

DirectX
®

9 User
Interfaces: Design

and Implementation

Alan Thorn

This page intentionally left blank.

DirectX® 9 User
Interfaces: Design

and Implementation

Alan Thorn

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Thorn, Alan.
DirectX 9 user interfaces : design and implementation / by Alan Thorn.

p. cm.
ISBN 1-55622-249-1 (pbk.)
1. User interfaces (Computer systems). 2. DirectX. I. Title.
QA76.9.U83T53 2004
005.4'38—dc22 2003025230

CIP

© 2004, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by any means
without permission in writing from Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-249-1

10 9 8 7 6 5 4 3 2 1

0401

DirectX is a registered trademark of Microsoft Corporation in the United States and/or other countries.
Microsoft DirectX 9.0 SDK Update (Summer 2003) copyright Microsoft Corporation, 2002. All rights reserved.
All brand names and product names mentioned in this book are trademarks or service marks of their respective companies.
Any omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to infringe on the
property of others. The publisher recognizes and respects all marks used by companies, manufacturers, and developers as
a means to distinguish their products.
This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of this book and any
disks or programs that may accompany it, including but not limited to implied warranties for the book’s quality,
performance, merchantability, or fitness for any particular purpose. Neither Wordware Publishing, Inc. nor its dealers or
distributors shall be liable to the purchaser or any other person or entity with respect to any liability, loss, or damage caused
or alleged to have been caused directly or indirectly by this book.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing,

Inc., at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

Dedication

To my mother, Christine; my father, Gary; and my sister,

Angela.

v

This page intentionally left blank.

Contents

Acknowledgements . xv

Introduction. xvii

Chapter 1 User Interfaces . 1

1.1 User Interfaces — What Are They? 2

1.2 Controls — Gadgets and Gizmos 4

1.2.1 Text Boxes. 5

1.2.2 Text Edits . 6

1.2.3 Buttons . 7

1.2.4 Labels . 8

1.2.5 List Boxes . 9

1.2.6 Drop-Down Lists. 10

1.2.7 Check Boxes . 11

1.2.8 Menus . 12

1.2.9 Page Controls/Tab Controls 13

1.2.10 Windows and Other Containers 14

1.3 Interface Flow Diagrams — Interfaces on Paper 15

1.4 Interface Design — Tips and Tricks 16

1.4.1 Be Consistent . 17

1.4.2 Know Your Audience. 17

1.4.3 Justification and Alignment 18

1.4.4 Grouping Data . 19

1.4.5 Error Handling . 19

1.4.6 Disabling Program Features 20

1.4.7 Graphics, Colors, Icons, and Art 21

1.4.8 Balancing Text and Symbols 21

1.4.9 Paths and Navigation. 22

1.4.10 Keyboard Support. 24

1.4.11 Tool Tips . 24

1.5 Conclusion . 24

Chapter 2 Introducing DirectX . 27

2.1 DirectX — What Is It? . 28

2.1.1 Direct3D — Graphics 29

2.1.2 DirectInput — Keyboards, Mice, and Joysticks 29

2.1.3 DirectMusic and DirectSound — MIDI and WAV 30

vii

2.1.4 DirectPlay — Networking 30

2.1.5 DirectShow — Programmable Media Player 30

2.2 DirectX — Other Features 31

2.2.1 Mesh Viewer . 31

2.2.2 Error Lookup. 32

2.2.3 Caps Viewer . 33

2.2.4 GraphEdit . 34

2.2.5 Texture Tool . 35

2.3 System Requirements . 36

2.4 Where to Obtain DirectX . 36

2.5 Installation . 37

2.6 Installed Files . 38

2.7 Configuring Visual C++. 39

2.8 Coding with Hungarian Notation 42

2.9 Conclusion . 43

Chapter 3 Introducing Direct3D 45

3.1 Direct3D Concepts — Overview and Mathematics 46

3.2 Getting Started. 48

3.3 Programming Direct3D Applications 51

3.4 Initializing Direct3D . 52

3.5 Creating a Direct3D Device — A Graphics Card 53

3.6 Preparing to Render . 56

3.7 Initializing World Data . 58

3.7.1 Direct3D Surfaces — IDirect3DSurface9 59

3.7.2 Direct3D Surfaces — Loading Image Files 60

3.7.3 Direct3D Surfaces — Rendering 62

3.7.4 Direct3D Textures — IDirect3DTexture9. 65

3.7.5 Direct3D Textures — Preparing to Render 66

3.7.6 Direct3D Textures — Rendering 67

3.8 Alpha Blending. 72

3.8.1 Using Adobe Photoshop 73

3.8.2 Using Paint Shop Pro 74

3.8.3 Using the DirectX Texture Tool 75

3.8.4 Enabling Alpha Blending in Direct3D 76

3.9 Conclusion . 77

Chapter 4 Introducing DirectInput 79

4.1 DirectInput Basics . 80

4.2 Getting Started. 80

4.3 Programming. 82

4.4 Creating a DirectInput Object 83

4.5 Creating DirectInput Devices 85

4.6 The Keyboard . 86

4.6.1 Creating the Keyboard 86

4.6.2 Configuring the Keyboard 87

Contents

viii

4.6.3 Reading from the Keyboard 90

4.7 The Mouse . 92

4.7.1 Creating the Mouse . 92

4.7.2 Setting the Cursor . 93

4.7.3 Reading from the Mouse. 95

4.7.4 Processing the Cursor Position 96

4.7.5 Reading Mouse Buttons 97

4.8 Conclusion . 98

Chapter 5 Wrapping Direct3D . 99

5.1 CXSurface — Wrapping Surfaces 100

5.1.1 Instantiating and Deleting CXSurface 101

5.1.2 Loading Images . 102

5.1.3 Copying Surfaces . 102

5.1.4 Representing the Back Buffer 103

5.1.5 Rendering . 104

5.1.6 Using CXSurface . 104

5.2 CXTexture — Wrapping Textures 106

5.2.1 Instantiating and Deleting 107

5.2.2 Loading Images . 107

5.2.3 Preparing to Render 108

5.3 CXPen — Wrapping ID3DXSprite 109

5.3.1 Instantiating and Deleting 109

5.3.2 Rendering Textures. 110

5.3.3 Using CXPen and CXTexture. 111

5.4 Conclusion . 112

Chapter 6 Abstracting DirectInput 113

6.1 CXInput — The DirectInput Object 114

6.1.1 Instantiating the DirectInput Object 115

6.1.2 Creating Input Devices 116

6.2 CXKeyboard — Wrapping the Keyboard Device. 117

6.2.1 Instantiating Keyboard Devices 118

6.2.2 Reading from CXKeyboard 119

6.3 Wrapping the Mouse Device 121

6.3.1 CXMouseSurface — Wrapping a List of Cursors 121

6.3.2 Linked Lists — A Definition 122

6.3.3 Navigating Linked Lists 123

6.3.4 Adding New Items to Linked Lists 124

6.3.5 Deleting Linked Lists. 125

6.3.6 CXMouseSurface — Other Properties. 125

6.3.7 Wrapping the Mouse Device with CXMouse 126

6.3.8 Initializing Mouse Cursors with CXMouse 129

6.3.9 Changing Mouse Cursors with CXMouse 131

6.3.10 Reading Mouse Data with CXMouse 132

6.3.11 Reading Cursor Positions with CXMouse 133

Contents

ix

6.3.12 Reading Button States with CXMouse 133

6.4 Conclusion . 134

Chapter 7 Beginning CXControl 135

7.1 UI LIB (User Interface Library) — What Is It? 136

7.2 UI LIB — Controls as Classes 136

7.3 Controls — Class Hierarchy and Base Controls 137

7.4 CXControl — The Beginnings 138

7.5 Defining CXControl — Controls and a Canvas. 139

7.6 CXControl — Parent, Sibling, and Child Controls 140

7.6.1 Adding Child Controls 143

7.6.2 Clearing Child Controls. 144

7.6.3 Removing Specific Children 145

7.6.4 Counting Child Controls 146

7.7 Absolute and Relative Positioning 146

7.7.1 Computing Positions 149

7.8 CXControl — The Class Declaration Thus Far 150

7.9 Conclusion . 151

Chapter 8 Continuing CXControl 153

8.1 Messages . 154

8.1.1 Posting Messages. 157

8.1.2 Message Specifics . 157

8.2 Handling Mouse Messages. 158

8.2.1 Cursor Intersection. 160

8.2.2 Hierarchical Posting 161

8.2.3 Triggering Mouse Events 163

8.3 Handling Keyboard Messages 164

8.3.1 Focus . 165

8.3.2 Triggering Events . 166

8.4 Handling Control Painting 167

8.5 Posting in Reverse . 168

8.6 Depth Sorting. 170

8.7 Triggering Paint Events . 173

8.8 CXControl — The Final Declaration 174

8.9 Conclusion . 176

Chapter 9 Developing Windows. 179

9.1 CXWindow — Deriving from CXControl 180

9.2 Desktop and Application Windows 181

9.3 Class CXWindow as a Parent 181

9.4 Implementing the Parent Window 183

9.5 CXWindow as a Child Window 183

9.6 Implementing Child Windows 184

9.6.1 Child Windows — Loading the Canvas. 185

Contents

x

9.6.2 Painting Application Windows 186

9.6.3 Dragging Application Windows. 187

9.6.4 Minimizing and Restoring Application Windows. 190

9.7 Using CXWindow — Sample Application 193

9.7.1 Overview . 198

9.7.2 Desktop Initialization 198

9.7.3 Window Initialization 199

9.7.4 Windows Message Posting 199

9.7.5 Deleting an Interface 200

9.8 Conclusion . 201

Chapter 10 Labels and Buttons . 203

10.1 Labels and Buttons . 204

10.2 CXLabel — Labels . 204

10.3 Labels as ID3DXFont . 205

10.3.1 Instantiating ID3DXFont 206

10.3.2 Setting the Label Caption 209

10.3.3 Painting with ID3DXFont 209

10.3.4 Releasing ID3DXFont 212

10.4 CXButton — Buttons . 212

10.5 CXButton — The Class Declaration 213

10.5.1 The Class Constructor 214

10.5.2 Setting Pressed and Unpressed Images 215

10.5.3 Setting the Button Caption 216

10.5.4 Painting . 217

10.5.5 Destructor . 218

10.6 CXLabel and CXButton — A Sample Application 219

10.7 Conclusion. 224

Chapter 11 Text Boxes and Check Boxes 225

11.1 Text Boxes and Check Boxes 226

11.2 Text Boxes . 226

11.3 Clever Strings — Std::String 227

11.3.1 Initialization and Assigning 228

11.3.2 String Lengths. 229

11.3.3 Editing and Appending Strings 229

11.3.4 Copying Substrings 230

11.3.5 Converting Strings to char*. 230

11.3.6 Erasing and Emptying. 231

11.4 Lines — ID3DXLINE . 231

11.4.1 Drawing Lines . 232

11.5 CXTextBox — The Class Declaration 233

11.5.1 Constructor . 234

11.5.2 Text Width and Height 235

11.5.3 Setting Text . 236

11.5.4 Text Box Caret . 236

Contents

xi

11.5.5 Inserting Text . 237

11.5.6 Removing Text . 238

11.5.7 Processing Keypresses 238

11.5.8 Cursor Positioning. 240

11.5.9 Caret at Cursor . 241

11.5.10 Handling the Mouse 242

11.5.11 Painting. 242

11.5.12 Cleaning Up . 243

11.6 Check Boxes . 244

11.7 CXCheckBox — The Class Declaration 244

11.7.1 Image and Text Loading 245

11.7.2 Checking and Unchecking. 246

11.7.3 Painting . 246

11.7.4 Cleaning Up . 247

11.8 Conclusion. 247

Chapter 12 Scrolling Lists . 249

12.1 Scroll Bars, List Boxes and Drop-Down Lists 250

12.2 CXScrollBar — Scroll Bars as a Class 250

12.2.1 The Class Constructor 253

12.2.2 Arrows, a Thumb, and a Background 253

12.2.3 Width and Height, Min and Max 255

12.2.4 Screen Positions to Scroll Values 255

12.2.5 Scaling the Thumb 257

12.2.6 Setting the Thumb Position 258

12.2.7 Handling Input. 259

12.2.8 Tiling the Background. 260

12.2.9 Painting . 261

12.2.10 CXScrollBar — Cleaning Up. 262

12.3 List Boxes and List Items. 263

12.4 CXListItem — ListItems as a Class 263

12.4.1 The Class Constructor 265

12.4.2 Setting Item Size . 265

12.4.3 Painting . 266

12.5 CXListBox — List Boxes as Classes 268

12.5.1 The Class Constructor 271

12.5.2 Loading Item Backgrounds 271

12.5.3 Loading the Scroll Bar. 272

12.5.4 Computing a List Frame 273

12.5.5 Adding List Items . 274

12.5.6 Clearing List Items 276

12.5.7 Getting Items by Index 277

12.5.8 Getting Items by (X,Y) Position. 277

12.5.9 Scrolling the Frame 278

12.5.10 Handling Input . 280

12.5.11 Painting. 281

Contents

xii

12.5.12 Cleaning Up . 282

12.6 CXDropDownList — Drop-Down Lists as Classes. 283

12.6.1 The Class Constructor 285

12.6.2 Initializing the Drop-Down List 286

12.6.3 Showing and Hiding the List 287

12.6.4 Handling Input. 288

12.6.5 Painting . 289

12.6.6 Cleaning Up . 290

12.7 Conclusion. 290

Chapter 13 Introducing DirectShow 291

13.1 DirectShow — What Is It? 292

13.2 Getting Started . 294

13.3 The Filter Graph . 295

13.4 The Media Control . 297

13.5 The Event Mechanism . 297

13.6 Registering for Events . 298

13.7 Loading a File . 299

13.8 Playing a File . 301

13.9 Catching Media Events . 301

13.10 Reading Media Events . 302

13.11 Handling Media Events 305

13.12 Cleaning Up . 306

13.13 Conclusion . 306

Chapter 14 Wrapping DirectShow 307

14.1 CXMedia and CXMediaPlayer 307

14.2 CXMedia — Songs, Movies, and More. 308

14.3 CXMediaPlayer — Player of the Playlist. 309

14.3.1 The Class Constructor 310

14.3.2 Initializing DirectShow 311

14.3.3 Adding Media Files 311

14.3.4 Clearing Media Files 312

14.3.5 Playing a Playlist . 313

14.3.6 Pausing and Stopping 314

14.3.7 Handling Messages 315

14.3.8 Uninitializing DirectShow 316

14.3.9 Cleaning Up . 317

14.4 Conclusion. 317

Chapter 15 Building the Media Player 319

15.1 The Media Player . 319

15.2 CXMyMediaPlayerApp — The Media Player 320

15.2.1 Creating the Media Player 323

15.2.2 Loading Controls . 323

Contents

xiii

15.2.3 The Window . 324

15.2.4 The List Box. 326

15.2.5 The Text Box . 327

15.3 Buttons Are Connectivity 327

15.3.1 CXSearchButton — The Search Button 328

15.3.2 CXSearchButton — Loading Images 329

15.3.3 CXSearchButton — Handling Mouse Clicks 329

15.3.4 CXPlayButton — The Play Button 331

15.3.5 CXPlayButton — Handling Button Clicks 332

15.3.6 CXStopButton — The Stop Button 332

15.3.7 CXCloseButton — The Close Button. 333

15.4 CXMyMediaPlayerApp — Loading Buttons 334

15.4.1 CXMyMediaPlayerApp — Cleaning Up 335

15.5 Sample Program — Plugging in the Media Player 335

15.6 Conclusion. 337

Afterword . 339

Appendix Recommended Reading 341

Index . 343

xiv

Contents

Acknowledgements

There are a number of people who, in one way or another, directly

or indirectly, have helped my book through to completion or have

ensured the quality of its contents. I would like to take this oppor-

tunity to express my gratitude to each of them. My thanks go out

to:

Beth Kohler, Wes Beckwith, Jim Hill, and all the others of

Wordware Publishing, for being efficient people to work with.

Herb Marselas, for keeping me and my work in check with his

valuable technical revisions.

I would also like to thank my family and friends for their endur-

ing support, advice, understanding… and for everything else

they do.

Oh, and one more. I would like to thank you, the reader, for tak-

ing the time to purchase my book in the hope of bettering

yourself by learning interface development in DirectX.

Alan Thorn. London, UK. 2003.

DirectX_User_Interfaces@hotmail.com

xv

This page intentionally left blank.

Introduction

At some point through the ages an erudite scholar of great emi-

nence declared that computers are intended to make our lives

simpler, they do not make mistakes, and they cannot think for

themselves. Like an oral tradition or antediluvian echo, these axi-

oms and countless more have reached my ears long after passing

through those of previous computer professionals who, like me, had

reservations about their provenance and questions about their

accuracy. Those who’ve labored more than one sleepless night

hunched awkwardly over a keyboard, gazing into the cold depths of

a lifeless monitor and looking for the one stupid reason why their

code won’t compile, will no doubt concede that sometimes, just

sometimes, these electronic “prodigies” can be far more trouble

than they’re actually worth. Whether it’s a CD drive that won’t

eject despite the number of times you order it to do so or an appli-

cation you’ve told to close but which never does, no number of

obscenities you assail the computer with ever seem enough to sub-

due it into submission. They’ve given humanity far more than

they’ve ever bargained for, in more ways than one. The scholar’s

words are wrong, surely?

It needn’t be like this, though. The relationship between

humankind and machine doesn’t have to be a hopeless equilibrium

of friend or foe, good or bad, black or white. So how can we recon-

cile the distinction of human master and computer slave on the one

hand with the blatant computer disobedience we’ve seen on the

other? To ask whether it’s the fault of one or the other no longer

seems productive, and this in itself might mean we’re asking the

wrong questions. Not knowing how to save a word-processed docu-

ment or pressing a button that should never have been clickable at

all can be attributable to neither mankind nor machine but rather

xvii

the communication, or conceptual mediator, between them both,

which is known to us as the user interface.

Such communication tragedies have been the Achilles’ heel of

many an application. So long as there are developers who underes-

timate the significance of user interfaces, there will be

unpredictable programs, often which lead to frustration. Such

importance have user interfaces garnered over the past decade,

such giant technological leaps has mankind made, and so masterful

with machines have we become that it is no longer acceptable for

developers to say they have compromised user interfaces in favor

of refining the underpinnings. For if the user interface is the only

means by which we can access these workings, then surely one

becomes just as important as the other.

This book is about how to develop good, solid interfaces. It is

both a reference and guide. It is about making the scholar’s words a

realization. It is about learning that user interfaces are an important

step along the path to harmonious union between user and

machine. Perhaps the wise scholar’s words aren’t so dubious after

all, provided we understand that its truth rests on how much we

make it so. Granted, interfaces are not the answer to all our prob-

lems. Even the most excellent of interfaces can’t make a bad

program good, but a good interface can make an equally good pro-

gram great — this is something we’d do well not to forget, and it is

with this understanding that we should approach our tasks ahead…

Who Should Read This Book

With all books there is a “target” audience, and although the dis-

tinction between those suited and unsuited to this title is somewhat

nebulous, I feel confident in advocating that readers wanting to

learn more about DirectX and sensible user interface design, and

who have a solid comprehension of Microsoft Visual C++, as well

as a basic grasp of general COM principles, are likely to receive

most of the benefits this title offers. Knowledge and experience of

other related software or technologies can be seen as a bonus for,

but not essential to, understanding the examples and

Introduction

xviii

methodologies presented throughout this text. Having said all of

that, however, far be it from me to set any pretensions and strict

criteria. I wouldn’t wish to deter anyone who is keen to learn and

willing to try; all are welcome here.

What This Book Covers

From concept to completion I illustrate the design, implementation,

and testing of a full-formed user interface using DirectX, providing

suggestions and rationales for good planning and sound coding.

Such important mechanisms as message handling and hierarchical

class libraries are detailed with thoroughness, alongside exciting

technologies like Direct3D, DirectInput, and DirectShow. At

numerous stages throughout this book digressions are made to

highlight and detail valuable ideas, from advanced memory manage-

ment to wrapper classes. Overall, this tome constitutes a good

resource for any reader wanting to learn DirectX to create cut-

ting-edge graphics, understand the comprehensive stages of user

interface development, learn new tips and tricks, and harness the

time-saving qualities of the reusable suite of visual controls, which

are provided on the companion CD and coded within the tutorials

presented throughout this book.

How to Read This Book

In a book dealing with technology and techniques, such as this, it

can often be difficult for individual readers with diverse abilities and

experience to know what to read, what not to read, where to start,

and where to end. Fortunately, this book can serve as both a tutorial

and a reference. It represents a complete workflow from start to

finish, and is divided into three distinct parts reflecting the founda-

tions of interface design, the building of a UI library, and the

implementation of a media player. These are further subdivided into

individual chapters, detailing particular development processes and

highlighting specific implementation issues. There is no race to the

Introduction

xix

finish line with this book and there are no time-critical sections, so

you can take this at your own pace, going from one chapter to the

next. For those new to the topic of user interfaces or DirectX, I rec-

ommend reading through this book from cover to cover and

working on practical code as advised. Conversely, there are no rules

governing what should or should not be read for those already

familiar with DirectX or user interface design, or both. It rather

depends on an individual’s needs and knowledge. For such cases, I

suggest viewing the contents and index or flipping through the

pages and browsing the headers to find specific areas of interest.

Technical Requirements

To follow the examples and compile the companion CD’s code you’ll

need:

� Windows 98 or above

� Visual C++ 6.0 or above

� DirectX 9.0 SDK (provided on the CD)

It is worth noting, however, that most action-packed or fast-paced

computer games developed with DirectX these days list a range of

3D accelerated graphics cards, any one of which is a requirement.

While the code and examples presented throughout this book and

on the CD do not necessitate such hardware, I would heartily rec-

ommend you purchase one of these graphical marvels in the

interests of speed, reliability and, above all else, your sanity.

Companion CD Contents

The companion CD is organized as follows:

� Binary and source versions of the examples presented through-

out the book are structured into folders using the following

convention:

Introduction

xx

Book Code\<PART NAME>\<CHAPTER>\

� As well as spanning chapter folders, the user interface compo-

nents that are produced in later chapters are collectively

included on the CD at: Book Code\Part II\UI LIB FINAL

Additionally, I have included the DirectX 9.0 SDK and an evaluation

version of Paint Shop Pro on the CD.

Conventions Used
Throughout the Book and CD

The first occurrences of new, important words appear in italics.

Hints, notations, and general “Did you know” facts are included as

inserts above or below relevant passages, while figures and dia-

grams occupy capacious areas on their own. However, as part of a

strenuous effort to accentuate the overall clarity of my C++ code

and increase its amenability to all levels of readers when presenting

examples, I have employed a composite, and sometimes unconven-

tional, formatting style that I believe takes the best of all worlds.

Part of this incorporates not least the infamous nomenclature of

Hungarian notation, whose nuances for variable prefixes are

explained in a later chapter and which is used wherever possible to

enhance code presentation and accessibility. Additionally, sensible

indentation and spacious arrangement of code to improve legibility

on the printed page and among the source files is used throughout

the book and on the CD in my own eccentric flavor with variables

given clear, meaningful titles that are both illustrative of their pur-

pose and data type. And finally, in a rather twisted logic, I have

chosen to keep code comments on the CD short, blunt, and to a

minimum with the intention of actually maintaining a

self-documenting nature — I will not overcrowd lines or clutter

screen space with needless annotations amounting to a comprehen-

sive novel on what a certain function does or doesn’t do, especially

when it is described sufficiently within this book; instead I will

often just include relevant chapter references as the comment.

Introduction

xxi

This page intentionally left blank.

Chapter 1

User Interfaces

There are a great number of books available that discuss user inter-

faces and DirectX individually, but there are only a few that address

these issues together. Hence, it’s primarily for this reason that I’ve

chosen to pen this title. This book is structured into three parts:

The first discusses foundational knowledge that underpins both

interfaces and DirectX as a whole; the second puts this knowledge

into practice by developing a reusable interface library; and the

third consummates our efforts as we build a small media player pro-

gram in DirectX, complete with a user interface. This chapter

begins our voyage by examining user interfaces in general; specifi-

cally it aims to answer the following questions:

� What is a user interface?

� What is a control?

� What types of controls are there?

� What are interface flow diagrams?

� What is interface design?

� Why is interface design important?

� Which interface design guidelines are recommended to follow?

1

1.1 User Interfaces — What Are They?

Conceptually, a user interface is a surface forming a common border

between two regions of an application; on one side of the border is

the user and on the other side is a computer program. The only

way one communicates with the other is through the border. Practi-

cally, a user interface consists of gadgets and gizmos, like the

buttons and check boxes inside a window that the user manipulates

to communicate with a program. For example, a user informs a pro-

gram of his name by typing letters into a text box, and a program

might tell us about an error through a message box or a flashing

icon. Because of this presentational role, an interface is sometimes

termed the front end of an application, and the program itself is cor-

respondingly named the back end. Take a look at Figure 1.1 to

visualize an interface and its place in an application.

Figures 1.2, 1.3, and 1.4 provide some examples of real-life

interfaces.

2 Part I
Chapter 1: User Interfaces

Figure 1.1

Part I 3
Chapter 1: User Interfaces

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 1.2. Interface of Microsoft Excel from Office XP. This uses toolbars and
buttons to provide quick access to program options. User data is entered into a
giant grid.

Figure 1.3. Interface of Microsoft Visual C++. A tree of items on the left allows
programmers to navigate files, classes, and resources. The buttons and menus
provide access to program options, and the debug text pane at the bottom
narrates the compilation and linking processes.

� NOTE

Sometimes, the terms “interface,” “user interface,” and other varia-

tions like “graphical user interface” (GUI) are used to mean distinctive

things. However, for the purposes of this book, these names can be

used interchangeably.

1.2 Controls — Gadgets and Gizmos

It was said previously that interfaces are a collection of gadgets and

gizmos, such as buttons, text boxes, check boxes, lists, menus, and

more. These are more technically known as controls, or sometimes

components, and are referred to as such throughout the rest of this

book. These allow the user to talk to a program and allow the pro-

gram to talk back. As we shall see, there are a great many controls

— so many, in fact, that we do not have sufficient space to cover

4 Part I
Chapter 1: User Interfaces

Figure 1.4. Interface of Microsoft Internet Explorer. This allows users to navigate
the Internet using the toolbars at the top. You can see different web pages inside
the large box.

them all. Instead, the most common types are described in the fol-

lowing subsections, and each of them is investigated more

thoroughly as we come to develop them in DirectX later in this

book.

1.2.1 Text Boxes

Text boxes are rectangular spaces that accumulate characters as a

user types. Often they are used to store names, addresses, tele-

phone numbers, and similar information. Indeed, text boxes are an

ideal solution for storing text that spans only one line and is from 0

to 255 characters in length. For longer text where paragraphing and

arrangement matters, developers should use text edit or rich text

edit controls.

Part I 5
Chapter 1: User Interfaces

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 1.5. Text box controls

1.2.2 Text Edits

Like text boxes, text edits accumulate characters as a user types,

but they are often wider and taller than text boxes. This is because

text edits are designed to store large quantities of text, and this

makes them suitable controls for word processing applications

where users are concerned with paragraphing, spacing, and general

arrangement.

6 Part I
Chapter 1: User Interfaces

Figure 1.6. Text edit controls

1.2.3 Buttons

One of the more obvious and prevalent controls is the button. This

control can have one of two states: pressed or released. If released,

then nothing occurs, but when the button is pressed, or clicked,

then usually some kind of operation occurs. For example, another

window might appear or a program’s subroutine may spring into

action.

Part I 7
Chapter 1: User Interfaces

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 1.7. Button controls

1.2.4 Labels

Labels are one of the simplest controls. They are noneditable text,

and are typically employed either to convey instructions to a user

or title specific sections inside a window. Quite often, developers

position labels above text boxes and other controls to indicate the

sort of information that’s expected to be input into them, like field

titles for names, addresses, or phone numbers.

8 Part I
Chapter 1: User Interfaces

Figure 1.8. Label controls

1.2.5 List Boxes

List boxes are tall rectangular columns that show a selectable list of

items. These items could be anything, from a list of program

options to a list of user names. List boxes are particularly ideal

when a user must either add or remove specific items from a list at

run time, such as a company’s employees, or when a user must

select a range of different items, like which fields of information

should be included in a search. However, in cases where only one

item from a list needs to be selected and needs to be visible,

drop-down lists typically provide a more convenient solution.

Part I 9
Chapter 1: User Interfaces

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 1.9. List box controls

1.2.6 Drop-Down Lists

At first glance, drop-down lists appear to be like text boxes, except

for a downward arrow anchored to their far right-hand side. In real-

ity, however, drop-down lists are more like list boxes, except that

only one item can be selected and only the selected item is shown.

To preview and select other items in the list, click on the downward

arrow.

10 Part I
Chapter 1: User Interfaces

Figure 1.10. Drop-down list controls

1.2.7 Check Boxes

Check boxes are essentially label controls paired with a checkable

box that can have one of two states, checked or unchecked. Check

boxes are useful for a number of different purposes, such as repre-

senting data that has true or false values like marital status,

employed, or smoker. They also are useful for displaying and set-

ting whether program options are enabled or disabled.

Part I 11
Chapter 1: User Interfaces

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 1.11. Check box controls

1.2.8 Menus

Menus are used to display a structured list of program options. Fur-

thermore, they generally take on one of two basic forms, an

application menu or a pop-up menu. The former is the standard

drop-down menu that appears after clicking on commands like File,

Edit, and Tools, while the latter — although it appears and is struc-

tured similarly — appears when a user clicks the right-hand mouse

button over specific areas inside a window. This is called a pop-up

menu.

12 Part I
Chapter 1: User Interfaces

Figure 1.12. Menu controls

1.2.9 Page Controls/Tab Controls

Page controls are like folder dividers for interfaces, dividing con-

trols into separate screen pages. Their greatest asset to a user is

presentation and clearness, and they’re most often used to logically

divide an interface into related sections. For instance, in a client

details application a developer might store customer details on one

page, financial information on another, purchase history on another,

and so on.

Part I 13
Chapter 1: User Interfaces

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 1.13. Page controls

1.2.10 Windows and Other Containers

The last form of control to be discussed in this section is the con-

tainer, of which the most well-known kind is the window control.

Essentially, containers are simply controls that contain other con-

trols inside their boundaries. For example, a window can contain

numerous buttons, check boxes, lists, and even other containers

like windows. Additionally, whenever a container moves or changes

size, then all controls contained inside are affected. Because of this

important dependence on controls and their containers, the terms

parent controls and child controls are used to designate the contain-

ers and the contained, respectively. See Figure 1.14 for an example

of a window containing several child controls, and then examine the

diagram in Figure 1.15 to see how those child controls are struc-

tured hierarchically.

� NOTE

We develop many of these controls later in this book using DirectX, so

there is no need to concern yourself about their implementation at this

stage.

14 Part I
Chapter 1: User Interfaces

Figure 1.14. A window containing
several buttons.

Figure 1.15. Control structure

1.3 Interface Flow Diagrams —
Interfaces on Paper

Unfortunately, one of the dullest phases of interface development

also happens to be one of the most important phases — that of doc-

umentation. For example, how should developers explain a

program’s interface on paper? How can developers describe to

other developers which screens users must navigate in order to

perform various program actions? And where might those actions

lead? Indeed, because of these considerations it becomes tempting

to provide worded descriptions of these processes, but this is not

the recommended approach. After all, it has been said that “A pic-

ture is worth a thousand words.” Therefore, when documenting an

interface, developers should avoid short novels and, instead, strive

to represent them in a diagrammatic form. This is where interface

flow diagrams come into play. They use boxes and arrows to show a

top-level view of an interface. They ultimately show each screen of

an application and use arrows to represent the different options at

each stage. Take a look at Figure 1.16 to see an interface flow dia-

gram for a hypothetical client details program.

Part I 15
Chapter 1: User Interfaces

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 1.16

� TIP

Rather than simply using boxes to describe each screen, you might

want to opt for screen shots instead. Other good alternatives for pre-

viewing the look of an interface are products like Paint, Visio, or

PowerPoint. Also, Borland C++ Builder and Delphi offer excellent

facilities for designing user interfaces.

� NOTE

Interface flow diagrams are discussed in Part III of this book where we

produce an interface for a media player program.

1.4 Interface Design — Tips and Tricks

Interface design is about optimizing interfaces to be simpler and

more intuitive for users. To an extent, it is feng shui for interfaces.

It is about following a series of proven guidelines to make inter-

faces better. Understandably, at this point you might be asking

yourself something like: Why bother with this at all. Can’t I just

design an interface however I like? Or maybe: Why is interface

design so significant that there are companies devoted entirely to

this process? Surely, there’s no need. However, the answer to all of

these questions is surprisingly simple: Users purchase software to

get a job done. The easier it is to use, the better. Consequently, the

benefits of user-friendly interfaces are manifold: Users make fewer

mistakes, companies pay less for staff training, users achieve

results faster, your software remains competitive, and your com-

pany gains kudos in the industry. The list goes on. In this section

we examine various features that are characteristic of successful

interfaces. You’ll be able to use these as a series of guidelines when

developing your own, but this is by no means a comprehensive list.

Some of the interface design issues that are addressed in the fol-

lowing subsections include the extent to which artwork can be used

in interfaces without having negative implications, the significance

of aligning controls in columns or rows, and the importance of han-

dling errors using suitable methods.

16 Part I
Chapter 1: User Interfaces

� TIP

There are various publications available that document Windows

interface guidelines thoroughly. See the recommended reading

section.

1.4.1 Be Consistent

One feature above all others gives interfaces solidarity and users

peace of mind, and that is consistency in design. Humans find com-

fort in the familiar, so if users can navigate list box controls using

the keyboard arrow keys in one screen, they should expect to be

able to do so in all screens throughout an application. In fact, an

endless list of consistencies should be applied to other controls too.

For example, interfaces for Western nations should be designed

such that they flow from top to bottom and left to right. Conse-

quently, buttons like OK and Cancel — those which complete

operations or represent a change in program flow — are ideally

positioned to the right or the bottom of the screen, or even the bot-

tom right. Pop-up menus should appear only when a user clicks the

rightmost mouse button or presses an appropriate context key on

the keyboard.

1.4.2 Know Your Audience

Decisions about whether to include features such as wizards in

your software will come from understanding your audience. Statis-

tics suggest that novices appreciate the simplicity and brevity that

wizards offer, while more advanced users prefer greater control and

flexibility at the expense of such simplicity. Therefore, it would be

of little value developing a paintbrush application for home users

without considering the value of a wizard to achieve complicated

tasks. In short, respectable developers won’t disregard their cus-

tomers’ requirements any more than an author would ignore his

readers. If you even hope to sell your software, then you must

develop to consumer demand, so research well and act accordingly.

Part I 17
Chapter 1: User Interfaces

T
h

e
F
o
u

n
d

a
ti

o
n

s

� TIP

Wizards are small applications that allow a user to perform compli-

cated operations in a series of progressive steps. Often, a user moves

onto the next step by clicking the Next button. For example, Microsoft

Visual C++ often uses wizards to guide you through creating a new

project.

1.4.3 Justification and Alignment

Sloppy presentation leads to confusion, and confusion leads to mis-

takes, and mistakes — as far as users are concerned — are a bad

thing. Thus, it is principally because we want to avoid confusion

that justification and alignment become important aspects for inter-

face design. It is therefore advisable to follow these broad

guidelines when considering the arrangement of controls: Ensure

related controls are arranged in harmony with one another, such

that they are placed level in rows or columns and that a sufficient

distance exists between them. Spacing is an important topic too;

too crowded an interface becomes difficult to follow, while too spa-

cious an interface appears amateurish and tiresome. It is important

18 Part I
Chapter 1: User Interfaces

Figure 1.17

to remember also that in Western nations, people read from left to

right and top to bottom, while in others people read differently —

so be sure to arrange interfaces appropriately for your audience.

