

2

1

1

0

1

1

1

1

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥-

-

(a) Prove that s0, s1, and s2 are orthogonal.

(b) * Are they orthonormal? If not, normalize
them to create a transformation matrix of

orthonormal vectors.

(c) Using the result of (b), write an orthogonal
transformation matrix for s0, s1, and s2.

(d) Compute the transform of column vector
f = []3 6 5- .

(e) Compute the inverse transform of the result
in (d).

n h0(n) h1(n) n h0(n) h1(n)

0 0 0 9 0.825923 0.417849

1 0.001909 0 10 0.420796 0.040368

2 −0 001914. 0 11 −0 094059. −0 078722.

3 −0 016991. 0.014427 12 −0 077263. −0 014468.

4 0.011935 −0 014468. 13 0.049733 0.0144263

5 0.049733 −0 078722. 14 0.011935 0

6 −0 077263. 0.040368 15 −0 016991. 0

7 −0 094059. 0.417849 16 −0 0019. 0

8 0.420796 −0 758908. 17 0.0019 0

TABLE 7.2
Biorthogonal
Cohen-
Daubechies-
Feauveau recon-
struction and
decomposition
filter coefficients
with 6 and 8 van-
ishing moments,
respectively.
(Cohen,
Daubechies,
and Feauveau
[1992]).

DIP4E_GLOBAL_Print_Ready.indb 534 6/16/2017 2:10:22 PM

http://www.ImageProcessingPlace.com

 Problems 535

7.2 Prove Eq. (7-23).

7.3 * Prove that r x u s x u(,) (,)= in Eqs. (7-16) and
(7-17) for real, orthonormal basis vectors.

7.4 Prove that if A*TA = I, the associated expansion
functions are orthonormal.

7.5 Prove that matrix A3 in Example 7.3 is an orthog-
onal transformation matrix.

7.6 Prove that orthogonal transformations preserve
inner products.

7.7 Using Eqs. (7-4) and (7-5),

(a) Find the norm of f = []3 2 1+ -j j
T .

(b) Find the norm of g = []0 707 0 707. . .- T

(c) Find the angle between h = []0 707 0 707. . T
and g.

(d) * Find the norm of f x x() cos .=

(e) Find the angle between f from (d) and
g x x() sin .=

(f) Are f and g orthogonal to one another?

(g) Are f and g orthonormal?

7.8 Using the results from Problem 7.1(c)–(e) and
column vector g = []2 7 1 :

(a) Compute the angle between f and g.

(b) Compute the distance between f and g. Hint:
The distance between vectors f and g is

 d = f g f g- -,

(c) * Show that angles and distances are preserved
by this orthogonal transform.

7.9 Compute the inverse transform of T in Exam-
ple 7.3.

7.10 Prove that the set of sinusoidal expansion func-
tions 1 2 2, cos , sin , cos , sin ,x x x x …{ } are orthog-
onal on the interval −[]p p, .

7.11 Compute the expansion coefficients of 2-tuple
7 1[]T and write the corresponding expansions

for the following bases:

(a) * s s0 10 707 0 707 0 707 0 707= [] = []. . , . .T T-
on the set of real 2-tuples.

(b) s s0 11 0 1 1= [] = []T T, and the dual vectors
s s0 11 1 0 1
' '-= [] = []T T, .

7.12 Are expansion functions

s s s0 1 2

0 5

0 5

0 5

0 5

0 5

0 5

0 5

0 5

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

.

.

.

.

.

.

.

-
-

==

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 5

0 5

0 5

0 5

0 5

0 5

0 5

0 5

3

.

.

.

.

.

.

.

.

-

-

-
-

s

orthonormal? If so, write the corresponding
orthogonal transformation matrix.

7.13 If f = []4 3 2 1- T, find the transform of f using
the transformation matrix of Problem 7.12. Then
compute the inverse and show that the transform
is reversable.

7.14 Given the 2-D matrix

 F =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

4 4 4 0 5

3 1 5 0 5

2 4 8 0 5

1 3 3 1 5

-
- -

- -
- -

.

.

.

.

(a) Compute the transform of F with respect to
the transformation matrix of Problem 7.12.

(b) * Using the 1-D transform computed in Prob-
lem 7.13, explain how a 2-D transform is
computed as two 1-D transforms.

(c) Compute the 2-D inverse transform of the
result from (a).

7.15 Prove that expansion functions

u u

u u

0 1

0 1

2 2

2 2

1

0 5

2 3

2 2 3

2 3

2 3

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢

-

-' '

.

⎤⎤

⎦
⎥

are biorthonormal. Then show by example
whether inner products, angles, and distances are
preserved by the transform.

7.16 Prove that A and A
'

 in Example 7.5 are biortho-
normal.

(a) Using biorthonormal matrices A and A
'

 of
Example 7.5, compute the transform of 4 4*
array

 F =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

DIP4E_GLOBAL_Print_Ready.indb 535 6/16/2017 2:10:23 PM

536 Chapter 7 Wavelet and Other Image Transforms

(b) Compute the inverse transform of the result
in (a).

7.17 * Write a pair of 2-D transform matrix equations
for rectangular arrays and complex orthonormal
expansion functions.

7.18 Write a pair of 2-D transform matrix equations
for complex biorthonormal expansion functions.

7.19 Show that Eq. (7-59) of Example 7.6 is equivalent
to sin().2px

7.20 * Prove that the DFT expansion functions of
Eq. (7-56) are orthonormal.

7.21 Prove Eq. (7-52).

7.22 Beginning with a series expansion of the expan-
sion functions defined in Eq. (7-56), derive an
expression for the discrete Fourier transform.

7.23 Given standard basis vectors e0 1 0= []T and
e1 0 1= []T of inner product space R2 and an
arbitrary vector r of length r and angle u, compute
the single-point cross-correlation of r with both
e0 and e1. When does r resemble e0 more than e1
and vice versa?

7.24 * Prove that the Fourier transform of time-scaled
wavelet c()2s t is given by Eq. (7-73).

7.25 Prove Eq. (7-80).

7.26 Obtain the Hartley transfomation matrix for
N = 4.

7.27 Write a pair of discrete cosine transform equa-
tions of the form given in Eqs. (7-57) and (7-58)
for the discrete Fouier transform.

7.28 Because the 2-D discrete cosine transform is
separable, the 2-D DCT of an image can be com-
puted by row and column passes with a 1-D DCT
algorithm. In fact, an interesting property of the
1-D DCT is that it can be computed by using the
FFT algorithm. Show in detail how this computa-
tion can be made.

7.29 Do the following:

(a) Compute the Fourier, sine, cosine and Hart-
ley transformation matrices of size N = 6.

(b) Compute the Hartley transform of the dis-
crete function f x() { , , , , , }= − − −2 5 3 1 0 3
using Eq. (7-28).

(c) Compute the Hartley transform of the func-
tion in (b) from its discrete Fourier transform.

Is it equal to the result in (b)?

(d) Use Eqs. (7-86) through (7-89) to compute
the DCT of f(x) = [3, -6, 1].

(e) Use Eq. (7-28) to compute the DST of the
function in (b).

7.30 Compute the basis images of the Haar transform
for N = 2.

7.31 Create a table mapping the rows of Hadamard-
ordered transformation matrix H16 to sequency-
ordered Hadamard transformation matrix ′H16.

7.32 Obtain the slant transformation matrix for N = 8.

7.33 Derive the Haar scaling coefficients from
Eqs. (7-122) and (7-126).

7.34 Show that scaling function

 w()
. .

x
x

=
⎧
⎨
⎩

1 0 25 0 75

0

≤ <
elsewhere

does not satisfy the second requirement of a mul-
tiresolution analysis.

7.35 * Derive Eq. (7-140).

7.36 Write an expression for scaling space V3 as a
function of scaling function w().x Use the Haar
scaling function definition of Eq. (7-122) to draw
the Haar V3 scaling functions at translations
k = { }0 1 2, , .

7.37 * Draw wavelet c3 3, ()x for the Haar wavelet func-
tion. Write an expression for c3 3, ()x in terms of
Haar scaling functions.

7.38 Suppose function f x() is a member of Haar scal-
ing space V3—that is, f x V() .H 3 Use Eq. (7-128) to
express V3 as a function of scaling space V0 and
any required wavelet spaces. If f x() is 0 outside
the interval [0, 1), sketch the scaling and wavelet
functions required for a linear expansion of f x()
based on your expression.

7.39 Compute the first four terms of the wavelet series
expansion of the function used in Example 7.18
with starting scale j0 1= . Write the resulting
expansion in terms of the scaling and wavelet
functions involved. How does your result com-
pare to the example, where the starting scale was
j0 0= ?

7.40 The DWT in Eqs. (7-137) and (7-138) is for a
starting scale j0 0= .

DIP4E_GLOBAL_Print_Ready.indb 536 6/16/2017 2:10:25 PM

 Problems 537

(a) * Rewrite these equations for any starting
scale j J0 ≤ .

(b) Recompute the 1-D DWT of function
f x() , , ,= { }1 4 3 0− for 0 3≤ ≤x in Exam-
ple 7.19 with j0 1= (rather than 0).

(c) Use the result from (b) to compute f ()1 from
the transform values.

7.41 * Draw the FWT filter bank required to compute
the transform in Problem 7.40. Label all inputs
and outputs with the appropriate sequences.

7.42 The computational complexity of an N-point fast
wavelet transform is O(N). That is, the number of
operations is proportional N. What determines
the constant of proportionality?

7.43 Answer the following:

(a) * If the input to the three-scale FWT filter
bank of Fig. 7.24(a) is the Haar scaling func-
tion w()x = 1 for n = 0, 1, …, 7 and 0 else-
where, what is the resulting transform with
respect to Haar wavelets?

(b) What is the transform if the input is the corre-
sponding Haar wavelet function c() , ,x = {1 1
1 1 1 1 1 1, , , , ,− − − − } for n = 0, 1, …, 7?

(c) What input sequence produces transform
1 0 0 0 0 0 0, , , , , , ,B{ } with nonzero coefficient

T Bc(,)2 2 = ?

7.44 Compute the 2-D wavelet transform with respect
to Haar wavelets of the 2 2× image

3 1

6 2

−⎡

⎣
⎢

⎤

⎦
⎥

Draw the required filter bank and label all inputs
and outputs with the proper arrays.

7.45 * In the Fourier domain

f x x y y F u v e ux M vy N(,) (,) ()− − −
0 0

2 0 0⇔ +p

and translation does not affect the display of
F u v(,) . Using the following sequence of images,
explain the translation property of wavelet trans-
forms. The top left image contains two 32 32×
white squares centered on a 128 28× 1 gray back-
ground. The top right image is its single-scale
wavelet transform with respect to Haar wavelets.

The bottom left image is the wavelet transform of
the original image after shifting its 32 pixels to the
right and downward, and the final (bottom right)
image is the wavelet transform of the original
image after it has been shifted one pixel to the
right and downward.

7.46 The following table shows the Haar wavelet and
scaling functions for a four-scale fast wavelet
transform. Sketch the additional basis functions
needed for a full three-scale packet decomposi-
tion. Give the mathematical expression or expres-
sions for determining them. Then order the basis
functions according to frequency content and
explain the results.

V0

W0V1

V2 W1

V3 W2 W2,D

W2,A

W1,A

W2,AA

W2,AD

W2,DA

W2,DD

W1,D

7.47 A wavelet packet decomposition of the vase from
Fig. 7.30(a) is shown below.

(a) Draw the corresponding decomposition anal-

DIP4E_GLOBAL_Print_Ready.indb 537 6/16/2017 2:10:27 PM

538 Chapter 7 Wavelet and Other Image Transforms

ysis tree, labeling all nodes with the names of
the proper scaling and wavelet spaces.

(b) Draw and label the decomposition’s fre-
quency spectrum.

7.48 Using the Haar wavelet, determine the minimum
entropy packet decomposition for the function
for f x() .= 0 25 for n = 0, 1, …, 15. Employ the
nonnormalized Shannon entropy

 E f x f x f x
x

() ()ln ()[] = ⎡⎣ ⎤⎦∑ 2 2

as the minimization criterion. Draw the opti-
mal tree, labeling the nodes with the computed
entropy values.

DIP4E_GLOBAL_Print_Ready.indb 538 6/16/2017 2:10:27 PM

539

8 Image Compression and
Watermarking

Preview
Image compression, the art and science of reducing the amount of data required to represent an image,
is one of the most useful and commercially successful technologies in the field of digital image process-
ing. The number of images that are compressed and decompressed daily is staggering, and the compres-
sions and decompressions themselves are virtually invisible to the user. Everyone who owns a digital
camera, surfs the web, or streams the latest Hollywood movies over the Internet benefits from the algo-
rithms and standards that will be discussed in this chapter. The material, which is largely introductory in
nature, is applicable to both still-image and video applications. We will introduce both theory and prac-
tice, examining the most frequently used compression techniques, and describing the industry standards
that make them useful. The chapter concludes with an introduction to digital image watermarking, the
process of inserting visible and invisible data (such as copyright information) into images.

Upon competion of this chapter, students should:
 Be able to measure the amount of informa-

tion in a digital image.

 Understand the main sources of data redun-
dancy in digital images.

 Know the difference between lossy and error-
free compression, and the amount of com-
pression that is possible with each.

 Be familiar with the popular image compres-
sion standards, such as JPEG and JPEG-2000,
that are in use today.

 Understand the principal image compression
methods, and how and why they work.

 Be able to compress and decompress grayscale,
color, and video imagery.

 Know the difference between visible, invisible,
robust, fragile, public, private, restricted-key,
and unrestricted-key watermarks.

 Understand the basics of watermark insertion
and extraction in both the spatial and trans-
form domain.

But life is short and information endless ... Abbreviation is a
necessary evil and the abbreviator’s business is to make the best of
a job which, although bad, is still better than nothing.

Aldous Huxley
The Titanic will protect itself.

Robert Ballard

DIP4E_GLOBAL_Print_Ready.indb 539 6/16/2017 2:10:27 PM

540 Chapter 8 Image Compression and Watermarking

8.1 FUNDAMENTALS

The term data compression refers to the process of reducing the amount of data
required to represent a given quantity of information. In this definition, data and
information are not the same; data are the means by which information is conveyed.
Because various amounts of data can be used to represent the same amount of infor-
mation, representations that contain irrelevant or repeated information are said to
contain redundant data. If we let b and ′b denote the number of bits (or information-
carrying units) in two representations of the same information, the relative data
redundancy, R, of the representation with b bits is

 R
C

= 1
1- (8-1)

where C, commonly called the compression ratio, is defined as

 C
b
b

=
′

 (8-2)

If C = 10 (sometimes written 10:1), for instance, the larger representation has 10
bits of data for every 1 bit of data in the smaller representation. The corresponding
relative data redundancy of the larger representation is 0.9 (R = 0.9), indicating that
90% of its data is redundant.

In the context of digital image compression, b in Eq. (8-2) usually is the number of
bits needed to represent an image as a 2-D array of intensity values. The 2-D inten-
sity arrays introduced in Section 2.4 are the preferred formats for human viewing
and interpretation—and the standard by which all other representations are judged.
When it comes to compact image representation, however, these formats are far
from optimal. Two-dimensional intensity arrays suffer from three principal types of
data redundancies that can be identified and exploited:

1. Coding redundancy. A code is a system of symbols (letters, numbers, bits, and
the like) used to represent a body of information or set of events. Each piece of
information or event is assigned a sequence of code symbols, called a code word.
The number of symbols in each code word is its length. The 8-bit codes that are
used to represent the intensities in most 2-D intensity arrays contain more bits
than are needed to represent the intensities.

2. Spatial and temporal redundancy. Because the pixels of most 2-D intensity
arrays are correlated spatially (i.e., each pixel is similar to or dependent upon
neighboring pixels), information is unnecessarily replicated in the representa-
tions of the correlated pixels. In a video sequence, temporally correlated pixels
(i.e., those similar to or dependent upon pixels in nearby frames) also duplicate
information.

3. Irrelevant information. Most 2-D intensity arrays contain information that is
ignored by the human visual system and/or extraneous to the intended use of
the image. It is redundant in the sense that it is not used.

8.1

DIP4E_GLOBAL_Print_Ready.indb 540 6/16/2017 2:10:27 PM

8.1 Fundamentals 541

The computer-generated images in Figs. 8.1(a) through (c) exhibit each of these fun-
damental redundancies. As will be seen in the next three sections, compression is
achieved when one or more redundancy is reduced or eliminated.

CODING REDUNDANCY

In Chapter 3, we developed techniques for image enhancement by histogram pro-
cessing, assuming that the intensity values of an image are random quantities. In this
section, we will use a similar formulation to introduce optimal information coding.

Assume that a discrete random variable rk in the interval 0 1,L -[] is used to rep-
resent the intensities of an M N* image, and that each rk occurs with probability
p rr k(). As in Section 3.3,

 p r
n

MN
k Lr k

k() , , , ,= = 0 1 2 1p - (8-3)

where L is the number of intensity values, and nk is the number of times that the kth
intensity appears in the image. If the number of bits used to represent each value of
rk is l rk(), then the average number of bits required to represent each pixel is

 L l r p rk r k
k

L

avg =
=

∑ () ()
0

1-
 (8-4)

That is, the average length of the code words assigned to the various intensity val-
ues is found by summing the products of the number of bits used to represent each
intensity and the probability that the intensity occurs. The total number of bits
required to represent an M N* image is MNLavg. If the intensities are represented

ba c

FIGURE 8.1 Computer generated 256 256 8* * bit images with (a) coding redundancy, (b) spatial redundancy, and
(c) irrelevant information. (Each was designed to demonstrate one principal redundancy, but may exhibit others
as well.)

DIP4E_GLOBAL_Print_Ready.indb 541 6/16/2017 2:10:28 PM

542 Chapter 8 Image Compression and Watermarking

using a natural m-bit fixed-length code,† the right-hand side of Eq. (8-4) reduces to
m bits. That is, Lavg = m when m is substituted for l rk(). The constant m can be taken
outside the summation, leaving only the sum of the p rr k() for 0 1… … -k L , which,
of course, equals 1.

EXAMPLE 8.1 : A simple illustration of variable-length coding.

The computer-generated image in Fig. 8.1(a) has the intensity distribution shown in the second column
of Table 8.1. If a natural 8-bit binary code (denoted as code 1 in Table 8.1) is used to represent its four
possible intensities, Lavg (the average number of bits for code 1) is 8 bits, because l rk1 8() = bits for all
rk. On the other hand, if the scheme designated as code 2 in Table 8.1 is used, the average length of the
encoded pixels is, in accordance with Eq. (8-4),

 Lavg bits = =0 25 2 0 47 1 0 03 3 1 81. () . () . () .+ +

The total number of bits needed to represent the entire image is MNLavg = 256 56 1 81* * . , or 118,621.
From Eqs. (8-2) and (8-1), the resulting compression and corresponding relative redundancy are

 C = = ≈
256 256 8

118 621
8

1 81
4 42

* *
, .

.

and

 R = =1
1

4 42
0 774-

.
.

respectively. Thus, 77.4% of the data in the original 8-bit 2-D intensity array is redundant.
The compression achieved by code 2 results from assigning fewer bits to the more probable inten-

sity values than to the less probable ones. In the resulting variable-length code, r128 (the image’s most
probable intensity) is assigned the 1-bit code word 1 [of length l2 128 1() =],while r255 (its least probable
occurring intensity) is assigned the 3-bit code word 001 [of length l2 255 3() =]. Note that the best fixed-
length code that can be assigned to the intensities of the image in Fig. 8.1(a) is the natural 2-bit count-
ing sequence 00 01 10 11, , , ,{ } but the resulting compression is only 8 2 or 4:1—about 10% less than the
4.42:1 compression of the variable-length code.

As the preceding example shows, coding redundancy is present when the codes
assigned to a set of events (such as intensity values) do not take full advantage of
the probabilities of the events. Coding redundancy is almost always present when
the intensities of an image are represented using a natural binary code. The reason
is that most images are composed of objects that have a regular and somewhat pre-
dictable morphology (shape) and reflectance, and are sampled so the objects being
depicted are much larger than the picture elements. The natural consequence is that,

† A natural binary code is one in which each event or piece of information to be encoded (such as intensity value)
is assigned one of 2m codes from an m-bit binary counting sequence.

DIP4E_GLOBAL_Print_Ready.indb 542 6/16/2017 2:10:29 PM

8.1 Fundamentals 543

for most images, certain intensities are more probable than others (that is, the his-
tograms of most images are not uniform). A natural binary encoding assigns the
same number of bits to both the most and least probable values, failing to minimize
Eq. (8-4), and resulting in coding redundancy.

SPATIAL AND TEMPORAL REDUNDANCY

Consider the computer-generated collection of constant intensity lines in Fig. 8.1(b).
In the corresponding 2-D intensity array:

1. All 256 intensities are equally probable. As Fig. 8.2 shows, the histogram of the
image is uniform.

2. Because the intensity of each line was selected randomly, its pixels are indepen-
dent of one another in the vertical direction.

3. Because the pixels along each line are identical, they are maximally correlated
(completely dependent on one another) in the horizontal direction.

The first observation tells us that the image in Fig. 8.1(b) (when represented as a
conventional 8-bit intensity array) cannot be compressed by variable-length coding
alone. Unlike the image of Fig. 8.1(a) and Example 8.1, whose histogram was not
uniform, a fixed-length 8-bit code in this case minimizes Eq. (8-4). Observations 2
and 3 reveal a significant spatial redundancy that can be eliminated by representing
the image in Fig. 8.1(b) as a sequence of run-length pairs, where each run-length pair
specifies the start of a new intensity and the number of consecutive pixels that have
that intensity. A run-length based representation compresses the original 2-D, 8-bit

rk pr(rk) Code 1 l1(rk) Code 2 l2(rk)

r87 = 87 0.25 01010111 8 01 2

r128 = 128 0.47 01010111 8 1 1

r186 = 186 0.25 01010111 8 000 3

r255 = 255 0.03 01010111 8 001 3

rk for k = 87, 128, 186, 255 0 — 8 — 0

TABLE 8.1
Example of
variable-length
coding.

FIGURE 8.2
The intensity
histogram of the
image in
Fig. 8.1(b).

0
0

100 250150

256

nk
pr(rk)

k

200

1

256

50

DIP4E_GLOBAL_Print_Ready.indb 543 6/16/2017 2:10:29 PM

544 Chapter 8 Image Compression and Watermarking

intensity array by () [()]256 256 8 256 256 8* * + * or 128:1. Each 256-pixel line of
the original representation is replaced by a single 8-bit intensity value and length
256 in the run-length representation.

In most images, pixels are correlated spatially (in both x and y) and in time (when
the image is part of a video sequence). Because most pixel intensities can be pre-
dicted reasonably well from neighboring intensities, the information carried by a sin-
gle pixel is small. Much of its visual contribution is redundant in the sense that it can
be inferred from its neighbors. To reduce the redundancy associated with spatially
and temporally correlated pixels, a 2-D intensity array must be transformed into a
more efficient but usually “non-visual” representation. For example, run-lengths or
the differences between adjacent pixels can be used. Transformations of this type
are called mappings. A mapping is said to be reversible if the pixels of the original
2-D intensity array can be reconstructed without error from the transformed data
set; otherwise, the mapping is said to be irreversible.

IRRELEVANT INFORMATION

One of the simplest ways to compress a set of data is to remove superfluous data
from the set. In the context of digital image compression, information that is ignored
by the human visual system, or is extraneous to the intended use of an image, are
obvious candidates for omission. Thus, the computer-generated image in Fig. 8.1(c),
because it appears to be a homogeneous field of gray, can be represented by its
average intensity alone—a single 8-bit value. The original 256 256 8* * bit intensity
array is reduced to a single byte, and the resulting compression is ()256 256 8 8* *
or 65,536:1. Of course, the original 256 256 8* * bit image must be recreated to view
and/or analyze it, but there would be little or no perceived decrease in reconstructed
image quality.

Figure 8.3(a) shows the histogram of the image in Fig. 8.1(c). Note that there
are several intensity values (125 through 131) actually present. The human visual
system averages these intensities, perceives only the average value, then ignores the
small changes in intensity that are present in this case. Figure 8.3(b), a histogram-
equalized version of the image in Fig. 8.1(c), makes the intensity changes visible and
reveals two previously undetected regions of constant intensity—one oriented verti-
cally, and the other horizontally. If the image in Fig. 8.1(c) is represented by its aver-
age value alone, this “invisible” structure (i.e., the constant intensity regions) and the
random intensity variations surrounding them (real information) is lost. Whether or
not this information should be preserved is application dependent. If the informa-
tion is important, as it might be in a medical application like digital X-ray archival, it
should not be omitted; otherwise, the information is redundant and can be excluded
for the sake of compression performance.

We conclude this section by noting that the redundancy examined here is fun-
damentally different from the redundancies discussed in the previous two sections.
Its elimination is possible because the information itself is not essential for nor-
mal visual processing and/or the intended use of the image. Because its omission
results in a loss of quantitative information, its removal is commonly referred to as

DIP4E_GLOBAL_Print_Ready.indb 544 6/16/2017 2:10:30 PM

8.1 Fundamentals 545

quantization. This terminology is consistent with normal use of the word, which gen-
erally means the mapping of a broad range of input values to a limited number of
output values (see Section 2.4). Because information is lost, quantization is an irre-
versible operation.

MEASURING IMAGE INFORMATION

In the previous sections, we introduced several ways to reduce the amount of data
used to represent an image. The question that naturally arises is: How few bits are
actually needed to represent the information in an image? That is, is there a mini-
mum amount of data that is sufficient to describe an image without losing infor-
mation? Information theory provides the mathematical framework to answer this
and related questions. Its fundamental premise is that the generation of information
can be modeled as a probabilistic process which can be measured in a manner that
agrees with intuition. In accordance with this supposition, a random event E with
probability P(E) is said to contain

 I E
P E

P E() log
()

log ()= =
1 - (8-5)

units of information. If P(E) = 1 (that is , the event always occurs), I(E) = 0 and no
information is attributed to it. Because no uncertainty is associated with the event,
no information would be transferred by communicating that the event has occurred
[it always occurs if P(E) = 1].

The base of the logarithm in Eq. (8-5) determines the unit used to measure infor-
mation. If the base m logarithm is used, the measurement is said to be in m-ary units.
If the base 2 is selected, the unit of information is the bit. Note that if P(E) = ½,
I E() log= - 2 ½ or 1 bit. That is, 1 bit is the amount of information conveyed when
one of two possible equally likely events occurs. A simple example is flipping a coin
and communicating the result.

Consult the book web-
site for a brief review of
information and prob-
ability theory.

.

ba

FIGURE 8.3
(a) Histogram
of the image in
Fig. 8.1(c) and
(b) a histogram
equalized version
of the image.

Intensity

N
um

be
r

of
 p

ix
el

s

0
0

100 250150

1000

20050

2000

3000

4000

5000

6000

7000

DIP4E_GLOBAL_Print_Ready.indb 545 6/16/2017 2:10:30 PM

546 Chapter 8 Image Compression and Watermarking

Given a source of statistically independent random events from a discrete set of
possible events a a aJ1 1, , ,p{ } with associated probabilities P a P a P aJ(), (), , () ,1 1 p{ }
the average information per source output, called the entropy of the source, is

 H P a P aj j
j

J

=
=
∑- () log ()

1

 (8-6)

The aj in this equation are called source symbols. Because they are statistically inde-
pendent, the source itself is called a zero-memory source.

If an image is considered to be the output of an imaginary zero-memory “inten-
sity source,” we can use the histogram of the observed image to estimate the symbol
probabilities of the source. Then, the intensity source’s entropy becomes

 �H p r p rr k r k
k

L

=
=

∑-
-

() log ()2
0

1

 (8-7)

where variables L, rk, and p rr k() are as defined earlier and in Section 3.3. Because
the base 2 logarithm is used, Eq. (8-7) is the average information per intensity out-
put of the imaginary intensity source in bits. It is not possible to code the intensity
values of the imaginary source (and thus the sample image) with fewer than �H bits/
pixel.

EXAMPLE 8.2 : Image entropy estimates.

The entropy of the image in Fig. 8.1(a) can be estimated by substituting the intensity probabilities from
Table 8.1 into Eq. (8-7):

�H = []- + + +
=

0 25 0 25 0 47 0 47 0 25 0 25 0 03 0 032 2 2 2. log . . log . . log . . log .

-- - + - + - + -0 25 2 0 47 1 09 0 25 2 0 03 5 06

1 6614

. () . (.) . () . (.)

.
[]

≈ bits/ppixel

In a similar manner, the entropies of the images in Fig. 8.1(b) and (c) can be shown to be 8 bits/pixel and
1.566 bits/pixel, respectively. Note that the image in Fig. 8.1(a) appears to have the most visual informa-
tion, but has almost the lowest computed entropy—1.66 bits/pixel. The image in Fig. 8.1(b) has almost
five times the entropy of the image in (a), but appears to have about the same (or less) visual informa-
tion. The image in Fig. 8.1(c), which seems to have little or no information, has almost the same entropy
as the image in (a). The obvious conclusion is that the amount of entropy, and thus information in an
image, is far from intuitive.

Shannon’s First Theorem

Recall that the variable-length code in Example 8.1 was able to represent the inten-
sities of the image in Fig. 8.1(a) using only 1.81 bits/pixel. Although this is higher
than the 1.6614 bits/pixel entropy estimate from Example 8.2, Shannon’s first theo-
rem, also called the noiseless coding theorem (Shannon [1948]), assures us that the

Equation (8-6) is for
zero-memory sources
with J source symbols.
Equation (8-7) uses
probablitiy estimates
for the L - 1 intensity
values in an image.

DIP4E_GLOBAL_Print_Ready.indb 546 6/16/2017 2:10:31 PM

8.1 Fundamentals 547

image in Fig. 8.1(a) can be represented with as few as 1.6614 bits/pixel. To prove
it in a general way, Shannon looked at representing groups of consecutive source
symbols with a single code word (rather than one code word per source symbol),
and showed that

 lim ,

n

nL

n
H

→

⎡

⎣
⎢

⎤

⎦
⎥ =

�

avg (8-8)

where Lavg, n is the average number of code symbols required to represent all n-sym-
bol groups. In the proof, he defined the nth extension of a zero-memory source to
be the hypothetical source that produces n-symbol blocks† using the symbols of the
original source, and computed Lavg, n by applying Eq. (8-4) to the code words used
to represent the n-symbol blocks. Equation (8-8) tells us that L nnavg, can be made
arbitrarily close to H by encoding infinitely long extensions of the single-symbol
source. That is, it is possible to represent the output of a zero-memory source with
an average of H information units per source symbol.

If we now return to the idea that an image is a “sample” of the intensity source
that produced it, a block of n source symbols corresponds to a group of n adjacent
pixels. To construct a variable-length code for n-pixel blocks, the relative frequencies
of the blocks must be computed. But the nth extension of a hypothetical intensity
source with 256 intensity values has 256n possible n-pixel blocks. Even in the simple
case of n = 2, a 65,536 element histogram and up to 65,536 variable-length code
words must be generated. For n = 3, as many as 16,777,216 code words are needed.
So even for small values of n, computational complexity limits the usefulness of the
extension coding approach in practice.

Finally, we note that although Eq. (8-7) provides a lower bound on the compres-
sion that can be achieved when directly coding statistically independent pixels, it
breaks down when the pixels of an image are correlated. Blocks of correlated pixels
can be coded with fewer average bits per pixel than the equation predicts. Rather
than using source extensions, less correlated descriptors (such as intensity run-
lengths) are normally selected and coded without extension. This was the approach
used to compress Fig. 8.1(b) in the section on spatial and temporal redundancy.
When the output of a source of information depends on a finite number of preced-
ing outputs, the source is called a Markov source or finite memory source.

FIDELITY CRITERIA

It was noted earlier that the removal of “irrelevant visual” information involves a
loss of real or quantitative image information. Because information is lost, a means
of quantifying the nature of the loss is needed. Two types of criteria can be used for
such an assessment: (1) objective fidelity criteria, and (2) subjective fidelity criteria.

† The output of the nth extension is an n-tuple of symbols from the underlying single-symbol source. It was con-
sidered a block random variable in which the probability of each n-tuple is the product of the probabilities of
its individual symbols. The entropy of the nth extension is then n times the entropy of the single-symbol source
from which it is derived.

DIP4E_GLOBAL_Print_Ready.indb 547 6/16/2017 2:10:31 PM

548 Chapter 8 Image Compression and Watermarking

When information loss can be expressed as a mathematical function of the input
and output of a compression process, it is said to be based on an objective fidelity
criterion. An example is the root-mean-squared (rms) error between two images.
Let f x y(,) be an input image, and ˆ(,)f x y be an approximation of f x y(,) that results
from compressing and subsequently decompressing the input. For any value of x
and y, the error e x y(,) between f x y(,) and ˆ(,)f x y is

 e x y f x y f x y(,) (,) (,)= ˆ - (8-9)

so that the total error between the two images is

 ˆ(,) (,)f x y f x y
y

N

x

M

-
-- -

⎡
⎣

⎤
⎦

==
∑∑

0

1

0

1

where the images are of size M N* . The root-mean-squared error, erms, between
f x y(,) and ˆ(,)f x y is then the square root of the squared error averaged over the
M N* array, or

 e
MN

f x y f x y
y

N

x

M

rms = ⎡
⎣

⎤
⎦

⎡

⎣
⎢

⎤

⎦
⎥

==
∑∑1 2

0

1

0

1 1 2

ˆ(,) (,)-
-- -

 (8-10)

If ˆ(,)f x y is considered [by a simple rearrangement of the terms in Eq. (8-9)] to be
the sum of the original image f x y(,) and an error or “noise” signal e x y(,), the mean-
squared signal-to-noise ratio of the output image, denoted SNRms, can be defined as
in Section 5.8:

 SNRms =
⎡
⎣

⎤
⎦

==

==

∑∑

∑

ˆ(,)

ˆ(,) (,)

f x y

f x y f x y

y

N

x

M

y

N

x

M

2

0

1

0

1

2

0

1

0

−−

−

−
−−1

∑
 (8-11)

The rms value of the signal-to-noise ratio, denoted SNRrms, is obtained by taking the
square root of Eq. (8-11).

While objective fidelity criteria offer a simple and convenient way to evaluate
information loss, decompressed images are often ultimately viewed by humans.
So, measuring image quality by the subjective evaluations of people is often more
appropriate. This can be done by presenting a decompressed image to a cross section
of viewers and averaging their evaluations. The evaluations may be made using an
absolute rating scale, or by means of side-by-side comparisons of f x y(,) and ˆ(,).f x y
Table 8.2 shows one possible absolute rating scale. Side-by-side comparisons can be
done with a scale such as - - -3 2 1 0 1 2 3, , , , , ,{ } to represent the subjective evaluations
much{ worse, worse, slightly worse, the same, slightly better, better, much better},

respectively. In either case, the evaluations are based on subjective fidelity criteria.

DIP4E_GLOBAL_Print_Ready.indb 548 6/16/2017 2:10:33 PM

8.1 Fundamentals 549

EXAMPLE 8.3 : Image quality comparisons.

Figure 8.4 shows three different approximations of the image in Fig. 8.1(a). Using Eq. (8-10) with
Fig. 8.1(a) as f x y(,) and Figs. 8.4(a) through (c) as ˆ(,),f x y the computed rms errors are 5.17, 15.67,
and 14.17 intensity levels, respectively. In terms of rms error (an objective fidelity criterion), the images
are ranked in order of decreasing quality as (), (), () .a c b{ } A subjective evaluation of the images using
Table 8.2, however, might yield an excellent rating for (a), a marginal rating for (b), and an inferior or
unusable rating for (c). Thus, using a subjective fidelity criteria, (b) is ranked ahead of (c).

IMAGE COMPRESSION MODELS

As Fig. 8.5 shows, an image compression system is composed of two distinct func-
tional components: an encoder and a decoder. The encoder performs compression,
and the decoder performs the complementary operation of decompression. Both
operations can be performed in software, as is the case in Web browsers and many
commercial image-editing applications, or in a combination of hardware and firm-
ware, as in commercial DVD players. A codec is a device or program that is capable
of both encoding and decoding.

Value Rating Description

1 Excellent An image of extremely high quality, as good as you could desire.

2 Fine An image of high quality, providing enjoyable viewing. Interfer-
ence is not objectionable.

3 Passable An image of acceptable quality. Interference is not objectionable.

4 Marginal An image of poor quality; you wish you could improve it. Interfer-
ence is somewhat objectionable.

5 Inferior A very poor image, but you could watch it. Objectionable interfer-
ence is definitely present.

6 Unusable An image so bad that you could not watch it.

TABLE 8.2
Rating scale of
the Television
Allocations Study
Organization.
(Frendendall and
Behrend.)

ba c

FIGURE 8.4 Three approximations of the image in Fig. 8.1(a).

DIP4E_GLOBAL_Print_Ready.indb 549 6/16/2017 2:10:33 PM

550 Chapter 8 Image Compression and Watermarking

Input image f x(,)p is fed into the encoder, which creates a compressed repre-
sentation of the input. This representation is stored for later use, or transmitted for
storage and use at a remote location. When the compressed representation is pre-
sented to its complementary decoder, a reconstructed output image ˆ(,)f x p is gen-
erated. In still-image applications, the encoded input and decoder output are f x y(,)
and ˆ(,),f x y respectively. In video applications, they are f x y t(, ,) and ˆ(, ,),f x y t where
the discrete parameter t specifies time. In general, ˆ(,)f x p may or may not be an
exact replica of f x(,).p If it is, the compression system is called error free, lossless,
or information preserving. If not, the reconstructed output image is distorted, and
the compression system is referred to as lossy.

The Encoding or Compression Process

The encoder of Fig. 8.5 is designed to remove the redundancies described in the
previous sections through a series of three independent operations. In the first stage
of the encoding process, a mapper transforms f x(,)p into a (usually nonvisual) for-
mat designed to reduce spatial and temporal redundancy. This operation generally is
reversible, and may or may not directly reduce the amount of data required to repre-
sent the image. Run-length coding is an example of a mapping that normally yields
compression in the first step of the encoding process. The mapping of an image into
a set of less correlated transform coefficients (see Section 8.9) is an example of the
opposite case (the coefficients must be further processed to achieve compression).
In video applications, the mapper uses previous (and, in some cases, future) video
frames to facilitate the removal of temporal redundancy.

The quantizer in Fig. 8.5 reduces the accuracy of the mapper’s output in accor-
dance with a pre-established fidelity criterion. The goal is to keep irrelevant infor-
mation out of the compressed representation. As noted earlier, this operation is
irreversible. It must be omitted when error-free compression is desired. In video
applications, the bit rate of the encoded output is often measured (in bits/second),
and is used to adjust the operation of the quantizer so a predetermined average
output rate is maintained. Thus, the visual quality of the output can vary from frame
to frame as a function of image content.

Here, the notation
f x(,)p is used to denote
both f x y(,) and f x y t(, ,).

FIGURE 8.5
Functional block
diagram of a
general image
compression
system.

Compressed data
for storage
and transmissionEncoder

Decoder

Symbol
coderQuantizerMapper

Symbol
decoder

Inverse
mapper or

or
f(x, y)

f(x, y, t)

ˆ(,)f x y

ˆ(, ,)f x y t

DIP4E_GLOBAL_Print_Ready.indb 550 6/16/2017 2:10:35 PM

8.1 Fundamentals 551

In the third and final stage of the encoding process, the symbol coder of Fig. 8.5
generates a fixed-length or variable-length code to represent the quantizer output,
and maps the output in accordance with the code. In many cases, a variable-length
code is used. The shortest code words are assigned to the most frequently occur-
ring quantizer output values, thus minimizing coding redundancy. This operation is
reversible. Upon its completion, the input image has been processed for the removal
of each of the three redundancies described in the previous sections.

The Decoding or Decompression Process

The decoder of Fig. 8.5 contains only two components: a symbol decoder and an
inverse mapper. They perform, in reverse order, the inverse operations of the encod-
er’s symbol encoder and mapper. Because quantization results in irreversible infor-
mation loss, an inverse quantizer block is not included in the general decoder model.
In video applications, decoded output frames are maintained in an internal frame
store (not shown) and used to reinsert the temporal redundancy that was removed
at the encoder.

IMAGE FORMATS, CONTAINERS, AND COMPRESSION STANDARDS

In the context of digital imaging, an image file format is a standard way to organize
and store image data. It defines how the data is arranged and the type of compres-
sion (if any) that is used. An image container is similar to a file format, but han-
dles multiple types of image data. Image compression standards, on the other hand,
define procedures for compressing and decompressing images—that is, for reducing
the amount of data needed to represent an image. These standards are the underpin-
ning of the widespread acceptance of image compression technology.

Figure 8.6 lists the most important image compression standards, file formats, and
containers in use today, grouped by the type of image handled. The entries in blue
are international standards sanctioned by the International Standards Organization
(ISO), the International Electrotechnical Commission (IEC), and/or the International
Telecommunications Union (ITU-T)—a United Nations (UN) organization that was
once called the Consultative Committee of the International Telephone and Telegraph
(CCITT). Two video compression standards, VC-1 by the Society of Motion Pictures
and Television Engineers (SMPTE) and AVS by the Chinese Ministry of Information
Industry (MII), are also included. Note that they are shown in black, which is used
in Fig. 8.6 to denote entries that are not sanctioned by an international standards
organization.

Tables 8.3 through 8.5 summarize the standards, formats, and containers listed
in Fig. 8.6. Responsible organizations, targeted applications, and key compression
methods are identified. The compression methods themselves are the subject of Sec-
tions 8.2 through 8.11, where we will describe the principal lossy and error-free com-
pression methods in use today. The focus of these sections is on methods that have
proven useful in mainstream binary, continuous-tone still-image, and video com-
pression standards. The standards themselves are used to demonstrate the methods
presented. In Tables 8.3 through 8.5, forward references to the relevant sections in
which the compression methods are described are enclosed in square brackets.

DIP4E_GLOBAL_Print_Ready.indb 551 6/16/2017 2:10:35 PM

552 Chapter 8 Image Compression and Watermarking

Name Organization Description

Bi-Level Still Images

CCITT
Group 3

ITU-T Designed as a facsimile (FAX) method for transmitting binary documents over
telephone lines. Supports 1-D and 2-D run-length [8.6] and Huffman [8.2] coding.

CCITT
Group 4

ITU-T A simplified and streamlined version of the CCITT Group 3 standard supporting
2-D run-length coding only.

JBIG or
JBIG1

ISO/IEC/
ITU-T

A Joint Bi-level Image Experts Group standard for progressive, lossless compres-
sion of bi-level images. Continuous-tone images of up to 6 bits/pixel can be coded
on a bit-plane basis [8.8]. Context-sensitive arithmetic coding [8.4] is used and an
initial low-resolution version of the image can be gradually enhanced with addi-
tional compressed data.

JBIG2 ISO/IEC/
ITU-T

A follow-on to JBIG1 for bi-level images in desktop, Internet, and FAX applica-
tions. The compression method used is content based, with dictionary-based meth-
ods [8.7] for text and halftone regions, and Huffman [8.2] or arithmetic coding [8.4]
for other image content. It can be lossy or lossless.

Continuous-Tone Still Images

JPEG ISO/IEC/
ITU-T

A Joint Photographic Experts Group standard for images of photographic quality.
Its lossy baseline coding system (most commonly implemented) uses quantized
discrete cosine transforms (DCT) on image blocks [8.9], Huffman [8.2], and run-
length [8.6] coding. It is one of the most popular methods for compressing images
on the Internet.

JPEG-LS ISO/IEC/
ITU-T

A lossless to near-lossless standard for continuous-tone images based on adaptive
prediction [8.10], context modeling [8.4], and Golomb coding [8.3].

JPEG-
2000

ISO/IEC/
ITU-T

A follow-on to JPEG for increased compression of photographic quality images.
Arithmetic coding [8.4] and quantized discrete wavelet transforms (DWT) [8.11]
are used. The compression can be lossy or lossless.

TABLE 8.3
Internationally sanctioned image compression standards. The numbers in brackets refer to sections in this chapter.

FIGURE 8.6
Some popular
image compres-
sion standards,
file formats,
and containers.
Internationally
sanctioned entries
are shown in blue;
all others are in
black.

 Binary

CCITT Group 3 TIFF
CCITT Group 4
JBIG (or JBIG1)
JBIG2

Still Image

Image Compression
Standards, Formats, and Containers

 Video

DV AVS
H.261 HDV
H.262 M-JPEG
H.263 QuickTime
H.264 VC-1 (or WMV9)
HVEC/H.265 WebP VP8
MPEG-1
MPEG-2
MPEG-4
MPEG-4 AVC

 Continuous Tone

JPEG BMP
JPEG-LS GIF
JPEG-2000 PDF
 PNG
 TIFF
 WebP

DIP4E_GLOBAL_Print_Ready.indb 552 6/16/2017 2:10:35 PM

8.2 Huffman Coding 553

8.2 HUFFMAN CODING

One of the most popular techniques for removing coding redundancy is due to Huff-
man (Huffman [1952]). When coding the symbols of an information source individu-
ally, Huffman coding yields the smallest possible number of code symbols per source
symbol. In terms of Shannon’s first theorem (see Section 8.1), the resulting code is
optimal for a fixed value of n, subject to the constraint that the source symbols be
coded one at a time. In practice, the source symbols may be either the intensities of
an image or the output of an intensity mapping operation (pixel differences, run
lengths, and so on).

8.2

With reference to
Tables 8.3–8.5, Huffman
codes are used in

• CCITT
• JBIG2
• JPEG
• MPEG-1, 2, 4
• H.261, H.262,
• H.263, H.264

and other compression
standards.

Name Organization Description

DV IEC Digital Video. A video standard tailored to home and semiprofessional video pro-
duction applications and equipment, such as electronic news gathering and cam-
corders. Frames are compressed independently for uncomplicated editing using a
DCT-based approach [8.9] similar to JPEG.

H.261 ITU-T A two-way videoconferencing standard for ISDN (integrated services digital net-
work) lines. It supports non-interlaced 352 288* and 176 144* resolution images,
called CIF (Common Intermediate Format) and QCIF (Quarter CIF), respectively.
A DCT-based compression approach [8.9] similar to JPEG is used, with frame-to-
frame prediction differencing [8.10] to reduce temporal redundancy. A block-based
technique is used to compensate for motion between frames.

H.262 ITU-T See MPEG-2 below.

H.263 ITU-T An enhanced version of H.261 designed for ordinary telephone modems (i.e.,
28.8 Kb/s) with additional resolutions: SQCIF (Sub-Quarter CIF 128 96*), 4CIF
()704 576* and 16CIF ().1408 512*

H.264 ITU-T An extension of H.261–H.263 for videoconferencing, streaming, and television. It
supports prediction differences within frames [8.10], variable block size integer
transforms (rather than the DCT), and context adaptive arithmetic coding [8.4].

H.265
MPEG-H
HEVC

ISO/IEC
ITU-T

High Efficiency Video Coding (HVEC). An extension of H.264 that includes
support for macroblock sizes up to 64 64* and additional intraframe prediction
modes, both useful in 4K video applications.

MPEG-1 ISO/IEC A Motion Pictures Expert Group standard for CD-ROM applications with non-
interlaced video at up to 1.5 Mb/s. It is similar to H.261 but frame predictions can
be based on the previous frame, next frame, or an interpolation of both. It is sup-
ported by almost all computers and DVD players.

MPEG-2 ISO/IEC An extension of MPEG-1 designed for DVDs with transfer rates at up to 15 Mb/s.
Supports interlaced video and HDTV. It is the most successful video standard to
date.

MPEG-4 ISO/IEC An extension of MPEG-2 that supports variable block sizes and prediction differ-
encing [8.10] within frames.

MPEG-4
AVC

ISO/IEC MPEG-4 Part 10 Advanced Video Coding (AVC). Identical to H.264.

TABLE 8.4
Internationally sanctioned video compresssion standards. The numbers in brackets refer to sections in this chapter.

DIP4E_GLOBAL_Print_Ready.indb 553 6/16/2017 2:10:35 PM

554 Chapter 8 Image Compression and Watermarking

Name Organization Description

Continuous-Tone Still Images

BMP Microsoft Windows Bitmap. A file format used mainly for simple uncompressed images.

GIF CompuServe Graphic Interchange Format. A file format that uses lossless LZW coding [8.5] for
1- through 8-bit images. It is frequently used to make small animations and short
low-resolution films for the Internet.

PDF Adobe
Systems

Portable Document Format. A format for representing 2-D documents in a device
and resolution independent way. It can function as a container for JPEG, JPEG-
2000, CCITT, and other compressed images. Some PDF versions have become ISO
standards.

PNG World Wide
Web Consor-
tium (W3C)

Portable Network Graphics. A file format that losslessly compresses full color
images with transparency (up to 48 bits/pixel) by coding the difference between
each pixel’s value and a predicted value based on past pixels [8.10].

TIFF Aldus Tagged Image File Format. A flexible file format supporting a variety of image
compression standards, including JPEG, JPEG-LS, JPEG-2000, JBIG2, and others.

WebP Google WebP supports lossy compression via WebP VP8 intraframe video compression
(see below) and lossless compression using spatial prediction [8.10] and a variant
of LZW backward referencing [8.5] and Huffman entropy coding [8.2]. Transpar-
ency is also supported.

Video

AVS MII Audio-Video Standard. Similar to H.264 but uses exponential Golomb coding [8.3].
Developed in China.

HDV Company
consortium

High Definition Video. An extension of DV for HD television that uses compres-
sion similar to MPEG-2, including temporal redundancy removal by prediction
differencing [8.10].

M-JPEG Various
companies

Motion JPEG. A compression format in which each frame is compressed indepen-
dently using JPEG.

Quick-
Time

Apple
Computer

A media container supporting DV, H.261, H.262, H.264, MPEG-1, MPEG-2,
MPEG-4, and other video compression formats.

VC-1
WMV9

SMPTE
Microsoft

The most used video format on the Internet. Adopted for HD and Blu-ray high-
definition DVDs. It is similar to H.264/AVC, using an integer DCT with varying
block sizes [8.9 and 8.10] and context-dependent variable-length code tables [8.2],
but no predictions within frames.

WebP
VP8

Google A file format based on block transform coding [8.9] prediction differences within
frames and between frames [8.10]. The differences are entropy encoded using an
adaptive arithmetic coder [8.4].

TABLE 8.5
Popular image and video compression standards, file formats, and containers not included in Tables 8.3 and 8.4. The
numbers in brackets refer to sections in this chapter.

DIP4E_GLOBAL_Print_Ready.indb 554 6/16/2017 2:10:35 PM

8.2 Huffman Coding 555

The first step in Huffman’s approach is to create a series of source reductions
by ordering the probabilities of the symbols under consideration, then combining
the lowest probability symbols into a single symbol that replaces them in the next
source reduction. Figure 8.7 illustrates this process for binary coding (K-ary Huff-
man codes also can be constructed). At the far left, a hypothetical set of source sym-
bols and their probabilities are ordered from top to bottom in terms of decreasing
probability values. To form the first source reduction, the bottom two probabilities,
0.06 and 0.04, are combined to form a “compound symbol” with probability 0.1. This
compound symbol and its associated probability are placed in the first source reduc-
tion column so that the probabilities of the reduced source also are ordered from the
most to the least probable. This process is then repeated until a reduced source with
two symbols (at the far right) is reached.

The second step in Huffman’s procedure is to code each reduced source, start-
ing with the smallest source and working back to the original source. The minimal
length binary code for a two-symbol source, of course, are the symbols 0 and 1. As
Fig. 8.8 shows, these symbols are assigned to the two symbols on the right. (The
assignment is arbitrary; reversing the order of the 0 and 1 would work just as well.)
As the reduced source symbol with probability 0.6 was generated by combining two
symbols in the reduced source to its left, the 0 used to code it is now assigned to both
of these symbols, and a 0 and 1 are arbitrarily appended to each to distinguish them
from each other. This operation is then repeated for each reduced source until the
original source is reached. The final code appears at the far left in Fig. 8.8. The aver-
age length of this code is

Lavg = (.)() (.)() (.)() (.)() (.)() (.)(0 4 1 0 3 2 0 1 3 0 1 4 0 06 5 0 04+ + + + + 55

2 2

)

.= bits/pixel

and the entropy of the source is 2.14 bits/symbol.
Huffman’s procedure creates the optimal code for a set of symbols and probabili-

ties subject to the constraint that the symbols be coded one at a time. After the code
has been created, coding and/or error-free decoding is accomplished in a simple
lookup table manner. The code itself is an instantaneous uniquely decodable block
code. It is called a block code because each source symbol is mapped into a fixed
sequence of code symbols. It is instantaneous because each code word in a string of

FIGURE 8.7
Huffman source
reductions.

a2

a6

a1

a4

a3

a5

Symbol

0.4
0.3
0.1
0.1
0.06
0.04

Probability

0.4
0.3
0.1
0.1
0.1

1

0.4
0.3
0.2
0.1

2

0.4
0.3
0.3

3

0.6
0.4

4

Original source Source reduction

DIP4E_GLOBAL_Print_Ready.indb 555 6/16/2017 2:10:36 PM

556 Chapter 8 Image Compression and Watermarking

code symbols can be decoded without referencing succeeding symbols. It is uniquely
decodable because any string of code symbols can be decoded in only one way. Thus,
any string of Huffman encoded symbols can be decoded by examining the individual
symbols of the string in a left-to-right manner. For the binary code of Fig. 8.8, a left-
to-right scan of the encoded string 010100111100 reveals that the first valid code
word is 01010, which is the code for symbol a3. The next valid code is 011, which cor-
responds to symbol a1. Continuing in this manner reveals the completely decoded
message to be a3 a1 a2 a2 a6.

EXAMPLE 8.4 : Huffman Coding.

The 512 512* 8-bit monochrome image in Fig. 8.9(a) has the intensity histogram shown in Fig. 8.9(b).
Because the intensities are not equally probable, a MATLAB implementation of Huffman’s procedure
was used to encode them with 7.428 bits/pixel, including the Huffman code table that is required to
reconstruct the original 8-bit image intensities. The compressed representation exceeds the estimated
entropy of the image [7.3838 bits/pixel from Eq. (8-7)] by 512 7 428 7 38382 × −(. .) or 11,587 bits—about
0.6%. The resulting compression ratio and corresponding relative redundancy are C = =8 7 428 1 077. . ,
and R = =1 1 1 077 0 0715- (.) . , respectively. Thus 7.15% of the original 8-bit fixed-length intensity
representation was removed as coding redundancy.

When a large number of symbols is to be coded, the construction of an optimal
Huffman code is a nontrivial task. For the general case of J source symbols, J symbol
probabilities, J − 2 source reductions, and J − 2 code assignments are required. When
source symbol probabilities can be estimated in advance, “near optimal” coding can
be achieved with pre-computed Huffman codes. Several popular image compression
standards, including the JPEG and MPEG standards discussed in Sections 8.9 and
8.10, specify default Huffman coding tables that have been pre-computed based on
experimental data.

8.3 GOLOMB CODING

In this section, we consider the coding of nonnegative integer inputs with exponen-
tially decaying probability distributions. Inputs of this type can be optimally encoded
(in the sense of Shannon’s first theorem) using a family of codes that are computa-
tionally simpler than Huffman codes. The codes themselves were first proposed for
the representation of nonnegative run lengths (Golomb [1966]). In the discussion

8.3

With reference to
Tables 8.3–8.5, Golomb
codes are used in

• JPEG-LS
• AVS

compression.

FIGURE 8.8
Huffman code
assignment
procedure.

a2

a6

a1

a4

a3

a5

Symbol

0.4
0.3
0.1
0.1
0.06
0.04

Probability

1
00
011
0100
01010
01011

Code

0.4
0.3
0.1
0.1
0.1

1
00
011
0100
0101

1

0.4
0.3
0.2
0.1

1
00
010
011

2

0.4
0.3
0.3

1
00
01

3

0.6
0.4

0
1

4

Original source Source reduction

DIP4E_GLOBAL_Print_Ready.indb 556 6/16/2017 2:10:36 PM

8.3 Golomb Coding 557

that follows, the notation x⎢⎣ ⎥⎦ denotes the largest integer less than or equal to x, x⎡⎢ ⎤⎥
means the smallest integer greater than or equal to x, and x ymod is the remainder
of x divided by y.

Given a nonnegative integer n and a positive integer divisor m 7 0, the Golomb
code of n with respect to m, denoted G nm(), is a combination of the unary code of
quotient n m⎢⎣ ⎥⎦ and the binary representation of remainder n mmod . G nm() is con-
structed as follows:

1. Form the unary code of quotient n m⎢⎣ ⎥⎦ . (The unary code of an integer q is
defined as q 1’s followed by a 0.)

2. Let k m= ⎡⎢ ⎤⎥log ,2 c mk= 2 - , r n m= mod , and compute truncated remainder
′r such that

 ′ =r
r k r c

r c k

 truncated to bits

 truncated to bits othe

- … 6
+

1 0

rrwise
⎧
⎨
⎩

 (8-12)

3. Concatenate the results of Steps 1 and 2.

To compute G4 9(), for example, begin by determining the unary code of the quo-
tient 9 4 2 25 2⎢⎣ ⎥⎦ = ⎢⎣ ⎥⎦ =. , which is 110 (the result of Step 1). Then let k = ⎡⎢ ⎤⎥ =log ,2 4 2
c = =2 4 02 - , and r = 9 4mod , which in binary is 1001 0100mod or 0001. In accor-
dance with Eq. (8-12), ′r is then r (i.e., 0001) truncated to 2 bits, which is 01 (the result
of Step 2). Finally, concatenate 110 from Step 1 and 01 from Step 2 to get 11001,
which is G4 9().

For the special case of m k= 2 , c = 0 and ′ = =r r n mmod truncated to k bits in
Eq. (8-12) for all n. The divisions required to generate the resulting Golomb codes
become binary shift operations, and the computationally simpler codes are called
Golomb-Rice or Rice codes (Rice [1975]). Columns 2, 3, and 4 of Table 8.6 list the
G1, G2, and G4 codes of the first ten nonnegative integers. Because m is a power
of 2 in each case (i.e., 1 20= , 2 21= , and 4 22=), they are the first three Golomb-Rice
codes as well. Moreover, G1 is the unary code of the nonnegative integers because
n n1⎢⎣ ⎥⎦ = and nmod1 0= for all n.

ba

FIGURE 8.9
(a) A 512 512*
8-bit image and
(b) its histogram.

Intensity

N
um

be
r

of
 p

ix
el

s

0
0

100 250150 20050

500

1000

1500

2000

2500

3000

DIP4E_GLOBAL_Print_Ready.indb 557 6/16/2017 2:10:39 PM

558 Chapter 8 Image Compression and Watermarking

Keeping in mind that Golomb codes only can be used to represent nonnegative
integers, and that there are many Golomb codes to choose from, a key step in their
effective application is the selection of divisor m. When the integers to be repre-
sented are geometrically distributed with a probability mass function (PMF)†

 P n n() ()= 1 - r r (8-13)

for some 0 16 6r , Golomb codes can be shown to be optimal in the sense that
G nm() provides the shortest average code length of all uniquely decipherable codes
(Gallager and Voorhis [1975]) when

 m =
⎡

⎢
⎢

⎤

⎥
⎥

log ()
log ()

2

2

1
1
+ r

r
 (8-14)

Figure 8.10(a) plots Eq. (8-13) for three values of r and graphically illustrates the
symbol probabilities that Golomb codes handle well (that is, code efficiently). As is
shown in the figure, small integers are much more probable than large ones.

Because the probabilities of the intensities in an image [see, for example, the his-
togram of Fig. 8.9(b)] are unlikely to match the probabilities specified in Eq. (8-13)
and shown in Fig. 8.10(a), Golomb codes are seldom used for the coding of intensi-
ties. When intensity differences are to be coded, however, the probabilities of the
resulting “difference values” (see Section 8.10) (with the notable exception of the
negative differences) often resemble those of Eq. (8-13) and Fig. 8.10(a). To handle
negative differences in Golomb coding, which can only represent nonnegative inte-
gers, a mapping like

†A probability mass function (PMF) is a function that defines the probability that a discrete random variable is
exactly equal to some value. A PMF differs from a PDF in that a PDF’s values are not probabilities; rather, the
integral of a PDF over a specified interval is a probability.

n G n1() G n2() G n4() G nexp
0 ()

0 0 00 000 0

1 10 01 001 100

2 110 100 010 101

3 1110 101 011 11000

4 11110 1100 1000 11001

5 111110 1101 1001 11010

6 1111110 11100 1010 11011

7 11111110 11101 1011 1110000

8 111111110 111100 11000 1110001

9 1111111110 111101 11001 1110010

TABLE 8.6
Several Golomb
codes for the
integers 0–9.

DIP4E_GLOBAL_Print_Ready.indb 558 6/16/2017 2:10:47 PM

8.3 Golomb Coding 559

 M n
n n

n n
() =

⎧
⎨
⎩

2 0

2 1 0

Ú
- 6

 (8-15)

is typically used. Using this mapping, for example, the two-sided PMF shown in
Fig. 8.10(b) can be transformed into the one-sided PMF in Fig. 8.10(c). Its integers
are reordered, alternating the negative and positive integers so the negative integers
are mapped into the odd positive integer positions. If P n() is two-sided and centered
at zero, P M n()() will be one-sided. The mapped integers, M n(), can then be effi-
ciently encoded using an appropriate Golomb-Rice code (Weinberger et al. [1996]).

EXAMPLE 8.5 : Golomb-Rice coding.

Consider again the image from Fig. 8.1(c) and note that its histogram [see Fig. 8.3(a)] is similar to the
two-sided distribution in Fig. 8.10(b) above. If we let n be some nonnegative integer intensity in the
image, where 0 225≤ ≤n , and m be the mean intensity, P n − m() is the two-sided distribution shown in
Fig. 8.11(a). This plot was generated by normalizing the histogram in Fig. 8.3(a) by the total number of
pixels in the image and shifting the normalized values to the left by 128 (which in effect subtracts the
mean intensity from the image). In accordance with Eq. (8-15), P M n − m()() is then the one-sided dis-
tribution shown in Fig. 8.11(b). If the reordered intensity values are Golomb coded using a MATLAB
implementation of code G1 in column 2 of Table 8.6, the encoded representation is 4.5 times smaller
than the original image (i.e., C = 4 5.). The G1 code realizes 4 5 5 1. . , or 88% of the theoretical com-
pression possible with variable-length coding. [Based on the entropy calculated in Example (8-2), the
maximum possible compression ratio through variable-length coding is C = ≈8 1 566 5 1. . .] Moreover,
Golomb coding achieves 96% of the compression provided by a MATLAB implementation of Huff-
man’s approach, and doesn’t require the computation of a custom Huffman coding table.

Now consider the image in Fig. 8.9(a). If its intensities are Golomb coded using the same G1 code as
above, C = 0 0922. . That is, there is data expansion. This is due to the fact that the probabilities of the
intensities of the image in Fig. 8.9(a) are much different than the probabilities defined in Eq. (8-13). In
a similar manner, Huffman codes can produce data expansion when used to encode symbols whose
probabilities are different from those for which the code was computed. In practice, the further you
depart from the input probability assumptions for which a code is designed, the greater the risk of poor
compression performance and data expansion.

ba c

FIGURE 8.10
(a) Three one-
sided geometric
distributions from
Eq. (8-13); (b) a
two-sided expo-
nentially decaying
distribution; and
(c) a reordered
version of (b)
using Eq. (8-15).

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 0 2 4-2-4 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

 = 0.25

 = 0.5

 = 0.75

n n M(n)

DIP4E_GLOBAL_Print_Ready.indb 559 6/16/2017 2:10:48 PM

560 Chapter 8 Image Compression and Watermarking

To conclude our coverage of Golomb codes, we note that Column 5 of Table 8.6
contains the first 10 codes of the zeroth-order exponential Golomb code, denoted
G nexp().0 Exponential-Golomb codes are useful for the encoding of run lengths,
because both short and long runs are encoded efficiently. An order-k exponential-
Golomb code G nk

exp() is computed as follows:

1. Find an integer i ≥ 0 such that

 2 2
00

1
j k j k

j

i

j

i

n+ +

==
≤ < ∑∑

−

 (8-16)

and form the unary code of i. If k = 0, i n= +()⎢⎣ ⎥⎦log2 1 and the code is also
known as the Elias gamma code.

2. Truncate the binary representation of

 n j k

j

i

−
−

2
0

1
+

=
∑ (8-17)

to k i+ least significant bits.
3. Concatenate the results of Steps 1 and 2.

To find Gexp(),0 8 for example, we let i = ⎢⎣ ⎥⎦log2 9 or 3 in Step 1 because k = 0. Equa-
tion (8-16) is then satisfied because

 2 8 20

0

3 1
0

0

3
j

j

j

j

+
−

+≤ <
= =
∑ ∑

 2 8 2
0

2

0

3
j

j

j

j

≤ <
= =
∑ ∑

ba

FIGURE 8.11
(a) The probabil-
ity distribution
of the image in
Fig. 8.1(c) after
subtracting the
mean intensity
from each pixel.
(b) A mapped
version of (a)
using Eq. (8-15).

0 1 2 3 4 5 6 7 8-4 -3 -2 -1 0 1 2 3 4

n μ M(n μ)

P
ro

b
ab

il
it

y

0

0.15

0.30

0.45

0.60

0.75

0

0.15

0.30

0.45

0.60

0.75

DIP4E_GLOBAL_Print_Ready.indb 560 6/16/2017 2:10:50 PM

8.4 Arithmetic Coding 561

2 2 2 8 2 2 2 2

7 8 15

0 1 2 0 1 2 3+ + + + +≤ <
≤ <

The unary code of 3 is 1110 and Eq. (8-17) of Step 2 yields

 8 2 8 2 8 2 2 2 8 7 1 00010 0 1 2

0

2

0

3 1

− − − + + −+
−

j j

jj

= = () = = =
==
∑∑

which when truncated to its 3 0+ least significant bits becomes 001. The concatena-
tion of the results from Steps 1 and 2 then yields 1110001. Note that this is the entry
in column 4 of Table 8.6 for n = 8. Finally, we note that like the Huffman codes of the
last section, the Golomb codes of Table 8.6 are variable-length, instantaneous, and
uniquely decodable block codes.

8.4 ARITHMETIC CODING

Unlike the variable-length codes of the previous two sections, arithmetic coding gen-
erates nonblock codes. In arithmetic coding, which can be traced to the work of Elias
(Abramson [1963]), a one-to-one correspondence between source symbols and code
words does not exist. Instead, an entire sequence of source symbols (or message) is
assigned a single arithmetic code word. The code word itself defines an interval of
real numbers between 0 and 1. As the number of symbols in the message increases,
the interval used to represent it becomes smaller, and the number of information
units (say, bits) required to represent the interval becomes larger. Each symbol of
the message reduces the size of the interval in accordance with its probability of
occurrence. Because the technique does not require, as does Huffman’s approach,
that each source symbol translate into an integral number of code symbols (that is,
that the symbols be coded one at a time), it achieves (but only in theory) the bound
established by Shannon’s first theorem of Section 8.1.

Figure 8.12 illustrates the basic arithmetic coding process. Here, a five-symbol
sequence or message, a1a2a3a3a4, from a four-symbol source is coded. At the start of
the coding process, the message is assumed to occupy the entire half-open interval
[0, 1). As Table 8.7 shows, this interval is subdivided initially into four regions based
on the probabilities of each source symbol. Symbol a1, for example, is associated with
subinterval [0, 0.2). Because it is the first symbol of the message being coded, the
message interval is initially narrowed to [0, 0.2). Thus, in Fig. 8.12, [0, 0.2) is expanded
to the full height of the figure, and its end points labeled by the values of the nar-
rowed range. The narrowed range is then subdivided in accordance with the original

8.4

With reference to
Tables 8.3–8.5, arithmetic
coding is used in

• JBIG1
• JBIG2
• JPEG-2000
• H.264
• MPEG-4 AVC

and other compression
standards.

Source Symbol Probability Initial Subinterval

a1 0.2 [0.0, 0.2)

a2 0.2 [0.2, 0.4)

a3 0.4 [0.4, 0.8)

a4 0.2 [0.8, 1.0)

TABLE 8.7
Arithmetic coding
example.

DIP4E_GLOBAL_Print_Ready.indb 561 6/16/2017 2:10:50 PM

562 Chapter 8 Image Compression and Watermarking

source symbol probabilities, and the process continues with the next message symbol.
In this manner, symbol a2 narrows the subinterval to [0.04, 0.08), a3 further narrows
it to [0.056, 0.072), and so on. The final message symbol, which must be reserved as a
special end-of-message indicator, narrows the range to [0.06752, 0.0688). Of course,
any number within this subinterval, for example, 0.068, can be used to represent the
message. In the arithmetically coded message of Fig. 8.12, three decimal digits are
used to represent the five-symbol message. This translates into 0.6 decimal digits per
source symbol and compares favorably with the entropy of the source, which, from
Eq. 8.6, is 0.58 decimal digits per source symbol. As the length of the sequence being
coded increases, the resulting arithmetic code approaches the bound established by
Shannon’s first theorem. In practice, two factors cause coding performance to fall
short of the bound: (1) the addition of the end-of-message indicator that is needed
to separate one message from another, and (2) the use of finite precision arithmetic.
Practical implementations of arithmetic coding address the latter problem by intro-
ducing a scaling strategy and a rounding strategy (Langdon and Rissanen [1981]).
The scaling strategy renormalizes each subinterval to the [0, 1) range before subdi-
viding it in accordance with the symbol probabilities. The rounding strategy guaran-
tees that the truncations associated with finite precision arithmetic do not prevent
the coding subintervals from being accurately represented.

ADAPTIVE CONTEXT DEPENDENT PROBABILITY ESTIMATES

With accurate input symbol probability models, that is, models that provide the true
probabilities of the symbols being coded, arithmetic coders are near optimal in the
sense of minimizing the average number of code symbols required to represent the
symbols being coded. As in both Huffman and Golomb coding, however, inaccu-
rate probability models can lead to non-optimal results. A simple way to improve
the accuracy of the probabilities employed is to use an adaptive, context depen-
dent probability model. Adaptive probability models update symbol probabilities as
symbols are coded or become known. Thus, the probabilities adapt to the local sta-
tistics of the symbols being coded. Context-dependent models provide probabilities

FIGURE 8.12
Arithmetic coding
procedure.

Encoding sequence

a4 a4 a4 a4 a4

a3 a3 a3 a3 a3

a2 a2 a2 a2 a2

a1 a1 a1 a1 a1

0.08

0.04

0.072

0.056

0.0688

0.06752

0.0624

0.2

0

1

0

a1 a2 a3 a3 a4

DIP4E_GLOBAL_Print_Ready.indb 562 6/16/2017 2:10:50 PM

8.4 Arithmetic Coding 563

that are based on a predefined neighborhood of pixels, called the context, around
the symbols being coded. Normally, a causal context (one limited to symbols that
have already been coded) is used. Both the Q-coder (Pennebaker et al. [1988]) and
MQ-coder (ISO/IEC [2000]), two well-known arithmetic coding techniques that
have been incorporated into the JBIG, JPEG-2000, and other important image
compression standards, use probability models that are both adaptive and context
dependent.The Q-coder dynamically updates symbol probabilities during the inter-
val renormalizations that are part of the arithmetic coding process. Adaptive con-
text dependent models also have been used in Golomb coding, for example, in the
JPEG-LS compression standard.

Figure 8.13(a) diagrams the steps involved in adaptive, context-dependent arith-
metic coding of binary source symbols. Arithmetic coding often is used when binary
symbols are to be coded. As each symbol (or bit) begins the coding process, its con-
text is formed in the Context determination block of Fig. 8.13(a). Figures 8.13(b)
through (d) show three possible contexts that can be used: (1) the immediately pre-
ceding symbol, (2) a group of preceding symbols, and (3) some number of preceding
symbols plus symbols on the previous scan line. For the three cases shown, the Prob-
ability estimation block must manage 21 (or 2), 28 (or 256), and 25 (or 32) contexts
and their associated probabilities. For instance, if the context in Fig. 8.13(b) is used,
conditional probabilities P a0 0=() (the probability that the symbol being coded is a
0 given that the preceding symbol is a 0), P a1 0=(), P a0 1=(), and P a1 1=() must
be tracked. The appropriate probabilities are then passed to the Arithmetic coding
block as a function of the current context, and drive the generation of the arithmeti-
cally coded output sequence in accordance with the process illustrated in Fig. 8.12.
The probabilities associated with the context involved in the current coding step are
then updated to reflect the fact that another symbol within that context has been
processed.

Finally, we note that a variety of arithmetic coding techniques are protected by
United States patents (and may be protected in other jurisdictions as well). Because

a
b
c d

e

Symbol being coded

Context

a

Symbol being coded

Context

d ae c b

Symbol being coded

Context

gh f

Context
determination

Probability
estimation

Arithmetic
codingSymbol

and
context

Symbol
probablity

Input
symbols

Code
bits

Update probability
for current contextb

a
dc

FIGURE 8.13
(a) An adaptive,
context-based
arithmetic coding
approach (often
used for binary
source symbols).
(b)–(d) Three
possible context
models.

DIP4E_GLOBAL_Print_Ready.indb 563 6/16/2017 2:10:51 PM

564 Chapter 8 Image Compression and Watermarking

of these patents, and the possibility of unfavorable monetary judgments for their
infringement, most implementations of the JPEG compression standard, which con-
tains options for both Huffman and arithmetic coding, typically support Huffman
coding alone.

8.5 LZW CODING

The techniques covered in Sections 8.2 through 8.4 are focused on the removal of cod-
ing redundancy. In this section, we consider an error-free compression approach that
also addresses spatial redundancies in an image. The technique, called Lempel-Ziv-
Welch (LZW) coding, assigns fixed-length code words to variable length sequences
of source symbols. Recall from the earlier section on measuring image information
that Shannon used the idea of coding sequences of source symbols, rather than indi-
vidual source symbols, in the proof of his first theorem. A key feature of LZW cod-
ing is that it requires no a priori knowledge of the probability of occurrence of the
symbols to be encoded. Despite the fact that until recently it was protected under a
United States patent, LZW compression has been integrated into a variety of main-
stream imaging file formats, including GIF, TIFF, and PDF. The PNG format was
created to get around LZW licensing requirements.

EXAMPLE 8.6 : LZW coding Fig. 8.9(a).

Consider again the 512 512× , 8-bit image from Fig. 8.9(a). Using Adobe Photoshop, an uncompressed
TIFF version of this image requires 286,740 bytes of disk space—262,144 bytes for the 512 512× 8-bit
pixels plus 24,596 bytes of overhead. Using TIFF’s LZW compression option, however, the resulting file
is 224,420 bytes. The compression ratio is C = 1 28. . Recall that for the Huffman encoded representation
of Fig. 8.9(a) in Example 8.4, C = 1 077. . The additional compression realized by the LZW approach is
due the removal of some of the image’s spatial redundancy.

LZW coding is conceptually very simple (Welch [1984]). At the onset of the cod-
ing process, a codebook or dictionary containing the source symbols to be coded is
constructed. For 8-bit monochrome images, the first 256 words of the dictionary are
assigned to intensities 0, 1, 2, …, 255. As the encoder sequentially examines image
pixels, intensity sequences that are not in the dictionary are placed in algorithmi-
cally determined (e.g., the next unused) locations. If the first two pixels of the image
are white, for instance, sequence “255–255” might be assigned to location 256, the
address following the locations reserved for intensity levels 0 through 255. The next
time two consecutive white pixels are encountered, code word 256, the address of
the location containing sequence 255–255, is used to represent them. If a 9-bit, 512-
word dictionary is employed in the coding process, the original ()8 8+ bits that were
used to represent the two pixels are replaced by a single 9-bit code word. Clearly, the
size of the dictionary is an important system parameter. If it is too small, the detec-
tion of matching intensity-level sequences will be less likely; if it is too large, the size
of the code words will adversely affect compression performance.

8.5

With reference to
Tables 8.3–8.5, LZW cod-
ing is used in the

• GIF
• TIFF
• PDF

formats, but not in any
of the internationally
sanctioned compression
standards.

DIP4E_GLOBAL_Print_Ready.indb 564 6/16/2017 2:10:51 PM

8.5 LZW Coding 565

EXAMPLE 8.7 : LZW coding.

Consider the following 4 4* , 8-bit image of a vertical edge:

39 39 126 126

39 39 126 126

39 39 126 126

39 39 126 126

Table 8.8 details the steps involved in coding its 16 pixels. A 512-word dictionary with the following start-
ing content is assumed:

Dictionary Location Entry

0 0

1 1

o o
255 255

256 —

o o
511 —

Locations 256 through 511 initially are unused.
The image is encoded by processing its pixels in a left-to-right, top-to-bottom manner. Each succes-

sive intensity value is concatenated with a variable, column 1 of Table 8.8, called the “currently recog-
nized sequence.” As can be seen, this variable is initially null or empty. The dictionary is searched for
each concatenated sequence and if found, as was the case in the first row of the table, is replaced by the
newly concatenated and recognized (i.e., located in the dictionary) sequence. This was done in column
1 of row 2. No output codes are generated, nor is the dictionary altered. If the concatenated sequence
is not found, however, the address of the currently recognized sequence is output as the next encoded
value, the concatenated but unrecognized sequence is added to the dictionary, and the currently recog-
nized sequence is initialized to the current pixel value. This occurred in row 2 of the table. The last two
columns detail the intensity sequences that are added to the dictionary when scanning the entire 128-bit
image. Nine additional code words are defined. At the conclusion of coding, the dictionary contains 265
code words and the LZW algorithm has successfully identified several repeating intensity sequences—
leveraging them to reduce the original 128-bit image to 90 bits (i.e., 10 9-bit codes). The encoded output
is obtained by reading the third column from top to bottom. The resulting compression ratio is 1.42:1.

A unique feature of the LZW coding just demonstrated is that the coding dic-
tionary or code book is created while the data are being encoded. Remarkably, an
LZW decoder builds an identical decompression dictionary as it simultaneously
decodes the encoded data stream. It is left as an exercise to the reader (see Prob-
lem 8.20) to decode the output of the preceding example and reconstruct the code
book. Although not needed in this example, most practical applications require a

DIP4E_GLOBAL_Print_Ready.indb 565 6/16/2017 2:10:51 PM

566 Chapter 8 Image Compression and Watermarking

strategy for handling dictionary overflow. A simple solution is to flush or reinitialize
the dictionary when it becomes full and continue coding with a new initialized dic-
tionary. A more complex option is to monitor compression performance and flush
the dictionary when it becomes poor or unacceptable. Alternatively, the least used
dictionary entries can be tracked and replaced when necessary.

8.6 RUN-LENGTH CODING

As was noted earlier, images with repeating intensities along their rows (or columns)
can often be compressed by representing runs of identical intensities as run-length
pairs, where each run-length pair specifies the start of a new intensity and the num-
ber of consecutive pixels that have that intensity. The technique, referred to as run-
length encoding (RLE), was developed in the 1950s and became, along with its 2-D
extensions, the standard compression approach in facsimile (FAX) coding. Com-
pression is achieved by eliminating a simple form of spatial redundancy—groups of
identical intensities. When there are few (or no) runs of identical pixels, run-length
encoding results in data expansion.

EXAMPLE 8.8 : RLE in the BMP file format.

The BMP file format uses a form of run-length encoding in which image data is represented in two dif-
ferent modes: encoded and absolute. Either mode can occur anywhere in the image. In encoded mode, a

8.6

With reference to
Tables 8.3–8.5, the coding
of run-lengths is used in

• CCITT
• JBIG2
• JPEG
• M-JPEG
• MPEG-1,2,4
• BMP

and other compres-
sion standards and file
formats.

Currently
Recognized
Sequence

Pixel Being
Processed

Encoded
Output

Dictionary
Location

(Code Word)
Dictionary Entry

39

39 39 39 256 39–39

39 126 39 257 39–126

126 126 126 258 126–126

126 39 126 259 126–39

39 39

39–39 126 256 260 39–39–126

126 126

126–126 39 258 261 126–126–39

39 39

39-39 126

39–39–126 126 260 262 39–39–126–126

126 39

126-39 39 259 263 126–39–39

39 126

39-126 126 257 264 39–126–126

126 126

TABLE 8.8
LZW Coding
example.

DIP4E_GLOBAL_Print_Ready.indb 566 6/16/2017 2:10:51 PM

8.6 Run-length Coding 567

two byte RLE representation is used. The first byte specifies the number of consecutive pixels that have
the color index contained in the second byte. The 8-bit color index selects the run’s intensity (color or
gray value) from a table of 256 possible intensities.

In absolute mode, the first byte is 0, and the second byte signals one of four possible conditions, as
shown in Table 8.9. When the second byte is 0 or 1, the end of a line or the end of the image has been
reached. If it is 2, the next two bytes contain unsigned horizontal and vertical offsets to a new spatial
position (and pixel) in the image. If the second byte is between 3 and 255, it specifies the number of
uncompressed pixels that follow with each subsequent byte containing the color index of one pixel. The
total number of bytes must be aligned on a 16-bit word boundary.

An uncompressed BMP file (saved using Photoshop) of the 512 512 8× × bit image shown in Fig. 8.9(a)
requires 263,244 bytes of memory. Compressed using BMP’s RLE option, the file expands to 267,706
bytes, and the compression ratio is C = 0 98. . There are not enough equal intensity runs to make run-
length compression effective; a small amount of expansion occurs. For the image in Fig. 8.1(c), however,
the BMP RLE option results in a compression ratio C = 1 35. . (Note that due to differences in overhead,
the uncompressed BMP file is smaller than the uncompressed TIFF file in Example 8.6.)

Run-length encoding is particularly effective when compressing binary images.
Because there are only two possible intensities (black and white), adjacent pixels
are more likely to be identical. In addition, each image row can be represented by
a sequence of lengths only, rather than length-intensity pairs as was used in Exam-
ple 8.8. The basic idea is to code each contiguous group (i.e., run) of 0’s or 1’s encoun-
tered in a left-to-right scan of a row by its length and to establish a convention for
determining the value of the run. The most common conventions are (1) to specify
the value of the first run of each row, or (2) to assume that each row begins with a
white run, whose run length may in fact be zero.

Although run-length encoding is in itself an effective method of compressing
binary images, additional compression can be achieved by variable-length coding
the run lengths themselves. The black and white run lengths can be coded separately
using variable-length codes that are specifically tailored to their own statistics. For
example, letting symbol aj represent a black run of length j, we can estimate the
probability that symbol aj was emitted by an imaginary black run-length source by
dividing the number of black run lengths of length j in the entire image by the total
number of black runs. An estimate of the entropy of this black run-length source,
denoted as H0 , follows by substituting these probabilities into Eq. (8-6). A similar
argument holds for the entropy of the white runs, denoted as H1. The approximate
run-length entropy of the image is then

 H
H H

L LRL = 0 1

0 1

+
+

 (8-18)

where the variables L0 and L1 denote the average values of black and white run
lengths, respectively. Equation (8-18) provides an estimate of the average number
of bits per pixel required to code the run lengths in a binary image using a variable-
length code.

DIP4E_GLOBAL_Print_Ready.indb 567 6/16/2017 2:10:52 PM

568 Chapter 8 Image Compression and Watermarking

Two of the oldest and most widely used image compression standards are the
CCITT Group 3 and 4 standards for binary image compression. Although they have
been used in a variety of computer applications, they were originally designed as
facsimile (FAX) coding methods for transmitting documents over telephone net-
works. The Group 3 standard uses a 1-D run-length coding technique in which the
last K - 1 lines of each group of K lines (for K = 2 or 4) can be optionally coded in
a 2-D manner. The Group 4 standard is a simplified or streamlined version of the
Group 3 standard in which only 2-D coding is allowed. Both standards use the same
2-D coding approach, which is two-dimensional in the sense that information from
the previous line is used to encode the current line. Both 1-D and 2-D coding will
be discussed next.

ONE-DIMENSIONAL CCITT COMPRESSION

In the 1-D CCITT Group 3 compression standard, each line of an image† is encoded
as a series of variable-length Huffman code words that represent the run lengths of
alternating white and black runs in a left-to-right scan of the line. The compression
method employed is commonly referred to as Modified Huffman (MH) coding. The
code words themselves are of two types, which the standard refers to as terminating
codes and makeup codes. If run length r is less than or equal to 63, a terminating code
is used to represent it. The standard specifies different terminating codes for black
and white runs. If r > 63, two codes are used; a makeup code for quotient r 64 64⎢⎣ ⎥⎦ * ,
and terminating code for remainder rmod64. Makeup codes may or may not depend
on the intensity (black or white) of the run being coded. If r 64 64 1728⎢⎣ ⎥⎦ * … , sepa-
rate black and white run makeup codes are specified; otherwise, makeup codes are
independent of run intensity. The standard requires that each line begin with a white
run-length code word, which may in fact be 00110101, the code for a white run of
length zero. Finally, a unique end-of-line (EOL) code word 000000000001 is used to
terminate each line, as well as to signal the first line of each new image. The end of a
sequence of images is indicated by six consecutive EOLs.

TWO-DIMENSIONAL CCITT COMPRESSION

The 2-D compression approach adopted for both the CCITT Group 3 and 4 stan-
dards is a line-by-line method in which the position of each black-to-white or
white-to-black run transition is coded with respect to the position of a reference
element a0 that is situated on the current coding line. The previously coded line is
called the reference line; the reference line for the first line of each new image is an

† In the standard, images are referred to as pages and sequences of images are called documents.

Consult the book web-
site for tables of the MH
terminating and makeup
codes.

Recall that the notation
x⎢⎣ ⎥⎦ denotes the largest

interger less than or
equal to x.

Second Byte Value Condition

0 End of line

1 End of image

2 Move to a new position

3-255 Specify pixels individually

TABLE 8.9
BMP absolute
coding mode
options. In this
mode, the first
byte of the BMP
pair is 0.

DIP4E_GLOBAL_Print_Ready.indb 568 6/16/2017 2:10:53 PM

8.6 Run-length Coding 569

imaginary white line. The 2-D coding technique that is used is called Relative Ele-
ment Address Designate (READ) coding. In the Group 3 standard, one or three
READ coded lines are allowed between successive MH coded lines; this technique
is called Modified READ (MR) coding. In the Group 4 standard, a greater num-
ber of READ coded lines are allowed, and the method is called Modified Modified
READ (MMR) coding. As was previously noted, the coding is two-dimensional in
the sense that information from the previous line is used to encode the current line.
Two-dimensional transforms are not involved.

Figure 8.14 shows the basic 2-D coding process for a single scan line. Note that
the initial steps of the procedure are directed at locating several key changing ele-
ments: a0, a1, a2, b1, and b2. A changing element is defined by the standard as a pixel
whose value is different from that of the previous pixel on the same line. The most
important changing element is a0 (the reference element), which is either set to the
location of an imaginary white changing element to the left of the first pixel of each
new coding line, or determined from the previous coding mode. Coding modes will
be discussed in the following paragraph. After a0 is located, a1 is identified as the
location of the next changing element to the right of a0 on the current coding line,
a2 as the next changing element to the right of a1 on the coding line, b1 as the chang-
ing element of the opposite value (of a0) and to the right of a0 on the reference (or
previous) line, and b2 as the next changing element to the right of b1 on the reference
line. If any of these changing elements are not detected, they are set to the location
of an imaginary pixel to the right of the last pixel on the appropriate line. Figure 8.15
provides two illustrations of the general relationships between the various changing
elements.

After identification of the current reference element and associated changing ele-
ments, two simple tests are performed to select one of three possible coding modes:
pass mode, vertical mode, or horizontal mode. The initial test, which corresponds
to the first branch point in the flowchart in Fig. 8.14, compares the location of b2 to
that of a1. The second test, which corresponds to the second branch point in Fig. 8.14,
computes the distance (in pixels) between the locations of a1 and b1 and compares it
against 3. Depending on the outcome of these tests, one of the three outlined coding
blocks of Fig. 8.14 is entered and the appropriate coding procedure is executed. A
new reference element is then established, as per the flowchart, in preparation for
the next coding iteration.

Table 8.10 defines the specific codes utilized for each of the three possible cod-
ing modes. In pass mode, which specifically excludes the case in which b2 is directly
above a1, only the pass mode code word 0001 is needed. As Fig. 8.15(a) shows, this
mode identifies white or black reference line runs that do not overlap the current
white or black coding line runs. In horizontal coding mode, the distances from a0 to
a1 and a1 to a2 must be coded in accordance with the termination and makeup codes
of 1-D CCITT Group 3 compression, then appended to the horizontal mode code
word 001. This is indicated in Table 8.10 by the notation 001 0 1 1 2+ +M a a M a a() (),
where a0a1 and a1a2 denote the distances from a0 to a1 and a1 to a2, respectively.
Finally, in vertical coding mode, one of six special variable-length codes is assigned
to the distance between a1 and b1. Figure 8.15(b) illustrates the parameters involved

Consult the book web-
site for the coding tables
of the CCITT standard.

DIP4E_GLOBAL_Print_Ready.indb 569 6/16/2017 2:10:53 PM

570 Chapter 8 Image Compression and Watermarking

FIGURE 8.14
CCITT 2-D
READ coding
procedure. The
notation a b1 1
denotes the abso-
lute value of the
distance between
changing
elements a1
and b1.

Start new
coding line

Detect a1

Detect b1

Detect b2

Detect a2

No

Yes

Yes

No

Pass mode
coding

Vertical mode
coding

Horizontal
mode coding

End of
coding line

End of
line?

b2 left of a1

Put a0

under b2

Put a0 on a2 Put a0 on a1

 @ a1b1 @ 3
Yes

No

Put a0 before
the first pixel

DIP4E_GLOBAL_Print_Ready.indb 570 6/16/2017 2:10:53 PM

8.6 Run-length Coding 571

in both horizontal and vertical mode coding. The extension mode code word at the
bottom of Table 8.10 is used to enter an optional facsimile coding mode. For exam-
ple, the 0000001111 code is used to initiate an uncompressed mode of transmission.

EXAMPLE 8.9 : CCITT vertical mode coding example.

Although Fig. 8.15(b) is annotated with the parameters for both horizontal and vertical mode coding
(to facilitate the discussion above), the depicted pattern of black and white pixels is a case for vertical
mode coding. That is, because b2 is to the right of a1, the first (or pass mode) test in Fig. 8.14 fails. The
second test, which determines whether the vertical or horizontal coding mode is entered, indicates that
vertical mode coding should be used, because the distance from a1 to b1 is less than 3. In accordance with
Table 8.10, the appropriate code word is 000010, implying that a1 is two pixels left of b1. In preparation
for the next coding iteration, a0 is moved to the location of a1.

Mode Code Word

Pass 0001

Horizontal 001 + M(a0a1) + M(a1a2)

Vertical

a1 below b1 1

a1 one to the right of b1 011

a1 two to the right of b1 000011

a1 three to the right of b1 0000011

a1 one to the left of b1 010

a1 two to the left of b1 000010

a1 three to the left of b1 0000010

Extension 0000001xxx

TABLE 8.10
CCITT
two-dimensional
code table.

b
a

FIGURE 8.15
CCITT (a) pass
mode and
(b) horizontal
and vertical mode
coding
parameters.

� 0
� 1

b1

a0 a1Next a0

b2

b2a1b1

a0 a1 a2

b1

a0a1 a1a2

Reference line

Coding line

Reference line

Coding line

Vertical mode

Pass mode

Horizontal mode

DIP4E_GLOBAL_Print_Ready.indb 571 6/16/2017 2:10:54 PM

572 Chapter 8 Image Compression and Watermarking

EXAMPLE 8.10 : CCITT compression example.

Figure 8.16(a) is a 300 dpi scan of a 7 9 25* . inch book page displayed at about 1 3 scale. Note that about
half of the page contains text, around 9% is occupied by a halftone image, and the rest is white space.
A section of the page is enlarged in Fig. 8.16(b). Keep in mind that we are dealing with a binary image;
the illusion of gray tones is created, as was described in Section 4.5, by the halftoning process used in
printing. If the binary pixels of the image in Fig. 8.16(a) are stored in groups of 8 pixels per byte, the
1952 2697× bit scanned image, commonly called a document, requires 658,068 bytes. An uncompressed
PDF file of the document (created in Photoshop) requires 663,445 bytes. CCITT Group 3 compression
reduces the file to 123,497 bytes, resulting in a compression ratio C = 5 37. . CCITT Group 4 compression
reduces the file to 110,456 bytes, increasing the compression ratio to about 6.

8.7 SYMBOL-BASED CODING

In symbol- or token-based coding, an image is represented as a collection of fre-
quently occurring subimages, called symbols. Each such symbol is stored in a sym-
bol dictionary and the image is coded as a set of triplets (, ,),(, ,), ,x y t x y t1 1 1 2 2 2 p{ }
where each (,)x yi i pair specifies the location of a symbol in the image and token
ti is the address of the symbol or subimage in the dictionary. That is, each triplet
represents an instance of a dictionary symbol in the image. Storing repeated sym-
bols only once can compress images significantly, particularly in document storage
and retrieval applications where the symbols are often character bitmaps that are
repeated many times.

8.7

With reference to
Tables 8.3–8.5, symbol-
based coding is used in

• JBIG2

compression.

ba

FIGURE 8.16
A binary scan of
a book page: (a)
scaled to show
the general page
content;
(b) scaled to show
the binary pixels
used in dithering.

DIP4E_GLOBAL_Print_Ready.indb 572 6/16/2017 2:10:54 PM

8.7 Symbol-based Coding 573

Consider the simple bilevel image in Fig. 8.17(a). It contains the single word,
banana, which is composed of three unique symbols: a b, three a’s, and two n’s.
Assuming that the b is the first symbol identified in the coding process, its 9 7* bit-
map is stored in location 0 of the symbol dictionary. As Fig. 8.17(b) shows, the token
identifying the b bitmap is 0. Thus, the first triplet in the encoded image’s represen-
tation [see Fig. 8.17(c)] is (0, 2, 0), indicating that the upper-left corner (an arbitrary
convention) of the rectangular bitmap representing the b symbol is to be placed
at location (0, 2) in the decoded image. After the bitmaps for the a and n symbols
have been identified and added to the dictionary, the remainder of the image can
be encoded with five additional triplets. As long as the six triplets required to locate
the symbols in the image, together with the three bitmaps required to define them,
are smaller than the original image, compression occurs. In this case, the starting
image has 9 51 1* * or 459 bits and, assuming that each triplet is composed of three
bytes, the compressed representation has () () () ()6 3 8 9 7 6 7 6 6* * + * * *+ +[] or
285 bits; the resulting compression ratio C = 1 61. . To decode the symbol-based rep-
resentation in Fig. 8.17(c), you simply read the bitmaps of the symbols specified in
the triplets from the symbol dictionary and place them at the spatial coordinates
specified in each triplet.

Symbol-based compression was proposed in the early 1970s (Ascher and Nagy
[1974]), but has become practical only recently. Advances in symbol-matching algo-
rithms (see Chapter 12) and increased CPU computer processing speeds have made
it possible to both select dictionary symbols and to find where they occur in an
image in a timely manner. And like many other compression methods, symbol-based
decoding is significantly faster than encoding. Finally, we note that both the symbol
bitmaps that are stored in the dictionary and the triplets used to reference them
themselves can be encoded to further improve compression performance. If, as in
Fig. 8.17, only exact symbol matches are allowed, the resulting compression is loss-
less; if small differences are permitted, some level of reconstruction error will be
present.

JBIG2 COMPRESSION

JBIG2 is an international standard for bilevel image compression. By segmenting
an image into overlapping and/or non-overlapping regions of text, halftone, and
generic content, compression techniques that are specifically optimized for each
type of content are employed:

ba c

FIGURE 8.17
(a) A bi-level
document, (b)
symbol dictionary,
and (c) the trip-
lets used to locate
the symbols in the
document.

Token Symbol Triplet

0

1

2

(0, 2, 0)
(3,10, 1)
(3, 18, 2)
(3, 26, 1)
(3, 34, 2)
(3, 42, 1)

DIP4E_GLOBAL_Print_Ready.indb 573 6/16/2017 2:10:55 PM

574 Chapter 8 Image Compression and Watermarking

1. Text regions are composed of characters that are ideally suited for a symbol-
based coding approach. Typically, each symbol will correspond to a character
bitmap—a subimage representing a character of text. There is normally only
one character bitmap (or subimage) in the symbol dictionary for each upper-
and lowercase character of the font being used. For example, there would be
one “a” bitmap in the dictionary, one “A” bitmap, one “b” bitmap, and so on.

In lossy JBIG2 compression, often called perceptually lossless or visually
lossless, we neglect differences between dictionary bitmaps (i.e., the reference
character bitmaps or character templates) and specific instances of the corre-
sponding characters in the image. In lossless compression, the differences are
stored and used in conjunction with the triplets encoding each character (by
the decoder) to produce the actual image bitmaps. All bitmaps are encoded
either arithmetically or using MMR (see Section 8.6); the triplets used to access
dictionary entries are either arithmetically or Huffman encoded.

2. Halftone regions are similar to text regions in that they are composed of pat-
terns arranged in a regular grid. The symbols that are stored in the dictionary,
however, are not character bitmaps but periodic patterns that represent intensi-
ties (e.g., of a photograph) that have been dithered to produce bilevel images
for printing.

3. Generic regions contain non-text, non-halftone information, like line art and
noise, and are compressed using either arithmetic or MMR coding.

As is true of many image compression standards, JBIG2 defines decoder behavior. It
does not explicitly define a standard encoder, but is flexible enough to allow various
encoder designs. Although the design of the encoder is left unspecified, it is impor-
tant because it determines the level of compression that is achieved. After all, the
encoder must segment the image into regions, choose the text and halftone symbols
that are stored in the dictionaries, and decide when those symbols are essentially
the same as, or different from, potential instances of the symbols in the image. The
decoder simply uses that information to recreate the original image.

EXAMPLE 8.11 : JBIG2 compression example.

Consider again the bilevel image in Fig. 8.16(a). Figure 8.18(a) shows a reconstructed section of the
image after lossless JBIG2 encoding (by a commercially available document compression application).
It is an exact replica of the original image. Note that the ds in the reconstructed text vary slightly, despite
the fact that they were generated from the same d entry in the dictionary. The differences between that
d and the ds in the image were used to refine the output of the dictionary. The standard defines an algo-
rithm for accomplishing this during the decoding of the encoded dictionary bitmaps. For the purposes of
our discussion, you can think of it as adding the difference between a dictionary bitmap and a specific
instance of the corresponding character in the image to the bitmap read from the dictionary.

Figure 8.18(b) is another reconstruction of the area in Fig. 8.18(a) after perceptually lossless JBIG2
compression. Note that the ds in this figure are identical. They have been copied directly from the sym-
bol dictionary. The reconstruction is called perceptually lossless because the text is readable and the font
is even the same. The small differences shown in Fig. 8.18(c) between the ds in the original image and the
d in the dictionary are considered unimportant because they do not affect readability. Remember that

DIP4E_GLOBAL_Print_Ready.indb 574 6/16/2017 2:10:55 PM

8.8 Bit-plane Coding 575

we are dealing with bilevel images, so there are only three intensities in Fig. 8.18(c). Intensity 128 indi-
cates areas where there is no difference between the corresponding pixels of the images in Figs. 8.18(a)
and (b); intensities 0 (black) and 255 (white) indicate pixels of opposite intensities in the two images—
for example, a black pixel in one image that is white in the other, and vice versa.

The lossless JBIG2 compression that was used to generate Fig. 8.18(a) reduces the original 663,445
byte uncompressed PDF image to 32,705 bytes; the compression ratio is C = 20 3. . Perceptually lossless
JBIG2 compression reduces the image to 23,913 bytes, increasing the compression ratio to about 27.7.
These compressions are 4 to 5 times greater than the CCITT Group 3 and 4 results from Example 8.10.

8.8 BIT-PLANE CODING

The run-length and symbol-based techniques of the previous sections can be applied
to images with more than two intensities by individually processing their bit planes.
The technique, called bit-plane coding, is based on the concept of decomposing a
multilevel (monochrome or color) image into a series of binary images (see Sec-
tion 3.2) and compressing each binary image via one of several well-known binary
compression methods. In this section, we describe the two most popular decomposi-
tion approaches.

The intensities of an m-bit monochrome image can be represented in the form of
the base-2 polynomial

 a a a am
m

m
m

-
-

-
-

1
1

2
2

1
1

0
02 2 2 2+ + + +… (8-19)

Based on this property, a simple method of decomposing the image into a collection
of binary images is to separate the m coefficients of the polynomial into m 1-bit bit
planes. As noted in Section 3.2, the lowest-order bit plane (the plane corresponding
to the least significant bit) is generated by collecting the a0 bits of each pixel, while
the highest-order bit plane contains the am-1 bits or coefficients. In general, each bit
plane is constructed by setting its pixels equal to the values of the appropriate bits
or polynomial coefficients from each pixel in the original image. The inherent disad-
vantage of this decomposition approach is that small changes in intensity can have
a significant impact on the complexity of the bit planes. If a pixel of intensity 127
(01111111) is adjacent to a pixel of intensity 128 (10000000), for instance, every bit

8.8

With reference to
Tables 8.3–8.5, bit-plane
coding is used in

• JBIG2
• JPEG-2000

compression standards.

ba c

FIGURE 8.18
JBIG2 compres-
sion compari-
son: (a) lossless
compression and
reconstruction;
(b) perceptually
lossless; and (c)
the scaled differ-
ence between the
two.

DIP4E_GLOBAL_Print_Ready.indb 575 6/16/2017 2:10:55 PM

576 Chapter 8 Image Compression and Watermarking

plane will contain a corresponding 0 to 1 (or 1 to 0) transition. For example, because
the most significant bits of the binary codes for 127 and 128 are different, the highest
bit plane will contain a zero-valued pixel next to a pixel of value 1, creating a 0 to 1
(or 1 to 0) transition at that point.

An alternative decomposition approach (which reduces the effect of small inten-
sity variations) is to first represent the image by an m-bit Gray code. The m-bit Gray
code g g g gm−1 2 1 0… that corresponds to the polynomial in Eq. (8-19) can be com-
puted from

g a a i m

g a
i i i

m m

= ≤ ≤
=

+� 1

1 1

0 2-

- -
 (8-20)

Here, � denotes the exclusive OR operation. This code has the unique property
that successive code words differ in only one bit position. Thus, small changes in
intensity are less likely to affect all m bit planes. For instance, when intensity levels
127 and 128 are adjacent, only the highest-order bit plane will contain a 0 to 1 tran-
sition, because the Gray codes that correspond to 127 and 128 are 01000000 and
11000000, respectively.

EXAMPLE 8.12 : Bit-plane coding.

Figures 8.19 and 8.20 show the eight binary and Gray-coded bit planes of the 8-bit monochrome image
of the child in Fig. 8.19(a). Note that the high-order bit planes are far less complex than their low-order
counterparts. That is, they contain large uniform areas of significantly less detail, busyness, or random-
ness. In addition, the Gray-coded bit planes are less complex than the corresponding binary bit planes.
Both observations are reflected in the JBIG2 coding results of Table 8.11. Note, for instance, that the a5
and g5 results are significantly larger than the a6 and g6 compressions, and that both g5 and g6 are smaller
than their a5 and a6 counterparts. This trend continues throughout the table, with the single exception of
a0. Gray-coding provides a compression advantage of about 1.06:1 on average. Combined together, the
Gray-coded files compress the original monochrome image by 678 676 475 964, , or 1.43:1; the non-Gray-
coded files compress the image by 678 676 503 916, , or 1.35:1.

Finally, we note that the two least significant bits in Fig. 8.20 have little apparent structure. Because
this is typical of most 8-bit monochrome images, bit-plane coding is usually restricted to images of
6 bits/pixel or less. JBIG1, the predecessor to JBIG2, imposes such a limit.

8.9 BLOCK TRANSFORM CODING

In this section, we consider a compression technique that divides an image into
small non-overlapping blocks of equal size (e.g., 8 8*) and processes the blocks
independently using a 2-D transform. In block transform coding, a reversible, linear
transform (such as the Fourier transform) is used to map each block or subimage
into a set of transform coefficients, which are then quantized and coded. For most
images, a significant number of the coefficients have small magnitudes and can be
coarsely quantized (or discarded entirely) with little image distortion. A variety of

8.9

With reference to
Tables 8.3–8.5, block
transform coding is
used in

• JPEG
• M-JPEG
• MPEG-1,2,4
• H.261, H.262,
 H.263, and H.264
• DV and HDV
• VC-1

DIP4E_GLOBAL_Print_Ready.indb 576 6/16/2017 2:10:56 PM

8.9 Block Transform Coding 577

transformations, including the discrete Fourier transform (DFT) of Chapter 4, can
be used to transform the image data.

Figure 8.21 shows a typical block transform coding system. The decoder imple-
ments the inverse sequence of steps (with the exception of the quantization func-
tion) of the encoder, which performs four relatively straightforward operations:
subimage decomposition, transformation, quantization, and coding. An M N* input
image is subdivided first into subimages of size n n* , which are then transformed
to generate MN n2 subimage transform arrays, each of size n n* . The goal of the
transformation process is to decorrelate the pixels of each subimage, or to pack as
much information as possible into the smallest number of transform coefficients.
The quantization stage then selectively eliminates or more coarsely quantizes the
coefficients that carry the least amount of information in a predefined sense (several
methods will be discussed later in the section). These coefficients have the smallest
impact on reconstructed subimage quality. The encoding process terminates by cod-
ing (normally using a variable-length code) the quantized coefficients. Any or all of
the transform encoding steps can be adapted to local image content, called adaptive
transform coding, or fixed for all subimages, called nonadaptive transform coding.

TRANSFORM SELECTION

Block transform coding systems based on a variety of discrete 2-D transforms have
been constructed and/or studied extensively. The choice of a particular transform in
a given application depends on the amount of reconstruction error that can be toler-
ated and the computational resources available. Compression is achieved during the
quantization of the transformed coefficients (not during the transformation step).

EXAMPLE 8.13 : Block transform coding with the DFT, WHT, and DCT.

Figures 8.22(a) through (c) show three approximations of the 512 512× monochrome image in Fig. 8.9(a).
These pictures were obtained by dividing the original image into subimages of size 8 8× , representing
each subimage using three of the transforms described in Chapter 7 (the DFT, WHT, and DCT trans-
forms), truncating 50% of the resulting coefficients, and taking the inverse transform of the truncated
coefficient arrays.

In this section, we restrict
our attention to square
subimages (the most
commonly used). It is
assumed that the input
image is padded, if neces-
sary, so that both M and
N are multiples of n.

Coefficient
m

Binary Code
(PDF bits)

Gray Code
(PDF bits)

Compression
Ratio

7 6,999 6,999 1.00

6 12,791 11,024 1.16

5 40,104 36,914 1.09

4 55,911 47,415 1.18

3 78,915 67,787 1.16

2 101,535 92,630 1.10

1 107,909 105,286 1.03

0 99,753 107,909 0.92

TABLE 8.11
JBIG2 lossless
coding results
for the binary
and Gray-coded
bit planes of
Fig. 8.19(a). These
results include the
overhead of each
bit plane’s PDF
representation.

DIP4E_GLOBAL_Print_Ready.indb 577 6/16/2017 2:10:57 PM

578 Chapter 8 Image Compression and Watermarking

ba
dc
fe
hg

FIGURE 8.19
(a) A 256-bit
monochrome
image.
(b)–(h) The four
most significant
binary and
Gray-coded bit
planes of the
image in (a).

All
bits a7, g7

a6 g6

a5 g5

a4 g4

DIP4E_GLOBAL_Print_Ready.indb 578 6/16/2017 2:10:57 PM

8.9 Block Transform Coding 579

ba
dc
fe
hg

FIGURE 8.20
(a)–(h) The four
least significant
binary (left
column) and
Gray-coded
(right column)
bit planes of
the image in
Fig. 8.19(a).

a3 g3

a2 g2

a1 g1

a0 g0

DIP4E_GLOBAL_Print_Ready.indb 579 6/16/2017 2:10:57 PM

580 Chapter 8 Image Compression and Watermarking

In each case, the 32 retained coefficients were selected on the basis of maximum magnitude. Note
that in all cases, the 32 discarded coefficients had little visual impact on the quality of the reconstructed
image. Their elimination, however, was accompanied by some mean-squared error, which can be seen
in the scaled error images of Figs. 8.22(d) through (f). The actual rms errors were 2.32, 1.78, and 1.13
intensities, respectively.

b
a

FIGURE 8.21
A block transform
coding system:
(a) encoder;
(b) decoder.

Input
image

(M * N)

Contruct
n * n

subimage

Forward
transform

Quantizer
Symbol
encoder

Symbol
decoder

Inverse
transform

Merge
n * n

subimage

Compressed
image

Decompressed
image

Compressed
image

ba c
ed f

FIGURE 8.22 Approximations of Fig. 8.9(a) using the (a) Fourier, (b) Walsh-Hadamard, and (c) cosine transforms,
together with the corresponding scaled error images in (d)–(f).

DIP4E_GLOBAL_Print_Ready.indb 580 6/16/2017 2:10:58 PM

8.9 Block Transform Coding 581

The small differences in mean-squared reconstruction error noted in the preced-
ing example are related directly to the energy or information packing properties of
the transforms employed. In accordance with Eqs. (7-75) and (7-76) of Section 7.5,
an n n* subimage g x y(,) can be expressed as a function of its 2-D transform T u v(,):

 G S=
==
∑∑ T u v uv
v

n

u

n

(,)
0

1

0

1 −−

 (8-21)

for x y n, , , , , .= 0 1 2 1… − G, the matrix containing the pixels of the input subimage,
is explicitly defined as a linear combination of n2 basis images of size n n× . Recall
that the basis images of the DFT, DCT, and WHT transforms for n = 8 are shown
in Figs. 7.7, 7.10, and 7.16. If we now define a transform coefficient masking function

 χ u v
T u v

,
,() =

()0

1

if satisfies a specified truncation criterion

otheerwise

⎧
⎨
⎪

⎩⎪
 (8-22)

for u v n, , , , , ,= 0 1 2 1… − an approximation of G can be obtained from the trun-
cated expansion

 ˆ , (,)G S= ()
==
∑∑ χ

−−

u v T u v uv
v

n

u

n

0

1

0

1

 (8-23)

where χ u v,() is constructed to eliminate the basis images that make the smallest
contribution to the total sum in Eq. (8-21). The mean-squared error between subim-
age G and approximation Ĝ then is

e E

E T u v u v T u v

ms

uv
v

n

u

n

uv
v

n

= { }
= () () ()

== =
∑∑

G G

S S

−

− χ
−− −

ˆ

, , ,

2

0

1

0

1

0

11

0

1 2

0

1

0

1

1

∑∑

∑∑

=

==

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= () ()⎡⎣ ⎤⎦

u

n

uv
v

n

u

n

E T u v u v

−

−−

− χ, ,S
22

2

0

1

0

1

1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= ()⎡⎣ ⎤⎦()
==
∑∑ sT u v
v

n

u

n

u v, ,
−−

− χ

 (8-24)

where G G− ˆ is the norm of matrix G G− ˆ() and sT u v(,)
2 is the variance of the coef-

ficient at transform location (,).u v The final simplification is based on the ortho-
normal nature of the basis images and the assumption that the pixels of G are
generated by a random process with zero mean and known covariance. The total
mean-squared error of approximation thus is the sum of the variances of the dis-
carded transform coefficients; that is, the coefficients for which χ u v, ,() = 0 so that
1 − χ u v,()⎡⎣ ⎤⎦ in Eq. (8-24) is 1. Transformations that redistribute or pack the most

information into the fewest coefficients provide the best subimage approximations
and, consequently, the smallest reconstruction errors. Finally, under the assumptions

DIP4E_GLOBAL_Print_Ready.indb 581 6/16/2017 2:10:59 PM

582 Chapter 8 Image Compression and Watermarking

that led to Eq. (8-24), the mean-squared error of the MN n2 subimages of an M N×
image are identical. Thus the mean-squared error (being a measure of average error)
of the M N× image equals the mean-squared error of a single subimage.

The earlier example showed that the information packing ability of the DCT is
superior to that of the DFT and WHT. Although this condition usually holds for most
images, the Karhunen-Loève transform (see Chapter 11), not the DCT, is the opti-
mal transform in an information packing sense. This is due to the fact that the KLT
minimizes the mean-squared error in Eq. (8-24) for any input image and any number
of retained coefficients (Kramer and Mathews [1956]). However, because the KLT
is data dependent, obtaining the KLT basis images for each subimage, in general, is
a nontrivial computational task. For this reason, the KLT is used infrequently for
image compression. Instead, a transform, such as the DFT, WHT, or DCT, whose
basis images are fixed (input independent) is normally used. Of the possible input
independent transforms, the nonsinusoidal transforms (such as the WHT transform)
are the simplest to implement. The sinusoidal transforms (such as the DFT or DCT)
more closely approximate the information packing ability of the optimal KLT.

Hence, most transform coding systems are based on the DCT, which provides a
good compromise between information packing ability and computational complex-
ity. In fact, the properties of the DCT have proved to be of such practical value that
the DCT is an international standard for transform coding systems. Compared to
the other input independent transforms, it has the advantages of having been imple-
mented in a single integrated circuit, packing the most information into the fewest
coefficients† (for most images), and minimizing the block-like appearance, called
blocking artifact, that results when the boundaries between subimages become
visible. This last property is particularly important in comparisons with the other
sinusoidal transforms. As Fig. 7.11(a) of Section 7.6 shows, the implicit n-point peri-
odicity of the DFT gives rise to boundary discontinuities that result in substantial
high-frequency transform content. When the DFT transform coefficients are trun-
cated or quantized, the Gibbs phenomenon‡ causes the boundary points to take on
erroneous values, which appear in an image as blocking artifact. That is, the bound-
aries between adjacent subimages become visible because the boundary pixels of
the subimages assume the mean values of discontinuities formed at the boundary
points [see Fig. 7.11(a)]. The DCT of Fig. 7.11(b) reduces this effect, because its
implicit 2n-point periodicity does not inherently produce boundary discontinuities.

SUBIMAGE SIZE SELECTION

Another significant factor affecting transform coding error and computational com-
plexity is subimage size. In most applications, images are subdivided so the correla-
tion (redundancy) between adjacent subimages is reduced to some acceptable level

† Ahmed et al. [1974] first noticed that the KLT basis images of a first-order Markov image source closely resem-
ble the DCT’s basis images. As the correlation between adjacent pixels approaches one, the input-dependent
KLT basis images become identical to the input-independent DCT basis images (Clarke [1985]).

‡ This phenomenon, described in most electrical engineering texts on circuit analysis, occurs because the Fourier
transform fails to converge uniformly at discontinuities. At discontinuities, Fourier expansions take the mean
values of the points of discontinuity.

An additional condition
for optimality is that
the masking function
of Eq. (8-22) selects
the KLT coefficients of
maximum variance.

DIP4E_GLOBAL_Print_Ready.indb 582 6/16/2017 2:11:00 PM

8.9 Block Transform Coding 583

and so n is an integer power of 2 where, as before, n is the subimage dimension.
The latter condition simplifies the computation of the subimage transforms (see the
base-2 successive doubling method discussed in Section 4.11). In general, both the
level of compression and computational complexity increase as the subimage size
increases. The most popular subimage sizes are 8 8× and 16 6×1 .

EXAMPLE 8.14 : Effects of subimage size on transform coding.

Figure 8.23 illustrates graphically the impact of subimage size on transform coding reconstruction error.
The data plotted were obtained by dividing the monochrome image of Fig. 8.9(a) into subimages of size
n n× , for n = 2 4 8 16 256 512, , , , , , ,… computing the transform of each subimage, truncating 75% of the
resulting coefficients, and taking the inverse transform of the truncated arrays. Note that the Hadamard
and cosine curves flatten as the size of the subimage becomes greater than 8 8× , whereas the Fourier
reconstruction error continues to decrease in this region. As n further increases, the Fourier reconstruc-
tion error crosses the Walsh-Hadamard curve and approaches the cosine result. This result is consistent
with the theoretical and experimental findings reported by Netravali and Limb [1980] and by Pratt
[2001] for a 2-D Markov image source.

All three curves intersect when 2 2× subimages are used. In this case, only one of the four coefficients
(25%) of each transformed array was retained. The coefficient in all cases was the dc component, so the
inverse transform simply replaced the four subimage pixels by their average value [see Eq. (4-92)]. This
condition is evident in Fig. 8.24(b), which shows a zoomed portion of the 2 2× DCT result. Note that
the blocking artifact that is prevalent in this result decreases as the subimage size increases to 4 4× and
8 8× in Figs. 8.24(c) and (d). Figure 8.24(a) shows a zoomed portion of the original image for reference.

BIT ALLOCATION

The reconstruction error associated with the truncated series expansion of Eq. (8-23)
is a function of the number and relative importance of the transform coefficients
that are discarded, as well as the precision that is used to represent the retained
coefficients. In most transform coding systems, the retained coefficients are selected
[that is, the masking function of Eq. (8-22) is constructed] on the basis of maximum

FIGURE 8.23
Reconstruction
error versus
subimage size.

Subimage size

R
oo

t-
m

ea
n-

sq
ua

re
 e

rr
or

DFT

WHT

DCT

2 4 8 16 32 64 128 256 512
2

2.5

3

3.5

4

4.5

5

5.5

6
6.5

DIP4E_GLOBAL_Print_Ready.indb 583 6/16/2017 2:11:00 PM

584 Chapter 8 Image Compression and Watermarking

variance, called zonal coding, or on the basis of maximum magnitude, called thresh-
old coding. The overall process of truncating, quantizing, and coding the coefficients
of a transformed subimage is commonly called bit allocation.

EXAMPLE 8.15 : Bit allocation.

Figures 8.25(a) and (c) show two approximations of Fig. 8.9(a) in which 87.5% of the DCT coefficients
of each 8 8× subimage were discarded. The first result was obtained via threshold coding by keeping
the eight largest transform coefficients, and the second image was generated by using a zonal coding
approach. In the latter case, each DCT coefficient was considered a random variable whose distribution
could be computed over the ensemble of all transformed subimages. The eight distributions of largest
variance (12.5% of the 64 coefficients in the transformed 8 8× subimage) were located and used to
determine the coordinates [u and v of the coefficients, T u v(,)], that were retained for all subimages.
Note that the threshold coding difference image of Fig. 8.25(b) contains less error than the zonal coding
result in Fig. 8.25(d). Both images have been scaled to make the errors more visible. The corresponding
rms errors are 4.5 and 6.5 intensities, respectively.

Zonal Coding Implementation

Zonal coding is based on the information theory concept of viewing information as
uncertainty. Therefore, the transform coefficients of maximum variance carry the
most image information, and should be retained in the coding process. The variances
themselves can be calculated directly from the ensemble of MN n2 transformed
subimage arrays (as in the preceding example) or based on an assumed image model
(say, a Markov autocorrelation function). In either case, the zonal sampling process
can be viewed, in accordance with Eq. (8-23), as multiplying each T u v(,) by the cor-
responding element in a zonal mask, which is constructed by placing a 1 in the loca-
tions of maximum variance and a 0 in all other locations. Coefficients of maximum
variance usually are located around the origin of an image transform, resulting in
the typical zonal mask shown in Fig. 8.26(a).

The coefficients retained during the zonal sampling process must be quantized
and coded, so zonal masks are sometimes depicted showing the number of bits used

ba c d

FIGURE 8.24 Approximations of Fig. 8.24(a) using 25% of the DCT coefficients and (b) 2 2× subimages, (c) 4 4×
subimages, and (d) 8 8× subimages. The original image in (a) is a zoomed section of Fig. 8.9(a).

DIP4E_GLOBAL_Print_Ready.indb 584 6/16/2017 2:11:01 PM

8.9 Block Transform Coding 585

to code each coefficient [see Fig. 8.26(b)]. In most cases, the coefficients are allo-
cated the same number of bits, or some fixed number of bits is distributed among
them unequally. In the first case, the coefficients generally are normalized by their
standard deviations and uniformly quantized. In the second case, a quantizer, such
as an optimal Lloyd-Max quantizer (see Optimal quantizers in Section 8.10), is
designed for each coefficient. To construct the required quantizers, the zeroth or DC
coefficient normally is modeled by a Rayleigh density function, whereas the remain-
ing coefficients are modeled by a Laplacian or Gaussian density.† The number of
quantization levels (and thus the number of bits) allotted to each quantizer is made
proportional to log .,2

2sT u v() Thus, the retained coefficients in Eq. (8-23)—which (in
the context of the current discussion) are selected on the basis of maximum vari-
ance—are assigned bits in proportion to the logarithm of the coefficient variances.

Threshold Coding Implementation

Zonal coding usually is implemented by using a single fixed mask for all subimages.
Threshold coding, however, is inherently adaptive in the sense that the location of
the transform coefficients retained for each subimage vary from one subimage to

† As each coefficient is a linear combination of the pixels in its subimage [see Eq. (7-31)], the central-limit theo-
rem suggests that, as subimage size increases, the coefficients tend to become Gaussian. This result does not
apply to the dc coefficient, however, because nonnegative images always have positive dc coefficients.

ba
dc

FIGURE 8.25
Approximations
of Fig. 8.9(a) using
12.5% of the
DCT coefficients:
(a)–(b) threshold
coding results;
(c)–(d) zonal
coding results. The
difference images
are scaled by 4.

DIP4E_GLOBAL_Print_Ready.indb 585 6/16/2017 2:11:02 PM

586 Chapter 8 Image Compression and Watermarking

another. In fact, threshold coding is the adaptive transform coding approach most
often used in practice because of its computational simplicity. The underlying con-
cept is that, for any subimage, the transform coefficients of largest magnitude make
the most significant contribution to reconstructed subimage quality, as demonstrated
in the last example. Because the locations of the maximum coefficients vary from
one subimage to another, the elements of χ u v T u v, (,)() normally are reordered (in a
predefined manner) to form a 1-D, run-length coded sequence. Figure 8.26(c) shows
a typical threshold mask for one subimage of a hypothetical image. This mask pro-
vides a convenient way to visualize the threshold coding process for the correspond-
ing subimage, as well as to mathematically describe the process using Eq. (8-23).
When the mask is applied [via Eq. (8-23)] to the subimage for which it was derived,
and the resulting n n× array is reordered to form an n2-element coefficient sequence
in accordance with the zigzag ordering pattern of Fig. 8.26(d), the reordered 1-D
sequence contains several long runs of 0’s. [The zigzag pattern becomes evident by
starting at 0 in Fig. 8.26(d) and following the numbers in sequence.] These runs nor-
mally are run-length coded. The nonzero or retained coefficients, corresponding to
the mask locations that contain a 1, are represented using a variable-length code.

There are three basic ways to threshold a transformed subimage or, stated dif-
ferently, to create a subimage threshold masking function of the form given in
Eq. (8-22): (1) A single global threshold can be applied to all subimages; (2) a differ-
ent threshold can be used for each subimage, or; (3) the threshold can be varied as a
function of the location of each coefficient within the subimage. In the first approach,

ba
dc

FIGURE 8.26
A typical
(a) zonal mask,
(b) zonal bit allo-
cation,
(c) threshold
mask, and
(d) thresholded
coefficient order-
ing sequence.
Shading highlights
the coefficients
that are retained.

1

1 1 1 1 1

1

1

1

1

1

1

111

1

1 1 1

111

1 1

1

0

0 0 0

00 0 0

0 0 0 0 0

000000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

2

1

1

1

111

111

1

1

1

1

2 2

2

2

33 3

3 3

3 3

3

3

5

4 4

4

4

4

5

6

6

6

7

7

8

8

0 1 5 6

2

3

4 7

9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

25

26

27 28

29 42

30 41 43

31 40 44 53

33

34

35 36 48

37

32 39 45 52 54

38 46 51 55 60

47 50 56 59 61

49 57 58 62 63

DIP4E_GLOBAL_Print_Ready.indb 586 6/16/2017 2:11:02 PM

8.9 Block Transform Coding 587

the level of compression differs from image to image, depending on the number of
coefficients that exceed the global threshold. In the second, called N-largest coding,
the same number of coefficients is discarded for each subimage. As a result, the code
rate is constant and known in advance. The third technique, like the first, results in a
variable code rate, but offers the advantage that thresholding and quantization can
be combined by replacing χ u v T u v, (,)() in Eq. (8-23) with

 T u v
T u v

Z u v
ˆ ,

,

,
() =

()
()

⎡

⎣
⎢

⎤

⎦
⎥round (8-25)

where ˆ (,)T u v is a thresholded and quantized approximation of T u v(,), and Z u v(,)
is an element of the following transform normalization array:

 Z =

() () ()
()

()

Z Z Z n

Z

Z n Z n

0 0 0 1 0 1

1 0

1 0 1 1

, , ,

,

, ,

…
� … �

� � … �
� � … �
� � … �

−

− −(() ()

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥… Z n n− −1 1,

 (8-26)

Before a normalized (thresholded and quantized) subimage transform, ˆ (,),T u v can
be inverse transformed to obtain an approximation of subimage g x y(,), it must
be multiplied by Z u v(,). The resulting denormalized array, denoted �T u v(,) is an
approximation of ˆ (,):T u v

 �T u v T u v Z u v(,) (,) (,)= ˆ (8-27)

The inverse transform of �T u v(,) yields the decompressed subimage approximation.
Figure 8.27(a) graphically depicts Eq. (8-25) for the case in which Z u v(,) is

assigned a particular value c. Note that ˆ (,)T u v assumes integer value k if and only if

 kc
c

T u v kc
c

− +
2 2

≤ () <, (8-28)

If Z u v T u v, , ,() > ()2 then ˆ (,)T u v = 0 and the transform coefficient is completely
truncated or discarded. When ˆ (,)T u v is represented with a variable-length code that
increases in length as the magnitude of k increases, the number of bits used to rep-
resent T u v(,) is controlled by the value of c. Thus, the elements of Z can be scaled
to achieve a variety of compression levels. Figure 8.27(b) shows a typical normaliza-
tion array. This array, which has been used extensively in the JPEG standardization
efforts (see the next section), weighs each coefficient of a transformed subimage
according to heuristically determined perceptual or psychovisual importance.

The N in “N-largest
coding” is not an image
dimension, but refers
to the number of coef-
ficients that are kept.

DIP4E_GLOBAL_Print_Ready.indb 587 6/16/2017 2:11:04 PM

588 Chapter 8 Image Compression and Watermarking

EXAMPLE 8.16 : Illustration of threshold coding.

Figures 8.28(a) through (f) show six threshold-coded approximations of the monochrome image in
Fig. 8.9(a). All images were generated using an 8 8× DCT and the normalization array of Fig. 8.27(b).
The first result, which provides a compression ratio of about 12 to 1 (i.e., C = 12), was obtained by direct
application of that normalization array. The remaining results, which compress the original image by 19,
30, 49, 85, and 182 to 1, were generated after multiplying (scaling) the normalization arrays by 2, 4, 8,
16, and 32, respectively. The corresponding rms errors are 3.83, 4.93, 6.62, 9.35, 13.94, and 22.46 intensity
levels.

JPEG

One of the most popular and comprehensive continuous tone, still-frame compres-
sion standards is the JPEG standard. It defines three different coding systems: (1) a
lossy baseline coding system, which is based on the DCT and is adequate for most
compression applications; (2) an extended coding system for greater compression,
higher precision, or progressive reconstruction applications; and (3) a lossless inde-
pendent coding system for reversible compression. To be JPEG compatible, a prod-
uct or system must include support for the baseline system. No particular file format,
spatial resolution, or color space model is specified.

In the baseline system, often called the sequential baseline system, the input and
output data precision is limited to 8 bits, whereas the quantized DCT values are
restricted to 11 bits. The compression itself is performed in three sequential steps:
DCT computation, quantization, and variable-length code assignment. The image
is first subdivided into pixel blocks of size 8 8× , which are processed left-to-right,
top-to-bottom. As each 8 8× block or subimage is encountered, its 64 pixels are
level-shifted by subtracting the quantity 2 1k− , where 2k is the maximum number of
intensity levels. The 2-D discrete cosine transform of the block is then computed,
quantized in accordance with Eq. (8-25), and reordered, using the zigzag pattern of
Fig. 8.26(d), to form a 1-D sequence of quantized coefficients.

Because the one-dimensionally reordered array generated under the zigzag
pattern of Fig. 8.26(d) is arranged qualitatively according to increasing spatial fre-
quency, the JPEG coding procedure is designed to take advantage of the long runs

ba

FIGURE 8.27
(a) A threshold
coding quantiza-
tion curve [see
Eq. (8-28)]. (b) A
typical normaliza-
tion matrix.

ˆ

3c2cc

T(u, v)-3c -2c -c

2

3

1

-2

-3

-1

T(u, v)
16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

DIP4E_GLOBAL_Print_Ready.indb 588 6/16/2017 2:11:05 PM

8.9 Block Transform Coding 589

of zeros that normally result from the reordering. In particular, the nonzero AC†
coefficients are coded using a variable-length code that defines the coefficient values
and number of preceding zeros. The DC coefficient is difference coded relative to
the DC coefficient of the previous subimage. The default JPEG Huffman codes for
the luminance component of a color image, or intensity of a monochrome image, are
available on the book website. The JPEG recommended luminance quantization
array is given in Fig. 8.27(b) and can be scaled to provide a variety of compression
levels. The scaling of this array allows users to select the “quality” of JPEG compres-
sions. Although default coding tables and quantization arrays are provided for both
color and monochrome processing, the user is free to construct custom tables and/or
arrays, which may be adapted to the characteristics of the image being compressed.

† In the standard, the term AC denotes all transform coefficients with the exception of the zeroth or DC coef-
ficient.

Consult the book web-
site for the JPEG default
Huffman code tables:
(1) a JPEG coefficient
category table, (2) a
default DC code table,
and (3) a default AC
code table.

ba c
ed f

FIGURE 8.28 Approximations of Fig. 8.9(a) using the DCT and normalization array of Fig. 8.27(b): (a) Z, (b) 2Z,
(c) 4Z, (d) 8Z, (e) 16Z, and (f) 32Z.

DIP4E_GLOBAL_Print_Ready.indb 589 6/16/2017 2:11:05 PM

590 Chapter 8 Image Compression and Watermarking

EXAMPLE 8.17 : JPEG baseline coding and decoding.

Consider compression and reconstruction of the following 8 8× subimage with the JPEG baseline stan-
dard:

52 55 61 66 70 61 64 73

63 59 66 90 109 85 69 72

62 59 68 113 144 104 66 73

63 58 71 122 154 106 70 69

67 61 68 104 126 88 68 70

79 65 60 70 77 63 58 75

85 71 64 59 55 61 65 83

87 79 69 68 65 76 78 94

The original image consists of 256 or 28 possible intensities, so the coding process begins by level shifting
the pixels of the original subimage by −27 or −128 intensity levels. The resulting shifted array is

-76 -73 -67 -62 -58 -67 -64 -55

-65 -69 -62 -38 -19 -43 -59 -56

-66 -69 -60 -15 16 -24 -62 -55

-65 -70 -57 -6 26 -22 -58 -59

-61 -67 -60 -24 -2 -40 -60 -58

-49 -63 -68 -58 -51 -65 -70 -53

-43 -57 -64 -69 -73 -67 -63 -45

-41 -49 -59 -60 -63 -52 -50 -34

which, when transformed in accordance with the forward DCT of Eq. (7-31) with r x y u v s x y u v(, , ,) (, , ,)=
of Eq. (7-85) for n = 8 becomes

-415 -29 -62 25 55 -20 -1 3

7 -21 -62 9 11 -7 -6 6

-46 8 77 -25 -30 10 7 -5

-50 13 35 -15 -9 6 0 3

11 -8 -13 -2 -1 1 -4 1

-10 1 3 -3 -1 0 2 -1

-4 -1 2 -1 2 -3 1 -2

-1 -1 -1 -2 -1 -1 0 -1

If the JPEG recommended normalization array of Fig. 8.27(b) is used to quantize the transformed array,
the scaled and truncated [that is, normalized in accordance with Eq. (8-25)] coefficients are

DIP4E_GLOBAL_Print_Ready.indb 590 6/16/2017 2:11:06 PM

8.9 Block Transform Coding 591

-26 -3 -6 2 2 0 0 0

1 -2 -4 0 0 0 0 0

-3 1 5 -1 -1 0 0 0

-4 1 2 -1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

where, for instance, the DC coefficient is computed as

T

T

Z
ˆ 0 0

0 0

0 0

415
16

26

,
,

,
() =

()
()

⎡

⎣
⎢

⎤

⎦
⎥

= ⎡
⎣⎢

⎤
⎦⎥

=

round

round
−

−

Note that the transformation and normalization process produces a large number of zero-valued coeffi-
cients. When the coefficients are reordered in accordance with the zigzag ordering pattern of Fig. 8.26(d),
the resulting 1-D coefficient sequence is

 − − − − − − − − − −26 3 1 3 2 6 2 4 1 4 1 1 5 0 2 0 0 1 2 0 0 0 0 0 1 1 EOB[]

where the EOB symbol denotes the end-of-block condition. A special EOB Huffman code word (see
category 0 and run-length 0 of the JPEG default AC code table on the book website) is provided to
indicate that the remainder of the coefficients in a reordered sequence are zeros.

The construction of the default JPEG code for the reordered coefficient sequence begins with the
computation of the difference between the current DC coefficient and that of the previously encoded
subimage. Assuming the DC coefficient of the transformed and quantized subimage to its immediate left
was −17, the resulting DPCM difference is − − −26 17()[] or −9, which lies in DC difference category 4
of the JPEG coefficient category table (see the book website). In accordance with the default Huffman
difference code, the proper base code for a category 4 difference is 101 (a 3-bit code), while the total
length of a completely encoded category 4 coefficient is 7 bits. The remaining 4 bits must be generated
from the least significant bits (LSBs) of the difference value. For a general DC difference category (say,
category K), an additional K bits are needed and computed as either the K LSBs of the positive differ-
ence or the K LSBs of the negative difference minus 1. For a difference of −9, the appropriate LSBs are
0111 1() − or 0110, and the complete DPCM coded DC code word is 1010110.

The nonzero AC coefficients of the reordered array are coded similarly. The principal difference is
that each default AC Huffman code word depends on the number of zero-valued coefficients preceding
the nonzero coefficient to be coded, as well as the magnitude category of the nonzero coefficient. (See
the column labeled Run/Category in the JPEG AC code table on the book website.) Thus, the first non-
zero AC coefficient of the reordered array ()−3 is coded as 0100. The first 2 bits of this code indicate that
the coefficient was in magnitude category 2 and preceded by no zero-valued coefficients; the last 2 bits
are generated by the same process used to arrive at the LSBs of the DC difference code. Continuing in

DIP4E_GLOBAL_Print_Ready.indb 591 6/16/2017 2:11:06 PM

592 Chapter 8 Image Compression and Watermarking

this manner, the completely coded (reordered) array is

 1010110 0100 001 0100 0101 100001 0110 100011 001 100011 001
 001 100101 11100110 110110 0110 11110100 000 1010

where the spaces have been inserted solely for readability. Although it was not needed in this example,
the default JPEG code contains a special code word for a run of 15 zeros followed by a zero. The total
number of bits in the completely coded reordered array (and thus the number of bits required to rep-
resent the entire 8 8× , 8-bit subimage of this example) is 92. The resulting compression ratio is 512 92,
or about 5.6:1.

To decompress a JPEG compressed subimage, the decoder must first recreate the normalized trans-
form coefficients that led to the compressed bit stream. Because a Huffman-coded binary sequence is
instantaneous and uniquely decodable, this step is easily accomplished in a simple lookup table manner.
Here, the regenerated array of quantized coefficients is

-26 -3 -6 2 2 0 0 0

1 -2 -4 0 0 0 0 0

-3 1 5 -1 -1 0 0 0

-4 1 2 -1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

After denormalization in accordance with Eq. (8-27), the array becomes

-416 -33 -60 32 48 0 0 0

12 -24 -56 0 0 0 0 0

-42 13 80 -24 -40 0 0 0

-56 17 44 -29 0 0 0 0

18 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

where, for example, the DC coefficient is computed as

 �T T Z0 0 0 0 0 0 26 16 416, , ,() = () () = ()() =ˆ − −

DIP4E_GLOBAL_Print_Ready.indb 592 6/16/2017 2:11:07 PM

8.9 Block Transform Coding 593

The completely reconstructed subimage is obtained by taking the inverse DCT of the denormalized
array in accordance with Eqs. (7-32) and (7-85) to obtain

-70 -64 -61 -64 -69 -66 -58 -50

-72 -73 -61 -39 -30 -40 -54 -59

-68 -78 -58 -9 13 -12 -48 -64

-59 -77 -57 0 22 -13 -51 -60

-54 -75 -64 -23 -13 -44 -63 -56

-52 -71 -72 -54 -54 -71 -71 -54

-45 -59 -70 -68 -67 -67 -61 -50

-35 -47 -61 -66 -60 -48 -44 -44

and level shifting each inverse transformed pixel by 27 (or +128) to yield

58 64 67 64 59 62 70 78

56 55 67 89 98 88 74 69

60 50 70 119 141 116 80 64

69 51 71 128 149 115 77 68

74 53 64 105 115 84 65 72

76 57 56 74 75 57 57 74

83 69 59 60 61 61 67 78

93 81 67 62 69 80 84 84

Any differences between the original and reconstructed subimage are a result of the lossy nature of the
JPEG compression and decompression process. In this example, the errors range from −14 to +11 and
are distributed as follows:

-6 -9 -6 2 11 -1 -6 -5

7 4 -1 1 11 -3 -5 3

2 9 -2 -6 -3 -12 -14 9

-6 7 0 -4 -5 -9 -7 1

-7 8 4 -1 6 4 3 -2

3 8 4 -4 2 6 1 1

2 2 5 -1 -6 0 -2 5

-6 -2 2 6 -4 -4 -6 10

The root-mean-squared error of the overall compression and reconstruction process is approximately
5.8 intensity levels.

DIP4E_GLOBAL_Print_Ready.indb 593 6/16/2017 2:11:07 PM

594 Chapter 8 Image Compression and Watermarking

EXAMPLE 8.18 : Illustration of JPEG coding.

Figures 8.29(a) and (d) show two JPEG approximations of the monochrome image in Fig. 8.9(a). The
first result provides a compression of 25:1; the second compresses the original image by 52:1. The dif-
ferences between the original image and the reconstructed images in Figs. 8.29(a) and (d) are shown in
Figs. 8.29(b) and (e), respectively. The corresponding rms errors are 5.4 and 10.7 intensities. The errors
are clearly visible in the zoomed images in Figs. 8.29(c) and (f). These images show a magnified section
of Figs. 8.29(a) and (d), respectively. Note that the JPEG blocking artifact increases with compression.

8.10 PREDICTIVE CODING

We now turn to a simpler approach that achieves good compression without sig-
nificant computational overhead and can be either error-free or lossy. The approach,
commonly referred to as predictive coding, is based on eliminating the redundancies
of closely spaced pixels—in space and/or time—by extracting and coding only the
new information in each pixel. The new information of a pixel is defined as the dif-
ference between the actual and predicted value of the pixel.

LOSSLESS PREDICTIVE CODING

Figure 8.30 shows the basic components of a lossless predictive coding system. The
system consists of an encoder and a decoder, each containing an identical predic-
tor. As successive samples of discrete time input signal, f n(), are introduced to the
encoder, the predictor generates the anticipated value of each sample based on a
specified number of past samples. The output of the predictor is then rounded to the
nearest integer, denoted f nˆ (), and used to form the difference or prediction error

 e n f n f n() = () ()− ˆ (8-29)

which is encoded using a variable-length code (by the symbol encoder) to generate
the next element of the compressed data stream. The decoder in Fig. 8.30(b) recon-
structs e n() from the received variable-length code words and performs the inverse
operation

 f n e n f n() = +() ()ˆ (8-30)

to decompress or recreate the original input sequence.
Various local, global, and adaptive methods (see the later subsection entitled Lossy

predictive coding) can be used to generate f nˆ (). In many cases, the prediction is
formed as a linear combination of m previous samples. That is,

 f n f n ii
i

m
ˆ () = ()⎡

⎣
⎢

⎤

⎦
⎥

=
∑round a

1

− (8-31)

where m is the order of the linear predictor, round is a function used to denote the
rounding or nearest integer operation, and the ai for i m= 1 2, , ,… are prediction

8.10

With reference to
Tables 8.3–8.5, predictive
coding is used in

• JBIG2
• JPEG
• JPEG-LS
• MPEG-1,2,4
• H.261, H.262,
 H.263, and H.264
• HDV
• VC-1

and other compres-
sion standards and file
formats.

DIP4E_GLOBAL_Print_Ready.indb 594 6/16/2017 2:11:08 PM

8.10 Predictive Coding 595

coefficients. If the input sequence in Fig. 8.30(a) is considered to be samples of an
image, the f n() in Eqs. (8-29) through (8-31) are pixels—and the m samples used
to predict the value of each pixel come from the current scan line (called 1-D lin-
ear predictive coding), from the current and previous scan lines (called 2-D linear
predictive coding), or from the current image and previous images in a sequence of
images (called 3-D linear predictive coding). Thus, for 1-D linear predictive image
coding, Eq. (8-31) can be written as

 f x y f x y ii
i

m
ˆ , ,() = ()⎡

⎣
⎢

⎤

⎦
⎥

=
∑round a

1

− (8-32)

where each sample is now expressed explicitly as a function of the input image’s
spatial coordinates, x and y. Note that Eq. (8-32) indicates that the 1-D linear predic-
tion is a function of the previous pixels on the current line alone. In 2-D predictive

ba c
ed f

FIGURE 8.29 Two JPEG approximations of Fig. 8.9(a). Each row contains a result after compression and reconstruc-
tion, the scaled difference between the result and the original image, and a zoomed portion of the reconstructed
image.