1.4.4 Grouping Data

The human mind tends to put things into logical categories or

groupings. Consequently, it makes sense to arrange your interfaces

accordingly. For example, if you were developing a database to store

client details, it would seem reasonable to group related fields

together in close proximity on screen; name, address, and tele-

phone in one group and payment details, credit history, and bank

account in another. Page controls provide an excellent solution to

this problem. See Section 1.2.9.

1.4.5 Error Handling

For some reason or other, it seems impossible to eradicate all

errors from a program, and so it must be accepted as a fact that at

some point an error might occur. The general rule of thumb is to

handle errors gracefully, so be certain to notify a user of an error

through a message box and then exit. Don’t simply quit a program

without warning and, even more importantly, don’t allow a user to

continue if a fatal error does occur.

Part I 19
Chapter 1: User Interfaces

T
h

e
F
o
u

n
d

a
ti

o
n

s
Figure 1.18. Notifying a user of an error

1.4.6 Disabling Program Features

Every so often, a specific program feature might become unavail-

able because it currently serves no purpose, such as the spell

checker on a blank word processing document or the delete opera-

tion on a write-protected file. Traditionally, the way interface

designers handled this problem was to hide the buttons or menu

items that triggered these operations until such time as they could

be used. However, such a practice has served more to confuse

rather than help users since it would seem that one moment the

button was there and the next it wasn’t. Now developers choose to

disable unavailable features instead. They do this by graying out the

buttons and menu items instead of hiding them. During this time

those features cannot be clicked or invoked in any way, but at least

the user is still aware of their existence and will understand why

they have been disabled. In short, gray out unavailable features; do

not hide or remove them.

20 Part I
Chapter 1: User Interfaces

Figure 1.19. Disabled
features

1.4.7 Graphics, Colors, Icons, and Art

I’m not going to point fingers and offer recriminations, but the use

— or rather, overuse — of artwork in interfaces is where a great

number of applications fall down, even today. Primarily, this is

because it’s deliciously tempting to be artistic, and particularly so

in computer games and with DirectX. However, art, and graphics in

general, must be used sparingly and appropriately — not just for

the sake of it. Colors are good for representing application states —

green for success and red for error, etc. But even so, colors alone

cannot be relied upon since many users may be color blind or visu-

ally impaired. Pictures in general can make an interface look

charming, giving it much needed character and individuality, but

again, overuse will confuse your users and cloud exactly what it is

that the program is supposed to be achieving. Finally, as we see in

the next section, icons are an ideal solution for cutting down on

text; they convey a message and make interfaces look good at the

same time. But even here there is a rule of consistency to be

acknowledged: Do not use the same icon to mean two different

things in the same application. For example, if a button has a folder

icon to represent a File | Open command, don’t use the same icon

elsewhere to run a Search operation.

1.4.8 Balancing Text and Symbols

For the author among developers, it will no doubt be inviting to

write on-screen instructions to users of your interface, like “Please

enter your name.” However, text should be used as sparingly and

as concisely as possible in an application, partly because users dis-

like reading and partly because it reduces translation costs for

developers. Therefore, any one element of text should not exceed

two sentences in general. In cases where it’s longer or where a sin-

gle verb will suffice, it is often advisable to use icons as a symbol

Part I 21
Chapter 1: User Interfaces

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 1.20. Toolbar icons

instead, within the guidelines of the previous section, of course.

Symbols are images that suggest something else, like an action or a

process. For example, the File | Open command is often associated

with an icon depicting a folder and an outward-pointing arrow, and

the File | Save command is paired with an icon of a disk. So, the

thrust of this section is: Keep text short and use images

descriptively.

1.4.9 Paths and Navigation

22 Part I
Chapter 1: User Interfaces

Figure 1.21. In Microsoft Word printing requires two steps. The first step is to
choose Print from the File menu.

When people get together and discuss how to achieve things using

your software, it’s quite likely they’ll quote which route to travel

through your interface. They’ll say things like “Click on File | Edit,

then Options and then…” and so on. However, if people aren’t sure

which steps to take to reach various screens or, even worse, if peo-

ple aren’t sure how to exit certain screens to get back whence they

came, then your interface is not providing a clearly traceable, or

retraceable, path. To help prevent such problems from occurring,

always be sure your interface flows logically, and be certain that

users only perform the necessary actions when navigating from

screen to screen. Always be sure that screens can be exited, and

that destructive operations are not performed without user confir-

mation and acknowledgment.

Part I 23
Chapter 1: User Interfaces

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 1.22. The second step is to click OK on the Print window.

1.4.10 Keyboard Support

No matter how much of a favor developers might think they’re

doing users by limiting keyboard use and making everything mouse

oriented, there are distinct drawbacks to supporting mice at the

expense of keyboards. You should note that advanced users and

other professionals, such as telephone operators, often prefer key-

board shortcuts because they’re faster and more propitious for

time-critical tasks. Additionally, some people find mice difficult to

use. Indeed, interfaces are by nature visual entities and therefore

mice are likely to be a more natural choice for input, but why do so

at the expense of keyboards when you can do so as a complement?

1.4.11 Tool Tips

A great way to make your software simpler and more intuitive for

average users is to provide them with constant but discreet help

and advice. This is where tool tips come into play. Tool tips are a

form of context-sensitive help where small labels or bubbles of

advice appear and vanish as a user moves the cursor over controls.

1.5 Conclusion

This chapter presented a broad outline of interfaces and the con-

trols that comprise them. It has not been too technical and has not

investigated the specifics of each component. This occurs later in

the book. Before moving on to examine how interfaces are created

using DirectX, let’s recap briefly what we’ve learned in this chapter.

� Interfaces are a surface forming a common border between a

user and a program. They are made from a collection of gadgets

and gizmos, called controls.

� There are many different sorts of controls: buttons, list boxes,

check boxes, labels, page controls, windows, and more.

24 Part I
Chapter 1: User Interfaces

� The design of an interface can be expressed in an interface flow

diagram. This uses screen shots, boxes, and arrows to illustrate

how users can navigate an interface and the consequences

resulting from their actions.

� Interface design is a time-consuming process. It involves opti-

mizing an interface to be simpler and cleaner to use. This

involves adhering to various standards, such as limiting the use

of text and graphics.

Part I 25
Chapter 1: User Interfaces

T
h

e
F
o
u

n
d

a
ti

o
n

s

This page intentionally left blank.

Chapter 2

Introducing DirectX

The previous chapter detailed at length both what user interfaces

are and their significance in applications, but it omitted a discussion

of what tools are at our disposal for developing them. We address

this topic as we examine DirectX, a subject which begins in this

chapter and continues in stages throughout the remainder of Part I.

This chapter is dedicated to answering the following questions

about DirectX:

� What is DirectX?

� What APIs does it include?

� What other features does DirectX include?

� Why use it?

� From where is DirectX obtained?

� What are its minimum requirements?

� What’s the difference between Debug and Retail mode?

� How is DirectX installed?

� How can Visual C++ be configured to use DirectX?

27

2.1 DirectX — What Is It?

If you’ve ever wanted to produce state-of-the-art computer games

for the Windows platform — complete with fast-paced graphics and

3D sound — then DirectX is undoubtedly the technology for you.

Simply put, DirectX is a suite of interdependent APIs, or libraries,

that provide an exciting feature set to developers. This includes

features to create and display 2D/3D worlds, play sounds and

music, play videos and movies, create multiplayer games, and read

data from a range of input peripherals. Another benefit of DirectX is

that developers rarely need to worry about what hardware the user

has. This is because DirectX achieves device independence; it acts

like a bridge between software and hardware. In other words,

developers needn’t program hardware directly. Instead, they pro-

gram exclusively with DirectX, and DirectX in turn takes care of

the hard work for us. Thus, so long as hardware manufacturers

ensure their products — like sound cards and graphics cards — are

DirectX compliant, then DirectX software will work transparently

with all such hardware. The following subsections summarize each

of the APIs that DirectX is made from (see Figure 2.1).

28 Part I
Chapter 2: Introducing DirectX

Figure 2.1

2.1.1 Direct3D — Graphics

Direct3D is arguably the most well-known and complicated of all

DirectX components. Its primary purpose is to present images on

screen, both 2D images — like those loaded from bitmaps and

JPEGs — and 3D images — like 3D models exported from model-

ing software. Furthermore, Direct3D utilizes hardware acceleration

where present on a user’s graphics card, which means images are

typically drawn at incredible speeds. For the purposes of this book,

Direct3D is employed to draw user interfaces on screen. We’ll

examine how to achieve this in Chapter 3.

� NOTE

To use Direct3D in your C++ projects, you must include the relevant

header files and link to the appropriate library files. For Direct3D,

these files are d3d9.h, d3d9.lib, d3dx9.h, and d3dx9.lib.

2.1.2 DirectInput — Keyboards, Mice, and Joysticks

DirectInput is aptly named because it allows developers to read

data from input peripherals, namely keyboards, mice, and joysticks.

The term “joystick” refers to standard joysticks as well as game

pads and even wheel and pedal devices. For user interfaces though,

it will be sufficient to read data from keyboards and mice only. (See

Chapter 4.)

� NOTE

To use DirectInput in your C++ projects, you must include the relevant

header files and link to the appropriate library files. For DirectInput,

these files are dinput.h and dinput.lib.

Part I 29
Chapter 2: Introducing DirectX

T
h

e
F
o
u

n
d

a
ti

o
n

s

2.1.3 DirectMusic and DirectSound — MIDI and WAV

DirectMusic and DirectSound are complementary APIs, of which

the former plays MIDI files and the latter plays WAV files. Collec-

tively, these APIs have sometimes been termed “DirectAudio.”

Regardless of which names you use, both APIs have the ability to

play sounds as well as a number of different effects, such as echoes

and even 3D effects that add a sense of depth and position to

enhance the realism of your products. Unfortunately, as powerful

and awe-inspiring as these two APIs are, we won’t have a need to

use them in our interface work in this book. To learn more about

these, I recommend viewing both the DirectX SDK documentation

and selected titles listed in the appendix.

2.1.4 DirectPlay — Networking

DirectPlay allows developers to create multiplayer games. Essen-

tially, you can manage connections over two or more computers and

send data between them. Again, as exciting as this component

might be, we will not have cause to use it within this book. For

more information, however, you can refer to the SDK documenta-

tion and the appendix.

2.1.5 DirectShow — Programmable Media Player

Last but not least there is DirectShow, a programmable media

player that plays streamable media, such as MP3s and MPEGs. The

mechanism it adopts to play these files can be thought of as a graph,

called a filter graph, containing several different procedure blocks

that are connected to one another by pins. As file playback begins,

data travels from a starting point on the graph, and then passes

through the pins and into different blocks. There, each block pro-

cesses and interprets the data appropriately. Then finally, as data

exits the graph it becomes comprehensible information, which can

be played back meaningfully to a user. In Part III of this book we

investigate DirectShow, and specifically how to play media files,

when we create the interface for a working media player.

30 Part I
Chapter 2: Introducing DirectX

� NOTE

To use DirectShow in your C++ projects, you must include the rele-

vant header files and link to the appropriate library files. For

DirectShow, these files are Dshow.h, Strmiids.lib, and Quartz.lib.

2.2 DirectX — Other Features

Even though developers typically choose DirectX because of the

above-listed APIs, there are still a number of other utilities and

applications bundled with the SDK that are designed to make a

developer’s life easier. This section now explores some of these.

2.2.1 Mesh Viewer

For those who are, or those who know, talented graphic artists pro-

ficient in 3D modeling products such as 3D Studio MAX and Maya,

Part I 31
Chapter 2: Introducing DirectX

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 2.2. DirectX Mesh Viewer

the Mesh Viewer application might prove to be a useful tool. Its

purpose is to preview 3D models that have been exported into a

format that DirectX can understand. Using this tool, one can esti-

mate how a model will look in an application. You can also view

model statistics such as polygon counts, etc.

2.2.2 Error Lookup

DirectX Error Lookup allows a developer to enter either hex or

binary error codes — those returned from DirectX functions — and

read more about the error’s meaning. This can help you discover

exactly what might have caused the error.

32 Part I
Chapter 2: Introducing DirectX

Figure 2.3. DirectX Error Lookup

2.2.3 Caps Viewer

“Caps” means “capabilities,” and the DirectX Caps Viewer is an

informative tool that lists the capabilities of a computer’s hardware.

This information covers a number of different devices, from sound

cards to graphics cards, and these categories are selectable from

the program’s tree view. Once selected, detailed information is

shown in the right-hand pane.

Part I 33
Chapter 2: Introducing DirectX

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 2.4. DirectX Caps Viewer

2.2.4 GraphEdit

GraphEdit is a DirectShow tool with which users can visually build

filter graphs to play streamable media, such as MP3s and MPEGs.

As mentioned in Section 2.1.5, a filter graph represents a flow of

information; it shows a visual path along which a file is decoded into

something meaningful. This is achieved by plotting various proce-

dure blocks onto the graph, and these are connected to one another

by pins, like a network of wires.

34 Part I
Chapter 2: Introducing DirectX

Figure 2.4. GraphEdit

2.2.5 Texture Tool

The DirectX Texture Tool creates new textures and edits existing

textures that are going to be included inside a 3D environment.

Simply put, a texture is an image that is projected onto the surface

of a 3D model to make it look more realistic. For example, an image

of a brick wall can be pasted onto each side of a cube to make it

seem as though it were actually manufactured from bricks. It’s

worth remembering, however, that textures can be created in other

image editing programs too, such as Paint Shop Pro or Adobe

Photoshop.

Part I 35
Chapter 2: Introducing DirectX

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 2.6. Using the Texture Tool

2.3 System Requirements

Before installing the DirectX 9 SDK it is advisable to check your

computer’s specifications and ensure they meet the following

DirectX system requirements:

� Windows 98, Windows Millennium Edition (Windows Me), Win-

dows 2000, or Windows XP

� Approximately 65MB hard disk space

� It is also advisable but not required to have both a 3D acceler-

ated graphics card and a sound card.

� NOTE

To determine which hardware is installed in your computer and the

particular abilities of these devices, you can use the system informa-

tion utility, which is usually available from the Windows Start menu.

Furthermore, you can also use the DirectX Diagnostic Tool, which can

be initiated by clicking Start | Run, typing DXDIAG, and pressing the

OK button.

2.4 Where to Obtain DirectX

Having been introduced to DirectX and probably excited by its

capabilities, you’re no doubt eager to obtain a copy of the SDK. For-

tunately, DirectX is freely available and the latest version (9.0b at

the time of writing) can be downloaded from DirectX’s home page

(http://www.microsoft.com/windows/directx/). However, for your

convenience, the DirectX 9.0 SDK has also been included on this

book’s companion CD where it can be found in the DirectX SDK

folder.

36 Part I
Chapter 2: Introducing DirectX

2.5 Installation

Installing DirectX is a simple process; just run Setup to begin. It’s a

standard installation wizard, which requires a path for a destination

and provides the usual customization options. Before installation,

however, please keep in mind the following points to reduce mis-

takes. These points have been selected from the readme file and

further information can be found there, if required.

� Always uninstall previous versions of the SDK prior to install-

ing newer versions. To uninstall previous versions, click on

Control Panel | Add/Remove Programs, and then select

DirectX SDK from the list before clicking on the Add/Remove

button.

� The DirectX 9.0 SDK cannot be installed on Windows 95, Win-

dows NT, or NEC PC98 systems.

� Installation on Windows 2000 or Windows XP requires adminis-

trator privileges.

� A number of virus protection programs can disrupt the installa-

tion. For this reason, they should be temporarily disabled until

completion.

Part I 37
Chapter 2: Introducing DirectX

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 2.7. Installing the DirectX 9.0 SDK

� NOTE

During installation you may be given the choice to install DirectX in

one of two modes. One is Debug mode, which provides extra error

information that developers can use to make debugging applications

easier, and the other is Retail mode, which generally provides less

support but runs faster than Debug mode. Most consumers will be

running Retail mode, but for developers new to DirectX it is recom-

mended they use Debug mode to assist in learning.

2.6 Installed Files

After DirectX has successfully been installed, several entries will

have been created on the Windows Programs menu. Also, a number

of files and folders will have been copied to the installation target.

These folders, and their purpose, are listed and explained in Table

2.1.

38 Part I
Chapter 2: Introducing DirectX

Figure 2.8

Table 2.1. DirectX folders

Bin Contains a large number of miscellaneous files and pro-

grams, many of which are accessible from the Windows

Programs menu. These include the DirectX Texture Tool

and other utilities listed above.

Doc Houses all DirectX developer documentation. You’ll make

good use of these throughout the course of this book.

Include Contains C++ source and header files from the DirectX

SDK. Some of these are included in our DirectX projects.

Lib Like Include, Lib contains all respective libraries in the

DirectX SDK. Again, some of these are linked to in our

DirectX projects.

Redist Redist means redistributable. This folder contains those

DirectX files that can be redistributed legally to users of

your products.

Samples Contains various examples, such as the SDK tutorial pro-

jects in Visual C++, etc.

SDKDev Two separate DirectX installation programs, one to install

DirectX in Debug mode and the other to install DirectX in

Retail mode.

2.7 Configuring Visual C++

At this point, if you started a new VC++ project and included head-

ers or libraries from the newly installed DirectX folder, you’d

probably receive a large number of errors at compile time. Pri-

marily, this is because Visual C++ must be told where new

libraries and headers exist so it can locate and compile them suc-

cessfully. To specify these settings in Microsoft Visual C++ and to

ensure your projects are DirectX compliant, perform the following

steps.

Part I 39
Chapter 2: Introducing DirectX

T
h

e
F
o
u

n
d

a
ti

o
n

s

For Microsoft Visual C++ 6.0:

1. Click Tools | Options from the main menu.

2. Select the Directories tab.

3. Select Include Files from the right-hand drop-down list.

4. In the Directories list beneath, add a path to the top of the list

that points to the DirectX\Include path. To do this, click on the

New tool button.

5. Then select Library Files from the right-hand drop-down list.

6. Again, in the Directories list beneath, add a path to the top of

the list. This time, provide the DirectX\Lib path.

7. Click OK.

For Microsoft Visual C++ .NET:

1. Click Tools | Options from the main menu.

2. Click the Projects category.

3. Click VC++ Directories.

4. Select Include Files from the top-right drop-down list.

40 Part I
Chapter 2: Introducing DirectX

Figure 2.9

5. Add a path to the DirectX\Include folder using the New tool

button.

6. Select Library Files from the top-right drop-down list.

7. Add a path to the DirectX\Lib folder using the New tool button.

8. Click OK.

� TIP

You should ensure that the DirectX Include and Lib paths appear at the

top of the list. Otherwise, alternative files matching the same name

may be used instead.

Part I 41
Chapter 2: Introducing DirectX

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 2.10

2.8 Coding with Hungarian Notation

As a project’s code grows in both complexity and size, developers

adopt certain coding conventions to make reading and debugging

their projects simpler. The most prominent of these is Hungarian

notation, a convention that is prevalent throughout the code of both

the SDK samples and the SDK documentation. This convention

works by prefixing variable names with one or more lowercase let-

ters — sometimes followed by an underscore — and a developer

selects these letters to describe information about a variable’s data

type or relationship. This means that a programmer reading some-

one else’s code doesn’t need to search for a variable’s declaration to

know what sort of data it can reasonably be expected to contain.

This is because one can simply determine this information immedi-

ately from a variable’s prefix. And that, ladies and gentlemen, is

Hungarian notation in a nutshell — or a paragraph anyway. Take a

look below for some examples of common variable prefixes.

DWORD dwCounter;

char chLetter;

char* pName;

int* pNumber;

int iInteger;

� TIP

It is worth mentioning that Hungarian notation only truly serves its pur-

pose as long as developers adhere to the formatting guidelines. Do

not simply select where it will and will not apply. If you’re going to use

it, then do so properly.

42 Part I
Chapter 2: Introducing DirectX

2.9 Conclusion

For some, this chapter was no doubt a piece of cake. For others,

however, it will have provided a valuable insight into how DirectX

is installed and configured. Subsequent chapters therefore shall

presuppose knowledge of this process, and instead will concentrate

on how to use specific components of DirectX, beginning with

Direct3D.

Part I 43
Chapter 2: Introducing DirectX

T
h

e
F
o
u

n
d

a
ti

o
n

s

This page intentionally left blank.

Chapter 3

Introducing
Direct3D

Nowadays, computer games are dispatched to the masses on com-

pact discs, mini discs, or DVDs, and their graphics seem as real as

ever. One of the successful technologies that has helped precipitate

this graphical evolution is Direct3D. As the previous chapter

explained, we use this API to render images to the screen. This

chapter presents an introduction to using its features and examines

how we can apply them to draw user interfaces. Particularly, this

chapter will explain the following points:

� How mathematics is used to express positions and represent

transformations

� How a Direct3D application is created and configured in Visual

C++

� The programmatic requirements of a Direct3D project

� How images can be rendered to the screen

� How to perform special effects like alpha blending

45

3.1 Direct3D Concepts —
Overview and Mathematics

Direct3D is an API that represents, manipulates, and draws objects

that exist in 3D space. The process of drawing them to the screen

is known as rendering, or presenting, and this occurs much like a

camera taking a photograph of a real-life environment. It is a

freeze-frame of a 3D world, taken from a particular vantage point

and at a specific period in time. In most games or multimedia prod-

ucts, renderings are taken on an extremely frequent basis, like

several times a second. This is to ensure that animations can be

shown and that an updated view of the 3D environment is main-

tained as the states of objects change.

Once a rendering has been taken, it becomes visible on-screen. The

screen itself has its own 2D coordinate space. It has two axes, X

and Y, which stretch across the width and height of the screen,

respectively. These typically intersect at the origin in the top-left

corner (0,0), and distances along these axes are measured in pixels.

46 Part I
Chapter 3: Introducing Direct3D

Figure 3.1

Common screen dimensions are 640x480, 800x600, and 1024x768.

To express positions in this coordinate space we use a

D3DXVECTOR2 structure. Example positions are (2,5) or (0,7) or

(9,0). Figure 3.1 demonstrates the coordinate space of the screen,

and the code below demonstrates how we can use D3DXVECTOR2

to express a 2D position.

D3DXVECTOR3 Position; //Declare position object

Position.x = 5.0f; //Set X value

Position.y = 7.0f; //Set Y value

� TIP

Later sections in this chapter demonstrate further how this structure is

used in Direct3D. For those interested, the SDK lists various functions

that perform operations on this positional and vector data. These

include adding, subtracting, and multiplying them, among others.

These functions are D3DXVec2Add, D3DXVec2Subtract, and

D3DXVec2Scale.

As I’ve mentioned, objects rendered by Direct3D exist within 3D

space. Such space can be visualized as a giant cube that uses a 3D

Cartesian coordinate system. It has three axes that intersect at the

cube’s center. This is its origin. The axes are: X, which extends

across the horizon, Y, which stretches vertically, and Z, which

reaches into the distance. Measurements to one side of the origin

are positive, and measurements to the other are negative. Conse-

quently, we express positions inside 3D space using the

conventional (X,Y,Z) notation. See Figure 3.2 to help visualize these

concepts. A single point is known as a vertex. Example vertices

could be: (3,5,7) or (4,5,–3) or (–5,–7,3). Like 2D positions, these

values are expressed programmatically using a D3DXVECTOR3

structure.

Part I 47
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

� NOTE

Naturally, user interface development will take this book on a more

2D route. We are more interested in drawing windows and controls at

various positions on screen than we are with manipulating objects in

3D. Therefore, in-depth discussions of 3D mathematics and 3D-spe-

cific features of Direct3D are beyond the scope of this text. For those

who are interested, I suggest viewing the recommended reading sec-

tion in the appendix.

3.2 Getting Started

Direct3D projects can be created in Visual C++ using a number of

different methods. The simplest is to create a standard Win32 appli-

cation, but you could of course opt for other templates. Whichever

you choose, it is important to ensure that all projects include the

appropriate headers and link to the relevant libraries. These files

are d3d9.h, d3dx9.h, d3d9.lib, and d3dx9.lib. Apart from these spe-

cifics, Direct3D applications essentially begin no differently than

standard Windows applications. You must still create a WinMain

function, still create a window, still create a message loop, and still

48 Part I
Chapter 3: Introducing Direct3D

Figure 3.2

process messages. The beginnings of such a Direct3D project can

be seen in the following code fragment.

� NOTE

For your convenience I have coded a skeleton project that has every-

thing you need to start programming a Direct3D application. This can

be found on the book’s CD in the Chapter 3 folder. It contains all of

the following code.

#include <d3d9.h>

#include <d3dx9.h>

INT WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR, INT)

{

// Register the window class

WNDCLASSEX wc = {sizeof(WNDCLASSEX), CS_CLASSDC, MsgProc, 0L, 0L,

GetModuleHandle(NULL), NULL, NULL, NULL, NULL,

"D3D", NULL};

RegisterClassEx(&wc);

// Create the application's window

HWND hWnd = CreateWindow("D3D", "D3D",

WS_OVERLAPPEDWINDOW, 100, 100, 300, 300,

Part I 49
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 3.3

GetDesktopWindow(), NULL, wc.hInstance, NULL);

ShowWindow(hWnd, SW_SHOWDEFAULT);

UpdateWindow(hWnd);

// Enter the message loop

MSG msg;

while(msg.message != WM_QUIT)

{

if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))

{

TranslateMessage(&msg);

DispatchMessage(&msg);

}

else

Render(); //Call stuff here

}

UnregisterClass("D3D Tutorial", wc.hInstance);

return 0;

}

//--

LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)

{

switch(msg)

{

case WM_DESTROY:

PostQuitMessage(0);

return 0;

case WM_PAINT:

return;

}

return DefWindowProc(hWnd, msg, wParam, lParam);

}

50 Part I
Chapter 3: Introducing Direct3D

3.3 Programming Direct3D Applications

Once a window has been created and a message pump is running,

Direct3D applications typically perform a number of different steps

to draw images to the screen. These are listed below in the order of

occurrence and are explained throughout this chapter.

1. Initialize Direct3D

All Direct3D applications begin with the creation of the

IDirect3D9 interface and end with its deletion. It is the ultimate

ancestor; the lifeline of Direct3D. A number of other interfaces

descend from here. See Section 3.4.

2. Create a 3D device

A Direct3D device is encapsulated into an IDirect3DDevice9

interface. It represents a single graphics adapter attached to the

user’s computer, and really is the heart and soul of a Direct3D

program. It exposes a vast assemblage of methods to determine

graphics card capabilities, manipulate a 3D world, and render

data to the screen, among other things. See Section 3.5.

3. Configure the device for rendering

As an application prepares to render each object, it must config-

ure the Direct3D device accordingly. This is because different

objects are likely to have different requirements on how they

should be presented. Some might require lighting while others

might require alpha blending. User interfaces will never require

the former but will often need the latter. See Section 3.6.

4. Initialize world data

This step differs between applications, depending on their

needs. It is about preparing a scene for presentation. For some

it might involve loading 3D models and assigning them a posi-

tion in 3D space, and for others it might involve calculating

light effects. For user interfaces it will involve the initialization

of all controls, such as windows, text boxes, and buttons. See

Section 3.7.

Part I 51
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

5. Render

Once a 3D world has been initialized in the above step, an appli-

cation can then begin the process of rendering it to the screen,

like taking a photograph. This process occurs several times a

second and is usually handled inside some procedure that a

developer specifically reserves for the task. This procedure is

generally referred to as the Render procedure. See Section

3.7.6.

6. Release Direct3D objects

All Direct3D objects, including IDirect3D9 and

IDirect3DDevice9, must be released on application end. This

can be done quite simply by using the Release method of the

IUnknown interface.

3.4 Initializing Direct3D

All Direct3D applications, from computer games to other products,

must begin by instantiating an IDirect3D9 interface and must end

with its release. It represents the lifetime of a Direct3D project,

and is the highest ancestor from whom a number of interfaces

descend, specifically Direct3D devices as we shall see. We typically

receive a pointer to a valid instance of IDirect3D9 by calling the

Direct3DCreate9 function. Its declaration and parameter are as

follows.

IDirect3D9* Direct3DCreate9(

UINT SDKVersion

);

UINT SDKVersion: This value should always be set to D3D_SDK_VERSION

to ensure you’re working with the latest version of Direct3D.

52 Part I
Chapter 3: Introducing Direct3D

Usually, IDirect3D9 will be declared as a global pointer and will be

initialized as an application begins. Some might be tempted to do

this in WinMain, but I recommend designating a separate procedure

for this task and invoking that from WinMain. Such modularization

makes your code clearer and simpler to debug. I call such a function

InitD3D in my projects, and this is how I refer to it throughout this

book. It can be written to include a call to Direct3DCreate9 as

follows.

g_pD3D = Direct3DCreate9(D3D_SDK_VERSION)))

if(g_pD3D == NULL)

//Error occurred

As an IDirect3D9 object is initialized on application start, we should

release this object on application end. Like before, I code a separate

function to handle this. I call it CleanUp and it is invoked as our

program receives a quit message. It can be coded to delete

IDirect3D9 as follows.

if(g_pD3D != NULL)

g_pD3D->Release();

3.5 Creating a Direct3D
Device — A Graphics Card

Direct3D devices are encapsulated into the IDirect3DDevice9

interface and are instantiated to represent the computer’s graphics

card. Normally you work with just one instance of IDirect3D-

Device9 because most computers have only one graphics adapter,

but of course there could be more. In terms of power and function-

ality, it is singularly the most important interface of Direct3D. It

exposes a vast collection of methods, including functions to deter-

mine the capabilities of the graphics device, manipulate a 3D world,

and render data on the screen. To create valid instances of

IDirect3DDevice9 we must call the CreateDevice method of

IDirect3D9. Its declaration and parameters follow.

Part I 53
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

HRESULT CreateDevice

(

UINT Adapter,

D3DDEVTYPE DeviceType,

HWND hFocusWindow,

DWORD BehaviorFlags,

D3DPRESENT_PARAMETERS* pPresentationParameters,

IDirect3DDevice9** ppReturnedDeviceInterface

);

UINT Adapter: Numerical value describing which graphics card to repre-

sent. Use D3DADAPTER_DEFAULT to select the default hardware.

D3DDEVTYPE DeviceType: This can be one of the following values:

D3DDEVTYPE_HAL: This is the recommended value. Whenever this is

specified, the device will utilize hardware acceleration where possible.

D3DDEVTYPE_REF: This value indicates that the device will not utilize

hardware acceleration and will instead use software in most

instances.

HWND hFocusWindow: Window handle to be associated with the

Direct3D Device. Pass hWnd.

DWORD BehaviorFlags: Specifies additional information on how the

device is to behave. This book uses D3DCREATE_SOFTWARE_

VERTEXPROCESSING.

D3DPRESENT_PARAMETERS* pPresentationParameters: Address of a

D3DPRESENT_PARAMETERS structure. This structure encodes information

about how a device renders data. For example, it specifies whether it will be

rendering data for a full-screen application or a windowed application,

determines the refresh rate, and stores the window handle where data is to

be rendered, along with other information. The example code for this func-

tion demonstrates how to use this structure. See the SDK for more

information.

IDirect3DDevice9** ppReturnedDeviceInterface: Address to return a

valid IDirect3DDevice9 interface.

54 Part I
Chapter 3: Introducing Direct3D

Like IDirect3D9, we can declare IDirect3DDevice9 as a global

pointer at the top of our source (g_pd3dDevice). It will be

instantiated during the InitD3D function, or some other initializa-

tion procedure and released inside CleanUp, or somewhere else at

application end. An example of initializing a Direct3D device using

the CreateDevice method can be seen below. It is written as a con-

tinuation of procedure InitD3D.

//Structure to define how our 3D device is to operate

D3DPRESENT_PARAMETERS d3dpp;

ZeroMemory(&d3dpp, sizeof(d3dpp));

d3dpp.Windowed = TRUE;

d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;

d3dpp.BackBufferCount = 1;

if(FAILED(g_pD3D->CreateDevice(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, hWnd,

D3DCREATE_SOFTWARE_VERTEXPROCESSING,

&d3dpp, &g_pd3dDevice)))

{

return E_FAIL;

}

� TIP

To retrieve the capabilities of a Direct3D device you can call the

GetDeviceCaps method of IDirect3DDevice9. You typically provide this

method with a D3DCAPS9 structure. Subsequently, this is populated

with information that can be interrogated to determine what your

device does and does not support. Alternatively, you can retrieve the

same information from IDirect3D9::GetDeviceCaps.

Part I 55
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

3.6 Preparing to Render

Before an application can create, manipulate, and render objects in

a 3D environment, we should structure our source code in prepara-

tion for rendering. As mentioned, rendering is the process of taking

a snapshot of a 3D world from a particular vantage point at a certain

point in time. To handle this process, we shall code a separate pro-

cedure exclusively for this task. This procedure will be known as

Render and, since rendering occurs at an extremely frequent rate,

it should be invoked very often from the application’s message

loop. Traditionally, the Windows message loop — as presented in

the code from Section 3.2 — waits around for messages to occur

and then acts accordingly. This is acceptable for standard applica-

tions of course, but is not best suited to the breakneck speed of

games or certain multimedia products, particularly those that use

Direct3D. Consequently, we’ll need to amend the standard message

loop such that it calls Render on a speedier basis rather than just

when messages occur. The new, replacement message loop can be

amended to call this function, as seen in the following code snippet.

MSG msg;

while(uMsg.message != WM_QUIT)

{

if(PeekMessage(&uMsg, NULL, 0, 0, PM_REMOVE))

{

TranslateMessage(&uMsg);

DispatchMessage(&uMsg);

}

else

render(); // if there are no messages to process then Render

}

As Render is called, we begin the rendering process by clearing the

screen. To do this, we invoke the Clear method of IDirect3D-

Device9. Its declaration and parameters are shown here.

56 Part I
Chapter 3: Introducing Direct3D

HRESULT Clear

(

DWORD Count,

const D3DRECT *pRects,

DWORD Flags,

D3DCOLOR Color,

float Z,

DWORD Stencil

);

DWORD Count: The number of rectangles specified in pRects. To clear the

whole screen you should pass 0.

const D3DRECT *pRects: List of rectangles defining screen areas to clear.

Pass NULL to clear the whole screen.

DWORD Flags: Combination of one or more of the following:

D3DCLEAR_STENCIL, D3DCLEAR_TARGET, and D3DCLEAR_ZBUFFER. These

values indicate exactly what is being cleared. For example, DirectX stores

specific information about how objects closer to the camera occlude those

behind them. This information is stored in what is known as a depth buffer.

For our purposes, however, we just pass D3DCLEAR_TARGET to clear the

whole screen and nothing else.

D3DCOLOR Color: This argument specifies the color to which the screen

should be cleared. Pass D3DCOLOR_XRGB(0,0,255) or some other value.

See the tip later in this section.

float Z: This value has little effect on the tasks presented in this book. Pass

1.0. For those who are interested, please see the SDK.

DWORD Stencil: Again, this value is not discussed in this book. Pass 0.

� TIP

To choose colors in Direct3D we can use the D3DCOLOR_XRGB

macro. Its arguments take the form of Red, Green, and Blue, and their

values range from 0 to 255. These indicate how strongly each color is

weighted, and this mix results in a final color. For example, Red is

D3DCOLOR_XRGB(255,0,0), Blue is D3DCOLOR_XRGB (0,255,0),

and Green is D3DCOLOR_XRGB(0,0,255).

Part I 57
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

After the screen has been cleared, we mark the beginning and end

of the rendering process by calling the BeginScene and EndScene

methods. These are methods of IDirect3DDevice9 and require no

arguments. Between them a developer should render each object in

the 3D world. The details of this process are explained later. Once

EndScene is called, a developer should then call the Present

method to finally show the scene on screen. The entire Render pro-

cedure therefore can be structured to render data as follows.

VOID Render()

{

if(NULL == g_pd3dDevice)

return;

//Clear the screen

g_pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,255),

1.0f, 0);

// Begin the scene

if(g_pd3dDevice->BeginScene() == D3D_OK)

{

// Render objects here

g_pd3dDevice->EndScene();

// Present the back buffer contents to the display

g_pd3dDevice->Present(NULL, NULL, NULL, NULL);

}

}

3.7 Initializing World Data

Once an application has created an IDirect3D9 interface, and from

there an IDirect3DDevice9 object, and has configured the applica-

tion as above, we can begin to initialize and position data inside a

3D world in preparation for rendering. To do this, we must repre-

sent our world data in a form that Direct3D can understand. For

some applications this may mean loading a 3D model, like a

58 Part I
Chapter 3: Introducing Direct3D

spaceship or a monster, and representing this using one of

Direct3D’s interfaces, in this case ID3DXMesh. For user inter-

faces, however, we’re primarily concerned with 2D images and

representing such data, like windows and controls, in terms of flat

surfaces that are aligned to the screen. For these scenarios we can

use one of two interfaces to express such information: Direct3D

surfaces (IDirect3DSurface9) or Direct3D textures

(IDirect3DTexture9). Usages of these interfaces are explained in

the following subsections.

3.7.1 Direct3D Surfaces — IDirect3DSurface9

Surfaces are exactly what their name implies: a flat plane or a rect-

angle of bytes in memory. Upon this, we can hold images from files

on disk like JPEGs and bitmaps, or we can even transfer data

between multiple surfaces. Surfaces are encapsulated by the

IDirect3DSurface9 interface, and we create them using the

CreateOffscreenPlainSurface method of our Direct3D device.

Remember, surfaces are blank to begin with and are not immedi-

ately drawn on screen. Instead, images are loaded onto them and

are then drawn at a later point. The declaration and parameters for

CreateOffscreenPlainSurface are as follows:

HRESULT CreateOffscreenPlainSurface

(

UINT Width,

UINT Height,

D3DFORMAT Format,

DWORD Pool,

IDirect3DSurface9** ppSurface,

HANDLE* pHandle

);

UINT Width: Surface width; this is not necessarily the width of the image

you want to hold but rather the total width of the surface. It can be larger

than loaded images but not smaller. The same applies for height.

Part I 59
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

UINT Height: Surface height.

D3DFORMAT Format: This is a D3DFORMAT constant that indicates the

format of the surface to be created. Values include D3DFMT_R8G8B8 for

24-bit images with 8 bits per channel and D3DFMT_X1R5G5B5 for 16-bit

images with 5 bits for each color and no alpha channel. Typically this value

will be either D3DFMT_A8R8G8B8 or D3DFMT_X8R8G8B8, depending on

whether the image has an alpha channel. See Section 3.8 for information

on alpha channels.

DWORD Pool: Defines which resource is to hold the surface in memory.

This could be in the system RAM (D3DPOOL_SYSTEMMEM) or inside the

graphics card’s memory (D3DPOOL_MANAGED). Often you will want this

argument automatically selected, in which case you should pass

D3DPOOL_DEFAULT.

IDirect3DSurface9** ppSurface: Address where a valid instance of

IDirect3DSurface9 should be returned.

HANDLE* pHandle: Simply pass NULL.

� TIP

Surfaces (and textures, explained later in this chapter) should be cre-

ated so their dimensions are of a power of 2, such as 2x2, 4x4, 8x8,

16x16… 512x512. If they are not, it may result in anomalous stretch-

ing effects.

3.7.2 Direct3D Surfaces — Loading Image Files

Once a surface has successfully been created, we can then load

images onto it. These images can come from many places like files

on disk, system memory, and even other surfaces. This book con-

centrates on loading images from files. We can achieve this by

calling the D3DXLoadSurfaceFromFile function. Its declaration and

parameters follow.

60 Part I
Chapter 3: Introducing Direct3D

HRESULT D3DXLoadSurfaceFromFile

(

LPDIRECT3DSURFACE9 pDestSurface,

CONST PALETTEENTRY* pDestPalette,

CONST RECT* pDestRect,

LPCTSTR pSrcFile,

CONST RECT* pSrcRect,

DWORD Filter,

D3DCOLOR ColorKey,

D3DXIMAGE_INFO* pSrcInfo

);

LPDIRECT3DSURFACE9 pDestSurface: Pointer to a valid surface that is to

receive the loaded image.

CONST PALETTEENTRY* pDestPalette: Pointer to a palette. This is most

often NULL.

CONST RECT* pDestRect: Using this parameter you can define a rectangle

that represents a stencil into which the image will be copied. Or you can

pass NULL to select the entire surface as a valid destination.

LPCTSTR pSrcFile: Valid file path specifying the image to be loaded.

Acceptable file formats are .bmp, .dds, .dib, .jpg, .png, and .tga.

CONST RECT* pSrcRect: This is a rectangle that defines a frame of pixels

on the source image to be copied. Pass NULL to select the whole image.

DWORD Filter: Select how the image is filtered. For our purposes, we’ll just

need to pass D3DX_FILTER_NONE.

D3DCOLOR ColorKey: This essentially allows us to apply some transparent

effects, but to achieve that we will instead use alpha blending later in the

chapter. For this value just pass the default: 0xFF000000.

D3DXIMAGE_INFO* pSrcInfo: Pass NULL. Or, if you want to keep a copy

of the image’s information, pass the address of a valid D3DXIMAGE_INFO

structure.

Part I 61
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

� TIP

To create a surface that matches the size and properties of an image

file on disk, first call D3DXGetImageInfoFromFile to populate a

D3DXIMAGE_INFO structure, and then pass this data to

CreateOffscreenPlainSurface. See the code example below.

In this example, surfaces are declared as global variables at the tops

of our sources and are initialized in procedure InitD3D (or wher-

ever initialization occurs). The code below creates a surface and

loads upon it an image from a file using the functions mentioned

thus far.

D3DXIMAGE_INFO Info;

D3DXGetImageInfoFromFile("c:\image.jpg", &Info);

g_pd3dDevice->CreateOffscreenPlainSurface(Info.Width, Info.Height,

Info.Format, &g_Surface, NULL);

D3DXLoadSurfaceFromFile(g_Surface, NULL, NULL, "c:\image.jpg", NULL,

D3DX_FILTER_NONE, 0xFF000000, NULL);

3.7.3 Direct3D Surfaces — Rendering

62 Part I
Chapter 3: Introducing Direct3D

Figure 3.4

Surfaces are drawn between the BeginScene and EndScene state-

ments of the Render procedure, as mentioned above. However,

surfaces — like everything else in Direct3D — are not immediately

drawn to the screen. Instead, Direct3D initially renders objects to a

special off-screen surface, which is called the back buffer. Here,

renderings continue to accumulate one by one until the Present

method is called to complete a scene, whereupon the back buffer is

pushed to the front and becomes visible on screen. Surfaces can be

drawn to the back buffer by the process of surface copying — in

other words, physically copying the pixels from a source surface

and pasting them onto a destination surface, the back buffer. Sur-

face copying can be achieved with the UpdateSurface method of

IDirect3DDevice9. Its declaration and parameters are as follows.

HRESULT UpdateSurface

(

IDirect3DSurface9* pSourceSurface,

CONST RECT* pSourceRect,

IDirect3DSurface9* pDestinationSurface,

CONST POINT* pDestinationPoint

);

IDirect3DSurface9* pSourceSurface: Pointer to the source surface where

pixels are copied from. This will be your standard image surface.

CONST RECT* pSourceRect: Defines a rectangular frame that selects a

subset of pixels to copy. Pass NULL to select the whole of the surface.

IDirect3DSurface9* pDestinationSurface: Pointer to a destination sur-

face that is to receive the copied pixels. This will often be a pointer to the

back buffer, although it could be other surfaces. For information on how to

retrieve a pointer to the back buffer, see below.

CONST POINT* pDestinationPoint: A 2D point whose origin is the top

left. It defines the destination where image pasting should begin.

Part I 63
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

The UpdateSurface method requires, as its third argument, a

pointer to the destination, which is the back buffer. To retrieve this

pointer we must call the GetBackBuffer method of

IDirect3DDevice9. See below for its function declaration and

parameters.

HRESULT GetBackBuffer

(

UINT iSwapChain,

UINT BackBuffer,

D3DBACKBUFFER_TYPE Type,

IDirect3DSurface9 **ppBackBuffer

);

UINT iSwapChain: Pass 0.

UINT BackBuffer: For our purposes, just pass 0. For more information,

please consult the SDK.

D3DBACKBUFFER_TYPE Type: Pass D3DBACKBUFFER_TYPE_MONO.

IDirect3DSurface9 **ppBackBuffer: The address where a valid back

buffer pointer is to be returned. Don’t forget to release it when you’re

finished.

The code below draws a surface to screen via the back buffer. You’ll

notice that the back buffer itself has been declared as a local vari-

able of the Render procedure.

VOID Render()

{

LPDIRECT3DSURFACE9 BackBuffer = NULL;

// Clear the back buffer to a blue color

g_pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,255),

1.0f, 0);

// Begin the scene

if(SUCCEEDED(g_pd3dDevice->BeginScene()))

{

g_pd3dDevice->GetBackBuffer(0,0,D3DBACKBUFFER_TYPE_MONO, &BackBuffer);

g_pd3dDevice->UpdateSurface(g_Surface, NULL, BackBuffer, NULL);

64 Part I
Chapter 3: Introducing Direct3D

if(BackBuffer != NULL)

BackBuffer->Release();

// End the scene

g_pd3dDevice->EndScene();

}

// Present the back buffer contents to the display

g_pd3dDevice->Present(NULL, NULL, NULL, NULL);

}

3.7.4 Direct3D Textures — IDirect3DTexture9

In addition to surfaces, Direct3D provides textures to present flat

images on screen. Textures are really an advanced surface that can

perform a number of effects. They are encapsulated into the

IDirect3DTexture9 interface and can be moved, scaled, and rotated

about the screen, as well as mapped onto the skin of 3D models. We

can create and load them from files all at once by calling the

D3DXCreateTexureFromFile function. Its declaration and parame-

ters are listed below.

Part I 65
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s
Figure 3.5

HRESULT D3DXCreateTextureFromFile

(

LPDIRECT3DDEVICE9 pDevice,

LPCTSTR pSrcFile,

LPDIRECT3DTEXTURE9 *ppTexture

);

LPDIRECT3DDEVICE9 pDevice: Pointer to the Direct3D device. Usually

something like g_pd3dDevice.

LPCTSTR pSrcFile: Path to an image file.

LPDIRECT3DTEXTURE9 *ppTexture: Address where a valid texture inter-

face is returned.

3.7.5 Direct3D Textures — Preparing to Render

Before we can draw textures to the screen we must understand

that they’re distinctive from surfaces in what they achieve and how

they operate. As a result, we can’t copy them directly to the back

buffer like we can with surfaces. Instead, we must use a separate

interface called ID3DXSprite. ID3DXSprite acts like a GDI pen —

or any normal pen for that matter — and can draw any number of

textures straight to the back buffer for us. Instances of

ID3DXSprite are created by calling the D3DXCreateSprite function.

Its declaration and parameters appear below.

HRESULT D3DXCreateSprite

(

LPDIRECT3DDEVICE9 pDevice,

LPD3DXSPRITE *ppSprite

);

LPDIRECT3DDEVICE9 pDevice: Pointer to the Direct3D device.

LPD3DXSPRITE *ppSprite: Address where a valid ID3DXSprite interface

will be returned.

66 Part I
Chapter 3: Introducing Direct3D

� TIP

Remember, you only need one instance of ID3DXSprite, no matter

how many textures you have.

Typically, textures and the ID3DXSprite interface would be

declared as global variables at the top of our source files, and both

would be created during application initialization. The code to cre-

ate a texture from a file and initialize an ID3DXSprite object can be

seen in the following code extract. It is coded inside the InitD3D

initialization function.

//Create a texture

D3DXCreateTextureFromFile(g_pd3dDevice, "c:\\image.bmp”, &g_Texture);

//Create a sprite

D3DXCreateSprite(g_pd3dDevice, &g_Sprite);

3.7.6 Direct3D Textures — Rendering

Part I 67
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 3.6

Like surfaces, textures are drawn to the back buffer. For textures,

this is done by ID3DXSprite, between the BeginScene and

EndScene statements of the rendering loop. To do this we must call

upon a series of functions. First, we must call the Begin method of

ID3DXSprite to prepare the device for rendering textures. Its func-

tion declaration and parameter follow.

HRESULT Begin(

DWORD Flags

);

DWORD Flags: This can be 0 and/or a combination of the following val-

ues. For this example, just pass 0.

D3DXSPRITE_DONOTSAVESTATE

D3DXSPRITE_DONOTMODIFY_RENDERSTATE

D3DXSPRITE_OBJECTSPACE

D3DXSPRITE_BILLBOARD

D3DXSPRITE_ALPHABLEND

D3DXSPRITE_SORT_TEXTURE

D3DXSPRITE_SORT_DEPTH_FRONTTOBACK

D3DXSPRITE_SORT_DEPTH_BACKTOFRONT

Secondly, after Begin has been called, we must set the sprite’s

transformation using the SetTransform method. This means that

we must tell ID3DXSprite the position, orientation, and scale at

which we wish to draw the texture. We can express each of these

values — position, scale, and rotation — as D3DXVECTOR2 struc-

tures, but we must use the D3DXMatrixTransformation2D function

to compile them into a data structure that the SetTransform

method can understand. This structure is called a matrix and is of

type D3DXMATRIX. Thus, to tell ID3DXSprite about our transfor-

mations, we should first call D3DXMatrixTransformation2D and

then pass its returned structure to SetTransform. The function dec-

laration and parameters for these functions are shown below.

68 Part I
Chapter 3: Introducing Direct3D

D3DXMATRIX *WINAPI D3DXMatrixTransformation2D(

D3DXMATRIX *pOut,

CONST D3DXVECTOR2 *pScalingCenter,

FLOAT *pScalingRotation,

CONST D3DXVECTOR2 *pScaling,

CONST D3DXVECTOR2 *pRotationCenter,

FLOAT Rotation,

CONST D3DXVECTOR2 *pTranslation

);

D3DXMATRIX *pOut: Address of a D3DMATRIX structure. This will repre-

sent the accumulative transformation — in other words, a combination of

scaling, rotation, and translation — that will be applied to the drawn

texture.

CONST D3DXVECTOR2 *pScalingCenter: Center for scaling to occur. Just

pass NULL.

FLOAT *pScalingRotation: Scaling rotational value. Again, for our pur-

poses, just pass NULL.

CONST D3DXVECTOR2 *pScaling: Address of a D3DXVECTOR2 structure

defining the scaling to occur on the texture’s X and Y axes. To maintain the

original scale, both axes should be 1. To halve the scale, use 0.5; to double

the scale, use 2.

CONST D3DXVECTOR2 *pRotationCenter: Address of a D3DXVECTOR2

structure defining the center about which rotation occurs.

FLOAT Rotation: The amount of rotation to be applied in radians.

CONST D3DXVECTOR2 *pTranslation: Address of a D3DXVECTOR2

structure defining the displacement of the texture, in pixels, from the origin

of the screen.

Part I 69
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

HRESULT SetTransform(

CONST D3DXMATRIX *pTransform

);

CONST D3DXMATRIX *pTransform: Address of a matrix representing a

series of transformations that must be applied to the drawn texture.

Once the transformation has been set, you can actually start draw-

ing a texture. This is achieved by calling the Draw method of

ID3DXSprite. Remember, all textures drawn with this method will

be transformed according to the transform we set in the previous

step, using SetTransform. The Draw method below also accepts

translation parameters, etc. However, since we already set them in

the previous stage, we can pass NULL for them here. Its function

declaration and parameters appear below.

HRESULT Draw(

LPDIRECT3DTEXTURE9 pSrcTexture,

CONST RECT *pSrcRect,

CONST D3DXVECTOR3 *pCenter,

CONST D3DXVECTOR3 *pPosition,

D3DCOLOR Color

);

LPDIRECT3DTEXTURE9 pSrcTexture: Pointer to the texture to render.

CONST RECT *pSrcRect: This defines a subrectangle from the texture to

draw. Pass NULL to select the entire texture.

CONST D3DXVECTOR2 *pCenter: Defines the center of the texture. Pass-

ing NULL is considered the same as specifying (0,0).

CONST D3DVECTOR2 *pPosition: A 2D vector that defines how far the

texture is moved across the screen in pixels on each of the X and Y axes.

The origin is (0,0), at the top-left corner of the screen. Pass NULL if you’re

using a transform matrix.

70 Part I
Chapter 3: Introducing Direct3D

D3DCOLOR Color: Passing 0xFFFFFFFF maintains the standard image color

settings. It can be other colors, however. To do this, please see the SDK for

more information.

Finally, the last stage in rendering a texture involves calling the

End method of ID3DXSprite to complete the process. This requires

no arguments. Thus, the entire Render procedure can be coded to

draw a texture at a specific position and orientation on screen, as

follows.

VOID Render()

{

if(NULL == g_pd3dDevice)

return;

g_pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,255),

1.0f, 0);

// Begin the scene

if(SUCCEEDED(g_pd3dDevice->BeginScene()))

{

D3DXVECTOR2 Translation;

Translation.x = 500;

Translation.y = 500;

D3DXVECTOR2 Scaling;

Scaling.x = 1.0;f

Scaling.y = 1.0f;

D3DXMATRIX Mat;

D3DXMatrixTransformation2D(&Mat, NULL, 0, &Scaling, NULL, 0, &

Translation);

g_Sprite->Begin(0);

g_Sprite->SetTransform(&Mat);

g_Sprite->Draw(g_Texture, NULL, NULL, NULL, 0xFFFFFFFF);

g_Sprite->End();

//End the scene

g_pd3dDevice->EndScene();

}

Part I 71
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

// Present the scene

g_pd3dDevice->Present(NULL, NULL, NULL, NULL);

}

3.8 Alpha Blending

One of the useful effects that we can perform with textures is alpha

blending. Basically, certain images can contain additional informa-

tion known as an alpha channel. This essentially can be thought of

as a mask, or a map, that is associated with the image itself and

which matches its dimensions in terms of width and height. It con-

sists of a range of grayscale colors, from white to black, and these

determine the visibility of pixels in the corresponding image. Spe-

cifically, they define whether corresponding pixels are fully visible,

partly transparent, or fully transparent. Therefore, Direct3D uses

alpha blending to show images according to the settings of their

alpha channel. This means that it is particularly useful for creating

interfaces with transparent controls, misted buttons, and similar

72 Part I
Chapter 3: Introducing Direct3D

Figure 3.7

effects. See Figure 3.7 to visualize this. Images containing alpha

channels are created in many different ways. This chapter demon-

strates how to do so using image editing software such as Adobe

Photoshop, Paint Shop Pro, and the DirectX Texture Tool.

3.8.1 Using Adobe Photoshop

If you can afford it, Adobe Photoshop is a great way to create alpha

channels. It uses the Channels window to present a visual list of

valid image channels, like Red, Green, and Blue. This is also where

the alpha channel will appear. To add one to a new or existing

image, we must perform the following steps:

1. Create or load an image using File | New or File | Open, as

usual.

2. Ensure the Channels windows is visible from the Windows

menu. This lists all channels present in the image and is where

we add an alpha channel.

3. Click the New Channel button (third button from the left at

the bottom of Figure 3.8).

Part I 73
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 3.8

4. Now, you can use the normal editing and painting tools to cre-

ate an alpha channel. Please remember to save your image in a

format that supports alpha channels, such as .tga; otherwise,

the effects will not be visible in your applications.

3.8.2 Using Paint Shop Pro

Jasc Software’s Paint Shop Pro is another excellent image editing

tool. In addition, it’s inexpensive and trial versions are available

online. There is also an evaluation version on the companion CD.

To create an alpha channel in this program, you should perform the

following steps:

1. Create two new images or load two images from existing files.

One will be the alpha channel (mask) and the other will be the

masked image. To create new images, simply click File | New,

then fill in the dimensions and color properties. For alpha chan-

nels, the color depth should be GreyScale (8 Bit).

2. To make an image the alpha channel of the other, make sure the

main image’s window is active. Then click Layers | New

Mask Layer | From Image. A dialog appears in which a

drop-down box lists the currently active images that can be

selected to be an alpha channel. Here, choose whichever is

required.

3. Because Paint Shop Pro distinguishes masks from alpha chan-

nels, you must now save the mask to the image’s alpha channel.

To do this, click Layers | Load/Save Mask | Save Mask to

Alpha Channel. Assign it a name and click OK.

4. Finally, we just need to save the entire image to disk. Click File

| Save, and select a file format that supports alpha channels,

such as .tga. Click the Options button and ensure the settings

are 24 Bits, Uncompressed. Click OK and then Save. Voilà!

74 Part I
Chapter 3: Introducing Direct3D

3.8.3 Using the DirectX Texture Tool

The DirectX Texture Tool does not append an alpha channel to an

image. Rather, it takes two separate images, one for the alpha chan-

nel and one for the image itself, and collates them together as a

new image file. To do this we must perform the following steps:

1. Create two separate images, one for the alpha channel and the

other for the image. Place the files in the same folder and name

them identically, but add “_a” to the channel name, such as

Image.bmp and Image_a.bmp.

2. Load the DirectX Texture Tool and open either one of the

images.

3. To converge them in one file, just click Save As and save to a

new file.

Part I 75
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 3.9

3.8.4 Enabling Alpha Blending in Direct3D

Direct3D does not implicitly enable alpha blending, which means

that such effects may not immediately be visible in our applications.

We do not need to adjust the texture or ID3DXSprite interfaces

themselves to enable this, but we do need to set a flag about how

our Direct3D device renders images. To enable alpha blending, we

use the SetRenderState function of IDirect3DDevice9. This can be

used to set a whole assemblage of rendering behaviors, not just

alpha blending. Its declaration and parameters follow.

HRESULT SetRenderState

(

D3DRENDERSTATETYPE State,

DWORD Value

);

D3DRENDERSTATETYPE State: This can be one of many constants, each of

which represents a specific setting. A whole list of these can be found in the

DirectX SDK at DirectX Graphics\Reference\Enumerated Types\

D3DRENDERSTATETYPE. To enable alpha blending, this value should be

D3DRS_ALPHABLENDENABLE.

DWORD Value: This is the actual value that State should be set to. For

alpha blending, this value should be either TRUE or FALSE to indicate

whether it should be enabled or disabled, respectively. Pass TRUE.

Once alpha blending has been set to TRUE, you must also set two

further states using SetRenderState: D3DRENDERSTATE_

SRCBLEND and D3DRENDERSTATE_DESTBLEND. These

define how the alpha blending process is to be performed. The fol-

lowing InitD3D function has been coded to include a call to

SetRenderState. It sets alpha blending to TRUE and configures the

other states as required. From this point onward, alpha blending

effects will be visible in all of our renderings.

76 Part I
Chapter 3: Introducing Direct3D

g_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, true);

g_pd3dDevice->SetRenderState(D3DRENDERSTATE_SRCBLEND, D3DBLEND_SRCCOLOR);

g_pd3dDevice->SetRenderState(D3DRENDERSTATE_DESTBLEND,

D3DBLEND_INVSRCCOLOR);

� TIP

When alpha blending is not needed, it is advisable to disable the set-

ting by passing FALSE to SetRenderState. This is because alpha

blending causes a reduction in rendering speed when it is activated.

3.9 Conclusion

Because the technical scope of this chapter is so vast, and because

DirectX is not so much a difficult API to use as it is to learn, some

readers will probably need to reread through specific areas to per-

haps clarify one or two points I’ve explained. Ultimately, it is

important to have understood with relative confidence the informa-

tion I’ve included in this chapter before moving on because it

provides the working foundations for all the graphical tasks and

chores presented from here on. Not understanding these basics

could lead to confusion later. The best advice I can give to those

looking for additional information is to read through the DirectX

SDK documentation and complete the tutorial projects, and search

Internet forums and sites like GameDev and FlipCode for relevant

articles or tutorials on DirectX graphics and Direct3D. Overall, in

presenting an introduction to DirectX graphics we have now gar-

nered sufficient knowledge to draw a complete user interface, but

this alone is not enough. We must also respond to user input via the

keyboard and mouse, and using Direct Input to achieve this is the

topic we explore in the next chapter.

Part I 77
Chapter 3: Introducing Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

This page intentionally left blank.

Chapter 4

Introducing
DirectInput

This chapter is about controlling user input devices, like keyboards

and mice, and about reading information from them, such as which

buttons the user pressed or the position of the mouse cursor. To

achieve this we use the DirectX API known as DirectInput. Spe-

cifically, we will learn how to do the following in this chapter:

� Create COM interfaces that represent and control input periph-

erals attached to the user’s computer.

� Set how input devices operate and are shared from program to

program.

� Read information from keyboards and mice whenever events

occur. This will consist of determining which keyboard keys or

mouse buttons are pressed, and reading the position of the

mouse cursor.

� Set the mouse cursor to an image loaded from a file.

79

4.1 DirectInput Basics

Like Direct3D, DirectInput is a collection of COM interfaces. This

collection allows an application to intuitively read information about

the current status of a wide number of input peripherals, even

when the application is running in the background. These peripher-

als include the mouse, keyboard, joystick, and other game control-

lers such as force feedback devices. Figure 4.1 demonstrates a

simplified structure of DirectInput.

4.2 Getting Started

Starting a DirectInput application in Microsoft Visual C++ is sim-

ple. Just click File | New and follow the standard Windows

application techniques: Create a window, create a message loop,

etc. Or, if you took my advice in the previous chapter and created a

template project, you can load it up from there. One thing we do

need to be sure about is including the appropriate header (dinput.h)

and the corresponding library file (dinput.lib). The steps to create a

project can be seen in Figures 4.2 and 4.3.

80 Part I
Chapter 4: Introducing DirectInput

Figure 4.1

� NOTE

In this book we are just programming the keyboard and mouse

devices, and in such circumstances DirectInput provides us with no dis-

tinctive advantages over the standard Win32 functions. It is only when

using joysticks and all manner of input devices that DirectInput really

shines. This book is about DirectX and user interfaces, and so it is for

this reason I have chosen to handle input using DirectInput. However,

for those who prefer the standard Win32 functions, there is no reason

why they can’t be used instead.

Part I 81
Chapter 4: Introducing DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 4.2

Figure 4.3

� TIP

Please remember that applications wishing to use IME or Unicode

character sets cannot use DirectInput because it doesn’t support

localization.

4.3 Programming

Once an application is configured to use DirectInput we can start

programming our input devices. To do this, an application typically

performs several steps. These steps are explained and listed in the

order in which they are performed. They are explained in more

detail as the chapter progresses.

1. Create a DirectInput object

All DirectInput applications begin by initializing the topmost

COM interface, IDirectInput8, and end with its release. From

here, all other interfaces are created. See Section 4.4.

2. Create a DirectInput device object(s)

A DirectInput device object (IDirectInputDevice8) is a COM

interface representing a single device, like a keyboard. One

interface per device is needed, and the properties of a specific

device are read and manipulated through the methods of this

interface. See Section 4.5.

3. Configure the DirectInput device object(s)

After creating an instance of IDirectInput8 in step 1, and from

that an instance to a device through IDirectInputDevice8 in

step 2, the device in question must be initialized with a set of

starting properties. These vary between devices. They include

setting the cooperative level, whose values like Exclusive and

Non-Exclusive determine how the device is shared between

applications, and setting the data format, whose properties set

the type of data we’re dealing with, such as keyboard buttons,

mouse buttons, and joystick axes. See Section 4.6.2.

82 Part I
Chapter 4: Introducing DirectInput

4. Acquire the device

Then, an application notifies DirectInput that it is ready to

receive and process input data from a device by calling the

IDirectInputDevice8::Acquire method. Upon success, the

device is ready to be polled. See Section 4.6.3.

5. Read data from the device

Polling is the process of reading information from a device. This

can be thought of as taking a series of snapshots — like freeze

frames of its current state — and then polling that state with a

number of questions, such as “Is mouse button 1 pressed?”

The snapshot process occurs at regular intervals, such as the

Render procedure, or even another that we could add. This will

ensure that an updated image of the device is maintained. See

Sections 4.6.3 and 4.7.3.

6. Release the DirectInput and DirectInput device object(s)

All COM interfaces of DirectInput, like IDirectInput8 and

IDirectInputDevice8, must be freed from memory before the

application closes, using the normal IUnknown::Release

method. See Section 4.4.

4.4 Creating a DirectInput Object

All DirectInput applications, regardless of the devices we’re

attempting to program, must begin with the instantiation of the

IDirectInput8 COM interface, and end with its deletion. This is the

topmost interface that marks the duration of DirectInput’s lifetime

and is the parent from which all other DirectInput interfaces

descend. We receive a valid pointer to an instance of IDirectInput8

using the DirectInputCreate8 function. Its declaration and parame-

ters are as follows:

Part I 83
Chapter 4: Introducing DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

HRESULT WINAPI DirectInput8Create

(

HINSTANCE hinst,

DWORD dwVersion,

REFIID riidltf,

LPVOID *ppvOut,

LPUNKNOWN punkOuter

);

HINSTANCE hinst: Instance handle to the application or DLL that is creat-

ing the DirectInput interface. In most cases this will be the g_hInst global

variable declared at the top of the source.

DWORD dwVersion: A dword value indicating the version of DirectInput

you want to work with. Specify the constant DIRECTINPUT_VERSION for the

latest.

REFIID riidltf: A unique identifier defining whether to retrieve the Unicode

or ANSI version of IDirectInput. Specifying IID_IDirectInput8 will

auto-select the appropriate one.

LPVOID *ppvOut: The address where a valid IDirectInput8 interface is to

be returned. In our case this will be an LPDIRECTINPUT8 pointer, and it will

be declared as a public member of CMyD3Dapplication.

LPUNKNOWN punkOuter: Reserved; pass NULL.

The best place to declare an instance of IDirectInput8 is as a global

pointer at the top of our source, along with all of the other objects. I

name this g_lpDI. One place we could initialize it is inside InitD3D,

but the most ideal solution would be to code a separate procedure

exclusively for initializing DirectInput interfaces. This will be called

InitInput, and will be invoked just before the InitD3D function dur-

ing the message loop. It can be written to create a DirectInput

object as follows.

DirectInput8Create(g_hInst, DIRECTINPUT_VERSION,

IID_IDirectInput8, (void**)&g_lpDI, NULL);

84 Part I
Chapter 4: Introducing DirectInput

Consequently, we free this interface in CleanUp, which is called on

application close. It can be written as follows:

if(g_lpDI != NULL)

g_lpDI->Release();

� NOTE

It is natural to ask why IDirectInput8, and later IDirectInputDevice8,

are appended with the number 8 rather than 9 when we are supposed

to be using DirectX 9. This is because there have been no changes

made to these specific interfaces since the previous version.

4.5 Creating DirectInput Devices

After successfully creating an IDirectInput8 COM interface we typ-

ically invoke its CreateDevice method to create a DirectInput

device, represented by an IDirectInputDevice8 interface. Each of

these encapsulate a single input device, such as a keyboard, mouse,

or joystick. So we must create as many of them as we need, one per

device. We can read information from them — such as which mouse

button was pressed — and set properties about them — such as

which other applications can share them — using the methods of

this interface. Let’s see the declaration and parameters for

CreateDevice to better understand how we create them.

HRESULT CreateDevice

(

REFGUID rguid,

LPDIRECTINPUTDEVICE *lplpDirectInputDevice,

LPUNKNOWN pUnkOuter

);

REFGUID rguid: A reference to a GUID representing the device to create.

For us this value will be either GUID_SysKeyboard or GUID_SysMouse,

indicating the default keyboard and mouse, respectively. However, other

values can be returned from the EnumDevices call (explained in a moment)

for specifying other devices, such as numerous joystick inputs.

Part I 85
Chapter 4: Introducing DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

LPDIRECTINPUTDEVICE *lplpDirectInputDevice: An address where a

valid DirectInput device, matching the creation parameters, should be

returned to upon success.

LPUNKNOWN pUnkOuter: Just pass NULL. If you really want more infor-

mation, see the DirectX documentation.

� TIP

To determine which devices other than the standard mouse and key-

board might be connected to the user’s computer, we call

IDirectInput8::EnumDevices, which sequentially lists a number of

devices matching a search criteria and returns their interface ID. This

can then be passed onto the CreateDevice method as the rguid

parameter to create an IDirectInputDevice8 interface representing that

device.

Having examined the CreateDevice function in more detail, we can

now proceed to more of a practical implementation by creating and

configuring two working devices over the next few sections. These

are the keyboard and the mouse devices.

4.6 The Keyboard

The following subsections describe how to create, configure, and

read from the keyboard.

4.6.1 Creating the Keyboard

An application prepares to program a keyboard with DirectInput by

calling CreateDevice. The address that it fills with a valid

IDirectInputDevice8 interface can be declared as a global pointer at

the top of the source. I have called it g_Keyboard. The declarations

can be written like this:

LPDIRECTINPUT8 g_lpDI; //DirectInput object

LPDIRECTINPUTDEVICE8 g_Keyboard; //DirectInput device

86 Part I
Chapter 4: Introducing DirectInput

These two pointers are set to NULL, and both are initialized to

valid interfaces inside InitInput. g_lpDI is initialized using

DirectInputCreate8 and g_Keyboard using CreateDevice. The

entire code for this is as follows.

//Create the DirectInput object

DirectInput8Create(g_hInst, DIRECTINPUT_VERSION,

IID_IDirectInput8, (void**)&g_lpDI, NULL);

//Create the keyboard device object

g_lpDI->CreateDevice(GUID_SysKeyboard, & g_Keyboard, NULL);

4.6.2 Configuring the Keyboard

After a DirectInput object has been created successfully, and from

there a DirectInput device, we must then configure our valid device

— in this case a keyboard — with several properties that describe

how it is to behave. Firstly, this involves setting the device’s coop-

erative level using the SetCooperativeLevel method of IDirect-

InputDevice8. This method, whose parameters consist of constants

such as Exclusive and Non-Exclusive, define how the keyboard

device is to be shared between other applications. Its function

declaration and parameters are as follows:

HRESULT SetCooperativeLevel

(

HWND hwnd,

DWORD dwFlags

);

HWND hwnd: Handle of the window which is to be associated with the

device. This is often referred to as the input focus window. Commonly, you

will pass g_hWnd as this parameter.

DWORD dwFlags: This can be a combination of one or more of the fol-

lowing constants that indicate how the device will be shared.

DISCL_BACKGROUND: The device can be read from at any time,

even when the application is not active.

Part I 87
Chapter 4: Introducing DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

DISCL_EXCLUSIVE: No other application can obtain exclusive access

to a device while another holds it. When mice and keyboards are

used in this mode, a programmer must be certain to unacquire the

device when the Windows messages WM_ENTERSIZEMOVE or

WM_ENTERMENULOOP are received; otherwise, the devices will not

operate properly. (See the DirectX SDK for more information.)

DISCL_FOREGROUND: Foreground access means that a device will

be unacquired (data will not be received) when the application is no

longer active, such as when another window receives focus.

DISCL_NONEXCLUSIVE: Access in Non-Exclusive mode has no reper-

cussions on how other applications request to use the same device.

DISCL_NOWINKEY: Disables the Windows logo key so that a user

cannot break out of an application.

After setting the cooperative level of a device, we proceed to set

its data format using the SetDataFormat method of

IDirectInputDevice8. This function is the last stage in device con-

figuration and accepts a DIDATAFORMAT structure, whose

properties are used to describe the type of information we’re

expecting the device to communicate back to us when user input

occurs, such as mouse button presses and cursor positions for mice

or key states for keyboards. The function declaration and parameter

for IDirectInputDevice8::SetDataFormat are as follows:

HRESULT SetDataFormat

(

LPCDIDATAFORMAT lpdf

);

LPCDIDATAFORMAT lpdf: The address of a DIDATAFORMAT structure. An

application can define its own or use one of a predefined set for the most

common types. These include: c_dfDIKeyboard, c_dfDIMouse,

c_dfDIMouse2, c_dfDIJoystick, and c_dfDIJoystick2. For the purposes of this

book, we will use the first two.

This section has demonstrated how devices are configured using

SetDataFormat and SetCooperativeLevel. These can be coded after

a device’s creation inside InitInput. The entire procedure therefore

looks as follows.