DIP4E_GLOBAL_Print_Ready.indb 595 6/16/2017 2:11:08 PM

596 Chapter 8 Image Compression and Watermarking

coding, the prediction is a function of the previous pixels in a left-to-right, top-to-
bottom scan of an image. In the 3-D case, it is based on these pixels and the previous
pixels of preceding frames. Equation (8-32) cannot be evaluated for the first m pix-
els of each line, so those pixels must be coded by using other means (such as a Huff-
man code) and considered as an overhead of the predictive coding process. Similar
comments apply to the higher-dimensional cases.

EXAMPLE 8.19 : Predictive coding and spatial redundancy.

Consider encoding the monochrome image of Fig. 8.31(a) using the simple first-order (i.e., m = 1) linear
predictor from Eq. (8-32)

 f x y f x yˆ , ,() = ()⎡⎣ ⎤⎦round a − 1 (8-33)

This equation is a simplification of Eq. (8-32), with m = 1 and the subscript of lone prediction coefficient
a1 removed as unnecessary. A predictor of this general form is called a previous pixel predictor, and the
corresponding predictive coding procedure is known as differential coding or previous pixel coding. Fig-
ure 8.31(c) shows the prediction error image, e x y f x y f x y, (,) (,)() = − ˆ that results from Eq. (8-33) with
a = 1. The scaling of this image is such that intensity 128 represents a prediction error of zero, while all
nonzero positive and negative prediction errors (under and over estimates) are displayed as lighter and
darker shades of gray, respectively. The mean value of the prediction image is 128.26. Because intensity
128 corresponds to a prediction error of 0, the average prediction error is only 0.26 bits.

Figures 8.31(b) and (d) show the intensity histogram of the image in Fig. 8.31(a) and the histogram
of prediction error e x y(,), respectively. Note that the standard deviation of the prediction error in
Fig. 8.31(d) is much smaller than the standard deviation of the intensities in the original image. More-
over, the entropy of the prediction error, as estimated using Eq. (8-7), is significantly less than the esti-
mated entropy of the original image (3.99 bits pixel as opposed to 7.25 bits pixel). This decrease in
entropy reflects removal of a great deal of spatial redundancy, despite the fact that for k-bit images,
()k + 1 -bit numbers are needed to represent accurately the prediction error sequence e x y(,). (Note that
the variable-length encoded prediction error is the compressed image.) In general, the maximum com-
pression of a predictive coding approach can be estimated by dividing the average number of bits used

b
a

FIGURE 8.30
A lossless predic-
tive coding model:
(a) encoder;
(b) decoder.

	
�

Compressed
sequence 	

	

f(n)

f(n)

f(n)

f(n)

e(n)

e(n)

!

!

Input
sequence

Compressed
sequence

Symbol
encoder

Nearest
integer

Predictor

Symbol
decoder

Decompressed
sequence

Predictor

DIP4E_GLOBAL_Print_Ready.indb 596 6/16/2017 2:11:09 PM

8.10 Predictive Coding 597

ba
dc

FIGURE 8.31
(a) A view of the
Earth from an
orbiting space
shuttle. (b) The
intensity histo-
gram of (a).
(c) The predic-
tion error image
resulting from
Eq. (8-33).
(d) A histogram
of the prediction
error.
(Original image
courtesy of
NASA.)

to represent each pixel in the original image by an estimate of the entropy of the prediction error. In this
example, any variable-length coding procedure can be used to code e x y(,), but the resulting compres-
sion will be limited to about 8 3 99. , or 2:1.

The preceding example illustrates that the compression achieved in predictive
coding is related directly to the entropy reduction that results from mapping an input
image into a prediction error sequence, often called a prediction residual. Because
spatial redundancy is removed by the prediction and differencing process, the prob-
ability density function of the prediction residual is, in general, highly peaked at zero,
and characterized by a relatively small (in comparison to the input intensity distribu-
tion) variance. In fact, it is often modeled by a zero mean uncorrelated Laplacian
PDF

 p e ee
e

e

e() =
1

2

2

s

s

−

 (8-34)

where se is the standard deviation of e.

N
um

be
r

of
 p

ix
el

s
(:

 1
,0

00
)

Intensity

Std. dev. = 45.60
Entropy = 7.25

0 50 100 150 200 300250
0.0

0.5

1.0

1.5

2.0

2.5

N
um

be
r

of
 p

ix
el

s
(:

 1
0,

00
0)

Prediction error

Std. dev. = 15.58
Entropy = 3.99

-300 -200 -100 0 100 300200
0.0

0.2

0.4

0.6

0.8

2.0

DIP4E_GLOBAL_Print_Ready.indb 597 6/16/2017 2:11:10 PM

598 Chapter 8 Image Compression and Watermarking

EXAMPLE 8.20 : Predictive coding and temporal redundancy.

The image in Fig. 8.31(a) is a portion of a frame of NASA video in which the Earth is moving from left
to right with respect to a stationary camera attached to the space shuttle. It is repeated in Fig. 8.32(b),
along with its immediately preceding frame in Fig. 8.32(a). Using the first-order linear predictor

 f x y t f x y tˆ , , , ,() = ()⎡⎣ ⎤⎦round a − 1 (8-35)

with a = 1, the intensities of the pixels in Fig. 8.32(b) can be predicted from the corresponding pix-
els in (a). Figure 8.34(c) is the resulting prediction residual image, e x y t f x y t f x y t(, ,) (, ,) (, ,).= − ˆ
Figure 8.31(d) is the histogram of e x y t(, ,). Note there is very little prediction error. The standard devia-
tion of the error is much smaller than in the previous example: 3.76 bits pixel as opposed to 15.58
bits pixel . In addition, the entropy of the prediction error [computed using Eq. (8-7)] has decreased from
3.99 to 2.59 bits pixel . (Recall again that the variable-length encoded prediction error is the compressed

ba
dc

FIGURE 8.32
(a) and (b) Two
views of Earth
from an orbit-
ing space shuttle
video. (c) The
prediction error
image resulting
from Eq. (8-35).
(d) A histogram
of the prediction
error.
(Original images
courtesy of
NASA.)

N
um

be
r

of
 p

ix
el

s
(:

 1
0,

00
0)

Prediction error

Std. dev. = 3.76
Entropy = 2.59

-100 -80 -60 0 20 8040
0

1

2

3

4

5

60-40 -20

6

7

DIP4E_GLOBAL_Print_Ready.indb 598 6/16/2017 2:11:11 PM

8.10 Predictive Coding 599

image.) By variable-length coding the resulting prediction residual, the original image is compressed
by approximately 8 2 59. or 3.1:1, a 50% improvement over the 2:1 compression obtained using the
spatially oriented previous pixel predictor in Example 8.19.

MOTION COMPENSATED PREDICTION RESIDUALS

As you saw in Example 8.20, successive frames in a video sequence often are very
similar. Coding their differences can reduce temporal redundancy and provide sig-
nificant compression. However, when a sequence of frames contains rapidly moving
objects—or involves camera zoom and pan, sudden scene changes, or fade-ins and
fade-outs—the similarity between neighboring frames is reduced, and compression
is affected negatively. That is, like most compression techniques (see Example 8.5),
temporally based predictive coding works best with certain kinds of inputs, namely,
a sequence of images with significant temporal redundancy. When used on images
with little temporal redundancy, data expansion can occur. Video compression sys-
tems avoid the problem of data expansion in two ways:

1. By tracking object movement and compensating for it during the prediction
and differencing process.

2. By switching to an alternate coding method when there is insufficient inter-
frame correlation (similarity between frames) to make predictive coding advan-
tageous.

The first of these, called motion compensation, is the subject of the remainder of this
section. Before proceeding, however, we should note that when there is insufficient
interframe correlation to make predictive coding effective, the second problem is
typically addressed using a block-oriented 2-D transform, like JPEG’s DCT-based
coding (see the previous section). Frames compressed in this way (i.e., without a
prediction residual) are called intraframes or Independent frames (I-frames). They
can be decoded without access to other frames in the video to which they belong.
I-frames usually resemble JPEG encoded images, and are ideal starting points for
the generation of prediction residuals. Moreover, they provide a high degree of ran-
dom access, ease of editing, and resistance to the propagation of transmission error.
As a result, all standards require the periodic insertion of I-frames into the com-
pressed video codestream.

Figure 8.33 illustrates the basics of motion-compensated predictive coding. Each
video frame is divided into non-overlapping rectangular regions (typically of size
4 4× to 16 16×) called macroblocks. (Only one macroblock is shown in Fig. 8.33.)
The “movement” of each macroblock with respect to its “most likely” position in
the previous (or subsequent) video frame, called the reference frame, is encoded
in a motion vector. The vector describes the motion by defining the horizontal and
vertical displacement from the “most likely” position. The displacements typically
are specified to the nearest pixel, ½ pixel, or ¼ pixel precision. If subpixel precision
is used, the predictions must be interpolated [e.g., using bilinear interpolation (see
Section 2.4)] from a combination of pixels in the reference frame. An encoded frame
that is based on the previous frame (a forward prediction in Fig. 8.33) is called a Pre-

The “most likely”
position is the one that
minimizes an error
measure between the
reference macroblock
and the macroblock
being encoded. The two
blocks do not have to
be representations of
the same object, but
they must minimize the
error measure.

DIP4E_GLOBAL_Print_Ready.indb 599 6/16/2017 2:11:11 PM

600 Chapter 8 Image Compression and Watermarking

dictive frame (P-frame); one that is based on the subsequent frame (a backward pre-
diction in Fig. 8.33) is called a Bidirectional frame (B-frame). B-frames require the
compressed codestream to be reordered so that frames are presented to the decoder
in the proper decoding sequence, rather than the natural display order.

As you might expect, motion estimation is the key component of motion compen-
sation. During motion estimation, the motion of objects is measured and encoded
into motion vectors. The search for the “best” motion vector requires that a criterion
of optimality be defined. For example, motion vectors may be selected on the basis
of maximum correlation or minimum error between macroblock pixels and the pre-
dicted pixels (or interpolated pixels for sub-pixel motion vectors) from the chosen
reference frame. One of the most commonly used error measures is mean absolute
distortion (MAD)

 MAD x y
mn

f x i y j p x i dx y j dy
j

n

i

m

, , ,() = + +() + + + +()
==
∑∑1

0

1

0

1

−
−−

 (8-36)

where x and y are the coordinates of the upper-left pixel of the m n× macroblock
being coded, dx and dy are displacements from the reference frame as shown in
Fig. 8.33, and p is an array of predicted macroblock pixel values. For sub-pixel
motion vector estimation, p is interpolated from pixels in the reference frame. Typi-
cally, dx and dy must fall within a limited search region (see Fig. 8.33) around each
macroblock. Values from ±8 to ±64 pixels are common, and the horizontal search
area is often slightly larger than the vertical area. A more computationally efficient
error measure, called the sum of absolute distortions (SAD), omits the 1 mn factor
in Eq. (8-36).

Given a selection criterion like that of Eq. (8-36), motion estimation is performed
by searching for the dx and dy that minimize MAD x y(,) over the allowed range of
motion vector displacements, including subpixel displacements. This process often is
called block matching. An exhaustive search guarantees the best possible result, but
is computationally expensive because every possible motion must be tested over the
entire displacement range. For 16 ×16 macroblocks and a ±32 pixel displacement

FIGURE 8.33
Macroblock
motion specifica-
tion.

Current image

Search region

Macroblock

Forward prediction image

Displacement

Backward prediction image

Displacement

Time

Motion vector Motion vector

dx

dy

DIP4E_GLOBAL_Print_Ready.indb 600 6/16/2017 2:11:12 PM

8.10 Predictive Coding 601

range (not out of the question for action films and sporting events), 4225 16 16×
MAD calculations must be performed for each macroblock in a frame when integer
displacement precision is used. If ½ or ¼ pixel precision is desired, the number of
calculations is multiplied by a factor of 4 or 16, respectively. Fast search algorithms
can reduce the computational burden, but may or may not yield optimal motion
vectors. A number of fast block-based motion estimation algorithms have been pro-
posed and studied in the literature (see Furht et al. [1997] or Mitchell et al. [1997]).

EXAMPLE 8.21 : Motion compensated prediction.

Figures 8.34(a) and (b) were taken from the same NASA video sequence used in Examples 8.19 and
8.20. Figure 8.34(b) is identical to Figs. 8.31(a) and 8.32(b); Fig. 8.34(a) is the corresponding section of a
frame occurring thirteen frames earlier. Figure 8.34(c) is the difference between the two frames, scaled
to the full intensity range. Note that the difference is 0 in the area of the stationary (with respect to the
camera) space shuttle, but there are significant differences in the remainder of the image due to the
relative motion of the Earth. The standard deviation of the prediction residual in Fig. 8.34(c) is 12.73
intensity levels; its entropy [using Eq. (8-7)] is 4.17 bits pixel . The maximum compression achievable,
when variable-length coding the prediction residual, is C = =8 4 17 1 92. . .

Figure 8.34(d) shows a motion compensated prediction residual with a much lower standard devia-
tion (5.62 as opposed to 12.73 intensity levels) and slightly lower entropy (3.04 vs. 4.17 bits pixel). The
entropy was computed using Eq. (8-7). If the prediction residual in Fig. 8.34(d) is variable-length coded,
the resulting compression ratio is C = =8 3 04 2 63. . . To generate this prediction residual, we divided
Fig. 8.34(b) into non-overlapping 16 16× macroblocks and compared each macroblock against every
16 16× region in Fig. 8.34(a)—the reference frame—that fell within ±16 pixels of the macroblock’s posi-
tion in (b). We then used Eq. (8-36) to determine the best match by selecting displacement (,)dx dy with
the lowest MAD. The resulting displacements are the x and y components of the motion vectors shown
in Fig. 8.34(e). The white dots in the figure are the heads of the motion vectors; they indicate the upper-
left-hand corner of the coded macroblocks. As you can see from the pattern of the vectors, the predomi-
nant motion in the image is from left to right. In the lower portion of the image, which corresponds to
the area of the space shuttle in the original image, there is no motion, and therefore no motion vectors
displayed. Macroblocks in this area are predicted from similarly located (i.e., the corresponding) macro-
blocks in the reference frame. Because the motion vectors in Fig. 8.34(e) are highly correlated, they can
be variable-length coded to reduce their storage and transmission requirements

Figure 8.35 illustrates the increased prediction accuracy that is possible with sub-
pixel motion compensation. Figure 8.35(a) is repeated from Fig. 8.34(c) and included
as a point of reference; it shows the prediction error that results without motion
compensation. The images in Figs. 8.35(b), (c), and (d) are motion compensated pre-
diction residuals. They are based on the same two frames that were used in Exam-
ple 8.21 and computed with macroblock displacements to 1, ½, and ¼ pixel resolu-
tion (i.e., precision), respectively. Macroblocks of size 8 8× were used; displacements
were limited to ±8 pixels.

The most significant visual difference between the prediction residuals in Fig. 8.35
is the number and size of intensity peaks and valleys—their darkest and lightest
areas of intensity. The ¼ pixel residual in Fig. 8.35(d) is the “flattest” of the four

The visual difference
between Figs. 8.34(c)
and 8.35(a) is due to
scaling. The image
in Fig. 8.35(a) has
been scaled to match
Figs. 8.35(b)–(d).

DIP4E_GLOBAL_Print_Ready.indb 601 6/16/2017 2:11:13 PM

602 Chapter 8 Image Compression and Watermarking

images, with the fewest excursions to black or white. As would be expected, it has
the narrowest histogram. The standard deviations of the prediction residuals in
Figs. 8.35(a) through (d) decrease as motion vector precision increases from 12.7
to 4.4, 4, and 3.8 pixels, respectively. The entropies of the residuals, as determined
using Eq. (8-7), are 4.17, 3.34, 3.35, and 3.34 bits pixel , respectively. Thus, the motion
compensated residuals contain about the same amount of information, despite the
fact that the residuals in Figs. 8.35(c) and (d) use additional bits to accommodate ½
and ¼ pixel interpolation. Finally, we note that there is an obvious strip of increased
prediction error on the left side of each motion compensated residual. This is due
to the left-to-right motion of the Earth, which introduces new or previously unseen
areas of the Earth’s terrain into the left side of each image. Because these areas are
absent from the previous frames, they cannot be accurately predicted, regardless of
the precision used to compute motion vectors.

ba
c ed

FIGURE 8.34 (a) and (b) Two views of Earth that are thirteen frames apart in an orbiting space shuttle video. (c) A
prediction error image without motion compensation. (d) The prediction residual with motion compensation. (e)
The motion vectors associated with (d). The white dots in (e) represent the arrow heads of the motion vectors that
are depicted. (Original images courtesy of NASA.)

DIP4E_GLOBAL_Print_Ready.indb 602 6/16/2017 2:11:13 PM

8.10 Predictive Coding 603

Motion estimation is a computationally demanding task. Fortunately, only the
encoder must estimate macroblock motion. Given the motion vectors of the macro-
blocks, the decoder simply accesses the areas of the reference frames that were used
in the encoder to form the prediction residuals. Because of this, motion estimation
is not included in most video compression standards. Compression standards focus
on the decoder, placing constraints on macroblock dimensions, motion vector preci-
sion, horizontal and vertical displacement ranges, and the like. Table 8.12 gives the
key predictive coding parameters of some the most important video compression
standards. Note that most of the standards use an 8 8× DCT for I-frame encod-
ing, but specify a larger area (i.e., 16 16× macroblock) for motion compensation. In
addition, even the P- and B-frame prediction residuals are transform coded due to
the effectiveness of DCT coefficient quantization. Finally, we note that the H.264
and MPEG-4 AVC standards support intraframe predictive coding (in I-frames) to
reduce spatial redundancy.

ba
dc

FIGURE 8.35
Sub-pixel motion
compensated
prediction residu-
als: (a) without
motion compen-
sation; (b) single
pixel precision;
(c) ½ pixel preci-
sion; and
(d) ¼ pixel preci-
sion. (All predic-
tion errors have
been scaled to
the full intensity
range and then
multiplied by 2
to increase their
visibility.)

DIP4E_GLOBAL_Print_Ready.indb 603 6/16/2017 2:11:13 PM

604 Chapter 8 Image Compression and Watermarking

Figure 8.36 shows a typical motion compensated video encoder. It exploits redun-
dancies within and between adjacent video frames, motion uniformity between
frames, and the psychovisual properties of the human visual system. We can think
of the input to the encoder as sequential macroblocks of video. For color video,
each macroblock is composed of a luminance block and two chrominance blocks.
Because the eye has far less spatial acuity for color than for luminance, the chromi-
nance blocks often are sampled at half the horizontal and vertical resolution of the
luminance block. The dark blue elements in the figure parallel the transformation,
quantization, and variable-length coding operations of a JPEG encoder. The princi-
pal difference is the input, which may be a conventional macroblock of image data
(for I-frames), or the difference between a conventional macroblock and a predic-
tion of it based on previous and/or subsequent video frames (for P- and B-frames).
The encoder includes an inverse quantizer and inverse mapper (e.g., inverse DCT) so
that its predictions match those of the complementary decoder. Also, it is designed
to produce compressed bit streams that match the capacity of the intended video
channel. To accomplish this, the quantization parameters are adjusted by a rate con-
troller as a function of the occupancy of an output buffer. As the buffer becomes
fuller, the quantization is made coarser, so fewer bits stream into the buffer.

Quantization as
defined earlier in the
chapter is irreversible.
The “inverse quantizer”
in Fig. 8.36 does not
prevent information
loss.

Parameter H.261 MPEG-1
H.262

MPEG-2
H.263 MPEG-4

VC-1
WMV-9

H.264
MPEG-4

AVC

Motion vector
precision

1 ½ ½ ½ ¼ ¼ ¼

Macroblock
sizes

16 16× 16 16× 16 16×
16 8×

16 16×
8 8×

16 16×
8 8×

16 16×
8 8×

16 16×
16 8×
8 8×
8 4×
4 8×
4 4×

Transform 8 8×
DCT

8 8×
DCT

8 8×
DCT

8 8×
DCT

8 8×
DCT

8 8×
8 4×
4 8×
4 4×

Integer
DCT

4 4×
8 8×

Integer

Interframe
predictions

P P, B P, B P, B P, B P, B P, B

I-frame intra-
predictions

No No No No No No Yes

TABLE 8.12
Predictive coding in video compression standards.

DIP4E_GLOBAL_Print_Ready.indb 604 6/16/2017 2:11:15 PM

8.10 Predictive Coding 605

EXAMPLE 8.22 : Video compression example.

We conclude our discussion of motion compensated predictive coding with an example illustrating the
kind of compression that is possible with modern video compression methods. Figure 8.37 shows fifteen
frames of a 1 minute HD ()1280 720× full-color NASA video, parts of which have been used throughout
this section. Although the images shown are monochrome, the video is a sequence of 1,829 full-color
frames. Note that there are a variety of scenes, a great deal of motion, and multiple fade effects. For
example, the video opens with a 150 frame fade-in from black, which includes frames 21 and 44 in
Fig. 8.37, and concludes with a fade sequence containing frames 1595, 1609, and 1652 in Fig. 8.37, fol-
lowed by a final fade to black. There are also several abrupt scene changes, like the change involving
frames 1303 and 1304 in Fig. 8.37.

An H.264 compressed version of the NASA video stored as a Quicktime file (see Table 8.5) requires
44.56 MB of storage, plus another 1.39 MB for the associated audio. The video quality is excellent. About
5 GB of data would be needed to store the video frames as uncompressed full-color images. It should
be noted that the video contains sequences involving both rotation and scale change (e.g., the sequence
including frames 959, 1023, and 1088 in Fig. 8.37). The discussion in this section, however, has been
limited to translation alone. (See the book website for the NASA video segment used in this example.)

LOSSY PREDICTIVE CODING

In this section, we add a quantizer to the lossless predictive coding model introduced
earlier, and examine the trade-off between reconstruction accuracy and compres-
sion performance within the context of spatial predictors. As Fig. 8.38 shows, the
quantizer, which replaces the nearest integer function of the error-free encoder, is
inserted between the symbol encoder and the point at which the prediction error is
formed. It maps the prediction error into a limited range of outputs, denoted �e n(),
which establish the amount of compression and distortion that occurs.

FIGURE 8.36
A typical motion
compensated
video encoder.

Prediction macroblock

Encoded
macroblock

Image
macroblock

Difference
macroblock

Decoded
macroblock

Encoded
motion
vector

Variable-length
coding

Quantizer
Mapper

(e.g., DCT)

Rate
controller

Buffer

Inverse
quantizer

Inverse
Mapper

(e.g., DCT-1)

Variable-length
coding

Motion estimator and
compensator w/frame delay

	
�

	
	

DIP4E_GLOBAL_Print_Ready.indb 605 6/16/2017 2:11:16 PM

606 Chapter 8 Image Compression and Watermarking

FIGURE 8.37 Fifteen frames from an 1829-frame, 1-minute NASA video. The original video is in HD full color.
(Courtesy of NASA.)

Frame 0021 Frame 0044 Frame 0201

Frame 0266 Frame 0424 Frame 0801

Frame 0959 Frame 1023 Frame 1088

Frame 1224 Frame 1303 Frame 1304

Frame 1595 Frame 1609 Frame 1652

DIP4E_GLOBAL_Print_Ready.indb 606 6/16/2017 2:11:18 PM

8.10 Predictive Coding 607

In order to accommodate the insertion of the quantization step, the error-free
encoder of Fig. 8.30(a) must be altered so the predictions generated by the encoder
and decoder are equivalent. As Fig. 8.38(a) shows, this is accomplished by placing
the lossy encoder’s predictor within a feedback loop, where its input, denoted as
�f n(), is generated as a function of past predictions and the corresponding quantized
errors. That is,

 � �f n e n f n() = () + ()ˆ (8-37)

where ˆ()f n is as defined earlier. This closed loop configuration prevents error
buildup at the decoder’s output. Note in Fig. 8.38(b) that the output of the decoder
is given also by Eq. (8-37).

EXAMPLE 8.23 : Delta modulation.

Delta modulation (DM) is a simple but well-known form of lossy predictive coding in which the predic-
tor and quantizer are defined as

 f n f nˆ () = ()a � − 1 (8-38)

and

 �e n
e n() =

() >⎧
⎨
⎪

⎩⎪

+
−
z

z

for

otherwise

0
(8-39)

where a is a prediction coefficient (normally less than 1), and z is a positive constant. The output of the
quantizer, �e n(), can be represented by a single bit [see Fig. 8.39(a)], so the symbol encoder of Fig. 8.38(a)
can utilize a 1-bit fixed-length code. The resulting DM code rate is 1 bit pixel .

Figure 8.39(c) illustrates the mechanics of the delta modulation process, where the calculations
needed to compress and reconstruct input sequence {14, 15, 14, 15, 13, 15, 15, 14, 20, 26, 27, 28, 27, 27, 29,
37, 47, 62, 75, 77, 78, 79, 80, 81, 81, 82, 82} with a = 1 and z = 6 5. are tabulated. The process begins with the

b
a

FIGURE 8.38
A lossy predictive
coding model:
(a) encoder;
(b) decoder.

	
�

	
	

	
	

Input
sequence

Compressed
sequence

Compressed
sequence

Decompressed
sequence

Symbol
encoder

Quantizer

Predictor

Symbol
decoder

Predictor

�e n()

�e n() �f n()

ˆ()f n

ˆ()f n

�f n()

f(n)

e(n)

DIP4E_GLOBAL_Print_Ready.indb 607 6/16/2017 2:11:19 PM

608 Chapter 8 Image Compression and Watermarking

error-free transfer of the first input sample to the decoder. With the initial condition �f f() ()0 0 14= =
established at both the encoder and decoder, the remaining outputs can be computed by repeatedly
evaluating Eqs. (8-38), (8-29), (8-39), and (8-37). Thus, when n = 1, for example, ˆ() ()() ,f 1 1 14 14= =
e() ,1 15 14 1= =− �e() .1 6 5= + (because e()1 0>), �f () . . ,1 6 4 14 20 5= =+ and the resulting reconstruction
error is (.),15 20 5− or −5 5. .

Figure 8.39(b) graphically shows the tabulated data in Fig. 8.39(c). Both the input and completely
decoded output f n f n() () and �⎡⎣ ⎤⎦ are shown. Note that in the rapidly changing area from n = 14 to 19,
where z was too small to represent the input’s largest changes, a distortion known as slope overload
occurs. Moreover, when z was too large to represent the input’s smallest changes, as in the relatively
smooth region from n = 0 to n = 7, granular noise appears. In images, these two phenomena lead to
blurred object edges and grainy or noisy surfaces (that is, distorted smooth areas).

The distortions noted in the preceding example are common to all forms of lossy
predictive coding. The severity of these distortions depends on a complex set of
interactions between the quantization and prediction methods employed. Despite
these interactions, the predictor normally is designed with the assumption of no
quantization error, and the quantizer is designed to minimize its own error. That is,
the predictor and quantizer are designed independently of each other.

ba
c

FIGURE 8.39
An example of
delta modulation.

Code = 1

Code = 0

+ 6.5

- 6.5 Granular noise

Slope overload

f n f n() ()− �

�f n()
f(n)

e(n)

�e n()

n f(n) ˆ()f n e(n) �e n() �f n() ˆ()f n �f n()

Input Encoder Decoder Error

0
1
2
3
.
.

14
15
16
17
18
19
.
.

14
15
14
15
.
.

29
37
47
62
75
77
.
.

-
14.0
20.5
14.0

.

.
20.5
27.0
33.5
40.0
46.5
53.0

.

.

-
1.0

- 6.5
1.0

.

.
8.5
10.0
13.5
22.0
28.5
24.0

.

.

-
6.5

- 6.5
6.5

.

.
6.5
6.5
6.5
6.5
6.5
6.5

.

.

14.0
20.5
14.0
20.5

.

.
27.0
33.5
40.0
46.5
53.0
59.6

.

.

14.0
20.5
14.0
20.5

.

.
27.0
33.5
40.0
46.5
53.0
59.5

.

.

0.0
- 5.5
0.0

- 5.5
.
.

2.0
3.5
7.0
15.5
22.0
17.5

.

.

-
14.0
20.5
14.0

.

.
20.5
27.0
33.5
40.0
46.5
53.0

.

.

DIP4E_GLOBAL_Print_Ready.indb 608 6/16/2017 2:11:20 PM

8.10 Predictive Coding 609

OPTIMAL PREDICTORS

In many predictive coding applications, the predictor is chosen to minimize the
encoder’s mean-squared prediction error

 E e n E f n f n2 2(){ } = () ()⎡⎣ ⎤⎦{ }− ˆ (8-40)

subject to the constraint that

 � �f n e n f n e n f n f n() = () + () ≈ () + () = ()ˆ ˆ (8-41)

and

 f n f n ii
i

m
ˆ () = ()

=
∑a −

1

 (8-42)

That is, the optimization criterion is minimal mean-squared prediction error, the
quantization error is assumed to be negligible �e n e n() ()≈[], and the prediction is
constrained to a linear combination of m previous samples. These restrictions are
not essential, but they considerably simplify the analysis and, at the same time,
decrease the computational complexity of the predictor. The resulting predictive
coding approach is referred to as differential pulse code modulation (DPCM).

Under these conditions, the optimal predictor design problem is reduced to the
relatively straightforward exercise of selecting the m prediction coefficients that
minimize the expression

 E e n E f n f n ii
i

m
2

1

2

(){ } = () ()⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=
∑− −a (8-43)

Differentiating Eq. (8-43) with respect to each coefficient, equating the derivatives
to zero, and solving the resulting set of simultaneous equations under the assump-
tion that f n() has mean zero and variance s2 yields

 A = R r−1 (8-44)

where R−1 is the inverse of the m m× autocorrelation matrix

 R =

() (){ } () (){ } () (){ }
()

E f n f n E f n f n E f n f n m

E f n f n

− − − − − −
− −

1 1 1 2 1

2

�
11

1 2

(){ }

() (){ } () (){ } (

� � �
� � � �
� � � �
� � � �

�E f n m f n E f n m f n E f n m− − − − −)) (){ }

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥f n m−

 (8-45)

The notation E i{ }
denotes the statistical
expectation operator.

In general, the optimal
predictor for a non-
Gaussian sequence is
a nonlinear function
of the samples used to
form the estimate.

DIP4E_GLOBAL_Print_Ready.indb 609 6/16/2017 2:11:21 PM

610 Chapter 8 Image Compression and Watermarking

and r and A are the m-element vectors

 r =

{ }
{ }

{ }

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

E f n f n

E f n f n

E f n f n m

() ()

() ()

() ()

−
−

−

1

2

�
 A

a

a

a

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1

2

�

m

 (8-46)

Thus for any input sequence, the coefficients that minimize Eq. (8-43) can be deter-
mined via a series of elementary matrix operations. Moreover, the coefficients
depend only on the autocorrelations of the samples in the original sequence. The
variance of the prediction error that results from the use of these optimal coeffi-
cients is

 s s A s ae
T

i
i

m

E f n f n i2 2 2

1

= = { }
=
∑− − −r () () (8-47)

Although the mechanics of evaluating Eq. (8-44) are quite simple, computation of
the autocorrelations needed to form R and r is so difficult in practice that local
predictions (those in which the prediction coefficients are computed for each input
sequence) are almost never used. In most cases, a set of global coefficients is com-
puted by assuming a simple input model and substituting the corresponding auto-
correlations into Eqs. (8-45) and (8-46). For instance, when a 2-D Markov image
source (see Section 8.1) with separable autocorrelation function

 E f x y f x i y j v
i

h
j, ,() (){ } =− − s r r2 (8-48)

and generalized fourth-order linear predictor

f x y f x y f x y

f x y f x y

ˆ , , ,

, ,

() = () + ()
() ()

a a

a a

1 2

3 4

1 1 1

1 1 1

− − −

+ − + − +
 (8-49)

are assumed, the resulting optimal coefficients (Jain [1989]) are

 a r a r r a r a1 2 3 4 0= = = =h v h v− (8-50)

where rh and rh are the horizontal and vertical correlation coefficients, respectively,
of the image under consideration.

Finally, the sum of the prediction coefficients in Eq. (8-42) is normally required to
be less than or equal to one. That is,

 ai
i

m

≤ 1
1=

∑ (8-51)

DIP4E_GLOBAL_Print_Ready.indb 610 6/16/2017 2:11:22 PM

8.10 Predictive Coding 611

This restriction is made to ensure that the output of the predictor falls within the
allowed range of the input, and to reduce the impact of transmission noise [which
generally is seen as horizontal streaks in reconstructed images when the input to
Fig. 8.38(a) is an image]. Reducing the DPCM decoder’s susceptibility to input noise
is important, because a single error (under the right circumstances) can propagate
to all future outputs. That is, the decoder’s output may become unstable. Further
restricting Eq. (8-51) to be strictly less than 1 confines the impact of an input error
to a small number of outputs.

EXAMPLE 8.24 : Comparison of prediction techniques.

Consider the prediction error that results from DPCM coding the monochrome image of Fig. 8.9(a)
under the assumption of zero quantization error and with each of four predictors:

 f x y f x yˆ , . ,() = ()0 97 1− (8-52)

 f x y f x y f x yˆ , . , . ,() = () ()0 5 1 0 5 1− + − (8-53)

 f x y f x y f x y f x yˆ , . , . , . ,() = () + () ()0 75 1 0 75 1 0 5 1 1− − − − − (8-54)

 f x y
f x y h v

f x y
ˆ ,

. ,

. ,
() =

()
()

⎧
⎨
⎪

⎩⎪

0 97 1

0 97 1

− ≤

−

if

otherwise

� �
 (8-55)

where �h f x y f x y= () ()− − − −1 1 1, , and �v f x y f x y= () (), ,− − − −1 1 1 denote the horizontal and
vertical gradients at point (,).x y Equations (8-52) through (8-55) define a relatively robust set of ai that
provide satisfactory performance over a wide range of images. The adaptive predictor of Eq. (8-55) is
designed to improve edge rendition by computing a local measure of the directional properties of an
image (�h and �v), and selecting a predictor specifically tailored to the measured behavior.

Figures 8.40(a) through (d) show the prediction error images that result from using the predictors of
Eqs. (8-52) through (8-55). Note that the visually perceptible error decreases as the order of the predic-
tor increases.† The standard deviations of the prediction errors follow a similar pattern. They are 11.1, 9.8,
9.1, and 9.7 intensity levels, respectively.

OPTIMAL QUANTIZATION

The staircase quantization function t q s= () in Fig. 8.41 is an odd function of s [that is,
q s q s() ()− −=] that can be described completely by the L 2 values of si and ti shown
in the first quadrant of the graph. These break points define function discontinuities,
and are called the decision and reconstruction levels of the quantizer. As a matter
of convention, s is considered to be mapped to ti if it lies in the half-open interval
(,].s si i+1

The quantizer design problem is to select the best si and ti for a particular opti-
mization criterion and input probability density function p s(). If the optimization

† Predictors that use more than three or four previous pixels provide little compression gain for the added pre-
dictor complexity (Habibi [1971]).

DIP4E_GLOBAL_Print_Ready.indb 611 6/16/2017 2:11:23 PM

612 Chapter 8 Image Compression and Watermarking

criterion, which could be either a statistical or psychovisual measure,† is the minimi-
zation of the mean-squared quantization error A E FBthat is E s ti i()− 2 and p s() is an
even function, the conditions for minimal error (Max [1960]) are

s

s

i

i

s t p s ds i
L

i

−

−
1

0 1 2
22 () () , , ,= = … (8-56)

 s

i

t t
i

L

i
L

i
i i=

=

=

∞ =

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

+

0 0

2
1 2

2

2

11+
−, , ,… (8-57)

† See Netravali [1977] and Limb for more on psychovisual measures.

ba
dc

FIGURE 8.40
A comparison of
four linear
prediction
techniques.

DIP4E_GLOBAL_Print_Ready.indb 612 6/16/2017 2:11:24 PM

8.10 Predictive Coding 613

and

 s s t ti i i i− −− −= = (8-58)

Equation (8-56) indicates that the reconstruction levels are the centroids of the areas
under p s() over the specified decision intervals, whereas Eq. (8-57) indicates that
the decision levels are halfway between the reconstruction levels. Equation (8-58)
is a consequence of the fact that q is an odd function. For any L, the si and ti that
satisfy Eqs. (8-56) through (8-58) are optimal in the mean-squared error sense; the
corresponding quantizer is called an L-level Lloyd-Max quantizer.

Table 8.13 lists the 2-, 4-, and 8-level Lloyd-Max decision and reconstruction
levels for a unit variance Laplacian probability density function [see Eq. (8-34)].
Because obtaining an explicit or closed-form solution to Eqs. (8-56) through (8-58)
for most nontrivial p s() is difficult, these values were generated numerically (Paez
and Glisson [1972]). The three quantizers shown provide fixed output rates of 1, 2,
and 3 bits pixel , respectively. As Table 8.13 was constructed for a unit variance dis-
tribution, the reconstruction and decision levels for the case of s ≠ 1 are obtained by
multiplying the tabulated values by the standard deviation of the probability density

FIGURE 8.41
A typical
quantization
function.

t = q(s)

s1 s2

t1

t2

t

s

Output

Input

s L− −()2 1[]
s L()2 1−

−tL 2

tL 2

Levels 2 4 8

si ti si ti si ti

1 � 0.707 1.102 0.395 0.504 0.222

2 � 1.810 1.181 0.785

3 2.285 1.576

4 � 2.994

u 1.414 1.087 0.731

TABLE 8.13
Lloyd-Max
quantizers for a
Laplacian
probability
density function
of unit variance.

DIP4E_GLOBAL_Print_Ready.indb 613 6/16/2017 2:11:25 PM

614 Chapter 8 Image Compression and Watermarking

function under consideration. The final row of the table lists the step size, u, that
simultaneously satisfies Eqs. (8-56) through (8-58) and the additional constraint that

 t t s si i i i− −− −1 1= = u (8-59)

If a symbol encoder that utilizes a variable-length code is used in the general lossy
predictive encoder of Fig. 8.38(a), an optimum uniform quantizer of step size u will
provide a lower code rate (for a Laplacian PDF) than a fixed-length coded Lloyd-
Max quantizer with the same output fidelity (O’Neil [1971]).

Although the Lloyd-Max and optimum uniform quantizers are not adaptive,
much can be gained from adjusting the quantization levels based on the local behav-
ior of an image. In theory, slowly changing regions can be finely quantized, while the
rapidly changing areas are quantized more coarsely. This approach simultaneously
reduces both granular noise and slope overload, while requiring only a minimal
increase in code rate. The trade-off is increased quantizer complexity.

8.11 WAVELET CODING

As with the block transform coding techniques presented earlier, wavelet coding is
based on the idea that the coefficients of a transform that decorrelates the pixels of
an image can be coded more efficiently than the original pixels themselves. If the
basis functions of the transform (in this case wavelets) pack most of the important
visual information into a small number of coefficients, the remaining coefficients can
be quantized coarsely or truncated to zero with little image distortion.

Figure 8.42 shows a typical wavelet coding system. To encode a 2 2J J× image, an
analyzing wavelet, c, and minimum decomposition level, J P− , are selected and
used to compute the discrete wavelet transform of the image. If the wavelet has
a complementary scaling function w, the fast wavelet transform (see Section 7.10)
can be used. In either case, the computed transform converts a large portion of the
original image to horizontal, vertical, and diagonal decomposition coefficients with
zero mean and Laplacian-like probabilities. Because many of the computed coef-
ficients carry little visual information, they can be quantized and coded to minimize
intercoefficient and coding redundancy. Moreover, the quantization can be adapted
to exploit any positional correlation across the P decomposition levels. One or more
lossless coding methods, such as run-length, Huffman, arithmetic, and bit-plane cod-
ing, can be incorporated into the final symbol coding step. Decoding is accomplished
by inverting the encoding operations, with the exception of quantization, which can-
not be reversed exactly.

The principal difference between the wavelet-based system of Fig. 8.42 and the
transform coding system of Fig. 8.21 is the omission of the subimage processing
stages of the transform coder. Because wavelet transforms are both computation-
ally efficient and inherently local (i.e., their basis functions are limited in duration),
subdivision of the original image is unnecessary. As you will see later in this section,
the removal of the subdivision step eliminates the blocking artifact that character-
izes DCT-based approximations at high compression ratios.

8.11

With reference to
Tables 8.3–8.5, wavelet
coding is used in the

• JPEG-2000

compression standard.

DIP4E_GLOBAL_Print_Ready.indb 614 6/16/2017 2:11:26 PM

8.11 Wavelet Coding 615

WAVELET SELECTION

The wavelets chosen as the basis of the forward and inverse transforms in Fig. 8.42
affect all aspects of wavelet coding system design and performance. They impact
directly the computational complexity of the transforms and, less directly, the sys-
tem’s ability to compress and reconstruct images of acceptable error. When the
transforming wavelet has a companion scaling function, the transformation can be
implemented as a sequence of digital filtering operations, with the number of filter
taps equal to the number of nonzero wavelet and scaling vector coefficients. The
ability of the wavelet to pack information into a small number of transform coef-
ficients determines its compression and reconstruction performance.

The most widely used expansion functions for wavelet-based compression are
the Daubechies wavelets and biorthogonal wavelets. The latter allow useful analysis
properties, like the number of vanishing moments (see Section 7.10), to be incor-
porated into the decomposition filters, while important synthesis properties, like
smoothness of reconstruction, are built into the reconstruction filters.

EXAMPLE 8.25 : Wavelet bases in wavelet coding.

Figure 8.43 contains four discrete wavelet transforms of Fig. 8.9(a). Haar wavelets, the simplest and only
discontinuous wavelets considered in this example, were used as the expansion or basis functions in
Fig. 8.43(a). Daubechies wavelets, among the most popular imaging wavelets, were used in Fig. 8.43(b),
and symlets, which are an extension of the Daubechies wavelets with increased symmetry, were used in
Fig. 8.43(c). The Cohen-Daubechies-Feauveau wavelets employed in Fig. 8.43(d) are included to illus-
trate the capabilities of biorthogonal wavelets. As in previous results of this type, all detail coefficients
were scaled to make the underlying structure more visible, with intensity 128 corresponding to coef-
ficient value 0.

As you can see in Table 8.14, the number of operations involved in the computation of the transforms
in Fig. 8.43 increases from 4 to 28 multiplications and additions per coefficient (for each decomposition

b
a

FIGURE 8.42
A wavelet coding
system:
(a) encoder;
(b) decoder.

Wavelet
transform

Quantizer Symbol
encoder

Input
image

Compressed
image

Inverse
wavelet transform

Compressed
image

Decompressed
image

Symbol
decoder

Wavelet
Filter Taps

(Scaling + Wavelet)
Zeroed

Coefficients

Haar 2 + 2 33.3%

Daubechies 8 + 8 40.9%

Symlet 8 + 8 41.2%

Biorthogonal 17 + 11 42.1%

TABLE 8.14
Wavelet trans-
form filter taps
and zeroed
coefficients when
truncating the
transforms
in Fig. 8.43
below 1.5.

DIP4E_GLOBAL_Print_Ready.indb 615 7/12/2017 10:34:15 AM

616 Chapter 8 Image Compression and Watermarking

level) as you move from Fig. 8.43(a) to (d). All four transforms were computed using a fast wavelet
transform (i.e., filter bank) formulation. Note that as the computational complexity (i.e., the number
of filter taps) increases, the information packing performance does as well. When Haar wavelets are
employed and the detail coefficients below 1.5 are truncated to zero, 33.8% of the total transform is
zeroed. With the more complex biorthogonal wavelets, the number of zeroed coefficients rises to 42.1%,
increasing the potential compression by almost 10%.

DECOMPOSITION LEVEL SELECTION

Another factor affecting wavelet coding computational complexity and reconstruc-
tion error is the number of transform decomposition levels. Because a P-scale fast
wavelet transform involves P filter bank iterations, the number of operations in
the computation of the forward and inverse transforms increases with the num-
ber of decomposition levels. Moreover, quantizing the increasingly lower-scale

ba
dc

FIGURE 8.43
Three-scale wave-
let transforms of
Fig. 8.9(a) with
respect to
(a) Haar wavelets,
(b) Daubechies
wavelets,
(c) symlets,
and (d) Cohen-
Daubechies-Feau-
veau biorthogonal
wavelets.

DIP4E_GLOBAL_Print_Ready.indb 616 6/16/2017 2:11:26 PM

8.11 Wavelet Coding 617

Decomposition Level
(Scales or Filter Bank

Iterations)

Approximation
Coefficient Image

Truncated
Coefficients (%)

Reconstruction
Error (rms)

1 256 256× 74.7% 3.27

2 128 128× 91.7% 4.23

3 64 64× 95.1% 4.54

4 32 32× 95.6% 4.61

5 16 16× 95.5% 4.63

TABLE 8.15
Decomposition
level impact on
wavelet coding
the 512 512×
image of
Fig. 8.9(a).

coefficients that result with more decomposition levels affects increasingly larger
areas of the reconstructed image. In many applications, like searching image data-
bases or transmitting images for progressive reconstruction, the resolution of the
stored or transmitted images, and the scale of the lowest useful approximations, nor-
mally determine the number of transform levels.

EXAMPLE 8.26 : Decomposition levels in wavelet coding.

Table 8.15 illustrates the effect of decomposition level selection on the coding of Fig. 8.9(a) using bior-
thogonal wavelets and a fixed global threshold of 25. As in the previous wavelet coding example, only
detail coefficients are truncated. The table lists both the percentage of zeroed coefficients and the result-
ing rms reconstruction errors from Eq. (8-10). Note that the initial decompositions are responsible for
the majority of the data compression. There is little change in the number of truncated coefficients
above three decomposition levels.

QUANTIZER DESIGN

The most important factor affecting wavelet coding compression and reconstruc-
tion error is coefficient quantization. Although the most widely used quantizers
are uniform, the effectiveness of the quantization can be improved significantly by
(1) introducing a larger quantization interval around zero, called a dead zone, or
(2) adapting the size of the quantization interval from scale to scale. In either case,
the selected quantization intervals must be transmitted to the decoder with the
encoded image bit stream. The intervals themselves may be determined heuristically,
or computed automatically based on the image being compressed. For example, a
global coefficient threshold could be computed as the median of the absolute values
of the first-level detail coefficients or as a function of the number of zeroes that are
truncated and the amount of energy that is retained in the reconstructed image.

EXAMPLE 8.27 : Dead zone interval selection in wavelet coding.

Figure 8.44 illustrates the impact of dead zone interval size on the percentage of truncated detail coef-
ficients for a three-scale biorthogonal wavelet-based encoding of Fig. 8.9(a). As the size of the dead zone
increases, the number of truncated coefficients does as well. Above the knee of the curve (i.e., beyond 5),

One measure of the
energy of a digital signal
is the sum of the squared
samples.

DIP4E_GLOBAL_Print_Ready.indb 617 6/16/2017 2:11:27 PM

618 Chapter 8 Image Compression and Watermarking

there is little gain. This is due to the fact that the histogram of the detail coefficients is highly peaked
around zero.

The rms reconstruction errors corresponding to the dead zone thresholds in Fig. 8.44 increase from
0 to 1.94 intensity levels at a threshold of 5, and to 3.83 intensity levels for a threshold of 18, where the
number of zeroes reaches 93.85%. If every detail coefficient were eliminated, that percentage would
increase to about 97.92% (by about 4%), but the reconstruction error would grow to 12.3 intensity levels.

JPEG-2000

JPEG-2000 extends the popular JPEG standard to provide increased flexibility in
both the compression of continuous-tone still images and access to the compressed
data. For example, portions of a JPEG-2000 compressed image can be extracted for
retransmission, storage, display, and/or editing. The standard is based on the wavelet
coding techniques just described. Coefficient quantization is adapted to individual
scales and subbands, and the quantized coefficients are arithmetically coded on a
bit-plane basis (see Sections 8.4 and 8.8). Using the notation of the standard, an
image is encoded as follows (ISO/IEC [2000]).

The first step of the encoding process is to DC level shift the samples of the Ssiz-
bit unsigned image to be coded by subtracting 2 1Ssiz− . If the image has more than one
component, such as the red, green, and blue planes of a color image, each component
is shifted individually. If there are exactly three components, they may be optionally
decorrelated using a reversible or nonreversible linear combination of the compo-
nents. The irreversible component transform of the standard, for example, is

Y x y I x y I x y I x y

Y x y
0 0 1 2

1

0 299 0 587 0 114

0 1

, . , . , . ,

, .
() = () () ()
() =

+ +
− 66875 0 33126 0 5

0 5 0
0 1 2

2 0

I x y I x y I x y

Y x y I x y

, . , . ,

, . ,
() () ()

() = ()
− +

− .. , . ,41869 0 081311 2I x y I x y() ()−
 (8-60)

Ssiz is used in the stan-
dard to denote intensity
resolution.

The irreversible com-
ponent transform is the
component transform
used for lossy compres-
sion. The component
transform itself is not
irreversible. A different
component transform
is used for reversible
compression.

FIGURE 8.44
The impact of
dead zone interval
selection on
wavelet coding.

97.918%

C
oe

ff
ic

ie
nt

 tr
un

ca
ti

on
 (

%
)

Dead zone threshold

R
oo

t-
m

ea
n-

sq
ua

re
 e

rr
or

(i
nt

en
si

ty
 le

ve
ls

)RMSE
% Zeroes

80

70

60

50

40

30

20

10

90

0

100

0 2 4 6 8 10 12 14 16 18

3.2

2.8

2.4

2

1.6

1.2

0.8

0.4

3.6

0

4.0

DIP4E_GLOBAL_Print_Ready.indb 618 6/16/2017 2:11:27 PM

8.11 Wavelet Coding 619

where I0, I1, and I2 are the level-shifted input components, and Y0, Y1, and Y2 are
the corresponding decorrelated components. If the input components are the red,
green, and blue planes of a color image, Eq. (8-60) approximates the ′ ′ ′R G B to

′Y C Cb r color video transform (Poynton [1996]).† The goal of the transformation is to
improve compression efficiency; transformed components Y1 and Y2 are difference
images whose histograms are highly peaked around zero.

After the image has been level-shifted and optionally decorrelated, its compo-
nents can be divided into tiles. Tiles are rectangular arrays of pixels that are pro-
cessed independently. Because an image can have more than one component (e.g., it
could be made up of three color components), the tiling process creates tile compo-
nents. Each tile component can be reconstructed independently, providing a simple
mechanism for accessing and/or manipulating a limited region of a coded image. For
example, an image having a 16:9 aspect ratio could be subdivided into tiles so one
of its tiles is a subimage with a 4:3 aspect ratio. That tile then could be reconstructed
without accessing the other tiles in the compressed image. If the image is not subdi-
vided into tiles, it is a single tile.

The 1-D discrete wavelet transform of the rows and columns of each tile compo-
nent is then computed. For error-free compression, the transform is based on a bior-
thogonal, 5/3 coefficient scaling and wavelet vector (Le Gall and Tabatabai [1988]).
A rounding procedure is defined for non-integer-valued transform coefficients. In
lossy applications, a 9/7 coefficient scaling-wavelet vector is employed (Antonini,
Barlaud, Mathieu, and Daubechies [1992]). In either case, the transform is computed
using the fast wavelet transform of Section 7.10 or via a complementary lifting-based
approach (Mallat [1999]). For example, in lossy applications, the coefficients used to
construct the 9/7 FWT analysis filter bank are given in Table 7.1. The complementary
lifting-based implementation involves six sequential “lifting” and “scaling” opera-
tions:

Y n X n X n X n i n i

Y n X n

2 1 2 1 2 2 2 3 2 1 3

2 2
0 1+() = +() + () + +()⎡⎣ ⎤⎦ ≤ + < +

() = (
a −

)) + () + +()⎡⎣ ⎤⎦ ≤ < +
+() = +() + () +

b

g

Y n Y n i n i

Y n Y n Y n

2 1 2 1 2 2 2

2 1 2 1 2
0 1− −

YY n i n i

Y n Y n Y n Y n

2 2 1 2 1 1

2 2 2 1 2 1
0 1+()⎡⎣ ⎤⎦ ≤ + < +

() = () + () + +()⎡⎣ ⎤⎦

−
−d ii n i

Y n KY n i n i

Y n Y n K i n i

0 1

0 1

0 1

2

2 1 2 1 2 1

2 2 2

≤ <
+() = +() ≤ + <

() = () ≤ <
−

 (8-61)

Here, X is the tile component being transformed, Y is the resulting transform,
and i0 and i1 define the position of the tile component within a component. That
is, they are the indices of the first sample of the tile-component row or column
being transformed and the one immediately following the last sample. Variable

† ′ ′ ′R G B is a gamma-corrected, nonlinear version of a linear CIE (International Commission on Illumination)
RGB colorimetry value. ′Y is luminance and Cb and Cr are color differences (i.e., scaled ′ ′B Y− and ′ ′R Y−
values).

Lifting-based imple-
mentations are another
way to compute wavelet
transforms. The coef-
ficients used in the
approach are directly
related to the FWT filter
bank coefficients.

DIP4E_GLOBAL_Print_Ready.indb 619 6/16/2017 2:11:28 PM

620 Chapter 8 Image Compression and Watermarking

n assumes values based on i0, i1, and determines which of the six operations is
being performed. If n i< 0 or n i> 1, X n() is obtained by symmetrically extending
X. For example, X i X i0 01 1−() = +(), X i X i0 02 2−() = +(), X i X i1 1 2() = ()− , and
X i X i1 11 3+() = ()− . At the conclusion of the lifting and scaling operations, the even-
indexed values of Y are equivalent to the FWT lowpass filtered output; the odd-
indexed values of Y correspond to the highpass FWT filtered result. Lifting param-
eters a, b, g, and d are −1 586134342. , −0 052980118. , 0.882911075, and 0.433506852,
respectively, and scaling factor K is 1.230174105.

The transformation just described produces four subbands; a low-resolution
approximation of the tile component and the component’s horizontal, vertical, and
diagonal frequency characteristics. Repeating the transformation NL times, with sub-
sequent iterations restricted to the previous decomposition’s approximation coeffi-
cients, produces an NL-scale wavelet transform. Adjacent scales are related spatially
by powers of 2, and the lowest scale contains the only explicitly defined approxima-
tion of the original tile component. As can be surmised from Fig. 8.45, where the
notation of the JPEG-2000 standard is summarized for the case of NL = 2, a general
NL-scale transform contains 3 1NL + subbands whose coefficients are denoted ab for
b = NL HL,…, 1HL, 1LH, 1HH. The standard does not specify the number of scales
to be computed.

When each of the tile components has been processed, the total number of trans-
form coefficients is equal to the number of samples in the original image, but the
important visual information is concentrated in a few coefficients. To reduce the
number of bits needed to represent the transform, coefficient a u vb(,) of subband b
is quantized to value q u vb(,) using

 q u v a u v
a u v

b b
b

b

, ,
,() = ()⎡⎣ ⎤⎦ ⋅

()
Δ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sign floor (8-62)

where the quantiztion step size �b is

 Δ = +⎛
⎝⎜

⎞
⎠⎟b

R bb b2 1
211

−e m (8-63)

Rb is the nominal dynamic range of subband b, while eb and mb are the number of
bits allotted to the exponent and mantissa of the subband’s coefficients. The nominal
dynamic range of subband b is the sum of the number of bits used to represent the
original image and the analysis gain bits for subband b. Subband analysis gain bits
follow the simple pattern shown in Fig. 8.45. For example, there are two analysis gain
bits for subband b = 1HH.

For error-free compression, mb = 0, Rb b= e , and �b = 1. For irreversible com-
pression, no particular quantization step size is specified in the standard. Instead,
the number of exponent and mantissa bits must be provided to the decoder on a
subband basis, called expounded quantization, or for the NLLL subband only, called
derived quantization. In the latter case, the remaining subbands are quantized using

These lifting-based coef-
ficients are specified in
the standard.

Recall from Chapter 7
that the DWT decom-
poses an image into a set
of band-limited compo-
nents called subbands.

Do not confuse the
standard’s definition of
nominal dynamic range
with the closely related
definition in Chapter 2.

DIP4E_GLOBAL_Print_Ready.indb 620 6/16/2017 2:11:30 PM

8.11 Wavelet Coding 621

extrapolated NLLL subband parameters. Letting e0 and m0 be the number of bits
allocated to the NLLL subband, the extrapolated parameters for subband b are

m m

e e

b

b b Ln N

=
= +

0

0 −
 (8-64)

where nb denotes the number of subband decomposition levels from the original
image tile component to subband b.

In the final steps of the encoding process, the coefficients of each transformed
tile-component’s subbands are arranged into rectangular blocks called code blocks,
which are coded individually, one bit plane at a time. Starting from the most signifi-
cant bit plane with a nonzero element, each bit plane is processed in three passes.
Each bit (in a bit plane) is coded in only one of the three passes, which are called
significance propagation, magnitude refinement, and cleanup. The outputs are then
arithmetically coded and grouped with similar passes from other code blocks to
form layers. A layer is an arbitrary number of groupings of coding passes from
each code block. The resulting layers finally are partitioned into packets, providing
an additional method of extracting a spatial region of interest from the total code
stream. Packets are the fundamental unit of the encoded code stream.

JPEG-2000 decoders simply invert the operations previously described. After
reconstructing the subbands of the tile-components from the arithmetically coded
JPEG-2000 packets, a user-selected number of the subbands is decoded. Although
the encoder may have encoded Mb bit planes for a particular subband, the user,
due to the embedded nature of the code stream, may choose to decode only Nb bit
planes. This amounts to quantizing the coefficients of the code block using a step

FIGURE 8.45
JPEG 2000 two-
scale wavelet
transform tile-
component coeffi-
cient notation and
analysis gain.

a2LL(u, v) a2HL(u, v)

a2LH(u, v) a2HH(u, v)

a1HL(u, v)

a1LH(u, v) a1HH(u, v)

0 1

1 2 1

1 2

a1HL(u, v)

1

DIP4E_GLOBAL_Print_Ready.indb 621 6/16/2017 2:11:30 PM

622 Chapter 8 Image Compression and Watermarking

size of 2M N
b

b b− ⋅ Δ . Any nondecoded bits are set to zero and the resulting coefficients,
denoted q u vb(,), are inverse quantized using

 R u v

q u v r q u v

q u v rq

b
M N u v

b b

b
M

b

b b

b,

, ,

,

,

() =

() + ⋅() ⋅ Δ () >

() ⋅

()2 0

2

−

−− NN u v
b b

b

b q u v

q u v

, ,

,

()() ⋅ Δ () <

() =

⎧

⎨

⎪
⎪

⎩

⎪
⎪

0

0 0

 (8-65)

where R u vqb
(,) denotes an inverse-quantized transform coefficient, and N u vb(,) is

the number of decoded bit planes for q u vb(,). Reconstruction parameter r is cho-
sen by the decoder to produce the best visual or objective quality of reconstruction.
Generally, 0 1≤ <r , with a common value being r = 1 2. The inverse-quantized coef-
ficients then are inverse-transformed by column and by row using an FWT−1 filter
bank whose coefficients are obtained from Table 7.1, or via the following lifting-
based operations:

X n K Y n i n i

X n K Y n i n i

2 2 3 2 3

2 1 1 2 1 2 2 1
0 1

0 1

() = ⋅ ≤ < +
+() = () +() ≤ < +

() −
− − − 22

2 2 2 1 2 1 3 2 3

2 1 2
0 1X n X n X n X n i n i

X n X n
() = () () + +()⎡⎣ ⎤⎦ ≤ < +

+() = +
− − −d

11 2 2 2 2 2 1 2

2 2 2 1
0 1() () + +()⎡⎣ ⎤⎦ ≤ + < +

() = () () +
− −

− −
g

b

X n X n i n i

X n X n X n XX n i n i

X n X n X n X n

2 1 1 2 1

2 1 2 1 2 2 2
0 1+()⎡⎣ ⎤⎦ ≤ < +

+() = +() () + +()⎡⎣ ⎤⎦

−
− a ii n i0 12 1≤ + <

 (8-66)

where parameters a, b, g, d, and K are as defined for Eq. (8-61). Inverse-quantized
coefficient row or column element Y n() is symmetrically extended when necessary.
The final decoding steps are the assembly of the component tiles, inverse compo-
nent transformation (if required), and DC level shifting. For irreversible coding, the
inverse component transformation is

I x y Y x y Y x y

I x y Y x y Y x y
0 0 2

1 0 1

1 402

0 34413

, , . ,

, , . ,
() = () + ()
() = () ()− −− 0 71414

1 772
2

2 0 1

. ,

, , . ,

Y x y

I x y Y x y Y x y
()

() = () + ()
 (8-67)

and the transformed pixels are shifted by + −2 1Ssiz .

EXAMPLE 8.28 : A comparison of JPEG-2000 wavelet-based coding and JPEG DCT-based compression.

Figure 8.46 shows four JPEG-2000 approximations of the monochrome image in Figure 8.9(a). Succes-
sive rows of the figure illustrate increasing levels of compression, including C = 25, 52, 75, and 105. The
images in column 1 are decompressed JPEG-2000 encodings. The differences between these images
and the original image [see Fig. 8.9(a)] are shown in the second column, and the third column contains
a zoomed portion of the reconstructions in column 1. Because the compression ratios for the first two
rows are virtually identical to the compression ratios in Example 8.18, these results can be compared
(both qualitatively and quantitatively) to the JPEG transform-based results in Figs. 8.29(a) through (f).

Quantization as defined
earlier in the chapter is
irreversible. The term
“inverse quantized” does
not mean that there is
no information loss. This
process is lossy except
for the case of reversible
JPEG-2000 compression,
where mb = 0, Rb b= e ,
and �b = 1.

DIP4E_GLOBAL_Print_Ready.indb 622 6/16/2017 2:11:32 PM

8.11 Wavelet Coding 623

FIGURE 8.46 Four JPEG-2000 approximations of Fig. 8.9(a). Each row contains a result after compression and recon-
struction, the scaled difference between the result and the original image, and a zoomed portion of the recon-
structed image. (Compare the results in rows 1 and 2 with the JPEG results in Fig. 8.29.).

DIP4E_GLOBAL_Print_Ready.indb 623 6/16/2017 2:11:32 PM

624 Chapter 8 Image Compression and Watermarking

A visual comparison of the error images in rows 1 and 2 of Fig. 8.46 with the corresponding images
in Figs. 8.29(b) and (e) reveals a noticeable decrease of error in the JPEG-2000 results—3.86 and 5.77
intensity levels, as opposed to 5.4 and 10.7 intensity levels for the JPEG results. The computed errors
favor the wavelet-based results at both compression levels. Besides decreasing reconstruction error,
wavelet coding dramatically increases (in a subjective sense) image quality. Note that the blocking arti-
fact that dominated the JPEG results [see Figs. 8.29(c) and (f)] is not present in Fig. 8.46. Finally, we
note that the compression achieved in rows 3 and 4 of Fig. 8.46 is not practical with JPEG. JPEG-2000
provides useable images that are compressed by more than 100:1, with the most objectionable degrada-
tion being increased image blur.

8.12 DIGITAL IMAGE WATERMARKING

The methods and standards of Sections 8.2 through 8.11 make the distribution of
images (in photographs or videos) on digital media and over the Internet practi-
cal. Unfortunately, the images so distributed can be copied repeatedly and without
error, putting the rights of their owners at risk. Even when encrypted for distribution,
images are unprotected after decryption. One way to discourage illegal duplication
is to insert one or more items of information, collectively called a watermark, into
potentially vulnerable images in such a way that the watermarks are inseparable
from the images themselves. As integral parts of the watermarked images, they pro-
tect the rights of their owners in a variety of ways, including:

1. Copyright identification. Watermarks can provide information that serves as
proof of ownership when the rights of the owner have been infringed.

2. User identification or fingerprinting. The identity of legal users can be encoded
in watermarks and used to identify sources of illegal copies.

3. Authenticity determination. The presence of a watermark can guarantee that an
image has not been altered, assuming the watermark is designed to be destroyed
by any modification of the image.

4. Automated monitoring. Watermarks can be monitored by systems that track
when and where images are used (e.g., programs that search the Web for images
placed on Web pages). Monitoring is useful for royalty collection and/or the
location of illegal users.

5. Copy protection. Watermarks can specify rules of image usage and copying (e.g.,
to DVD players).

In this section, we provide a brief overview of digital image watermarking, which is
the process of inserting data into an image in such a way that it can be used to make
an assertion about the image. The methods described have little in common with
the compression techniques presented in the previous sections (although they do
involve the coding of information). In fact, watermarking and compression are in
some ways opposites. While the objective in compression is to reduce the amount of
data used to represent images, the goal in watermarking is to add information and
data (i.e., watermarks) to them. As will be seen in the remainder of the section, the
watermarks themselves can be either visible or invisible.

8.12

DIP4E_GLOBAL_Print_Ready.indb 624 6/16/2017 2:11:32 PM

8.12 Digital Image Watermarking 625

A visible watermark is an opaque or semi-transparent subimage or image that is
placed on top of another image (i.e., the image being watermarked) so that it is obvi-
ous to the viewer. Television networks often place visible watermarks (fashioned
after their logos) in the upper or lower right-hand corner of the television screen. As
the following example illustrates, visible watermarking typically is performed in the
spatial domain.

EXAMPLE 8.29 : A simple visible watermark.

The image in Fig. 8.47(b) is the lower right-hand quadrant of the image in Fig. 8.9(a) with a scaled ver-
sion of the watermark in Fig. 8.47(a) overlaid on top of it. Letting fw denote the watermarked image, we
can express it as a linear combination of the unmarked image f and watermark w using

 f fw w= () +1 − a a (8-68)

where constant a controls the relative visibility of the watermark and the underlying image. If a is 1,
the watermark is opaque and the underlying image is completely obscured. As a approaches 0, more of
the underlying image and less of the watermark is seen. In general, 0 1< ≤a ; in Fig. 8.47(b), a = 0 3. . Fig-
ure 8.47(c) is the computed difference (scaled in intensity) between the watermarked image in (b) and
the unmarked image in Fig. 8.9(a). Intensity 128 represents a difference of 0. Note that the underlying
image is clearly visible through the “semi-transparent” watermark. This is evident in both Fig. 8.47(b)
and the difference image in Fig. 8.47(c).

Unlike the visible watermark of the previous example, invisible watermarks can-
not be seen with the naked eye. They are imperceptible but can be recovered with an
appropriate decoding algorithm. Invisibility is assured by inserting them as visually
redundant information [information that the human visual system ignores or cannot

b
a

c

FIGURE 8.47
A simple visible
watermark:
(a) watermark;
(b) the water-
marked image;
and
(c) the
difference
between the
watermarked
image and the
original (non-
watermarked)
image.

Digital Image
Processing

DIP4E_GLOBAL_Print_Ready.indb 625 6/16/2017 2:11:33 PM

626 Chapter 8 Image Compression and Watermarking

perceive (see Section 8.1)]. Figure 8.48(a) provides a simple example. Because the
least significant bits of an 8-bit image have virtually no effect on our perception of
the image, the watermark from Fig. 8.47(a) was inserted or “hidden” in its two least
significant bits. Using the notation introduced above, we let

 f
f

w

w
= ⎛

⎝⎜
⎞
⎠⎟

+4
4 64

 (8-69)

and use unsigned integer arithmetic to perform the calculations. Dividing and mul-
tiplying by 4 sets the two least significant bits of f to 0, dividing w by 64 shifts its two
most significant bits into the two least significant bit positions, and adding the two
results generates the LSB watermarked image. Note that the embedded watermark
is not visible in Fig. 8.48(a). By zeroing the most significant 6 bits of this image and
scaling the remaining values to the full intensity range, however, the watermark can
be extracted as in Fig. 8.48(b).

An important property of invisible watermarks is their resistance to both acci-
dental and intentional attempts to remove them. Fragile invisible watermarks
are destroyed by any modification of the images in which they are embedded. In
some applications, like image authentication, this is a desirable characteristic. As
Figs. 8.48(c) and (d) show, the LSB watermarked image in Fig. 8.48(a) contains a
fragile invisible watermark. If the image in (a) is compressed and decompressed
using lossy JPEG, the watermark is destroyed. Figure 8.48(c) is the result after com-

ba
dc

FIGURE 8.48
A simple invis-
ible watermark:
(a) watermarked
image;
(b) the extracted
watermark;
(c) the water-
marked image
after high quality
JPEG compres-
sion and decom-
pression; and
(d) the extracted
watermark
from (c).

DIP4E_GLOBAL_Print_Ready.indb 626 6/16/2017 2:11:33 PM

8.12 Digital Image Watermarking 627

pressing and decompressing Fig. 8.48(a); the rms error is 2.1 bits. If we try to extract
the watermark from this image using the same method as in (b), the result is unintel-
ligible [see Fig. 8.48(d)]. Although lossy compression and decompression preserved
the important visual information in the image, the fragile watermark was destroyed.

Robust invisible watermarks are designed to survive image modification, whether
the so-called attacks are inadvertent or intentional. Common inadvertent attacks
include lossy compression, linear and nonlinear filtering, cropping, rotation, resam-
pling, and the like. Intentional attacks range from printing and rescanning to adding
additional watermarks and/or noise. Of course, it is unnecessary to withstand attacks
that leave the image itself unusable.

Figure 8.49 shows the basic components of a typical image watermarking system.
The encoder in Fig. 8.49(a) inserts watermark wi into image fi producing water-
marked image f

iw ; the complementary decoder in (b) extracts and validates the
presence of wi in watermarked input f

iw or unmarked input fj . If wi is visible, the
decoder is not needed. If it is invisible, the decoder may or may not require a copy
of fi and wi [shown in blue in Fig. 8.49(b)] to do its job. If fi and/or wi are used, the
watermarking system is known as a private or restricted-key system; if not, it is a
public or unrestricted-key system. Because the decoder must process both marked
and unmarked images, w∅ is used in Fig. 8.49(b) to denote the absence of a mark.
Finally, we note that to determine the presence of wi in an image, the decoder must
correlate extracted watermark wj with wi and compare the result to a predefined
threshold. The threshold sets the degree of similarity that is acceptable for a “match.”

EXAMPLE 8.30 : A DCT-based invisible robust watermark.

Mark insertion and extraction can be performed in the spatial domain, as in the previous examples,
or in the transform domain. Figures 8.50(a) and (c) show two watermarked versions of the image in
Fig. 8.9(a) using the DCT-based watermarking approach outlined here (Cox et al. [1997]):

1. Compute the 2-D DCT of the image to be watermarked.
2. Locate its K largest coefficients, c c cK1 2, , , ,… by magnitude.
3. Create a watermark by generating a K-element pseudo-random sequence of numbers, v v v1 2, , , ,… K

taken from a Gaussian distribution with mean m = 0 and variance s2 1= . (Note: A pseudo-random
number sequence approximates the properties of random numbers. It is not truly random because
it depends on a predetermined initial value.)

4. Embed the watermark from Step 3 into the K largest DCT coefficients from Step 2 using the fol-
lowing equation

 ′ = ⋅ +c c i Ki i i()1 1av ≤ ≤ (8-70)

for a specified constant a > 0 (that controls the extent to which vi alters ci). Replace the original
ci with the computed ′ci from Eq. (8-70). (For the images in Fig. 8.50, a = 0 1. and K = 1000.)

5. Compute the inverse DCT of the result from Step 4.

By employing watermarks made from pseudo-random numbers and spreading them across an image’s
perceptually significant frequency components, a can be made small, reducing watermark visibility. At

DIP4E_GLOBAL_Print_Ready.indb 627 6/16/2017 2:11:35 PM

628 Chapter 8 Image Compression and Watermarking

the same time, watermark security is kept high because (1) the watermarks are composed of pseudo-
random numbers with no obvious structure, (2) the watermarks are embedded in multiple frequency
components with spatial impact over the entire 2-D image (so their location is not obvious) and
(3) attacks against them tend to degrade the image as well (i.e., the image’s most important frequency
components must be altered to affect the watermarks).

Figures 8.50(b) and (d) make the changes in image intensity that result from the pseudo-random
numbers that are embedded in the DCT coefficients of the watermarked images in Figs. 8.50(a) and (c)

ba
dc

FIGURE 8.50
(a) and (c) Two
watermarked
versions of
Fig. 8.9(a);
(b) and (d)
the differences
(scaled in inten-
sity) between
the watermarked
versions and the
unmarked image.
These two images
show the inten-
sity contribution
(although scaled
dramatically) of
the pseudo-
random water-
marks on the
original image.

b
a

FIGURE 8.49
A typical image
watermarking
system:
(a) encoder;
(b) decoder.

Decision
(mark detected
or not)

Image Marked
image

Watermark

Mark
insertion

Watermark

Watermark

Image

Mark
extraction

Mark
detection

Image
(marked or
unmarked)

D

fi

fi

f
iw

wi

wi

f , fwi j
w wj , ∅

DIP4E_GLOBAL_Print_Ready.indb 628 6/16/2017 2:11:35 PM

8.12 Digital Image Watermarking 629

visible. Obviously, the pseudo-random numbers must have an effect (even if too small to see) on the
watermarked images. To display the effect, the images in Figs. 8.50(a) and (c) were subtracted from the
unmarked image in Fig. 8.9(a) and scaled in intensity to the range [0, 255]. Figures 8.50(b) and (d) are
the resulting images; they show the 2-D spatial contributions of the pseudo-random numbers. Because
they have been scaled, however, you cannot simply add these images to the image in Fig. 8.9(a) and
get the watermarked images in Figs. 8.50(a) and (c). As can be seen in Figs. 8.50(a) and (c), their actual
intensity perturbations are small to negligible.

To determine whether a particular image is a copy of a previously watermarked image with water-
mark v v v1 2, , ,… K and DCT coefficients c c cK1 2, , , ,… we use the following procedure:

1. Compute the 2-D DCT of the image in question.
2. Extract the K DCT coefficients (in the positions corresponding to c c cK1 2, , ,… of Step 2 in the

watermarking procedure) and denote the coefficients as ˆ , ˆ , , ˆ .c c cK1 2 … If the image in question is the
previously watermarked image (without modification), ĉ ci i= ′ for 1 ≤ ≤i K. If it is a modified copy
of the watermarked image (i.e., it has undergone some sort of attack), ĉ ci i≈ ′ for 1 ≤ ≤i K (the ĉi
will be approximations of the ′ci). Otherwise, the image in question will be an unmarked image or an
image with a completely different watermark, and the ĉi will bear no resemblance to the original ˆ .ci

3. Compute watermark ˆ , ˆ , , ˆv v v1 2 … K using

 ˆ
ˆ

v
a

i
i i

i

c c

c
i k=

−
≤ ≤for 1 (8-71)

Recall that watermarks are sequences of pseudo-random numbers.

4. Measure the similarity of ˆ , ˆ , , ˆv v v1 2 … K (from Step 3) and v v v1 2, , ,… K (from Step 3 of the water-
marking procedure) using a metric such as the correlation coefficient

 g

v v v v

v v v v

=

⋅

≤ ≤=

==

∑

∑∑

()()

() ()

ˆ ˆ
–

ˆ ˆ
–

i i
i

K

i i
i

K

i

K
i K

− −

− −

1

2 2

11

1 (8-72)

where v and v̂ are the means of the two K-element watermarks. (Note: Correlation coefficients
are discussed in detail in Section 12.3.)

5. Compare the measured similarity, g, to a predefined threshold, T, and make a binary detection deci-
sion:

 D
T

=
⎧
⎨
⎩

1

0

if

otherwise

g ≥
 (8-73)

In other words, D = 1 indicates that watermark v v v1 2, , ,… K is present (with respect to the speci-
fied threshold, T); D = 0 indicates that it was not.

Using this procedure, the original watermarked image in Fig. 8.50(a), measured against itself, yields a
correlation coefficient of 0.9999, i.e., g = 0 9999. . It is an unmistakable match. In a similar manner, the
image in Fig. 8.50(b), when measured against the image in Fig. 8.50(a), results in a g of 0.0417. It could
not be mistaken for the watermarked image in Fig. 8.50(a) because the correlation coefficient is so low.

DIP4E_GLOBAL_Print_Ready.indb 629 6/16/2017 2:11:37 PM

630 Chapter 8 Image Compression and Watermarking

To conclude the section, we note that the DCT-based watermarking approach of the previous
example is fairly resistant to watermark attacks, partly because it is a private or restricted-key method.
Restricted-key methods are always more resilient than their unrestricted-key counterparts. Using the
watermarked image in Fig. 8.50(a), Fig. 8.51 illustrates the ability of the method to withstand a variety
of common attacks. As can be seen in the figure, watermark detection is quite good over the range of
attacks that were implemented; the resulting correlation coefficients (shown under each image in the
figure) vary from 0.3113 to 0.9945. When subjected to a high quality but lossy (resulting in an rms error
of 7 intensities) JPEG compression and decompression, g = 0 9945. . Even when the compression and
reconstruction yields an rms error of 10 intensity levels, g = 0 7395. ; and the usability of this image has
been significantly degraded. Significant smoothing by spatial filtering and the addition of Gaussian noise
do not reduce the correlation coefficient below 0.8230. However, histogram equalization reduces g to
0.5210; and rotation has the largest effect; reducing g to 0.3313. All attacks, except for the lossy JPEG
compression and reconstruction in Fig. 8.51(a), have significantly reduced the usability of the original
watermarked image.

Summary, References, and Further Reading
The principal objectives of this chapter were to present the theoretic foundation of digital image compression, to
describe the most commonly used compression methods, and to introduce the related area of digital image water-
marking. Although the level of the presentation is introductory in nature, the references provide an entry into the
extensive body of literature dealing with the topics discussed. As evidenced by the international standards listed
in Tables 8.3 through 8.5, compression plays a key role in document image storage and transmission, the Internet,
and commercial video distribution (e.g., DVDs). It is one of the few areas of image processing that has received a
sufficiently broad commercial appeal to warrant the adoption of widely accepted standards. Image watermarking is
becoming increasingly important as more and more images are distributed in compressed digital form.

The introductory material of the chapter, which is generally confined to Section 8.1, is basic to image compres-
sion, and may be found in one form or another in most of the general image processing books cited at the end of
Chapter 1. For additional information on the human visual system, see Netravali and Limb [1980], as well as Huang
[1966], Schreiber and Knapp [1958], and the references cited at the end of Chapter 2. For more on information
theory, see the book website or Abramson [1963], Blahut [1987], and Berger [1971]. Shannon’s classic paper, “A
Mathematical Theory of Communication” [1948], lays the foundation for the area and is another excellent refer-
ence. Subjective fidelity criteria are discussed in Frendendall and Behrend [1960]. Throughout the chapter, a variety
of compression standards are used in examples. Most of them were implemented using Adobe Photoshop (with
freely available compression plug-ins) and/or MATLAB, which is described in Gonzalez et al. [2004]. Compression
standards, as a rule, are lengthy and complex; we have not attempted to cover any of them in their entirety. For more
information on a particular standard, see the published documents of the appropriate standards organization—the
International Standards Organization, International Electrotechnical Commission, and/or the International Tele-
communications Union.

The lossy and error-free compression techniques described in Sections 8.2 through 8.11 and watermarking tech-
niques in Section 8.12 are, for the most part, based on the original papers cited in the text. The algorithms covered
are representative of the work in this area, but are by no means exhaustive. The material on LZW coding has its
origins in the work of Ziv and Lempel [1977, 1978]. The material on arithmetic coding follows the development in
Witten, Neal, and Cleary [1987]. One of the more important implementations of arithmetic coding is summarized in
Pennebaker et al. [1988]. For a good discussion of lossless predictive coding, see the tutorial by Rabbani and Jones
[1991]. The adaptive predictor of Eq. (8-55) is from Graham [1958]. For more on motion compensation, see S. Solari
[1997], which also contains an introduction to general video compression and compression standards, and Mitchell
et al. [1997]. The DCT-based watermarking technique in Section 8.12 is based on the paper by Cox et al. [1997]. For
more on watermarking, see the books by Cox et al. [2001] and Parhi and Nishitani [1999]. See also the paper by S.
Mohanty [1999].

DIP4E_GLOBAL_Print_Ready.indb 630 6/16/2017 2:11:37 PM

 Summary, References, and Further Reading 631

ba c
ed f

FIGURE 8.51 Attacks on the watermarked image in Fig. 8.50(a): (a) lossy JPEG compression and decompression
with an rms error of seven intensity levels; (b) lossy JPEG compression and decompression with an rms error of 10
intensity levels (note the blocking artifact); (c) smoothing by spatial filtering; (d) the addition of Gaussian noise;
(e) histogram equalization; and (f) rotation. Each image is a modified version of the watermarked image in
Fig. 8.50(a). After modification, they retain their watermarks to varying degrees, as indicated by the correlation
coefficients below each image.

g = 0.9945 g = 0.7395 g = 0.8390

g = 0.8230 g = 0.5210 g = 0.3113

Many survey articles have been devoted to the field of image compression. Noteworthy are Netravali and Limb
[1980], A. K. Jain [1981], a special issue on picture communication systems in the IEEE Transactions on Communi-
cations [1981], a special issue on the encoding of graphics in the Proceedings of IEEE [1980], a special issue on visual
communication systems in the Proceedings of the IEEE [1985], a special issue on image sequence compression in
the IEEE Transactions on Image Processing [1994], and a special issue on vector quantization in the IEEE Transac-
tions on Image Processing [1996]. In addition, most issues of the IEEE Transactions on Image Processing, IEEE
Transactions on Circuits and Systems for Video Technology, and IEEE Transactions on Multimedia include articles
on video and still image compression, motion compensation, and watermarking.

DIP4E_GLOBAL_Print_Ready.indb 631 6/16/2017 2:11:38 PM

632 Chapter 8 Image Compression and Watermarking

Problems
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book
website: www.ImageProcessingPlace.com).

8.1 Answer the following.

(a) Can variable-length coding procedures be used
to compress a histogram equalized image with
2n intensity levels? Explain.

(b) Can such an image contain spatial or tempo-
ral redundancies that could be exploited for
data compression?

8.2 One variation of run-length coding involves
(1) coding only the runs of 0’s or 1’s (not both)
and (2) assigning a special code to the start of
each line to reduce the effect of transmission
errors. One possible code pair is (,),x rk k where
xk and rk represent the kth run’s starting coordi-
nate and run length, respectively. The code (0, 0)
is used to signal each new line.

(a) Derive a general expression for the maxi-
mum average runs per scan line required
to guarantee data compression when run-
length coding a 2 2n n× binary image.

(b) Compute the maximum allowable value for
n = 10.

8.3 Consider an 8-pixel line of intensity data, {108,
139, 135, 244, 172, 173, 56, 99}. If it is uniformly
quantized with 4-bit accuracy, compute the rms
error and rms signal-to-noise ratios for the quan-
tized data.

8.4 * Although quantization results in information loss,
it is sometimes invisible to the eye. For example,
when 8-bit pixels are uniformly quantized to
fewer bits pixel, false contouring often occurs.
It can be reduced or eliminated using improved
gray-scale (IGS) quantization. A sum (initially set
to zero) is formed from the current 8-bit intensity
value and the four least significant bits of the pre-
viously generated sum. If the four most signifi-
cant bits of the intensity value are 11112, however,
00002 is added instead. The four most significant
bits of the resulting sum are used as the coded
pixel value.

(a) Construct the IGS code for the intensity data
in Problem 8.3.

(b) Compute the rms error and rms signal-to-
noise ratios for the IGS data.

8.5 A 1024 024× 1 8-bit image with 5.3 bits pixel
entropy [computed from its histogram using
Eq. (8-7)] is to be Huffman coded.

(a) What is the maximum compression that can
be expected?

(b) Will it be obtained?

(c) If a greater level of lossless compression is
required, what else can be done?

8.6 * The base e unit of information is commonly
called a nat, and the base-10 information unit is
called a Hartley. Compute the conversion factors
needed to relate these units to the base-2 unit of
information (the bit).

8.7 * Prove that, for a zero-memory source with q sym-
bols, the maximum value of the entropy is log q,
which is achieved if and only if all source symbols
are equiprobable. [Hint: Consider the quantity
log ()q H z− and note the inequality ln .x x≤ − 1]

8.8 Answer the following.

(a) How many unique Huffman codes are there
for a three-symbol source?

(b) Construct them.

8.9 Consider the simple 4 8× , 8-bit image:

21 21 21 95 169 243 243 243

21 21 21 95 169 243 243 243

21 21 21 95 169 243 243 243

21 21 21 95 169 243 243 243

(a) Compute the entropy of the image.

(b) Compress the image using Huffman coding.

(c) Compute the compression achieved and the
effectiveness of the Huffman coding.

(d) * Consider Huffman encoding pairs of pixels
rather than individual pixels. That is, con-
sider the image to be produced by the sec-
ond extension of the zero-memory source

DIP4E_GLOBAL_Print_Ready.indb 632 6/16/2017 2:11:38 PM

http://www.ImageProcessingPlace.com

 Problems 633

that produced the original image. What is the
entropy of the image when looked at as pairs
of pixels?

(e) Consider coding the differences between
adjacent pixels. What is the entropy of the
new difference image? What does this tell us
about compressing the image?

(f) Explain the entropy differences in (a), (d)
and (e).

8.10 Using the Huffman code in Fig. 8.8, decode the
encoded string 0101000001010111110100.

8.11 Compute Golomb code G n3() for 0 15≤ ≤n .

8.12 Write a general procedure for decoding Golomb
code G nm().

8.13 Why is it not possible to compute the Huffman
code of the nonnegative integers, n ≥ 0, with the
probability mass function of Eq. (8-13)?

8.14 Compute exponential Golomb code G nexp()2 for
0 15≤ ≤n .

8.15 * Write a general procedure for decoding exponen-
tial Golomb code G nk

exp().

8.16 Plot the optimal Golomb coding parameter m as
a function of r for 0 1< <r in Eq. (8-14).

8.17 Given a four-symbol source {a, b, c, d} with source
probabilities {0.1, 0.4, 0.3, 0.2}, arithmetically
encode the sequence bbadc.

8.18 * The arithmetic decoding process is the reverse
of the encoding procedure. Decode the message
0.23355 given the coding model

Symbol Probability
a 0.2
e 0.3
i 0.1
o 0.2
u 0.1
! 0.1

8.19 Use the LZW coding algorithm to encode the
7-bit ASCII string “aaaaaaaaaaa”.

8.20 * Devise an algorithm for decoding the LZW
encoded output of Example 8.7. Since the dic-
tionary that was used during the encoding is not
available, the code book must be reproduced as
the output is decoded.

8.21 Decode the BMP encoded sequence {3, 4, 5, 6, 0, 3,
103, 125, 67, 0, 2, 47}.

8.22 Do the following:

(a) Construct the entire 4-bit Gray code.

(b) Create a general procedure for converting a
Gray-coded number to its binary equivalent
and use it to decode 0111010100111.

8.23 Use the CCITT Group 4 compression algorithm
to code the second line of the following two-line
segment:

01100111001111111100001

11111110001110000111111

Assume that the initial reference element a0 is
located on the first pixel of the second line seg-
ment. (Note: Employ the CCITT 2-D code table
from the book website.)

8.24 * Do the following.

(a) List all the members of JPEG DC coefficient
difference category 3.

(b) Compute their default Huffman codes using
using the appropriate Huffamn code table
from the book website.

8.25 How many computations are required to find the
optimal motion vector of a macroblock of size
8 8× using the MAD optimality criterion, single
pixel precision, and a maximum allowable dis-
placement of 8 pixels? What would it become for
¼ pixel precision?

8.26 What are the advantages of using B-frames for
motion compensation?

8.27 * Draw the block diagram of the companion
motion compensated video decoder for the
encoder in Fig. 8.36.

8.28 An image whose autocorrelation function is of
the form of Eq. (8-48) with rh = 0 is to be DPCM
coded using a second-order predictor.

(a) Form the autocorrelation matrix R and vec-
tor r.

(b) Find the optimal prediction coefficients.

(c) Compute the variance of the prediction error
that would result from using the optimal
coefficients.

DIP4E_GLOBAL_Print_Ready.indb 633 6/16/2017 2:11:39 PM

634 Chapter 8 Image Compression and Watermarking

8.29 * Derive the Lloyd-Max decision and reconstruc-
tion levels for L = 4 and the uniform probability
density function

 p s A
A s A() =

≤ ≤⎧
⎨
⎪

⎩⎪

1
2
0

−

otherwise

8.30 A radiologist from a well-known research hospital
recently attended a medical conference at which
a system that could transmit 4096 096× 4 12-bit
digitized X-ray images over standard T1 (1.544
Mb/s) phone lines was exhibited. The system
transmitted the images in a compressed format
using a progressive technique in which a reason-
ably good approximation of the X-ray was first
reconstructed at the viewing station, then refined
gradually to produce an error-free display. The
transmission of the data needed to generate the
first approximation took approximately 5 or 6 s.
Refinements were made every 5 or 6 s (on the
average) for the next 1 min, with the first and last
refinements having the most and least significant
impact on the reconstructed X-ray, respectively.
The physician was favorably impressed with the
system, because she could begin her diagnosis by
using the first approximation of the X-ray and
complete it as the error-free reconstruction of
the X-ray was being generated. Upon returning
to her office, she submitted a purchase request
to the hospital administrator. Unfortunately, the
hospital was on a relatively tight budget, which
recently had been stretched by the hiring of an
aspiring young electrical engineering graduate. To

appease the radiologist, the administrator gave
the young engineer the task of designing such a
system. (He thought it might be cheaper to design
and build a similar system in-house. The hospital
currently owned some of the elements of such
a system, but the transmission of the raw X-ray
data took more than 2 min.) The administrator
asked the engineer to have an initial block dia-
gram by the afternoon staff meeting. With little
time and only a copy of Digital Image Processing
from his recent school days in hand, the engineer
was able to devise a system conceptually to sat-
isfy the transmission and associated compression
requirements. Construct a conceptual block dia-
gram of such a system, specifying the compression
techniques you would recommend.

8.31 Show that the lifting-based wavelet transform
defined by Eq. (8-61) is equivalent to the tradi-
tional FWT filter bank implementation using the
coefficients in Table 7.1. Define the filter coeffi-
cients in terms of a, b, g, d, and K.

8.32 Compute the quantization step sizes of the sub-
bands for a JPEG-2000 encoded image in which
derived quantization is used and 8 bits are allot-
ted to the mantissa and exponent of the 2LL sub-
band.

8.33 How would you add a visible watermark to an
image in the frequency domain?

8.34 * Design an invisible watermarking system based
on the discrete Fourier transform.

8.35 Design an invisible watermarking system based
on the discrete wavelet transform.

DIP4E_GLOBAL_Print_Ready.indb 634 6/16/2017 2:11:40 PM

635

9 Morphological Image
Processing

Preview
The word morphology commonly denotes a branch of biology that deals with the form and structure of
animals and plants. We use the same word here in the context of mathematical morphology as a tool for
extracting image components that are useful in the representation and description of region shape, such
as boundaries, skeletons, and the convex hull. We are interested also in morphological techniques for
pre- or postprocessing, such as morphological filtering, thinning, and pruning.

In the following sections, we will develop a number of fundamental concepts in mathematical mor-
phology, and illustrate how they are applied in image processing. The material in this chapter begins a
transition from methods whose inputs and outputs are images, to methods whose outputs are image
attributes, for tasks such as object extraction and description. Morphology is one of several tools devel-
oped in the remainder of the book—such as segmentation, feature extraction, and object recognition—
that form the foundation of techniques for extracting “meaning” from an image. The material in the
following sections of this chapter deals with methods for processing both binary and grayscale images.

Upon completion of this chapter, readers should:
 Understand basic concepts of mathematical

morphology, and how to apply them to digital
image processing.

 Be familiar with the tools used for binary
image morphology, including erosion, dilation,
opening, closing, and how to combine them to
generate more complex tools.

 Be able to develop algorithms based on bi-
nary image morphology for performing tasks

such as morphological smoothing, edge de-
tection, extracting connected components,
and skeletonizing.

 Be familiar with how binary image morphol-
ogy can be extended to grayscale images.

 Be able to develop algorithms for grayscale
image processing for tasks such as textural
segmentation, granulometry, computing gray-
scale image gradients, and others.

In form and feature, face and limb,
I grew so like my brother
That folks got taking me for him
And each for one another.

Henry Sambrook Leigh, Carols of Cockayne, The Twins

DIP4E_GLOBAL_Print_Ready.indb 635 6/16/2017 2:11:40 PM

636 Chapter 9 Morphological Image Processing

9.1 PRELIMINARIES

The language of mathematical morphology is set theory. As such, morphology offers
a unified and powerful approach to numerous image processing problems. When
working with images, sets in mathematical morphology represent objects in those
images. In binary images, the sets in question are members of the 2-D integer space
Z2 , where each element of a set is a tuple (2-D vector) whose coordinates are the
coordinates of an object (typically foreground) pixel in the image. Grayscale digital
images can be represented as sets whose components are in Z3. In this case, two
components of each element of the set refer to the coordinates of a pixel, and the
third corresponds to its discrete intensity value. Sets in higher dimensional spaces
can contain other image attributes, such as color and time-varying components.

Morphological operations are defined in terms of sets. In image processing, we use
morphology with two types of sets of pixels: objects and structuring elements (SE’s).
Typically, objects are defined as sets of foreground pixels. Structuring elements can
be specified in terms of both foreground and background pixels. In addition, struc-
turing elements sometimes contain so-called “don’t care” elements, denoted by ×,
signifying that the value of that particular element in the SE does not matter. In this
sense, the value can be ignored, or it can be made to fit a desired value in the evalu-
ation of an expression; for example, it might take on the value of a pixel in an image
in applications in which value matching is the objective.

Because the images with which we work are rectangular arrays, and sets in general
are of arbitrary shape, applications of morphology in image processing require that
sets be embedded in rectangular arrays. In forming such arrays, we assign a back-
ground value to all pixels that are not members of object sets. The top row in Fig. 9.1
shows an example. On the left are sets in the graphical format you are accustomed
to seeing in book figures. In the center, the sets have been embedded in a rectangular
background (white) to form a graphical image.† On the right, we show a digital image
(notice the grid) which is the format we use for digital image processing.

Structuring elements are defined in the same manner, and the second row in Fig. 9.1
shows an example. There is an important difference between the way we represent
digital images and digital structuring elements. Observe on the top right that there is
a border of background pixels surrounding the objects, while there is none in the SE.
As you will learn shortly, structuring elements are used in a form similar to spatial
convolution kernels (see Fig. 3.28), and the image border just described is similar
to the padding we discussed in Section 3.4 and 3.5. The operations are different in
morphology, but the padding and sliding operations are the same as in convolution.

In addition to the set definitions given in Section 2.6, the concept of set reflection
and translation are used extensively in morphology in connection with structuring
elements. The reflection of a set (structuring element) B about its origin, denoted by
ˆ ,B is defined as

† Sets are shown as drawings of objects (e.g. squares and triangles) of arbitrary shape. A graphical image contains
sets that have been embedded into a background to form a rectangular array. When we intend for a drawing to
be interpreted as a digital image (or structuring element), we include a grid in illustrations that might otherwise
be ambiguous. Objects in all drawings are shaded, and the background is shown in white. When working with
actual binary images, we say that objects are foreground pixels. All other pixels are background.

9.1

Before proceeding, you
will find it helpful to
review the discussion in
Section 2.4 dealing with
representing images, the
discussion on
connectivity in Section
2.5, and the discussion on
sets in Section 2.6.

DIP4E_GLOBAL_Print_Ready.indb 636 6/16/2017 2:11:40 PM

9.1 Preliminaries 637

ˆ ,B b b B= = − ∈{ }w w for (9-1)

That is, if B is a set of points in 2-D, then B̂ is the set of points in B whose (,)x y
coordinates have been replaced by (,).− −x y Figure 9.2 shows several examples of
digital sets (structuring elements) and their reflection. The dot denotes the origin of
the SE. Note that reflection consists simply of rotating an SE by 180° about its origin,
and that all elements, including the background and don’t care elements, are rotated.

The translation of a set B by point z z z= ()1 2, , denoted B
z() , is defined as

B c c b z b B
z() = = + ∈{ }, for (9-2)

That is, if B is a set of pixels in 2-D, then B
z() is the set of pixels in B whose (,)x y

coordinates have been replaced by x z y z+ +()1 2, . This construct is used to trans-
late (slide) a structuring element over an image, and each location perform a set

Reflection is the same
operation we performed
with kernels prior to
spatial convolution, as
explained in Section 3.4.

FIGURE 9.1 Top row. Left: Objects represented as graphical sets. Center: Objects embedded in a background to form
a graphical image. Right: Object and background are digitized to form a digital image (note the grid). Second row:
Example of a structuring element represented as a set, a graphical image, and finally as a digital SE.

Objects representeed
as sets Objects represented as

a graphical image Digital image

Structuring element
represented as a set

Structuring element
represented as a graphical image

Digital
structuring element

FIGURE 9.2
Structuring
elements and their
reflections about the
origin (the ×’s are
don’t care elements,
and the dots denote
the origin). Reflec-
tion is rotation by
180° of an SE about
its origin.

× ×

× ××

×

B̂B

×
×

B

×
×

B̂

B B̂

B̂B

DIP4E_GLOBAL_Print_Ready.indb 637 6/16/2017 2:11:42 PM

638 Chapter 9 Morphological Image Processing

operation between the structuring element and the area of the image directly under
it, as we explained in Fig. 3.28 for correlation and convolution. Both reflection and
translation are defined with respect to the origin of B.

As an introduction to how morphological operations between images and struc-
turing elements are performed, consider Fig 9.3, which shows a simple binary image, I,
consisting of an object (set) A, shown shaded, and a 3 3× SE whose elements are
all 1’s (foreground pixels). The background pixels (0’s) are shown in white. We are
interested in performing the following morphological operations: (1) form a new
image, of the same size as I, consisting only of background values initially, (2) trans-
late (slide) B over image I, and (3) at each increment of translation, if B is completely
contained in A, mark the location of the origin of B as a foreground pixel in the new
image; otherwise, leave it as a background point. Figure 9.3(c) is the result after the
origin of B has visited every element of I. We see that, when the origin of B is on
a border element of A, part of B ceases to be contained in A, thus eliminating that
location of the origin of B as a possible foreground point of the new image. The net
result is that the boundary of set A is eroded, as Fig. 9.3(e) shows. Because of the way
in which we defined the operation, the maximum excursion needed for B in I is when
the origin of B (which is at its center) is contained in A. With B being of size 3 3× ,
the narrowest background padding we needed was one pixel wide, as shown in Fig.
9.3(a). By using the smallest border needed for an operation, we keep the drawings
smaller. In practice, we specify the width of padding based on the maximum dimen-
sions of the structuring elements used, regardless of the operations being performed.

When we use terminology such as “the structuring element B is contained in
set A,” we mean specifically that the foreground elements of B overlap only ele-
ments of A. This becomes an important issue when B also contains background and,
possibly, don’t care elements. Also, we use set A to denote all foreground pixels of I.
Those foreground elements can be a single object, as in Fig. 9.3, or they can represent
disjoint subsets of foreground elements, as in the first row of Fig. 9.1. We will discuss
binary images and structuring elements from Sections 9.2 through 9.7. Then, in Sec-
tion 9.8, we will extend the binary ideas to grayscale images and structuring elements.

9.2 EROSION AND DILATION

We begin the discussion of morphology by studying two operations: erosion and
dilation. These operations are fundamental to morphological processing. In fact,
many of the morphological algorithms discussed in this chapter are based on these
two primitive operations.

The reason we gener-
ally specify the padding
border to be of the same
dimensions as B, is that
some morphological
operations are defined
for an entire structuring
element, and cannot be
interpreted with respect
to the location of its
origin.

9.2

ba c

FIGURE 9.3
(a) A binary image
containing one object
(set), A. (b) A struc-
turing element, B.
(c) Image resulting
from a morphological
operation (see text).

Image I

A

B

Image after morphological operation

DIP4E_GLOBAL_Print_Ready.indb 638 6/16/2017 2:11:43 PM

9.2 Erosion and Dilation 639

EROSION

Morphological expressions are written in terms of structuring elements and a set,
A, of foreground pixels, or in terms of structuring elements and an image, I, that
contains A. We consider the former approach first. With A and B as sets in Z2 , the
erosion of A by B, denoted A B| , is defined as

 A B z B A
z

| 8= (){ } (9-3)

where A is a set of foreground pixels, B is a structuring element, and the z’s are
foreground values (1’s). In words, this equation indicates that the erosion of A by B
is the set of all points z such that B, translated by z, is contained in A. (Remember,
displacement is defined with respect to the origin of B.) Equation (9-3) is the formu-
lation that resulted in the foreground pixels of the image in Fig. 9.3(c).

As noted, we work with sets of foreground pixels embedded in a set of back-
ground pixels to form a complete image, I. Thus, inputs and outputs of our morpho-
logical procedures are images, not individual sets. We could make this fact explicit
by writing Eq. (9-3) as

 I B z B A A I A A I
z

c c| 8 8 ´ 8= (){ } { } and (9-4)

where I is a rectangular array of foreground and background pixels. The contents of
the first braces say the same thing as Eq. (9-3), with the added clarification that A is
a subset of (i.e., is contained in) I. The union with the operation inside the second set
of braces “adds” the pixels that are not in subset A (i.e., Ac , which is the set of back-
ground pixels) to the result from the first braces, requiring also that the background
pixels be part of the rectangle defined by I. In words, all this equation says is that
erosion of I by B is the set of all points, z, such that B, translated by z, is contained in
A. The equation also makes explicit that A is contained in I, that the result is embed-
ded in a set of background pixels, and that the entire process is of the same size as I.

Of course, we do not use the cumbersome notation of Eq. (9-4), which we show
only to emphasize an important point. Instead, we use the notation A B| when a
morphological operation uses only foreground elements, and I B| when the oper-
ation uses foreground and background elements. This distinction may seem trivial,
but suppose that we want to perform erosion with Eq. (9-3), using the foreground
elements of the structuring element in the last column in Fig. 9.2. This structuring
element also has background elements, but Eq. (9-3) assumes that B only has fore-
ground elements. In fact, erosion is defined only for operations between foreground
elements, so writing I B| would be meaningless without the “explanation” embed-
ded in Eq. (9-4). To avoid confusion, we use A in morphological expressions when
the operation involves only foreground elements, and I when the operation also
involves background and/or “don’t-care” elements. We also avoid using standard
morphological symbols like | when working with “mixed” SEs. For example, later
in Eq. (9-17) we use the symbol in the expression I B z B I

z
= (){ },P 8 which has

the same form as Eq. (9-3), but instead involves an entire image and the mixed-value
SE in the last column of Fig. 9.2. As you will see, using SE’s with mixed values adds
considerable power to morphological operations.

Remember, set A can
represent (be the union
of) multiple disjoint sets
of foreground pixels
(i.e., objects).

DIP4E_GLOBAL_Print_Ready.indb 639 6/16/2017 2:11:43 PM

640 Chapter 9 Morphological Image Processing

Returning to our discussion of Eq. (9-3), because the statement that B has to be
contained in A is equivalent to B not sharing any common elements with the back-
ground (i.e., the set complement of A), we can express erosion equivalently as

 A B z B A
z

c| ¨= () = ∅{ } (9-5)

where, as defined in Section 2.6, ∅ is the empty set.
Figure 9.4 shows an example of erosion. The elements of set A (shaded) are the

foreground pixels of image I, and, as before, the background is shown in white. The
solid boundary inside the dashed boundary in Fig. 9.4(c) is the limit beyond which
further displacements of the origin of B would cause some elements of the struc-
turing element to cease being completely contained in A. Thus, the locus of points
(locations of the origin of B) within (and including) this boundary constitutes the
foreground elements of the erosion of A by B. We show the resulting erosion shaded
in Fig. 9.4(c), and the background as white. Erosion is the set of values of z that sat-
isfy Eqs. (9-3) or (9-5). The boundary of A is shown dashed in Figs. 9.4(c) and (e) as a
reference; it is not part of the erosion. Figure 9.4(d) shows an elongated structuring
element, and Fig. 9.4(e) shows the erosion of A by this element. Note that the origi-
nal object was eroded to a line. As you can see, the result of erosion is controlled by
the shape of the structuring element. In both cases, the assumption is that the image
was padded to accommodate all excursions of B, and that the result was cropped to
the same size as the original image, just as we did with images processed by spatial
convolution in Chapter 3.

Equations (9-3) and (9-5) are not the only definitions of erosion (see Problems 9.12
and 9.13 for two additional, equivalent definitions). However, the former equations
have the advantage of being more intuitive when the structuring element B is viewed
as if it were a spatial kernel that slides over a set, as in convolution.

ba c
ed

FIGURE 9.4
(a) Image I,
consisting of a set
(object) A, and back-
ground.
(b) Square SE, B (the
dot is the origin).
(c) Erosion of A by
B (shown shaded in
the resulting image).
(d) Elongated SE.
(e) Erosion of A
by B. (The erosion
is a line.) The dotted
border in (c) and (e)
is the boundary of A,
shown for reference.

d/4
d/4

B

d/8d/8 3d/4

B

d/4

d

d/2

d/2

d/8d/8 3d/4

d

d

Image I

A

Background

A � B

A � B

I � B

I � B

DIP4E_GLOBAL_Print_Ready.indb 640 6/16/2017 2:11:44 PM

9.2 Erosion and Dilation 641

ba
dc

FIGURE 9.5
Using erosion to
remove image
components.
(a) A 486 486×
binary image of a
wire-bond mask
in which fore-
ground pixels are
shown in white.
(b)–(d) Image
eroded using
square structuring
elements of sizes
11 11× , 15 15× ,
and 45 45×
elements,
respectively, all
valued 1.

EXAMPLE 9.1 : Using erosion to remove image components.

Figure 9.5(a) is a binary image depicting a simple wire-bond mask. As mentioned previously, we gener-
ally show the foreground pixels in binary images in white and the background in black. Suppose that
we want to remove the lines connecting the center region to the border pads in Fig. 9.5(a). Eroding the
image (i.e., eroding the foreground pixels of the image) with a square structuring element of size 11 11×
whose components are all 1’s removed most of the lines, as Fig. 9.5(b) shows. The reason that the two
vertical lines in the center were thinned but not removed completely is that their width is greater than
11 pixels. Changing the SE size to 15 15× elements and eroding the original image again did remove all
the connecting lines, as Fig. 9.5(c) shows. An alternate approach would have been to erode the image
in Fig. 9.5(b) again, using the same 11 11× , or smaller, SE. Increasing the size of the structuring element
even more would eliminate larger components. For example, the connecting lines and the border pads
can be removed with a structuring element of size 45 45× elements applied to the original image, as
Fig. 9.5(d) shows.

We see from this example that erosion shrinks or thins objects in a binary image. In fact, we can
view erosion as a morphological filtering operation in which image details smaller than the structuring
element are filtered (removed) from the image. In Fig. 9.5, erosion performed the function of a “line
filter.” We will return to the concept of morphological filters in Sections 9.4 and 9.8.

DILATION

With A and B as sets in Z2 , the dilation of A by B, denoted as A B{ , is defined as

 A B z B Az{ ¨= ∅{ }P ()ˆ ≠ (9-6)

DIP4E_GLOBAL_Print_Ready.indb 641 6/16/2017 2:11:45 PM

642 Chapter 9 Morphological Image Processing

This equation is based on reflecting B about its origin and translating the reflection
by z, as in erosion. The dilation of A by B then is the set of all displacements, z, such
that the foreground elements of B̂ overlap at least one element of A. (Remember,
z is the displacement of the origin of ˆ .)B Based on this interpretation, Eq. (9-6) can
be written equivalently as

 A B z B A Az{ ¨ 8= { }P [()ˆ] (9-7)

Equations (9-6) and (9-7) are not the only definitions of dilation currently in use
(see Problems 9.14 and 9.15 for two different, yet equivalent, definitions). As with
erosion, the preceding definitions have the advantage of being more intuitive when
structuring element B is viewed as a convolution kernel. As noted earlier, the basic
process of flipping (rotating) B about its origin and then successively displacing it
so that it slides over set A is analogous to spatial convolution. However, keep in
mind that dilation is based on set operations and therefore is a nonlinear operation,
whereas convolution is a sum of products, which is a linear operation.

Unlike erosion, which is a shrinking or thinning operation, dilation “grows” or
“thickens” objects in a binary image. The manner and extent of this thickening is con-
trolled by the shape and size of the structuring element used. Figure 9.6(a) shows the
same object used in Fig. 9.4 (the background area is larger to accommodate the dila-
tion), and Fig. 9.6(b) shows a structuring element (in this case B̂ B= because the SE
is symmetric about its origin). The dashed line in Fig. 9.6(c) shows the boundary of
the original object for reference, and the solid line shows the limit beyond which any
further displacements of the origin of B̂ by z would cause the intersection of B̂ and
A to be empty. Therefore, all points on and inside this boundary constitute the dila-
tion of A by B. Figure 9.6(d) shows a structuring element designed to achieve more
dilation vertically than horizontally, and Fig. 9.6(e) shows the dilation achieved with
this element.

EXAMPLE 9.2 : Using dilation to repair broken characters in an image.

One of the simplest applications of dilation is for bridging gaps. Figure 9.7(a) shows the same image
with broken characters that we studied in Fig. 4.48 in connection with lowpass filtering. The maximum
length of the breaks is known to be two pixels. Figure 9.7(b) shows a structuring element that can be
used for repairing the gaps. As noted earlier, we use white (1) to denote the foreground and black (0) for
the background when working with images. Figure 9.7(c) shows the result of dilating the original image
with the structuring element. The gaps were bridged. One important advantage of the morphological
approach over the lowpass filtering method we used to bridge the gaps in Fig. 4.48 is that the morpho-
logical method resulted directly in a binary image. Lowpass filtering, on the other hand, started with
a binary image and produced a grayscale image that would require thresholding to convert it back to
binary form (we will discuss thresholding in Chapter 10). Observe that set A in this application consists
of numerous disjointed objects of foreground pixels.

DIP4E_GLOBAL_Print_Ready.indb 642 6/16/2017 2:11:45 PM

9.2 Erosion and Dilation 643

ba c
ed

FIGURE 9.6
(a) Image I,
composed of set
(object) A and
background.
(b) Square SE (the
dot is the origin).
(c) Dilation of A by
B (shown shaded).
(d) Elongated SE.
(e) Dilation of A by
this element. The
dotted line in (c)
and (e) is the
boundary of A,
shown for
reference.

d/4
d/4

B � Bˆ

d

d/4

B � Bˆ

A � B

d/8d/8 d

d/2

d

d/2

d

d
d/8d/8

d

A � B
A

Image, I I � B

I � B

Background

1 1 1
1 1 1

1 1 1

b
a c

FIGURE 9.7
(a) Low-resolution
text showing
broken characters
(see magnified
view).
(b) Structuring
element.
(c) Dilation of (a)
by (b). Broken
segments were
joined.

DIP4E_GLOBAL_Print_Ready.indb 643 6/16/2017 2:11:46 PM

644 Chapter 9 Morphological Image Processing

DUALITY

Erosion and dilation are duals of each other with respect to set complementation
and reflection. That is,

 A B A B
c c| {() = ˆ (9-8)

and

 A B A B
c c{ |() = ˆ (9-9)

Equation (9-8) indicates that erosion of A by B is the complement of the dilation of
Ac by ˆ ,B and vice versa. The duality property is useful when the structuring element
values are symmetric with respect to its origin (as often is the case), so that ˆ .B B=
Then, we can obtain the erosion of A simply by dilating its background (i.e., dilating
Ac) with the same structuring element and complementing the result. Similar com-
ments apply to Eq. (9-9).

We proceed to prove formally the validity of Eq. (9-8) in order to illustrate a typi-
cal approach for establishing the validity of morphological expressions. Starting with
the definition of erosion, it follows that

 A B z B A
c

z

c
| 8() = (){ }P

If set ()B z is contained in A, then it follows that B A
z

c() = ∅¨ , in which case the
preceding expression becomes

 A B z B A
c

z
c

c
| ¨() = () = ∅{ }P

But the complement of the set of z’s that satisfy B A
z

c() = ∅¨ is the set of z’s such
that B A

z
c() ∅¨ ≠ . Therefore,

A B z B A

A B

c

z
c

c

| ¨

{

() = () ≠ ∅{ }
=

|

ˆ

where the last step follows from the definition of dilation in Eq. (9-6) and its equiva-
lent form in Eq. (9-7). This concludes the proof. A similar line of reasoning can be
used to prove Eq. (9-9) (see Problem 9.16).

9.3 OPENING AND CLOSING

As you saw in the previous section, dilation expands the components of a set and
erosion shrinks it. In this section, we discuss two other important morphological
operations: opening and closing. Opening generally smoothes the contour of an
object, breaks narrow isthmuses, and eliminates thin protrusions. Closing also tends

9.3

DIP4E_GLOBAL_Print_Ready.indb 644 6/16/2017 2:11:47 PM

9.3 Opening and Closing 645

to smooth sections of contours, but, as opposed to opening, it generally fuses narrow
breaks and long thin gulfs, eliminates small holes, and fills gaps in the contour.

The opening of set A by structuring element B, denoted by A B� , is defined as

 A B A B B� = ()| { (9-10)

Thus, the opening A by B is the erosion of A by B, followed by a dilation of the result
by B.

Similarly, the closing of set A by structuring element B, denoted A B� , is defined
as

 A B A B B� = (){ | (9-11)

which says that the closing of A by B is simply the dilation of A by B, followed by
erosion of the result by B.

Equation (9-10) has a simple geometrical interpretation: The opening of A by B is
the union of all the translations of B so that B fits entirely in A. Figure 9.8(a) shows
an image containing a set (object) A and Fig. 9.8(b) is a solid, circular structuring ele-
ment, B. Figure 9.8(c) shows some of the translations of B such that it is contained
within A, and the set shown shaded in Fig. 9.8(d) is the union of all such possible
translations. Observe that, in this case, the opening is a set composed of two disjoint
subsets, resulting from the fact that B could not fit in the narrow segment in the cen-
ter of A. As you will see shortly, the ability to eliminate regions narrower than the
structuring element is one of the key features of morphological opening.

The interpretation that the opening of A by B is the union of all the translations
of B such that B fits entirely within A can be written in equation form as

 A B B B A
z z

� ∪= () (){ }8 (9-12)

where ´ denotes the union of the sets inside the braces.

When a circular
structuring element is
used for opening, the
analogy is often made of
the shape of the opening
being determined by a
“rolling ball” reaching as
far as it can on the inner
boundary of a set. For
morphological closing
the ball rolls outside, and
the shape of the closing
is determined by how far
the ball can reach into
the boundary.

ba
dc

FIGURE 9.8
(a) Image I,
composed of set
(object) A and
background.
(b) Structuring
element, B.
(c) Translations
of B while being
contained in A. (A
is shown dark for
clarity.)
(d) Opening of A
by B.

A

B

A B�

Image, I
Background

DIP4E_GLOBAL_Print_Ready.indb 645 6/16/2017 2:11:48 PM

646 Chapter 9 Morphological Image Processing

Closing has a similar geometric interpretation, except that now we translate B
outside A. The closing is then the complement of the union of all translations of B
that do not overlap A. Figure 9.9 illustrates this concept. Note that the boundary of
the closing is determined by the furthest points B could reach without going inside
any part of A. Based on this interpretation, we can write the closing of A by B as

 A B B B A
z z

c
� = () () = ∅{ }⎡

⎣
⎤
⎦¨∪ (9-13)

EXAMPLE 9.3 : Morphological opening and closing.

Figure 9.10 shows in more detail the process and properties of opening and closing. Unlike Figs. 9.8
and 9.9, whose main objectives are overall geometrical interpretations, this figure shows the individual
processes and also pays more attention to the relationship between the scale of the final results and the
size of the structuring elements.

Figure 9.10(a) shows an image containing a single object (set) A, and a disk structuring element.
Figure 9.10(b) shows various positions of the structuring element during erosion. This process resulted
in the disjoint set in Fig. 9.10(c). Note how the bridge between the two main sections was eliminated.
Its width was thin in relation to the diameter of the structuring element, which could not be completely
contained in this part of the set, thus violating the definition of erosion. The same was true of the two
rightmost members of the object. Protruding elements where the disk did not fit were eliminated. Figure
9.10(d) shows the process of dilating the eroded set, and Fig. 9.10(e) shows the final result of opening.
Morphological opening removes regions that cannot contain the structuring element, smoothes object
contours, breaks thin connections, and removes thin protrusions.

Figures 9.10(f) through (i) show the results of closing A with the same structuring element. As with
opening, closing also smoothes the contours of objects. However, unlike opening, closing tends to join
narrow breaks, fills long thin gulfs, and fills objects smaller than the structuring element. In this example,
the principal result of closing was that it filled the small gulf on the left of set A.

ba
dc

FIGURE 9.9
(a) Image I,
composed of set
(object) A, and
background.
(b) Structuring
element B.
(c) Translations of B
such that B does not
overlap any part
of A. (A is shown
dark for clarity.)
(d) Closing of A
by B.

B

A B�

Background

A

Image, I

DIP4E_GLOBAL_Print_Ready.indb 646 6/16/2017 2:11:48 PM

9.3 Opening and Closing 647

As with erosion and dilation, opening and closing are duals of each other with
respect to set complementation and reflection:

A B A B
c c

� �() = ()ˆ (9-14)

and

A B A B
c c

� �() = ()ˆ (9-15)

We leave the proof of these equations as an exercise (see Problem 9.20).

a
b c

ed
f
h

g
i

FIGURE 9.10
Morphological
opening and
closing.
(a) Image I,
composed of a
set (object) A
and background;
a solid, circular
structuring element
is shown also. (The
dot is the origin.)
(b) Structuring
element in
various positions.
(c)-(i) The
morphological
operations used to
obtain the opening
and closing.

AA

Background Image, I

A � B

A � B

A � B � (A � B) � B

A � B � (A � B) � B

B

DIP4E_GLOBAL_Print_Ready.indb 647 6/16/2017 2:11:48 PM

648 Chapter 9 Morphological Image Processing

Morphological opening has the following properties:

(a) A B� is a subset of A.
(b) If C is a subset of D, then C B� is a subset of D B� .
(c) () .A B B A B� � �=

Similarly, closing satisfies the following properties:

(a) A is a subset of A B� .
(b) If C is a subset of D, then C B� is a subset of D B� .
(c) () .A B B A B� � �=

Note from condition (c) in both cases that multiple openings or closings of a set have
no effect after the operation has been applied once.

EXAMPLE 9.4 : Using opening and closing for morphological filtering.

Morphological operations can be used to construct filters similar in concept to the spatial filters discussed
in Chapter 3. The binary image in Fig. 9.11(a) shows a section of a fingerprint corrupted by noise. In
terms of our previous notation, A is the set of all foreground (white) pixels, which includes objects of
interest (the fingerprint ridges) as well as white specks of random noise. The background is black, as
before. The noise manifests itself as white specks on a dark background and dark specks on the white
components of the fingerprint. The objective is to eliminate the noise and its effects on the print, while
distorting it as little as possible. A morphological filter consisting of an opening followed by a closing can
be used to accomplish this objective.

Figure 9.11(b) shows the structuring element we used. The rest of Fig. 9.11 shows the sequence of
steps in the filtering operation. Figure 9.11(c) is the result of eroding A by B. The white speckled noise
in the background was eliminated almost completely in the erosion stage of opening because in this case
most noise components are smaller than the structuring element. The size of the noise elements (dark
spots) contained within the fingerprint actually increased in size. The reason is that these elements are
inner boundaries that increase in size as objects are eroded. This enlargement is countered by perform-
ing dilation on Fig. 9.11(c). Figure 9.11(d) shows the result.

The two operations just described constitute the opening of A by B. We note in Fig. 9.11(d) that the
net effect of opening was to reduce all noise components in both the background and the fingerprint
itself. However, new gaps between the fingerprint ridges were created. To counter this undesirable effect,
we perform a dilation on the opening, as shown in Fig. 9.11(e). Most of the breaks were restored, but the
ridges were thickened, a condition that can be remedied by erosion. The result, shown in Fig. 9.11(f), is
the closing of the opening of Fig. 9.11(d). This final result is remarkably clean of noise specks, but it still
shows some specks of noise that appear as single pixels. These could be eliminated by methods we will
discuss later in this chapter.

9.4 THE HIT-OR-MISS TRANSFORM

The morphological hit-or-miss transform (HMT) is a basic tool for shape detection.
Let I be a binary image composed of foreground (A) and background pixels, respec-
tively. Unlike the morphological methods discussed thus far, the HMT utilizes two

9.4

DIP4E_GLOBAL_Print_Ready.indb 648 6/16/2017 2:11:49 PM

9.4 The Hit-or-Miss Transform 649

[(A � B) � B] � B � (A � B) � B(A � B) � B

(A � B) � B � A � B

A � B

B1 1 1
1 1 1
1 1 1

A (foreground pixels)ba
d c

fe

FIGURE 9.11
(a) Noisy image.
(b) Structuring
element.
(c) Eroded image.
(d) Dilation of the
erosion (opening
of A). (e) Dilation
of the opening.
(f) Closing of the
opening.
(Original image
courtesy of the
National Institute
of Standards and
Technology.)

structuring elements: B1, for detecting shapes in the foreground, and B2 , for detect-
ing shapes in the background. The HMT of image I is defined as

I B z A B A

A B A B

B
z z

c

c

1 2 1 2

1 2

, = () (){ }
= () ()

P 8 8

| ¨ |

 and
 (9-16)

where the second line follows from the definition of erosion in Eq. (9-3). In words,
this equation says that the morphological HMT is the set of translations, z, of struc-
turing elements B1 and B2 such that, simultaneously, B1 found a match in the fore-
ground (i.e., B1 is contained in A) and B2 found a match in the background (i.e., B2
is contained in Ac). The word “simultaneous” implies that z is the same translation
of both structuring elements. The word “miss” in the HMT arises from the fact that
B2 finding a match in Ac is the same as B2 not finding (missing) a match in A.

Figure 9.12 illustrates the concepts just introduced. Suppose that we want to find
the location of the origin of object (set) D in image I. Here, A is the union of all
object sets, so D is a subset of A. The need for two structuring elements capable

With reference to the
explanation of Eq. (9-4),
we show the
morphological HMT
operation working
directly on image I, to
make it explicit that the
structuring elements
work on sets of
foreground and back-
ground pixels
simultaneously.

DIP4E_GLOBAL_Print_Ready.indb 649 6/16/2017 2:11:50 PM

650 Chapter 9 Morphological Image Processing

of detecting properties of both the foreground and background becomes immedi-
ately obvious. All three objects are composed of foreground pixels, and one way of
explaining why they appear as different shapes is because each occupies a different
area of the background. In other words, the nature of a shape is determined by the
geometrical arrangement of both foreground and background pixels.

Figure 9.12(a) shows that I is composed of foreground (A) and background pixels.
Figure 9.12(b) is I c, the complement of I. The foreground of I c is defined as the set of
pixels in Ac, and the background is the union of the complement of the three objects.
Figure 9.12(c) shows the two structuring elements needed to detect D. Element B1 is
equal to D itself. As Fig. 9.12(d) shows, the erosion of A by B1 contains a single point:
the origin of D, as desired, but it also contains parts of object C.

ba
dc
fe

FIGURE 9.12
(a) Image
consisting of a
foreground (1’s)
equal to the union,
A, of set of objects,
and a background
of 0’s.
(b) Image with
its foreground
defined as Ac .
(c) Structuring ele-
ments designed to
detect object D.
(d) Erosion of A
by B1.
(e) Erosion of Ac
by B2.
(f) Intersection of
(d) and (e),
showing the
location of the
origin of D, as
desired. The dots
indicate the origin
of their respective
components. Each
dot is a single
pixel.

A C D E= � �

Image, I

Background

1B

2B

1A B|

2
cA B|

1,2 1 2
cI B A B A B= | |�

Origin of D

Background

Image:

d

d

d

d
d

d

Background

D

E

C

¨c c cC D E¨cAForeground = =

Foreground
pixels

cI

DIP4E_GLOBAL_Print_Ready.indb 650 6/16/2017 2:11:51 PM

9.4 The Hit-or-Miss Transform 651

Structuring element B2 is designed to detect D in I c . Because D is composed of
background elements in I c, and erosion works with foreground elements, B2 has to
be designed to detect the border of D, which is composed of foreground pixels in I c.
The SE in Fig. 9.12(c) does precisely this. It consists of a rectangle of foreground ele-
ments one pixel thick. The size of the rectangle is such that is encloses the size of D.
Figure 9.12(e) shows (shaded) the erosion of the foreground of I c by B2. It contains
the origin of D, but is also contains parts of sets Ac and C. (The outer shaded area
in Fig. 9.12(e) is larger than shown (see Problem 9.25); the result was cropped to
the same size as image I for consistency.) The only elements that are common in
Figs. 9.12(d) and (e) is the origin of D, so the intersection of these two sets of ele-
ments gives the location of that point, as desired. Figure 9.12(f) shows the final result.

The preceding explanation is the classic way of presenting the HMT using erosion,
which is defined only for foreground pixels. A good question at this point is: Why
not try to detect D directly in image I using a single structuring element, instead
of going thorough such a laborious process? The answer is that it is possible to do
so, but not in the “traditional” context of erosion the way we defined it in Eqs. (9-3)
and (9-5). In order to detect D directly in image I, we would have to be able to pro-
cess foreground and background pixels simultaneously, rather than processing just
foreground pixels, as required by the definition of erosion.

To show how this can be done for the example in Fig. 9.12, we define a structuring
element, B, identical to D, but having in addition a border of background elements
with a width of one pixel. We can use a structuring element formed in such a way to
restate the HMT as

 I B z B I
z

= (){ }P 8 (9-17)

The form is the same as Eq. (9-3), but now we test to see if ()B z is a subset of image I,
which is composed of both foreground and background pixels. This formulation is
general, in the sense that B can be structured to detect any arrangement of pixels in
image I, as Figs. 9.13 and 9.14 will illustrate.

Figure 9.13 shows graphically the same solution as Fig. 9.12(f), but using the
single structuring element discussed in the previous paragraph. Figure 9.14 shows
several examples based on using Eq. (9-17). The first row shows the result of using
a small SE composed of both foreground (shaded) and background elements. This
SE is designed to detect one-pixel holes (i.e., one background pixel surrounded by a
connected border of foreground pixels) contained in image I. The SE in the second
row is capable of detecting the foreground corner pixel of the top, right corner of
the object in I. Using this SE in Eq. (9-17) yielded the image on the right. As you
can see, the correct pixel was identified. The last row of Fig. 9.14 is more interest-
ing, as it shows a structuring element composed of foreground, background, and

“don’t care” elements which, as mentioned earlier, we denote by ×’s. You can think
of the value of a don’t care element as always matching its corresponding pixel in
an image. In this example, when the SE is centered on the top, right corner pixel,
the don’t care elements in the top of the SE can be considered to be background,
and the don’t care elements on the bottom row as foreground, producing a correct

DIP4E_GLOBAL_Print_Ready.indb 651 6/16/2017 2:11:52 PM

652 Chapter 9 Morphological Image Processing

match. When the SE is centered on the bottom, right corner pixel, the role of the
don’t care elements is reversed, again resulting in a correct match. The other border
pixels between the two corners were similarly detected by considering all don’t care
elements as foreground. Thus, using don’t care elements increases the flexibility of
structuring elements to perform multiple roles.

9.5 SOME BASIC MORPHOLOGICAL ALGORITHMS

With the preceding discussion as a foundation, we are now ready to consider some
practical uses of morphology. When dealing with binary images, one of the principal
applications of morphology is in extracting image components that are useful in the

9.5

ba c
FIGURE 9.13 Same solution as in Fig. 9.12, but using Eq. (9-17) with a single structuring element.

C

D

E

Image, I

Background

Border of
background pixels

B
Origin of D

Background

Image, I B

Image, I

B

Image, I B

Image, I

B

Image, I B

Image, I

B

Image, I B

ba c
ed f
hg i

FIGURE 9.14
Three examples
of using a single
structuring
element and
Eq. (9-17) to
detect specific
features. First
row: detection
of single-pixel
holes. Second
row: detection of
an upper-right
corner. Third row:
detection of
multiple features.

DIP4E_GLOBAL_Print_Ready.indb 652 6/16/2017 2:11:53 PM

9.5 Some Basic Morphological Algorithms 653

representation and description of shape. In particular, we consider morphological
algorithms for extracting boundaries, connected components, the convex hull, and
the skeleton of a region. We also develop several methods (for region filling, thinning,
thickening, and pruning) that are used frequently for pre- or post-processing. We
make extensive use in this section of “mini-images,” designed to clarify the mechan-
ics of each morphological method as we introduce it. These binary images are shown
graphically with foreground (1’s) shaded and background (0’s) in white, as before.

BOUNDARY EXTRACTION

The boundary of a set A of foreground pixels, denoted by b(),A can be obtained by
first eroding A by a suitable structuring element B, and then performing the set dif-
ference between A and its erosion. That is,

 b() ()A A A B= − | (9-18)

Figure 9.15 illustrates the mechanics of boundary extraction. It shows a simple binary
object, a structuring element B, and the result of using Eq. (9-18). The structuring
element in Fig. 9.15(b) is among the most frequently used, but it is not unique. For
example, using a 5 5× structuring element of 1’s would result in a boundary between
2 and 3 pixels thick. It is understood that the image in Fig. 9.15(a) was padded with
a border of background elements, and that the results were cropped back to the
original size after the morphological operations were completed.

EXAMPLE 9.5 : Boundary extraction.

Figure 9.16 further illustrates the use of Eq. (9-18) using a 3 3× structuring element of 1’s. As before
when working with images, we show foreground pixels (1’s) in white and background pixels (0’s) in
black. The elements of the SE, which are 1’s, also are treated as white. Because of the size of the structur-
ing element used, the boundary in Fig. 9.16(b) is one pixel thick.

HOLE FILLING

As mentioned in the discussion of Fig. 9.14, a hole may be defined as a background
region surrounded by a connected border of foreground pixels. In this section, we
develop an algorithm based on set dilation, complementation, and intersection for

A � B

A B

() ()A A A B= −b |

ba
dc

FIGURE 9.15
(a) Set, A, of
foreground pixels.
(b) Structuring
element.
(c) A eroded by B.
(d) Boundary of A.

DIP4E_GLOBAL_Print_Ready.indb 653 6/16/2017 2:11:53 PM

654 Chapter 9 Morphological Image Processing

filling holes in an image. Let A denote a set whose elements are 8-connected bound-
aries, with each boundary enclosing a background region (i.e., a hole). Given a point
in each hole, the objective is to fill all the holes with foreground elements (1’s).

We begin by forming an array, X0 , of 0’s (the same size as I, the image containing
A), except at locations in X0 that correspond to pixels that are known to be holes,
which we set to 1. Then, the following procedure fills all the holes with 1’s:

 X X B I kk k
c= () =−1 1 2 3{ ¨ , , ,… (9-19)

where B is the symmetric structuring element in Fig. 9.17(c) . The algorithm termi-
nates at iteration step k if X Xk k= −1. Then, Xk contains all the filled holes. The set
union of Xk and I contains all the filled holes and their boundaries.

The dilation in Eq. (9-19) would fill the entire area if left unchecked, but the
intersection at each step with I c limits the result to inside the region of interest. This is
our first example of how a morphological process can be conditioned to meet a desired
property. In the current application, the process is appropriately called conditional
dilation. The rest of Fig. 9.17 illustrates further the mechanics of Eq. (9-19). This exam-
ple only has one hole, but the concept applies to any finite number of holes, assuming
that a point inside each hole is given (we remove this requirement in Section 9.6).

EXAMPLE 9.6 : Morphological hole filling.

Figure 9.18(a) shows an image of white circles with black holes. An image such as this might result from
thresholding into two levels a scene containing polished spheres (e.g., ball bearings). The dark circular
areas inside the spheres would result from reflections. The objective is to eliminate the reflections by
filling the holes in the image. Figure 9.18(b) shows the result of filling all the spheres. Because it must be
known whether black points are background points or sphere inner points (i.e., holes), fully automating
this procedure requires that additional “intelligence” be built into the algorithm. We will give a fully
automatic approach in Section 9.6 based on morphological reconstruction (see Problem 9.36 also).

Remember, the dila-
tion of image X by B
is the dilation of the
foreground
elements of X by B.

ba

FIGURE 9.16
(a) A binary
image.
(b) Result of
using Eq. (9-18)
with the
structuring
element in
Fig. 9.15(b).

DIP4E_GLOBAL_Print_Ready.indb 654 6/16/2017 2:11:54 PM

9.5 Some Basic Morphological Algorithms 655

X0 X1 X2

X6 X8

BA I cI

8X I�

cA

ba c
ed f
hg i

FIGURE 9.17
Hole filling.
(a) Set A (shown
shaded) contained
in image I.
(b) Complement
of I.
(c) Structuring
element B. Only
the foreground
elements are
used in
computations
(d) Initial point
inside hole, set
to 1.
(e)–(h) Various
steps of Eq. (9-19).
(i) Final result
[union of (a) and
(h)].

EXTRACTION OF CONNECTED COMPONENTS

Being able to extract connected components from a binary image is central to many
automated image analysis applications. Let A be a set of foreground pixels consist-
ing of one or more connected components, and form an image X0 (of the same size
as I, the image containing A) whose elements are 0’s (background values), except
at each location known to correspond to a point in each connected component in A,

Connectivity and
connected components
are discussed in
Section 2.5.

ba

FIGURE 9.18
 (a) Binary image.
The white dots
inside the regions
(shown enlarged
for clarity) are the
starting points for
the hole-filling
algorithm.
(b) Result of
filling all holes.

DIP4E_GLOBAL_Print_Ready.indb 655 6/16/2017 2:11:54 PM

656 Chapter 9 Morphological Image Processing

B

A X0 X1

X3 X6X2

I

a
b c d
e f g

FIGURE 9.19
(a) Structuring
element.
(b) Image
containing a set
with one connected
component.
(c) Initial array
containing a 1 in
the region of the
connected
component.
(d)–(g) Various
steps in the
iteration of
Eq. (9-20)

which we set to 1 (foreground value). The objective is to start with X0 and find all
the connected components in I. The following iterative procedure accomplishes this:

 X X B I kk k= () =−1 1 2 3{ ¨ , , ,… (9-20)

where B is the SE in Fig. 9.19(a). The procedure terminates when X Xk k= −1, with
Xk containing all the connected components of foreground pixels in the image.
Both Eqs. (9-19) and (9-20) use conditional dilation to limit the growth of set dila-
tion, but Eq. (9-20) uses I instead of I c . This is because here we are looking for
foreground points, while the objective of (9-19) is to find background points. Figure
9.19 illustrates the mechanics of Eq. (9-20), with convergence being achieved for
k = 6. Note that the shape of the structuring element used is based on 8-connec-
tivity between pixels. As in the hole-filling algorithm, Eq. (9-20) is applicable to
any finite number of connected components contained in I, assuming that a point
is known in each. See Problem 9.37 for a completely automated procedure that
removes this requirement.

EXAMPLE 9.7 : Using connected components to detect foreign objects in packaged food.

Connected components are used frequently for automated inspection. Figure 9.20(a) shows an X-ray
image of a chicken breast that contains bone fragments. It is important to be able to detect such foreign
objects in processed foods before shipping. In this application, the density of the bones is such that their
nominal intensity values are significantly different from the background. This makes extraction of the
bones from the background a simple matter by using a single threshold (thresholding was introduced in
Section 3.1 and we will discuss in more detail in Section 10.3). The result is the binary image in Fig. 9.20(b).

The most significant feature in this figure is the fact that the points that remain after thresholding
are clustered into objects (bones), rather than being scattered. We can make sure that only objects of

DIP4E_GLOBAL_Print_Ready.indb 656 6/16/2017 2:11:55 PM

9.5 Some Basic Morphological Algorithms 657

“significant” size are contained in the binary image by eroding its foreground. In this example, we define
as significant any object that remains after erosion with a 5 5× SE of 1’s. Figure 9.20(c) shows the result
of erosion. The next step is to analyze the size of the objects that remain. We label (identify) these
objects by extracting the connected components in the image. The table in Fig. 9.20(d) lists the results
of the extraction. There are 15 connected components, with four of them being dominant in size. This is
enough evidence to conclude that significant, undesirable objects are contained in the original image. If
needed, further characterization (such as shape) is possible using the techniques discussed in Chapter 11.

CONVEX HULL

A set, S, of points in the Euclidean plane is said to be convex if and only if a straight
line segment joining any two points in S lies entirely within S. The convex hull, H,
of S is the smallest convex set containing S. The convex deficiency of S is defined as
the set difference H S− . Unlike the Euclidean plane, the digital image plane (see
Fig. 2.19) only allows points at discrete coordinates. Thus, the sets with which we
work are digital sets. The same concepts of convexity are applicable to digital sets,
but the definition of a convex digital set is slightly different. A digital set, A, is said
to be convex if and only if its Euclidean convex hull only contains digital points

Connected
component

No. of pixels in
connected comp

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

11
9
9

39
133

1
1

743
7

11
11
9
9

674
85

b
a

dc

FIGURE 9.20
(a) X-ray image of
a chicken filet with
bone fragments.
(b) Thresholded
image (shown as
the negative for
clarity).
(c) Image eroded
with a 5 5× SE
of 1’s.
(d) Number of
pixels in the
connected
components of (c).
(Image (a)
courtesy of NTB
Elektronische
Geraete GmbH,
Diepholz,
Germany,
www.ntbxray.com.)

DIP4E_GLOBAL_Print_Ready.indb 657 6/16/2017 2:11:56 PM

http://www.ntbxray.com

658 Chapter 9 Morphological Image Processing

belonging to A. A simple way to visualize if a digital set of foreground points is con-
vex is to join its boundary points by straight (continuous) Euclidean line segments.
If only foreground points are contained within the set formed by the line segments,
then the set is convex; otherwise it is not. The definitions of convex hull and convex
deficiency given above for S, extend directly to digital sets. The following morpho-
logical algorithm can be used to obtain an approximation of the convex hull of a set
A of foreground pixels, embedded in a binary image, I.

Let B ii , , , , ,= 1 2 3 4 denote the four structuring elements in Fig. 9.21(a). The pro-
cedure consists of implementing the morphological equation

 X X B X i kk
i

k
i i

k
i= () = =− −1 1 1 2 3 4 1 2 3´ , , , , , ,and … (9-21)

with X Ii
0 = . When the procedure converges using the ith structuring element (i.e.,

when X Xk
i

k
i= −1), we let D Xi

k
i= . Then, the convex hull of A is the union of the four

results:

 C A Di

i
() =

=1

4

∪ (9-22)

Thus, the method consists of iteratively applying the hit-or-miss transform to I with
B1 until convergence, then letting D Xk

1 1= , where k is the step at which convergence
occurred. The procedure is repeated with B2 (applied to I) until no further changes
occur, and so on. The union of the four resulting Di constitutes the convex hull of A.
The algorithm is initialized with k = 0 and X Ii

0 = every time that i (i.e., the structur-
ing element) changes.

Figure 9.21 illustrates the use of Eqs. (9-21) and (9-22). Figure 9.21(a) shows the
structuring elements used to extract the convex hull. The origin of each element is
at its center. As before, the × entries indicate “don’t care” elements. Recall that the
HMT is said to have found a match of structuring element Bi in a 3 3× region of
I, if all the elements of Bi find corresponding matches in that region. As noted ear-
lier, when computing a match, a “don’t care” element can be interpreted as always
matching the value of its corresponding element in the image. Note in Fig. 9.21(a)
that Bi is a clockwise rotation of Bi−1 by 90°.

Figure 9.21(b) shows a set A for which the convex hull is sought. As before, the
set is embedded in an array of background elements to form an image, I. Starting
with X I0

1 = resulted in the set in Fig. 9.21(c) after five iterations of Eq. (9-21). Then,
letting X I0

2 = and again using Eq. (9-21) resulted in the set in Fig. 9.21(d) (con-
vergence was achieved in only two steps in this case). The next two results were
obtained in the same manner. Finally, forming the union of the sets in Figs. 9.21(c),
(d), (e), and (f) resulted in the convex hull in Fig. 9.21(g). The contribution of each
structuring element is highlighted in the composite set shown in Fig. 9.21(h).

One obvious shortcoming of the procedure just discussed is that the convex hull
can grow beyond the minimum dimensions required to guarantee convexity, thus
violating the definition of the convex hull. This, in fact, is what happened in this
case. One simple approach to reduce this growth is to place limits so that it does
not extend beyond the vertical and horizontal dimensions of set A. Imposing this

DIP4E_GLOBAL_Print_Ready.indb 658 6/16/2017 2:11:57 PM

9.5 Some Basic Morphological Algorithms 659

limitation on the example in Fig. 9.21 resulted in Fig. 9.22(a). Joining the boundary
pixels of the reduced set (remember, the pixels are the center points of the squares)
show that no set points lie outside these lines, indicating that the set is convex. By
inspection, you can see that no points can be deleted from this set without losing
convexity, so the reduced set is the convex hull of A.

Of course, the limits we used to produce Fig. 9.22 do not constitute a general
approach for obtaining the minimum convex set enclosing a set in question; it is
simply an easy-to-implement heuristic. The reason why the convex hull algorithm
did not yield a closer approximation of the actual convex hull is because of the
structuring elements used. The SEs in Fig. 9.21(a) “look” only in four orthogonal
directions. We could achieve greater accuracy by looking in additional directions,
such as the diagonals, for example. The price paid is increased algorithm complexity
and a higher computational load.

X0
1 � I

X2
4

X2
2

C(A)

B1

**

*

**

B2

*
**

*
*

B3

**

*

**

B4

*
* *

*
*

B1

B2

B3

B4

AI 1
5X

3
7X

a
b c d

h
e f g

FIGURE 9.21
(a) Structuring
elements.
(b) Set A.
(c)–(f) Results of
convergence with
the structuring
elements shown
in (a).
(g) Convex hull.
(h) Convex hull
showing the
contribution of
each structuring
element.