88 Part I
Chapter 4: Introducing DirectInput

void InitInput(void)

{

//Create DirectInput object

HRESULT Result = DirectInput8Create(g_hInst, DIRECTINPUT_VERSION,

IID_IDirectInput8, (void**)&g_lpDI, NULL);

if(SUCCEEDED(Result))

{

//Create DirectInput device

Result = g_lpDI->CreateDevice(GUID_SysKeyboard, &g_lpDIDevice, NULL);

if(SUCCEEDED(Result))

{

//Set cooperative level

g_lpDIDevice->SetCooperativeLevel(g_hWnd, DISCL_FOREGROUND |

DISCL_NONEXCLUSIVE);

//Set data format

g_lpDIDevice->SetDataFormat(&c_dfDIKeyboard);

}

else

{

MessageBox(g_hWnd,"Direct Device Failed","",MB_OK);

PostQuitMessage(0);

}

}

else

{

MessageBox(g_hWnd,"DirectInput Failed","",MB_OK);

PostQuitMessage(0);

}

return S_OK;

}

Part I 89
Chapter 4: Introducing DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

4.6.3 Reading from the Keyboard

Once a device such as the keyboard has been created and config-

ured using the methods previously illustrated, we are then

prepared to read user input from it. This occurs at regular intervals

— like the rendering loop — to ensure that an updated image of the

device is maintained. On each loop, reading begins by acquiring the

device with the IDirectInputDevice8::Acquire method. This notifies

the device that we’re ready to receive a new stream of user input

from it, and in turn the method returns — through success or fail-

ure — a value indicating whether it can currently provide us with

data. It might fail when another application already has exclusive

access to the device or when our own application no longer is

active, depending on the creation parameters that were provided to

SetCooperativeLevel. The function declaration for the Acquire

method looks like this:

HRESULT Acquire(VOID);

Upon successful acquisition of a device we proceed to read its data

by taking a snapshot of it, like a freeze-frame. Afterward, we can

query this snapshot to determine its status by asking it a number of

questions, like “Is mouse button 1 pressed?” or, more pertinently

for keyboards, “Is button ‘A’ pressed?” In DirectX terms, this is

known as immediate data. We use the GetDeviceState method of

IDirectInputDevice8 to take a snapshot of the device at the time of

the call. The snapshot is then returned into a data structure, which

for keyboards is a 256-byte array. The GetDeviceState declaration

and parameters are:

HRESULT GetDeviceState

(

DWORD cbData,

LPVOID lpvData

);

DWORD cbData: Size of parameter lpvData in bytes.

90 Part I
Chapter 4: Introducing DirectInput

LPVOID lpvData: Here, the snapshot of the device is sent to the address

of a data structure, whose format varies according to the device. For a

mouse it should be DIMOUSESTATE, and for a keyboard it is an array of

256 bytes, representing the pressed state of each key on the keyboard.

Finally, once a snapshot of the device has been taken using

GetDeviceState, we can proceed to question the properties of the

returned structure in order to ascertain the device’s state. For key-

boards we can use the following #define macro that we can use like

a function. This accepts a single key and the returned structure as

arguments, and returns TRUE or FALSE to indicate whether the

key was pressed in that snapshot or not. The macro looks like this,

and we can paste it somewhere at the top of our source file.

#define KEYDOWN(name, key) (name[key] & 0x80)

Now that we have examined the theoretical stages in reading input

from a device, and since we have seen how data must be read

through snapshots on regular intervals, we can begin to implement

all of the details in this section into code. Like initialization, we will

add a separate procedure for reading input. This will be called just

before the Render function during our message loop, and will be

called UpdateInput. Its entire definition to read keyboard data looks

as follows.

void UpdateInput(void)

{

if(SUCCEEDED(g_Keyboard->Acquire())) //Acquire the device

{

char KeyState[256];

//Take a snapshot

g_Keyboard->GetDeviceState(sizeof(KeyState),(LPVOID)&KeyState);

//Question the device

if(KEYDOWN(KeyState, DIK_LEFT))

MessageBox(g_hWnd,"You pressed left","",MB_OK);

}

}

Part I 91
Chapter 4: Introducing DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

� TIP

To read keys other than DIK_LEFT in the example, view the whole

range of keyboard device constants in the DirectX SDK. These are

listed under DirectInput/DirectInput C/C++ Reference/Device Con-

stants/Keyboard Device. This topic includes a list of others such as

DIK_UP, DIK_DOWN, DIK_RIGHT, etc.

4.7 The Mouse

The following subsections explain how to create a mouse device, as

well as setting the cursor, processing the cursor position, and read-

ing mouse buttons.

4.7.1 Creating the Mouse

Having implemented a working keyboard using DirectInput, an

application can now prepare to add a mouse. This poses a few new

challenges to a developer. As expected, creation of the mouse

begins much like creation of a keyboard, by creating a new

DirectInput device pointer (g_Mouse), and setting it to NULL.

Afterward, the device is initialized to a valid interface by calling

CreateDevice, as explained in Section 4.6.1, and is configured to

several starting properties — device sharing and data types —

using the SetDataFormat and SetCooperativeLevel methods from

Section 4.6.2. Like keyboards, this code can be written inside

InitInput, as follows.

//Create a mouse

g_lpDI->CreateDevice(GUID_SysMouse, &g_Mouse, NULL);

//Set the data format

g_Mouse->SetDataFormat(&c_dfDIMouse);

//Configure the cooperative level

g_Mouse->SetCooperativeLevel(g_hWnd, DISCL_EXCLUSIVE | DISCL_FOREGROUND);

92 Part I
Chapter 4: Introducing DirectInput

4.7.2 Setting the Cursor

After configuring the mouse device comes an aspect of initialization

that was not present in keyboard devices: setting the mouse cursor.

The cursor is an image — often an arrow — that represents the

mouse’s geometric position on screen, and is of course used to

click on or select interface items like buttons and text. DirectX rep-

resents the cursor like most other images, using surfaces; these

were explained in the previous chapter. Consequently, we begin the

process of setting a mouse cursor by creating a DirectX surface and

loading onto it an image from a file. This is achieved by using the

familiar functions of CreateOffscreenPlainSurface and

D3DXLoadSurfaceFromFile. This can be seen in the following code

fragment and is a continuation of InitInput.

//Image info structure

D3DXIMAGE_INFO ImageInfo;

//Load image information, size, etc.

D3DXGetImageInfoFromFile("C:\\Cursor.jpg”, &ImageInfo);

//Create a blank surface of appropriate proportions

g_pd3dDevice->CreateOffscreenPlainSurface(ImageInfo.Width,

ImageInfo.Height,

ImageInfo.Format,

D3DPOOL_DEFAULT,

&g_MouseCursor,

NULL);

//Load an image from a file onto the newly made surface

D3DXLoadSurfaceFromFile(g_MouseCursor, NULL, NULL, ("C:\\Cursor.jpg”,

NULL, D3DX_FILTER_NONE, 0xFF000000, NULL);

As soon as an image surface has successfully been initialized as an

IDirect3DSurface9 interface and loaded with valid image data using

the code above, it becomes a potential mouse cursor. To complete

the entire process though, we need to perform the following three

simple steps. These all occur with the previously explained

Direct3D graphics device (IDirect3DDevice9) and continue to be

Part I 93
Chapter 4: Introducing DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

coded along with the rest of the device initialization inside

InitInput:

1. Register the surface

Register the surface with DirectX using IDirect3DDevice9::

SetCursorProperties. This tells DirectX which surface, if any, is

going to be the active cursor.

g_pd3dDevice->SetCursorProperties(0,0, g_MouseCursor);

� NOTE

You’ll notice that SetCursorProperties requires two positional

arguments before the surface is specified as the third. These

define the X and Y coordinates of the hot spot position within the

cursor itself. This is the cursor’s target center, relative from the

top-left corner of the image (0,0).

2. Set cursor position

Set the cursor to an initial position on screen in terms of X and

Y with IDirect3DDevice9::SetCursorPosition. The starting

position could be (0,0), the top left.

g_pd3dDevice->SetCursorPosition(0,0,D3DCURSOR_IMMEDIATE_UPDATE);

� NOTE

As we shall see, SetCursorPosition is called on every occasion the

cursor position must be changed, not just on initialization.

3. Set cursor visible

Finally, set the cursor visible status to true using the

IDirect3DDevice9::ShowCursor method. This makes it visible

on screen.

g_pd3dDevice->ShowCursor(true);

94 Part I
Chapter 4: Introducing DirectInput

4.7.3 Reading from the Mouse

Once the mouse device has been created using CreateDevice, and

then initialized in terms of setting the cooperative level, data for-

mat, and cursor properties, we can proceed to read data from it by

taking snapshots of its state in the same way data was read from

the keyboard. This process occurs inside the UpdateInput proce-

dure and begins by calling the Acquire function to ensure that the

device can provide us with information at this time. Upon success,

we call IDirectInputDevice8::GetDeviceState to take a freeze-

frame of the device at the time of invocation. The subsequent

image is returned in a data structure that is different from the

256-byte array used to hold the keystroke data for keyboards. For a

mouse, it takes the form of a DIMOUSESTATE structure, which

contains fields to store information about button states and cursor

positions, and whose declaration and parameters are as follows.

struct DIMOUSESTATE

{

LONG lX;

LONG lY;

LONG lZ;

BYTE rgbButtons[4];

} ;

LONG lX: The distance the mouse cursor has traveled on the X axis since

the last snapshot.

LONG lY: The distance the mouse cursor has traveled on the Y axis since

the last snapshot.

LONG lZ: The distance the mouse cursor has traveled on the Z axis since

the last snapshot. This refers to the mouse’s scroll wheel or additional

scrolling instrument if one exists; if not, this value is consistently 0.

BYTE rgbButtons[4]: An array of bytes representing a total of four possi-

ble buttons on the mouse. If the high-order bit is set, the corresponding

button is pressed. As we shall see, this sequence of bytes can be read

using the same KEYDOWN #define macro for keyboard keys, as explained

in Section 4.6.3.

Part I 95
Chapter 4: Introducing DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

Consequently, UpdateInput can be written to acquire the mouse

and take a snapshot of it using the following code. Afterward, we

process the returned mouse button and mouse cursor data accord-

ing to the steps illustrated in the following two sections.

//Acquire the mouse

if(SUCCEEDED(g_Mouse->Acquire()))

{

//Mouse information structure

DIMOUSESTATE State;

//Populate mouse info struct with snapshot data

g_Mouse->GetDeviceState(sizeof(DIMOUSESTATE),(LPVOID)&State);

}

4.7.4 Processing the Cursor Position

Reading the cursor position and updating it visually on screen

according to user mouse movement is a simple process. It begins

by reading the cursor position from the lX and lY properties of the

DIMOUSESTATE structure as it is returned from the GetDevice-

State method. These are the standard X and Y values. However,

they do not represent the absolute position in terms of the area of

the screen. Instead, they describe the relative position of the mouse

since the last snapshot was taken — in other words, the distance

the mouse cursor has traveled on the X and Y axes since Get-

DeviceState was last called. Therefore, to compute the absolute

position of the cursor within the confines of the screen, we must

declare two further LONG variables — probably as global members

— to maintain an accumulative total of the mouse movements as

they’re read on each snapshot. This process can be coded as a con-

tinuation of Update Input as follows (g_MouseX and g_MouseY are

the global accumulators, and State is the snapshot data returned

from GetDeviceState):

96 Part I
Chapter 4: Introducing DirectInput

g_MouseX += State.lX;

g_MouseY += State.lY;

After computing the absolute cursor position, relative to the origin

of the screen at the top-left corner (0,0), and storing this value

inside a global accumulator that I’ve named g_MouseX and

g_MouseY, we can complete our processing of the mouse cursor by

finally drawing it at the updated position, reflective of user mouse

movement. This is achieved by calling the SetCursorPosition func-

tion of IDirect3DDevice9, as follows:

g_pd3dDevice->SetCursorPosition(g_MouseX, g_MouseY,

D3DCURSOR_IMMEDIATE_UPDATE);

4.7.5 Reading Mouse Buttons

The final stage of programming the mouse in DirectInput is reading

the button information from the mouse device’s snapshot, whether

they are pressed or whether they are released. This is also the sim-

plest stage. We achieve this by employing the standard KEYDOWN

#define macro that we used for reading keyboard data in Section

4.6.3 to read the pressed status of mouse buttons in the rgbButtons

array. This is stored in the snapshot structure of DIMOUSESTATE.

There are four bytes in this array, and each index corresponds to a

specific mouse button, where 0 is the leftmost, 3 is the rightmost,

and 1 and 2 are those in between. The following code fragment is

the complete mouse reading code from UpdateInput, with the rele-

vant button reading statement highlighted in bold.

if(SUCCEEDED(g_Mouse->Acquire()))

{

DIMOUSESTATE State;

g_Mouse->GetDeviceState(sizeof(DIMOUSESTATE),(LPVOID)&State);

g_MouseX += State.lX;

g_MouseY += State.lY;

Part I 97
Chapter 4: Introducing DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

g_pd3dDevice->SetCursorPosition(g_MouseX, g_MouseY,

D3DCURSOR_IMMEDIATE_UPDATE);

if(KEYDOWN(State.rgbButtons,0))

MessageBox(g_hWnd,"You pressed the left button","",MB_OK);

}

4.8 Conclusion

This chapter and the previous one have covered extensive ground

considering the technological breadth of information that’s been

presented. The next two chapters are about refining this knowledge

into a more sophisticated structure. Before moving on, however,

let’s recap several of the key issues we have learned here:

� A DirectInput object (IDirectInput8) is the topmost manager of

all DirectInput interfaces, and is the parent from which all

others spring, predominantly through the CreateDevice

method.

� DirectInput devices are represented by the IDirectInput-

Device8 interface and are created by calling IDirectInput8::

CreateDevice. They represent a single input device, such as a

keyboard, a mouse, or a joystick. One per device is needed.

� After devices are created, a programmer sets their starting

properties, such as cooperative level, data format, and mouse

cursor, and then acquires the device on each input cycle to read

user input from it. This is achieved by taking a snapshot of the

device using GetDeviceState and then questioning the returned

data.

98 Part I
Chapter 4: Introducing DirectInput

Chapter 5

Wrapping Direct3D

This chapter concentrates on utilizing the power of Direct3D and

specifically on how it can be modularized into a small collection of

reusable classes. These classes are generically termed wrappers,

and each of them encapsulates a specific component of Direct3D.

Particularly, these components are surfaces, textures, and the

ID3DXSprite interface. These classes will form a basic graphics

library and will incorporate almost everything we’ll need to display

a user interface. Doing this makes our source code cleaner, simpler,

and more abbreviated, and this in turn will make our projects easier

to debug. These three classes are described below, and later sec-

tions explain each class in more detail.

The CXSurface class encapsulates a single Direct3D surface. It

does this by maintaining a valid pointer to the IDirect3DSurface9

interface, and by exposing a number of public methods to perform

common operations. These consist of loading images from files,

representing the back buffer, and copying data to and from other

surfaces as well as drawing them on-screen. See Section 5.1.

Direct3D textures are encapsulated by class CXTexture. Appli-

cations should instantiate one instance of this class per texture. See

Section 5.2.

Finally, there is CXPen. This encapsulates ID3DXSprite. Practi-

cally, this works very much like a GDI pen — or even a normal pen

— in that it paints pixels onto the back buffer. It operates hand in

hand with textures, and its purpose is to ultimately render one or

more instances of CXTexture onto the screen. Typically,

99

applications that use textures, no matter how many, will only ever

need to create one instance of this class. See Section 5.3.

� NOTE

Please see Book Code\Part I\Chapter5 on the companion CD to view

the classes developed in this chapter.

5.1 CXSurface — Wrapping Surfaces

The first component to be wrapped in this chapter is surfaces.

Chapter 3 explained that surfaces are exactly what their name

implies. Geometrically, they can be visualized as a flat plane that is

axially aligned to the screen. More technically, they can be thought

of as a rectangle of bytes in memory into which images from files

like JPEGs and bitmaps can be loaded. Once loaded they’re nor-

mally drawn to the screen. DirectX represents surfaces using the

IDirect3DSurface9 interface, and it is specifically this interface that

is encapsulated into class CXSurface. The declaration for the class

can be written as below. Following sections discuss how each of

these methods and properties will operate.

class CXSurface

{

protected:

LPDIRECT3DSURFACE9 m_Surface; //The surface to be encapsulated

CXSurface* m_BackBuffer; //Back buffer to be drawn onto

LPDIRECT3DDEVICE9 m_pDevice; //Direct3D device pointer

public:

CXSurface(LPDIRECT3DDEVICE9 pDevice);

~CXSurface();

LPDIRECT3DSURFACE9 GetSurface() const {return m_Surface;}

void SetSurface(LPDIRECT3DSURFACE9 Surf) const {m_Surface = Surf;}

LPDIRECT3DDEVICE9 GetDevice()const {return m_pDevice;}

void SetDevice(LPDIRECT3DDEVICE9 pDevice) const {m_pDevice = pDevice;}

100 Part I
Chapter 5: Wrapping Direct3D

HRESULT CreateSurface(UINT Width, UINT Height,

D3DFORMAT Format, D3DPOOL Pool);

HRESULT LoadFromFile(LPCSTR Path);

HRESULT MakeBackBuffer(void);

HRESULT UpdateSurface(CXSurface* Source, RECT* pSourceRect, int X, int Y);

};

5.1.1 Instantiating and Deleting CXSurface

As instances of CXSurface are created and deleted by an applica-

tion, its constructor and destructor are called respectively. This

class has one constructor function and one destructor function. The

constructor ensures the class is initialized correctly, and the

destructor ensures deallocation is performed. The definitions of the

constructor and destructor are listed below.

//This constructor creates a blank surface and initializes a back buffer

//pointer

CXSurface::CXSurface(LPDIRECT3DDEVICE9 pDevice)

{

this->SetDevice(pDevice);

this->SetSurface(NULL);

m_BackBuffer = new CXSurface(pDevice);

}

//--

//Destructor deallocates all objects

CXSurface::~CXSurface()

{

delete m_BackBuffer;

if(m_Surface != NULL)

m_Surface->Release();

}

Part I 101
Chapter 5: Wrapping Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

5.1.2 Loading Images

Once an application has declared an instance of CXSurface, it will

want to load something meaningful onto it. So how does an applica-

tion actually load image files onto CXSurface? Simple — this can

be achieved in one swoop by calling the LoadFromFile method.

This method encapsulates Direct3D’s CreateSurface and

D3DXLoadSurfaceFromFile functions all at once. Its definition

follows.

HRESULT CXSurface::LoadFromFile(LPCSTR Path)

{

HRESULT Result = E_FAIL;

D3DXIMAGE_INFO Info;

ZeroMemory(&Info,sizeof(D3DXIMAGE_INFO));

if(SUCCEEDED(D3DXGetImageInfoFromFile(Path, &Info)))

{

Result = this->CreateSurface(Info.Width, Info.Height, Info.Format,

D3DPOOL_SYSTEMMEM);

}

if(Result == S_OK)

Result = D3DXLoadSurfaceFromFile(this->m_Surface, NULL, NULL,

Path, NULL, D3DX_FILTER_NONE, 0, NULL);

else

Result = E_FAIL;

return Result;

}

5.1.3 Copying Surfaces

Some applications may want to copy surfaces. Images stored on

CXSurface can be copied from one instance to another by using the

conventional copy and paste routine. You simply copy a subset of

pixels from a source surface and paste them at a specific (X,Y) loca-

tion on a destination. This process is achieved with the

102 Part I
Chapter 5: Wrapping Direct3D

UpdateSurface method. It has been named after the Direct3D func-

tion it encapsulates. Its definition looks like this:

HRESULT CXSurface::UpdateSurface(CXSurface* Source, RECT* pSourceRect,

int X, int Y)

{

if((m_pDevice) && (Source))

{

POINT Point;

Point.x = X;

Point.y = Y;

return m_pDevice->UpdateSurface(Source->GetSurface(), pSourceRect,

this->m_Surface, NULL);

}

else

return E_FAIL;

}

5.1.4 Representing the Back Buffer

CXSurface prepares to render itself by obtaining a pointer to the

back buffer. As mentioned in Chapter 3, the back buffer is the work-

ing surface on which renderings accumulate. These accumulations

occur between the BeginScene and EndScene statements of the

rendering loop and are shown on-screen as the Present method is

subsequently called. Should the need arise, applications can make

instances of CXSurface represent the back buffer, just like they

would any other surface. This is achieved by calling the

GetBackBuffer method. It requires no arguments and its function

definition can be seen below.

HRESULT CXSurface::GetBackBuffer(void)

{

if(m_pDevice)

{

SAFE_RELEASE(m_Surface);

return m_pDevice->GetBackBuffer(0,0, D3DBACKBUFFER_TYPE_MONO,

&m_Surface);

Part I 103
Chapter 5: Wrapping Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

}

else

return E_FAIL;

}

5.1.5 Rendering

Once a CXSurface has been created and initialized it can immedi-

ately be drawn to the screen. CXSurface makes this process

impressively simple. All we need to do is call CXSurface’s Render

method between the BeginScene and EndScene statements of an

application’s render loop, and that’s it. Consequently, the surface

will be drawn to the back buffer, and the result will be shown

on-screen as soon as Present is called to complete a scene. Let’s

take a look at the simple function definition for the Render method.

void CXSurface::Render(void)

{

BackBuffer->UpdateSurface(this,NULL,0,0); //Copy to the back buffer

}

5.1.6 Using CXSurface

This section describes how sample applications use the above

CXSurface class to draw something on-screen. To achieve this, an

application would typically perform the following steps: Declare a

global pointer to CXSurface at the top of its source; initialize this at

application start and then load something onto it by calling Load-

FromFile; call the Render method during the render loop to ensure

it is drawn to the screen; and finally, delete the surface at applica-

tion end. The following code demonstrates several of an

application’s functions that perform these steps.

void InitD3D (void)

{

//Create a blank surface

g_Surf = new CXSurface(g_pd3dDevice);

104 Part I
Chapter 5: Wrapping Direct3D

//Load an image from a file

g_Surf->LoadFromFile(“Image.jpg”);

}

//--

VOID Render()

{

// Clear the back buffer to a blue color

g_pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,255),

1.0f, 0);

// Begin the scene

if(SUCCEEDED(g_pd3dDevice->BeginScene()))

{

//Render the surface

g_Surf->Render(); //Render the surface in one simple statement

// End the scene

g_pd3dDevice->EndScene();

}

// Present the back buffer contents to the display

g_pd3dDevice->Present(NULL, NULL, NULL, NULL);

}

//--

void Cleanup()

{

delete g_Surf;

}

� NOTE

If you don’t want to use the Render method of CXSurface, you still can

render a surface by explicitly copying it to the back buffer manually. To

do this, declare two instances of CXSurface — one instance for a stan-

dard surface and the other for the back buffer. Remember to use the

GetBackBuffer method. Then, simply copy data between them using

UpdateSurface. Such copying should occur during an application’s

Render procedure, between BeginScene and EndScene.

Part I 105
Chapter 5: Wrapping Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

5.2 CXTexture — Wrapping Textures

The second component in this chapter to be wrapped is textures.

Textures are very much like surfaces, except they can perform a

number of additional effects. Specifically, they can be drawn

on-screen at different positions, scales and orientations. Textures

are represented by the IDirect3DTexture9 interface, and we will

encapsulate this into class CXTexture. Its class declaration is as fol-

lows, and its properties and functions are examined in some of the

following sections.

class CXTexture

{

protected:

LPDIRECT3DTEXTURE9 m_Texture;

LPDIRECT3DDEVICE9 m_pDevice;

D3DXVECTOR2 m_RotationCenter;

D3DXVECTOR2 m_Translation;

D3DXVECTOR2 m_Scaling;

FLOAT m_Rotation;

RECT m_SrcRect;

public:

CXTexture(LPDIRECT3DDEVICE9 pDevice);

~CXTexture();

LPDIRECT3DTEXTURE9 GetTexture() const {return m_Texture;}

void SetTexture(LPDIRECT3DTEXTURE9 Texture) const {m_Texture = Texture;}

LPDIRECT3DDEVICE9 GetDevice() const {return m_pDevice;}

void SetDevice(LPDIRECT3DDEVICE9 pDevice) const {m_pDevice = pDevice;}

D3DXVECTOR2 GetRotationCenter() const {return m_RotationCenter;}

void SetRotationCenter(D3DXVECTOR2 RotationCenter) {m_RotationCenter =

RotationCenter;}

D3DXVECTOR2 GetTranslation() const {return m_Translation;}

void SetTranslation (D3DXVECTOR2 Translation) const {m_Translation =

Translation;}

D3DXVECTOR2 GetScaling() const {return m_Scaling;}

void SetScaling(D3DXVECTOR2 Scaling) const {m_Scaling = Scaling;}

FLOAT GetRotation() const {return m_Rotation;}

void SetRotation (FLOAT Rotation) const {m_Rotation = Rotation;}

RECT GetRect() const {return m_SrcRect;}

106 Part I
Chapter 5: Wrapping Direct3D

void SetRect(RECT SrcRect) const {m_SrcRect = SrcRect;}

HRESULT LoadFromFile(char* Path);

};

5.2.1 Instantiating and Deleting

Textures in terms of CXTexture are created and deleted in much

the same fashion as CXSurface. CXTexture has one constructor and

one destructor. Inside these functions, the class is initialized and

deallocated, respectively. Their function definitions are below.

CXTexture::CXTexture(LPDIRECT3DDEVICE9 pDevice)

{

D3DXVECTOR2 Vec;

Vec.x = 0;

Vec.y = 0;

Vec.z = 0;

SetDevice(pDevice);

SetTexture(NULL);

SetRotation(0.0f);

SetRotationCenter(Vec);

SetScaling(Vec);

SetTranslation(Vec);

}

CXTexture::~CXTexture()

{

if(m_Texture != NULL)

m_Texture->Release();

}

5.2.2 Loading Images

Those who’ve used CXSurface will already have guessed how

images are loaded onto CXTexture. This is achieved by the

LoadFromFile method, which encapsulates the D3DXCreate-

TextureFromFile method. Again, this is very simple stuff.

LoadFromFile looks like this:

Part I 107
Chapter 5: Wrapping Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

HRESULT CXTexture::LoadFromFile(char* Path)

{

if(m_Texture != NULL)

m_Texture->Release();

return D3DXCreateTextureFromFile(m_pDevice, Path, &m_Texture);

}

5.2.3 Preparing to Render

Once an application has loaded and instantiated a CXTexture from a

file, it will want to position, scale, and orient it in preparation for

rendering. These properties are maintained in the m_Translation,

m_Scaling, and m_Rotation members. Remember, however, that

textures cannot render themselves. To do this, an application will

use CXPen. This is defined in the next section. The code below

demonstrates how a sample application uses CXTexture to create a

texture and sets its position, scale, and orientation at application

startup.

void InitD3D (void)

{

D3DXVECTOR2 Translation;

D3DXVECTOR2 Scale;

//Create a blank surface

g_Texture = new CXTexture(g_pd3dDevice);

//Load an image from a file

g_Texture->LoadFromFile(“Image.jpg”);

Translation.x = 355;

Translation.y = 150;

g_Texture->SetTranslation(Translation);

Scale.x = 2;

Scale.y = 2;

g_Texture->SetScale(Scale);

}

108 Part I
Chapter 5: Wrapping Direct3D

5.3 CXPen — Wrapping ID3DXSprite

The last Direct3D component in this chapter to be wrapped is the

ID3DXSprite interface. Textures cannot draw themselves directly

to the back buffer like surfaces can. Instead, they require a pen to

be drawn. In DirectX terminology, this pen is known as ID3DX-

Sprite. It operates very much like a regular pen. Consequently,

we’ll encapsulate this interface into a class named CXPen. It will

work hand in hand with textures, and its purpose is to draw one or

more instances of CXTexture onto the screen during an applica-

tion’s render procedure. CXPen’s class declaration is as follows.

Likewise, its properties and functions will be examined as the chap-

ter progresses.

class CXPen

{

protected:

LPD3DXSPRITE m_Sprite;

LPDIRECT3DDEVICE9 m_pDevice;

public:

CXPen(LPDIRECT3DDEVICE9 pDevice);

~CXPen();

LPD3DXSPRITE GetSprite() const {return m_Sprite;}

void SetSprite(LPD3DXSPRITE Sprite) const {m_Sprite = Sprite;}

LPDIRECT3DDEVICE9 GetDevice() const {return m_pDevice;}

void SetDevice(LPDIRECT3DDEVICE9 pDevice) const {m_pDevice = pDevice;}

HRESULT DrawTexture(CXTexture* Texture);

};

5.3.1 Instantiating and Deleting

CXPen has only one constructor and only one destructor, and its

constructor requires only one argument. This means that creating

instances of this class is a very simple process. We simply pass it a

pointer to the associated 3D device, and nothing else. With this

method, instances of ID3DXSprite are created and deleted

Part I 109
Chapter 5: Wrapping Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

appropriately. Definitions of CXPen’s constructor and destructor

are given below.

CXPen::CXPen(LPDIRECT3DDEVICE9 pDevice)

{

this->SetDevice(pDevice);

D3DXCreateSprite(m_pDevice, &m_Sprite);

}

CXPen::~CXPen()

{

if(m_Sprite != NULL)

m_Sprite->Release();

}

5.3.2 Rendering Textures

For an application to draw a texture on-screen, we need both an

instance of CXPen and an instance of CXTexture. Like surfaces,

texture drawing should occur between the BeginScene and

EndScene statements of an application’s rendering loop. The draw-

ing itself is achieved by calling the DrawTexture method of CXPen.

This method requires a single argument — a pointer to the texture

to render — and then it shall be rendered according to its own posi-

tion, scale, and orientation settings. (See Section 5.2.3 to learn how

to set these values.) Let’s take a look at DrawTexture’s function

definition.

HRESULT CXPen::DrawTexture(CXTexture* Texture)

{

if((Texture != NULL) && (m_Sprite != NULL))

{

D3DXMATRIX Mat;

D3DXMatrixTransformation2D(&Mat, NULL, 0, Texture->GetScaling(),

Texture->GetRotationCenter(), Texture->GetRotation(),

Texture->GetTranslation());

m_Sprite->Begin(0);

m_Sprite->SetTransform(&Mat);

110 Part I
Chapter 5: Wrapping Direct3D

HRESULT Result = m_Sprite->Draw(Texture->GetTexture(),

Texture->GetRect(), NULL, NULL,

0xFFFFFFFF);

m_Sprite->End();

return Result;

}

else

return E_FAIL;

}

5.3.3 Using CXPen and CXTexture

The entire Render procedure of an application can now be defined

to draw a texture using an instance of CXPen. This can be coded

quite simply as follows:

VOID Render()

{

// Clear the back buffer to a blue color

g_pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,255),

1.0f, 0);

// Begin the scene

if(SUCCEEDED(g_pd3dDevice->BeginScene()))

{

g_Pen->DrawTexture(g_Texture);

// End the scene

g_pd3dDevice->EndScene();

}

// Present the back buffer contents to the display

g_pd3dDevice->Present(NULL, NULL, NULL, NULL);

}

Part I 111
Chapter 5: Wrapping Direct3D

T
h

e
F
o
u

n
d

a
ti

o
n

s

5.4 Conclusion

This chapter has encapsulated most of Direct3D’s capabilities inso-

far as is relevant to user interfaces. This has taken the form of

three reusable classes: CXSurface, CXTexture, and CXPen. And

these — together with those developed in the next chapter —com-

pose the rudimentary tools with which we’ll build an interface API.

Before moving on I recommend browsing through this chapter

once more to review and recap. It is also a good idea to create three

or four test applications, some of which use the DirectX API

directly and some of which use our classes. This will allow us to

appreciate the brevity we’re striving for and the clarity this brings.

112 Part I
Chapter 5: Wrapping Direct3D

Chapter 6

Abstracting
DirectInput

The previous chapter simplified Direct3D by encapsulating sur-

faces, textures, and sprites into a series of autonomous wrapper

classes. This chapter concentrates on applying the same process to

the components of DirectInput. Specifically, we will create separate

classes for the DirectInput parent interface, and the keyboard and

mouse devices which spring from it. These classes are described

below and are explained in more detail throughout the chapter.

The CXInput class will wrap the IDirectInput8 interface, which

is known as the DirectInput object. It is also the topmost interface

in a DirectInput application from which all others descend, the life-

line of DirectInput. CXInput exposes two methods in particular,

CreateKeyboard and CreateMouse, and these create instances of

DirectInput devices: keyboard (CXKeyboard) and mouse

(CXMouse).

CXKeyboard will be returned from the CreateKeyboard method

of CXInput. It encapsulates a IDirectInputDevice8 interface, and

allows a programmer to read information from a keyboard device.

This is accomplished by taking snapshots, or freeze-frames, of the

device at regular intervals and then asking questions about its

state. Formerly this was achieved with a two-stage process of

calling GetDeviceState to take snapshots and then calling the

KEYDOWN #define macro to interpret keystroke data. But

113

CXKeyboard exposes this functionality in the form of the Update

and IsKeyPressed methods.

The mouse will be encapsulated by the CXMouse class, and it

is instantiated from the CreateMouse method of CXInput. Ulti-

mately — like the keyboard — this class aims to encapsulate a

specific variation of the IDirectInputDevice8 interface that manages

mouse data. It will expose GetXPos, GetYPos, and IsButtonPressed

to read user input. It will also contain methods such as SetCursor-

Position and SetCursorVisible to specify various properties about

how the device appears to a user.

6.1 CXInput — The DirectInput Object

Section 4.3 of this book illustrated how a programmer must begin a

DirectInput application by calling the DirectInputCreate8 function

to create a valid instance of IDirectInput8. This is known as the

DirectInput object and is the lifeline of DirectInput. It will be encap-

sulated into a class called CXInput, and from here we will create

mouse and keyboard devices. The declaration for this class is as

follows:

class CXInput

{

private:

LPDIRECTINPUT8 m_pInput;

HWND m_hWnd;

protected:

public:

CXInput (HINSTANCE hinst, HWND hWnd);

CXKeyboard* CreateKeyboard();

CXMouse* CreateMouse(LPDIRECT3DDEVICE9 pDevice, bool Exclusive);

~ CXInput ();

};

114 Part I
Chapter 6: Abstracting DirectInput

6.1.1 Instantiating the DirectInput Object

CXInput represents a working instance of the IDirectInput8 inter-

face, which it maintains through its private member: m_pInput. In a

standard DirectX application, programmers would typically declare

pointers to CXInput as a global variable somewhere in their source,

and then initialize it inside the InitInput procedure or wherever ini-

tialization occurs. Object deletion would then occur in procedure

CleanUp or somewhere close to application close. Examples of ini-

tialization and deletion are shown below.

//Create in InitInput

g_Input = new CXInput(g_hInst, g_hWnd);

//Delete in CleanUp

if(g_Input != NULL)

delete g_Input;

The constructor will internally create valid instances of the

IDirectInput8 interface, and the destructor will release them. The

definitions of these two are as follows:

//Constructor

CXInput:: CXInput (HINSTANCE hinst, HWND hWnd)

{

m_pInput = NULL;

m_hWnd = hWnd;

DirectInput8Create(hinst, DIRECTINPUT_VERSION, IID_IDirectInput8,

(void**)&m_pInput, NULL);

}

//Destructor

CXInput::~ CXInput()

{

if(m_pInput != NULL)

m_pInput->Release();

}

Part I 115
Chapter 6: Abstracting DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

6.1.2 Creating Input Devices

Once CXInput is successfully created, we can proceed to create

either a mouse or a keyboard device from which user input can be

read. This is achieved through two of its public methods: Create-

Keyboard and CreateMouse. These return valid instances of

CXKeyboard and CXMouse, respectively. Their implementations

are discussed later in this chapter. These functions are typically

called inside InitInputs, and instances of the returned classes can

be released in CleanUp. The process of creation and deletion might

look as follows:

//InitInputs

g_Keyboard = g_Input->CreateKeyboard(); //Create keyboard device

g_Mouse = g_Input->CreateMouse(g_pd3dDevice, true); //Create mouse device

//CleanUp

delete g_Keyboard;

delete g_Mouse;

So the main purpose of CXInput is to create devices. CreateKey-

board is called to create an instance of a keyboard device, and

CreateMouse is called for mouse devices. The actual definitions of

these functions appear below.