DIP4E_GLOBAL_Print_Ready.indb 659 6/16/2017 2:11:58 PM

660 Chapter 9 Morphological Image Processing

THINNING

Thinning of a set A of foreground pixels by a structuring element B, denoted A Bz ,
can be defined in terms of the hit-or-miss transform:

A B A A B

A A B c

z

¨

= − ()
= ()

 (9-23)

where the second line follows from the definition of set difference given in Eq. (2-40).
A more useful expression for thinning A symmetrically is based on a sequence of
structuring elements:

 B B B B Bn{ } = { }1 2 3, , , ,… (9-24)

Using this concept, we now define thinning by a sequence of structuring elements as

 A B A B B Bnz z z z{ } = ()()()()… …1 2 (9-25)

The process is to thin A by one pass with B1, then thin the result with one pass of B2,
and so on, until A is thinned with one pass of Bn. The entire process is repeated until
no further changes occur after one complete pass through all structuring elements.
Each individual thinning pass is performed using Eq. (9-23).

Figure 9.23(a) shows a set of structuring elements used routinely for thinning
(note that B i is equal to B i−1 rotated clockwise by 45°), and Fig. 9.23(b) shows a
set A to be thinned, using the procedure just discussed. Figure 9.23(c) shows the
result of thinning A with one pass of B1 to obtain A1. Figure 9.23(c) is the result of
thinning A1 with B2, and Figs. 9.21(e) through (k) show the results of passes with
the remaining structuring elements (there were no changes from A7 to A8 or from
A9 to A11.) Convergence was achieved after the second pass of B6. Figure 9.23(l)
shows the thinned result. Finally, Fig. 9.23(m) shows the thinned set converted to
m-connectivity (see Section 2.5 and Problem 9.29) to eliminate multiple paths.

THICKENING

Thickening is the morphological dual of thinning and is defined by the expression

 A B A A B} ´= () (9-26)

As before, we assume
that the image containing
A was padded to accom-
modate all excursions
of B, and that the result
was cropped. We show
only A for simplicity.

ba
FIGURE 9.22
(a) Result of limiting
growth of the convex
hull algorithm.
(b) Straight lines
connecting the
boundary points
show that the new set
is convex also.

A

DIP4E_GLOBAL_Print_Ready.indb 660 6/16/2017 2:11:59 PM

9.5 Some Basic Morphological Algorithms 661

where B is a structuring element suitable for thickening. As in thinning, thickening
can be defined as a sequential operation:

 A B A B B Bn} } } }{ } = ()()()()… …1 2 ` (9-27)

The structuring elements used for thickening have the same form as those shown
in Fig. 9.23(a), but with all 1’s and 0’s interchanged. However, a separate algorithm
for thickening is seldom used in practice. Instead, the usual procedure is to thin the
background of the set in question, then complement the result. In other words, to
thicken a set A we form Ac , thin Ac , and then complement the thinned set to obtain
the thickening of A. Figure 9.24 illustrates this procedure. As before, we show only
set A and image I, and not the padded version of I.

Depending on the structure of A, this procedure can result in disconnected points,
as Fig. 9.24(d) shows. Hence thickening by this method usually is followed by post-
processing to remove disconnected points. Note from Fig. 9.24(c) that the thinned
background forms a boundary for the thickening process. This useful feature is not
present in the direct implementation of thickening using Eq. (9-27), and it is one of
the principal reasons for using background thinning to accomplish thickening.

**

B2

*

*

B3

*
*

B4

*

*

B5

* *

B6

*

*

B7

*
*

B8

*

*

Origin

A1 � A � B1 A2 � A1 � B2

A3 � A2 � B3

A6 � A5 � B6 A7 � A6 � B7 A9 � A8 � B1

A12 � A11 � B4 A14 � A13 � B6 A14 converted to
m-connectivity.No more changes after this.

A4 � A3 � B4 A5 � A4 � B5

(A8 � A7 � B
8
 � A7)

(A11 � A10 � A9)

AImage, I

B1

a
b c
e

d
f

h
g

i
k

j
ml

FIGURE 9.23
(a) Structuring
elements.
(b) Set A.
(c) Result of thinning
A with B1 (shaded).
(d) Result of thinning
A1 with B2.
(e)–(i) Results of
thinning with the next
six SEs. (There was no
change between A7
and A8.)
(j)–(k) Result of using
the first four elements
again.
(l) Result after
convergence.
(m) Result converted
to m-connectivity.

DIP4E_GLOBAL_Print_Ready.indb 661 6/16/2017 2:12:01 PM

662 Chapter 9 Morphological Image Processing

AImage, I cA

ba
dc

e

FIGURE 9.24
(a) Set A.
(b) Complement of A.
(c) Result of
thinning the
complement.
(d) Thickened set
obtained by
complementing (c).
(e) Final result, with
no disconnected
points.

SKELETONS

As Fig. 9.25 shows, the notion of a skeleton S A() of a set A is intuitively simple. We
deduce from this figure that

(a) If z is a point of S A(), and D
z() is the largest disk centered at z and contained

in A, one cannot find a larger disk (not necessarily centered at z) containing
D

z() and simultaneously included in A. A disk D
z() satisfying these conditions

is called a maximum disk.
(b) If D

z() is a maximum disk, it touches the boundary of A at two or more differ-
ent places.

The skeleton of A can be expressed in terms of erosions and openings. That is, it can
be shown (Serra [1982]) that

 S A S Ak
k

K

() = ()
=0
∪ (9-28)

with

 S A A kB A kB Bk () = () − ()| | � (9-29)

where B is a structuring element, and A kB|() indicates k successive erosions start-
ing with A; that is, A is first eroded by B, the result is eroded by B, and so on:

 A kB A B B B| | | | |() = ()()()()… … (9-30)

k times. K in E q. (9-28) is the last iterative step before A erodes to an empty set. In
other words,

 K k A kB= () ≠ ∅{ }max | (9-31)

The formulation in Eqs. (9-28) and (9-29) indicate that S A() can be obtained as the
union of the skeleton subsets S Ak (), k K= 0 1 2, , , , .…

We will discuss skeletons
in more detail in Section
11.2.

DIP4E_GLOBAL_Print_Ready.indb 662 6/16/2017 2:12:02 PM

9.5 Some Basic Morphological Algorithms 663

It can be shown (Serra [1982]) that A can be reconstructed from these subsets:

 A S A kBk
k

K

= ()()
=

{
0
∪ (9-32)

where S A kBk ()(){ denotes k successive dilations, starting with S Ak (); that is,

 S A kB S A B B Bk k()() = ()()()()(){ { { { {… … (9-33)

EXAMPLE 9.8 : Computing the skeleton of a simple set.

Figure 9.26 illustrates the concepts just discussed. The first column shows the original set (at the top)
and two erosions by the structuring element B shown in the figure. Note that one more erosion would
yield the empty set, so K = 2 in this case. The second column shows the opening by B of the sets in the
first column. These results are easily explained by the fitting characterization of the opening operation
discussed in connection with Fig. 9.8. The third column contains the set differences between the first and
second columns. Thus, the three entries in the third column are S A0(), S A1(), and S A2(), respectively.

The fourth column contains two partial skeletons, and the final result at the bottom of the column.
The final skeleton not only is thicker than it needs to be but, more important, it is not connected. This
result is not unexpected, as nothing in the preceding formulation of the morphological skeleton guar-
antees connectivity. Morphology produces an elegant formulation in terms of erosions and openings of
the given set. However, heuristic formulations (see Section 11.2) are needed if, as is usually the case, the
skeleton must be maximally thin, connected, and minimally eroded.

A

Skeleton of A

ba
dc

FIGURE 9.25
(a) Set A.
(b) Various
positions of
maximum disks
whose centers
partially define
the skeleton of A.
(c) Another
maximum disk,
whose center
defines a different
segment of the
skeleton of A.
(d) Complete
skeleton (dashed).

DIP4E_GLOBAL_Print_Ready.indb 663 6/16/2017 2:12:03 PM

664 Chapter 9 Morphological Image Processing

1

0

k

2

B

AS(A)

A � kB (A � kB) � B Sk(A) Sk(A) � kB �Sk(A) � kB
k � 0

K
�Sk(A)

k � 0

K
FIGURE 9.26
Implementation
of Eqs. (9-28)
through (9-33).
The original set is
at the top left, and
its morphologi-
cal skeleton is at
the bottom of the
fourth column.
The reconstructed
set is at the
bottom of the
sixth column.

The entries in the fifth and sixth columns deal with reconstructing the original set from its skeleton subsets.
The fifth column are the dilations of S Ak(); that is, S A0(), S k B1() ,{ and S A B S A B B2 22() () .{ { {= ()
Finally, the last column shows reconstruction of set A which, according to Eq. (9-32), is the union of the
dilated skeleton subsets shown in the fifth column.

PRUNING

Pruning methods are an essential complement to thinning and skeletonizing algo-
rithms, because these procedures tend to leave spurs (“parasitic” components) that
need to be “cleaned up” by postprocessing. We begin the discussion with a pruning
problem, then develop a solution based on the material introduced in the preceding
sections. Thus, we take this opportunity to illustrate how to solve a problem by com-
bining several of the morphological techniques discussed up to this point.

A common approach in the automated recognition of hand-printed characters is
to analyze the shape of the skeleton of a character. These skeletons often contain
spurs, caused during erosion by noise and non-uniformities in the character strokes.

DIP4E_GLOBAL_Print_Ready.indb 664 6/16/2017 2:12:04 PM

9.5 Some Basic Morphological Algorithms 665

In this section we develop a morphological technique for handling this problem,
starting with the assumption that the length of a parasitic component does not
exceed a specified number of pixels.

Figure 9.27(a) shows the skeleton of a hand-printed letter “a.” The spur on the
leftmost part of the character exemplifies what we are interested in removing. The
solution is based on suppressing a spur branch by successively eliminating its end
point. Of course, this also shortens (or eliminates) other branches in the character
but, in the absence of other structural information, the assumption in this example is
that any branch with three or less pixels is to be eliminated. Thinning of a set A, with
a sequence of structuring elements designed to detect only end points, achieves the
desired result. That is, let

 X A B1 = { }z (9-34)

where B{ } denotes the structuring element sequence in Fig. 9.27(b) [see Eq. (9-24)
regarding structuring-element sequences]. The sequence of structuring elements
consists of two different structures, each of which is rotated 90° for a total of eight
elements. The × in Fig. 9.27(b) signifies a “don’t care” condition, as defined earlier.
(Note that each SE is a detector for an end point in a particular orientation.)

We may define an end
point as the center point
of a 3 × 3 region that
satisfies any of the
arrangements in
Fig. 9.27(b).

B5 B6 B7 B8

B1 B2 B4B3

*

* * *

**

*

*

ba
dc
fe

FIGURE 9.27
 (a) Set A of
foreground pixels
(shaded).
(b) SEs used for
deleting end points.
(c) Result of three
cycles of thinning.
(d) End points
of (c).
(e) Dilation of end
points conditioned
on (a).
(f) Pruned image.

DIP4E_GLOBAL_Print_Ready.indb 665 6/16/2017 2:12:05 PM

666 Chapter 9 Morphological Image Processing

Applying Eq. (9-34) to A three times yielded the set X1 in Fig. 9.27(c). The next
step is to “restore” the character to its original form, but with the parasitic branches
removed. This requires that we first form a set X2 containing all end points in X1
[Fig. 9.27(e)]:

 X X B k

k
2 1

1

8

= ()
=
∪ (9-35)

where the B k are the end-point detectors in Fig. 9.27(b). The next step is dilation
of the end points. Typically, the number of dilations is less than the number of end-
point removals to reduce the probability of “growing” back some of the spurs. In
this case, we know by inspection that no new spurs are created, so we dilate the end
points three times using A as a delimiter. This is the same number of thinning passes:

 X X H A3 2= (){ ¨ (9-36)

where H is a 3 3× structuring element of 1’s, and the intersection with A is applied
after each step. As in the case of region filling, this type of conditional dilation pre-
vents the creation of 1-valued elements outside the region of interest, as illustrated
by the result in Fig. 9.27(e). Finally, the union of X1 and X3 ,

 X X X4 1 3= ´ (9-37)

yields the desired result in Fig. 9.27(f).
In more complex scenarios, using Eq. (9-36) sometimes picks up the “tips” of

some branches. This can occur when the end points of these branches are near the
skeleton. Although Eq. (9-36) may eliminate them, they can be picked up again
during dilation because they are valid points in A. However, unless entire parasitic
elements are picked up again (a rare case if these elements are short with respect to
valid strokes), detecting and eliminating the reconstructed elements is easy because
they are disconnected regions.

A natural thought at this juncture is that there must be easier ways to solve this
problem. For example, we could just keep track of all deleted points and simply
reconnect the appropriate points to all end points left after application of Eq. (9-34).
This argument is valid, but the advantage of the formulation just presented is that
we used existing morphological constructs to solve the problem. When a set of such
tools is available, the advantage is that no new algorithms have to be written. We
simply combine the necessary morphological functions into a sequence of opera-
tions.

Sometimes you will encounter end point detectors based on a single structuring
element, similar to the first SE in Fig. 9.27(b), but having “don’t care” conditions
along the entire first column instead having a foreground element separating the
corner ×’s. This is incorrect. For example, the former element would identify the
point located in the eighth row, fourth column of Fig. 9.27(a) as an end point, thus
eliminating it and breaking the connectivity of that part of the stroke.

DIP4E_GLOBAL_Print_Ready.indb 666 6/16/2017 2:12:06 PM

9.6 Morphological Reconstruction 667

9.6 MORPHOLOGICAL RECONSTRUCTION

The morphological concepts discussed thus far involve a single image and one or
more structuring elements. In this section, we discuss a powerful morphological
transformation called morphological reconstruction that involves two images and
a structuring element. One image, the marker, which we denote by F, contains the
starting points for reconstruction. The other image, the mask, denoted by G, con-
strains (conditions) the reconstruction. The structuring element is used to define
connectivity.† For 2-D applications, connectivity typically is defined as 8-connectivity,
which is implied by a structuring element of size 3 3× whose elements are all 1’s.

GEODESIC DILATION AND EROSION

Central to morphological reconstruction are the concepts of geodesic dilation and
geodesic erosion. Let F denote the marker image and G the mask image. We assume
in this discussion that both are binary images and that F G8 . The geodesic dila-
tion of size 1 of the marker image with respect to the mask, denoted by D FG

1() (), is
defined as

 D F F B GG
1() () = (){ ¨ (9-38)

where, as usual, ¨ denotes the set intersection (here ¨ may be interpreted as a logi-
cal AND because we are dealing with binary quantities). The geodesic dilation of
size n of F with respect to G is defined as

 D F D D FG
n

G G
n() () −()() = ()()1 1 (9-39)

where n ≥ 1 is an integer, and D F FG
0() () = . In this recursive expression, the set inter-

section indicated in Eq. (9-38) is performed at each step.‡ Note that the intersec-
tion operation guarantees that mask G will limit the growth (dilation) of marker F.
Figure 9.28 shows a simple example of a geodesic dilation of size 1. The steps in the
figure are a direct implementation of Eq. (9-38). Note that the marker F consists of
just one point from the object in G. The idea is to grow (dilate) this point succes-
sively, masking of the result at each step by G. Continuing with this process would
yield a result whose shape is influenced by the structure of G. In this simple case,
the reconstruction would eventually result in an image identical to G (see Fig. 9.30).

The geodesic erosion of size 1 of marker F with respect to mask G is defined as

 E F F B GG
1() () = ()| ´ (9-40)

† In much of the literature on morphological reconstruction, the structuring element is tacitly assumed to be
isotropic and typically is called an elementary isotropic structuring element. In the context of this chapter, an
example of such an SE is a 3 3× array of 1’s with the origin at the center.
‡ Although it is more intuitive to develop morphological reconstruction methods using recursive formulations
(as we do here), their practical implementation typically is based on more computationally efficient algorithms
(see, for example, Vincent [1993] and Soille [2003]).

9.6

See Section 2.5 regarding
connectivity.

DIP4E_GLOBAL_Print_Ready.indb 667 6/16/2017 2:12:07 PM

668 Chapter 9 Morphological Image Processing

Marker, F

Mask, G

Marker dilated by B

B

�

Geodesic dilation, D (1)(F)
G

(This is the dilated marker
image masked by G.)

FIGURE 9.28
Illustration of a
geodesic
dilation of
size 1. Note that
the marker image
contains a point
from the object
in G. If continued,
subsequent dila-
tions and maskings
would eventually
result in the object
contained in G.

where ´ denotes set union (or logical OR operation). The geodesic erosion of size n
of F with respect to G is defined as

 E F E E FG
n

G G
n() () −()() = ()()1 1 (9-41)

where n ≥ 1 is an integer and E F FG
0() () = . The set union in Eq. (9-40) is performed

at each step, and guarantees that geodesic erosion of an image remains greater than
or equal to its mask image. As you might have expected from the forms in Eqs. (9-38)
and (9-40), geodesic dilation and erosion are duals with respect to set complementa-
tion (see Problem 9.41). Figure 9.29 shows an example of a geodesic erosion of size 1.
The steps in the figure are a direct implementation of Eq. (9-40).

Geodesic dilation and erosion converge after a finite number of iterative steps,
because propagation or shrinking of the marker image is constrained by the mask.

MORPHOLOGICAL RECONSTRUCTION BY DILATION AND BY EROSION

Based on the preceding concepts, morphological reconstruction by dilation of a
marker image F with respect to a mask image G, denoted R FG

D (), is defined as the
geodesic dilation of F with respect to G, iterated until stability is achieved; that is,

R F D FG

D
G

k() = ()() (9-42)

with k such that D F D FG
k

G
k() +()() = ()1 .

Figure 9.30 illustrates reconstruction by dilation. Figure 9.30(a) continues the pro-
cess begun in Fig. 9.28. The next step in reconstruction after obtaining D FG

()1 () is to
dilate this result, then AND it with mask G to yield D FG

() ,2 () as Fig. 9.30(b) shows.
Dilation of D FG

()2 () and masking with G then yields D FG
() ,3 () and so on. This pro-

cedure is repeated until stability is reached. Carrying out this example one more
step would give D F D FG G

() () ,5 6() = () so the image, morphologically reconstructed by
dilation, is given by R F D FG

D
G() = ()()5 , as indicated in Eq. (9-42). The reconstructed

image is identical to the mask, as expected.

DIP4E_GLOBAL_Print_Ready.indb 668 6/16/2017 2:12:08 PM

9.6 Morphological Reconstruction 669

In a similar manner, the morphological reconstruction by erosion of a marker
image F with respect to a mask image G, denoted R FG

E (), is defined as the geodesic
erosion of F with respect to G, iterated until stability; that is,

 R F E FG
E

G
k() = ()() (9-43)

with k such that E F E FG
k

G
k() +()() = ()1 . As an exercise, generate a figure similar to

Fig. 9.30 for morphological reconstruction by erosion. Reconstruction by dilation
and erosion are duals with respect to set complementation (see Problem 9.42).

SAMPLE APPLICATIONS

Morphological reconstruction has a broad spectrum of practical applications, each
determined by the selection of the marker and mask images, by the structuring

Marker, F

Mask, G

Marker eroded by B

B

�

Geodesic erosion, E (1)(F)
G

(This is the eroded maker
image masked by G.)

FIGURE 9.29
Illustration of a
geodesic erosion
of size 1.

ba dc
f he g

FIGURE 9.30
Illustration of
morphological
reconstruction
by dilation. Sets
D FG

()(),1 G, B
and F are from
Fig. 9.28. The
mask (G) is
shown dotted for
reference.

(1)() dilated by GD F B (2)Result of masking = () GD F (2)() dilated by GD F B (3)Result of masking = () GD F

(3)() dilated by GD F B (4)Result of masking = () GD F (4)() dilated by GD F B (5)Result of masking = () GD F
No changes after this point,
so (5)() ()D

G GR F D F=

DIP4E_GLOBAL_Print_Ready.indb 669 6/16/2017 2:12:09 PM

670 Chapter 9 Morphological Image Processing

elements, and by combinations of the morphological operations defined in the pre-
ceding discussion. The following examples illustrate the usefulness of these concepts.

Opening by Reconstruction

In morphological opening, erosion removes small objects and then dilation attempts
to restore the shape of the objects that remain. The accuracy of this restoration
dependents on the similarity of the shapes and the structuring element(s) used.
Opening by reconstruction restores exactly the shapes of the objects that remain
after erosion. The opening by reconstruction of size n of an image F is defined as the
reconstruction by dilation of the erosion of size n of F with respect to F; that is,

 O F R F nBR
n

F
D() () = ()| (9-44)

where F nB| indicates n erosions by B starting with F, as defined in Eq. (9-30).
Note that F itself is used as the mask. By comparing this equation with Eq. (9-42),
we see that Eq. (9-44) indicates that the opening by reconstruction uses an eroded
version of F as the marker in reconstruction by dilation.

As you will see in Fig. 9.31, Eq. (9-44) can lead to some interesting results. Typically,
the structuring element, B, used in Eq. (9-44) is designed to extract some feature of
interest, based on erosion. However, as mentioned at the beginning of this section,
the structuring element used in reconstruction (i.e., in the dilation that is performed
to obtain RF

D) is designed to define connectivity and, for 2-D, that structuring ele-
ment typically is a 3 3× array of 1’s. It is important that you do not confuse this SE
with the structuring element, B, used for erosion in Eq. (9-44). Finally, we point out
that this equation is most commonly used with n = 1.

Figure 9.31 shows an example of opening by reconstruction. We are interested in
extracting from Fig. 9.31(a) the characters that contain long, vertical strokes. This
objective determines the nature of B in Eq. (9-44). The average height of the tall
characters in the figure is 51 pixels. By eroding the image with a thin structuring
element of size 51 1× , we should be able to isolate these characters. Figure 9.31(b)
shows one erosion [n = 1 in Eq. (9-44)] of Fig. 9.31(a) with the structuring element
just mentioned. As you can see, the locations of the tall characters were extracted
successively. For the purpose of comparison, we computed the opening (remember
this is erosion followed by the dilation) of the image using the same structuring ele-
ment. Figure 9.31(c) shows the result. As noted earlier, simply dilating an eroded
image does not always restore the original. Finally, Fig. 9.31(d) is the reconstruction
by dilation of the original image using that image as the mask and the eroded image
as the marker. The dilation in the reconstruction was done using a 3 3× SE of 1’s,
for the reason mentioned earlier. Because we only performed one erosion, the steps
just followed constitute the opening by reconstruction (of size 1) of F [i.e., O FR

()1 ()]
given in Eq. (9-44). As the figure shows, characters containing long vertical strokes
were restored accurately from the eroded image (i.e., the marker); all other charac-
ters were removed.

A expression similar to Eq. (9-44) can be written for closing by reconstruction
(see Table 9.1 and Problem 9.44). The difference is that the marker used for closing
by reconstruction is the dilation of F and, instead of RF

D, we use RF
E . As you saw,

A expression similar
to this equation can be
written for closing by
reconstruction (see
Table 9.1 and
Problem 9.44).

DIP4E_GLOBAL_Print_Ready.indb 670 6/16/2017 2:12:10 PM

9.6 Morphological Reconstruction 671

opening by reconstruction works with images in which the background is black (0)
and the foreground is white (1). Closing by reconstruction works with the opposite
scenario. For example, if we were working with the complement of Fig. 9.31(a), the
background would be white and the foreground black. To solve the same problem of
extracting the tall characters, we would use opening by reconstruction. All the other
images in Fig. 9.31 would be identical, except that they would be black on white. The
structuring element used would be the same in both cases, so the operations of clos-
ing by reconstruction would be performed on background pixels.

Automatic Algorithm for Filling Holes

In Section 9.5, we developed an algorithm for filling holes based on knowing a starting
point in each hole. Here, we develop a fully automated procedure based on morpho-
logical reconstruction. Let I x y(,) denote a binary image, and suppose that we form
a marker image F that is 0 everywhere, except at the image border, where it is set to
1 − I , that is,

 F x y
I x y x y I

,
, ,() =

− () ()⎧
⎨
⎩

1

0

if is on the border of

otherwise
 (9-45)

Then,

 H R F
I
D c

c= ()⎡⎣ ⎤⎦ (9-46)

is a binary image equal to I with all holes filled.
To see how Eqs. (9-45) and (9-46) cause holes in an image to be filled, consider

Figs. 9.32(a) and (b), which show an image, I, containing one hole, and the image

ba
dc

FIGURE 9.31 (a) Text image of size 918 2018× pixels. The approximate average height of the tall characters is 51
pixels. (b) Erosion of (a) with a structuring element of size 51 1× elements (all 1’s). (c) Opening of (a) with the
same structuring element, shown for comparison. (d) Result of opening by reconstruction.

DIP4E_GLOBAL_Print_Ready.indb 671 6/16/2017 2:12:11 PM

672 Chapter 9 Morphological Image Processing

complement, respectively. The complement of I sets all foreground (1-valued) pixels
to background (0-valued) pixels, and vice versa. By definition, a hole is surrounded
by foreground pixels. Therefore, this operation builds a “wall” of 0’s around the hole.
Because I c is used as an AND mask, what we are doing is protecting all foreground
pixels from changing during iteration. Figure 9.32(c) is array F, formed according to
Eq. (9-45), and Fig. 9.32(d), using a 3 3× SE of 1’s. The marker F has a border of 1’s
(except at locations where I is 1), so the dilation of the marker points starts at the
border and proceeds inward. Figure 9.32(e) shows the geodesic dilation of F using
I c as the mask. We see that all locations in this result that correspond to foreground
pixels of I are now 0, and that this is true for the hole pixels as well. Another itera-
tion will yield the same result which, when complemented as required by Eq. (9-46),
gives the result in Fig. 9.32(f). The hole is now filled and the rest of image I was
unchanged. The operation H I c¨ yields an image containing 1-valued pixels in the
locations corresponding to the holes in I and 0’s elsewhere, as Fig. 9.32(g) shows.

Figure 9.33 shows a more practical example. Figure 9.33(b) shows the comple-
ment of the text image in Fig. 9.33(a), and Fig. 9.33(c) is the marker image, F, gen-
erated using Eq. (9-45). This image is all black with a white (1’s) border, except at
locations corresponding to 1’s in the border of the original image (the border values
are not easily discernible by eye at the magnification shown, and also because the
page is nearly white). Finally, Fig. 9.33(d) shows the image with all the holes filled.

Border Clearing

Extracting objects from an image for subsequent shape analysis is a fundamental
task in automated image processing. An algorithm for detecting objects that touch
(i.e., are connected to) the border is a useful tool because (1) it can be used to screen
images so that only complete objects remain for further processing, or (2) it can be
used as a signal that partial objects are present in the field of view. As a final illustra-
tion of the concepts introduced in this section, we develop a border-clearing proce-
dure based on morphological reconstruction. In this application, we use the original
image as the mask and the following marker image:

 F x y
I x y x y I

,
(,) (,)() =

⎧
⎨
⎩

if is on the border of

otherwise0
 (9-47)

The border-clearing algorithm first computes the morphological reconstruction
R FI

D () (which extracts the objects touching the border), and then computes the
following difference:

I Ic F F � B F � B � Ic H � IcH

ba c ed f g

FIGURE 9.32
Hole filling using
morphological
reconstruction.

DIP4E_GLOBAL_Print_Ready.indb 672 6/16/2017 2:12:12 PM

9.7 Summary of Morphological Operations on Binary Images 673

 X I R FI
D= − () (9-48)

to obtain an image, X , with no objects touching the border.
As an example, consider the original text image from Fig. 9.31(a) again.

Figure 9.34(a) shows the reconstruction R FI
D () obtained using a 3 3× structuring

element of 1’s. The objects touching the border of the original image are visible
in the right side of Fig. 9.34(a). Figure 9.34(b) shows image X, computed using Eq.
(9-48). If the task at hand were automated character recognition, having an image in
which no characters touch the border is most useful because the problem of having
to recognize partial characters (a difficult task at best) is avoided.

9.7 SUMMARY OF MORPHOLOGICAL OPERATIONS ON BINARY
IMAGES

Figure 9.35 summarizes the types of structuring elements used in the various binary
morphological methods discussed thus far. The shaded elements are foreground
values (typically denoted by 1’s in numerical arrays), the elements in white are
background values (typically denoted by 0’s), and the ×’s are “don’t care” elements.
Table 9.1 summarizes the binary morphological results developed in the preceding
sections. The Roman numerals in the third column of Table 9.1 refer to the structur-
ing elements in Fig. 9.35.

9.7

ba
dc

FIGURE 9.33
(a) Text image of
size 918 2018×
pixels.
(b) Complement
of (a) for use as a
mask image.
(c) Marker image.
(d) Result of
hole-filling using
Eqs. (9-45) and
(9-46).

ba

FIGURE 9.34
(a) Reconstruction
by dilation of marker
image. (b) Image
with no objects
touching the border.
The original image is
Fig. 9.31(a).

DIP4E_GLOBAL_Print_Ready.indb 673 6/16/2017 2:12:13 PM

674 Chapter 9 Morphological Image Processing

9.8 GRAYSCALE MORPHOLOGY

In this section, we extend to grayscale images the basic operations of dilation, ero-
sion, opening, and closing. We then use these operations to develop several basic
grayscale morphological algorithms. Throughout the discussion that follows, we deal
with digital functions of the form f x y(,) and b x y(,), where f x y(,) is a grayscale
image and b x y(,) is a structuring element. The assumption is that these functions
are discrete in the sense defined in Section 2.4. That is, if Z denotes the set of real
integers, then the coordinates (,)x y are integers from the Cartesian product Z2, and
f x y(,) and b x y(,) are functions that assign an intensity value (a real number from
the set of real numbers, R) to each distinct pair of coordinates (,).x y If the intensity
levels are integers also, then Z replaces R.

Structuring elements in grayscale morphology perform the same basic functions
as their binary counterparts: They are used as “probes” to examine a given image for
specific properties. Structuring elements in grayscale morphology belong to one of
two categories: nonflat and flat. Figure 9.36 shows an example of each. Figure 9.36(a)
is a hemispherical grayscale SE shown as an image, and Fig. 9.36(c) is a horizontal
intensity profile through its center. Figure 9.34(b) shows a flat structuring element
in the shape of a disk, and Fig. 9.36(d) is its corresponding intensity profile. (The
shape of this profile explains the origin of the word “flat.”) The elements in Fig. 9.36
are shown as continuous quantities for clarity; their computer implementation is
based on digital approximations. Because of a number of difficulties discussed later
in this section, grayscale nonflat SEs are not used frequently in practice. Finally, we
mention that, as in the binary case, the origin of grayscale structuring elements must
be clearly identified. Unless mentioned otherwise, all the examples in this section
are based on symmetrical, flat structuring elements of unit height whose origins
are at the center. The reflection of an SE in grayscale morphology is as defined in
Section 9.1; we denote it in the following discussion by ˆ , , .b x y b x y() = − −()

GRAYSCALE EROSION AND DILATION

The grayscale erosion of f by a flat structuring element b at location (,)x y is defined
as the minimum value of the image in the region coincident with b x y(,) when the
origin of b is at (,).x y In equation form, the erosion at (,)x y of an image f by a struc-
turing element b is given as

 f b x y f x s y t
s t b

|[]() = + +(){ }() ∈
, min ,

,
 (9-49)

9.8

FIGURE 9.35
Five basic types
of structuring
elements used for
binary
morphology.

B
I

Bi i � 1, 2, 3, 4
(rotate 90�)

�

�

Bi i � 5, 6, 7, 8
(rotate 90�)

V

B
II

Bi i � 1, 2, 3, 4
(rotate 90�)

III

�

�

�

�

�

Bi i � 1, 2, . . . , 8
(rotate 45�)

IV

� �

�

= origin
= don’t care

DIP4E_GLOBAL_Print_Ready.indb 674 6/16/2017 2:12:15 PM

9.8 Grayscale Morphology 675

Operation Equation Comments

Translation B c c b z b B
z() = = + ∈{ }, for Translates the origin of B to

point z.

Reflection ˆ ,B b b B= = − ∈{ }w w for Reflects B about its origin.

Complement A Ac = ∉{ }w w Set of points not in A.

Difference A B A B

A Bc

− = ∈ ∉{ }
=

w w w,

�

Set of points in A, but not
in B.

Erosion A B z B A
z

| 8= (){ } Erodes the boundary of A.
(I)

Dilation A B z B Az{ ¨= ∅{ }P ()ˆ ≠ Dilates the boundary of A.
(I)

Opening A B A B B� = ()| { Smoothes contours, breaks
narrow isthmuses, and
eliminates small islands and
sharp peaks. (I)

Closing A B A B B� = (){ | Smoothes contours, fuses
narrow breaks and long thin
gulfs, and eliminates small
holes. (I)

Hit-or-miss transform I B z B I
z

= (){ }P 8 Finds instances of B in image
I. B contains both foreground
and background elements.

Boundary extraction b() ()A A A B= − | Set of points on the bound-
ary of set A. (I)

Hole filling X X B I

k
k k

c= ()
=

−1

1 2 3

{ ¨
, , ,…

Fills holes in A. X0 is of same
size as I, with a 1 in each hole
and 0’s elsewhere. (II)

Connected
components

X X B I

k
k k= ()

=
−1

1 2 3

{ ¨
, , ,…

Finds connected components
in I. X0 is a set, the same size
as I, with a 1 in each
connected component and 0’s
elsewhere. (I)

Convex hull X X B X

i k

X I D X C A

k
i

k
i i

k
i

i i
conv
i

= ()
= =

= =

− −1 1

0

1 2 3 4 1 2 3

´ ;

, , , , , ,…

; ; (() =
=

Di

i 1

4

∪

Finds the convex hull, C A(),
of a set, A, of foreground
pixels contained in image I.
Xconv

i means that X Xk
i

k
i= −1.

(III)

TABLE 9.1
Summary of
binary morpho-
logical operations
and their
properties. A is a
set of foreground
pixels contained
in binary image I,
and B is a struc-
turing element. I
is a binary image
(containing A) ,
with 1’s
corresponding to
the elements of A
and 0’s elsewhere.
The Roman
numerals refer to
the structuring
elements in
Fig. 9.35.

DIP4E_GLOBAL_Print_Ready.indb 675 6/16/2017 2:12:16 PM

676 Chapter 9 Morphological Image Processing

Operation Equation Comments

Thinning A B A A B

A A B

A B

A B B B

B B B B

c

n

z

¨
z

z z z

= − ()
= ()

{ } =

()()()()
{ } =

… …1 2

1 2 3, , ,, ,… Bn{ }

Thins set A. The first two
equations give the basic
definition of thinning. The
last two equations denote
thinning by a sequence of
structuring elements. This
method is normally used in
practice. (IV)

Thickening A B A A B

A B

A B B Bn

} ´
}

} } }

= ()
{ } =

()()()()… …1 2

Thickens set A using a
sequence of structuring ele-
ments, as above. Uses (IV)
with 0’s and 1’s reversed.

Skeletons
S A S A

S A A kB

A kB B

A

A

k
k

K

k

() = ()

() = ()
− ()

=

= 0
∪

�

|
|

Reconstruction of :

SS A kBk
k

K

()()
=

{
0
∪

Finds the skeleton S A() of
set A. The last equation indi-
cates that A can be
reconstructed from its skel-
eton subsets S Ak (). K is the
value of the iterative step af-
ter which the set A erodes to
the empty set. The notation
A kB|() denotes the kth

iteration of successive
erosions of A by B. (I)

Pruning X A B

X X B

X X H A

X X X

k

k

1

2 1
1

8

3 2

4 1 3

= { }

= ()
= ()
=

=

z

{ ¨
´

∪

X4 is the result of pruning set
A. The number of times that
the first equation is applied
to obtain X1 must be speci-
fied. Structuring elements
(V) are used for the first two
equations. In the third equa-
tion H denotes structuring
element. (I)

Geodesic dilation–size 1 D F F B GG
1() () = (){ ¨ F and G are called the

marker and the mask images,
respectively. (I)

Geodesic dilation–size n D F D D FG
n

G G
n() () −()() = ()()1 1 Same comment as above.

Geodesic erosion–size 1 E F F B GG
1() () = ()| ´ Same comment as above.

Geodesic erosion–size n E F E E FG
n

G G
n() () −()() = ()()1 1 Same comment as above.

Morphological recon-
struction by dilation

R F D FG
D

G
k() = ()() With k is such that

D F D FG
k

G
k() +()() = ()1 .

TABLE 9.1
(Continued)

DIP4E_GLOBAL_Print_Ready.indb 676 6/16/2017 2:12:18 PM

9.8 Grayscale Morphology 677

Operation Equation Comments

Morphological recon-
struction by erosion

R F E FG
E

G
k() = ()() With k such that

E F E FG
k

G
k() +()() = ()1 .

Opening by
reconstruction

O F R F nBR
n

F
D() () = ()| F nB| indicates n succes-

sive erosions by B, starting
with F. The form of B is
application-dependent.

Closing by
reconstruction

C F R F nBR
n

F
E() () = (){ F nB{ indicates n succes-

sive dilations by B, starting
with F. The form of B is
application-dependent.

Hole filling H R F
I
D c

c= ()⎡⎣ ⎤⎦
H is equal to the input image
I, but with all holes filled. See
Eq. (9-45) for the definition
of marker image F.

Border clearing X I R FI
D= − () X is equal to the input image

I, but with all objects that
touch (are connected to)
the boundary removed. See
Eq. (9-47) for the definition
of marker image F.

TABLE 9.1
(Continued)

Nonflat SE

Intensity profile Intensity profile

Flat SE

ba
dc

FIGURE 9.36
Nonflat and flat
structuring
elements, and
corresponding
horizontal
intensity profiles
through their
centers. All
examples in this
section are based
on flat SEs.

DIP4E_GLOBAL_Print_Ready.indb 677 6/16/2017 2:12:18 PM

678 Chapter 9 Morphological Image Processing

where, in a manner similar to spatial correlation (see Section 3.4), x and y are incre-
mented through all values required so that the origin of b visits every pixel in f. That
is, to find the erosion of f by b, we place the origin of the structuring element at every
pixel location in the image. The erosion at any location is determined by selecting
the minimum value of f in the region coincident with b. For example, if b is a square
structuring element of size 3 3× , obtaining the erosion at a point requires finding
the minimum of the nine values of f contained in the 3 3× region spanned by b when
its origin is at that point.

Similarly, the grayscale dilation of f by a flat structuring element b at any location
(,)x y is defined as the maximum value of the image in the window spanned by b̂
when the origin of b̂ is at (,).x y That is,

 f b x y f x s y t
s t b

{ ⁄[]() = − −(){ }
∈

, max ,
(,)

 (9-50)

where we used the fact stated earlier that ˆ(,) (,).b c d b c d= − − The explanation of
this equation is identical to the explanation in the previous paragraph, but using
the maximum, rather than the minimum operation, and keeping in mind that the
structuring element is reflected about its origin, which we take into account by using
(,)− −s t in the argument of the function. This is analogous to spatial convolution, as
explained in Section 3.4.

EXAMPLE 9.9 : Grayscale erosion and dilation.

Because grayscale erosion with a flat SE computes the minimum intensity value of f in every neighbor-
hood of (,)x y coincident with b, we expect in general that an eroded grayscale image will be darker than
the original, that the sizes (with respect to the size of the SE) of bright features will be reduced, and that
the sizes of dark features will be increased. Figure 9.37(b) shows the erosion of Fig. 9.37(a) using a disk
SE of unit height and a radius of 2 pixels. The effects just mentioned are clearly visible in the eroded
image. For instance, note how the intensities of the small bright dots were reduced, making them barely
visible in Fig. 9.37(b), while the dark features grew in thickness. The general background of the eroded
image is slightly darker than the background of the original image.

Similarly, Fig. 9.37(c) is the result of dilation with the same SE. The effects are the opposite of using
erosion. The bright features were thickened and the intensities of the darker features were reduced.
In particular, the thin black connecting wires in the left, middle, and right bottom of Fig. 9.37(a) are
barely visible in Fig. 9.37(c). The sizes of the dark dots were reduced as a result of dilation, but, unlike
the eroded small white dots in Fig. 9.37(b), they still are easily visible in the dilated image. The reason is
that the black dots were originally larger than the white dots with respect to the size of the SE. Finally,
observe that the background of the dilated image is slightly lighter than that of Fig. 9.37(a).

Nonflat SEs have grayscale values that vary over their domain of definition. The
erosion of image f by nonflat structuring element, bN , is defined as

 f b x y f x s y t b s tN s t b N
N

|[]() = + +() − (){ }() ∈
, min , ,

,
 (9-51)

DIP4E_GLOBAL_Print_Ready.indb 678 6/16/2017 2:12:19 PM

9.8 Grayscale Morphology 679

Here, we subtract values from f to determine the erosion at any point. Unlike
Eq. (9-49), erosion using a nonflat SE is not bounded in general by the values of f,
which can be problematic in interpreting results. Grayscale SEs are seldom used in
practice because of this, the potential difficulties in selecting meaningful elements
for bN , and the added computational burden when compared with Eq. (9-49).

In a similar manner, dilation using a nonflat SE is defined as

 f b x y f x s y t b s tN
s t b

N
N

{ ⁄

⁄[]() = − −() +{ }
() ∈

, max , (,)
,

 (9-52)

The same comments made in the previous paragraph are applicable to dilation with
nonflat SEs. When all the elements of bN are constant (i.e., the SE is flat), Eqs. (9-51)
and (9-52) reduce to Eqs. (9-49) and (9-50), respectively, within a scalar constant
equal to the amplitude of the SE.

As in the binary case, grayscale erosion and dilation are duals with respect com-
plementation and reflection; that is,

 f b x y f b x yc c| {
⁄[] () = ⎡⎣ ⎤⎦ (), , (9-53)

where f x y f x yc , ,() = − () and ˆ(,) , .b x y b x y= − −() The same expression holds for
nonflat structuring elements. Except as needed for clarity, we simplify the notation
in the following discussion by suppressing the arguments of all functions, in which
case the preceding equation is written as

 f b f bc c| {() = ˆ (9-54)

Similarly,

 f b f bc c{ |() = ˆ (9-55)

Erosion and dilation by themselves are not particularly useful in grayscale image
processing. As with their binary counterparts, these operations become powerful
when used in combination to derive higher-level algorithms.

ba c

FIGURE 9.37
(a) Gray-scale
X-ray image of
size 448 425×
pixels. (b) Erosion
using a flat disk SE
with a radius of 2
pixels. (c) Dilation
using the same SE.
(Original image
courtesy of Lixi,
Inc.)

DIP4E_GLOBAL_Print_Ready.indb 679 6/16/2017 2:12:20 PM

680 Chapter 9 Morphological Image Processing

GRAYSCALE OPENING AND CLOSING

The expressions for opening and closing grayscale images have the same form as
their binary counterparts. The grayscale opening of image f by structuring element b,
denoted f b� , is

 f b f b b� = ()| { (9-56)

As before, opening is simply the erosion of f by b, followed by a dilation of the result
by b. Similarly, the grayscale closing of f by b, denoted f b� , is

 f b f b b� = (){ | (9-57)

The opening and closing for grayscale images are duals with respect to complemen-
tation and SE reflection:

 f b f bc c
� �() = ˆ (9-58)

and

 f b f bc c
� �() = ˆ (9-59)

Because f fc = − , we can write Eq. (9-58) as − = −() (),f b f b� � and similarly for
Eq. (9-59).

Opening and closing of grayscale images have a simple geometric interpretation.
Suppose that an image function f x y(,) is viewed as a 3-D surface; that is, its intensity
values are interpreted as height values over the xy-plane, as in Fig. 2.18(a). Then the
opening of f by b can be interpreted geometrically as pushing the structuring ele-
ment up from below against the undersurface of f. At each location of the origin of b,
the opening is the highest value reached by any part of b as it pushes up against the
undersurface of f. The complete opening is then the set of all such values obtained
by the origin of b visiting every (,)x y coordinate of f.

Figure 9.38 illustrates the concept in one dimension. Suppose the curve in
Fig. 9.38(a) is the intensity profile along a single row of an image. Figure 9.38(b)
shows a flat structuring element in several positions, pushed up against the bottom
of the curve. The heavy curve in Fig. 9.38(c) is the complete opening. Because the
structuring element is too large to fit completely inside the upward peaks of the
curve, the tops of the peaks are clipped by the opening, with the amount removed
being proportional to how far the structuring element was able to reach into the
peak. In general, openings are used to remove small, bright details, while leaving the
overall intensity levels and larger bright features relatively undisturbed.

Figure 9.38(d) is a graphical illustration of closing. Observe that the structuring
element is pushed down on top of the curve while being translated to all locations.
The closing, shown in Fig. 9.38(e), is constructed by finding the lowest points reached
by any part of the structuring element as it slides against the upper side of the curve.
The grayscale opening satisfies the following properties:

Although we deal with
flat SEs in the following
discussion, the concepts
discussed are applicable
also to nonflat
structuring elements.

DIP4E_GLOBAL_Print_Ready.indb 680 6/16/2017 2:12:21 PM

9.8 Grayscale Morphology 681

(a) f b f� ↵
(b) If f f1 2↵ , then f b f b1 2� �() ()↵
(c) f b b f b� � �() =

The notation q r↵ is used to indicate that the domain of q is a subset of the domain
of r, and also that q x y r x y(,) (,)≤ for any (,)x y in the domain of q.

Similarly, the closing operation satisfies the following properties:

(a) f f b↵ �

(b) If f f1 2↵ , then f b f b1 2
� �() ()↵

(c) f b b f b� � �() =

The usefulness of these properties is similar to that of their binary counterparts.

EXAMPLE 9.10 : Grayscale opening and closing.

Figure 9.39 extends to 2-D the 1-D concepts illustrated in Fig. 9.38. Figure 9.39(a) is the same image we
used in Example 9.9, and Fig. 9.39(b) is the opening obtained using a disk structuring element of unit
height and radius of 3 pixels. As expected, the intensity of all bright features decreased, depending on
the sizes of the features relative to the size of the SE. Comparing this figure with Fig. 9.37(b), we see
that, unlike the result of erosion, opening had negligible effect on the dark features of the image, and
the effect on the background was negligible. Similarly, Fig. 9.39(c) shows the closing of the image with
a disk of radius 5 (the small round black dots are larger than the small white dots, so a larger disk was
needed to achieve results comparable to the opening). In this image, the bright details and background
were relatively unaffected, but the dark features were attenuated, with the degree of attenuation being
dependent on the relative sizes of the features with respect to the SE.

Flat SE

Intensity profile

Opening

Closing

b
a

c
d
e

FIGURE 9.38
Grayscale opening and
closing in one
dimension.
(a) Original 1-D signal.
(b) Flat structuring
element pushed up
underneath the signal.
(c) Opening.
(d) Flat structuring
element pushed down
along the top of the
signal.
(e) Closing.

DIP4E_GLOBAL_Print_Ready.indb 681 6/16/2017 2:12:22 PM

682 Chapter 9 Morphological Image Processing

SOME BASIC GRAYSCALE MORPHOLOGICAL ALGORITHMS

Numerous grayscale morphological techniques are based on the grayscale morpho-
logical concepts introduced thus far. We illustrate some of these algorithms in the
following discussion.

Morphological Smoothing

Because opening suppresses bright details smaller than the specified SE while leav-
ing dark details relatively unaffected, and closing generally has the opposite effect,
these two operations are used often in combination as morphological filters for
image smoothing and noise removal. Consider Fig. 9.40(a), which shows an image
of the Cygnus Loop supernova taken in the X-ray band (see Fig. 1.7 for details
about this image). For purposes of the present discussion, suppose that the cen-
tral light region is the object of interest, and that the smaller components are noise.
Our objective is to remove the noise. Figure 9.40(b) shows the result of opening the
original image with a flat disk of radius 1, then closing the opening with an SE of the
same size. Figures 9.40(c) and (d) show the results of the same operation using SEs
of radii 3 and 5, respectively. As expected, this sequence shows progressive removal
of small components as a function of SE size. In the last result, we see that the noise
has been almost eliminated. The noise components on the lower right side of the
image could not be removed completely because their sizes are larger than the other
image elements that were successfully removed.

The results in Fig. 9.40 are based on opening the original image, then closing the
opening. A procedure used sometimes is to perform alternating sequential filtering,
in which the opening–closing sequence starts with the original image, but subse-
quent steps perform the opening and closing on the results of the previous step. This
type of filtering is useful in automated image analysis, in which results at each step
are compared against a specified metric. This approach generally results in more
blurring for the same size SE than the method illustrated in Fig. 9.40.

Morphological Gradient

Dilation and erosion can be used in combination with image subtraction to obtain
the morphological gradient, g, of a grayscale image f, as follows:

See Section 3.6 for a
definition of the image
gradient.

ba c

FIGURE 9.39
(a) A grayscale
X-ray image of
size 448 425×
pixels.
(b) Opening using
a disk SE with a
radius of 3 pixels.
(c) Closing using
an SE of radius 5.

DIP4E_GLOBAL_Print_Ready.indb 682 6/16/2017 2:12:22 PM

9.8 Grayscale Morphology 683

 g f b f b= () − (){ | (9-60)

where b is a suitable structuring element. The overall effect achieved by using this
equation is that dilation thickens regions in an image, and erosion shrinks them.
Their difference emphasizes the boundaries between regions. Homogenous areas
are not affected (provided that the SE is not too large relative to the resolution of
the image) so the subtraction operation tends to eliminate them. The net result is an
image in which the edges are enhanced and the contribution of the homogeneous
areas is suppressed, thus producing a “derivative-like” (gradient) effect.

Figure 9.41 shows an example. Figure 9.41(a) is a head CT scan, and the next two
figures are the opening and closing with a 3 3× flat SE of 1’s. Note the thickening
and shrinking just mentioned. Figure 9.41(d) is the morphological gradient obtained
using Eq. (9-60). As you can see, the boundaries between regions were clearly delin-
eated, as expected of a 2-D derivative image.

Top-Hat and Bottom-Hat Transformations

Combining image subtraction with openings and closings results in so-called top-hat
and bottom-hat transformations. The top-hat transformation of a grayscale image f is
defined as f minus its opening:

ba
dc

FIGURE 9.40
(a) 566 566× image
of the Cygnus Loop
supernova, taken
in the X-ray band
by NASA’s Hubble
Telescope.
(b)–(d) Results of
performing opening
and closing
sequences on the
original image with
disk structuring
elements of radii, 1,
3, and 5, respectively.
(Original image
courtesy of NASA.)

DIP4E_GLOBAL_Print_Ready.indb 683 6/16/2017 2:12:23 PM

684 Chapter 9 Morphological Image Processing

 T f f f bhat () = − ()� (9-61)

Similarly, the bottom-hat transformation of f is defined as the closing of f minus f :

 B f f b fhat () = () −� (9-62)

One of the principal applications of these transformations is in removing objects
from an image by using a structuring element in the opening or closing operation
that does not fit the objects to be removed. The difference operation then yields an
image in which only the removed components remain. The top-hat transformation
is used for light objects on a dark background, and the bottom-hat transformation
is used for the opposite situation. For this reason, the names white top-hat and black
top-hat, respectively, are used frequently when referring to these two transformations.

An important use of top-hat transformations is for correcting the effects of non-
uniform illumination. As you will learn in Chapter 10, proper (uniform) illumination
plays a central role in being able to extract objects from the background in an image.
This process is fundamental in automated image analysis, and is often used in conjunc-
tion with thresholding, as you will learn in Chapter 10.

To illustrate, consider Fig. 9.42(a), which shows an image of grains of rice. This
image was obtained under nonuniform lighting, as evidenced by the darker area in
the bottom rightmost part of the image. Figure 9.42(b) shows the result of thresh-
olding using Otsu’s method, an optimal thresholding method to be discussed in
Section 10.3. The net result of nonuniform illumination was to cause segmentation

ba
dc

FIGURE 9.41
(a) 512 512×
image of a head
CT scan.
(b) Dilation.
(c) Erosion.
(d) Morphological
gradient,
computed as the
difference
between (b)
and (c). (Original
image courtesy of
Dr. David R.
Pickens,
Vanderbilt
University.)

DIP4E_GLOBAL_Print_Ready.indb 684 6/16/2017 2:12:23 PM

9.8 Grayscale Morphology 685

errors in the dark area (several grains of rice were not extracted from the back-
ground), as well as in the top left part of the image, where parts of the background
were interpreted as rice. Figure 9.42(c) shows the opening of the image with a disk
of radius 40. This SE was large enough so that it would not fit in any of the objects.
As a result, the objects were eliminated, leaving only an approximation of the back-
ground. The shading pattern is clear in this image. By subtracting this image from the
original (i.e., by applying a top-hat transformation), the background should become
more uniform. This is indeed the case, as Fig. 9.42(d) shows. The background is not
perfectly uniform, but the differences between light and dark extremes are less, and
this was enough to yield a correct thresholding result, in which all the rice grains
were properly extracted using Otsu’s method, as Fig. 9.42(e) shows.

Granulometry

In the context of this discussion, granulometry is a field that deals with determining
the size distribution of particles in an image. Particles seldom are neatly separated,

ba
c ed

FIGURE 9.42 Using the top-hat transformation for shading correction. (a) Original image of size 600 600× pixels.
(b) Thresholded image. (c) Image opened using a disk SE of radius 40. (d) Top-hat transformation (the image minus
its opening). (e) Thresholded top-hat image.

DIP4E_GLOBAL_Print_Ready.indb 685 6/16/2017 2:12:24 PM

686 Chapter 9 Morphological Image Processing

which makes counting based on identifying individual particles a difficult task. Mor-
phology can be used to estimate particle size distribution indirectly, without having
to identify and measure individual particles.

The approach is simple. With particles having regular shapes that are lighter than
the background, the method consists of applying openings with SEs of increasing
sizes. The basic idea is that opening operations of a particular size should have the
most effect on regions of the input image that contain particles of similar size. For
each image resulting from an opening, we compute the sum of the pixel values. This
sum, called the surface area, decreases as a function of increasing SE size because,
as we discussed earlier, openings decrease the intensity of light features in an image.
This procedure yields a 1-D array each element of which is the sum of the pixels in
the opening for the size SE corresponding to that location in the array. To emphasize
changes between successive openings, we compute the difference between adjacent
elements of the 1-D array. If the differences are plotted, the peaks in the plot are an
indication of the predominant size distributions of the particles in the image.

As an example, consider the image of wood dowel plugs of two dominant sizes
in Fig. 9.43(a). The wood grain in the dowels is likely to introduce variations in the
openings, so smoothing is a sensible preprocessing step. Figure Fig. 9.43(b) shows the
image smoothed using the morphological smoothing filter discussed earlier, with a
disk of radius 5. Figures 9.43(c) through (f) show image openings with disks of radii
10, 20, 25, and 30, respectively. Note in Fig. 9.43(d) that the intensity contribution
due to the small dowels has been almost eliminated. In Fig. 9.43(e) the contribution
of the large dowels has been reduced significantly, and in Fig. 9.43(f) even more so.
Observe in Fig. 9.43(e) that the large dowel near the top right of the image is much
darker than the others because its size is smaller than other lager dowels. This would
be useful information if we had been attempting to detect defective dowels.

Figure 9.44 shows a plot of the difference array. As mentioned previously, we
expect significant differences (peaks in the plot) around radii at which the SE is

ba c
ed f

FIGURE 9.43
(a) 531 675× image
of wood dowels.
(b) Smoothed
image.
(c)–(f) Openings
of (b) with disks of
radii equal
to 10, 20, 25,
and 30 pixels,
respectively.
(Original image
courtesy of Dr.
Steve Eddins,
MathWorks, Inc.)

DIP4E_GLOBAL_Print_Ready.indb 686 6/16/2017 2:12:24 PM

9.8 Grayscale Morphology 687

large enough to encompass a set of particles of approximately the same diameter.
The result in Fig. 9.44 has two distinct peaks, clearly indicating the presence of two
dominant object sizes in the image.

Textural Segmentation

Figure 9.45(a) shows a noisy image of dark blobs superimposed on a light back-
ground. The image has two textural regions: a region composed of large blobs on the
right and a region on the left composed of smaller blobs. The objective is to find a
boundary between the two regions based on their textural content, which in this case
is determined by the sizes and spatial distribution of the blobs (we discuss texture in
Chapter 11). The process of partitioning an image into regions is called segmentation,
which is the topic of Chapter 10.

The objects of interest are darker than the background, and we know that if we
close the image with a structuring element larger than the small blobs, these blobs
will be removed. The result in Fig. 9.45(b), obtained by closing the input image using
a disk with a radius of 30 pixels, shows that indeed this is the case. (The radius of the
smaller blobs is approximately 25 pixels.) So, at this point, we have an image with
large, dark blobs on a light background. If we open this image with a structuring ele-
ment that is large relative to the separation between these blobs, the net result should
be an image in which the light patches between the blobs are removed, leaving the
dark blobs, and also the now dark patches between these blobs. Figure 9.45(c) shows
the result, obtained using a disk of radius 60.

Performing a morphological gradient on this image with, say, a 3 3× SE of 1’s, will
give us the boundary between the two regions. Figure 9.45(d) shows the boundary
obtained from the morphological gradient operation, superimposed on the original
image. All pixels to the right of this boundary are said to belong to the texture region
characterized by large blobs, and conversely for the pixels on the left of the bound-
ary. You will find it instructive to work through this example in more detail using the
graphical analogy for opening and closing illustrated in Fig. 9.38.

0 15 25 30 3520105
0

0.5

1.5

1

2

2.5
� 106

D
if

fe
re

nc
es

 in
 s

ur
fa

ce
 a

re
a

r

FIGURE 9.44
Differences in
surface area as
a function of SE
disk radius, r.
The two peaks
indicate that there
are two dominant
particle sizes in
the image.

DIP4E_GLOBAL_Print_Ready.indb 687 6/16/2017 2:12:24 PM

688 Chapter 9 Morphological Image Processing

GRAYSCALE MORPHOLOGICAL RECONSTRUCTION

Grayscale morphological reconstruction is defined in the same manner introduced
in Section 9.6 for binary images. Let f and g denote the marker and mask images,
respectively. We assume that both are grayscale images of the same size and that
f g≤ , meaning that the intensity of f at any point in the image is less than the inten-
sity of g at that point. The geodesic dilation of size 1 of f with respect to g is defined as

 D f f b gg
1() () = (){ � (9-63)

where � denotes the point-wise minimum operator, and b is a suitable structuring
element. We see that the geodesic dilation of size 1 is obtained by first computing the
dilation of f by b, then selecting the minimum between the result and g at every point
(,).x y The dilation is given by Eq. (9-50) if b is a flat SE, or by Eq. (9-52) if it is not.

The geodesic dilation of size n of f with respect to g is defined as

 D f D D fg
n

g g
n() () −()() = ()()1 1 (9-64)

with D f fg
0() () = .

As mentioned earlier, it
is understood that f and g
are functions of x and y.
We omit the coordinates
to simplify the notation.

ba
dc

FIGURE 9.45
Textural
segmentation.
(a) A 600 600×
image consisting
of two types of
blobs.
(b) Image with
small blobs
removed by
closing (a).
(c) Image with
light patches
between large
blobs removed by
opening (b).
(d) Original
image with
boundary
between the two
regions in (c)
superimposed.
The boundary was
obtained using
a morphological
gradient.

DIP4E_GLOBAL_Print_Ready.indb 688 6/16/2017 2:12:25 PM

9.8 Grayscale Morphology 689

Similarly, the geodesic erosion of size 1 of f with respect to g is defined as

 E f f b gg
1() () = ()| � (9-65)

where � denotes the point-wise maximum operator. The geodesic erosion of size n
is defined as

 E f E E fg
n

g g
n() () −()() = ()()1 1 (9-66)

with E f fg
0() () = .

The morphological reconstruction by dilation of a grayscale mask image, g, by a
grayscale marker image, f, denoted by R fg

D() ,() is defined as the geodesic dilation of
f with respect to g, iterated until stability is reached; that is,

 R f D fg
D

g
k() = ()() (9-67)

with k such that D f D fg
k

g
k() +()=() ().1 The morphological reconstruction by erosion of

g by f , denoted by R fg
E (), is similarly defined as

 R f E fg
E

g
k() = ()() (9-68)

with k such that E f E fg
k

g
k() +()() = ()1 .

As in the binary case, opening by reconstruction of grayscale images first erodes
the input image and uses it as a marker, and uses the image itself as the mask. The
opening by reconstruction of size n of an image f is defined as the reconstruction by
dilation of the erosion of size n of f with respect to f ; that is,

 O f R f nbR
n

f
D() () = ()| (9-69)

where f nb| denotes n successive erosions by b, starting with f , as explained in
connection with Eq. (9-30) (note that f itself is used as the mask). Recall also from
the discussion of Eq. (9-44) for binary images that the objective of opening by recon-
struction is to preserve the shape of the image components that remain after erosion.

Similarly, the closing by reconstruction of size n of an image f is defined as the
reconstruction by erosion of the dilation of size n of f with respect to f ; that is,

 C f R f nbR
n

f
E() () = (){ (9-70)

where f nb{ denotes n successive dilations by b, starting with f. Because of duality,
the closing by reconstruction of an image can be obtained by complementing the
image, obtaining the opening by reconstruction, and complementing the result. Finally,
as the following example shows, a useful technique called top-hat by reconstruction
consists of subtracting from an image its opening by reconstruction.

EXAMPLE 9.11 : Using grayscale morphological reconstruction to flatten a complex background.

In this example, we illustrate the use of grayscale reconstruction in several steps. The objective is to
normalize the irregular background of the image in Fig. 9.46(a), leaving only text on a background of

See Problem 9.33 for a
list of dual relationships
between expressions in
this section.

DIP4E_GLOBAL_Print_Ready.indb 689 6/16/2017 2:12:26 PM

690 Chapter 9 Morphological Image Processing

ba c
ed f
hg i

FIGURE 9.46 (a) Original image of size 1134 1360× pixels. (b) Opening by reconstruction of (a), using a structur-
ing element consisting of a horizontal line 71 pixels long in the erosion. (c) Opening of (a) using the same SE.
(d) Top-hat by reconstruction. (e) Result of applying just a top-hat transformation. (f) Opening by reconstruction
of (d), using a horizontal line 11 pixels long. (g) Dilation of (f) using a horizontal line 21 pixels long. (h) Minimum
of (d) and (g). (i) Final reconstruction result. (Images courtesy of Dr. Steve Eddins, MathWorks, Inc.)

constant intensity. The solution of this problem is a good illustration of the power of grayscale mor-
phology. We begin by suppressing the horizontal reflection on the top of the keys. The reflections are
wider than any single character in the image, so we should be able to suppress them by performing an
opening by reconstruction using a long horizontal line in the erosion operation. This operation will
yield the background containing the keys and their reflections. Subtracting this from the original image
(i.e., performing a top-hat by reconstruction) will eliminate the horizontal reflections and variations in
background from the original image.

DIP4E_GLOBAL_Print_Ready.indb 690 6/16/2017 2:12:28 PM

9.8 Grayscale Morphology 691

Figure 9.46(b) shows the result of opening by reconstruction of the original image using a hori-
zontal line of size 1 71× pixels for the SE in the erosion operation. We could have used an opening to
remove the characters, but the resulting background would not have been as uniform, as Fig. 9.46(c)
shows (compare the regions between the keys in the two images). Figure 9.46(d) shows the result
of subtracting Fig. 9.46(b) from Fig. 9.46(a). As expected, the horizontal reflections and variations
in background were suppressed. For comparison, Fig. 9.46(e) shows the result of performing just a
top-hat transformation (i.e., subtracting the “standard” opening from the image). As expected from
the characteristics of the background in Fig. 9.46(c), the background in Fig. 9.46(e) is not nearly as
uniform as in Fig. 9.46(d).

The next step is to remove the vertical reflections from the edges of the keys, visible in Fig. 9.46(d).
We can do this by performing an opening by reconstruction with a line SE whose width is approximately
equal to the reflections (about 11 pixels in this case). Figure 9.46(f) shows the result of performing this
operation on Fig. 9.46(d). The vertical reflections were suppressed, but so were thin, vertical strokes
that are valid characters (for example, the I in SIN), so we have to find a way to restore the latter.
The suppressed characters are very close to the other characters so, if we dilate the remaining characters
horizontally, the dilated characters will overlap the area previously occupied by the suppressed characters.
Figure 9.46(g), obtained by dilating Fig. 9.46(f) with a line SE of size 1 21× elements, shows that indeed
this is case.

All that remains at this point is to restore the suppressed characters. Consider an image formed as
the point-wise minimum between the dilated image in Fig. 9.46(g) and the top-hat by reconstruction in
Fig. 9.46(d). Figure 9.46(h) shows the minimum image (although this result appears to be close to our
objective, note that the I in SIN is still missing). By using this image as a marker and the dilated image as
the mask in grayscale reconstruction [Eq. (9-67)], we obtained the final result in Fig. 9.46(i). This image
shows that all characters were properly extracted from the original, irregular background, including the
background of the keys. The background in Fig. 9.46(i) is uniform throughout.

Summary, References, and Further Reading
The morphological concepts and techniques introduced in this chapter constitute a powerful set of tools for extract-
ing features of interest in an image. One of the most appealing aspects of morphological image processing is the
extensive set-theoretic foundation from which morphological techniques have evolved. A significant advantage in
terms of implementation is that dilation and erosion are primitive operations, which are the basis for a broad class
of morphological algorithms. As will be shown in the following chapter, morphology can be used as the basis for
developing image segmentation procedures with numerous applications. As we will discuss in Chapter 11, morpho-
logical techniques also play a major role in procedures for image feature extraction.

The book by Serra [1982] is a fundamental reference on morphological image processing. See also Serra [1988],
Giardina and Dougherty [1988], and Haralick and Shapiro [1992]. For an overview of both binary and gray-scale
morphology, see Basart and Gonzalez [1992] and Basart et al. [1992]. This set of references provides ample basic
background for the material covered in Sections 9.1 through 9.4. For a good overview of the material in Sections 9.5
and 9.6, see the book by Soille [2003].

Important issues of implementing morphological algorithms such as the ones given in Section 9.5 and 9.6 are
exemplified in the papers by Jones and Svalbe [1994], Sussner and Ritter [1997], and Shaked and Bruckstein [1998].
A paper by Vincent [1993] is especially important in terms of practical details for implementing gray-scale morpho-
logical algorithms. For additional reading on the theory and applications of morphological image processing, see the
books by Goutsias and Bloomberg [2000], and by Beyerer et al. [2016]. To get an idea of the state of the art in fast
computer implementation of morphological algorithms, see Thurley and Danell [2012]. For details on the software
aspects of many of the examples in this chapter, see Gonzalez, Woods, and Eddins [2009].

DIP4E_GLOBAL_Print_Ready.indb 691 6/16/2017 2:12:28 PM

692 Chapter 9 Morphological Image Processing

Problems
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book
website: www.ImageProcessingPlace.com).

9.1 Find the reflection, ˆ ,B of each of the following
structuring elements. The dot indicates the origin
of the SE.

(a)* (b) (c)

9.2 Sketch the result of eroding Fig. 9.3(a) with each
of the following structuring elements.

(a)* (b) (c)

9.3 * Erosion of a set A by structuring element B is
a subset of A, provided that the origin of B lies
within B. Give an example in which the erosion
A B| lies outside, or partially outside, A.

9.4 Let B be a structuring element containing a single
point, valued 1, and let A be a set of foreground
pixels.

(a) * What do you think would happen if we erode
A by B?

(b) What do you think would happen if we dilate
A by B?

9.5 You are given a “black-box” function that com-
putes erosion. You are told that this function
automatically pads the input image with a border
whose width is the thinnest border possible, as
determined by the dimensions of the structuring
element (e.g., for a 3 3× structuring element the
border would be one pixel wide). However, you
are not told whether the padding is composed of
background (0) or foreground (1) values. Propose
an experiment for answering this question.

9.6 Do the following:

(a) * Dilate Fig. 9.3(a) using the structuring element
in figure (a) of Problem 9.2.

(b) Repeat (a) using the structuring element in
figure (b).

(c) Repeat (a) using the structuring element in
figure (c).

9.7 Dilation of a set A by structuring element B is
the set of locations of the origin of B such that A
contains at least one (foreground) element of B.
Give an example in which the dilation of A by B
lies completely outside of A. (Hint: Let A and B
be disks of different radii.)

9.8 With reference to the image at the top of the fig-
ure shown below, answer the following:

(a) * Give the structuring element and morpho-
logical operation(s) that produced image (a).
Show the origin of the structuring element.
The dashed lines denote the boundary of the
original object and are shown for reference;
they are not part of the result. (The white
elements are foreground pixels.)

(b) Repeat part (a) for the output shown in
image (b).

(c) * Repeat part (a) for the output shown in
image (c).

(d) Repeat part (a) for the solution shown in fig-
ure (d). Note that in image (d) all corners are
rounded.

(a)* (b) (c)* (d)

9.9 Let A denote the set shown shaded in the follow-
ing figure, and refer to the structuring elements
shown (the black dots denote the origin). Sketch
the result of the following operations:

(a) * A B B| {4 2() .

(b) A B B| {1 3() .

(c) A B B{ {1 3() .

DIP4E_GLOBAL_Print_Ready.indb 692 6/16/2017 2:12:29 PM

http://www.ImageProcessingPlace.com

 Problems 693

L

L/2

L/2

L/4
L/4

L/4

B1 B2 B3 B4

L

A L

L

9.10 Be specific in answering the following:

(a) * What is the limiting effect of repeatedly dilating
a set of foreground pixels in an image? Assume
that a trivial (one point) structuring element is
not used.

(b) What is the smallest set from which you can
start in order for your answer in (a) to hold?

9.11 Be specific in answering the following:

(a) What is the limiting effect of repeatedly erod-
ing a set of foreground pixels in an image?
Assume that a trivial (one point) structuring
element is not used.

(b) What is the smallest set of foreground pixels
from which you can start in order for your
answer in (a) to hold?

9.12 * An alternative definition of erosion is

 A B Z b A b B| = ∈ + ∈ ∈{ }w w2 for every

Show that this definition is equivalent to the
definition in Eq. (9-3).

9.13 Do the following:

(a) Show that the definition of erosion given in
Problem 9.12 is equivalent to yet another
definition of erosion:

 A B A
b B

b| = ()
∈

−∩

(If −b is replaced with b, this expression is
called the Minkowsky subtraction of two
sets.)

(b) * Show that the expression in (a) is equivalent
to the definition in Eq. (9-3).

9.14 * An alternative definition of dilation is

A B Z a b a A b B{ = ∈ = + ∈ ∈{ }w w2 , for some and

Show that this definition and the definition in
Eq. (9-6) are equivalent.

9.15 Do the following:

(a) Show that the definition of dilation given in
Problem 9.14 is equivalent to yet another
definition of dilation:

 A B A
b B

b{ = ()
∈
∪

(This expression is called the Minkowsky
addition of two sets.)

(b) * Show that the expression in (a) is equivalent
also to the definition in Eq. (9-6).

9.16 Prove the validity of the duality expression given
in Eq. (9-9).

9.17 Answer the following:

(a) * The curved portions the black border of
Fig. 9.8(d) delineate the opening of set A
in Fig. 9.8(a), but those curved segments
are not part of the boundary of A. Are the
black straight-line portions in (d) part of the
boundary of A? Explain.

(b) The curved portions the black border of
Fig. 9.9(d) delineate the closing of set A in
Fig. 9.9(a), but those curved segments are
not part of the boundary of A. Are the black
straight line portions of the boundary in (d)
part of the boundary of A? Explain.

DIP4E_GLOBAL_Print_Ready.indb 693 6/16/2017 2:12:29 PM

694 Chapter 9 Morphological Image Processing

9.18 Show all intermediate steps of your computations
for the following:

(a) * Obtain the opening of the figure below using
a 3 3× SE of 1’s. Do all operations manually.

(b) Repeat (a) for the closing operation.

A

B

9.19 A is a solid rectangle of 1’s of size M N× with a
1-pixel border of 0’s, and m and n below are odd
integers. Discuss what the result will be in each
case.

(a) * A is opened with a structuring element of 1’s
of size m n× .

(b) A is closed with a structuring element of 1’s
of size m n× .

9.20 Show the validity of the following duality expres-
sions [these are Eqs. (9-14) and (9-15)]:

(a) * A B A B
c c

� �() = ˆ .

(b) A B A B
c c

� �() = ˆ .

9.21 Show the validity of the following expressions:

(a) * A B� is a subset of A. You may assume that
Eq. (9-12) is valid. (Hint: Start with this equa-
tion and Fig. 9.8.)

(b) * If C is a subset of D, then C B� is a subset of
D B� . [Hint: Start with Eq. (9-12).]

(c) A B B A B� � �() = . [Hint: Start with the
definition of opening.]

9.22 Show the validity of the following expressions.
(Hint: Study the solution to Problem 9.21.)

(a) A is a subset of A B� .

(b) If C is a subset of D, then C B� is a subset
of D B� .

(c) A B B A B� � �() = .

9.23 Refer to the image and the disk structuring ele-
ment shown in the lower right of the image. Sketch
what the sets C, D, E, and F would look like for
the following sequence of operations: C A B= | ;
D C B= { ; E D B= { ; and F E B= | . Set A
consists of all the foreground pixels (white),

except the structuring element, B, which you may
assume is just large enough to encompass any of
the random elements in the image. Note that the
sequence of operations above is simply the open-
ing of A by B followed by a closing of the result
by B.

9.24 * Assume that SE B2 in Fig. 9.12 has a border of
foreground pixels that is more than one pixel
wide. Assuming that all four sides of the border
are the same, what is the maximum width of a
border we can use around B2 before the solution
shown in Fig. 9.12(f) fails?

9.25 We mentioned when discussing Fig. 9.12(e) that
the image had been cropped for consistency.
Assume that Fig. 9.12(b) was padded with the
minimum border required to encompass the
maximum excursions of B2 after which no further
changes would occur in the erosion. What did
Fig. 9.12(e) look like before it was cropped?

9.26 Sketch the result of applying the hit-or-miss
transform to the image below, using the SE shown.
Indicate clearly the origin and border you select-
ed for the structuring element.

Image Structuring element

DIP4E_GLOBAL_Print_Ready.indb 694 6/16/2017 2:12:31 PM

 Problems 695

9.27 * Give the foundation of an algorithm for convert-
ing an 8-connected, closed curve to a 4-connected
curve (see Section 2.5 regarding connectivity).
The input is a binary image, I, in which the curve
consists of 1-valued pixels embedded in a back-
ground of 0’s. The output should be a binary image
also, containing the new curve. You may assume
that the curve is fully connected, is one pixel thick,
and has no branches. You do not need to (but you
may) state the algorithm in a step-by-step man-
ner. An overall plan containing all the information
needed to implement a working algorithm is suf-
ficient.

9.28 Give the foundation of an algorithm for convert-
ing a 4-connected closed curve to a curve con-
taining only 8-connected pixels (see Section 2.5
regarding connectivity). The input is a binary
image, I, in which the curve consists of 1-valued
pixels embedded in a background of 0’s. The
output should be a binary image also, containing
the new curve. You may assume that the curve is
fully connected, it is one-pixel-wide, and has no
branches. You do not need to (but you may) state
the algorithm in a step-by-step manner. An over-
all plan containing all the information needed to
implement a working algorithm is sufficient.

9.29 Give the foundation of an algorithm for convert-
ing an 8-connected closed curve to an m-connect-
ed curve (see Section 2.5 regarding connectiv-
ity). The input is a binary image, I, in which the
curve consists of 1-valued pixels embedded in a
background of 0’s. The output should be a binary
image also, containing the new curve. You may
assume that the curve is fully connected, it is one-
pixel-wide, and has no branches. You do not need
to (but you may) state the algorithm in a step-
by-step manner. An overall plan containing all
the information needed to implement a working
algorithm is sufficient.

9.30 * Three curve types (lake, bay, and line segment)
useful for differentiating thinned objects in an
image are shown in the following figure. Develop
a morphological/logical algorithm for differentiat-
ing between these shapes. The input to your algo-
rithm would be one of these three curves. The out-
put must be the type of the input. You may assume
that the curves are 1 pixel thick and are fully con-
nected. They can appear in any orientation.

Lake Bay Line segment

9.31 Write Eq. (9-18) in terms of a dilation, instead of
an erosion, of A. (Hint: Take a look at the defini-
tion of set difference in Eq. (2-40) and then con-
sider the duality relationship between erosion
and dilation.)

9.32 Answer the following:

(a) * Discuss the effect of using the structuring
element in Fig. 9.17(c) for boundary extrac-
tion, instead of the element in Fig. 9.15(b).

(b) What would be the effect of using a 3 3×
structuring element composed of all 1’s in the
hole filling algorithm of Eq. (9-19), instead of
the structuring element in Fig. 9.17(c)?

9.33 Discuss what you would expect the result to be in
each of the following cases:

(a) * The starting point of the hole filling algo-
rithm of Eq. (9-19) is a point on the outer
boundary of the object containing the hole.

(b) The starting point in the hole filling algo-
rithm is outside of the boundary (i.e., the
starting point is a background pixel).

9.34 Sketch the convex hull of the large figure in Prob-
lem 9.9. Assume that L = 3 pixels.

9.35 Obtain the convex deficiency of set A shown in
Fig. 9.21(b). Use the convex hull in Fig. 9.22(a).

9.36 Do the following:

(a) * Propose a method using any of the methods
developed in this chapter for automating the
example in Fig. 9.18. You may assume that
the spheres do not touch each other and that
none touch the border of the image.

(b) Repeat (a), but allowing the spheres to touch
in arbitrary ways, including the border.

DIP4E_GLOBAL_Print_Ready.indb 695 6/16/2017 2:12:31 PM

696 Chapter 9 Morphological Image Processing

9.37 * The algorithm for extracting connected compo-
nents discussed in Section 9.5 requires that a point
be known in each connected component in order
to extract them all. Suppose that you are given a
binary image containing an arbitrary (unknown)
number of connected components. Propose a
completely automated procedure for extracting
all connected components. Assume that points
belonging to connected components are labeled
1 and background points are labeled 0.

9.38 Give an expression based on reconstruction by
dilation capable of extracting all the holes in a
binary image.

9.39 With reference to the hole-filling algorithm in
Eqs. (9-45) and (9-46):

(a) * Explain what would happen if all border
points of I are 1 (foreground).

(b) If the result in (a) gives the result that you
would expect, explain why. If it does not,
explain how you would modify the algorithm
so that it works as expected.

9.40 * As explained in Eqs. (9-44) and (9-69), opening by
reconstruction preserves the shape of the image
components that remain after erosion. What does
closing by reconstruction do?

9.41 Show that geodesic erosion and dilation (Sec-
tion 9.6) are duals with respect to set comple-
mentation. That is, assuming that the structuring
element is symmetric about its origin, show that:

(a) * E F D D FG
n

G G

n c
c

c c
() () −()() = ()⎡

⎣
⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

1 1 and, conversely, that

(b) D F E E FG
n

G G

n c
c

c c
() () −()() = ()⎡

⎣
⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

1 1 .

(Hint: Use proof by induction.)

9.42 Show that reconstruction by dilation and recon-
struction by erosion (Section 9.6) are duals with
respect to set complementation. That is, assum-
ing that the structuring element is symmetric
about its origin, show that R F R FG

D
G
E c

c

c() = ()⎡
⎣

⎤
⎦ and,

conversely, that R F R FG
E

G
D c

c

c() = ()⎡
⎣

⎤
⎦ . (Hint: Consider

using the results from Problem 9.41.)

9.43 Show that:

(a) * F nB F nB
c c| {() = ˆ , where F nB| indicates

n successive erosions, starting with B; and
similarly, that

(b) F nB F nB
c c{ |() = ˆ .

9.44 Show the validity of the following binary morpho-

logical expressions. You may assume that the struc-
turing element is symmetric about its origin.

(a) * O F C FR
n

R
n c

c() ()() = ()⎡
⎣

⎤
⎦ .

(b) C F O FR
n

R
n c

c() ()() = ()⎡
⎣

⎤
⎦ .

9.45 Prove the validity of the following grayscale mor-
phological expressions. Recall from the discus-
sion in Section 9.8 that f x y f x yc(,) (,)= − and
that ˆ(,) (,).b x y b x y= − −

(a) * () .f b f bc| {=

(b) f b f b
c c{ |() = ˆ.

(c) f b f b
c c

� �() = ˆ.

(d) * f b f b
c c

� �() = ˆ.

9.46 Prove the validity of the following gray-
scale morphological expressions. Recall that
f x y f x yc(,) (,)= − and that ˆ(,) (,).b x y b x y= − −
(Hint: Use proof by induction.)

(a) * D f E E fg
n

g g

n c
c

c c
() () −()() = ⎡

⎣
⎤
⎦

1 1[()] . Assume a symmetric
structuring element.

(b) E f D D fg
n

g g

n c
c

c c
() () −()() = ⎡

⎣
⎤
⎦

1 1[()] . Assume a symmetric
structuring element.

9.47 Prove the validity of the following grayscale mor-
phological expressions.

(a) * R f R fg
D

g
E c

c

c() = ()⎡
⎣

⎤
⎦ .

(b) R f R fg
E

g
D c

c

c() = ()⎡
⎣

⎤
⎦ .

9.48 Prove the validity of the following grayscale mor-
phological expressions.

(a) * f nb f nb
c c| {() = ()ˆ , where f nb|() indicates

n successive erosions, starting with b.

(b) f nb f nb
c c{ |() = ()ˆ .

9.49 Prove the validity of the following gray-
scale morphological expressions. Recall that
f x y f x yc(,) (,)= − and that ˆ(,) (,).b x y b x y= − −

Assume a symmetric structuring element.

(a) * O f C fR
n

R
n c

c() ()() = ()⎡
⎣

⎤
⎦ .

(b) C f O fR
n

R
n c

c() ()() = ()⎡
⎣

⎤
⎦ .

9.50 Consider the image below, which shows a region
of small circles enclosed by a region of larger
circles.

(a) Would you expect the method used to gen-
erate Fig. 9.45(d) to work with this image
also? Explain your reasoning, including any

DIP4E_GLOBAL_Print_Ready.indb 696 6/16/2017 2:12:34 PM

 Problems 697

assumptions that you need to make for the
method to work.

(b) * If your answer to (a) is yes, sketch what the
boundary will look like.

9.51 A preprocessing step in an application of mi-
croscopy is concerned with the issue of isolating
individual round particles from similar particles
that overlap in groups of two or more particles
(see the following image). Assuming that all parti-
cles are of the same size, propose a morphological
algorithm that produces three images consisting
respectively of:

(a) * Only particles that have merged with the
boundary of the image.

(b) Only overlapping particles.

(c) Only nonoverlapping particles.

9.52 A high-technology manufacturing plant is award-
ed a government contract to manufacture high-
precision washers of the form shown. The terms
of the contract require that the shape of all wash-
ers be inspected by an imaging system. In this con-
text, shape inspection refers to deviations from
round on the inner and outer edges of the wash-
ers. You may assume the following: (1) A “golden”
(perfect with respect to the problem) image of an
acceptable washer is available; and (2) the imag-
ing and positioning components ultimately used
in the system will have an accuracy high enough
to allow you to ignore errors due to digitalization
and positioning. You are hired as a consultant to
help specify the visual inspection part of the sys-
tem. Propose a solution based on morphological/
logical operations.

DIP4E_GLOBAL_Print_Ready.indb 697 6/16/2017 2:12:34 PM

DIP4E_GLOBAL_Print_Ready.indb 4 6/16/2017 2:01:57 PM

This page intentionally left blank

699

10 Image Segmentation

Preview
The material in the previous chapter began a transition from image processing methods whose inputs
and outputs are images, to methods in which the inputs are images but the outputs are attributes extract-
ed from those images. Most of the segmentation algorithms in this chapter are based on one of two basic
properties of image intensity values: discontinuity and similarity. In the first category, the approach is
to partition an image into regions based on abrupt changes in intensity, such as edges. Approaches in
the second category are based on partitioning an image into regions that are similar according to a set
of predefined criteria. Thresholding, region growing, and region splitting and merging are examples of
methods in this category. We show that improvements in segmentation performance can be achieved
by combining methods from distinct categories, such as techniques in which edge detection is combined
with thresholding. We discuss also image segmentation using clustering and superpixels, and give an
introduction to graph cuts, an approach ideally suited for extracting the principal regions of an image.
This is followed by a discussion of image segmentation based on morphology, an approach that com-
bines several of the attributes of segmentation based on the techniques presented in the first part of the
chapter. We conclude the chapter with a brief discussion on the use of motion cues for segmentation.

Upon completion of this chapter, readers should:
 Understand the characteristics of various types

of edges found in practice.

 Understand how to use spatial filtering for
edge detection.

 Be familiar with other types of edge detection
methods that go beyond spatial filtering.

 Understand image thresholding using several
different approaches.

 Know how to combine thresholding and spa-
tial filtering to improve segmentation.

 Be familiar with region-based segmentation,
including clustering and superpixels.

 Understand how graph cuts and morphologi-
cal watersheds are used for segmentation.

 Be familiar with basic techniques for utilizing
motion in image segmentation.

The whole is equal to the sum of its parts.
Euclid

The whole is greater than the sum of its parts.
Max Wertheimer

DIP4E_GLOBAL_Print_Ready.indb 699 6/16/2017 2:12:34 PM

700 Chapter 10 Image Segmentation

10.1 FUNDAMENTALS

Let R represent the entire spatial region occupied by an image. We may view image
segmentation as a process that partitions R into n subregions, R R Rn1 2, , , ,… such
that

(a) R Ri
i

n

=
=

.
1
∪

(b) Ri is a connected set, for i n= 0 1 2, , , , .…

(c) R Ri j� = ∅ for all i and j, i j≠ .

(d) Q Ri() = TRUE for i n= 0 1 2, , , , .…
(e) Q R Ri j�() = FALSE for any adjacent regions Ri and Rj .

where Q Rk() is a logical predicate defined over the points in set Rk , and ∅ is the
null set. The symbols ´ and ¨ represent set union and intersection, respectively, as
defined in Section 2.6. Two regions Ri and Rj are said to be adjacent if their union
forms a connected set, as defined in Section 2.5. If the set formed by the union of two
regions is not connected, the regions are said to disjoint.

Condition (a) indicates that the segmentation must be complete, in the sense that
every pixel must be in a region. Condition (b) requires that points in a region be con-
nected in some predefined sense (e.g., the points must be 8-connected). Condition
(c) says that the regions must be disjoint. Condition (d) deals with the properties that
must be satisfied by the pixels in a segmented region—for example, Q Ri() = TRUE
if all pixels in Ri have the same intensity. Finally, condition (e) indicates that two
adjacent regions Ri and Rj must be different in the sense of predicate Q.†

Thus, we see that the fundamental problem in segmentation is to partition an
image into regions that satisfy the preceding conditions. Segmentation algorithms
for monochrome images generally are based on one of two basic categories dealing
with properties of intensity values: discontinuity and similarity. In the first category,
we assume that boundaries of regions are sufficiently different from each other, and
from the background, to allow boundary detection based on local discontinuities in
intensity. Edge-based segmentation is the principal approach used in this category.
Region-based segmentation approaches in the second category are based on parti-
tioning an image into regions that are similar according to a set of predefined criteria.

Figure 10.1 illustrates the preceding concepts. Figure 10.1(a) shows an image of a
region of constant intensity superimposed on a darker background, also of constant
intensity. These two regions comprise the overall image. Figure 10.1(b) shows the
result of computing the boundary of the inner region based on intensity discontinui-
ties. Points on the inside and outside of the boundary are black (zero) because there
are no discontinuities in intensity in those regions. To segment the image, we assign
one level (say, white) to the pixels on or inside the boundary, and another level (e.g.,
black) to all points exterior to the boundary. Figure 10.1(c) shows the result of such
a procedure. We see that conditions (a) through (c) stated at the beginning of this

† In general, Q can be a compound expression such as, “Q Ri() = TRUE if the average intensity of the pixels in
region Ri is less than mi AND if the standard deviation of their intensity is greater than si,” where mi and si
are specified constants.

10.1

DIP4E_GLOBAL_Print_Ready.indb 700 6/16/2017 2:12:37 PM

10.2 Point, Line, and Edge Detection 701

ba c
ed f

FIGURE 10.1
(a) Image of a
constant intensity
region.
(b) Boundary
based on intensity
discontinuities.
(c) Result of
segmentation.
(d) Image of a
texture region.
(e) Result of
intensity discon-
tinuity computa-
tions (note the
large number of
small edges).
(f) Result of
segmentation
based on region
properties.

section are satisfied by this result. The predicate of condition (d) is: If a pixel is on,
or inside the boundary, label it white; otherwise, label it black. We see that this predi-
cate is TRUE for the points labeled black or white in Fig. 10.1(c). Similarly, the two
segmented regions (object and background) satisfy condition (e).

The next three images illustrate region-based segmentation. Figure 10.1(d) is
similar to Fig. 10.1(a), but the intensities of the inner region form a textured pattern.
Figure 10.1(e) shows the result of computing intensity discontinuities in this image.
The numerous spurious changes in intensity make it difficult to identify a unique
boundary for the original image because many of the nonzero intensity changes are
connected to the boundary, so edge-based segmentation is not a suitable approach.
However, we note that the outer region is constant, so all we need to solve this seg-
mentation problem is a predicate that differentiates between textured and constant
regions. The standard deviation of pixel values is a measure that accomplishes this
because it is nonzero in areas of the texture region, and zero otherwise. Figure 10.1(f)
shows the result of dividing the original image into subregions of size 8 8× . Each
subregion was then labeled white if the standard deviation of its pixels was posi-
tive (i.e., if the predicate was TRUE), and zero otherwise. The result has a “blocky”
appearance around the edge of the region because groups of 8 8× squares were
labeled with the same intensity (smaller squares would have given a smoother
region boundary). Finally, note that these results also satisfy the five segmentation
conditions stated at the beginning of this section.

10.2 POINT, LINE, AND EDGE DETECTION

The focus of this section is on segmentation methods that are based on detecting
sharp, local changes in intensity. The three types of image characteristics in which

10.2

DIP4E_GLOBAL_Print_Ready.indb 701 6/16/2017 2:12:37 PM

702 Chapter 10 Image Segmentation

we are interested are isolated points, lines, and edges. Edge pixels are pixels at which
the intensity of an image changes abruptly, and edges (or edge segments) are sets of
connected edge pixels (see Section 2.5 regarding connectivity). Edge detectors are
local image processing tools designed to detect edge pixels. A line may be viewed as
a (typically) thin edge segment in which the intensity of the background on either
side of the line is either much higher or much lower than the intensity of the line
pixels. In fact, as we will discuss later, lines give rise to so-called “roof edges.” Finally,
an isolated point may be viewed as a foreground (background) pixel surrounded by
background (foreground) pixels.

BACKGROUND

As we saw in Section 3.5, local averaging smoothes an image. Given that averaging
is analogous to integration, it is intuitive that abrupt, local changes in intensity can
be detected using derivatives. For reasons that will become evident shortly, first- and
second-order derivatives are particularly well suited for this purpose.

Derivatives of a digital function are defined in terms of finite differences. There
are various ways to compute these differences but, as explained in Section 3.6, we
require that any approximation used for first derivatives (1) must be zero in areas
of constant intensity; (2) must be nonzero at the onset of an intensity step or ramp;
and (3) must be nonzero at points along an intensity ramp. Similarly, we require that
an approximation used for second derivatives (1) must be zero in areas of constant
intensity; (2) must be nonzero at the onset and end of an intensity step or ramp; and
(3) must be zero along intensity ramps. Because we are dealing with digital quanti-
ties whose values are finite, the maximum possible intensity change is also finite, and
the shortest distance over which a change can occur is between adjacent pixels.

We obtain an approximation to the first-order derivative at an arbitrary point x of
a one-dimensional function f x() by expanding the function f x x()+ � into a Taylor
series about x

f x x f x x
f x

x

x f x

x

x f x

x
() ()

()
!

()
!

()+ = + ∂
∂

+ () ∂
∂

+ () ∂
∂

+ ⋅� �
� �

2 2

2

3 3

32 3
⋅⋅ ⋅ ⋅ ⋅ ⋅

= () ∂
∂=

∑ �� x

n
f x

x

n n

n
n !

()

0

 (10-1)

where �x is the separation between samples of f. For our purposes, this separation
is measured in pixel units. Thus, following the convention in the book, �x = 1 for
the sample preceding x and �x = −1 for the sample following x. When �x = 1, Eq.
(10-1) becomes

f x f x
f x

x
f x

x

f x

x

n

n

() ()
()

!
()

!
()

!

+ = + ∂
∂

+ ∂
∂

+ ∂
∂

+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ∂

1
1
2

1
3

1

2

2

3

3

ff x

xn
n

()
∂=

∑
0

�
 (10-2)

When we refer to lines,
we are referring to thin
structures, typically just
a few pixels thick. Such
lines may correspond, for
example, to elements of
a digitized architectural
drawing, or roads in a
satellite image.

Remember, the notation
n! means “n factorial”:
n! = 1�2�· · ·� n.

Although this is an
expression of only one
variable, we used partial
derivatives notation for
consistency when we
discuss functions of two
variables later in this
section.

DIP4E_GLOBAL_Print_Ready.indb 702 6/16/2017 2:12:38 PM

10.2 Point, Line, and Edge Detection 703

Similarly, when �x = −1,

f x f x
f x

x
f x

x

f x

x
n

() ()
()

!
()

!
()− = − ∂

∂
+ ∂

∂
− ∂

∂
+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

=
−()

1
1
2

1
3

1

2

2

3

3

nn
f x

x

n

n
n !

()∂
∂=

∑
0

�
 (10-3)

In what follows, we compute intensity differences using just a few terms of the Taylor
series. For first-order derivatives we use only the linear terms, and we can form dif-
ferences in one of three ways.

The forward difference is obtained from Eq. (10-2):

∂

∂
= = + −f x

x
f x f x f x

()
() () ()� 1 (10-4)

where, as you can see, we kept only the linear terms. The backward difference is simi-
larly obtained by keeping only the linear terms in Eq. (10-3):

∂

∂
= = − −f x

x
f x f x f x

()
() () ()� 1 (10-5)

and the central difference is obtained by subtracting Eq. (10-3) from Eq. (10-2):

∂

∂
= = + − −f x

x
f x

f x f x()
()

() ()
�

1 1
2

 (10-6)

The higher terms of the series that we did not use represent the error between an
exact and an approximate derivative expansion. In general, the more terms we use
from the Taylor series to represent a derivative, the more accurate the approxima-
tion will be. To include more terms implies that more points are used in the approxi-
mation, yielding a lower error. However, it turns out that central differences have
a lower error for the same number of points (see Problem 10.1). For this reason,
derivatives are usually expressed as central differences.

The second order derivative based on a central difference, ∂ ∂2 2f x x() , is obtained
by adding Eqs. (10-2) and (10-3):

∂

∂
= = + − −

2

2 1 2 1
f x

x
f x f x f x f x

()
() () () ()�� + (10-7)

To obtain the third order, central derivative we need one more point on either side
of x. That is, we need the Taylor expansions for f x()+ 2 and f x(),− 2 which we
obtain from Eqs. (10-2) and (10-3) with �x = 2 and �x = −2, respectively. The strat-
egy is to combine the two Taylor expansions to eliminate all derivatives lower than
the third. The result after ignoring all higher-order terms [see Problem 10.2(a)] is

DIP4E_GLOBAL_Print_Ready.indb 703 6/16/2017 2:12:39 PM

704 Chapter 10 Image Segmentation

∂
∂

= = + − + + + − − −3

3

2 2 1 0 2 1 2
2

f x

x
f x

f x f x f x f x f x()
()

() () () () ()
��� (10-8)

Similarly [see Problem 10.2(b)], the fourth finite difference (the highest we use in
the book) after ignoring all higher order terms is given by

∂
∂

= = + − + + − − + −
4

4 2 4 1 6 4 1 2
f x

x
f x f x f x f x f x f x

()
() () () () () ()���� (10-9)

Table 10.1 summarizes the first four central derivatives just discussed. Note the
symmetry of the coefficients about the center point. This symmetry is at the root
of why central differences have a lower approximation error for the same number
of points than the other two differences. For two variables, we apply the results in
Table 10.1 to each variable independently. For example,

∂ ()

∂
= +() − () + −()

2

2 1 2 1
f x y

x
f x y f x y f x y

,
, , , (10-10)

and

∂ ()

∂
= +() − () + −()

2

2 1 2 1
f x y

y
f x y f x y f x y

,
, , , (10-11)

It is easily verified that the first and second-order derivatives in Eqs. (10-4)
through (10-7) satisfy the conditions stated at the beginning of this section regarding
derivatives of the first and second order. To illustrate this, consider Fig. 10.2. Part (a)
shows an image of various objects, a line, and an isolated point. Figure 10.2(b) shows
a horizontal intensity profile (scan line) through the center of the image, including
the isolated point. Transitions in intensity between the solid objects and the back-
ground along the scan line show two types of edges: ramp edges (on the left) and
step edges (on the right). As we will discuss later, intensity transitions involving thin
objects such as lines often are referred to as roof edges.

Figure 10.2(c) shows a simplified profile, with just enough points to make it possi-
ble for us to analyze manually how the first- and second-order derivatives behave as
they encounter a point, a line, and the edges of objects. In this diagram the transition

f x()+ 2 f x()+ 1 f x() f x()− 1 f x()− 2

2 f x�() 1 0 −1

f x��() 1 −2 1

2 f x���() 1 −2 0 2 −1

f x����() 1 −4 6 −4 1

TABLE 10.1
First four central
digital derivatives
(finite differenc-
es) for samples
taken uniformly,
�x = 1 units apart.

DIP4E_GLOBAL_Print_Ready.indb 704 6/16/2017 2:12:41 PM

10.2 Point, Line, and Edge Detection 705

Second derivative

First derivative

Intensity values

In
te

ns
it

y

5

7
6
5
4
3
2
1
0

5 4 3 2 1 0 0 0 6 0 0 0 0 1 3 1 0 0 0 0 7 7 7

�1�1�1�1�1 0 0 6 �6 0 0 0 1 2 �2�1 0 0 0 7 0 0 0

�1 0 0 0 0 1 0 6 �12 6 0 0 1 1 �4 1 1 0 0 7 �7 0 0

7

Ramp

Isolated point

Line

Flat segment

Step

ba
c

FIGURE 10.2
(a) Image.
(b) Horizontal
intensity profile
that includes the
isolated point
indicated by the
arrow.
(c) Subsampled
profile; the dashes
were added
for clarity. The
numbers in the
boxes are the
intensity values
of the dots shown
in the profile. The
derivatives were
obtained using
Eqs. (10-4) for the
first derivative
and Eq. (10-7) for
the second.

in the ramp spans four pixels, the noise point is a single pixel, the line is three pixels
thick, and the transition of the step edge takes place between adjacent pixels. The
number of intensity levels was limited to eight for simplicity.

Consider the properties of the first and second derivatives as we traverse the
profile from left to right. Initially, the first-order derivative is nonzero at the onset
and along the entire intensity ramp, while the second-order derivative is nonzero
only at the onset and end of the ramp. Because the edges of digital images resemble
this type of transition, we conclude that first-order derivatives produce “thick” edges,
and second-order derivatives much thinner ones. Next we encounter the isolated
noise point. Here, the magnitude of the response at the point is much stronger for
the second- than for the first-order derivative. This is not unexpected, because a
second-order derivative is much more aggressive than a first-order derivative in
enhancing sharp changes. Thus, we can expect second-order derivatives to enhance
fine detail (including noise) much more than first-order derivatives. The line in this
example is rather thin, so it too is fine detail, and we see again that the second deriva-
tive has a larger magnitude. Finally, note in both the ramp and step edges that the

DIP4E_GLOBAL_Print_Ready.indb 705 6/16/2017 2:12:41 PM

706 Chapter 10 Image Segmentation

second derivative has opposite signs (negative to positive or positive to negative)
as it transitions into and out of an edge. This “double-edge” effect is an important
characteristic that can be used to locate edges, as we will show later in this section.
As we move into the edge, the sign of the second derivative is used also to determine
whether an edge is a transition from light to dark (negative second derivative), or
from dark to light (positive second derivative)

In summary, we arrive at the following conclusions: (1) First-order derivatives gen-
erally produce thicker edges. (2) Second-order derivatives have a stronger response to
fine detail, such as thin lines, isolated points, and noise. (3) Second-order derivatives
produce a double-edge response at ramp and step transitions in intensity. (4) The sign
of the second derivative can be used to determine whether a transition into an edge is
from light to dark or dark to light.

The approach of choice for computing first and second derivatives at every pix-
el location in an image is to use spatial convolution. For the 3 3× filter kernel in
Fig. 10.3, the procedure is to compute the sum of products of the kernel coefficients
with the intensity values in the region encompassed by the kernel, as we explained
in Section 3.4. That is, the response of the filter at the center point of the kernel is

Z z z z

zk k
k

= + + +

=
=

∑

w w w

w

1 1 2 2 9 9

1

9

…

 (10-12)

where zk is the intensity of the pixel whose spatial location corresponds to the loca-
tion of the kth kernel coefficient.

DETECTION OF ISOLATED POINTS

Based on the conclusions reached in the preceding section, we know that point
detection should be based on the second derivative which, from the discussion in
Section 3.6, means using the Laplacian:

 ∇ = ∂
∂

+ ∂
∂

2
2

2

2

2f x y
f

x

f

y
(,) (10-13)

This equation is an
expansion of Eq. (3-35)
for a 3�3 kernel, valid
at one point, and using
simplified subscript
notation for the kernel
coefficients.

w1 w2 w3

w4 w5 w6

w7 w8 w9

FIGURE 10.3
A general 3 3×
spatial filter
kernel. The w’s
are the kernel
coefficients
(weights).

DIP4E_GLOBAL_Print_Ready.indb 706 6/16/2017 2:12:42 PM

10.2 Point, Line, and Edge Detection 707

where the partial derivatives are computed using the second-order finite differences
in Eqs. (10-10) and (10-11). The Laplacian is then

 ∇ () = + + − + + + − −2 1 1 1 1 4f x y f x y f x y f x y f x y f x y, (,) (,) (,) (,) (,) (10-14)

As explained in Section 3.6, this expression can be implemented using the Lapla-
cian kernel in Fig. 10.4(a) in Example 10.1. We then we say that a point has been
detected at a location (,)x y on which the kernel is centered if the absolute value of
the response of the filter at that point exceeds a specified threshold. Such points are
labeled 1 and all others are labeled 0 in the output image, thus producing a binary
image. In other words, we use the expression:

 g x y
Z x y T

(,)
(,)

=
>⎧

⎨
⎩

1

0

if

otherwise
 (10-15)

where g x y(,) is the output image, T is a nonnegative threshold, and Z is given by
Eq. (10-12). This formulation simply measures the weighted differences between a
pixel and its 8-neighbors. Intuitively, the idea is that the intensity of an isolated point
will be quite different from its surroundings, and thus will be easily detectable by
this type of kernel. Differences in intensity that are considered of interest are those
large enough (as determined by T) to be considered isolated points. Note that, as
usual for a derivative kernel, the coefficients sum to zero, indicating that the filter
response will be zero in areas of constant intensity.

EXAMPLE 10.1 : Detection of isolated points in an image.

Figure 10.4(b) is an X-ray image of a turbine blade from a jet engine. The blade has a porosity mani-
fested by a single black pixel in the upper-right quadrant of the image. Figure 10.4(c) is the result of fil-
tering the image with the Laplacian kernel, and Fig. 10.4(d) shows the result of Eq. (10-15) with T equal
to 90% of the highest absolute pixel value of the image in Fig. 10.4(c). The single pixel is clearly visible
in this image at the tip of the arrow (the pixel was enlarged to enhance its visibility). This type of detec-
tion process is specialized because it is based on abrupt intensity changes at single-pixel locations that
are surrounded by a homogeneous background in the area of the detector kernel. When this condition
is not satisfied, other methods discussed in this chapter are more suitable for detecting intensity changes.

LINE DETECTION

The next level of complexity is line detection. Based on the discussion earlier in this
section, we know that for line detection we can expect second derivatives to result
in a stronger filter response, and to produce thinner lines than first derivatives. Thus,
we can use the Laplacian kernel in Fig. 10.4(a) for line detection also, keeping in
mind that the double-line effect of the second derivative must be handled properly.
The following example illustrates the procedure.

DIP4E_GLOBAL_Print_Ready.indb 707 6/16/2017 2:12:42 PM

708 Chapter 10 Image Segmentation

EXAMPLE 10.2 : Using the Laplacian for line detection.

Figure 10.5(a) shows a 486 486× (binary) portion of a wire-bond mask for an electronic circuit, and
Fig. 10.5(b) shows its Laplacian image. Because the Laplacian image contains negative values (see the
discussion after Example 3.18), scaling is necessary for display. As the magnified section shows, mid gray
represents zero, darker shades of gray represent negative values, and lighter shades are positive. The
double-line effect is clearly visible in the magnified region.

At first, it might appear that the negative values can be handled simply by taking the absolute value
of the Laplacian image. However, as Fig. 10.5(c) shows, this approach doubles the thickness of the lines.
A more suitable approach is to use only the positive values of the Laplacian (in noisy situations we use
the values that exceed a positive threshold to eliminate random variations about zero caused by the
noise). As Fig. 10.5(d) shows, this approach results in thinner lines that generally are more useful. Note
in Figs. 10.5(b) through (d) that when the lines are wide with respect to the size of the Laplacian kernel,
the lines are separated by a zero “valley.” This is not unexpected. For example, when the 3 3× kernel is
centered on a line of constant intensity 5 pixels wide, the response will be zero, thus producing the effect
just mentioned. When we talk about line detection, the assumption is that lines are thin with respect to
the size of the detector. Lines that do not satisfy this assumption are best treated as regions and handled
by the edge detection methods discussed in the following section.

The Laplacian detector kernel in Fig. 10.4(a) is isotropic, so its response is inde-
pendent of direction (with respect to the four directions of the 3 3× kernel: verti-
cal, horizontal, and two diagonals). Often, interest lies in detecting lines in specified

1

1

1

1

�8

1

1

1

1

b
a

dc

FIGURE 10.4
(a) Laplacian ker-
nel used for point
detection.
(b) X-ray image
of a turbine blade
with a porosity
manifested by a
single black pixel.
(c) Result of con-
volving the kernel
with the image.
(d) Result of
using Eq. (10-15)
was a single point
(shown enlarged
at the tip of the
arrow). (Original
image courtesy of
X-TEK Systems,
Ltd.)

DIP4E_GLOBAL_Print_Ready.indb 708 6/16/2017 2:12:43 PM

10.2 Point, Line, and Edge Detection 709

ba
dc

FIGURE 10.5
(a) Original
image.
(b) Laplacian
image; the
magnified
section shows the
positive/negative
double-line effect
characteristic of
the Laplacian.
(c) Absolute value
of the Laplacian.
(d) Positive values
of the Laplacian.

directions. Consider the kernels in Fig. 10.6. Suppose that an image with a constant
background and containing various lines (oriented at 0°, ± °45 , and 90°) is filtered
with the first kernel. The maximum responses would occur at image locations in
which a horizontal line passes through the middle row of the kernel. This is easily
verified by sketching a simple array of 1’s with a line of a different intensity (say, 5s)
running horizontally through the array. A similar experiment would reveal that the
second kernel in Fig. 10.6 responds best to lines oriented at + °45 ; the third kernel
to vertical lines; and the fourth kernel to lines in the − °45 direction. The preferred
direction of each kernel is weighted with a larger coefficient (i.e., 2) than other possi-
ble directions. The coefficients in each kernel sum to zero, indicating a zero response
in areas of constant intensity.

Let Z Z Z1 2 3, , , and Z4 denote the responses of the kernels in Fig. 10.6, from left
to right, where the Zs are given by Eq. (10-12). Suppose that an image is filtered
with these four kernels, one at a time. If, at a given point in the image, Z Zk j> ,
for all j k≠ , that point is said to be more likely associated with a line in the direc-
tion of kernel k. For example, if at a point in the image, Z Zj1 > for j = 2 3 4, , , that

DIP4E_GLOBAL_Print_Ready.indb 709 6/16/2017 2:12:44 PM

710 Chapter 10 Image Segmentation

point is said to be more likely associated with a horizontal line. If we are interested
in detecting all the lines in an image in the direction defined by a given kernel, we
simply run the kernel through the image and threshold the absolute value of the
result, as in Eq. (10-15). The nonzero points remaining after thresholding are the
strongest responses which, for lines one pixel thick, correspond closest to the direc-
tion defined by the kernel. The following example illustrates this procedure.

EXAMPLE 10.3 : Detecting lines in specified directions.

Figure 10.7(a) shows the image used in the previous example. Suppose that we are interested in find-
ing all the lines that are one pixel thick and oriented at + °45 . For this purpose, we use the kernel in
Fig. 10.6(b). Figure 10.7(b) is the result of filtering the image with that kernel. As before, the shades
darker than the gray background in Fig. 10.7(b) correspond to negative values. There are two principal
segments in the image oriented in the + °45 direction, one in the top left and one at the bottom right. Fig-
ures 10.7(c) and (d) show zoomed sections of Fig. 10.7(b) corresponding to these two areas. The straight
line segment in Fig. 10.7(d) is brighter than the segment in Fig. 10.7(c) because the line segment in the
bottom right of Fig. 10.7(a) is one pixel thick, while the one at the top left is not. The kernel is “tuned”
to detect one-pixel-thick lines in the + °45 direction, so we expect its response to be stronger when such
lines are detected. Figure 10.7(e) shows the positive values of Fig. 10.7(b). Because we are interested in
the strongest response, we let T equal 254 (the maximum value in Fig. 10.7(e) minus one). Figure 10.7(f)
shows in white the points whose values satisfied the condition g T> , where g is the image in Fig. 10.7(e).
The isolated points in the figure are points that also had similarly strong responses to the kernel. In the
original image, these points and their immediate neighbors are oriented in such a way that the kernel
produced a maximum response at those locations. These isolated points can be detected using the kernel
in Fig. 10.4(a) and then deleted, or they can be deleted using morphological operators, as discussed in the
last chapter.

EDGE MODELS

Edge detection is an approach used frequently for segmenting images based on
abrupt (local) changes in intensity. We begin by introducing several ways to model
edges and then discuss a number of approaches for edge detection.

ba c d

FIGURE 10.6 Line detection kernels. Detection angles are with respect to the axis system in Fig. 2.19, with positive
angles measured counterclockwise with respect to the (vertical) x-axis.

�1

2

�1

Horizontal Vertical	45� �45�

�1

2

�1

�1

2

�1

2

�1

�1

�1

2

�1

�1

�1

2

�1

�1

�1

2

2

2

�1

�1

�1

�1

�1

2

�1

2

�1

2

�1

�1

DIP4E_GLOBAL_Print_Ready.indb 710 6/16/2017 2:12:44 PM

10.2 Point, Line, and Edge Detection 711

ba c
ed f

FIGURE 10.7 (a) Image of a wire-bond template. (b) Result of processing with the + °45 line detector kernel in Fig.
10.6. (c) Zoomed view of the top left region of (b). (d) Zoomed view of the bottom right region of (b). (e) The image
in (b) with all negative values set to zero. (f) All points (in white) whose values satisfied the condition g T> , where
g is the image in (e) and T = 254 (the maximum pixel value in the image minus 1). (The points in (f) were enlarged
to make them easier to see.)

Edge models are classified according to their intensity profiles. A step edge is
characterized by a transition between two intensity levels occurring ideally over the
distance of one pixel. Figure 10.8(a) shows a section of a vertical step edge and
a horizontal intensity profile through the edge. Step edges occur, for example, in
images generated by a computer for use in areas such as solid modeling and ani-
mation. These clean, ideal edges can occur over the distance of one pixel, provided
that no additional processing (such as smoothing) is used to make them look “real.”
Digital step edges are used frequently as edge models in algorithm development.
For example, the Canny edge detection algorithm discussed later in this section was
derived originally using a step-edge model.

In practice, digital images have edges that are blurred and noisy, with the degree
of blurring determined principally by limitations in the focusing mechanism (e.g.,
lenses in the case of optical images), and the noise level determined principally by
the electronic components of the imaging system. In such situations, edges are more

DIP4E_GLOBAL_Print_Ready.indb 711 6/16/2017 2:12:45 PM

712 Chapter 10 Image Segmentation

ba c

FIGURE 10.8
From left to right,
models (ideal
representations) of
a step, a ramp, and
a roof edge, and
their corresponding
intensity profiles.

closely modeled as having an intensity ramp profile, such as the edge in Fig. 10.8(b).
The slope of the ramp is inversely proportional to the degree to which the edge is
blurred. In this model, we no longer have a single “edge point” along the profile.
Instead, an edge point now is any point contained in the ramp, and an edge segment
would then be a set of such points that are connected.

A third type of edge is the so-called roof edge, having the characteristics illus-
trated in Fig. 10.8(c). Roof edges are models of lines through a region, with the
base (width) of the edge being determined by the thickness and sharpness of the
line. In the limit, when its base is one pixel wide, a roof edge is nothing more than
a one-pixel-thick line running through a region in an image. Roof edges arise, for
example, in range imaging, when thin objects (such as pipes) are closer to the sensor
than the background (such as walls). The pipes appear brighter and thus create an
image similar to the model in Fig. 10.8(c). Other areas in which roof edges appear
routinely are in the digitization of line drawings and also in satellite images, where
thin features, such as roads, can be modeled by this type of edge.

It is not unusual to find images that contain all three types of edges. Although
blurring and noise result in deviations from the ideal shapes, edges in images that
are reasonably sharp and have a moderate amount of noise do resemble the charac-
teristics of the edge models in Fig. 10.8, as the profiles in Fig. 10.9 illustrate. What the
models in Fig. 10.8 allow us to do is write mathematical expressions for edges in the
development of image processing algorithms. The performance of these algorithms
will depend on the differences between actual edges and the models used in devel-
oping the algorithms.

Figure 10.10(a) shows the image from which the segment in Fig. 10.8(b) was extract-
ed. Figure 10.10(b) shows a horizontal intensity profile. This figure shows also the first
and second derivatives of the intensity profile. Moving from left to right along the
intensity profile, we note that the first derivative is positive at the onset of the ramp
and at points on the ramp, and it is zero in areas of constant intensity. The second
derivative is positive at the beginning of the ramp, negative at the end of the ramp,
zero at points on the ramp, and zero at points of constant intensity. The signs of the
derivatives just discussed would be reversed for an edge that transitions from light to
dark. The intersection between the zero intensity axis and a line extending between
the extrema of the second derivative marks a point called the zero crossing of the
second derivative.

We conclude from these observations that the magnitude of the first derivative
can be used to detect the presence of an edge at a point in an image. Similarly, the
sign of the second derivative can be used to determine whether an edge pixel lies on

DIP4E_GLOBAL_Print_Ready.indb 712 6/16/2017 2:12:45 PM

10.2 Point, Line, and Edge Detection 713

FIGURE 10.9 A 1508 1970× image showing (zoomed) actual ramp (bottom, left), step (top,
right), and roof edge profiles. The profiles are from dark to light, in the areas enclosed by the
small circles. The ramp and step profiles span 9 pixels and 2 pixels, respectively. The base of the
roof edge is 3 pixels. (Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)

Second
derivative

First
derivative

Horizontal intensity
profile

Zero crossing

ba
FIGURE 10.10
(a) Two regions of
constant
intensity
separated by an
ideal ramp edge.
(b) Detail near
the edge, showing
a horizontal
intensity profile,
and its first and
second
derivatives.

the dark or light side of an edge. Two additional properties of the second derivative
around an edge are: (1) it produces two values for every edge in an image; and (2)
its zero crossings can be used for locating the centers of thick edges, as we will show
later in this section. Some edge models utilize a smooth transition into and out of

DIP4E_GLOBAL_Print_Ready.indb 713 6/16/2017 2:12:45 PM

714 Chapter 10 Image Segmentation

the ramp (see Problem 10.9). However, the conclusions reached using those models
are the same as with an ideal ramp, and working with the latter simplifies theoretical
formulations. Finally, although attention thus far has been limited to a 1-D horizon-
tal profile, a similar argument applies to an edge of any orientation in an image. We
simply define a profile perpendicular to the edge direction at any desired point, and
interpret the results in the same manner as for the vertical edge just discussed.

EXAMPLE 10.4 : Behavior of the first and second derivatives in the region of a noisy edge.

The edge models in Fig. 10.8 are free of noise. The image segments in the first column in Fig. 10.11 show
close-ups of four ramp edges that transition from a black region on the left to a white region on the right
(keep in mind that the entire transition from black to white is a single edge). The image segment at the
top left is free of noise. The other three images in the first column are corrupted by additive Gaussian
noise with zero mean and standard deviation of 0.1, 1.0, and 10.0 intensity levels, respectively. The graph
below each image is a horizontal intensity profile passing through the center of the image. All images
have 8 bits of intensity resolution, with 0 and 255 representing black and white, respectively.

Consider the image at the top of the center column. As discussed in connection with Fig. 10.10(b), the
derivative of the scan line on the left is zero in the constant areas. These are the two black bands shown
in the derivative image. The derivatives at points on the ramp are constant and equal to the slope of the
ramp. These constant values in the derivative image are shown in gray. As we move down the center col-
umn, the derivatives become increasingly different from the noiseless case. In fact, it would be difficult
to associate the last profile in the center column with the first derivative of a ramp edge. What makes
these results interesting is that the noise is almost visually undetectable in the images on the left column.
These examples are good illustrations of the sensitivity of derivatives to noise.

As expected, the second derivative is even more sensitive to noise. The second derivative of the noise-
less image is shown at the top of the right column. The thin white and black vertical lines are the positive
and negative components of the second derivative, as explained in Fig. 10.10. The gray in these images
represents zero (as discussed earlier, scaling causes zero to show as gray). The only noisy second deriva-
tive image that barely resembles the noiseless case corresponds to noise with a standard deviation of 0.1.
The remaining second-derivative images and profiles clearly illustrate that it would be difficult indeed to
detect their positive and negative components, which are the truly useful features of the second deriva-
tive in terms of edge detection.

The fact that such little visual noise can have such a significant impact on the two key derivatives
used for detecting edges is an important issue to keep in mind. In particular, image smoothing should be
a serious consideration prior to the use of derivatives in applications where noise with levels similar to
those we have just discussed is likely to be present.

In summary, the three steps performed typically for edge detection are:

1. Image smoothing for noise reduction. The need for this step is illustrated by the
results in the second and third columns of Fig. 10.11.

2. Detection of edge points. As mentioned earlier, this is a local operation that
extracts from an image all points that are potential edge-point candidates.

3. Edge localization. The objective of this step is to select from the candidate
points only the points that are members of the set of points comprising an edge.

The remainder of this section deals with techniques for achieving these objectives.

DIP4E_GLOBAL_Print_Ready.indb 714 6/16/2017 2:12:45 PM

10.2 Point, Line, and Edge Detection 715

FIGURE 10.11 First column: 8-bit images with values in the range [,],0 255 and intensity profiles
of a ramp edge corrupted by Gaussian noise of zero mean and standard deviations of 0.0, 0.1,
1.0, and 10.0 intensity levels, respectively. Second column: First-derivative images and inten-
sity profiles. Third column: Second-derivative images and intensity profiles.

DIP4E_GLOBAL_Print_Ready.indb 715 6/16/2017 2:12:46 PM

716 Chapter 10 Image Segmentation

BASIC EDGE DETECTION

As illustrated in the preceding discussion, detecting changes in intensity for the pur-
pose of finding edges can be accomplished using first- or second-order derivatives.
We begin with first-order derivatives, and work with second-order derivatives in the
following subsection.

The Image Gradient and Its Properties

The tool of choice for finding edge strength and direction at an arbitrary location
(,)x y of an image, f, is the gradient, denoted by
f and defined as the vector

 ∇ ≡ [] ≡
⎡

⎣
⎢

⎤

⎦
⎥ =

∂
∂

∂f x y f x y
g x y

g x y

f x y
x

f x y
x

y
(,) (,)

(,)

(,)

(,)

(,)
grad

∂∂

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥y

 (10-16)

This vector has the well-known property that it points in the direction of maximum
rate of change of f at (,)x y (see Problem 10.10). Equation (10-16) is valid at an
arbitrary (but single) point (,).x y When evaluated for all applicable values of x
and y,
f x y(,) becomes a vector image, each element of which is a vector given by
Eq. (10-16). The magnitude, M x y(,), of this gradient vector at a point (,)x y is given
by its Euclidean vector norm:

 M x y f x y g x y g x yx y(,) (,) (,) (,)= ∇ = +2 2 (10-17)

This is the value of the rate of change in the direction of the gradient vector at point
(,).x y Note that M x y(,),
f x y(,) , g x yx(,), and g x yy(,) are arrays of the same
size as f, created when x and y are allowed to vary over all pixel locations in f. It is
common practice to refer to M x y(,) and
f x y(,) as the gradient image, or simply
as the gradient when the meaning is clear. The summation, square, and square root
operations are elementwise operations, as defined in Section 2.6.

The direction of the gradient vector at a point (,)x y is given by

 a(,) tan
(,)

(,)
x y

g x y

g x y
y

x

=
⎡

⎣
⎢

⎤

⎦
⎥

−1 (10-18)

Angles are measured in the counterclockwise direction with respect to the x-axis
(see Fig. 2.19). This is also an image of the same size as f, created by the elementwise
division of gx and gy over all applicable values of x and y. The following example
illustrates, the direction of an edge at a point (,)x y is orthogonal to the direction,
a(,),x y of the gradient vector at the point.

EXAMPLE 10.5 : Computing the gradient.

Figure 10.12(a) shows a zoomed section of an image containing a straight edge segment. Each square
corresponds to a pixel, and we are interested in obtaining the strength and direction of the edge at the
point highlighted with a box. The shaded pixels in this figure are assumed to have value 0, and the white

For convenience, we
repeat here some of the
gradient concepts and
equations introduced in
Chapter 3.

DIP4E_GLOBAL_Print_Ready.indb 716 6/16/2017 2:12:48 PM

10.2 Point, Line, and Edge Detection 717

pixels have value 1. We discuss after this example an approach for computing the derivatives in the x-
and y-directions using a 3 3× neighborhood centered at a point. The method consists of subtracting the
pixels in the top row of the neighborhood from the pixels in the bottom row to obtain the partial deriva-
tive in the x-direction. Similarly, we subtract the pixels in the left column from the pixels in the right col-
umn of the neighborhood to obtain the partial derivative in the y-direction. It then follows, using these
differences as our estimates of the partials, that ∂ ∂ = −f x 2 and ∂ ∂ =f y 2 at the point in question. Then,

 ∇ =
⎡

⎣
⎢

⎤

⎦
⎥ =

∂
∂
∂
∂

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
−⎡

⎣
⎢

⎤

⎦
⎥f

g

g

f
x
f
y

x

y

2

2

from which we obtain
f = 2 2 at that point. Similarly, the direction of the gradient vector at the
same point follows from Eq. (10-18): a = () = − °−tan ,1 45g gy x which is the same as 135° measured in
the positive (counterclockwise) direction with respect to the x-axis in our image coordinate system (see
Fig. 2.19). Figure 10.12(b) shows the gradient vector and its direction angle.

As mentioned earlier, the direction of an edge at a point is orthogonal to the gradient vector at that
point. So the direction angle of the edge in this example is a − ° = ° − ° = °90 135 90 45 , as Fig. 10.12(c)
shows. All edge points in Fig. 10.12(a) have the same gradient, so the entire edge segment is in the same
direction. The gradient vector sometimes is called the edge normal. When the vector is normalized to unit
length by dividing it by its magnitude, the resulting vector is referred to as the edge unit normal.

Gradient Operators

Obtaining the gradient of an image requires computing the partial derivatives ∂ ∂f x
and ∂ ∂f y at every pixel location in the image. For the gradient, we typically use a
forward or centered finite difference (see Table 10.1). Using forward differences we
obtain

 g x y
f x y

x
f x y f x yx(,)

(,)
(,) (,)= ∂

∂
= + −1 (10-19)

x

y

Gradient vector Gradient vector

Edge direction

a
a � 90�

a

Origin

ba c

FIGURE 10.12 Using the gradient to determine edge strength and direction at a point. Note that the edge direction
is perpendicular to the direction of the gradient vector at the point where the gradient is computed. Each square
represents one pixel. (Recall from Fig. 2.19 that the origin of our coordinate system is at the top, left.)

DIP4E_GLOBAL_Print_Ready.indb 717 6/16/2017 2:12:49 PM

718 Chapter 10 Image Segmentation

and

 g x y
f x y

y
f x y f x yy(,)

(,)
(,) (,)= ∂

∂
= + −1 (10-20)

These two equations can be implemented for all values of x and y by filtering f x y(,)
with the 1-D kernels in Fig. 10.13.

When diagonal edge direction is of interest, we need 2-D kernels. The Roberts
cross-gradient operators (Roberts [1965]) are one of the earliest attempts to use 2-D
kernels with a diagonal preference. Consider the 3 3× region in Fig. 10.14(a). The
Roberts operators are based on implementing the diagonal differences

 g
f
x

z zx = ∂
∂

= −()9 5 (10-21)

and

 g
f
y

z zy = ∂
∂

= −()8 6 (10-22)

These derivatives can be implemented by filtering an image with the kernels shown
in Figs. 10.14(b) and (c).

Kernels of size 2 2× are simple conceptually, but they are not as useful for com-
puting edge direction as kernels that are symmetric about their centers, the smallest
of which are of size 3 3× . These kernels take into account the nature of the data on
opposite sides of the center point, and thus carry more information regarding the
direction of an edge. The simplest digital approximations to the partial derivatives
using kernels of size 3 3× are given by

 g
f
x

z z z z z zx = ∂
∂

= + + − + +() ()7 8 9 1 2 3

and (10-23)

 g
f
y

z z z z z zy = ∂
∂

= + + − + +() ()3 6 9 1 4 7

In this formulation, the difference between the third and first rows of the 3 3× region
approximates the derivative in the x-direction, and the difference between the third
and first columns approximate the derivative in the y-direction. Intuitively, we would
expect these approximations to be more accurate than the approximations obtained
using the Roberts operators. Equations (10-22) and (10-23) can be implemented over
an entire image by filtering it with the two kernels in Figs. 10.14(d) and (e). These
kernels are called the Prewitt operators (Prewitt [1970]).

A slight variation of the preceding two equations uses a weight of 2 in the center
coefficient:

Filter kernels used to
compute the derivatives
needed for the gradient
are often called gradient
operators, difference
operators, edge operators,
or edge detectors.

Observe that these two
equations are first-order
central differences as
given in Eq. (10-6), but
multiplied by 2.

�1

1

�1 1
ba

FIGURE 10.13
1-D kernels used to
implement Eqs.
(10-19) and (10-20).

DIP4E_GLOBAL_Print_Ready.indb 718 6/16/2017 2:12:50 PM

10.2 Point, Line, and Edge Detection 719

z1 z2 z3

z4 z5 z6

z7 z8 z9

�1 0

0 1

0 �1

1 0

�1 �1 �1

0 0 0

1 1 1

�1 0 1

�1 0 1

�1 0 1

�1 �2 �1

0 0 0

1 2 1

�1 0 1

�2 0 2

�1 0 1

Roberts

Prewitt

Sobel

gf
ed
cb

a

FIGURE 10.14
A 3 3× region
of an image (the
z’s are intensity
values), and
various kernels
used to compute
the gradient at the
point labeled z5.

 g
f
x

z z z z z zx = ∂
∂

= + + − + +() ()7 8 9 1 2 32 2 (10-24)

and

 g
f
y

z z z z z zy = ∂
∂

= + + − + +() ()3 6 9 1 4 72 2 (10-25)

It can be demonstrated (see Problem 10.12) that using a 2 in the center location pro-
vides image smoothing. Figures 10.14(f) and (g) show the kernels used to implement
Eqs. (10-24) and (10-25). These kernels are called the Sobel operators (Sobel [1970]).

The Prewitt kernels are simpler to implement than the Sobel kernels, but the
slight computational difference between them typically is not an issue. The fact
that the Sobel kernels have better noise-suppression (smoothing) characteristics
makes them preferable because, as mentioned earlier in the discussion of Fig. 10.11,
noise suppression is an important issue when dealing with derivatives. Note that the

DIP4E_GLOBAL_Print_Ready.indb 719 6/16/2017 2:12:51 PM

720 Chapter 10 Image Segmentation

coefficients of all the kernels in Fig. 10.14 sum to zero, thus giving a response of zero
in areas of constant intensity, as expected of derivative operators.

Any of the pairs of kernels from Fig. 10.14 are convolved with an image to obtain
the gradient components gx and gy at every pixel location. These two partial deriva-
tive arrays are then used to estimate edge strength and direction. Obtaining the
magnitude of the gradient requires the computations in Eq. (10-17). This imple-
mentation is not always desirable because of the computational burden required
by squares and square roots, and an approach used frequently is to approximate the
magnitude of the gradient by absolute values:

 M x y g gx y(,) ≈ + (10-26)

This equation is more attractive computationally, and it still preserves relative
changes in intensity levels. The price paid for this advantage is that the resulting
filters will not be isotropic (invariant to rotation) in general. However, this is not an
issue when kernels such as the Prewitt and Sobel kernels are used to compute gx
and gy because these kernels give isotropic results only for vertical and horizontal
edges. This means that results would be isotropic only for edges in those two direc-
tions anyway, regardless of which of the two equations is used. That is, Eqs. (10-17)
and (10-26) give identical results for vertical and horizontal edges when either the
Sobel or Prewitt kernels are used (see Problem 10.11).

The 3 3× kernels in Fig. 10.14 exhibit their strongest response predominantly for
vertical and horizontal edges. The Kirsch compass kernels (Kirsch [1971]) in Fig. 10.15,
are designed to detect edge magnitude and direction (angle) in all eight compass
directions. Instead of computing the magnitude using Eq. (10-17) and angle using
Eq. (10-18), Kirsch’s approach was to determine the edge magnitude by convolv-
ing an image with all eight kernels and assign the edge magnitude at a point as the
response of the kernel that gave strongest convolution value at that point. The edge
angle at that point is then the direction associated with that kernel. For example, if
the strongest value at a point in the image resulted from using the north (N) kernel,
the edge magnitude at that point would be assigned the response of that kernel, and
the direction would be 0° (because compass kernel pairs differ by a rotation of 180°;
choosing the maximum response will always result in a positive number). Although
when working with, say, the Sobel kernels, we think of a north or south edge as
being vertical, the N and S compass kernels differentiate between the two, the differ-
ence being the direction of the intensity transitions defining the edge. For example,
assuming that intensity values are in the range [,],0 1 the binary edge in Fig. 10.8(a)
is defined by black (0) on the left and white (1) on the right. When all Kirsch kernels
are applied to this edge, the N kernel will yield the highest value, thus indicating an
edge oriented in the north direction (at the point of the computation).

EXAMPLE 10.6 : Illustration of the 2-D gradient magnitude and angle.

Figure 10.16 illustrates the Sobel absolute value response of the two components of the gradient, gx
and gy , as well as the gradient image formed from the sum of these two components. The directionality
of the horizontal and vertical components of the gradient is evident in Figs. 10.16(b) and (c). Note, for

Recall the important
result in Problem 3.32
that using a kernel
whose coefficients sum
to zero produces a
filtered image whose
pixels also sum to zero.
This implies in general
that some pixels will be
negative. Similarly, if the
kernel coefficients sum
to 1, the sum of pixels in
the original and filtered
images will be the same
(see Problem 3.31).

DIP4E_GLOBAL_Print_Ready.indb 720 6/16/2017 2:12:52 PM

10.2 Point, Line, and Edge Detection 721

example, how strong the roof tile, horizontal brick joints, and horizontal segments of the windows are in
Fig. 10.16(b) compared to other edges. In contrast, Fig. 10.16(c) favors features such as the vertical com-
ponents of the façade and windows. It is common terminology to use the term edge map when referring
to an image whose principal features are edges, such as gradient magnitude images. The intensities of the
image in Fig. 10.16(a) were scaled to the range [,].0 1 We use values in this range to simplify parameter
selection in the various methods for edge detection discussed in this section.

ba dc
f he g

FIGURE 10.15
Kirsch compass
kernels. The edge
direction of
strongest response
of each kernel is
labeled below it.

0 0 0 0

0 0 0 0

N NW W SW

S SE E NE

5 5

5

5 5

5

5

5 �3

�3

�3

�3�3

�3�3�3

�3�3

�3

�3�3

�3

5

5 555555

5

5

5

5

5

5

55

�3

�3

�3�3

�3

�3

�3

�3

�3�3�3

�3 �3

�3

�3

�3 �3 �3

�3

�3

�3

�3�3�3

�3

�3

�1

1

�1 1

ba
dc

FIGURE 10.16
 (a) Image of size
834 1114× pixels,
with intensity
values scaled to
the range [,].0 1
(b) gx , the
component of
the gradient in
the x-direction,
obtained using the
Sobel kernel in
Fig. 10.14(f) to
filter the image.
(c) gy , obtained
using the kernel
in Fig. 10.14(g).
(d) The gradient
image, g gx y+ .

DIP4E_GLOBAL_Print_Ready.indb 721 6/16/2017 2:12:53 PM

722 Chapter 10 Image Segmentation

FIGURE 10.17
Gradient angle
image computed
using Eq. (10-18).
Areas of constant
intensity in this
image indicate
that the direction
of the gradient
vector is the same
at all the pixel
locations in those
regions.

Figure 10.17 shows the gradient angle image computed using Eq. (10-18). In general, angle images are
not as useful as gradient magnitude images for edge detection, but they do complement the information
extracted from an image using the magnitude of the gradient. For instance, the constant intensity areas
in Fig. 10.16(a), such as the front edge of the sloping roof and top horizontal bands of the front wall,
are constant in Fig. 10.17, indicating that the gradient vector direction at all the pixel locations in those
regions is the same. As we will show later in this section, angle information plays a key supporting role
in the implementation of the Canny edge detection algorithm, a widely used edge detection scheme.

The original image in Fig. 10.16(a) is of reasonably high resolution, and at the
distance the image was acquired, the contribution made to image detail by the wall
bricks is significant. This level of fine detail often is undesirable in edge detection
because it tends to act as noise, which is enhanced by derivative computations and
thus complicates detection of the principal edges. One way to reduce fine detail is
to smooth the image prior to computing the edges. Figure 10.18 shows the same
sequence of images as in Fig. 10.16, but with the original image smoothed first using
a 5 5× averaging filter (see Section 3.5 regarding smoothing filters). The response
of each kernel now shows almost no contribution due to the bricks, with the results
being dominated mostly by the principal edges in the image.

Figures 10.16 and 10.18 show that the horizontal and vertical Sobel kernels do
not differentiate between edges in the ± °45 directions. If it is important to empha-
size edges oriented in particular diagonal directions, then one of the Kirsch kernels
in Fig. 10.15 should be used. Figures 10.19(a) and (b) show the responses of the 45°
(NW) and −45° (SW) Kirsch kernels, respectively. The stronger diagonal selectivity
of these kernels is evident in these figures. Both kernels have similar responses to
horizontal and vertical edges, but the response in these directions is weaker.

Combining the Gradient with Thresholding

The results in Fig. 10.18 show that edge detection can be made more selective by
smoothing the image prior to computing the gradient. Another approach aimed
at achieving the same objective is to threshold the gradient image. For example,
Fig. 10.20(a) shows the gradient image from Fig. 10.16(d), thresholded so that pix-
els with values greater than or equal to 33% of the maximum value of the gradi-
ent image are shown in white, while pixels below the threshold value are shown in

The threshold used to
generate Fig. 10.20(a)
was selected so that most
of the small edges caused
by the bricks were
eliminated. This was the
same objective as when
the image in Fig. 10.16(a)
was smoothed prior to
computing the gradient.

DIP4E_GLOBAL_Print_Ready.indb 722 6/16/2017 2:12:53 PM

10.2 Point, Line, and Edge Detection 723

ba
dc

FIGURE 10.18
Same sequence as
in Fig. 10.16, but
with the original
image smoothed
using a 5 5× aver-
aging kernel prior
to edge detection.

black. Comparing this image with Fig. 10.16(d), we see that there are fewer edges
in the thresholded image, and that the edges in this image are much sharper (see,
for example, the edges in the roof tile). On the other hand, numerous edges, such
as the sloping line defining the far edge of the roof (see arrow), are broken in the
thresholded image.

When interest lies both in highlighting the principal edges and on maintaining
as much connectivity as possible, it is common practice to use both smoothing and
thresholding. Figure 10.20(b) shows the result of thresholding Fig. 10.18(d), which is
the gradient of the smoothed image. This result shows a reduced number of broken
edges; for instance, compare the corresponding edges identified by the arrows in
Figs. 10.20(a) and (b).

ba

FIGURE 10.19
Diagonal edge
detection.
(a) Result of using
the Kirsch kernel in
Fig. 10.15(c).
(b) Result of using
the kernel in Fig.
10.15(d). The input
image in both cases
was Fig. 10.18(a).

DIP4E_GLOBAL_Print_Ready.indb 723 6/16/2017 2:12:54 PM

724 Chapter 10 Image Segmentation

MORE ADVANCED TECHNIQUES FOR EDGE DETECTION

The edge-detection methods discussed in the previous subsections are based on fil-
tering an image with one or more kernels, with no provisions made for edge char-
acteristics and noise content. In this section, we discuss more advanced techniques
that attempt to improve on simple edge-detection methods by taking into account
factors such as image noise and the nature of edges themselves.

The Marr-Hildreth Edge Detector

One of the earliest successful attempts at incorporating more sophisticated analy-
sis into the edge-finding process is attributed to Marr and Hildreth [1980]. Edge-
detection methods in use at the time were based on small operators, such as the
Sobel kernels discussed earlier. Marr and Hildreth argued (1) that intensity chang-
es are not independent of image scale, implying that their detection requires using
operators of different sizes; and (2) that a sudden intensity change will give rise to a
peak or trough in the first derivative or, equivalently, to a zero crossing in the second
derivative (as we saw in Fig. 10.10).

These ideas suggest that an operator used for edge detection should have two
salient features. First and foremost, it should be a differential operator capable of
computing a digital approximation of the first or second derivative at every point in
the image. Second, it should be capable of being “tuned” to act at any desired scale,
so that large operators can be used to detect blurry edges and small operators to
detect sharply focused fine detail.

Marr and Hildreth suggested that the most satisfactory operator fulfilling these
conditions is the filter
2G where, as defined in Section 3.6,
2 is the Laplacian, and
G is the 2-D Gaussian function

 G x y e
x y

(,) =
− +2 2

22s (10-27)

with standard deviation s (sometimes s is called the space constant in this context).
We find an expression for
2G by applying the Laplacian to Eq. (10-27):

Equation (10-27) differs
from the definition of a
Gaussian function by a
multiplicative constant
[see Eq. (3-45)]. Here,
we are interested only in
the general shape of the
Gaussian function.

ba

FIGURE 10.20
(a) Result of
thresholding
Fig. 10.16(d), the
gradient of the
original image.
(b) Result of
thresholding
Fig. 10.18(d), the
gradient of the
smoothed image.

DIP4E_GLOBAL_Print_Ready.indb 724 6/16/2017 2:12:55 PM

10.2 Point, Line, and Edge Detection 725

∇ = ∂
∂

+ ∂
∂

= ∂
∂

− + ∂
∂

−− +

2
2

2

2

2

2
2

2 2

2

G x y
G x y

x

G x y

y

x
x

e
y

x y

(,)
(,) (,)

a b a
s

s
yy

e

x
e

y
e

x y

x y x y

s

s s s s

s

s s

2
2

2

4 2
2

2

4 2
2

2 2

2

2 2

2

2 2

21 1

− +

− + − +

= − + −

b

a b a b

 (10-28)

Collecting terms, we obtain

 ∇ = + − − +
2

2 2 2

4
22
2 2

2
G x y

x y
e

x y

(,) a bs

s
s (10-29)

This expression is called the Laplacian of a Gaussian (LoG).
Figures 10.21(a) through (c) show a 3-D plot, image, and cross-section of the

negative of the LoG function (note that the zero crossings of the LoG occur at
x y2 2 22+ = s , which defines a circle of radius 2s centered on the peak of the
Gaussian function). Because of the shape illustrated in Fig. 10.21(a), the LoG func-
tion sometimes is called the Mexican hat operator. Figure 10.21(d) shows a 5 5×
kernel that approximates the shape in Fig. 10.21(a) (normally, we would use the neg-
ative of this kernel). This approximation is not unique. Its purpose is to capture the
essential shape of the LoG function; in terms of Fig. 10.21(a), this means a positive,
central term surrounded by an adjacent, negative region whose values decrease as a
function of distance from the origin, and a zero outer region. The coefficients must
sum to zero so that the response of the kernel is zero in areas of constant intensity.

Filter kernels of arbitrary size (but fixed s) can be generated by sampling Eq. (10-29),
and scaling the coefficients so that they sum to zero. A more effective approach for
generating a LoG kernel is sampling Eq. (10-27) to the desired size, then convolving
the resulting array with a Laplacian kernel, such as the kernel in Fig. 10.4(a). Because
convolving an image with a kernel whose coefficients sum to zero yields an image
whose elements also sum to zero (see Problems 3.32 and 10.16), this approach auto-
matically satisfies the requirement that the sum of the LoG kernel coefficients be
zero. We will discuss size selection for LoG filter later in this section.