//Create keyboard devices

CXKeyboard* CXInput::CreateKeyboard()

{

CXKeyboard * Keyboard = NULL;

if(m_pInput)

{

Keyboard = new CXKeyboard (m_pInput, m_hWnd);

}

return Keyboard;

}

116 Part I
Chapter 6: Abstracting DirectInput

//--

//Create mouse devices

CXMouse* CXInput::CreateMouse(LPDIRECT3DDEVICE9 pDevice, bool Exclusive)

{

CXMouse * Mouse = NULL;

if(m_pInput)

{

Mouse = new CXMouse (pDevice, m_pInput, m_hWnd, Exclusive);

}

return Mouse;

}

6.2 CXKeyboard — Wrapping
the Keyboard Device

Keyboard devices are represented by class CXKeyboard. Using this

class we can read user input from the keyboard device and set prop-

erties about how it behaves. Its class declaration is below.

class CXKeyboard

{

private:

LPDIRECTINPUTDEVICE8 m_pDevice;

char m_KeyState[256];

protected:

public:

CXKeyboard (LPDIRECTINPUT8 pInput, HWND hWnd);

~ CXKeyboard();

bool IsKeyPressed(int Key);

HRESULT Update();

};

Part I 117
Chapter 6: Abstracting DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

6.2.1 Instantiating Keyboard Devices

Creation of CXKeyboard will occur through the CreateKeyboard

method of CXInput, inside an application’s InitInput procedure, and

deletion of CXKeyboard will occur inside procedure CleanUp, on

application close. On these occasions, either the class constructor

or the class destructor will be implicitly called. Their definitions are

shown below.

� NOTE

The constructor of CXKeyboard accepts two arguments; one is a

pointer to the IDirectInput8 interface and the other is a handle to the

input focus window. These are used to create a device and immedi-

ately initialize it to several starting properties using the SetDataFormat

and SetCooperativeLevel methods (see Chapter 4). Essentially, this

means that as soon as CXKeyboard is created we have a device that is

ready to be used.

CXKeyboard:: CXKeyboard (LPDIRECTINPUT8 pInput, HWND hWnd)

{

HRESULT Result = E_FAIL;

m_pDevice = NULL;

Result = pInput->CreateDevice(GUID_SysKeyboard, &m_pDevice, NULL);

if(SUCCEEDED(Result))

{

Result = m_pDevice->SetDataFormat(&c_dfDIKeyboard);

if(FAILED(Result))

{

SAFE_RELEASE(m_pDevice);

return;

}

Result = m_pDevice->SetCooperativeLevel(hWnd, DISCL_FOREGROUND |

DISCL_NONEXCLUSIVE);

if(FAILED(Result))

{

118 Part I
Chapter 6: Abstracting DirectInput

SAFE_RELEASE(m_pDevice);

return;

}

memset(m_KeyState, 0, 256*sizeof(char));

}

}

//--

//Destructor

CXKeyboard::~ CXKeyboard()

{

m_pDevice->Unacquire();

SAFE_RELEASE(m_pDevice);

}

6.2.2 Reading from CXKeyboard

Keystrokes are read from instances of CXKeyboard through the

process of snapshots or freeze-frames. This was explained in Sec-

tion 4.6.3. Basically, the process involves recording an image of the

state of a device at regular enough intervals, such as during Render

or UpdateInput. Afterward, we can ask the image a series of ques-

tions, such as “Is button A pressed,” in order to determine its state.

Using CXKeyboard, snapshots are taken with the Update method,

and, based upon its success, questions can subsequently be asked

by calling the IsButtonPressed function. An example follows:

//Checking for a return keypress inside UpdateInput

g_Keyboard->Update(); //Take a snapshot

if(g_Keyboard->IsKeyPressed(DIK_RETURN)) //Is the Return key pressed?

MessageBox(g_hWnd, "You pressed Return","",MB_OK); // Then process

// action

Part I 119
Chapter 6: Abstracting DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

The definitions for both Update and IsKeyPressed are given below.

//Function to take freeze-frames

HRESULT CXKeyboard::Update()

{

HRESULT Result = E_FAIL;

if(m_pDevice)

{

Result = m_pDevice->Acquire();

if(FAILED(Result))

return Result;

Result = m_pDevice->GetDeviceState(sizeof(m_KeyState),

(LPVOID)&m_KeyState);

if(FAILED(Result))

return Result;

}

return S_OK;

}

//---

//Function to read user input from a snapshot

bool CXKeyboard::IsKeyPressed(int Key)

{

if(m_pDevice)

{

if(m_KeyState[Key] & 0x80)

return true;

}

return false;

}

120 Part I
Chapter 6: Abstracting DirectInput

6.3 Wrapping the Mouse Device

Wrapping the mouse involves the creation of two classes rather

than one. This is because there are actually two separate interfaces

that we employ when programming the mouse. These are

IDirectInputDevice8 — the device itself — and IDirect3DSurface9,

a surface for the mouse cursor. Surfaces are a component of

Direct3D and were wrapped in the previous chapter into class

CXSurface. There is one instance per surface. So it immediately

seems sensible to use this class to encapsulate a cursor. However,

this proves to be inappropriate. What if we’ll need more than one

cursor — say an arrow and an hourglass that we switch between?

Or perhaps four or five or even ten cursors? What if we won’t ini-

tially know how many we’ll need and it must change dynamically to

suit specific circumstances? Essentially, what we need is a list of

CXSurfaces that can hold from as little as none to as many cursors

as our computer can allow. This concept of a list requires a few

changes to be made to CXSurface though, and we append these by

deriving a new class from it, called CXMouseSurface. This issue of

a list will be dealt with first before moving on to define CXMouse

itself.

6.3.1 CXMouseSurface — Wrapping a List of Cursors

CXMouseSurface inherits from CXSurface. This means it contains

all of the features of its ancestor, while being able to extend its

functionality. These features include loading images from files, cre-

ating surfaces, and copying them to the back buffer. The small

number of additions that have been made in CXMouseSurface are

highlighted in bold. But only the topmost member is needed to turn

it into a list that can grow or shrink as much as required. This list is

known as a linked list and it is arguably one of the most useful con-

cepts in computer science.

Part I 121
Chapter 6: Abstracting DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

class CXMouseSurface : public CXSurface

{

private:

CXMouseSurface* m_pNext;

int MouseSurfaceType;

UINT HotSpotX;

UINT HotSpotY;

protected:

public:

CXMouseSurface* GetNext() {return m_pNext;}

void SetNext(CXMouseSurface* Surf) {m_pNext = Surf;}

int GetSurfaceType() {return MouseSurfaceType;}

void SetSurfaceType(int Type) {MouseSurfaceType = Type;}

UINT GetHotSpotX() {return HotSpotX;}

UINT GetHotSpotY() {return HotSpotY;}

void SetHotSpotX (UINT X) {HotSpotX = X;}

void SetHotSpotY (UINT Y) {HotSpotY = Y;}

CXMouseSurface(LPDIRECT3DDEVICE9 pDevice) : CXSurface(pDevice)

{m_pNext = NULL;}

CXMouseSurface() : CXSurface() {m_pNext = NULL;}

};

6.3.2 Linked Lists — A Definition

A linked list is so called because it represents the concept of a lin-

ear list. It spans from left to right, and each item maintains a link to

the next. In our case, one instance of CXMouseSurface is a single

item, and it maintains a link to its next item by way of a next

pointer. This next pointer is a link to separate working instance of

CXMouseSurface. Figure 6.1 shows an illustration of a normal

linked list containing several CXMouseSurface items.

122 Part I
Chapter 6: Abstracting DirectInput

Figure 6.1

� NOTE

To some, the idea of a linked list of cursors might seem a little “over-

kill,” but there are cases when they prove most appropriate. One such

instance is graphic adventure games, which include such great titles

as Day of the Tentacle, Zork, Monkey Island, and Tex Murphy. In these,

the player often carries a large inventory of items, such as keys,

books, and appliances, and as items are selected the cursor trans-

forms to an iconic representation of it. This indicates it has been

chosen. So here is an example most suited to such a cursor arrange-

ment. However, if you’re still inclined to disagree with me, then go

ahead and amend the class to use something else — perhaps a fixed

size array. Just please keep in mind that linked lists are important and

will be used again later in this book.

6.3.3 Navigating Linked Lists

Navigation of linked lists occurs linearly, from left to right. Begin-

ning at the leftmost item, we travel iteratively through the entire

list from one to the next by way of each item’s next pointer. The

end of the list is reached when the next pointer is NULL, indicating

that it has no next item. Below is the code to navigate through each

item, from start to finish.

CXMouseSurface* Temp = this->GetFirstItem(); //Gets the first surface

while(Temp->GetNext()) //Loop all items

{

//Do something here

Temp = Temp->GetNext();

}

Part I 123
Chapter 6: Abstracting DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

6.3.4 Adding New Items to Linked Lists

Instances of CXMouseSurface can be added to the end of the list as

new items. For example, to add an item I we must first cycle to the

list’s end, the item with a next pointer of NULL. Once there, we

change its next pointer to equal the address of I and then change

the next pointer of I to equal NULL. This indicates it has now

become the last item in the list. The code to achieve this process

can be seen below. It will not be stored in CXMouseSurface — an

individual item — but inside the class that manages the whole list.

This will be CXMouse, which is defined later in the chapter.

void CXMouse::AddCursorSurface(CXMouseSurface* Surface)

{

if(Surface) //If new item is valid

{

if(!this->GetFirstSurface()) //Is the list empty?

this->m_Surface = Surface; //If so, make it the first item

//in the list

else

{

CXMouseSurface* Temp = this->GetFirstSurface(); //Get first item

while(Temp->GetNext()) //Cycle through list

Temp = Temp->GetNext();

Temp->SetNext(Surface); //Set last item

}

}

}

124 Part I
Chapter 6: Abstracting DirectInput

Figure 6.2

6.3.5 Deleting Linked Lists

A list is cleared when all items are deleted and when the first item

equals NULL. This process is achieved by deleting items linearly

from left to right. It begins at the first CXMouseSurface. This

becomes item I. A reference is made to its next item, which

becomes known as N. Item I is then deleted, N becomes the new I,

and its next pointer becomes the new N. Again, I is deleted and the

process repeats until the last item is reached. The code to achieve

this, taken from CXMouse, is as follows:

CXMouseSurface* I = this->GetFirstSurface(); //Get first item

while(Temp) //Loop all items

{

CXMouseSurface* N = I->GetNext();

delete I;

I = N;

}

6.3.6 CXMouseSurface — Other Properties

Besides CXMouseSurface having a next pointer that makes it

linked list capable, it contains several other additions, most notably

HotSpotX and HotSpotY and their corresponding accessor meth-

ods. Together, these define the X and Y center of the cursor, whose

origin is (0,0), the top-left corner of the cursor surface. As we shall

see, these are passed onto the SetCursorProperties method of the

Direct3D device, and this occurs inside CXMouse. This is a class

that we now define in conjunction with CXMouseSurface.

Part I 125
Chapter 6: Abstracting DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

Figure 6.3

6.3.7 Wrapping the Mouse Device with CXMouse

Instances of CXMouse are returned from the CreateMouse proce-

dure of CXInput. This class allows us to read input from the mouse

and to set properties about it. Its declaration can be seen below.

class CXMouse

{

private:

CXMouseSurface* m_Surface; //Pointer to the first item in a cursor list

CXMouseSurface* m_CurrentCursorSurface; //Pointer to a cursor in the

//list, the selected item

LPDIRECTINPUTDEVICE8 m_pDevice; //The mouse device

LPDIRECT3DDEVICE9 m_p3DDevice; //The Direct3D device

DIMOUSESTATE m_State;

LONG m_iX; //Accumulative (absolute) position of cursor on the X axis

LONG m_iY; //Accumulative (absolute) position of cursor on the Y axis

protected:

public:

CXMouse (LPDIRECT3DDEVICE9 pDevice, LPDIRECTINPUT8 pInput, HWND hWnd,

bool Exclusive);

~ CXMouse();

HRESULT Update();

LONG GetXPos();

LONG GetYPos();

bool IsButtonPressed(int Button);

HRESULT SetCursorImage();

HRESULT SetMouseCursor(char* FilePath, UINT HotSpotX, UINT HotSpotY,

int Type);

void AddCursorSurface(CXMouseSurface* Surface);

CXMouseSurface* GetFirstSurface() {return m_Surface;}

bool SetCursor(int Type);

CXMouseSurface* GetCurrentCursor() {return m_CurrentCursorSurface;}

void SetCurrentCursor(CXMouseSurface* Surface)

{m_CurrentCursorSurface = Surface;}

void SetCursorPosition(int X, int Y);

HRESULT SetCursorVisible(bool Show);

};

Creation occurs during an application’s InitInput procedure, and

deletion occurs inside CleanUp on application end. At these times,

126 Part I
Chapter 6: Abstracting DirectInput

we invoke either the class constructor or destructor. These can be

seen below. The constructor creates instances of IDirectInput-

Device8 and sets it to several starting properties, while the

destructor destroys such instances.

//Constructor

CXMouse::CXMouse(LPDIRECT3DDEVICE9 pDevice, LPDIRECTINPUT8 pInput,

HWND hWnd, bool Exclusive)

{

m_p3DDevice = NULL; //Set Direct3D device

//Initial cursor position

m_iX = 0;

m_iY = 0;

if((pInput) && (pDevice))

{

HRESULT Result = E_FAIL;

m_p3DDevice = pDevice;

Result = pInput->CreateDevice(GUID_SysMouse, &m_pDevice, NULL);

if(FAILED(Result))

return;

Result = m_pDevice->SetDataFormat(&c_dfDIMouse);

if(FAILED(Result))

{

SAFE_RELEASE(m_pDevice);

return;

}

if(Exclusive)

{

Result = m_pDevice->SetCooperativeLevel(hWnd, DISCL_EXCLUSIVE |

DISCL_NOWINKEY |

DISCL_FOREGROUND);

}

else

{

Part I 127
Chapter 6: Abstracting DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

Result = m_pDevice->SetCooperativeLevel(hWnd, DISCL_NONEXCLUSIVE |

DISCL_FOREGROUND);

}

if(FAILED(Result))

{

SAFE_RELEASE(m_pDevice);

return;

}

ZeroMemory(sizeof(,&Mode), (void*)&Mode);

m_p3DDevice->GetDisplayMode(0,&Mode);

m_Surface = NULL;

m_CurrentCursorSurface = NULL;

m_Changed = false;

m_Buttons = false;

}

}

//---

//Destructor

CXMouse::~ CXMouse()

{

if(m_pDevice)

{

m_pDevice->Unacquire();

SAFE_RELEASE(m_pDevice);

}

CXMouseSurface* Temp = this->GetFirstSurface();

while(Temp)

{

CXMouseSurface* Next = Temp->GetNext();

SAFE_DELETE(Temp);

Temp = Next;

}

}

128 Part I
Chapter 6: Abstracting DirectInput

6.3.8 Initializing Mouse Cursors with CXMouse

After CXMouse is created, we must perform an additional step if

we want to add a mouse cursor that is going to be visible on-screen.

CXMouse maintains a list of cursors, and it achieves this by keep-

ing a pointer to the first item in the list. This item is of type

CXMouseSurface*. When it is NULL, the list is empty. When it’s

not NULL, the list contains at least one cursor. When the first

item’s next pointer is equal to NULL, the list contains only one cur-

sor. When it isn’t NULL, it contains more. To add a cursor we must

call the SetMouseCursor method of CXMouse. This function

accepts a path to the cursor image, X and Y hot spots, and a unique

identifier to help select it from the list. Subsequent to this call we

must also invoke SetCursorPosition and SetCursorVisible. Exam-

ples of these functions setting a mouse cursor are shown below.

//InitDeviceObjects

m_Mouse->SetMouseCursor("C:\\ cursor.dds", 0, 0, 0); //Create a cursor

m_Mouse->SetCursorPosition(0,0); //Set starting position

m_Mouse->SetCursorVisible(true); //Is it visible?

The definitions of SetMouseCursor, SetCursorPosition, and

SetCursorVisible are as follows:

//Set mouse cursor

HRESULT CXMouse::SetMouseCursor(char* FilePath, UINT HotSpotX,

UINT HotSpotY, int Type)

{

//Create a cursor — see Sections 5.2 and 6.3.1

CXMouseSurface* Tmp = new CXMouseSurface(this->m_p3DDevice);

//Load image from surface — see Sections 5.1.2 and 5.2.2

HRESULT Result = Tmp->LoadFromFile(FilePath);

if(SUCCEEDED(Result))

{

//Set cursor properties

Tmp->SetHotSpotX(HotSpotX);

Tmp->SetHotSpotY(HotSpotY);

Part I 129
Chapter 6: Abstracting DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

Tmp->SetSurfaceType(Type);

//Add cursor to end of list — see section 6.3.4

this->AddCursorSurface(Tmp);

//Make this the active — currently visible — cursor

this->SetCurrentCursor(Tmp);

//Finally register the cursor with DirectX

return m_p3DDevice->SetCursorProperties(this->GetCurrentCursor()

->GetHotSpotX(),

this->GetCurrentCursor()

->GetHotSpotY(),

this->GetCurrentCursor()

->GetSurface());

}

return Result;

}

//---

//Set cursor position

void CXMouse::SetCursorPosition(int X, int Y)

{

m_p3DDevice->SetCursorPosition(X,Y,0);

}

//---

//Set cursor visible

HRESULT CXMouse::SetCursorVisible(bool Show)

{

return m_p3DDevice->ShowCursor(Show);

}

130 Part I
Chapter 6: Abstracting DirectInput

6.3.9 Changing Mouse Cursors with CXMouse

Only one cursor in the list can be the current cursor at any one

time, (e.g., you can have either an hourglass or an arrow on-screen

but not both). This is known as the active cursor and is represented

by the member m_CurrentCursorSurface. More often than not, this

property is implicitly set as cursors are added using SetMouse-

Cursor. But there will be many occasions when you’ll want to

change the cursor from one to another yourself. In other words,

you want to swap the active cursor. This can be done using the

SetCursor method. All it requires is the unique identifier you

assigned to a cursor upon creation (see previous section). An exam-

ple of this function in use appears below, along with its definition.

//Set mouse cursor use

m_Mouse->SetCursor(0);

//---

//Set mouse cursor definition

bool CXMouse::SetCursor(int Type)

{

bool Found = false;

CXMouseSurface* Temp = this->GetFirstSurface();

while(Temp)

{

if(Temp->GetSurfaceType() == Type)

{

Found = true;

this->SetCurrentCursor(Temp);

m_p3DDevice->SetCursorProperties(this->GetCurrentCursor()

->GetHotSpotX(),

this->GetCurrentCursor()

->GetHotSpotY(),

this->GetCurrentCursor()

->GetSurface());

Part I 131
Chapter 6: Abstracting DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

break;

}

Temp = Temp->GetNext();

}

return Found;

}

6.3.10 Reading Mouse Data with CXMouse

Mouse data, in terms of button states and cursor positions, is read

in much the same fashion as keyboard data. A snapshot is taken of

the device’s state at regular enough intervals using UpdateInput,

and then questions are asked about it. In this case, those questions

will relate to the X and Y position of the mouse cursor and the

depressed status of the mouse’s buttons. To first take a snapshot of

the device we call the Update method. The definition of this

method looks like this:

HRESULT CXMouse::Update()

{

HRESULT Result = E_FAIL;

long OldX, OldY;

bool Pressed = this->IsButtonPressed(0);

m_Changed = false;

if(m_pDevice)

{

Result = m_pDevice->Acquire();

Result = m_pDevice->Poll();

if(FAILED(Result))

return Result;

Result = m_pDevice->GetDeviceState(sizeof(DIMOUSESTATE), (void*)

&m_State);

if(FAILED(Result))

return Result;

132 Part I
Chapter 6: Abstracting DirectInput

if(this->IsButtonPressed(0) != Pressed)

m_Buttons = true;

else

m_Buttons = false;

m_iX += m_State.lX;

m_iY += m_State.lY;

}

return Result;

}

6.3.11 Reading Cursor Positions with CXMouse

Update is called to take snapshots of a device, and afterward cursor

positions can be read using the GetXPos and GetYPos functions.

These properties record the accumulative position of the mouse —

its absolute position. This is relative to the top-left corner of the

screen. An example of reading the cursor position is presented

below. It could be coded inside UpdateInput or in a Render

procedure.

m_Mouse->Update(); //Take snapshot

long X = m_Mouse->GetXPos(); //Get X pos

long Y = m_Mouse->GetYPos(); //Get Y pos

m_Mouse->SetCursorPosition(X, Y); //Update cursor position on screen

6.3.12 Reading Button States with CXMouse

Like cursor positions, button states are read after a snapshot has

been taken using the Update function. These can be read with

IsButtonPressed. An example of this appears below. Again, it can be

coded inside UpdateInput or Render.

Part I 133
Chapter 6: Abstracting DirectInput

T
h

e
F
o
u

n
d

a
ti

o
n

s

m_Mouse->Update(); //Take snapshot

if(m_Mouse->IsButtonPressed(0)) //Is button pressed?

MessageBox(this->m_hWnd, "You pressed left","",MB_OK); //Respond

6.4 Conclusion

This chapter marks the end of Part I of this book. It brings to a

close a rounded knowledge of Direct3D and DirectInput. Before

moving on, it is advised that you take a look back through Part I and

examine the code on the CD, specifically examining the wrappers

we have created throughout the past two chapters. These consti-

tute our tools for the programming tasks ahead. It is by using these

that we will construct a reusable interface library, complete with

windows, controls, and more.

134 Part I
Chapter 6: Abstracting DirectInput

Chapter 7

Beginning
CXControl

This is the beginning of Part II. Here, the knowledge from Part I is

used to develop a reusable interface library, called UI LIB. Later in

this book, UI LIB will be deployed to create an interface for a

DirectShow Media Player program. However, this chapter concen-

trates on creating the beginnings of that library. In doing so it

answers the following questions:

� What is an interface library?

� How do we develop controls?

� What is a base control?

� How does a control hierarchy work?

� Which properties are common to all controls?

� How can we implement parent, child, and sibling controls?

� What is a canvas?

� What is relative positioning?

135

7.1 UI LIB (User Interface Library)
— What Is It?

Programmers are always on the lookout for shortcuts, as none of us

wants to reinvent the wheel. Consequently, when developing appli-

cations we tend to include different libraries containing premade

functions to perform the hard work for us. For example, file I/O

functions or printf and scanf routines allow us to achieve different

tasks without having to learn the specifics of hardware. Thus, using

libraries saves us time and makes our software easier to support.

UI LIB, which we develop in Part II, will provide developers those

same benefits in the context of developing interfaces. Ultimately, it

will contain a collection of classes and functions that will assemble

first-rate interfaces in a short period of time. For developers using

our library, it will be as simple as typing #include <UILIB.H> in

their projects, and including its appropriate lib, for our library’s

entire interface benefits to become available. Let us now examine

UI LIB more closely and see what it will consist of.

7.2 UI LIB — Controls as Classes

Chapter 1 explained how interfaces are made from a collection of

controls, like buttons, list boxes, text boxes, check boxes, etc; and

it also explained how both a user and program use controls to com-

municate. Therefore, UI LIB shall be a collection of controls.

Fortunately for us, controls can be encapsulated into classes — one

class per control, like class CButton, CTextBox, CListBox, and so

on. Hence, UI LIB shall essentially be a collection of classes, and

those classes will be controls.

136 Part II
Chapter 7: Beginning CXControl

7.3 Controls — Class
Hierarchy and Base Controls

So where is the best place to start developing UI LIB? Should we

begin by developing a button control? A text box control? Or even a

drop-down list control? Does it really matter, or is there some basic

developmental structure to which we should adhere? Indeed, the

best place to start is by asking ourselves exactly what a control is.

It is only by doing this that we can understand that all controls,

regardless of their differences, share a common set of attributes. In

fact, it is only by having at least these attributes that they may be

considered a control. These attributes are examined as the chapter

progresses. In terms of classes then, it makes sense to develop our

controls in stages, beginning with a class that encapsulates every-

thing all controls share, and nothing more. This is known as a base

class, or base control. It is not typically instantiated alone, but

whenever other controls are created,

such as buttons or labels, they’ll be

derived from it. Hence, those descen-

dants become derived classes, or

derived controls, because they inherit

and extend upon the features of their

ancestor. This will save us having to

code the same functionality into each

control individually. This base class will

be called CXControl, and it forms the

subject matter for the rest of this chap-

ter and the next. Figure 7.1 demon-

strates the class hierarchy for UI LIB.

Note that CXControl is highlighted.

Part II 137
Chapter 7: Beginning CXControl

U
I

L
IB

Figure 7.1

� NOTE

CXControl spans two chapters because it’s so large and incorporates

important concepts. I have coded a lot of power into this class so that

customizing derived classes will be that much quicker and simpler.

7.4 CXControl — The Beginnings

CXControl is the ancestor upon which other classes inherit a com-

mon feature set. It is therefore a base class, and other controls in

UI LIB are derived classes. The rest of this chapter is dedicated to

the development of CXControl. Specifically, subsequent sections

investigate features common to all controls and then implement

them into CXControl for descendants to inherit. That development

process begins here, with a blank class declaration, and will be

added to as the chapter progresses.

class CXControl

{

private:

protected:

public:

};

� NOTE

CXControl is being developed inside BaseControl.h. You can follow

through this chapter and code it from scratch or load the file from the

companion CD. This can be found at Book Code\Part II\Chapters 7

and 8\BaseControl.h.

138 Part II
Chapter 7: Beginning CXControl

7.5 Defining CXControl —
Controls and a Canvas

Visually, controls differ widely; list boxes have one appearance and

buttons have another. However, all controls typically represent a

rectangular region inside the boundaries of their parent, and inside

this region a control will paint itself. Appropriately enough, this

rectangular drawing area is termed a canvas. Technically, it is a col-

lection of pixels — analogous to a surface or a texture. Its size can

be expressed in terms of width and height — measured in pixels —

and its visibility status can be either visible or invisible. Take a look

at CXControl’s following declaration to see how a canvas has suc-

cessfully been implemented.

class CXControl

{

protected:

DWORD m_Width; //Width of canvas

DWORD m_Height; //Height of canvas

bool m_Visible; //Visibility of canvas

CXTexture* m_Canvas; //The canvas itself

CXPen* m_Pen; //Something to draw upon the canvas

public:

CXTexture* GetCanvas(void) {return m_Canvas;}

void SetCanvas(CXTexture* Texture) {m_Canvas = Texture;}

bool GetVisible(void) {return m_Visible;}

Part II 139
Chapter 7: Beginning CXControl

U
I

L
IB

Figure 7.2. A canvas before it is
drawn upon.

void SetVisible(bool Visible) {m_Visible = Visible;}

CXPen* GetPen(void) {return m_Pen;}

void SetPen(CXPen* Pen) {m_Pen = Pen;}

DWORD GetWidth(void) {return m_Width;}

DWORD GetHeight(void) {return m_Height;}

void SetWidth(DWORD Width) {m_Width = Width;}

void SetHeight(DWORD Height) {m_Height = Height;}

};

� NOTE

The details of drawing are defined in the next chapter as we continue

to develop CXControl, and specifically as we investigate messages

and event handling.

� NOTE

Nowadays, in a world of skinnable apps like media players and

instant messengers, users can customize the look of their controls such

that they are non-rectangular. This can be implemented in Direct3D

by using alpha tested textures. However, this is an advanced topic that

is beyond the scope of this book.

7.6 CXControl — Parent,
Sibling, and Child Controls

Chapter 1 explained briefly how every control of an interface exists

inside a hierarchy. Hence, controls are intimately related. For

example, the topmost control of an interface has no parent, except

the desktop. More often than not, this control is the main applica-

tion window, and this will contain other controls like buttons and

check boxes, etc. Such controls are therefore children of a window,

siblings to one another, and the window itself is their parent. In fact,

this hierarchy happens to be one of the most important influences

on a control, determining both when they’re created and destroyed

in an application, among other things. See Figure 7.3 to visualize

how this hierarchical relationship could appear diagrammatically.

140 Part II
Chapter 7: Beginning CXControl

In the previously chapter, we examined how a list of mouse cursors

could be managed effectively by linked lists. We will now employ an

improvement of that process here to handle a control’s relationship.

Recall that a linked list is a linear list of items where each item

maintains a pointer to its next, except for the last item, whose next

is NULL. Typically, this is an ideal arrangement to store lists of

items, like children of a control. However, the problem is that you

can only traverse a linked list linearly from left to right, one to the

next. Now, while this isn’t inherently a catastrophic obstacle, it can

often be an inconvenient and impractical structure. The solution,

therefore, is to extend the linked list concept to become a two-way

linked list. Here, each control maintains a pointer to both its next

and previous siblings; in other words, pointers to both the control

before and the control after any current item in the list. For a devel-

oper, such an arrangement provides several unique benefits: One,

you can navigate the list in a bidirectional way, reaching either end

from any starting point; two, you can delete arbitrary items and

repair residual holes in the chain; and three, you can perform all

kinds of sorting and item rearrangement operations. See Figure 7.4

to get an idea of how two-way linked lists appear.

Part II 141
Chapter 7: Beginning CXControl

U
I

L
IB

Figure 7.3

Thus, to implement parent, child, and sibling relationships in con-

trols, it makes sense to use a two-way linked list. Such a list can be

appended to class CXControl to handle its children simply by add-

ing several different pointers: one to a parent control, one to the

next and previous siblings, and one to a control’s first child. To

manage these pointers, a number of functions should be added.

These include functions to add child controls, functions to navigate

through lists of siblings, and functions to delete child controls.

These are explained in some of the following subsections. Take a

look at the appended class declaration for CXControl below.

class CXControl

{

protected::

DWORD m_Width;

DWORD m_Height;

bool m_Visible;

CXTexture* m_Canvas;

CXPen* m_Pen;

CXControl* m_ChildControls;

CXControl* m_NextSibling;

CXControl* m_PreviousSibling;

CXControl* m_Parent;

public:

//Accessors

CXTexture* GetCanvas(void) {return m_Canvas;}

void SetCanvas(CXTexture* Texture) {m_Canvas = Texture;}

bool GetVisible(void) {return m_Visible;}

void SetVisible(bool Visible) {m_Visible = Visible;}

CXPen* GetPen(void) {return m_Pen;}

void SetPen(CXPen* Pen) {m_Pen = Pen;}

DWORD GetWidth(void) {return m_Width;}

DWORD GetHeight(void) {return m_Height;}

142 Part II
Chapter 7: Beginning CXControl

Figure 7.4

void SetWidth(DWORD Width) {m_Width = Width;}

void SetHeight(DWORD Height) {m_Height = Height;}

CXControl* GetParentControl(void) {return m_Parent;}

void SetParentControl(CXControl* Control) {m_Parent = Control;}

CXControl* GetNextSibling(void) {return m_NextSibling;}

void SetNextSibling(CXControl* Control) {m_NextSibling = Control;}

CXControl* GetPreviousSibling(void) {return m_PreviousSibling;}

void SetPreviousSibling(CXControl* Control) {m_PreviousSibling = Control;}

CXControl* GetFirstChild(void) {return m_ChildControls;}

void SetFirstChild(CXControl* Control) {m_ChildControls = Control;}

CXControl* AddChildControl(CXControl* Control);

CXControl* RemoveChildControl(CXControl* Control);

void RemoveAllChildren();

int GetChildCount();

};

7.6.1 Adding Child Controls

Controls store references to their children by way of the m_Child-

Controls pointer, and this effectively represents the first child in a

list of potentially many. Thus, to make an existing control a child of

another, one must call the AddChildControl method of CXControl.

For example, one would use this function to make a button control a

child of a window. Examine the function definition below. You saw a

similar function in the previous chapter to add cursors to a list.

CXControl* CXControl::AddChildControl(CXControl* Control)

{

Control->SetParentControl(this);

CXPen* Pen = Control->GetPen();

SAFE_DELETE(Pen);

Control->SetPen(this->GetPen());

if(!m_ChildControls)

m_ChildControls = Control;

else

{

Part II 143
Chapter 7: Beginning CXControl

U
I

L
IB

CXControl* Temp = this->GetFirstChild();

while(Temp->GetNextSibling())

Temp = Temp->GetNextSibling();

Temp->SetNextSibling(Control);

Control->SetPreviousSibling(Temp);

}

return Control;

}

� NOTE

Notice that this function differs somewhat from the previous chapter

where we added cursors to a linked list. Here, we’re creating a

two-way linked list and are therefore setting the previous sibling con-

trol in addition to the next. Hence, this now means we can navigate a

list of child controls in a bidirectional way.

7.6.2 Clearing Child Controls

Clearing child controls is the process of deleting them all. To do

this, you must call the RemoveAllChildren method of CXControl.

Again, a similar process was demonstrated in the previous chapter.

Let’s take a look at its function definition.

void CXControl::RemoveAllChildren()

{

CXControl* Temp = this->GetFirstChild();

while(Temp)

{

CXControl* Next = Temp->GetNextSibling();

SAFE_DELETE(Temp);

Temp = Next;

}

}

144 Part II
Chapter 7: Beginning CXControl

7.6.3 Removing Specific Children

Something we didn’t see in the previous chapter was the deleting of

arbitrary items that could appear anywhere in the list. However,

two-way linked lists make this process simple. For instance, to

delete an item I, perform the following steps: Keep a reference N

to the next sibling and keep a reference P to previous sibling. Then

delete I. Finally, change the next sibling of P to N. See Figure 7.5

and the following definition of the RemoveChildControl method of

CXControl.

CXControl* CXControl::RemoveChildControl(CXControl* Control)

{

CXControl* Next = Control->GetNextSibling();

CXControl* Previous = Control->GetPreviousSibling();

SAFE_DELETE(Control);

Next->SetPreviousSibling(Previous);

Control = Next;

return Control;

}

Part II 145
Chapter 7: Beginning CXControl

U
I

L
IB

Figure 7.5

7.6.4 Counting Child Controls

Occasionally it will be useful to know how many children a specific

control has. Counting them is a simple process. You must

iteratively traverse the list of children from left to right and incre-

ment a counter as you proceed. This process is achieved by calling

the GetChildCount method of CXControl. Its definition follows.

int CXControl::GetChildCount()

{

int Count = 0;

CXControl* Temp = this->GetFirstChild();

while(Temp)

{

CXControl* Next = Temp->GetNextSibling();

Count++;

Temp = Next;

}

return Count;

}

7.7 Absolute and Relative Positioning

146 Part II
Chapter 7: Beginning CXControl

Figure 7.6. Notice that the buttons’ relative and absolute
positions are not the same. They describe different values. One
represents its position on screen, and the other represents its
position inside its parent control.