There are two fundamental ideas behind the selection of the operator ∇2G. First,
the Gaussian part of the operator blurs the image, thus reducing the intensity of
structures (including noise) at scales much smaller than s. Unlike the averaging
filter used in Fig. 10.18, the Gaussian function is smooth in both the spatial and
frequency domains (see Section 4.8), and is thus less likely to introduce artifacts
(e.g., ringing) not present in the original image. The other idea concerns the second-
derivative properties of the Laplacian operator, ∇2. Although first derivatives can
be used for detecting abrupt changes in intensity, they are directional operators. The
Laplacian, on the other hand, has the important advantage of being isotropic (invari-
ant to rotation), which not only corresponds to characteristics of the human visual
system (Marr [1982]) but also responds equally to changes in intensity in any kernel

DIP4E_GLOBAL_Print_Ready.indb 725 6/16/2017 2:12:55 PM

726 Chapter 10 Image Segmentation

direction, thus avoiding having to use multiple kernels to calculate the strongest
response at any point in the image.

The Marr-Hildreth algorithm consists of convolving the LoG kernel with an input
image,

 g x y G x y f x y(,) (,) (,)= ⎡⎣ ⎤⎦
2
� (10-30)

and then finding the zero crossings of g x y(,) to determine the locations of edges in
f x y(,). Because the Laplacian and convolution are linear processes, we can write
Eq. (10-30) as

 g x y G x y f x y(,) (,) (,)= ∇ []2
� (10-31)

indicating that we can smooth the image first with a Gaussian filter and then com-
pute the Laplacian of the result. These two equations give identical results.

The Marr-Hildreth edge-detection algorithm may be summarized as follows:

1. Filter the input image with an n n× Gaussian lowpass kernel obtained by sam-
pling Eq. (10-27).

2. Compute the Laplacian of the image resulting from Step 1 using, for example,
the 3 3× kernel in Fig. 10.4(a). [Steps 1 and 2 implement Eq. (10-31).]

3. Find the zero crossings of the image from Step 2.

This expression is
implemented in the
spatial domain using
Eq. (3-35). It can be
implemented also in the
frequency domain using
Eq. (4-104).

0 0 �1 0 0

0 �1 �2 �1 0

�1 �2 16 �2 �1

0 �1 �2 �1 0

0 0 �1 0 0

x y

2G

2G

Zero crossingZero crossing

2s2

ba
dc

FIGURE 10.21
(a) 3-D plot of
the negative of the
LoG.
(b) Negative of
the LoG
displayed as an
image.
(c) Cross section
of (a) showing
zero crossings.
(d) 5 5× kernel
approximation to
the shape in (a).
The negative
of this kernel
would be used in
practice.

DIP4E_GLOBAL_Print_Ready.indb 726 6/16/2017 2:12:57 PM

10.2 Point, Line, and Edge Detection 727

To specify the size of the Gaussian kernel, recall from our discussion of Fig. 3.35 that
the values of a Gaussian function at a distance larger than 3s from the mean are
small enough so that they can be ignored. As discussed in Section 3.5, this implies
using a Gaussian kernel of size L M L M6 6s s× , where L M6s denotes the ceiling of 6s; that
is, smallest integer not less than 6s. Because we work with kernels of odd dimen-
sions, we would use the smallest odd integer satisfying this condition. Using a kernel
smaller than this will “truncate” the LoG function, with the degree of truncation
being inversely proportional to the size of the kernel. Using a larger kernel would
make little difference in the result.

One approach for finding the zero crossings at any pixel, p, of the filtered image,
g x y(,), is to use a 3 3× neighborhood centered at p. A zero crossing at p implies
that the signs of at least two of its opposing neighboring pixels must differ. There are
four cases to test: left/right, up/down, and the two diagonals. If the values of g x y(,)
are being compared against a threshold (a common approach), then not only must
the signs of opposing neighbors be different, but the absolute value of their numeri-
cal difference must also exceed the threshold before we can call p a zero-crossing
pixel. We illustrate this approach in Example 10.7.

Computing zero crossings is the key feature of the Marr-Hildreth edge-detection
method. The approach discussed in the previous paragraph is attractive because of
its simplicity of implementation and because it generally gives good results. If the
accuracy of the zero-crossing locations found using this method is inadequate in a
particular application, then a technique proposed by Huertas and Medioni [1986]
for finding zero crossings with subpixel accuracy can be employed.

EXAMPLE 10.7 : Illustration of the Marr-Hildreth edge-detection method.

Figure 10.22(a) shows the building image used earlier and Fig. 10.22(b) is the result of Steps 1 and 2 of
the Marr-Hildreth algorithm, using s = 4 (approximately 0.5% of the short dimension of the image)
and n = 25 to satisfy the size condition stated above. As in Fig. 10.5, the gray tones in this image are due
to scaling. Figure 10.22(c) shows the zero crossings obtained using the 3 3× neighborhood approach just
discussed, with a threshold of zero. Note that all the edges form closed loops. This so-called “spaghetti
effect” is a serious drawback of this method when a threshold value of zero is used (see Problem 10.17).
We avoid closed-loop edges by using a positive threshold.

Figure 10.22(d) shows the result of using a threshold approximately equal to 4% of the maximum
value of the LoG image. The majority of the principal edges were readily detected, and “irrelevant” fea-
tures, such as the edges due to the bricks and the tile roof, were filtered out. This type of performance
is virtually impossible to obtain using the gradient-based edge-detection techniques discussed earlier.
Another important consequence of using zero crossings for edge detection is that the resulting edges are
1 pixel thick. This property simplifies subsequent stages of processing, such as edge linking.

It is possible to approximate the LoG function in Eq. (10-29) by a difference of
Gaussians (DoG):

 D x y e eG

x y x y
(,) = −− +

− +1
2

1
21

2 2

2
2 2

2 2

1
2

2 2

2
2

ps ps
s s (10-32)

As explained in Section
3.5, <⋅= and :⋅; denote the
ceiling and floor func-
tions. That is, the ceiling
and floor functions map
a real number to the
smallest following, or the
largest previous, integer,
respectively.

Attempts to find zero
crossings by finding the
coordinates (x, y) where
g(x, y) = 0 are impractical
because of noise and
other computational
inaccuracies.

DIP4E_GLOBAL_Print_Ready.indb 727 6/16/2017 2:12:59 PM

728 Chapter 10 Image Segmentation

ba
dc

FIGURE 10.22
(a) Image of size
834 1114× pixels,
with intensity
values scaled to the
range [0, 1].
(b) Result of
Steps 1 and 2 of
the Marr-Hildreth
algorithm using
s = 4 and n = 25.
(c) Zero cross-
ings of (b) using
a threshold of 0
(note the closed-
loop edges).
(d) Zero cross-
ings found using a
threshold equal to
4% of the maxi-
mum value of the
image in (b). Note
the thin edges.

with s s1 2> . Experimental results suggest that certain “channels” in the human
vision system are selective with respect to orientation and frequency, and can be
modeled using Eq. (10-32) with a ratio of standard deviations of 1.75:1. Using the
ratio 1.6:1 preserves the basic characteristics of these observations and also pro-
vides a closer “engineering” approximation to the LoG function (Marr and Hil-
dreth [1980]). In order for the LoG and DoG to have the same zero crossings, the
value of s for the LoG must be selected based on the following equation (see
Problem 10.19):

 s
s s

s s

s

s

2 1
2

2
2

1
2

2
2

1
2

2
2=

−
⎡

⎣
⎢

⎤

⎦
⎥ln (10-33)

 Although the zero crossings of the LoG and DoG will be the same when this value
of s is used, their amplitude scales will be different. We can make them compatible
by scaling both functions so that they have the same value at the origin.

The profiles in Figs. 10.23(a) and (b) were generated with standard devia-
tion ratios of 1:1.75 and 1:1.6, respectively (by convention, the curves shown are
inverted, as in Fig. 10.21). The LoG profiles are the solid lines, and the DoG profiles
are dotted. The curves shown are intensity profiles through the center of the LoG
and DoG arrays, generated by sampling Eqs. (10-29) and (10-32), respectively. The
amplitude of all curves at the origin were normalized to 1. As Fig. 10.23(b) shows,
the ratio 1:1.6 yielded a slightly closer approximation of the LoG and DoG func-
tions (for example, compare the bottom lobes of the two figures).

DIP4E_GLOBAL_Print_Ready.indb 728 6/16/2017 2:12:59 PM

10.2 Point, Line, and Edge Detection 729

ba

FIGURE 10.23
(a) Negatives of
the LoG (solid)
and DoG
(dotted) profiles
using a s ratio of
1.75:1. (b) Profiles
obtained using a
ratio of 1.6:1.

Gaussian kernels are separable (see Section 3.4). Therefore, both the LoG and
the DoG filtering operations can be implemented with 1-D convolutions instead of
using 2-D convolutions directly (see Problem 10.19). For an image of size M N×
and a kernel of size n n× , doing so reduces the number of multiplications and addi-
tions for each convolution from being proportional to n MN2 for 2-D convolutions
to being proportional to nMN for 1-D convolutions. This implementation difference
is significant. For example, if n = 25, a 1-D implementation will require on the order
of 12 times fewer multiplication and addition operations than using 2-D convolution.

The Canny Edge Detector

Although the algorithm is more complex, the performance of the Canny edge detec-
tor (Canny [1986]) discussed in this section is superior in general to the edge detec-
tors discussed thus far. Canny’s approach is based on three basic objectives:

1. Low error rate. All edges should be found, and there should be no spurious
responses.

2. Edge points should be well localized. The edges located must be as close as pos-
sible to the true edges. That is, the distance between a point marked as an edge
by the detector and the center of the true edge should be minimum.

3. Single edge point response. The detector should return only one point for each
true edge point. That is, the number of local maxima around the true edge should
be minimum. This means that the detector should not identify multiple edge pix-
els where only a single edge point exists.

The essence of Canny’s work was in expressing the preceding three criteria math-
ematically, and then attempting to find optimal solutions to these formulations. In
general, it is difficult (or impossible) to find a closed-form solution that satisfies
all the preceding objectives. However, using numerical optimization with 1-D step
edges corrupted by additive white Gaussian noise† led to the conclusion that a good
approximation to the optimal step edge detector is the first derivative of a Gaussian,

d
dx

e
x

e
x x− −= −2

2

2

22 2 2s s

s
 (10-34)

† Recall that white noise is noise having a frequency spectrum that is continuous and uniform over a specified
frequency band. White Gaussian noise is white noise in which the distribution of amplitude values is Gaussian.
Gaussian white noise is a good approximation of many real-world situations and generates mathematically
tractable models. It has the useful property that its values are statistically independent.

DIP4E_GLOBAL_Print_Ready.indb 729 6/16/2017 2:13:00 PM

730 Chapter 10 Image Segmentation

where the approximation was only about 20% worse that using the optimized
numerical solution (a difference of this magnitude generally is visually impercep-
tible in most applications).

Generalizing the preceding result to 2-D involves recognizing that the 1-D
approach still applies in the direction of the edge normal (see Fig. 10.12). Because
the direction of the normal is unknown beforehand, this would require applying the
1-D edge detector in all possible directions. This task can be approximated by first
smoothing the image with a circular 2-D Gaussian function, computing the gradient
of the result, and then using the gradient magnitude and direction to estimate edge
strength and direction at every point.

Let f x y(,) denote the input image and G x y(,) denote the Gaussian function:

 G x y e
x y

(,) =
− +2 2

22s (10-35)

We form a smoothed image, f x ys(,), by convolving f and G:

 f x y G x ys f x y(,) (,) (,)= � (10-36)

This operation is followed by computing the gradient magnitude and direction
(angle), as discussed earlier:

 M x y f x y g x y g x ys s x y(,) (,) (,) (,)= = +
 2 2 (10-37)

and

 a(,) tan
(,)

(,)
x y

g x y

g x y
y

x

=
⎡

⎣
⎢

⎤

⎦
⎥

−1 (10-38)

with g x y f x y xx s(,) (,)= ∂ ∂ and g x y f x y yy s(,) (,) .= ∂ ∂ Any of the derivative fil-
ter kernel pairs in Fig. 10.14 can be used to obtain g x yx(,) and g x yy(,). Equation
(10-36) is implemented using an n n× Gaussian kernel whose size is discussed below.
Keep in mind that
f x ys(,) and a(,)x y are arrays of the same size as the image
from which they are computed.

Gradient image
f x ys(,) typically contains wide ridges around local maxima.
The next step is to thin those ridges. One approach is to use nonmaxima suppres-
sion. The essence of this approach is to specify a number of discrete orientations of
the edge normal (gradient vector). For example, in a 3 3× region we can define four
orientations† for an edge passing through the center point of the region: horizontal,
vertical, + °,45 and − °.45 Figure 10.24(a) shows the situation for the two possible
orientations of a horizontal edge. Because we have to quantize all possible edge
directions into four ranges, we have to define a range of directions over which we
consider an edge to be horizontal. We determine edge direction from the direction
of the edge normal, which we obtain directly from the image data using Eq. (10-38).
As Fig. 10.24(b) shows, if the edge normal is in the range of directions from −22 5. ° to

† Every edge has two possible orientations. For example, an edge whose normal is oriented at 0° and an edge
whose normal is oriented at 180° are the same horizontal edge.

DIP4E_GLOBAL_Print_Ready.indb 730 6/16/2017 2:13:02 PM

10.2 Point, Line, and Edge Detection 731

22 5. ° or from −157 5. ° to 157 5. °, we call the edge a horizontal edge. Figure 10.24(c)
shows the angle ranges corresponding to the four directions under consideration.

Let d1, d2 , d3,and d4 denote the four basic edge directions just discussed for
a 3 3× region: horizontal, −45°, vertical, and +45°, respectively. We can formulate
the following nonmaxima suppression scheme for a 3 3× region centered at an
arbitrary point (,)x y in a :

1. Find the direction dk that is closest to a(,).x y
2. Let K denote the value of
fs at (,).x y If K is less than the value of
fs at one

or both of the neighbors of point (,)x y along dk , let g x yN (,) = 0 (suppression);
otherwise, let g x y KN (,) .=

When repeated for all values of x and y, this procedure yields a nonmaxima sup-
pressed image g x yN (,) that is of the same size as f x ys(,). For example, with reference
to Fig. 10.24(a), letting (,)x y be at p5, and assuming a horizontal edge through p5,
the pixels of interest in Step 2 would be p2 and p8. Image g x yN (,) contains only the
thinned edges; it is equal to image
f x ys(,) with the nonmaxima edge points sup-
pressed.

The final operation is to threshold g x yN (,) to reduce false edge points. In the
Marr-Hildreth algorithm we did this using a single threshold, in which all values
below the threshold were set to 0. If we set the threshold too low, there will still
be some false edges (called false positives). If the threshold is set too high, then
valid edge points will be eliminated (false negatives). Canny’s algorithm attempts to

p1 p2 p3

p4
p5 p6

p7

Edge normal

p8 p9

p1 p2 p3

p4 p5
p6

p7

Edge normal

p8 p9

Edge Edge normal
(gradient vector)

	22.5�

	157.5�

�22.5�

�157.5�

a

x

y

Vertical edge

Horizontal edge

	157.5�

	112.5�

	67.5�

	22.5�

	45�edge
�157.5�

�112.5�

�67.5�

�22.5�
0�

�45�edge

ba
c

FIGURE 10.24
(a) Two possible
orientations of a
horizontal edge
(shaded) in a 3 3×
neighborhood.
(b) Range of values
(shaded) of a, the
direction angle of
the edge normal
for a horizontal
edge. (c) The angle
ranges of the edge
normals for the
four types of edge
directions in a 3 3×
neighborhood.
Each edge direc-
tion has two ranges,
shown in corre-
sponding shades.

DIP4E_GLOBAL_Print_Ready.indb 731 6/16/2017 2:13:05 PM

732 Chapter 10 Image Segmentation

improve on this situation by using hysteresis thresholding which, as we will discuss
in Section 10.3, uses two thresholds: a low threshold, TL and a high threshold, TH .
Experimental evidence (Canny [1986]) suggests that the ratio of the high to low
threshold should be in the range of 2:1 to 3:1.

We can visualize the thresholding operation as creating two additional images:

 g x y g x y TNH N H(,) (,)= ≥ (10-39)

and

 g x y g x y TNL N L(,) (,)= ≥ (10-40)

Initially, g x yNH (,) and g x yNL(,) are set to 0. After thresholding, g x yNH (,) will usu-
ally have fewer nonzero pixels than g x yNL(,), but all the nonzero pixels in g x yNH (,)
will be contained in g x yNL(,) because the latter image is formed with a lower thresh-
old. We eliminate from g x yNL(,) all the nonzero pixels from g x yNH (,) by letting

 g x y g x y g x yNL NL NH(,) (,) (,)= − (10-41)

The nonzero pixels in g x yNH (,) and g x yNL(,) may be viewed as being “strong”
and “weak” edge pixels, respectively. After the thresholding operations, all strong
pixels in g x yNH (,) are assumed to be valid edge pixels, and are so marked imme-
diately. Depending on the value of TH , the edges in g x yNH (,) typically have gaps.
Longer edges are formed using the following procedure:

(a) Locate the next unvisited edge pixel, p, in g x yNH (,).

(b) Mark as valid edge pixels all the weak pixels in g x yNL(,) that are connected to
p using, say, 8-connectivity.

(c) If all nonzero pixels in g x yNH (,) have been visited go to Step (d). Else, return
to Step (a).

(d) Set to zero all pixels in g x yNL(,) that were not marked as valid edge pixels.

At the end of this procedure, the final image output by the Canny algorithm is
formed by appending to g x yNH (,) all the nonzero pixels from g x yNL(,).

We used two additional images, g x yNH (,) and g x yNL(,) to simplify the discussion.
In practice, hysteresis thresholding can be implemented directly during nonmaxima
suppression, and thresholding can be implemented directly on g x yN (,) by forming a
list of strong pixels and the weak pixels connected to them.

Summarizing, the Canny edge detection algorithm consists of the following steps:

1. Smooth the input image with a Gaussian filter.

2. Compute the gradient magnitude and angle images.

3. Apply nonmaxima suppression to the gradient magnitude image.

4. Use double thresholding and connectivity analysis to detect and link edges.

Although the edges after nonmaxima suppression are thinner than raw gradient edg-
es, the former can still be thicker than one pixel. To obtain edges one pixel thick, it is
typical to follow Step 4 with one pass of an edge-thinning algorithm (see Section 9.5).

DIP4E_GLOBAL_Print_Ready.indb 732 6/16/2017 2:13:07 PM

10.2 Point, Line, and Edge Detection 733

As mentioned earlier, smoothing is accomplished by convolving the input image
with a Gaussian kernel whose size, n n× , must be chosen. Once a value of s has
been specified, we can use the approach discussed in connection with the Marr-Hil-
dreth algorithm to determine an odd value of n that provides the “full” smoothing
capability of the Gaussian filter for the specified value of s.

Some final comments on implementation: As noted earlier in the discussion of
the Marr-Hildreth edge detector, the 2-D Gaussian function in Eq. (10-35) is sepa-
rable into a product of two 1-D Gaussians. Thus, Step 1 of the Canny algorithm can
be formulated as 1-D convolutions that operate on the rows (columns) of the image
one at a time, and then work on the columns (rows) of the result. Furthermore, if
we use the approximations in Eqs. (10-19) and (10-20), we can also implement the
gradient computations required for Step 2 as 1-D convolutions (see Problem 10.22).

EXAMPLE 10.8 : Illustration and comparison of the Canny edge-detection method.

Figure 10.25(a) shows the familiar building image. For comparison, Figs. 10.25(b) and (c) show, respec-
tively, the result in Fig. 10.20(b) obtained using the thresholded gradient, and Fig. 10.22(d) using the
Marr-Hildreth detector. Recall that the parameters used in generating those two images were selected
to detect the principal edges, while attempting to reduce “irrelevant” features, such as the edges of the
bricks and the roof tiles.

Figure 10.25(d) shows the result obtained with the Canny algorithm using the parameters TL = 0 04. ,
TH = 0 10. (2.5 times the value of the low threshold), s = 4, and a kernel of size 25 25× , which cor-
responds to the smallest odd integer not less than 6s. These parameters were chosen experimentally

Usually, selecting a
suitable value of s
for the first time in an
application requires
experimentation.

ba
dc

FIGURE 10.25
(a) Original image
of size 834 1114×
pixels, with
intensity values
scaled to the range
[,].0 1
(b) Thresholded
gradient of the
smoothed image.
(c) Image obtained
using the
Marr-Hildreth
algorithm.
(d) Image obtained
using the Canny
algorithm. Note the
significant
improvement of
the Canny image
compared to the
other two.

DIP4E_GLOBAL_Print_Ready.indb 733 6/16/2017 2:13:08 PM

734 Chapter 10 Image Segmentation

ba
dc

FIGURE 10.26
(a) Head CT image
of size 512 512×
pixels, with
intensity values
scaled to the range
[,].0 1
(b) Thresholded
gradient of the
smoothed image.
(c) Image obtained
using the Marr-Hil-
dreth algorithm.
(d) Image obtained
using the Canny
algorithm.
(Original image
courtesy of Dr.
David R. Pickens,
Vanderbilt
University.)

to achieve the objectives stated in the previous paragraph for the gradient and Marr-Hildreth images.
Comparing the Canny image with the other two images, we see in the Canny result significant improve-
ments in detail of the principal edges and, at the same time, more rejection of irrelevant features. For
example, note that both edges of the concrete band lining the bricks in the upper section of the image
were detected by the Canny algorithm, whereas the thresholded gradient lost both of these edges, and
the Marr-Hildreth method detected only the upper one. In terms of filtering out irrelevant detail, the
Canny image does not contain a single edge due to the roof tiles; this is not true in the other two images.
The quality of the lines with regard to continuity, thinness, and straightness is also superior in the Canny
image. Results such as these have made the Canny algorithm a tool of choice for edge detection.

EXAMPLE 10.9 : Another illustration of the three principal edge-detection methods discussed in this section.

As another comparison of the three principal edge-detection methods discussed in this section, consider
Fig. 10.26(a), which shows a 512 512× head CT image. Our objective is to extract the edges of the outer
contour of the brain (the gray region in the image), the contour of the spinal region (shown directly
behind the nose, toward the front of the brain), and the outer contour of the head. We wish to generate
the thinnest, continuous contours possible, while eliminating edge details related to the gray content in
the eyes and brain areas.

Figure 10.26(b) shows a thresholded gradient image that was first smoothed using a 5 5× averaging
kernel. The threshold required to achieve the result shown was 15% of the maximum value of the gradi-
ent image. Figure 10.26(c) shows the result obtained with the Marr-Hildreth edge-detection algorithm
with a threshold of 0.002, s = 3, and a kernel of size 19 19× . Figure 10.26(d) was obtained using the
Canny algorithm with TL = 0 05. ,TH = 0 15. (3 times the value of the low threshold), s = 2, and a kernel
of size 13 13× .

DIP4E_GLOBAL_Print_Ready.indb 734 6/16/2017 2:13:09 PM

10.2 Point, Line, and Edge Detection 735

In terms of edge quality and the ability to eliminate irrelevant detail, the results in Fig. 10.26 correspond
closely to the results and conclusions in the previous example. Note also that the Canny algorithm was
the only procedure capable of yielding a totally unbroken edge for the posterior boundary of the brain,
and the closest boundary of the spinal cord. It was also the only procedure capable of finding the cleanest
contours, while eliminating all the edges associated with the gray brain matter in the original image.

The price paid for the improved performance of the Canny algorithm is a sig-
nificantly more complex implementation than the two approaches discussed earlier.
In some applications, such as real-time industrial image processing, cost and speed
requirements usually dictate the use of simpler techniques, principally the thresh-
olded gradient approach. When edge quality is the driving force, the Marr-Hildreth
and Canny algorithms, especially the latter, offer superior alternatives.

LINKING EDGE POINTS

Ideally, edge detection should yield sets of pixels lying only on edges. In practice,
these pixels seldom characterize edges completely because of noise, breaks in the
edges caused by nonuniform illumination, and other effects that introduce disconti-
nuities in intensity values. Therefore, edge detection typically is followed by linking
algorithms designed to assemble edge pixels into meaningful edges and/or region
boundaries. In this section, we discuss two fundamental approaches to edge linking
that are representative of techniques used in practice. The first requires knowledge
about edge points in a local region (e.g., a 3 3× neighborhood), and the second
is a global approach that works with an entire edge map. As it turns out, linking
points along the boundary of a region is also an important aspect of some of the
segmentation methods discussed in the next chapter, and in extracting features from
a segmented image, as we will do in Chapter 11. Thus, you will encounter additional
edge-point linking methods in the next two chapters.

Local Processing

A simple approach for linking edge points is to analyze the characteristics of pixels
in a small neighborhood about every point (,)x y that has been declared an edge
point by one of the techniques discussed in the preceding sections. All points that
are similar according to predefined criteria are linked, forming an edge of pixels that
share common properties according to the specified criteria.

The two principal properties used for establishing similarity of edge pixels in this
kind of local analysis are (1) the strength (magnitude) and (2) the direction of the
gradient vector. The first property is based on Eq. (10-17). Let Sxy denote the set of
coordinates of a neighborhood centered at point (,)x y in an image. An edge pixel
with coordinates (,)s t in Sxy is similar in magnitude to the pixel at (,)x y if

 M s t M x y E(,) (,)− ≤ (10-42)

where E is a positive threshold.

DIP4E_GLOBAL_Print_Ready.indb 735 6/16/2017 2:13:10 PM

736 Chapter 10 Image Segmentation

The direction angle of the gradient vector is given by Eq. (10-18). An edge pixel
with coordinates (,)s t in Sxy has an angle similar to the pixel at (,)x y if

 a a(,) (,)s t x y A− ≤ (10-43)

where A is a positive angle threshold. As noted earlier, the direction of the edge at
(,)x y is perpendicular to the direction of the gradient vector at that point.

A pixel with coordinates (,)s t in Sxy is considered to be linked to the pixel at (,)x y
if both magnitude and direction criteria are satisfied. This process is repeated for
every edge pixel. As the center of the neighborhood is moved from pixel to pixel, a
record of linked points is kept. A simple bookkeeping procedure is to assign a dif-
ferent intensity value to each set of linked edge pixels.

The preceding formulation is computationally expensive because all neighbors of
every point have to be examined. A simplification particularly well suited for real
time applications consists of the following steps:

1. Compute the gradient magnitude and angle arrays, M x y(,) and a(,),x y of the
input image, f x y(,).

2. Form a binary image, g x y(,), whose value at any point (,)x y is given by:

 g x y
M x y T x y A TM A(,)

(,) (,)
=

> = ±⎧
⎨
⎩

1

0

if AND

otherwise

a

where TM is a threshold, A is a specified angle direction, and ±TA defines a
“band” of acceptable directions about A.

3. Scan the rows of g and fill (set to 1) all gaps (sets of 0’s) in each row that do not
exceed a specified length, L. Note that, by definition, a gap is bounded at both
ends by one or more 1’s. The rows are processed individually, with no “memory”
kept between them.

4. To detect gaps in any other direction, u, rotate g by this angle and apply the
horizontal scanning procedure in Step 3. Rotate the result back by −u.

When interest lies in horizontal and vertical edge linking, Step 4 becomes a simple
procedure in which g is rotated ninety degrees, the rows are scanned, and the result
is rotated back. This is the application found most frequently in practice and, as the
following example shows, this approach can yield good results. In general, image
rotation is an expensive computational process so, when linking in numerous angle
directions is required, it is more practical to combine Steps 3 and 4 into a single,
radial scanning procedure.

EXAMPLE 10.10 : Edge linking using local processing.

Figure 10.27(a) shows a 534 566× image of the rear of a vehicle. The objective of this example is to
illustrate the use of the preceding algorithm for finding rectangles whose sizes makes them suitable
candidates for license plates. The formation of these rectangles can be accomplished by detecting

DIP4E_GLOBAL_Print_Ready.indb 736 6/16/2017 2:13:12 PM

10.2 Point, Line, and Edge Detection 737

strong horizontal and vertical edges. Figure 10.27(b) shows the gradient magnitude image, M x y(,), and
Figs. 10.27(c) and (d) show the result of Steps 3 and 4 of the algorithm, obtained by letting TM equal
to 30% of the maximum gradient value, A = 90°, TA = 45°, and filling all gaps of 25 or fewer pixels
(approximately 5% of the image width). A large range of allowable angle directions was required to
detect the rounded corners of the license plate enclosure, as well as the rear windows of the vehicle.
Figure 10.27(e) is the result of forming the logical OR of the two preceding images, and Fig. 10.27(f)
was obtained by thinning 10.27(e) with the thinning procedure discussed in Section 9.5. As Fig. 10.27(f)
shows, the rectangle corresponding to the license plate was clearly detected in the image. It would be
a simple matter to isolate the license plate from all the rectangles in the image, using the fact that the
width-to-height ratio of license plates have distinctive proportions (e.g., a 2:1 ratio in U.S. plates).

Global Processing Using the Hough Transform

The method discussed in the previous section is applicable in situations in which
knowledge about pixels belonging to individual objects is available. Often, we have
to work in unstructured environments in which all we have is an edge map and no
knowledge about where objects of interest might be. In such situations, all pixels
are candidates for linking, and thus have to be accepted or eliminated based on pre-
defined global properties. In this section, we develop an approach based on whether
sets of pixels lie on curves of a specified shape. Once detected, these curves form the
edges or region boundaries of interest.

Given n points in an image, suppose that we want to find subsets of these points
that lie on straight lines. One possible solution is to find all lines determined by every
pair of points, then find all subsets of points that are close to particular lines. This
approach involves finding n n n−()1 2 2∼ lines, then performing n n n n() −()()1 2 3∼

ba c
ed f

FIGURE 10.27
(a) Image of the rear
of a vehicle.
(b) Gradient magni-
tude image.
(c) Horizontally
connected edge
pixels.
(d) Vertically con-
nected edge pixels.
(e) The logical OR
of (c) and (d).
(f) Final result,
using morphological
thinning. (Original
image courtesy of
Perceptics
Corporation.)

DIP4E_GLOBAL_Print_Ready.indb 737 6/16/2017 2:13:13 PM

738 Chapter 10 Image Segmentation

comparisons of every point to all lines. This is a computationally prohibitive task in
most applications.

Hough [1962] proposed an alternative approach, commonly referred to as the
Hough transform. Let (,)x yi i denote a point in the xy-plane and consider the general
equation of a straight line in slope-intercept form: y ax bi i= + . Infinitely many lines
pass through (,),x yi i but they all satisfy the equation y ax bi i= + for varying val-
ues of a and b. However, writing this equation as b x a yi i= − + and considering the
ab-plane (also called parameter space) yields the equation of a single line for a fixed
point (,).x yi i Furthermore, a second point (,)x yj j also has a single line in parameter
space associated with it, which intersects the line associated with (,)x yi i at some
point (,)a b� � in parameter space, where a� is the slope and b� the intercept of the line
containing both (,)x yi i and (,)x yj j in the xy-plane (we are assuming, of course, that
the lines are not parallel). In fact, all points on this line have lines in parameter space
that intersect at (,).a b� � Figure 10.28 illustrates these concepts.

In principle, the parameter space lines corresponding to all points (,)x yk k in the
xy-plane could be plotted, and the principal lines in that plane could be found by
identifying points in parameter space where large numbers of parameter-space lines
intersect. However, a difficulty with this approach is that a, (the slope of a line)
approaches infinity as the line approaches the vertical direction. One way around
this difficulty is to use the normal representation of a line:

 x ycos sinu u r+ = (10-44)

Figure 10.29(a) illustrates the geometrical interpretation of the parameters r and u.
A horizontal line has u = °0 , with r being equal to the positive x-intercept. Simi-
larly, a vertical line has u = °90 , with r being equal to the positive y-intercept, or
u = − °90 , with r being equal to the negative y-intercept (we limit the angle to the
range − ° ≤ ≤ °90 90u). Each sinusoidal curve in Figure 10.29(b) represents the fam-
ily of lines that pass through a particular point (,)x yk k in the xy-plane. The intersec-
tion point (,)r u� � in Fig. 10.29(b) corresponds to the line that passes through both
(,)x yi i and (,)x yj j in Fig. 10.29(a).

The computational attractiveness of the Hough transform arises from subdividing
the ru parameter space into so-called accumulator cells, as Fig. 10.29(c) illustrates,
where (,)min maxr r and u umin max,() are the expected ranges of the parameter values:

The original formulation
of the Hough transform
presented here works
with straight lines. For a
generalization to
arbitrary shapes, see
Ballard [1981].

(xi, yi)

(xj, yj)

x

y

b � �xia 	 yi

b � �xja 	 yj

a

b
b�

a�

ba

FIGURE 10.28
(a) xy-plane.
(b) Parameter
space.

DIP4E_GLOBAL_Print_Ready.indb 738 6/16/2017 2:13:16 PM

10.2 Point, Line, and Edge Detection 739

− ° ≤ ≤ °90 90u and − ≤ ≤D Dr , where D is the maximum distance between opposite
corners in an image. The cell at coordinates (,)i j with accumulator value A i j(,) cor-
responds to the square associated with parameter-space coordinates (,).r ui j Ini-
tially, these cells are set to zero. Then, for every non-background point (,)x yk k in
the xy-plane, we let u equal each of the allowed subdivision values on the u-axis
and solve for the corresponding r using the equation r u u= +x yk kcos sin . The
resulting r values are then rounded off to the nearest allowed cell value along the
r axis. If a choice of uq results in the solution rp, then we let A p q A p q(,) (,) .= + 1
At the end of the procedure, a value of K in a cell A i j(,) means that K points in the
xy-plane lie on the line x yj j icos sin .u u r+ = The number of subdivisions in the
ru-plane determines the accuracy of the colinearity of these points. It can be shown
(see Problem 10.27) that the number of computations in the method just discussed is
linear with respect to n, the number of non-background points in the xy-plane.

EXAMPLE 10.11 : Some basic properties of the Hough transform.

Figure 10.30 illustrates the Hough transform based on Eq. (10-44). Figure 10.30(a) shows an image
of size M M M× (= 101) with five labeled white points, and Fig. 10.30(b) shows each of these points
mapped onto the ru-plane using subdivisions of one unit for the r and u axes. The range of u values is
± °90 , and the range of r values is ± 2M. As Fig. 10.30(b) shows, each curve has a different sinusoidal
shape. The horizontal line resulting from the mapping of point 1 is a sinusoid of zero amplitude.

The points labeled A (not to be confused with accumulator values) and B in Fig. 10.30(b) illustrate
the colinearity detection property of the Hough transform. For example, point B, marks the intersection
of the curves corresponding to points 2, 3, and 4 in the xy image plane. The location of point A indicates
that these three points lie on a straight line passing through the origin ()r = 0 and oriented at −45° [see
Fig. 10.29(a)]. Similarly, the curves intersecting at point B in parameter space indicate that points 2, 3,
and 4 lie on a straight line oriented at 45°, and whose distance from the origin is r = 71 (one-half the
diagonal distance from the origin of the image to the opposite corner, rounded to the nearest integer

(xi, yi)

(xj, yj)

x

y u� umin

rmin

rmax

umax

r�

r
u

xjcosu 	 yjsinu � r

xicosu 	 yisinu � r

r

u

r

u

0

0

ba c

FIGURE 10.29 (a) (,)r u parameterization of a line in the xy-plane. (b) Sinusoidal curves in the ru-plane;the point of
intersection (,)r u� � corresponds to the line passing through points (,)x yi i and (,)x yj j in the xy-plane. (c) Division
of the ru-plane into accumulator cells.

DIP4E_GLOBAL_Print_Ready.indb 739 6/16/2017 2:13:19 PM

740 Chapter 10 Image Segmentation

value). Finally, the points labeled Q, R, and S in Fig. 10.30(b) illustrate the fact that the Hough transform
exhibits a reflective adjacency relationship at the right and left edges of the parameter space. This prop-
erty is the result of the manner in which r and u change sign at the ± °90 boundaries.

Although the focus thus far has been on straight lines, the Hough transform is
applicable to any function of the form g v c, ,() = 0 where v is a vector of coordinates
and c is a vector of coefficients. For example, points lying on the circle

 x c y c c−() + −() =1
2

2
2

3
2 (10-45)

can be detected by using the basic approach just discussed. The difference is the
presence of three parameters c1, c2 , and c3 that result in a 3-D parameter space with

�100

�50

0

50

100

r

806040200�20�40�60�80

u

Q

R

R

Q

S SA

3

5

4

2

1

B

b
a

FIGURE 10.30
 (a) Image of size
101 101× pixels,
containing five
white points (four
in the corners and
one in the center).
(b) Corresponding
parameter space.

DIP4E_GLOBAL_Print_Ready.indb 740 6/16/2017 2:13:22 PM

10.2 Point, Line, and Edge Detection 741

cube-like cells, and accumulators of the form A i j k(, ,). The procedure is to incre-
ment c1 and c2 , solve for the value of c3 that satisfies Eq. (10-45), and update the
accumulator cell associated with the triplet (, ,).c c c1 2 3 Clearly, the complexity of the
Hough transform depends on the number of coordinates and coefficients in a given
functional representation. As noted earlier, generalizations of the Hough transform
to detect curves with no simple analytic representations are possible, as is the appli-
cation of the transform to grayscale images.

Returning to the edge-linking problem, an approach based on the Hough trans-
form is as follows:

1. Obtain a binary edge map using any of the methods discussed earlier in this section.
2. Specify subdivisions in the ru-plane.
3. Examine the counts of the accumulator cells for high pixel concentrations.
4. Examine the relationship (principally for continuity) between pixels in a chosen

cell.

Continuity in this case usually is based on computing the distance between discon-
nected pixels corresponding to a given accumulator cell. A gap in a line associated
with a given cell is bridged if the length of the gap is less than a specified threshold.
Being able to group lines based on direction is a global concept applicable over the
entire image, requiring only that we examine pixels associated with specific accumu-
lator cells. The following example illustrates these concepts.

EXAMPLE 10.12 : Using the Hough transform for edge linking.

Figure 10.31(a) shows an aerial image of an airport. The objective of this example is to use the Hough
transform to extract the two edges defining the principal runway. A solution to such a problem might be
of interest, for instance, in applications involving autonomous air navigation.

The first step is to obtain an edge map. Figure 10.31(b) shows the edge map obtained using Canny’s
algorithm with the same parameters and procedure used in Example 10.9. For the purpose of computing
the Hough transform, similar results can be obtained using any of the other edge-detection techniques
discussed earlier. Figure 10.31(c) shows the Hough parameter space obtained using 1° increments for u,
and one-pixel increments for r.

The runway of interest is oriented approximately 1° off the north direction, so we select the cells cor-
responding to ± °90 and containing the highest count because the runways are the longest lines oriented
in these directions. The small boxes on the edges of Fig. 10.31(c) highlight these cells. As mentioned ear-
lier in connection with Fig. 10.30(b), the Hough transform exhibits adjacency at the edges. Another way
of interpreting this property is that a line oriented at + °90 and a line oriented at − °90 are equivalent (i.e.,
they are both vertical). Figure 10.31(d) shows the lines corresponding to the two accumulator cells just
discussed, and Fig. 10.31(e) shows the lines superimposed on the original image. The lines were obtained
by joining all gaps not exceeding 20% (approximately 100 pixels) of the image height. These lines clearly
correspond to the edges of the runway of interest.

Note that the only information needed to solve this problem was the orientation of the runway and
the observer’s position relative to it. In other words, a vehicle navigating autonomously would know
that if the runway of interest faces north, and the vehicle’s direction of travel also is north, the runway
should appear vertically in the image. Other relative orientations are handled in a similar manner. The

DIP4E_GLOBAL_Print_Ready.indb 741 6/16/2017 2:13:23 PM

742 Chapter 10 Image Segmentation

orientations of runways throughout the world are available in flight charts, and the direction of travel
is easily obtainable using GPS (Global Positioning System) information. This information also could be
used to compute the distance between the vehicle and the runway, thus allowing estimates of param-
eters such as expected length of lines relative to image size, as we did in this example.

10.3 THRESHOLDING

Because of its intuitive properties, simplicity of implementation, and computational
speed, image thresholding enjoys a central position in applications of image segmen-
tation. Thresholding was introduced in Section 3.1, and we have used it in various
discussions since then. In this section, we discuss thresholding in a more formal way,
and develop techniques that are considerably more general than what has been pre-
sented thus far.

FOUNDATION

In the previous section, regions were identified by first finding edge segments,
then attempting to link the segments into boundaries. In this section, we discuss

10.3

ba
c ed

FIGURE 10.31 (a) A 502 564× aerial image of an airport. (b) Edge map obtained using Canny’s algorithm. (c) Hough
parameter space (the boxes highlight the points associated with long vertical lines). (d) Lines in the image plane
corresponding to the points highlighted by the boxes. (e) Lines superimposed on the original image.

DIP4E_GLOBAL_Print_Ready.indb 742 6/16/2017 2:13:24 PM

10.3 Thresholding 743

techniques for partitioning images directly into regions based on intensity values
and/or properties of these values.

The Basics of Intensity Thresholding

Suppose that the intensity histogram in Fig. 10.32(a) corresponds to an image, f x y(,),
composed of light objects on a dark background, in such a way that object and back-
ground pixels have intensity values grouped into two dominant modes. One obvious
way to extract the objects from the background is to select a threshold, T, that sepa-
rates these modes. Then, any point (,)x y in the image at which f x y T(,) > is called
an object point. Otherwise, the point is called a background point. In other words,
the segmented image, denoted by g x y(,), is given by

 g x y
f x y T

f x y T
(,)

(,)

(,)
=

>⎧
⎨
⎩

1

0

if

if ≤
 (10-46)

When T is a constant applicable over an entire image, the process given in this equa-
tion is referred to as global thresholding. When the value of T changes over an image,
we use the term variable thresholding. The terms local or regional thresholding are
used sometimes to denote variable thresholding in which the value of T at any point
(,)x y in an image depends on properties of a neighborhood of (,)x y (for example,
the average intensity of the pixels in the neighborhood). If T depends on the spa-
tial coordinates (,)x y themselves, then variable thresholding is often referred to as
dynamic or adaptive thresholding. Use of these terms is not universal.

Figure 10.32(b) shows a more difficult thresholding problem involving a histo-
gram with three dominant modes corresponding, for example, to two types of light
objects on a dark background. Here, multiple thresholding classifies a point (,)x y as
belonging to the background if f x y T(,) ,≤ 1 to one object class if T f x y T1 2< (,) ,≤
and to the other object class if f x y T(,) .> 2 That is, the segmented image is given by

 g x y

a f x y T

b T f x y T

c f x y T

,

(,)

(,)

(,)
() =

>
<

⎧
⎨
⎪

⎩⎪

if

if

if

2

1 2

1

≤
≤

 (10-47)

Remember, f(x, y)
denotes the intensity of f
at coordinates (x, y).

Although we follow
convention in using 0
intensity for the back-
ground and 1 for object
pixels, any two distinct
values can be used in
Eq. (10-46).

T T1 T2

ba

FIGURE 10.32
Intensity
histograms that
can be partitioned
(a) by a single
threshold, and
(b) by dual
thresholds.

DIP4E_GLOBAL_Print_Ready.indb 743 6/16/2017 2:13:25 PM

744 Chapter 10 Image Segmentation

where a, b, and c are any three distinct intensity values. We will discuss dual threshold-
ing later in this section. Segmentation problems requiring more than two thresholds
are difficult (or often impossible) to solve, and better results usually are obtained using
other methods, such as variable thresholding, as will be discussed later in this section,
or region growing, as we will discuss in Section 10.4.

Based on the preceding discussion, we may infer intuitively that the success of
intensity thresholding is related directly to the width and depth of the valley(s) sepa-
rating the histogram modes. In turn, the key factors affecting the properties of the
valley(s) are: (1) the separation between peaks (the further apart the peaks are, the
better the chances of separating the modes); (2) the noise content in the image (the
modes broaden as noise increases); (3) the relative sizes of objects and background;
(4) the uniformity of the illumination source; and (5) the uniformity of the reflectance
properties of the image.

The Role of Noise in Image Thresholding

The simple synthetic image in Fig. 10.33(a) is free of noise, so its histogram con-
sists of two “spike” modes, as Fig. 10.33(d) shows. Segmenting this image into two
regions is a trivial task: we just select a threshold anywhere between the two modes.
Figure 10.33(b) shows the original image corrupted by Gaussian noise of zero
mean and a standard deviation of 10 intensity levels. The modes are broader now

191 25563 1270 191 191 25563 127025563 1270

ba c
ed f

FIGURE 10.33 (a) Noiseless 8-bit image. (b) Image with additive Gaussian noise of mean 0 and standard deviation of
10 intensity levels. (c) Image with additive Gaussian noise of mean 0 and standard deviation of 50 intensity levels.
(d) through (f) Corresponding histograms.

DIP4E_GLOBAL_Print_Ready.indb 744 6/16/2017 2:13:25 PM

10.3 Thresholding 745

[see Fig. 10.33(e)], but their separation is enough so that the depth of the valley
between them is sufficient to make the modes easy to separate. A threshold placed
midway between the two peaks would do the job. Figure 10.33(c) shows the result
of corrupting the image with Gaussian noise of zero mean and a standard deviation
of 50 intensity levels. As the histogram in Fig. 10.33(f) shows, the situation is much
more serious now, as there is no way to differentiate between the two modes. With-
out additional processing (such as the methods discussed later in this section) we
have little hope of finding a suitable threshold for segmenting this image.

The Role of Illumination and Reflectance in Image Thresholding

Figure 10.34 illustrates the effect that illumination can have on the histogram of
an image. Figure 10.34(a) is the noisy image from Fig. 10.33(b), and Fig. 10.34(d)
shows its histogram. As before, this image is easily segmentable with a single thresh-
old. With reference to the image formation model discussed in Section 2.3, suppose
that we multiply the image in Fig. 10.34(a) by a nonuniform intensity function, such
as the intensity ramp in Fig. 10.37(b), whose histogram is shown in Fig. 10.34(e).
Figure 10.34(c) shows the product of these two images, and Fig. 10.34(f) is the result-
ing histogram. The deep valley between peaks was corrupted to the point where sep-
aration of the modes without additional processing (to be discussed later in this sec-
tion) is no longer possible. Similar results would be obtained if the illumination was

In theory, the histogram
of a ramp image is
uniform. In practice, the
degree of uniformity
depends on the size of
the image and number of
intensity levels.

0 63 127 191 255 0 0.2 0.4 0.6 0.8 1 0 63 127 191 255

ba c
ed f

FIGURE 10.34 (a) Noisy image. (b) Intensity ramp in the range [0.2, 0.6]. (c) Product of (a) and (b). (d) through (f)
Corresponding histograms.

DIP4E_GLOBAL_Print_Ready.indb 745 6/16/2017 2:13:25 PM

746 Chapter 10 Image Segmentation

perfectly uniform, but the reflectance of the image was not, as a results, for example,
of natural reflectivity variations in the surface of objects and/or background.

The important point is that illumination and reflectance play a central role in the
success of image segmentation using thresholding or other segmentation techniques.
Therefore, controlling these factors when possible should be the first step consid-
ered in the solution of a segmentation problem. There are three basic approaches
to the problem when control over these factors is not possible. The first is to correct
the shading pattern directly. For example, nonuniform (but fixed) illumination can
be corrected by multiplying the image by the inverse of the pattern, which can be
obtained by imaging a flat surface of constant intensity. The second is to attempt
to correct the global shading pattern via processing using, for example, the top-hat
transformation introduced in Section 9.8. The third approach is to “work around”
nonuniformities using variable thresholding, as discussed later in this section.

BASIC GLOBAL THRESHOLDING

When the intensity distributions of objects and background pixels are sufficiently
distinct, it is possible to use a single (global) threshold applicable over the entire
image. In most applications, there is usually enough variability between images that,
even if global thresholding is a suitable approach, an algorithm capable of estimat-
ing the threshold value for each image is required. The following iterative algorithm
can be used for this purpose:

1. Select an initial estimate for the global threshold, T.
2. Segment the image using T in Eq. (10-46). This will produce two groups of

pixels: G1, consisting of pixels with intensity values > T; and G2 , consisting of
pixels with values ≤ T.

3. Compute the average (mean) intensity values m1 and m2 for the pixels in G1
and G2 , respectively.

4. Compute a new threshold value midway between m1and m2 :

 T m m= +()1
2 1 2

5. Repeat Steps 2 through 4 until the difference between values of T in successive
iterations is smaller than a predefined value, �T.

The algorithm is stated here in terms of successively thresholding the input image
and calculating the means at each step, because it is more intuitive to introduce
it in this manner. However, it is possible to develop an equivalent (and more effi-
cient) procedure by expressing all computations in the terms of the image histogram,
which has to be computed only once (see Problem 10.29).

The preceding algorithm works well in situations where there is a reasonably
clear valley between the modes of the histogram related to objects and background.
Parameter �T is used to stop iterating when the changes in threshold values is small.
The initial threshold must be chosen greater than the minimum and less than the
maximum intensity level in the image (the average intensity of the image is a good

DIP4E_GLOBAL_Print_Ready.indb 746 6/16/2017 2:13:27 PM

10.3 Thresholding 747

initial choice for T). If this condition is met, the algorithm converges in a finite num-
ber of steps, whether or not the modes are separable (see Problem 10.30).

EXAMPLE 10.13 : Global thresholding.

Figure 10.35 shows an example of segmentation using the preceding iterative algorithm. Figure 10.35(a)
is the original image and Fig. 10.35(b) is the image histogram, showing a distinct valley. Application
of the basic global algorithm resulted in the threshold T = 125 4. after three iterations, starting with T
equal to the average intensity of the image, and using �T = 0. Figure 10.35(c) shows the result obtained
using T = 125 to segment the original image. As expected from the clear separation of modes in the
histogram, the segmentation between object and background was perfect.

OPTIMUM GLOBAL THRESHOLDING USING OTSU’S METHOD

Thresholding may be viewed as a statistical-decision theory problem whose objec-
tive is to minimize the average error incurred in assigning pixels to two or more
groups (also called classes). This problem is known to have an elegant closed-form
solution known as the Bayes decision function (see Section 12.4). The solution is
based on only two parameters: the probability density function (PDF) of the inten-
sity levels of each class, and the probability that each class occurs in a given applica-
tion. Unfortunately, estimating PDFs is not a trivial matter, so the problem usually
is simplified by making workable assumptions about the form of the PDFs, such as
assuming that they are Gaussian functions. Even with simplifications, the process
of implementing solutions using these assumptions can be complex and not always
well-suited for real-time applications.

The approach in the following discussion, called Otsu’s method (Otsu [1979]), is
an attractive alternative. The method is optimum in the sense that it maximizes the

0 63 127 191 255

ba c

FIGURE 10.35 (a) Noisy fingerprint. (b) Histogram. (c) Segmented result using a global threshold (thin image border
added for clarity). (Original image courtesy of the National Institute of Standards and Technology.).

DIP4E_GLOBAL_Print_Ready.indb 747 6/16/2017 2:13:27 PM

748 Chapter 10 Image Segmentation

between-class variance, a well-known measure used in statistical discriminant analy-
sis. The basic idea is that properly thresholded classes should be distinct with respect
to the intensity values of their pixels and, conversely, that a threshold giving the
best separation between classes in terms of their intensity values would be the best
(optimum) threshold. In addition to its optimality, Otsu’s method has the important
property that it is based entirely on computations performed on the histogram of an
image, an easily obtainable 1-D array (see Section 3.3).

Let 0 1 2 1, , , ,… L −{ } denote the set of L distinct integer intensity levels in a digi-
tal image of size M N× pixels, and let ni denote the number of pixels with intensity i.
The total number, MN, of pixels in the image is MN n n n nL= + + + + −0 1 2 1� . The
normalized histogram (see Section 3.3) has components p n MNi i= , from which it
follows that

 p pi i
i

L

= ≥
=

−

∑ 1 0
0

1

 (10-48)

Now, suppose that we select a threshold T k k k L() , ,= < < −0 1 and use it to thresh-
old the input image into two classes, c1 and c2 , where c1 consists of all the pixels in
the image with intensity values in the range [,]0 k and c2 consists of the pixels with
values in the range [,].k L+ −1 1 Using this threshold, the probability, P k1(), that a
pixel is assigned to (i.e., thresholded into) class c1 is given by the cumulative sum

 P k pi
i

k

1
0

() =
=
∑ (10-49)

Viewed another way, this is the probability of class c1 occurring. For example, if we
set k = 0, the probability of class c1 having any pixels assigned to it is zero. Similarly,
the probability of class c2 occurring is

 P k p P ki
i k

L

2 1
1

1

1() ()= = −
= +

−

∑ (10-50)

From Eq. (3-25), the mean intensity value of the pixels in c1 is

m k iP i c iP c i P i P c

P k
i p

i

k

i

k

i
i

k

1 1
0

1
0

1

1 0

1

() = () = () () ()

= ()

= =

=

∑ ∑

∑
 (10-51)

where P k1() is given by Eq. (10-49). The term P i c1() in Eq. (10-51) is the probability
of intensity value i, given that i comes from class c1. The rightmost term in the first
line of the equation follows from Bayes’ formula:

 P A B P B A P A P B() = () () ()
The second line follows from the fact that P c i1(), the probability of c1 given i, is 1
because we are dealing only with values of i from class c1. Also, P i() is the probabil-
ity of the ith value, which is the ith component of the histogram, pi . Finally, P c()1 is
the probability of class c1 which, from Eq. (10-49), is equal to P k1().

DIP4E_GLOBAL_Print_Ready.indb 748 6/16/2017 2:13:30 PM

10.3 Thresholding 749

Similarly, the mean intensity value of the pixels assigned to class c2 is

m k iP i c

P k
i p

i k

L

i
i k

L

2 2
1

1

2 1

11

()

()

= ()

=

= +

−

= +

−

∑

∑
 (10-52)

The cumulative mean (average intensity) up to level k is given by

 m k i pi
i

k

() =
=
∑

0

 (10-53)

and the average intensity of the entire image (i.e., the global mean) is given by

 m i pG i
i

L

=
=

−

∑
0

1

 (10-54)

The validity of the following two equations can be verified by direct substitution of
the preceding results:

 P m P m mG1 1 2 2+ = (10-55)

and

 P P1 2 1+ = (10-56)

where we have omitted the ks temporarily in favor of notational clarity.
In order to evaluate the effectiveness of the threshold at level k, we use the nor-

malized, dimensionless measure

 h
s

s
= B

G

2

2 (10-57)

where sG
2 is the global variance [i.e., the intensity variance of all the pixels in the

image, as given in Eq. (3-26)],

 sG G i
i

L

i m p2 2

0

1

= −()
=

−

∑ (10-58)

and sB
2 is the between-class variance, defined as

 sB G GP m m P m m2
1 1

2
2 2

2= −() + −() (10-59)

This expression can also be written as

sB

G

P P m m

m P m

P P

2
1 2 1 2

2

1
2

1 11

= −()

=
−()
−()

 (10-60)

The second step in this
equation makes sense
only if P1 is greater than
0 and less than 1, which,
in view of Eq. (10-56),
implies that P2 must
satisfy the same
condition.

DIP4E_GLOBAL_Print_Ready.indb 749 6/16/2017 2:13:32 PM

750 Chapter 10 Image Segmentation

The first line of this equation follows from Eqs. (10-55), (10-56), and (10-59). The
second line follows from Eqs. (10-50) through (10-54). This form is slightly more
efficient computationally because the global mean, mG , is computed only once, so
only two parameters, m1 and P1, need to be computed for any value of k.

The first line in Eq. (10-60) indicates that the farther the two means m1 and m2 are
from each other, the larger sB

2 will be, implying that the between-class variance is a
measure of separability between classes. Because sG

2 is a constant, it follows that h
also is a measure of separability, and maximizing this metric is equivalent to maximiz-
ing sB

2 . The objective, then, is to determine the threshold value, k, that maximizes the
between-class variance, as stated earlier. Note that Eq. (10-57) assumes implicitly that
sG

2 0> . This variance can be zero only when all the intensity levels in the image are
the same, which implies the existence of only one class of pixels. This in turn means
that h = 0 for a constant image because the separability of a single class from itself
is zero.

Reintroducing k, we have the final results:

 h
s

s
k

kB

G

() =
2

2

()
 (10-61)

and

 sB
Gk

m P k m k

P k P k
2 1

2

1 11
() =

−[]
−[]

() ()

() ()
 (10-62)

Then, the optimum threshold is the value, k*, that maximizes sB k2 () :

 s sB k L Bk k2

0 1

2* max ()() =
≤ ≤ −

 (10-63)

To find k* we simply evaluate this equation for all integer values of k (subject to the
condition 0 11< <P k()) and select the value of k that yielded the maximum sB k2 ().
If the maximum exists for more than one value of k, it is customary to average the
various values of k for which sB k2 () is maximum. It can be shown (see Problem
10.36) that a maximum always exists, subject to the condition 0 11< <P k() . Evaluat-
ing Eqs. (10-62) and (10-63) for all values of k is a relatively inexpensive computa-
tional procedure, because the maximum number of integer values that k can have
is L, which is only 256 for 8-bit images.

Once k* has been obtained, input image f x y(,) is segmented as before:

 g x y
f x y k

f x y k
(,)

(,)

(,)

*

*
=

>⎧
⎨
⎪

⎩⎪

1

0

if

if ≤
 (10-64)

for x M= −0 1 2 1, , , ,… and y N= −0 1 2 1, , , , .… Note that all the quantities needed
to evaluate Eq. (10-62) are obtained using only the histogram of f x y(,). In addition
to the optimum threshold, other information regarding the segmented image can be
extracted from the histogram. For example, P k1()* and P k2(),* the class probabilities
evaluated at the optimum threshold, indicate the portions of the areas occupied by
the classes (groups of pixels) in the thresholded image. Similarly, the means m k1()*
and m k2()* are estimates of the average intensity of the classes in the original image.

DIP4E_GLOBAL_Print_Ready.indb 750 6/16/2017 2:13:35 PM

10.3 Thresholding 751

In general, the measure in Eq.(10-61) has values in the range

 0 1≤ ≤h()k (10-65)

for values of k in the range 0 1, .L −[] When evaluated at the optimum threshold
k*, this measure is a quantitative estimate of the separability of classes, which in
turn gives us an idea of the accuracy of thresholding a given image with k*. The
lower bound in Eq. (10-65) is attainable only by images with a single, constant inten-
sity level. The upper bound is attainable only by two-valued images with intensities
equal to 0 and L − 1 (see Problem 10.37).

Otsu’s algorithm may be summarized as follows:

1. Compute the normalized histogram of the input image. Denote the components
of the histogram by p i Li , , , , , .= −0 1 2 1…

2. Compute the cumulative sums, P k1(), for k L= −0 1 2 1, , , , ,… using Eq. (10-49).
3. Compute the cumulative means, m k(), for k L= −0 1 2 1, , , , ,… using Eq. (10-53).
4. Compute the global mean, mG , using Eq. (10-54).
5. Compute the between-class variance term, sB k2 (), for k L= −0 1 2 1, , , , ,… using

Eq. (10-62).
6. Obtain the Otsu threshold, k*, as the value of k for which sB k2 () is maximum. If

the maximum is not unique, obtain k* by averaging the values of k correspond-
ing to the various maxima detected.

7. Compute the global variance, sG
2 , using Eq. (10-58), and then obtain the separa-

bility measure, h*, by evaluating Eq. (10-61) with k k= *.

The following example illustrates the use of this algorithm.

EXAMPLE 10.14 : Optimum global thresholding using Otsu’s method.

Figure 10.36(a) shows an optical microscope image of polymersome cells. These are cells artificially engi-
neered using polymers. They are invisible to the human immune system and can be used, for example,
to deliver medication to targeted regions of the body. Figure 10.36(b) shows the image histogram. The
objective of this example is to segment the molecules from the background. Figure 10.36(c) is the result
of using the basic global thresholding algorithm discussed earlier. Because the histogram has no distinct
valleys and the intensity difference between the background and objects is small, the algorithm failed to
achieve the desired segmentation. Figure 10.36(d) shows the result obtained using Otsu’s method. This
result obviously is superior to Fig. 10.36(c). The threshold value computed by the basic algorithm was
169, while the threshold computed by Otsu’s method was 182, which is closer to the lighter areas in the
image defining the cells. The separability measure h* was 0.467.

As a point of interest, applying Otsu’s method to the fingerprint image in Example 10.13 yielded a
threshold of 125 and a separability measure of 0.944. The threshold is identical to the value (rounded to
the nearest integer) obtained with the basic algorithm. This is not unexpected, given the nature of the
histogram. In fact, the separability measure is high because of the relatively large separation between
modes and the deep valley between them.

DIP4E_GLOBAL_Print_Ready.indb 751 6/16/2017 2:13:37 PM

752 Chapter 10 Image Segmentation

USING IMAGE SMOOTHING TO IMPROVE GLOBAL THRESHOLDING

As illustrated in Fig. 10.33, noise can turn a simple thresholding problem into an
unsolvable one. When noise cannot be reduced at the source, and thresholding is the
preferred segmentation method, a technique that often enhances performance is to
smooth the image prior to thresholding. We illustrate this approach with an example.

Figure 10.37(a) is the image from Fig. 10.33(c), Fig. 10.37(b) shows its histogram,
and Fig. 10.37(c) is the image thresholded using Otsu’s method. Every black point
in the white region and every white point in the black region is a thresholding error,
so the segmentation was highly unsuccessful. Figure 10.37(d) shows the result of
smoothing the noisy image with an averaging kernel of size 5 5× (the image is of size
651 814× pixels), and Fig. 10.37(e) is its histogram. The improvement in the shape
of the histogram as a result of smoothing is evident, and we would expect threshold-
ing of the smoothed image to be nearly perfect. Figure 10.37(f) shows this to be the
case. The slight distortion of the boundary between object and background in the
segmented, smoothed image was caused by the blurring of the boundary. In fact, the
more aggressively we smooth an image, the more boundary errors we should antici-
pate in the segmented result.

0 63 127 191 255

ba
dc

FIGURE 10.36
(a) Original
image.
(b) Histogram
(high peaks
were clipped to
highlight details in
the lower values).
(c) Segmenta-
tion result using
the basic global
algorithm from
Section 10.3.
(d) Result using
Otsu’s method.
(Original image
courtesy of
Professor Daniel
A. Hammer, the
University of
Pennsylvania.)

DIP4E_GLOBAL_Print_Ready.indb 752 6/16/2017 2:13:37 PM

10.3 Thresholding 753

Next, we investigate the effect of severely reducing the size of the foreground
region with respect to the background. Figure 10.38(a) shows the result. The noise in
this image is additive Gaussian noise with zero mean and a standard deviation of 10
intensity levels (as opposed to 50 in the previous example). As Fig. 10.38(b) shows,
the histogram has no clear valley, so we would expect segmentation to fail, a fact that
is confirmed by the result in Fig. 10.38(c). Figure 10.38(d) shows the image smoothed
with an averaging kernel of size 5 5× , and Fig. 10.38(e) is the corresponding histo-
gram. As expected, the net effect was to reduce the spread of the histogram, but the
distribution still is unimodal. As Fig. 10.38(f) shows, segmentation failed again. The
reason for the failure can be traced to the fact that the region is so small that its con-
tribution to the histogram is insignificant compared to the intensity spread caused
by noise. In situations such as this, the approach discussed in the following section is
more likely to succeed.

USING EDGES TO IMPROVE GLOBAL THRESHOLDING

Based on the discussion thus far, we conclude that the chances of finding a “good”
threshold are enhanced considerably if the histogram peaks are tall, narrow, sym-
metric, and separated by deep valleys. One approach for improving the shape of
histograms is to consider only those pixels that lie on or near the edges between

0 63 127 191 255

0 63 127 191 255

ba c
ed f

FIGURE 10.37 (a) Noisy image from Fig. 10.33(c) and (b) its histogram. (c) Result obtained using Otsu’s method.
(d) Noisy image smoothed using a 5 5× averaging kernel and (e) its histogram. (f) Result of thresholding using
Otsu’s method.

DIP4E_GLOBAL_Print_Ready.indb 753 6/16/2017 2:13:38 PM

754 Chapter 10 Image Segmentation

objects and the background. An immediate and obvious improvement is that his-
tograms should be less dependent on the relative sizes of objects and background.
For instance, the histogram of an image composed of a small object on a large back-
ground area (or vice versa) would be dominated by a large peak because of the high
concentration of one type of pixels. We saw in Fig. 10.38 that this can lead to failure
in thresholding.

If only the pixels on or near the edges between objects and background were
used, the resulting histogram would have peaks of approximately the same height. In
addition, the probability that any of those pixels lies on an object would be approxi-
mately equal to the probability that it lies on the background, thus improving the
symmetry of the histogram modes. Finally, as indicated in the following paragraph,
using pixels that satisfy some simple measures based on gradient and Laplacian
operators has a tendency to deepen the valley between histogram peaks.

The approach just discussed assumes that the edges between objects and back-
ground are known. This information clearly is not available during segmentation,
as finding a division between objects and background is precisely what segmenta-
tion aims to do. However, an indication of whether a pixel is on an edge may be
obtained by computing its gradient or Laplacian. For example, the average value
of the Laplacian is 0 at the transition of an edge (see Fig. 10.10), so the valleys of

0 63 127 191 255

0 63 127 191 255

ba c
ed f

FIGURE 10.38 (a) Noisy image and (b) its histogram. (c) Result obtained using Otsu’s method. (d) Noisy image
smoothed using a 5 5× averaging kernel and (e) its histogram. (f) Result of thresholding using Otsu’s method.
Thresholding failed in both cases to extract the object of interest. (See Fig. 10.39 for a better solution.)

DIP4E_GLOBAL_Print_Ready.indb 754 6/16/2017 2:13:38 PM

10.3 Thresholding 755

histograms formed from the pixels selected by a Laplacian criterion can be expected
to be sparsely populated. This property tends to produce the desirable deep valleys
discussed above. In practice, comparable results typically are obtained using either
the gradient or Laplacian images, with the latter being favored because it is compu-
tationally more attractive and is also created using an isotropic edge detector.

The preceding discussion is summarized in the following algorithm, where f x y(,)
is the input image:

1. Compute an edge image as either the magnitude of the gradient, or absolute
value of the Laplacian, of f x y(,) using any of the methods in Section 10.2.

2. Specify a threshold value, T.

3. Threshold the image from Step 1 using T from Step 2 to produce a binary image,
g x yT (,). This image is used as a mask image in the following step to select pixels
from f x y(,) corresponding to “strong” edge pixels in the mask.

4. Compute a histogram using only the pixels in f x y(,) that correspond to the
locations of the 1-valued pixels in g x yT (,).

5. Use the histogram from Step 4 to segment f x y(,) globally using, for example,
Otsu’s method.

If T is set to any value less than the minimum value of the edge image then, accord-
ing to Eq. (10-46), g x yT (,) will consist of all 1’s, implying that all pixels of f x y(,)
will be used to compute the image histogram. In this case, the preceding algorithm
becomes global thresholding using the histogram of the original image. It is custom-
ary to specify the value of T to correspond to a percentile, which typically is set
high (e.g., in the high 90’s) so that few pixels in the gradient/Laplacian image will
be used in the computation. The following examples illustrate the concepts just dis-
cussed. The first example uses the gradient, and the second uses the Laplacian. Simi-
lar results can be obtained in both examples using either approach. The important
issue is to generate a suitable derivative image.

EXAMPLE 10.15 : Using edge information based on the gradient to improve global thresholding.

Figures 10.39(a) and (b) show the image and histogram from Fig. 10.38. You saw that this image could
not be segmented by smoothing followed by thresholding. The objective of this example is to solve the
problem using edge information. Figure 10.39(c) is the mask image, g x yT (,), formed as gradient mag-
nitude image thresholded at the 99.7 percentile. Figure 10.39(d) is the image formed by multiplying the
mask by the input image. Figure 10.39(e) is the histogram of the nonzero elements in Fig. 10.39(d). Note
that this histogram has the important features discussed earlier; that is, it has reasonably symmetrical
modes separated by a deep valley. Thus, while the histogram of the original noisy image offered no hope
for successful thresholding, the histogram in Fig. 10.39(e) indicates that thresholding of the small object
from the background is indeed possible. The result in Fig. 10.39(f) shows that this is the case. This image
was generated using Otsu’s method [to obtain a threshold based on the histogram in Fig. 10.42(e)], and
then applying the Otsu threshold globally to the noisy image in Fig. 10.39(a). The result is nearly perfect.

It is possible to modify
this algorithm so that
both the magnitude of
the gradient and the
absolute value of the
Laplacian images are
used. In this case, we
would specify a threshold
for each image and form
the logical OR of the
two results to obtain
the marker image. This
approach is useful when
more control is desired
over the points deemed
to be valid edge points.

The nth percentile is
the smallest number
that is greater than n%
of the numbers in a
given set. For example,
if you received a 95 in a
test and this score was
greater than 85% of all
the students taking the
test, then you would be
in the 85th percentile
with respect to the test
scores.

DIP4E_GLOBAL_Print_Ready.indb 755 6/16/2017 2:13:39 PM

756 Chapter 10 Image Segmentation

EXAMPLE 10.16 : Using edge information based on the Laplacian to improve global thresholding.

In this example, we consider a more complex thresholding problem. Figure 10.40(a) shows an 8-bit
image of yeast cells for which we want to use global thresholding to obtain the regions corresponding
to the bright spots. As a starting point, Fig. 10.40(b) shows the image histogram, and Fig. 10.40(c) is
the result obtained using Otsu’s method directly on the image, based on the histogram shown. We see
that Otsu’s method failed to achieve the original objective of detecting the bright spots. Although the
method was able to isolate some of the cell regions themselves, several of the segmented regions on the
right were actually joined. The threshold computed by the Otsu method was 42, and the separability
measure was 0.636.

Figure 10.40(d) shows the mask image g x yT (,) obtained by computing the absolute value of the
Laplacian image, then thresholding it with T set to 115 on an intensity scale in the range [,].0 255 This
value of T corresponds approximately to the 99.5 percentile of the values in the absolute Laplacian
image, so thresholding at this level results in a sparse set of pixels, as Fig. 10.40(d) shows. Note in this
image how the points cluster near the edges of the bright spots, as expected from the preceding dis-
cussion. Figure 10.40(e) is the histogram of the nonzero pixels in the product of (a) and (d). Finally,
Fig. 10.40(f) shows the result of globally segmenting the original image using Otsu’s method based on
the histogram in Fig. 10.40(e). This result agrees with the locations of the bright spots in the image. The
threshold computed by the Otsu method was 115, and the separability measure was 0.762, both of which
are higher than the values obtained by using the original histogram.

0 63 127 191 255

630 127 191 255

ba c
ed f

FIGURE 10.39 (a) Noisy image from Fig. 10.38(a) and (b) its histogram. (c) Mask image formed as the gradient mag-
nitude image thresholded at the 99.7 percentile. (d) Image formed as the product of (a) and (c). (e) Histogram of
the nonzero pixels in the image in (d). (f) Result of segmenting image (a) with the Otsu threshold based on the
histogram in (e). The threshold was 134, which is approximately midway between the peaks in this histogram.

DIP4E_GLOBAL_Print_Ready.indb 756 6/16/2017 2:13:40 PM

10.3 Thresholding 757

0 63 127 191 255

0 63 127 191 255

ba c
ed f

FIGURE 10.40 (a) Image of yeast cells. (b) Histogram of (a). (c) Segmentation of (a) with Otsu’s method using the
histogram in (b). (d) Mask image formed by thresholding the absolute Laplacian image. (e) Histogram of the non-
zero pixels in the product of (a) and (d). (f) Original image thresholded using Otsu’s method based on the histogram
in (e). (Original image courtesy of Professor Susan L. Forsburg, University of Southern California.)

By varying the percentile at which the threshold is set, we can even improve the segmentation of the
complete cell regions. For example, Fig. 10.41 shows the result obtained using the same procedure as in
the previous paragraph, but with the threshold set at 55, which is approximately 5% of the maximum
value of the absolute Laplacian image. This value is at the 53.9 percentile of the values in that image.
This result clearly is superior to the result in Fig. 10.40(c) obtained using Otsu’s method with the histo-
gram of the original image.

MULTIPLE THRESHOLDS

Thus far, we have focused attention on image segmentation using a single global
threshold. Otsu’s method can be extended to an arbitrary number of thresholds

DIP4E_GLOBAL_Print_Ready.indb 757 6/16/2017 2:13:40 PM

758 Chapter 10 Image Segmentation

because the separability measure on which it is based also extends to an arbitrary
number of classes (Fukunaga [1972]). In the case of K classes, c c cK1 2, , , ,… the
between-class variance generalizes to the expression

 sB k k G
k

K

P m m2 2

1

= −()
=

∑ (10-66)

where

 P pk i
i ck

=
∈
∑ (10-67)

and

 m
P

ipk
k

i
i ck

=
∈
∑1

 (10-68)

As before, mG is the global mean given in Eq. (10-54). The K classes are separated
by K − 1 thresholds whose values, k k kK1 2 1

∗ ∗
−

∗, , , ,… are the values that maximize Eq.
(10-66):

 s sB K k k k L B Kk k k k k k
K

2
1 2 1 0 1

2
1 2 1

1 2

∗ ∗
−

∗
< < < < − −() = (), , , max , ,… …

…
 (10-69)

Although this result is applicable to an arbitrary number of classes, it begins to lose
meaning as the number of classes increases because we are dealing with only one
variable (intensity). In fact, the between-class variance usually is cast in terms of
multiple variables expressed as vectors (Fukunaga [1972]). In practice, using mul-
tiple global thresholding is considered a viable approach when there is reason to
believe that the problem can be solved effectively with two thresholds. Applications
that require more than two thresholds generally are solved using more than just
intensity values. Instead, the approach is to use additional descriptors (e.g., color)
and the application is cast as a pattern recognition problem, as you will learn shortly
in the discussion on multivariable thresholding.

In applications involving
more than one variable
(for example the RGB
components of a color
image), thresholding can
be implemented using a
distance measure, such
as the Euclidean distance,
or Mahalanobis distance
discussed in Section 6.7
(see Eqs. (6-48), (6-49),
and Example 6.15).

FIGURE 10.41
Image in Fig.
10.40(a) segmented
using the same
procedure as
explained in Figs.
10.40(d) through
(f), but using a
lower value to
threshold the
absolute Laplacian
image.

DIP4E_GLOBAL_Print_Ready.indb 758 6/16/2017 2:13:41 PM

10.3 Thresholding 759

For three classes consisting of three intensity intervals (which are separated by
two thresholds), the between-class variance is given by:

 sB G G GP m m P m m P m m2
1 1

2
2 2

2
3 3

2= −() + −() + −() (10-70)

where

P p

P p

P p

i
i

k

i
i k

k

i
i k

L

1
0

2
1

3
1

1

1

1

2

2

=

=

=

=

= +

= +

−

∑

∑

∑

 (10-71)

and

m
P

ip

m
P

ip

m
P

ip

i
i

k

i
i k

k

i
i k

L

1
1 0

2
2 1

3
3 1

1

1

1

1

1

1

2

2

=

=

=

=

= +

= +

−

∑

∑

∑

 (10-72)

As in Eqs. (10-55) and (10-56), the following relationships hold:

 P m P m P m mG1 1 2 2 3 3+ + = (10-73)

and

 P P P1 2 3 1+ + = (10-74)

We see from Eqs. (10-71) and (10-72) that P and m, and therefore sB
2 , are functions

of k1 and k2. The two optimum threshold values, k1
* and k2

*, are the values that maxi-
mize sB k k2

1 2(,). That is, as indicated in Eq. (10-69), we find the optimum thresholds
by finding

 s sB k k L Bk k k k2
1 2 0 1

2
1 2

1 2

∗ ∗
< < < −

() = (), max , (10-75)

The procedure starts by selecting the first value of k1 (that value is 1 because look-
ing for a threshold at 0 intensity makes no sense; also, keep in mind that the incre-
ment values are integers because we are dealing with integer intensity values).
Next, k2 is incremented through all its values greater than k1 and less than L − 1
(i.e., k k L2 1 1 2= + −, ,).… Then, k1 is incremented to its next value and k2 is incre-
mented again through all its values greater than k1. This procedure is repeated
until k L1 3= − . The result of this procedure is a 2-D array, sB k k2

1 2, ,() and the last
step is to look for the maximum value in this array. The values of k1 and k2 cor-
responding to that maximum in the array are the optimum thresholds, k1

* and k2
*.

Recall from the
discussion of the
Canny edge detec-
tor that thresholding
with two thresholds is
referred to as hysteresis
thresholding.

DIP4E_GLOBAL_Print_Ready.indb 759 6/16/2017 2:13:43 PM

760 Chapter 10 Image Segmentation

If there are several maxima, the corresponding values of k1 and k2 are averaged to
obtain the final thresholds. The thresholded image is then given by

 g x y

a f x y k

b k f x y k

c f x y k

(,)

(,)

(,)

(,)

*

* *

*

= <

>

⎧

⎨
⎪⎪

⎩

if

if

if

≤

≤
1

1 2

2
⎪⎪
⎪

 (10-76)

where a, b, and c are any three distinct intensity values.
Finally, the separability measure defined earlier for one threshold extends direct-

ly to multiple thresholds:

 h
s

s
k k

k kB

G
1 2

2
1 2

2
∗ ∗

∗ ∗

() =
()

,
,

 (10-77)

where sG
2 is the total image variance from Eq. (10-58).

EXAMPLE 10.17 : Multiple global thresholding.

Figure 10.42(a) shows an image of an iceberg. The objective of this example is to segment the image into
three regions: the dark background, the illuminated area of the iceberg, and the area in shadows. It is
evident from the image histogram in Fig. 10.42(b) that two thresholds are required to solve this problem.
The procedure discussed above resulted in the thresholds k1 80∗ = and k2 177∗ = , which we note from
Fig. 10.45(b) are near the centers of the two histogram valleys. Figure 10.42(c) is the segmentation that
resulted using these two thresholds in Eq. (10-76). The separability measure was 0.954. The principal
reason this example worked out so well can be traced to the histogram having three distinct modes
separated by reasonably wide, deep valleys. But we can do even better using superpixels, as you will see
in Section 10.5.

0 63 127 191 255

ba c

FIGURE 10.42 (a) Image of an iceberg. (b) Histogram. (c) Image segmented into three regions using dual Otsu thresholds.
(Original image courtesy of NOAA.)

DIP4E_GLOBAL_Print_Ready.indb 760 6/16/2017 2:13:44 PM

10.3 Thresholding 761

VARIABLE THRESHOLDING

As discussed earlier in this section, factors such as noise and nonuniform illumina-
tion play a major role in the performance of a thresholding algorithm. We showed
that image smoothing and the use of edge information can help significantly. How-
ever, sometimes this type of preprocessing is either impractical or ineffective in
improving the situation, to the point where the problem cannot be solved by any
of the thresholding methods discussed thus far. In such situations, the next level of
thresholding complexity involves variable thresholding, as we will illustrate in the
following discussion.

Variable Thresholding Based on Local Image Properties

A basic approach to variable thresholding is to compute a threshold at every point,
(,),x y in the image based on one or more specified properties in a neighborhood
of (,).x y Although this may seem like a laborious process, modern algorithms and
hardware allow for fast neighborhood processing, especially for common functions
such as logical and arithmetic operations.

We illustrate the approach using the mean and standard deviation of the pixel
values in a neighborhood of every point in an image. These two quantities are use-
ful for determining local thresholds because, as you know from Chapter 3, they are
descriptors of average intensity and contrast. Let mxy and sxy denote the mean and
standard deviation of the set of pixel values in a neighborhood, Sxy , centered at
coordinates (,)x y in an image (see Section 3.3 regarding computation of the local
mean and standard deviation). The following are common forms of variable thresh-
olds based on the local image properties:

 T a bmxy xy xy= +s (10-78)

where a and b are nonnegative constants, and

 T a bmxy xy G= +s (10-79)

where mG is the global image mean. The segmented image is computed as

 g x y
f x y T

f x y T
xy

xy

(,)
(,)

(,)
=

>⎧
⎨
⎪

⎩⎪

1

0

if

if ≤
 (10-80)

where f x y(,) is the input image. This equation is evaluated for all pixel locations
in the image, and a different threshold is computed at each location (,)x y using the
pixels in the neighborhood Sxy.

Significant power (with a modest increase in computation) can be added to vari-
able thresholding by using predicates based on the parameters computed in the neigh-
borhood of a point (,) :x y

 g x y
Q

Q
(,) =

1

0

if (local parameters) is TRUE

if (local parameterrs) is FALSE
⎧
⎨
⎩

 (10-81)

We simplified the nota-
tion slightly from the
form we used in
Eqs. (3-27) and (3-28) by
letting xy imply a
neighborhood S, centered
at coordinates (x, y).

Note that Txy is a
threshold array of the
same size as the image
from which it was
obtained. The threshold
at a location (x, y) in the
array is used to segment
the value of an image at
that location.

DIP4E_GLOBAL_Print_Ready.indb 761 6/16/2017 2:13:46 PM

762 Chapter 10 Image Segmentation

where Q is a predicate based on parameters computed using the pixels in neighbor-
hood Sxy. For example, consider the following predicate, Q mxy xys , ,() based on the
local mean and standard deviation:

 Q m
f x y a f x y bm

xy xy
xy xy

s
s

,
(,) (,)() =

> >TRUE if AND

FALSE otherwisee

⎧
⎨
⎪

⎩⎪
 (10-82)

Note that Eq. (10-80) is a special case of Eq. (10-81), obtained by letting Q be TRUE
if f x y Txy(,) > and FALSE otherwise. In this case, the predicate is based simply on
the intensity at a point.

EXAMPLE 10.18 : Variable thresholding based on local image properties.

Figure 10.43(a) shows the yeast image from Example 10.16. This image has three predominant inten-
sity levels, so it is reasonable to assume that perhaps dual thresholding could be a good segmentation
approach. Figure 10.43(b) is the result of using the dual thresholding method summarized in Eq. (10-76).
As the figure shows, it was possible to isolate the bright areas from the background, but the mid-gray
regions on the right side of the image were not segmented (i.e., separated) properly. To illustrate the use

ba
dc

FIGURE 10.43
(a) Image from
Fig. 10.40.
(b) Image
segmented using
the dual
thresholding
approach given
by Eq. (10-76).
(c) Image of local
standard
deviations.
(d) Result
obtained using
local thresholding.

DIP4E_GLOBAL_Print_Ready.indb 762 6/16/2017 2:13:46 PM

10.3 Thresholding 763

of local thresholding, we computed the local standard deviation sxy for all (,)x y in the input image using
a neighborhood of size 3 3× . Figure 10.43(c) shows the result. Note how the faint outer lines correctly
delineate the boundaries of the cells. Next, we formed a predicate of the form shown in Eq. (10-82), but
using the global mean instead of mxy. Choosing the global mean generally gives better results when the
background is nearly constant and all the object intensities are above or below the background intensity.
The values a = 30 and b = 1 5. were used to complete the specification of the predicate (these values
were determined experimentally, as is usually the case in applications such as this). The image was then
segmented using Eq. (10-82). As Fig. 10.43(d) shows, the segmentation was quite successful. Note in par-
ticular that all the outer regions were segmented properly, and that most of the inner, brighter regions
were isolated correctly.

Variable Thresholding Based on Moving Averages

A special case of the variable thresholding method discussed in the previous sec-
tion is based on computing a moving average along scan lines of an image. This
implementation is useful in applications such as document processing, where speed
is a fundamental requirement. The scanning typically is carried out line by line in a
zigzag pattern to reduce illumination bias. Let zk+1 denote the intensity of the point
encountered in the scanning sequence at step k + 1. The moving average (mean
intensity) at this new point is given by

m k

n
z k n

m k
n

z z k n

i
i k n

k

k k n

()

()

+ = −

= + −() +

= + −

+

+ −

∑1
1

1

1
2

1

1

for

for

≥

≥ 11

 (10-83)

where n is the number of points used in computing the average, and m z() .1 1= The
conditions imposed on k are so that all subscripts on zk are positive. All this means
is that n points must be available for computing the average. When k is less than the
limits shown (this happens near the image borders) the averages are formed with
the available image points. Because a moving average is computed for every point
in the image, segmentation is implemented using Eq. (10-80) with T cmxy xy= , where
c is positive scalar, and mxy is the moving average from Eq. (10-83) at point (,)x y in
the input image.

EXAMPLE 10.19 : Document thresholding using moving averages.

Figure 10.44(a) shows an image of handwritten text shaded by a spot intensity pattern. This form of
intensity shading is typical of images obtained using spot illumination (such as a photographic flash).
Figure 10.44(b) is the result of segmentation using the Otsu global thresholding method. It is not unex-
pected that global thresholding could not overcome the intensity variation because the method gener-
ally performs poorly when the areas of interest are embedded in a nonuniform illumination field. Figure
10.44(c) shows successful segmentation with local thresholding using moving averages. For images of
written material, a rule of thumb is to let n equal five times the average stroke width. In this case, the
average width was 4 pixels, so we let n = 20 in Eq. (10-83) and used c = 0 5. .

DIP4E_GLOBAL_Print_Ready.indb 763 6/16/2017 2:13:48 PM

764 Chapter 10 Image Segmentation

As another illustration of the effectiveness of this segmentation approach, we used the same param-
eters as in the previous paragraph to segment the image in Fig. 10.45(a), which is corrupted by a sinu-
soidal intensity variation typical of the variations that may occur when the power supply in a document
scanner is not properly grounded. As Figs. 10.45(b) and (c) show, the segmentation results are compa-
rable to those in Fig. 10.44.

Note that successful segmentation results were obtained in both cases using the same values for n
and c, which shows the relative ruggedness of the approach. In general, thresholding based on moving
averages works well when the objects of interest are small (or thin) with respect to the image size, a
condition satisfied by images of typed or handwritten text.

10.4 SEGMENTATION BY REGION GROWING AND BY REGION
SPLITTING AND MERGING

As we discussed in Section 10.1, the objective of segmentation is to partition an
image into regions. In Section 10.2, we approached this problem by attempting to
find boundaries between regions based on discontinuities in intensity levels, where-
as in Section 10.3, segmentation was accomplished via thresholds based on the dis-
tribution of pixel properties, such as intensity values or color. In this section and in
Sections 10.5 and 10.6, we discuss segmentation techniques that find the regions
directly. In Section 10.7, we will discuss a method that finds the regions and their
boundaries simultaneously.

REGION GROWING

As its name implies, region growing is a procedure that groups pixels or subregions
into larger regions based on predefined criteria for growth. The basic approach is to
start with a set of “seed” points, and from these grow regions by appending to each
seed those neighboring pixels that have predefined properties similar to the seed
(such as ranges of intensity or color).

Selecting a set of one or more starting points can often be based on the nature of
the problem, as we show later in Example 10.20. When a priori information is not

10.4

You should review the
terminology introduced
in Section 10.1 before
proceeding.

ba c

FIGURE 10.44 (a) Text image corrupted by spot shading. (b) Result of global thresholding using Otsu’s method.
(c) Result of local thresholding using moving averages.

DIP4E_GLOBAL_Print_Ready.indb 764 6/16/2017 2:13:48 PM

10.4 Segmentation by Region Growing and by Region Splitting and Merging 765

available, the procedure is to compute at every pixel the same set of properties that
ultimately will be used to assign pixels to regions during the growing process. If the
result of these computations shows clusters of values, the pixels whose properties
place them near the centroid of these clusters can be used as seeds.

The selection of similarity criteria depends not only on the problem under con-
sideration, but also on the type of image data available. For example, the analysis of
land-use satellite imagery depends heavily on the use of color. This problem would
be significantly more difficult, or even impossible, to solve without the inherent infor-
mation available in color images. When the images are monochrome, region analysis
must be carried out with a set of descriptors based on intensity levels and spatial
properties (such as moments or texture). We will discuss descriptors useful for region
characterization in Chapter 11.

Descriptors alone can yield misleading results if connectivity properties are not
used in the region-growing process. For example, visualize a random arrangement of
pixels that have three distinct intensity values. Grouping pixels with the same inten-
sity value to form a “region,” without paying attention to connectivity, would yield a
segmentation result that is meaningless in the context of this discussion.

Another problem in region growing is the formulation of a stopping rule. Region
growth should stop when no more pixels satisfy the criteria for inclusion in that
region. Criteria such as intensity values, texture, and color are local in nature and
do not take into account the “history” of region growth. Additional criteria that can
increase the power of a region-growing algorithm utilize the concept of size, like-
ness between a candidate pixel and the pixels grown so far (such as a comparison of
the intensity of a candidate and the average intensity of the grown region), and the
shape of the region being grown. The use of these types of descriptors is based on
the assumption that a model of expected results is at least partially available.

Let: f x y(,) denote an input image; S x y(,) denote a seed array containing 1’s
at the locations of seed points and 0’s elsewhere; and Q denote a predicate to be
applied at each location (,).x y Arrays f and S are assumed to be of the same size.
A basic region-growing algorithm based on 8-connectivity may be stated as follows.

ba c

FIGURE 10.45 (a) Text image corrupted by sinusoidal shading. (b) Result of global thresholding using Otsu’s method.
(c) Result of local thresholding using moving averages..

DIP4E_GLOBAL_Print_Ready.indb 765 6/16/2017 2:13:48 PM

766 Chapter 10 Image Segmentation

1. Find all connected components in S x y(,) and reduce each connected component
to one pixel; label all such pixels found as 1. All other pixels in S are labeled 0.

2. Form an image fQ such that, at each point (,),x y f x yQ(,) = 1 if the input image
satisfies a given predicate, Q, at those coordinates, and f x yQ(,) = 0 otherwise.

3. Let g be an image formed by appending to each seed point in S all the 1-valued
points in fQ that are 8-connected to that seed point.

4. Label each connected component in g with a different region label (e.g.,integers
or letters). This is the segmented image obtained by region growing.

The following example illustrates the mechanics of this algorithm.

EXAMPLE 10.20 : Segmentation by region growing.

Figure 10.46(a) shows an 8-bit X-ray image of a weld (the horizontal dark region) containing several
cracks and porosities (the bright regions running horizontally through the center of the image). We illus-
trate the use of region growing by segmenting the defective weld regions. These regions could be used
in applications such as weld inspection, for inclusion in a database of historical studies, or for controlling
an automated welding system.

The first thing we do is determine the seed points. From the physics of the problem, we know that
cracks and porosities will attenuate X-rays considerably less than solid welds, so we expect the regions
containing these types of defects to be significantly brighter than other parts of the X-ray image. We
can extract the seed points by thresholding the original image, using a threshold set at a high percen-
tile. Figure 10.46(b) shows the histogram of the image, and Fig. 10.46(c) shows the thresholded result
obtained with a threshold equal to the 99.9 percentile of intensity values in the image, which in this case
was 254 (see Section 10.3 regarding percentiles). Figure 10.46(d) shows the result of morphologically
eroding each connected component in Fig. 10.46(c) to a single point.

Next, we have to specify a predicate. In this example, we are interested in appending to each seed
all the pixels that (a) are 8-connected to that seed, and (b) are “similar” to it. Using absolute intensity
differences as a measure of similarity, our predicate applied at each location (,)x y is

 Q =
TRUE if the absolute difference of intensities

between the seed and the pixel at is

FALSE otherwise

(,)x y T≤
⎧
⎨
⎪

⎩⎪

where T is a specified threshold. Although this predicate is based on intensity differences and uses a
single threshold, we could specify more complex schemes in which a different threshold is applied to
each pixel, and properties other than differences are used. In this case, the preceding predicate is suf-
ficient to solve the problem, as the rest of this example shows.

From the previous paragraph, we know that all seed values are 255 because the image was thresh-
olded with a threshold of 254. Figure 10.46(e) shows the difference between the seed value (255) and
Fig. 10.46(a). The image in Fig. 10.46(e) contains all the differences needed to compute the predicate at
each location (,).x y Figure 10.46(f) shows the corresponding histogram. We need a threshold to use in
the predicate to establish similarity. The histogram has three principal modes, so we can start by apply-
ing to the difference image the dual thresholding technique discussed in Section 10.3. The resulting two
thresholds in this case were T1 68= and T2 126= , which we see correspond closely to the valleys of
the histogram. (As a brief digression, we segmented the image using these two thresholds. The result in

See Sections 2.5 and 9.5
regarding connected
components, and
Section 9.2 regarding
erosion.

DIP4E_GLOBAL_Print_Ready.indb 766 6/16/2017 2:13:50 PM

10.4 Segmentation by Region Growing and by Region Splitting and Merging 767

Fig. 10.46(g) shows that segmenting the defects cannot be accomplished using dual thresholds, despite
the fact that the thresholds are in the deep valleys of the histogram.)

Figure 10.46(h) shows the result of thresholding the difference image with only T1. The black points
are the pixels for which the predicate was TRUE; the others failed the predicate. The important result
here is that the points in the good regions of the weld failed the predicate, so they will not be included
in the final result. The points in the outer region will be considered by the region-growing algorithm as

ba c
ed f
hg i

Figure 10.46 (a) X-ray image of a defective weld. (b) Histogram. (c) Initial seed image. (d) Final seed image (the
points were enlarged for clarity). (e) Absolute value of the difference between the seed value (255) and (a).
(f) Histogram of (e). (g) Difference image thresholded using dual thresholds. (h) Difference image thresholded with
the smallest of the dual thresholds. (i) Segmentation result obtained by region growing. (Original image courtesy
of X-TEK Systems, Ltd.)

191 2550 63 127

0 63 127 191 255

DIP4E_GLOBAL_Print_Ready.indb 767 6/16/2017 2:13:50 PM

768 Chapter 10 Image Segmentation

candidates. However, Step 3 will reject the outer points because they are not 8-connected to the seeds.
In fact, as Fig. 10.46(i) shows, this step resulted in the correct segmentation, indicating that the use of
connectivity was a fundamental requirement in this case. Finally, note that in Step 4 we used the same
value for all the regions found by the algorithm. In this case, it was visually preferable to do so because
all those regions have the same physical meaning in this application—they all represent porosities.

REGION SPLITTING AND MERGING

The procedure just discussed grows regions from seed points. An alternative is to sub-
divide an image initially into a set of disjoint regions and then merge and/or split the
regions in an attempt to satisfy the conditions of segmentation stated in Section 10.1.
The basics of region splitting and merging are discussed next.

Let R represent the entire image region and select a predicate Q. One approach
for segmenting R is to subdivide it successively into smaller and smaller quadrant
regions so that, for any region R Q Ri i, () .= TRUE We start with the entire region, R.
If Q R() = FALSE, we divide the image into quadrants. If Q is FALSE for any
quadrant, we subdivide that quadrant into sub-quadrants, and so on. This splitting
technique has a convenient representation in the form of so-called quadtrees; that
is, trees in which each node has exactly four descendants, as Fig. 10.47 shows (the
images corresponding to the nodes of a quadtree sometimes are called quadregions
or quadimages). Note that the root of the tree corresponds to the entire image, and
that each node corresponds to the subdivision of a node into four descendant nodes.
In this case, only R4 was subdivided further.

If only splitting is used, the final partition normally contains adjacent regions with
identical properties. This drawback can be remedied by allowing merging as well as
splitting. Satisfying the constraints of segmentation outlined in Section 10.1 requires
merging only adjacent regions whose combined pixels satisfy the predicate Q. That
is, two adjacent regions Rj and Rk are merged only if Q R Rj k�() = TRUE.

The preceding discussion can be summarized by the following procedure in which,
at any step, we

1. Split into four disjoint quadrants any region Ri for which Q Ri() = FALSE.

2. When no further splitting is possible, merge any adjacent regions Rj and Rk for
which Q R Rj k�() = TRUE.

See Section 2.5
regarding region
adjacency.

R1

R3

R41 R42

R43 R44

R2

R1 R2 R3

R

R4

R41 R42 R43 R44

Rba

FIGURE 10.47
(a) Partitioned
image.
(b) Corresponding
quadtree.
R represents
the entire image
region.

DIP4E_GLOBAL_Print_Ready.indb 768 6/16/2017 2:13:52 PM

10.4 Segmentation by Region Growing and by Region Splitting and Merging 769

3. Stop when no further merging is possible.

Numerous variations of this basic theme are possible. For example, a significant
simplification results if in Step 2 we allow merging of any two adjacent regions Rj
and Rk if each one satisfies the predicate individually. This results in a much sim-
pler (and faster) algorithm, because testing of the predicate is limited to individual
quadregions. As the following example shows, this simplification is still capable of
yielding good segmentation results.

EXAMPLE 10.21 : Segmentation by region splitting and merging.

Figure 10.48(a) shows a 566 566× X-ray image of the Cygnus Loop supernova. The objective of this
example is to segment (extract from the image) the “ring” of less dense matter surrounding the dense
inner region. The region of interest has some obvious characteristics that should help in its segmenta-
tion. First, we note that the data in this region has a random nature, indicating that its standard devia-
tion should be greater than the standard deviation of the background (which is near 0) and of the large
central region, which is smooth. Similarly, the mean value (average intensity) of a region containing
data from the outer ring should be greater than the mean of the darker background and less than the
mean of the lighter central region. Thus, we should be able to segment the region of interest using the
following predicate:

ba
dc

FIGURE 10.48
(a) Image of the
Cygnus Loop
supernova, taken
in the X-ray band
by NASA’s
Hubble Telescope.
(b) through (d)
Results of limit-
ing the smallest
allowed
quadregion to be
of sizes of 32 32× ,
16 16× , and 8 8×
pixels,
respectively.
(Original image
courtesy of
NASA.)

DIP4E_GLOBAL_Print_Ready.indb 769 6/16/2017 2:13:52 PM

770 Chapter 10 Image Segmentation

 Q R
a m bR R() =

> < <⎧
⎨
⎩

TRUE if AND

FALSE otherwise

s 0

where sR and mR are the standard deviation and mean of the region being processed, and a and b are
nonnegative constants.

Analysis of several regions in the outer area of interest revealed that the mean intensity of pixels
in those regions did not exceed 125, and the standard deviation was always greater than 10. Figures
10.48(b) through (d) show the results obtained using these values for a and b, and varying the minimum
size allowed for the quadregions from 32 to 8. The pixels in a quadregion that satisfied the predicate
were set to white; all others in that region were set to black. The best result in terms of capturing the
shape of the outer region was obtained using quadregions of size 16 16× . The small black squares in
Fig. 10.48(d) are quadregions of size 8 8× whose pixels did not satisfy the predicate. Using smaller
quadregions would result in increasing numbers of such black regions. Using regions larger than the one
illustrated here would result in a more “block-like” segmentation. Note that in all cases the segmented
region (white pixels) was a connected region that completely separates the inner, smoother region from
the background. Thus, the segmentation effectively partitioned the image into three distinct areas that
correspond to the three principal features in the image: background, a dense region, and a sparse region.
Using any of the white regions in Fig. 10.48 as a mask would make it a relatively simple task to extract
these regions from the original image (see Problem 10.43). As in Example 10.20, these results could not
have been obtained using edge- or threshold-based segmentation.

As used in the preceding example, properties based on the mean and standard
deviation of pixel intensities in a region attempt to quantify the texture of the region
(see Section 11.3 for a discussion on texture). The concept of texture segmentation
is based on using measures of texture in the predicates. In other words, we can per-
form texture segmentation by any of the methods discussed in this section simply by
specifying predicates based on texture content.

10.5 REGION SEGMENTATION USING CLUSTERING AND
SUPERPIXELS

In this section, we discuss two related approaches to region segmentation. The first
is a classical approach based on seeking clusters in data, related to such variables as
intensity and color. The second approach is significantly more modern, and is based
on using clustering to extract “superpixels” from an image.

REGION SEGMENTATION USING K-MEANS CLUSTERING

The basic idea behind the clustering approach used in this chapter is to partition a
set, Q, of observations into a specified number, k, of clusters. In k-means clustering,
each observation is assigned to the cluster with the nearest mean (hence the name
of the method), and each mean is called the prototype of its cluster. A k-means algo-
rithm is an iterative procedure that successively refines the means until convergence
is achieved.

Let { , , , }z z z1 2 … Q be set of vector observations (samples). These vectors have
the form

10.5

A more general form of
clustering is
unsupervised clustering,
in which a clustering
algorithm attempts to
find a meaningful set of
clusters in a given set
of samples. We do not
address this topic, as
our focus in this brief
introduction is only to
illustrate how supervised
clustering is used for
image segmentation.

DIP4E_GLOBAL_Print_Ready.indb 770 6/16/2017 2:13:53 PM

10.5 Region Segmentation Using Clustering and Superpixels 771

 z =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

z

z

zn

1

2

�
 (10-84)

In image segmentation, each component of a vector z represents a numerical pixel
attribute. For example, if segmentation is based on just grayscale intensity, then z = z
is a scalar representing the intensity of a pixel. If we are segmenting RGB color
images, z typically is a 3-D vector, each component of which is the intensity of a pixel
in one of the three primary color images, as we discussed in Chapter 6. The objec-
tive of k-means clustering is to partition the set Q of observations into k k Q()≤
disjoint cluster sets C C C Ck= { , , , },1 2 … so that the following criterion of optimality
is satisfied:†

 arg min
C

i
Ci

k

i

a bz m
z

−
∈=
∑∑ 2

1

 (10-85)

where mi is the mean vector (or centroid) of the samples in set Ci and arg is the vec-
tor norm of the argument. Typically, the Euclidean norm is used, so the term z m− i
is the familiar Euclidean distance from a sample in Ci to mean mi . In words, this
equation says that we are interested in finding the sets C C C Ck= { , , , }1 2 … such that
the sum of the distances from each point in a set to the mean of that set is minimum.

Unfortunately, finding this minimum is an NP-hard problem for which no practi-
cal solution is known. As a result, a number of heuristic methods that attempt to find
approximations to the minimum have been proposed over the years. In this section,
we discuss what is generally considered to be the “standard” k-means algorithm,
which is based on the Euclidean distance (see Section 2.6). Given a set { , , , }z z z1 2 … Q
of vector observation and a specified value of k, the algorithm is as follows:

1. Initialize the algorithm: Specify an initial set of means, mi(),1 i k= 1 2, , , .…
2. Assign samples to clusters: Assign each sample to the cluster set whose mean

is the closest (ties are resolved arbitrarily, but samples are assigned to only one
cluster):

 z z m z mq i q i q jC j k j i q Q→ − < − = =if � � � �2 2 1 2 1 2, , , (); , , ,… …≠

3. Update the cluster centers (means):

 m z
z

i
i CC

i k
i

= =
∈
∑1

1 2, , ,…

where Ci is the number of samples in cluster set Ci .

4. Test for completion: Compute the Euclidean norms of the differences between
the mean vectors in the current and previous steps. Compute the residual error,
E, as the sum of the k norms. Stop if E T≤ , where T a specified, nonnegative
threshold. Else, go back to Step 2.

† Remember, min ()
x

h x() is the minimum of h with respected to x, whereas arg min ()
x

h x() is the value (or values)
of x at which h is minimum.

These initial means are
the initial cluster centers.
They are also called seeds.

DIP4E_GLOBAL_Print_Ready.indb 771 6/16/2017 2:13:55 PM

772 Chapter 10 Image Segmentation

When T = 0, this algorithm is known to converge in a finite number of iterations
to a local minimum. It is not guaranteed to yield the global minimum required to
minimize Eq. (10-85). The result at convergence does depend on the initial values
chosen for mi . An approach used frequently in data analysis is to specify the initial
means as k randomly chosen samples from the given sample set, and to run the
algorithm several times, with a new random set of initial samples each time. This is
to test the “stability” of the solution. In image segmentation, the important issue is
the value selected for k because this determines the number of segmented regions;
thus, multiple passes are rarely used.

EXAMPLE 10.22 : Using k-means clustering for segmentation.

Figure 10.49(a) shows an image of size 688 688× pixels, and Fig. 10.49(b) is the segmentation obtained
using the k-means algorithm with k = 3. As you can see, the algorithm was able to extract all the mean-
ingful regions of this image with high accuracy. For example, compare the quality of the characters in
both images. It is important to realize that the entire segmentation was done by clustering of a single
variable (intensity). Because k-means works with vector observations in general, its power to discrimi-
nate between regions increases as the number of components of vector z in Eq. (10-84) increases.

REGION SEGMENTATION USING SUPERPIXELS

The idea behind superpixels is to replace the standard pixel grid by grouping pixels
into primitive regions that are more perceptually meaningful than individual pixels.
The objectives are to lessen computational load, and to improve the performance of
segmentation algorithms by reducing irrelevant detail. A simple example will help
explain the basic approach of superpixel representations.

Figure 10.50(a) shows an image of size 600 800× (480,000) pixels containing
various levels of detail that could be described verbally as: “This is an image of two
large carved figures in the foreground, and at least three, much smaller, carved fig-
ures resting on a fence behind the large figures. The figures are on a beach, with

ba

FIGURE 10.49
(a) Image of size
688 688× pixels.
(b) Image
segmented using
the k-means
algorithm with
k = 3.

DIP4E_GLOBAL_Print_Ready.indb 772 6/16/2017 2:13:56 PM

10.5 Region Segmentation Using Clustering and Superpixels 773

the ocean and sky in the background.” Figure 10.50(b) shows the same image rep-
resented by 4,000 superpixels and their boundaries (the boundaries are shown for
reference—they are not part of the data), and Fig. 10.50(c) shows the superpixel
image. One could argue that the level of detail in the superpixel image would lead
to the same description as the original, but the former contains only 4,000 primitive
units, as opposed to 480,000 in the original. Whether the superpixel representation
is “adequate” depends on the application. If the objective is to describe the image
at the level of detail mentioned above, then the answer is yes. On the other hand, if
the objective is to detect imperfections at pixel-level resolutions, then the answer
obviously is no. And there are application, such as computerized medical diagnosis,
in which approximate representations of any kind are not acceptable. Nevertheless,
numerous application areas, such as image-database queries, autonomous naviga-
tion, and certain branches of robotics, in which economy of implementation and
potential improvements in segmentation performance far outweigh any appreciable
loss of image detail.

One important requirement of any superpixel representation is adherence to bound-
aries. This means that boundaries between regions of interest must be preserved
in a superpixel image. We can see that this indeed is the case with the image in
Fig. 10.50(c). Note, for example, how clear the boundaries between the figures and
the background are. The same is true of the boundaries between the beach and the
ocean, and between the ocean and the sky. Other important characteristics are the
preservations of topological properties and, of course, computational efficiency. The
superpixel algorithm discussed in this section meets these requirements.

As another illustration, we show the results of severely decreasing the number of
superpixels to 1,000, 500, and 250. The results in Fig. 10.51, show a significant loss of
detail compared to Fig. 10.50(a), but the first two images contain most of the detail
relevant to the image description discussed earlier. A notable difference is that two
of the three small carvings on the fence in the back were eliminated. The 250-ele-
ment superpixel image even lost the third. However, the boundaries between the
principal regions, as well as the basic topology of the images, were preserved.

Figures 10.50(b) and (c)
were obtained using a
method to be discussed
later in this section.

ba c

FIGURE 10.50 (a) Image of size 600 480× (480,000) pixels. (b) Image composed of 4,000 superpixels (the boundaries
between superpixels (in white) are superimposed on the superpixel image for reference—the boundaries are not
part of the data). (c) Superpixel image. (Original image courtesy of the U.S. National Park Services.).

DIP4E_GLOBAL_Print_Ready.indb 773 6/16/2017 2:13:56 PM

774 Chapter 10 Image Segmentation

SLIC Superpixel Algorithm

In this section we discuss an algorithm for generating superpixels, called simple lin-
ear iterative clustering (SLIC). This algorithm, developed by Achanta et al. [2012],
is conceptually simple, and has computational and other performance advantages
over other superpixels techniques. SLIC is a modification of the k-means algorithm
discussed in the previous section. SLIC observations typically use (but are not lim-
ited to) 5-dimensional vectors containing three color components and two spatial
coordinates. For example, if we are using the RGB color system, the 5-dimensional
vector associated with an image pixel has the form

 z =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

r
g

b

x

y

 (10-86)

where (, ,)r g b are the three color components of a pixel, and (,)x y are its two spatial
coordinates. Let nsp denote the desired number of superpixels and let ntp denote the
total number of pixels in the image. The initial superpixel centers, mi i i i i i

T
r g b x y= [] ,

i nsp= 1 2, , , ,… are obtained by sampling the image on a regular grid spaced s units
apart. To generate superpixels approximately equal in size (i.e., area), the grid spac-

As you will learn in
Chapter 11, vectors
containing image
attributes are called
feature vectors.

FIGURE 10.51 Top row: Results of using 1,000, 500, and 250 superpixels in the representation of Fig. 10.50(a). As before,
the boundaries between superpixels are superimposed on the images for reference. Bottom row: Superpixel images.

DIP4E_GLOBAL_Print_Ready.indb 774 6/16/2017 2:13:57 PM

10.5 Region Segmentation Using Clustering and Superpixels 775

ing interval is selected as s n ntp sp= [] .1 2 To prevent centering a superpixel on the
edge of the image, and to reduce the chances of starting at a noisy point, the initial
cluster centers are moved to the lowest gradient position in the 3 3× neighborhood
about each center.

The SLIC superpixel algorithm consists of the following steps. Keep in mind that
superpixels are vectors in general. When we refer to a “pixel” in the algorithm, we
are referring to the (,)x y location of the superpixel relative to the image.

1. Initialize the algorithm: Compute the initial superpixel cluster centers,

 mi i i i i i
T

spr g b x y i n= [] =, , , ,1 2 …

by sampling the image at regular grid steps, s. Move the cluster centers to the
lowest gradient position in a 3 3× neighborhood. For each pixel location, p, in
the image, set a label L p() = −1 and a distance d p() .= �

2. Assign samples to cluster centers: For each cluster center mi , i nsp= 1 2, , , ,…
compute the distance, D pi() between mi and each pixel p in a 2 2s s× neighbor-
hood about mi . Then, for each p and i nsp= 1 2, , , ,… if D d pi < (), let d p Di() =
and L p i() .=

3. Update the cluster centers: Let Ci denote the set of pixels in the image with
label L p i() .= Update mi :

 m z
z

i
i C

spC
i n

i

= =
∈
∑1

1 2, , ,…

where Ci is the number of pixels in set Ci , and the z’s are given by Eq. (10-86).
4. Test for convergence: Compute the Euclidean norms of the differences between

the mean vectors in the current and previous steps. Compute the residual error,
E, as the sum of the nsp norms. If E T< , where T a specified nonnegative thresh-
old, go to Step 5. Else, go back to Step 2.

5. Post-process the superpixel regions: Replace all the superpixels in each region,
Ci , by their average value, mi .

Note in Step 5 that superpixels end up as contiguous regions of constant value. The
average value is not the only way to compute this constant, but it is the most widely
used. For graylevel images, the average is just the average intensity of all the pixels
in the region spanned by the superpixel. This algorithm is similar to the k-means
algorithm in the previous section, with the exceptions that the distances, Di , are not
specified as Euclidean distances (see below), and that these distances are computed
for regions of size 2 2s s× , rather than for all the pixels in the image, thus reduc-
ing computation time significantly. In practice, SLIC convergence with respect to
E can be achieved with fairly large values of T. For example, all results reported by
Achanta et al. [2012] were obtained using T = 10.

DIP4E_GLOBAL_Print_Ready.indb 775 6/16/2017 2:14:00 PM

776 Chapter 10 Image Segmentation

Specifying the Distance Measure

SLIC superpixels correspond to clusters in a space whose coordinates are colors
and spatial variables. It would be senseless to use a single Euclidean distance in this
case, because the scales in the axes of this coordinate system are different and unre-
lated. In other words, spatial and color distances must be treated separately. This is
accomplished by normalizing the distance of the various components, then combin-
ing them into a single measure. Let dc and ds denote the color and spatial Euclidean
distances between two points in a cluster, respectively:

 d r r g g b bc j i j i j i= − + − + −⎡⎣ ⎤⎦() () ()2 2 2 1 2
 (10-87)

and

 d x x y ys j i j i= − + −⎡⎣ ⎤⎦() ()2 2 1 2
 (10-88)

We then define D as the composite distance

 D
d

d
d

d
c

cm

s

sm

= +
⎡

⎣
⎢

⎤

⎦
⎥a b a b

2 2
1 2

 (10-89)

where dcm and dsm are the maximum expected values of dc and ds. The maximum spa-
tial distance should correspond to the sampling interval; that is, d s n nsm tp sp= = [] .1 2
Determining the maximum color distance is not as straightforward, because these
distances can vary significantly from cluster to cluster, and from image to image. A
solution is to set dcm to a constant c so that Eq. (10-89) becomes

 D
d
c

d
s

c s= +
⎡

⎣
⎢

⎤

⎦
⎥a b a b

2 2
1 2

 (10-90)

We can write this equation as

 D d
d
s

cc
s= +

⎡

⎣
⎢

⎤

⎦
⎥

2
2

2
1 2

a b (10-91)

This is the distance measure used for each cluster in the algorithm. Constant c can be
used to weigh the relative importance between color similarity and spatial proximity.
When c is large, spatial proximity is more important, and the resulting superpixels
are more compact. When c is small, the resulting superpixels adhere more tightly to
image boundaries, but have less regular size and shape.

For grayscale images, as in Example 10.23 below, we use

 d l lc j i= −⎡⎣ ⎤⎦()2 1 2
 (10-92)

DIP4E_GLOBAL_Print_Ready.indb 776 6/16/2017 2:14:01 PM

10.6 Region Segmentation Using Graph Cuts 777

in Eq. (10-91), where the l’s are intensity levels of the points for which the distance
is being computed.

In 3-D, superpixels become supervoxels, which are handled by defining

 d x x y y z zs j i j i j i= − + − + −⎡⎣ ⎤⎦() () ()2 2 2 1 2
 (10-93)

where the z’s are the coordinates of the third spatial dimension. We must also add
the third spatial variable, z, to the vector in Eq. (10-86).

Because no provision is made in the algorithm to enforce connectivity, it is pos-
sible for isolated pixels to remain after convergence. These are assigned the label
of the nearest cluster using a connected components algorithm (see Section 9.6).
Although we explained the algorithm in the context of RGB color components, the
method is equally applicable to other colors systems. In fact, other components of
vector z in Eq. (10-86) (with the exception of the spatial variables) could be other
real-valued feature values, provided that a meaningful distance measure can be
defined for them.

EXAMPLE 10.23 : Using superpixels for image segmentation.

Figure 10.52(a) shows an image of an iceberg, and Fig. 10.52(b) shows the result of segmenting this
image using the k-means algorithm developed in the last section, with k = 3. Although the main regions
of the image were segmented, there are numerous segmentation errors in both regions of the iceberg,
and also on the boundary separating it from the background. Errors are visible as isolated pixels (and
also as small groups of pixels) with the wrong shade (e.g., black pixels within a white region). Figure
10.52(c) shows a 100-superpixel representation of the image with the superpixel boundaries superim-
posed for reference, and Fig. 10.52(d) shows the same image without the boundaries. Figure 10.52(e) is
the segmentation of (d) using the k-means algorithm with k = 3 as before. Note the significant improve-
ment over the result in (b), indicating that the original image has considerably more (irrelevant) detail
than is needed for a proper segmentation. In terms of computational advantage, consider that generat-
ing Fig. 10.52(b) required individual processing of over 300K pixels, while (e) required processing of 100
pixels with considerably fewer shades of gray.

10.6 REGION SEGMENTATION USING GRAPH CUTS

In this section, we discuss an approach for partitioning an image into regions by
expressing the pixels of the image as nodes of a graph, and then finding an optimum
partition (cut) of the graph into groups of nodes. Optimality is based on criteria whose
values are high for members within a group (i.e., a region) and low across members of
different groups. As you will see later in this section, graph-cut segmentation is capa-
ble in some cases of results that can be superior to the results achievable by any of the
segmentation methods studied thus far. The price of this potential benefit is added
complexity in implementation, which generally translates into slower execution.

10.6

DIP4E_GLOBAL_Print_Ready.indb 777 6/16/2017 2:14:01 PM

778 Chapter 10 Image Segmentation

IMAGES AS GRAPHS

A graph, G, is a mathematical structure consisting of a set V of nodes and a set E of
edges connecting those vertices:

 G V E= (,) (10-94)

where V is a set and

 E V V8 × (10-95)

is a set of ordered pairs of elements from V. If (,)u v ∈E implies that (,) ,v u ∈E and
vice versa, the graph is said to be undirected; otherwise the graph is directed. For
example, we may consider a street map as a graph in which the nodes are street
intersections, and the edges are the streets connecting those intersections. If all
streets are bidirectional, the graph is undirected (meaning that we can travel both
ways from any two intersections). Otherwise, if at least one street is a one-way street,
the graph is directed.

Nodes and edges are also
referred to as vertices
and links, respectively.

See Section 2.5 for an
explanation of the
Cartesian product V × V
and for a review of the
set symbols used in this
section.

ba
c ed

FIGURE 10.52 (a) Image of size 533 566× (301,678) pixels. (b) Image segmented using the k-means algorithm.
(c) 100-element superpixel image showing boundaries for reference. (d) Same image without boundaries. (e) Super-
pixel image (d) segmented using the k-means algorithm. (Original image courtesy of NOAA.)

DIP4E_GLOBAL_Print_Ready.indb 778 6/16/2017 2:14:02 PM

10.6 Region Segmentation Using Graph Cuts 779

The types of graphs in which we are interested are undirected graphs whose
edges are further characterized by a matrix, W, whose element w(,)i j is a weight
associated with the edge that connects nodes i and j. Because the graph is undirected,
w w(,) (,),i j j i= which means that W is a symmetric matrix. The weights are selected
to be proportional to one or more similarity measures between all pairs of nodes. A
graph whose edges are associated with weights is called a weighted graph.

The essence of the material in this section is to represent an image to be seg-
mented as a weighted, undirected graph, where the nodes of the graph are the pixels
in the image, and an edge is formed between every pair of nodes. The weight, w(,),i j
of each edge is a function of the similarity between nodes i and j. We then seek to
partition the nodes of the graph into disjoint subsets V V VK1 2, , ,… where, by some
measure, the similarity among the nodes within a subset is high, and the similarity
across the nodes of different subsets is low. The nodes of the partitioned subsets
correspond to the regions in the segmented image.

Set V is partitioned into subsets by cutting the graph. A cut of a graph is a parti-
tion of V into two subsets A and B such that

 A B V A B´ ¨= = ∅and (10-96)

where the cut is implemented by removing the edges connecting subgraphs A and B.
There are two key aspects of using graph cuts for image segmentation: (1) how to
associate a graph with an image; and (2) how to cut the graph in a way that makes
sense in terms of partitioning the image into background and foreground (object)
pixels. We address these two questions next.

Figure 10.53 shows a simplified approach for generating a graph from an image.
The nodes of the graph correspond to the pixels in the image and, to keep the expla-
nation simple, we allow edges only between adjacent pixels using 4-connectivity,
which means that there are no diagonal edges linking the pixels. But, keep in mind
that, in general, edges are specified between every pair of pixels. The weights for the
edges typically are formed from spatial relationships (for example, distance from the
vertex pixel) and intensity measures (for example, texture and color), consistent with
exhibiting similarity between pixels. In this simple example, we define the degree
of similarity between two pixels as the inverse of the difference in their intensities.
That is, for two nodes (pixels) ni and nj , the weight of the edge between them is
w(,) () () ,i j I n I n ci j= − +1� � �A B where I ni() and I nj(), are the intensities of the two
nodes (pixels) and c is a constant included to prevent division by 0. Thus, the closer
the values of intensity between adjacent pixels is, the larger the value of w will be.

For illustrative purposes, the thickness of each edge in Fig. 10.53 is shown propor-
tional to the degree of similarity between the pixels that it connects (see Problem
10.44). As you can see in the figure, the edges between the dark pixels are stronger
than the edges between dark and light pixels, and vice versa. Conceptually, segmen-
tation is achieved by cutting the graph along its weak edges, as illustrated by the
dashed line in Fig. 10.53(d). Figure 10.53(c) shows the segmented image.

Although the basic structure in Fig. 10.53 is the focus of the discussion in this
section, we mention for completeness another common approach for constructing

Superpixels are also well
suited for use as graph
nodes. Thus, when we
refer in this section to

“pixels” in an image, we
are, by implication,
also referring to super-
pixels.

DIP4E_GLOBAL_Print_Ready.indb 779 6/16/2017 2:14:03 PM

780 Chapter 10 Image Segmentation

image graphs. Figure 10.54 shows the same graph as the one we just discussed, but
here you see two additional nodes called the source and sink terminal nodes, respec-
tively, each connected to all nodes in the graph via unidirectional links called t-links.
The terminal nodes are not part of the image; their role, for example, is to associate
with each pixel a probability that it is a background or foreground (object) pixel.
The probabilities are the weights of the t-links. In Figs. 10.54(c) and (d), the thickness
of each t-link is proportional to the value of the probability that the graph node to
which it is connected is a foreground or background pixel (the thicknesses shown
are so that the segmentation result would be the same as in Fig. 10.53). Which of the
two nodes we call background or foreground is arbitrary.

MINIMUM GRAPH CUTS

Once an image has been expressed as a graph, the next step is to cut the graph into
two or more subgraphs. The nodes (pixels) in each resulting subgraph correspond
to a region in the segmented image. Approaches based on Fig. 10.54 rely on inter-
preting the graph as a flow network (of pipes, for example) and obtaining what is
commonly referred to as a minimum graph cut. This formulation is based on the
so-called Max-Flow, Min-Cut Theorem. This theorem states that, in a flow network,
the maximum amount of flow passing from the source to the sink is equal to the
minimum cut. This minimum cut is defined as the smallest total weight of the edges
that, if removed, would disconnect the sink from the source:

 cut A B u
A B

(,) (,)
,

=
∈ ∈
∑ w v

u v

 (10-97)

Cut

⇓

⇓

⇓Image

Graph

Segmentation

Edge
Node

ba
dc

FIGURE 10.53
(a) A 3 3× image.
(c) A corresponding
graph.
(d) Graph cut.
(c) Segmented
image.

DIP4E_GLOBAL_Print_Ready.indb 780 6/16/2017 2:14:03 PM

10.6 Region Segmentation Using Graph Cuts 781

where A and B satisfy Eq. (10-96). The optimum partition of a graph is the one that
minimizes this cut value. There is an exponential number of such partitions, which
would present us with an intractable computational problem. However, efficient
algorithms that run in polynomial time have been developed for solving max-flow
problems. Therefore, based on the Max-Flow, Min-Cut Theorem, we can apply these
algorithms to image segmentation, provided that we cast segmentation as a flow
problem and select the weights for the edges and t-links such that minimum graph
cuts will result in meaningful segmentations.

Although the min-cut approach offers an elegant solution, it can result in group-
ings that favor cutting small sets of isolated nodes in a graph, leading to improper
segmentations. Figure 10.55 shows an example, in which the two regions of interest
are characterized by the tightness of the pixel groupings. Meaningful edge weights
that reflect this property would be inversely proportional to the distance between
pairs of points. But this would lead to weights that would be smaller for isolated
points, resulting in min cuts such as the example in Fig. 10.55. In fact, any cut that
partitions out individual points on the left of the figure will have a smaller cut value
in Eq. (10-4) than a cut that properly partitions the points into two groups based on

ba
dc

FIGURE 10.54
(a) Same image
as in Fig. 10.53(a).
(c) Corresponding
graph and terminal
nodes. (d) Graph
cut. (b) Segmented
image.

Cut

⇓

⇓

⇓Image

Graph

Segmentation

(Background)

(Foreground)

Source Terminal

Sink Terminal

(Background)

(Foreground)

Source Terminal

Sink Terminal

DIP4E_GLOBAL_Print_Ready.indb 781 6/16/2017 2:14:03 PM

782 Chapter 10 Image Segmentation

their proximity, such as the partition shown in Fig. 10.55. The approach presented in
this section, proposed by Shi and Malik [2000] (see also Hochbaum [2010]), is aimed
at avoiding this type of behavior by redefining the concept of a cut.

Instead of looking at the total weight value of the edges that connect two parti-
tions, the idea is to work with a measure of “disassociation” that computes the cost
as a fraction of the total edge connections to all nodes in the graph. This measure,
called the normalized cut (Ncut), is defined as

 Ncut A B
cut A B

assoc A V
cut A B

assoc B V
(,)

(,)
(,)

(,)
(,)

= + (10-98)

where cut A B(,) is given by Eq. (10-97) and

 assoc A V u z
u A z V

(,) (,)
,

=
∈ ∈
∑ w (10-99)

is the sum of the weights of all the edges from the nodes of subgraph A to the nodes
of the entire graph. Similarly,

 assoc B V z
B z V

(,) (,)
,

=
∈ ∈
∑ w v

v

 (10-100)

is the sum of the weights of the edges from all the edges in B to the entire graph. As
you can see, assoc A V(,) is simply the cut of A from the rest of the graph, and simi-
larly for assoc B V(,).

By using Ncut A B(,) instead of cut A B(,), the cut that partitions isolated points
will no longer have small values. You can see this, for example, by noting in Fig. 10.55
that if A is the single node shown, cut A B(,) and assoc A V(,) will have the same val-
ue. Thus, independently of how small cut A B(,) is, Ncut A B(,) will always be greater
than or equal to 1, thus providing normalization for “pathological” cases such as this.

Based on similar concepts, we can define a measure for total normalized associa-
tion within graph partitions as

A more meaningful cutA min cutFIGURE 10.55
An example
showing how a
min cut can lead
to a meaningless
segmentation. In
this example, the
similarity between
pixels is defined
as their spatial
proximity, which
results in two
distinct regions.

DIP4E_GLOBAL_Print_Ready.indb 782 6/16/2017 2:14:05 PM

10.6 Region Segmentation Using Graph Cuts 783

 Nassoc A B
assoc A A
assoc A V

assoc B B
assoc B V

(,)
(,)
(,)

(,)
(,)

= + (10-101)

where assoc A A(,) and assoc B B(,) are the total weights connecting the nodes within
A and within B, respectively. It is not difficult to show (see Problem 10.46) that

 Ncut A B Nassoc A B(,) (,)= −2 (10-102)

which implies that minimizing Ncut A B(,) simultaneously maximizes Nassoc A B(,).
Based on the preceding discussion, image segmentation using graph cuts is now

based on finding a partition that minimizes Ncut A B(,). Unfortunately, minimizing
this quantity exactly is an NP-complete computational task, and we can no longer
rely on the solutions available for max flow because the approach being followed
now is based on the concepts explained in connection with Fig. 10.53. However, Shi
and Malik [2000] (see also Hochbaum [2010]) were able to find an approximate dis-
crete solution to minimizing Ncut A B(,) by formulating minimization as a general-
ized eigenvalue problem, for which numerous implementations exist.

COMPUTING MINIMAL GRAPH CUTS

As above, let V denote the nodes of a graph G, and let A and B be two subsets
of V satisfying Eq. (10-96). Let K denote the number of nodes in V and define a
K-dimensional indicator vector, x, whose element xi has the property xi = 1 if node
ni of V is in A and xi = −1 if it is in B. Let

 d i ji
j

= ∑w(,) (10-103)

be the sum of the weights from node ni to all other nodes in V. Using these defini-
tions, we can write Eq. (10-98) as

Ncut A B
cut A B
cut A V

cut A B
cut B V

i j x xi j
xi

(,)
(,)
(,)

(,)
(,)

(,)

= +

=
−

>
w

00 0

0

0 0

0

, ,

(,)
x

i
x

i j
x x

i
x

j

i

i j

i

d

i j x x

d

<

>

< >

<

∑

∑

∑

∑
+

−w (10-104)

The objective is to find a vector, x, that minimizes Ncut A B(,). A closed-form solu-
tion that minimizes Eq. (10-104) can be found, but only if the elements of x are
allowed to be real, continuous numbers instead of being constrained to be ±1. The
solution derived by Shi and Malik [2000] is given by solving the generalized eigen-
system expression

 ()D W y Dy− = l (10-105)

where D is a K K× diagonal matrix with main-diagonal elements di , i K= 1 2, , , ,…
and W is a K K× weight matrix with elements w(,),i j as defined earlier. Solving

If the nodes of graph
G are the pixels in an
image, then K = M × N,
where M and N are the
number of rows and
columns in the image.

DIP4E_GLOBAL_Print_Ready.indb 783 6/16/2017 2:14:07 PM

784 Chapter 10 Image Segmentation

Eq. (10-105) gives K eigenvalues and K eigenvectors, each corresponding to one
eigenvalue. The solution to our problem is the eigenvector corresponding the second
smallest eigenvalue.

We can convert the preceding generalized eigenvalue formulation into a standard
eigenvalue problem by writing Eq. (10-105) as (see Problem 10.45):

 Az z= l (10-106)

where

 A D D W D= −− −1
2

1
2() (10-107)

and

 z D y=
1
2 (10-108)

from which it follows that

 y D z= − 1
2 (10-109)

Thus, we can find the (continuous-valued) eigenvector corresponding to the second
smallest eigenvalue using either a generalized or a standard eigenvalue solver. The
desired (discrete) vector x can be generated from the resulting, continuous valued
solution vector by finding a splitting point that divides the values of the continuous
eigenvector elements into two parts. We do this by finding the splitting point that
yields the smallest value of Ncut A B(,), since this is the quantity we are trying to
minimize. To simplify the search, we divide the range of values in the continuous
vector into Q evenly spaced values, evaluate Eq. (10-104) for each value, and choose
the splitting point that yields the smallest value of Ncut A B(,). Then, all values of the
eigenvector with values above the split point are assigned the value 1; all others are
assigned the value −1. The result is the desired vector x. Then, partition A is the set
nodes in V corresponding to 1’s in x; the remaining nodes correspond to partition B.
This partitioning is carried out only if the stability criterion discussed in the follow-
ing paragraph is met.

Searching for a splitting point implies computing a total of Q values of Ncut A B(,)
and selecting the smallest one. A region that is not clearly segmentable into two
subregions using the specified weights will usually result in many splitting points
with similar values of Ncut A B(,). Trying to segment such a region is likely to result
in a meaningless partition. To avoid this behavior, a region (i.e., subgraph) is split
only if it satisfies a stability criterion, obtained by first computing the histogram of
the eigenvector values, then forming the ratio of the minimum to the maximum bin
counts. In an “uncertain” eigenvector, the values in the histogram will stay relatively
the same, and the ratio will be relatively high. Shi and Malik [2000] found experi-
mentally that thresholding the ratio at 0.06 was a effective criterion for not splitting
the region in question.

DIP4E_GLOBAL_Print_Ready.indb 784 6/16/2017 2:14:07 PM

10.6 Region Segmentation Using Graph Cuts 785

GRAPH CUT SEGMENTATION ALGORITHM

In the preceding discussion, we illustrated two ways in which edge weights can be
generated from an image. In Figs. 10.53 and 10.54, we looked at weights generated
using image intensity values, and in Fig. 10.55 we considered weights based on the
distance between pixels. But these are just two examples of the many ways that
we can generate a graph and corresponding weights from an image. For example,
we could use color, texture, statistical moments about a region, and other types of
features to be discussed in Chapter 11. In general, then, graphs can be constructed
from image features, of which pixel intensities are a special case. With this concept
as background, we can summarize the discussion thus far in this section as the fol-
lowing algorithm:

1. Given a set of features, specify a weighted graph, G V E= (,) in which V contains
the points in the feature space, and E contains the edges of the graph. Compute
the edge weights and use them to construct matrices W and D. Let K denote the
desired number of partitions of the graph.

2. Solve the eigenvalue system ()D W y Dy− = l to find the eigenvector with the
second smallest eigenvalue.

3. Use the eigenvector from Step 2 to bipartition the graph by finding the splitting
point such that Ncut A B(,) is minimized.

4. If the number of cuts has not reached K, decide if the current partition should
be subdivided by checking the stability of the cut.

5. Recursively repartition the segmented parts if necessary.

Note that the algorithm works by recursively generating two-way cuts. The number of
groups (e.g., regions) in the segmented image is controlled by K. Other criteria, such
as the maximum size allowed for each cut, can further refine the final segmentation.
For example, when using pixels and their intensities as the basis for constructing the
graph, we can specify the maximum and/or minimum size allowed for each region.

EXAMPLE 10.24 : Specifying weights for graph cut segmentation.

In Fig. 10.53, we illustrated how to generate graph weights using intensity values, and in Fig. 10.55 we
discussed briefly how to generate weights based on the distance between pixels. In this example, we give
a more practical approach for generating weights that include both intensity and distance from a pixel,
thus introducing the concept of a neighborhood in graph segmentation.

Let ni and nj denote two nodes (image pixels). As mentioned earlier in this section, weights are sup-
posed to reflect the similarity between nodes in a graph. When considering segmentation, one of the
principal ways to establish how likely two pixels in an image are to be a part of the same region or object
is to determine the difference in their intensity values, and how close the pixels are to each other. The
weight value of the edge between two pixels should be large when the pixels are very close in intensity
and proximity (i.e., when the pixels are “similar), and should decrease as their intensity difference and
distance from each other increases. That is, the weight value should be a function of how similar the
pixels are in intensity and distance. These two concepts can be embedded into a single weight function
using the following expression:

DIP4E_GLOBAL_Print_Ready.indb 785 6/16/2017 2:14:08 PM

786 Chapter 10 Image Segmentation

 w(,) (,)

[() ()] (,)

i j e e dist n n r

I n I n dist n n

i j

i j

I

i j

d= <
−

−
−

2

2 2

0

s s if

ootherwise

⎧
⎨
⎪

⎩⎪

where I ni() is the intensity of node ni , sI
2 and sd

2 are constants determining the spread of the two
Gaussian-like functions, dist n ni j(,) is the distance (e.g., the Euclidean distance) between the two nodes,
and r is a radial constant that establishes how far away we are willing to consider similarity. The expo-
nential terms decrease as a function of dissimilarity in intensity and as function of distance between the
nodes, as required of our measure of similarity in this case.

EXAMPLE 10.25 : Segmentation using graph cuts.

Graph cuts are ideally suited for obtaining a rough segmentation of the principal regions in an image.
Figure 10.56 shows a typical result. Figure 10.56(a) is the familiar building image. Consistent with the
idea of extracting the principal regions of an image, Fig. 10.56(b) shows the image smoothed with a
simple 25 25× box kernel. Observe how the fine detail is smoothed out, leaving only major regional
features such as the facade and sky. Figure 10.56(c) is the result of segmentation using the graph cut
algorithm just developed, with weights of the form discussed in the previous example, and allowing only
two partitions. Note how well the region corresponding to the building was extracted, with none of the
details characteristic of the methods discussed earlier in this chapter. In fact, it would have been nearly
impossible to obtain comparable results using any of the methods we have discussed thus far without
significant additional processing. This type of result is ideal for tasks such as providing broad cues for
autonomous navigation, for searching image databases, and for low-level image analysis.

10.7 SEGMENTATION USING MORPHOLOGICAL WATERSHEDS

Thus far, we have discussed segmentation based on three principal concepts: edge
detection, thresholding, and region extraction. Each of these approaches was found
to have advantages (for example, speed in the case of global thresholding) and dis-
advantages (for example, the need for post-processing, such as edge linking, in edge-
based segmentation). In this section, we discuss an approach based on the concept of
so-called morphological watersheds. Segmentation by watersheds embodies many of
the concepts of the other three approaches and, as such, often produces more stable
segmentation results, including connected segmentation boundaries. This approach
also provides a simple framework for incorporating knowledge-based constraints
(see Fig. 1.23) in the segmentation process, as we discuss at the end of this section.

BACKGROUND

The concept of a watershed is based on visualizing an image in three dimensions,
two spatial coordinates versus intensity, as in Fig. 2.18(a). In such a “topographic”
interpretation, we consider three types of points: (1) points belonging to a regional
minimum; (2) points at which a drop of water, if placed at the location of any of those

10.7

DIP4E_GLOBAL_Print_Ready.indb 786 6/16/2017 2:14:09 PM

10.7 Segmentation Using Morphological Watersheds 787

points, would fall with certainty to a single minimum; and (3) points at which water
would be equally likely to fall to more than one such minimum. For a particular
regional minimum, the set of points satisfying condition (2) is called the catchment
basin or watershed of that minimum. The points satisfying condition (3) form crest
lines on the topographic surface, and are referred to as divide lines or watershed lines.

The principal objective of segmentation algorithms based on these concepts is to
find the watershed lines. The method for doing this can be explained with the aid of
Fig. 10.57. Figure 10.57(a) shows a gray-scale image and Fig. 10.57(b) is a topograph-
ic view, in which the height of the “mountains” is proportional to intensity values in
the input image. For ease of interpretation, the backsides of structures are shaded.
This is not to be confused with intensity values; only the general topography of the
three-dimensional representation is of interest. In order to prevent the rising water
from spilling out through the edges of the image, we imagine the perimeter of the
entire topography (image) being enclosed by dams that are higher than the highest
possible mountain, whose value is determined by the highest possible intensity value
in the input image.

Suppose that a hole is punched in each regional minimum [shown as dark areas in
Fig. 10.57(b)] and that the entire topography is flooded from below by letting water
rise through the holes at a uniform rate. Figure 10.57(c) shows the first stage of flood-
ing, where the “water,” shown in light gray, has covered only areas that correspond
to the black background in the image. In Figs. 10.57(d) and (e) we see that the water
now has risen into the first and second catchment basins, respectively. As the water
continues to rise, it will eventually overflow from one catchment basin into another.
The first indication of this is shown in 10.57(f). Here, water from the lower part of
the left basin overflowed into the basin on the right, and a short “dam” (consisting of
single pixels) was built to prevent water from merging at that level of flooding (the
mathematical details of dam building are discussed in the following section). The

Because of neighboring
contrast, the leftmost
basin in Fig. 10.57(c)
appears black, but it is a
few shades lighter than
the black background.
The mid-gray in the
second basin is a natural
gray from the image
in (a).

ba c

FIGURE 10.56 (a) Image of size 600 600× pixels. (b) Image smoothed with a 25 25× box kernel. (c) Graph cut segmen-
tation obtained by specifying two regions.

DIP4E_GLOBAL_Print_Ready.indb 787 6/16/2017 2:14:09 PM

788 Chapter 10 Image Segmentation

effect is more pronounced as water continues to rise, as shown in Fig. 10.57(g). This
figure shows a longer dam between the two catchment basins and another dam in
the top part of the right basin. The latter dam was built to prevent merging of water
from that basin with water from areas corresponding to the background. This pro-
cess is continued until the maximum level of flooding (corresponding to the highest
intensity value in the image) is reached. The final dams correspond to the watershed
lines, which are the desired segmentation boundaries. The result for this example is
shown in Fig. 10.57(h) as dark, one-pixel-thick paths superimposed on the original
image. Note the important property that the watershed lines form connected paths,
thus giving continuous boundaries between regions.

One of the principal applications of watershed segmentation is in the extraction
of nearly uniform (blob-like) objects from the background. Regions characterized
by small variations in intensity have small gradient values. Thus, in practice, we often
see watershed segmentation applied to the gradient of an image, rather than to the
image itself. In this formulation, the regional minima of catchment basins correlate
nicely with the small value of the gradient corresponding to the objects of interest.

Water Water

Water

b
a

d
c

FIGURE 10.57
(a) Original
image.
(b) Topographic
view. Only the
background is
black. The basin
on the left is
slightly lighter
than black.
(c) and (d) Two
stages of flooding.
All constant dark
values of gray are
intensities in the
original image.
Only constant
light gray repre-
sents “water.”
(Courtesy of Dr.
S. Beucher, CMM/
Ecole des Mines
de Paris.)
(Continued on
next page.)

DIP4E_GLOBAL_Print_Ready.indb 788 6/16/2017 2:14:09 PM

10.7 Segmentation Using Morphological Watersheds 789

DAM CONSTRUCTION

Dam construction is based on binary images, which are members of 2-D integer
space Z2 (see Sections 2.4 and 2.6). The simplest way to construct dams separating
sets of binary points is to use morphological dilation (see Section 9.2).

Figure 10.58 illustrates the basics of dam construction using dilation. Part (a)
shows portions of two catchment basins at flooding step n − 1, and Fig. 10.58(b)
shows the result at the next flooding step, n. The water has spilled from one basin
to the another and, therefore, a dam must be built to keep this from happening. In
order to be consistent with notation to be introduced shortly, let M1 and M2 denote
the sets of coordinates of points in two regional minima. Then let the set of coordi-
nates of points in the catchment basin associated with these two minima at stage n − 1
of flooding be denoted by C Mn−1 1() and C Mn−1 2(), respectively. These are the two
gray regions in Fig. 10.58(a).

Let C n −[]1 denote the union of these two sets. There are two connected com-
ponents in Fig. 10.58(a), and only one component in Fig. 10.58(b). This connected

See Sections 2.5 and 9.5
regarding connected
components.

FIGURE 10.57
(Continued)
(e) Result of
further flooding.
(f) Beginning of
merging of water
from two
catchment basins
(a short dam was
built between
them).
(g) Longer dams.
(h) Final water-
shed (segmenta-
tion) lines super-
imposed on the
original image.
(Courtesy of Dr.
S. Beucher, CMM/
Ecole des Mines
de Paris.)

fe
hg

DIP4E_GLOBAL_Print_Ready.indb 789 6/16/2017 2:14:10 PM

790 Chapter 10 Image Segmentation

First

Second dilation

Dam points

1

1

1 1

1 1
1 1 1

Origin

dilation

b
a

d c

FIGURE 10.58 (a) Two partially flooded catchment basins at stage n − 1 of flooding. (b) Flooding at stage n, showing
that water has spilled between basins. (c) Structuring element used for dilation. (d) Result of dilation and dam
construction.

DIP4E_GLOBAL_Print_Ready.indb 790 6/16/2017 2:14:11 PM

10.7 Segmentation Using Morphological Watersheds 791

component encompasses the earlier two components, which are shown dashed.
Two connected components having become a single component indicates that
water between the two catchment basins has merged at flooding step n. Let this
connected component be denoted by q. Note that the two components from step
n − 1 can be extracted from q by performing a logical AND operation, q C n� −[]1 .
Observe also that all points belonging to an individual catchment basin form a
single connected component.

Suppose that each of the connected components in Fig. 10.58(a) is dilated by
the structuring element in Fig. 10.58(c), subject to two conditions: (1) The dilation
has to be constrained to q (this means that the center of the structuring element
can be located only at points in q during dilation); and (2) the dilation cannot be
performed on points that would cause the sets being dilated to merge (i.e., become
a single connected component). Figure 10.58(d) shows that a first dilation pass (in
light gray) expanded the boundary of each original connected component. Note that
condition (1) was satisfied by every point during dilation, and that condition (2) did
not apply to any point during the dilation process; thus, the boundary of each region
was expanded uniformly.

In the second dilation, shown in black in 10.58(d), several points failed condition
(1) while meeting condition (2), resulting in the broken perimeter shown in the figure.
It is evident that the only points in q that satisfy the two conditions under consid-
eration describe the one-pixel-thick connected path shown crossed-hatched in Fig.
10.58(d). This path is the desired separating dam at stage n of flooding. Construction
of the dam at this level of flooding is completed by setting all the points in the path
just determined to a value greater than the maximum possible intensity value of the
image (e.g., greater than 255 for an 8-bit image). This will prevent water from cross-
ing over the part of the completed dam as the level of flooding is increased. As noted
earlier, dams built by this procedure, which are the desired segmentation boundaries,
are connected components. In other words, this method eliminates the problems of
broken segmentation lines.

Although the procedure just described is based on a simple example, the method
used for more complex situations is exactly the same, including the use of the 3 3×
symmetric structuring element in Fig. 10.58(c).

WATERSHED SEGMENTATION ALGORITHM

Let M M MR1 2, , ,… be sets denoting the coordinates of the points in the regional
minima of an image, g x y(,). As mentioned earlier, this typically will be a gradient
image. Let C Mi() be a set denoting the coordinates of the points in the catchment
basin associated with regional minimum Mi (recall that the points in any catchment
basin form a connected component). The notation min and max will be used to
denote the minimum and maximum values of g x y(,). Finally, let T n[] represent the
set of coordinates (,)s t for which g s t n(,) .< That is,

 T n s t g s t n[] = () () <{ }, , (10-110)

DIP4E_GLOBAL_Print_Ready.indb 791 6/16/2017 2:14:12 PM

792 Chapter 10 Image Segmentation

Geometrically, T n[] is the set of coordinates of points in g x y(,) lying below the
plane g x y n(,) .=

The topography will be flooded in integer flood increments, from n = +min 1 to
n = +max .1 At any step n of the flooding process, the algorithm needs to know
the number of points below the flood depth. Conceptually, suppose that the coordi-
nates in T n[] that are below the plane g x y n(,) = are “marked” black, and all other
coordinates are marked white. Then when we look “down” on the xy-plane at any
increment n of flooding, we will see a binary image in which black points correspond
to points in the function that are below the plane g x y n(,) .= This interpretation is
quite useful, and will make it easier to understand the following discussion.

Let C Mn i() denote the set of coordinates of points in the catchment basin associ-
ated with minimum Mi that are flooded at stage n. With reference to the discussion
in the previous paragraph, we may view C Mn i() as a binary image given by

 C M C M T nn i i() = () []� (10-111)

In other words, C Mn i() = 1 at location (,)x y if (,)x y C Mi∈ () AND (,) ;x y T n∈ []
otherwise C Mn i() = 0. The geometrical interpretation of this result is straightfor-
ward. We are simply using the AND operator to isolate at stage n of flooding the
portion of the binary image in T n[] that is associated with regional minimum Mi .

Next, let B denote the number of number of flooded catchment basins at stage n,
and let C n[] denote the union of these basins at stage n :

 C n C Mn i
i

B

[] = ()
=1
∪ (10-112)

Then C[max]+ 1 is the union of all catchment basins:

 C C Mi
i

B

max +[] = ()
=

1
1
∪ (10-113)

It can be shown (see Problem 10.47) that the elements in both C Mn i() and T n[] are
never replaced during execution of the algorithm, and that the number of elements
in these two sets either increases or remains the same as n increases. Thus, it fol-
lows that C n[]− 1 is a subset of C n[]. According to Eqs. (10-112) and (10-113), C n[]
is a subset of T n[], so it follows that C n[]− 1 is also a subset of T n[]. From this we
have the important result that each connected component of C n[]− 1 is contained
in exactly one connected component of T n[].

The algorithm for finding the watershed lines is initialized by letting C[min]+ =1
T[min].+ 1 The procedure then proceeds recursively, successively computing C n[]
from C n[],− 1 using the following approach. Let Q denote the set of connected com-
ponents in T n[]. Then, for each connected component q Q n∈ [], there are three pos-
sibilities:

1. q C n� []− 1 is empty.

DIP4E_GLOBAL_Print_Ready.indb 792 6/16/2017 2:14:16 PM

10.7 Segmentation Using Morphological Watersheds 793

2. q C n� []− 1 contains one connected component of C n[].− 1
3. []q C n� − 1 contains more than one connected component of C n[].− 1

The construction of C n[] from C n[]− 1 depends on which of these three conditions
holds. Condition 1 occurs when a new minimum is encountered, in which case con-
nected component q is incorporated into C n[]− 1 to form C n[]. Condition 2 occurs
when q lies within the catchment basin of some regional minimum, in which case
q is incorporated into C n[]− 1 to form C n[]. Condition 3 occurs when all (or part)
of a ridge separating two or more catchment basins is encountered. Further flood-
ing would cause the water level in these catchment basins to merge. Thus, a dam (or
dams if more than two catchment basins are involved) must be built within q to pre-
vent overflow between the catchment basins. As explained earlier, a one-pixel-thick
dam can be constructed when needed by dilating q C n� []− 1 with a 3 3× structur-
ing element of 1’s, and constraining the dilation to q.

Algorithm efficiency is improved by using only values of n that correspond to
existing intensity values in g x y(,). We can determine these values, as well as the
values of min and max, from the histogram of g x y(,).

EXAMPLE 10.26 : Illustration of the watershed segmentation algorithm.

Consider the image and its gradient in Figs. 10.59(a) and (b), respectively. Application of the watershed
algorithm just described yielded the watershed lines (white paths) shown superimposed on the gradient
image in Fig. 10.59(c). These segmentation boundaries are shown superimposed on the original image in
Fig. 10.59(d). As noted at the beginning of this section, the segmentation boundaries have the important
property of being connected paths.

THE USE OF MARKERS

Direct application of the watershed segmentation algorithm in the form discussed
in the previous section generally leads to over-segmentation, caused by noise and
other local irregularities of the gradient. As Fig. 10.60 illustrates, over-segmentation
can be serious enough to render the result of the algorithm virtually useless. In this
case, this means a large number of segmented regions. A practical solution to this
problem is to limit the number of allowable regions by incorporating a preprocess-
ing stage designed to bring additional knowledge into the segmentation procedure.

An approach used to control over-segmentation is based on the concept of mark-
ers. A marker is a connected component belonging to an image. We have internal
markers, associated with objects of interest, and external markers, associated with
the background. A procedure for marker selection typically will consist of two prin-
cipal steps: (1) preprocessing; and (2) definition of a set of criteria that markers
must satisfy. To illustrate, consider Fig. 10.60(a) again. Part of the problem that led
to the over-segmented result in Fig. 10.60(b) is the large number of potential min-
ima. Because of their size, many of these minima are irrelevant detail. As has been
pointed out several times in earlier discussions, an effective method for minimizing
the effect of small spatial detail is to filter the image with a smoothing filter. This is
an appropriate preprocessing scheme in this case also.

DIP4E_GLOBAL_Print_Ready.indb 793 6/16/2017 2:14:20 PM

794 Chapter 10 Image Segmentation

ba
dc

FIGURE 10.59
(a) Image of blobs.
(b) Image gradient.
(c) Watershed lines,
superimposed on
the gradient image.
(d) Watershed lines
superimposed on
the original image.
(Courtesy of Dr.
S. Beucher, CMM/
Ecole des Mines de
Paris.)

ba

FIGURE 10.60
(a) Electrophoresis
image.
(b) Result of apply-
ing the watershed
segmentation algo-
rithm to the gradient
image.
Over-segmentation
is evident.
(Courtesy of Dr.
S. Beucher, CMM/
Ecole des Mines de
Paris.)

DIP4E_GLOBAL_Print_Ready.indb 794 6/16/2017 2:14:21 PM

10.7 Segmentation Using Morphological Watersheds 795

Suppose that we define an internal marker as (1) a region that is surrounded by
points of higher “altitude”; (2) such that the points in the region form a connected
component; and (3) in which all the points in the connected component have the
same intensity value. After the image was smoothed, the internal markers resulting
from this definition are shown as light gray, blob-like regions in Fig. 10.61(a). Next,
the watershed algorithm was applied to the smoothed image, under the restriction
that these internal markers be the only allowed regional minima. Figure 10.61(a)
shows the resulting watershed lines. These watershed lines are defined as the exter-
nal markers. Note that the points along the watershed line pass along the highest
points between neighboring markers.

The external markers in Fig. 10.61(a) effectively partition the image into regions,
with each region containing a single internal marker and part of the background.
The problem is thus reduced to partitioning each of these regions into two: a single
object, and its background. We can bring to bear on this simplified problem many of
the segmentation techniques discussed earlier in this chapter. Another approach is
simply to apply the watershed segmentation algorithm to each individual region. In
other words, we simply take the gradient of the smoothed image [as in Fig. 10.59(b)]
and restrict the algorithm to operate on a single watershed that contains the marker
in that particular region. Figure 10.61(b) shows the result obtained using this
approach. The improvement over the image in 10.60(b) is evident.

Marker selection can range from simple procedures based on intensity values
and connectivity, as we just illustrated, to more complex descriptions involving size,
shape, location, relative distances, texture content, and so on (see Chapter 11 regard-
ing feature descriptors). The point is that using markers brings a priori knowledge
to bear on the segmentation problem. Keep in mind that humans often aid segmen-
tation and higher-level tasks in everyday vision by using a priori knowledge, one
of the most familiar being the use of context. Thus, the fact that segmentation by
watersheds offers a framework that can make effective use of this type of knowledge
is a significant advantage of this method.

ba

FIGURE 10.61
(a) Image showing
internal markers
(light gray regions)
and external
markers (watershed
lines).
(b) Result of
segmentation. Note
the improvement
over Fig. 10.60(b).
(Courtesy of Dr.
S. Beucher, CMM/
Ecole des Mines de
Paris.)

DIP4E_GLOBAL_Print_Ready.indb 795 6/16/2017 2:14:21 PM

796 Chapter 10 Image Segmentation

10.8 THE USE OF MOTION IN SEGMENTATION

Motion is a powerful cue used by humans and many animals to extract objects or
regions of interest from a background of irrelevant detail. In imaging applications,
motion arises from a relative displacement between the sensing system and the
scene being viewed, such as in robotic applications, autonomous navigation, and
dynamic scene analysis. In the following discussion we consider the use of motion in
segmentation both spatially and in the frequency domain.

SPATIAL TECHNIQUES

In what follows, we will consider two approaches for detecting motion, working direct-
ly in the spatial domain. The key objective is to give you an idea how to measure
changes in digital images using some straightforward techniques.

A Basic Approach

One of the simplest approaches for detecting changes between two image frames
f x y ti(, ,) and f x y t j(, ,) taken at times ti and t j , respectively, is to compare the two
images pixel by pixel. One procedure for doing this is to form a difference image.
Suppose that we have a reference image containing only stationary components.
Comparing this image against a subsequent image of the same scene, but including
one or more moving objects, results in the difference of the two images canceling the
stationary elements, leaving only nonzero entries that correspond to the nonstation-
ary image components.

A difference image of two images (of the same size) taken at times ti and t j may
be defined as

 d x y
f x y t f x y t T

ij
i j(,)

(, ,) (, ,)
=

− >⎧
⎨
⎪

⎩⎪

1

0

if

otherwise
 (10-114)

where T is a nonnegative threshold. Note that d x yij(,) has a value of 1 at spatial coor-
dinates (,)x y only if the intensity difference between the two images is appreciably
different at those coordinates, as determined by T. Note also that coordinates (,)x y
in Eq. (10-114) span the dimensions of the two images, so the difference image is of
the same size as the images in the sequence.

In the discussion that follows, all pixels in d x yij(,) that have value 1 are consid-
ered the result of object motion. This approach is applicable only if the two imag-
es are registered spatially, and if the illumination is relatively constant within the
bounds established by T. In practice, 1-valued entries in d x yij(,) may arise as a result
of noise also. Typically, these entries are isolated points in the difference image, and
a simple approach to their removal is to form 4- or 8-connected regions of 1’s in
image d x yij(,), then ignore any region that has less than a predetermined number of
elements. Although it may result in ignoring small and/or slow-moving objects, this
approach improves the chances that the remaining entries in the difference image
actually are the result of motion, and not noise.

10.8

DIP4E_GLOBAL_Print_Ready.indb 796 6/16/2017 2:14:22 PM

10.8 The Use of Motion in Segmentation 797

Although the method just described is simple, it is used frequently as the basis of
imaging systems designed to detect changes in controlled environments, such as in
surveillance of parking facilities, buildings, and similar fixed locales.

Accumulative Differences

Consider a sequence of image frames denoted by f x y t f x y t f x y tn(, ,), (, ,), , (, ,),1 2 …
and let f x y t(, ,)1 be the reference image. An accumulative difference image (ADI)
is formed by comparing this reference image with every subsequent image in the
sequence. A counter for each pixel location in the accumulative image is increment-
ed every time a difference occurs at that pixel location between the reference and an
image in the sequence. Thus, when the kth frame is being compared with the refer-
ence, the entry in a given pixel of the accumulative image gives the number of times
the intensity at that position was different [as determined by T in Eq. (10-114)] from
the corresponding pixel value in the reference image.

Assuming that the intensity values of the moving objects are greater than the
background, we consider three types of ADIs. Let R x y(,) denote the reference
image and, to simplify the notation, let k denote tk so that f x y k f x y tk(, ,) (, ,).= We
assume that R x y f x y(,) (, ,).= 1 Then, for any k > 1, and keeping in mind that the
values of the ADIs are counts, we define the following accumulative differences for
all relevant values of (,) :x y

 A x y
A x y R x y f x y k T

A x yk
k

k

(,)
(,) (,) (, ,)

(,)
=

+ − >−

−

1

1

1 if

otherwise

⎧⎧
⎨
⎪

⎩⎪
 (10-115)

 P x y
P x y R x y f x y k T

P x yk
k

k

(,)
(,) (,) (, ,)

(,)
=

+ − >−

−

1

1

1 if

otherwise

⎧⎧
⎨
⎪

⎩⎪
 (10-116)

and

 N x y
N x y R x y f x y k T

N x yk
k

k

(,)
(,) (,) (, ,)

(,)
=

+ − < −−

−

1

1

1 if

otherwisee

⎧
⎨
⎪

⎩⎪
 (10-117)

where A x yk(,), P x yk(,), and N x yk(,) are the absolute, positive, and negative ADIs,
respectively, computed using the kth image in the sequence. All three ADIs start
out with zero counts and are of the same size as the images in the sequence. The
order of the inequalities and signs of the thresholds in Eqs. (10-116) and (10-117) are
reversed if the intensity values of the background pixels are greater than the values
of the moving objects.

EXAMPLE 10.27 : Computation of the absolute, positive, and negative accumulative difference images.

Figure 10.62 shows the three ADIs displayed as intensity images for a rectangular object of dimension
75 50× pixels that is moving in a southeasterly direction at a speed of 5 2 pixels per frame. The images

DIP4E_GLOBAL_Print_Ready.indb 797 6/16/2017 2:14:24 PM

798 Chapter 10 Image Segmentation

are of size 256 256× pixels. We note the following: (1) The nonzero area of the positive ADI is equal
to the size of the moving object; (2) the location of the positive ADI corresponds to the location of the
moving object in the reference frame; (3) the number of counts in the positive ADI stops increasing
when the moving object is displaced completely with respect to the same object in the reference frame;
(4) the absolute ADI contains the regions of the positive and negative ADI; and (5) the direction and
speed of the moving object can be determined from the entries in the absolute and negative ADIs.

Establishing a Reference Image

A key to the success of the techniques just discussed is having a reference image
against which subsequent comparisons can be made. The difference between two
images in a dynamic imaging problem has the tendency to cancel all stationary com-
ponents, leaving only image elements that correspond to noise and to the moving
objects.

Obtaining a reference image with only stationary elements is not always pos-
sible, and building a reference from a set of images containing one or more moving
objects becomes necessary. This applies particularly to situations describing busy
scenes or in cases where frequent updating is required. One procedure for generat-
ing a reference image is as follows. Consider the first image in a sequence to be the
reference image. When a nonstationary component has moved completely out of
its position in the reference frame, the corresponding background in the present
frame can be duplicated in the location originally occupied by the object in the ref-
erence frame. When all moving objects have moved completely out of their original
positions, a reference image containing only stationary components will have been
created. Object displacement can be established by monitoring the changes in the
positive ADI, as indicated earlier. The following example illustrates how to build a
reference frame using the approach just described.

ba c

FIGURE 10.62 ADIs of a rectangular object moving in a southeasterly direction. (a) Absolute ADI. (b) Positive ADI.
(c) Negative ADI.

DIP4E_GLOBAL_Print_Ready.indb 798 6/16/2017 2:14:27 PM

10.8 The Use of Motion in Segmentation 799

EXAMPLE 10.28 : Building a reference image.

Figures 10.63(a) and (b) show two image frames of a traffic intersection. The first image is considered
the reference, and the second depicts the same scene some time later. The objective is to remove the
principal moving objects in the reference image in order to create a static image. Although there are
other smaller moving objects, the principal moving feature is the automobile at the intersection mov-
ing from left to right. For illustrative purposes we focus on this object. By monitoring the changes in
the positive ADI, it is possible to determine the initial position of a moving object, as explained above.
Once the area occupied by this object is identified, the object can be removed from the image by sub-
traction. By looking at the frame in the sequence at which the positive ADI stopped changing, we can
copy from this image the area previously occupied by the moving object in the initial frame. This area
then is pasted onto the image from which the object was cut out, thus restoring the background of that
area. If this is done for all moving objects, the result is a reference image with only static components
against which we can compare subsequent frames for motion detection. The reference image resulting
from removing the east-bound moving vehicle and restoring the background is shown in Fig. 10.63(c).

FREQUENCY DOMAIN TECHNIQUES

In this section, we consider the problem of determining motion via a Fourier trans-
form formulation. Consider a sequence f x y t t K(, ,), , , , , ,= −0 1 2 1… of K digital
image frames of size M N× pixels, generated by a stationary camera. We begin the
development by assuming that all frames have a homogeneous background of zero
intensity. The exception is a single, 1-pixel object of unit intensity that is moving
with constant velocity. Suppose that for frame one (),t = 0 the object is at location
(,)x y� � and the image plane is projected onto the x-axis; that is, the pixel intensities
are summed (for each row) across the columns in the image. This operation yields
a 1-D array with M entries that are zero, except at x�, which is the x-coordinate of
the single-point object. If we now multiply all the components of the 1-D array by
the quantity exp j a x t2 1p Δ[] for x M= −0 1 2 1, , , ,… and add the results, we obtain
the single term exp j a x t2 1p ′Δ[] because there is only one nonzero point in the array.
In this notation, a1 is a positive integer, and �t is the time interval between frames.

ba c

FIGURE 10.63 Building a static reference image. (a) and (b) Two frames in a sequence. (c) Eastbound automobile sub-
tracted from (a), and the background restored from the corresponding area in (b). (Jain and Jain.)

DIP4E_GLOBAL_Print_Ready.indb 799 6/16/2017 2:14:28 PM

800 Chapter 10 Image Segmentation

Suppose that in frame two (),t = 1 the object has moved to coordinates (,);x y� �+ 1
that is, it has moved 1 pixel parallel to the x-axis. Then, repeating the projection pro-
cedure discussed in the previous paragraph yields the sum exp .j a x t2 11p ′ +()Δ⎡⎣ ⎤⎦ If
the object continues to move 1 pixel location per frame then, at any integer instant
of time, t, the result will be exp ,j a x t t2 1p ′ +()Δ⎡⎣ ⎤⎦ which, using Euler’s formula, may
be expressed as

 e a x t t j a x t tj a x t t2
1 1

1 2 2p
p p

′ ′ ′+()Δ = +()Δ⎡⎣ ⎤⎦ + +()Δ⎡⎣ ⎤⎦cos sin (10-118)

for t K= −0 1 2 1, , , , .… In other words, this procedure yields a complex sinusoid
with frequency a1. If the object were moving V1 pixels (in the x-direction) between
frames, the sinusoid would have frequency V a1 1. Because t varies between 0 and
K − 1 in integer increments, restricting a1 to have integer values causes the discrete
Fourier transform of the complex sinusoid to have two peaks—one located at fre-
quency V a1 1 and the other at K V a− 1 1. This latter peak is the result of symmetry in
the discrete Fourier transform, as discussed in Section 4.6, and may be ignored. Thus
a peak search in the Fourier spectrum would yield one peak with value V a1 1. Divid-
ing this quantity by a1 yields V1, which is the velocity component in the x-direction,
as the frame rate is assumed to be known. A similar analysis would yield V2 , the
component of velocity in the y-direction.

A sequence of frames in which no motion takes place produces identical exponen-
tial terms, whose Fourier transform would consist of a single peak at a frequency of 0
(a single dc term). Therefore, because the operations discussed so far are linear, the
general case involving one or more moving objects in an arbitrary static background
would have a Fourier transform with a peak at dc corresponding to static image
components, and peaks at locations proportional to the velocities of the objects.

These concepts may be summarized as follows. For a sequence of k digital images
of size M N× pixels, the sum of the weighted projections onto the x-axis at any inte-
ger instant of time is

 g t a f x y t e t Kx
y

N

x

M
j a x t(,) (, ,) , , ,1

0

1

0

1
2 1 0 1 1= = −

=

−

=

−
Δ∑∑ p … (10-119)

Similarly, the sum of the projections onto the y-axis is

 g t a f x y t e t Ky
x

M

y

N
j a y t(,) (, ,) , , ,2

0

1

0

1
2 2 0 1 1= = −

=

−

=

−
Δ∑∑ p … (10-120)

where, as noted earlier, a1 and a2 are positive integers.
The 1D Fourier transforms of Eqs. (10-119) and (10-120), respectively, are

 G u a g t a e u Kx x
t

K
j u t K(,) (,) , , ,1 1 1

0

1
2

1
1 0 1 1= = −

=

−
−∑ p … (10-121)

and

DIP4E_GLOBAL_Print_Ready.indb 800 6/16/2017 2:14:31 PM

10.8 The Use of Motion in Segmentation 801

 G u a g t a e u Ky y
t

K
j u t K(,) (,) , , ,2 2 2

0

1
2

2
2 0 1 1= = −

=

−
−∑ p … (10-122)

These transforms are computed using an FFT algorithm, as discussed in Section 4.11.
The frequency-velocity relationship is

 u a V1 1 1= (10-123)

and

 u a V2 2 2= (10-124)

In the preceding formulation, the unit of velocity is in pixels per total frame time.
For example, V1 10= indicates motion of 10 pixels in K frames. For frames that
are taken uniformly, the actual physical speed depends on the frame rate and the
distance between pixels. Thus, if V1 10= , and K = 30, the frame rate is two images
per second, and the distance between pixels is 0.5 m, then the actual physical speed
in the x-direction is

V1 10 0 5 2 30= ()()()()pixels m pixel frames s frames.

The sign of the x-component of the velocity is obtained by computing

 S
d g t a

dtx
x

t n

1

2
1

2=
()⎡⎣ ⎤⎦

=

Re ,
 (10-125)

and

 S
d g t a

dtx
x

t n

2

2
1

2=
()⎡⎣ ⎤⎦

=

Im ,
 (10-126)

Because gx is sinusoidal, it can be shown (see Problem 10.53) that S x1 and S x2 will
have the same sign at an arbitrary point in time, n, if the velocity component V1
is positive. Conversely, opposite signs in S x1 and S x2 indicate a negative velocity
component. If either S x1 or S x2 is zero, we consider the next closest point in time,
t n t= ± � . Similar comments apply to computing the sign of V2.

EXAMPLE 10.29 : Detection of a small moving object via frequency-domain analysis.

Figures 10.64 through 10.66 illustrate the effectiveness of the approach just developed. Figure 10.64
shows one of a 32-frame sequence of LANDSAT images generated by adding white noise to a reference
image. The sequence contains a superimposed target moving at 0.5 pixel per frame in the x-direction
and 1 pixel per frame in the y-direction. The target, shown circled in Fig. 10.65, has a Gaussian intensity
distribution spread over a small (9-pixel) area, and is not easily discernible by eye. Figure 10.66 shows

DIP4E_GLOBAL_Print_Ready.indb 801 6/16/2017 2:14:32 PM

802 Chapter 10 Image Segmentation

the results of computing Eqs. (10-121) and (10-122) with a1 6= and a2 4= , respectively. The peak at
u1 3= in Fig. 10.66(a) yields V1 0 5= . from Eq. (10-123). Similarly, the peak at u2 4= in Fig. 10.66(b)
yields V2 1 0= . from Eq. (10-124).

Guidelines for selecting a1 and a2 can be explained with the aid of Fig. 10.66. For
instance, suppose that we had used a2 15= instead of a2 4= . In that case, the peaks in
Fig. 10.66(b) would now be at u2 15= and 17 because V2 1 0= . . This would be a seri-
ously aliased result. As discussed in Section 4.5, aliasing is caused by under-sampling
(too few frames in the present discussion, as the range of u is determined by K).
Because u aV= , one possibility is to select a as the integer closest to a u V= max max,

FIGURE 10.64
LANDSAT
frame. (Cowart,
Snyder, and
Ruedger.)

y

x

FIGURE 10.65
Intensity plot of
the image in
Fig. 10.64, with
the target circled.
(Rajala, Riddle,
and Snyder.)

DIP4E_GLOBAL_Print_Ready.indb 802 6/16/2017 2:14:34 PM

10.8 The Use of Motion in Segmentation 803

ba

FIGURE 10.66 (a) Spectrum of Eq. (10-121) showing a peak at u1 3= . (b) Spectrum of Eq. (10-122) showing a peak at
u2 4= . (Rajala, Riddle, and Snyder.)

0 4 8 12 16 20 24 28 32 36 40
Frequency

M
ag

ni
tu

de
 (

 �
 1

0)

0

80

160

240

320

400

480

560

640

0 4 8 12 16 20 24 28 32 36 40
Frequency

0

20

40

60

80

100

M
ag

ni
tu

de
 (

 �
 1

0
2)

Summary, References, and Further Reading
Because of its central role in autonomous image processing, segmentation is a topic covered in most books dealing
with image processing, image analysis, and computer vision. The following books provide complementary and/or
supplementary reading for our coverage of this topic: Umbaugh [2010]; Prince [2012]; Nixon and Aguado, A [2012];
Pratt [2014]; and Petrou and Petrou [2010].

Work dealing with the use of kernels to detect intensity discontinuities (see Section 10.2) has a long history.
Numerous kernels have been proposed over the years: Roberts [1965]; Prewitt [1970]; and Kirsh [1971]. The Sobel
operators are from [Sobel]; see also Danielsson and Seger [1990]. Our presentation of the zero-crossing properties of
the Laplacian is based on Marr [1982]. The Canny edge detector discussed in Section 10.2 is due to Canny [1986]. The
basic reference for the Hough transform is Hough [1962]. See Ballard [1981], for a generalization to arbitrary shapes.

Other approaches used to deal with the effects of illumination and reflectance on thresholding are illustrated by
the work of Perez and Gonzalez [1987], Drew et al. [1999], and Toro and Funt [2007]. The optimum thresholding
approach due to Otsu [1979] has gained considerable acceptance because it combines excellent performance with
simplicity of implementation, requiring only estimation of image histograms. The basic idea of using preprocessing
to improve thresholding dates back to an early paper by White and Rohrer [1983]), which combined thresholding,
the gradient, and the Laplacian in the solution of a difficult segmentation problem.

See Fu and Mui [1981] for an early survey on the topic of region-oriented segmentation. The work of Haddon
and Boyce [1990] and of Pavlidis and Liow [1990] are among the earliest efforts to integrate region and boundary
information for the purpose of segmentation. Region growing is still an active area of research in image processing,
as exemplified by Liangjia et al. [2013]. The basic reference on the k-means algorithm presented in Section 10.5
goes way back several decades to an obscure 1957 Bell Labs report by Lloyd, who subsequenty published in Lloyd
[1982]. This algorithm was already being in used in areas such as pattern recognition in the 1960s and ’70s (Tou and

where umax is the aliasing frequency limitation established by K, and Vmax is the
maximum expected object velocity.

DIP4E_GLOBAL_Print_Ready.indb 803 6/16/2017 2:14:36 PM

804 Chapter 10 Image Segmentation

Gonzalez [1974]). The superpixel algorithm presented in Section 10.5 is from Achanta et al. [2012]. See their paper
for a listing and comparison of other superpixel approaches. The material on graph cuts is based on the paper by
Shi and Malik [2000]. See Hochbaum [2010] for an example of faster implementations.

Segmentation by watersheds was shown in Section 10.7 to be a powerful concept. Early references dealing with
segmentation by watersheds are Serra [1988], and Beucher and Meyer [1992]. As indicated in our discussion in Sec-
tion 10.7, one of the key issues with watersheds is the problem of over-segmentation. The papers by Bleau and Leon
[2000] and by Gaetano et al. [2015] are illustrative of approaches for dealing with this problem.

The material in Section 10.8 dealing with accumulative differences is from Jain, R. [1981]. See also Jain, Kasturi,
and Schunck [1995]. The material dealing with motion via Fourier techniques is from Rajala, Riddle, and Snyder
[1983]. The books by Snyder and Qi [2004], and by Chakrabarti et al. [2015], provide additional reading on
motion estimation. For details on the software aspects of many of the examples in this chapter, see Gonzalez, Woods,
and Eddins [2009].

Problems
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book
website: www.ImageProcessingPlace.com)..

10.1 * In a Taylor series approximation, the remainder
(also called the truncation error) consists of all
the terms not used in the approximation. The
first term in the remainder of a finite difference
approximation is indicative of the error in the
approximation. The higher the derivative order
of that term is, the lower the error will be in the
approximation. All three approximations to the
first derivative given in Eqs. (10-4)-(10-6) are
computed using the same number of sample
points. However, the error of the central differ-
ence approximation is less than the other two.
Show that this is true.

10.2 Do the following:

(a) * Show how Eq. (10-8) was obtained.

(b) Show how Eq. (10-9) was obtained.

10.3 A binary image contains straight lines oriented
horizontally, vertically, at 45°, and at −45°. Give
a set of 3 3× kernels that can be used to detect
one-pixel breaks in these lines. Assume that the
intensities of the lines and background are 1 and
0, respectively.

10.4 Propose a technique for detecting gaps of length
ranging between 1 and K pixels in line segments
of a binary image. Assume that the lines are one
pixel thick. Base your technique on 8-neighbor
connectivity analysis, rather than attempting to
construct kernels for detecting the gaps.

10.5 * With reference to Fig. 10.6, what are the angles
(measured with respect to the x-axis of the book
axis convention in Fig. 2.19) of the horizontal and
vertical lines to which the kernels in Figs. 10.6(a)
and (c) are most responsive?

10.6 Refer to Fig. 10.7 in answering the following ques-
tions.

(a) * Some of the lines joining the pads and center
element in Fig. 10.7(e) are single lines, while
others are double lines. Explain why.

(b) Propose a method for eliminating the com-
ponents in Fig. 10.7(f) that are not part of
the line oriented at −45°.

(c)

10.7 With reference to the edge models in Fig. 10.8,
answer the following without generating the gra-
dient and angle images. Simply provide sketches
of the profiles that show what you would expect
the profiles of the magnitude and angle images
to look like.

(a) * Suppose that we compute the gradient mag-
nitude of each of these models using the
Prewitt kernels in Fig. 10.14. Sketch what a
horizontal profile through the center of each
gradient image would look like.

(b) Sketch a horizontal profile for each corre-
sponding angle image.

10.8 Consider a horizontal intensity profile through

DIP4E_GLOBAL_Print_Ready.indb 804 6/16/2017 2:14:37 PM

http://www.ImageProcessingPlace.com

 Problems 805

the middle of a binary image that contains a ver-
tical step edge through the center of the image.
Draw what the profile would look like after the
image has been blurred by an averaging kernel
of size n n× with coefficients equal to 1 2n . For
simplicity, assume that the image was scaled so
that its intensity levels are 0 on the left of the
edge and 1 on its right. Also, assume that the size
of the kernel is much smaller than the image, so
that image border effects are not a concern near
the center of the image.

10.9 * Suppose that we had used the edge models in the
following image, instead of the ramp in Fig. 10.10.
Sketch the gradient and Laplacian of each profile.

Image

Profile of a
horizontal line

10.10 Do the following:

(a) * Show that the direction of steepest (maxi-
mum) ascent of a function f at point (,)x y
is given by the vector
f x y(,) in Eq. (10-16),
and that the rate of that descent is
f x y(,) ,
defined in Eq. (10-17).

(b) Show that the direction of steepest descent is
given by the vector −
f x y(,), and that the
rate of the steepest descent is
f x y(,) .

(c) Give the description of an image whose gra-
dient magnitude image would be the same,
whether we computed it using Eq. (10-17) or
(10-26). A constant image is not acceptable
answer.

10.11 Do the following.

(a) How would you modify the Sobel and
Prewitt kernels in Fig. 10.14 so that they give
their strongest gradient response for edges
oriented at ± °45 ?

(b) * Show that the Sobel and Prewitt kernels

in Fig. 10.14, and in (a) above, and give iso-
tropic results only for horizontal and verti-
cal edges, and for edges oriented at ± °45 ,
respectively.

10.12 The results obtained by a single pass through an
image of some 2-D kernels can be achieved also
by two passes using 1-D kernels. For example,
the same result of using a 3 3× smoothing kernel
with coefficients 1 9 can be obtained by a pass
of the kernel []1 1 1 through an image, followed
by a pass of the result with the kernel [] .1 1 1 T
The final result is then scaled by 1 9. Show that
the response of Sobel kernels (Fig. 10.14) can
be implemented similarly by one pass of the
differencing kernel []−1 0 1 (or its vertical coun-
terpart) followed by the smoothing kernel []1 2 1
(or its vertical counterpart).

10.13 A popular variation of the compass kernels
shown in Fig. 10.15 is based on using coefficients
with values 0, 1, and −1.

(a) * Give the form of the eight compass kernels
using these coefficients. As in Fig. 10.15, let N,
NW, . . . denote the direction of the edge that
gives the strongest response.

(b) Specify the gradient vector direction of the
edges detected by each kernel in (a).

10.14 The rectangle in the following binary image is of
size m n× pixels.

(a) * What would the magnitude of the gradient
of this image look like based on using the
approximation in Eq. (10-26)? Assume that
gx and gy are obtained using the Sobel ker-
nels. Show all relevant different pixel values
in the gradient image.

(b) With reference to Eq. (10-18) and Fig. 10.12,

DIP4E_GLOBAL_Print_Ready.indb 805 6/16/2017 2:14:39 PM

806 Chapter 10 Image Segmentation

sketch the histogram of edge directions. Be
precise in labeling the height of each compo-
nent of the histogram.

(c) What would the Laplacian of this image look
like based on using Eq. (10-14)? Show all
relevant different pixel values in the Lapla-
cian image.

10.15 Suppose that an image f x y(,) is convolved with
a kernel of size n n× (with coefficients 1 2n) to
produce a smoothed image f x y(,).

(a) * Derive an expression for edge strength
(edge magnitude) as a function of n. Assume
that n is odd and that the partial derivatives
are computed using Eqs. (10-19) and (10-20).

(b) Show that the ratio of the maximum edge
strength of the smoothed image to the maxi-
mum edge strength of the original image is
1 n. In other words, edge strength is inversely
proportional to the size of the smoothing
kernel, as one would expect.

10.16 With reference to Eq. (10-29),

(a) * Show that the average value of the LoG
operator,
2G x y(,), is zero.

(b) Show that the average value of any image
convolved with this operator also is zero.
(Hint: Consider solving this problem in the
frequency domain, using the convolution
theorem and the fact that the average value
of a function is proportional to its Fourier
transform evaluated at the origin.)

(c) Suppose that we: (1) used the kernel in Fig.
10.4(a) to approximate the Laplacian of a
Gaussian, and (2) convolved this result with
any image. What would be true in general of
the values of the resulting image? Explain.
(Hint: Take a look at Problem 3.32.)

10.17 Refer to Fig. 10.22(c).

(a) Explain why the edges form closed contours.

(b) * Does the zero-crossing method for finding
edge location always result in closed con-
tours? Explain.

10.18 One often finds in the literature a derivation of
the Laplacian of a Gaussian (LoG) that starts
with the expression

G r e r() = − 2 22s

where r x y2 2 2= + . The LoG is then derived by
taking the second partial derivative with respect
to r:
2 2 2G r G r r() () .= ∂ ∂ Finally, x y2 2+ is sub-
stituted for r2 to get the final (incorrect) result:

2 2 2 2 4

2 2 22

G x y x y

x y

,

exp

() = + −()⎡
⎣

⎤
⎦

− +()⎡
⎣

⎤
⎦

s s

s

Derive this result and explain the reason for the
difference between this expression and Eq. (10-29).

10.19 Do the following:

(a) * Derive Eq. (10-33).

(b) Let k = s s1 2 denote the standard deviation
ratio discussed in connection with the DoG
function, and express Eq. (10-33) in terms of
k and s2.

10.20 In the following, assume that G and f are discrete
arrays of size n n× and M N× , respectively.

(a) Show that the 2-D convolution of the Gauss-
ian function G x y(,) in Eq. (10-27) with an
image f x y(,) can be expressed as a 1-D con-
volution along the rows (columns) of f x y(,),
followed by a 1-D convolution along the col-
umns (rows) of the result. (Hints: See Sec-
tion 3.4 regarding discrete convolution and
separability).

(b) * Derive an expression for the computa-
tional advantage using the 1-D convolution
approach in (a) as opposed to implementing
the 2-D convolution directly. Assume that
G x y(,) is sampled to produce an array of size
n n× and that f x y(,) is of size M N× . The
computational advantage is the ratio of the
number of multiplications required for 2-D
convolution to the number required for 1-D
convolution. (Hint: Review the subsection
on separable kernels in Section 3.4.)

10.21 Do the following.

(a) Show that Steps 1 and 2 of the Marr-Hildreth
algorithm can be implemented using four
1-D convolutions. (Hints: Refer to Problem
10.20(a) and express the Laplacian operator
as the sum of two partial derivatives, given

DIP4E_GLOBAL_Print_Ready.indb 806 6/16/2017 2:14:41 PM

 Problems 807

by Eqs. (10-10) and (10-11), and implement
each derivative using a 1-D kernel, as in
Problem 10.12.)

(b) Derive an expression for the computational
advantage of using the 1-D convolution
approach in (a) as opposed to implementing
the 2-D convolution directly. Assume that
G x y(,) is sampled to produce an array of
size n n× and that f x y(,) is of size M N× .
The computational advantage is the ratio of
the number of multiplications required for
2-D convolution to the number required for
1-D convolution (see Problem 10.20).

10.22 Do the following.

(a) * Formulate Step 1 and the gradient mag-
nitude image computation in Step 2 of the
Canny algorithm using 1-D instead of 2-D
convolutions.

(b) What is the computational advantage of
using the 1-D convolution approach as
opposed to implementing a 2-D convolu-
tion. Assume that the 2-D Gaussian filter in
Step 1 is sampled into an array of size n n×
and that the input image is of size M N× .
Express the computational advantage as
the ratio of the number of multiplications
required by each method.

10.23 With reference to the three vertical edge models
and corresponding profiles in Fig. 10.8 provide
sketches of the profiles that would result from
each of the following methods. You may sketch
the profiles manually.

(a) * Suppose that we compute the gradient
magnitude of each of the three edge model
images using the Sobel kernels. Sketch the
horizontal intensity profiles of the three
resulting gradient images.

(b) Sketch the horizontal intensity profiles that
would result from using the 3 3× Laplacian
kernel in Fig. 10.10.4(a).

(c) * Repeat (b) using only the first two steps of
the Marr-Hildreth edge detector.

(d) Repeat (b) using the first two steps of the
Canny edge detector. You may ignore the
angle images.

(e) Sketch the horizontal profiles of the angle
images resulting from using the Canny edge
detector.

10.24 In Example 10.9, we used a smoothing kernel of
size 19 19× to generate Fig. 10.26(c) and a kernel
of size 13 13× to generate Fig. 10.26(d). What was
the rationale that led to choosing these values?
(Hint: Observe that both are Gaussian kernels,
and refer to the discussion of lowpass Gaussian
kernels in Section 3.5.)

10.25 Refer to the Hough transform in Section 10.2.

(a) Propose a general procedure for obtaining
the normal representation of a line from its
slope-intercept form, y ax b= + .

(b) * Find the normal representation of the line
y x= − +2 1.

10.26 Refer to the Hough transform in Section 10.2.

(a) * Explain why the Hough mapping of the point
labeled 1 in Fig. 10.30(a) is a straight line in
Fig. 10.30(b).

(b) * Is this the only point that would produce that
result? Explain.

(c) Explain the reflective adjacency relationship
illustrated by, for example, the curve labeled
Q in Fig. 10.30(b).

10.27 Show that the number of operations required to
implement the accumulator-cell approach dis-
cussed in Section 10.2 is linear in n, the number
of non-background points in the image plane (i.e.,
the xy-plane).

10.28 An important application of image segmentation
is in processing images resulting from so-called
bubble chamber events. These images arise from
experiments in high-energy physics in which a
beam of particles of known properties is directed
onto a target of known nuclei. A typical event con-
sists of incoming tracks, any one of which, upon
a collision, branches out into secondary tracks of
particles emanating from the point of collision.
Propose a segmentation approach for detecting
all tracks angled at any of the following six direc-
tions off the horizontal: ± °,25 ± °50 , and ± °.75
The estimation error allowed in any of these six
directions is ±5°. For a track to be valid it must
be at least 100 pixels long and have no more than
three gaps, each not exceeding 10 pixels. You may

DIP4E_GLOBAL_Print_Ready.indb 807 6/16/2017 2:14:42 PM

808 Chapter 10 Image Segmentation

assume that the images have been preprocessed
so that they are binary and that all tracks are 1
thick, except at the point of collision from which
they emanate. Your procedure should be able to
differentiate between tracks that have the same
direction but different origins. (Hint: Base your
solution on the Hough transform.)

10.29 * Restate the basic global thresholding algorithm
in Section 10.3 so that it uses the histogram of an
image instead of the image itself.

10.30 * Prove that the basic global thresholding algo-
rithm in Section 10.3 converges in a finite number
of steps. (Hint: Use the histogram formulation
from Problem 10.29.)

10.31 Give an explanation why the initial threshold in
the basic global thresholding algorithm in Sec-
tion 10.3 must be between the minimum and
maximum values in the image. (Hint: Construct
an example that shows the algorithm failing for a
threshold value selected outside this range.)

10.32 * Assume that the initial threshold in the basic
global thresholding algorithm in Section 10.3 is
selected as a value between the minimum and
maximum intensity values in an image. Do you
think the final value of the threshold at conver-
gence depends on the specific initial value used?
Explain. (You can use a simple image example to
support your conclusion.)

10.33 You may assume in both of the following cases
that the initial threshold is in the open interval
(,).0 1L −

(a) * Show that if the histogram of an image is
uniform over all possible intensity levels,
the basic global thresholding algorithm con-
verges to the average intensity of the image.

(b) Show that if the histogram of an image is
bimodal, with identical modes that are sym-
metric about their means, then the basic
global thresholding algorithm will converge
to the point halfway between the means of
the modes.

10.34 Refer to the basic global thresholding algorithm in
Section 10.3. Assume that in a given problem, the
histogram is bimodal with modes that are Gauss-
ian curves of the form A z m1 1

2
1
22exp[()]− − s

andA z m2 2
2

2
22exp[()].− − s Assume that m1 is

greater than m2 , and that the initial T is between
the max and min image intensities. Give conditions
(in terms of the parameters of these curves) for the
following to be true when the algorithm converges:

(a) * The threshold is equal to () .m m1 2 2+

(b) * The threshold is to the left of m2 .

(c) The threshold is in the interval given by the
equation () .m m T m1 2 12+ < <

10.35 Do the following:

(a) * Show how the first line in Eq. (10-60) fol-
lows from Eqs. (10-55), (10-56), and (10-59).

(b) Show how the second line in Eq. (10-60)
follows from the first.

10.36 Show that a maximum value for Eq. (10-63)
always exists for k in the range 0 1≤ ≤ −k L .

10.37 * With reference to Eq. (10-65), advance an
argument that establishes that 0 1≤ ≤h()k for k
in the range 0 1≤ ≤ −k L , where the minimum
is achievable only by images with constant inten-
sity, and the maximum occurs only for 2-valued
images with values 0 and ().L − 1

10.38 Do the following:

(a) * Suppose that the intensities of a digital
image f x y(,) are in the range [,]0 1 and that
a threshold, T, successfully segmented the
image into objects and background. Show
that the threshold T T′ = −1 will success-
fully segment the negative of f x y(,) into the
same regions. The term negative is used here
in the sense defined in Section 3.2.

(b) The intensity transformation function in
(a) that maps an image into its negative is
a linear function with negative slope. State
the conditions that an arbitrary intensity
transformation function must satisfy for the
segmentability of the original image with
respect to a threshold, T, to be preserved.
What would be the value of the threshold
after the intensity transformation?

10.39 The objects and background in the image below
have a mean intensity of 170 and 60, respectively,
on a [0, 255] scale. The image is corrupted by
Gaussian noise with 0 mean and a standard devia-
tion of 10 intensity levels. Propose a thresholding

DIP4E_GLOBAL_Print_Ready.indb 808 6/16/2017 2:14:43 PM

 Problems 809

method capable of a correct segmentation rate of
90% or higher. (Recall that 99.7% of the area of
a Gaussian curve lies in a ±3s interval about the
mean, where s is the standard deviation.)

10.40 Refer to the intensity ramp image in Fig. 10.34(b)
and the moving-average algorithm discussed in
Section 10.3. Assume that the image is of size
500 700× pixels and that its minimum and maxi-
mum values are 0 and 1, where 0’s are contained
only in the first column.

(a) * What would be the result of segmenting this
image with the moving-average algorithm
using b = 0 and an arbitrary value for n.
Explain what the segmented image would
look like.

(b) Now reverse the direction of the ramp so
that its leftmost value is 1 and the rightmost
value is 0 and repeat (a).

(c) Repeat (a) but with b = 1 and n = 2.

(d) Repeat (a) but with b = 1 and n = 100.

10.41 Propose a region-growing algorithm to segment
the image in Problem 10.39.

10.42 * Segment the image shown by using the split and
merge procedure discussed in Section 10.4. Let
Q Ri() = TRUE if all pixels in Ri have the same
intensity. Show the quadtree corresponding to
your segmentation.

N

N

10.43 Consider the region of 1’s resulting from the
segmentation of the sparse regions in the image
of the Cygnus Loop in Example 10.21. Propose
a technique for using this region as a mask to
isolate the three main components of the image:
(1) background; (2) dense inner region; and (3)
sparse outer region.

10.44 Let the pixels in the first row of a 3 3× image, like
the one in Fig. 10.53(a), be labeled as 1, 2, 3, and
the pixels in the second and third rows be labeled
as 4, 5, 6 and 7, 8, 9, respectively. Let the inten-
sity of these pixels be [90, 80, 30; 70, 5, 20; 80 20
30] where, for example, the intensity of pixel 2 is
80 and of pixel 4 it is 70. Compute the weights
for the edges for the graph in Fig. 10.53(c), using
the formula w(,) [() ()]i j I n I n ci j= − +30 1� � �A B
explained in the text in connection with that
figure (we scaled the formula by 30 to make the
numerical results easier to interpret). Let c = 0
in this case.

10.45 * Show how Eqs. (10-106) through (10-108) follow
from Eq. (10-105).

10.46 Demonstrate the validity of Eq. (10-102).

10.47 Refer to the discussion in Section 10.7.

(a) * Show that the elements of C Mn i() and T n[]
are never replaced during execution of the
watershed segmentation algorithm.

(b) Show that the number of elements in sets
C Mn i() and T n[] either increases or remains
the same as n increases.

10.48 You saw in Section 10.7 that the boundaries
obtained using the watershed segmentation algo-
rithm form closed loops (for example, see Figs.
10.59 and 10.61). Advance an argument that estab-
lishes whether or not closed boundaries always
result from application of this algorithm.

10.49 * Give a step-by-step implementation of the dam-
building procedure for the one-dimensional inten-
sity cross section shown below. Show a drawing
of the cross section at each step, showing “water”
levels and dams constructed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x0

1
2
3
4
5
6
7

DIP4E_GLOBAL_Print_Ready.indb 809 6/16/2017 2:14:45 PM

810 Chapter 10 Image Segmentation

10.50 What would the negative ADI image shown
in Fig. 10.62(c) look like if we tested against T
(instead of testing against −T) in Eq. (10-117)?

10.51 Are the following statements true or false? Ex-
plain the reason for your answer in each.

(a) * The nonzero entries in the absolute ADI
continue to grow in dimension, provided
that the object is moving.

(b) The nonzero entries in the positive ADI
always occupy the same area, regardless of
the motion undergone by the object.

(c) The nonzero entries in the negative ADI
continue to grow in dimension, provided
that the object is moving.

10.52 Suppose that in Example 10.29 motion along the
x-axis is set to zero. The object now moves only
along the y-axis at 1 pixel per frame for 32 frames
and then (instantaneously) reverses direction
and moves in exactly the opposite direction for
another 32 frames. What would Figs. 10.66(a)
and (b) look like under these conditions?

10.53 * Advance an argument that demonstrates that
when the signs of S x1 and S x2 in Eqs. (10-125)
and (10-126) are the same, velocity component
V1 is positive.

10.54 An automated pharmaceutical plant uses image
processing to measure the shapes of medication
tablets for the purpose of quality control. The
segmentation stage of the system is based on
Otsu’s method. The speed of the inspection lines
is so high that a very high rate flash illumina-
tion is required to “stop” motion. When new, the
illumination lamps project a uniform pattern of
light. However, as the lamps age, the illumination
pattern deteriorates as a function of time and
spatial coordinates according to the equation

 i x y A t t e x M y N(,) () [() ()]= − − − + −2 2 22 2

where M N2 2,() is the center of the viewing
area and t is time measured in increments of
months. The lamps are still experimental and
the behavior of A t() is not fully understood by

the manufacturer. All that is known is that, dur-
ing the life of the lamps, A t() is always greater
than the negative component in the preceding
equation because illumination cannot be nega-
tive. It has been observed that Otsu’s algorithm
works well when the lamps are new, and their
pattern of illumination is nearly constant over the
entire image. However, segmentation perfor-
mance deteriorates with time. Being experimental,
the lamps are exceptionally expensive, so you are
employed as a consultant to help solve the prob-
lem using digital image processing techniques to
compensate for the changes in illumination, and
thus extend the useful life of the lamps. You are
given flexibility to install any special markers or
other visual cues in the viewing area of the imag-
ing cameras. Propose a solution in sufficient detail
that the engineering plant manager can under-
stand your approach. (Hint: Review the image
model discussed in Section 2.3 and consider using
one or more targets of known reflectivity.)

10.55 The speed of a bullet in flight is to be estimated by
using high-speed imaging techniques. The method
of choice involves the use of a CCD camera and
flash that exposes the scene for K seconds. The bul-
let is 2.5 cm long, 1 cm wide, and its range of speed
is 750 250± m s. The camera optics produce an
image in which the bullet occupies 10% of the
horizontal resolution of a 256 256× digital image.

(a) * Determine the maximum value of K that
will guarantee that the blur from motion
does not exceed 1 pixel.

(b) Determine the minimum number of frames
per second that would have to be acquired
in order to guarantee that at least two com-
plete images of the bullet are obtained dur-
ing its path through the field of view of the
camera.

(c) * Propose a segmentation procedure for
automatically extracting the bullet from a
sequence of frames.

(d) Propose a method for automatically deter-
mining the speed of the bullet.

DIP4E_GLOBAL_Print_Ready.indb 810 6/16/2017 2:14:47 PM

811

11 Feature Extraction

Preview
After an image has been segmented into regions or their boundaries using methods such as those in
Chapters 10 and 11, the resulting sets of segmented pixels usually have to be converted into a form suit-
able for further computer processing. Typically, the step after segmentation is feature extraction, which
consists of feature detection and feature description. Feature detection refers to finding the features
in an image, region, or boundary. Feature description assigns quantitative attributes to the detected
features. For example, we might detect corners in a region boundary, and describe those corners by
their orientation and location, both of which are quantitative attributes. Feature processing methods
discussed in this chapter are subdivided into three principal categories, depending on whether they are
applicable to boundaries, regions, or whole images. Some features are applicable to more than one cat-
egory. Feature descriptors should be as insensitive as possible to variations in parameters such as scale,
translation, rotation, illumination, and viewpoint. The descriptors discussed in this chapter are either
insensitive to, or can be normalized to compensate for, variations in one or more of these parameters.

Upon completion of this chapter, readers should:
 Understand the meaning and applicability of

a broad class of features suitable for image
processing.

 Understand the concepts of feature vectors
and feature space, and how to relate them
to the various descriptors developed in this
chapter.

 Be skilled in the mathematical tools used in
feature extraction algorithms.

 Be familiar with the limitations of the various
feature extraction methods discussed.

 Understand the principal steps used in the
solution of feature extraction problems.

 Be able to formulate feature extraction algo-
rithms.

 Have a “feel” for the types of features that
have a good chance of success in a given
application.

Well, but reflect; have we not several times
acknowledged that names rightly given are the
likenesses and images of the things which they name?

Socrates

DIP4E_GLOBAL_Print_Ready.indb 811 6/16/2017 2:14:47 PM

812 Chapter 11 Feature Extraction

11.1 BACKGROUND

Although there is no universally accepted, formal definition of what constitutes an
image feature, there is little argument that, intuitively, we generally think of a fea-
ture as a distinctive attribute or description of “something” we want to label or
differentiate. For our purposes, the key words here are label and differentiate. The

“something” of interest in this chapter refers either to individual image objects, or
even to entire images or sets of images. Thus, we think of features as attributes that
are going to help us assign unique labels to objects in an image or, more gener-
ally, are going to be of value in differentiating between entire images or families of
images.

There are two principal aspects of image feature extraction: feature detection, and
feature description. That is, when we refer to feature extraction, we are referring
to both detecting the features and then describing them. To be useful, the extrac-
tion process must encompass both. The terminology you are likely to encounter in
image processing and analysis to describe feature detection and description varies,
but a simple example will help clarify our use of these term. Suppose that we use
object corners as features for some image processing task. In this chapter, detection
refers to finding the corners in a region or image. Description, on the other hand,
refers to assigning quantitative (or sometimes qualitative) attributes to the detected
features, such as corner orientation, and location with respect to other corners. In
other words, knowing that there are corners in an image has limited use without
additional information that can help us differentiate between objects in an image,
or between images, based on corners and their attributes.

Given that we want to use features for purposes of differentiation, the next ques-
tion is: What are the important characteristics that these features must possess in
the realm of digital image processing? You are already familiar with some of these
characteristics. In general, features should be independent of location, rotation, and
scale. Other factors, such as independence of illumination levels and changes caused
by the viewpoint between the imaging sensor(s) and the scene, also are impor-
tant. Whenever possible, preprocessing should be used to normalize input images
before feature extraction. For example, in situations where changes in illumination
are severe enough to cause difficulties in feature detection, it would make sense to
preprocess an image to compensate for those changes. Histogram equalization or
specification come to mind as automatic techniques that we know are helpful in
this regard. The idea is to use as much a priori information as possible to preprocess
images in order to improve the chances of accurate feature extraction.

When used in the context of a feature, the word “independent” usually has one of
two meanings: invariant or covariant. A feature descriptor is invariant with respect
to a set of transformations if its value remains unchanged after the application (to
the entity being described) of any transformation from the family. A feature descrip-
tor is covariant with respect to a set of transformations if applying to the entity any
transformation from the set produces the same result in the descriptor. For example,
consider this set of affine transformations: {translation, reflection, rotation}, and sup-
pose that we have an elliptical region to which we assign the feature descriptor area.
Clearly, applying any of these transformations to the region does not change its area.

11.1

See Table 2.3 regarding
affine transformations.

DIP4E_GLOBAL_Print_Ready.indb 812 6/16/2017 2:14:47 PM

11.1 Background 813

Therefore, area is an invariant feature descriptor with respect to the given family of
transformations. However, if we add the affine transformation scaling to the fam-
ily, descriptor area ceases to be invariant with respect to the extended family. The
descriptor is now covariant with respect to the family, because scaling the area of the
region by any factor scales the value of the descriptor by the same factor. Similarly,
the descriptor direction (of the principal axis of the region) is covariant because
rotating the region by any angle has the same effect on the value of the descriptor.
Most of the feature descriptors we use in this chapter are covariant in general, in
the sense that they may be invariant to some transformations of interest, but not to
others that may be equally as important. As you will see shortly, it is good practice to
normalize as many relevant invariances as possible out of covariances. For instance,
we can compensate for changes in direction of a region by computing its actual
direction and rotating the region so that its principal axis points in a predefined
direction. If we do this for every region detected in an image, rotation will cease to
be covariant.

Another major classification of features is local vs. global. You are likely to see
many different attempts to classify features as belonging to one of these two catego-
ries. What makes this difficult is that a feature may belong to both, depending on the
application. For example, consider the descriptor area again, and suppose that we
are applying it to the task of inspecting the degree to which bottles moving past an
imaging sensor on a production line are full of liquid. The sensor and its accompany-
ing software are capable of generating images of ten bottles at once, in which liquid
in each bottle appears as a bright region, and the rest of the image appears as dark
background. The area of a region in this fixed geometry is directly proportional to
the amount of liquid in a bottle and, if detected and measured reliably, area is the
only feature we need to solve the inspection problem. Each image has ten regions, so
we consider area to be a local feature, in the sense that it is applicable to individual
elements (regions) of an image. If the problem were to detect the total amount (area)
of liquid in an image, we would now consider area to be a global descriptor. But the
story does not end there. Suppose that the liquid inspection task is redefined so that
it calculates the entire amount of liquid per day passing by the imaging station. We
no longer care about the area of individual regions per se. Our units now are images.
If we know the total area in an image, and we know the number of images, calculat-
ing the total amount of liquid in a day is trivial. Now the area of an entire image is a
local feature, and the area of the total at the end of the day is global. Obviously, we
could redefine the task so that the area at the end of a day becomes a local feature
descriptor, and the area for all assembly lines becomes a global measure. And so on,
endlessly. In this chapter, we call a feature local if it is applies to a member of a set,
and global if it applies to the entire set, where “member” and “set” are determined
by the application.

Features by themselves are seldom generated for human consumption, except in
applications such as interactive image processing, topics that are not in the main-
stream of this book. In fact, as you will see later, some feature extraction meth-
ods generate tens, hundreds, or even thousands of descriptor values that would
appear meaningless if examined visually. Instead, feature description typically is
used as a preprocessing step for higher-level tasks, such as image registration, object

DIP4E_GLOBAL_Print_Ready.indb 813 6/16/2017 2:14:47 PM

814 Chapter 11 Feature Extraction

recognition for automated inspection, searching for patterns (e.g., individual faces
and/or fingerprints) in image databases, and autonomous applications, such as robot
and vehicle navigation. For these applications, numerical features usually are “pack-
aged” in the form of a feature vector, (i.e., a 1 × n or n × 1 matrix) whose elements are
the descriptors. An RGB image is one of the simplest examples. As you know from
Chapter 6, each pixel of an RGB image can be expressed as 3-D vector,

 x =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x

x

x

1

2

3

in which x1 is the intensity value of the red image at a point, and the other com-
ponents are the intensity values of the green and blue images at the same point. If
color is used as a feature, then a region in an RGB image would be represented as
a set of feature vectors (points) in 3-D space. When n descriptors are used, feature
vectors become n-dimensional, and the space containing them is referred to as an
n-dimensional feature space. You may “visualize” a set of n-dimensional feature vec-
tors as a “hypercloud” of points in n-dimensional Euclidean space.

In this chapter, we group features into three principal categories: boundary,
region, and whole image features. This subsidivision is not based on the applicabil-
ity of the methods we are about to discuss; rather, it is based on the fact that some
categories make more sense than others when considered in the context of what is
being described. For example, it is implied that when we refer to the “length of a
boundary” we are referring to the “length of the boundary of a region,” but it makes
no sense to refer to the “length” of an image. It will become clear that many of the
features we will be discussing are applicable to boundaries and regions, and some
apply to whole images as well.

11.2 BOUNDARY PREPROCESSING

The segmentation techniques discussed in the previous two chapters yield raw data
in the form of pixels along a boundary or pixels contained in a region. It is standard
practice to use schemes that compact the segmented data into representations that
facilitate the computation of descriptors. In this section, we discuss various bound-
ary preprocessing approaches suitable for this purpose.

BOUNDARY FOLLOWING (TRACING)

Several of the algorithms discussed in this chapter require that the points in the
boundary of a region be ordered in a clockwise or counterclockwise direction. Con-
sequently, we begin our discussion by introducing a boundary-following algorithm
whose output is an ordered sequence of points. We assume (1) that we are work-
ing with binary images in which object and background points are labeled 1 and 0,
respectively; and (2) that images are padded with a border of 0’s to eliminate the
possibility of an object merging with the image border. For clarity, we limit the dis-
cussion to single regions. The approach is extended to multiple, disjoint regions by
processing the regions individually.

11.2

You will find it helpful to
review the discussion in
Sections 2.5 on neighbor-
hoods, adjacency and
connectivity, and the
discussion in Section 9.6
dealing with connected
components.

DIP4E_GLOBAL_Print_Ready.indb 814 6/16/2017 2:14:48 PM

11.2 Boundary Preprocessing 815

The following algorithm traces the boundary of a 1-valued region, R, in a binary
image.

1. Let the starting point, b0 , be the uppermost-leftmost point† in the image that is
labeled 1. Denote by c0 the west neighbor of b0 [see Fig. 11.1(b)]. Clearly, c0 is
always a background point. Examine the 8-neighbors of b0 , starting at c0 and
proceeding in a clockwise direction. Let b1 denote the first neighbor encountered
whose value is 1, and let c1 be the (background) point immediately preceding b1
in the sequence. Store the locations of b0 for use in Step 5.

2. Let b b= 0 and c c= 0.
3. Let the 8-neighbors of b, starting at c and proceeding in a clockwise direction,

be denoted by n n n1 2 8, , , .… Find the first neighbor labeled 1 and denote it by nk .
4. Let b nk= and c nk= – .1

5. Repeat Steps 3 and 4 until b b= 0. The sequence of b points found when the
algorithm stops is the set of ordered boundary points.

Note that c in Step 4 is always a background point because nk is the first 1-valued
point found in the clockwise scan. This algorithm is referred to as the Moore bound-
ary tracing algorithm after Edward F. Moore, a pioneer in cellular automata theory.

Figure 11.1 illustrates the first few steps of the algorithm. It is easily verified (see
Problem 11.1) that continuing with this procedure will yield the correct boundary,
shown in Fig. 11.1(f), whose points are ordered in a clockwise sequence. The algo-
rithm works equally well with more complex boundaries, such as the boundary with
an attached branch in Fig. 11.2(a) or the self-intersecting boundary in Fig. 11.2(b).
Multiple boundaries [Fig. 11.2(c)] are handled by processing one boundary at a time.

If we start with a binary region instead of a boundary, the algorithm extracts the
outer boundary of the region. Typically, the resulting boundary will be one pixel
thick, but not always [see Problem 11.1(b)]. If the objective is to find the boundaries
of holes in a region (these are called the inner or interior boundaries of the region),

† As you will see later in this chapter and in Problem 11.8, the uppermost-leftmost point in a 1-valued boundary
has the important property that a polygonal approximation to the boundary has a convex vertex at that location.
Also, the left and north neighbors of the point are guaranteed to be background points. These properties make
it a good “standard” point at which to start boundary-following algorithms.

See Section 2.5 for the
definition of 4-neigh-
bors, 8-neighbors, and
m-neighbors of a point,

ba c ed f

FIGURE 11.1 Illustration of the first few steps in the boundary-following algorithm. The point to be processed next is
labeled in bold, black; the points yet to be processed are gray; and the points found by the algorithm are shaded.
Squares without labels are considered background (0) values.

1 1
1
1
1
1

11

1
1

1
1 1 1

1
1
1
1
1111

1
1

1c0 b0 1
1 1

1
1
1111

1
1

11
c
b

1
1
1
1111

1
1

11
1

c
b

. . .1
1
1111

1
1

c
b

11

DIP4E_GLOBAL_Print_Ready.indb 815 6/16/2017 2:14:50 PM

816 Chapter 11 Feature Extraction

a straightforward approach is to extract the holes (see Section 9.6) and treat them
as 1-valued regions on a background of 0’s. Applying the boundary-following algo-
rithm to these regions will yield the inner boundaries of the original region.

We could have stated the algorithm just as easily based on following a boundary
in the counterclockwise direction but you will find it easier to have just one algo-
rithm and then reverse the order of the result to obtain a sequence in the opposite
direction. We use both directions interchangeably (but consistently) in the following
sections to help you become familiar with both approaches.

CHAIN CODES

Chain codes are used to represent a boundary by a connected sequence of straight-
line segments of specified length and direction. We assume in this section that all
curves are closed, simple curves (i.e., curves that are closed and not self intersecting).

Freeman Chain Codes

Typically, a chain code representation is based on 4- or 8-connectivity of the seg-
ments. The direction of each segment is coded by using a numbering scheme, as in Fig.
11.3. A boundary code formed as a sequence of such directional numbers is referred
to as a Freeman chain code.

Digital images usually are acquired and processed in a grid format with equal
spacing in the x- and y-directions, so a chain code could be generated by following a
boundary in, say, a clockwise direction and assigning a direction to the segments con-
necting every pair of pixels. This level of detail generally is not used for two principal
reasons: (1) The resulting chain would be quite long and (2) any small disturbances
along the boundary due to noise or imperfect segmentation would cause changes
in the code that may not be related to the principal shape features of the boundary.

An approach used to address these problems is to resample the boundary by
selecting a larger grid spacing, as in Fig. 11.4(a). Then, as the boundary is traversed, a
boundary point is assigned to a node of the coarser grid, depending on the proximity
of the original boundary point to that node, as in Fig. 11.4(b). The resampled bound-
ary obtained in this way can be represented by a 4- or 8-code. Figure 11.4(c) shows
the coarser boundary points represented by an 8-directional chain code. It is a simple
matter to convert from an 8-code to a 4-code and vice versa (see Problems 2.15, 9.27,

ba c

FIGURE 11.2 Examples of boundaries that can be processed by the boundary-following algo-
rithm. (a) Closed boundary with a branch. (b) Self-intersecting boundary. (c) Multiple bound-
aries (processed one at a time).

1
1

1
1

1
1 1 1

1

1
1
1
1
1

1

1
1
1
1
1
1

1
1

1

1
1

11
1

1
1

1

11
1

1
1
1
11

DIP4E_GLOBAL_Print_Ready.indb 816 6/16/2017 2:14:50 PM

11.2 Boundary Preprocessing 817

and 9.29). For the same reason mentioned when discussing boundary tracing earlier
in this section, we chose the starting point in Fig. 11.4(c) as the uppermost-leftmost
point of the boundary, which gives the chain code 0766 1212… . As you might suspect,
the spacing of the resampling grid is determined by the application in which the
chain code is used.

If the sampling grid used to obtain a connected digital curve is a uniform quad-
rilateral (see Fig. 2.19) all points of a Freeman code based on Fig. 11.3 are guaran-
teed to coincide with the points of the curve. The same is true if a digital curve is
subsampled using the same type of sampling grid, as in Fig. 11.4(b). This is because
the samples of curves produced using such grids have the same arrangement as in
Fig. 11.3, so all points are reachable as we traverse a curve from one point to the next
to generate the code.

The numerical value of a chain code depends on the starting point. However, the
code can be normalized with respect to the starting point by a straightforward pro-
cedure: We simply treat the chain code as a circular sequence of direction numbers
and redefine the starting point so that the resulting sequence of numbers forms an
integer of minimum magnitude. We can normalize also for rotation (in angles that
are integer multiples of the directions in Fig. 11.3) by using the first difference of the
chain code instead of the code itself. This difference is obtained by counting the num-
ber of direction changes (in a counterclockwise direction in Fig. 11.3) that separate
two adjacent elements of the code. If we treat the code as a circular sequence to nor-
malize it with respect to the starting point, then the first element of the difference is
computed by using the transition between the last and first components of the chain.

0
7

6

6

6

6

6

453

3

2

1

1
2

2

ba c

FIGURE 11.4
(a) Digital
boundary with
resampling grid
superimposed.
(b) Result of
resampling.
(c) 8-directional
chain-coded
boundary.

1

0

3

2

1

0

6

75

4

3

2ba

FIGURE 11.3
Direction
numbers for
(a) 4-directional
chain code, and
(b) 8-directional
chain code.

DIP4E_GLOBAL_Print_Ready.indb 817 6/16/2017 2:14:51 PM

818 Chapter 11 Feature Extraction

For instance, the first difference of the 4-directional chain code 10103322 is 3133030.
Size normalization can be achieved by altering the spacing of the resampling grid.

The normalizations just discussed are exact only if the boundaries themselves
are invariant to rotation (again, in angles that are integer multiples of the directions
in Fig. 11.3) and scale change, which seldom is the case in practice. For instance,
the same object digitized in two different orientations will have different bound-
ary shapes in general, with the degree of dissimilarity being proportional to image
resolution. This effect can be reduced by selecting chain elements that are long in
proportion to the distance between pixels in the digitized image, and/or by orienting
the resampling grid along the principal axes of the object to be coded, as discussed
in Section 11.3, or along its eigen axes, as discussed in Section 11.5.

EXAMPLE 11.1 : Freeman chain code and some of its variations.
Figure 11.5(a) shows a 570 570× -pixel, 8-bit gray-scale image of a circular stroke embedded in small,
randomly distributed specular fragments. The objective of this example is to obtain a Freeman chain
code, the corresponding integer of minimum magnitude, and the first difference of the outer boundary
of the stroke. Because the object of interest is embedded in small fragments, extracting its boundary
would result in a noisy curve that would not be descriptive of the general shape of the object. As you
know, smoothing is a routine process when working with noisy boundaries. Figure 11.5(b) shows the
original image smoothed using a box kernel of size 9 9× pixels (see Section 3.5 for a discussion of spa-
tial smoothing), and Fig. 11.5(c) is the result of thresholding this image with a global threshold obtained
using Otsu’s method. Note that the number of regions has been reduced to two (one of which is a dot),
significantly simplifying the problem.

Figure 11.5(d) is the outer boundary of the region in Fig. 11.5(c). Obtaining the chain code of this
boundary directly would result in a long sequence with small variations that are not representative
of the global shape of the boundary, so we resample it before obtaining its chain code. This reduces
insignificant variability. Figure 11.5(e) is the result of using a resampling grid with nodes 50 pixels apart
(approximately 10% of the image width) and Fig. 11.5(f) is the result of joining the sample points by
straight lines. This simpler approximation retained the principal features of the original boundary.

The 8-directional Freeman chain code of the simplified boundary is

 0 0 0 0 6 0 6 6 6 6 6 6 6 6 4 4 4 4 4 4 2 4 2 2 2 2 2 0 2 22 0 2

The starting point of the boundary is at coordinates (2, 5) in the subsampled grid (remember from
Fig. 2.19 that the origin of an image is at its top, left). This is the uppermost-leftmost point in Fig. 11.5(f).
The integer of minimum magnitude of the code happens in this case to be the same as the chain code:

 0 0 0 0 6 0 6 6 6 6 6 6 6 6 4 4 4 4 4 4 2 4 2 2 2 2 2 0 2 22 0 2

The first difference of the code is

 0 0 0 6 2 6 0 0 0 0 0 0 0 6 0 0 0 0 0 6 2 6 0 0 0 0 6 2 0 66 2 6

Using this code to represent the boundary results in a significant reduction in the amount of data
needed to store the boundary. In addition, working with code numbers offers a unified way to analyze
the shape of a boundary, as we discuss in Section 11.3. Finally, keep in mind that the subsampled bound-
ary can be recovered from any of the preceding codes.

DIP4E_GLOBAL_Print_Ready.indb 818 6/16/2017 2:14:51 PM

11.2 Boundary Preprocessing 819

Slope Chain Codes

Using Freeman chain codes generally requires resampling a boundary to smooth
small variations, a process that implies defining a grid and subsequently assigning
all boundary points to their closest neighbors in the grid. An alternative to this
approach is to use slope chain codes (SCCs) (Bribiesca [1992, 2013]). The SCC of a
2-D curve is obtained by placing straight-line segments of equal length around the
curve, with the end points of the segments touching the curve.

Obtaining an SSC requires calculating the slope changes between contiguous line
segments, and normalizing the changes to the continuous (open) interval (,).−1 1
This approach requires defining the length of the line segments, as opposed to Free-
man codes, which require defining a grid and assigning curve points to it—a much
more elaborate procedure. Like Freeman codes, SCCs are independent of rotation,
but a larger range of possible slope changes provides a more accurate representa-
tion under rotation than the rotational independence of the Freeman codes, which is
limited to the eight directions in Fig. 11.3(b). As with Freeman codes, SCCs are inde-
pendent of translation, and can be normalized for scale changes (see Problem 11.8).

ba c
ed f

FIGURE 11.5 (a) Noisy image of size 570 570× pixels. (b) Image smoothed with a 9 9× box kernel. (c) Smoothed
image, thresholded using Otsu’s method. (d) Longest outer boundary of (c). (e) Subsampled boundary (the points
are shown enlarged for clarity). (f) Connected points from (e).

DIP4E_GLOBAL_Print_Ready.indb 819 6/16/2017 2:14:52 PM

820 Chapter 11 Feature Extraction

Figure 11.6 illustrates how an SCC is generated. The first step is to select the
length of the line segment to use in generating the code [see Fig. 11.6(b)]. Next, a
starting point (the origin) is specified (for an open curve, the logical starting point is
one of its end points). As Fig. 11.6(c) shows, once the origin has been selected, one
end of a line segment is placed at the origin and the other end of the segment is set
to coincide with the curve. This point becomes the starting point of the next line seg-
ment, and we repeat this procedure until the starting point (or end point in the case
of an open curve) is reached. As the figure illustrates, you can think of this process as
a sequence of identical circles (with radius equal to the length of the line segment)
traversing the curve. The intersections of the circles and the curve determine the
nodes of the straight-line approximation to the curve.

Once the intersections of the circles are known, we determine the slope changes
between contiguous line segments. Positive and zero slope changes are normalized
to the open half interval [,),0 1 while negative slope changes are normalized to the
open interval (,).−1 0 Not allowing slope changes of ±1 eliminates the implementa-
tion issues that result from having to deal with the fact that such changes result in
the same line segment with opposite directions.

The sequence of slope changes is the chain that defines the SCC approximation
to the original curve. For example, the code for the curve in Fig. 11.6(e) is 0 12. , 0 20. ,
0 21. , 0 11. , −0 11. , −0 12. , −0 21. , −0 22. , −0 24. , −0 28. , −0 28. , −0 31. , −0 30. . The accu-
racy of the slope changes defined in Fig. 11.6(d) is 10 2− , resulting in an “alphabet”
of 199 possible symbols (slope changes). The accuracy can be changed, of course. For
instance, and accuracy of 10 1− produces an alphabet of 19 symbols (see Problem 11.6).
Unlike a Freeman code, there is no guarantee that the last point of the coded curve
will coincide with the last point of the curve itself. However, shortening the line

Line segment

ba c ed

FIGURE 11.6 (a) An open curve. (b) A straight-line segment. (c) Traversing the curve using circumferences to deter-
mine slope changes; the dot is the origin (starting point). (d) Range of slope changes in the open interval (,)−1 1
(the arrow in the center of the chart indicates direction of travel). There can be ten subintervals between the slope
numbers shown.(e) Resulting coded curve showing its corresponding numerical sequence of slope changes. (Cour-
tesy of Professor Ernesto Bribiesca, IIMAS-UNAM, Mexico.)

DIP4E_GLOBAL_Print_Ready.indb 820 6/16/2017 2:14:53 PM

11.2 Boundary Preprocessing 821

length and/or increasing angle resolution often resolves the problem, because the
results of computations are rounded to the nearest integer (remember we work with
integer coordinates).

The inverse of an SCC is another chain of the same length, obtained by reversing
the order of the symbols and their signs. The mirror image of a chain is obtained by
starting at the origin and reversing the signs of the symbols. Finally, we point out
that the preceding discussion is directly applicable to closed curves. Curve following
would start at an arbitrary point (for example, the uppermost-leftmost point of the
curve) and proceed in a clockwise or counterclockwise direction, stopping when the
starting point is reached. We will illustrate an use of SSCs in Example 11.6.

BOUNDARY APPROXIMATIONS USING MINIMUM-PERIMETER
POLYGONS

A digital boundary can be approximated with arbitrary accuracy by a polygon. For a
closed curve, the approximation becomes exact when the number of segments of the
polygon is equal to the number of points in the boundary, so each pair of adjacent
points defines a segment of the polygon. The goal of a polygonal approximation
is to capture the essence of the shape in a given boundary using the fewest pos-
sible number of segments. Generally, this problem is not trivial, and can turn into
a time-consuming iterative search. However, approximation techniques of modest
complexity are well suited for image-processing tasks. Among these, one of the most
powerful is representing a boundary by a minimum-perimeter polygon (MPP), as
defined in the following discussion.

Foundation

An intuitive approach for computing MPPs is to enclose a boundary [see Fig. 11.7(a)]
by a set of concatenated cells, as in Fig. 11.7(b). Think of the boundary as a rubber
band contained in the gray cells in Fig. 11.7(b). As it is allowed to shrink, the rubber
band will be constrained by the vertices of the inner and outer walls of the region
of the gray cells. Ultimately, this shrinking produces the shape of a polygon of mini-
mum perimeter (with respect to this geometrical arrangement) that circumscribes
the region enclosed by the cell strip, as in Fig. 11.7(c). Note in this figure that all the
vertices of the MPP coincide with corners of either the inner or the outer wall.

The size of the cells determines the accuracy of the polygonal approximation.
In the limit, if the size of each (square) cell corresponds to a pixel in the boundary,
the maximum error in each cell between the boundary and the MPP approxima-
tion would be 2d, where d is the minimum possible distance between pixels (i.e.,
the distance between pixels established by the resolution of the original sampled
boundary). This error can be reduced in half by forcing each cell in the polygonal
approximation to be centered on its corresponding pixel in the original boundary.
The objective is to use the largest possible cell size acceptable in a given application,
thus producing MPPs with the fewest number of vertices. Our objective in this sec-
tion is to formulate a procedure for finding these MPP vertices.

The cellular approach just described reduces the shape of the object enclosed
by the original boundary, to the area circumscribed by the gray walls in Fig. 11.7(b).

For an open curve, the
number of segments
of an exact polygonal
approximation is equal
to the number of points
minus 1.

DIP4E_GLOBAL_Print_Ready.indb 821 6/16/2017 2:14:53 PM

822 Chapter 11 Feature Extraction

Figure 11.8(a) shows this shape in dark gray. Suppose that we traverse the bound-
ary of the dark gray region in a counterclockwise direction. Every turn encountered
in the traversal will be either a convex or a concave vertex (the angle of a vertex is
defined as an interior angle of the boundary at that vertex). Convex and concave
vertices are shown, respectively, as white and blue dots in Fig. 11.8(b). Note that
these vertices are the vertices of the inner wall of the light-gray bounding region in
Fig. 11.8(b), and that every concave (blue) vertex in the dark gray region has a corre-
sponding concave “mirror” vertex in the light gray wall, located diagonally opposite
the vertex. Figure 11.8(c) shows the mirrors of all the concave vertices, with the MPP
from Fig. 11.7(c) superimposed for reference. We see that the vertices of the MPP
coincide either with convex vertices in the inner wall (white dots) or with the mir-
rors of the concave vertices (blue dots) in the outer wall. Only convex vertices of the
inner wall and concave vertices of the outer wall can be vertices of the MPP. Thus,
our algorithm needs to focus attention only on those vertices.

MPP Algorithm

The set of cells enclosing a digital boundary [e.g., the gray cells in Fig. 11.7(b)] is
called a cellular complex. We assume the cellular complexes to be simply connected,
in the sense the boundaries they enclose are not self-intersecting. Based on this
assumption, and letting white (W) denote convex vertices, and blue (B) denote mir-
rored concave vertices, we state the following observations:

1. The MPP bounded by a simply connected cellular complex is not self-intersecting.

2. Every convex vertex of the MPP is a W vertex, but not every W vertex of a bound-
ary is a vertex of the MPP.

A convex vertex is the
center point of a triplet
of points that define an
angle in the range
0° < u < 180°. Similarly,
angles of a concave
vertex are in the range
180° < u < 360°. An
angle of 180° defines a
degenerate vertex (i.e.,
segment of a straight
line), which cannot be an
MPP-vertex.

ba c
FIGURE 11.7 (a) An object boundary. (b) Boundary enclosed by cells (shaded). (c) Minimum-perimeter polygon
obtained by allowing the boundary to shrink. The vertices of the polygon are created by the corners of the inner
and outer walls of the gray region.

DIP4E_GLOBAL_Print_Ready.indb 822 6/16/2017 2:14:54 PM

11.2 Boundary Preprocessing 823

3. Every mirrored concave vertex of the MPP is a B vertex, but not every B vertex
of a boundary is a vertex of the MPP.

4. All B vertices are on or outside the MPP, and all W vertices are on or inside the
MPP.

5. The uppermost-leftmost vertex in a sequence of vertices contained in a cellular
complex is always a W vertex of the MPP (see Problem 11.8).

These assertions can be proved formally (Sklansky et al. [1972], Sloboda et al. [1998],
and Klette and Rosenfeld [2004]). However, their correctness is evident for our pur-
poses (see Fig. 11.8), so we do not dwell on the proofs here. Unlike the angles of the
vertices of the dark gray region in Fig. 11.8, the angles sustained by the vertices of
the MPP are not necessarily multiples of 90°.

In the discussion that follows, we will need to calculate the orientation of triplets
of points. Consider a triplet of points, a b c, , ,() and let the coordinates of these points
be a a ax y= (,), b b bx y= (,), and c c cx y= (,). If we arrange these points as the rows of
the matrix

 A =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a a

b b

c c

x y

x y

x y

1

1

1

 (11-1)

Direction of travel

ba c

FIGURE 11.8 (a) Region (dark gray) resulting from enclosing the original boundary by cells (see Fig. 11.7). (b) Convex
(white dots) and concave (blue dots) vertices obtained by following the boundary of the dark gray region in the
counterclockwise direction. (c) Concave vertices (blue dots) displaced to their diagonal mirror locations in the
outer wall of the bounding region; the convex vertices are not changed. The MPP (solid boundary) is superimposed
for reference.

DIP4E_GLOBAL_Print_Ready.indb 823 6/16/2017 2:14:54 PM

824 Chapter 11 Feature Extraction

Then, it follows from matrix analysis that

 det()

(, ,)

A =
> 0

0

if is a counterclockwise sequence

if the

a b c

ppoints are colinear

if is a clockwise sequence<

⎧
⎨

0 (, ,)a b c

⎪⎪

⎩⎪
 (11-2)

where det()A is the determinant of A. In terms of this equation, movement in a
counterclockwise or clockwise direction is with respect to a right-handed coordinate
system (see the footnote in the discussion of Fig. 2.19). For example, using the image
coordinate system from Fig. 2.19 (in which the origin is at the top left, the positive
x-axis extends vertically downward, and the positive y-axis extends horizontally to
the right), the sequence a = (,),3 4 b = (,),2 3 and c = (,)3 2 is in the counterclockwise
direction. This would give det()A > 0 when substituted into Eq. (11-2). It is conve-
nient when describing the algorithm to define

 sgn(, ,) det()a b c ≡ A (11-3)

so that sgn(, ,)a b c > 0 for a counterclockwise sequence, sgn(, ,)a b c < 0 for a clock-
wise sequence, and sgn(, ,)a b c = 0 when the points are collinear. Geometrically,
sgn(, ,)a b c > 0 indicates that point c lies on the positive side of pair (,)a b (i.e., c lies on
the positive side of the line passing through points a and b). Similarly, if sgn(, ,) ,a b c < 0
point c lies on the negative side of the line. Equations (11-2) and (11-3) give the same
result if the sequence (, ,)c a b or (, ,)b c a is used because the direction of travel in the
sequence is the same as for (, ,).a b c However, the geometrical interpretation is differ-
ent. For example, sgn(, ,)c a b > 0 indicates that point b lies on the positive side of the
line through points c and a.

To prepare the data for the MPP algorithm, we form a list of triplets consisting
of a vertex label (e.g., V0 , V1, etc.); the coordinates of each vertex; and an additional
element denoting whether the vertex is W or B. It is important that the concave ver-
tices be mirrored, as in Fig. 11.8(c), that the vertices be in sequential order,† and that
the first vertex be the uppermost-leftmost vertex, which we know from property 5
is a W vertex of the MPP. Let V0 denote this vertex. We assume that the vertices are
arranged in the counterclockwise direction. The algorithm for finding MPPs uses
two “crawler” points: a white crawler ()WC and a blue crawler ().BC WC crawls along
the convex (W) vertices, and BC crawls along the concave (B) vertices. These two
crawler points, the last MPP vertex found, and the vertex being examined are all that
is necessary to implement the algorithm.

The algorithm starts by setting W B VC C= = 0 (recall that V0 is an MPP-vertex).
Then, at any step in the algorithm, let VL denote the last MPP vertex found, and let
Vk denote the current vertex being examined. One of the following three conditions
can exist between VL , Vk , and the two crawler points:

† Vertices of a boundary can be ordered by tracking the boundary using the boundary-following algorithm
discussed earlier.

DIP4E_GLOBAL_Print_Ready.indb 824 6/16/2017 2:14:57 PM

11.2 Boundary Preprocessing 825

(a) Vk is on the positive side of the line through the pair of points (,),V WL C in which
case sgn , , .V W VL C k() > 0

(b) Vk is on the negative side of the line though pair V WL C,() or is collinear with
it; that is sgn , , .V W VL C k() ≤ 0 Simultaneously, Vk lies to the positive side of the
line through V BL C,() or is collinear with it; that is, sgn , , .V B VL C k() ≥ 0

(c) Vk is on the negative side of the line though pair V BL C, ,() in which case
sgn , , .V B VL C k() < 0

If condition (a) holds, the next MPP vertex is WC , and we let V WL C= ; then we
reinitialize the algorithm by setting W B VC C L= = , and start with the next vertex
after the newly changed VL.

If condition (b) holds, Vk becomes a candidate MPP vertex. In this case, we set
W VC k= if Vk is convex (i.e., it is a W vertex); otherwise we set B VC k= . We then
continue with the next vertex in the list.

If condition (c) holds, the next MPP vertex is BC and we let V BL C= ; then we
reinitialize the algorithm by setting W B VC C L= = and start with the next vertex
after the newly changed VL.

The algorithm stops when it reaches the first vertex again, and thus has processed
all the vertices in the polygon. The VL vertices found by the algorithm are the ver-
tices of the MPP. Klette and Rosenfeld [2004] have proved that this algorithm finds
all the MPP vertices of a polygon enclosed by a simply connected cellular complex.

EXAMPLE 11.2 : A numerical example showing the details of how the MPP algorithm works.

A simple example in which we can follow the algorithm step-by-step will help clarify the preceding con-
cepts. Consider the vertices in Fig. 11.8(c). In our image coordinate system, the top-left point of the grid
is at coordinates (,).0 0 Assuming unit grid spacing, the first few (counterclockwise) vertices are:

 V W V B V W V B V W V W V0 1 2 3 4 5 61 4 2 3 3 3 3 2 4 1 7 1 8(,) (,) (,) (,) (,) (,) (⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,,) (,)2 9 27B V B⏐

where the triplets are separated by vertical lines, and the B vertices are mirrored, as required by the
algorithm.

The uppermost-leftmost vertex is always the first vertex of the MPP, so we start by letting VL and V0
be equal, V VL = =0 1 4(,), and initializing the other variables: W B VC C L= = = ()1 4, .

The next vertex is V1 2 3= (), . In this case we have sgn , ,V W VL C 1 0() = and sgn , , ,V B VL C 1 0() = so
condition (b) holds. Because V1 is a B (concave) vertex, we update the blue crawler: B VC = = ()1 2 3, . At
this stage, we have VL = (,),1 4 WC = (,),1 4 and BC = (,).2 3

Next, we look at V2 3 3= (), . In this case, sgn , , ,V W VL C 2 0() = and sgn , , ,V B VL C 2 1() = so condition (b)
holds. Because V2 is W, we update the white crawler: WC = (,).3 3

The next vertex is V3 = ()3 2, . At this junction we have VL = (,),1 4 WC = (,),3 3 and BC = (,).2 3 Then,
sgn , ,V W VL C 3 2() = − and sgn , , ,V B VL C 3 0() = so condition (b) holds again. Because V3 is B, we let
B VC = =3 4 3(,) and look at the next vertex.

The next vertex is V4 4 1= (), . We are working with VL = (,),1 4 WC = (,),3 3 and BC = (,).3 2 The values
of sgn are sgn(, ,)V W VL C 4 3= − and sgn(, ,) .V B VL C 4 0= So, condition (b) holds yet again, and we let
W VC = =4 4 1(,) because V4 is a W vertex.

DIP4E_GLOBAL_Print_Ready.indb 825 6/16/2017 2:15:02 PM

826 Chapter 11 Feature Extraction

The next vertex is V5 7 1= (,). Using the values from the previous step we obtain sgn(, ,) ,V W VL C 5 9=
so condition (a) is satisfied. Therefore, we let V WL C= = (,)4 1 (this is V4) and reinitialize:
B W VC C L= = = (,).4 1 Note that once we knew that sgn(, ,)V W VL C 5 0> we did not bother to compute
the other sgn expression. Also, reinitialization means that we start fresh again by examining the next
vertex following the newly found MPP vertex. In this case, that next vertex is V5, so we visit it again.

With V5 7 1= (), , and using the new values of VL , WC , and BC , it follows that sgn , ,V W VL C 5 0() = and
sgn , , ,V B VL C 5 0() = so condition (b) holds. Therefore, we let W VC = = ()5 7 1, because V5 is a W vertex.

The next vertex is V6 8 2= (), and sgn , , ,V W VL C 6 3() = so condition (a) holds. Thus, we let
V WL C= = ()7 1, and reinitialize the algorithm by setting W B VC C L= = .

Because the algorithm was reinitialized at V5, the next vertex is V6 8 2= (,) again. Using the results
from the previous step gives us sgn(, ,)V W VL C 6 0= and sgn(, ,) ,V B VL C 6 0= so condition (b) holds this
time. Because V6 is B we let B VC = =6 8 2(,).

Summarizing, we have found three vertices of the MPP up to this point: V1 1 4= (,), V4 4 1= (,), and
V5 7 1= (,). Continuing as above with the remaining vertices results in the MPP vertices in Fig. 11.8(c)
(see Problem 11.9). The mirrored B vertices at (2, 3), (3, 2), and on the lower-right side at (13, 10), are on
the boundary of the MPP. However, they are collinear and thus are not considered vertices of the MPP.
Appropriately, the algorithm did not detect them as such.

EXAMPLE 11.3 : Applying the MPP algorithm.

Figure 11.9(a) is a 566 566× binary image of a maple leaf, and Fig. 11.9(b) is its 8-connected boundary.
The sequence in Figs. 11.9(c) through (h) shows MMP representations of this boundary using square
cellular complex cells of sizes 2, 4, 6, 8, 16, and 32, respectively (the vertices in each figure were con-
nected with straight lines to form a closed boundary). The leaf has two major features: a stem and three
main lobes. The stem begins to be lost for cell sizes greater than 4 4× , as Fig. 11.9(e) shows. The three
main lobes are preserved reasonably well, even for a cell size of 16 16× , as Fig. 11.9(g) shows. However,
we see in Fig. 11.8(h) that by the time the cell size is increased to 32 32× , this distinctive feature has
been nearly lost.

The number of points in the original boundary [Fig. 11.9(b)] is 1900. The numbers of vertices in
Figs. 11.9(c) through (h) are 206, 127, 92, 66, 32, and 13, respectively. Figure 11.9(e), which has 127 ver-
tices, retained all the major features of the original boundary while achieving a data reduction of over
90%. So here we see a significant advantage of MMPs for representing a boundary. Another important
advantage is that MPPs perform boundary smoothing. As explained in the previous section, this is a
usual requirement when representing a boundary by a chain code.

SIGNATURES

A signature is a 1-D functional representation of a 2-D boundary and may be gener-
ated in various ways. One of the simplest is to plot the distance from the centroid
to the boundary as a function of angle, as illustrated in Fig. 11.10. The basic idea of
using signatures is to reduce the boundary representation to a 1-D function that
presumably is easier to describe than the original 2-D boundary.

Based on the assumptions of uniformity in scaling with respect to both axes, and
that sampling is taken at equal intervals of u, changes in the size of a shape result
in changes in the amplitude values of the corresponding signature. One way to

DIP4E_GLOBAL_Print_Ready.indb 826 6/16/2017 2:15:05 PM

11.2 Boundary Preprocessing 827

normalize for this is to scale all functions so that they always span the same range of
values, e.g., [,].0 1 The main advantage of this method is simplicity, but it has the dis-
advantage that scaling of the entire function depends on only two values: the mini-
mum and maximum. If the shapes are noisy, this can be a source of significant error
from object to object. A more rugged (but also more computationally intensive)
approach is to divide each sample by the variance of the signature, assuming that
the variance is not zero—as in the case of Fig. 11.10(a)—or so small that it creates
computational difficulties. Using the variance yields a variable scaling factor that
is inversely proportional to changes in size and works much as automatic volume
control does. Whatever the method used, the central idea is to remove dependency
on size while preserving the fundamental shape of the waveforms.

Distance versus angle is not the only way to generate a signature. For example,
another way is to traverse the boundary and, corresponding to each point on the
boundary, plot the angle between a line tangent to the boundary at that point and a
reference line. The resulting signature, although quite different from the r()u curves
in Fig. 11.10, carries information about basic shape characteristics. For instance,
horizontal segments in the curve correspond to straight lines along the boundary
because the tangent angle is constant there. A variation of this approach is to use
the so-called slope density function as a signature. This function is a histogram of

ba dc
f he g

FIGURE 11.9 (a) 566 566× binary image. (b) 8-connected boundary. (c) through (h), MMPs obtained using square cells
of sizes 2, 4, 6, 8, 16, and 32, respectively (the vertices were joined by straight-line segments for display). The number
of boundary points in (b) is 1900. The numbers of vertices in (c) through (h) are 206, 127, 92, 66, 32, and 13, respec-
tively. Images (b) through (h) are shown as negatives to make the boundaries easier to see.

DIP4E_GLOBAL_Print_Ready.indb 827 6/16/2017 2:15:05 PM

828 Chapter 11 Feature Extraction

tangent-angle values. Because a histogram is a measure of the concentration of val-
ues, the slope density function responds strongly to sections of the boundary with
constant tangent angles (straight or nearly straight segments) and has deep valleys
in sections producing rapidly varying angles (corners or other sharp inflections).

EXAMPLE 11.4 : Signatures of two regions.

Figures 11.11(a) and (d) show two binary objects, and Figs. 11.11(b) and (e) are their boundaries. The
corresponding r()u signatures in Figs. 11.11(c) and (f) range from 0° to 360° in increments of 1°. The
number of prominent peaks in the signatures is sufficient to differentiate between the shapes of the two
objects.

SKELETONS, MEDIAL AXES, AND DISTANCE TRANSFORMS

Like boundaries, skeletons are related to the shape of a region. Skeletons can be
computed from a boundary by filling the area enclosed by the boundary with fore-
ground values, and treating the result as a binary region. In other words, a skeleton is
computed using the coordinates of points in the entire region, including its boundary.
The idea is to reduce a region to a tree or graph by computing its skeleton. As we
explained in Section 9.5 (see Fig. 9.25), the skeleton of a region is the set of points in
the region that are equidistant from the border of the region.

The skeleton is obtained using one of two principal approaches: (1) by succes-
sively thinning the region (e.g., using morphological erosion) while preserving end
points and line connectivity (this is called topology-preserving thinning); or (2)
by computing the medial axis of the region via an efficient implementation of the
medial axis transform (MAT) proposed by Blum [1967]. We discussed thinning in
Section 9.5. The MAT of a region R with border B is as follows: For each point p in
R, we find its closest neighbor in B. If p has more than one such neighbor, it is said

As is true of thinning,
the MAT is highly
susceptible to boundary
and internal region
irregularities, so smooth-
ing and other preprocess-
ing steps generally are
required to obtain a
clean a binary image.

A

0 0

r(u)

A

r
u

A

r
u

u

p

4
p

2
3p
4

5p
4

3p
2

7p
4

p 2p

A

r(u)

u

p

4
p

2
3p
4

5p
4

3p
2

7p
4

p 2p

2A

ba

FIGURE 11.10
Distance-versus-
angle signatures.
In (a), r()u is
constant. In (b),
the signature
consists of
repetitions of
the pattern
r Au u() = sec for
0 4≤ ≤u p , and
r Au u() = csc for
p u p4 2< ≤ .

DIP4E_GLOBAL_Print_Ready.indb 828 6/16/2017 2:15:06 PM

11.2 Boundary Preprocessing 829

to belong to the medial axis of R. The concept of “closest” (and thus the resulting
MAT) depends on the definition of a distance metric (see Section 2.5). Figure 11.12
shows some examples using the Euclidean distance. If the Euclidean distance is used,
the resulting skeleton is the same as what would be obtained by using the maximum
disks from Section 9.5. The skeleton of a region is defined as its medial axis.

The MAT of a region has an intuitive interpretation based on the “prairie fire”
concept discussed in Section 11.3 (see Fig. 11.15). Consider an image region as a
prairie of uniform, dry grass, and suppose that a fire is lit simultaneously along all
the points on its border. All fire fronts will advance into the region at the same speed.
The MAT of the region is the set of points reached by more than one fire front at
the same time.

In general, the MAT comes considerably closer than thinning to producing skel-
etons that “make sense.” However, computing the MAT of a region requires cal-
culating the distance from every interior point to every point on the border of the
region—an impractical endeavor in most applications. Instead, the approach is to
obtain the skeleton equivalently from the distance transform, for which numerous
efficient algorithms exist.

 The distance transform of a region of foreground pixels in a background of zeros
is the distance from every pixel to the nearest nonzero valued pixel. Figure 11.13(a)
shows a small binary image, and Fig. 11.13(b) is its distance transform. Observe that
every 1-valued pixel has a distance transform value of 0 because its closest nonzero
valued pixel is itself. For the purpose of finding skeletons equivalent to the MAT,
we are interested in the distance from the pixels of a region of foreground (white)

ba c
ed f

FIGURE 11.11
(a) and (d) Two
binary regions,
(b) and (e) their
external
boundaries, and
(c) and (f) their
corresponding r()u
signatures. The
horizontal axes
in (c) and (f) cor-
respond to angles
from 0° to 360°, in
increments of 1°.

DIP4E_GLOBAL_Print_Ready.indb 829 6/16/2017 2:15:06 PM

830 Chapter 11 Feature Extraction

pixels to their nearest background (zero) pixels, which constitute the region bound-
ary. Thus, we compute the distance transform of the complement of the image, as
Figs. 11.13(c) and (d) illustrate. By comparing Figs. 11.13(d) and 11.12(a), we see
in the former that the MAT (skeleton) is equivalent to the ridge of the distance
transform [i.e., the ridge in the image in Fig. 11.13(d)]. This ridge is the set of local
maxima [shown bold in Fig. 11.13(d)]. Figures 11.13(e) and (f) show the same effect
on a larger ()414 708× binary image.

Finding approaches for computing the distance transform efficiently has been a
topic of research for many years. Numerous approaches exist that can compute the
distance transform with linear time complexity, O K(), for a binary image with K
pixels. For example, the algorithm by Maurer et al. [2003] not only can compute the
distance transform in O K(), it can compute it in O K P() using P processors.

1.41 1 1 1 1.41
 1 0 0 0 1
 1 0 0 0 1
1.41 1 1 1 1.41

0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 0
0 1 2 2 2 2 2 1 0
0 1 2 3 3 3 2 1 0
0 1 2 2 2 2 2 1 0
0 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

 0 0 0 0 0 0 0 0 0
 0 1 1 1 1 1 1 1 0
 0 1 1 1 1 1 1 1 0
 0 1 1 1 1 1 1 1 0
 0 1 1 1 1 1 1 1 0
 0 1 1 1 1 1 1 1 0
 0 0 0 0 0 0 0 0 0

ba
dc
fe

FIGURE 11.13
(a) A small
image and (b) its
distance
transform. Note
that all 1-valued
pixels in (a) have
corresponding
0’s in (b). (c) A
small image, and
(d) the distance
transform of its
complement. (e) A
larger image, and
(f) the distance
transform of its
complement. The
Euclidian distance
was used through-
out.

ba c
FIGURE 11.12
Medial axes
(dashed) of three
simple regions.

DIP4E_GLOBAL_Print_Ready.indb 830 6/16/2017 2:15:07 PM

11.3 Boundary Feature Descriptors 831

EXAMPLE 11.5 : Skeletons obtained using thinning and pruning vs. the distance transform.

Figure 11.14(a) shows a segmented image of blood vessels, and Fig. 11.14(b) shows the skeleton obtained
using morphological thinning. As we discussed in Chapter 9, thinning is characteristically accompanied
by spurs, which certainly is the case here. Figure 11.14(c) shows the result of forty passes of spur removal.
With the exception of the few small spurs visible on the bottom left of the image, pruning did a reason-
able job of cleaning up the skeleton. One drawback of thinning is the loss of potentially important
features. This was not the case here, except the pruned skeleton does not cover the full expanse of the
image. Figure 11.14(c) shows the skeleton obtained using distance transform computations based on fast
marching (see Lee et al. [2005] and Shi and Karl [2008]). The way the algorithm we used implements
branch generation handles ambiguities such as spurs automatically.

The result in Fig. 11.14(d) is slightly superior to the result in Fig. 11.14(c), but both skeletons certainly
capture the important features of the image in this case. A key advantage of the thinning approach
is simplicity of implementation, which can be important in dedicated applications. Overall, distance-
transform formulations tend to produce skeletons less prone to discontinuities, but overcoming the
computational burden of the distance transform results in implementations that are considerably more
complex than thinning.

11.3 BOUNDARY FEATURE DESCRIPTORS

We begin our discussion of feature descriptors by considering several fundamental
approaches for describing region boundaries.

11.3

ba
dc

FIGURE 11.14
(a) Thresholded
image of blood
vessels.
(b) Skeleton
obtained by
thinning, shown
superimposed
on the image
(note the spurs).
(c) Result of 40
passes of spur
removal.
(d) Skeleton
obtained using the
distance
transform.

DIP4E_GLOBAL_Print_Ready.indb 831 6/16/2017 2:15:07 PM

832 Chapter 11 Feature Extraction

SOME BASIC BOUNDARY DESCRIPTORS

The length of a boundary is one of its simplest descriptors. The number of pixels
along a boundary is an approximation of its length. For a chain-coded curve with
unit spacing in both directions, the number of vertical and horizontal components
plus 2 multiplied by the number of diagonal components gives its exact length. If
the boundary is represented by a polygonal curve, the length is equal to the sum of
the lengths of the polygonal segments.

The diameter of a boundary B is defined as

 diameter B D p p
i j i j() max ,
,

= ()⎡⎣ ⎤⎦ (11-4)

where D is a distance measure (see Section 2.5) and pi and pj are points on the
boundary. The value of the diameter and the orientation of a line segment connect-
ing the two extreme points that comprise the diameter is called the major axis (or
longest chord) of the boundary. That is, if the major axis is defined by points (,)x y1 1
and (,),x y2 2 then the length and orientation of the major axis are given by

 length x x y ym = − + −⎡⎣ ⎤⎦() ()2 1
2

2 1
2 1 2

 (11-5)

and

 angle
y y
x xm = −

−
⎡

⎣
⎢

⎤

⎦
⎥

−tan 1 2 1

2 1

The minor axis (also called the longest perpendicular chord) of a boundary is defined
as the line perpendicular to the major axis, and of such length that a box passing
through the outer four points of intersection of the boundary with the two axes com-
pletely encloses the boundary. The box just described is called the basic rectangle or
bounding box, and the ratio of the major to the minor axis is called the eccentricity
of the boundary. We give some examples of this descriptor in Section 11.4.

The curvature of a boundary is defined as the rate of change of slope. In general,
obtaining reliable measures of curvature at a point of a raw digital boundary is dif-
ficult because these boundaries tend to be locally “ragged.” Smoothing can help, but
a more rugged measure of curvature is to use the difference between the slopes of
adjacent boundary segments that have been represented as straight lines. Polygonal
approximations are well-suited for this approach [see Fig. 11.8(c)], in which case we
are concerned only with curvature at the vertices. As we traverse the polygon in the
clockwise direction, a vertex point p is said to be convex if the change in slope at p
is nonnegative; otherwise, p is said to be concave. The description can be refined
further by using ranges for the changes of slope. For instance, p could be labeled as
part of a nearly straight line segment if the absolute change of slope at that point is
less than 10°, or it could be labeled as “corner-like” point if the absolute change is
in the range 90°, ± °30 .

Descriptors based on changes of slope can be formulated easily by expressing a
boundary in the form of a slope chain code (SSC), as discussed earlier (see Fig. 11.6).
A particularly useful boundary descriptor that is easily implemented using SSCs is
tortuosity, a measure of the twists and turns of a curve. The tortuosity, t, of a curve

The major and minor
axes are used also as
regional descriptors.

We will discuss corners
in detail later in this
chapter.

DIP4E_GLOBAL_Print_Ready.indb 832 6/16/2017 2:15:08 PM

11.3 Boundary Feature Descriptors 833

represented by an SCC is defined as the sum of the absolute values of the chain ele-
ments:

 t =
=
∑ ai
i

n

1

 (11-6)

where n is the number of elements in the SCC, and ai are the values (slope changes)
of the elements in the code. The next example illustrates one use of this descriptor

EXAMPLE 11.6 : Using slope chain codes to describe tortuosity.

An important measures of blood vessel morphology is its tortuosity. This metric can assist in the computer-
aided diagnosis of Retinopathy of Prematurity (ROP), an eye disease that affects babies born prema-
turely (Bribiesca [2013]). ROP causes abnormal blood vessels to grow in the retina (see Section 2.1). This
growth can cause the retina to detach from the back of the eye, potentially leading to blindness.

Figure 11.15(a) shows an image of the retina (called a fundus image) from a newborn baby. Ophthal-
mologists diagnose and make decisions about the initial treatment of ROP based on the appearance of
retinal blood vessels. Dilatation and increased tortuosity of the retinal vessels are signs of highly prob-
able ROP. Blood vessels denoted A, B, and C in Fig. 11.15 were selected to demonstrate the discrimi-
native potential of SCCs for quantifying tortuosity (each vessel shown is a long, thin region, not a line
segment).

The border of each vessel was extracted and its length (number of pixels), P, was calculated. To make
SCC comparisons meaningful, the three boundaries were normalized so that each would have the same
number, m, of straight-line segments. The length, L, of the line segment was then computed as L m P= .
It follows that the number of elements of each SCC is m − 1. The tortuosity, t, of a curve represented by
an SCC is defined as the sum of the absolute values of the chain elements, as noted in Eq. (11-6).

The table in Fig. 11.15(b) shows values of t for vessels A, B, and C based on 51 straight-line segments
(as noted above, n m= − 1). The values of tortuosity are in agreement with our visual analysis of the
three vessels, showing B as being slightly “busier” than A, and C as having the fewest twists and turns.

ba
FIGURE 11.15
(a) Fundus image
from a prematurely
born baby with ROP.
(b) Tortuosity of
vessels A, B, and C.
(Courtesy of
Professor Ernesto
Bribiesca, IIMAS-
UNAM, Mexico.)

A

B

C

Curve n T

2.3770

2.5132

1.6285

50

50

50

DIP4E_GLOBAL_Print_Ready.indb 833 6/16/2017 2:15:09 PM

834 Chapter 11 Feature Extraction

SHAPE NUMBERS
The shape number of a Freeman chain-coded boundary, based on the 4-directional
code of Fig. 11.3(a), is defined as the first difference of smallest magnitude. The order,
n, of a shape number is defined as the number of digits in its representation. More-
over, n is even for a closed boundary, and its value limits the number of possible
different shapes. Figure 11.16 shows all the shapes of order 4, 6, and 8, along with
their chain-code representations, first differences, and corresponding shape numbers.
Although the first difference of a 4-directional chain code is independent of rotation
(in increments of 90°), the coded boundary in general depends on the orientation of
the grid. One way to normalize the grid orientation is by aligning the chain-code grid
with the sides of the basic rectangle defined in the previous section.

In practice, for a desired shape order, we find the rectangle of order n whose
eccentricity (defined in Section 11.4) best approximates that of the basic rectangle,
and use this new rectangle to establish the grid size. For example, if n = 12, all the
rectangles of order 12 (that is, those whose perimeter length is 12) are of sizes
2 4× , 3 3× , and 1 5× . If the eccentricity of the 2 4× rectangle best matches the
eccentricity of the basic rectangle for a given boundary, we establish a 2 4× grid
centered on the basic rectangle and use the procedure outlined in Section 11.2 to
obtain the Freeman chain code. The shape number follows from the first differ-
ence of this code. Although the order of the resulting shape number usually equals
n because of the way the grid spacing was selected, boundaries with depressions
comparable to this spacing sometimes yield shape numbers of order greater than n.
In this case, we specify a rectangle of order lower than n, and repeat the procedure
until the resulting shape number is of order n. The order of a shape number starts
at 4 and is always even because we are working with 4-connectivity and require that
boundaries be closed.

As explained
Section 11.2, the first dif-
ference of smallest mag-
nitude makes a Freeman
chain code independent
of the starting point, and
is insensitive to rotation
in increments of 90° if a
4-directional code is used.

Order 4

Chain code: 0 3 2 1

Difference: 3 3 3 3

Shape no.: 3 3 3 3

Order 6

0 0 3 2 2 1

3 0 3 3 0 3

0 3 3 0 3 3

Order 8

Chain code: 0 0 3 3 2 2 1 1 0 3 0 3 2 2 1 1 0 0 0 3 2 2 2 1

Difference: 3 0 3 0 3 0 3 0 3 3 1 3 3 0 3 0 3 0 0 3 3 0 0 3

Shape no.: 0 3 0 3 3 1 3 3 0 0 3 3 0 0 3 30 3 0 3 0 3 0 3

FIGURE 11.16
All shapes of
order 4, 6, and 8.
The directions are
from Fig. 11.3(a),
and the dot
indicates the
starting point.

DIP4E_GLOBAL_Print_Ready.indb 834 6/16/2017 2:15:09 PM

11.3 Boundary Feature Descriptors 835

EXAMPLE 11.7 : Computing shape numbers.

Suppose that n = 18 is specified for the boundary in Fig. 11.17(a). To obtain a shape number of this order
we follow the steps just discussed. First, we find the basic rectangle, as shown in Fig. 11.17(b). Next we find
the closest rectangle of order 18. It is a 3 6× rectangle, requiring the subdivision of the basic rectangle
shown in Fig. 11.17(c). The chain-code directions are aligned with the resulting grid. The final step is to
obtain the chain code and use its first difference to compute the shape number, as shown in Fig. 11.17(d).

FOURIER DESCRIPTORS

Figure 11.18 shows a digital boundary in the xy-plane, consisting of K points. Starting
at an arbitrary point x y0 0, ,() coordinate pairs x y x y x y x yK K0 0 1 1 2 2 1 1, , , , , , , ,() () () ()− −…
are encountered in traversing the boundary, say, in the counterclockwise direction.
These coordinates can be expressed in the form x k xk() = and y k yk() = . Using
this notation, the boundary itself can be represented as the sequence of coordinates
s k x k y k() = () ()⎡⎣ ⎤⎦, for k K= −0 1 2 1, , , , .… Moreover, each coordinate pair can be
treated as a complex number so that

 s k x k jy k() = () + () (11-7)

for k K= −0 1 2 1, , , , .… That is, the x-axis is treated as the real axis and the y-axis as
the imaginary axis of a sequence of complex numbers. Although the interpretation

We use the “conven-
tional” axis system here
for consistency with the
literature. However, the
same result is obtained
if we use the book
image coordinate system
whose origin is at the
top left because both are
right-handed coordinate
systems (see Fig. 2.19). In
the latter, the rows and
columns represent the
real and imaginary parts
of the complex number.

Chain code: 0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

Difference: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape no.: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

1

3
0

2

ba
dc

FIGURE 11.17
Steps in the
generation of a
shape number.

DIP4E_GLOBAL_Print_Ready.indb 835 6/16/2017 2:15:10 PM

836 Chapter 11 Feature Extraction

of the sequence was restated, the nature of the boundary itself was not changed.
Of course, this representation has one great advantage: It reduces a 2-D to a 1-D
description problem.

We know from Eq. (4-44) that the discrete Fourier transform (DFT) of s k() is

 a u s k e
k

K
j uk K() = ()

=
∑

0

1
2

–
– p (11-8)

for u K= −0 1 2 1, , , , .… The complex coefficients a u() are called the Fourier descrip-
tors of the boundary. The inverse Fourier transform of these coefficients restores
s k(). That is, from Eq. (4-45),

 s k
K

a u e
u

K
j uk K() = ()

=
∑1

0

1
2

–
p (11-9)

for k K= −0 1 2 1, , , , .… We know from Chapter 4 that the inverse is identical to the
original input, provided that all the Fourier coefficients are used in Eq. (11-9). How-
ever, suppose that, instead of all the Fourier coefficients, only the first P coefficients
are used. This is equivalent to setting a u() = 0 for u P> – 1 in Eq. (11-9). The result
is the following approximation to s k() :

 ˆ
–

s k
K

a u e
u

P
j uk K() = ()

=
∑1

0

1
2p (11-10)

for k K= −0 1 2 1, , , , .… Although only P terms are used to obtain each component
of ˆ ,s k() parameter k still ranges from 0 to K – .1 That is, the same number of points
exists in the approximate boundary, but not as many terms are used in the recon-
struction of each point.

Deleting the high-frequency coefficients is the same as filtering the transform
with an ideal lowpass filter. You learned in Chapter 4 that the periodicity of the
DFT requires that we center the transform prior to filtering it by multiplying it by
() .−1 x Thus, we use this procedure when implementing Eq. (11-8), and use it again

jy

x
x0

y0
y1

x1

Real axis

Im
ag

in
ar

y
ax

is

FIGURE 11.18
A digital
boundary and its
representation
as sequence of
complex numbers.
The points (,)x y0 0
and (,)x y1 1 are
(arbitrarily) the
first two points in
the sequence.

DIP4E_GLOBAL_Print_Ready.indb 836 6/16/2017 2:15:12 PM

11.3 Boundary Feature Descriptors 837

to reverse the centering when computing the inverse in Eq. (11-10). Because of
symmetry considerations in the DFT, the number of points in the boundary and its
inverse must be even. This implies that the number of coefficients removed (set to 0)
before the inverse is computed must be even. Because the transform is centered, we
set to 0 half the number of coefficients on each end of the transform to preserve
symmetry. Of course, the DFT and its inverse are computed using an FFT algorithm.

Recall from discussions of the Fourier transform in Chapter 4 that high-frequency
components account for fine detail, and low-frequency components determine over-
all shape. Thus, the smaller we make P in Eq. (11-10), the more detail that will be lost
on the boundary, as the following example illustrates.

EXAMPLE 11.8 : Using Fourier descriptors.

Figure 11.19(a) shows the boundary of a human chromosome, consisting of 2868 points. The correspond-
ing 2868 Fourier descriptors were obtained using Eq. (11-8). The objective of this example is to examine
the effects of reconstructing the boundary using fewer Fourier descriptors. Figure 11.19(b) shows the
boundary reconstructed using one-half of the 2868 descriptors in Eq. (11-10). Observe that there is no
perceptible difference between this boundary and the original. Figures 11.19(c) through (h) show the
boundaries reconstructed with the number of Fourier descriptors being 10%, 5%, 2.5%, 1.25%, 0.63%
and 0.28% of 2868, respectively. When rounded to the nearest even integer, these percentages are equal
to 286, 144, 72, 36, 18, and 8 descriptors, respectively. The important point is that 18 descriptors, a mere
six-tenths of one percent of the original 2868 descriptors, were sufficient to retain the principal shape
features of the original boundary: four long protrusions and two deep bays. Figure 11.19(h), obtained
with 8 descriptors, is unacceptable because the principal features are lost. Further reductions to 4 and 2
descriptors would result in an ellipse and a circle, respectively (see Problem 11.18).

As the preceding example demonstrates, a few Fourier descriptors can be used
to capture the essence of a boundary. This property is valuable, because these coef-
ficients carry shape information. Thus, forming a feature vector from these coef-
ficients can be used to differentiate between boundary shapes, as we will discuss in
Chapter 12.

We have stated several times that descriptors should be as insensitive as pos-
sible to translation, rotation, and scale changes. In cases where results depend on
the order in which points are processed, an additional constraint is that descrip-
tors should be insensitive to the starting point. Fourier descriptors are not directly
insensitive to these geometrical changes, but changes in these parameters can be
related to simple transformations on the descriptors. For example, consider rotation
and recall from basic mathematical analysis that rotation of a point by an angle u
about the origin of the complex plane is accomplished by multiplying the point by
e ju . Doing so to every point of s k() rotates the entire sequence about the origin. The
rotated sequence is s k ej() u , whose Fourier descriptors are

a u s k e e

a u e

r
k

K
j j uk K

j

() = ()

= ()
=
∑

0

1
2

–
–u p

u

 (11-11)

DIP4E_GLOBAL_Print_Ready.indb 837 6/16/2017 2:15:12 PM

838 Chapter 11 Feature Extraction

for u = −0 1 2 1, , , , .… K Thus, rotation simply affects all coefficients equally by a
multiplicative constant term e ju .

Table 11.1 summarizes the Fourier descriptors for a boundary sequence s k() that
undergoes rotation, translation, scaling, and changes in the starting point. The sym-
bol Δxy is defined as Δ = Δ + Δxy x j y, so the notation s k s kt xy() = () + Δ indicates
redefining (translating) the sequence as

 s k x k x j y k yt () = () + Δ⎡⎣ ⎤⎦ + () + Δ⎡⎣ ⎤⎦ (11-12)

Note that translation has no effect on the descriptors, except for u = 0, which has the
value d().0 Finally, the expression s k s k kp () = ()– 0 means redefining the sequence
as

 s k x k k jy k kp() = −() + −()0 0 (11-13)

Recall from Chapter 4
that the Fourier transform
of a constant is an
impulse located at the
origin. Recall also that
an impulse δ(u) is zero
everywhere, except when
u = 0.

ba dc
f he g

FIGURE 11.19 (a) Boundary of a human chromosome (2868 points). (b)–(h) Boundaries reconstructed using 1434,
286, 144, 72, 36, 18, and 8 Fourier descriptors, respectively. These numbers are approximately 50%, 10%, 5%, 2.5%,
1.25%, 0.63%, and 0.28% of 2868, respectively. Images (b)–(h) are shown as negatives to make the boundaries
easier to see.

DIP4E_GLOBAL_Print_Ready.indb 838 6/16/2017 2:15:14 PM

11.3 Boundary Feature Descriptors 839

which changes the starting point of the sequence from k = 0 to k k= 0. The last entry
in Table 11.1 shows that a change in starting point affects all descriptors in a differ-
ent (but known) way, in the sense that the term multiplying a u() depends on u.

STATISTICAL MOMENTS

Statistical moments of one variable are useful descriptors applicable to 1-D rendi-
tions of 2-D boundaries, such as signatures. To see how this can be accomplished,
consider Fig. 11.20 which shows the signature from Fig. 11.10(b) sampled, and treated
as an ordinary discrete function g r() of one variable, r.

Suppose that we treat the amplitude of g as a discrete random variable z and
form an amplitude histogram p zi(), i A= −0 1 2 1, , , , ,… where A is the number of
discrete amplitude increments in which we divide the amplitude scale. If p is normal-
ized so that the sum of its elements equals 1, then p zi() is an estimate of the prob-
ability of intensity value zi occurring. It then follows from Eq. (3-24) that the nth
moment of z about its mean is

 mn i
i

A
n

iz z m p z() = () ()
=
∑ –

–

0

1

 (11-14)

where

 m z p zi
i

A

i= ()
=
∑

0

1–

 (11-15)

As you know, m is the mean (average) value of z, and m2 is its variance. Gener-
ally, only the first few moments are required to differentiate between signatures of
clearly distinct shapes.

We will discuss moments
of two variable in
Section 11.4.

Transformation Boundary Fourier Descriptor

Identity s k() a u()
Rotation s k s k er

j() = () u a u a u er
j() = () u

Translation s k s kt xy() = () + Δ a u a u ut xy() = () + Δ ()d

Scaling s k s ks () = ()a a u a us () = ()a

Starting point s k s k kp() = −()0 a u a u ep
j k u K() = () – 2 0p

TABLE 11.1
Some basic
properties of
Fourier
descriptors.

r

g(r)FIGURE 11.20
Sampled
signature from
Fig. 11.10(b) treat-
ed as an ordinary,
discrete function
of one variable.

DIP4E_GLOBAL_Print_Ready.indb 839 6/16/2017 2:15:16 PM

840 Chapter 11 Feature Extraction

An alternative approach is to normalize the area of g r() in Fig. 11.20 to unity and
treat it as a histogram. In other words, g ri() is now treated as the probability of value
ri occurring. In this case, r is treated as the random variable and the moments are

 mn i
i

K
n

ir r m g r() = () ()
=
∑ –

–

0

1

 (11-16)

where

 m r g ri
i

K

i= ()
=
∑

0

1–

 (11-17)

In these equations, K is the number of points on the boundary, and mn r() is related
directly to the shape of signature g r(). For example, the second moment m2()r mea-
sures the spread of the curve about the mean value of r, and the third moment m3()r
measures its symmetry with respect to the mean.

Although moments are used frequently for characterizing signatures, they are not
the only descriptors used for this purpose. For instance, another approach is to com-
pute the 1-D discrete Fourier transform of g r(), obtain its spectrum, and use the first
few components as descriptors. The advantage of moments over other techniques is
that their implementation is straightforward and they also carry a “physical” inter-
pretation of signature (and by implication boundary) shape. The insensitivity of this
approach to rotation follows from the fact that signatures are independent of rota-
tion, provided that the starting point is always the same along the boundary. Size
normalization can be achieved by scaling the values of g and r.

11.4 REGION FEATURE DESCRIPTORS

As we did with boundaries, we begin the discussion of regional features with some
basic region descriptors.

SOME BASIC DESCRIPTORS

The major and minor axes of a region, as well as the idea of a bounding box, are
as defined earlier for boundaries. The area of a region is defined as the number of
pixels in the region. The perimeter of a region is the length of its boundary. When
area and perimeter are used as descriptors, they generally make sense only when
they are normalized (Example 11.9 shows such a use). A more frequent use of these
two descriptors is in measuring compactness of a region, defined as the perimeter
squared over the area:

 compactness = p
A

2

 (11-18)

This is a dimensionless measure that is 4p for a circle (its minimum value) and 16
for a square.

A similar dimensionless measure is circularity (also called roundness), defined as

 circularity = 4
2

pA
p

 (11-19)

11.4

Sometimes compactness
is defined as the inverse of
the circularity. Obviously,
these two measures are
closely related.

DIP4E_GLOBAL_Print_Ready.indb 840 6/16/2017 2:15:17 PM

11.4 Region Feature Descriptors 841

The value of this descriptor is 1 for a circle (its maximum value) and p 4 for a square.
Note that these two measures are independent of size, orientation, and translation.
Another measure based on a circle is the effective diameter:

 d
A

e = 2
p

 (11-20)

This is the diameter of a circle having the same area, A, as the region being pro-
cessed. This measure is neither dimensionless nor independent of region size, but it
is independent of orientation and translation. It can be normalized for size and made
dimensionless by dividing it by the largest diameter expected in a given application.

In a manner analogous to the way we defined compactness and circularity relative
to a circle, we define the eccentricity of a region relative to an ellipse as the eccentric-
ity of an ellipse that has the same second central moments as the region. For 1-D, the
second central moment is the variance. For 2-D discrete data, we have to consider
the variance of each variable as well as the covariance between them. These are
the components of the covariance matrix, which is estimated from samples using
Eq. (11-21) below, with the samples in this case being 2-D vectors representing the
coordinates of the data.

Figure 11.21(a) shows an ellipse in standard form (i.e., an ellipse whose major and
minor axes are aligned with the coordinate axes). The eccentricity of such an ellipse
is defined as the ratio of the distance between foci (2c in Fig. 11.21), and the length
of its major axis (),2a which gives the ratio 2 2c a c a= . That is,

 eccentricity = =
−

= −c
a

a b

a
b a a b

2 2
21 () ≥

However, we are interested in the eccentricity of an ellipse that has the same second
central moments as a given 2-D region, which means that our ellipses can have arbi-
trary orientations. Intuitively, what we are trying to do is approximate our 2-D data
by an elliptical region whose axes are aligned with the principal axes of the data, as
Fig. 11.21(b) illustrates. As you will learn in Section 11.5 (see Example 11.17), the
principal axes are the eigenvectors of the covariance matrix, C, of the data, which is
given by:

 C z z z z=
−

− −
=

∑1
1 1K k k

T

k

K

()() (11-21)

Often, you will the
constant in Eq. (11-21)
written as 1/K instead of
1/K−1. The latter is used
to obtain a statistically-
unbiased estimate of C.
For our purposes, either
formulation is acceptable.

ba

FIGURE 11.21
(a) An ellipse in
standard form.
(b) An ellipse
approximating a
region in arbitrary
orientation.

c

b
FocusFocus

a

2 2 2c a b= −

Centroid
of region

1e

2e 2l 1l

Major axis

Binary
region eigenvectors and

corresponding eigenvalues
of the covariance matrix of
the coordinates of the region

2e 2l1e 1l and are the

Minor axis

DIP4E_GLOBAL_Print_Ready.indb 841 6/16/2017 2:15:17 PM

842 Chapter 11 Feature Extraction

where zk is a 2-D vector whose elements are the two spatial coordinates of a point in
the region, K is the total number of points, and z is the mean vector:

 z z=
=

∑1

1K k
k

K

 (11-22)

The main diagonal elements of C are the variances of the coordinate values of the
points in the region, and the off-diagonal elements are their covariances.

An ellipse oriented in the same direction as the principal axes of the region can be
interpreted as the intersection of a 2-D Gaussian function with the xy-plane. The ori-
entation of the axes of the ellipse are also in the direction of the eigenvectors of the
covariance matrix, and the distances from the center of the ellipse to its intersection
with its major and minor axes is equal to the largest and smallest eigenvalues of the
covariance matrix, respectively, as Fig. 11.21(b) shows. With reference to Fig. 11.21,
and the equation of its eccentricity given above, we see by analogy that the eccen-
tricity of an ellipse with the same second moments as the region is given by

eccentricity =

−

= −

l l

l

l l l l

2
2

1
2

2

1 2
2

2 11 () ≥

 (11-23)

For circular regions, l l1 2= and the eccentricity is 0. For a line, l1 0= and the eccen-
tricity is 1. Thus, values of this descriptor are in the range [,].0 1

EXAMPLE 11.9 : Comparison of feature descriptors.

Figure 11.22 shows values of the preceding descriptors for several region shapes. None of the descriptors
for the circle was exactly equal to its theoretical value because digitizing a circle introduces error into
the computation, and because we approximated the length of a boundary as its number of elements. The
eccentricity of the square did have an exact value of 0, because a square with no rotation aligns perfectly
with the sampling grid. The other two descriptors for the square were close to their theoretical values also.

The values listed in the first two rows of Fig. 11.22 carry the same information. For example, we can
tell that the star is less compact and less circular than the other shapes. Similarly, it is easy to tell from the
numbers listed that the teardrop region has by far the largest eccentricity, but it is harder to differentiate
from the other shapes using compactness or circularity.

As we discussed in Section 11.1, feature descriptors typically are arranged in the form of feature
vectors for subsequent processing. Figure 11.23 shows the feature space for the descriptors in Fig. 11.22.

13.230842.2442

0.2975 0.9478

10.1701

1.2356

0.0411 0.0636 0.8117

Compactness

Circularity

Eccentricity

15.9836

0.7862

0

Descriptor

ba c d

FIGURE 11.22
Compactness,
circularity, and
eccentricity of
some simple
binary regions.

DIP4E_GLOBAL_Print_Ready.indb 842 6/16/2017 2:15:18 PM

11.4 Region Feature Descriptors 843

Each point in feature space “encapsulates” the three descriptor values for each object. Although we can
tell from looking at the values of the descriptors in the figure that the circle and square are much more
similar than the other two objects, note how much clearer this fact is in feature space. You can imagine
that if we had multiple samples of those objects corrupted by noise, it could become difficult to differ-
entiate between vectors (points) corresponding to squares or circles. In contrast, the star and teardrop
objects are far from each other, and from the circle and square, so they are less likely to be misclassified
in the presence of noise. Feature space will play an important role in Chapter 12, when we discuss image
pattern classification.

EXAMPLE 11.10 : Using area features.

Even a simple descriptor such as normalized area can be quite useful for extracting information from
images. For instance, Fig. 11.24 shows a night-time satellite infrared image of the Americas. As we dis-
cussed in Section 1.3, such images provide a global inventory of human settlements. The imaging sensors
used to collect these images have the capability to detect visible and near infrared emissions, such as
lights, fires, and flares. The table alongside the images shows (by region from top to bottom) the ratio
of the area occupied by white (the lights) to the total light area in all four regions. A simple measure-
ment like this can give, for example, a relative estimate by region of electrical energy consumption. The
data can be refined by normalizing it with respect to land mass per region, with respect to population
numbers, and so on.

TOPOLOGICAL DESCRIPTORS

Topology is the study of properties of a figure that are unaffected by any defor-
mation, provided that there is no tearing or joining of the figure (sometimes these
are called rubber-sheet distortions). For example, Fig. 11.25(a) shows a region with
two holes. Obviously, a topological descriptor defined as the number of holes in
the region will not be affected by a stretching or rotation transformation. However,
the number of holes can change if the region is torn or folded. Because stretching

FIGURE 11.23
The descriptors
from Fig. 11.22 in
3-D feature space.
Each dot shown
corresponds to
a feature vector
whose compo-
nents are the three
corresponding
descriptors in
Fig. 11.22.

10

30

40

50

60

0.2
0.4

0.6
0.8

1.0
1.2

0.2
0.4

0.6
0.8

1.0
1.2

x1 = compactness

x2 = circularity
x3 = eccentricity

Star

Circle

Square
Teardrop

1

2

3

x

x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x20

DIP4E_GLOBAL_Print_Ready.indb 843 6/16/2017 2:15:19 PM

844 Chapter 11 Feature Extraction

affects distance, topological properties do not depend on the notion of distance or
any properties implicitly based on the concept of a distance measure.

Another topological property useful for region description is the number of con-
nected components of an image or region. Figure 11.25(b) shows a region with three
connected components. The number of holes H and connected components C in a
figure can be used to define the Euler number, E :

 E C H= − (11-24)

See Sections 2.5 and 9.5
regarding connected
components.

Region no.
(from top)

Ratio of lights per
region to total lights

0.204
0.640
0.049
0.107

1
2
3
4

FIGURE 11.24
Infrared images
of the Americas at
night. (Courtesy
of NOAA.)

DIP4E_GLOBAL_Print_Ready.indb 844 6/16/2017 2:15:19 PM

11.4 Region Feature Descriptors 845

The Euler number is also a topological property. The regions shown in Fig. 11.26, for
example, have Euler numbers equal to 0 and −1, respectively, because the “A” has
one connected component and one hole, and the “B” has one connected component
but two holes.

Regions represented by straight-line segments (referred to as polygonal networks)
have a particularly simple interpretation in terms of the Euler number. Figure 11.27
shows a polygonal network. Classifying interior regions of such a network into faces
and holes is often important. Denoting the number of vertices by V, the number of
edges by Q, and the number of faces by F gives the following relationship, called the
Euler formula:

 V Q F C H− + = − (11-25)

which, in view of Eq. (11-24), can be expressed as

 V Q F E− + = (11-26)

The network in Fig. 11.27 has seven vertices, eleven edges, two faces, one connected
region, and three holes; thus the Euler number is −2 ().i.e., 7 11 2 1 3 2− + = − = −

EXAMPLE 11.11 : Extracting and characterizing the largest feature in a segmented image.

Figure 11.28(a) shows a 512 512× , 8-bit image of Washington, D.C. taken by a NASA LANDSAT satel-
lite. This image is in the near infrared band (see Fig. 1.10 for details). Suppose that we want to segment
the river using only this image (as opposed to using several multispectral images, which would simplify
the task, as you will see later in this chapter). Because the river is a dark, uniform region relative to
the rest of the image, thresholding is an obvious approach to try. The result of thresholding the image
with the highest possible threshold value before the river became a disconnected region is shown in Fig.

ba

FIGURE 11.25
(a) A region with
two holes.
(b) A region with
three connected
components.

ba

FIGURE 11.26
Regions with
Euler numbers
equal to 0 and −1,
respectively.

DIP4E_GLOBAL_Print_Ready.indb 845 6/16/2017 2:15:20 PM

846 Chapter 11 Feature Extraction

11.28(b). The threshold was selected manually to illustrate the point that it would be impossible in this
case to segment the river by itself without other regions of the image also appearing in the thresholded
result.

The image in Fig. 11.28(b) has 1591 connected components (obtained using 8-connectivity) and its
Euler number is 1552, from which we deduce that the number of holes is 39. Figure 11.28(c) shows the
connected component with the largest number of pixels (8479). This is the desired result, which we
already know cannot be segmented by itself from the image using a threshold. Note how clean this result
is. The number of holes in the region defined by the connected component just found would give us the
number of land masses within the river. If we wanted to perform measurements, like the length of each
branch of the river, we could use the skeleton of the connected component [Fig. 11.28(d)] to do so.

TEXTURE

An important approach to region description is to quantify its texture content.
While no formal definition of texture exists, intuitively this descriptor provides mea-
sures of properties such as smoothness, coarseness, and regularity (Fig. 11.29 shows
some examples). In this section, we discuss statistical and spectral approaches for
describing the texture of a region. Statistical approaches yield characterizations of
textures as smooth, coarse, grainy, and so on. Spectral techniques are based on prop-
erties of the Fourier spectrum and are used primarily to detect global periodicity in
an image by identifying high-energy, narrow peaks in its spectrum.

Statistical Approaches

One of the simplest approaches for describing texture is to use statistical moments
of the intensity histogram of an image or region. Let z be a random variable denot-
ing intensity, and let p z i Li() = −, , , , , ,0 1 2 1… be the corresponding normalized his-
togram, where L is the number of distinct intensity levels. From Eq. (3-24), the nth
moment of z about the mean is

 mn i
i

L
n

iz z m p z() = −() ()
=
∑

0

1–

 (11-27)

Vertex

Face

Hole
Edge

FIGURE 11.27
A region
containing a
polygonal
network.

DIP4E_GLOBAL_Print_Ready.indb 846 6/16/2017 2:15:20 PM

11.4 Region Feature Descriptors 847

ba
dc

FIGURE 11.28
(a) Infrared image
of the Washington,
D.C. area.
(b) Thresholded
image.
(c) The largest
connected compo-
nent of (b).
(d) Skeleton of (c).
(Original image
courtesy of NASA.)

ba c

FIGURE 11.29
The white squares
mark, from left
to right, smooth,
coarse, and regular
textures. These are
optical microscope
images of a
superconductor,
human cholesterol,
and a microproces-
sor. (Courtesy of
Dr. Michael W.
Davidson, Florida
State University.)

DIP4E_GLOBAL_Print_Ready.indb 847 6/16/2017 2:15:21 PM

848 Chapter 11 Feature Extraction

where m is the mean value of z (i.e., the average intensity of the image or region):

 m z p zi
i

L

i= ()
=

−

∑
0

1

 (11-28)

Note from Eq. (11-27) that m0 1= and m1 0= . The second moment [the variance
s m2

2z z() = ()] is particularly important in texture description. It is a measure of
intensity contrast that can be used to establish descriptors of relative intensity
smoothness. For example, the measure

 R z
z

() = −
+ ()1

1
1 2s

 (11-29)

is 0 for areas of constant intensity (the variance is zero there) and approaches 1 for
large values of s2 z(). Because variance values tend to be large for grayscale images
with values, for example, in the range 0 to 255, it is a good idea to normalize the vari-
ance to the interval [0, 1] for use in Eq. (11-29). This is done simply by dividing s2 z()
by L −()1 2 in Eq. (11-29). The standard deviation, s(),z also is used frequently as a
measure of texture because its values are more intuitive.

As discussed in Section 2.6, the third moment, m3 z(), is a measure of the skewness
of the histogram while the fourth moment, m4 z(), is a measure of its relative flat-
ness. The fifth and higher moments are not so easily related to histogram shape, but
they do provide further quantitative discrimination of texture content. Some useful
additional texture measures based on histograms include a measure of uniformity,
defined as

 U z p zi
i

L

() = ()
=

−

∑ 2

0

1

 (11-30)

and a measure of average entropy that, as you may recall from information theory,
is defined as

 e z p z p zi
i

L

i() = () ()
=

−

∑– log
0

1

2 (11-31)

Because values of p are in the range [0, 1] and their sum equals 1, the value of
descriptor U is maximum for an image in which all intensity levels are equal (maxi-
mally uniform), and decreases from there. Entropy is a measure of variability, and is
0 for a constant image.

EXAMPLE 11.12 : Texture descriptors based on histograms.

Table 11.2 lists the values of the preceding descriptors for the three types of textures highlighted in
Fig. 11.29. The mean describes only the average intensity of each region and is useful only as a rough
idea of intensity, not texture. The standard deviation is more informative; the numbers clearly show
that the first texture has significantly less variability in intensity (it is smoother) than the other two tex-
tures. The coarse texture shows up clearly in this measure. As expected, the same comments hold for R,
because it measures essentially the same thing as the standard deviation. The third moment is useful for

For texture, typically we
are interested in signs
and relative magnitudes.
If, in addition, normaliza-
tion proves to be useful,
we normalize the third
and fourth moments.

DIP4E_GLOBAL_Print_Ready.indb 848 6/16/2017 2:15:22 PM

11.4 Region Feature Descriptors 849

determining the symmetry of histograms and whether they are skewed to the left (negative value) or the
right (positive value). This gives an indication of whether the intensity levels are biased toward the dark
or light side of the mean. In terms of texture, the information derived from the third moment is useful
only when variations between measurements are large. Looking at the measure of uniformity, we again
conclude that the first subimage is smoother (more uniform than the rest) and that the most random
(lowest uniformity) corresponds to the coarse texture. Finally, we see that the entropy values increase as
uniformity decreases, leading us to the same conclusions regarding the texture of the regions as the uni-
formity measure did. The first subimage has the lowest variation in intensity levels, and the coarse image
the most. The regular texture is in between the two extremes with respect to both of these measures.

Measures of texture computed using only histograms carry no information regard-
ing spatial relationships between pixels, which is important when describing texture.
One way to incorporate this type of information into the texture-analysis process is
to consider not only the distribution of intensities, but also the relative positions of
pixels in an image.

Let Q be an operator that defines the position of two pixels relative to each other,
and consider an image, f , with L possible intensity levels. Let G be a matrix whose
element gij is the number of times that pixel pairs with intensities zi and zj occur in
image f in the position specified by Q, where 1 ≤ ≤i j L, . A matrix formed in this
manner is referred to as a graylevel (or intensity) co-occurrence matrix. When the
meaning is clear, G is referred to simply as a co-occurrence matrix.

Figure 11.30 shows an example of how to construct a co-occurrence matrix using
L = 8 and a position operator Q defined as “one pixel immediately to the right” (i.e.,
the neighbor of a pixel is defined as the pixel immediately to its right). The array on
the left is a small image and the array on the right is matrix G. We see that element
(,)1 1 of G is 1, because there is only one occurrence in f of a pixel valued 1 having
a pixel valued 1 immediately to its right. Similarly, element (,)6 2 of G is 3, because
there are three occurrences in f of a pixel with a value of 6 having a pixel valued 2
immediately to its right. The other elements of G are similarly computed. If we had
defined Q as, say, “one pixel to the right and one pixel above,” then position (,)1 1
in G would have been 0 because there are no instances in f of a 1 with another 1 in
the position specified by Q. On the other hand, positions (,),1 3 (,),1 5 and (,)1 7 in
G would all be 1’s, because intensity value 1 occurs in f with neighbors valued 3, 5,
and 7 in the position specified by Q—one occurrence of each. As an exercise, you
should compute all the elements of G using this definition of Q.