Section 7.5 explained how a canvas is, in essence, everything that

is visible about a control. It demonstrated how a control’s size is

expressed in terms of width and height, and its visibility status in

terms of visible and invisible. However, there’s an additional prop-

erty thus far overlooked, that of position. Specifically, a control has

two positions in terms of X and Y. These are its absolute position

and its relative position. Absolute position is the idea that immedi-

ately springs to mind when people think of a position; it essentially

defines a control’s X and Y location, measured from the top-left cor-

ner of the screen. Its relative position, however, defines a control’s

X and Y position relative to its parent — in other words, measured

from the top-left corner of its parent, not the top-left corner of the

screen. Invariably, some people might be tempted to question

whether such a distinction matters, but the answer would be a

resounding “Yes.” To see why, take a look at Figure 7.6. For the

purposes of UI LIB, all controls should maintain their relative posi-

tions rather than absolute positions because it’s simpler and more

intuitive. However, it will often be necessary to compute their

absolute positions too, and we’ll see how this is achieved in the

next section.

class CXControl

{

protected:

D3DXVECTOR2 m_Position;

DWORD m_Width;

DWORD m_Height;

bool m_Visible;

CXTexture* m_Canvas;

CXPen* m_Pen;

CXControl* m_ChildControls;

CXControl* m_NextSibling;

CXControl* m_PreviousSibling;

CXControl* m_Parent;

public:

//Accessors

CXTexture* GetCanvas(void) {return m_Canvas;}

void SetCanvas(CXTexture* Texture) {m_Canvas = Texture;}

bool GetVisible(void) {return m_Visible;}

Part II 147
Chapter 7: Beginning CXControl

U
I

L
IB

void SetVisible(bool Visible) {m_Visible = Visible;}

CXPen* GetPen(void) {return m_Pen;}

void SetPen(CXPen* Pen) {m_Pen = Pen;}

DWORD GetWidth(void) {return m_Width;}

DWORD GetHeight(void) {return m_Height;}

void SetWidth(DWORD Width) {m_Width = Width;}

void SetHeight(DWORD Height) {m_Height = Height;}

CXControl* GetParentControl(void) {return m_Parent;}

void SetParentControl(CXControl* Control) {m_Parent = Control;}

CXControl* GetNextSibling(void) {return m_NextSibling;}

void SetNextSibling(CXControl* Control) {m_NextSibling = Control;}

CXControl* GetPreviousSibling(void) {return m_PreviousSibling;}

void SetPreviousSibling(CXControl* Control) {m_PreviousSibling = Control;}

CXControl* GetFirstChild(void) {return m_ChildControls;}

void SetFirstChild(CXControl* Control) {m_ChildControls = Control;}

D3DXVECTOR2* GetPosition(void) {return &m_Position;}

FLOAT GetXPos(void) {return m_Position.x;}

FLOAT GetYPos(void) {return m_Position.y;}

void SetXPos(FLOAT X) {m_Position.x = X;}

void SetYPos(FLOAT Y) {m_Position.y = Y;}

void SetXYPos(FLOAT X, FLOAT Y);

CXControl* AddChildControl(CXControl* Control);

CXControl* RemoveChildControl(CXControl* Control);

void RemoveAllChildren();

int GetChildCount();

void GetAbsolutePosition(D3DXVECTOR2* Position);

};

� NOTE

For the topmost control in a hierarchy, such as the main application

window, the absolute and relative positions are the same. This is

because topmost controls have no parent, except the desktop, whose

extent spans the whole of the screen.

� NOTE

When dealing with the Windows API, these positions are often referred

to as screen coordinates, or relative and parent coordinates.

148 Part II
Chapter 7: Beginning CXControl

7.7.1 Computing Positions

The GetAbsolutePosition method of CXControl returns a control’s

absolute position — in other words, its actual X and Y location on

the screen. We will most often use absolute positions to paint a

control correctly on-screen. Computing the absolute position for a

control is a simple process: You simply add the control’s relative

position to its parent’s absolute position. Essentially, this gives you

the cumulative total of all relative positions, from one control to its

topmost parent in a hierarchy. Take a look at the function definition

for GetAbsolutePosition.

Part II 149
Chapter 7: Beginning CXControl

U
I

L
IB

Figure 7.7. By maintaining a control’s relative position, it’s easy to compute its
absolute position. This makes it simple to redraw controls correctly when a
window is dragged across the screen, such that each control maintains the same
relative distance from the other.

void CXControl::GetAbsolutePosition(D3DXVECTOR2* Position)

{

Position->x += this->GetXPos();

Position->y += this->GetYPos();

if(this->m_Parent)

this->m_Parent->GetAbsolutePosition(Position);

}

7.8 CXControl — The Class
Declaration Thus Far

class CXControl

{

protected:

D3DXVECTOR2 m_Position;

DWORD m_Width;

DWORD m_Height;

bool m_Visible;

CXTexture* m_Canvas;

CXPen* m_Pen;

CXControl* m_ChildControls;

CXControl* m_NextSibling;

CXControl* m_PreviousSibling;

CXControl* m_Parent;

public:

//Accessors

CXTexture* GetCanvas(void) {return m_Canvas;}

void SetCanvas(CXTexture* Texture) {m_Canvas = Texture;}

bool GetVisible(void) {return m_Visible;}

void SetVisible(bool Visible) {m_Visible = Visible;}

CXPen* GetPen(void) {return m_Pen;}

void SetPen(CXPen* Pen) {m_Pen = Pen;}

DWORD GetWidth(void) {return m_Width;}

DWORD GetHeight(void) {return m_Height;}

void SetWidth(DWORD Width) {m_Width = Width;}

void SetHeight(DWORD Height) {m_Height = Height;}

150 Part II
Chapter 7: Beginning CXControl

CXControl* GetParentControl(void) {return m_Parent;}

void SetParentControl(CXControl* Control) {m_Parent = Control;}

CXControl* GetNextSibling(void) {return m_NextSibling;}

void SetNextSibling(CXControl* Control) {m_NextSibling = Control;}

CXControl* GetPreviousSibling(void) {return m_PreviousSibling;}

void SetPreviousSibling(CXControl* Control) {m_PreviousSibling = Control;}

CXControl* GetFirstChild(void) {return m_ChildControls;}

void SetFirstChild(CXControl* Control) {m_ChildControls = Control;}

D3DXVECTOR2* GetPosition(void) {return &m_Position;}

FLOAT GetXPos(void) {return m_Position.x;}

FLOAT GetYPos(void) {return m_Position.y;}

void SetXPos(FLOAT X) {m_Position.x = X;}

void SetYPos(FLOAT Y) {m_Position.y = Y;}

void SetXYPos(FLOAT X, FLOAT Y);

CXControl* AddChildControl(CXControl* Control);

CXControl* RemoveChildControl(CXControl* Control);

void RemoveAllChildren();

int GetChildCount();

void GetAbsolutePosition(D3DXVECTOR2* Position);

};

7.9 Conclusion

This chapter presented the beginnings of UI LIB, which took the

form of class CXControl. This class encapsulates attributes that are

common to all controls, features all of them must possess in order

to be a control. The next chapter continues this work. However,

before moving on, let’s recap what this chapter has demonstrated.

� A library is a collection of functions, structures, and classes that

achieves specific tasks. Libraries are primarily designed to

make a developer’s life simpler by providing him with the tools

to the get job done. DirectX is an example of a library.

� UI LIB is an abbreviation for user interface library. It will con-

sist of a series of controls — such as buttons, list boxes, check

boxes, etc. — that allows developers to construct user inter-

faces for their software.

Part II 151
Chapter 7: Beginning CXControl

U
I

L
IB

� Even though controls differ, they all inherit a common set of

attributes. This is why CXControl has been developed. It is not

typically instantiated on its own, but acts as a base control from

which others derive a basic feature set.

� Geometrically, controls are typically a rectangular region called

a canvas. This can be expressed in terms of width and height,

and visible and invisible. Inside this canvas a control draws

itself to a user; hence, buttons have one appearance and lists

have another.

� Each control in an interface exists in a hierarchy. The topmost

control is known as the ultimate ancestor — or root control —

and this is often the main window. Other controls are descen-

dants of this, and these too can have siblings and children.

� Controls have two positions, an absolute position and a relative

position. The former expresses a control’s actual position from

the top-left corner of the screen, in terms of X and Y. The latter,

however, expresses a control’s position from the top-left corner

of its parent, not the screen. This process is useful for readjust-

ing controls whenever a window is dragged across the screen.

152 Part II
Chapter 7: Beginning CXControl

Chapter 8

Continuing
CXControl

The whole of Part II is dedicated to developing UI LIB, a collection

of controls. This began in the previous chapter by developing a base

class defining the common attributes of controls that are inherited

by descendant classes. Descendants are controls such as buttons,

list boxes, check boxes, and even windows. These will be devel-

oped in subsequent chapters. This chapter, however, continues

where the previous left off, by completing the base class

CXControl. In this chapter, the following topics are explored:

153

Figure 8.1

� Event handling

� Windows messages and custom messages

� Posting and processing messages

� Painting

� Depth sorting

� Focus

� TIP

You can resume coding from the previous chapter or load this chap-

ter’s work from the CD at Book Code\Part II\Chapters 7 and 8.

8.1 Messages

For controls to operate properly they need to know when specific

events occur. For example, text boxes must respond to keypresses

and buttons must respond to mouse clicks, etc. The way an applica-

tion receives events is through the WndProc procedure, part of the

message pump. Here, events are received in the form of messages.

These are actually data structures passed as arguments to WndProc

whenever events occur. Effectively, they are data packets whose

properties describe information about an event, such as which key

was pressed or the new location of the mouse cursor. The following

declaration shows a windows message, and Table 8.1 lists the most

common messages and describes their properties.

struct Message

{

UINT Message; //The type of message; mouse message, etc. See

//Table 8.1 for a selective list

LPARAM Parameter1; //Describes additional information about an event

WPARAM Parameter1; //Describes additional information about an event

};

154 Part II
Chapter 8: Continuing CXControl

Table 8.1. Common messages

WM_PAINT Sent to an application whenever a window needs to be

redrawn; more specifically, whenever the GDI identifies

a window or its contents need to be drawn in whole or

part. However, it should be remembered that Direct3D

applications do not rely on the typical window painting

mechanism for their drawing. Instead, Direct3D uses its

own Render loop.

Parameters:

LPARAM (HDC)

Handle to a drawing device context.

WM_KEYDOWN Sent to an application whenever a user presses a key on

the keyboard. Also sent repeatedly if a user holds down

a key for a specific period of time.

Parameters:

LPARAM (int)

Virtual key code for the pressed key.

WM_KEYUP Sent to an application whenever a pressed key on the

keyboard is released.

Parameters:

LPARAM (int)

Virtual key code for the pressed key.

WM_CHAR Sent to an application whenever a user presses a

non-control key on the keyboard.

Parameters:

LPARAM (int)

Virtual key code for the pressed key.

WM_MOUSEMOVE Sent to an application whenever the cursor position

changes. In other words, whenever the user moves the

mouse.

Parameters:

LOWORD LPARAM (int)

X position of the mouse cursor.

HIWORD WPARAM (int)

Y position of the mouse cursor.

Part II 155
Chapter 8: Continuing CXControl

U
I

L
IB

WPARAM Indicates whether special control characters were

pressed on the keyboard. This value can be a combina-

tion of one or more of the following constants.

MK_CONTROL — Control key was pressed.

MK_LBUTTON — Left mouse button is down.

MK_MBUTTON — Middle mouse button is down.

MK_RBUTTON — Right mouse button is down.

MK_SHIFT — Shift key is down.

WM_LBUTTONDOWN Sent to an application whenever the left mouse button is

pressed.

Parameters:

Same as above.

WM_MBUTTONDOWN Sent to an application whenever the middle mouse but-

ton is pressed.

Parameters:

Same as above.

WM_RBUTTONDOWN Sent to an application whenever the right mouse button

is pressed.

Parameters:

Same as above.

WM_LBUTTONUP Sent to an application whenever the left mouse button is

released.

Parameters:

Same as above.

WM_MBUTTONUP Sent to an application whenever the middle mouse but-

ton is released.

Parameters:

Same as above.

WM_RBUTTONUP Sent to an application whenever the right mouse button

is released.

Parameters:

Same as above.

156 Part II
Chapter 8: Continuing CXControl

8.1.1 Posting Messages

Once messages are received by WndProc, they must be forwarded

on to controls. More specifically, they must be forwarded to the top-

most control of a hierarchy. Such a control might be an application’s

main window. The process of sending messages to controls is

known as dispatching, and a function named PostMessage should be

added to class CXControl for receiving these messages. Its declara-

tion and definition will be examined later. For now it is sufficient to

know that once a message arrives here, it must then be dispatched

downward to its generations of children, a topic discussed in the

next subsection. See the following WndProc function to see how

selected messages are forwarded on to a control hierarchy.

LRESULT WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

switch (message)

{

case WM_MOUSEMOVE:

case WM_KEYDOWN:

//More messages here, you get the idea…

Window->PostMessage(message, wParam, lParam, NULL);

break;

}

return 0;

}

8.1.2 Message Specifics

Messages are posted to the topmost control in a hierarchy using

the PostMessage method, as above. They are then passed down to

its generations of children in the form of events. The nature of

exactly how they are passed down and who receives them depends

largely on the message; this is explored in subsequent sections.

Part II 157
Chapter 8: Continuing CXControl

U
I

L
IB

8.2 Handling Mouse Messages

The topmost control in a hierarchy should commonly receive the

following messages when a mouse state changes.

WM_LBUTTONDBLCLK

WM_LBUTTONDOWN

WM_LBUTTONUP

WM_MBUTTONDBLCLK

WM_MBUTTONDOWN

WM_MBUTTONUP

WM_MOUSEMOVE

WM_RBUTTONDBLCLK

WM_RBUTTONDOWN

WM_RBUTTONUP

Note that the list is not complete and most applications do not pro-

cess middle mouse buttons. However, depending on the message,

this could mean a button press, a button release, or a change of cur-

sor position. The following subsections examine how to validate

these mouse messages, and specifically how to pass them down to

a child control in the form of an event. The following class declara-

tion is of CXControl and includes additions for mouse events that

will be developed throughout this section, the addition of the

PostMessage message method, and several other functions that

will be discussed shortly.

class CXControl

{

protected:

D3DXVECTOR2 m_Position;

DWORD m_Width;

DWORD m_Height;

bool m_Visible;

CXTexture* m_Canvas;

CXPen* m_Pen;

CXControl* m_ChildControls;

CXControl* m_NextSibling;

158 Part II
Chapter 8: Continuing CXControl

CXControl* m_PreviousSibling;

CXControl* m_Parent;

public:

//Accessors

CXTexture* GetCanvas(void) {return m_Canvas;}

void SetCanvas(CXTexture* Texture) {m_Canvas = Texture;}

bool GetVisible(void) const {return m_Visible;}

void SetVisible(bool Visible) {m_Visible = Visible;}

CXPen* GetPen(void) const {return m_Pen;}

void SetPen(CXPen* Pen) {m_Pen = Pen;}

DWORD GetWidth(void) const {return m_Width;}

DWORD GetHeight(void) const {return m_Height;}

void SetWidth(DWORD Width) {m_Width = Width;}

void SetHeight(DWORD Height) {m_Height = Height;}

CXControl* GetParentControl(void) const {return m_Parent;}

void SetParentControl(CXControl* Control) {m_Parent = Control;}

CXControl* GetNextSibling(void) const {return m_NextSibling;}

void SetNextSibling(CXControl* Control) {m_NextSibling = Control;}

CXControl* GetPreviousSibling(void) const {return m_PreviousSibling;}

void SetPreviousSibling(CXControl* Control) {m_PreviousSibling = Control;}

CXControl* GetFirstChild(void) const {return m_ChildControls;}

void SetFirstChild(CXControl* Control) {m_ChildControls = Control;}

D3DXVECTOR2* GetPosition(void) const {return &m_Position;}

FLOAT GetXPos(void) const {return m_Position.x;}

FLOAT GetYPos(void) const {return m_Position.y;}

void SetXPos(FLOAT X) {m_Position.x = X;}

void SetYPos(FLOAT Y) {m_Position.y = Y;}

void SetXYPos(FLOAT X, FLOAT Y);

CXControl* AddChildControl(CXControl* Control);

CXControl* RemoveChildControl(CXControl* Control);

void RemoveAllChildren();

int GetChildCount();

void GetAbsolutePosition(D3DXVECTOR2* Position);

virtual void OnMouseDown(int Button, int X, int Y) = NULL;

//Called when the user moves the mouse cursor

virtual void OnMouseMove(int X, int Y) = NULL;

//Called when the user releases a mouse button

virtual void OnMouseUp(int Button, int X, int Y) = NULL;

//Called when a control should be drawn

bool PostMessage(UINT msg, WPARAM wParam, LPARAM lParam, void* Data);

Part II 159
Chapter 8: Continuing CXControl

U
I

L
IB

//Determines whether a mouse cursor intersects the control

bool CursorIntersect(FLOAT X, FLOAT Y);

//Posts messages to all child controls

CXControl* PostToAll(UINT msg, WPARAM wParam, LPARAM lParam, void* Data);

};

8.2.1 Cursor Intersection

Once a mouse message is received by the PostMessage method, it

is important to validate it. Because of the geometric nature of

mouse actions, mouse clicks and movements will only affect the

control beneath the cursor and not others beyond its range. Hence,

only one control will eventually be notified of mouse messages by

way of an event. To confirm that a control may potentially receive a

mouse event, you must check whether the cursor position falls

inside the rectangle of a control’s canvas. The following

CursorIntersect function has been added to CXControl and deter-

mines whether an input position matches this criterion.

bool CXControl::CursorIntersect(FLOAT X, FLOAT Y)

{

D3DXVECTOR2 ControlAbsolutePos;

ControlAbsolutePos.x = 0;

ControlAbsolutePos.y = 0;

GetAbsolutePosition(&ControlAbsolutePos);

if((X >= ControlAbsolutePos.x) && (X <= ControlAbsolutePos.x +

GetWidth()))

if((Y >= ControlAbsolutePos.y) && (Y <= ControlAbsolutePos.y +

GetHeight()))

return true;

return false;

}

160 Part II
Chapter 8: Continuing CXControl

� NOTE

In Chapter 11, the mouse position is interpreted differently to handle

the caret position in a text box control.

8.2.2 Hierarchical Posting

It has been mentioned that only one control at any one time can be

affected by the mouse. In other words, only one control can reside

directly beneath the cursor at once. Hence, this is the control that

should receive a mouse event. Consequently, it is termed the target

control. In this case, the target control of a hierarchy is the one

whose canvas intersects the cursor and who has either no descen-

dants or no descendants that also intersect the cursor. Effectively,

the target is the lowest control in a hierarchy that intersects the

cursor. Thus, determining this control is a process of elimination.

This process begins at the top of a hierarchy and moves downward

recursively until the target is found by intersection testing. Figures

8.2 through 8.5 demonstrate how this process operates

diagrammatically.

Part II 161
Chapter 8: Continuing CXControl

U
I

L
IB

Figure 8.2. The application window
receives a mouse move message.

Figure 8.3. The message is passed
sequentially to controls and their
children.

Correspondingly, a generic method called PostToAll has been added

to CXControl (see below). It is a recursive function that posts mes-

sages to child controls down a hierarchy. The next subsections

explore how this can be applied to handle mouse messages.

CXControl* CXControl::PostToAll(UINT msg, WPARAM wParam, LPARAM lParam,

void* Data)

{

CXControl* Temp = GetFirstChild();

while(Temp)

{

CXControl* Next = Temp->GetNextSibling();

if(Temp->PostMessage(msg, wParam, lParam, Data))

return Temp;

Temp = Next;

}

return NULL;

}

162 Part II
Chapter 8: Continuing CXControl

Figure 8.4. The message is passed along
another generation sequentially.

Figure 8.5. The message completes a
generation and returns to the previous.
Here, the process continues.

8.2.3 Triggering Mouse Events

Here’s where our hard work pays off, where we finally cut to the

chase and turn mouse messages into mouse events for controls of a

hierarchy. Previous sections explained how messages are posted

from WndProc to the topmost control of a hierarchy using the

PostMessage method of CXControl. They also explained how this

function is ultimately responsible for triggering appropriate events

in descendant classes. Consequently, this function can now begin to

be implemented by handling mouse messages. The code below

demonstrates how mouse messages received by PostMessage can

be validated and dispatched to the target control.

bool CXControl::PostMessage(UINT msg, WPARAM wParam, LPARAM lParam,

void* Data)

{

switch(msg)

{

case WM_LBUTTONDOWN:

if(CursorIntersect(LOWORD(lParam), HIWORD(lParam)))

{

CXControl* Control = PostToAll(msg, wParam, lParam, Data);

if(!Control)

OnMouseDown(msg, LOWORD(lParam), HIWORD(lParam));

return true;

}

else

return false;

break;

}

}

Part II 163
Chapter 8: Continuing CXControl

U
I

L
IB

8.3 Handling Keyboard Messages

The following keyboard messages occur whenever a user interacts

with the keyboard:

WM_KEYDOWN

WM_KEYUP

WM_CHAR

A key can either be pressed or not pressed. As a result, keyboard

messages are simpler to handle than mouse messages. However,

keystrokes do not typically provide geometrically measurable data.

Keys don’t generally define a position on-screen like a cursor. Con-

sequently, they cannot tell a program exactly which control input is

intended for. This is why the concept of focus should be applied to

handle keyboards. Basically, controls that are in focus receive key-

board messages. Furthermore, only one control in a hierarchy can

be in focus at any time. Focus is examined in greater detail in the

following subsection. The code below shows only the amended dec-

laration for CXControl, the additions for implementing focus.

protected:

bool m_Focus;

//Focus control

CXControl* m_Focus;

public:

//Called when the user presses a key

virtual void OnKeyDown(WPARAM Key, LPARAM Extended) = NULL;

//Called when the user releases a key

virtual void OnKeyUp(WPARAM Key, LPARAM Extended) = NULL;

//Get focus control

CXControl* GetFocus() {return m_Focus;}

//Set focus control

void SetFocus(CXControl* Control);

};

164 Part II
Chapter 8: Continuing CXControl

8.3.1 Focus

Controls in focus receive keyboard messages. Only one control of a

hierarchy can be in focus at any given time. Focus is transferred to

a control by selecting it; in other words, by clicking on it or through

some other similar process. Essentially, as a control is brought into

focus, another is brought out of focus. The following method of

CXControl demonstrates how the singularity of focus is maintained

throughout a hierarchy and how this can be transferred from one

control to another.

void CXControl::SetFocus(CXControl* Control)

{

if(!m_Focus)

{

if(GetParentControl())

GetParentControl()->SetFocus(Control);

else

{

if(GetFocus())

GetFocus()->m_Focus= false;

m_FocusControl = Control;

m_Focus = true;

}

}

}

Part II 165
Chapter 8: Continuing CXControl

U
I

L
IB

Figure 8.6

� NOTE

You don’t actually need to notify the parent control when its children

gain focus. However, it has been implemented to do so here. This is so

the focused control may directly receive input messages as they are

posted to the topmost control in a hierarchy, as we will see in the next

subsection.

8.3.2 Triggering Events

Turning keyboard messages into keyboard events is a simple pro-

cess using the concept of focus. You simply invoke keyboard events

in the focused control. The PostMessage method has been

appended and now incorporates code to handle keyboard messages.

CXControl* CXControl::PostToAll(UINT msg, WPARAM wParam, LPARAM lParam,

void* Data)

{

switch(msg)

{

//Handle other messages here...

case WM_KEYUP:

case WM_KEYDOWN:

if(GetFocus())

{

if(msg == WM_KEYUP)

GetFocus()->OnKeyUp(wParam, lParam);

if(msg == WM_KEYDOWN)

GetFocus()->OnKeyDown(wParam, lParam);

}

break;

}

return NULL;

}

166 Part II
Chapter 8: Continuing CXControl

8.4 Handling Control Painting

One of the final events to consider is also one of the most impor-

tant — painting. Every control should receive an OnRender event

whenever a hierarchy receives a WM_RENDER message. This is

a custom message that has been designated to substitute

WM_PAINT. It looks like this:

#define WM_RENDER WM_USER +1

This message indicates that a control is expected to redraw itself, a

process known as painting. Each control paints itself differently;

buttons have one look and labels have another, etc. The exact

nature of how specific controls draw themselves is discussed as we

consider different derived controls during subsequent chapters of

Part II. Meanwhile, the following code is a sample OnRender event

from CXControl. It demonstrates how a typical control might paint

itself using its CXTexture and CXPen classes. The next section

examines how paint messages are posted to controls through the

hierarchy.

bool CXTest::OnRender()

{

D3DXVECTOR2 ControlAbsolutePos;

ControlAbsolutePos.x = 0;

ControlAbsolutePos.y = 0;

GetAbsolutePosition(&ControlAbsolutePos);

GetCanvas()->SetTranslation(&ControlAbsolutePos);

GetPen()->DrawTexture(GetCanvas());

GetCanvas()->SetTranslation(NULL);

}

Part II 167
Chapter 8: Continuing CXControl

U
I

L
IB

� TIP

WndProc receives WM_PAINT messages whenever the window should

be repainted; however, Direct3D repaints windows during its own ren-

der procedure because the standard Windows painting simply isn’t

fast enough. Thus, WM_PAINT has been substituted by a custom-

defined WM_RENDER message, and these are posted manually to a

control hierarchy in a Direct3D application’s render loop. You could

just post a WM_PAINT message if you wanted, but WM_RENDER has

been provided for clarity.

8.5 Posting in Reverse

Every control receives OnRender events as WM_RENDER is

posted to the hierarchy. The painting process begins at the top of a

hierarchy and moves downward progressively through generations.

This makes sense because parent controls should be painted to the

screen before their children. In other words, children shall be

drawn after — on top of —their parents. However, the sequence in

which children receive this event is important: They should be

painted according to their Z-order. Specifically, this refers to the

order in which controls are arranged in the third dimension. Those

with lower Z-orders appear closer to the front of the screen, and

those with higher Z-orders appear farther to the back, behind other

controls. See Figure 8.7. Hierarchically, controls and their Z-orders

look like Figure 8.8.

168 Part II
Chapter 8: Continuing CXControl

Part II 169
Chapter 8: Continuing CXControl

U
I

L
IB

Figure 8.7. The Z-order of controls

Figure 8.8. Hierarchy and Z-order of controls

As shown in Figure 8.8, siblings on the right have greater Z values

than those to their left. This means that siblings on the right appear

immediately behind those to their left. Thus, siblings of a hierarchy

should be painted from right to left, not left to right. This ensures

the leftmost control is painted at the front, on top of others. The

code below is an adaptation of the PostToAll function, called

PostAllReverse. Instead of passing a message downward to all con-

trols from left to right, this posts a message downward from right to

left.

CXControl* CXControl::PostToAllReverse(CXControl* Control, UINT msg,

WPARAM wParam, LPARAM lParam, void* Data)

{

CXControl* Next = Control->GetNextSibling();

if(Next)

Next->PostToAllReverse(Next, msg, wParam, lParam, Data);

Control->PostMessage(msg, wParam, lParam, Data);

return NULL;

}

8.6 Depth Sorting

If your desktop contains three different windows, you can usually

switch from one to the next by clicking inside of them. As you do

so, the selected window comes to the front and others are sent to

the back. Effectively, their Z-order is changed. This is illustrated in

the following figures.

170 Part II
Chapter 8: Continuing CXControl

Part II 171
Chapter 8: Continuing CXControl

U
I

L
IB

Figure 8.9. A window is selected by the mouse and must come to the front.

Figure 8.10. The window is moved to the left such that it has the lowest Z-order,
and other windows also move along accordingly.

Figure 8.11. A paint message is received and windows are painted according to
their Z-order.

To implement this in a control hierarchy, such that the currently

activated control always remains on top of its siblings, you must

ensure the activated control is also the leftmost control. If it isn’t,

then you must rearrange the controls so that it becomes so. The

following function has been added to class CXControl and is named

MoveToFront. It accepts a single control as an argument and makes

it the leftmost node among its siblings.

void CXControl::MoveToFront(CXControl* Control)

{

if(Control)

{

CXControl* Next = Control->GetNextSibling(); //Next

CXControl* Previous = Control->GetPreviousSibling(); //Previous

if(Previous) //Not the front

{

Previous->SetNextSibling(Next);

if(Next)

Next->SetPreviousSibling(Previous);

}

else

return;

Control->SetNextSibling(m_ChildControls);

m_ChildControls->SetPreviousSibling(Control);

Control->SetPreviousSibling(NULL);

m_ChildControls = Control;

}

}

172 Part II
Chapter 8: Continuing CXControl

8.7 Triggering Paint Events

Every control of a hierarchy effectively receives an OnRender

event in reverse, from right to left. This is achieved by the Post-

AllReverse method and it ensures controls are drawn correctly to

their Z-order. Thus, the PostMessage function can be amended to

process WM_RENDER messages as below. Notice the small

amendments made to mouse click handling. It has been changed to

set focus on a control, and has also been changed to use the

MoveToFront method. This ensures controls become activated as

they’re clicked upon — in other words, moved to the leftmost node

— and are then painted with the lowest Z-order.

CXControl* CXControl::PostToAll(UINT msg, WPARAM wParam, LPARAM lParam,

void* Data)

{

switch(msg)

{

//Handle other messages here...

case WM_LBUTTONDOWN:

{

if(CursorIntersect(LOWORD(lParam), HIWORD(lParam)))

{

CXControl* Control = PostToAll(msg, wParam, lParam, Data);

if(!Control)

{

OnMouseDown(LOWORD(lParam), HIWORD(lParam));

if(GetParentControl())

GetParentControl()->MoveToFront(this);

SetFocus(this);

}

return true;

}

break;

}

Part II 173
Chapter 8: Continuing CXControl

U
I

L
IB

case WM_PAINT:

{

if(GetVisible())

{

OnRender();

if(m_ChildControls)

PostToAllReverse(m_ChildControls, msg, wParam, lParam, Data);

}

break;

}

}

return NULL;

}

8.8 CXControl — The Final Declaration

class CXControl

{

protected:

D3DXVECTOR2 m_Position;

DWORD m_Width;

DWORD m_Height;

bool m_Visible;

CXTexture* m_Canvas;

CXPen* m_Pen;

CXControl* m_ChildControls;

CXControl* m_NextSibling;

CXControl* m_PreviousSibling;

CXControl* m_Parent;

public:

//Accessors

CXTexture* GetCanvas(void) const {return m_Canvas;}

void SetCanvas(CXTexture* Texture) {m_Canvas = Texture;}

bool GetVisible(void) const {return m_Visible;}

void SetVisible(bool Visible) {m_Visible = Visible;}

CXPen* GetPen(void) const {return m_Pen;}

174 Part II
Chapter 8: Continuing CXControl

void SetPen(CXPen* Pen) {m_Pen = Pen;}

DWORD GetWidth(void) const {return m_Width;}

DWORD GetHeight(void) const {return m_Height;}

void SetWidth(DWORD Width) {m_Width = Width;}

void SetHeight(DWORD Height) {m_Height = Height;}

CXControl* GetParentControl(void) const {return m_Parent;}

void SetParentControl(CXControl* Control) {m_Parent = Control;}

CXControl* GetNextSibling(void) const {return m_NextSibling;}

void SetNextSibling(CXControl* Control) {m_NextSibling = Control;}

CXControl* GetPreviousSibling(void) const {return m_PreviousSibling;}

void SetPreviousSibling(CXControl* Control) {m_PreviousSibling = Control;}

CXControl* GetFirstChild(void) const {return m_ChildControls;}

void SetFirstChild(CXControl* Control) {m_ChildControls = Control;}

D3DXVECTOR2* GetPosition(void) const {return &m_Position;}

FLOAT GetXPos(void) const {return m_Position.x;}

FLOAT GetYPos(void) const {return m_Position.y;}

void SetXPos(FLOAT X) {m_Position.x = X;}

void SetYPos(FLOAT Y) {m_Position.y = Y;}

void SetXYPos(FLOAT X, FLOAT Y);

CXControl* AddChildControl(CXControl* Control);

CXControl* RemoveChildControl(CXControl* Control);

void RemoveAllChildren();

int GetChildCount();

void GetAbsolutePosition(D3DXVECTOR2* Position);

virtual void OnMouseDown(int Button, int X, int Y) = NULL;

virtual void OnMouseMove(int X, int Y) = NULL;

virtual void OnMouseUp(int Button, int X, int Y) = NULL;

virtual bool OnRender(void) = NULL;

bool PostMessage(UINT msg, WPARAM wParam, LPARAM lParam, void* Data);

bool CursorIntersect(FLOAT X, FLOAT Y);

CXControl* PostToAll(UINT msg, WPARAM wParam, LPARAM lParam, void* Data);

//Called when the user presses a key

virtual void OnKeyDown(WPARAM Key, LPARAM Extended) = NULL;

//Called when the user releases a key

virtual void OnKeyUp(WPARAM Key, LPARAM Extended) = NULL;

//Focus control

CXControl* m_Focus;

//Get focus control

CXControl* GetFocus() const {return m_Focus;}

Part II 175
Chapter 8: Continuing CXControl

U
I

L
IB

//Set focus control

void SetFocus(CXControl* Control);

CXControl* PostToAllReverse(CXControl* Control, UINT msg, WPARAM wParam,

LPARAM lParam, void* Data);

};

8.9 Conclusion

This chapter completed the base class CXControl. This now con-

tains everything needed to derive controls from it, a process that

begins in the next chapter with CXWindow. Before moving on,

however, let’s review what this chapter has demonstrated.

� Messages are data structures that describe events on a user’s

computer. These can include paint messages, mouse messages,

keyboard messages, etc.

� Messages are posted to the topmost control in a hierarchy.

They should be filtered downward to child controls in the form

of events.

� Mouse messages describe mouse related events. These involve

button presses, button releases, and cursor movements.

� Only one control can be affected by the mouse at once, and this

should receive notifications by way of an event. These take the

form of OnMouseMove, OnButtonDown, and OnButtonUp.

� Keyboard messages describe keyboard related events. These

involve keypresses and key releases.

� Because keyboards cannot define a position on-screen like a

mouse cursor, they cannot typically identify which control

should receive input. For this reason, the concept of focus is

introduced.

176 Part II
Chapter 8: Continuing CXControl

� Controls that have focus receive keyboard input exclusively.

Only one control in a hierarchy can be in focus at any one time.

� WM_PAINT messages indicate that controls should repaint

themselves.

� Controls should be drawn according to their Z-order. This

defines where controls are positioned in relation to one another

in the third dimension.

Part II 177
Chapter 8: Continuing CXControl

U
I

L
IB

This page intentionally left blank.

Chapter 9

Developing
Windows

This chapter discusses the development of UI LIB’s first independ-

ent control, CXWindow. This is derived from the base class

CXControl, and represents a standard window. It has the potential

to contain other controls and allows both dragging and minimizing.

Overall, this chapter investigates the following issues:

� Definition of a window

� Deriving from CXControl

� Loading a window background

179

Figure 9.1

� Handling events

� Painting a window

� Implementing window dragging

� Minimizing and restoring

� Using CXWindow and CXDesktop

9.1 CXWindow — Deriving from CXControl

CXWindow will be a control. Like all controls in UI LIB, it derives

from base class CXControl. This means that it inherits from

CXControl as well as extends upon it. Chapters 7 and 8 demon-

strated how CXControl is a model, or a blueprint, defining only the

characteristics common to all controls. In effect, CXControl repre-

sents the minimum set of features that a control must have to be

considered a control. Deriving controls from here therefore saves

us having to individually define this feature set in each derived con-

trol. To see a list of the common features CXWindow will be

inheriting, see Table 9.1.

Table 9.1. CXWindow features

Canvas The rectangular drawing area upon which a control paints

itself. Essentially, a canvas is the visible body of a control; it is

how the user will see it.

Position Controls have a position in terms of X and Y. This is usually a

relative distance measured in pixels from the origin of their

parent control. However, if a control is the topmost in a hier-

archy and therefore has no parent, the relative and absolute

position is the same since it defines a relative distance from

the desktop’s origin.

Size Controls have a size in terms of width and height. Again, this

is measured in pixels.

Events Controls must respond to specific events, such as mouse

clicks, keypresses, and screen refreshes.

180 Part II
Chapter 9: Developing Windows

9.2 Desktop and Application Windows

CXWindow is a single class that encapsulates a window. More spe-

cifically, it has the potential to encapsulate either of two window

types: a parent window or a child window. These types are

explained later. Any single instance of CXWindow can represent

either form but not both. The class declaration for CXWindow

appears below; notice the overridden events and addition of a con-

structor. Following sections add to this class and examine in more

detail the two forms of windows it encapsulates.

class CXWindow : public CXControl

{

protected:

bool IsParentWindow; //Does this class represent a child or parent window?

public:

CXWindow(bool WindowType);

bool OnRender(WPARAM Key, LPARAM Extended);

void OnMouseDown(int Button, int X, int Y);

void OnMouseMove(int X, int Y);

void OnMouseUp(int Button, int X, int Y);

void OnSetFocus();

void OnLostFocus();

void OnKeyDown(WPARAM Key, LPARAM Extended);

void OnKeyUp(WPARAM Key, LPARAM Extended);

bool GetWindowType() const {return WindowType;}

void SetWindowType(bool Type) {WindowType = Type;}

};

9.3 Class CXWindow as a Parent

The first window style to consider is analogous to the desktop, the

parent window. Generally, it is the top frame, or top window, in an

application of which all other windows are children — much like an

MDI program. Thus, our Direct3D applications only have one par-

ent window. To UI LIB, this is hierarchically the topmost control

Part II 181
Chapter 9: Developing Windows

U
I

L
IB

where all messages are posted and then dispatched downward

through child controls. Practically, the parent window will be invisi-

ble and sized to match the client area of the application window.