Note that we are using
the intensity range [1, L]
instead of the usual
[0, L− 1]. We do this so
that intensity values will
correspond with “tradi-
tional” matrix indexing
(i.e., intensity value 1
corresponds to the first
row and column indices
of G).

Texture Mean
Standard
deviation

R (normalized) 3rd moment Uniformity Entropy

Smooth 82.64 11.79 0.002 − 0.105 0.026 5.434

Coarse 143.56 74.63 0.079 − 0.151 0.005 7.783

Regular 99.72 33.73 0.017 0.750 0.013 6.674

TABLE 11.2
Statistical texture measures for the subimages in Fig. 11.29.

DIP4E_GLOBAL_Print_Ready.indb 849 6/16/2017 2:15:24 PM

850 Chapter 11 Feature Extraction

The number of possible intensity levels in the image determines the size
of matrix G. For an 8-bit image (256 possible intensity levels), G will be of size
256 256× . This is not a problem when working with one matrix but, as you will see
in as Example 11.13, co-occurrence matrices sometimes are used in sequences. One
approach for reducing computations is to quantize the intensities into a few bands
in order to keep the size of G manageable. For example, in the case of 256 intensities,
we can do this by letting the first 32 intensity levels equal to 1, the next 32 equal to 2,
and so on. This will result in a co-occurrence matrix of size 8 8× .

The total number, n, of pixel pairs that satisfy Q is equal to the sum of the ele-
ments of G (n = 30 in the example of Fig. 11.30). Then, the quantity

 p
g

nij
ij=

is an estimate of the probability that a pair of points satisfying Q will have values
z zi j, .() These probabilities are in the range [,]0 1 and their sum is 1:

 pij
j

K

i

K

=
==
∑∑ 1

11

where K is the row and column dimension of square matrix G.
Because G depends on Q, the presence of intensity texture patterns can be detected

by choosing an appropriate position operator and analyzing the elements of G. A set
of descriptors useful for characterizing the contents of G are listed in Table 11.3. The
quantities used in the correlation descriptor (second row) are defined as follows:

 m i pr ij
j

K

i

K

=
==
∑∑

11

 m j pc ij
i

K

j

K

=
==
∑∑

11

and

1 1 7 5 3 2

5 1 6 1 2 5

8 8 6 8 1 2

4 3 4 5 5 1

8 7 8 7 6 2

7 8 6 2 6 2

0 1 1 0 0

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 0 1

0 1 1

0 0

0 0 1 1 02 0

4 5 6 7 81 2 3

1 0

0 1

0 1

3 0

0 0 0 2

0 0 2

0

1

0

0

2

1

0

1

2

1

3

4

5

6

7

8 0 0 2 1

Image f Co-occurrence matrix G

FIGURE 11.30
How to construct
a co-occurrence
matrix.

DIP4E_GLOBAL_Print_Ready.indb 850 6/16/2017 2:15:25 PM

11.4 Region Feature Descriptors 851

s

s

r r ij
j

K

i

K

c c ij
i

K

j

K

i m p

j m p

2 2

11

2 2

11

= ()

= ()

==

==

∑∑

∑∑

–

–

If we let

 P i pij
j

K

() =
=
∑

1

and

 P j pij
i

K

() =
=
∑

1

then the preceding equations can be written as

 m iP ir
i

K

= ()
=
∑

1

Descriptor Explanation Formula

Maximum
probability

Measures the strongest response of G.
The range of values is [0, 1].

max()
,i j ijp

Correlation A measure of how correlated a pixel is
to its neighbor over the entire image. The
range of values is 1 to −1 corresponding
to perfect positive and perfect negative
correlations. This measure is not defined
if either standard deviation is zero.

i m j m pr c ij

r cj

K

i

K

r c

– –

;

()()
==
∑∑

s s

s s

11

0 0≠ ≠

Contrast A measure of intensity contrast between a
pixel and its neighbor over the entire image.
The range of values is 0 (when G is constant)
to () .K − 1 2

i j pij
j

K

i

K

−()
==
∑∑ 2

11

Uniformity (also
called Energy)

A measure of uniformity in the range [0, 1].
Uniformity is 1 for a constant image. pij

j

K

i

K
2

11 ==
∑∑

Homogeneity Measures the spatial closeness to the diagonal
of the distribution of elements in G. The range
of values is [0, 1], with the maximum being
achieved when G is a diagonal matrix.

p

i j
ij

j

K

i

K

111 + −==
∑∑

Entropy Measures the randomness of the elements of
G. The entropy is 0 when all pij’s are 0, and is
maximum when the pij’s are uniformly distrib-
uted. The maximum value is thus 2 2log .K

– logp pij ij
j

K

i

K

2
11 ==

∑∑

TABLE 11.3
Descriptors used
for characterizing
co-occurrence
matrices of size
K K× . The term
pij is the ij-th term
of G divided by
the sum of the
elements of G.

DIP4E_GLOBAL_Print_Ready.indb 851 6/16/2017 2:15:27 PM

852 Chapter 11 Feature Extraction

 m jP jc
j

K

= ()
=
∑

1

 sr r
i

K

i m P i2 2

1

= () ()
=
∑ –

and

 sc c
j

K

j m P j2 2

1

= () ()
=
∑ –

With reference to Eqs. (11-27), (11-28), and to their explanation, we see that mr is
in the form of a mean computed along rows of the normalized G, and mc is a mean
computed along the columns. Similarly, sr and sc are in the form of standard devia-
tions (square roots of the variances) computed along rows and columns, respectively.
Each of these terms is a scalar, independently of the size of G.

Keep in mind when studying Table 11.3 that “neighbors” are with respect to the
way in which Q is defined (i.e., neighbors do not necessarily have to be adjacent),
and also that the pij’s are nothing more than normalized counts of the number of
times that pixels having intensities zi and zj occur in f relative to the position speci-
fied in Q. Thus, all we are doing here is trying to find patterns (texture) in those
counts.

EXAMPLE 11.13 : Using descriptors to characterize co-occurrence matrices.

Figures 11.31(a) through (c) show images consisting of random, horizontally periodic (sine), and mixed
pixel patterns, respectively. This example has two objectives: (1) to show values of the descriptors in
Table 11.3 for the three co-occurrence matrices, G1, G2 ,and G3, corresponding (from top to bottom)
to these images; and (2) to illustrate how sequences of co-occurrence matrices can be used to detect
texture patterns in an image.

Figure 11.32 shows co-occurrence matrices G1, G2 , and G3, displayed as images. These matrices were
obtained using L = 256 and the position operator “one pixel immediately to the right.” The value at
coordinates (,)i j in these images is the number of times that pixel pairs with intensities zi and zj occur
in f in the position specified by Q, so it is not surprising that Fig. 11.32(a) is a random image, given the
nature of the image from which it was obtained.

Figure 11.32(b) is more interesting. The first obvious feature is the symmetry about the main diagonal.
Because of the symmetry of the sine wave, the number of counts for a pair (,)z zi j is the same as for the
pair (,),z zj i which produces a symmetric co-occurrence matrix. The nonzero elements of G2 are sparse
because value differences between horizontally adjacent pixels in a horizontal sine wave are relatively
small. It helps to remember in interpreting these concepts that a digitized sine wave is a staircase, with
the height and width of each step depending on the frequency of the sine wave and the number of ampli-
tude levels used in representing the function.

The structure of co-occurrence matrix G3 in Fig. 11.32(c) is more complex. High count values are
grouped along the main diagonal also, but their distribution is more dense than for G2 , a property
that is indicative of an image with a rich variation in intensity values, but few large jumps in intensity
between adjacent pixels. Examining Fig. 11.32(c), we see that there are large areas characterized by low

DIP4E_GLOBAL_Print_Ready.indb 852 6/16/2017 2:15:29 PM

11.4 Region Feature Descriptors 853

variability in intensities. The high transitions in intensity occur at object boundaries, but these counts
are low with respect to the moderate intensity transitions over large areas, so they are obscured by the
ability of an image display to show high and low values simultaneously, as we discussed in Chapter 3.

The preceding observations are qualitative. To quantify the “content” of co-occurrence matrices, we
need descriptors such as those in Table 11.3. Table 11.4 shows values of these descriptors computed
for the three co-occurrence matrices in Fig. 11.32. To use these descriptors, the co-occurrence matrices
must be normalized by dividing them by the sum of their elements, as discussed earlier. The entries in
Table 11.4 agree with what one would expect from the images in Fig. 11.31 and their corresponding co-
occurrence matrices in Fig. 11.32. For example, consider the Maximum Probability column in Table 11.4.
The highest probability corresponds to the third co-occurrence matrix, which tells us that this matrix
has the highest number of counts (largest number of pixel pairs occurring in the image relative to the
positions in Q) than the other two matrices. This agrees with our analysis of G3. The second column indi-
cates that the highest correlation corresponds to G2 , which in turn tells us that the intensities in the sec-
ond image are highly correlated. The repetitiveness of the sinusoidal pattern in Fig. 11.31(b) indicates
why this is so. Note that the correlation for G1 is essentially zero, indicating that there is virtually no
correlation between adjacent pixels, a characteristic of random images such as the image in Fig. 11.31(a).

b
a

c

FIGURE 11.31
Images whose
pixels have
(a) random,
(b) periodic, and
(c) mixed texture
patterns. Each
image is of size
263 800× pixels.

ba c

FIGURE 11.32
256 256×
co-occurrence
matrices G1, G2 ,
and G3,
corresponding
from left to right
to the images in
Fig. 11.31.

DIP4E_GLOBAL_Print_Ready.indb 853 6/16/2017 2:15:32 PM

854 Chapter 11 Feature Extraction

The contrast descriptor is highest for G1 and lowest for G2. Thus, we see that the less random an
image is, the lower its contrast tends to be. We can see the reason by studying the matrix displayed in
Fig. 11.32. The ()i j− 2 terms are differences of integers for 1 ≤ ≤i j L, , so they are the same for any G.
Therefore, the probabilities of the elements of the normalized co-occurrence matrices are the factors
that determine the value of contrast. Although G1 has the lowest maximum probability, the other two
matrices have many more zero or near-zero probabilities (the dark areas in Fig. 11.32). Because the sum
of the values of G n is 1, it is easy to see why the contrast descriptor tends to increase as a function of
randomness.

The remaining three descriptors are explained in a similar manner. Uniformity increases as a func-
tion of the values of the probabilities squared. Thus, the less randomness there is in an image, the higher
the uniformity descriptor will be, as the fifth column in Table 11.4 shows. Homogeneity measures the
concentration of values of G with respect to the main diagonal. The values of the denominator term
()1 + −i j are the same for all three co-occurrence matrices, and they decrease as i and j become closer
in value (i.e., closer to the main diagonal). Thus, the matrix with the highest values of probabilities
(numerator terms) near the main diagonal will have the highest value of homogeneity. As we discussed
earlier, such a matrix will correspond to images with a “rich” gray-level content and areas of slowly vary-
ing intensity values. The entries in the sixth column of Table 11.4 are consistent with this interpretation.

The entries in the last column of the table are measures of randomness in co-occurrence matrices,
which in turn translate into measures of randomness in the corresponding images. As expected, G1 had
the highest value because the image from which it was derived was totally random. The other two
entries are self-explanatory. Note that the entropy measure for G1 is near the theoretical maximum of
16 (log).2 256 162 = The image in Fig. 11.31(a) is composed of uniform noise, so each intensity level has
approximately an equal probability of occurrence, which is the condition stated in Table 11.3 for maxi-
mum entropy.

Thus far, we have dealt with single images and their co-occurrence matrices. Suppose that we want
to “discover” (without looking at the images) if there are any sections in these images that contain
repetitive components (i.e., periodic textures). One way to accomplish this goal is to examine the cor-
relation descriptor for sequences of co-occurrence matrices, derived from these images by increasing
the distance between neighbors. As mentioned earlier, it is customary when working with sequences of
co-occurrence matrices to quantize the number of intensities in order to reduce matrix size and corre-
sponding computational load. The following results were obtained using L = 8.

Figure 11.33 shows plots of the correlation descriptors as a function of horizontal “offset” (i.e., hori-
zontal distance between neighbors) from 1 (for adjacent pixels) to 50. Figure 11.33(a) shows that all
correlation values are near 0, indicating that no such patterns were found in the random image. The

Normalized
Co-occurrence

Matrix

Maximum
Probability

Correlation Contrast Uniformity Homogeneity Entropy

G1 1n 0.00006 −0.0005 10838 0.00002 0.0366 15.75

G2 2n 0.01500 0.9650 00570 0.01230 0.0824 06.43

G3 3n 0.06860 0.8798 01356 0.00480 0.2048 13.58

TABLE 11.4
Descriptors evaluated using the co-occurrence matrices displayed as images in Fig. 11.32.

DIP4E_GLOBAL_Print_Ready.indb 854 6/16/2017 2:15:34 PM

11.4 Region Feature Descriptors 855

shape of the correlation in Fig. 11.33(b) is a clear indication that the input image is sinusoidal in the hori-
zontal direction. Note that the correlation function starts at a high value, then decreases as the distance
between neighbors increases, and then repeats itself.

Figure 11.33(c) shows that the correlation descriptor associated with the circuit board image
decreases initially, but has a strong peak for an offset distance of 16 pixels. Analysis of the image in Fig.
11.31(c) shows that the upper solder joints form a repetitive pattern approximately 16 pixels apart (see
Fig. 11.34). The next major peak is at 32, caused by the same pattern, but the amplitude of the peak is
lower because the number of repetitions at this distance is less than at 16 pixels. A similar observation
explains the even smaller peak at an offset of 48 pixels.

Spectral Approaches

As we discussed in Section 5.4, the Fourier spectrum is ideally suited for describing
the directionality of periodic or semiperiodic 2-D patterns in an image. These global
texture patterns are easily distinguishable as concentrations of high-energy bursts in
the spectrum. Here, we consider three features of the Fourier spectrum that are use-
ful for texture description: (1) prominent peaks in the spectrum give the principal
direction of the texture patterns; (2) the location of the peaks in the frequency plane
gives the fundamental spatial period of the patterns; and (3) eliminating any peri-
odic components via filtering leaves nonperiodic image elements, which can then
be described by statistical techniques. Recall that the spectrum is symmetric about
the origin, so only half of the frequency plane needs to be considered. Thus, for the

1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50
�1

�0.5

0

1

0.5
C

or
re

la
ti

on

Horizontal Offset Horizontal Offset Horizontal Offset
ba c

FIGURE 11.33 Values of the correlation descriptor as a function of offset (distance between “adjacent” pixels) corre-
sponding to the (a) noisy, (b) sinusoidal, and (c) circuit board images in Fig. 11.31.

16 pixelsFIGURE 11.34
A zoomed section
of the circuit board
image showing
periodicity of
components.

DIP4E_GLOBAL_Print_Ready.indb 855 6/16/2017 2:15:35 PM

856 Chapter 11 Feature Extraction

purpose of analysis, every periodic pattern is associated with only one peak in the
spectrum, rather than two.

Detection and interpretation of the spectrum features just mentioned often
are simplified by expressing the spectrum in polar coordinates to yield a function
S r, ,u() where S is the spectrum function, and r and u are the variables in this coor-
dinate system. For each direction u, S r,u() may be considered a 1-D function S ru ().
Similarly, for each frequency r Sr, u() is a 1-D function. Analyzing S ru () for a fixed
value of u yields the behavior of the spectrum (e.g., the presence of peaks) along a
radial direction from the origin, whereas analyzing Sr u() for a fixed value of r yields
the behavior along a circle centered on the origin.

A more global description is obtained by integrating (summing for discrete vari-
ables) these functions:

 S r S r() = ()
=
∑ u
u

p

0

 (11-32)

and

 S Sr
r

R

u u() = ()
=
∑

1

0

 (11-33)

where R0 is the radius of a circle centered at the origin.
The results of Eqs. (11-32) and (11-33) constitute a pair of values S r S() ()⎡⎣ ⎤⎦, u for

each pair of coordinates r, .u() By varying these coordinates, we can generate two
1-D functions, S r() and S u(), that constitute a spectral-energy description of texture
for an entire image or region under consideration. Furthermore, descriptors of these
functions themselves can be computed in order to characterize their behavior quan-
titatively. Descriptors useful for this purpose are the location of the highest value,
the mean and variance of both the amplitude and axial variations, and the distance
between the mean and the highest value of the function.

EXAMPLE 11.14 : Spectral texture.

Figure 11.35(a) shows an image containing randomly distributed objects, and Fig. 11.35(b) shows an
image in which these objects are arranged periodically. Figures 11.35(c) and (d) show the corresponding
Fourier spectra. The periodic bursts of energy extending quadrilaterally in two dimensions in both Fou-
rier spectra are due to the periodic texture of the coarse background material on which the objects rest.
The other dominant components in the spectra in Fig. 11.35(c) are caused by the random orientation of
the object edges in Fig. 11.35(a). On the other hand, the main energy in Fig. 11.35(d) not associated with
the background is along the horizontal axis, corresponding to the strong vertical edges in Fig. 11.35(b).

Figures 11.36(a) and (b) are plots of S r() and S u() for the random objects, and similarly in (c) and
(d) for the ordered objects. The plot of S r() for the random objects shows no strong periodic compo-
nents (i.e., there are no dominant peaks in the spectrum besides the peak at the origin, which is the dc
component). Conversely, the plot of S r() for the ordered objects shows a strong peak near r = 15 and
a smaller one near r = 25, corresponding to the periodic horizontal repetition of the light (objects) and
dark (background) regions in Fig. 11.35(b). Similarly, the random nature of the energy bursts in Fig.
11.35(c) is quite apparent in the plot of S u() in Fig. 11.36(b). By contrast, the plot in Fig. 11.36(d) shows
strong energy components in the region near the origin and at 90° and 180°. This is consistent with the
energy distribution of the spectrum in Fig. 11.35(d).

DIP4E_GLOBAL_Print_Ready.indb 856 6/16/2017 2:15:37 PM

11.4 Region Feature Descriptors 857

ba
dc

FIGURE 11.35
(a) and (b) Images
of random and
ordered objects.
(c) and (d) Cor-
responding
Fourier spectra. All
images are of size
600 600× pixels.

0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0 50 100 150 200 250 300

2.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

0 20 40 60 80 100 120 140 160 180
3.6

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

0 20 40 60 80 100 120 140 160 180
0

1.0

2.0

3.0

4.0

5.0

6.0

0 50 100 150 200 250 300

ba
dc

FIGURE 11.36
 (a) and (b) Plots
of S r() and S()u
for Fig. 11.35(a).
(c) and (d) Plots
of S r() and S()u
for Fig. 11.35(b).
All vertical axes
are ×105.

DIP4E_GLOBAL_Print_Ready.indb 857 6/16/2017 2:15:38 PM

858 Chapter 11 Feature Extraction

MOMENT INVARIANTS

The 2-D moment of order p q+() of an M N× digital image, f x y(,), is defined as

 m x y f x ypq
p q

y

N

x

M

= ()
==

∑∑
0

1

0

1 ––

, (11-34)

where p = 0 1 2, , ,… and q = 0 1 2, , ,… are integers. The corresponding central moment
of order p q+() is defined as

 mpq
y

N

x

M p q
x x y y f x y= () () ()

==
∑∑ – – ,

––

0

1

0

1

 (11-35)

for p = 0 1 2, , ,… and q = 0 1 2, , , ,… where

 x
m
m

y
m
m

= =10

00

01

00

and (11-36)

The normalized central moment of order p q+(), denoted hpq , is defined as

 h
m

m
gpq
pq=
00

 (11-37)

where

 g = + +p q
2

1 (11-38)

for p q+ = 2 3, , .… A set of seven, 2-D moment invariants can be derived from the
second and third normalized central moments:†

 f h h1 20 02= + (11-39)

 f h h h2 20 02
2

11
24= () +– (11-40)

 f h h h h3 30 12
2

21 03
2

3 3= () + ()– – (11-41)

 f h h h h4 30 12
2

21 03
2= +() + +() (11-42)

† Derivation of these results requires concepts that are beyond the scope of this discussion. The book by Bell
[1965] and the paper by Hu [1962] contain detailed discussions of these concepts. For generating moment invari-
ants of an order higher than seven, see Flusser [2000]. Moment invariants can be generalized to n dimensions
(see Mamistvalov [1998]).

DIP4E_GLOBAL_Print_Ready.indb 858 6/16/2017 2:15:39 PM

11.5 Principal Components as Feature Descriptors 859

 f h h h h h h h h5 30 12 30 12 30 12
2

21 03
2

3 3= () +() +()⎡
⎣ − +() ⎤

⎦–

 + () +() +() +()⎡
⎣

⎤
⎦3 321 03 21 03 30 12

2
21 03

2
h h h h h h h h– – (11-43)

 f h h h h h h6 20 02 30 12
2

21 03
2= () +() +()⎡

⎣
⎤
⎦– –

 + +() +()4 11 30 12 21 03h h h h h (11-44)

 f h h h h h h h h7 21 03 30 12 30 12
2

21 03
2

3 3= () +() +()⎡
⎣ +() ⎤

⎦– –

 + () +() +() +()⎡
⎣

⎤
⎦3 312 30 21 03 30 12

2
21 03

2
h h h h h h h h– – (11-45)

This set of moments is invariant to translation, scale change, mirroring (within a
minus sign), and rotation. We can attach physical meaning to some of the low-order
moment invariants. For example, f1 is the sum of two second moments with respect
to the principal axes of data spread, so this moment can be interpreted as a mea-
sure of data spread. Similarly, f3 is the difference of second moments, and may be
interpreted as a measure of “slenderness.” However, as the order of the moment
invariants increases, the complexity of their formulation causes physical meaning to
be lost. The importance of Eqs. (11-39) through (11-45) is their invariance, not their
physical meaning.

EXAMPLE 11.15 : Moment invariants.

The objective of this example is to compute and compare the preceding moment invariants using the
image in Fig. 11.37(a). The black (0) border was added to make all images in this example be of the
same size; the zeros do not affect computation of the moment invariants. Figures 11.37(b) through (f)
show the original image translated, scaled by 0.5 in both spatial dimensions, mirrored, rotated by 45°,
and rotated by 90°, respectively. Table 11.5 summarizes the values of the seven moment invariants for
these six images. To reduce dynamic range and thus simplify interpretation, the values shown are scaled
using the expression − () ()sgn log .f fi i10 The absolute value is needed to handle any numbers that may
be negative. The term sgn fi() preserves the sign of fi , and the minus sign in front is there to handle
fractions in the log computation. The idea is to make the numbers easier to interpret. Interest in this
example is on the invariance and relative signs of the moments, not on their actual values. The two key
points in Table 11.5 are: (1) the closeness of the values of the moments, independent of translation, scale
change, mirroring and rotation; and (2) the fact that the sign of f7 is different for the mirrored image.

11.5 PRINCIPAL COMPONENTS AS FEATURE DESCRIPTORS

The material in this section is applicable to boundaries and regions. It is different
from our discussion thus far, in the sense that features are based on more than one
image. Suppose that we are given the three component images of a color image. The
three images can be treated as a unit by expressing each group of three correspond-
ing pixels as a vector, as discussed in Section 11.1. If we have a total of n registered

11.5

As we show in Example
11.17, principal compo-
nents can be used also
to normalize regions or
boundaries for variations
in size, translation, and
rotation.

DIP4E_GLOBAL_Print_Ready.indb 859 6/16/2017 2:15:40 PM

860 Chapter 11 Feature Extraction

ba c
ed f

FIGURE 11.37 (a) Original image. (b)–(f) Images translated, scaled by one-half, mirrored, rotated by 45°, and rotated
by 90°, respectively.

Moment
Invariant

Original
Image

Translated Half Size Mirrored Rotated 45° Rotated 90°

f1
2.8662 2.8662 2.8664 2.8662 2.8661 2.8662

f2
7.1265 7.1265 7.1257 7.1265 7.1266 7.1265

f3
10.4109 10.4109 10.4047 10.4109 10.4115 10.4109

f4
10.3742 10.3742 10.3719 10.3742 10.3742 10.3742

f5
21.3674 21.3674 21.3924 21.3674 21.3663 21.3674

f6
13.9417 13.9417 13.9383 13.9417 13.9417 13.9417

f7
−20.7809 −20.7809 −20.7724 20.7809 −20.7813 −20.7809

TABLE 11.5
Moment invariants for the images in Fig. 11.37.

DIP4E_GLOBAL_Print_Ready.indb 860 6/16/2017 2:15:41 PM

11.5 Principal Components as Feature Descriptors 861

images, then the corresponding pixels at the same spatial location in all images can
be arranged as an n-dimensional vector:

 x =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x

x

xn

1

2

�
 (11-46)

Throughout this section, the assumption is that all vectors are column vectors (i.e.,
matrices of order n × 1). We can write them on a line of text simply by expressing
them as x = x x xn

T
1 2, , , ,…() where T indicates the transpose.

We can treat the vectors as random quantities, just like we did when constructing
an intensity histogram. The only difference is that, instead of talking about quanti-
ties like the mean and variance of the random variables, we now talk about mean
vectors and covariance matrices. The mean vector of the population is defined as

 m xx = { }E (11-47)

where E x{ } is the expected value of x, and the subscript denotes that m is associated
with the population of x vectors. Recall that the expected value of a vector or matrix
is obtained by taking the expected value of each element.

The covariance matrix of the vector population is defined as

 C x m x mx x x= ()(){ }E
T

– – (11-48)

Because x is n dimensional, Cx is an n n× matrix. Element cii of Cx is the variance
of xi , the ith component of the x vectors in the population, and element cij of Cx
is the covariance between elements xi and xj of these vectors. Matrix Cx is real
and symmetric. If elements xi and xj are uncorrelated, their covariance is zero and,
therefore, cij = 0, resulting in a diagonal covariance matrix.

Because Cx is real and symmetric, finding a set of n orthonormal eigenvectors
is always possible (Noble and Daniel [1988]). Let ei and li , i n=1 2, , , ,… be the
eigenvectors and corresponding eigenvalues of CX ,† arranged (for convenience) in
descending order so that � �j j≥ +1 for j n= −1 2 1, , , .… Let A be a matrix whose
rows are formed from the eigenvectors of CX , arranged in descending value of their
eigenvalues, so that the first row of A is the eigenvector corresponding to the largest
eigenvalue.

Suppose that we use A as a transformation matrix to map the x’s into vectors
denoted by y’s, as follows:

 y A x mx= ()– (11-49)

This expression is called the Hotelling transform, which, as you will learn shortly, has
some very interesting and useful properties.

† By definition, the eigenvector and eigenvalues of an n n× matrix C satisfy the equation Ce ei i i= l .

You may find it helpful
to review the tutorials on
probability and matrix
theory available on the
book website.

The Hotelling transform
is the same as the
discrete Karhunen-Loève
transform, so the
two names are used
interchangeably in the
literature.

DIP4E_GLOBAL_Print_Ready.indb 861 6/16/2017 2:15:47 PM

862 Chapter 11 Feature Extraction

It is not difficult to show (see Problem 11.25) that the mean of the y vectors result-
ing from this transformation is zero; that is,

 m y 0y = { } =E (11-50)

It follows from basic matrix theory that the covariance matrix of the y’s is given in
terms of A and Cx by the expression

 C AC Ay x= T (11-51)

Furthermore, because of the way A was formed, Cy is a diagonal matrix whose ele-
ments along the main diagonal are the eigenvalues of Cx ; that is,

 Cy =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

�

�

�

1

2

0

0

�

n

 (11-52)

The off-diagonal elements of this covariance matrix are 0, so the elements of the
y vectors are uncorrelated. Keep in mind that the li are the eigenvalues of Cx and
that the elements along the main diagonal of a diagonal matrix are its eigenvalues
(Noble and Daniel [1988]). Thus, Cx and Cy have the same eigenvalues.

Another important property of the Hotelling transform deals with the reconstruc-
tion of x from y. Because the rows of A are orthonormal vectors, it follows that
A A– ,1 = T and any vector x can be recovered from its corresponding y by using the
expression

 x A y mx= T + (11-53)

But, suppose that, instead of using all the eigenvectors of Cx , we form a matrix Ak
from the k eigenvectors corresponding to the k largest eigenvalues, yielding a trans-
formation matrix of order k n× . The y vectors would then be k dimensional, and
the reconstruction given in Eq. (11-53) would no longer be exact (this is somewhat
analogous to the procedure we used in Section 11.3 to describe a boundary with a
few Fourier coefficients).

The vector reconstructed by using Ak is

 x̂ A y mx= k
T + (11-54)

It can be shown that the mean squared error between x and x̂ is given by the expres-
sion

 e j
j

n

j
j

k

j
j k

n

ms = − =
= = = +
∑ ∑ ∑� � �

1 1 1

 (11-55)

Equation (11-55) indicates that the error is zero if k n= (that is, if all the eigen-
vectors are used in the transformation). Because the � j ’s decrease monotonically,

DIP4E_GLOBAL_Print_Ready.indb 862 6/16/2017 2:15:51 PM

11.5 Principal Components as Feature Descriptors 863

Eq. (11-55) also shows that the error can be minimized by selecting the k eigenvec-
tors associated with the largest eigenvalues. Thus, the Hotelling transform is optimal
in the sense that it minimizes the mean squared error between the vectors x and
their approximations x̂. Due to this idea of using the eigenvectors corresponding
to the largest eigenvalues, the Hotelling transform also is known as the principal
components transform.

EXAMPLE 11.16 : Using principal components for image description.

Figure 11.38 shows six multispectral satellite images corresponding to six spectral bands: visible blue
(450–520 nm), visible green (520–600 nm), visible red (630–690 nm), near infrared (760–900 nm), middle
infrared (1550–1,750 nm), and thermal infrared (10,400–12,500 nm). The objective of this example is to
illustrate how to use principal components as image features.

Organizing the images as in Fig. 11.39 leads to the formation of a six-element vector x from each set
of corresponding pixels in the images, as discussed earlier in this section. The images in this example
are of size 564 564× pixels, so the population consisted of 564 318 0962() = , vectors from which the
mean vector, covariance matrix, and corresponding eigenvalues and eigenvectors were computed. The

ba c
ed f

FIGURE 11.38 Multispectral images in the (a) visible blue, (b) visible green, (c) visible red, (d) near infrared, (e) middle
infrared, and (f) thermal infrared bands. (Images courtesy of NASA.)

DIP4E_GLOBAL_Print_Ready.indb 863 6/16/2017 2:15:51 PM

864 Chapter 11 Feature Extraction

eigenvectors were then used as the rows of matrix A, and a set of y vectors were obtained using Eq.
(11-49). Similarly, we used Eq. (11-51) to obtain Cy . Table 11.6 shows the eigenvalues of this matrix.
Note the dominance of the first two eigenvalues.

A set of principal component images was generated using the y vectors mentioned in the previous
paragraph (images are constructed from vectors by applying Fig. 11.39 in reverse). Figure 11.40 shows
the results. Figure 11.40(a) was formed from the first component of the 318,096 y vectors, Fig. 11.40(b)
from the second component of these vectors, and so on, so these images are of the same size as the origi-
nal images in Fig. 11.38. The most obvious feature in the principal component images is that a significant
portion of the contrast detail is contained in the first two images, and it decreases rapidly from there. The
reason can be explained by looking at the eigenvalues. As Table 11.6 shows, the first two eigenvalues are
much larger than the others. Because the eigenvalues are the variances of the elements of the y vectors,
and variance is a measure of intensity contrast, it is not unexpected that the images formed from the
vector components corresponding to the largest eigenvalues would exhibit the highest contrast. In fact,
the first two images in Fig. 11.40 account for about 89% of the total variance. The other four images have
low contrast detail because they account for only the remaining 11%.

According to Eqs. (11-54) and (11-55), if we used all the eigenvectors in matrix A we could recon-
struct the original images from the principal component images with zero error between the original
and reconstructed images (i.e., the images would be identical). If the objective is to store and/or transmit
the principal component images and the transformation matrix for later reconstruction of the original
images, it would make no sense to store and/or transmit all the principal component images because
nothing would be gained. Suppose, however, that we keep and/or transmit only the two principal com-
ponent images. Then there would be significant savings in storage and/or transmission (matrix A would
be of size 2 6× , so its impact would be negligible).

Figure 11.41 shows the results of reconstructing the six multispectral images from the two principal
component images corresponding to the largest eigenvalues. The first five images are quite close in

Spectral band 1

Spectral band 2

Spectral band 3

Spectral band 4

Spectral band 5

Spectral band 6

x

x1

x2

x3

x4

x5

x6

�

FIGURE 11.39
Forming of a
feature vector from
corresponding
pixels in six images.

L1 L2 L3 L4 L5 L6

10344 2966 1401 203 94 31

TABLE 11.6
Eigenvalues of Cx
obtained from the
images in Fig. 11.38.

DIP4E_GLOBAL_Print_Ready.indb 864 6/16/2017 2:15:52 PM

11.5 Principal Components as Feature Descriptors 865

ba c
ed f

FIGURE 11.40 The six principal component images obtained from vectors computed using Eq. (11-49). Vectors are
converted to images by applying Fig. 11.39 in reverse.

appearance to the originals in Fig. 11.38, but this is not true for the sixth image. The reason is that the
original sixth image is actually blurry, but the two principal component images used in the reconstruc-
tion are sharp, therefore, the blurry “detail” is lost. Figure 11.42 shows the differences between the
original and reconstructed images. The images in Fig. 11.42 were enhanced to highlight the differences
between them. If they were shown without enhancement, the first five images would appear almost all
black, with the sixth (difference) image showing the most variability.

EXAMPLE 11.17 : Using principal components for normalizing for variations in size, translation, and rotation.

As we mentioned earlier in this chapter, feature descriptors should be as independent as possible of
variations in size, translation, and rotation. Principal components provide a convenient way to normal-
ize boundaries and/or regions for variations in these three variables. Consider the object in Fig. 11.43,
and assume that its size, location, and orientation (rotation) are arbitrary. The points in the region (or its
boundary) may be treated as 2-D vectors, x = ()x x

T
1 2, , where x1 and x2 are the coordinates of any object

point. All the points in the region or boundary constitute a 2-D vector population that can be used to
compute the covariance matrix Cx and mean vector mx . One eigenvector of Cx points in the direction

DIP4E_GLOBAL_Print_Ready.indb 865 6/16/2017 2:15:53 PM

866 Chapter 11 Feature Extraction

of maximum variance (data spread) of the population, while the second eigenvector is perpendicular to
the first, as Fig. 11.43(b) shows. In terms of the present discussion, the principal components transform in
Eq. (11-49) accomplishes two things: (1) it establishes the center of the transformed coordinates system
as the centroid (mean) of the population because mx is subtracted from each x; and (2) the y coordinates
(vectors) it generates are rotated versions of the x’s, so that the data align with the eigenvectors. If we
define a y y1 2,() axis system so that y1 is along the first eigenvector and y2 is along the second, then the
geometry that results is as illustrated in Fig. 11.43(c). That is, the dominant data directions are aligned
with the new axis system. The same result will be obtained regardless of the size, translation, or rotation
of the object, provided that all points in the region or boundary undergo the same transformation. If we
wished to size-normalize the transformed data, we would divide the coordinates by the corresponding
eigenvalues.

Observe in Fig. 11.43(c) that the points in the y-axes system can have both positive and negative val-
ues. To convert all coordinates to positive values, we simply subtract the vector y y T

1 2min min,() from all
the y vectors. To displace the resulting points so that they are all greater than 0, as in Fig. 11.43(d), we
add to them a vector a b T,() where a and b are greater than 0.

Although the preceding discussion is straightforward in principle, the mechanics are a frequent source
of confusion. Thus, we conclude this example with a simple manual illustration. Figure 11.44(a) shows

ba c
ed f

FIGURE 11.41 Multispectral images reconstructed using only the two principal component images corresponding to the
two principal component vectors with the largest eigenvalues. Compare these images with the originals in Fig. 11.38.

DIP4E_GLOBAL_Print_Ready.indb 866 6/16/2017 2:15:54 PM

11.5 Principal Components as Feature Descriptors 867

four points with coordinates (1, 1), (2, 4), (4, 2), and (5, 5). The mean vector, covariance matrix, and nor-
malized (unit length) eigenvectors of this population are:

 m Cx x=
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

3

3

3 333 2 00

2 00 3 333
,

. .

. .

and

 e e1 2=
⎡

⎣
⎢

⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥

0 707

0 707

0 707

0 707

.

.
,

.

.

The corresponding eigenvalues are �1 5 333= . and �2 1 333= . . Figure 11.44(b) shows the eigenvec-
tors superimposed on the data. From Eq. (11-49), the transformed points (the y’s) are (. ,) ,−2 828 0 T
(, .) ,0 1 414− T (, .) ,0 1 414 T and (. ,) .2 828 0 T These points are plotted in Fig. 11.44(c). Note that they are
aligned with the y-axes and that they have fractional values. When working with images, coordinate
values are integers, making it necessary to round all values to their nearest integer value. Figure 11.44(d)
shows the points rounded to the nearest integer and their location shifted so that all coordinate values
are integers greater than 0, as in the original figure.

ba c
ed f

FIGURE 11.42 Differences between the original and reconstructed images. All images were enhanced by scaling them
to the full [0, 255] range to facilitate visual analysis.

DIP4E_GLOBAL_Print_Ready.indb 867 6/16/2017 2:15:55 PM

868 Chapter 11 Feature Extraction

When transforming image pixels, keep in mind that image coordinates are the same as matrix coor-
dinates; that is, (,)x y represents (,),r c and the origin is the top left. Axes of the principal components
just illustrated are as shown in Figs. 11.43(a) and (d). You need to keep this in mind in interpreting the
results of applying a principal components transformation to objects in an image.

11.6 WHOLE-IMAGE FEATURES

The descriptors introduced in Sections 11.2 through 11.4 are well suited for appli-
cations (e.g., industrial inspection), in which individual regions can be segmented
reliably using methods such as the ones discussed in Chapters 10 and 11. With the
exception of the application in Example 11.17, the principal components feature
vectors in Section 11.5 are different from the earlier material, in the sense that they
are based on multiple images. But even these descriptors are localized to sets of
corresponding pixels. In some applications, such as searching image databases for
matches (e.g., as in human face recognition), the variability between images is so
extensive that the methods in Chapters 10 and 11 are not applicable.

11.6

x2

x1

Direction perpendicular
to the direction of max
variance

Direction of
max variance

e2
e1

y2

y1

x2

x1

Centroid

y2

y1

ba
dc

FIGURE 11.43
(a) An object.
(b) Object show-
ing eigenvectors
of its covariance
matrix.
(c) Transformed
object, obtained
using Eq. (11-49).
(d) Object
translated so that
all its coordinate
values are greater
than 0.

DIP4E_GLOBAL_Print_Ready.indb 868 6/16/2017 2:15:56 PM

11.6 Whole-Image Features 869

The state of the art in image processing is such that as the complexity of the task
increases, the number of techniques suitable for addressing those tasks decreases.
This is particularly true when dealing with feature descriptors applicable to entire
images that are members of a large family of images. In this section, we discuss
two of the principal feature detection methods currently being used for this pur-
pose. One is based on detecting corners, and the other works with entire regions
in an image. Then, in Section 11.7 we present a feature detection and description
approach designed specifically to work with these types of features.

THE HARRIS-STEPHENS CORNER DETECTOR

Intuitively, we think of a corner as a rapid change of direction in a curve. Corners
are highly effective features because they are distinctive and reasonably invariant to
viewpoint. Because of these characteristics, corners are used routinely for matching
image features in applications such as tracking for autonomous navigation, stereo
machine vision algorithms, and image database queries.

In this section, we discuss an algorithm for corner detection formulated by Har-
ris and Stephens [1988]. The idea behind the Harris-Stephens (HS) corner detec-
tor is illustrated in Fig. 11.45. The basic approach is this: Corners are detected by
running a small window over an image, as we did in Chapter 3 for spatial filtering.
The detector window is designed to compute intensity changes. We are interested in
three scenarios: (1) Areas of zero (or small) intensity changes in all directions, which

The discussion in
Sections 12.5 through
12.7 dealing with neural
networks is also impor-
tant in terms of process-
ing large numbers of
entire images for the
purpose of characterizing
their content.

Our use the term “corner”
is broader than just
90° corners; it refers to
features that are “corner-
like.”

x2

x10
0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

y2

y10
0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

y2

y1
�3 �2 �1 1 2 3

3

2

1

�1

�2

�3

x2

e2 e1

x10
0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

ba
dc

FIGURE 11.44
A manual
example.
(a) Original points.
(b) Eigenvectors of
the covariance
matrix of the points
in (a).
(c) Transformed
points obtained
using Eq. (11-49).
(d) Points from (c),
rounded and trans-
lated so that all
coordinate values
are integers greater
than 0. The dashed
lines are included
to facilitate viewing.
They are not part of
the data.

DIP4E_GLOBAL_Print_Ready.indb 869 6/16/2017 2:15:56 PM

870 Chapter 11 Feature Extraction

happens when the window is located in a constant (or nearly constant) region, as
in location A in Fig. 11.45; (2) areas of changes in one direction but no (or small)
changes in the orthogonal direction, which this happens when the window spans a
boundary between two regions, as in location B; and (3) areas of significant changes
in all directions, a condition that happens when the window contains a corner (or
isolated points), as in location C. The HS corner detector is a mathematical formula-
tion that attempts to differentiate between these three conditions.

Let f denote an image, and let f s t(,) denote a patch of the image defined by the
values of (,).s t A patch of the same size, but shifted by (,),x y is given by f s x t y(,).+ +
Then, the weighted sum of squared differences between the two patches is given by

 C x y s t f s x t y f s t
ts

(,) (,) (,) (,)= + + −[]∑∑ w
2

 (11-56)

where w(,)s t is a weighting function to be discussed shortly. The shifted patch can be
approximated by the linear terms of a Taylor expansion

 f s x t y f s t xf s t yf s tx y(,) (,) (,) (,)+ + ≈ + + (11-57)

where f s t f xx(,) = ∂ ∂ and f s t f yy(,) ,= ∂ ∂ both evaluated at (,).s t We can then write
Eq. (11-56) as

 C x y s t xf s t yf s tx y
ts

(,) (,) (,) (,)= +⎡⎣ ⎤⎦∑∑ w
2

 (11-58)

This equation can written in matrix form as

 C x y x y
x

y
(,) = [] ⎡

⎣
⎢

⎤

⎦
⎥M (11-59)

A patch is the image area
spanned by the detector
window at any given
time.

FIGURE 11.45
Illustration of how
the Harris-Stephens
corner detector
operates in the
three types of sub-
regions indicated by
A (flat), B (edge),
and C (corner). The
wiggly arrows
indicate graphically
a directional
response in the
detector as it moves
in the three areas
shown.

B C

Region 1

Region 2
A

Boundary

DIP4E_GLOBAL_Print_Ready.indb 870 6/16/2017 2:15:57 PM

11.6 Whole-Image Features 871

where

 M A= ∑∑ w(,)s t
ts

 (11-60)

and

 A =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f f f

f f f
x x y

x y y

2

2
 (11-61)

Matrix M sometimes is called the Harris matrix. It is understood that its terms are
evaluated at (,).s t If w(,)s t is isotropic, then M is symmetric because A is. The
weighting function w(,)s t used in the HS detector generally has one of two forms:
(1) it is 1 inside the patch and 0 elsewhere (i.e., it has the shape of a box lowpass filter
kernel), or (2) it is an exponential function of the form

 w(,) ()s t e s t= − +2 2 22s (11-62)

The box is used when computational speed is paramount and the noise level is low.
The exponential form is used when data smoothing is important.

As illustrated in Fig. 11.45, a corner is characterized by large values in region C,
in both spatial directions. However, when the patch spans a boundary there will also
be a response in one direction. The question is: How can we tell the difference? As
we discussed in Section 11.5 (see Example 11.17), the eigenvectors of a real, sym-
metric matrix (such as M above) point in the direction of maximum data spread,
and the corresponding eigenvalues are proportional to the amount of data spread in
the direction of the eigenvectors. In fact, the eigenvectors are the major axes of an
ellipse fitting the data, and the magnitude of the eigenvalues are the distances from
the center of the ellipse to the points where it intersects the major axes. Figure 11.46
illustrates how we can use these properties to differentiate between the three cases
in which we are interested.

The small image patches in Figs. 11.46(a) through (c) are representative of regions
A, B, and C in Fig. 11.45. In Fig. 11.46(d), we show values of (,)f fx y computed using
the derivative kernels wy = −[]1 0 1 and w wx y

T= (remember, we use the coordinate
system defined in Fig. 2.19). Because we compute the derivatives at each point in the
patch, variations caused by noise result in scattered values, with the spread of the
scatter being directly related to the noise level and its properties. As expected, the
derivatives from the flat region form a nearly circular cluster, whose eigenvalues are
almost identical, yielding a nearly circular fit to the points (we label these eigenvalues
as “small” in relation to the other two plots). Figure 11.46(e) shows the derivatives of
the patch containing the edge. Here, the spread is greater along the x-axis, and about
nearly the same as Fig. 11.46 (a) in the y-axis. Thus, eigenvalue lx is “large” while ly is

“small.” Consequently, the ellipse fitting the data is elongated in the x-direction. Final-
ly, Fig. 11.46(f) shows the derivatives of the patch containing the corner. Here, the
data is spread along both directions, resulting in two large eigenvalues and a much
larger and nearly circular fitting ellipse. From this we conclude that: (1) two small
eigenvalues indicate nearly constant intensity; (2) one small and one large eigenvalue

As noted in Chapter 3, we
do not use bold notation
for vectors and matrices
representing spatial
kernels.

DIP4E_GLOBAL_Print_Ready.indb 871 6/16/2017 2:15:58 PM

872 Chapter 11 Feature Extraction

imply the presence of a vertical or horizontal boundary; and (3) two large eigenval-
ues imply the presence of a corner or (unfortunately) isolated bright points.

Thus, we see that the eigenvalues of the matrix formed from derivatives in the
image patch can be used to differentiate between the three scenarios of interest.
However, instead of using the eigenvalues (which are expensive to compute), the HS
detector utilizes a measure of corner response based on the fact that the trace of a
square matrix is equal to the sum of its eigenvalues, and its determinant is equal to
the product of its eigenvalues. The measure is defined as

R k

k

x y x y= − +

= −

l l l l()

det() ()

2

2M Mtrace
 (11-63)

where k is a constant to be explained shortly. Measure R has large positive values
when both eigenvalues are large, indicating the presence of a corner; it has large
negative values when one eigenvalue is large and the other small, indicating an edge;

The eigenvalues of the
2 × 2 matrix M can be
expressed in a closed
form (see Problem 11.31).
However, their computa-
tion requires squares and
square roots, which are
expensive to process.

The advantage of this for-
mulation is that the trace
is the sum of the main
diagonal terms of M (just
two numbers). The deter-
minant of a 2 × 2 matrix
is the product of the main
diagonal elements minus
the product of the cross
elements. These are trivial
computations.

�1 1
yf

Flat

1

1

�1

yf

xf

: smallxl

: smallyl

�1 1

1

�1

yf

xf: smallyl

: largexl

Straight
Edge

�1

1

�1

xf
: largexl

: largeyl

Corner

ba c
ed f

FIGURE 11.46 (a)–(c) Noisy images and image patches (small squares) encompassing image regions similar in content
to those in Fig. 11.45. (d)–(f) Plots of value pairs (,)f fx y showing the characteristics of the eigenvalues of M that are
useful for detecting the presence of a corner in an image patch.

DIP4E_GLOBAL_Print_Ready.indb 872 6/16/2017 2:15:59 PM

11.6 Whole-Image Features 873

and its absolute value is small when both eigenvalues are small, indicating that the
image patch under consideration is flat.

Constant k is determined empirically, and its range of values depends on the imple-
mentation. For example, the MATLAB Image Processing Toolbox uses 0 0 25< <k . .
You can interpret k as a “sensitivity factor;” the smaller it is, the more likely the detec-
tor is to find corners. Typically, R is used with a threshold, T. We say that a corner at
an image location has been detected only if R T> for a patch at that location.

EXAMPLE 11.18 : Applying the HS corner detector.

Figure 11.47(a) shows a noisy image, and Fig. 11.47(b) is the result of using the HS corner detector
with k = 0 04. and T = 0 01. (the default values in our implementation). All corners of the squares were
detected correctly, but the number of false detections is too high (note that all errors occurred on the
right side of the image, where the difference in intensity between squares is less). Figure 11.47(c) shows

ba c
ed f

FIGURE 11.47 (a) A 600 600× image with values in the range [,],0 1 corrupted by additive Gaussian noise with 0 mean
and variance of 0.006. (b) Result of applying the HS corner detector with k = 0 04. and T = 0 01. (the defaults). Sev-
eral errors are visible. (c) Result using k = 0 1. and T = 0 01. . (d) Result using k = 0 1. and T = 0 1. . (e) Result using
k = 0 04. and T = 0 1. . (f) Result using k = 0 04. and T = 0 3. (only the strongest corners on the left were detected).

DIP4E_GLOBAL_Print_Ready.indb 873 6/16/2017 2:16:01 PM

874 Chapter 11 Feature Extraction

the result obtained by increasing k to 0.1 and leaving T at 0.01. This time, all corners were detected cor-
rectly. As Fig. 11.47(d) shows, increasing the threshold to T = 0 1. yielded the same result. In fact, using
the default value of k and leaving T at 0.1 also produced the same result, as Fig. 11.47(e) shows. The
point of all this is that there is considerable flexibility in the interplay between the values of k and T.
Figure 11.47(f) shows the result obtained using the default value for k and using T = 0 3. . As expected,
increasing the value of the threshold eliminated some corners, yielding in this case only the corner of
the squares with larger intensity differences. Increasing the value of k to 0.1 and setting T to its default
value yielded the same result, as did using k = 0 1. and T = 0 3. , demonstrating again the flexibility in the
values chosen for these two parameters. However, as the level of noise increases, the range of possible
values becomes narrower, as the results in the next paragraph illustrate.

Figure 11.48(a) shows the checkerboard corrupted by a much higher level of additive Gaussian noise
(see the figure caption). Although this image does not appear much different than Fig. 11.47(a), the
results using the default values of k and T are much worse than before. False corners were detected even
on the left side of the image, where the intensity differences are much stronger. Figure 11.48(c) is the
result of increasing k near the maximum value in our implementation (2.5) while keeping T at its default
value. This time, k alone could not overcome the higher noise level. On the other hand, decreasing k to
its default value and increasing T to 0.15 produced a perfect result, as Fig. 11.48(d) shows.

Figure 11.49(a) shows a more complex image with a significant number of corners embedded in
various ranges of intensities. Figure 11.49(b) is the result obtained using the default values for k and T.

ba
dc

FIGURE 11.48
(a) Same as Fig.
11.47(a), but
corrupted with
Gaussian noise of
mean 0 and
variance 0.01.
(b) Result of using
the HS detector
with k = 0 04. and
T = 0 01. [compare
with Fig. 11.47(b)].
(c) Result with
k = 0 249. , (near
the highest value
in our implementa-
tion), and T = 0 01. .
(d) Result of using
k = 0 04. and
T = 0 15. .

DIP4E_GLOBAL_Print_Ready.indb 874 6/16/2017 2:16:02 PM

11.6 Whole-Image Features 875

As you can see, numerous detection errors occurred (see, for example, the large number of wrong corner
detections in the right edge of the building). Increasing k alone had little effect on the over-detection
of corners until k was near its maximum value. Using the same values as in Fig. 11.48(c) resulted in the
image in 11.49(c), which shows a reduced number of erroneous corners, at the expense of missing numer-
ous important ones in the front of the building. Reducing k to 0.17 and increasing T to 0.05 did a much
better job, as Fig. 11.49(d) show. Parameter k did not play a major role in corner detection for the building
image. In fact, Figs. 11.49(e) and (f) show essentially the same level of performance obtained by reducing
k to its default value of 0.04, and using T = 0 05. and T = 0 07. , respectively.

Finally, Fig. 11.50 shows corner detection on a rotated image. The result in Fig. 11.50(b) was obtained
using the same parameters we used in Fig. 11.49(f), showing the relative insensitivity of the method to
rotation. Figures 11.49(f) and 11.50(b) show detection of at least one corner in every major structural
feature of the image, such as the front door, all the windows, and the corners that define the apex of the
facade. For matching purposes, these are excellent results.

ba c
ed f

FIGURE 11.49 600 600× image of a building. (b) Result of applying the HS corner detector with k = 0 04. and T = 0 01.
(the default values in our implementation). Numerous irrelevant corners were detected. (c) Result using k = 0 249.
and the default value for T. (d) Result using k = 0 17. and T = 0 05. . (e) Result using the default value for k and
T = 0 05. . (f) Result using the default value of k and T = 0 07. .

DIP4E_GLOBAL_Print_Ready.indb 875 6/16/2017 2:16:03 PM

876 Chapter 11 Feature Extraction

ba

FIGURE 11.50
(a) Image
rotated 5°.
(b) Corners
detected using the
parameters used
to obtain
Fig. 11.49(f).

MAXIMALLY STABLE EXTREMAL REGIONS (MSERs)

The Harris-Stephens corner detector discussed in the previous section is useful in
applications characterized by sharp transitions of intensities, such as the intersec-
tion of straight edges, that result in corner-like features in an image. Conversely, the
maximally stable extremal regions (MSERs) introduced by Matas et al. [2002] are
more “blob” oriented. As with the HS corner detector, MSERs are intended to yield
whole image features for the purpose of establishing correspondence between two
or more images.

We know from Fig. 2.18 that a grayscale image can be viewed as a topographic
map, with the xy-axes representing spatial coordinates, and the z-axis representing
intensities. Imagine that we start thresholding an 8-bit grayscale image one intensity
level at a time. The result of each thresholding is a binary image in which we show
the pixels at or above the threshold in white, and the pixels below the threshold as
black. When the threshold, T, is 0, the result is a white image (all pixel values are
at or above 0). As we start increasing T in increments of one intensity level, we will
begin to see black components in the resulting binary images. These correspond to
local minima in the topographic map view of the image. These black regions may
begin to grow and merge, but they never get smaller from image to image. Finally,
when we reach T = 255, the resulting image will be black (there are no pixel values
above this level). Because each stage of thresholding results in a binary image, there
will be one or more connected components of white pixels in each image. The set of
all such components resulting from all thresholdings is the set of extremal regions.
Extremal regions that do not change size (number of pixels) appreciably over a
range of threshold values are called maximally stable extremal regions.

As you will see shortly, the procedure just discussed can be cast in the form of a
rooted, connected tree called a component tree, where each level of the tree corre-
sponds to a value of the threshold discussed in the previous paragraph. Each node
of this tree represents an extremal region, R, defined as

 ∀ ∈ ∀ ∈p R q R I p I q and boundary() : () ()> (11-64)

Remember, ∀
means “for any,” ∈
means “belonging to,”
and a colon, :,
is used to
mean “it is true that.”

DIP4E_GLOBAL_Print_Ready.indb 876 6/16/2017 2:16:03 PM

11.6 Whole-Image Features 877

where I is the image under consideration, and p and q are image points. This equa-
tion indicates that an extremal region R is a region of I, with the property that the
intensity of any point in the region is higher than the intensity at any point in the
boundary of the region. As usual, we assume that image intensities are integers,
ordered from 0 (black) to the maximum intensity (e.g., 255 for 8-bit images), which
are represented by white.

MSERs are found by analyzing the nodes of the component tree. For each con-
nected region in the tree, we compute a stability measure, c, defined as

 c()
() ()

R
R R

R
j
T n T i

T n T
k
T n T

j
T n T

+
+ − + +

+
=

−
�

� �

�

1 1

 (11-65)

where R is the size of the area (number of pixels) of connected region R, T is a
threshold value in the range T I I∈[min(), max()], and �T is a specified thresh-
old increment. Regions Ri

T n T+ −() ,1 � Rj
T n T+ � , and Rk

T n T+ +()1 � are connected regions
obtained at threshold levels T n T+ −() ,1 � T n T+ � , and T n T+ +() ,1 � respectively.
In terms of the component tree, regions Ri and Rk are respectively the parent and
child of region Rj . Because T n T T n T+ − < + +() () ,1 1� � we are guaranteed that
| | | |.() ()R Ri

T n T
k
T n T+ − + +1 1� �≥ It then follows from Eq. (11-65) that c ≥ 0. MSREs

are the regions corresponding to the nodes in the tree that have a stability value
that is a local minimum along the path of the tree containing that region. What this
means in practice is that maximally stable regions are regions whose sizes do not
change appreciably across two, 2�T neighboring thresholded images.

Figure 11.51 illustrates the concepts just introduced. The grayscale image at the
top consists of some simple regions of constant intensity, with values in the range
[,].0 255 Based on the explanation of Eqs. (11-64) and (11-65), we used the threshold
T = 10, which is in the range min() , max() .I I= =[]5 225 Choosing �T = 50 segmen-
ted all the different regions of the image. The column of binary images on the left con-
tains the results of thresholding the grayscale image with the threshold values shown.
The resulting component tree is on the right. Note that the tree is shown “root up,”
which is the way you would normally program it.

All the squares in the grayscale image are of the same size (area); therefore,
regardless of the image size, we can normalize the size of each square to 1. For exam-
ple, if the image is of size 400 400× pixels, the size of each square is 100 100 104× =
pixels. Normalizing the size to 1 means that size 1 corresponds to 104 pixels (one
square), size 2 corresponds to 2 104× pixels (two squares), and so forth. You can
arrive at the same conclusion by noticing that the ratio in Eq. (11-65) eliminates the
common 104 factor.

The component tree in Fig. 11.51 is a good summary of how the MSER algorithm
works. The first level is the result of thresholding I with T T+ =� 60. There is only
one connected component (white pixels) in the thresholded image on the left. The
size of the connected component is 11 normalized units. As mentioned above, each
node of a component tree, denoted by a subscripted R, contains one connected
component consisting of white pixels. The next level in the tree is formed from the

DIP4E_GLOBAL_Print_Ready.indb 877 6/16/2017 2:16:06 PM

878 Chapter 11 Feature Extraction

regions in the binary image obtained by thresholding I using T T+ =2 110� . As you
can see on the left, this image has three connected components, so we create three
nodes in the component tree at the level of the thresholded image. Similarly, the
binary image obtained by thresholding I with T T+ =3 160� has two connected

225

225

225

225225

175

125

125

5 5

5

5

5

90

90

90

Region R1

Region R8Region R7

Region R6Region R5

Region R4Region R3Region R2

Area = 11

Area = 2

Area = 3 Area = 1 Area = 3

Area = 3

Area = 3 Area = 1

3=c 8 3=c

0=c1=c

60T T+ =�

2 110T T+ =�

3 160T T+ =�

4 210T T+ =�

FIGURE 11.51 Detecting MSERs. Top: Grayscale image. Left: Thresholded images using T = 10 and �T = 50. Right:
Component tree, showing the individual regions. Only one MSER was detected (see dashed tree node on the
rightmost branch of the tree). Each level of the tree is formed from the thresholded image on the left, at that same
level. Each node of the tree contains one extremal region (connected component) shown in white, and denoted by
a subscripted R.

DIP4E_GLOBAL_Print_Ready.indb 878 6/16/2017 2:16:06 PM

11.6 Whole-Image Features 879

components, so we create two nodes in the tree at this level. These two connected
components are children of the connected components in the previous level, so we
place the new nodes in the same path as their respective parents. The next level of
the tree is explained in the same manner. Note that the center node in the previous
level had no children, so that path of the tree ends in the second level.

Because we need to check size variations between parent and child regions to deter-
mine stability, only the two middle regions (corresponding to threshold values of 110
and 160) are relevant in this example. As you can see in our component tree, only R6
has a parent and child of similar size (the sizes are identical in this case). Therefore,
region R6 is the only MSER detected in this case. Observe that if we had used a single
global threshold to detect the brightest regions, region R7 would have been detected
also (an undesirable result in this context). Thus, we see that although MSERs are
based on intensity, they also depend on the nature of the background surrounding a
region. In this case, R6 was surrounded by a darker background than R7, and the darker
background was thresholded earlier in the tree, allowing the size of R6 to remain con-
stant over the two, 2�T neighboring range required for detection as an MSER.

In our example, it was easy to detect an MSER as the only region that did not
change size, which gave a stability factor 0. A value of zero automatically implies
that an MSER has been found because the parent and child regions are of the
same size. When working with more complex images, the values of stability fac-
tors seldom are zero because of variations in intensity caused by variables such
as illumination, viewpoint, and noise. The concept of a local minimum mentioned
earlier is simply a way of saying that MSERs are extremal regions that do change
size significantly over a 2�T thresholding range. What is considered a “significant”
change depends on the application.

It is not unusual for numerous MSERs to be detected, many of which may not be
meaningful because of their size. One way to control the number of regions detected
is by the choice of �T. Another is to label as insignificant any region whose size is
not in a specified size range. We illustrate this in Example 11.19.

Matas et al. [2002] indicate that MSERs are affine-covariant (see Section 11.1).
This follows directly from the fact that area ratios are preserved under affine trans-
formations, which in turn implies that for an affine transformation the original and
transformed regions are related by that transformation. We illustrate this property
in Figs. 11.54 and 11.55.

Finally, keep in mind that the preceding MSER formulation is designed to detect
bright regions with darker surroundings. The same formulation applied to the nega-
tive (in the sense defined in Section 3.2) of an image will detect dark regions with
lighter surroundings. If interest lies in detecting both types of regions simultaneously,
we form the union of both sets of MSERs.

EXAMPLE 11.19 : Extracting MSERs from grayscale images.

Figure 11.52(a) shows a slice image from a CT scan of a human head, and Fig. 11.52(b) shows the result
of smoothing Fig. 11.52(a) with a box kernel of size 15 15× elements. Smoothing is used routinely as a

DIP4E_GLOBAL_Print_Ready.indb 879 6/16/2017 2:16:07 PM

880 Chapter 11 Feature Extraction

preprocessing step when �T is relatively small. In this case, we used T = 0 and �T = 10. This increment
was small enough to require smoothing for proper MSER detection. In addition, we used a “size filter,”
in the sense that the size (area) of an MSER had to be between 10,262 and 34,200 pixels; these size limits
are 3% and 10% of the size of the image, respectively.

Figure 11.53 illustrates MSER detection on a more complex image. We used less blurring (a 5 5× box
kernel) in this image because is has more fine detail. We used the same T and �T as in Fig. 11.52, and
a valid MSER size in the range 10,000 to 30,000 pixels, corresponding approximately to 3% and 8% of
image size, respectively. Two MSERs were detected using these parameters, as Figs. 11.53(c) and (d)
show. The composite MSER, shown in Fig. 11.53(e), is a good representation of the front of the building.

Figure 11.54 shows the behavior under rotation of the MSERs detected in Fig. 11.53. Figure 11.54(a)
is the building image rotated 5° in the conterclockwise direction. The image was cropped after rota-
tion to eliminate the resulting black areas (see Fig. 2.41), which would change the nature of the image
data and thus influence the results. Figure 11.54(b) is the result of performing the same smoothing as
in Fig. 11.53, and Fig. 11.54(c) is the composite MSER detected using the same parameters as in Fig.
11.53(e). As you can see, the composite MSER of the rotated image corresponds quite closely to the
MSER in Fig. 11.53(e).

Finally, Fig. 11.55 shows the behavior of the MSER detector under scale changes. Figure 11.55(a) is the
building image scale to 0.5 of its original dimensions, and Fig. 11.55(b) shows the image smoothed with
a correspondingly smaller box kernel of size 3 3× . Because the image area is now one-fourth the size

ba
dc

FIGURE 11.52
(a) 600 570× CT
slice of a human
head. (b) Image
smoothed with a
box kernel of size
15 15× elements. (c)
A extremal region
along the path of the
tree containing one
MSER.
(d) The MSER.
(All MSER regions
were limited to the
range 10,260 – 34,200
pixels, correspond-
ing to a range
between 3%
and 10% of image
size.)
(Original image
courtesy of Dr.
David R.
Pickens, Vanderbilt
University.)

DIP4E_GLOBAL_Print_Ready.indb 880 6/16/2017 2:16:08 PM

11.7 Scale-Invariant Feature Transform (SIFT) 881

of the original area, we reduced the valid MSER range by one-fourth to 2500 –7500 pixels. Other than
these changes, we used the same parameters as in Fig. 11.53. Figure 11.55(c) shows the resulting MSER.
As you can see, this figure is quite close to the full-size result in Fig. 11.53(e).

11.7 SCALE-INVARIANT FEATURE TRANSFORM (SIFT)

SIFT is an algorithm developed by Lowe [2004] for extracting invariant features from
an image. It is called a transform because it transforms image data into scale-invariant
coordinates relative to local image features. SIFT is by far the most complex feature
detection and description approach we discuss in this chapter.

As you progress though this section, you will notice the use of a significant num-
ber of experimentally determined parameters. Thus, unlike most of the formulations
of individual approaches we have discussed thus far, SIFT is strongly heuristic. This
is a consequence of the fact that our current knowledge is insufficient to tell us how

11.7

ba
c ed

FIGURE 11.53 (a) Building image of size 600 600× pixels. (b) Image smoothed using a 5 5× box kernel. (c) and
(d) MSERs detected using T = 0, �T = 10, and MSER size range between 10,000 and 30,000 pixels, corresponding
approximately to 3% and 8% of the area of the image. (e) Composite image.

DIP4E_GLOBAL_Print_Ready.indb 881 6/16/2017 2:16:09 PM

882 Chapter 11 Feature Extraction

to assemble a set of reasonably well-understood individual methods into a “system”
capable of addressing problems that cannot be solved by any single known method
acting alone. Thus, we are forced to determine experimentally the interplay between
the various parameters controlling the performance of more complex systems.

When images are similar in nature (same scale, similar orientation, etc), cor-
ner detection and MSERs are suitable as whole image features. However, in the
presence of variables such as scale changes, rotation, changes in illumination, and
changes in viewpoint, we are forced to use methods like SIFT.

SIFT features (called keypoints) are invariant to image scale and rotation, and
are robust across a range of affine distortions, changes in 3-D viewpoint, noise, and
changes of illumination. The input to SIFT is an image. Its output is an n-dimensional
feature vector whose elements are the invariant feature descriptors. We begin our
discussion by analyzing how scale invariance is achieved by SIFT.

ba c

FIGURE 11.54 (a) Building image rotated 5° counterclockwise. (b) Smoothed image using the same kernel as in
Fig. 11.53(b). (c) Composite MSER detected using the same parameters we used to obtain Fig. 11.53(e). The MSERs
of the original and rotated images are almost identical.

ba c

FIGURE 11.55 (a) Building image reduced to half-size. (b) Image smoothed with a 3 3× box
kernel. (c) Composite MSER obtained with the same parameters as Fig. 11.53(e), but using a
valid MSER region size range of 2,500 -–7,500 pixels.

DIP4E_GLOBAL_Print_Ready.indb 882 6/16/2017 2:16:09 PM

11.7 Scale-Invariant Feature Transform (SIFT) 883

SCALE SPACE

The first stage of the SIFT algorithm is to find image locations that are invariant
to scale change. This is achieved by searching for stable features across all possible
scales, using a function of scale known as scale space, which is a multi-scale rep-
resentation suitable for handling image structures at different scales in a consis-
tent manner. The idea is to have a formalism for handling the fact that objects in
unconstrained scenes will appear in different ways, depending on the scale at which
images are captured. Because these scales may not be known beforehand, a reason-
able approach is to work with all relevant scales simultaneously. Scale space repre-
sents an image as a one-parameter family of smoothed images, with the objective of
simulating the loss of detail that would occur as the scale of an image decreases. The
parameter controlling the smoothing is referred to as the scale parameter.

In SIFT, Gaussian kernels are used to implement smoothing, so the scale param-
eter is the standard deviation. The reason for using Gaussian kernels in based on
work performed by Lindberg [1994], who showed that the only smoothing kernel
that meets a set of important constraints, such as linearity and shift-invariance, is
the Gaussian lowpass kernel. Based on this, the scale space, L x y(, ,),s of a grayscale
image, f x y(,),† is produced by convolving f with a variable-scale Gaussian kernel,
G x y(, ,) :s

 L x y G x y f x y(, ,) (, ,) (,)s s= � (11-66)

where the scale is controlled by parameter s, and G is of the form

 G x y e x y(, ,) ()s
ps

s= − +1
2 2

22 2 2

 (11-67)

The input image f x y(,) is successively convolved with Gaussian kernels having
standard deviations s s s s, , , , . . .k k k2 3 to generate a “stack” of Gaussian-filtered
(smoothed) images that are separated by a constant factor k, as shown in the lower
left of Fig. 11.56.

SIFT subdivides scale space into octaves, with each octave corresponding to a
doubling of s, just as an octave in music theory corresponds to doubling the fre-
quency of a sound signal. SIFT further subdivides each octave into an integer num-
ber, s, of intervals, so that an interval of 1 consists of two images, an interval of 2
consists of three images, and so forth. It then follows that the value used in the Gauss-
ian kernel that generates the image corresponding to an octave is kss s= 2 which
means that k s= 21 . For example, for s = 2, k = 2, and the input image is succes-
sively smoothed using standard deviations of s s s, () , ,2 2 2and () so that the third
image (i.e., the octave image for s = 2) in the sequence is filtered using a Gaussian
kernel with standard deviation ()2 22s s= .

† Experimental results reported by Lowe [2004] suggest that smoothing the original image using a Gaussian
kernel with s = 0 5. and then doubling its size by linear (nearest-neighbor) interpolation improves the number
of stable features detected by SIFT. This preprocessing step is an integral part of the algorithm. Images are
assumed to have values in the range [,].0 1

As in Chapter 3, “�”
indicates spatial convolu-
tion.

DIP4E_GLOBAL_Print_Ready.indb 883 6/16/2017 2:16:11 PM

884 Chapter 11 Feature Extraction

The preceding discussion indicates that the number of smoothed images gener-
ated in an octave is s + 1. However, as you will see in the next section, the smoothed
images in scale space are used to compute differences of Gaussians [see Eq. (10-32)]
which, in order to cover a full octave, implies that an additional two images past the
octave image are required, giving a total of s + 3 images. Because the octave image is
always the ()s + 1 th image in the stack (counting from the bottom), it follows that this
image is the third image from the top in the expanded sequence of s + 3 images. Each
octave in Fig. 11.56 contains five images, indicating that s = 2 was used in this case.

The first image in the second octave is formed by downsampling the original
image (by skipping every other row and column), and then smoothing it using a
kernel with twice the standard deviation used in the first octave (i.e., s s2 12=).
Subsequent images in that octave are smoothed using s2 , with the same sequence
of values of k as in the first octave (this is denoted by dots in Fig. 11.56). The same
basic procedure is then repeated for subsequent octaves. That is, the first image of
the new octave is formed by: (1) downsampling the original image enough times
to achieve half the size of the image in the previous octave, and (2) smoothing the
downsampled image with a new standard deviation that is twice the standard devia-
tion of the previous octave. The rest of the images in the new octave are obtained by
smoothing the downsampled image with the new standard deviation multiplied by
the same sequence of values of k as before.

When k = 2, we can obtain the first image of a new octave without having to
smooth the downsampled image. This is because, for this value of k, the kernel used
to smooth the first image of every octave is the same as the kernel used to smooth

Instead of repeatedly
downsampling the
original image, we can
carry the previously
downsampled image,
and downsample it
by 2 to obtain the image
required for the next
octave.

Images smoothed using
Gaussian lowpass kernelsOctave 1

Scale

Scale

Scale
Octave 2

Octave 3

.

.

.
More octaves

6

6
Standard deviations used
in the Gaussian lowpass
kernels of each octave (the
same number of images
with the same powers of k is
generated in each octave)

.

.

.

1s
1ks

2
1k s

3
1k s

4
1k s

2 12=s s
2ks

4
2k s...

2=3 2s s

4
3k s...

3ks 6

FIGURE 11.56
Scale space,
showing three
octaves. Because
s = 2 in this case,
each octave has five
smoothed
images. A
Gaussian ker-
nel was used for
smoothing, so the
space parameter
is s.

DIP4E_GLOBAL_Print_Ready.indb 884 6/16/2017 2:16:12 PM

11.7 Scale-Invariant Feature Transform (SIFT) 885

the third image from the top of the previous octave. Thus, the first image of a new
octave can be obtained directly by downsampling that third image of the previous
octave by 2. The result will be the same (see Problem 11.36). The third image from
the top of any octave is called the octave image because the standard deviation used
to smooth it is twice (i.e., k2 2=) the value of the standard deviation used to smooth
the first image in the octave.

Figure 11.57 uses grayscale images to further illustrate how scale space is con-
structed in SIFT. Because each octave is composed of five images, it follows that
we are again using s = 2. We chose s1 2 2 0 707= = . and k = =2 1 414. for this
example so that the numbers would result in familiar multiples. As in Fig. 11.56, the
images going up scale space are blurred by using Gaussian kernels with progressively
larger standard deviations, and the first image of the second and subsequent octaves
is obtained by downsampling the octave image from the previous octave by 2. As
you can see, the images become significantly more blurred (and consequently lose
more fine detail) as they go up both in scale as well as in octave. The images in the
third octave show significantly fewer details, but their gross appearance is unmistak-
ably that of the same structure.

DETECTING LOCAL EXTREMA

SIFT initially finds the locations of keypoints using the Gaussian filtered images,
then refines the locations and validity of those keypoints using two processing steps.

Finding the Initial Keypoints

Keypoint locations in scale space are found initially by SIFT by detecting extrema
in the difference of Gaussians of two adjacent scale-space images in an octave, con-
volved with the input image that corresponds to that octave. For example, to find
keypoint locations related to the first two levels of octave 1 in scale space, we look
for extrema in the function

 D x y G x y k G x y f x y(, ,) (, ,) (, ,) (,)s s s= −[]� (11-68)

It follows from Eq. (11-66) that

 D x y L x y k L x y(, ,)))(, , (, ,s s s= − (11-69)

In other words, all we have to do to form function D x y(, ,)s is subtract the first two
images of octave 1. Recall from the discussion of the Marr-Hildreth edge detector
(Section 10.2) that the difference of Gaussians is an approximation to the Laplacian
of a Gaussian (LoG). Therefore, Eq. (11-69) is nothing more than an approximation
to Eq. (10-30). The key difference is that SIFT looks for extrema in D x y(, ,),s where-
as the Marr-Hildreth detector would look for the zero crossings of this function.

Lindberg [1994] showed that true scale invariance in scale space requires that the
LoG be normalized by s2 (i.e., that s2 2
 G be used). It can be shown (see Problem
11.34) that

DIP4E_GLOBAL_Print_Ready.indb 885 6/16/2017 2:16:12 PM

886 Chapter 11 Feature Extraction

G x y k G x y k G(, ,) (, ,) ()s s s− ≈ − 1 2 2
 (11-70)

Therefore, DoGs already have the necessary scaling “built in.” The factor ()k − 1 is
constant over all scales, so it does not influence the process of locating extrema in
scale space. Although Eqs. (11-68) and (11-69) are applicable to the first two images

1

2

3

Scale
1 2 3 4 5

0.707 1.000 1.414 2.000 2.828

1.414 2.000 2.828 4.000 5.657

2.828 4.000 5.657 8.000 11.314

Octave

Octave 1

Bo
ok

 P
ag

e
W

rit
ab

le
 A

re
a

(4
5p

6
by

 3
7p

0)

2 1.414k = =

Sc
al

e

1 2 2 0.707= =s

1s

1ks

2
1k s

3
1k s

4
1k s

Octave 2

Sc
al

e
2ks

2
2k s

3
2k s

4
2k s

Octave 3

Sc
al

e

3 2 12 4= =s s s

3ks

2
3k s

3
3k s

4
3k s

2 12=s s

FIGURE 11.57
Illustration using
images of the first
three octaves of
scale space in
SIFT. The entries
in the table are
values of standard
deviation used
at each scale of
each octave. For
example the
standard
deviation used in
scale 2 of octave 1
is ks1, which is
equal to 1.0.
(The images
of octave 1 are
shown slightly
overlapped to
fit in the figure
space.)

DIP4E_GLOBAL_Print_Ready.indb 886 6/16/2017 2:16:13 PM

11.7 Scale-Invariant Feature Transform (SIFT) 887

of octave 1, the same form of these equations is applicable to any two images from
any octave, provided that the appropriate downsampled image is used, and the DoG
is computed from two adjacent images in the octave.

Figure 11.58 illustrates the concepts just discussed, using the building image from
Fig. 11.57. A total of s + 2 difference functions, D x y(, ,),s are formed in each octave
from all adjacent pairs of Gaussian-filtered images in that octave. These difference
functions can be viewed as images, and one sample of such an image is shown for each
of the three octaves in Fig. 11.58. As you might expect from the results in Fig. 11.57,
the level of detail in these images decreases the further up we go in scale space.

Figure 11.59 shows the procedure used by SIFT to find extrema in a D x y(, ,)s

image. At each location (shown in black) in a D x y(, ,)s image, the value of the pixel
at that location is compared to the values of its eight neighbors in the current image
and its nine neighbors in the images above and below. The point is selected as an
extremum (maximum or minimum) point if its value is larger than the values of all
its neighbors, or smaller than all of them. No extrema can be detected in the first
(last) scale of an octave because it has no lower (upper) scale image of the same size.

Improving the Accuracy of Keypoint Locations

When a continuous function is sampled, its true maximum or minimum may actually
be located between sample points. The usual approach used to get closer to the true

Octave 2

Octave 3

Octave 1

Scale

(, ,)D x y s

(, ,)D x y sSample

Gaussian-filtered images, (, ,)L x y s

FIGURE 11.58 How Eq. (11-69) is implemented in scale space. There are s + 3 L x y(, ,)s images and s + 2 corre-
sponding D x y(, ,)s images in each octave.

DIP4E_GLOBAL_Print_Ready.indb 887 6/16/2017 2:16:14 PM

888 Chapter 11 Feature Extraction

extremum (to achieve subpixel accuracy) is to fit an interpolating function at each
extremum point found in the digital function, then look for an improved extremum
location in the interpolated function. SIFT uses the linear and quadratic terms of
a Taylor series expansion of D x y(, ,),s shifted so that the origin is located at the
sample point being examined. In vector form, the expression is

D D

D D

D D

T
T

T T

()x
x

x x
x x

x

x x H x

= + ∂
∂

+ ∂
∂

∂
∂

= + () +

a b a b1
2
1
2

 (11-71)

where D and its derivatives are evaluated at the sample point, x = (, ,)x y Ts is the
offset from that point,
 is the familiar gradient operator,

D
D

D x

D y

D

= ∂
∂

=
∂ ∂
∂ ∂
∂ ∂

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x
s

 (11-72)

and H is the Hessian matrix

 H =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂

2 2 2 2

2 2 2 2

2 2 2

D x D x y D x

D y x D y D y

D x D y

s

s

s s DD ∂

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥s2

 (11-73)

The location of the extremum, ˆ ,x is found by taking the derivative of Eq. (11-71)
with respect to x and setting it to zero, which gives us (see Problem 11.37):

 x̂ H= − ()−1
D (11-74)

Because D and its
derivatives are evalu-
ated at the sample point,
they are constants with
respect to x.

Scale

(, ,)D x y s

Corresponding sections of three
contiguous images

FIGURE 11.59
Extrema (maxima
or minima) of the
D x y(, ,)s images
in an octave are
detected by
comparing a pixel
(shown in black)
to its 26 neighbors
(shown shaded) in
3 3× regions at the
current and
adjacent scale
images.

DIP4E_GLOBAL_Print_Ready.indb 888 6/16/2017 2:16:15 PM

11.7 Scale-Invariant Feature Transform (SIFT) 889

The Hessian and gradient of D are approximated using differences of neighbor-
ing points, as we did in Section 10.2. The resulting 3 3× system of linear equations
is easily solved computationally. If the offset x̂ is greater than 0.5 in any of its three
dimensions, we conclude that the extremum lies closer to another sample point, in
which case the sample point is changed and the interpolation is performed about
that point instead. The final offset x̂ is added to the location of its sample point to
obtain the interpolated estimate of the location of the extremum.

The function value at the extremum, D(),x⁄ is used by SIFT for rejecting unstable
extrema with low contrast, where D()x⁄ is obtained by substituting Eq. (11-74) into
Eq. (11-71), giving (see Problem 11.37):

 D D D T()x x⁄ ⁄= + ()1
2

 (11-75)

In the experimental results reported by Lowe [2004], any extrema for which D()x⁄
was less than 0.03 was rejected, based on all image values being in the range [,].0 1
This eliminates keypoints that have low contrast and/or are poorly localized.

Eliminating Edge Responses

Recall from Section 10.2 that using a difference of Gaussians yields edges in an
image. But keypoints of interest in SIFT are “corner-like” features, which are signifi-
cantly more localized. Thus, intensity transitions caused by edges are eliminated. To
quantify the difference between edges and corners, we can look at local curvature.
An edge is characterized by high curvature in one direction, and low curvature in the
orthogonal direction. Curvature at a point in an image can be estimated from the
2 2× Hessian matrix evaluated at that point. Thus, to estimate local curvature of the
DoG at any level in scalar space, we compute the Hessian matrix of D at that level:

 H =
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

2 2 2

2 2 2

D x D x y

D y x D y

D D

D D
xx xy

yx yy
 (11-76)

where the form on the right uses the same notation as the A term [Eq. (11-61)] of
the Harris matrix (but note that the main diagonals are different). The eigenvalues
of H are proportional to the curvatures of D. As we explained in connection with the
Harris-Stephens corner detector, we can avoid direct computation of the eigenvalues
by formulating tests based on the trace and determinant of H, which are equal to
the sum and product of the eigenvalues, respectively. To use notation different from
the HS discussion, let a and b be the eigenvalues of H with the largest and smallest
magnitude, respectively. Using the relationship between the eigenvalues of H and
its trace and determinant we have (remember, H is is symmetric and of size 2 2×) :

Tr

D

()

et() ()

H

H

= + = +

= − =

D D

D D D

xx yy

xx yy xy

a b

ab2
 (11-77)

If you display an image
as a topographic map
(see Fig. 2.18), edges
will appear as ridges
that have low curvature
along the ridge and high
curvature perpendicular
to it.

DIP4E_GLOBAL_Print_Ready.indb 889 6/16/2017 2:16:17 PM

890 Chapter 11 Feature Extraction

If the determinant is negative, the curvatures have different signs and the keypoint
in question cannot be an extremum, so it is discarded.

Let r denote the ratio of the largest to the smallest eigenvalue. Then a b= r and

Tr

Det

()

()

H
H

[] =
+() =

+() =
+()2 2 2

2

21a b

ab

b b

b

r

r

r

r
 (11-78)

which depends on the ratio of the eigenvalues, rather than their individual values.
The minimum of ()r r+ 1 2 occurs when the eigenvalues are equal, and it increases
with r. Therefore, to check that the ratio of principal curvatures is below some
threshold, r, we only need to check

Tr

Det

()

()

H
H

[] <
+()2 21r

r
 (11-79)

which is a simple computation. In the experimental results reported by Lowe [2004],
a value of r = 10 was used, meaning that keypoints with ratios of curvature greater
than 10 were eliminated.

Figure 11.60 shows the SIFT keypoints detected in the building image using the
approach discussed in this section. Keypoints for which D()x⁄ in Eq. (11-75) was less
than 0.03 were rejected, as were keypoints that failed to satisfy Eq. (11-79) with
r = 10.

KEYPOINT ORIENTATION

At this point in the process, we have computed keypoints that SIFT considers stable.
Because we know the location of each keypoint in scale space, we have achieved
scale independence. The next step is to assign a consistent orientation to each key-
point based on local image properties. This allows us to represent a keypoint rela-
tive to its orientation and thus achieve invariance to image rotation. SIFT uses a

As with the HS corner
detector, the advantage
of this formulation is
that the trace and deter-
minants of 2 × 2 matrix
H are easy to compute.
See the margin note in
Eq. (11-63).

FIGURE 11.60
SIFT keypoints
detected in the
building image.
The points were
enlarged slightly
to make them
easier to see.

DIP4E_GLOBAL_Print_Ready.indb 890 6/16/2017 2:16:17 PM

11.7 Scale-Invariant Feature Transform (SIFT) 891

straightforward approach for this. The scale of the keypoint is used to select the
Gaussian smoothed image, L, that is closest to that scale. In this way, all orienta-
tion computations are performed in a scale-invariant manner. Then, for each image
sample, L x y(,), at this scale, we compute the gradient magnitude, M x y(,), and ori-
entation angle, u(,),x y using pixel differences:

 M x y L x y L x y L x y L x y(,) (,) (,) (,) (,)= + − −() + + − −()⎡
⎣

⎤
⎦1 1 1 12 2

1
2 (11-80)

and

 u(,) tan (,) (,) (,) (,)x y L x y L x y L x y L x y= + − −() + − −()⎡⎣ ⎤⎦
−1 1 1 1 1 (11-81)

A histogram of orientations is formed from the gradient orientations of sample
points in a neighborhood of each keypoint. The histogram has 36 bins covering the
360° range of orientations on the image plane. Each sample added to the histogram
is weighed by its gradient magnitude, and by a circular Gaussian function with a stan-
dard deviation 1.5 times the scale of the keypoint.

Peaks in the histogram correspond to dominant local directions of local gradients.
The highest peak in the histogram is detected and any other local peak that is within
80% of the highest peak is used also to create another keypoint with that orienta-
tion. Thus, for the locations with multiple peaks of similar magnitude, there will be
multiple keypoints created at the same location and scale, but with different orienta-
tions. SIFT assigns multiple orientations to only about 15% of points with multiple
orientations, but these contribute significant to image matching (to be discussed
later and in Chapter 12). Finally, a parabola is fit to the three histogram values clos-
est to each peak to interpolate the peak position for better accuracy.

Figure 11.61 shows the same keypoints as Fig. 11.60 superimposed on the image
and showing keypoint orientations as arrows. Note the consistency of orientation

See Section 10.2 regard-
ing computation of the
gradient magnitude and
angle.

FIGURE 11.61
The keypoints
from Fig. 11.60
superimposed
on the original
image. The arrows
indicate keypoint
orientations.

DIP4E_GLOBAL_Print_Ready.indb 891 6/16/2017 2:16:18 PM

892 Chapter 11 Feature Extraction

of similar sets of keypoints in the image. For example, observe the keypoints on the
right, vertical corner of the building. The lengths of the arrows vary, depending on
illumination and image content, but their direction is unmistakably consistent. Plots
of keypoint orientations generally are quite cluttered and are not intended for gen-
eral human interpretation. The value of keypoint orientation is in image matching,
as we will illustrate later in our discussion.

KEYPOINT DESCRIPTORS

The procedures discussed up to this point are used for assigning an image location,
scale, and orientation to each keypoint, thus providing invariance to these three
variables. The next step is to compute a descriptor for a local region around each
keypoint that is highly distinctive, but is at the same time as invariant as possible to
changes in scale, orientation, illumination, and image viewpoint. The idea is to be
able to use these descriptors to identify matches (similarities) between local regions
in two or more images.

The approach used by SIFT to compute descriptors is based on experimental
results suggesting that local image gradients appear to perform a function similar
to what human vision does for matching and recognizing 3-D objects from different
viewpoints (Lowe [2004]). Figure 11.62 summarizes the procedure used by SIFT
to generate the descriptors associated with each keypoint. A region of size 16 16×

8-directional histogram (the
bins are multiples of 45°)

Keypoint descriptor = 128-dimensional vector

= Keypoint

}

}

Gaussian weighting function

Gradients
in 16*16
region

FIGURE 11.62
Approach used to
compute a
keypoint
descriptor.

DIP4E_GLOBAL_Print_Ready.indb 892 6/16/2017 2:16:18 PM

11.7 Scale-Invariant Feature Transform (SIFT) 893

pixels is centered on a keypoint, and the gradient magnitude and direction are com-
puted at each point in the region using pixel differences. These are shown as ran-
domly oriented arrows in the upper-left of the figure. A Gaussian weighting function
with standard deviation equal to one-half the size of the region is then used to assign
a weight that multiplies the magnitude of the gradient at each point. The Gaussian
weighting function is shown as a circle in the figure, but it is understood that it is a
bell-shaped surface whose values (weights) decrease as a function of distance from
the center. The purpose of this function is to reduce sudden changes in the descriptor
with small changes in the position of the function.

Because there is one gradient computation for each point in the region surround-
ing a keypoint, there are ()16 2 gradient directions to process for each keypoint.
There are 16 directions in each 4 4× subregion. The top-rightmost subregion is
shown zoomed in the figure to simplify the explanation of the next step, which
consists of quantizing all gradient orientations in the 4 4× subregion into eight pos-
sible directions differing by 45°. Rather than assigning a directional value as a full
count to the bin to which it is closest, SIFT performs interpolation that distributes a
histogram entry among all bins proportionally, depending on the distance from that
value to the center of each bin. This is done by multiplying each entry into a bin by
a weight of 1 − d, where d is the shortest distance from the value to the center of a
bin, measured in the units of the histogram spacing, so that the maximum possible
distance is 1. For example, the center of the first bin is at 45 2 22 5° °= . , the next cen-
ter is at 22 5 45 67 5. . ,° ° °+ = and so on. Suppose that a particular directional value is
22 5. .° The distance from that value to the center of the first histogram bin is 0, so we
would assign a full entry (i.e., a count of 1) to that bin in the histogram. The distance
to the next center would be greater than 0, so we would assign a fraction of a full
entry, that is 1 1* (),− d to that bin, and so forth for all bins. In this way, every bin
gets a proportional fraction of a count, thus avoiding “boundary” effects in which a
descriptor changes abruptly as a small change in orientation causes it to be assigned
from one bin to another.

Figure 11.62 shows the eight directions of a histogram as a small cluster of vec-
tors, with the length of each vector being equal to the value of its correspond ing bin.
Sixteen histograms are computed, one for each 4 4× subregion of the 16 16× region
surrounding a keypoint. A descriptor, shown on the lower left of the figure, then con-
sists of a 4 4× array, each containing eight directional values. In SIFT, this descriptor
data is organized as a 128-dimensional vector.

In order to achieve orientation invariance, the coordinates of the descriptor and
the gradient orientations are rotated relative to the keypoint orientation. In order to
reduce the effects of illumination, a feature vector is normalized in two stages. First,
the vector is normalized to unit length by dividing each component by the vector
norm. A change in image contrast resulting from each pixel value being multiplied
by a constant will multiply the gradients by the same constant, so the change in
contrast will be cancelled by the first normalization. A brightness change caused
by a constant being added to each pixel will not affect the gradient values because
they are computed from pixel differences. Therefore, the descriptor is invariant to
affine changes in illumination. However, nonlinear illumination changes resulting,
for example, from camera saturation, can also occur. These types of changes can
cause large variations in the relative magnitudes of some of the gradients, but they

DIP4E_GLOBAL_Print_Ready.indb 893 6/16/2017 2:16:19 PM

894 Chapter 11 Feature Extraction

are less likely to affect gradient orientation. SIFT reduces the influence of large
gradient magnitudes by thresholding the values of the normalized feature vector
so that all components are below the experimentally determined value of 0.2. After
thresholding, the feature vector is renormalized to unit length.

SUMMARY OF THE SIFT ALGORITHM

As the material in the preceding sections shows, SIFT is a complex procedure con-
sisting of many parts and empirically determined constants. The following is a step-
by-step summary of the method.

1. Construct the scale space. This is done using the procedure outlined in Figs. 11.56
and 11.57. The parameters that need to be specified are s, s, (k is computed
from s), and the number of octaves. Suggested values are s = 1 6. , s = 2, and
three octaves.

2. Obtain the initial keypoints. Compute the difference of Gaussians, D x y(, ,),s
from the smoothed images in scale space, as explained in Fig. 11.58 and Eq. (11-69).
Find the extrema in each D x y(, ,)s image using the method explained in Fig.
11.59. These are the initial keypoints.

3. Improve the accuracy of the location of the keypoints. Interpolate the values
of D x y(, ,)s via a Taylor expansion. The improved key point locations are given
by Eq. (11-74).

4. Delete unsuitable keypoints. Eliminate keypoints that have low contrast and/or
are poorly localized. This is done by evaluating D from Step 3 at the improved
locations, using Eq. (11-75). All keypoints whose values of D are lower than a
threshold are deleted. A suggested threshold value is 0.03. Keypoints associated
with edges are deleted also, using Eq. (11-79). A value of 10 is suggested for r.

5. Compute keypoint orientations. Use Eqs. (11-80) and (11-81) to compute the
magnitude and orientation of each keypoint using the histogram-based proce-
dure discussed in connection with these equations.

6. Compute keypoint descriptors. Use the method summarized in Fig. 11.62 to
compute a feature (descriptor) vector for each keypoint. If a region of size
16 16× around each keypoint is used, the result will be a 128-dimensional feature
vector for each keypoint.

The following example illustrates the power of this algorithm.

EXAMPLE 11.20 : Using SIFT for image matching.

We illustrate the performance of the SIFT algorithm by using it to find the number of matches between
an image of a building and a subimage formed by extracting part of the right corner edge of the building.
We also show results for rotated and scaled-down versions of the image and subimage. This type of pro-
cess can be used in applications such as finding correspondences between two images for the purpose of
image registration, and for finding instances of an image in a database of images.

Figure 11.63(a) shows the keypoints for the building image (this is the same as Fig. 11.61), and the
keypoints for the subimage, which is a separate, much smaller image. The keypoints were computed

As indicated at the
beginning of this section,
smoothing and doubling
the size of the input
image is assumed. Input
images are assumed to
have values in the range
[0, 1].

DIP4E_GLOBAL_Print_Ready.indb 894 6/16/2017 2:16:20 PM

11.7 Scale-Invariant Feature Transform (SIFT) 895

using SIFT independently for each image. The building shows 643 keypoints and the subimage 54 key-
points. Figure 11.63(b) shows the matches found by SIFT between the image and subimage; 36 keypoint
matches were found and, as the figure shows, only three were incorrect. Considering the large number
of initial keypoints, you can see that keypoint descriptors offer a high degree of accuracy for establishing
correspondences between images.

Figure 11.64(a) shows keypoints for the building image after it was rotated by 5° counterclockwise,
and for a subimage extracted from its right corner edge. The rotated image is smaller than the original
because it was cropped to eliminate the constant areas created by rotation (see Fig. 2.41). Here, SIFT
found 547 keypoints for the building and 49 for the subimage. A total of 26 matches were found and, as
Fig. 11.64(b) shows, only two were incorrect.

Figure 11.65 shows the results obtained using SIFT on an image of the building reduced to half the
size in both spatial directions. When SIFT was applied to the downsampled image and a correspond-
ing subimage, no matches were found. This was remedied by brightening the reduced image slightly
by manipulating the intensity gamma. The subimage was extracted from this image. Despite the fact
that SIFT has the capability to handle some degree of changes in intensity, this example indicates that
performance can be improved by enhancing the contrast of an image prior to processing. When work-
ing with a database of images, histogram specification (see Chapter 3) is an excellent tool for normal-
izing the intensity of all images using the characteristics of the image being queried. SIFT found 195
keypoints for the half-size image and 24 keypoints for the corresponding subimage. A total of seven
matches were found between the two images, of which only one was incorrect.

The preceding two figures illustrate the insensitivity of SIFT to rotation and scale changes, but they
are not ideal tests because the reason for seeking insensitivity to these variables in the first place is

ba

FIGURE 11.63 (a) Keypoints and their directions (shown as gray arrows) for the building image and for a section of
the right corner of the building. The subimage is a separate image and was processed as such. (b) Corresponding
key points between the building and the subimage (the straight lines shown connect pairs of matching points). Only
three of the 36 matches found are incorrect.

DIP4E_GLOBAL_Print_Ready.indb 895 6/16/2017 2:16:20 PM

896 Chapter 11 Feature Extraction

that we do not always know a priori when images have been acquired under different conditions and
geometrical arrangements. A more practical test is to compute features for a prototype image and test
them against unknown samples. Figure 11.66 shows the results of such tests. Figure 11.66(a) is the origi-
nal building image, for which SIFT features vectors were already computed (see Fig. 11.63). SIFT was
used to compare the rotated subimage from Fig. 11.64(a) against the original, unrotated image. As Fig.
11.66(a) shows, 10 matches were found, of which two were incorrect. These are excellent results, con-
sidering the relatively small size of the subimage, and the fact that it was rotated. Figure 11.66(b) shows
the results of matching the half-sized subimage against the original image. Eleven matches were found,

ba

FIGURE 11.64 (a) Keypoints for the rotated (by 5°) building image and for a section of the right corner of the building.
The subimage is a separate image and was processed as such. (b) Corresponding keypoints between the corner and
the building. Of the 26 matches found, only two are in error.

ba

FIGURE 11.65 (a) Keypoints for the half-sized building and a section of the right corner. (b) Corresponding keypoints
between the corner and the building. Of the seven matches found, only one is in error.

DIP4E_GLOBAL_Print_Ready.indb 896 6/16/2017 2:16:21 PM

11.7 Scale-Invariant Feature Transform (SIFT) 897

ba

FIGURE 11.66 (a) Matches between the original building image and a rotated version of a segment of its right corner.
Ten matches were found, of which two are incorrect. (b) Matches between the original image and a half-scaled ver-
sion of a segment of its right corner. Here, 11 matches were found, of which four were incorrect.

of which four were incorrect. Again, these are good results, considering the fact that significant detail
was lost in the subimage when it was rotated or reduced in size. If asked in both cases: Based solely on
the matches found by SIFT, from which part of the building did the two subimages come? The obvious
answer in both is that the subimages are from the right corner of the building. The preceding two tests
illustrate the adaptability of SIFT to variations in rotation and scale.

Summary, References, and Further Reading
Feature extraction is a fundamental process in the operation of most automated image processing applications.
As indicated by the range of feature detection and description techniques covered in this chapter, the choice of
one method over another is determined by the problem under consideration. The objective is to choose feature
descriptors that “capture” essential differences between objects, or classes of objects, while maintaining as much
independence as possible to changes in variables such as location, scale, orientation, illumination, and viewing angle.

The Freeman chain code discussed in Section 11.2 was first proposed by Freeman [1961, 1974], while the slope
chain code is due to Bribiesca [2013]. See Klette and Rosenfeld [2004] regarding the minimum-perimeter polygon
algorithm. For additional reading on signatures see Ballard and Brown [1982]. The medial axis transform is gener-
ally credited to Blum [1967]. For efficient computation of the Euclidean distance transform used for skeletonizing
see Maurer et al. [2003].

For additional reading on the basic boundary feature descriptors in Section 11.3, see Rosenfeld and Kak [1982].
The discussion on shape numbers is based on the work of Bribiesca and Guzman [1980]. For additional reading on
Fourier descriptors, see the early paper by Zahn and Roskies [1972]. For an example of current uses of this tech-
nique, see Sikic and Konjicila [2016]. The discussion on statistical moments as boundary descriptors is from basic
probability (for example, see Montgomery and Runger [2011]).

For additional reading on the basic region descriptors discussed in Section 11.4, see Rosenfeld and Kak [1982].
For further introductory reading on texture, see Haralick and Shapiro [1992] and Shapiro and Stockman [2001].

DIP4E_GLOBAL_Print_Ready.indb 897 6/16/2017 2:16:21 PM

898 Chapter 11 Feature Extraction

Problems
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book
website: www.ImageProcessingPlace.com).

11.1 Do the following:

(a) * Provide all the missing steps in Fig. 11.1.
Show your results using the same format as
in that figure.

(b) When applied to binary regions, the bound-
ary-following algorithm in Section 11.2 typi-
cally yields boundaries that are one pixel
thick, but this is not always the case. Give a
small image example in which the boundary
is thicker than one pixel in at least one place.

11.2 With reference to the Moore boundary-following
algorithm explained in Section 11.2, answer the
following, using the same grid as in Fig. 11.2 to
identify boundary points in your explanation
[remember, the origin is at (,),1 1 instead of our
usual (,)]0 0 . Include the position of points b
and c at each point you mention.

(a) * Give the coordinates in Fig. 11.2(a) at which
the algorithm starts and ends. What would
it do when it arrived at the end point of the
boundary?

(b) How would the algorithm behave when
it arrived at the intersection point in Fig.
11.2(b) for the first time, and then for the
second time?

11.3 Answer the following:

(a) * Does normalizing the Freeman chain code
of a closed curve so that the starting point
is the smallest integer always give a unique
starting point?

(b) Does a chain-coded closed curve always
have an even number of segments? If your
answer is yes, prove it. If it is no, give an ex-
ample.

(c) Find the normalized starting point of the
code 11076765543322.

11.4 Do the following:

(a) * Show that the first difference of a chain code
normalizes it to rotation, as explained in
Section 11.2.

(b) Compute the first difference of the code
0101030303323232212111.

11.5 Answer the following:

(a) * Given a one-pixel-thick, open or closed,
4-connected simple (does not intersect
itself) digital curve, can a slope chain code
be formulated so that it behaves exactly as
a Freeman chain code? If your answer is no,
explain why. If your answer is yes, explain
how you would do it, detailing any assump-
tions you need to make for your answer to
hold.

(b) Repeat (a) for an 8-connected curve.

(c) How would you normalize a slope chain code
for scale changes?

11.6 * Explain why a slope chain code with an angle
accuracy of 10 1− produces 19 symbols.

11.7 Let L be the length of the straight-line segments
used in a slope chain code. Assume that L is such
that an integral number of line segments fit the

Our discussion of moment-invariants is based on Hu [1962]. For generating moments of arbitrary order, see Flusser
[2000].

Hotelling [1933] was the first to derive and publish the approach that transforms discrete variables into uncor-
related coefficients (Section 11.5). He referred to this technique as the method of principal components. His paper
gives considerable insight into the method and is worth reading. Principal components are still used widely in
numerous fields, including image processing, as evidenced by Xiang et al. [2016]. The corner detector in Section 11.6
is from Harris and Stephens [1988], and our discussion of MSERs is based on Matas et al. [2002]. The SIFT material
in Section 11.7 is from Lowe [2004]. For details on the software aspects of many of the examples in this chapter, see
Gonzalez, Woods, and Eddins [2009].

DIP4E_GLOBAL_Print_Ready.indb 898 6/16/2017 2:16:21 PM

http://www.ImageProcessingPlace.com

 Problems 899

curve under consideration. Assume also that the
angle accuracy is high enough so that it may be
considered infinite for your purposes, answer the
following:

(a) * What is the tortuosity of a square boundary
of size d d× ?

(b) * What is the tortuosity of a circle of radius r?

(c) What is the tortuosity of a closed convex
curve?

11.8 * Advance an argument that explains why the
uppermost-leftmost point of a digital closed
curve has the property that a polygonal approxi-
mation to the curve has a convex vertex at that
point.

11.9 With reference to Example 11.2, start with vertex
V7 and apply the MPP algorithm through, and
including, V11.

11.10 Do the following:

(a) * Explain why the rubber-band polygonal
approximation approach discussed in Sec-
tion 11.2 yields a polygon with minimum
perimeter for a convex curve.

(b) Show that if each cell corresponds to a pixel
on the boundary, the maximum possible
error in that cell is 2d, where d is the mini-
mum possible horizontal or vertical distance
between adjacent pixels (i.e., the distance
between lines in the sampling grid used to
produce the digital image).

11.11 Explain how the MPP algorithm in Section 11.2
behaves under the following conditions:

(a) * One-pixel wide, one-pixel deep indentations.

(b) * One-pixel wide, two-or-more pixel deep
indentations.

(c) One-pixel wide, n-pixel long protrusions.

11.12 Do the following.

(a) * Plot the signature of a square boundary using
the tangent-angle method discussed in Sec-
tion 11.2.

(b) Repeat (a) for the slope density function.
Assume that the square is aligned with the x-
and y-axes, and let the x-axis be the reference
line. Start at the corner closest to the origin.

11.13 Find an expression for the signature of each of

the following boundaries, and plot the signatures.

(a) * An equilateral triangle.

(b) A rectangle.

(c) An ellipse

11.14 Do the following:

(a) * With reference to Figs. 11.11(c) and (f), give
a word description of an algorithm for count-
ing the peaks in the two waveforms. Such an
algorithm would allow us to differentiate
between triangles and rectangles.

(b) How can you make your solution indepen-
dent of scale changes? You may assume that
the scale changes are the same in both direc-
tions.

11.15 Draw the medial axis of:

(a) * A circle.

(b) * A square.

(c) An equilateral triangle.

11.16 For the figure shown,

(a) * What is the order of the shape number?

(b) Obtain the shape number.

11.17 * The procedure discussed in Section 11.3 for using
Fourier descriptors consists of expressing the
coordinates of a contour as complex numbers,
taking the DFT of these numbers, and keeping
only a few components of the DFT as descriptors
of the boundary shape. The inverse DFT is then
an approximation to the original contour. What
class of contour shapes would have a DFT con-
sisting of real numbers, and how would the axis
system in Fig. 11.18 have to be set up to obtain
those real numbers?

11.18 Show that if you use only two Fourier descrip-
tors ()u u= =0 1 and to reconstruct a bound-
ary with Eq. (11-10), the result will always be a
circle. (Hint: Use the parametric representation
of a circle in the complex plane, and express the
equation of a circle in polar coordinates.)

DIP4E_GLOBAL_Print_Ready.indb 899 6/16/2017 2:16:22 PM

900 Chapter 11 Feature Extraction

11.19 * Give the smallest number of statistical moment
descriptors needed to differentiate between the
signatures of the figures in Fig. 11.10.

11.20 Give two boundary shapes that have the same
mean and third statistical moment descriptors,
but different second moments.

11.21 * Propose a set of descriptors capable of differen-
tiating between the shapes of the characters 0, 1,
8, 9, and X. (Hint: Use topological descriptors in
conjunction with the convex hull.)

11.22 Consider a binary image of size 200 200× pix-
els, with a vertical black band extending from
columns 1 to 99 and a vertical white band extend-
ing from columns 100 to 200.

(a) Obtain the co-occurrence matrix of this
image using the position operator “one pixel
to the right.”

(b) * Normalize this matrix so that its elements
become probability estimates, as explained
in Section 11.4.

(c) Use your matrix from (b) to compute the six
descriptors in Table 11.3.

11.23 Consider a checkerboard image composed of
alternating black and white squares, each of size
m m× pixels. Give a position operator that will
yield a diagonal co-occurrence matrix.

11.24 Obtain the gray-level co-occurrence matrix of
an array pattern of alternating single 0’s and 1’s
(starting with 0) if:

(a) * The position operator Q is defined as “one
pixel to the right.”

(b) The position operator Q is defined as “two
pixels to the right.”

11.25 Do the following.

(a) * Prove the validity of Eqs. (11-50) and (11-51).

(b) Prove the validity of Eq. (11-52).

11.26 * We mentioned in Example 11.16 that a credible
job could be done of reconstructing approxima-
tions to the six original images by using only the
two principal-component images associated with
the largest eigenvalues. What would be the mean
squared error incurred in doing so? Express your
answer as a percentage of the maximum possible
error.

11.27 For a set of images of size 64 64× , assume that
the covariance matrix given in Eq. (11-52) is
the identity matrix. What would be the mean
squared error between the original images and
images reconstructed using Eq. (11-54) with only
half of the original eigenvectors?

11.28 Under what conditions would you expect the
major axes of a boundary, defined in the discus-
sion of Eq. (11-4), to be equal to the eigen axes of
that boundary?

11.29 * You are contracted to design an image process-
ing system for detecting imperfections on the
inside of certain solid plastic wafers. The wafers
are examined using an X-ray imaging system,
which yields 8-bit images of size 512 512× . In
the absence of imperfections, the images appear
uniform, having a mean intensity of 100 and vari-
ance of 400. The imperfections appear as blob-
like regions in which about 70% of the pixels
have excursions in intensity of 50 intensity levels
or less about a mean of 100. A wafer is consid-
ered defective if such a region occupies an area
exceeding 20 20× pixels in size. Propose a system
based on texture analysis for solving this prob-
lem.

11.30 With reference to Fig. 11.46, answer the following:

(a) * What is the cause of nearly identical clusters
near the origin in Figs. 11.46(d)-(f).

(b) Look carefully, and you will see a single point
near coordinates (. , .)0 8 0 8 in Fig. 11.46(f).
What caused this point?

(c) The results in Fig. 11.46(d)–(e) are for
the small image patches shown in Figs.
11.46(a)–(b). What would the results look
like if we performed the computations over
the entire image, instead of limiting the com-
putation to the patches?

11.31 When we discussed the Harris-Stephens corner
detector, we mentioned that there is a closed-form
formula for computing the eigenvalues of a 2 2×
matrix.

(a) * Given matrix M = [;],a b c d give the gen-
eral formula for finding its eigenvalues.
Express your formula in terms of the trace
and determinant of M.

(b) Give the formula for symmetric matrices of

DIP4E_GLOBAL_Print_Ready.indb 900 6/16/2017 2:16:22 PM

 Problems 901

size 2 2× in terms of its four elements, with-
out using the trace nor the determinant.

11.32 * With reference to the component tree in Fig.
11.51, assume that any pixels extending past the
border of the small image are 0. Is region R1 an
extremal region? Explain.

11.33 With reference to the discussion of maximally
stable extremal regions in Section 11.6, can the
root of a component tree contain an MSER?
Explain.

11.34 * The well known heat-diffusion equation of a
temperature function g x y z t(, , ,) of three spatial
variables, (, ,),x y z is given by ∂ ∂ − =g t ga
2 0,
where a is the thermal diffusivity and
2 is the
Laplacian operator. In terms of our discussion of
SIFT, the form of this equation is used to estab-
lish a relationship between the difference of
Gaussians and the scaled Laplacian, s2 2
 . Show
how this can be done to derive Eq. (11-70).

11.35 With reference to the SIFT algorithm discussed
in Section 11.7, assume that the input image is
square, of size M M× (with M n= 2), and let the
number of intervals per octave be s = 2.

(a) How many smoothed images will there be in
each octave?

(b) * How many octaves could be generated before
it is no longer possible to down-sample the
image by 2?

(c) If the standard deviation used to smooth
the first image in the first octave is s, what
are the values of standard deviation used to
smooth the first image in each of the remain-
ing octaves in (b)?

11.36 Advance an argument showing that smoothing
an image and then downsampling it by 2 gives
the same result as first downsampling the image
by 2 and then smoothing it with the same kernel.
By downsampling we mean skipping every other
row and column. (Hint: Consider the fact that
convolution is a linear process.)

11.37 Do the following:

(a) * Show how to obtain Eq. (11-74) from Eq.
(11-71).

(b) Show how Eq. (11-75) follows from Eqs.
(11-74) and (11-71).

11.38 A company that bottles a variety of industrial
chemicals employs you to design an approach for
detecting when bottles of their product are not
full. As they move along a conveyor line past an
automatic filling and capping station, the bottles
appear as shown in the following image. A bottle
is considered imperfectly filled when the level
of the liquid is below the midway point between
the bottom of the neck and the shoulder of the
bottle. The shoulder is defined as the intersection
of the sides and slanted portions of the bottle.
The bottles move at a high rate of speed, but the
company has an imaging system equipped with
an illumination flash front end that effectively
stops motion, so you will be given images that
look very close to the sample shown here. Based
on the material you have learned up to this point,
propose a solution for detecting bottles that are
not filled properly. State clearly all assumptions
that you make and that are likely to impact the
solution you propose.

11.39 Having heard about your success with the
bottle inspection problem, you are contacted by a
fluids company that wishes to automate bubble-
counting in certain processes for quality control.
The company has solved the imaging problem
and can obtain 8-bit images of size 700 700× pix-
els, such as the one shown in the figure below.

Each image represents an area of 7 2cm . The
company wishes to do two things with each

DIP4E_GLOBAL_Print_Ready.indb 901 6/16/2017 2:16:24 PM

902 Chapter 11 Feature Extraction

image: (1) Determine the ratio of the area occu-
pied by bubbles to the total area of the image;
and (2) count the number of distinct bubbles.
Based on the material you have learned up to
this point, propose a solution to this problem. In

your report, state the physical dimensions of the
smallest bubble your solution can detect. State
clearly all assumptions that you make and that
are likely to impact the solution you propose.

DIP4E_GLOBAL_Print_Ready.indb 902 6/16/2017 2:16:24 PM

903

12 Image Pattern Classification

Preview
We conclude our coverage of digital image processing with an introduction to techniques for image
pattern classification. The approaches developed in this chapter are divided into three principal catego-
ries: classification by prototype matching, classification based on an optimal statistical formulation, and
classification based on neural networks. The first two approaches are used extensively in applications in
which the nature of the data is well understood, leading to an effective pairing of features and classifier
design. These approaches often rely on a great deal of engineering to define features and elements of a
classifier. Approaches based on neural networks rely less on such knowledge, and lend themselves well
to applications in which pattern class characteristics (e.g., features) are learned by the system, rather
than being specified a priori by a human designer. The focus of the material in this chapter is on prin-
ciples, and on how they apply specifically in image pattern classification.

Upon completion of this chapter, readers should:
 Understand the meaning of patterns and pat-

tern classes, and how they relate to digital
image processing.

 Be familiar with the basics of minimum-dis-
tance classification.

 Know how to apply image correlation tech-
niques for template matching.

 Understand the concept of string matching.

 Be familiar with Bayes classifiers.

 Understand perceptrons and their history.

 Be familiar with the concept of learning from
training samples.

 Understand neural network architectures.

 Be familiar with the concept of deep learning
in fully connected and deep convolutional neu-
ral networks. In particular, be familiar with the
importance of the latter in digital image pro-
cessing.

One of the most interesting aspects of the world is that it can be
considered to be made up of patterns.

A pattern is essentially an arrangement. It is characterized by
the order of the elements of which it is made, rather than by the
intrinsic nature of these elements.

Norbert Wiener

DIP4E_GLOBAL_Print_Ready.indb 903 6/16/2017 2:16:24 PM

904 Chapter 12 Image Pattern Classification

12.1 BACKGROUND

Humans possess the most sophisticated pattern recognition capabilities in the known
biological world. By contrast, the capabilities of current recognition machines pale
in comparison with tasks humans perform routinely, from being able to interpret the
meaning of complex images, to our ability for generalizing knowledge stored in our
brains. But recognition machines play an important, sometimes even crucial role in
everyday life. Imagine what modern life would be like without machines that read
barcodes, process bank checks, inspect the quality of manufactured products, read
fingerprints, sort mail, and recognize speech.

In image pattern recognition, we think of a pattern as a spatial arrangement of
features. A pattern class is a set of patterns that share some common properties. Pat-
tern recognition by machine encompasses techniques for automatically assigning
patterns to their respective classes. That is, given a pattern or sets of patterns whose
class is unknown, the job of a pattern recognition system is to assign a class label to
each of its input patterns.

There are four main stages involved in recognition: (1) sensing, (2) preprocessing,
(3) feature extraction, and (4) classification. In terms of image processing, sensing is
concerned with generating signals in a spatial (2-D) or higher-dimensional format.
We covered numerous aspects of image sensing in Chapter 1. Preprocessing deals
with techniques for tasks such as noise reduction, enhancement, restoration, and
segmentation, as discussed in earlier chapters. You learned about feature extraction
in Chapter 11. Classification, the focus of this chapter, deals with using a set of fea-
tures as the basis for assigning class labels to unknown input image patterns.

In the following section, we will discuss three basic approaches used for image
pattern classification: (1) classification based on matching unknown patterns against
specified prototypes, (2) optimum statistical classifiers, and (3) neural networks.
One way to characterize the differences between these approaches is in the level
of “engineering” required to transform raw data into formats suitable for computer
processing. Ultimately, recognition performance is determined by the discriminative
power of the features used.

In classification based on prototypes, the objective is to make the features so
unique and easily detectable that classification itself becomes a simple task. A good
example of this are bank-check processors, which use stylized font styles to simplify
machine processing (we will discuss this application in Section 12.3).

In the second category, classification is cast in decision-theoretic, statistical terms,
and the classification approach is based on selecting parameters that can be shown
to yield optimum classification performance in a statistical sense. Here, emphasis is
placed on both the features used, and the design of the classifier. We will illustrate
this approach in Section 12.4 by deriving the Bayes pattern classifier, starting from
basic principles.

In the third category, classification is performed using neural networks. As you
will learn in Sections 12.5 and 12.6, neural networks can operate using engineered
features too, but they have the unique ability of being able to generate, on their own,
representations (features) suitable for recognition. These systems can accomplish
this using raw data, without the need for engineered features.

12.1

DIP4E_GLOBAL_Print_Ready.indb 904 6/16/2017 2:16:24 PM

12.1 Background 905

One characteristic shared by the preceding three approaches is that they are
based on parameters that must be either specified or learned from patterns that rep-
resent the recognition problem we want to solve. The patterns can be labeled, mean-
ing that we know the class of each pattern, or unlabeled, meaning that the data are
known to be patterns, but the class of each pattern is unknown. A classic example
of labeled data is the character recognition problem, in which a set of character
samples is collected and the identity of each character is recorded as a label from
the group 0 through 9 and a through z. An example of unlabeled data is when we are
seeking clusters in a data set, with the aim of utilizing the resulting cluster centers as
being prototypes of the pattern classes contained in the data.

When working with a labeled data, a given data set generally is subdivided into
three subsets: a training set, a validation set, and a test set (a typical subdivision might
be 50% training, and 25% each for the validation and test sets). The process by
which a training set is used to generate classifier parameters is called training. In
this mode, a classifier is given the class label of each pattern, the objective being to
make adjustments in the parameters if the classifier makes a mistake in identify-
ing the class of the given pattern. At this point, we might be working with several
candidate designs. At the end of training, we use the validation set to compare the
various designs against a performance objective. Typically, several iterations of train-
ing/validation are required to establish the design that comes closest to meeting the
desired objective. Once a design has been selected, the final step is to determine how
it will perform “in the field.” For this, we use the test set, which consists of patterns
that the system has never “seen” before. If the training and validation sets are truly
representative of the data the system will encounter in practice, the results of train-
ing/validation should be close to the performance using the test set. If training/vali-
dation results are acceptable, but test results are not, we say that training/validation

“over fit” the system parameters to the available data, in which case further work on
the system architecture is required. Of course all this assumes that the given data are
truly representative of the problem we want to solve, and that the problem in fact
can be solved by available technology.

A system that is designed using training data is said to undergo supervised learn-
ing. If we are working with unlabeled data, the system learns the pattern classes
themselves while in an unsupervised learning mode. In this chapter, we deal only
with supervised learning. As you will see in this and the next chapter, supervised
learning covers a broad range of approaches, from applications in which a system
learns parameters of features whose form is fixed by a designer, to systems that uti-
lize deep learning and large sets of raw data sets to learn, on their own, the features
required for classification. These systems accomplish this task without a human
designer having to specify the features, a priori.

After a brief discussion in the next section of how patterns are formed, and on
the nature of patterns classes, we will discuss in Section 12.3 various approaches for
prototype-based classification. In Section 12.4, we will start from basic principles
and derive the equations of the Bayes classifier, an approach characterized by opti-
mum classification performance on an average basis. We will also discuss supervised
training of a Bayes classifier based on the assumption of multivariate Gaussian

Because the examples in
this chapter are intended
to demonstrate basic
principles and are not
large scale, we dispense
with validation and
subdivide the pattern
data into training and
test sets.

Generally, we associate
the concept of deep
learning with large sets
of data. These ideas are
discussed in more detail
later in this section and
next.

DIP4E_GLOBAL_Print_Ready.indb 905 6/16/2017 2:16:24 PM

906 Chapter 12 Image Pattern Classification

distributions. Starting with Section 12.5, we will spend the rest of the chapter discuss-
ing neural networks. We will begin Section 12.5 with a brief introduction to percep-
trons and some historical facts about machine learning. Then, we will introduce the
concept of deep neural networks and derive the equations of backpropagation, the
method of choice for training deep neural nets. These networks are well-suited for
applications in which input patterns are vectors. In Section 12.6, we will introduce
deep convolutional neural networks, which currently are the preferred approach
when the system inputs are digital images. After deriving the backpropagation equa-
tions used for training convolutional nets, we will give several examples of appli-
cations involving classes of images of various complexities. In addition to working
directly with image inputs, deep convolutional nets are capable of learning, on their
own, image features suitable for classification. This is accomplished starting with raw
image data, as opposed to the other classification methods discussed in Sections 12.3
and 12.4, which rely on “engineered” features whose form, as noted earlier, is speci-
fied a priori by a human designer.

12.2 PATTERNS AND PATTERN CLASSES

In image pattern classification, the two principal pattern arrangements are quantita-
tive and structural. Quantitative patterns are arranged in the form of pattern vectors.
Structural patterns typically are composed of symbols, arranged in the form of strings,
trees, or, less frequently, as graphs. Most of the work in this chapter is based on pat-
tern vectors, but we will discuss structural patterns briefly at the end of this section,
and give an example at the end of Section 12.3.

PATTERN VECTORS

Pattern vectors are represented by lowercase letters, such as x, y, and z, and have
the form

 x =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x

x

xn

1

2

�
 (12-1)

where each component, xi , represents the ith feature descriptor, and n is the total
number of such descriptors. We can express a vector in the form of a column, as
in Eq. (12-1), or in the equivalent row form x = ()x x xn

T
1 2, , , ,… where T indicates

transposition. A pattern vector may be “viewed” as a point in n-dimensional Euclid-
ean space, and a pattern class may be interpreted as a “hypercloud” of points in this
pattern space. For the purpose of recognition, we like for our pattern classes to be
grouped tightly, and as far away from each other as possible.

Pattern vectors can be formed directly from image pixel intensities by vector-
izing the image using, for example, linear indexing, as in Fig. 12.1. A more common
approach is for pattern elements to be features. An early example is the work of
Fisher [1936] who, close to a century ago, reported the use of what then was a new

12.2

We discussed linear
indexing in Section 2.4
(see Fig. 2.22).

DIP4E_GLOBAL_Print_Ready.indb 906 6/16/2017 2:16:25 PM

12.2 Patterns and Pattern Classes 907

technique called discriminant analysis to recognize three types of iris flowers (Iris
setosa, virginica, and versicolor). Fisher described each flower using four features:
the length and width of the petals, and similarly for the sepals (see Fig. 12.2). This
leads to the 4-D vectors shown in the figure. A set of these vectors, obtained for fifty
samples of each flower gender, constitutes the three famous Fisher iris pattern class-
es. Had Fisher been working today, he probably would have added spectral colors
and shape features to his measurements, yielding vectors of higher dimensionality.
We will be working with the original iris data set later in this chapter.

A higher-level representation of patterns is based on feature descriptors of the
types you learned in Chapter 11. For instance, pattern vectors formed from descrip-
tors of boundary shape are well-suited for applications in controlled environments,
such as industrial inspection. Figure 12.3 illustrates the concept. Here, we are inter-
ested in classifying different types of noisy shapes, a sample of which is shown in
the figure. If we represent an object by its signature, we would obtain 1-D signals
of the form shown in Fig. 12.3(b). We can express a signature as a vector by sam-
pling its amplitude at increments of u, then formimg a vector by letting x ri i= (),u
for i n= 0 1 2, , , , .… Instead of using “raw” sampled signatures, a more common
approach is to compute some function, x g ri i= ()() ,u of the signature samples and
use them to form vectors. You learned in Section 11.3 several approaches to do this,
such as statistical moments.

Sepals are the undergrowth
beneath the petals.

225

225

225

225225

175

125

125

5 5

5

5

5

90

90

90

175

225

125

5

225

175

225

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

x �

ba

FIGURE 12.1
Using linear
indexing to
vectorize a
grayscale image.

FIGURE 12.2
Petal and sepal
width and length
measurements
(see arrows)
performed on iris
flowers for the
purpose of data
classification. The
image shown is of
the Iris virginica
gender. (Image
courtesy of
USDA.)

1

2

3

4

x

x

x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x

x1 = Petal width
x2 = Petal length
x3 = Sepal width
x4 = Sepal length

Sepal
Petal

DIP4E_GLOBAL_Print_Ready.indb 907 6/16/2017 2:16:26 PM

908 Chapter 12 Image Pattern Classification

Vectors can be formed also from features of both boundary and regions. For
example, the objects in Fig. 12.4 can be represented by 3-D vectors whose compo-
nents capture shape information related to both boundary and region properties
of single binary objects. Pattern vectors can be used also to represent properties of
image regions. For example, the elements of the 6-D vector in Fig. 12.5 are texture
measures based on the feature descriptors in Table 11.3. Figure 12.6 shows an exam-
ple in which pattern vector elements are features that are invariant to transforma-
tions, such as image rotation and scaling (see Section 11.4).

When working with sequences of registered images, we have the option of using
pattern vectors formed from corresponding pixels in those images (see Fig. 12.7).
Forming pattern vectors in this way implies that recognition will be based on infor-
mation extracted from the same spatial location across the images. Although this
may seem like a very limiting approach, it is ideally suited for applications such as
recognizing regions in multispectral images, as you will see in Section 12.4.

When working with entire images as units, we need the detail afforded by vectors
of much-higher dimensionality, such as those we discussed in Section 11.7 in connec-
tion with the SIFT algorithm. However, a more powerful approach when working
with entire images is to use deep convolutional neural networks. We will discuss
neural nets in detail in Sections 12.5 and 12.6.

STRUCTURAL PATTERNS

Pattern vectors are not suitable for applications in which objects are represented
by structural features, such as strings of symbols. Although they are used much less
than vectors in image processing applications, patterns containing structural descrip-
tions of objects are important in applications where shape is of interest. Figure 12.8
shows an example. The boundaries of the bottles were approximated by a polygon

x1 = compactness
x2 = circularity
x3 = eccentricity

1

2

3

x

x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x

ba c d
FIGURE 12.4
Pattern vectors
whose components
capture both bound-
ary and regional
characteristics.

ba
FIGURE 12.3
(a) A noisy object
boundary, and (b)
its corresponding
signature.

0

u

r
u

p

4
p

2
3p
4

5p
4

3p
2

7p
4

p 2p

r(u)

()
()

()

1

2

()

()

()n

g r

g r

g r

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x
�

u

u

u

DIP4E_GLOBAL_Print_Ready.indb 908 6/16/2017 2:16:26 PM

12.2 Patterns and Pattern Classes 909

Spectral band 1

Spectral band 2

Spectral band 3

Spectral band 4

Spectral band 5

Spectral band 6

x

x1

x2

x3

x4

x5

x6

�

Images in spectral bands 1 3–

Images in spectral bands 4 6–

FIGURE 12.5
An example of
pattern vectors
based on
properties of
subimages. See
Table 11.3 for an
explanation of the
components of x.

1

2

3

4

5

6

x

x

x

x

x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x

x1 = max probability
x2 = correlation
x3 = contrast
x4 = uniformity
x5 = homogeneity
x6 = entropy

FIGURE 12.6 Feature
vectors with
components that
are invariant to
transformations
such as rotation,
scaling, and
translation. The
vector compo-
nents are moment
invariants.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

x

x

x

x

x

x

x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

x

f

f

f

f

f

f

f

The 's are moment invariantsf

FIGURE 12.7 Pattern (feature) vectors formed by concatenating corresponding pixels from a set of registered images.
(Original images courtesy of NASA.)

DIP4E_GLOBAL_Print_Ready.indb 909 6/16/2017 2:16:27 PM

910 Chapter 12 Image Pattern Classification

using the approach explained in Section 11.2. The boundary is subdivided into line
segments (denoted by b in the figure), and the interior angle, u, is computed at each
intersection of two line segments. A string of sequential symbols is generated as the
boundary is traversed in the counterclockwise direction, as the figure shows. Strings
of this form are structural patterns, and the objective, as you will see in Section 12.3,
is to match a given string against stored string prototypes.

A tree is another structural representation, suitable for higher-level descriptions
of an entire image in terms of its component regions. Basically, most hierarchical
ordering schemes lead to tree structures. For example, Fig. 12.9 shows a satellite
image of a heavily built downtown area and surrounding residential areas. Let the
symbol $ represent the root of a tree. The (upside down) tree shown in the figure
was obtained using the structural relationship “composed of.” Thus, the root of the
tree represents the entire image. The next level indicates that the image is composed
of a downtown and residential areas. In turn, the residential areas are composed
of housing, highways, and shopping malls. The next level down in the tree further
describes the housing and highways. We can continue this type of subdivision until
we reach the limit of our ability to resolve different regions in the image.

12.3 PATTERN CLASSIFICATION BY PROTOTYPE MATCHING

Prototype matching involves comparing an unknown pattern against a set of pro-
totypes, and assigning to the unknown pattern the class of the prototype that is the
most “similar” to the unknown. Each prototype represents a unique pattern class,
but there may be more than one prototype for each class. What distinguishes one
matching method from another is the measure used to determine similarity.

MINIMUM-DISTANCE CLASSIFIER

One of the simplest and most widely used prototype matching methods is the
minimum-distance classifier which, as its name implies, computes a distance-based
measure between an unknown pattern vector and each of the class prototypes. It
then assigns the unknown pattern to the class of its closest prototype. The prototype

12.3

The minimum-distance
classifier is also referred
to as the nearest-neighbor
classifier.

=� �a bubb

b

b

b
�

�

u

Direction of travel

Symbol string

 interior angle=u
 line segment of specified length=b

FIGURE 12.8
Symbol string
generated from
a polygonal
approximation of
the boundaries of
medicine bottles.

DIP4E_GLOBAL_Print_Ready.indb 910 6/16/2017 2:16:28 PM

12.3 Pattern Classification by Prototype Matching 911

vectors of the minimum-distance classifier usually are the mean vectors of the vari-
ous pattern classes:

 m x
x

j
j c

cn j N
j

= =
∈
∑1

1 2, , ,… (12-2)

where nj is the number of pattern vectors used to compute the jth mean vector,
cj is the jth pattern class, and Nc is the number of classes. If we use the Euclidean
distance to determine similarity, the minimum-distance classifier computes the dis-
tances

 D j Nj j cx x m() = − =� � 1 2, , ,… (12-3)

where � �a a a= ()T 1 2 is the Euclidean norm. The classifier then assigns an unknown
pattern x to class ci if D Di j() ()x x< for j N j ic= 1 2, , , , .… ≠ Ties [i.e., D Di j() ()]x x=
are resolved arbitrarily.

It is not difficult to show (see Problem 12.2) that selecting the smallest distance is
equivalent to evaluating the functions

 d j Nj j
T

j
T

j cx m x m m() = − =1
2

1 2, , ,… (12-4)

Buildings

Downtown Residential

Image
$

Highways Highways

SingleSmall
structures

Low
density

MultipleHigh
densitity

Large
structures

LoopsNumerous
intersections Wooded

areas
Few

intersections

Housing Shopping
malls

FIGURE 12.9 Tree representation of a satellite image showing a heavily built downtown area (Washington, D.C.) and
surrounding residential areas. (Original image courtesy of NASA.)

DIP4E_GLOBAL_Print_Ready.indb 911 6/16/2017 2:16:29 PM

912 Chapter 12 Image Pattern Classification

and assigning an unknown pattern x to the class whose prototype yielded the largest
value of d. That is, x is assigned to class ci , if

 d d j N j ii j c() () , , , ;x x> = 1 2 … ≠ (12-5)

When used for recognition, functions of this form are referred to as decision or dis-
criminant functions.

The decision boundary separating class ci from cj is given by the values of x for
which

 d di j() ()x x= (12-6)

or, equivalently, by values of x for which

 d di j() ()x x− = 0 (12-7)

The decision boundaries for a minimum-distance classifier follow directly from this
equation and Eq. (12-4):

d d dij i j

i j
T

i j
T

i j

() () ()

() () ()

x x x= −

= − − − + =m m x m m m m1
2

0
 (12-8)

The boundary given by Eq. (12-8) is the perpendicular bisector of the line segment
joining mi and m j (see Problem 12.3). In 2-D (i.e., n = 2), the perpendicular bisector
is a line, for n = 3 it is a plane, and for n > 3 it is called a hyperplane.

EXAMPLE 12.1 : Illustration of the minimum-distance classifier for two classes in 2-D.

Figure 12.10 shows scatter plots of petal width and length values for the classes Iris versicolor and Iris
setosa. As mentioned in the previous section, pattern vectors in the iris database consists of four mea-
surements for each flower. We show only two here so that you can visualize the pattern classes and the
decision boundary between them. We will work with the complete database later in this chapter.

We denote the Iris versicolor and setosa data as classes c1 and c2, respectively. The means of the two
classes are m1 4 3 1 3= (). , . T and m2 1 5 0 3= (). , . .T It then follows from Eq. (12-4) that

d

x x

T T
1 1 1 1

1 2

1
2

4 3 1 3 10 1

x m x m m() = −

= + −. . .
and

d

x x

T T
2 2 2 2

1 2

1
2

1 5 0 3 1 17

x m x m m() = −

= + −. . .

From Eq. (12-8), the equation of the boundary is

d d d

x x
12 1 2

1 22 8 1 0 8 9 0

() () ()

. . .

x = −
= + − =

x x

DIP4E_GLOBAL_Print_Ready.indb 912 6/16/2017 2:16:32 PM

12.3 Pattern Classification by Prototype Matching 913

Figure 12.10 shows a plot of this boundary. Substituting any pattern vector from class c1 into this equa-
tion would yield d12 0() .x > Conversely, any pattern from class c2 would give d12 0() .x < Thus, given an
unknown pattern x belonging to one of these two classes, the sign of d12()x would be sufficient to deter-
mine the class to which that pattern belongs.

The minimum-distance classifier works well when the distance between means is
large compared to the spread or randomness of each class with respect to its mean.
In Section 12.4 we will show that the minimum-distance classifier yields optimum
performance (in terms of minimizing the average loss of misclassification) when the
distribution of each class about its mean is in the form of a spherical “hypercloud” in
n-dimensional pattern space.

As noted earlier, one of the keys to accurate recognition performance is to specify
features that are effective discriminators between classes. As a rule, the better the
features are at meeting this objective, the better the recognition performance will be.
In the case of the minimum-distance classifier this implies wide separation between
means and tight grouping of the classes.

Systems based on the Banker’s Association E-13B font character are a classic
example of how highly engineered features can be used in conjunction with a simple
classifier to achieve superior results. In the mid-1940s, bank checks were processed
manually, which was a laborious, costly process prone to mistakes. As the volume
of check writing increased in the early 1950s, banks became keenly interested in
automating this task. In the middle 1950s, the E-13B font and the system that reads
it became the standard solution to the problem. As Fig. 12.11 shows, this font set con-
sists of 14 characters laid out on a 9 7× grid. The characters are stylized to maximize
the difference between them. The font was designed to be compact and readable by
humans, but the overriding purpose was that the characters should be readable by
machine, quickly, and with very high accuracy.

x2

x1

P
et

al
 w

id
th

 (
cm

)

2.0

1.5

1.0

0.5

0
0 1 2 3 4 5 6 7

Petal length (cm)

Iris versicolor
Iris setosa

2.8x1 	 1.0x2 � 8.9 � 0

	�

FIGURE 12.10
Decision
boundary of a
minimum distance
classifier (based
on two measure-
ments) for the
classes of Iris
versicolor and Iris
setosa. The dark
dot and square
are the means of
the two classes.

DIP4E_GLOBAL_Print_Ready.indb 913 6/16/2017 2:16:33 PM

914 Chapter 12 Image Pattern Classification

In addition to a stylized font design, the operation of the reading system is further
enhanced by printing each character using an ink that contains finely ground mag-
netic material. To improve character detectability in a check being read, the ink is
subjected to a magnetic field that accentuates each character against the background.
The stylized design further enhances character detectability. The characters are
scanned in a horizontal direction with a single-slit reading head that is narrower but
taller than the characters. As a check passes through the head, the sensor produces a
1-D electrical signal (a signature) that is conditioned to be proportional to the rate
of increase or decrease of the character area under the head. For example, consider
the waveform of the number 0 in Fig. 12.11. As a check moves to the right past the
head, the character area seen by the sensor begins to increase, producing a positive
derivative (a positive rate of change). As the right leg of the character begins to pass
under the head, the character area seen by the sensor begins to decrease, produc-
ing a negative derivative. When the head is in the middle zone of the character, the
area remains nearly constant, producing a zero derivative. This waveform repeats
itself as the other leg of the character enters the head. The design of the font ensures
that the waveform of each character is distinct from all others. It also ensures that
the peaks and zeros of each waveform occur approximately on the vertical lines of
the background grid on which these waveforms are displayed, as the figure shows.
The E-13B font has the property that sampling the waveforms only at these (nine)

Appropriately, recogni-
tion of magnetized char-
acters is referred to as
Magnetic Ink Character
Recognition (MICR).

T
r
a
n
s
i
t

A
m
o
u
n
t

O
n

U
s

D
a
s
h

FIGURE 12.11
The American
Bankers
Association
E-13B font
character set and
corresponding
waveforms.

DIP4E_GLOBAL_Print_Ready.indb 914 6/16/2017 2:16:34 PM

12.3 Pattern Classification by Prototype Matching 915

points yields enough information for their accurate classification. The effectiveness
of these highly engineered features is further refined by the magnetized ink, which
results in clean waveforms with almost no scatter.

Designing a minimum-distance classifier for this application is straightforward.
We simply store the sample values of each waveform at the vertical lines of the grid,
and let each set of the resulting samples be represented as a 9-D prototype vector,
m j j, , , , .= 1 2 14… When an unknown character is to be classified, the approach is
to scan it in the manner just described, express the grid samples of the waveform as
a 9-D vector, x, and identify its class by selecting the class of the prototype vector
that yields the highest value in Eq. (12-4). We do not even need a computer to do
this. Very high classification speeds can be achieved with analog circuits composed
of resistor banks (see Problem 12.4).

The most important lesson in this example is that a recognition problem often can
be made trivial if we can control the environment in which the patterns are gener-
ated. The development and implementation of the E13-B font reading system is a
striking example of this fact. On the other hand, this system would be inadequate if
we added the requirement that it has to recognize the textual content and signature
written on each check. For this, we need systems that are significantly more complex,
such as the convolutional neural networks we will discuss in Section 12.6.

USING CORRELATION FOR 2-D PROTOTYPE MATCHING

We introduced the basic idea of spatial correlation and convolution in Section 3.4,
and used these concepts extensively in Chapter 3 for spatial filtering. From Eq. (3-34),
we know that correlation of a kernel w with an image f x y(,) is given by

 (w w(� f x y s t f x s y t
ts

)(,) ,) (,)= + +∑∑ (12-9)

where the limits of summation are taken over the region shared by w and f . This
equation is evaluated for all values of the displacement variables x and y so all ele-
ments of w visit every pixel of f . As you know, correlation has its highest value(s)
in the region(s) where f and w are equal or nearly equal. In other words, Eq. (12-9)
finds locations where w matches a region of f . But this equation has the drawback
that the result is sensitive to changes in the amplitude of either function. In order
to normalize correlation to amplitude changes in one or both functions, we perform
matching using the correlation coefficient instead:

 g(,)
(,) (,)

(,) (,

x y
s t f x s y t f

s t f x s y

xy
ts=

[] + + −⎡⎣ ⎤⎦

−[] + +

∑∑ w w

w w

-

2
tt fxy

tsts

) −⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

∑∑∑∑
2

1
2

 (12-10)

where the limits of summation are taken over the region shared by w and f , w is the
average value of the kernel (computed only once), and fxy is the average value of f in
the region coincident with w. In image correlation work, w is often referred to as a
template (i.e., a prototype subimage) and correlation is referred to as template matching.

To be formal, we should
refer to correlation (and
the correlation
coefficient) as cross-
correlation when the
functions are different,
and as autocorrelation
when they are the same.
However, it is customary
to use the generic term
correlation and
correlation coefficient,
except when the distinc-
tion is important (as in
deriving equations, in
which it makes a dif-
ference which is being
applied).

DIP4E_GLOBAL_Print_Ready.indb 915 6/16/2017 2:16:36 PM

916 Chapter 12 Image Pattern Classification

It can be shown (see Problem 12.5) that g(,)x y has values in the range [,]−1 1 and is thus
normalized to changes in the amplitudes of w and f . The maximum value of g occurs
when the normalized w and the corresponding normalized region in f are identical.
This indicates maximum correlation (the best possible match). The minimum occurs
when the two normalized functions exhibit the least similarity in the sense of Eq. (12-10).

Figure 12.12 illustrates the mechanics of the procedure just described. The border
around image f is padding, as explained in Section 3.4. In template matching, values
of correlation when the center of the template is past the border of the image gener-
ally are of no interest, so the padding is limited to half the kernel width.

The template in Fig. 12.12 is of size m n× , and it is shown with its center at an
arbitrary location (,).x y The value of the correlation coefficient at that point is com-
puted using Eq. (12-10). Then, the center of the template is incremented to an adja-
cent location and the procedure is repeated. Values of the correlation coefficient
g(,)x y are obtained by moving the center of the template (i.e., by incrementing x
and y) so the center of w visits every pixel in f . At the end of the procedure, we
look for the maximum in g(,)x y to find where the best match occurred. It is possible
to have multiple locations in g(,)x y with the same maximum value, indicating sev-
eral matches between w and f .

EXAMPLE 12.2 : Matching by correlation.

Figure 12.13(a) shows a 913 913× satellite image of 1992 Hurricane Andrew, in which the eye of the
storm is clearly visible. We want to use correlation to find the location of the best match in Fig. 12.13(a)
of the template in Fig. 12.13(b), which is a 31 1× 3 subimage of the eye of the storm. Figure 12.13(c)
shows the result of computing the correlation coefficient in Eq. (12-10) for all values of x and y in
the original image. The size of this image was 943 943× pixels due to padding (see Fig. 12.12), but we
cropped it to the size of the original image for display. The intensity in this image is proportional to the
correlation values, and all negative correlations were clipped at 0 (black) to simplify the visual analysis
of the image. The area of highest correlation values appears as a small white region in this image. The
brightest point in this region matches with the center of the eye of the storm. Figure 12.13(d) shows as a

(n � 1)/2

(m � 1)/2

Origin

Padding

Image, f

Template w
centered at an arbitrary
location (x, y)

(x, y)

n

m

FIGURE 12.12
The mechanics of
template
matching.

DIP4E_GLOBAL_Print_Ready.indb 916 6/16/2017 2:16:38 PM

12.3 Pattern Classification by Prototype Matching 917

white dot the location of this maximum correlation value (in this case there was a unique match whose
maximum value was 1), which we see corresponds closely with the location of the eye in Fig. 12.13(a).

MATCHING SIFT FEATURES

We discussed the scale-invariant feature transform (SIFT) in Section 11.7. SIFT
computes a set of invariant features that can be used for matching between known
(prototype) and unknown images. The SIFT implementation in Section 11.7 yields
128-dimensional feature vectors for each local region in an image. SIFT performs
matching by looking for correspondences between sets of stored feature vector pro-
totypes and feature vectors computed for an unknown image. Because of the large
number of features involved, searching for exact matches is computationally inten-
sive. Instead, the approach is to use a best-bin-first method that can identify the near-
est neighbors with high probability using only a limited amount of computation (see
Lowe [1999], [2004]). The search is further simplified by looking for clusters of poten-
tial solutions using the generalized Hough transform proposed by Ballard [1981]. We

ba
dc

FIGURE 12.13
(a) 913 913×
satellite image
of Hurricane
Andrew.
(b) 31 31×
template of the
eye of the storm.
(c) Correlation
coefficient shown
as an image (note
the brightest
point, indicated
by an arrow).
(d) Location of
the best match
(identified by the
arrow). This point
is a single pixel,
but its size was
enlarged to make
it easier to see.
(Original image
courtesy of
NOAA.)

DIP4E_GLOBAL_Print_Ready.indb 917 6/16/2017 2:16:38 PM

918 Chapter 12 Image Pattern Classification

know from the discussion in Section 10.2 that the Hough transform simplifies looking
for data patterns by utilizing bins that reduce the level of detail with which we look at
a data set. We already discussed the SIFT algorithm in Section 11.7. The focus in this
section is to further illustrate the capabilities of SIFT for prototype matching.

Figure 12.14 shows the circuit board image we have used several times before.
The small rectangle enclosing the rightmost connector on the top of the large image
identifies an area from which an image of the connector was extracted. The small
image is shown zoomed for clarity. The sizes of the large and small images are shown
in the figure caption. Figure 12.15 shows the keypoints found by SIFT, as explained
in Section 11.7. They are visible as faint lines on both images. The zoomed view of
the subimage shows them a little clearer. It is important to note that the keypoints
for the image and subimage were found independently by SIFT. The large image
had 2714 keypoints, and the small image had 35.

Figure 12.16 shows the matches between keypoints found by SIFT. A total of 41
matches were found between the two images. Because there are only 35 keypoints

FIGURE 12.15
Keypoints found
by SIFT. The
large image has
2714 keypoints
(visible as faint
gray lines). The
subimage has 35
keypoints. This is
a separate image,
and SIFT found
its keypoints inde-
pendently of the
large image. The
zoomed section is
shown for clarity.

FIGURE 12.14
Circuit board
image of size
948 915× pixels,
and a subimage
of one of the
connectors. The
subimage is of size
212 128× pixels,
shown zoomed
on the right for
clarity. (Original
image courtesy of
Mr. Joseph E.
Pascente, Lixi,
Inc.)

DIP4E_GLOBAL_Print_Ready.indb 918 6/16/2017 2:16:39 PM

12.3 Pattern Classification by Prototype Matching 919

in the small image, obviously at least six matches are either incorrect, or there are
multiple matches. Three of the errors are clearly visible as matches with connectors
in the middle of the large image. However, if you compare the shape of the connec-
tors in the middle of the large image, you can see that they are virtually identical to
parts of the connectors on the right. Therefore, these errors can be explained on that
basis. The other three extra matches are easier to explain. All connectors on the top
right of the circuit board are identical, and we are comparing one of them against
the rest. There is no way for a system to tell the difference between them. In fact, by
looking at the connecting lines, we can see that the matches are between the subim-
age and all five connectors. These in fact are correct matches between the subimage
and other connectors that are identical to it.

MATCHING STRUCTURAL PROTOTYPES

The techniques discussed up to this point deal with patterns quantitatively, and
largely ignore any structural relationships inherent in pattern shapes. The methods
discussed in this section seek to achieve pattern recognition by capitalizing precisely
on these types of relationships. In this section, we introduce two basic approaches
for the recognition of boundary shapes based on string representations, which are
the most practical approach in structural pattern recognition.

Matching Shape Numbers

A procedure similar in concept to the minimum-distance classifier introduced ear-
lier for pattern vectors can be formulated for comparing region boundaries that are

Errors

FIGURE 12.16
Matches found by
SIFT between the
large and small
images. A total of
41 matching pairs
were found. They
are shown
connected by
straight lines.
Only three of the
matches were
“real” errors
(labeled “Errors”
in the figure).

DIP4E_GLOBAL_Print_Ready.indb 919 6/16/2017 2:16:39 PM

920 Chapter 12 Image Pattern Classification

described by shape numbers. With reference to the discussion in Section 11.3, the
degree of similarity, k, between two region boundaries, is defined as the largest order
for which their shape numbers still coincide. For example, let a and b denote shape
numbers of closed boundaries represented by 4-directional chain codes. These two
shapes have a degree of similarity k if

s a s b j k

s a s b j k k

j j

j j

() = () =

() ≠ () = + +

for and

for

4 6 8

2 4

, , , , ;

, ,

…

…
 (12-11)

where s indicates shape number, and the subscript indicates shape order. The dis-
tance between two shapes a and b is defined as the inverse of their degree of simi-
larity:

 D a b
k

,() = 1
 (12-12)

This expression satisfies the following properties:

D a b

D a b a b

D a c D a b D b c

,

,

, max , , ,

() ≥

() = =

() ≤ () ()⎡⎣

0

0 if and only if

⎤⎤⎦

 (12-13)

Either k or D may be used to compare two shapes. If the degree of similarity is used,
the larger k is, the more similar the shapes are (note that k is infinite for identical
shapes). The reverse is true when Eq. (12-12) is used.

EXAMPLE 12.3 : Matching shape numbers.

Suppose we have a shape, f , and want to find its closest match in a set of five shape prototypes, denoted
by a, b, c, d, and e, as shown in Fig. 12.17(a). The search may be visualized with the aid of the similarity
tree in Fig. 12.17(b). The root of the tree corresponds to the lowest possible degree of similarity, which
is 4. Suppose shapes are identical up to degree 8, with the exception of shape a, whose degree of simi-
larity with respect to all other shapes is 6. Proceeding down the tree, we find that shape d has degree of
similarity 8 with respect to all others, and so on. Shapes f and c match uniquely, having a higher degree
of similarity than any other two shapes. Conversely, if a had been an unknown shape, all we could have
said using this method is that a was similar to the other five shapes with degree of similarity 6. The same
information can be summarized in the form of the similarity matrix in Fig. 12.17(c).

String Matching

Suppose two region boundaries, a and b, are coded into strings of symbols, denot-
ed as a a an1 2… and b b bm1 2… , respectively. Let a represent the number of matches
between the two strings, where a match occurs in the kth position if a bk k= . The
number of symbols that do not match is

 b a= () −max ,a b (12-14)

Parameter j starts at
4 and is always even
because we are working
with 4-connectivity, and
we require that
boundaries be closed.

DIP4E_GLOBAL_Print_Ready.indb 920 6/16/2017 2:16:41 PM

12.3 Pattern Classification by Prototype Matching 921

where arg is the length (number of symbols) of string in the argument. It can be
shown that b = 0 if and only if a and b are identical (see Problem 12.7).

An effective measure of similarity is the ratio

 R
a b

= = () −
a

b

a

amax ,
 (12-15)

We see that R is infinite for a perfect match and 0 when none of the corresponding
symbols in a and b match (a = 0 in this case). Because matching is done symbol by
symbol, the starting point on each boundary is important in terms of reducing the
amount of computation required to perform a match. Any method that normalizes
to, or near, the same starting point is helpful if it provides a computational advan-
tage over brute-force matching, which consists of starting at arbitrary points on each
string, then shifting one of the strings (with wraparound) and computing Eq. (12-15)
for each shift. The largest value of R gives the best match.

EXAMPLE 12.4 : String matching.

Figures 12.18(a) and (b) show sample boundaries from each of two object classes, which were approxi-
mated by a polygonal fit (see Section 11.2). Figures 12.18(c) and (d) show the polygonal approximations

Refer to Section 11.2
for examples of how the
starting point of a curve
can be normalized.

4

Degree

abcdef a

a

b

c

d

e

f

b c d e f

6 6 6 6 6

8 8 10 8

8 8 12

8 8

8

abcdef

bcdefa

a

a

cf

cf

be

b ed

d

a d c f b e

a

b c

d e f

6

8

10

12

14

b
a

c

FIGURE 12.17
(a) Shapes.
(b) Similarity
tree. (c) Similarity
matrix.
(Bribiesca and
Guzman.)

DIP4E_GLOBAL_Print_Ready.indb 921 6/16/2017 2:16:42 PM

922 Chapter 12 Image Pattern Classification

corresponding to the boundaries in Figs. 12.18(a) and (b), respectively. Strings were formed from the
polygons by computing the interior angle, u, between segments as each polygon was traversed clock-
wise. Angles were coded into one of eight possible symbols, corresponding to multiples of 45°; that is,
a u a u a u1 2 80 45 45 90 315 360: ; : ; ; : .° < ≤ ° ° < ≤ ° ° < ≤ °…

Figure 12.18(e) shows the results of computing the measure R for six samples of object 1 against
themselves. The entries are values of R and, for example, the notation 1.c refers to the third string from
object class 1. Figure 12.18(f) shows the results of comparing the strings of the second object class
against themselves. Finally, Fig. 12.18(g) shows the R values obtained by comparing strings of one class
against the other. These values of R are significantly smaller than any entry in the two preceding tabu-
lations. This indicates that the R measure achieved a high degree of discrimination between the two
classes of objects. For example, if the class of string 1.a had been unknown, the smallest value of R result-
ing from comparing this string against sample (prototype) strings of class 1 would have been 4.7 [see
Fig. 12.18(e)]. By contrast, the largest value in comparing it against strings of class 2 would have been
1.24 [see Fig. 12.18(g)]. This result would have led to the conclusion that string 1.a is a member of object
class 1. This approach to classification is analogous to the minimum-distance classifier introduced earlier.

R 1.a 1.b 1.c 1.d 1.e 1.f

1.a

1.b 16.0

1.c 9.6 26.3

1.d 5.1 8.1 10.3

1.e 4.7 7.2 10.3 14.2

1.f 4.7 7.2 10.3 8.4 23.7

R 2.a 2.b 2.c 2.d 2.e 2.f

2.a

2.b 33.5

2.c 4.8 5.8

2.d 3.6 4.2 19.3

2.e 2.8 3.3 9.2 18.3

2.f 2.6 3.0 7.7 13.5 27.0

R 1.a 1.b 1.c 1.d 1.e 1.f

2.a 1.24 1.50 1.32 1.47 1.55 1.48

2.b 1.18 1.43 1.32 1.47 1.55 1.48

2.c 1.02 1.18 1.19 1.32 1.39 1.48

2.d 1.02 1.18 1.19 1.32 1.29 1.40

2.e 0.93 1.07 1.08 1.19 1.24 1.25

2.f 0.89 1.02 1.02 1.24 1.22 1.18

ba
dc
fe

g

FIGURE 12.18
(a) and (b) sample
boundaries of two
different object
classes; (c) and (d)
their corresponding
polygonal
approximations;
(e)–(g) tabulations
of R.
(Sze and Yang.)

DIP4E_GLOBAL_Print_Ready.indb 922 6/16/2017 2:16:42 PM

12.4 Optimum (Bayes) Statistical Classifiers 923

12.4 OPTIMUM (BAYES) STATISTICAL CLASSIFIERS

In this section, we develop a probabilistic approach to pattern classification. As is
true in most fields that deal with measuring and interpreting physical events, prob-
ability considerations become important in pattern recognition because of the ran-
domness under which pattern classes normally are generated. As shown in the fol-
lowing discussion, it is possible to derive a classification approach that is optimal in
the sense that, on average, it yields the lowest probability of committing classifica-
tion errors (see Problem 12.12).

DERIVATION OF THE BAYES CLASSIFIER

The probability that a pattern vector x comes from class ci is denoted by p ci x(). If
the pattern classifier decides that x came from class cj when it actually came from ci
it incurs a loss (to be defined shortly), denoted by Lij . Because pattern x may belong
to any one of Nc possible classes, the average loss incurred in assigning x to class cj is

 r L p cj kj
k

N

k

c

x x() = ()
=

∑
1

 (12-16)

Quantity rj()x is called the conditional average risk or loss in decision-theory termi-
nology.

We know from Bayes’ rule that p a b p a p b a p b() () () (),= [] so we can write Eq.
(12-16) as

 r
p

L p c P cj kj
k

N

k k

c

x
x

x() = () () ()
=

∑1

1

 (12-17)

where p ckx() is the probability density function (PDF) of the patterns from class
ck , and P ck() is the probability of occurrence of class ck (sometimes P ck() is referred
to as the a priori, or simply the prior, probability). Because 1 p()x is positive and
common to all the r j Nj cx() =, , , , ,1 2 … it can be dropped from Eq. (12-17) without
affecting the relative order of these functions from the smallest to the largest value.
The expression for the average loss then reduces to

 r L p c P cj kj
k

N

k k

c

x x() = () ()
=

∑
1

 (12-18)

Given an unknown pattern, the classifier has Nc possible classes from which to
choose. If the classifier computes r r rNc1 2(), (), , ()x x x… for each pattern x and
assigns the pattern to the class with the smallest loss, the total average loss with
respect to all decisions will be minimum. The classifier that minimizes the total
average loss is called the Bayes classifier. This classifier assigns an unknown pat-
tern x to class ci if r ri j() ()x x< for j N j ic= ≠1 2, , , ; .… In other words, x is assigned
to class ci if

 L p c P c L p c P cki k
k

N

k qj q q
q

Nc c

x x() () < () ()
= =

∑ ∑
1 1

 (12-19)

12.4

DIP4E_GLOBAL_Print_Ready.indb 923 6/16/2017 2:16:45 PM

924 Chapter 12 Image Pattern Classification

for all j j i; .≠ The loss for a correct decision generally is assigned a value of 0, and
the loss for any incorrect decision usually is assigned a value of 1. Then, the loss
function becomes
 Lij ij= −1 d (12-20)

where dij = 1 if i j= , and dij = 0 if i j≠ . Equation (12-20) indicates a loss of unity for
incorrect decisions and a loss of zero for correct decisions. Substituting Eq. (12-20)
into Eq. (12-18) yields

r p c P c

p p c P c

j kj k k
k

N

j j

c

x x

x x

() = −() () ()

= () − () ()
=

∑ 1
1

d
 (12-21)

The Bayes classifier then assigns a pattern x to class ci if, for all j i≠ ,

 p p c P c p p c P ci i j jx x x x() − () () < () − () () (12-22)

or, equivalently, if

 p c P c p c P c j N j ii i j j cx x() () > () () = ≠1 2, , , ;… (12-23)

Thus, the Bayes classifier for a 0-1 loss function computes decision functions of the
form

 d p c P c j Nj j j cx x() = () () = 1 2, , ,… (12-24)

and assigns a pattern to class ci if d x d xi j() ()> for all j i≠ . This is exactly the same
process described in Eq. (12-5), but we are now dealing with decision functions that
have been shown to be optimal in the sense that they minimize the average loss in
misclassification.

For the optimality of Bayes decision functions to hold, the probability density
functions of the patterns in each class, as well as the probability of occurrence of
each class, must be known. The latter requirement usually is not a problem. For
instance, if all classes are equally likely to occur, then P c Nj c() .= 1 Even if this con-
dition is not true, these probabilities generally can be inferred from knowledge of
the problem. Estimating the probability density functions p cj()x is more difficult. If
the pattern vectors are n-dimensional, then p cj()x is a function of n variables. If the
form of p cj()x is not known, estimating it requires using multivariate estimation
methods. These methods are difficult to apply in practice, especially if the number
of representative patterns from each class is not large, or if the probability density
functions are not well behaved. For these reasons, uses of the Bayes classifier often
are based on assuming an analytic expression for the density functions. This in turn
reduces the problem to one of estimating the necessary parameters from sample
patterns from each class using training patterns. By far, the most prevalent form
assumed for p cj()x is the Gaussian probability density function. The closer this
assumption is to reality, the closer the Bayes classifier approaches the minimum
average loss in classification.

DIP4E_GLOBAL_Print_Ready.indb 924 6/16/2017 2:16:48 PM

12.4 Optimum (Bayes) Statistical Classifiers 925

BAYES CLASSIFIER FOR GAUSSIAN PATTERN CLASSES

To begin, let us consider a 1-D problem ()n = 1 involving two pattern classes ()Nc = 2
governed by Gaussian densities, with means m1 and m2 , and standard deviations s1
and s2 , respectively. From Eq. (12-24) the Bayes decision functions have the form

d x p x c P c

e P c j

j j j

j

x m

j

j

j

() = () ()

= () =
−

−()
1

2
1 2

2

22

ps

s ,
 (12-25)

where the patterns are now scalars, denoted by x. Figure 12.19 shows a plot of the
probability density functions for the two classes. The boundary between the two
classes is a single point, x0 , such that d x d x1 0 2 0() ().= If the two classes are equally
likely to occur, then P c P c() () ,1 2 1 2= = and the decision boundary is the value of
x0 for which p x c p x c() ().0 1 0 2= This point is the intersection of the two probabil-
ity density functions, as shown in Fig. 12.19. Any pattern (point) to the right of x0 is
classified as belonging to class c1. Similarly, any pattern to the left of x0 is classified
as belonging to class c2. When the classes are not equally likely to occur, x0 moves to
the left if class c1 is more likely to occur or, conversely, it moves to the right if class
c2 is more likely to occur. This result is to be expected, because the classifier is trying
to minimize the loss of misclassification. For instance, in the extreme case, if class c2
never occurs, the classifier would never make a mistake by always assigning all pat-
terns to class c1 (that is, x0 would move to negative infinity).

In the n-dimensional case, the Gaussian density of the vectors in the jth pattern
class has the form

 p c ej n
j

j
T

j jx
C

x m C x m() =
()

− −() −()−1

2 2 1 2

1
2

1

p
 (12-26)

where each density is specified completely by its mean vector m j and covariance
matrix C j , which are defined as

You may find it helpful
to review the tutorial on
probability available in
the book website.

P
ro

ba
bi

lit
y

de
ns

it
y

m2 m1
x

x0

1()p x c

2()p x c

FIGURE 12.19
Probability
density functions
for two 1-D
pattern classes.
Point x0 (at the
intersection of the
two curves) is the
Bayes decision
boundary if the
two classes are
equally likely to
occur.

DIP4E_GLOBAL_Print_Ready.indb 925 6/16/2017 2:16:51 PM

926 Chapter 12 Image Pattern Classification

 m xj jE= { } (12-27)

and

 C x m x mj j j j

T
E= −() −(){ } (12-28)

where Ej { }⋅ is the expected value of the argument over the patterns of class cj . In
Eq. (12-26), n is the dimensionality of the pattern vectors, and C j is the determinant
of matrix C j . Approximating the expected value Ej by the sample average yields an
estimate of the mean vector and covariance matrix:

 m x
x

j
j cn

j

=
∈
∑1

 (12-29)

and

 C xx m m
x

j
j

T
j j

T

cn
j

= −
∈
∑1

 (12-30)

where nj is the number of sample pattern vectors from class cj and the summation
is taken over these vectors. We will give an example later in this section of how to
use these two expressions.

The covariance matrix is symmetric and positive semidefinite. Its kth diagonal ele-
ment is the variance of the kth element of the pattern vectors. The kjth off-diagonal
matrix element is the covariance of elements xk and xj in these vectors. The multi-
variate Gaussian density function reduces to the product of the univariate Gauss-
ian density of each element of x when the off-diagonal elements of the covariance
matrix are zero, which happens when the vector elements xk and xj are uncorrelated.

From Eq. (12-24), the Bayes decision function for class cj is d p c P cj j j() () ().x x=
However, the exponential form of the Gaussian density allows us to work with the
natural logarithm of this decision function, which is more convenient. In other words,
we can use the form

d p c P c

p c P c

j j j

j j

x x

x

() = () ()⎡⎣ ⎤⎦
= () + ()

ln

ln ln
 (12-31)

This expression is equivalent to Eq. (12-24) in terms of classification performance
because the logarithm is a monotonically increasing function. That is, the numerical
order of the decision functions in Eqs. (12-24) and (12-31) is the same. Substituting
Eq. (12-26) into Eq. (12-31) yields

 d P c
n

j j j j

T

j jx C x m C x m() = () − − − () ()⎡
⎣⎢

⎤
⎦⎥

−ln ln ln
2

2
1
2

1
2

1p − − (12-32)

The term n 2 2() ln p is the same for all classes, so it can be eliminated from Eq.
(12-32), which then becomes

 d P cj j j j

T

j jx C x m C x m() = () − − () ()⎡
⎣⎢

⎤
⎦⎥

−ln ln
1
2

1
2

1− − (12-33)

As noted in Section 6.7
[see Eq. (6-49)], the
square root of the
rightmost term in this
equation is called the
Mahalanobis distance.

DIP4E_GLOBAL_Print_Ready.indb 926 6/16/2017 2:16:53 PM

12.4 Optimum (Bayes) Statistical Classifiers 927

for j Nc= 1 2, , , .… This equation gives the Bayes decision functions for Gaussian
pattern classes under the condition of a 0-1 loss function.

The decision functions in Eq. (12-33) are hyperquadrics (quadratic functions in
n-dimensional space), because no terms higher than the second degree in the com-
ponents of x appear in the equation. Clearly, then, the best that a Bayes classifier
for Gaussian patterns can do is to place a second-order decision boundary between
each pair of pattern classes. If the pattern populations are truly Gaussian, no other
boundary would yield a lesser average loss in classification.

If all covariance matrices are equal, then C Cj = for j Nc= 1 2, , , .… By expanding
Eq. (12-33), and dropping all terms that do not depend on j, we obtain

 d P cj j
T

j j
T

jx x C m m C m() = () + −− −ln 1 11
2

 (12-34)

which are linear decision functions (hyperplanes) for j Nc= 1 2, , , .…
If, in addition, C I= , where I is the identity matrix, and also if the classes are

equally likely (i.e., P c Nj c() = 1 for all j), then we can drop the term ln ()P cj because
it would be the same for all values of j. Equation (12-34) then becomes

 d j Nj j
T

j
T

j cx m x m m() = − =1
2

1 2, , ,… (12-35)

which we recognize as the decision functions for a minimum-distance classifier [see
Eq. (12-4)]. Thus, as mentioned earlier, the minimum-distance classifier is optimum
in the Bayes sense if (1) the pattern classes follow a Gaussian distribution, (2) all
covariance matrices are equal to the identity matrix, and (3) all classes are equally
likely to occur. Gaussian pattern classes satisfying these conditions are spherical
clouds of identical shape in n dimensions (called hyperspheres). The minimum-
distance classifier establishes a hyperplane between every pair of classes, with the
property that the hyperplane is the perpendicular bisector of the line segment join-
ing the center of the pair of hyperspheres. In 2-D, the patterns are distributed in cir-
cular regions, and the boundaries become lines that bisect the line segment joining
the center of every pair of such circles.

EXAMPLE 12.5 : A Bayes classifier for 3-D patterns.

We illustrate the mechanics of the preceding development using the simple patterns in Fig. 12.20. We
assume that the patterns are samples from two Gaussian populations, and that the classes are equally
likely to occur. Applying Eq. (12-29) to the patterns in the figure results in

 m m1 2
1
3

3

1

1

1
3

1

3

3

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and

And, from Eq. (12-30),

DIP4E_GLOBAL_Print_Ready.indb 927 6/16/2017 2:16:55 PM

928 Chapter 12 Image Pattern Classification

C C1 2
1

16

3 1 1

1 3 1

1 1 3

= = −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The inverse of this matrix is

 C C1
1

2
1

8 4 4

4 8 4

4 4 8

− −= =
− −

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Next, we obtain the decision functions. Equation (12-34) applies because the covariance matrices are
equal, and we are assuming that the classes are equally likely:

 dj
T

j j
T

jx x C m m C m() = −− −1 11
2

Carrying out the vector-matrix expansion, we obtain the two decision functions:

 d x d x x x1 1 2 1 2 34 1 5 4 8 8 5 5x x() = − () = − + + −. .and

The decision boundary separating the two classes is then

 d d x x x1 2 1 2 38 8 8 4 0x x() − () = − − + =

Figure 12.20 shows a section of this planar surface. Note that the classes were separated effectively.

EXAMPLE 12.6 : Classification of multispectral data using a Bayes classifier.

As discussed in Sections 1.3 and 11.5, a multispectral scanner responds to selected bands of the electro-
magnetic energy spectrum, such as the bands: 0.45– 0.52, 0.53– 0.61, 0.63– 0.69, and 0.78– 0.90 microns.
These ranges are in the visible blue, visible green, visible red, and near infrared bands, respectively. A
region on the ground scanned using these multispectral bands produces four digital images of the region,

x3

x1

(1, 0, 0)

(1, 0, 1)

(0, 0, 0)

(1, 1, 1)

(0, 0, 1)
(0, 1, 1)

(0, 1, 0)

(1, 1, 0)

x2

1c∈

2c∈

FIGURE 12.20
Two simple
pattern classes
and the portion
of their Bayes
decision bound-
ary (shaded) that
intersects the
cube.

DIP4E_GLOBAL_Print_Ready.indb 928 6/16/2017 2:16:56 PM

12.4 Optimum (Bayes) Statistical Classifiers 929

one for each band. If the images are registered spatially, they can be visualized as being stacked one
behind the other, as illustrated in Fig. 12.7. As we explained in that figure, every point on the ground
in this example can be represented by a 4-D pattern vector of the form x = x x x x T

1 2 3 4, , , ,() where x1
is a shade of blue, x2 a shade of green, and so on. If the images are of size 512 512× pixels, each stack
of four multispectral images can be represented by 266,144 four-dimensional pattern vectors. As noted
previously, the Bayes classifier for Gaussian patterns requires estimates of the mean vector and covari-
ance matrix for each class. In remote sensing applications, these estimates are obtained using training
multispectral data whose classes are known from each region of interest (this knowledge sometimes is
referred to as ground truth). The resulting vectors are then used to estimate the required mean vectors
and covariance matrices, as in Example 12.5.

Figures 12.21(a) through (d) show four 512 512× multispectral images of the Washington, D.C. area,
taken in the bands mentioned in the previous paragraph. We are interested in classifying the pixels in
these images into one of three pattern classes: water, urban development, or vegetation. The masks in
Fig. 12.21(e) were superimposed on the images to extract samples representative of these three classes.
Half of the samples were used for training (i.e., for estimating the mean vectors and covariance matri-
ces), and the other half were used for independent testing to assess classifier performance. We assume
that the a priori probabilities are equal, P c jj() ; , , .= =1 3 1 2 3

Table 12.1 summarizes the classification results we obtained with the training and test data sets. The
percentage of training and test pattern vectors recognized correctly was about the same with both data
sets, indicating that the learned parameters did not over-fit the parameters to the training data. The larg-
est error in both cases was with patterns from the urban area. This is not unexpected, as vegetation is
present there also (note that no patterns in the vegetation or urban areas were misclassified as water).
Figure 12.21(f) shows as black dots the training and test patterns that were misclassified, and as white
dots the patterns that were classified correctly. No black dots are visible in region 1, because the seven
misclassified points are very close to the boundary of the white region. You can compute from the num-
bers in the table that the correct recognition rate was 96.4% for the training patterns, and 96.1% for the
test patterns.

Figures 12.21(g) through (i) are more interesting. Here, we let the system classify all image pixels into
one of the three categories. Figure 12.21(g) shows in white all pixels that were classified as water. Pixels
not classified as water are shown in black. We see that the Bayes classifier did an excellent job of deter-
mining which parts of the image were water. Figure 12.21(h) shows in white all pixels classified as urban
development; observe how well the system performed in recognizing urban features, such as the bridges
and highways. Figure 12.21(i) shows the pixels classified as vegetation. The center area in Fig. 12.21(h)
shows a high concentration of white pixels in the downtown area, with the density decreasing as a func-
tion of distance from the center of the image. Figure 12.21(i) shows the opposite effect, indicating the
least vegetation toward the center of the image, where urban development is the densest.

We mentioned in Section 10.3 when discussing Otsu’s method that thresholding
may be viewed as a Bayes classification problem, which optimally assigns patterns
to two or more classes. In fact, as the previous example shows, pixel-by-pixel classi-
fication may be viewed as a segmentation that partitions an image into two or more
possible types of regions. If only one single variable (e.g., intensity) is used, then
Eq. (12-24) becomes an optimum function that similarly partitions an image based
on the intensity of its pixels, as we did in Section 10.3. Keep in mind that optimal-
ity requires that the PDF and a priori probability of each class be known. As we

DIP4E_GLOBAL_Print_Ready.indb 929 6/16/2017 2:16:56 PM

930 Chapter 12 Image Pattern Classification

ba c
ed f
hg i

FIGURE 12.21 Bayes classification of multispectral data. (a)–(d) Images in the visible blue, visible green, visible red,
and near infrared wavelength bands. (e) Masks for regions of water (labeled 1), urban development (labeled 2),
and vegetation (labeled 3). (f) Results of classification; the black dots denote points classified incorrectly. The other
(white) points were classified correctly. (g) All image pixels classified as water (in white). (h) All image pixels clas-
sified as urban development (in white). (i) All image pixels classified as vegetation (in white).

DIP4E_GLOBAL_Print_Ready.indb 930 6/16/2017 2:16:57 PM

12.5 Neural Networks and Deep Learning 931

Training Patterns Test Patterns

Class
No. of

Samples

Classified into Class %
Correct Class

No. of
Samples

Classified into Class %
Correct1 2 3 1 2 3

1 484 482 2 0 99.6 1 483 478 3 2 98.9

2 933 0 885 48 94.9 2 932 0 880 52 94.4

3 483 0 19 464 96.1 3 482 0 16 466 96.7

TABLE 12.1
Bayes classification of multispectral image data. Classes 1, 2, and 3 are water, urban, and vegetation, respectively.

have mentioned previously, estimating these densities is not a trivial task. If assump-
tions have to be made (e.g., as in assuming Gaussian densities), then the degree of
optimality achieved in classification depends on how close the assumptions are to
reality.

12.5 NEURAL NETWORKS AND DEEP LEARNING

The principal objectives of the material in this section and in Section 12.6 are to
present an introduction to deep neural networks, and to derive the equations that
are the foundation of deep learning. We will discuss two types of networks. In this
section, we focus attention on multilayer, fully connected neural networks, whose
inputs are pattern vectors of the form introduced in Section 12.2. In Section 12.6, we
will discuss convolutional neural networks, which are capable of accepting images
as inputs. We follow the same basic approach in presenting the material in these two
sections. That is, we begin by developing the equations that describe how an input is
mapped through the networks to generate the outputs that are used to classify that
input. Then, we derive the equations of backpropagation, which are the tools used
to train both types of networks. We give examples in both sections that illustrate the
power of deep neural networks and deep learning for solving complex pattern clas-
sification problems.

BACKGROUND

The essence of the material that follows is the use of a multitude of elemental non-
linear computing elements (called artificial neurons), organized as networks whose
interconnections are similar in some respects to the way in which neurons are inter-
connected in the visual cortex of mammals. The resulting models are referred to
by various names, including neural networks, neurocomputers, parallel distributed
processing models, neuromorphic systems, layered self-adaptive networks, and con-
nectionist models. Here, we use the name neural networks, or neural nets for short.
We use these networks as vehicles for adaptively learning the parameters of decision
functions via successive presentations of training patterns.

Interest in neural networks dates back to the early 1940s, as exemplified by the
work of McCulloch and Pitts [1943], who proposed neuron models in the form of

12.5

DIP4E_GLOBAL_Print_Ready.indb 931 6/16/2017 2:16:57 PM

932 Chapter 12 Image Pattern Classification

binary thresholding devices, and stochastic algorithms involving sudden 0–1 and 1–0
changes of states, as the basis for modeling neural systems. Subsequent work by
Hebb [1949] was based on mathematical models that attempted to capture the con-
cept of learning by reinforcement or association.

During the mid-1950s and early 1960s, a class of so-called learning machines origi-
nated by Rosenblatt [1959, 1962] caused a great deal of excitement among research-
ers and practitioners of pattern recognition. The reason for the interest in these
machines, called perceptrons, was the development of mathematical proofs showing
that perceptrons, when trained with linearly separable training sets (i.e., training sets
separable by a hyperplane), would converge to a solution in a finite number of itera-
tive steps. The solution took the form of parameters (coefficients) of hyperplanes
that were capable of correctly separating the classes represented by patterns of the
training set.

Unfortunately, the expectations following discovery of what appeared to be a
well-founded theoretical model of learning soon met with disappointment. The
basic perceptron, and some of its generalizations, were inadequate for most pattern
recognition tasks of practical significance. Subsequent attempts to extend the power
of perceptron-like machines by considering multiple layers of these devices lacked
effective training algorithms, such as those that had created interest in the percep-
tron itself. The state of the field of learning machines in the mid-1960s was sum-
marized by Nilsson [1965]. A few years later, Minsky and Papert [1969] presented
a discouraging analysis of the limitation of perceptron-like machines. This view was
held as late as the mid-1980s, as evidenced by comments made by Simon [1986]. In
this work, originally published in French in 1984, Simon dismisses the perceptron
under the heading “Birth and Death of a Myth.”

More recent results by Rumelhart, Hinton, and Williams [1986] dealing with the
development of new training algorithms for multilayers of perceptron-like units
have changed matters considerably. Their basic method, called backpropagation
(backprop for short), provides an effective training method for multilayer networks.
Although this training algorithm cannot be shown to converge to a solution in the
sense of the proof for the single-layer perceptron, backpropagation is capable of
generating results that have revolutionized the field of pattern recognition.

The approaches to pattern recognition we have studied up to this point rely on
human-engineered techniques to transform raw data into formats suitable for com-
puter processing. The methods of feature extraction we studied in Chapter 11 are
examples of this. Unlike these approaches, neural networks can use backpropaga-
tion to automatically learn representations suitable for recognition, starting with
raw data. Each layer in the network “refines” the representation into more abstract
levels. This type of multilayered learning is commonly referred to as deep learning,
and this capability is one of the underlying reasons why applications of neural net-
works have been so successful. As we noted at the beginning of this section, practical
implementations of deep learning generally are associated with large data sets.

Of course, these are not “magical” systems that assemble themselves. Human
intervention is still required for specifying parameters such as the number of layers,
the number of artificial neurons per layer, and various coefficients that are problem

DIP4E_GLOBAL_Print_Ready.indb 932 6/16/2017 2:16:57 PM

12.5 Neural Networks and Deep Learning 933

dependent. Teaching proper recognition to a complex multilayer neural network is
not a science; rather, it is an art that requires considerable knowledge and experi-
mentation on the part of the designer. Countless applications of pattern recogni-
tion, especially in constrained environments, are best handled by more “traditional”
methods. A good example of this is stylized font recognition. It would be senseless
to develop a neural network to recognize the E-13B font we studied in Fig. 12.11. A
minimum-distance classifier implemented on a hard-wired architecture is the ideal
solution to this problem, provided that interest is limited to reading only the E-13B
font printed on bank checks. On the other hand, neural networks have proved to be
the ideal solution if the scope of application is expanded to require that all relevant
text written on checks, including cursive script, be read with high accuracy.

Deep learning has shined in applications that defy other methods of solution. In
the two decades following the introduction of backpropagation, neural networks
have been used successfully in a broad range of applications. Some of them, such as
speech recognition, have become an integral part of everyday life. When you speak
into a smart phone, the nearly flawless recognition is performed by a neural network.
This type of performance was unachievable just a few years ago. Other applications
from which you benefit, perhaps without realizing it, are smart filters that learn user
preferences for rerouting spam and other junk mail from email accounts, and the
systems that read zip codes on postal mail. Often, you see television clips of vehicles
navigating autonomously, and robots that are capable of interacting with their envi-
ronment. Most are solutions based on neural networks. Less familiar applications
include the automated discovery of new medicines, the prediction of gene mutations
in DNA research, and advances in natural language understanding.

Although the list of practical uses of neural nets is long, applications of this tech-
nology in image pattern classification has been slower in gaining popularity. As
you will learn shortly, using neural nets in image processing is based principally on
neural network architectures called convolutional neural nets (denoted by CNNs
or ConvNets). One of the earliest well-known applications of CNNs is the work of
LeCun et al. [1989] for reading handwritten U.S. postal zip codes. A number of other
applications followed shortly thereafter, but it was not until the results of the 2012
ImageNet Challenge were published (e.g., see Krizhevsky, Sutskever, and Hinton
[2012]) that CNNs became widely used in image pattern recognition. Today, this is
the approach of choice for addressing complex image recognition tasks.

The neural network literature is vast and rapidly evolving, so as usual, our
approach is to focus on fundamentals. In this and the following sections, we will
establish the foundation of how neural nets are trained, and how they operate after
training. We will begin by briefly discussing perceptrons. Although these computing
elements are not used per se in current neural network architectures, the opera-
tions they perform are almost identical to artificial neurons, which are the basic
computing units of neural nets. In fact, an introduction to neural networks would
be incomplete without a discussion of perceptrons. We will follow this discussion by
developing in detail the theoretical foundation of backpropagation. After develop-
ing the basic backpropagation equations, we will recast them in matrix form, which

DIP4E_GLOBAL_Print_Ready.indb 933 6/16/2017 2:16:57 PM

934 Chapter 12 Image Pattern Classification

reduces the training and operation of neural nets to a simple, straightforward cas-
cade of matrix multiplications.

After studying several examples of fully connected neural nets, we will follow a
similar approach in developing the foundation of CNNs, including how they differ
from fully connected neural nets, and how their training is different. This is followed
by several examples of how CNNs are used for image pattern classification.

THE PERCEPTRON

A single perceptron unit learns a linear boundary between two linearly separable
pattern classes. Figure 12.22(a) shows the simplest possible example in two dimen-
sions: two pattern classes, consisting of a single pattern each. A linear boundary in
2-D is a straight line with equation y ax b= + , where coefficient a is the slope and b
is the y-intercept. Note that if b = 0, the line goes through the origin. Therefore, the
function of parameter b is to displace the line from the origin without affecting its
slope. For this reason, this “floating” coefficient that is not multiplied by a coordi-
nate is often referred to as the bias, the bias coefficient, or the bias weight.

We are interested in a line that separates the two classes in Fig. 12.22. This is a line
positioned in such a way that pattern (,)x y1 1 from class c1 lies on one side of the line,
and pattern (,)x y2 2 from class c2 lies on the other. The locus of points (,)x y that are
on the line, satisfy the equation y ax b− − = 0. It then follows that any point on one
side of the line would yield a positive value when its coordinates are plugged into
this equation, and conversely for a point on the other side.

Generally, we work with patterns in much higher dimensions than two, so we need
more general notation. Points in n dimensions are vectors. The components of a vec-
tor, x x xn1 2, , , ,… are the coordinates of the point. For the coefficients of the boundary
separating the two classes, we use the notation w w w w1 2 1, , , , ,… n n+ where wn+1 is the
bias. The general equation of our line using this notation is w w w1 1 2 2 3 0x x+ + = (we
can express this equation in slope-intercept form as x x2 1 2 1 0+ + =(w w w w3 2)).
Figure 12.22(b) is the same as (a), but using this notation. Comparing the two fig-
ures, we see that y x= 2 , x x= 1, a = w w1 2, and b = w w3 2. Equipped with our more

FIGURE 12.22
(a) The simplest
two-class example
in 2-D, showing one
possible decision
boundary out of an
infinite number of
such boundaries.
(b) Same as (a), but
with the
decision boundary
expressed using
more general
notation.

, ory ax b= +
0y ax b− − =

x

y

1x

2x

2c∈

+
−

1c∈

2c∈

+
−

1c∈

1 1 2 2 3 0x x+ + =w w w

DIP4E_GLOBAL_Print_Ready.indb 934 6/16/2017 2:16:59 PM

12.5 Neural Networks and Deep Learning 935

general notation, we say that an arbitrary point (,)x x1 2 is on the positive side of a
line if w w w1 1 2 2 3 0x x+ + > , and conversely for any point on the negative side. For
points in 3-D, we work with the equation of a plane, w w w w1 1 2 2 3 3 4 0x x x+ + + = ,
but would perform exactly the same test to see if a point lies on the positive or
negative side of the plane. For a point in n dimensions, the test would be against a
hyperplane, whose equation is

 w w w w1 1 2 2 1 0x x xn n n+ + + + =+� (12-36)

This equation is expressed in summation form as

 w wi i n
i

n

x + =+
=
∑ 1

1

0 (12-37)

or in vector form as

 wT
nx + =+w 1 0 (12-38)

where w and x are n-dimensional column vectors and wT x is the dot (inner) prod-
uct of the two vectors. Because the inner product is commutative, we can express
Eq. (12-38) in the equivalent form xT

nw + =+w 1 0. We refer to w as a weight vector
and, as above, to wn+1 as a bias. Because the bias is a weight that is always multiplied
by 1, sometimes we avoid repetition by using the term weights, coefficients, or param-
eters when referring to the bias and the elements of a weight vector collectively.

Stating the class separation problem in general form we say that, given any pat-
tern vector x from a vector population, we want to find a set of weights with the
property

 wT
n

c

c
x

x

x
+ =

> ∈
< ∈

⎧
⎨
⎩

+w 1
1

2

0

0

if

if
 (12-39)

Finding a line that separates two linearly separable pattern classes in 2-D can be
done by inspection. Finding a separating plane by visual inspection of 3-D data is
more difficult, but it is doable. For n > 3, finding a separating hyperplane by inspec-
tion becomes impossible in general. We have to resort instead to an algorithm to find
a solution. The perceptron is an implementation of such an algorithm. It attempts
to find a solution by iteratively stepping through the patterns of each of two classes.
It starts with an arbitrary weight vector and bias, and is guaranteed to converge in a
finite number of iterations if the classes are linearly separable.

The perceptron algorithm is simple. Let a > 0 denote a correction increment (also
called the learning increment or the learning rate), let w()1 be a vector with arbi-
trary values, and let wn+1 1() be an arbitrary constant. Then, do the following for
k = 2 3, , :… For a pattern vector, x(),k at step k,

1) If x()k c∈ 1 and wT
nk k k() () () ,x + +w 1 0≤ let

w w() () ()

() ()

k k k

k kn n

+ = +
+ = ++ +

1

11 1

a

v v a

x
 (12-40)

It is customary to
associate > with class c1
and < with class c2, but
the sense of the
inequality is arbitrary,
provided that you are
consistent. Note that this
equation implements a
linear decision function.

Linearly separable class-
es satisfy Eq. (12-39).
That is, they are
separable by single
hyperplanes.

DIP4E_GLOBAL_Print_Ready.indb 935 6/16/2017 2:17:01 PM

936 Chapter 12 Image Pattern Classification

2) If x()k c∈ 2 and wT
nk k k() () () ,x + +w 1 0≥ let

w w() () ()

() ()

k k k

k kn n

+ = −
+ = −+ +

1

11 1

a

v v a

x
 (12-41)

3) Otherwise, let

w w() ()

() ()

k k

k kn n

+ =
+ =+ +

1

11 1v v
 (12-42)

The correction in Eq. (12-40) is applied when the pattern is from class c1 and
Eq. (12-39) does not give a positive response. Similarly, the correction in Eq. (12-41)
is applied when the pattern is from class c2 and Eq. (12-39) does not give a negative
response. As Eq. (12-42) shows, no change is made when Eq. (12-39) gives the cor-
rect response.

The notation in Eqs. (12-40) through (12-42) can be simplified if we add a 1 at
the end of every pattern vector and include the bias in the weight vector. That is,
we definex � …[, , , ,]x x xn

T
1 2 1 and w � …[, , , ,] .w w w w1 2 1n n

T
+ Then, Eq. (12-39)

becomes

 wT c

c
x

x

x
=

> ∈
< ∈

⎧
⎨
⎩

0

0
1

2

if

if
 (12-43)

where both vectors are now ()n + 1 -dimensional. In this formulation, x and w are
referred to as augmented pattern and weight vectors, respectively. The algorithm in
Eqs. (12-40) through (12-42) then becomes: For any pattern vector, x(),k at step k

1�) If x()k c∈ 1 and wT k k() () ,x ≤ 0 let

 w w() () ()k k k+ = +1 ax (12-44)

2�) If x()k c∈ 2 and wT k k() () ,x ≥ 0 let

 w w() () ()k k k+ = −1 ax (12-45)

3�) Otherwise, let

 w w() ()k k+ =1 (12-46)

where the starting weight vector, w(),1 is arbitrary and, as above, a is a positive
constant. The procedure implemented by Eqs. (12-40)–(12-42) or (12-44)–(12-46) is
called the perceptron training algorithm. The perceptron convergence theorem states
that the algorithm is guaranteed to converge to a solution (i.e., a separating hyper-
plane) in a finite number of steps if the two pattern classes are linearly separable
(see Problem 12.15). Normally, Eqs. (12-44)–(12-46) are the basis for implementing
the perceptron training algorithm, and we will use it in the following paragraphs
of this section. However, the notation in Eqs. (12-40)–(12-42), in which the bias is

DIP4E_GLOBAL_Print_Ready.indb 936 6/16/2017 2:17:03 PM

12.5 Neural Networks and Deep Learning 937

shown separately, is more prevalent in neural networks, so you need to be familiar
with it as well.

Figure 12.23 shows a schematic diagram of the perceptron. As you can see, all
this simple “machine” does is form a sum of products of an input pattern using the
weights and bias found during training. The output of this operation is a scalar value
that is then passed through an activation function to produce the unit’s output. For
the perceptron, the activation function is a thresholding function (we will consider
other forms of activation when we discuss neural networks). If the thresholded out-
put is a +1, we say that the pattern belongs to class c1. Otherwise, a −1 indicates that
the pattern belongs to class c2. Values 1 and 0 sometimes are used to denote the two
possible states of the output.

EXAMPLE 12.7 : Using the perceptron algorithm to learn a decision boundary.

We illustrate the steps taken by a perceptron in learning the coefficients of a linear boundary by solving
the mini problem in Fig. 12.22. To simplify manual computations, let the pattern vector furthest from the
origin be x = [] ,3 3 1 T and the other be x = [] ,1 1 1 T where we augmented the vectors by appending a
1 at the end, as discussed earlier. To match the figure, let these two patterns belong to classes c1 and c2 ,
respectively. Also, assume the patterns are “cycled” through the perceptron in that order during training
(one complete iteration through all patterns of the training is called an epoch). To start, we let a = 1 and
w() [] ;1 0 0 0= =0 T then,

For k = 1, x() [] ,1 3 3 1 1= ∈T c and w() [] .1 0 0 0= T Their inner product is zero,

 wT () ()1 1 0 0 0

3

3

1

0x = []
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

so Step 1� of the second version of the training algorithm applies:

 w w() () () ()2 1 1

0

0

0

1

3

3

1

3

3

1

= + =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
ax ⎥⎥

⎥

For k = 2, x() []2 1 1 1 2= ∈T c and w() [] .2 3 3 1= T Their inner product is

Note that the perceptron
model implements Eq.
(12-39), which is in
the form of a decision
function.

FIGURE 12.23
Schematic of a
perceptron,
showing the
operations it
performs.

1w

2w

nw

+1nw

1

1x

2x

nx

1−

+1

1
1

n

k k n
k

x +
=

+∑ w w

..... 1 or 1+ −

DIP4E_GLOBAL_Print_Ready.indb 937 6/16/2017 2:17:05 PM

938 Chapter 12 Image Pattern Classification

 wT () ()2 2 3 3 1

1

1

1

7x = []
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

The result is positive when it should have been negative, so Step 2� applies:

 w w() () () ()3 2 2

3

3

1

1

1

1

1

2

2

0

= − =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
ax ⎥⎥

⎥

We have gone through a complete training epoch with at least one correction, so we cycle through the
training set again.

For k = 3, x() [] ,3 3 3 1 1= ∈T c and w() [] .3 2 2 0= T Their inner product is positive (i.e., 6) as it should
be because x() .3 1∈c Therefore, Step 3� applies and the weight vector is not changed:

 w w() ()4 3

2

2

0

= =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

For k = 4, x() [] ,4 1 1 1 2= ∈T c and w() [] .4 2 2 0= T Their inner product is positive (i.e., 4) and it should
have been negative, so Step 2� applies:

 w w() () () ()5 4 4

2

2

0

1

1

1

1

1

1

1

= − =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

ax ⎥⎥
⎥
⎥

At least one correction was made, so we cycle through the training patterns again. For k = 5, we have
x() [] ,5 3 3 1 1= ∈T c and, using w(),5 we compute their inner product to be 5. This is positive as it should
be, so Step 3� applies and we let w w() () [] .6 5 1 1 1= = − T Following this procedure just discussed, you
can show (see Problem 12.13) that the algorithm converges to the solution weight vector

 w w= =
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

()12

1

1

3

which gives the decision boundary

 x x1 2 3 0+ − =

Figure 12.24(a) shows the boundary defined by this equation. As you can see, it clearly separates the
patterns of the two classes. In terms of the terminology we used in the previous section, the decision
surface learned by the perceptron is d d x x x x() (,) ,x = = + −1 2 1 2 3 which is a plane. As before, the
decision boundary is the locus of points such that d d x x() (,) ,x = =1 2 0 which is a line. Another way to
visualize this boundary is that it is the intersection of the decision surface (a plane) with the x x1 2 -plane,
as Fig. 12.24(b) shows. All points (,)x x1 2 such that d x x(,)1 2 0> are on the positive side of the boundary,
and vice versa for d x x(,) .1 2 0<

DIP4E_GLOBAL_Print_Ready.indb 938 6/16/2017 2:17:07 PM

12.5 Neural Networks and Deep Learning 939

EXAMPLE 12.8 : Using the perceptron to classify two sets of iris data measurements.

In Fig. 12.10 we showed a reduced set of the iris database in two dimensions, and mentioned that the
only class that was separable from the others is the class of Iris setosa. As another illustration of the
perceptron, we now find the full decision boundary between the Iris setosa and the Iris versicolor classes.
As we mentioned when discussing Fig. 12.10, these are 4-D data sets. Letting a = 0 5. , and starting with
all parameters equal to zero, the perceptron converged in only four epochs to the solution weight vector
w = − −[. , . , . , . , .] ,0 65 2 05 2 60 1 10 0 50 T where the last element is wn+1.

In practice, linearly separable pattern classes are rare, and a significant amount
of research effort during the 1960s and 1970s went into developing techniques for
dealing with nonseparable pattern classes. With recent advances in neural networks,
many of those methods have become items of mere historical interest, and we will
not dwell on them here. However, we mention briefly one approach because it is rel-
evant to the discussion of neural networks in the next section. The method is based
on minimizing the error between the actual and desired response at any training step.

Let r denote the response we want the perceptron to have for any pattern during
training. The output of our perceptron is either +1 or −1, so these are the two pos-
sible values that r can have. We want to find the augmented weight vector, w, that
minimizes the mean squared error (MSE) between the desired and actual responses
of the perceptron. The function should be differentiable and have a unique mini-
mum. The function of choice for this purpose is a quadratic of the form

 E r T()w w= −()1
2

2
x (12-47)

where E is our error measure, w is the weight vector we are seeking, x is any pattern
from the training set, and r is the response we desire for that pattern. Both w and x
are augmented vectors.

The 1 ⁄ 2 is used to cancel
out the 2 that will result
from taking the deriva-
tive of this expression.
Also, remember that wTx
is a scalar.

0 1 2 3

1

2

3

x1

0
1

2
3

1
2

3 x1

x2

1 2 1 2() (,) 3d d x x x x= = + −x

1 2 3x x+ −

1 2 3 0x x+ − =

+

1 2 3 0x x+ − =

x2

ba

FIGURE 12.24
(a) Segment
of the decision
boundary learned
by the perceptron
algorithm.
(b) Section of the
decision surface.
The decision
boundary is the
intersection of the
decision surface
with the x x1 2 -
plane.

DIP4E_GLOBAL_Print_Ready.indb 939 6/16/2017 2:17:08 PM

940 Chapter 12 Image Pattern Classification

We find the minimum of E()w using an iterative gradient descent algorithm, whose
form is

 w w
w

w
w w

k k
E

k

+() = −
∂ ()

∂
⎡

⎣
⎢

⎤

⎦
⎥

= ()
1 () a (12-48)

where the starting weight vector is arbitrary, and a > 0.
Figure 12.25(a) shows a plot of E for scalar values, w and x, of w and x. We want

to move w incrementally so E()w approaches a minimum, which implies that E
should stop changing or, equivalently, that ∂ ∂ =E() .w w 0 Equation (12-48) does
precisely this. If ∂ ∂ >E() ,w w 0 a portion of this quantity (determined by the value
of the learning increment a) is subtracted from w()k to create a new, updated value
w(),k + 1 of the weight. The opposite happens if ∂ ∂ <E() .w w 0 If ∂ ∂ =E() ,w w 0
the weight is unchanged, meaning that we have arrived at a minimum, which is the
solution we are seeking. The value of a determines the relative magnitude of the
correction in weight value. If a is too small, the step changes will be correspond-
ingly small and the weight would move slowly toward convergence, as Fig. 12.25(a)
illustrates. On the other hand, choosing a too large could cause large oscillations
on either side of the minimum, or even become unstable, as Fig. 12.25(b) illustrates.
There is no general rule for choosing a. However, a logical approach is to start small
and experiment by increasing a to determine its influence on a particular set of
training patterns. Figure 12.25(c) shows the shape of the error function for two vari-
ables.

Because the error function is given analytically and it is differentiable, we can
express Eq. (12-48) in a form that does not require computing the gradient explicitly
at every step. The partial of E()w with respect to w is

∂ ()

∂
= − −()E

r Tw

w
w x x (12-49)

Note that the right side
of this equation is the
gradient of E(w).

E

xw
0 1 2

0.25

0.50

0

E

xw
0 1 2

0.25

0.50

0

0

1

2
1

2
0

0.5

1

ba c

FIGURE 12.25 Plots of E as a function of wx for r = 1. (a) A value of a that is too small can slow down convergence.
(b) If a is too large, large oscillations or divergence may occur. (c) Shape of the error function in 2-D.

DIP4E_GLOBAL_Print_Ready.indb 940 6/16/2017 2:17:11 PM

12.5 Neural Networks and Deep Learning 941

Substituting this result into Eq. (12-48) yields

 w w wk k r k k k kT+() = () + () − () ()⎡⎣ ⎤⎦ ()1 a x x (12-50)

which is in terms of known or easily computable terms. As before, w()1 is arbitrary.
Widrow and Stearns [1985] have shown that it is necessary (but not sufficient)

for a to be in the range 0 2< <a for the algorithm in Eq. (12-50) to converge. A
typical range for a is 0 1 1 0. . .< <a Although the proof is not shown here, the algo-
rithm converges to a solution that minimizes the mean squared error over the pat-
terns of the training set. For this reason, the algorithm is often referred to as the
least-mean-squared-error (LMSE) algorithm. In practice, we say that the algorithm
has converged when the error decreases below a specified threshold. The solution
at convergence may not be a hyperplane that fully partitions two linearly separable
classes. That is, a mean-square-error solution does not imply a solution in the sense of
the perceptron training theorem. This uncertainty is the price of using an algorithm
whose convergence is independent of the linear separability of the pattern classes.

EXAMPLE 12.9 : Using the LMSE algorithm.

It will be interesting to compare the performance of the LMSE algorithm using the same set of separa-
ble iris data as in Example 12.8. Figure 12.26(a) is a plot of the error [Eq. (12-47)] as a function of epoch
for 50 epochs, using Eq. (12-50) (with a = 0 001.) to obtain the weights (we started with w()).1 = 0 Each
epoch of training consisted of sequentially updating the weights, one pattern at a time, and computing
Eq. (12-47) for each weight and the corresponding pattern. At the end of the epoch, the errors were
added and divided by 100 (the total number of patterns) to obtain the mean squared error (MSE). This
yielded one point of the curve of Fig. 12.26(a). After increasing and then decreasing rapidly, no appre-
ciable difference in error occurred after about 20 epochs. For example, the error at the end of the 50th
epoch was 0.02 and, at the end of 1,000 epochs, it was 0.0192. Getting smaller error values is possible by
further decreasing a, but at the expense of slower decay in the error, as noted in Fig. 12.25. Keep in mind
also that MSE is not directly proportional to correct recognition rate.

0.1

0.2

0.3

0
10 20 30 40 501 180 720 900360 540

M
ea

n
sq

ua
re

d
er

ro
r

(M
SE

)

Training epochs Training epochs

ba

FIGURE 12.26
MSE as a function
of epoch for:
(a) the linearly
separable Iris
classes (setosa
and versicolor);
and (b) the
linearly nonsepa-
rable Iris classes
(versicolor and
virginica).

DIP4E_GLOBAL_Print_Ready.indb 941 6/16/2017 2:17:12 PM

942 Chapter 12 Image Pattern Classification

The weight vector at the end of 50 epochs of training was w = [] .0.098 0.357 0.548 0.255 0.075− − T
All patterns were classified correctly into their two respective classes using this vector. That is, although
the MSE did not become zero, the resulting weight vector was able to classify all the patterns correctly.
But keep in mind that the LMSE algorithm does not always achieve 100% correct recognition of lin-
early separable classes.

As noted earlier, only the Iris setosa samples are linearly separable from the others. But the Iris ver-
sicolor and virginica samples are not. The perceptron algorithm would not converge when presented
with these data, whereas the LMSE algorithm does. Figure 12.26(b) is the MSE as a function of training
epoch for these two data sets, obtained using the same values for w()1 and a as in (a). This time, it took
900 epochs for the MSE to stabilize at 0.09, which is much higher than before. The resulting weight vec-
tor was w = [0.534 0.584 0.878 1.028 0.651] .− − T Using this vector resulted in seven misclassification
errors out of 100 patterns, giving a recognition rate of 93%.

A classic example used to show the limitations of single linear decision boundar-
ies (and hence single perceptron units) is the XOR classification problem. The table
in Fig. 12.27(a) shows the definition of the XOR operator for two variables. As you
can see, the XOR operation produces a logical true (1) value when either of the
variables (but not both) is true; otherwise, the result is false (0). The XOR two-class
pattern classification problem is set up by letting each pair of values A and B be a
point in 2-D space, and letting the true (1) XOR values define one class, and the false
(0) values define the other. In this case, we assigned the class c1 label to patterns

(,), (,) ,0 0 1 1{ } and the c2 label to patterns (,), (,) .1 0 0 1{ } A classifier capable of solv-
ing the XOR problem must respond with a value, say, 1, when a pattern from class c1
is presented, and a different value, say, 0 or −1, when the input pattern is from class
c2. You can tell by inspection of Fig. 12.27(b) that a single linear decision boundary
(a straight line) cannot separate the two classes correctly. This means that we cannot
solve the problem with a single perceptron. The simplest linear boundary consists
of two straight lines, as Fig. 12.27(b) shows. A more complex, nonlinear, boundary
capable of solving the problem is a quadratic function, as in Fig. 12.27(c).

0

1

1

0

1

0

1

0

0

1

0

1

A B A BXOR

1c∈
2c∈

1

1

x1

x2 +

+
–

–

0 1

1

x1

x2

+
–

0

ba c

FIGURE 12.27 The XOR classification problem in 2-D. (a) Truth table definition of the XOR
operator. (b) 2-D pattern classes formed by assigning the XOR truth values (1) to one pattern
class, and false values (0) to another. The simplest decision boundary between the two classes
consists of two straight lines. (c) Nonlinear (quadratic) boundary separating the two classes.

DIP4E_GLOBAL_Print_Ready.indb 942 6/16/2017 2:17:13 PM

12.5 Neural Networks and Deep Learning 943

Natural questions at this point are: Can more than one perceptron solve the XOR
problem? If so, what is the minimum number of units required? We know that a
single perceptron can implement one straight line, and we need to implement two
lines, so the obvious answers are: yes to the first question, and two units to the sec-
ond. Figure 12.28(a) shows the solution for two variables, which requires a total of
six coefficients because we need two lines. The solution coefficients are such that,
for either of the two patterns from class c1, one output is true (1) and the other is
false (0). The opposite condition must hold for either pattern from class c2. This
solution requires that we analyze two outputs. If we want to implement the truth
table, meaning that a single output should give the same response as the XOR func-
tion [the third column in Fig. 12.27(a)], then we need one additional perceptron.
Figure 12.28(b) shows the architecture for this solution. Here, one perceptron in the
first layer maps any input from one class into a 1, and the other perceptron maps a
pattern from the other class into a 0. This reduces the four possible inputs into two
outputs, which is a two-point problem. As you know from Fig. 12.24, a single percep-
tron can solve this problem. Therefore, we need three perceptrons to implement the
XOR table, as in Fig. 12.28(b).

With a little work, we could determine by inspection the coefficients needed to
implement either solution in Fig. 12.28. However, rather than dwell on that, we focus
attention in the following section on a more general, layered architecture, of which
the XOR solution is a trivial, special case.

MULTILAYER FEEDFORWARD NEURAL NETWORKS

In this section, we discuss the architecture and operation of multilayer neural net-
works, and derive the equations of backpropagation used to train them. We then
give several examples illustrating the capabilities of neural nets

Model of an Artificial Neuron

Neural networks are interconnected perceptron-like computing elements called
artificial neurons. These neurons perform the same computations as the perceptron,
but they differ from the latter in how they process the result of the computations.
As illustrated in Fig. 12.23, the perceptron uses a “hard” thresholding function that
outputs two values, such as +1 and −1, to perform classification. Suppose that in a
network of perceptrons, the output before thresholding of one of the perceptrons
is infinitesimally greater than zero. When thresholded, this very small signal will be
turned into a +1. But a similarly small signal with the opposite sign would cause

1x

2x

1w

2w
1

3w

1

4w

5w

6w

1x

2x

1w

2w
1

3w

1

4w

5w

6w

7w

8w
9w 1

ba

FIGURE 12.28
(a) Minimum
perceptron solution
to the XOR problem
in 2-D. (b) A solution
that implements the
XOR truth table in
Fig. 12.27(a).

DIP4E_GLOBAL_Print_Ready.indb 943 6/16/2017 2:17:14 PM

944 Chapter 12 Image Pattern Classification

a large swing in value from +1 to −1. Neural networks are formed from layers of
computing units, in which the output of one unit affects the behavior of all units fol-
lowing it. The perceptron’s sensitivity to the sign of small signals can cause serious
stability problems in an interconnected system of such units, making perceptrons
unsuitable for layered architectures.

The solution is to change the characteristic of the activation function from a hard-
limiter to a smooth function. Figure 12.29 shows an example based on using the
activation function

 h z
e z() =

+ −
1

1
 (12-51)

where z is the result of the computation performed by the neuron, as shown in Fig.
12.29. Except for more complicated notation, and the use of a smooth function rath-
er than a hard threshold, this model performs the same sum-of-products operations
as in Eq. (12-36) for the perceptron. Note that the bias term is denoted by b instead

0.0

0.5

1.0

1.0−

0.5−

0.0

0.5

1.0

0

2

4

6

2− 0 2 4 66− 4−2− 0 2 4 66− 4− 2− 0 2 4 66− 4−

1
()

1 zh z
e−=

+
[]() () 1 ()h z h z h z= −�

() tanh()h z z=

[]2() 1 ()h z h z= −�

() max(0,)h z z=
1 if 0

()
0 if 0

z
h z

z

>⎧
= ⎨ ≤⎩

�

Sigmoid tanh ReLu

ba c

FIGURE 12.30 Various activation functions. (a) Sigmoid. (b) Hyperbolic tangent (also has a sigmoid shape, but it is
centered about 0 in both dimensions). (c) Rectifier linear unit (ReLU).

1

..... ()ib+ �

1

1

() () (1)
n

i ij j
j

z a
−

=
= −∑

�

� � �w

2(1)a −�

1(1)a −�

1
(1)na

−
−

�
�

h

()() ()i ia h z=� �

2()i �w
1()i �w

1
()in −�
�w

()ib �
Neuron i in layer �

FIGURE 12.29
Model of an
artificial neuron,
showing all the
operations it
performs. The
“�” is used to
denote a
particular layer in
a layered
network.

DIP4E_GLOBAL_Print_Ready.indb 944 6/16/2017 2:17:14 PM

12.5 Neural Networks and Deep Learning 945

of wn+1, as we do the perceptron. It is customary to use different notation, typically
b, in neural networks to denote the bias term, so we are following convention. The
more complicated notation used in Fig. 12.29, which we will explain shortly, is need-
ed because we will be dealing with multilayer arrangements with several neurons
per layer. We use the symbol “ ”� to denote layers.

As you can see by comparing Figs. 12.29 and 12.23, we use variable z to denote
the sum-of-products computed by the neuron. The output of the unit, denoted by a,
is obtained by passing z through h. We call h the activation function, and refer to its
output, a h z= (), as the activation value of the unit. Note in Fig. 12.29 that the inputs
to a neuron are activation values from neurons in the previous layer. Figure 12.30(a)
shows a plot of h z() from Eq. (12-51). Because this function has the shape of a sig-
moid function, the unit in Fig. 12.29 is sometimes called an artificial sigmoid neuron,
or simply a sigmoid neuron. Its derivative has a very nice form, expressible in terms
of h z() [see Problem 12.16(a)]:

 h z
h z

z
h z h z�()

()
() ()= ∂

∂
= −[]1 (12-52)

Figures 12.30(b) and (c) show two other forms of h z() used frequently. The hyper-
bolic tangent also has the shape of a sigmoid function, but it is symmetric about both
axes. This property can help improve the convergence of the backpropagation algo-
rithm to be discussed later. The function in Fig. 12.30(c) is called the rectifier func-
tion, and a unit using it is referred to a rectifier linear unit (ReLU). Often, you see
the function itself referred to as the ReLU activation function. Experimental results
suggest that this function tends to outperform the other two in deep neural networks.

Interconnecting Neurons to Form a Fully Connected Neural Network

Figure 12.31 shows a generic diagram of a multilayer neural network. A layer in the
network is the set of nodes (neurons) in a column of the network. As indicated by
the zoomed node in Fig. 12.31, all the nodes in the network are artificial neurons of
the form shown in Fig. 12.29, except for the input layer, whose nodes are the com-
ponents of an input pattern vector x. Therefore, the outputs (activation values) of
the first layer are the values of the elements of x. The outputs of all other nodes are
the activation values of neurons in a particular layer. Each layer in the network can
have a different number of nodes, but each node has a single output. The multiple
lines shown at the outputs of the neurons in Fig. 12.31 indicate that the output of
every node is connected to the input of all nodes in the next layer, to form a fully
connected network. We also require that there be no loops in the network. Such
networks are called feedforward networks. Fully connected, feedforward neural nets
are the only types of networks considered in this section.

We obviously know the values of the nodes in the first layer, and we can observe
the values of the output neurons. All others are hidden neurons, and the layers that
contain them are called hidden layers. Generally, we call a neural net with a single
hidden layer a shallow neural network, and refer to network with two or more hid-
den layers as a deep neural network. However, this terminology is not universal, and

DIP4E_GLOBAL_Print_Ready.indb 945 6/16/2017 2:17:16 PM

946 Chapter 12 Image Pattern Classification

sometimes you will see the words “shallow” and “deep” used subjectively to denote
networks with a “few” and with “many” layers, respectively.

We used the notation in Eq. (12-37) to label all the inputs and weights of a per-
ceptron. In a neural network, the notation is more complicated because we have to
account for neuron weights, inputs, and outputs within a layer, and also from layer
to layer. Ignoring layer notation for a moment, we denote by wij the weight that
associates the link connecting the output of neuron j to the input of neuron i. That is,

x1

x2

x3

xn

Layer 1
(Input)

Layer L
(Output)

Hidden Layers
(The number of nodes in
the hidden layers can be

different from layer to layer)

Neuron in hidden layer i �

layer �

()ia �
Output () goes to all neurons in layer 1ia +� �

1

.....

.....
()ib+ �

1

1

() () (1)
n

i ij j
j

z a
−

=
= −∑

�

� � �w

2(1)a −�

1(1)a −�

(1)ja −�

1
(1)na

−
−

�
�

h

()() ()i ia h z=� �

FIGURE 12.31
General model
of a feedforward,
fully connected
neural net. The
neuron is the
same as in
Fig. 12.29. Note
how the output of
each neuron goes
to the input of all
neurons in the
following layer,
hence the name
fully connected
for this type of
architecture.

DIP4E_GLOBAL_Print_Ready.indb 946 6/16/2017 2:17:16 PM

12.5 Neural Networks and Deep Learning 947

the first subscript denotes the neuron that receives the signal, and the second refers
to the neuron that sends the signal. Because i precedes j alphabetically, it would
seem to make more sense for i to send and for j to receive. The reason we use the
notation as stated is to avoid a matrix transposition in the equation that describes
propagation of signals through the network. This notation is convention, but there is
no doubt that it is confusing, so special care is necessary to keep the notation straight.

Because the biases depend only on the neuron containing it, a single subscript
that associates a bias with a neuron is sufficient. For example, we use bi to denote the
bias value associated with the ith neuron in a given layer of the network. Our use of
b instead of wn+1 (as we did for perceptrons) follows notational convention used in
neural networks. The weights, biases, and activation function(s) completely define a
neural network. Although the activation function of any neuron in a neural network
could be different from the others, there is no convincing evidence to suggest that
there is anything to be gained by doing so. We assume in all subsequent discussions
that the same form of activation function is used in all neurons.

Let � denote a layer in the network, for � …= 1 2, , , .L With reference to Fig. 12.31,
� = 1 denotes the input layer, � = L is the output layer, and all other values of �
denote hidden layers. The number of neurons in layer � is denoted n�. We have two
options to include layer indexing in the parameters of a neural network. We can do
it as a superscript, for example, wij

� and bi
� ; or we can use the notation wij()� and

bi().� The first option is more prevalent in the literature on neural network. We use
the second option because it is more consistent with the way we describe iterative
expressions in the book, and also because you may find it easier to follow. Using this
notation, the output (activation value) of neuron k in layer � is denoted ak().�

Keep in mind that our objective in using neural networks is the same as for per-
ceptrons: to determine the class membership of unknown input patterns. The most
common way to perform pattern classification using a neural network is to assign a
class label to each output neuron. Thus, a neural network with nL outputs can clas-
sify an unknown pattern into one of nL classes. The network assigns an unknown
pattern vector x to class ck if output neuron k has the largest activation value; that is,
if a L a Lk j() (),> j n j kL= 1 2, , , ; .… ≠ †

In this and the following section, the number of outputs of our neural networks
will always equal the number of classes. But this is not a requirement. For instance, a
network for classifying two pattern classes could be structured with a single output
(Problem 12.17 illustrates such a case) because all we need for this task is two states,
and a single neuron is capable of that. For three and four classes, we need three and
four states, respectively, which can be achieved with two output neurons. Of course,
the problem with this approach is that we would need additional logic to decipher
the output combinations. It is simply more practical to have one neuron per output,
and let the neuron with the highest output value determine the class of the input.

† Instead of a sigmoid or similar function in the final output layer, you will sometimes see a softmax function used
instead. The concept is the same as we explained earlier, but the activation values in a softmax implementation
are given by a L z L z Li i k i() exp[()] exp[()],= ∑ where the summation is over all outputs. In this formulation, the
sum of all activations is 1, thus giving the outputs a probabilistic interpretation.

Remember, a bias is a
weight that is always
multiplied by 1.

DIP4E_GLOBAL_Print_Ready.indb 947 6/16/2017 2:17:18 PM

948 Chapter 12 Image Pattern Classification

FORWARD PASS THROUGH A FEEDFORWARD NEURAL NETWORK

A forward pass through a neural network maps the input layer (i.e., values of x) to
the output layer. The values in the output layer are used for determining the class of
an input vector. The equations developed in this section explain how a feedforward
neural network carries out the computations that result in its output. Implicit in the
discussion in this section is that the network parameters (weights and biases) are
known. The important results in this section will be summarized in Table 12.2 at the
end of our discussion, but understanding the material that gets us there is important
when we discuss training of neural nets in the next section.

The Equations of a Forward Pass

The outputs of the layer 1 are the components of input vector x:

 a x j nj j() , , ,1 1 2 1= = … (12-53)

where n n1 = is the dimensionality of x. As illustrated in Figs. 12.29 and 12.31, the
computation performed by neuron i in layer � is given by

 z a bi ij j i
j

n

() () () ()� � � �
�

= − +
=

−

∑ w 1
1

1

 (12-54)

for i n= 1 2, , ,… � and � …= 2, , .L Quantity zi()� is called the net (or total) input to
neuron i in layer �, and is sometimes denoted by neti . The reason for this terminol-
ogy is that zi()� is formed using all outputs from layer � − 1. The output (activation
value) of neuron i in layer � is given by

 a h z i ni i() () , , ,� � … �= () = 1 2 (12-55)

where h is an activation function. The value of network output node i is

 a L h z L i ni i L() () , , ,= () = 1 2 … (12-56)

Equations (12-53) through (12-56) describe all the operations required to map the
input of a fully connected feedforward network to its output.

EXAMPLE 12.10 : Illustration of a forward pass through a fully connected neural network.

It will be helpful to consider a simple numerical example. Figure 12.32 shows a three-layer neural network
consisting of the input layer, one hidden layer, and the output layer. The network accepts three inputs, and
has two outputs. Thus, this network is capable of classifying 3-D patterns into one of two classes.

The numbers shown above the arrow heads on each input to a node are the weights of that node
associated with the outputs from the nodes in the preceding layer. Similarly, the number shown in the
output of each node is the activation value, a, of that node. As noted earlier, there is only one output
value for each node, but it is routed to the input of every node in the next layer. The inputs associated
with the 1’s are bias values.

Let us look at the computations performed at each node, starting with the first (top) node in layer 2.
We use Eq. (12-54) to compute the net input, z1 2(), for that node:

DIP4E_GLOBAL_Print_Ready.indb 948 6/16/2017 2:17:19 PM

12.5 Neural Networks and Deep Learning 949

x1

x2

x3

0.1

3

0

1

0.2

1

110.4

1
0.2

0.6

0.3

0.6

0.4
0.3

0.1

0.2

0.1

0.1

0.4

0.7858

0.8176

0.6982

0.6694

1

2

3

3

0

1

x

x

x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

x

FIGURE 12.32
A small,
fully connected,
feedforward
net with labeled
weights, biases,
and outputs. The
activation
function is a
sigmoid.

 z a b
j

j1
1

3

12 2 1 2 0 1 3 0 2 0 0 6 1 0() () () () (.)() (.)() (.)() .= + = + + +
=
∑w1j 44 1 3= .

We obtain the output of this node using Eqs. (12-51) and (12-55):

 a h z
e1 1 1 32 2
1

1
0 7858() () ..= () =

+
=−

A similar computation gives the value for the output of the second node in the second layer,

 z a b
j

j2
1

3

22 2 1 2 0 4 3 0 3 0 0 1 1 0() () () () (.)() (.)() (.)() .= + = + + +
=
∑w2j 22 1 5= .

and

 a h z
e2 2 1 52 2
1

1
0 8176() () ..= () =

+
=−

We use the outputs of the nodes in layer 2 to obtain the net values of the neurons in layer 3:

 z a b
j

j1
1

2

13 3 2 3 0 2 0 7858 0 1 0 8176 0() () () () (.)(.) (.)(.)= + = + +
=
∑w1j .. .6 0 8389=

The output of this neuron is

 a h z
e1 1 0 83893 3
1

1
0 6982() () ..= () =

+
=−

Similarly,

 z a b
j

j2
1

2

23 3 2 3 0 1 0 7858 0 4 0 8176 0() () () () (.)(.) (.)(.)= + = + +
=
∑w2j .. .3 0 7056=

and

 a h z
e2 2 0 70563 2
1

1
0 6694() () ..= () =

+
=−

If we were using this network to classify the input, we would say that pattern x belongs to class c1
because a L a L1 2() (),> where L = 3 and nL = 2 in this case.

DIP4E_GLOBAL_Print_Ready.indb 949 6/16/2017 2:17:21 PM

950 Chapter 12 Image Pattern Classification

Matrix Formulation

The details of the preceding example reveal that there are numerous individual
computations involved in a pass through a neural network. If you wrote a computer
program to automate the steps we just discussed, you would find the code to be very
inefficient because of all the required loop computations, the numerous node and
layer indexing you would need, and so forth. We can develop a more elegant (and
computationally faster) implementation by using matrix operations. This means
writing Eqs. (12-53) through (12-55) as follows.

First, note that the number of outputs in layer 1 is always of the same dimension
as an input pattern, x, so its matrix (vector) form is simple:

 a x()1 = (12-57)

Next, we look at Eq. (12-54). We know that the summation term is just the inner
product of two vectors [see Eqs. (12-37) and (12-38)]. However, this equation has
to be evaluated for all nodes in every layer past the first. This implies that a loop is
required if we do the computations node by node. The solution is to form a matrix,
W(),� that contains all the weights in layer �. The structure of this matrix is simple—
each of its rows contains the weights for one of the nodes in layer � :

 W()

() () ()

() () ()

(

�

� � � �

� � � �

� � �
�

�

�

�

=

−

−

w w w

w w w

w

11 12

21

n 1

1

22 2

1

1

n

n

)) () ()w wn n� � �
� � �2 1n −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (12-58)

Then, we can obtain all the sum-of-products computations, zi(),� for layer � simulta-
neously:
 z W a b() () () () , , ,� � � � � …= − + =1 2 3 L (12-59)

where a()� − 1 is a column vector of dimension n�−1 1× containing the outputs of
layer � − 1, b()� is a column vector of dimension n� × 1 containing the bias values
of all the neurons in layer �, and z()� is an n� × 1 column vector containing the net
input values, z i ni(), , , , ,� … �= 1 2 to all the nodes in layer �. You can easily verify
that Eq. (12-59) is dimensionally correct.

Because the activation function is applied to each net input independently of the
others, the outputs of the network at any layer can be expressed in vector form as:

 a z() ()

()

()

()

� �

�
�
�

�
�

= [] =

()
()

()

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

h

h z

h z

h zn

1

2
 (12-60)

Implementing Eqs. (12-57) through (12-60) requires just a series of matrix opera-
tions, with no loops.

With reference to our
earlier discussion on the
order of the subscripts
i and j, if we had let i
be the sending node
and j the receiver, this
matrix would have to be
transposed.

DIP4E_GLOBAL_Print_Ready.indb 950 6/16/2017 2:17:23 PM

12.5 Neural Networks and Deep Learning 951

EXAMPLE 12.11 : Redoing Example 12.10 using matrix operations.

Figure 12.33 shows the same neural network as in Fig. 12.32, but with all its parameters shown in matrix
form. As you can see, the representation in Fig. 12.33 is more compact. Starting with

 a()1

3

0

1

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

it follows that

 z W a b() () () ()
. . .

. . .
2 2 1 2

0 1 0 2 0 6

0 4 0 3 0 1

3

0

1

0
= + =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
..

.

.

.

4

0 2

1 3

1 5
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

Then,

 a z() ()
()

()

(.)

(.)

.
2 2

2

2

1 3

1 5

0 71

2

= [] =
()
()

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =h

h z

h z

h

h

8858

0 8176.
⎡

⎣
⎢

⎤

⎦
⎥

With a()2 as input to the next layer, we obtain

 z W a b() () () ()
. .

. .

.

.

.
3 3 2 3

0 2 0 1

0 1 0 4

0 7858

0 8176

0
= + =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ +

66

0 3

0 8389

0 7056.

.

.
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

and, as before,

 a z() ()
()

()

(.)

(.)
3 3

3

3

0 8389

0 7056
1

2

= [] =
()
()

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤
h

h z

h z

h

h ⎦⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

0 6982

0 6694

.

.

The clarity of the matrix formulation over the indexed notation used in Example 12.10 is evident.

Equations (12-57) through (12-60) are a significant improvement over node-by-
node computations, but they apply only to one pattern. To classify multiple pat-
tern vectors, we would have to loop through each pattern using the same set of
matrix equations per loop iteration. What we are after is one set of matrix equations

x1

x2

x3

0.1 0.2 0.6
(2)

0.4 0.3 0.1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

W

0.4
(2)

0.2
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

b

0.2 0.1
(3)

0.1 0.4
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

W

0.6
(3)

0.3
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

b

3

(1) 0

1

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

a x

0.7858
(2)

0.8176
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

a

0.6982
(3)

0.6694
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

a

FIGURE 12.33
Same as Fig. 12.32,
but using matrix
labeling.

DIP4E_GLOBAL_Print_Ready.indb 951 6/16/2017 2:17:24 PM

952 Chapter 12 Image Pattern Classification

capable of processing all patterns in a single forward pass. Extending Eqs. (12-57)
through (12-60) to this more general formulation is straightforward. We begin by
arranging all our input pattern vectors as columns of a single matrix, X, of dimension
n np× where, as before, n is the dimensionality of the vectors and np is the number
of pattern vectors. It follows from Eq. (12-57) that

 A X()1 = (12-61)

where each column of matrix A()1 contains the initial activation values (i.e., the vec-
tor values) for one pattern. This is a straightforward extension of Eq. (12-57), except
that we are now dealing with an n np× matrix instead of an n × 1 vector.

The parameters of a network do not change because we are processing more
pattern vectors, so the weight matrix is as given in Eq. (12-58). This matrix is of size
n n� �× −1. When � = 2, we have that W()2 is of size n n2 × , because n1 is always equal
to n. Then, extending the product term of Eq. (12-59) to use A()2 instead of a(),2
results in the matrix product W A() (),2 2 which is of size ()() .n n n n n np p2 2× × ×=
To this, we have to add the bias vector for the second layer, which is of size n2 1× .
Obviously, we cannot add a matrix of size n np2 × and a vector of size n2 1× . How-
ever, as is true of the weight matrices, the bias vectors do not change because we
are processing more pattern vectors. We just have to account for one identical bias
vector, b(),2 per input vector. We do this by creating a matrix B()2 of size n np2 × ,
formed by concatenating column vector b()2 np times, horizontally. Then, Eq. (12-59)
written in matrix becomes Z W A B() () () ().2 2 1 2= + Matrix Z()2 is of size n np2 × ; it
contains the computation performed by Eq. (12-59), but for all input patterns. That
is, each column of Z()2 is exactly the computation performed by Eq. (12-59) for one
input pattern.

The concept just discussed applies to the transition from any layer to the next
in the neural network, provided that we use the weights and bias appropriate for a
particular location in the network. Therefore, the full matrix version of Eq. (12-59) is

 Z W A B() () () ()� � � �= − +1 (12-62)

where W()� is given by Eq. (12-58) and B()� is an n np� × matrix whose columns are
duplicates of b(),� the bias vector containing the biases of the neurons in layer �.

All that remains is the matrix formulation of the output of layer �. As Eq. (12-60)
shows, the activation function is applied independently to each element of the vec-
tor z().� Because each column of Z()� is simply the application of Eq. (12-60) cor-
responding to a particular input vector, it follows that

 A Z() ()� �= []h (12-63)

where activation function h is applied to each element of matrix Z().�
Summarizing the dimensions in our matrix formulation, we have: X and A()1

are of size n np× , Z()� is of size n np� × , W()� is of size n n� �× −1, A()� − 1 is of

DIP4E_GLOBAL_Print_Ready.indb 952 6/16/2017 2:17:27 PM

12.5 Neural Networks and Deep Learning 953

size n np�−1 × , B()� is of size n np� × , and A()� is of size n np� × . Table 12.2 summa-
rizes the matrix formulation for the forward pass through a fully connected, feed-
forward neural network for all pattern vectors. Implementing these operations in a
matrix-oriented language like MATLAB is a trivial undertaking. Performance can
be improved significantly by using dedicated hardware, such as one or more graphics
processing units (GPUs).

The equations in Table 12.2 are used to classify each of a set of patterns into one
of nL pattern classes. Each column of output matrix A()L contains the activation
values of the nL output neurons for a specific pattern vector. The class membership
of that pattern is given by the location of the output neuron with the highest activa-
tion value. Of course, this assumes we know the weights and biases of the network.
These are obtained during training using backpropagation, as we explain next.

USING BACKPROPAGATION TO TRAIN DEEP NEURAL NETWORKS

A neural network is defined completely by its weights, biases, and activation func-
tion. Training a neural network refers to using one or more sets of training patterns
to estimate these parameters. During training, we know the desired response of
every output neuron of a multilayer neural net. However, we have no way of know-
ing what the values of the outputs of hidden neurons should be. In this section, we
develop the equations of backpropagation, the tool of choice for finding the value
of the weights and biases in a multilayer network. This training by backpropaga-
tion involves four basic steps: (1) inputting the pattern vectors; (2) a forward pass
through the network to classify all the patterns of the training set and determine the
classification error; (3) a backward (backpropagation) pass that feeds the output
error back through the network to compute the changes required to update the
parameters; and (4) updating the weights and biases in the network. These steps are
repeated until the error reaches an acceptable level. We will provide a summary of
all principal results derived in this section at the end of the discussion (see Table
12.3). As you will see shortly, the principal mathematical tool needed to derive the
equations of backpropagation is the chain rule from basic calculus.

The Equations of Backpropagation

Given a set of training patterns and a multilayer feedforward neural network archi-
tecture, the approach in the following discussion is to find the network parameters

Step Description Equations

Step 1 Input patterns A X()1 =

Step 2 Feedforward For � …= 2, , ,L compute Z W A B() () () ()� � � �= − +1 and A Z() ()� �= ()h

Step 3 Output A Z() ()L h L= ()

TABLE 12.2
Steps in the matrix computation of a forward pass through a fully connected, feedforward multilayer neural net.

DIP4E_GLOBAL_Print_Ready.indb 953 6/16/2017 2:17:29 PM

954 Chapter 12 Image Pattern Classification

that minimize an error (also called cost or objective) function. Our interest is in
classification performance, so we define the error function for a neural network as
the average of the differences between desired and actual responses. Let r denote
the desired response for a given pattern vector, x, and let a()L denote the actu-
al response of the network to that input. For example, in a ten-class recognition
application, r and a()L would be 10-D column vectors. The ten components of a()L
would be the ten outputs of the neural network, and the components of r would be
zero, except for the element corresponding to the class of x, which would be 1. For
example, if the input training pattern belongs to class 6, the 6th element of r would
be 1 and the rest would be 0’s.

The activation values of neuron j in the output layer is a Lj(). We define the error
of that neuron as

 E r a Lj j j= −()1
2

2
() (12-64)

for j nL= 1 2, , , ,… where rj is the desired response of output neuron a Lj() for a
given pattern x. The output error with respect to a single x is the sum of the errors of
all output neurons with respect to that vector:

E E r a L

L

j
j

n

j j
j

nL L

= = −()

= −

= =
∑ ∑

1

2

1

2

1
2

1
2

()

()� �r a

 (12-65)

where the second line follows from the definition of the Euclidean vector norm. The
total network output error over all training patterns is defined as the sum of the errors
of the individual patterns. We want to find the weights that minimize this total error.
As we did for the LMSE perceptron, we find the solution using gradient descent.
However, unlike the perceptron, we have no way for computing the gradients of the
weights in the hidden nodes. The beauty of backpropagation is that we can achieve an
equivalent result by propagating the output error back into the network.

The key objective is to find a scheme to adjust all weights in a network using train-
ing patterns. In order to do this, we need to know how E changes with respect to the
weights in the network. The weights are contained in the expression for the net input
to each node [see Eq. (12-54)], so the quantity we are after is ∂ ∂E zj()� where, as
defined in Eq. (12-54), zj()� is the net input to node j in layer �. In order to simplify
the notation later, we use the symbol d j()� to denote ∂ ∂E zj().� Because backpropa-
gation starts with the output and works backward from there, we look first at

 d j
j

L
E

z L
()

()
= ∂

∂
 (12-66)

We can express this equation in terms of the output a Lj() using the chain rule:

See Eqs. (2-50) and
(2-51) regarding the
Euclidean vector norm.

When the meaning is
clear, we sometimes
include the bias term in
the word “weights.”

We use “j” generically
to mean any node in the
network. We are not
concerned at the moment
with inputs to, or outputs
from, a node.

DIP4E_GLOBAL_Print_Ready.indb 954 6/16/2017 2:17:30 PM

12.5 Neural Networks and Deep Learning 955

d j

j j

j

j j

j

j

L
E

z L
E

a L

a L

z L
E

a L

h z L

z L
()

() ()

()

() ()

()

(
= ∂

∂
= ∂

∂
∂
∂

= ∂
∂

∂ ()
∂))

()
()= ∂

∂ ()E
a L

h z L
j

j�

 (12-67)

where we used Eq. (12-56) to obtain the last expression in the first line. This equa-
tion gives us the value of d j L() in terms of quantities that can be observed or com-
puted. For example, if we use Eq. (12-64) as our error measure, and Eq. (12-52) for
h z xj� () ,() then

 d j j j j jL h z L h z L a L r() () () ()= () − ()⎡⎣ ⎤⎦ −⎡⎣ ⎤⎦1 (12-68)

where we interchanged the order of the terms. The h z Lj()() are computed in the
forward pass, a Lj() can be observed in the output of the network, and rj is given
along with x during training. Therefore, we can compute d j L().

Because the relationship between the net input and the output of any neuron in
any layer (except the first) is the same, the form of Eq. (12-66) is valid for any node
j in any hidden layer:

 d j
j

E
z

()
()

�
�

= ∂
∂

 (12-69)

This equation tells us how E changes with respect to a change in the net input to any
neuron in the network. What we want to do next is express d j()� in terms of d j().� + 1
Because we will be proceeding backward in the network, this means that if we have
this relationship, then we can start with d j L() and find d j L().− 1 We then use this
result to find d j L(),− 2 and so on until we arrive at layer 2. We obtain the desired
expression using the chain rule (see Problem 12.25):

d

d

j
j i

i

j

j

ji

i

E
z

E
z

z
a

a

z
()

() ()
()

()

()

()

(

�
� �

�
�

�

�

�

= ∂
∂

= ∂
∂ +

∂ +
∂

∂
∂

=

∑ 1
1

++ ∂ +
∂ ()

= () + +

∑

∑

1
1

1 1

)
()

()
()

() () ()

z
a

h z

h z

i

ji
j

j ij i
i

�
�

�

� � �

�

� w d

 (12-70)

for � …= − −L L1 2 2, , , where we used Eqs. (12-55) and (12-69) to obtain the mid-
dle line, and Eq. (12-54), plus some rearranging to obtain the last line.

The preceding development tells us how we can start with the error in the output
(which we can compute) and obtain how that error changes as function of the net
inputs to every node in the network. This is an intermediate step toward our final
objective, which is to obtain expressions for ∂ ∂E w (ij �) and ∂ ∂E ib (�) in terms of
d j jE z() ().� �= ∂ For this, we use the chain rule again:

DIP4E_GLOBAL_Print_Ready.indb 955 6/16/2017 2:17:32 PM

956 Chapter 12 Image Pattern Classification

∂
∂

= ∂
∂

∂
∂

= ∂
∂

= −

E E
z

z

z

a

i

i

i
i

j

w (w (

w (

ij ij

ij

� �
�
�

�
�
�

�

) ()
()

)

()
()

)

()

d

1 ddi()�

 (12-71)

where we used Eq. (12-54), Eq. (12-69), and interchanged the order of the results
to clarify matrix formulations later in our discussion. Similarly (see Problem 12.26),

∂

∂
=E

bi
i()
()

�
�d (12-72)

Now we have the rate of change of E with respect to the network weights and biases
in terms of quantities we can compute. The last step is to use these results to update
the network parameters using gradient descent:

w w

w

w

ij ij
ij

ij i j

E

a

() ()
()
()

() () ()

� �
�
�

� � �

= − ∂
∂

= − −

a

ad 1
 (12-73)

and

b b

E
b

b

i i
i

i i

() ()
()

() ()

� �
�

� �

= − ∂
∂

= −

a

ad

 (12-74)

for � …= − −L L1 2 2, , , where the a’s are computed in the forward pass, and the d’s
are computed during backpropagation. As with the perceptron, a is the learning
rate constant used in gradient descent. There are numerous approaches that attempt
to find optimal learning rates, but ultimately this is a problem-dependent parameter
that involves experimenting. A reasonable approach is to start with a small value of
a (e.g., 0.01), then experiment with vectors from the training set to determine a suit-
able value in a given application. Remember, a is used only during training, so it has
no effect on post-training operating performance.

Matrix Formulation

As with the equations that describe the forward pass through a neural network, the
equations of backpropagation developed in the previous discussion are excellent for
describing how the method works at a fundamental level, but they are clumsy when
it comes to implementation. In this section, we follow a procedure similar to the one
we used for the forward pass to develop the matrix equations for backpropagation.

DIP4E_GLOBAL_Print_Ready.indb 956 6/16/2017 2:17:33 PM

12.5 Neural Networks and Deep Learning 957

As before, we arrange all the pattern vectors as columns of matrix X, and package
the weights of layer � as matrix W().� We use D()� to denote the matrix equiva-
lent of Î(),� the vector containing the errors in layer �. Our first step is to find an
expression for D().L We begin at the output and proceed backward, as before. From
Eq. (12-67),

D

d

d

d

()

()

()

()

()
()

L

L

L

L

E
a L

h z L

E
a

nL

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

∂
∂

()
∂

∂

1

2

1
1

�

�

22
2()
()

()
()

L
h z L

E
a L

h z L
n

n

L

L

�

�

()

∂
∂ ()

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

∂

�

EE
a L

E
a L

E
a L

h z L

nL

∂
∂

∂

∂
∂

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

()
1

2

1()

()

()

()

�
}

�

hh z L

h z LnL

�

�

2()

()

()

()

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

�
 (12-75)

where, as defined in Section 2.6, “}” denotes elementwise multiplication (of two
vectors in this case). We can write the vector on the left of this symbol as ∂ ∂E La(),
and the vector on the right as h L� z() .() Then, we can write Eq. (12-75) as

 Î()
()

()L
E
L

h L= ∂
∂

()
a

z} � (12-76)

This nL × 1 column vector contains the activation values of all the output neurons
for one pattern vector. The only error function we use in this chapter is a quadratic
function, which is given in vector form in Eq. (12-65). The partial of that quadratic
function with respect to a()L is a r()L −() which, when substituted into Eq. (12-76),
gives us

 Î() () ()L L h L= −() ()a r z} � (12-77)

Column vector Î()L accounts for one pattern vector. To account for all np patterns
simultaneously we form a matrix D(),� whose columns are the Î()L from Eq. (12-77),
evaluated for a specific pattern vector. This is equivalent to writing Eq. (12-77)
directly in matrix form as

 D A R Z() () ()L L h L= −() ()} � (12-78)

Each column of A()L is the network output for one pattern. Similarly, each col-
umn of R is a binary vector with a 1 in the location corresponding to the class of a
particular pattern vector, and 0’s elsewhere, as explained earlier. Each column of
the difference A R()L −() contains the components of � �a r− . Therefore, squaring
the elements of a column, adding them, and dividing by 2 is the same as computing
the error measure defined in Eq. (12-65), for one pattern. Adding all the column
computations gives an average measure of error for all the patterns. Similarly, the
columns of matrix h L� Z()() are values of the net inputs to all output neurons, with

DIP4E_GLOBAL_Print_Ready.indb 957 6/16/2017 2:17:35 PM

958 Chapter 12 Image Pattern Classification

each column corresponding to one pattern vector. All matrices in Eq. (12-78) are of
size n nL p× .

Following a similar line of reasoning, we can express Eq. (12-70) in matrix form as

 D W D Z() () () ()� � � �= + +() ()T h1 1 } ' (12-79)

It is easily confirmed by dimensional analysis that the matrix D()� is of size n np� ×
(see Problem 12.27). Note that Eq. (12-79) uses the weight matrix transposed. This
reflects the fact that the inputs to layer � are coming from layer � + 1, because in
backpropagation we move in the direction opposite of a forward pass.

We complete the matrix formulation by expressing the weight and bias update
equations in matrix form. Considering the weight matrix first, we can tell from Eqs.
(12-70) and (12-73) that we are going to need matrices W(),� D(),� and A().� − 1
We already know that W()� is of size n n� �× −1 and that D()� is of size n np� × . Each
column of matrix A()� − 1 is the set of outputs of the neurons in layer � − 1 for one
pattern vector. There are np patterns, so A()� − 1 is of size n np�−1 × . From Eq. (12-
73) we infer that A post-multiplies D, so we are also going to need AT (),� − 1 which
is of size n np × �−1. Finally, recall that in a matrix formulation, we construct a matrix
B()� of size n np� × whose columns are copies of vector b(),� which contains all the
biases in layer �.

Next, we look at updating the biases. We know from Eq. (12-74) that each ele-
ment bi()� of b()� is updated as b bi i i() () (),� � �= − ad for i n= 1 2, , , .… � Therefore,
b b() () ().� � �= − aÎ But this is for one pattern, and the columns of D()� are the
Î()’� s for all patterns in the training set. This is handled in a matrix formulation by
using the average of the columns of D()� (this is the average error over all patterns)
to update b().�

Putting it all together results in the following two equations for updating the
network parameters:

 W W D A() () () ()� � � �= − −a T 1 (12-80)

and

 b b() () ()� � �= −
=
∑a Îk
k

np

1

 (12-81)

where Îk()� is the kth column of matrix D().� As before, we form matrix B()� of size
n np� × by concatenating b()� np times in the horizontal direction:

 B b() ()� �= { }concatenate
timesnp

 (12-82)

As we mentioned earlier, backpropagation consists of four principal steps: (1)
inputting the patterns, (2) a forward pass, (3) a backpropagation pass, and (4) a
parameter update step. The process begins by specifying the initial weights and bias-
es as (small) random numbers. Table 12.3 summarizes the matrix formulations of
these four steps. During training, these steps are repeated for a number of specified
epochs, or until a predefined measure of error is deemed to be small enough.

DIP4E_GLOBAL_Print_Ready.indb 958 6/16/2017 2:17:39 PM

12.5 Neural Networks and Deep Learning 959

There are two major types of errors in which we are interested. One is the clas-
sification error, which we compute by counting the number of patterns that were
misclassified and dividing by the total number of patterns in the training set. Mul-
tiplying the result by 100 gives the percentage of patterns misclassified. Subtracting
the result from 1 and multiplying by 100 gives the percent correct recognition. The
other is the mean squared error (MSE), which is based on actual values of E. For
the error defined in Eq. (12-65), this value is obtained (for one pattern) by squaring
the elements of a column of the matrix A R() ,L −() adding them, and dividing by
the result by 2 (see Problem 12.28). Repeating this operation for all columns and
dividing the result by the number of patterns in X gives the MSE over the entire
training set.

EXAMPLE 12.12 : Using a fully connected neural net to solve the XOR problem.

Figure 12.34(a) shows the XOR classification problem discussed previously (the coordinates were cho-
sen to center the patterns for convenience in indexing, but the spatial relationships are as before). Pat-
tern matrix X and class membership matrix R are:

 X R=
− −
− −

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

1 1 1 1

1 1 1 1

1 1 0 0

0 0 1 1
;

We specified a neural network having three layers, with two nodes each (see Fig. 12.35). This is the small-
est network consistent with our architecture in Fig. 12.31. Comparing it to the minimum perceptron
arrangements in Fig. 12.28(a), we see that our neural network performs the same basic function, in the
sense that it has two inputs and two outputs.

We used a = 1 0. , an initial set of Gaussian random weights of zero mean and standard deviation of
0.02, and the activation function in Eq. (12-51). We then trained the network for 10,000 epochs (we
used a large number of epochs to get close to the values in the R; we discuss below solutions with fewer
epochs). The resulting weights and biases were:

Step Description Equations

Step 1 Input patterns A X()1 =

Step 2 Forward pass For � …= 2, , ,L compute: Z W A B() () () ();� � � �= − +1 A Z() () ;� �= ()h

h� Z() ;�() and D A R Z() () ()L L h L= −() ()} �

Step 3 Backpropagation For � …= − −L L1 2 2, , , , compute D W D Z() () () ()� � � �= + +() ()T h1 1 } '

Step 4 Update weights and
biases

For � …= 2, , ,L let W W D A() () () (),� � � �= − −a T 1 b b() () (),� � �= −
=∑a Îkk

np

1

and B b() () ,� �= { }concatenate
timesnp

 where the Îk ()� are the columns of D()�

TABLE 12.3
Matrix formulation for training a feedforward, fully connected multilayer neural network using backpropagation.
Steps 1–4 are for one epoch of training. X, R, and the learning rate parameter a, are provided to the network for train-
ing. The network is initialized by specifying weights, W(),1 and biases, B(),1 as small random numbers.

DIP4E_GLOBAL_Print_Ready.indb 959 6/16/2017 2:17:41 PM

960 Chapter 12 Image Pattern Classification

W b W() ; ()
.

.
; (2 2

4 590

4 486
3=

⎡

⎣
⎢

⎤

⎦
⎥ =

−
⎡

⎣
⎢

⎤

⎦
⎥

4.792 4.792

4.486 4.486
)) ; ()

.

.
=

−
−

⎡

⎣
⎢

⎤

⎦
⎥ =

−
⎡

⎣
⎢

⎤

⎦
⎥

9.180 9.429

9.178 9.427
b 3

4 420

4 419

Figure 12.35 shows the neural net based on these values.
When presented with the four training patterns after training was completed, the results at the two

outputs should have been equal to the values in R. Instead, the values were close:

 A()
.

3
0 010

=
⎡

⎣
⎢

⎤

⎦
⎥

0.987 0.990 0.010 0.010

0.013 0.990 0.990

These weights and biases, along with the sigmoid activation function, completely specify our trained
neural network. To test its performance with values other than the training patterns, which we know it
classifies correctly, we created a set of 2-D test patterns by subdividing the pattern space into increments
of 0.1, from −1 5. to 1.5 in both directions, and classified the resulting points using a forward pass through

x1

x2

4.792 4.792
(2)

4.486 4.486
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

W

4.590
(2)

4.486
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
b

9.180 9.429
(3)

9.178 9.427

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

W

4.420
(3)

4.419
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
b

FIGURE 12.35
Neural net used
to solve the XOR
problem, showing
the weights and
biases learned
via training using
the equations in
Table 12.3.

1−

1–

1

1
x1

x2

0

1

0.2

0.4

0.6

0.8

1.5–1.5

0.5

0.5–

0.5–

0.5

1.5

1.0–

1.0−

0.0

1.0

1.0

0.0

–1.5

1c∈
2c∈

ba c

FIGURE 12.34 Neural net solution to the XOR problem. (a) Four patterns in an XOR arrangement. (b) Results of
classifying additional points in the range −1 5. to 1 5. in increments of 0.1. All solid points were classified as belong-
ing to class c1 and all open circles were classified as belonging to class c2 . Together, the two lines separating the
regions constitute the decision boundary [compare with Fig. 12.27(b)]. (c) Decision surface, shown as a mesh. The
decision boundary is the pair of dashed, white lines in the intersection of the surface and a plane perpendicular to
the vertical axis, intersecting that axis at 0.5. (Figure (c) is shown in a different perspective than (b) in order to make
all four patterns visible.)

DIP4E_GLOBAL_Print_Ready.indb 960 6/16/2017 2:17:43 PM

12.5 Neural Networks and Deep Learning 961

the network. If the activation value of output node 1 was greater than the activation value of output
node 2, the pattern was assigned to class c1; otherwise, it was assigned to class c2. Fig. 12.34(b) is a plot
of the results. Solid dots are points classified into to class c1, and white dots were classified as belong-
ing to class c2. The boundaries between these two regions (shown as solid black lines) are precisely the
boundaries in Fig. 12.27(b). Thus, our small neural network found the simplest boundary between the
two classes, and thus performed the same function as the perceptron arrangement in Fig. 12.28(a).

Figure 12.34(c) shows the decision surface. This figure is analogous to Fig. 12.24(b), but it intersects
the plane twice because the patterns are not linearly separable. Our decision boundary is the intersec-
tion of the decision surface with a plane perpendicular to the vertical axis, and intersecting that axis at
0.5. This is because the range of values in the output nodes is in the [,]0 1 range, and we assign a pattern
to the class for which one the two outputs had the largest value. The plane is shown shaded in the fig-
ure, and the decision boundary is shown as dashed white lines. We adjusted the viewing perspective of
Fig. 12.34(c) so you can see all the XOR points.

Because classification in this case is based on selecting the largest output, we do not need the outputs
to be so close to 1 and 0 as we showed above, provided they are greater for the patterns of class c1 and
conversely for the patterns of class c2. This means that we can train the network using fewer epochs
and still achieve correct recognition. For example, correct classification of the XOR patterns can be
achieved using the parameters learned with as few as 150 epochs. Figure 12.36 shows the reason why this
is possible. By the end of the 1000th epoch, the mean squared error has decreased almost to zero, so we
would expect it to decrease very little from there for 10,000 epochs. We know from the preceding results
that the neural net performed flawlessly using the weights learned with 10,000 epochs. Because the
error for 1,000 and 10,000 epochs is close, we can expect the weights to be close as well. At 150 epochs,
the error has decreased by close to 90% from its maximum, so the probability that the weights would
perform well should be reasonably high, which was true in this case.

EXAMPLE 12.13 : Using neural nets to classify multispectral image data.

In this example, we compare the recognition performance of the Bayes classifier we discussed in Sec-
tion 12.4 and the multilayer neural nets discussed in this section. The objective here is the same as in
Example 12.6: to classify the pixels of multispectral image data into three pattern classes: water, urban,

0 200 400 600 800 1,000
0

0.4

0.8

0.2

0.6

1.0

1.2

1.4

Epochs
M

ea
n

sq
ua

re
d

er
ro

r

FIGURE 12.36
MSE as a function
of training epochs
for the XOR
pattern
arrangement.

DIP4E_GLOBAL_Print_Ready.indb 961 6/16/2017 2:17:43 PM

962 Chapter 12 Image Pattern Classification

and vegetation. Figure 12.37 shows the four multispectral images used in the experiment, the masks used
to extract the training and test samples, and the approach used to generate the 4-D pattern vectors.

As in Example 12.6, we extracted a total of 1900 training pattern vectors and 1887 test pattern vectors
(see Table 12.1 for a listing of vectors by class). After preliminary runs with the training data to establish
that the mean squared error was decreasing as a function of epoch, we determined that a neural net
with one hidden layer of two nodes achieved stable learning with a = 0 001. and 1,000 training epochs.
Keeping those two parameters fixed, we varied the number of nodes in the internal layer, as listed in
Table 12.4. The objective of these preliminary runs was to determine the smallest neural net that would
give the best recognition rate. As you can see from the results in the table, [4 3 3] is clearly the architec-
ture of choice in this case. Figure 12.38 shows this neural net, along with the parameters learned during
training.

After the basic architecture was defined, we kept the learning rate constant at a = 0 001. and varied the
number of epochs to determine the best recognition rate with the architecture in Fig. 12.38. Table 12.5
shows the results. As you can see, the recognition rate improved slowly as a function of epoch, reach-
ing a plateau at around 50,000 epochs. In fact, as Fig. 12.39 shows, the MSE decreased quickly up to
about 800 training epochs and decreased slowly after that, explaining why the correct recognition rate
changed so little after about 2,000 epochs. Similar results were obtained with a = 0 01. , but decreasing

(a) Images in spectral bands 1 4 and binary mask used to extract training samples

Spectral band 1

Spectral band 2

Spectral band 3

Spectral band 4

1

2

3

4

x

x

x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x

(b) Approach used to extract pattern vectors

–

FIGURE 12.37 (a) Starting with the leftmost image: blue, green, red, near infrared, and binary mask images. In the
mask, the lower region is for water, the center region is for the urban area, and the left mask corresponds to vegeta-
tion. All images are of size 512 512× pixels. (b) Approach used for generating 4-D pattern vectors from a stack of
the four multispectral images. (Multispectral images courtesy of NASA.)

Network
Architecture

[4 2 3] [4 3 3] [4 4 3] [4 5 3] [4 2 2 3] [4 4 3 3] [4 4 4 3] [4 10 3 3] [4 10 10 3]

Recognition
Rate

95.8% 96.2% 95.9% 96.1% 74.6% 90.8% 87.1% 84.9% 89.7%

TABLE 12.4
Recognition rate as a function of neural net architecture for a = 0 001. and 1,000 training epochs. The network archi-
tecture is defined by the numbers in brackets. The first and last number inside each bracket refer to the number of
input and output nodes, respectively. The inner entries give the number of nodes in each hidden layer.

DIP4E_GLOBAL_Print_Ready.indb 962 6/16/2017 2:17:44 PM

12.5 Neural Networks and Deep Learning 963

x1

x2

x3

4x

2.393 1.020 1.249 15.965

(2) 6.599 2.705 0.912 14.928

8.745 0.270 3.358 1.249

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

W

4.093 10.563 3.245

(3) 7.045 9.662 6.436

7.447 3.931 6.619

− −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

W

[](2) 4.920 2.002 3.485 T= − −b [](3) 3.277 14.982 1.582 T= −b

FIGURE 12.38
Neural net
architecture used to
classify the
multispectral image
data in Fig. 12.37
into three classes:
water, urban, and
vegetation. The
parameters shown
were obtained
in 50,000 epochs
of training using
a = 0 001. .

Training
Epochs

1,000 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

Recognition
Rate

95.3% 96.6% 96.7% 96.8% 96.9% 97.0% 97.0% 97.0% 97.0%

TABLE 12.5
Recognition performance on the training set as a function of training epochs. The learning rate constant was a = 0 001.
in all cases.

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

410×Training epochs ()

M
ea

n
sq

ua
re

d
er

ro
r

3

(
10

)
×

FIGURE 12.39
MSE for the
network
architecture in
Fig. 12.38 as a
function of the
number of
training epochs.
The learning rate
parameter was
a = 0 001. in all
cases.

DIP4E_GLOBAL_Print_Ready.indb 963 6/16/2017 2:17:45 PM

964 Chapter 12 Image Pattern Classification

this parameter to a = 0 1. resulted in a drop of the best correct recognition rate to 49.1%. Based on the
preceding results, we used a = 0 001. and 50,000 epochs to train the network.

The parameters in Fig. 12.38 were the result of training. The recognition rate for the training data
using these parameters was 97%. We achieved a recognition rate of 95.6% on the test set using the same
parameters. The difference between these two figures, and the 96.4% and 96.2%, respectively, obtained
for the same data with the Bayes classifier (see Example 12.6), are statistically insignificant.

The fact that our neural networks achieved results comparable to those obtained with the Bayes
classifier is not surprising. It can be shown (Duda, Hart, and Stork [2001]) that a three-layer neural net,
trained by backpropagation using a sum of errors squared criterion, approximates the Bayes decision
functions in the limit, as the number of training samples approaches infinity. Although our training sets
were small, the data were well behaved enough to yield results that are close to what theory predicts.

12.6 DEEP CONVOLUTIONAL NEURAL NETWORKS

Up to this point, we have organized pattern features as vectors. Generally, this
assumes that the form of those features has been specified (i.e., “engineered” by a
human designer) and extracted from images prior to being input to a neural network
(Example 12.13 is an illustration of this approach). But one of the strengths of neural
networks is that they are capable of learning pattern features directly from training
data. What we would like to do is input a set of training images directly into a neural
network, and have the network learn the necessary features on its own. One way to
do this would be to convert images to vectors directly by organizing the pixels based
on a linear index (see Fig. 12.1), and then letting each element (pixel) of the linear
index be an element of the vector. However, this approach does not utilize any spa-
tial relationships that may exist between pixels in an image, such as pixel arrange-
ments into corners, the presence of edge segments, and other features that may help
to differentiate one image from another. In this section, we present a class of neural
networks called deep convolutional neural networks (CNNs or ConvNets for short)
that accept images as inputs and are ideally suited for automatic learning and image
classification. In order to differentiate between CNNs and the neural nets we stud-
ied in Section 12.5, we will refer to the latter as “fully connected” neural networks.

A BASIC CNN ARCHITECTURE

In the following discussion, we use a LeNet architecture (see references at the end of
this chapter) to introduce convolutional nets. We do this for two main reasons: First,
the LeNet architecture is reasonably simple to understand. This makes it ideal for
introducing basic CNN concepts. Second, our real interest is in deriving the equa-
tions of backpropagation for convolutional networks, a task that is simplified by the
intuitiveness of LeNets.

The CNN in Fig. 12.40 contains all the basic elements of a LeNet architecture,
and we use it without loss of generality. A key difference between this architecture
and the neural net architectures we studied in the previous section is that inputs to
CNNs are 2-D arrays (images), while inputs to our fully connected neural networks
are vectors. However, as you will see shortly, the computations performed by both
networks are very similar: (1) a sum of products is formed, (2) a bias value is added,

12.6

To simplify the explana-
tion of the CNN in
Fig. 12.40, we focus
attention initially on
a single image input.
Multiple input images
are a trivial extension we
will consider later in our
discussion.

DIP4E_GLOBAL_Print_Ready.indb 964 6/16/2017 2:17:45 PM

12.6 Deep Convolutional Neural Networks 965

(3) the result is passed through an activation function, and (4) the activation value
becomes a single input to a following layer.

Despite the fact that the computations performed by CNNs and fully connected
neural nets are similar, there are some basic differences between the two, beyond
their input formats being 2-D versus vectors. An important difference is that CNNs
are capable of learning 2-D features directly from raw image data, as mentioned ear-
lier. Because the tools for systematically engineering comprehensive feature sets for
complex image recognition tasks do not exist, having a system that can learn its own
image features from raw image data is a crucial advantage of CNNs. Another major
difference is in the way in which layers are connected. In a fully connected neural net,
we feed the output of every neuron in a layer directly into the input of every neuron in
the next layer. By contrast, in a CNN we feed into every input of a layer, a single value,
determined by the convolution (hence the name convolutional neural net) over a
spatial neighborhood in the output of the previous layer. Therefore, CNNs are not
fully connected in the sense defined in the last section. Another difference is that the
2-D arrays from one layer to the next are subsampled to reduce sensitivity to transla-
tional variations in the input. These differences and their meaning will become clear
as we look at various CNN configurations in the following discussion.

Basics of How a CNN Operates

As noted above, the type of neighborhood processing in CNNs is spatial convolu-
tion. We explained the mechanics of spatial convolution in Fig. 3.29, and expressed
it mathematically in Eq. (3-35). As that equation shows, convolution computes a
sum of products between pixels and a set of kernel weights. This operation is car-
ried out at every spatial location in the input image. The result at each location
(,)x y in the input is a scalar value. Think of this value as the output of a neuron in
a layer of a fully connected neural net. If we add a bias and pass the result through
an activation function (see Fig. 12.29), we have a complete analogy between the

We will discuss in the
next subsection the exact
form of neural computa-
tions in a CNN, and show
they are equivalent in
form to the computations
performed by neurons in
a fully connected neural
net.

Input image

Subsampling

Feature maps Pooled
feature
maps

Feature
maps

B

A

Subsampling

Pooled
feature
maps

V
ec

to
ri

zi
ng

Convolution

+
Activation

Bias
+

Convolution + Bias + Activation

Fully connected
neural net

Receptive field

FIGURE 12.40 A CNN containing all the basic elements of a LeNet architecture. Points A and B are specific values
to be addressed later in this section. The last pooled feature maps are vectorized and serve as the input to a fully
connected neural network. The class to which the input image belongs is determined by the output neuron with the
highest value.

DIP4E_GLOBAL_Print_Ready.indb 965 6/16/2017 2:17:46 PM

966 Chapter 12 Image Pattern Classification

basic computations performed by a CNN and those performed by the neural nets
discussed in the previous section.

These remarks are summarized in Fig. 12.40, the leftmost part of which shows a
neighborhood at one location in the input image. In CNN terminology, these neigh-
borhoods are called receptive fields. All a receptive field does is select a region of
pixels in the input image. As the figure shows, the first operation performed by a
CNN is convolution, whose values are generated by moving the receptive field over
the image and, at each location, forming a sum of products of a set of weights and
the pixels contained in the receptive field. The set of weights, arranged in the shape
of the receptive field, is a kernel, as in Chapter 3. The number of spatial increments
by which a receptive field is moved is called the stride. Our spatial convolutions in
previous chapters had a stride of one, but that is not a requirement of the equations
themselves. In CNNs, an important motivations for using strides greater than one is
data reduction. For example, changing the stride from one to two reduces the image
resolution by one-half in each spatial dimension, resulting in a three-fourths reduc-
tion in the amount of data per image. Another important motivation is as a substi-
tute for subsampling which, as we discuss below, is used to reduce system sensitivity
to spatial translation.

To each convolution value (sum of products) we add a bias, then pass the result
through an activation function to generate a single value. Then, this value is fed to
the corresponding (,)x y location in the input of the next layer. When repeated for all
locations in the input image, the process just explained results in a 2-D set of values
that we store in next layer as a 2-D array, called a feature map. This terminology is
motivated by the fact that the role performed by convolution is to extract features
such as edges, points, and blobs from the input (remember, convolution is the basis
of spatial filtering, which we used in Chapter 3 for tasks such as smoothing, sharpen-
ing, and computing edges in an image). The same weights and a single bias are used
to generate the convolution (feature map) values corresponding to all locations of
the receptive field in the input image. This is done to cause the same feature to be
detected at all points in the image. Using the same weights and bias for this purpose
is called weight (or parameter) sharing.

Figure 12.40 shows three feature maps in the first layer of the network. The other
two feature maps are generated in the manner just explained, but using a different
set of weights and bias for each feature map. Because each set of weights and bias
is different, each feature map generally will contain a different set of features, all
extracted from the same input image. The feature maps are referred to collectively
as a convolutional layer. Thus, the CNN in Fig. 12.40 has two convolutional layers.

The process after convolution and activation is subsampling (also called pooling),
which is motivated by a model of the mammal visual cortex proposed by Hubel
and Wiesel [1959]. Their findings suggest that parts of the visual cortex consist of
simple and complex cells. The simple cells perform feature extraction, while the
complex cells combine (aggregate) those features into a more meaningful whole. In
this model, a reduction in spatial resolution appears to be responsible for achieving
translational invariance. Pooling is a way of modeling this reduction in dimension-
ality. When training a CNN with large image databases, pooling has the additional

In the terminology of
Chapter 3, a feature map
is a spatially filtered
image.

DIP4E_GLOBAL_Print_Ready.indb 966 6/16/2017 2:17:46 PM

12.6 Deep Convolutional Neural Networks 967

advantage of reducing the volume of data being processed. You can think of the
results of subsampling as producing pooled feature maps. In other words, a pooled
feature map is a feature map of reduced spatial resolution. Pooling is done by subdi-
viding a feature map into a set of small (typically 2 2×) regions, called pooling neigh-
borhoods, and replacing all elements in such a neighborhood by a single value. We
assume that pooling neighborhoods are adjacent (i.e., they do not overlap). There
are several ways to compute the pooled values; collectively, the different approaches
are called pooling methods. Three common pooling methods are: (1) average pool-
ing, in which the values in each neighborhood are replaced by the average of the
values in the neighborhood; (2) max-pooling, which replaces the values in a neigh-
borhood by the maximum value of its elements; and (3) L2 pooling, in which the
resulting pooled value is the square root of the sum of the neighborhood values
squared. There is one pooled feature map for each feature map. The pooled feature
maps are referred to collectively as a pooling layer. In Fig. 12.40 we used 2 2× pool-
ing so each resulting pooled map is one-fourth the size of the preceding feature map.
The use of receptive fields, convolution, parameter sharing, and pooling are charac-
teristics unique to CNNs.

Because feature maps are the result of spatial convolution, we know from Chapter 3
that they are simply filtered images. It then follows that pooled feature maps are fil-
tered images of lower resolution. As Fig. 12.40 illustrates, the pooled feature maps
in the first layer become the inputs to the next layer in the network. But, whereas
we showed a single image as an input to the first layer, we now have multiple pooled
feature maps (filtered images) that are inputs into the second layer.

To see how these multiple inputs to the second layer are handled, focus for a
moment on one pooled feature map. To generate the values for the first feature map
in the second convolutional layer, we perform convolution, add a bias, and use acti-
vation, as before. Then, we change the kernel and bias, and repeat the procedure for
the second feature map, still using the same input. We do this for every remaining
feature map, changing the kernel weights and bias for each. Then, we consider the
next pooled feature map input and perform the same procedure (convolution, plus
bias, plus activation) for every feature map in the second layer, using yet another set
of different kernels and biases. When we are finished, we will have generated three
values for the same location in every feature map, with one value coming from the
corresponding location in each of the three inputs. The question now is: How do
we combine these three individual values into one? The answer lies in the fact that
convolution is a linear process, from which it follows that the three individual values
are combined into one by superposition (that is, by adding them).

In the first layer, we had one input image and three feature maps, so we needed
three kernels to complete all required convolutions. In the second layer, we have
three inputs and seven feature maps, so the total number of kernels (and biases)
needed is 3 7 21× = . Each feature map is pooled to generate a corresponding
pooled feature map, resulting in seven pooled feature maps. In Fig. 12.40, there are
only two layers, so these seven pooled feature maps are the outputs of the last layer.

As usual, the ultimate objective is to use features for classification, so we need
a classifier. As Fig. 12.40 shows, in a CNN we perform classification by feeding the

Adjacency is not a
requirement of pooling
per se. We assume it
here for simplicity
and because this is an
approach that is used
frequently.

You could interpret the
convolution with several
input images as 3-D con-
volution, but with move-
ment only in the spatial
(x and y) directions. The
result would be identical
to summing individual
convolutions with each
image separately, as we
do here.

DIP4E_GLOBAL_Print_Ready.indb 967 6/16/2017 2:17:46 PM

968 Chapter 12 Image Pattern Classification

value of the last pooled layer into a fully connected neural net, the details of which
you learned in Section 12.5. But the outputs of a CNN are 2-D arrays (i.e., filtered
images of reduced resolution), whereas the inputs to a fully connected net are vec-
tors. Therefore, we have to vectorize the 2-D pooled feature maps in the last layer.
We do this using linear indexing (see Fig. 12.1). Each 2-D array in the last layer of
the CNN is converted into a vector, then all resulting vectors are concatenated (verti-
cally for a column) to form a single vector. This vector propagates through the neu-
ral net, as explained in Section 12.5. In any given application, the number of outputs
in the fully connected net is equal to the number of pattern classes being classified.
As before, the output with the highest value determines the class of the input.

EXAMPLE 12.14 : Receptive fields, pooling neighborhoods, and their corresponding feature maps.

The top row of Fig. 12.41 shows a numerical example of the relative sizes of feature maps and pooled
feature maps as a function of the sizes of receptive fields and pooling neighborhoods. The input image
is of size 28 28× pixels, and the receptive field is of size 5 5× . If we require that the receptive field be
contained in the image during convolution, you know from Section 3.4 that the resulting convolution
array (feature map) will be of size 24 24× . If we use a pooling neighborhood of size 2 2× , the resulting
pooled feature maps will be of size 12 12× , as the figure shows. As noted earlier, we assume that pooling
neighborhoods do not overlap.

As an analogy with fully connected neural nets, think of each element of a 2-D array in the top row
of Fig. 12.41 as a neuron. The outputs of the neurons in the input are pixel values. The neurons in the
feature map of the first layer have output values generated by convolving with the input image a kernel
whose size and shape are the same as the receptive field, and whose coefficients are learned during train-
ing. To each convolution value we add a bias and pass the result through an activation function to gener-
ate the output value of the corresponding neuron in the feature map. The output values of the neurons in
the pooled feature maps are generated by pooling the output values of the neurons in the feature maps.

The second row in Fig. 12.41 illustrates visually how feature maps and pooled feature maps look
based on the input image shown in the figure. The kernel shown is as described in the previous para-
graph, and its weights (shown as intensity values) were learned from sample images using the training
of the CNN described later in Example 12.17. Therefore, the nature of the learned features is deter-
mined by the learned kernel coefficients. Note that the contents of the feature maps are specific features
detected by convolution. For example, some of the features emphasize edges in the the character. As
mentioned earlier, the pooled features are lower-resolution versions of this effect.

EXAMPLE 12.15 : Graphical illustration of the functions performed by the components of a CNN.

Figure 12.42 shows the 28 28× image from Fig. 12.41, input into an expanded version of the CNN archi-
tecture from Fig. 12.40. The expanded CNN, which we will discuss in more detail in Example 12.17, has
six feature maps in the first layer, and twelve in the second. It uses receptive fields of size 5 5× , and
pooling neighborhoods of size 2 2× . Because the receptive fields are of size 5 5× , the feature maps in
the first layer are of size 24 24× , as we explained in Example 12.14. Each feature map has its own set of
weights and bias, so we will need a total of ()5 5 6 6 156× × + = parameters (six kernels with twenty-five
weights each, and six biases) to generate the feature maps in the first layer. The top row of Fig. 12.43(a)
shows the kernels with the weights learned during training of the CNN displayed as images, with intensity
being proportional to kernel values.

The parameters of the
fully connected neural
net are learned during
training of the CNN, to
be discussed shortly.

DIP4E_GLOBAL_Print_Ready.indb 968 6/16/2017 2:17:47 PM

12.6 Deep Convolutional Neural Networks 969

FIGURE 12.41
Top row: How the
sizes of receptive
fields and pooling
neighborhoods
affect the sizes of
feature maps and
pooled feature
maps.
Bottom row: An
image example.
This figure is
explained in more
detail in Example
12.17. (Image
courtesy of NIST.)

Feature map
(size 24 � 24)Input image

(size 28 � 28)

Pooled
feature map

(size 12 � 12)

5 � 5 Receptive field
2 � 2 Pooling neighborhood

Kernel

Convolution + bias + activation

Subsampling

Because we used pooling neighborhoods of size 2 2× , the pooled feature maps in the first layer of
Fig. 12.42 are of size 12 12× . As we discussed earlier, the number of feature maps and pooled feature
maps is the same, so we will have six arrays of size 12 12× acting as inputs to the twelve feature maps
in the second layer (the number of feature maps generally is different from layer to layer). Each fea-
ture map will have its own set of weights and bias, so will need a total of 6 5 5 12 12 1812× × × +() =

0
1

3
4

6
7
8
9

2

5

Input image

Subsampling

Feature maps Pooled
feature
maps

Feature
maps

Subsampling

Pooled
feature
maps

V
ec

to
ri

za
ti

on

Convolution

+
Activation

Bias
+

Convolution + Bias + Activation

Fully connected
neural net

0.21

0.17

0.09

0.10

0.12

0.39

0.36

0.19

0.88

0.42

FIGURE 12.42 Numerical example illustrating the various functions of a CNN, including recognition of an input image.
A sigmoid activation function was used throughout.

DIP4E_GLOBAL_Print_Ready.indb 969 6/16/2017 2:17:48 PM

970 Chapter 12 Image Pattern Classification

parameters to generate the feature maps in the second layer (i.e., twelve sets of six kernels with twenty-
five weights each, plus twelve biases). The bottom part of Fig. 12.43 shows the kernels as images. Because
we are using receptive fields of size 5 5× , the feature maps in the second layer are of size 8 8× . Using
2 2× pooling neighborhoods resulted in pooled feature maps of size 4 4× in the second layer.

As we discussed earlier, the pooled feature maps in the last layer have to be vectorized to be able to
input them into the fully connected neural net. Each pooled feature map resulted in a column vector of
size 16 1× . There are 12 of these vectors which, when concatenated vertically, resulted in a single vector
of size 192 1× . Therefore, our fully connected neural net has 192 input neurons. There are ten numeral
classes, so there are 10 output neurons. As you will see later, we obtained excellent performance by using
a neural net with no hidden layers, so our complete neural net had a total of 192 input neurons and 10
output neurons. For the input character shown in Fig. 12.42, the highest value in the output of the fully
connected neural net was in the seventh neuron, which corresponds to the class of 6’s. Therefore, the
input was recognized properly. This is shown in bold text in the figure.

Figure 12.44 shows graphically what the feature maps look like as the input image propagates through
the CNN. Consider the feature maps in the first layer. If you look at each map carefully, you will notice
that it highlights a different characteristic of the input. For example, the map on the top of the first
column highlights the two principal edges on the top of the character. The second map highlights the
edges of the entire inner region, and the third highlights a “blob-like” nature of the digit, almost as if it
had been blurred by a lowpass kernel. The other three images show other features. Although the pooled
feature maps are lower-resolution versions of the original feature maps, they still retained the key char-
acteristics of the features in the latter. If you look at the first two feature maps in the second layer, and
compare them with the first two in the first layer, you can see that they could be interpreted as higher-

FIGURE 12.43 Top: The weights (shown as images of size 5 5×) corresponding to the six feature maps in the first layer
of the CNN in Fig. 12.42. Bottom: The weights corresponding to the twelve feature maps in the second layer.

DIP4E_GLOBAL_Print_Ready.indb 970 6/16/2017 2:17:49 PM

12.6 Deep Convolutional Neural Networks 971

level abstractions of the top part of the character, in the sense that they show an area flanked on both
sides by areas of opposite intensity. These abstractions are not always easy to analyze visually, but as you
will see in later examples, they can be very effective. The vectorized version of the last pooled layer is
self-explanatory. The output of the fully connected neural net shows dark for low values and white for
the highest value, indicating that the input was properly recognized as a number 6. Later in this section,
we will show that the simple CNN architecture in Fig. 12.42 is capable of recognizing the correct class of
over 70,000 numerical samples with nearly perfect accuracy.

Neural Computations in a CNN

Recall from Fig. 12.29 that the basic computation performed by an artificial neuron
is a sum of products between weights and values from a previous layer. To this we
add a bias and call the result the net (total) input to the neuron, which we denoted
by zi . As we showed in Eq. (12-54), the sum involved in generating zi is a single sum.
The computations performed in a CNN to generate a single value in a feature map
is 2-D convolution. As you learned in Chapter 3, this is a double sum of products
between the coefficients of a kernel and the corresponding elements of the image
array overlapped by the kernel. With reference to Fig. 12.40, let w denote a kernel
formed by arranging the weights in the shape of the receptive field we discussed
in connection with that figure. For notational consistency with Section 12.5, let ax y,
denote image or pooled feature values, depending on the layer. The convolution
value at any point (,)x y in the input is given by

 w a wx,y� = − −∑∑ l k x l y k
kl

a, , (12-83)

FIGURE 12.44
Visual summary
of an input image
propagating
through the CNN
in Fig. 12.42. Shown
as images are all the
results of
convolution
(feature maps) and
pooling (pooled
feature maps) for
both layers of the
network. (Example
12.17 contains more
details about this
figure.)

0

1

2

3

4

5

6

7

8

9

Feature
maps

Pooled
feature
maps

Neural
net

Feature
maps

Pooled
feature
maps

V
ec

to
r

DIP4E_GLOBAL_Print_Ready.indb 971 6/16/2017 2:17:50 PM

972 Chapter 12 Image Pattern Classification

where l and k span the dimensions of the kernel. Suppose that w is of size 3 3× .
Then, we can then expand this equation into the following sum of products:

w a w a w

w w

x,y x,y� �= =

= + +

− −

− − − −

∑∑ l k x l y k
kl

x y x y

a

a a

, ,

, , , ,1 1 1 1 1 2 1 2 � ++ − −w3 3 3 3, ,ax y

 (12-84)

We could relabel the subscripts on w and a, and write instead

w a =w w w

w

x,y

i

� 1 1 2 2 9 9

1

9

a a a

ai
i

+ + +

=
=
∑

�

 (12-85)

The results of Eqs. (12-84) and (12-85) are identical. If we add a bias to the latter
equation and call the result z we have

z a b

b

j j
j

= +

= +
=
∑w

w ax,y

1

9

�

 (12-86)

The form of the first line of this equation is identical to Eq. (12-54). Therefore, we
conclude that if we add a bias to the spatial convolution computation performed by
a CNN at any fixed position (,)x y in the input, the result can be expressed in a form
identical to the computation performed by an artificial neuron in a fully connected
neural net. We need the x y, only to account for the fact that we are working in 2-D.
If we think of z as the net input to a neuron, the analogy with the neurons discussed
in Section 12.5 is completed by passing z through an activation function, h, to get
the output of the neuron:

 a h z= () (12-87)

This is exactly how the value of any point in a feature map (such as the point labeled
A in Fig. 12.40) is computed.

Now consider point B in that figure. As mentioned earlier, its value is given by
adding three convolution equations:

w a w a w a w(1) (2) (3)
l k x y l k x y l k x y l k xa, ,

()
, ,

()
, ,

()
,

()
� � �

1 2 3 1+ + = −ll y k
kl

l k x l y k
kl

l k x l y k
kl

a a

,
()

,
()

,
()

,
()

,
()

−

− − − −

∑∑
∑∑ ∑

+

+

1

2 2 2 2w w∑∑
 (12-88)

where the superscripts refer to the three pooled feature maps in Fig. 12.40. The val-
ues of l k x, , , and y are the same in all three equations because all three kernels are
of the same size and they move in unison. We could expand this equation and obtain
a sum of products that is lengthier than for point A in Fig. 12.40, but we could still
relabel all terms and obtain a sum of products that involves only one summation,
exactly as before.

DIP4E_GLOBAL_Print_Ready.indb 972 6/16/2017 2:17:52 PM

12.6 Deep Convolutional Neural Networks 973

The preceding result tells us that the equations used to obtain the value of an
element of any feature map in a CNN can be expressed in the form of the computa-
tion performed by an artificial neuron. This holds for any feature map, regardless
of how many convolutions are involved in the computation of the elements of that
feature map, in which case we would simply be dealing with the sum of more con-
volution equations. The implication is that we can use the basic form of Eqs. (12-86)
and (12-87) to describe how the value of an element in any feature map of a CNN
is obtained. This means we do not have to account explicitly for the number of dif-
ferent pooled feature maps (and hence the number of different kernels) used in a
pooling layer. The result is a significant simplification of the equations that describe
forward and backpropagation in a CNN.

Multiple Input Images

The values of ax y, just discussed are pixel values in the first layer but, in layers past
the first, ax y, denotes values of pooled features. However, our equations do not dif-
ferentiate based on what these variables actually represent. For example, suppose
we replace the input to Fig. 12.40 with three images, such as the three components
of an RGB image. The equations for the value of point A in the figure would now
have the same form as those we stated for point B—only the weights and biases
would be different. Thus, the results in the previous discussion for one input image
are applicable directly to multiple input images. We will give an example of a CNN
with three input images later in our discussion.

THE EQUATIONS OF A FORWARD PASS THROUGH A CNN

We concluded in the preceding discussion that we can express the result of convolv-
ing a kernel, w, and an input array with values ax y, , as

z a b

b

x y l k x l y k
kl

, , ,= +

= +

− −∑∑ w

w ax,y�

 (12-89)

where l and k span the dimensions of the kernel, x and y span the dimensions of the
input, and b is a bias. The corresponding value of ax y, is

 a h zx y x y, ,= () (12-90)

But this ax y, is different from the one we used to compute Eq. (12-89), in which ax y,
represents values from the previous layer. Thus, we are going to need additional
notation to differentiate between layers. As in fully connected neural nets, we use �
for this purpose, and write Eqs. (12-89) and (12-90) as

z a b

b

x y l k x l y k
kl

,
() () () ()

() ()

, ,� � � �

� � �

= − +

= − +

− −∑∑ w

w() ax,y

1

1�

 (12-91)

As noted earlier, a kernel
is formed by organizing
the weights in the shape of
a corresponding receptive
field. Also keep in mind
that w and ax,y represent
all the weights and
corresponding values in
a set of input images or
pooled features.

DIP4E_GLOBAL_Print_Ready.indb 973 6/16/2017 2:17:53 PM

974 Chapter 12 Image Pattern Classification

and

 a h zx y x y, ,() ()� �= () (12-92)

for � …= 1 2, , , ,Lc where Lc is the number of convolutional layers, and ax y, ()�
denotes the values of pooled features in convolutional layer �. When � = 1,

 ax y, ()0 = { }values of pixels in the input image(s) (12-93)

When � = Lc ,

 (),a Lx y c = values of pooled features in last layer of the CNNN{ } (12-94)

Note that � starts at 1 instead of 2, as we did in Section 12.5. The reason is that we are
naming layers, as in “convolutional layer �.” It would be confusing to start at convo-
lutional layer 2. Finally, we note that the pooling does not require any convolutions.
The only function of pooling is to reduce the spatial dimensions of the feature map
preceding it, so we do not include explicit pooling equations here.

Equations (12-91) through (12-94) are all we need to compute all values in a
forward pass through the convolutional section of a CNN. As described in Fig. 12.40,
the values of the pooled features of the last layer are vectorized and fed into a fully
connected feedforward neural network, whose forward propagation is explained in
Eqs. (12-54) and (12-55) or, in matrix form, in Table 12.2.

THE EQUATIONS OF BACKPROPAGATION USED TO TRAIN CNNS

As you saw in the previous section, the feedforward equations of a CNN are similar
to those of a fully connected neural net, but with multiplication replaced by convo-
lution, and notation that reflects the fact that CNNs are not fully connected in the
sense defined in Section 12.5. As you will see in this section, the equations of back-
propagation also are similar in many respects to those in fully connected neural nets.

As in the derivation of backpropagation in Section 12.5, we start with the defini-
tion of how the output error of our CNN changes with respect to each neuron in the
network. The form of the error is the same as for fully connected neural nets, but
now it is a function of x and y instead of j:

 dx y
x y

E
z,

,

()
()

�
�

= ∂
∂

 (12-95)

As in Section 12.5, we want to relate this quantity to dxy(),� + 1 which we again do
using the chain rule:

 dx y
x y uu

u

x y

E
z

E
z

z

z,
, ,

,

,

()
() ()

()

()
�

� �
�
�

= ∂
∂

= ∂
∂ +

∂ +
∂∑∑

vv

v

1

1
 (12-96)

DIP4E_GLOBAL_Print_Ready.indb 974 6/16/2017 2:17:54 PM

12.6 Deep Convolutional Neural Networks 975

where u and v are any two variables of summation over the range of possible values
of z. As noted in Section 12.5, these summations result from applying the chain rule.

By definition, the first term of the double summation of Eq. (12-96) is dx y, ().� + 1
So, we can write this equation as

 d dx y
x y

u
u

u

x y

E
z

z

z,
,

,
,

,

()
()

()
()

()
�

�
�

�
�

= ∂
∂

= +
∂ +

∂∑∑ v
v

v1
1

 (12-97)

Substituting Eq. (12-92) into Eq. (12-91), and using the resulting zu,v in Eq. (12-97),
we obtain

 d dx y u
u x y

l k
kl

u l kz
h z, ,

,
, ,() ()

()
() ()� �

�
� �= + ∂

∂
+ () +∑∑ ∑∑ − −v

v
vw1 1 bb()� +

⎡

⎣
⎢

⎤

⎦
⎥1 (12-98)

The derivative of the expression inside the brackets is zero unless u l x− = and
v − =k y, and because the derivative of b()� + 1 with respect to zx y, ()� is zero. But, if
u l x− = and v − =k y, then l u x= − and k y= −v . Therefore, taking the indicated
derivative of the expression in brackets, we can write Eq. (12-98) as

 d dx y u
u

x y
yx

x yh z, , , ,() () () ()� � � �= + + ()⎡

⎣
⎢

⎤

⎦
∑∑ ∑∑ − −

−−
v

v
u v

vu

w1 1 � ⎥⎥ (12-99)

Values of x, y, u, and v are specified outside of the terms inside the brackets. Once the
values of these variables are fixed, u − x and v − y inside the brackets are simply two
constants. Therefore, the double summation evaluates to wu v− − + ()x y x yh z, ,() () ,� �1 �
and we can write Eq. (12-99) as

d d

d

x y u
u

x y x y

x y

h z

h z

, , , ,

,

() () () ()

()

� � � �

�

= + + ()
= ()

∑∑ − −v
v

u vw1 1 �

� uu
u

x y, ,() ()v
v

u vw� �+ +∑∑ − −1 1
 (12-100)

The double sum expression in the second line of this equation is in the form of a con-
volution, but the displacements are the negatives of those in Eq. (12-91). Therefore,
we can write Eq. (12-100) as

 d dx y x y x y x yh z, , , ,() () () ()� � � �= () + +⎡⎣ ⎤⎦− −� 1 1�w (12-101)

The negatives in the subscripts indicate that w is reflected about both spatial axes.
This is the same as rotating w by 180°, as we explained in connection with Eq. (3-35).
Using this fact, we finally arrive at an expression for the error at a layer � by writing
Eq. (12-101) equivalently as

 d dx y x y x y x yh z, , , ,() () () ()� � � �= () + +()⎡⎣ ⎤⎦� 1 1180� rot w (12-102)
The 180° rotation is
for each 2-D kernel in
a layer.