Figures 9.2 and 9.3 illustrate the parent window in terms of being

like a desktop.

These are the most important features of the parent window:

� The parent window is the topmost control in a hierarchy. It has

no parent itself, except for the screen.

� As a window, it cannot be dragged, moved, minimized, or

resized. It must remain static and in one place, like a perma-

nently fixed frame.

� Its canvas represents the greatest extents of an interface in

terms of width and height. Every control exists within its

boundaries and nothing can pass through them.

� It is essentially the representative of an interface. All messages

and events should be posted here only, using the PostMessage

method of CXControl. From here, the desktop will implicitly

handle how messages are then dispatched to children in the

form of events.

� Being the topmost control in a hierarchy, the parent window

effectively controls the lifetime of every object in an interface.

When the parent is removed from memory, all children will be

too.

182 Part II
Chapter 9: Developing Windows

Figure 9.2 Figure 9.3

9.4 Implementing the Parent Window

Considering the power the parent has and its importance for an

interface, CXWindow in terms of the parent window is actually rela-

tively simple to implement. This is primarily because most of the

parent’s functionality has been already been implemented into

CXControl. It can already become part of a hierarchy, already pass

messages downward as events, and already has width and height. In

fact, there is nothing further that needs to be added to this class to

make it a suitable parent frame. Of course, you could add a function

to load an image onto its canvas to use a kind of desktop back-

ground. However, image loading is something we will consider soon

as we examine CXWindow in terms of a standard child window.

This is something that requires more thought, and it is to this sub-

ject that we must now turn.

9.5 CXWindow as a Child Window

The second form of window that CXWindow encapsulates is a child

window. This is more prevalent and in keeping with our under-

standing of a window. It is a Direct3D version of the typical frame

that can be dragged and minimized, and applications can have as

many instances of it as they want. It will be like all the child win-

dows of an MDI application. Figures 9.4 and 9.5 illustrate a child

window.

Part II 183
Chapter 9: Developing Windows

U
I

L
IB

Figure 9.4 Figure 9.5

These are some of the most important properties of child windows:

� Child windows, as all controls, are children of the parent win-

dow or ultimately trace their ancestry to this control. In other

words, child windows are descendants of the parent but can be

children to other child windows too.

� Child windows define the greatest geometrical extents in terms

of width and height beyond which its children cannot exist. In

other words, controls can move freely within their window’s

boundaries but not beyond them. To this extent, windows are a

container for controls.

� Unless invisible, child windows always paint upon their canvas.

They might show images loaded from files or elsewhere. Ulti-

mately, this image acts as a window background.

� Child windows can be dragged around the screen. Because its

child controls are dependent upon the window for their position

and size, as a window is dragged all contained controls should

logically follow.

� Like the parent window, controls depend upon a child window

for subsistence. Effectively, this means controls cannot exist if

their parent is destroyed. If a window is removed from memory,

its children will follow.

9.6 Implementing Child Windows

Child windows require more work to implement than parent win-

dows. This is because we must code specific behaviors like

painting, dragging, and minimizing. Consequently, the following

functions and properties have been added to class CXWindow, and

details of these features are discussed in following subsections.

class CXWindow : public CXControl

{

protected:

bool IsParentWindow;

bool m_IsMouseDown;

184 Part II
Chapter 9: Developing Windows

int m_LastNormalPosX;

int m_LastNormalPosY;

int m_LastNormalWidth;

int m_LastNormalHeight;

bool m_Minimized;

public:

CXWindow(bool WindowType);

bool OnRender(WPARAM Key, LPARAM Extended);

void OnMouseDown(int Button, int X, int Y);

void OnMouseMove(int X, int Y);

void OnMouseUp(int Button, int X, int Y);

void OnSetFocus();

void OnLostFocus();

void OnKeyDown(WPARAM Key, LPARAM Extended);

void OnKeyUp(WPARAM Key, LPARAM Extended);

bool GetWindowType() const {return WindowType;}

void SetWindowType(bool Type) {WindowType = Type;}

bool LoadCanvasFromFile(char* File);

void Minimize(int Width, int Height, int X, int Y);

void Restore(void);

};

9.6.1 Child Windows — Loading the Canvas

One of the first things an application will want to do with a child

window is load an image onto its canvas to use as a background and

to give the window a look rather than being transparent, as shown

Part II 185
Chapter 9: Developing Windows

U
I

L
IB

Figure 9.6

in Figure 9.6. You’ll recall from previous chapters that the canvas is

declared as an instance of CXTexture, and this represents a collec-

tion of pixels. Thus, loading an image to the window’s canvas is

almost as simple as loading an image onto a texture. I say “almost”

because you must also be sure to size the window’s width and

height according to the image’s dimensions. If you don’t do that, the

window may not receive mouse messages because the cursor inter-

section will not be working with the correct dimensions. The image

loading process can be coded into a method called LoadCanvas-

FromFile, and its definition is as follows.

bool CXWindow::LoadCanvasFromFile(char* File)

{

if(GetWindowType() != WINDOW_TYPE_DESKTOP)

{

D3DXIMAGE_INFO Info;

if(SUCCEEDED(D3DXGetImageInfoFromFile(File, &Info)))

{

SetWidthHeight(Info.Width, Info.Height);

if(SUCCEEDED(GetCanvas()->LoadFromFile(File)))

return true;

}

}

return false;

}

9.6.2 Painting Application Windows

The only way a window or any control displays itself on-screen is

by painting its canvas. In other words, a control displays itself by

sending its canvas pixels to the screen. This process should occur

whenever the class receives an OnRender event, and it simply

involves drawing an instance of CXTexture to the screen using

CXPen. The OnRender event demonstrates how this is done.

186 Part II
Chapter 9: Developing Windows

bool CXWindow::OnRender()

{

if(GetWindowType() != WINDOW_TYPE_DESKTOP)

{

D3DXVECTOR2 ControlAbsolutePos;

ControlAbsolutePos.x = 0;

ControlAbsolutePos.y = 0;

GetAbsolutePosition(&ControlAbsolutePos);

GetCanvas()->SetTranslation(&ControlAbsolutePos);

Result = GetPen()->DrawTexture(GetCanvas());

GetCanvas()->SetTranslation(NULL);

}

return true;

}

9.6.3 Dragging Application Windows

To make your windows more like the real thing, you’re going to

want to be able to drag them. In other words, if the user clicks and

holds the left mouse button inside the window — like the title bar

— you’ll want it to follow the path of the cursor as long as the

mouse button is held down. See Figure 9.7.

Part II 187
Chapter 9: Developing Windows

U
I

L
IB

Implementing this functionality can sometimes be a confusing thing

to figure out in your mind even though it requires only a few lines

of code. Essentially, you should perform the following steps to

achieve this. Take a look at the code for the MouseUp,

MouseDown, and MouseMove events to see how window dragging

is implemented in CXWindow.

1. Maintain a Boolean class member (m_IsButtonDown) to indi-

cate whether the mouse button is currently pressed or not.

This will be set accordingly on both MouseDown and MouseUp

events.

2. On an OnMouseDown event, record the relative (X,Y) distance

of the mouse cursor from the origin of the window. This will be

used later as an offset to compute the new position of the win-

dow as the mouse cursor moves.

188 Part II
Chapter 9: Developing Windows

Figure 9.7

3. Then, during OnMouseMove events, use the following formula

to compute the new position of a window:

New Window Pos = CurrentXPos + (Mouse X Pos –

CurrentXPos) – Mouse Click Pos

void CXTest2::OnMouseDown(int Button, int X, int Y)

{

if(GetWindowType() != WINDOW_TYPE_DESKTOP)

{

D3DXVECTOR2 Abs;

Abs.x = 0;

Abs.y = 0;

GetAbsolutePosition(&Abs);

m_X = X - Abs.x;

m_Y = Y - Abs.y;

m_Depressed = false;

}

}

void CXTest2::OnMouseMove(int X, int Y)

{

if(GetWindowType() != WINDOW_TYPE_DESKTOP)

{

if(!m_Depressed)

{

D3DXVECTOR2 Abs;

Abs.x = 0;

Abs.y = 0;

GetAbsolutePosition(&Abs);

SetXPos(GetXPos() + ((X - Abs.x) - m_X));

SetYPos(GetYPos() + ((Y - Abs.y) - m_Y));

}

}

}

Part II 189
Chapter 9: Developing Windows

U
I

L
IB

void CXTest2::OnMouseUp(int Button, int X, int Y)

{

if(GetWindowType() != WINDOW_TYPE_DESKTOP)

m_Depressed = true;

}

9.6.4 Minimizing and Restoring Application Windows

Minimized windows are those which have been shrunk to their

smallest extent at the bottom of the screen (see Figure 9.8). This

usually occurs because the user doesn’t need to use them immedi-

ately but plans on doing so later on. Restored windows, on the

other hard, are those which a user has brought back to their original

size and position after being minimized (see Figure 9.9).

190 Part II
Chapter 9: Developing Windows

Figure 9.8. Minimized windows

Implementing similar behaviors into CXWindow should not be too

difficult. Effectively, you will need to maintain two sizes and posi-

tions, one for the minimized state and one for the normal state, and

you will also use a Boolean variable to indicate which state the win-

dow is in. To minimize a window, simply make all of its child

controls invisible, shrink the window’s width and height to a pro-

portion of its original size or to a specified size, and reposition the

window strategically at the bottom of the screen or another dis-

creet but accessible location. You may also be inclined to perform

some transitional animation to illustrate what has occurred. To

restore the window, you simply switch the window state back to its

original properties. Easy! The following Minimize and Restore

methods of CXWindow demonstrate how a window can be mini-

mized and restored.

Part II 191
Chapter 9: Developing Windows

U
I

L
IB

Figure 9.9. Restored window

void CXWindow::Minimize(int Width, int Height, int X, int Y)

{

if(GetWindowType() != WINDOW_TYPE_DESKTOP)

{

CXControl* Temp = this->GetFirstChild();

while(Temp)

{

CXControl* Next = Temp->GetNextSibling();

Temp->SetVisible(false);

Temp = Next;

}

m_LastNormalPosX = this->GetXPos();

m_LastNormalPosY = this->GetYPos();

m_LastNormalHeight = this->GetWidth();

m_LastNormalWidth = this->GetHeight();

m_Minimized = true;

this->SetXYPos(X,Y);

this->SetWidthHeight(Width, Height);

}

}

//--

void CXWindow::Restore(void)

{

if(GetWindowType() != WINDOW_TYPE_DESKTOP)

{

this->SetXYPos(m_LastNormalPosX, m_LastNormalPosY);

this->SetWidthHeight(m_LastNormalWidth, m_LastNormalHeight);

m_Minimized = false;

}

}

192 Part II
Chapter 9: Developing Windows

9.7 Using CXWindow — Sample Application

CXWindow is now complete. UILIB.H now contains something a

developer can use. Finally, a point has been reached where the

work over these past three chapters can be put to the test in the

form of a sample application containing a single window. Of course,

to contain one window, two instances of CXWindow must actually

be used, one for the parent window — the container — and one for

the window itself. Obviously, were you to add more windows you do

not need to add more parents; you make all controls children of the

same parent. You can either start a new Direct3D project in

Microsoft Visual C++, as described in Chapter 3, or load this pro-

gram from the book’s companion CD. The application is small and

the complete code follows.

Part II 193
Chapter 9: Developing Windows

U
I

L
IB

Figure 9.10

#include <d3d9.h>

#include <d3dx9.h>

#include <UILIB.H>

LPDIRECT3D9 g_pD3D = NULL;

LPDIRECT3DDEVICE9 g_pd3dDevice = NULL;

CXWindow * g_Parent; //Main desktop window

CXWindow* g_Window; //A standard window

//--

// InitD3D

//--

HRESULT InitD3D(HWND hWnd)

{

if(NULL == (g_pD3D = Direct3DCreate9(D3D_SDK_VERSION)))

return E_FAIL;

D3DPRESENT_PARAMETERS d3dpp;

ZeroMemory(&d3dpp, sizeof(d3dpp));

d3dpp.Windowed = TRUE;

d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;

d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;

if(FAILED(g_pD3D->CreateDevice(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, hWnd,

D3DCREATE_SOFTWARE_VERTEXPROCESSING,

&d3dpp, &g_pd3dDevice)))

{

return E_FAIL;

}

g_Parent = new CXWindow(WINDOW_TYPE_DESKTOP); //Create desktop

//window

g_Parent ->SetWidthHeight(640,480); //Make desktop match window size

g_Parent ->SetXYPos(0,0); //Set desktop to window origin

//Create standard window

g_Window = new CXWindow(WINDOW_TYPE_STANDARD);

g_Window->LoadCanvasFromFile("test.jpg");

g_Window->SetXYPos(0,0);

194 Part II
Chapter 9: Developing Windows

g_Parent ->AddChildControl(Window); //Set standard window as child

//of desktop

return S_OK;

}

//---------------------------------------

// Cleanup

//---------------------------------------

VOID Cleanup()

{

delete g_Parent; //Delete desktop and all children

if(g_pd3dDevice != NULL)

g_pd3dDevice->Release();

if(g_pD3D != NULL)

g_pD3D->Release();

}

//---------------------------------------

// Render

//---------------------------------------

VOID Render()

{

if(NULL == g_pd3dDevice)

return;

g_pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,255),

1.0f, 0);

if(SUCCEEDED(g_pd3dDevice->BeginScene()))

{

g_Parent ->PostMessage(WM_RENDER, ,0,0, NULL); //Post WM_PAINT

//message

g_pd3dDevice->EndScene();

g_pd3dDevice->Present(NULL, NULL, NULL, NULL);

}

Part II 195
Chapter 9: Developing Windows

U
I

L
IB

}

//---------------------------------------

// MsgProc

//---------------------------------------

LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)

{

switch(msg)

{

case WM_DESTROY:

Cleanup();

PostQuitMessage(0);

return 0;

case WM_PAINT:

ValidateRect(hWnd, NULL);

return 0;

case WM_MOUSEMOVE:

case WM_LBUTTONUP:

case WM_LBUTTONDOWN:

case WM_KEYUP:

case WM_KEYDOWN:

//Post other messages

g_Desktop->PostMessage(msg, wParam, lParam, NULL);

return 0;

}

return DefWindowProc(hWnd, msg, wParam, lParam);

}

//---------------------------------------

// WinMain – Application starts here

//---------------------------------------

INT WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR, INT)

{

196 Part II
Chapter 9: Developing Windows

WNDCLASSEX wc = {sizeof(WNDCLASSEX), CS_CLASSDC, MsgProc, 0L, 0L,

GetModuleHandle(NULL), NULL, NULL, NULL, NULL, "D3D", NULL};

RegisterClassEx(&wc);

HWND hWnd = CreateWindow("D3D", "Windows", WS_OVERLAPPEDWINDOW, 100,

100, 1024, 768, GetDesktopWindow(), NULL,

wc.hInstance, NULL);

if(SUCCEEDED(InitD3D(hWnd)))

{

ShowWindow(hWnd, SW_SHOWDEFAULT);

UpdateWindow(hWnd);

MSG msg;

PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE);

while(msg.message != WM_QUIT)

{

if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))

{

TranslateMessage(&msg);

DispatchMessage(&msg);

}

else

Render();

}

}

UnregisterClass("D3D", wc.hInstance);

return 0;

}

Part II 197
Chapter 9: Developing Windows

U
I

L
IB

9.7.1 Overview

This sample application displays a window that can be dragged and

minimized and which loads its canvas from an image file. It is

declared as g_Window and is a child of the parent window, which is

declared as g_Parent. The following sections examine specific areas

in more detail.

9.7.2 Desktop Initialization

Initialization of most interfaces occurs with the topmost control of a

hierarchy. In this case, it is the parent, which is like the desktop.

The result of this instantiation immediately leaves us with a hierar-

chy of one control, a control that has no width and no height and is

positioned nowhere. These properties should then be set, as indeed

they are. This occurs inside the application’s InitD3D function, of

which the relevant extract follows.

198 Part II
Chapter 9: Developing Windows

Figure 9.11

g_Parent = new CXWindow(WINDOW_TYPE_DESKTOP); //Create desktop window

g_Parent ->SetWidthHeight(640,480); //Make desktop match window size

g_Parent ->SetXYPos(0,0); //Set desktop to window origin

9.7.3 Window Initialization

Once a desktop has been created and a hierarchy is in place, con-

trols can be added. This application shows only one window,

represented by the pointer g_Window. Like the parent, this too is

initialized inside the InitD3D procedure. This involves setting the

window’s position and background image and then adding it to the

control hierarchy as a child of the desktop. The associated code can

be seen below.

g_Window = new CXWindow(WINDOW_TYPE_STANDARD);

g_Window->LoadCanvasFromFile("test.jpg");

g_Window->SetXYPos(0,0);

g_Parent ->AddChildControl(Window); //Set standard window as child

//of desktop

9.7.4 Windows Message Posting

Messages are posted to the topmost control in a hierarchy, the

desktop. These are then processed by CXControl’s PostMessage

routine and are passed down the hierarchy in the form of events.

You’ll notice that messages are predominantly sent from an applica-

tion’s WndProc procedure, except for render messages. These are

passed to controls from the rendering loop. See the following code.

VOID Render()

{

if(NULL == g_pd3dDevice)

return;

Part II 199
Chapter 9: Developing Windows

U
I

L
IB

g_pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,255),

1.0f, 0);

if(SUCCEEDED(g_pd3dDevice->BeginScene()))

{

g_Parent ->PostMessage(WM_PAINT,0,0, NULL); //Post WM_PAINT message

g_pd3dDevice->EndScene();

g_pd3dDevice->Present(NULL, NULL, NULL, NULL);

}

}

9.7.5 Deleting an Interface

To some, it might seem surprising that g_Window is not explicitly

released or deleted as the application ends. This is because

deallocation of g_Window is done for us hierarchically as g_Parent

is released. The parent control always controls the lifetimes of its

children. Thus, as it is deleted, so are all of its children. The

cleanup function is therefore very simple.

VOID Cleanup()

{

delete g_Parent; //Delete desktop and all children

if(g_pd3dDevice != NULL)

g_pd3dDevice->Release();

if(g_pD3D != NULL)

g_pD3D->Release();

}

200 Part II
Chapter 9: Developing Windows

9.8 Conclusion

This chapter is probably one of the more satisfying for the devel-

oper because one can begin to see the rewards of his labors.

CXWindow is not a class without the potential for expansion and

improvement however. Some people with more time could go on to

create resizable windows, dockable windows, and other clever

effects. Overall, this chapter has explained the following:

� CXWindow derives from base class CXControl. CXControl

defines a common feature set that is shared by all controls.

� CXWindow can encapsulate either of two forms of windows —

a parent window or a child window.

� The parent window is the topmost control in a hierarchy. It rep-

resents the lifetime of an interface.

� Child windows are the typical frames that contain other con-

trols and can be dragged and minimized.

Part II 201
Chapter 9: Developing Windows

U
I

L
IB

This page intentionally left blank.

Chapter 10

Labels and Buttons

This chapter takes UI LIB yet another stage closer to completion

by developing two further controls — labels and buttons. The for-

mer control displays text at a specified location and the latter

performs operations when clicked. Overall, this chapter answers

the following questions:

� What is a label?

� What is a button?

� What is the ID3DXFont interface?

203

Figure 10.1

10.1 Labels and Buttons

Both labels and buttons are designed to be children of a window

control. Label controls are encapsulated into class CXLabel and

button controls into class CXButton. Both of these are derived from

CXControl and therefore inherit a control’s common feature set,

features that all controls must have to be considered a control.

These have been discussed in previous chapters and can be said to

include geometric properties like Canvas, Position, Width, and

Height, and to support functional attributes like events. Subsequent

sections in this chapter individually examine the label and button

classes, beginning with labels.

10.2 CXLabel — Labels

Labels are rectangular regions inside which text is displayed.

Typically, interface developers employ them to achieve the tasks

listed below.

� Labels are ideal for conveying on-screen instructions to users

to help them use your software. This might consist of some-

thing as simple as “Click next to proceed” or something more

204 Part II
Chapter 10: Labels and Buttons

Figure 10.2

complex, depending on an application. However, it is important

to remember the interface design guidelines from Chapter 1

and ensure that labels are as concise as possible.

� Labels are good for titling specific areas inside a window. This

is particularly useful for spatially dividing controls that repre-

sent unrelated fields of information. For example, a customer

details screen could divide its personal information section from

its credit history section by labeling areas appropriately.

� One of the most common tasks labels are chosen for is the

titling of input controls. In other words, labels are placed either

beside or above controls like text boxes to indicate the kind of

information it expects to be input, such as name, address, tele-

phone number, etc.

� Label controls are also used by other controls to suit their tex-

tual needs. One of the clearest examples of this is check box

controls. These are simply a check box control and a label con-

trol juxtaposed together, side by side. Others controls that typi-

cally use labels for their internal captioning properties include

buttons, list boxes, and drop-down lists.

10.3 Labels as ID3DXFont

Class CXLabel encapsulates a label control. Take a look at its class

declaration on the following page. Notice the inclusion of the pro-

tected member ID3DXFont. This is the interface through which

Direct3D presents text on-screen, an interface not altogether dis-

similar from ID3DXSprite. It is a powerful interface capable of

showing text at specified positions, scaling text to fit inside a rect-

angle, showing text in a particular font, and showing text in a

specified color. The next few sections of this chapter discuss the

implementation of class CXLabel, and specifically how text is

drawn to the screen using ID3DXFont.

Part II 205
Chapter 10: Labels and Buttons

U
I

L
IB

class CXLabel : public CXControl

{

protected:

char m_Caption[255];

LPD3DXFONT m_Font;

D3DCOLOR m_Color;

DWORD m_Format;

public:

CXLabel(LOGFONT Font, LPDIRECT3DDEVICE9 Device);

~CXLabel();

bool OnRender();

void OnMouseDown(int Button, int X, int Y);

void OnMouseMove(int X, int Y);

void OnMouseUp(int Button, int X, int Y);

void OnSetFocus();

void OnLostFocus();

void OnKeyDown(WPARAM Key, LPARAM Extended);

void OnKeyUp(WPARAM Key, LPARAM Extended);

void SetCaption(char* Caption);

char* GetCaption() const {return m_Caption;}

D3DCOLOR GetColor() const {return m_Color;}

void SetColor(D3DCOLOR Color) {m_Color = Color;}

DWORD GetFormat() const {return m_Format;}

void SetFormat(DWORD Format) {m_Format = Format;}

};

10.3.1 Instantiating ID3DXFont

CXLabel instantiates ID3DXFont inside its constructor. This can be

done by calling either D3DXCreateFont or D3DXCreateFont-

Indirect. The former function creates a font object from an

explicitly specified font while the latter creates a font object from a

font matching a specific criterion. The declaration for these two

functions and their respective parameters follow.

206 Part II
Chapter 10: Labels and Buttons

HRESULT WINAPI D3DXCreateFont(

LPDIRECT3DDEVICE9 pDevice,

UINT Height,

UINT Width,

UINT Weight,

UINT MipLevels,

BOOL Italic,

DWORD CharSet,

DWORD OutputPrecision,

DWORD Quality,

DWORD PitchAndFamily,

LPCTSTR pFacename,

LPD3DXFONT *ppFont

);

LPDIRECT3DDEVICE9 pDevice: Pointer to the Direct3D device used to

render text. For CXLabel, this value is passed as argument Device to the

constructor.

UINT Height: Height of the characters in logical units.

UINT Width: Width of the characters in logical units.

UINT Weight: Typeface weight, such as bold.

UINT MipLevels: Mipmap levels.

BOOL Italic: True for italic font; false otherwise.

DWORD CharSet: Character set of the font.

DWORD OutputPrecision: Use OUT_TT_ONLY_PRECIS to always get a

TrueType font.

DWORD Quality: Does not affect TrueType fonts.

DWORD PitchAndFamily: Pitch and family index.

LPCTSTR pFacename: String containing the typeface name.

LPD3DXFONT *ppFont: Address into which a font object is returned.

Part II 207
Chapter 10: Labels and Buttons

U
I

L
IB

HRESULT WINAPI D3DXCreateFontIndirect(

LPDIRECT3DDEVICE9 pDevice,

CONST D3DXFONT_DESC *pDesc,

LPD3DXFONT *ppFont

);

LPDIRECT3DDEVICE9 pDevice: Pointer to the Direct3D device used to

render the text. For CXLabel, this value is passed as argument Device to

the constructor.

CONST D3DXFONT_DESC *pDesc: Pointer to a D3DXFONT_DESC struc-

ture, describing properties about the font to be created.

LPD3DXFONT *ppFont: Address into which a font object is returned.

CXLabel uses the D3DXCreateFont function to create an

ID3DXFont object. This is based upon the font handle passed as a

parameter to the class constructor. The constructor’s definition is

as follows.

CXLabel::CXLabel(LOGFONT Font, LPDIRECT3DDEVICE9 Device) : CXControl(Device)

{

D3DXCreateFont(Device, Font.lfWidth, Font.lfHeight, Font.lfWeight, 1,

Font.lfItalic, Font.lfCharSet, Font.lfOutPrecision,

Font.lfQuality, Font.lfPitchAndFamily,

Font.lfFaceName, &m_Font);

m_Caption = "";

m_Color = D3DCOLOR_XRGB(0,0,0);

m_Format = DT_LEFT;

}

208 Part II
Chapter 10: Labels and Buttons

10.3.2 Setting the Label Caption

Once an application creates an instance of CXLabel it should then

aim to set the label’s caption. The caption refers to the actual text

that CXLabel displays when painted. This is stored in member

m_Caption and can be set and retrieved by its appropriate accessor

methods. SetCaption is defined below.

void CXLabel::SetCaption(char* Caption)

{

if (Caption && *Caption)

strcpy(m_Caption, Caption);

else

m_Caption[0] = 0;

}

10.3.3 Painting with ID3DXFont

Controls paint themselves as OnRender events occur. For CXLabel,

this process involves painting the caption text inside its rectangular

boundaries. This is achieved by calling the DrawText method of

ID3DXFont. Its function definition and parameters follow.

Part II 209
Chapter 10: Labels and Buttons

U
I

L
IB

Figure 10.3

INT DrawText(

LPD3DXSPRITE pSprite,

LPCTSTR pString,

INT Count,

LPRECT pRect,

DWORD Format,

D3DCOLOR Color

);

LPD3DXSPRITE pSprite: Just pass NULL for Direct3D to use a default. You

could use your own sprite object to draw the text if you wish, however.

LPCTSTR pString: String to display, either ANSI or UNICODE. For

CXLabel, this should equate to the caption property. If Format includes

DT_MODIFYSTRING, you should size your buffer to hold up to four addi-

tional characters.

INT Count: Indicates the length of pString in characters. To compute this

value you could use the strlen function. Conversely, if pString is NULL ter-

minated, you can pass –1.

LPRECT pRect: Pointer to a RECT structure that defines a rectangle into

which the text should be drawn. For CXLabel, this region will represent its

canvas. In terms of a RECT structure, this can be expressed as position,

width, and height.

DWORD Format: Indicates how the text is presented. It can be one or

more of the following values:

DT_BOTTOM: Justifies text to the bottom of the rectangle. This must

be combined with DT_SINGLELINE.

DT_CALCRECT: Automatically resizes pRect to fit the text by extending

its width and height as required. Passing this parameter simply

results in a new RECT, and no text is drawn. To draw text according to

the new measurements, the function must be called again without

passing this parameter.

DT_CENTER: Centers text horizontally inside pRect.

DT_EXPANDTABS: Expands tab characters, usually meaning a space

of eight characters per tab.

DT_LEFT: Text is aligned to the left.

210 Part II
Chapter 10: Labels and Buttons

DT_RIGHT: Text is aligned to the right of pRect.

DT_RTLREADING: Displays text from right to left when Hebrew or

Arabic fonts are used.

DT_TOP: Aligns text to the top of pRect.

DT_VCENTER: Centers text vertically (single line only).

DT_WORDBREAK: Breaks words; lines are broken between words

where they extend past the edge of pRect.

D3DCOLOR Color: A D3DCOLOR structure defining which color the text

should be. This could be specified by using the D3DCOLOR_XRGB macro.

The OnRender event of CXLabel can therefore be coded to paint its

caption to the screen as follows.

bool CXLabel::OnRender(void)

{

if(m_Font)

{

RECT Rectangle;

D3DXVECTOR2 Vec2;

Vec2.x = 0;

Vec2.y = 0;

GetAbsolutePosition(&Vec2);

Rectangle.left = Vec2.x;

Rectangle.top = Vec2.y;

Rectangle.right = GetWidth();

Rectangle.bottom = GetHeight();

m_Font->DrawText(NULL, m_Caption, strlen(m_Caption), &Rectangle,

m_Format, m_Color);

}

return true;

}

� NOTE

In the next chapter we examine a more sophisticated way of storing

and manipulating strings as we consider text boxes, specifically,

std:string.

Part II 211
Chapter 10: Labels and Buttons

U
I

L
IB

10.3.4 Releasing ID3DXFont

The last area of CXLabel to examine is the class destructor. Its def-

inition probably comes as no surprise to anybody. It releases the

ID3DXFont interface and clears the caption string. Take a look

below.

CXLabel::~CXLabel()

{

if(m_Font)

m_Font->Release();

}

10.4 CXButton — Buttons

The final control to be considered in this chapter is one of the most

prevalent, the button. The following are the key features of a but-

ton. These are developed in subsequent sections.

212 Part II
Chapter 10: Labels and Buttons

Figure 10.4

� A button control is a rectangular area and can be in one of two

states: pressed or unpressed. This refers to whether the button

has been clicked or not. You can determine this state through

OnMouseDown and OnMouseUp events.

� Because a button can be in one of two states it will want to indi-

cate which state it’s currently in to a user. It usually does this

by changing its appearance as it’s clicked — one appearance for

pressed states and another for unpressed states.

� Buttons typically have a visible caption, such as “OK” or “Can-

cel.” These are often used to describe the function of a button

or the consequences that will arise from pressing it. These are

implemented as a label.

� Buttons represent an action that occurs when clicked, like

showing a window, deleting a file, or running a procedure. More

commonly, this action is actually performed as a user releases

the mouse button rather than presses it inside the boundary of

a button.

10.5 CXButton — The Class Declaration

Button controls are encapsulated into class CXButton. It maintains

a Boolean member to determine whether it is pressed or

unpressed. It also has two textures corresponding to the pressed

and unpressed images respectively, and maintains a label control for

its caption property. The implementation details of this class are

discussed in several of the following sections. Before jumping in,

however, take a moment to examine the class declaration for

CXButton below.

class CXButton : public CXControl

{

protected:

HFONT m_Font;

CXLabel* m_Caption;

CXTexture* m_DefaultImage;

Part II 213
Chapter 10: Labels and Buttons

U
I

L
IB

CXTexture* m_PressedImage;

bool m_Pressed;

public:

CXButton(LPDIRECT3DDEVICE9 Device);

~CXButton();

bool OnRender();

void OnMouseDown(int Button, int X, int Y);

void OnMouseMove(int X, int Y);

void OnMouseUp(int Button, int X, int Y);

void OnSetFocus();

void OnLostFocus();

void OnKeyDown(WPARAM Key, LPARAM Extended);

void OnKeyUp(WPARAM Key, LPARAM Extended);

void SetCaption(char* Caption);

bool SetUnpressedImage(char* File);

bool SetPressedImage(char* File);

};

10.5.1 The Class Constructor

CXButton uses its constructor to initialize many of its properties.

These include two textures for its pressed and unpressed appear-

ance, the pressed status Boolean, and its caption text. Its function

definition is as below.

CXButton::CXButton(LPDIRECT3DDEVICE9 Device) : CXControl(Device)

{

m_DefaultImage = new CXTexture(Device);

m_PressedImage = new CXTexture(Device);

m_Pressed = false;

m_Caption = NULL;

}

214 Part II
Chapter 10: Labels and Buttons

10.5.2 Setting Pressed and Unpressed Images

One of the first things an application should do with class CXButton

is set its pressed and unpressed images. These are the images used

for its background, depending on its pressed status. These can be

set using the SetPressedImage and SetUnpressedImage methods of

CXButton. Their definitions are given as follows.

bool CXButton::SetUnpressedImage(char* File)

{

D3DXIMAGE_INFO Info;

if(m_DefaultImage)

if(SUCCEEDED(D3DXGetImageInfoFromFile(File, &Info)))

{

SetWidthHeight(Info.Width, Info.Height);

if(SUCCEEDED(m_DefaultImage->LoadFromFile(File)))

return true;

}

return false;

}

bool CXButton::SetPressedImage(char* File)

{

D3DXIMAGE_INFO Info;

if(m_PressedImage)

if(SUCCEEDED(m_PressedImage->LoadFromFile(File)))

return true;

return false;

}

� TIP

Please ensure the m_Pressed Boolean member of CXButton is set

appropriately during OnMouseDown, OnMouseUp, OnKeyDown, and

OnKeyUp events. If you do not, then you will not know which image to

draw as the control is painted.

Part II 215
Chapter 10: Labels and Buttons

U
I

L
IB

10.5.3 Setting the Button Caption

It is probable that an application will want to set the button’s cap-

tion. The caption refers to the text shown atop the background,

such as “OK” or “Cancel.” It often describes the purpose of the

button or consequences arising from clicking on it. The caption is

actually a CXLabel control and its text can be set using the

SetCaption method of CXButton. Notice how a label is created

based upon a system font retrieved using some Win32 API func-

tions. See the Note below for more information on those.

void CXButton::SetCaption(char* Caption)

{

LOGFONT lf;

if(m_Caption)

delete m_Caption;

SystemParametersInfo(SPI_GETICONTITLELOGFONT, sizeof(lf), &lf, 0);

m_Caption = new CXLabel(lf, GetDevice());

m_Caption->SetWidthHeight(0,0);

m_Caption->SetCaption(Caption);

}

� NOTE

This function retrieves the system font information to pass on to

ID3DXFONT using SystemParametersInfo. Its declaration is below. If

you are unsure how to use such functions, please consult the Windows

SDK documentation. See the code below for more information.

BOOL SystemParametersInfo

(

UINT uiAction,

UINT uiParam,

PVOID pvParam,

UINT fWinIni

);

typedef struct tagLOGFONT {

216 Part II
Chapter 10: Labels and Buttons

LONG lfHeight;

LONG lfWidth;

LONG lfEscapement;

LONG lfOrientation;

LONG lfWeight;

BYTE lfItalic;

BYTE lfUnderline;

BYTE lfStrikeOut;

BYTE lfCharSet;

BYTE lfOutPrecision;

BYTE lfClipPrecision;

BYTE lfQuality;

BYTE lfPitchAndFamily;

TCHAR lfFaceName[LF_FACESIZE];

} LOGFONT, *PLOGFONT;

10.5.4 Painting

CXButton is no different from any other control in terms of receiv-

ing OnRender events whenever it should paint itself. For CXButton

individually though, the painting process involves drawing both its

appropriate background and caption text if any. The code to achieve

this is shown below.

bool CXButton::OnRender()

{

if(m_Pressed)

SetCanvas(m_PressedImage);

else

SetCanvas(m_DefaultImage);

this->RenderMe();

if(m_Caption)

{

D3DXVECTOR2 Abs;

Abs.x = 0;

Abs.y = 0;

GetAbsolutePosition(&Abs);

Part II 217
Chapter 10: Labels and Buttons

U
I

L
IB

m_Caption->SetXYPos((int) (GetWidth()/2), (int)

(GetHeight()/2));

Abs.x += m_Caption->GetXPos();

Abs.y += m_Caption->GetYPos();

m_Caption->SetXYPos(Abs.x, Abs.y);

m_Caption->OnRender(NULL);

}

return true;

}

� NOTE

CXButton paints CXLabel manually. In other words, CXLabel was not

added as a child control of CXButton. This is because CXLabel would

have precluded the button from receiving mouse events were the user

to click within the button but also with the boundaries of the label.