DIP4E_GLOBAL_Print_Ready.indb 975 6/16/2017 2:17:57 PM

976 Chapter 12 Image Pattern Classification

But the kernels do not depend on x and y, so we can write this equation as

 d dx y x y x yh z, , ,() () () ()� � � �= () + +()⎡⎣ ⎤⎦� 1 1180� rot w (12-103)

As in Section 12.5, our final objective is to compute the change in E with respect
to the weights and biases. Following a similar procedure as above, we obtain

∂
∂

= ∂
∂

∂
∂

=
∂
∂

∑∑

∑∑

E E
z

z

z

x yyx

x y

x y
yx

x y

w w

w

l,k l,k

l

,

,

,
,

()

()

()
()

�

�

�
�

d
,,k

l,k
l,k

kw
w

k
= ∂

∂
−() +⎡

⎣
⎢

⎤
⎦

∑∑ ∑∑ − −
dx y

yx l

h z b
x l y, () () () ()

,
� � � �1 ⎥⎥

= −()
= −

∑∑

∑∑

− −

− −

d

d

x y
yx

x y
yx

h z

a

x l y

x l y

,

,

() ()

() ()

,

,

� �

� �

k

k

1

1

 (12-104)

where the last line follows from Eq. (12-92). This line is in the form of a convolution
but, comparing it to Eq. (12-91), we see there is a sign reversal between the summa-
tion variables and their corresponding subscripts. To put it in the form of a convolu-
tion, we write the last line of Eq. (12-104) as

∂
∂

= −

= −

∑∑ − − − −

− −

E
a

a

x y
yx

l k l k

l x k ywl,k

d

d

,

, ,

() ()

() ()

(), ()
� �

� �

1

1�

== −()dl k a, () ()� �� rot180 1

 (12-105)

Similarly (see Problem 12.32),

∂

∂
= ∑∑E

b x y
yx()

(),�
�d (12-106)

Using the preceding two expressions in the gradient descent equations (see
Section 12.5), it follows that

w w
w

w

l,k
l k l k

l k l k

E

a

, ,

, ,

() ()

() () ()

� �

� � �

= − ∂
∂

= − −()

a

ad � rot180 1 (12-107)

DIP4E_GLOBAL_Print_Ready.indb 976 6/16/2017 2:17:58 PM

12.6 Deep Convolutional Neural Networks 977

and

b b

E
b

b x y
yx

() ()
()

() (),

� �
�

� �

= − ∂
∂

= − ∑∑

a

a d

 (12-108)

Equations (12-107) and (12-108) update the weights and bias of each convolution
layer in a CNN. As we have mentioned before, it is understood that the wl k, repre-
sents all the weights of a layer. The variables l and k span the spatial dimensions of
the 2-D kernels, all of which are of the same size.

In a forward pass, we went from a convolution layer to a pooled layer. In back-
propagation, we are going in the opposite direction. But the pooled feature maps
are smaller than their corresponding feature maps (see Fig. 12.40). Therefore, when
going in the reverse direction, we upsample (e.g., by pixel replication) each pooled
feature map to match the size of the feature map that generated it. Each pooled
feature map corresponds to a unique feature map, so the path of backpropagation
is clearly defined.

With reference to Fig. 12.40, backpropagation starts at the output of the fully con-
nected neural net. We know from Section 12.5 how to update the weights of this net-
work. When we get to the “interface” between the neural net and the CNN, we have
to reverse the vectorization method used to generate input vectors. That is, before
we can proceed with backpropagation using Eqs. (12-107) and (12-108), we have to
regenerate the individual pooled feature maps from the single vector propagated
back by the fully connected neural net.

We summarized in Table 12.3 the backpropagation steps for a fully connected
neural net. Table 12.6 summarizes the steps for performing backpropagation in the
CNN architecture in Fig. 12.40. The procedure is repeated for a specified number of

Step Description Equations

Step 1 Input images a()0 = the set of image pixels in the input to layer 1

Step 2 Forward pass For each neuron corresponding to location (,)x y in each feature map in layer �
compute:
z bx y x ya, ,())) ()(� � � �= − +w(� 1 and a h zx y x y, ,() () ;� �= () � …= 1 2, , , Lc

Step 3 Backpropagation For each neuron in each feature map in layer � compute:

d dx y x y x yh z, , ,() () () () ;� � � �= () + +()⎡⎣ ⎤⎦� 1 1180� rot w � …= − −L Lc c1 2 1, , ,

Step 4 Update parameters Update the weights and bias for each feature map using

w wl k l k l k a, , ,() () () ()� � � �= − −()ad �rot180 1 and

b b x y

yx

() () ();,� � �= − ∑∑a d � …= 1 2, , , Lc

TABLE 12.6
The principal steps used to train a CNN. The network is initialized with a set of small random weights and biases.
In backpropagation, a vector arriving (from the fully connected net) at the output pooling layer must be converted
to 2-D arrays of the same size as the pooled feature maps in that layer. Each pooled feature map is upsampled to
match the size of its corresponding feature map. The steps in the table are for one epoch of training.

DIP4E_GLOBAL_Print_Ready.indb 977 6/16/2017 2:17:59 PM

978 Chapter 12 Image Pattern Classification

epochs, or until the output error of the neural net reaches an acceptable value. The
error is computed exactly as we did in Section 12.5. It can be the mean squared error,
or the recognition error. Keep in mind that the weights in w()� and the bias value
b()� are different for each feature map in layer �.

EXAMPLE 12.16 : Teaching a CNN to recognize some simple images.

We begin our illustrations of CNN performance by teaching the CNN in Fig. 12.45 to recognize the small
6 6× images in Fig. 12.46. As you can see on the left of this figure, there are three samples each of images
of a horizontal stripe, a small centered square, and a vertical stripe. These images were used as the train-
ing set. On the right are noisy samples of images in these three categories. These were used as the test set.

Fully connected
two-layer neural net

Two feature maps
of size 4 � 4Image of size 6 � 6

Two pooled
feature maps
of size 2 � 2

V
ec

to
ri

za
ti

on

8 input neurons

3 output
 neurons

FIGURE 12.45
CNN with one
convolutional
layer used to
learn to recognize
the images in Fig.
12.46.

Training Image Set Test Image Set

FIGURE 12.46 Left: Training images. Top row: Samples of a dark horizontal stripe. Center row: Samples of a centered
dark square. Bottom row: Samples of a dark vertical stripe. Right: Noisy samples of the three categories on the left,
created by adding Gaussian noise of zero mean and unit variance to the samples on the left. (All images are 8-bit
grayscale images.)

DIP4E_GLOBAL_Print_Ready.indb 978 6/16/2017 2:18:00 PM

12.6 Deep Convolutional Neural Networks 979

As Fig. 12.45 shows, the inputs to our system are single images. We used a receptor field of size 3 3× ,
which resulted in feature maps of size 4 4× . There are two feature maps, which means we need two
kernels of size 3 3× , and two biases. The pooled feature maps were generated using average pooling in
neighborhoods of size 2 2× . This resulted in two pooled feature maps of size 2 2× , because the feature
maps are of size 4 4× . The two pooled maps contain eight total elements which were organized as an
8-D column vector to vectorize the output of the last layer. (We used linear indexing of each image, then
concatenated the two resulting 4-D vectors into a single 8-D vector.) This vector was then fed into the
fully connected neural net on the right, which consists of the input layer and a three-neuron output layer,
one neuron per class. Because this network has no hidden layers, it implements linear decision functions
(see Problem 12.18). To train the system, we used a = 1 0. and ran the system for 400 epochs. Figure 12.47
is a plot of the MSE as a function of epoch. Perfect recognition of the training set was achieved after
approximately 100 epochs of training, despite the fact that the MSE was relatively high there. Recogni-
tion of the test set was 100% as well. The kernel and bias values learned by the system were:

 w1 =
−
−
−

3.0132 1.1808 0.0945

0.9718 0.7087 0.9093

0.7193 0.0230 0.88333

0.7388 1.8832 4.1077

1.0027 0.390
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= − =
−
−, .b1 20 2990 w 88 2.0357

1.2164 1.1853 0.1987− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −, .b2 0 2834

It is important that the CNN learned these parameters automatically from the raw training images. No
features in the sense discussed in Chapter 11 were employed.

EXAMPLE 12.17 : Using a large training set to teach a CNN to recognize handwritten numerals.

In this example, we look at a more practical application using a database containing 60,000 training and
10,000 test images of handwritten numeric characters. The content of this database, called the MNIST
database, is similar to a database from NIST (National Institute of Standards and Technology). The
former is a “cleaned up” version of the latter, in which the characters have been centered and for-
matted into grayscale images of size 28 28× pixels. Both databases are freely available online. Figure
12.48 shows examples of typical numeric characters available in the databases. As you can see, there is

100 200 300 4000

0.1

0.2

0.3

0.4

0.5

0

Epochs
 M

ea
n

sq
ua

re
d

er
ro

r

FIGURE 12.47
Training MSE as a
function of epoch
for the images in
Fig. 12.46. Perfect
recognition of the
training and test
sets was achieved
after approxi-
mately 100
epochs, despite
the fact that the
MSE was rela-
tively high there.

DIP4E_GLOBAL_Print_Ready.indb 979 6/16/2017 2:18:01 PM

980 Chapter 12 Image Pattern Classification

significant variability in the characters—and this is just a small sampling of the 70,000 characters avail-
able for experimentation.

Figure 12.49 shows the architecture of the CNN we trained to recognize the ten digits in the MNIST
database. We trained the system for 200 epochs using a = 1 0. . Figure 12.50 shows the training MSE as a
function of epoch for the 60,000 training images in the MNIST database.

Training was done using mini batches of 50 images at a time to improve the learning rate (see the dis-
cussion in Section 12.7). We also classified all images of the training set and all images of the test set after
each epoch of training. The objective of doing this was to see how quickly the system was learning the
characteristics of the data. Figure 12.51 shows the results. A high level of correct recognition performance
was achieved after relatively few epochs for both data sets, with approximately 98% correct recognition
achieved after about 40 epochs. This is consistent with the training MSE in Fig. 12.50, which dropped
quickly, then began a slow descent after about 40 epochs. Another 160 epochs of training were required
for the system to achieve recognition of about 99.9%. These are impressive results for such a small CNN.

6 feature maps
of size 24 � 24

6 pooled
feature
maps of

size 12 � 12
Image of size 28 � 28

12
feature
maps of

size 8 � 8

12
pooled
feature

maps of
size 4 � 4 Fully connected

two-layer neural net

10
output

 neurons

V
ec

to
ri

za
ti

on

192 input neurons

FIGURE 12.49 CNN used to recognize the ten digits in the MNIST database. The system was trained with 60,000
numerical character images of the same size as the image shown on the left. This architecture is the same as the
architecture we used in Fig. 12.42. (Image courtesy of NIST.)

FIGURE 12.48
Samples
similar to those
available in the
NIST and MNIST
databases. Each
character
subimage is
of size 28 28×
pixels.(Individual
images courtesy
of NIST.)

DIP4E_GLOBAL_Print_Ready.indb 980 6/16/2017 2:18:01 PM

12.6 Deep Convolutional Neural Networks 981

Figure 12.52 shows recognition performance on each digit class for both the training and test sets. The
most revealing feature of these two graphs is that the CNN did equally as well on both sets of data. This
is a good indication that the training was successful, and that it generalized well to digits it had not seen
before. This is an example of the neural network not “over-fitting” the data in the training set.

Figure 12.53 shows the values of the kernels for the first feature map, displayed as intensities. There
is one input image and six feature maps, so six kernels are required to generate the feature maps of
the first layer. The dimensions of the kernels are the same as the receptive field, which we set at 5 5× .
Thus, the first image on the left in Fig. 12.53 is the 5 5× kernel corresponding to the first feature map.
Figure 12.54 shows the kernels for the second layer. In this layer, we have six inputs (which are the
pooled maps of the first layer) and twelve feature maps, so we need a total of 6 12 72× = kernels and
biases to generate the twelve feature maps in the second layer. Each column of Fig. 12.54 shows the six

FIGURE 12.50
Training mean
squared error
as a function of
epoch for the
60,000 training
digit images in the
MNIST database.

0

0.1

0.2

0.3

T
ra

in
in

g
M

SE

Epoch

0 40 80 120 160 200

Tr
ai

ni
ng

 a
cc

ur
ac

y
(�

10
0%

)

Epoch

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0 40 80 120 160 200

Te
st

in
g

ac
cu

ra
cy

 (
�

10
0%

)

Epoch

0 40 80 120 160 200
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

ba

FIGURE 12.51 (a) Training accuracy (percent correct recognition of the training set) as a function of epoch for the
60,000 training images in the MNIST database. The maximum achieved was 99.36% correct recognition. (b) Accu-
racy as a function of epoch for the 10,000 test images in the MNIST database. The maximum correct recognition
rate was 99.13%.

DIP4E_GLOBAL_Print_Ready.indb 981 6/16/2017 2:18:02 PM

982 Chapter 12 Image Pattern Classification

5 5× kernels corresponding to one of the feature maps in the second layer. We used 2 2× pooling in
both layers, resulting in a 50% reduction of each of the two spatial dimensions of the feature maps.

Finally, it is of interest to visualize how one input image proceeds through the network, using the
kernels learned during training. Figure 12.55 shows an input digit image from the test set, and the com-
putations performed by the CNN at each layer. As before, we display numerical results as intensities.

Consider the results of convolution in the first layer. If you look at each resulting feature map care-
fully, you will notice that it highlights a different characteristic of the input. For example, the feature map
on the top of the first column highlights the two vertical edges on the top of the character. The second
highlights the edges of the entire inner region, and the third highlights a “blob-like”feature of the digit,
as if it had been blurred by a lowpass kernel. The other three feature maps show other features. If you
now look at the first two feature maps in the second layer, and compare them with the first feature map
in the first layer, you can see that they could be interpreted as higher-level abstractions of the top of the
character, in the sense that they show a dark area flanked on each side by white areas. Although these
abstractions are not always easy to analyze visually, this example clearly demonstrates that they can be
very effective. And, remember the important fact that our simple system learned these features auto-
matically from 60,000 training images. This capability is what makes convolutional networks so powerful
when it comes to image pattern classification. In the next example, we will consider even more complex
images, and show some of the limitations of our simple CNN architecture.

EXAMPLE 12.18 : Using a large image database to teach a CNN to recognize natural images.

In this example, we trained the same CNN architecture as in Fig. 12.49, but using the RGB color images
in Fig. 12.56. These images are representative of those found in the CIFAR-10 database, a popular data-
base used to test the performance of image classification systems. Our objective was to test the limita-
tions of the CNN architecture in Fig. 12.49 by training it with data that is significantly more complex
than the MNIST images in Example 12.17. The only difference between the architecture needed to

ba

FIGURE 12.52 (a) Recognition accuracy of training set by image class. Each bar shows a number between 0 and 1.
When multiplied by 100%, these numbers give the correct recognition percentage for that class. (b) Recognition
results per class in the test set. In both graphs the recognition rate is above 98%.

Training set

0 1 2 3 4 5 6 7 8 9
Class (digit number)

1.00

0.99

0.98

0.97

0.96

0.95

0.94

0.93

R
ec

og
ni

ti
on

 a
cc

ur
ac

y
Test set

0 1 2 3 4 5 6 7 8 9
Class (digit number)

1.00

0.99

0.98

0.97

0.96

0.95

0.94

0.93

R
ec

og
ni

ti
on

 a
cc

ur
ac

y

DIP4E_GLOBAL_Print_Ready.indb 982 6/16/2017 2:18:02 PM

12.6 Deep Convolutional Neural Networks 983

FIGURE 12.54 Kernels of the second layer after 200 epochs of training, displayed as images of size 5 5× . There are six
inputs (pooled feature maps) into the second layer. Because there are twelve feature maps in the second layer, the
CNN learned the weights of 6 12 72× = kernels.

FIGURE 12.53
Kernels of the
first layer after
200 epochs of
training, shown as
images.

FIGURE 12.55
Results of a for-
ward pass for one
digit image through
the CNN in Fig.
12.49 after training.
The feature maps
were generated
using the kernels
from Figs. 12.53 and
12.54, followed by
pooling. The neural
net is the two-layer
neural network
from Fig. 12.49. The
output high value
(in white) indicates
that the CNN rec-
ognized the input
properly. (This
figure is the same
as Fig. 12.44.)

0

1

2

3

4

5

6

7

8

9

Feature
maps

Pooled
feature
maps

Neural
net

Feature
maps

Pooled
feature
maps

V
ec

to
r

DIP4E_GLOBAL_Print_Ready.indb 983 6/16/2017 2:18:03 PM

984 Chapter 12 Image Pattern Classification

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

FIGURE 12.56
Mini images
of size 32 32×
pixels,
representative of
the 50,000
training and
10,000 test images
in the CIFAR-10
database (the 10
stands for ten
classes). The class
names are shown
on the right.
(Images courtesy
of Pearson
Education.)

0 100 200 300 400 500
0.20

0.25

0.30

0.35

0.40

0.45

Epoch

Tr
ai

ni
ng

 M
SE

FIGURE 12.57
Training mean
squared error
as a function of
the number of
epochs for a train-
ing set of 50,000
CIFAR-10 images.

DIP4E_GLOBAL_Print_Ready.indb 984 6/16/2017 2:18:04 PM

12.6 Deep Convolutional Neural Networks 985

process the CIFAR-10 images, and the architecture in Fig. 12.49, is that the CIFAR-10 images are RGB
color images, and hence have three channels. We worked with these input images using the approach
explained in the subsection entitled Multiple Input Images, on page 973.

We trained the modified CNN for 500 epochs using the 50,000 training images of the CIFAR-10 data-
base. Figure 12.57 is a plot of the mean squared error as a function of epoch during the training phase.
Observe that the MSE begins to plateau at a value of approximately 0.25. In contrast, the MSE plot in
Fig. 12.50 for the MNIST data achieved a much lower final value. This is not unexpected, given that the
CIFAR-10 images are significantly more complex, both in the objects of interest as well as their back-
grounds. The lower expected recognition performance of the training set is confirmed by the training-
accuracy plotted in Fig. 12.58(a) as a function of epoch. The recognition rate leveled-off around 68% for
the training data and about 61% for the test data. Although these results are not nearly as good as those
obtained for the MNIST data, they are consistent with what we would expect from a very basic network.
It is possible to achieve over 96% accuracy on this database (see Graham [2015]), but that requires a
more complex network and a different pooling strategy.

Figure 12.59 shows the recognition accuracy per class for the training and test image sets. With a few
exceptions, the highest recognition rate in both the training and test sets was achieved for engineered
objects, and the lowest was for small animals. Frogs were an exception, caused most likely by the fact
that frog size and shape are more consistent than they are, for example, in dogs and birds. As you can
see in Fig. 12.59, if the small animals were removed from the list, recognition performance on the rest of
the images would have been considerably higher.

Figures 12.60 and Fig. 12.61 show the kernels of the first and second layers. Note that each column
in Fig. 12.60 has three 5 5× kernels. This is because there are three input channels to the CNN in this
example. If you look carefully at the columns in Fig. 12.60, you can detect a similarity in the arrangement
and values of the coefficients. Although it is not obvious what the kernels are detecting, it is clear that
they are consistent in each column, and that all columns are quite different from each other, indicating
a capability to detect different features in the input images. We show Fig. 12.61 for completeness only,

0 100 200 300 400 500

0.2

0

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 a
cc

ur
ac

y
(�

10
0%

)

Te
st

in
g

ac
cu

ra
cy

 (
�

10
0%

)

0.2

0

0.4

0.6

0.8

1.0

0 100 200 300 400 500

Epoch Epoch
ba

FIGURE 12.58 (a) Training accuracy (percent correct recognition of the training set) as a function of epoch for the
50,000 training images in the CIFAR-10 database. (b) Accuracy as a function of epoch for the 10,000 CIFAR-10
test images.

DIP4E_GLOBAL_Print_Ready.indb 985 6/16/2017 2:18:04 PM

986 Chapter 12 Image Pattern Classification

as there is little we can infer that deep into the network, especially at this small scale, and considering
the complexity of the images in the training set. Finally, Fig. 12.62 shows a complete recognition pass
through the CNN using the weights in Figs. 12.60 and 12.61. The input shows the three color channels
of the RGB image in the seventh column of the first row in Fig. 12.56. The feature maps in the first
column, show the various features extracted from the input. The second column shows the pooling
results, zoomed to the size of the features maps for clarity. The third and fourth columns show the results
in the second layer, and the fifth column shows the vectorized output. Finally, the last column shows the
result of recognition, with white representing a high output, and the others showing much smaller values.
The input image was properly recognized as belonging to class 1.

0.69

0.85

0.55
0.50

0.54 0.56

0.79

0.68

0.79 0.77

Class

Training set

0.65

0.81

0.48
0.43

0.47
0.50

0.76

0.64

0.72
0.69

Class

Test set

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

R
ec

og
ni

ti
on

 a
cc

ur
ac

y
1.0

0.0

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
ec

og
ni

ti
on

 a
cc

ur
ac

y

1.0

0.0

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ba

FIGURE 12.59 (a) CIFAR-10 recognition rate of training set by image class. Each bar shows a number between 0 and 1.
When multiplied by 100%, these numbers give the correct recognition percentage for that class. (b) Recognition
results per class in the test set.

FIGURE 12.60
Weights of the
kernels of the first
convolution layer
after 500 epochs
of training.

DIP4E_GLOBAL_Print_Ready.indb 986 6/16/2017 2:18:05 PM

12.7 Additional Details of Implementation 987

12.7 SOME ADDITIONAL DETAILS OF IMPLEMENTATION

We mentioned in the previous section that neural (including convolutional) nets
have the ability to learn features directly from training data, thus reducing the need
for “engineered” features. While this is a significant advantage, it does not imply that
the design of a neural network is free of human input. On the contrary, designing
complex neural networks requires significant skill and experimentation.

In the last two sections, our focus was on the development of fundamental con-
cepts in neural nets, with an emphasis on the derivation of backpropagation for both
fully connected and convolutional nets. Backpropagation is the backbone of neural
net design, but there are other important considerations that influence how well
a neural net learns, and then generalizes to patterns it has not seen before. In this
section, we discuss briefly some important aspects in the design of fully connected
and convolutional neural networks.

One of the first questions when designing a neural net architecture is how many
layers to specify for the network. Theoretically, the universality approximation
theorem (Cybenco [1989]) tells us that, under mild conditions, arbitrarily complex
decision functions can be approximated by a continuous feedforward neural network
with a single hidden layer. Although the theorem does not tell us how to compute
the parameters of that single hidden layer, it does indicate that structurally simple
neural nets can be very powerful. You have seen this in some of the examples in the
last two sections. Experimental evidence suggests that deep neural nets (i.e., net-
works with two or more hidden layers) are better than a single hidden layer network
at learning abstract representations, which typically is the main point of learning.
There is no such thing as an algorithm to determine the “optimum” number of lay-
ers to use in a neural network. Therefore, specifying the number of layers generally

12.7

FIGURE 12.61 Weights of the kernels of the second convolution layer after 500 epochs of training. The interpretation
of these kernels is the same as in Fig. 12.54.

DIP4E_GLOBAL_Print_Ready.indb 987 6/16/2017 2:18:05 PM

988 Chapter 12 Image Pattern Classification

FIGURE 12.62
Graphical
illustration of
a forward pass
through the
trained CNN.
The purpose
was to recognize
one input image
from the set in
Fig. 12.56. As the
output shows, the
image was
recognized
correctly as
belonging to class
1, the class of
airplanes.
(Original image
courtesy of
Pearson
Education.)

B

R

RGB components
of an input color
image

V
ec

to
r

Feature
maps

Pooled
feature
maps

Feature
maps

Pooled
feature
maps

1

2

3

4

5

6

7

8

9

10

Neural
net

is determined by a combination of experience and experimentation. “Starting small”
is a logical approach to this problem. The more layers a network has, the higher the
probability that backpropagation will run into problems such as so-called vanishing
gradients, where gradient values are so small that gradient descent ceases to be
effective. In convolutional networks, we have the added issue that the size of the
inputs decreases as the images propagate through the network. There are two causes
for this. The first is a natural size reduction caused by convolution itself, with the
amount of reduction being proportional to the size of the receptive fields. One solu-
tion is to use padding prior to performing convolution operations, as we discussed in
Section 3.4. The second (and most significant) cause of size reduction is pooling. The
minimum pooling neighborhood is of size 2 2× , which reduces the size of feature
maps by three-quarters at each layer. A solution that helps is to upsample the input

DIP4E_GLOBAL_Print_Ready.indb 988 6/16/2017 2:18:05 PM

12.7 Additional Details of Implementation 989

images, but this must done with care because the relative sizes of features of interest
would increase proportionally, thus influencing the size selected for receptive fields.

After the number of layers has been specified, the next task is to specify the num-
ber of neurons per layer. We always know how many neurons are needed in the first
and last layers, but the number of neurons for internal layer is also an open question
with no theoretical “best” answer. If the objective is to keep the number of layers as
small as possible, the power of the network is increased to some degree by increas-
ing the number of neurons per layer.

The main aspects of specifying the architecture of a neural network are com-
pleted by specifying the activation function. In this chapter, we worked with sigmoid
functions for consistency between examples, but there are applications in which
hyperbolic tangent and ReLU activation functions are superior in terms of improv-
ing training performance.

Once a network architecture has been specified, training is the central aspect of
making the architecture useful. Although the networks we discussed in this chapter
are relatively simple, networks applied to very large-scale problems can have mil-
lions of nodes and require large blocks of time to train. When available, the param-
eters of a pretrained network are an ideal starting point for further training, or for
validating recognition performance. Another central theme in training neural nets is
the use of GPUs to accelerate matrix operations.

An issue often encountered in training is over-fitting, in which recognition of the
training set is acceptable, but the recognition rate on samples not used for training is
much lower. That is, the net is not able to generalize what it learned and apply it to
inputs it has not encountered before. When additional training data is not available,
the most common approach is to artificially enlarge the training set using transfor-
mations such as geometric distortions and intensity variations. The transformations
are carried out while preserving the class membership of the transformed patterns.
Another major approach is to use dropout, a technique that randomly drops nodes
with their connections from a neural network during training. The idea is to change
the architecture slightly to prevent the net from adapting too much to a fixed set of
parameters (see Srivastava et al. [2014]).

In addition to computational speed, another important aspect of training is effi-
ciency. Simple things, such as shuffling the input patterns at the beginning of each
training epoch can reduce or eliminate the possibility of “cycling,” in which param-
eter values repeat at regular intervals. Stochastic gradient descent is another impor-
tant training refinement in which, instead of using the entire training set, samples
are selected randomly and input into the network. You can think of this as dividing
the training set into mini-batches, and then choosing a single sample from each mini-
batch. This approach often results in speedier convergence during training.

In addition to the above topics, a paper by LeCun et al. [2012] is an excellent over-
view of the types of considerations introduced in the preceding discussion. In fact,
the breath spanned by these topics is extensive enough to be the subject of an entire
book (see Montavon et al. [2012]). The neural net architectures we discussed were
by necessity limited in scope. You can get a good idea of the practical requirements
of implementing practical networks by reading a paper by Krizhevsky, Sutskever,
and Hinton [2012], which summarizes the design and implementation of a large-
scale, deep convolutional neural network. There are a multitude of designs that have

DIP4E_GLOBAL_Print_Ready.indb 989 6/16/2017 2:18:06 PM

990 Chapter 12 Image Pattern Classification

Problems
Solutions to the problems marked with an asterisk (*) are in the DIP4E Student Support Package (consult the book
website: www.ImageProcessingPlace.com).

12.1 Do the following:

(a) * Compute the decision functions of a mini-
mum distance classifier for the patterns in
Fig. 12.10. You may obtain the required mean
vectors by (careful) inspection.

(b) Sketch the decision boundary implemented
by the decision functions in (a).

12.2 * Show that Eqs. (12-3) and (12-4) perform the
same function in terms of pattern classification.

12.3 Show that the boundary given by Eq. (12-8) is
the perpendicular bisector of the line joining the
n-dimensional points mi and m j .

12.4 * Show how the minimum distance classifier dis-
cussed in connection with Fig. 12.11 could be
implemented by using Nc resistor banks (Nc is
the number of classes), a summing junction at

each bank (for summing currents), and a maxi-
mum selector capable of selecting the maximum
value of Nc decision functions in order to deter-
mine the class membership of a given input.

12.5 * Show that the correlation coefficient of Eq. (12-10)
has values in the range [,].−1 1 (Hint: Express g in
vector form.)

12.6 Show that the distance measure D a b(,) in Eq.
(12-12) satisfies the properties in Eq. (12-13).

12.7 * Show that b a= () −max ,a b in Eq. (12-14) is 0
if and only if a and b are identical strings.

12.8 Carry out the manual computations that resulted
in the mean vector and covariance matrices in
Example 12.5.

12.9 * The following pattern classes have Gaussian prob-
ability density functions:

Summary, References, and Further Reading
Background material for Sections 12.1 through 12.4 are the books by Theodoridis and Koutroumbas [2006], by
Duda, Hart, and Stork [2001], and by Tou and Gonzalez [1974]. For additional reading on the material on match-
ing shape numbers see Bribiesca and Guzman [1980]. On string matching, see Sze and Yang [1981]. A significant
portion of this chapter was devoted to neural networks. This is a reflection of the fact that neural nets, and in
particular convolutional neural nets, have made significant strides in the past decade in solving image pattern
classifications problems. As in the rest of the book, our presentation of this topic focused on fundamentals, but
the topics covered were thoroughly developed. What you have learned in this chapter is a solid foundation for
much of the work being conducted in this area. As we mentioned earlier, the literature on neural nets is vast, and
quickly growing. As a starting point, a basic book by Nielsen [2015] provides an excellent introduction to the topic.
The more advanced book by Goodfellow, Bengio, and Courville [2016] provides more depth into the mathemati-
cal underpinning of neural nets. Two classic papers worth reading are by Rumelhart, Hinton, and Williams [1986],
and by LeCun, Bengio, and Haffner [1998]. The LeNet architecture we discussed in Section 12.6 was introduced in
the latter reference, and it is still a foundation for image pattern classification. A recent survey article by LeCun,
Bengio, and Hinton [2015] gives an interesting perspective on the scope of applicability of neural nets in general.
The paper by Krizhevsky, Sutskever, and Hinton [2012] was one of the most important catalysts leading to the
significant increase in the present interest on convolutional networks, and on their applicability to image pattern
classification. This paper is also a good overview of the details and techniques involved in implementing a large-
scale convolutional neural network. For details on the software aspects of many of the examples in this chapter, see
Gonzalez, Woods, and Eddins [2009].

been implemented over the past decade, including commercial and free implemen-
tations. A quick internet search will reveal a multitude of available architectures.

DIP4E_GLOBAL_Print_Ready.indb 990 6/16/2017 2:18:06 PM

http://www.ImageProcessingPlace.com

 Problems 991

c T T T T
1 0 0 2 0 2 2 0 2: {(,) ,(,) ,(,) ,(,) }

c T T T T
2 4 4 6 4 6 6 4 6: {(,) ,(,) ,(,) ,(,) }

(a) Assume that P c P c() ()1 2 1 2= = and obtain
the equation of the Bayes decision boundary
between these two classes.

(b) Sketch the boundary.

12.10 Repeat Problem 12.9, but use the following pat-
tern classes:

c T T T T
1 1 0 0 1 1 0 0 1: {(,) ,(,) ,(,) ,(,) }− −

c T T T T
2 2 0 0 2 2 0 0 2: {(,) ,(,) ,(,) ,(,) }− −

Note that the classes are not linearly separable.

12.11 With reference to the results in Table 12.1, com-
pute the overall correct recognition rate for the
patterns of the training set. Repeat for the pat-
terns of the test set.

12.12 * We derived the Bayes decision functions

d p c P c j Nj j j cx x() = () () =, , , ,1 2 …

using a 0-1 loss function. Prove that these deci-
sion functions minimize the probability of error.
(Hint: The probability of error p e() is 1 − p c(),
where p c() is the probability of being correct.
For a pattern vector x belonging to class ci ,
p c p cix x() = (). Find p c() and show that p c() is
maximum [p e() is minimum] when p c P ci i() ()x
is maximum.)

12.13 Finish the computations started in Example 12.7.

12.14 * The perceptron algorithm given in Eqs. (12-44)
through (12-46) can be expressed in a more con-
cise form by multiplying the patterns of class
c2 by −1, in which case the correction steps
in the algorithm become w w() (),k k+ =1 if
wT k k() () ,y > 0 and w w() ()k k k+ = + ()1 ay
otherwise, where we use y instead of x to make it
clear that the patterns of class c2 were multiplied
by −1. This is one of several perceptron algo-
rithm formulations that can be derived starting
from the general gradient descent equation

w w
w

w
w w

k k
J

k

+() = () −
∂ ()

∂
⎡

⎣
⎢

⎤

⎦
⎥

= ()
1 a

,y

where a > 0, J(,)w y is a criterion function, and
the partial derivative is evaluated at w w= ().k
Show that the perceptron algorithm in the prob-

lem statement can be obtained from this general
gradient descent procedure by using the criterion
function

J T T(,)w w wy y y= −()1
2

(Hint: The partial derivative of wT y with respect
to w is y.)

12.15 * Prove that the perceptron training algorithm giv-
en in Eqs. (12-44) through (12-46) converges in
a finite number of steps if the training pattern
sets are linearly separable. [Hint: Multiply the
patterns of class c2 by −1 and consider a non-
negative threshold, T0 so that the perceptron
training algorithm (with a = 1) is expressed in
the form w w() (),k k+ =1 if wT k k T() () ,y > 0
and w w() () ()k k k+ = +1 ay otherwise. You
may need to use the Cauchy-Schwartz inequality:
a b a b2 2 2≥ () .]T

12.16 Derive equations of the derivatives of the follow-
ing activation functions:

(a) The sigmoid activation function in Fig. 12.30(a).

(b) The hyperbolic tangent activation function
in Fig. 12.30(b).

(c) * The ReLU activation function in Fig. 12.30(c).

12.17 * Specify the structure, weights, and bias(es) of the
smallest neural network capable of performing
exactly the same function as a minimum distance
classifier for two pattern classes in n-dimensional
space. You may assume that the classes are tightly
grouped and are linearly separable.

12.18 What is the decision boundary implemented by
a neural network with n inputs, a single output
neuron, and no hidden layers? Explain.

12.19 Specify the structure, weights, and bias of a neu-
ral network capable of performing exactly the
same function as a Bayes classifier for two pat-
tern classes in n-dimensional space. The classes
are Gaussian with different means but equal
covariance matrices.

12.20 Answer the following:

(a) * Under what conditions are the neural net-
works in Problems 12.17 and 12.19 identical?

(b) Suppose you specify a neural net architecture
identical to the one in Problem 12.17. Would
training by backpropagation yield the same

DIP4E_GLOBAL_Print_Ready.indb 991 6/16/2017 2:18:13 PM

992 Chapter 12 Image Pattern Classification

weights and bias as that network if trained
with a sufficiently large number of samples?
Explain.

12.21 Two pattern classes in two dimensions are distrib-
uted in such a way that the patterns of class c1 lie
randomly along a circle of radius r1. Similarly, the
patterns of class c2 lie randomly along a circle of
radius r2 , where r r2 12= . Specify the structure of
a neural network with the minimum number of
layers and nodes needed to classify properly the
patterns of these two classes.

12.22 * If two classes are linearly separable, we can train
a perceptron starting with weights and a bias that
are all zero, and we would still get a solution. Can
you do the same when training a neural network
by backpropagation? Explain.

12.23 Label the outputs, weights, and biases for every
node in the following neural network using the
general notation introduced in Fig. 12.31.

1

11

1

12.24 Answer the following:

(a) The last element of the input vector in Fig.
12.32 is 1. Is this vector augmented? Explain.

(b) Repeat the calculations in Fig. 12.32, but
using weight matrices that are 100 times the
values of those used in the figure.

(c) * What can you conclude in general from your
results in (b)?

12.25 Answer the following:

(a) * The chain rule in Eq. (12-70) shows three
terms. However, you are probably more famil-
iar with chain rule expressions that have two
terms. Show that if you start with the expres-
sion

d j
j i

i

ji

E
z

E
z

z
z

()
() ()

()
()

�
� �

�
�

= ∂
∂

= ∂
∂ +

∂ +
∂∑ 1

1

you can arrive at the result in Eq. (12-70).

(b) Show how the middle term in the third line
of Eq. (12-70) follows from the middle term
in the second.

12.26 Show the validity of Eq. (12-72). (Hint: Use the
chain rule.)

12.27 * Show that the dimensions of matrix D()� in Eq.
(12-79) are n np� × . (Hint: Some of the parameters
in that equation are computed in forward propaga-
tion, so you already know their dimensions.)

12.28 With reference to the discussion following Eq.
(12-82), explain why the error for one pattern is
obtained by squaring the elements of one column
of matrix A R() ,L −() adding them, and dividing
the result by 2.

12.29 * The matrix formulation in Table 12.3 contains all
patterns as columns of a single matrix X. This is
ideal in terms of speed and economy of imple-
mentation. It is also well suited when training
is done using mini-batches. However, there are
applications in which the large number of train-
ing vectors is too large to hold in memory, and
it becomes more practical to loop through each
pattern using the vector formulation. Compose
a table similar to Table 12.3, but using individual
patterns, x, instead of matrix X.

12.30 Consider a CNN whose inputs are RGB color
images of size 512 512× pixels. The network has
two convolutional layers. Using this information,
answer the following:

(a) * You are told that the spatial dimensions
of the feature maps in the first layer are
504 504× , and that there are 12 feature
maps in the first layer. Assuming that no
padding is used, and that the kernels used
are square, and of an odd size, what are the
spatial dimensions of these kernels?

(b) If subsampling is done using neighborhoods
of size 2 2× , what are the spatial dimensions
of the pooled feature maps in the first layer?

(c) What is the depth (number) of the pooled
feature maps in the first layer?

(d) The spatial dimensions of the convolution
kernels in the second layer are 3 3× . Assum-
ing no padding, what are the sizes of the fea-
ture maps in the second layer?

(e) You are told that the number of feature maps

DIP4E_GLOBAL_Print_Ready.indb 992 6/16/2017 2:18:14 PM

 Problems 993

in the second layer is 6, and that the size of
the pooling neighborhoods is again 2 2× .
What are the dimensions of the vectors that
result from vectorizing the last layer of the
CNN? Assume that vectorization is done
using linear indexing.

12.31 Suppose the input images to a CNN are padded
to compensate for the size reduction caused by
convolution and subsampling (pooling). Let P
denote the thickness of the padding border, let V
denote the width of the (square) input images, let
S denote the stride, and let F denote the width of
the (square) receptive field.

(a) Show that the number, N, of neurons in
each row in the resulting feature map is

 N
V P F

S
= + − +2

1

(b) * How would you interpret a result using this
equation that is not an integer?

12.32 * Show the validity of Eq. (12-106).

12.33 An experiment produces binary images of blobs
that are nearly elliptical in shape, as the following
example image shows. The blobs are of three siz-
es, with the average values of the principal axes
of the ellipses being (1.3, 0.7), (1.0, 0.5), and (0.75,
0.25). The dimensions of these axes vary ±10%
about their average values.

Develop an image processing system capable of
rejecting incomplete or overlapping ellipses, then
classifying the remaining single ellipses into one
of the three given size classes. Show your solu-
tion in block diagram form, giving specific details
regarding the operation of each block. Solve the
classification problem using a minimum distance
classifier, indicating clearly how you would go
about obtaining training samples, and how you
would use these samples to train the classifier.

12.34 A factory mass-produces small American flags
for sporting events. The quality assurance team
has observed that, during periods of peak pro-
duction, some printing machines have a tendency
to drop (randomly) between one and three stars
and one or two entire stripes. Aside from these
errors, the flags are perfect in every other way.
Although the flags containing errors represent a
small percentage of total production, the plant
manager decides to solve the problem. After
much investigation, she concludes that automatic
inspection using image processing techniques is
the most economical approach. The basic specifi-
cations are as follows: The flags are approximate-
ly 7.5 cm by 12.5 cm in size. They move length-
wise down the production line (individually, but
with a ±15% variation in orientation) at approxi-
mately 50 cm/s, with a separation between flags of
approximately 5 cm. In all cases, “approximately”
means ± 5%. The plant manager employs you to
design an image processing system for each pro-
duction line. You are told that cost and simplicity
are important parameters in determining the via-
bility of your approach. Design a complete sys-
tem based on the model of Fig. 1.23. Document
your solution (including assumptions and speci-
fications) in a brief (but clear) written report
addressed to the plant manager. You can use any
of the methods discussed in the book.

DIP4E_GLOBAL_Print_Ready.indb 993 6/16/2017 2:18:15 PM

DIP4E_GLOBAL_Print_Ready.indb 4 6/16/2017 2:01:57 PM

This page intentionally left blank

Bibliography
Abidi, M. A. and Gonzalez, R. C. (eds.) [1992]. Data Fusion in Robotics and Machine

Intelligence, Academic Press, New York.
Abramson, N. [1963]. Information Theory and Coding, McGraw-Hill, New York.
Achanta, R., et al. [2012]. “SLIC Superpixels Compared to State-of-the-Art Superpix-

el Methods,” IEEE Trans. Pattern Anal. Mach. Intell. vol. 34, no. 11, pp. 2274–2281.
Ahmed, N., Natarajan, T., and Rao, K. R. [1974]. “Discrete Cosine Transforms,” IEEE

Trans. Comp., vol. C-23, pp. 90–93.
Andrews, H. C. [1970]. Computer Techniques in Image Processing, Academic Press,

New York.
Andrews, H. C. and Hunt, B. R. [1977]. Digital Image Restoration, Prentice Hall,

Englewood Cliffs, NJ.
Antonini, M., Barlaud, M., Mathieu, P., and Daubechies, I. [1992].“Image Coding

Using Wavelet Transform,” IEEE Trans. Image Process., vol. 1, no. 2, pp. 205–220.
Ascher, R.N. and Nagy, G. [1974].“A Means for Achieving a High Degree of Com-

paction on Scan-Digitized Printed Text,” IEEE Transactions on Comp., C-23,
pp. 1174–1179.

Ballard, D. H. [1981]. “Generalizing the Hough Transform to Detect Arbitrary
Shapes,” Pattern Recognition, vol. 13, no. 2, pp. 111–122.

Ballard, D. H. and Brown, C. M. [1982]. Computer Vision, Prentice Hall, Englewood
Cliffs, NJ.

Basart, J. P., Chacklackal, M. S., and Gonzalez, R. C. [1992]. “Introduction to Gray-
Scale Morphology,” in Advances in Image Analysis, Y. Mahdavieh and R. C. Gon-
zalez (eds.), SPIE Press, Bellingham,WA, pp. 306–354.

Basart, J. P. and Gonzalez, R. C. [1992]. “Binary Morphology,” in Advances in Image
Analysis, Y. Mahdavieh and R. C. Gonzalez (eds.), SPIE Press, Bellingham, WA,
pp. 277–305.

Bell, E.T. [1965]. Men of Mathematics, Simon & Schuster, New York.
Berger, T. [1971]. Rate Distortion Theory, Prentice Hall, Englewood Cliffs, N.J.
Beucher, S. and Meyer, F. [1992]. “The Morphological Approach of Segmentation:

The Watershed Transformation,” in Mathematical Morphology in Image Process-
ing, E. Dougherty (ed.), Marcel Dekker, New York.

Beyerer, J., Puente Leon, F. and Frese, C. [2016]. Machine Vision—Automated Visu-
al Inspection: Theory, Practice, and Applications, Springer-Verlag, Berlin, Ger-
maNew York.

Blahut, R. E. [1987]. Principles and Practice of Information Theory, Addison-Wesley,
Reading, MA.

Bleau, A. and Leon, L. J. [2000]. “Watershed-Based Segmentation and Region
Merging,” Computer Vision and Image Understanding, vol. 77, no. 3, pp. 317–370.

Blum, H. [1967]. “A Transformation for Extracting New Descriptors of Shape,” in
Models for the Perception of Speech and Visual Form, Wathen-Dunn,W. (ed.),
MIT Press, Cambridge, MA.

DIP4E_GLOBAL_Print_Ready.indb 995 7/12/2017 10:43:36 AM

996 Bibliography

Born, M. and Wolf, E. [1999]. Principles of Optics: Electromagnetic Theory of Prop-
agation, Interference and Diffraction of Light, 7th ed., Cambridge University
Press,Cambridge, UK.

Bracewell, R. N. [1995]. Two-Dimensional Imaging, Prentice Hall, Upper Saddle
River, NJ.

Bracewell, R. N. [2003]. Fourier Analysis and Imaging, Springer, New York.
Bribiesca, E. [1992]. “A Geometric Structure for Two-Dimensional Shapes and

Three Dimensional Surfaces,” Pattern Recognition, vol. 25, pp. 483–496.
Bribiesca, E. [2013]. “A Measure of Tortuosity Based on Chain Coding,” Pattern Rec-

ognition, vol. 46, pp. 716–724.
Bribiesca, E. and Guzman, A. [1980]. “How to Describe Pure Form and How to

Measure Differences in Shape Using Shape Numbers,” Pattern Recognition,
vol. 12, no. 2, pp. 101–112.

Brigham, E. O. [1988]. The Fast Fourier Transform and its Applications, Prentice Hall,
Upper Saddle River, NJ.

Bronson, R. and Costa, G. B. [2009]. Matrix Methods: Applied Linear Algebra, 3rd ed.,
Academic Press/Elsevier, Burlington, MA.

Burrus, C. S., Gopinath, R. A., and Guo, H. [1998]. Introduction to Wavelets and
Wavelet Transforms, Prentice Hall, Upper Saddle River, NJ, pp. 250–251.

Buzug, T. M. [2008]. Computed Tomography: From Photon Statistics to Modern
Cone-Beam CT, Springer-Verlag, Berlin, Germany.

Cannon, T. M. [1974]. “Digital Image Deblurring by Non-Linear Homomorphic Fil-
tering,” Ph.D. thesis, University of Utah.

Canny, J. [1986]. “A Computational Approach for Edge Detection,” IEEE Trans. Pat-
tern Anal. Machine Intell., vol. 8, no. 6, pp. 679–698.

Caselles, V., Kimmel, R., and Sapiro, G. [1997]. “Geodesic Active Contours,” Int’l J.
Comp. Vision, vol. 22, no. 1, pp. 61–79.

Castleman, K. R. [1996]. Digital Image Processing, 2nd ed., Prentice Hall, Upper Sad-
dle River, NJ.

Chakrabarti, I., et al. [2015]. Motion Estimation for Video Coding, Springer Int’l Pub-
lishing, Cham, Switzerland.

Champeney, D. C. [1987]. A Handbook of Fourier Theorems, Cambridge University
Press, London, UK.

Chan, T. F. and Vese, L. A. [2001]. “Active Contours Without Edges,” IEEE Trans.
Image Process., vol. 10, no. 2, pp. 266–277.

Cheng, Y., Hu, X., Wang, J., Wang, Y., and Tamura, S. [2015]. “Accurate Vessel Seg-
mentation with Constrained B-Snake,” IEEE Trans. Image Process. vol. 24, no. 8,
pp. 2440-2455.

Choromanska, A., et al. [2015]. “The Loss Surfaces of Multilayer Networks,” Proc.
18th Int’l Conference Artificial Intell. and Statistics (AISTATS), vol. 38, pp. 192–204.

Clarke, R. J. [1985]. Transform Coding of Images, Academic Press, New York.
Cohen, A., Daubechies, I., and Feauveau, J.-C. [1992]. “Biorthogonal Bases of Com-

pactly Supported Wavelets,” Commun. Pure and Appl. Math., vol. 45, pp. 485–560.
Coifman, R. R. and Wickerhauser, M. V. [1992]. “Entropy-Based Algorithms for Best

Basis Selection,” IEEE Tran. Information Theory, vol. 38, no. 2, pp. 713–718.

DIP4E_GLOBAL_Print_Ready.indb 996 7/12/2017 10:43:36 AM

Bibliography 997

Coltuc, D., Bolon, P., and Chassery, J-M [2006]. “Exact Histogram Specification,”
IEEE Trans. Image Process., vol. 15, no. 5, pp. 1143–1152.

Cornsweet, T. N. [1970]. Visual Perception, Academic Press, New York.
Cox, I., Kilian, J., Leighton, F., and Shamoon, T. [1997]. “Secure Spread Spectrum

Watermarking for Multimedia,” IEEE Trans. Image Process., vol. 6, no. 12,
pp. 1673–1687.

Cox, I., Miller, M., and Bloom, J. [2001]. Digital Watermarking, Morgan Kaufmann
(Elsevier), New York.

Cybenco, G. [1989]. “Approximation by Superposition of a Sigmoidal Function,”
Math. Control Signals Systems, vol. 2, no. 4, pp. 303–314.

D. N. Joanes and C. A. Gill. [1998]. “Comparing Measures of Sample Skewness and
Kurtosis”. The Statistician, vol 47, no. 1, pp. 183–189.

Danielsson, P. E. and Seger, O. [1990]. “Generalized and Separable Sobel Opera-
tors,” in Machine Vision for Three-Dimensional Scenes, Herbert Freeman (ed.),
Academic Press, New York.

Daubechies, I. [1988]. “Orthonormal Bases of Compactly Supported Wavelets,”
Commun. On Pure and Appl. Math., vol. 41, pp. 909–996.

Daubechies, I. [1990]. “The Wavelet Transform, Time-Frequency Localization
and Signal Analysis,” IEEE Transactions on Information Theory, vol. 36, no. 5,
pp. 961–1005.

Daubechies, I. [1992]. Ten Lectures on Wavelets, Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Daubechies, I. [1993].“Orthonormal Bases of Compactly Supported Wave-
lets II,Variations on a Theme,” SIAM J. Mathematical Analysis, vol. 24, no. 2,
pp. 499–519.

Daubechies, I. [1996]. “Where Do We Go from Here?—A Personal Point of View,”
Proc. IEEE, vol. 84, no. 4, pp. 510–513.

Delgado-Gonzalo, R., Uhlmann, V., and Unser, M. [2015]. “Snakes on a Plane: A
Perfect Snap for Bioimage Analysis,” IEEE Signal Proc. Magazine, vol. 32, no. 1,
pp. 41– 48.

de Moura, C. A. and Kubrusky, C. S. (eds.) [2013]. The Courant-Friedrichs-Lewy
(CLF) Condition, Springer, New York.

Drew, M. S., Wei, J., and Li, Z.-N. [1999]. “Illumination Invariant Image Retrieval
and Video Segmentation,” Pattern Recognition., vol. 32, no. 8, pp. 1369–1388.

Duda, R. O., Hart, P. E., and Stork, D. G. [2001]. Pattern Classification, John Wiley &
Sons, New York.

Eng, H.-L. and Ma, K.-K. [2001]. “Noise Adaptive Soft-Switching Median Filter,”
IEEE Trans. Image Process., vol. 10, no. 2, pp. 242–251.

Eng, H.-L. and Ma, K.-K. [2006]. “A Switching Median Filter With Boundary Dis-
criminitative Noise Detection for Extremely Corrupted Images,” IEEE Trans.
Image Process., vol. 15, no. 6, pp. 1506–1516.

Federal Bureau of Investigation [1993]. WSQ Gray-Scale Fingerprint Image Com-
pression Specification, IAFIS-IC-0110v2,Washington, DC.

DIP4E_GLOBAL_Print_Ready.indb 997 7/12/2017 10:43:36 AM

998 Bibliography

Feng, J., Cao, Z, and Pi, Y. [2013]. “Multiphase SAR Image Segmentation With
Statistical-Model-Based Active Contours,” IEEE Trans. Geoscience and Remote
Sensing, vol. 51, no. 7, pp. 4190 – 4199.

Fisher, R. A. [1936]. “The Use of Multiple Measurements in Taxonomic Problems,”
Ann. Eugenics, vol. 7, Part 2, pp. 179–188. (Also in Contributions to Mathematical
Statistics, John Wiley & Sons, New York, 1950.)

Flusser, J. [2000]. “On the Independence of Rotation Moment Invariants,” Pattern
Recognition, vol. 33, pp. 1405–1410.

Freeman, A. (translator) [1878]. J. Fourier, The Analytical Theory of Heat, Cam-
bridge University Press, London, UK.

Freeman, H. [1961]. “On the Encoding of Arbitrary Geometric Configurations,”
IEEE Trans. Elec. Computers, vol. EC-10, pp. 260–268.

Freeman, H. [1974]. “Computer Processing of Line Drawings,” Comput. Surveys,
vol. 6, pp. 57–97.

Frendendall, G. L. and Behrend,W. L. [1960]. “Picture Quality—Procedures for
Evaluating Subjective Effects of Interference,” Proc. IRE, vol. 48, pp. 1030–1034.

Fukunaga, K. [1972]. Introduction to Statistical Pattern Recognition, Academic Press,
New York.

Furht, B., Greenberg, J., and Westwater, R. [1997]. Motion Estimation Algorithms for
Video Compression, Kluwer Academic Publishers, Boston.

Gaetano, R., Masi, G., Poggi, G., Verdoliva, L., and Scarpa, G. [2015]. “Marker-
Controlled Watershed-Based Segmentation of Multiresolution Remote Sensing
Images,” IEEE Trans. Geo Sci and Remote Sensing, vol. 53, no. 6, pp. 2987–3004.

Gallager, R. and Voorhis, D.V. [1975]. “Optimal Source Codes for Geometrically Dis-
tributed Integer Alphabets,” IEEE Trans. Inform. Theory, vol. IT-21, pp. 228–230.

Giardina, C. R. and Dougherty, E. R. [1988]. Morphological Methods in Image and
Signal Processing, Prentice Hall, Upper Saddle River, NJ.

Golomb, S.W. [1966]. “Run-Length Encodings,” IEEE Trans. Inform.Theory, vol.
IT-12, pp. 399–401.

Gonzalez, R. C., Edwards, J. J., and Thomason, M. G. [1976]. “An Algorithm for the
Inference of Tree Grammars,” Int. J. Comput. Info. Sci., vol. 5, no. 2, pp. 145–163.

Gonzalez, R. C., Woods, R. E., and Eddins, S. L. [2004]. Digital Image Processing
Using MATLAB, Prentice Hall, Upper Saddle River, NJ.

Gonzalez, R. C., Woods, R. E., and Eddins, S. L. [2009]. Digital Image Processing
Using MATLAB, 3rd ed., Gatesmark Publishing, Knoxville, TN.

Gonzalez, R. C. [1985]. “Industrial Computer Vision,” in Advances in Information
Systems Science, Tou, J. T. (ed.), Plenum, New York, pp. 345–385.

Gonzalez, R. C. [1986]. “Image Enhancement and Restoration,” in Handbook of
Pattern Recognition and Image Processing, Young, T. Y., and Fu, K. S. (eds.), Aca-
demic Press, New York, pp. 191–213.

Gonzalez, R. C. and Fittes, B. A. [1977]. “Gray-Level Transformations for Interactive
Image Enhancement,” Mechanism and Machine Theory, vol. 12, pp. 111–122

Gonzalez, R. C. and Safabakhsh, R. [1982].“Computer Vision Techniques for Indus-
trial Applications,” IEEE Computer, vol. 15, no. 12, pp. 17–32.

DIP4E_GLOBAL_Print_Ready.indb 998 7/12/2017 10:43:36 AM

Bibliography 999

Gonzalez, R. C. and Thomason, M. G. [1978]. Syntactic Pattern Recognition: An Intro-
duction, Addison-Wesley, Reading, MA.

Gonzalez, R. C. and Woods, R. E. [1992]. Digital Image Processing, Addison-Wesley,
Reading, MA.

Gonzalez, R. C. and Woods, R. E. [2002]. Digital Image Processing, 2nd ed., Prentice
Hall, Upper Saddle River, NJ.

Gonzalez, R. C. and Woods, R. E. [2008]. Digital Image Processing, 3rd ed., Prentice
Hall, Upper Saddle River, NJ.

Goodfellow, I., Bengio, Y., and Courville, A. [2016]. Deep Learning, MIT Press, Bos-
ton, MA.

Goutsias, J., Vincent, L., and Bloomberg, D. S. (eds) [2000]. Mathematical Morphol-
ogy and Its Applications to Image and Signal Processing, Kluwer Academic Pub-
lishers, Boston, MA.

Graham, B. [2015]. “Fractional Max-Pooling,” arXiv:1412.6071v4 [cs.CV], 12May2015
Graham, R. E. [1958]. “Predictive Quantizing of Television Signals,” IRE Wescon

Conv. Rec., vol. 2, pt. 2, pp. 147–157.
Gunturk, B. K. and Li, Xin (eds.) [2013]. Image Restoration: Fundamentals and

Advances, CRC Press, Boca Raton, FL.
Haar, A. [1910]. “Zur Theorie der Orthogonalen Funktionensysteme,” Math. Annal.,

vol. 69, pp. 331–371.
Habibi, A. [1971]. “Comparison of Nth Order DPCM Encoder with Linear Trans-

formations and Block Quantization Techniques,” IEEE Trans. Comm.Tech., vol.
COM-19, no. 6, pp. 948–956.

Hadamard, J. [1893]. “Resolution d’une Question Relative aux Determinants,” Bull.
Sci. Math., Ser. 2, vol. 17, part I, pp. 240–246.

Haralick, R. M. and Shapiro, L. G. [1992]. Computer and Robot Vision, vols 1 & 2,
Addison-Wesley, Reading, MA.

Harris, C. and Stephens, M. [1988]. “A Combined Corner and Edge Detection,” Proc.
4th Alvey Vision Conference, pp. 147-151.

Hebb, D. O. [1949]. The Organization of Behavior: A Neuropsychological Theory,
John Wiley & Sons, New York.

Hensley, D. [2006]. Continued Fractions, World Scientific Publishing Co., River Edge,
NJ.

Hespanha, J. P. [2009]. Linear Systems Theory, Princeton University Press, Princeton,
NJ.

Hochbaum, D. [2010], “Polynomial Time Algorithms for Ratio Regions and a Vari-
ant of Normalized Cut” IEEE Trans. Pattern Anal. and Machine Intell. vol. 32,
no. 5, pp. 889–898.

Hornik, K. [1991]. “Approximation Capabilities of Multilayer Feedforward Net-
works,” Neural Networks, vol. 4, no. 2, pp. 251–257.

Hotelling, H. [1933]. “Analysis of a Complex of Statistical Variables into Principal
Components,” J. Educ. Psychol., vol. 24, pp. 417–441, 498–520.

Hough, P. V. C. [1962]. “Methods and Means for Recognizing Complex Patterns,” US
Patent 3,069,654.

DIP4E_GLOBAL_Print_Ready.indb 999 7/12/2017 10:43:36 AM

1000 Bibliography

Hu, M. K. [1962].“Visual Pattern Recognition by Moment Invariants,” IRE Trans.
Info. Theory, vol. IT-8, pp. 179–187.

Huang, T. S. [1965].“PCM Picture Transmission,” IEEE Spectrum, vol. 2, no. 12,
pp. 57–63.

Huang, T. S. [1966]. “Digital Picture Coding,” Proc. Natl. Electron. Conf., pp. 793–797.
Hubbard, B. B. [1998]. The World According to Wavelets—The Story of a Mathemati-

cal Technique in the Making, 2nd ed., A. K. Peters, Ltd.,Wellesley, MA.
Hubel, D. H. and Wiesel, T. N. [1959]. “Receptive Fields of Single Neurons in the

Cat’s Stratiate Cortex,” J. of Physiology, vol. 148, no. 3, pp. 574-591.
Huertas, A. and Medione, G. [1986]. “Detection of Intensity Changes with Subpixel

Accuracy using Laplacian-Gaussian Masks,” IEEE Trans. Pattern. Anal. Machine
Intell., vol. PAMI-8, no. 5, pp. 651–664.

Huffman, D. A. [1952]. “A Method for the Construction of Minimum Redundancy
Codes,” Proc. IRE, vol. 40, no. 10, pp. 1098–1101.

Hufnagel, R. E. and Stanley, N. R. [1964]. “Modulation Transfer Function Associated
with Image Transmission through Turbulent Media,” J. Opt. Soc. Amer., vol. 54,
pp. 52–61.

Hughes, J. F. and Andries, V. D. [2013]. Computer Graphics: Principles and Practice,
3rd ed., Pearson, Upper Saddle River, NJ.

Hunt, B. R. [1973]. “The Application of Constrained Least Squares Estimation to
Image Restoration by Digital Computer,” IEEE Trans. Comput., vol. C-22, no. 9,
pp. 805–812.

IEEE Trans. Comm. [1981]. Special issue on picture communication systems, vol.
COM-29, no. 12.

IEEE Trans. Information Theory [1992]. Special issue on wavelet transforms and
mulitresolution signal analysis, vol. 11, no. 2, Part II.

IEEE Trans. Image Process. [1994]. Special issue on image sequence compression,
vol. 3, no. 5.

IEEE Trans. on Image Process. [1996]. Special issue on vector quantization, vol. 5,
no. 2.

IEEE Trans. Pattern Analysis and Machine Intelligence [1989]. Special issue on mul-
tiresolution processing, vol. 11, no. 7.

IEEE Trans. Signal Processing [1993]. Special issue on wavelets and signal process-
ing, vol. 41, no. 12.

IES Lighting Handbook, 10th ed. [2011]. Illuminating Engineering Society Press,
New York.

ISO/IEC JTC 1/SC 29/WG 1 [2000]. ISO/IEC FCD 15444-1: Information technol-
ogy—JPEG 2000 image coding system: Core coding system.

Jain, A. K. [1989]. Fundamentals of Digital Image Processing, Prentice Hall, Engl-
wood Cliffs, NJ.

Jain, J. R. and Jain, A. K. [1981]. “Displacement Measurement and Its Application
in Interframe Image Coding,” IEEE Trans. Comm., vol. COM-29, pp. 1799–1808.

Jain, R., Kasturi, R., and Schunk, B. [1995]. Computer Vision, McGraw-Hill, New
York.

DIP4E_GLOBAL_Print_Ready.indb 1000 7/12/2017 10:43:36 AM

Bibliography 1001

Jain, R. [1981]. “Dynamic Scene Analysis Using Pixel-Based Processes,” Computer,
vol. 14, no. 8, pp. 12–18.

Ji, L. and Yang, H. [2002]. “Robust Topology-Adaptive Snakes for Image Segmenta-
tion,” Image and Vision Computing, vol. 20, no. 2, pp. 147–164.

Jones, R. and Svalbe, I. [1994]. “Algorithms for the Decomposition of Gray-Scale
Morphological Operations,” IEEE Trans. Pattern Anal. Machine Intell., vol. 16,
no. 6, pp. 581–588.

Kak, A. C. and Slaney, M. [2001]. Principles of Computerized Tomographic Imaging,
Society for Industrial and Applied Mathematics, Philadelphia, PA.

Kass, M., Witkin, A., and Terzopoulos, D. [1988]. “Snakes: Active Contour Models,”
Int’l J. Comp. Vision, Kluwer Academic Publishers, Boston, MA, pp. 321–331.

Kaushik Roy, K., Bhattacharya, P., and Suen, C. Y. [2012]. “Iris Segmentation Using
Game Theory,” Signal, Image and Video Processing, vol. 6, no. 2, pp. 301–315.

Kerre, E. E. and Nachtegael, M., (eds.) [2000]. Fuzzy Techniques in Image Processing,
Springer-Verlag, New York.

Kirsch, R. [1971]. “Computer Determination of the Constituent Structure of Bio-
logical Images,” Comput. Biomed. Res., vol. 4, pp. 315–328.

Klette, R. and Rosenfeld, A. [2004]. Digital Geometry—Geometric Methods for Digi-
tal Picture Analysis, Morgan Kaufmann, San Francisco, CA.

Kohler, R. J. and Howell, H. K. [1963]. “Photographic Image Enhancement by Super-
position of Multiple Images,” Photogr. Sci. Eng., vol. 7, no. 4, pp. 241–245.

Kramer, H. P. and Mathews, M. V. [1956]. “A Linear Coding for Transmitting a Set of
Correlated Signals,” IRE Trans. Info. Theory, vol. IT-2, pp. 41–46.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. [2012]. “ImageNet Classification
with Deep Convolutional Neural Networks,” Advances in Neural Information
Processing Systems 25, NIPS 2012, pp. 1097–1105.

Langdon, G. C. and Rissanen, J. J. [1981]. “Compression of Black-White Images with
Arithmetic Coding,” IEEE Trans. Comm., vol. COM-29, no. 6, pp. 858–867.

LeCun, Y., Bengio, Y., and Hinton, G. [2015]. “Deep Learning,” Nature, vol. 521,
pp. 436 – 444.

LeCun, Y., Boser, B., Dencker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jacket, L. D. [1998]. “Backpropagation Applied to Handwritten Code Recogni-
tion,” Neural Computation, vol. 1, no. 4, pp. 541–551.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. [1998]. “Gradient-Based Learning
Applied to Document Recognition,” Proc. IEEE, vol. 86. no. 11, pp. 2278–2324.

LeCun. Y. A., Bottou, L., Orr, G. B., and Muller, Klaus [2012]. “Efficient Backprop,”
in Neural Networks: Tricks of the Trade, G. Montavon et al. (eds.), Springer-Verlag,
New York, pp. 9– 48.

Le Gall, D. and Tabatabai, A. [1988]. “Sub-Band Coding of Digital Images Using
Symmetric Short Kernel Filters and Arithmetic Coding Techniques,” IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, New York, pp.
761–765.

Li, C., Xu, C., Gui, C., and Fox, M. D. [2005]. “Level Set Evolution Without Re-ini-
tialization: A New Variational Formulation,” IEEE Computer Vision and Pattern
Recognition Conference, CVPR-2005, vol. 1, pp. 430 – 436.

DIP4E_GLOBAL_Print_Ready.indb 1001 7/12/2017 10:43:36 AM

1002 Bibliography

Liangjia, Z., Yi, G., Yezzi, A., and Tannenbaum, A. [2013]. “Automatic Segmenta-
tion of the Left Atrium from MR Images via Variational Region Growing With
a Moments-Based Shape Prior,” IEEE Trans. Image Process., vol. 22, no. 12,
pp. 5111–5122.

Lindberg, T. [1994]. “Scale-Space Theory: A Basic Tool for Analyzing Structures at
Different Scales,” J. Applied Statistics, vol. 21, Issue 1–2, pp. 225–270.

Lloyd, S. P. [1982]. “Least Square Quantization in PCM,” IEEE Trans on Inform.
Theory, vol. 28, no. 2, pp.129–137.

Lowe, D. G. [1999]. “Object Recognition from Local Scale-Invariant Features,”
Proc. 7th IEEE Int’l Conf. on Computer Vision, 1150–1157.

Lowe, D. G. [2004]. “Distinctive Image Features from Scale-Invariant Keypoints,”
Int’l J. Comp. Vision, vol. 60, no. 2, pp. 91–110.

Malcolm, J., Rathi, Y., Yezzi, A., and Tannenbaum, A. [2008]. “Fast Approximate Sur-
face Evolution in Arbitrary Dimension,” Proc. SPIE, vol. 6914, Medical Imaging
2008: Image Processing, doi:10.1117/12.771080.

Mallat, S. [1987]. “A Compact Multiresolution Representation: The Wavelet Model,”
Proc. IEEE Computer Society Workshop on Computer Vision, IEEE Computer
Society Press, Washington, DC, pp. 2–7.

Mallat, S. [1989a]. “A Theory for Multiresolution Signal Decomposition: The Wave-
let Representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-11,
pp. 674–693.

Mallat, S. [1989b]. “Multiresolution Approximation and Wavelet Orthonormal Bases
of L2,” Trans. American Mathematical Society, vol. 315, pp. 69–87.

Mallat, S. [1989c]. “Multifrequency Channel Decomposition of Images and
Wavelet Models,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 37,
pp. 2091–2110.

Mallat, S. [1998]. A Wavelet Tour of Signal Processing, Academic Press, Boston, MA.
Mallat, S. [1999]. A Wavelet Tour of Signal Processing, 2nd ed., Academic Press, San

Diego, CA.
Mamistvalov, A. [1998]. “n-Dimensional Moment Invariants and Conceptual Math-

ematical Theory of Recognition [of] n-Dimensional Solids,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 20, no. 8, pp. 819–831.

Marquina, A. and Osher, S. [2001]. “Explicit Algorithms for a New Time-Dependent
Model Based on Level-Set Motion for Nonlinear Deblurring and Noise Remov-
al,” SIAM J. Sci. Comput., vol.22, no. 2, pp. 387– 405.

Marr, D. [1982]. Vision, Freeman, San Francisco, CA.
Matas, J., Chum, O, Urban, M. and Pajdla, T. [2002]. “Robust Wide Baseline Stereo

from Maximally Stable Extremal Regions,” Proc. 13th British Machine Vision
Conf., pp. 384–396.

Maurer, C. R., Rensheng, Qi, R., and Raghavan, V. [2003]. “A Linear Time Algo-
rithm for Computing Exact Euclidean Distance Transforms of Binary Images in
Arbitrary Dimensions,” IEEE Trans. Pattern Anal. Machine Intell., vol. 25, no. 2,
pp. 265-270.

Max, J. [1960].“Quantizing for Minimum Distortion,” IRE Trans. Info.Theory, vol.
IT-6, pp. 7–12.

DIP4E_GLOBAL_Print_Ready.indb 1002 7/12/2017 10:43:36 AM

Bibliography 1003

McCulloch, W. S. and Pitts,W. H. [1943]. “A Logical Calculus of the Ideas Imminent
in Nervous Activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 115–133.

McFarlane, M. D. [1972]. “Digital Pictures Fifty Years Ago,” Proc. IEEE, vol. 60, no. 7,
pp. 768–770.

Meyer, Y. (ed.) [1992a]. Wavelets and Applications: Proceedings of the International
Conference, Marseille, France, Mason, Paris, and Springer-Verlag, Berlin.

Meyer, Y. (translated by D. H. Salinger) [1992b]. Wavelets and Operators, Cambridge
University Press, Cambridge, UK.

Meyer, Y. (translated by R. D. Ryan) [1993].Wavelets: Algorithms and Applications,
Society for Industrial and Applied Mathematics, Philadelphia.

Meyer, Y. [1987].“L’analyses par ondelettes,” Pour la Science, Paris, France.
Meyer, Y. [1990]. Ondelettes et opérateurs, Hermann, Paris.
Minsky, M. and Papert, S. [1969]. Perceptrons: An Introduction to Computational

Geometry, MIT Press, Cambridge, MA.
Mitchell, J., Pennebaker,W., Fogg, C., and LeGall, D. [1997]. MPEG Video Compres-

sion Standard, Chapman & Hall, New York.
Mohanty, S., et al. [1999]. “A Dual Watermarking Technique for Images,” Proc. 7th

ACM International Multimedia Conference, ACM-MM’99, Part 2, pp. 49–51.
Montavon, et al. [2012]. Neural Networks: Tricks of the Trade, Springer-Verlag, New

York.
Montgomery, D. C. and Runger, G. C. [2011]. Applied Statistics and Probability for

Engineers, 5th ed., Wiley, Hoboken, NJ.
Netravali, A. N. [1977]. “On Quantizers for DPCM Coding of Picture Signals,” IEEE

Trans. Info. Theory, vol. IT-23, no. 3, pp. 360–370.
Netravali, A. N. and Limb, J. O. [1980]. “Picture Coding: A Review,” Proc. IEEE, vol.

68, no. 3, pp. 366–406.
Nie, Y. and Barner, K. E. [2006]. “The Fuzzy Transformation and Its Applications in

Image Processing,” IEEE Trans. Image Process., vol. 15, no. 4, pp. 910–927.
Nielsen, M. A. [2015]. Neural Networks and Deep Learning, Determination Press.

(Only available online at http://neuralnetworksanddeeplearning.com/index.html.)
Nilsson, N. J. [1965]. Learning Machines: Foundations of Trainable Pattern-Classify-

ing Systems, McGraw-Hill, New York.
Nixon, M. and Aguado, A. [2012]. Feature Extraction and Image Processing for Com-

puter Vision, 3rd ed., Academic Press, New York.
Noble, B. and Daniel, J. W. [1988]. Applied Linear Algebra, 3rd ed., Prentice Hall,

Upper Saddle River, NJ.
Odegard, J. E., Gopinath, R. A., and Burrus, C. S. [1992]. “Optimal Wavelets for Sig-

nal Decomposition and the Existence of Scale-Limited Signals,” Proceedings of
IEEE Int. Conf. On Signal Proc., ICASSP-92, San Francisco, CA, vol. IV, 597–600.

Oppenheim, A. V., Schafer, R.W., and Stockham, T. G., Jr. [1968]. “Nonlinear Filter-
ing of Multiplied and Convolved Signals,” Proc. IEEE, vol. 56, no. 8, pp. 1264–1291.

Osher, S. and Sethian, J. A. [1988]. “Fronts Propagating with Curvature-Dependent
Speed: Algorithms Based on Hamilton-Jacobi Formulations,” J. Comp. Phys.,
vol. 79, no. 1, pp. 12 – 49.

DIP4E_GLOBAL_Print_Ready.indb 1003 7/12/2017 10:43:36 AM

http://neuralnetworksanddeeplearning.com/index.html

1004 Bibliography

Otsu, N. [1979]. “A Threshold Selection Method from Gray-Level Histograms,”
IEEE Trans. Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66.

O’Neil, J. B. [1971]. “Entropy Coding in Speech and Television Differential PCM
Systems,” IEEE Trans. Info. Theory, vol. IT-17, pp. 758–761.

Padfield, D. [2011]. “The Magic Sigma,” Proc. of the IEEE Comp. Vision and Pattern
Recog. Conf. (CVPR), 2011, pp. 129–136.

Paez, M. D. and Glisson, T. H. [1972]. “Minimum Mean-Square-Error Quantiza-
tion in Speech PCM and DPCM Systems,” IEEE Trans. Comm., vol. COM-20,
pp. 225–230.

Parhi, K. and Nishitani, T. [1999]. “Digital Signal Processing in Multimedia Systems,”
Chapter 18: A Review of Watermarking Principles and Practices, M. Miller, et al.
(eds.), pp. 461–485, Marcel Dekker Inc., New York.

Pennebaker, W. B., Mitchell, J. L., Langdon, G. G., Jr., and Arps, R. B. [1988]. “An
Overview of the Basic Principles of the Q-coder Adaptive Binary Arithmetic
Coder,” IBM J. Res. Dev., vol. 32, no. 6, pp. 717–726.

Perez, A. and Gonzalez, R. C. [1987]. “An Iterative Thresholding Algorithm for
Image Segmentation,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9,
no. 6, pp. 742–751.

Petrou, M. and Petrou, C. [2010]. Image Processing: The Fundamentals, John Wiley
& Sons, New York.

Pitas, I. and Vanetsanopoulos, A. N. [1990]. Nonlinear Digital Filters: Principles and
Applications, Kluwer Academic Publishers, Boston, MA.

Poynton, C. A. [1996]. A Technical Introduction to Digital Video, John Wiley & Sons,
New York.

Pratt, W., Chen, W., and Welch, L. [1974]. “Slant Transform Image Coding,” IEEE
Trans. on Comm., vol. COM-22, no. 8, pp. 1075–1093.

Pratt,W. K. [2001]. Digital Image Processing, 3rd ed., John Wiley & Sons, New York.
Pratt, W. K. [2014]. Introduction to Digital Image Processing, CRC Press, Boca Raton,

FL.
Prewitt, J. M. S. [1970]. “Object Enhancement and Extraction,” in Picture Processing

and Psychopictorics, Lipkin, B. S., and Rosenfeld, A. (eds.), Academic Press, New
York.

Prince, Simon J. D. [2012]. Computer Vision: Models, Learning, and Inference, Cam-
bridge Univ. Press, Cambridge, UK.

Proc. IEEE [1980]. Special issue on the encoding of graphics, vol. 68, no. 7.
Proc. IEEE [1985]. Special issue on visual communication systems, vol. 73, no. 2.
Rabbani, M. and Jones, P.W. [1991]. Digital Image Compression Techniques, SPIE

Press, Bellingham,WA.
Rajala, S. A., Riddle, A. N., and Snyder,W. E. [1983]. “Application of One-Dimen-

sional Fourier Transform for Tracking Moving Objects in Noisy Environments,”
Comp.,Vision, Image Proc., vol. 21, pp. 280–293.

Ramachandran, G. N. and Lakshminarayanan, A. V. [1971]. “Three Dimensional
Reconstructions from Radiographs and Electron Micrographs: Application
of Convolution Instead of Fourier Transforms,” Proc. Nat. Acad. Sci., vol. 68,
pp. 2236–2240.

DIP4E_GLOBAL_Print_Ready.indb 1004 7/12/2017 10:43:36 AM

Bibliography 1005

Shapiro, L. G. and Stockman, G. C. [2001]. Computer Vision, Prentice Hall, Upper
Saddle River, NJ.

Shepp, L. A. and Logan, B. F. [1974]. “The Fourier Reconstruction of a Head Section,”
IEEE Trans. Nucl. Sci., vol. NS-21, pp. 21–43.

Shi, J. and Malik, J. [2000]. “Normalized Cuts and Image Segmentation,” IEEE Trans.
Pattern Anal. and Machine Intell., vol. 22. no. 8, pp. 888–905.

Shi, J. and Tomasi, C. [1994]. “Good Features to Track,” 9th IEEE Conf. Computer
Vision and Pattern Recog., pp. 593–600.

Shi, Y. and Karl, W. C. [2008]. “A Real-Time Algorithm for the Approximation of
Level-Set-Based Curve Evolution,” IEEE Trans. Image Process., vol. 17, no. 5,
pp. 645–655.

Simon, J. C. [1986]. Patterns and Operators: The Foundations of Data Representations,
McGraw-Hill, New York.

Sklansky, J., Chazin, R. L., and Hansen, B. J. [1972]. “Minimum-Perimeter Polygons
of Digitized Silhouettes,” IEEE Trans. Comput., vol. C-21, no. 3, pp. 260–268.

Sloboda, F., Zatko, B., and Stoer, J. [1998]. “On Approximation of Planar One-
Dimensional Continua,” in Advances in Digital and Computational Geometry, R.
Klette, A. Rosenfeld, and F. Sloboda (eds.), Springer, Singapore, pp. 113–160.

Smith, J.O., III [2003]. Mathematics of the Discrete Fourier Transform, W3K Pub-
lishing, CCRMA, Stanford, CA. (Also available online at http://ccrma.stanford.
edu/~jos/mdft).

Snowden, R., Thompson, P, and Troscianko, T. [2012]. Basic Vision: An Introduction
to Visual Perception, Oxford University Press, Oxford, UK.

Snyder, W. E. and Qi, Hairong [2004]. Machine Vision, Cambridge University Press,
New York.

Sobel, I. E. [1970]. “Camera Models and Machine Perception,” Ph.D. dissertation,
Stanford University, Palo Alto, CA.

Soille, P. [2003]. Morphological Image Analysis: Principles and Applications, 2nd ed.,
Springer-Verlag, New York.

Sokic, E., & Konjicija, S. (2016). “Phase-Preserving Fourier Descriptor for Shape-
Based Image Retrieval,” Signal Processing: Image Communication, vol. 40,
pp. 82-96.

Solari, S. [1997]. Digital Video and Audio Compression, McGraw-Hill, New York.
Srivastava, N. et al. [2014]. “Dropout: A Simple Way to Prevent Neural Networks

from Overfitting,” J. Machine Learning Res., vol. 15, pp. 1929–1958.
Sussner, P. and Ritter, G. X. [1997]. “Decomposition of Gray-Scale Morphological

Templates Using the Rank Method,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 19, no. 6, pp. 649–658.

Sze, T.W. and Yang, Y. H. [1981]. “A Simple Contour Matching Algorithm,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 3, no. 6, pp. 676–678.

Theoridis, S. and Konstantinos, K. [2006]. Pattern Recognition, 3rd ed., Academic
Press, New York.

Thurley, J. M. and Danell, V. [2012]. “Fast Morphological Image Processing Open-
Source Extensions for GPU Processing With CUDA,” IEEE J. Selected Topics in
Signal Processing, vol. 6, no. 7, pp. 849–855.

DIP4E_GLOBAL_Print_Ready.indb 1005 7/12/2017 10:43:36 AM

http://ccrma.stanford.edu/~jos/mdft
http://ccrma.stanford.edu/~jos/mdft

1006 Bibliography

Tizhoosh, H. R. [2000]. “Fuzzy Image Enhancement: An Overview,” in Fuzzy Tech-
niques in Image Processing, E. Kerre and M. Nachtegael (eds.), Springer-Verlag,
New York.

Toro, J. and Funt, B. [2007]. “A Multilinear Constraint on Dichromatic Planes for
Illumination Estimation,” IEEE Trans. Image Process., vol. 16, no. 1, pp. 92–97.

Tou, J. T. and Gonzalez, R. C. [1974]. Pattern Recognition Principles, Addison-Wesley,
Reading, MA.

Trussell, H. J. and Vrhel, M. J. [2008]. Fundamentals of Digital Imaging, Cambridge
University Press, Cambridge, UK.

Umbaugh, S. E. [2010]. Digital Image Processing and Analysis, 2nd ed., CRC Press,
Boca Raton, FL.

Vetterli, M. and Kovacevic, J. [1995]. Wavelets and Suband Coding, Prentice Hall,
Englewood Cliffs, NJ.

Vincent, L. [1993]. “Morphological Grayscale Reconstruction in Image Analysis:
Applications and Efficient Algorithms,” IEEE Trans. Image Process., vol. 2. no. 2,
pp. 176–201.

Walsh, J. L. [1923]. “A Closed Set of Normal Orthogonal Functions,” Am. J. Math.,
vol. 45, no. 1, pp. 5–24.

Wang, Ruye [2012]. Introduction to Orthogonal Transforms, Cambridge University
Press, New York.

Weinberger, M. J., Seroussi, G., and Sapiro, G. [1996]. “The LOCO-I Lossless Image
Compression Algorithm: Principles and Standardization into JPEG-LS,” IEEE
Trans. Image Process., vol. 9, no. 8, pp. 1309–1324.

Welch, T.A. [1984]. “A Technique for High-Performance Data Compression,” IEEE
Computer, vol. 17, no. 6, pp. 8–19.

White, J. M. and Rohrer, G. D. [1983]. “Image Thresholding for Optical Character
Recognition and Other Applications Requiring Character Image Extraction,”
IBM J. Res. Devel., vol. 27, no. 4, pp. 400–411.

Whittaker, R. T. [1998]. “A Level-Set Approach to 3D Reconstruction from Range
Data,” Int’l. J. Comp. Vision, vol. 29, no. 3, pp. 203–231.

Widrow, B. and Stearns, S. D. [1985]. Adaptive Signal Processing, Prentice Hall,
Englewood Cliffs, NJ.

Wiener, N. [1942]. Extrapolation, Interpolation, and Smoothing of Stationary Time
Series, MIT Press, Cambridge, MA.

Witten, I. H., Neal, R. M., and Cleary, J. G. [1987]. “Arithmetic Coding for Data Com-
pression,” Comm. ACM, vol. 30, no. 6, pp. 520–540.

Wolberg, G. [1990]. Digital Image Warping, IEEE Computer Society Press, Los
Alamitos, CA.

Woods, R. E. and Gonzalez, R. C. [1981]. “Real-Time Digital Image Enhancement,”
Proc. IEEE, vol. 69, no. 5, pp. 643–654.

Xiang, Z., Zou, Y., Zhou, X., and Huang, X. [2016]. “Robust Vehicle Logo Recogni-
tion Based on Locally Collaborative Representation with Principal Components,”
Sixth Int’l Conference on Information Sci. and Tech., Dalian, China, pp. 487-491.

DIP4E_GLOBAL_Print_Ready.indb 1006 7/12/2017 10:43:36 AM

Bibliography 1007

Xintao, D., Yonglong, L., Liping, S., and Fulong, C. [2014]. “Color Balloon Snakes
for Face Segmentation,” Int’l J. for Light and Electron Optics, vol. 126, no. 11,
pp. 2538–2542.

Xu, C. and Prince, J, L. [1988]. “Snakes, Shapes, and Gradient Vector Flow,” IEEE
Trans. Image Process., vol.7, no. 3, pp. 359–369.

Yu, H., Barriga, E.S., Agurto, C., Echegaray, S., Pattichis, M.S., Bauman, W., and Soliz,
P. [2012]. “Fast Localization and Segmentation of Optic Disk in Retinal Images
Using Directional Matched Filtering and Level Sets,” IEEE Trans. Information
Tech and Biomedicine, vol. 16, no. 4, pp. 644 – 657.

Zadeh, L. A. [1965]. “Fuzzy Sets,” Inform. and Control, vol. 8, pp. 338–353.
Zadeh, L. A. [1973]. “Outline of New Approach to the Analysis of Complex Sys-

tems and Decision Processes,” IEEE Trans. Systems, Man, Cyb., vol. SMC-3, no. 1,
pp. 28–44.

Zadeh, L. A. [1976]. “A Fuzzy-Algorithmic Approach to the Definition of Complex
or Imprecise Concepts,” Int. J. Man-Machine Studies, vol. 8, pp. 249–291.

Zahn, C. T. and Roskies, R. Z. [1972]. “Fourier Descriptors for Plane Closed Curves,”
IEEE Trans. Comput., vol. C-21, no. 3, pp. 269–281.

Zhang, Q. and Skjetne, R. [2015]. “Image Processing for Identification of Sea-Ice
Floe Size Distribution,” IEEE Trans. Geoscience and Remote Sensing, vol. 53,
no. 5, pp. 2913–2924.

Ziv, J. and Lempel, A. [1977]. “A Universal Algorithm for Sequential Data Compres-
sion,” IEEE Trans. Info. Theory, vol. IT-23, no. 3, pp. 337–343.

Ziv, J. and Lempel, A. [1978]. “Compression of Individual Sequences Via Variable-
Rate Coding,” IEEE Trans. Info. Theory, vol. IT-24, no. 5, pp. 530–536.

DIP4E_GLOBAL_Print_Ready.indb 1007 7/12/2017 10:43:36 AM

DIP4E_GLOBAL_Print_Ready.indb 4 6/16/2017 2:01:57 PM

This page intentionally left blank

Index
A

Accumulator cells, 738
Acquisition. See Image: acquisition
Activation functions

activation value, 945
hyperbolic tangent, 945
of perceptron, 937
ReLU, 945
sigmoid, 944

Adaptive filters. See Spatial filters
Adjacency, 115,
Affine transformations. See Geometric trans-

formations
Aliasing, 234

aliased pair, 221
anti-aliasing, 222
anti-aliasing filtering, 236
examples of, 223, 234, 236, 238
in 1-D functions, 221
in images, 233
moiré patterns, 238
spatial, 233
temporal, 234

Angiogram, 27, 130
Apodizing function, 257. See also Filtering

window
Arctangent, 208
Arithmetic coding, 561
Artificial intelligence, 18
Artificial neurons. See also Neural networks

activation function, 944
activation value, 945
interconnecting, 945
model, 943
ReLU, 945
schematic, 944
sigmoid, 945
sum-of-products computation, 944

Augmented pattern. See Pattern
Autocorrelation, 915

B

Background flattening, 689. See also Shading
correction

Backpropagation. See Neural networks
Band-limited function, 217, 225, 232. See

also Function
Bartlane cable system, 19
Basic rectangle, 832
Basis functions

in the time-frequency plane, 479
of the cosine transform, 489
of the Fourier transform, 485
of the Haar transform, 504
of the Hartley transform, 486
of the sine transform, 493
of the slant transform, 502
of the Walsh-Hadamard transform, 499
standard, 484

Basis images, 483. See Basis functions
Basis vectors, 480. See also Basis functions

biorthonormal, 474
complex orthonormal, 473

Bayes
classifier. See Bayes classifier

Bayes classifier. See also Pattern classification
as a minimum-distance classifier, 927
comparison with neural networks, 964
derivation, 923
for Gaussian pattern classes, 925
special cases, 927

Between-class variance, 748, 749
Bias. See Neural networks
Bidirectional frame (B-frame), 600
Biorthogonal basis, 465
Biorthonormal basis, 465
Bit-plane

decomposition, 131
reconstruction, 132

Bit-plane coding, 575
Bit rate, 550
Blind spot, 49
Block matching, 600
Block transform coding, 576

bit allocation for, 583
selection of transform for, 577
subimage size and, 582
threshold implementation, 585
zonal implementation, 584

BMP compression, 566
Border, 81. See also Boundary

inner, outer, 81
Boundary. See also Border

definition, 81
following, 814
outer, 815
resampling, 817
tracing. See Boundary following

Boundary descriptors, 832
basic rectangle, 832
bounding box, 832
diameter, 832
eccentricity, 832
Fourier descriptors, 835
longest chord, 832
major axis, 832
shape numbers, 834
statistical moments, 839
tortuosity, 832

Bounding box, 832
Brightness, 400
Bubble chamber, 807

C

Cartesian product, 95
CAT. See Computed tomography (CT)
CCITT, 551
CCITT compression, 568
Ceiling function, 68, 168, 727
Cellular complex, 822–825
Center ray, 387
Chain codes

first difference, 817

Freeman, 816
normalized, 817
slope, 819

Classification. See Pattern classification
Clustering

k-means, 770
seeds, 771
supervised, 770
unsupervised, 770

Code. See also Compression
arithmetic, 561
CCITT makeup, 568
CCITT terminating, 568
Elias gamma, 560
Golomb, 556
Gray, 576
Huffman, 548
instantaneous, 555
length, 540
MH (Modified Huffman), 568
MMR (Modified Modified READ), 569,

574
MR (Modified READ), 569
natural binary, 542
Rice, 557
symbols, 540
unary, 557
uniquely decodable, 556
variable-length, 542
words, 540

Codec, 549
Coding. See also Compression

N-largest, 587
previous pixel, 596
redundancy, 540, 542
symbol-based (or token-based), 572

Cohen-Daubechies-Feauveau biorthogonal
wavelets, 525, 615

Color image processing
achromatic light, 400
brightness, 400
chromaticity, 403
chromaticity diagram, 404
chromatic light, 400
CMY color model, 408
CMYK color model, 408
CMYK to CMY conversion, 410
CMY to RGB conversion, 409
color circle, 434
color complements, 434
color fundamentals, 400
color “gradient”, 450
color image compression, 455
color models, 405
color pixel, 407
color slicing, 436
color transformations, 430
device independent color model, 418
edge detection, 450
full-color image processing, 429
gray level, 400
HSI color model, 411
HSI image segmentation, 446
HSI to RGB conversion, 415

DIP4E_GLOBAL_Print_Ready.indb 1009 6/16/2017 2:18:16 PM

1010 Index

Color Image Processing (cont.)
image segmentation, 445
intensity, 400
intensity to color transformations, 423
L*a*b* color model, 419
luminance, 400
noise in color images, 452
primary colors of light, 401
primary colors of pigments, 402
pseudocolor image processing, 420
radiance, 400
RGB color cube, 408
RGB color model, 407
RGB color vector, 429, 446
RGB image segmentation, 446
RGB to CMY conversion, 409
RGB to HSI conversion, 413
secondary colors of light, 402
secondary colors of pigments, 402
sharpening, 442
smoothing, 442
tone and color corrections, 437

Complex conjugate, 207
Complex numbers, 207

angle, 208
magnitude, 207

Compression
arithmetic coding, 540
bit-plane coding, 575
block diagram, 550
block transform coding, 576
BMP, 566
CCITT, 568
containers for, 551
fidelity criteria, 540
formats for, 551
fundamentals of, 540
Golomb coding, 551
Huffman coding, 551, 553
irrelevant information and, 544
JBIG2, 573
JPEG, 588
JPEG-2000, 618
Lempil-Ziv-Welch (LZW) coding, 564
measuring information for, 551
models for, 549
MPEG-4 AVC (or H.264), 603
predictive coding, 594
quantization and, 603
ratio, 540
run-length coding, 566
spatial redundancy, 603
standards for, 551
symbol-based coding, 572
temporal redundancy, 603
wavelet coding, 614

Computed tomography (CT), 21. See also To-
mography

Computer, history of, 21
Computerized axial tomography (CAT).

See Computed tomography (CT)
Conditional average risk. See Bayes classifier
Conditional loss. See Bayes classifier
Connectionist models. See Neural networks
Contour. See Border; See Boundary
Contrast. See also Enhancement

enhancement radiography, 27
high, 134

manipulation, 126
measure, 851
ratio, 69
simultaneous, 54
stretching, 121, 129

Control (tie) points, 104
Convex. See also Morphological image

processing
deficiency, 657
digital set, 657
hull, 657

ConvNets. See Neural networks (Convolu-
tional)

Convolution (Frequency domain), 213, 228
circular, 228, 253, 256
theorem, 318
tie between spatial and frequency domain

filtering, 254
Convolution (Spatial)

2-D, discrete, defined, 159
and correlation, 154
computational advantage with separable

kernel, 162
filter, 160
kernel, 160
kernel rotation explained, 159
mask, 160
mechanics of, 155–160
padding, 159
properties, 160
simple example of, 158
size of, 159
tie between spatial and frequency domain

filtering, 254
with separable kernel, 161

Convolution theorem, 214, 215, 216, 225, 228,
253, 259, 309, 310, 312

Co-occurrence matrix. See Region descriptors
Correlation, 478. See also Matching

coefficient, 915
image, 915
maximum, 916
minimum, 916
range of values, 916
single-point, 478
template matching. See Matching

Correlation (Frequency domain), 257, 258
theorem, 259

Correlation (Spatial)
2-D, discrete, defined, 158
and convolution, 154
mechanics of, 155–158
padding, 158
properties of, 160
size of, 159

Cost function, 954
Covariance matrix

diagonal, 862
eigenvalues of, 861
eigenvectors of, 861

Cross-correlation, 915
Cross-modulation, 518
CT. See Computed tomography (CT)
Curvature, 832

estimation, 889
local, 889
obtained using Hessian matrix, 889
of edges, 889

Cutoff frequency, 274

D

Data compression, 540. See also Compression
Daubechies wavelets, 525, 615
dc component, 250
Decision boundary, 912
Decision function, 912

for Bayes’ classifier, 924
for minimum-distance classifier, 912
for perceptron, 935
linear, 935

Deep learning. See Learning
Deep neural networks. See Neural networks
Delta modulation (DM), 607
Denoising. See Image restoration
Derivative. See Gradient; See also Laplacian
Derivatives. See also Finite differences

behavior in images, 714
requirement of approximations, 702
sensitivity to noise, 714

Description
regional. See Regional descriptors

DFT. See Discrete Fourier transform; Fourier
transform

Difference of Gaussians, 270
Difference operators. See Gradient operators
Differential pulse code modulation (DPCM),

609
Digital

angiography, 27
boundary, 81
computer, 21
curve, 80
filter. See Filters
image. See Image
image, definition of, 18
image representation, 65
path, 80
radiography, 25

Digital image processing. See Image; See
also Image

fundamentals of, 47
origins of, 19
scope of, 18
steps in, 41
system components, 44
uses of, 23

Dilation. See Morphological image processing
Discrete cosine transform (DCT), 487. See

also JPEG compression
and lowpass filtering, 494
blocking artifact, 582
periodicity of, 491

Discrete Fourier transform (DFT), 475. See
also Fourier transform

circular convolution. See Convolution
circular correlation. See Correlation

Discrete sine transform (DST), 492
and lowpass filtering, 489
periodicity, 493

Discrete wavelet transform (DWT).
See Wavelets; See also Wavelets

one-dimensional, 512
two-dimensional, 520

Discriminant function. See Decision function

DIP4E_GLOBAL_Print_Ready.indb 1010 6/16/2017 2:18:16 PM

Index 1011

Distance, 82
chessboard, 82
city-block, 82
D4, 82
D8, 82
Dm (mixed), 83
Euclidean, 82
function, 82
Mahalanobis, 926
metric, 82

Distance transform, 829
Dot product, 107
Dots per inch (dpi), 238
DPI (dots per inch), 71
Dynamic range, 69, 134

E

Edge, 81. See also Edge detection
closed loops, 727
derivative properties, 706
detector, definition, 702
direction, 716
double, 706, 707
global processing with Hough transform,

737
magnitude, 716
map, 721
operators. See Gradient operators
pixels, 702
point-linking, 735
ramp, 704, 712
roof, 704, 712
segments, 702
step, 704, 711
strength, 716
unit normal, 717

Edge detection
basic steps, 714
behavior in noise, 714
Canny edge detector, 729
edge models. See Edge models
gradient. See Gradient
gradient based, 716
Laplacian of a Gaussian, 725
Marr-Hildreth detector, 724, 885
three steps performed, 714

Edge models
behavior in noise, 714
ideal edges, 711
ramp edges, 712
roof edges, 712
zero crossing, 712

Eigenvalue, defined, 861
Eigenvalues. See Covariance matrix
Eigenvector, defined, 861
Electromagnetic (EM) spectrum, 23, 54
Elementwise operations, 83
Ellipse in standard form, 841
Encoding. See Compression
End point. See also Morphological image

processing
definition, 665

Engineered features, 904, 913
Enhancement. See Image enhancement
Entropy, 546
Epoch. See Training, epoch

Erosion. See Morphological image processing
Euclidean. See Distance measures

distance, 82. See also Distance
space, 464
vector norm, 108

Euler formula, 845
Euler number, 844
Euler’s formula, 207
Expansions

linear, 467
Eye structure, 48

F

Face recognition, 868
False color. See Pseudocolor image process-

ing
False contouring, 74
False negative, 731
False positive, 731
Fast Fourier transform (FFT). See Discrete

Fourier transform (DFT)
Fast Fourier Transform (FFT)

algorithm, 304
background, 204
computational advantage, 205, 269, 308

Fast wavelet transform (FWT), 513
analysis filter bank, 515
approximation and detail coefficients, 520
synthesis filter bank, 519
two-dimensional, 520

Feature extraction
chain codes, 816–820. See also Chain codes
corner detection, 869
covariant, 812
distance transform, 828
feature description, defined, 812
feature detection, defined, 812
feature space, 814
feature vector, 814
global, 813
invariant, 812
label, 812
local, 813
maximally stable extremal regions, 876–883
medial axis, 828
minimum-perimeter polygons, 821
Moore boundary tracing, 815
principal components, 859–869. See

also Principal components
region feature descriptors, 840–859. See

also Region descriptors
SIFT (scale invariant feature transform),

881–897
signatures, 826
skeletons, 828
whole image features, 868–899

Fidelity criteria, 547
Fiducial marks, 104, 342
Filtering (Frequency domain), 203

anti-aliasing, 236
bandpass, 297
bandreject, 297
basics of, 260
blind deconvolution, 352
computational advantage of, 205
correspondence with spatial filtering, 268,

271
deblurring and denoising using constrained

least squares filtering, 363
deblurring and denoising using Wiener

filtering, 358
deconvolution, 352
foundation of, 215, 254
fundamentals, 261
high-boost, 291
high-frequency emphasis, 291
highpass (image sharpening), 284
highpass, offset, 263
homomorphic, 293
inverse filtering, 356
Laplacian, 289
linear, 254
lowpass (smoothing), 264, 272
notch, 299
periodic noise reduction ny notch filtering,

340
selective, 296
steps summary, 266
tie to spatial filtering, 254, 268, 271
to reduce aliasing, 222
unsharp masking, 291

Filtering (Spatial domain), 153–197
and convolution, 159
based on first derivative, 176
based on second derivative, 176
based on the gradient, 184
bias, 165, 181, 198
compared to frequency domain filters, 162
deconvolution, 352
denoising using mean filters, 328
for restoration, 327
fundamentals, 153
highboost, 182
highpass, 175
linear, 154, 160
linear, equation of, 159
lowpass, 164–174
nonlinear, 174
sharpening, 175
smoothing, 164–174
tie to frequency domain filtering, 254, 268,

271
unsharp masking, 182

Filtering windows, 257. See also Apodizing,
Windowing

Bartlett, 257
Hamming, 257
Hann, 257

Filtering windows (See also Apodizing)
Hamming, 382
Hann, 382
Hanning, 382
Ram-Lak, 382
ramp, 382

Filters
finite impulse response (FIR), 517
frequency domain. See Frequency domain

filtering
kernels. See Spatial filters
spatial. See Spatial filtering; See Spatial

filters
Filters, digital

perfect reconstruction, 518

DIP4E_GLOBAL_Print_Ready.indb 1011 6/16/2017 2:18:16 PM

1012 Index

Filters (Frequency domain)
anti-aliasing, 236
bandpass, 297
bandreject, 297
Butterworth highpass from lowpass, 284
Butterworth lowpass, 278
constrained least squares filter, 363
cutoff-frequency, 274
deconvolution, 352
difference of Gaussians, 270
filter transfer function, 261, 268
finite impulse response (FIR), 269
Gaussian highpass from lowpass, 284
Gaussian lowpass, 264, 277
geometric mean filter, 367
highpass, 262
homomorphic, 295
ideal highpass (from lowpass), 284
ideal lowpass, 220, 265, 273
inverse filter, 356
lowpass, 262
notch, 299
notch filter, 341
obtaining from spatial kernel, 271
optimum notch filter, 345
parametric Wiener filter, 367
reconstruction filters, 220
sharpening (highpass), 284
smoothing, 272
spectrum equalization, 368
Wiener filter, 358
zero-phase-shift, 266

Filters (Spatial domain). See also Kernels
adaptive local noise filter, 336
adaptive median filter, 338
alpha-trimmed filter, 332
arithmetic mean filter, 328
bandpass from lowpass, 188
bandrejecct from lowpass, 188
contraharmonic mean filter, 329
geometric mean filter, 328
harmonic mean filter, 329
highpass, 175
highpass from lowpass, 188
kernel, 154
Laplacian, 178
linear, 153
max, 175
max filter, 332
median, 174
median filter, 330
midpoint filter, 332
min, 175
min filter, 332
nonlinear, 153, 174
sharpening, 175

Fingerprints, 32
Finite differences, 702

backward, 703
central, 703
forward, 703
fourth order, 704
second order, 703
third order, 703

Fisher iris pattern classes, 907
Flat-field correction, 173
Floor function, 68, 168, 727
Fourier

phase angle, 249
power spectrum, 249
spectrum, 249

Fourier descriptors. See Boundary descriptors
Fourier series, 475

defined, 208
history, 204

Fourier-slice theorem. See Image reconstruc-
tion from projections

Fourier transform, 252
1-D continuous, 210
1-D discrete (DFT), 225, 226, 227
1-D inverse discrete (IDFT), 227
2-D, continuous, 231
2-D discrete (DFT), 240
and aliasing, 222
and convolution, 214
center, 243, 259
centering, 242
computing inverse from forward, 304
conditions for existence, 210
convolution. See Convolution
dc component, 250
derivation of DFT, 225
discrete. See Discrete Fourier transform

(DFT)
forward, 210, 227, 228, 272
history, 204
inverse, 227
inverse, 1-D continuous, 210
inverse from forward algorihm, 304
magnitude, 249
of 2-D box, 231
of impulse, 208
of impulse and impulse train, 212
of pulse, 211
of sampled functions, 216
pair, 214, 227, 231
periodicity, 241
phase angle, 249
power spectrum, 249
properties of, 240, 246, 258
separability, 303
spectrum, 249
symmetry, 243

Four-quadrant arctangent, 207, 249
Fractals, 39
Frequency

domain, defined, 211
rectangle, 243
units of, 211

Frequency domain filtering. See also Spatial
filtering; See Filtering (Frequency
domain)

Frequency leakage, 257
Function

antisymmetric, 244
band-limited. See Band-limited function
Bessel, 276
circularly symmetric, 167
complex, 243
conjugate symmetric, 245
Dirac delta, 208
even, 243
frequency of a periodic, 223
generalized, 208
isotropic, 167
modulation, 346

odd, 243
period, 223
periodic, 223
real, 243, 245
reconstruction (recovery), 224
sinc, 212
symmetric, 244
weighting, 346

Fundus image, 833

G

Gamma
correction, 125
noise. See Noise

Gaussian. See also Probability density func-
tion (PDF)

circularly symmetric shape, 167
convolution of Gaussians, 169
coveriance matrix. See also Covariance

matrix
difference of (DoG), 727, 885
first derivative of, 729
isotropic shape, 167
kernel, 883
kernel max size needed, 168. See also Ker-

nels
Laplacian of (LoG), 725
noise, 86, 319
noise, white, 729
product of Gaussians, 169

Gaussian noise. See Noise
Generalized eigenvalue problem, 783
Geometric transformations, 100
Global thresholding. See Thresholding
Golden image, 116
Golomb codes and coding, 556
Gradient

combined with thresholding, 722
definition of, 184, 716
direction, 716
kernels, 718–721. See also Kernels
magnitude, 185, 716
operators, 717
vector, 716

Gradient descent, 940
Granular noise, 608
Granulometry, 685
Graph

cuts (for segmentation). See Graph cuts
directed, 778
nodes, 778
undirected, 778
vertices, 778
weighted, 779

Graph cuts, 777. See also Image segmentation
computing, 783
max-flow, min-cut theorem, 781
minimum, 780
normalized cut, 782
segmentation algorithm, 785

Gray level, 18, 57, 400. See also Intensity
Gray-level transformation. See Intensity

transformations
Gray scale, 63. See also Intensity
Ground truth, 929

DIP4E_GLOBAL_Print_Ready.indb 1012 6/16/2017 2:18:16 PM

Index 1013

H

Haar functions, 502
Haar transform, 502, 522
Haar wavelets, 615
Hadamard product, 83, 490
Halftone dots, 238
Harris matrix, 871
Harris-Stephens corner detector, 869
Hartley transform, 485

and lowpass filtering, 494
Heisenberg-Gabor inequaltiy, 481
Heisenberg uncertainty principle, 481
Hertz, 211
Hessian matrix, 888
Histogram

bins, 133
equalization. See Histogram processing
linearization. See Histogram, equaliza-

tion
normalized, 133
specification. See Histogram processing,

matching.
statistics, 150
unnormalized, 133

Histogram processing, 140
equalization, 134
local, 149, 152
matching, 140
using statistics, 150

Homogeneity, 84
Hotelling transform. See Principal com-

ponents
Hough transform, 737
Huffman coding, 553
Human eye. See Visual perception
Hyperplanes, 912
Hyperspheres, 927

I

IDFT. See Fourier transform, 227
IEC, 551
Illumination, 57. See also Intensity

bias, 763
effect on thresholding, 745
sinusoidal, 764
spot, 763

Image, 27
acquisition, 57, 58, 60, 62
analysis, 18
arithmetic, 85
background, 81, 97, 743
bit planes, 131
center, 68
classification. See Pattern classification
columns, 67
comparing, 87
complement, 99
compression. See Compression
contrast, 69
contrast ratio, 69
coordinates, 18
correspondence between (x, y) and (row,

col), 68
denoising. See Image restoration
difference, 87

dynamic range, 69
element, 66. See Pixel
EM spectrum, 23
enhancement. See Enhancement
foreground, 81, 97
formation model, 61
gamma-ray, 24
golden, 116
grayscale, 57
illumination, 62. See Illumination
indexing. See Indexing
intensity, 18. See Intensity
interpolation, 77, 237. See Interpolation
masking, 90
mathematical tools, 83–118
microwave, 33
morphology. See Morphological image

processing
MRI, 34
multispectral, 29
negative, 99, 123
neighborhood, 120
origin, definition, 67
padding, 157, 158
patch, 870
PET, 24
pixel, 18. See Pixel
quantization, 63
radar, 33
radio, 34
recognition. See Pattern classification
reference, 103
reflectance, 62
registration, 103, 106
resampling, 237
resizing, 237
resolution. See Resolution
restoration. See Image restoration
rotation. See Geometric transformations
rows, 67
sampling, 63
saturation, 69
scaling. See Geometric transformations
sensing, 57
sharpening, 175
shearing. See Geometric transformations
shrinking, 237
smoothing, 164
sound, 36
spatial coordinates, 18
synthetic, 23
transformation kernel, 109
translation. See Geometric transforma-

tions
ultrasound, 38
ultraviolet, 27
understanding, 18
watermarking, 624
X-ray, 24
zooming, 237

Image enhancement
character repair, 282
combined spatial methods, 191
contrast enhancement, 126
contrast stretching, 129
defined, 122
gamma correction, 125
gradient based, 184

highboost filtering, 182, 291
high-frequency emphasis, 291
homomorphic, 293
intensity-level slicing, 130
intensity transformations, 122
interference reduction, 283, 300, 302
Laplacian based, 178, 289
local, 151, 152
mask mode radiography, 89
median filtering, 174
noise reduction by averaging, 86
shading correction, 90, 173
sharpening, 284
sharpening and thresholding, 289
smoothing, 164, 272, 282
thresholding, 173
unsharp masking, 182, 291

ImageNet Challenge, 933
Image quantization, 63
Image reconstruction from projections

absorption profile, 368
backprojections, 369, 371, 377, 387, 388
backprojections, fan-beam filtered, 386
backprojections, parallel-beam filtered,

380, 384
center ray, 386
CT principles, 370
CT scanner generations, 372
filtered backprojection, 383
Fourier-slice theorem, 379, 380
introductory example, 368
parallel-beam filtered backprojections,

380
parallel-ray beam projection, 374
Radon transform, 374, 375
Radon transform example, 376
Ram-Lak filter, 382
raysum, 368, 374
Shepp-Logan phantom, 377
sinogram, 377
slice, 380
smearing, 368
windowing, 382, 385

Image registration, 103
Image restoration

adaptive filtering, 333
adaptive mean filter, 338
alpha-trimmed filtering, 332
arithmetic mean filter, 328
blind deconvolution, 352
constrained least square filtering, 363
constrained least squares filtering, 363
contraharmonic mean filter, 329
deblurring, 361, 362, 364
deblurring by inverse filtering, 361
deblurring using a least squares filter,

364
deblurring using a Wiener filter, 364
deconvolution, 352
degradation function, 352
degradation function estimation, 352
denoising using adaptive median filtering,

339
denoising using linear spatial filters, 327
denoising using notch filtering, 342
denoising using order-statistic filtering,

333
denoising using spatial mean filters, 329

DIP4E_GLOBAL_Print_Ready.indb 1013 6/16/2017 2:18:16 PM

1014 Index

Image restoration (cont.)
Erlang (Gamma) noise model, 321
exponential noise model, 321
Gaussian noise model, 319
geometric mean filtering, 367
harmonic mean filter, 329
image blurring caused by motion, 356
interactive, 367
interference removal using notch filters, 347
linear, position invariant degradations, 348
max filtering, 332
median filtering, 330
midpoint filtering, 332
min filtering, 332
modeling motion blurr, 354
model of, 318
noise reduction in the frequency domain,

340
notch filtering, 341
optimum noise filtering, 345
order-statistic filters, 330
periodic noise model, 324
Rayleigh noise nodel, 320
salt-and-pepper noise model, 322
uniform noise model, 321
Wiener filtering, 358

Image sampling, 63, 215
Image segmentation

clustering (K-means), 770
cluster seeds, 771
definition, 700
edge-based, 710–742
edge-point linking, 735
finite differences, 702
graph cuts. See Graph cuts
line detection, 707
morphological watersheds, 786
motion-based, 796
point detection, 706
region growing, 764
region splitting and merging, 768
seeds, 764
superpixels, 772
textural segmentation, 687
texture based, 770
thresholding. See Thresholding
unsupervised clustering, 770

Image transforms, 109. See Transforms
Impulse (Frequency domain), 208

1-D continuous, 208
1-D discrete, 209
2-D continuous, 230
Fourier transform of, 212
sifting property, 208, 210, 230
train, 212, 216
unit, 208, 259

Impulse response, 269, 350
Impulse (Spatial domain)

strength, 157
unit discrete, 157

Independent frames (I-frames), 599
Indexing, 70

coordinate, 70
linear, 70

Information theory, 545
Inner product, 107
Intensity, 18, 63, 67, 68

discrete, 68

discrimination, 53
levels, 70, 73
range, 68
resolution, 71, 72
scale, 63
scaling, 91
slicing, 130
variance. See also Moments

Intensity mappings. See Intensity transforma-
tions

Intensity transformations
definition, 121
for histogram equalization, 134, 138
monotonic, 135
piecewise-linear, 128
single valued, 136
thresholding, 121

Interior angle, 822
Interpolation, 77, 101, 225

bicubic, 78
bilinear, 77
control points, 104
nearest neighbor, 77
splines, 79
tie points, 104
wavelets, 79

Inverse proportionality, 211, 213, 229, 241,
276

Inverse transforms. See Transforms
Iris data (Fisher), 906

classification using min-dist-classifier, 912
classification using perceptrons, 939

ISO, 551
Isolated point

definition. See also Image segmentation
Isopreference curves, 76
ITU-T, 551

J

JBIG2 compression, 573
JPEG-2000 compression, 618

irreversible component transform, 618
lifting-based wavelet transform for, 619
tile components, 619

JPEG compression, 588

K

Karhunen-Loève transform. See Principal
components

Kernels
bandpass from lowpass, 188
bandreject from lowpass, 188
box (lowpass), 165
defined, 154
edge detection, 717
for implementing gradient, 184
Gaussian, 160
Gaussian lowpass, 166, 727
highpass from lowpass, 188
how to construct, 164
in terms of lowpass kernels, 189
isotropic, 708, 725
Kirsch compass, 720
Laplacian, 179

line detection, 707
normalizing, 168
point detection, 706
Prewitt, 718
Roberts, 185, 718
separable, 109, 161
separable, computational advantage, 162
separable, construction of, 162
Sobel, 187, 719
symmetric, 109
transformation, 109

K-means clustering. See Image segmentation

L

Laminogram. See Image reconstruction from
projections

Laplacian
defined, 179
kernel. See Kernels
line detection, 708
sharpening, 180

Laplacian of a Gaussian. See Edge detection
Learning. See also Pattern classification;

Neural networks
deep, 905, 931
defined, 905
history of, 931
increment, 935
machines, 932
over fitting, 905, 929
rate, 935
supervised, 905
unsupervised, 905

Leftmost uppermost point, 815
Leibniz’s rule, 136
Lempel-Ziv-Welch (LZW) coding, 564
Lens (of eye), 49
Light, 54. See also Electromagnetic (EM)

spectrum
achromatic, 57, 400
chromatic, 57, 400
color, 57
intensity, 57
luminance, 57
monochromatic, 57
photon, 56
radiance, 57
wavelength, 56
white, 57

Line
definition. See also Image segmentation
normal representation, 374, 738
slope-intercept form, 374, 738

Linear
additivity property, 349
convolution. See Convolution
correlation. See Correlation
homogeneity property, 349
index. See Indexing
operation, 348
operator, 84
transform pair, 109
transforms, 109

Linearly separable, 935
Linear system, 350. See also Linear operator

characterization by impulse, 350

DIP4E_GLOBAL_Print_Ready.indb 1014 6/16/2017 2:18:16 PM

Index 1015

convolution integral, 351
superposition (Fredholm) integral, 350

Line pairs, 71
Lloyd-Max quantizer, 613
LMSE algorithm. See Perceptrons
Logical operations, 96

AND, 97
FALSE, 97
functionally complete, 97
NOT (complement), 97
OR, 97
TRUE, 97
XOR, 97

Lookup table, 122, 144
Luminance, 57, 400
LZW coding. See Lempel-Ziv-Welch (LZW)

coding

M

Mach bands, 53
Macroblock, 599
Magnetic Ink Character Recognition (MICR),

914
Mahalanobis distance, 448, 758, 926. See

also Distance measures
Major axis, 832
Mapper, 550

inverse, 604
Mapping. See Intensity: mapping
Markov sources, 547
Mask mode radiography, 89
Masks. See Spatial filters

threshold, 586
zonal, 584

Matching. See also Pattern classification
correlation, 915
degree of similarity, 920
prototypes, 910
shape numbers, 919
SIFT features, 917
similarity matrix, 920
similarity tree, 920
strings, 920
template, 915

Matrix
covariance. See Covariance matrix
product, 84
rank, 162

Matrix determinant in terms of eigenvalues,
872

Matrix trace in terms of eigenvalues, 872
Maximally stable extremal regions. See Fea-

ture extraction
Maximally stable extremal regions (MSER’s).

See Feature extraction
Mean absolute distortion (MAD), 600
Mean filters. See Spatial filters
Mean of intensity. See Moments
Mean squared error, 939. See also Neural

networks
Mean-squared signal-to-noise ratio, 548
Medial axis, 828
Mexican hat operator, 725
Microdensitometers, 58
Microscopy

electron, 39

fluorescence, 27
light, 28

Minimum-distance classifier, 910
decision function, 912

Minimum-perimeter polygons. See Feature
extraction

Minkowsky addition, 693
Minkowsky subtraction, 693
Minor axis, 832
MNIST, 979
Modulation, 518
Moiré patterns, 238
Moment invariants, 858
Moments. See also Population

global mean, 151
global variance, 151
local mean, 151
local variance, 151

Monotonic function, 135
strict, 135

Moore boundary tracing algorithm. See Fea-
ture extraction

Morphological algorithms. See Morphological
image processing

Morphological image processing
algorithms (binary), 652
background flattening, 689
background pixels, 636, 638
border clearing, 672. See Morphological

reconstruction
bottom-hat transformation, 684
boundary extraction, 653
broken character repair, 642
closing, 644
closing by reconstruction, 670
closing by reconstruction, grayscale, 689
closing, grayscale, 680
closing, properties, 648
complement, 644, 646
computationally efficient, 667
conditional operations, 654, 667
connected component extraction, 655
convex deficiency, 657
convex digital set, 657
convex hull, 657
detecting foreign objects in packaged food,

656
dilation, 641
dilation, grayscale, 678
don’t-care elements, 651
don’t-care elements, 636, 639, 665, 673
duality, 644, 647
end point detection, 665
erosion, 639
erosion, grayscale, 674
filtering, 641, 648, 682
foreground pixels, 636, 638
geodesic dilation, 667
geodesic dilation, grayscale, 688
geodesic erosion, 667
geodesic erosion, grayscale, 689
gradient, 682
granulometry, 685
grayscale images, 673
hit-or-miss transform, 648
hole, defined, 651, 653
hole filling, 653, 671
marker image, 689

mask image, 689
opening, 644
opening by reconstruction, 670
opening by reconstruction, grayscale, 689
opening, grayscale, 680
opening, properties, 648
pruning, 664
reconstruction, 667. See Morphological

reconstruction
reconstruction by dilation, 668
reconstruction by dilation, grayscale, 689
reconstruction by erosion, 669
reconstruction by erosion, grayscale, 689
reconstruction, grayscale, 688
reflection, set, 636
rolling ball analogy, 645
segmentation, textural, 687
segmentation using watersheds, 786
SE. See Structuring element, 636
shading correction, 685
skeletons, 662. See also Skeletons
smoothing, 682
spurs, 664
structuring element, defined, 636
structuring element, isotropic, 667
structuring element, nonflat, 678
structuring elements, examples of, 637
summary of binary operations, 673
surface area, 686
thickening, 660
thinning, 660
thinning, topology-preserving, 828
top-hat by reconstruction, 689
top-hat transformation, 683
translation, set, 637

Motion and its use in segmentation, 796. See
also Image segmentation

Motion compensation, predictive coding
and, 599

MSER’s. See Maximally stable extremal
regions

Multiresolution analysis, 506

N

National Institute of Standards and Technol-
ogy, 979

Nearest-neighbor classifier. See Minimum-
distance classifier

Neighbor
4-neighbor, 79
8-neighbor, 79
diagonal, 79
nearest. See also Interpolation
north, south, east, west, 815

Neighborhood, 79
closed, 79
definition, 120
open, 79
operations, 99, 120

Neural networks
activation functions. See Activation func-

tions
backpropagation, 932, 953, 974
convolutional. See Neural networks (Con-

volutional)
deep, 906, 931, 945, 946

DIP4E_GLOBAL_Print_Ready.indb 1015 6/16/2017 2:18:17 PM

1016 Index

Neural networks (cont.)
deep learning, 932, 933
design considerations, 987
error (classification), 959
error (mean squared) (MSE), 959
feedforward, 945
fully-connected. See Neural networks

(Fully-connected)
multilayer, 943
over-fitting, 981, 989
pretrained, 989
shallow, 945
using GPUs, 989

Neural networks (Convolutional)
activation functions. See Activation func-

tions
activation value, 945
artificial neuron. See Artificial neurons
background, 931
backpropagation derivation, 974
backpropagation equations, 974
basic architecture, 964
bias, 964
CNN for large character dataset, 979
CNN for large image database, 982
convolutional layer, 966
convolution equations, 975
dropout, 989
feature map, 966
forward pass equations, 973
graphical illustration of functioning, 968
implementation details, 987
kernel, 966
mean squared error, 978, 980
mini-batches,, 989
multiple input images, 973
neural computations, 971
overfitting, 989
padding, 988
pooled feature maps, 967
pooling, 966
pooling methods, 967
pooling neighborhoods, 967
receptive fields, 966
recognition error, 978, 981, 985
rot180 (rotation), 975
rotated kernel, 975
stochastic gradient, 989
stride, 966
subsampling, 966
summary table, 977
sum of products, 936, 937
training by backpropagation, 974
updsampling, 977
vanishing gradients, 988
vectorizing, 968
visual cortex model, 966
weight (parameter) sharing, 966

Neural networks (Fully-connected)
activation functions. See Activation func-

tions
activation value, 948
artificial neuron. See Artificial neurons
background, 931
backpropagation, derivation, 953
backpropagation, matric formulation, 956
bias, 935, 944, 947

chain rule, 953
comparison with Bayes’ classifier, 964
comparison with the Bayes’ classifier, 964
correction increment, 935
deep, 945
dropout, 989
error function, 954
feedforward, 945
forward pass, equations of, 948
forward pass, matrix formulation, 950
hidden layers, 945
implementation details, 987
input vectors, 948
learning. See Learning
learning increment, 935
learning rate, 935
mean squared error, 961
mini-batches,, 989
model of, 946
multilayer, 943
multispectral data classification, 961
net input, 948
overfitting, 989
padding, 988
pretrained network, 989
recognition error, 978
shallow, 946
stochastic gradient, 989
sum of products, 937
training, 953
training by backpropagation, 953
training epoch. See Epoch
upsampling, 988
vanishing gradients, 988
weights, 946
XOR problem solution, 959

Neurocomputers. See Neural networks
Neuromorphic systems. See Neural networks
NIST, 979
Noise

autocorrelation of, 359
bipolar impulse, 322
data-drop-out, 322
density, 322
Erlang (Gamma), 321
Exponential, 321
Gaussian, 319
granular, 608
impulse bipolar, 322
impulse unipolar, 322
parameter estimation, 325
periodic, 324, 340
Rayleigh, 320
salt-and-pepper, 322
spike, 322
uniform, 321
unipolar, 322
white, 319, 360, 729
white Gaussian, 729

Noiseless coding theorem, 546
Nonlinear operator, 84
Nonmaxima suppression, 730
Normalized central moments, 858
Notch filters. See Frequency domain filtering
Nyquist rate, 219. See also Sampling; See

also Sampling

O

Objective function, 954
Object recognition. See Patterns: recognition

and
Opening. See Morphological image process-

ing
Operations

arithmetic, 85
elementwise, 83
linear, 84
logical, 91, 96
matrix, 84, 106
neighborhood, 99
nonlinear, 84
set, 91
spatial, 98
vector, 106

Operator
linear, operator. See Linear operator
position invariance, 349
space invariance, 349

Optical illusions, 54
Order

partial, 96
strict, 96

Ordered pairs, 95. See also Cartesian product
Order-statistic filters. See Spatial filters
origins of, 19
Orthogonal basis, 465
Orthonormal basis, 465
Otsu’s method. See Threshold; See Thresh-

olding
Outer product, 107
Over fitting. See Learning
Over-segmentation, 793

P

Padding, 155, 158, 256
and periodicity, 264
difference between spatial and frequency,

265
illustration, 171, 172
mirror, 171
replicate, 171
size, 159, 256, 266
symmetric, 171
zero, 165, 166, 171, 256, 265

Parameter space, 738
Path, 80, 83
Pattern

augmented, 936
classes, 906
definition of, 904
formation, 906
labeling, 905
recognition. See Pattern classification
space, 906
strings, 910
test, 905
training, 905
trees, 910
unlabeled, 905
validation, 905
vectors, 906, 909

DIP4E_GLOBAL_Print_Ready.indb 1016 6/16/2017 2:18:17 PM

Index 1017

Pattern classification. See also Learning
approaches, 904
Bayes’ classifier. See Classifier
correlation, 915
decision functions, 912. See also Decision

functions
deep learning. See Learning
discriminant functions., 912
feature extraction. See Feature extraction
hyperplane, 912
minimum-distance classifier, 910
pattern. See Pattern
pattern class, definition of, 904
pattern classes, 906
pattern recognition, stages, 904
pattern strings. See Pattern
pattern tree. See Pattern
pattern vectors, 906
prototype matching. See Matching
SIFT. See Matching
string matching. See Matching
supervised learning. See Learning
test set, 905
training set, 905
unsupervised learning, 905
validation set, 905

Pattern recognition. See also Pattern clas-
sification

stages of, 904
PDF. See Probability density function (PDF)
Pel. See Pixel
Perceptrons

bias, 935
convergence theorem, 936
correction increment, 935
decision boundary, 938
decision surfaces, 934
hyperplanes, 935
learning rate, 935
least-mean-squared-error (LMSE), 941
linearly separable. See Linearly separable
parameters, 935
schematic, 937
sum of products computation, 937
training algorithm, 935
training epoch, 937
weights, 935
weight vector, 935
XOR problem, 942

Photons, 23, 56
Pixel

adjacency of, 80
connected, 80
definition, 18, 66
foreground. See Image, background;

See Image, foreground
interpolation. See Interpolation
neighborhood operations. See also Spatial

filtering
neighbors of, 79
object, 743
replication, 237
transformation. See Intensity: transforma-

tions
Point processing, 121
Point spread function, 350

Pointwise min and max operators, 688
Population. See also Moments, Sample
Positron emission tomography, 24. See

also Tomography
Predicate

region growing, 766
thresholding, 762

Prediction errors, 597
Prediction residuals, 597

motion compensated, 599
Predictive coding, 594

delta modulation (DM), 607
differential pulse code modulation

(DPCM), 609
lossless, 594
lossy, 605
motion compensation and, 599
optimal predictors for, 609
optimal quantization in, 611
prediction error, 594

Predictive frame (P-frame), 599
Prewitt gradient operators. See Spatial filters
Principal components

covariance matrix, 861
eigenvalues, 861
eigenvectors, 861
Hotelling transform, 861
Karhunen-Loève transform, 861
mean vector, 861
rotation normalization, 865
size normalization, 865
transformation, 861
translation normalization, 865
vector formation, 863

Probability
a priori, 923
cumulative distribution function (CDF).

See Cumulative distribution func-
tion (CDF)

density function (PDF). See also Probabil-
ity density function

mass function (PMF). See also Probability
mass function

prior, 923
Probability density function (PDF)

Erlang (Gamma), 321
Exponential, 321
Gaussian, 319
Rayleigh, 320
Salt-and-Pepper, 322
Uniform, 321

Probability mass function (PMF), 558
Probability models, 562
Projection-slice theorem. See Image recon-

struction from projections
Pruning. See Morphological image processing

Q

Quad tree, 768
Quantization, 545. See also Sampling
Quantizer, 550

inverse, 604
Lloyd-Max, 613
optimum uniform, 614

R

Radar band, 33
Radiance, 57, 400
Radon transform

formulation, 374
history, 371

Ramp edges. See Edges
Random variable. See also Probability
Ranger 7, 21
Rayleigh noise. See Noise
Redundancy, 540

coding, 540, 541
relative data, 540
spatial and temporal, 540, 543

Region
adjacent, 700
border, 81
boundary, 81
contour, 81
definition, 80
descriptors. See Description
disjoint, 700

Region descriptors
circularity, 840
compactness, 840
connected components, 844
contrast, 851
co-occurrence matrix, 849
correlation, 850
eccentricity, 841
effective diameter, 841
entropy, 851
Euler number, 844
holes, 844
homogeneity, 851
major and minor axes, 840
moments, 846
polygonal networks, 845
principal axes, 841
roundness, 840
texture (spectral), 855
texture (statistical), 846
topological, 843
uniformity, 848, 851

Relation
antireflexive, 96
binary, 96
ordering, 96
transitive, 96

Remote sensing, 29
LANDSAT, 29
thematic bands, 29

Resampling. See Image: resampling
Reseau marks, 21, 104
Resolution, 71

dots per inch (dpi), 71
intensity, 71
line pairs, 71
spatial, 71

Root-mean-squared (rms) error, 360, 548
Rubber-sheet distortions, 843
Run-length encoding (RLE), 566
Run-length pairs, 543, 566

DIP4E_GLOBAL_Print_Ready.indb 1017 6/16/2017 2:18:17 PM

1018 Index

S

Salt-and-pepper noise. See Noise
Sample. See also Population
Sampling, 63, 215, 233. See also Quantization

aliasing. See Aliasing
critically-sampled signal, 217
limitations of human eye, 236
Nyquist rate, 219
of printed material, 238
over-sampled signal, 217
rate, 215, 217, 223, 232
relationship to frequency intervals, 228
theorem, 217, 231, 236
undersampled signal, 221
units of sampling rate, 215

Saturation, 69
Scale-invariant feature transform. See SIFT
Scale space. See SIFT
Scaling

geometric. See Geometric transformations
intensity, 91

Scaling functions, 505
coefficients of, 507
Haar, 505
refinement equation for, 507
scale and translation of, 505
separable, 520

Self-adaptive networks. See Neural networks
Sensors

acquisition and, 57
arrays, 61
single, 58
strips, 60

sequency, 497
Sets, 91, 93

complement, 92
difference, 92
intersection, 92
mutually exclusive, 92
on grayscale images, 94
partially-ordered, 96
sample space, 92
set universe, 92
strict-ordered, 96
union, 92

Sets and set operations, 644
reflection, 636
translation, 637

Shading correction, 90, 685. See also Back-
ground flattening

using lowpass filtering, 173
Shannon’s first theorem, 546
Sharpening

frequency. See Filtering (Frequency
domain)

spatial. See Filtering (Spatial domain)
Shepp-Logan phantom. See Image recon-

struction from projections
Shrinking. See Image: resampling
SIFT

algorithm, 894
curvature estimation using Hessian matrix,

889
examples of image matching, 894–897
Hessian matrix, 888

keypoint descriptors, 892
keypoint locations accuracy, 887
keypoint orientation, 890
keypoints, 882
local extrema, 885
octaves, 883
scale parameter, 883
scale space, 883
subpixel accuracy, 888

Sifting property. See Impulse
Signal-to-noise ratio, 360
Signatures, 826
Sinc function, 212. See also Function
Sinogram. See Image reconstruction from

projections
Skeletons, 828. See also Morphological image

processing
defined, 829
via the distance transform, 828

Slant transform, 500
Sliding inner product, 478
Slope density function, 827
Slope overload, 608
SMPTE, 551
Sobel gradient operators. See Spatial filtering
Softmax function, 947. See also Neural

networks
Space constant, 724
Spaghetti effect, 727
Spatial coordinates, 66

definition, 18
transformation of, 101

Spatial domain
convolution. See Convolution
correlation. See Correlation
definition, 119
filtering. See Spatial filtering

Spatial filtering. See Filtering (Spatial
domain)

masks. See Spatial filters
Spatial filters. See also Spatial filtering
Spatial operations, 98
Spatial variables, 66
Spectrum. See Discrete Fourier transform

(DFT); See Fourier transform
Statistical moments. See Moments
Step edges. See Edges
Strict ordering, 96
Structured light, 31
Structuring element. See Morphological im-

age processing
Subband coding, 517
Subpixel accuracy, 78, 727, 888
Subspace analysis tree, 527
Successive-doubling. See Fast Fourier

transform
Sum of absolute distortions (SAD), 600
Sum of products, 154, 159, 213
Superpixels

as graph nodes, 779
defined, 772
SLIC algorithm, 774

Superposition, 350
Supervoxels, 777
Symlets, 525, 615
Symmetry

antihermitian, 245
conjugate, 245
conjugate antisymmetry, 245
even, 249, 364
hermitian, 245
odd, 249

T

Taylor series, 702
Texture. See also Region descriptors

spectral, 855
statistical, 846

Thickening. See Morphological image
processing

Thinning. See Morphological image process-
ing

Threshold. See also Thresholding
coding, 584

Thresholding
adaptive, 743
basics, 743
document, 763
dynamic, 743
global, 746
hysteresis, 732, 759
illumination, role of, 745
local, 743
multiple, 757
multivariate, 448
noise, role of, 744
Otsu’s method, 747
predicate, 762
reflectance, role of, 745
regional, 743
using edges, 753
using smoothing, 752
variable, 761

Tie (control) points, 104
Time-Frequency Plane, 479
Token, 572
Tomography, 368. See also Image reconstruc-

tion from projections
magnetic resonance imaging (MRI), 374
single photon emission, (SPECT), 374
X-ray computed tomography, 370
X-ray CT scanner generations, 372

Training
defined, 905
epoch, 937, 958
neural networks. See Neural networks
over-fitting. See Neural networks
patterns. See Pattern
perceptrons. See Perceptrons
test set, 905
training set, 905
validation set, 905
vanishing gradients, 988

Training by backpropagation, 953, 974
Transformation

affine, 101
geometric (rubber-sheet). See Geometric

transformations
kernel, 467
matrix, 468

DIP4E_GLOBAL_Print_Ready.indb 1018 6/16/2017 2:18:17 PM

Index 1019

matrix dual, 474
rotate, 101
scale, 101
sheer, 101
translate, 101

Transformation functions
bit-plane slicing, 131

Transforms
cosine, 487, 577
Fourier, 577. See Fourier transform
Haar, 502
Hartley, 485
Hough. See Hough transform
matrix-based, 466
morphological. See Morphological image

processing
orthogonal, 470
sine, 492
slant, 500
Walsh-Hadamard, 496, 577
wavelet, 504. See also Wavelets

U

Uniform. See Noise
Unitary

matrix, 473
space, 464
transform, 473

universality approximation theorem
universality approximation theorem, 987

Uppermost leftmost point, 815

V

Vanishing gradient, 988
Vanishing moments, 524
Variable thresholding. See Thresholding
Variance of intensity. See Moments
Vector operations

angle between vectors, 465
dot (scalar) product, 464
inner product, 464
integral inner product, 464

norm, 464
orthogonal complement, 508

Vertex
concave, 822
convex, 822
degenerate, 822

Video compression standards, 604
Vision. See also Visual perception

high-level, 18
inspection, 31
low-level, 18
machine, 18
mid-level, 18

Visual perception, 48
blind spot, 49
brightness adaptation, 51
brightness discrimination, 51
human eye structure, 48
image formation in eye, 50
Mach bands, 53
optical illusions, 54
photopic vision, 49
scotopic vision, 49
simultaneous contrast, 54
subjective brightness, 51

Voxels, 429

W

Walsh functions, 496
Walsh-Hadamard transform (WHT), 496

Hadamard (natural) ordering, 496
sequency ordering, 498

Watermarking digital images, 624
block diagram for, 628
reasons for, 624

Watermarks, 624
attacks on, 627
fragile invisible, 626
insertion and extraction, 627
invisible, 625
private (or restricted key), 627
public (or unrestricted key), 627
robust invisible, 627
visible, 625

Wavelength, 56
of EM spectrum, 56
required to get image, 57

Wavelet coding, 614
decomposition level selection, 616
quantizer design for, 617
selection of wavelets for, 615

Wavelet functions, 507
coefficients of, 508, 525
Haar, 509

Wavelet packets, 526
filter bank for, 529
subspace analysis tree, 527

Wavelets, 479, 482
and edge detection, 524
and multiresolution analysis, 506
packets, 526
scaling functions, 505. See also Scaling

functions
series expansions, 510
wavelet functions, 507. See also Wavelet

functions
Weber ratio, 52
White noise. See Noise
Windowing, 257. See also Apodizing, Filtering

windows
Wraparound error, 256, 257, 262, 266, 271, 300

X

XOR classification problem
definition, 942
solution using neural nets, 959
solution using perceptrons, 943

Z

Zero crossing, 178
Zero crossings, 712, 724, 726
Zero-memory source, 546
Zonal coding implementation, 584
Zone plate, 190
Zooming. See Image: zooming

DIP4E_GLOBAL_Print_Ready.indb 1019 6/16/2017 2:18:17 PM

GLOBAL
EDITION

This is a special edition of an established
title widely used by colleges and universities
throughout the world. Pearson published this
exclusive edition for the benefit of students
outside the United States and Canada. If
you purchased this book within the United
States or Canada, you should be aware that
it has been imported without the approval of
the Publisher or Author. The Global Edition
is not supported in the United States and
Canada.

Pearson Global Edition

GLOBAL
EDITION

For these Global Editions, the editorial team at Pearson has
collaborated with educators across the world to address a
wide range of subjects and requirements, equipping students
with the best possible learning tools. This Global Edition
preserves the cutting-edge approach and pedagogy of the
original, but also features alterations, customization, and
adaptation from the North American version. Digital Image Processing

 FOURTH EDITION

 Rafael C. Gonzalez • Richard E. Woods

D
igital Im

age Processing
G

onzalez
W

oods
FO

U
RT

H

ED
IT

IO
N

G
LO

B
A

L
ED

IT
IO

N

Gonzalez_04_1292223049_Final.indd 1 11/08/17 5:27 PM

	Front Cover
	Contents���������������
	Preface��������������
	Acknowledgments����������������������
	The Book Website�����������������������
	The DIP4E Support Packages���������������������������������
	About the Authors������������������������
	1 Introduction���������������������
	What is Digital Image Processing?��
	The Origins of Digital Image Processing��
	Examples of Fields that Use Digital Image Processing���
	Fundamental Steps in Digital Image Processing��
	Components of an Image Processing System���

	2 Digital Image Fundamentals�����������������������������������
	Elements of Visual Perception������������������������������������
	Light and the Electromagnetic Spectrum���
	Image Sensing and Acquisition������������������������������������
	Image Sampling and Quantization��������������������������������������
	Some Basic Relationships Between Pixels��
	Introduction to the Basic Mathematical Tools Used in Digital Image Processing��

	3 Intensity Transformations and Spatial Filtering��
	Background�����������������
	Some Basic Intensity Transformation Functions��
	Histogram Processing���������������������������
	Fundamentals of Spatial Filtering��
	Smoothing (Lowpass) Spatial Filters��
	Sharpening (Highpass) Spatial Filters��
	Highpass, Bandreject, and Bandpass Filters from Lowpass Filters��
	Combining Spatial Enhancement Methods��

	4 Filtering in the Frequency Domain��
	Background�����������������
	Preliminary Concepts���������������������������
	Sampling and the Fourier Transform of Sampled Functions��
	The Discrete Fourier Transform of One Variable���
	Extensions to Functions of Two Variables���
	Some Properties of the 2-D DFT and IDFT��
	The Basics of Filtering in the Frequency Domain��
	Image Smoothing Using Lowpass Frequency Domain Filters���
	Image Sharpening Using Highpass Filters��
	Selective Filtering��������������������������
	The Fast Fourier Transform���������������������������������

	5 Image Restoration and Reconstruction���
	A Model of the Image Degradation/Restoration process���
	Noise Models�������������������
	Restoration in the Presence of Noise Only—Spatial Filtering��
	Periodic Noise Reduction Using Frequency Domain Filtering��
	Linear, Position-Invariant Degradations��
	Estimating the Degradation Function��
	Inverse Filtering������������������������
	Minimum Mean Square Error (Wiener) Filtering���
	Constrained Least Squares Filtering��
	Geometric Mean Filter����������������������������
	Image Reconstruction from Projections��

	6 Color Image Processing�������������������������������
	Color Fundamentals�������������������������
	Color Models�������������������
	Pseudocolor Image Processing�����������������������������������
	Basics of Full-Color Image Processing��
	Color Transformations����������������������������
	Color Image Smoothing and Sharpening���
	Using Color in Image Segmentation��
	Noise in Color Images����������������������������
	Color Image Compression������������������������������

	7 Wavelet and Other Image Transforms���
	Preliminaries��������������������
	Matrix-based Transforms������������������������������
	Correlation������������������
	Basis Functions in the Time-Frequency Plane��
	Basis Images�������������������
	Fourier-Related Transforms���������������������������������
	Walsh-Hadamard Transforms��������������������������������
	Slant Transform����������������������
	Haar Transform���������������������
	Wavelet Transforms�������������������������

	8 Image Compression and Watermarking���
	Fundamentals�������������������
	Huffman Coding���������������������
	Golomb Coding��������������������
	Arithmetic Coding������������������������
	LZW Coding�����������������
	Run-length Coding������������������������
	Symbol-based Coding��������������������������
	Bit-plane Coding�����������������������
	Block Transform Coding�����������������������������
	Predictive Coding������������������������
	Wavelet Coding���������������������
	Digital Image Watermarking���������������������������������

	9 Morphological Image Processing���������������������������������������
	Preliminaries��������������������
	Erosion and Dilation���������������������������
	Opening and Closing��������������������������
	The Hit-or-Miss Transform��������������������������������
	Some Basic Morphological Algorithms��
	Morphological Reconstruction�����������������������������������
	Summary of Morphological Operations on Binary Images���
	Grayscale Morphology���������������������������

	10 Image Segmentation����������������������������
	Fundamentals�������������������
	Point, Line, and Edge Detection��������������������������������������
	Thresholding�������������������
	Segmentation by Region Growing and by Region Splitting and Merging���
	Region Segmentation Using Clustering and Superpixels���
	Region Segmentation Using Graph Cuts���
	Segmentation Using Morphological Watersheds��
	The Use of Motion in Segmentation��

	11 Feature Extraction����������������������������
	Background�����������������
	Boundary Preprocessing�����������������������������
	Boundary Feature Descriptors�����������������������������������
	Region Feature Descriptors���������������������������������
	Principal Components as Feature Descriptors��
	Whole-Image Features���������������������������
	Scale-Invariant Feature Transform (SIFT)���

	12 Image Pattern Classification��������������������������������������
	Background�����������������
	Patterns and Pattern Classes�����������������������������������
	Pattern Classification by Prototype Matching���
	Optimum (Bayes) Statistical Classifiers��
	Neural Networks and Deep Learning��
	Deep Convolutional Neural Networks���
	Some Additional Details of Implementation��

	Bibliography�������������������
	Index������������
	Back Cover