10.5.5 Destructor

CXButton’s destructor is simple. It releases all images, deletes the

font object, and removes the label class if it’s valid. Take a look at

its definition below. The next section examines a sample application

that continues from the previous chapter and adds both a label and a

button.

CXButton::~CXButton()

{

if(m_Caption)

delete m_Caption;

DeleteObject(m_Font);

if(m_DefaultImage)

delete m_DefaultImage;

if(m_PressedImage)

delete m_PressedImage;

}

218 Part II
Chapter 10: Labels and Buttons

� NOTE

One thing that was not covered here about buttons was handling

which operations should be performed when clicked. Such functional-

ity should be coded during an OnMouseDown or OnMouseUp event.

However, the chances are that you’re going to want to use more than

one button and that each of them are going to do something different.

This can be handled quite simply in a number of different ways. You

could code a new button class or add a virtual function to CXButton

that is invoked in derived classes and overridden to handle a button’s

action individually.

10.6 CXLabel and CXButton —
A Sample Application

This section amends the sample project created in the previous

chapter. Until now it used UI LIB to present a single window on the

screen. Now, this window will contain a label and a button control.

Part II 219
Chapter 10: Labels and Buttons

U
I

L
IB

Figure 10.5

You can follow through and make the changes yourself or load it up

from the companion CD. It can be found at Book Code\Part II\

Chapter 10. Its code is below. Additions have been highlighted in

bold.

#include <d3d9.h>

#include <d3dx9.h>

#include <UILIB.H>

LPDIRECT3D9 g_pD3D = NULL;

LPDIRECT3DDEVICE9 g_pd3dDevice = NULL;

CXWindow* g_Desktop; //Main desktop window

CXWindow* g_Window; //A standard window

CXButton* g_Button; //A button control

//---

// InitD3D

//---

HRESULT InitD3D(HWND hWnd)

{

if(NULL == (g_pD3D = Direct3DCreate9(D3D_SDK_VERSION)))

return E_FAIL;

D3DPRESENT_PARAMETERS d3dpp;

ZeroMemory(&d3dpp, sizeof(d3dpp));

d3dpp.Windowed = TRUE;

d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;

d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;

if(FAILED(g_pD3D->CreateDevice(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, hWnd,

D3DCREATE_SOFTWARE_VERTEXPROCESSING,

&d3dpp, &g_pd3dDevice)))

{

return E_FAIL;

}

g_Desktop = new CXWindow(WINDOW_TYPE_DESKTOP); //Create desktop window

g_Desktop->SetWidthHeight(640,480); //Make desktop match window size

g_Desktop->SetXYPos(0,0); //Set desktop to window origin

220 Part II
Chapter 10: Labels and Buttons

//Create standard window

g_Window = new CXWindow(WINDOW_TYPE_STANDARD);

g_Window->LoadCanvasFromFile("test.jpg");

g_Window->SetXYPos(0,0);

g_Desktop->AddChildControl(Window); //Set standard window

//as child of desktop

g_Button = new CXButton(g_pd3dDevice);

g_Button->SetXYPos(100,100);

g_Button->SetPressedImage("Pressed.jpg");

g_Button->SetUnpressedImage("Unpressed.jpg");

g_Button->SetCaption("Press Me!");

g_Window->AddChildControl((CXControl*) g_Button);

return S_OK;

}

//---

// Cleanup

//---

VOID Cleanup()

{

delete g_Desktop; //Delete desktop and all children

if(g_pd3dDevice != NULL)

g_pd3dDevice->Release();

if(g_pD3D != NULL)

g_pD3D->Release();

}

//---

// Render

//---

VOID Render()

{

if(NULL == g_pd3dDevice)

Part II 221
Chapter 10: Labels and Buttons

U
I

L
IB

return;

g_pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,255),

1.0f, 0);

if(SUCCEEDED(g_pd3dDevice->BeginScene()))

{

g_Desktop->PostMessage(WM_PAINT,0,0, NULL); //Post WM_PAINT message

g_pd3dDevice->EndScene();

g_pd3dDevice->Present(NULL, NULL, NULL, NULL);

}

}

//---

// MsgProc

//---

LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)

{

switch(msg)

{

case WM_DESTROY:

Cleanup();

PostQuitMessage(0);

return 0;

case WM_PAINT:

Render();

ValidateRect(hWnd, NULL);

return 0;

case WM_MOUSEMOVE:

case WM_LBUTTONUP:

case WM_LBUTTONDOWN:

case WM_KEYUP:

case WM_KEYDOWN:

//Post other messages

g_Desktop->PostMessage(msg, wParam, lParam, NULL);

222 Part II
Chapter 10: Labels and Buttons

return 0;

}

return DefWindowProc(hWnd, msg, wParam, lParam);

}

//---

// WinMain – Application starts here

//---

INT WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR, INT)

{

WNDCLASSEX wc = {sizeof(WNDCLASSEX), CS_CLASSDC, MsgProc, 0L, 0L,

GetModuleHandle(NULL), NULL, NULL, NULL, NULL,

"DirectX User Interfaces", NULL};

RegisterClassEx(&wc);

HWND hWnd = CreateWindow("DirectX User Interfaces", "CXWindow",

WS_OVERLAPPEDWINDOW, 100, 100, 640, 480,

GetDesktopWindow(), NULL, wc.hInstance, NULL);

if(SUCCEEDED(InitD3D(hWnd)))

{

ShowWindow(hWnd, SW_SHOWDEFAULT);

UpdateWindow(hWnd);

MSG msg;

while(GetMessage(&msg, NULL, 0, 0))

{

TranslateMessage(&msg);

DispatchMessage(&msg);

}

}

UnregisterClass("DirectX User Interfaces", wc.hInstance);

return 0;

}

Part II 223
Chapter 10: Labels and Buttons

U
I

L
IB

10.7 Conclusion

This chapter introduced two of the most prevalent controls in an

interface, namely labels and buttons. The next chapter continues in

a similar vein by investigating the development of two more con-

trols that will form a part of UI LIB. First, however, let’s recap what

we’ve learned:

� Labels are rectangular areas inside which text is displayed.

These are encapsulated by class CXLabel.

� CXLabel also encapsulates the ID3DXFont interface. This is

similar to ID3DXSprite and is used to draw text on the screen.

� Buttons are rectangular areas that can have one of two states

— pressed or unpressed. Consequently, they have different

appearances for each state. Buttons are encapsulated by class

CXButton.

� Both CXLabel and CXButton are designed to be child controls

of a window.

224 Part II
Chapter 10: Labels and Buttons

Chapter 11

Text Boxes and
Check Boxes

UI LIB takes a giant step forward in this chapter as we consider the

development of two further controls: text boxes and check boxes.

The former control is technically demanding and the latter provides

us with some respite. Ultimately, the following topics are discussed

in this chapter.

� Text boxes

� Strings and class std::string

� The text box caret

225

Figure 11.1

� ID3DXLine interface

� Check boxes

� Checked states

11.1 Text Boxes and Check Boxes

Like their label and button predecessors, text boxes and check

boxes are intended to be child controls of a window, windows such

as CXWindow. Both text boxes and check boxes will be derived

from CXControl, the former being encapsulated into class

CXTextBox and the latter into class CXCheckBox. The develop-

ment of these controls is explained throughout this chapter. This

process begins in the next section as we consider text boxes.

11.2 Text Boxes

Text boxes can be a real problem to implement. In fact, they’re

quite possibly the most technically demanding control of this book.

This is primarily because of the nature of text boxes themselves.

They store text of variable length, which changes in both content

and size as a user types, among other features. The following list

contains the key aspects of text boxes and thereby outlines some of

the issues to resolve.

� Text boxes are regions inside which text accumulates from user

keypresses. Essentially, they are strings that can change in con-

tent and length as a user types. The length is increased as a

user presses normal character keys and decreased as a user

removes characters by deleting them.

� Text boxes use a flashing caret to indicate where the next typed

character will be inserted into the string. Often, this will appear

at the end. However, users can press the arrow keys or use the

mouse to pick new locations. Because it flashes, a caret there-

fore fluctuates recurrently between two states of visibility —

226 Part II
Chapter 11: Text Boxes and Check Boxes

visible and invisible. Additionally, because a caret iteratively

moves through text it effectively has two different positions.

These are caret position — the positive integer offset between

the beginning and end of the string where the caret resides and

where typed text is inserted — and the caret’s absolute posi-

tion — the actual on-screen position of the caret. This is actu-

ally two points representing the top and bottom of the caret

line, respectively.

� Text boxes ensure the text’s width and height is maintained.

They will not allow the text to extend beyond its geometric

boundaries by exceeding its canvas’s width or height by

wrapping onto the next line.

� A text box typically only allows its text to be of one size, color,

and font.

These points summarize text boxes. However, before implement-

ing CXTextBox further, one must learn more about manipulating

strings and about drawing lines to represent the caret. These are

considered in the following sections as we explore std::string and

ID3DXLine.

11.3 Clever Strings — Std::String

A text box essentially represents a string of variable length that a

user builds through keypresses, by either the insertion or the dele-

tion of characters. Implementing such a string that must grow or

shrink dynamically typically involves lots of tiresome memory and

string handling code, particularly if you decide to store it by using a

standard char*. Doing so means you’ll encounter a plethora of dif-

ferent issues, such as how to ensure a string is always of a

sufficient length and how to insert characters at appropriate posi-

tions without overwriting existing data; and the list just goes on.

However, in the previous chapter I promised to demonstrate a

superior class for storing and handling strings, a class that performs

all such tedium for us. Specifically, I am referring to class

Part II 227
Chapter 11: Text Boxes and Check Boxes

U
I

L
IB

std::string; included in string.h and bundled with Visual C++. The

next few sections examine how to use std::string to manipulate

strings.

� TIP

For Borland C++ Builder developers, this class is more or less analo-

gous to type AnsiString.

11.3.1 Initialization and Assigning

Like me, those who first learned C++ probably read or were told

that C++ strings should be declared as an array of chars, similar to

Figure 11.2. Your code to create and initialize a string would often

look something like the following:

char* string = new char[STRING_LENGTH];

ZeroMemory(string, STRING_LENGTH);

strcpy(string, "hello world\n");

There’s nothing technically wrong with this code. It is correct. It

creates a string of a predetermined size and copies characters into

it. However, the string cannot store text above its size limit and

wastes trailing space if its text is less than its limit. In effect, it is

both inefficient and inconvenient. Alternatively, class std::string

provides us with a more elegant and versatile solution that holds

strings of different lengths and ensures its size adjusts accordingly.

The code above could be replaced to use std::string as follows.

You’ll no doubt notice how much better it looks.

std::string string = "hello world\n";

228 Part II
Chapter 11: Text Boxes and Check Boxes

Figure 11.2

11.3.2 String Lengths

Previously, developers implicitly knew the length of strings

because strings were either of a predetermined size or developers

used the strlen function. Class std::string returns the length of any

string it holds quite simply using its length method.

int LengthOfString = string.length();

11.3.3 Editing and Appending Strings

Changing a string’s contents or appending characters to specific

points of a string was often a troublesome issue using chars. Not so

with std::string. Here, developers can completely change a string

by simply using the assignment operator or can insert any number

of characters at any point of a string by using the insert method.

This requires a position to insert and a string to place there. The

code below demonstrates both methods of string amendment.

int STRINGINSERTPOS = 5;

String = "hello world\n"; //String looks like "hello world"

String = "hello"; //String looks like "hello"

String += " world" //String looks like "hello world"

String.insert(STRINGINSERTPOS, "a new string");

//String looks like "helloa new stringworld"

Part II 229
Chapter 11: Text Boxes and Check Boxes

U
I

L
IB

Figure 11.3

11.3.4 Copying Substrings

One of std::string’s other nice features is the ability to copy a speci-

fied number of characters from a specific location in a string to a

separate std::string. This is achieved with the substr method. It

accepts a starting position where copying begins and the length of

characters to copy. These are then returned in a new instance of

std::string that represents the copied string.

std::string Original_string = “hello world\n”;

std::string Copied_String = “”;

Copied _String = Original_string.substr(0,5);

// Copied _String looks like “hello”

11.3.5 Converting Strings to char*

So far, instances of std::string cannot be passed as arguments to

Windows API functions or others that require arguments of type

char*. This problem is easily solved by the cstr method, which

returns a pointer to type char representing the beginning of the

string. This can be seen below.

const char* str = string.cstr();

230 Part II
Chapter 11: Text Boxes and Check Boxes

Figure 11.4

� TIP

Please note that cstr returns type const char and therefore cannot be

passed to functions that modify the string’s contents.

11.3.6 Erasing and Emptying

Finally, the process of emptying std::string is achieved by the

empty method. This ensures the string is cleaned of all characters,

from start to end. The process of erasing is accomplished with the

erase method. This refers to the removal of a specified quantity of

characters, beginning from a defined point inside the string. These

functions are demonstrated in the code below.

std::string string = “hello world\n”;

string.erase(0,3); //String looks like “lo world\n”;

string.empty(); //String looks like “”

11.4 Lines — ID3DXLINE

The second issue to consider before finally implementing text

boxes is drawing a line to represent the caret. The text box caret

represents the flashing line that increments through characters in a

text box and indicates where input characters will appear. This line

is implemented and drawn by Direct3D’s ID3DXLine interface, an

interface structurally similar to ID3DXFont and ID3DXSprite. Its

Part II 231
Chapter 11: Text Boxes and Check Boxes

U
I

L
IB

Figure 11.5

purpose is to draw lines between a series of specified points. This

interface is created by the D3DXCreateLine function, whose decla-

ration and parameters follow.

HRESULT D3DXCreateLine

(

LPDIRECT3DDEVICE9 pDevice,

LPD3DXLINE* ppLine

);

LPDIRECT3DDEVICE9 pDevice: Pointer to the Direct3D device that should

draw the line.

LPD3DXLINE* ppLine: Address to which an instance of LPD3DXLINE

should be returned.

11.4.1 Drawing Lines

ID3DXLine makes the process of drawing lines quick and simple.

To achieve this, developers must call the Draw method. It accepts

several different parameters, of which an array of D3DXVECTOR2

structures specifies the points to connect by lines. For a caret, this

will simply be two points, the top and bottom of the line. The Draw

method’s function declaration and parameters follow.

HRESULT Draw(

CONST D3DXVECTOR2* pVertexList,

DWORD dwVertexListCount,

D3DCOLOR Color

);

CONST D3DXVECTOR2* pVertexList: Address to a list of D3DXVECTOR2

structures defining points to connect.

DWORD dwVertexListCount: The number of points contained in

pVertexList.

232 Part II
Chapter 11: Text Boxes and Check Boxes

D3DCOLOR Color: Color of the line.

11.5 CXTextBox — The Class Declaration

Having examined strings and lines, we can now move onto examin-

ing text boxes. These will be encapsulated into class CXTextBox.

Its full declaration appears below. Don’t be concerned if you do not

understand all the code at this stage. Subsequent sections examine

its implementation in more detail.

class CXTextBox : public CXControl

{

protected:

std::string m_Text; //Actual text of the text box

LPD3DXFONT m_Font; //Interface to draw text

LPD3DXLINE m_CaretLine; //Caret line interface

D3DXVECTOR2 m_CaretVector[2]; //Top and bottom points of the line

bool m_CaretVisible; //Is line visible?

long CaretCharPos; //Index of caret

FLOAT m_TextWidth;

public:

CXTextBox(LOGFONT Font, LPDIRECT3DDEVICE9 Device);

~CXTextBox();

bool OnRender();

void OnMouseDown(int Button, int X, int Y);

void OnMouseMove(int X, int Y);

void OnMouseUp(int Button, int X, int Y);

void OnSetFocus();

void OnLostFocus();

void OnKeyDown(WPARAM Key, LPARAM Extended);

void OnKeyUp(WPARAM Key, LPARAM Extended);

void OnSysKey(WPARAM Key, LPARAM Extended);

const char* GetText() const {return m_Text.c_str();}

void SetText(char* Text);

Part II 233
Chapter 11: Text Boxes and Check Boxes

U
I

L
IB

long GetCharAtPos(int X, int Y);

bool CursorIntersectChar(int X, int Y);

FLOAT GetStringWidth(std::string String);

FLOAT GetStringHeight(std::string String);

long GetCaretPos() const {return CaretCharPos;}

void SetCaretPos(long Pos);

bool InsertText(char* Text);

long RemoveText(long Quantity);

}

11.5.1 Constructor

CXTextBox is instantiated by applications whenever they require a

text box. The class constructor ensures all its members are set to

initial values. This includes creating the line interface to draw the

caret, initializing std::string to maintain a text box string, and creat-

ing a font interface to draw the text.

CXTextBox::CXTextBox(LOGFONT Font, LPDIRECT3DDEVICE9 Device) :

CXControl(Device)

{

D3DXCreateLine(Device, &m_CaretLine);

D3DXCreateFont(Device, Font.lfWidth, Font.lfHeight, Font.lfWeight, 1,

Font.lfItalic, Font.lfCharSet, Font.lfOutPrecision,

Font.lfQuality, Font.lfPitchAndFamily, Font.lfFaceName,

&m_Font);

ZeroMemory(m_CaretVector, sizeof(D3DXVECTOR2) * 2);

m_TextWidth = 0.0f;

m_Text = "";

m_CaretVisible = false;

CaretCharPos = 0;

}

234 Part II
Chapter 11: Text Boxes and Check Boxes

11.5.2 Text Width and Height

The width of text inside a text box, in terms of pixels, should be

less than or equal to its canvas’s width, but not greater. In other

words, the text must not stretch beyond the control’s boundaries.

Conversely, a caret should be equal to the height of the text and not

less than or greater than. Hence, it is important to know the width

and height of text inside the text box. To compute these values we

use the DrawText method of ID3DXFont. Instead of passing it nor-

mal flags to draw text, we can also pass it a DT_CALCRECT

constant to size a RECT structure according to the specified text,

font, and size. The following two methods of class CXTextBox,

GetStringWidth and GetStringHeight, have been added to calculate

and return the relevant size of the specified text.

FLOAT CXTextBox::GetStringWidth(std::string String)

{

RECT String_Info;

ZeroMemory(&String_Info, sizeof(RECT));

if(m_Font)

m_Font->DrawText(NULL. String.c_str(), String.length(),

&String_Info, DT_CALCRECT, D3DCOLOR_XRGB(0,0,0));

return String_Info.right;

}

FLOAT CXTextBox::GetStringHeight(std::string String)

{

RECT String_Info;

ZeroMemory(&String_Info, sizeof(RECT));

if(m_Font)

m_Font->DrawText(NULL, String.c_str(), String.length(),

&String_Info, DT_CALCRECT, D3DCOLOR_XRGB(0,0,0));

return String_Info.bottom;

}

Part II 235
Chapter 11: Text Boxes and Check Boxes

U
I

L
IB

11.5.3 Setting Text

One of the first things an application will want to do with a text

box’s text is completely reinitialize it to some starting text, quite

often just a blank string. Assignment of text is achieved through

the SetText method. The code for this is shown below. Notice how

it rejects strings whose length is greater than its canvas’s width in

pixels. Upon acceptance it also stores the current text width in

member m_Text. The pixel width of text will be important later, as

we attempt to compute how big a step the caret should increment,

etc.

void CXTextBox::SetText(char* Text)

{

Width = GetStringWidth(m_Text);

if(Width <= GetWidth())

{

m_Text = Text;

m_TextWidth = Width;

}

}

11.5.4 Text Box Caret

The text box caret is the flashing line that indicates where new

characters are inserted. It has been mentioned that it has two

states of visibility — visible and invisible. This is managed by the

m_CaretVisible member. It also has two positions: an offset into the

text box string and a geometric position on-screen. These are

236 Part II
Chapter 11: Text Boxes and Check Boxes

Figure 11.6

recorded by the m_CaretPos and m_CaretPosition members.

Usually a developer specifies a caret position in terms of its former

position, that of an index into the string. For example, you’ll want to

position the caret at the third character in the text box. The follow-

ing SetCaretPos method of CXTextBox sets the caret position to a

specified location along its string and updates both positions

accordingly.

void CXTextBox::SetCaretPos(long Pos)

{

if((Pos >= 0) && (Pos <= m_Text.length()))

{

std::string tmpstr = m_Text.substr(0, Pos);

//Top of line

m_CaretVector[0].x = GetStringWidth(tmpstr); //Set X Pos

//Bottom of line

m_CaretVector[1].x = m_CaretVector[0].x;

CaretCharPos = Pos;

}

}

� NOTE

The Y position of the caret was not set here because it remains

constant.

11.5.5 Inserting Text

Inserting text at the caret position entails a number of distinct

stages. This is achieved with the InsertText method of CXTextBox.

Broadly, it inserts text into std::string at the caret position and then

increments the caret by however many characters were inserted,

usually one. Specifically, this method is invoked during the

OnKeyDown event to insert the pressed character at the caret loca-

tion. Take a look at InsertText’s function definition.

Part II 237
Chapter 11: Text Boxes and Check Boxes

U
I

L
IB

bool CXTextBox::InsertText(char* Text)

{

std::string TmpStr = Text;

if((m_TextWidth + GetStringWidth(TmpStr)) <= GetWidth())

{

m_Text.insert(CaretCharPos, Text);

m_TextWidth = GetStringWidth(m_Text);

SetCaretPos(GetCaretPos()+strlen(Text));

return true;

}

return false;

}

11.5.6 Removing Text

Typically, as a user presses the Backspace key you’re going to want

to delete the character immediately preceding the caret position.

CXTextBox can remove a specified number of characters appearing

before the caret using the RemoveText method. This process is

more or less the reverse of inserting characters, as the following

definition demonstrates.

long CXTextBox::RemoveText(long Quantity)

{

SetCaretPos(GetCaretPos()-Quantity);

m_Text.erase(CaretCharPos, Quantity);

m_TextWidth = GetStringWidth(m_Text);

return m_TextWidth;

}

11.5.7 Processing Keypresses

Generally, when a user presses a key, characters accumulate inside

the text box, but if it is a control key, an operation should be per-

formed instead. For example, if the user presses Delete or

Backspace, a character should be removed, or if the user presses

238 Part II
Chapter 11: Text Boxes and Check Boxes

the left and right arrows, then the caret increments and decre-

ments through the text box’s string. The following code lists the

OnKeyDown event of CXTextBox and demonstrates how to handle

various keypresses.

void CXTextBox::OnKeyDown(WPARAM Key, LPARAM Extended)

{

switch (Key)

{

case VK_BACK:

case VK_DELETE:

{

RemoveText(1);

}

break;

case VK_LEFT:

{

SetCaretPos(GetCaretPos()-1);

}

break;

case VK_RIGHT:

{

SetCaretPos(GetCaretPos()+1);

}

break;

case default:

{

InsertText((char*) &Key);

}

}

}

Part II 239
Chapter 11: Text Boxes and Check Boxes

U
I

L
IB

11.5.8 Cursor Positioning

Cursor positioning allows a user to adjust the caret position using

the mouse as well as the keyboard arrow keys. In other words, the

caret can be positioned by the cursor. However, this requires more

code than is currently implemented. Typically, you know the caret

should be positioned according to the mouse cursor whenever the

user clicks the left mouse button, as long as the cursor intersects

the text’s bounding rectangle. Remember, the text’s bounding rect-

angle can be smaller or equal to the text box’s overall area but not

greater. Its leftmost extent precedes the first character and its

rightmost extent ends at the last character. The following Cursor-

IntersectChar method has been added to CXTextBox to determine

whether the cursor intersects the text box’s text and returns

TRUE or FALSE accordingly. The next section demonstrates how

to deduce the exact position indicated by the cursor.

bool CXTextBox::CursorIntersectChar(int X, int Y)

{

D3DXVECTOR2 Pos;

this->GetAbsolutePosition(&Pos);

if((X >= Pos.x) && (X <= Pos.x + m_TextWidth))

if((Y >= Pos.y) && (Y <= Pos.y + GetHeight()))

return true;

return false;

}

240 Part II
Chapter 11: Text Boxes and Check Boxes

Figure 11.7

11.5.9 Caret at Cursor

CXTextBox can now determine whether the cursor intersected the

text’s bounding rectangle using the CursorIntersectChar method

above. If this returns TRUE, it means the user clicked on the text

box’s string. However, it still must determine exactly which posi-

tion within the string was clicked so the caret can be moved there.

Effectively, it must translate the cursor (X,Y) coordinate into a

horizontal offset in the string. This process is performed by

CXTextBox’s GetCharAtPos method, which returns the indicated

string offset. Take a look at its function definition below.

long CXTextBox::GetCharAtPos(int X, int Y)

{

long Pos = 0;

long Left = 0;

long Right= 0;

D3DXVECTOR2 Abs;

ZeroMemory(&Abs, sizeof(D3DXVECTOR2));

GetAbsolutePosition(&Abs);

Left = Abs.x;

while(Pos < m_Text.length())

{

std::string TmpStr = m_Text.substr(Pos, 1);

Right = GetStringWidth(TmpStr);

if((X >= Left) && (X <= Left + Right))

break;

Pos++;

Left += Right;

}

return Pos;

}

Part II 241
Chapter 11: Text Boxes and Check Boxes

U
I

L
IB

11.5.10 Handling the Mouse

Having coded methods to process mouse input and translate cursor

positions, CXTextBox’s OnMouseDown event can now be defined

as follows to successfully position the caret at the cursor.

void CXTextBox::OnMouseDown(int Button, int X, int Y)

{

if(m_Focus)

if(CursorIntersectChar(X, Y))

SetCaretPos(GetCharAtPos(X, Y));

}

11.5.11 Painting

Finally, the text box can be painted — text, caret, and all. Currently,

the text box doesn’t have a background loaded onto its canvas, but a

LoadCanvasFromFile procedure could be added to achieve this,

much as demonstrated in Chapter 9. Take a look at the function

definition below and notice how the interfaces come into play, spe-

cifically those of ID3DXFont and ID3DXSprite.

bool CXTextBox::OnRender()

{

D3DXVECTOR2 Abs;

RECT Rct;

ZeroMemory(&Abs, sizeof(D3DXVECTOR2));

GetAbsolutePosition(&Abs);

Rct.left = Abs.x;

Rct.top = Abs.y;

Rct.right = Abs.x + GetWidth();

Rct.bottom = Abs.y + GetHeight();

m_Font->DrawText(m_Text.c_str(), m_Text.length(), &Rct, DT_LEFT,

D3DCOLOR_XRGB(255,255,255));

242 Part II
Chapter 11: Text Boxes and Check Boxes

if(m_Focus)

if(m_CaretVisible)

{

D3DXVECTOR2 Absolute[2];

ZeroMemory(Absolute, sizeof(D3DXVECTOR2) * 2);

Absolute[0].x = Abs.x + m_CaretVector[0].x;

Absolute[0].y = Abs.y + m_CaretVector[0].y;

Absolute[1].x = Abs.x + m_CaretVector[0].x;

Absolute[1].y = Abs.y + m_CaretVector[0].y + GetHeight();

m_CaretLine->Draw(Absolute, 2, D3DCOLOR_XRGB(255,255,255));

m_CaretVisible = false;

}

else

m_CaretVisible = true;

return true;

}

11.5.12 Cleaning Up

Whew! The text box class was quite demanding, but as its develop-

ment comes to an end we can code its destructor to clear its

members quite simply by using the following code. Thankfully, the

remaining sections of this chapter are far simpler as we inspect

check boxes.

CXTextBox::~CXTextBox()

{

if(m_CaretLine)

m_CaretLine->Release();

if(m_Font)

m_Font->Release();

}

Part II 243
Chapter 11: Text Boxes and Check Boxes

U
I

L
IB

11.6 Check Boxes

The final control to consider in this chapter is the check box. These

are hybrid controls containing a button and a label, and their pur-

pose is to represent one of two states — true or false, checked or

unchecked. The following are some of the key points about check

boxes.

� Check boxes implicitly use button controls to show a box that

can be checked or unchecked.

� Check boxes also use a label control to annotate themselves.

This often indicates the field value being set, such as Married,

Smoker, Children, etc.

� Check boxes can represent only one of two values and this

must correspond to whether it is checked or unchecked. There-

fore, this value can either be true or false.

11.7 CXCheckBox — The Class Declaration

Check box controls are encapsulated in class CXCheckBox. It’s a

simple class whose work is mainly achieved by previously devel-

oped controls, namely buttons and labels. Take a look at its class

declaration below.

class CXCheckBox : public CXControl

{

protected:

bool m_Checked;

CXButton* m_TickBox;

CXLabel* m_Label;

public:

CXCheckBox(LPDIRECT3DDEVICE9 Device);

~CXCheckBox();

bool GetCheckedState() const {return m_Checked;}

void SetCheckedState(bool State) {m_Checked = State;}

bool LoadCheckedImage(char* File);

244 Part II
Chapter 11: Text Boxes and Check Boxes

bool LoadUncheckedImage(char* File);

void SetCaption(char* Text);

const char* GetCaption() {return m_Label->GetCaption();}

bool OnRender();

void OnMouseDown(int Button, int X, int Y);

void OnMouseMove(int X, int Y);

void OnMouseUp(int Button, int X, int Y);

void OnSetFocus();

void OnLostFocus();

void OnKeyDown(WPARAM Key, LPARAM Extended);

void OnKeyUp(WPARAM Key, LPARAM Extended);

void OnSysKey(WPARAM Key, LPARAM Extended);

};

11.7.1 Image and Text Loading

Some of the first operations that applications perform with

CXCheckBox are setting its caption and loading the checked and

unchecked images. These may be a check inside a square, a dot

inside a circle, or any other representation you choose. The follow-

ing methods of CXCheckBox achieve these operations: SetCaption,

LoadCheckedImage, and LoadUncheckedImage. Their definitions

follow.

bool CXCheckBox::LoadCheckedImage(char* File)

{

m_TickBox->SetPressedImage(File);

return true;

}

bool CXCheckBox::LoadUncheckedImage(char* File)

{

m_TickBox->SetDefaultImage(File);

return true;

}

void CXCheckBox::SetCaption(char* Text)

{

m_Label->SetCaption(Text);

}

Part II 245
Chapter 11: Text Boxes and Check Boxes

U
I

L
IB

11.7.2 Checking and Unchecking

Checking a check box refers to setting its checked status to true

and unchecking designates setting it to false. Correspondingly, a

check mark or some other icon shall appear or disappear to indicate

this. The previous section demonstrated how to load those respec-

tive images. The following code shows CXTextBox’s OnMouse-

Down event. This determines whether the check box is checked

or not.

void CXCheckBox::OnMouseDown(int Button, int X, int Y)

{

if(m_Checked)

{

m_TickBox->OnMouseUp(Button, X, Y);

m_Checked = true;

}

else

{

m_TickBox->OnMouseDown(Button, X, Y);

m_Checked = false;

}

}

11.7.3 Painting

Painting a check box occurs during the render event, like all other

controls. For CXCheckBox, the painting process is particularly sim-

ple. It merely involves invoking the render events in its button and

label members, as follows.

bool CXCheckBox::OnRender()

{

D3DXVECTOR2 Abs;

ZeroMemory(&Abs, sizeof(D3DXVECTOR2));

GetAbsolutePosition(&Abs);

246 Part II
Chapter 11: Text Boxes and Check Boxes

m_TickBox->SetXYPos(Abs.x + 0,Abs.y);

m_TickBox->OnRender();

m_Label->SetXYPos(Abs.x + m_TickBox->GetWidth(), Abs.y);

m_Label->OnRender();

return true;

}

11.7.4 Cleaning Up

The final part of CXTextBox is deleting its members in the con-

structor. This is another simple issue that needs no explanation.

Take a look at the following code.

CXCheckBox::~CXCheckBox()

{

if(m_TickBox)

delete m_TickBox;

if(m_Label)

delete m_Label;

}

11.8 Conclusion

In completing this chapter you have probably reached the peak of a

learning curve in terms of interface development. There is still

much work to do, however. The next chapter sees the completion

of UI LIB as we consider the highly problematic scroll boxes, list

boxes, and drop-down lists. Before moving on, however, let’s

review the key points of this chapter:

� Text boxes are typically rectangular regions that accumulate

text as the user types.

Part II 247
Chapter 11: Text Boxes and Check Boxes

U
I

L
IB

� A text box must process ordinary keypresses and control char-

acters to ensure its internal string adds and removes characters

appropriately.

� Text boxes maintain a caret to represent an offset into the

string and indicate at which position characters are to be

inserted and removed.

� A check box is a hybrid control consisting of a button and a

label.

� Check boxes represent one of two states — true or false,

checked or unchecked.

248 Part II
Chapter 11: Text Boxes and Check Boxes

Chapter 12

Scrolling Lists

This chapter marks the end of Part II, the final stage in developing

UI LIB, and introduces three of the more troublesome controls —

scroll bars, list boxes, and drop-down lists. This chapter explains

how to do the following:

� Create a working scroll bar.

� Scale and tile specific parts of a control.

� Create a working list box.

� Attach a scroll bar for use with other controls.

� Create a working drop-down list.

249

Figure 12.1

12.1 Scroll Bars, List Boxes,
and Drop-Down Lists

Scroll bars, list boxes, and drop-down lists are all derived from

CXControl and are all intended to be child controls of a window.

Scroll bars are encapsulated into CXScrollBar, list boxes into

CXListBox, and drop-down lists into — not surprisingly —

CXDropDownList. Like CXControl, however, we will see that scroll

bars are not typically instantiated to work on their own, although

that is possible. Usually, they are partnered to work as part of a list

box, drop-down list, or some other scrollable control. The following

sections describe the implementation of each of these controls,

starting with CXScrollBar.

12.2 CXScrollBar — Scroll Bars as a Class

A scroll bar is one of those controls that people use every day,

whether writing a letter in Microsoft Word or coding the next

best-selling product in Microsoft Visual C++. It ultimately is a hor-

izontal or vertical arrangement of two buttons positioned at both

ends of the control and which sandwich a movable block, called a

thumb. This can slide bidirectionally between each end, and the

buttons control its movement toward their respective direction.

250 Part II
Chapter 12: Scrolling Lists

Figure 12.2

The scroll bar’s purpose is to provide a convenient solution to dis-

play data that cannot all logically fit onto the screen. It does so by

simply allowing the user to scroll through the data, moving infor-

mation into view while other information moves out of view. The

following code lists the somewhat intimidating class declaration for

CXScrollBar and the list that follows discusses the key features of a

scroll bar in general. Subsequent subsections provide a detailed

examination of this class’s implementation.

class CXScrollBar : public CXControl

{

private:

protected:

int m_Min;

int m_Max;

int m_ThumbPosition;

int m_Change;

FLOAT m_BackgroundHeight;

bool m_DragMode;

CXButton* m_Thumb;

D3DXVECTOR2 m_ThumbPos;

D3DXVECTOR2 m_ThumbScale;

FLOAT m_ThumbHeight;

CXButton* m_RightTopArrow;

CXButton* m_LeftBottomArrow;

FLOAT AutoSizeThumb();

FLOAT AutoSizeBackground();

void UpdateScaling();

public:

CXScrollBar(LPDIRECT3DDEVICE9 Device);

~CXScrollBar();

bool OnRender();

void OnMouseDown(int Button, int X, int Y);

void OnMouseMove(int X, int Y);

void OnMouseUp(int Button, int X, int Y);

void OnSetFocus();

void OnLostFocus();

void OnKeyDown(WPARAM Key, LPARAM Extended);

void OnKeyUp(WPARAM Key, LPARAM Extended);

void OnSysKey(WPARAM Key, LPARAM Extended);

Part II 251
Chapter 12: Scrolling Lists

U
I

L
IB

void LoadThumbImage(char* File1, char* File2);

void LoadRightTopArrow(char* File1, char* File2);

void LoadLeftBottomArrow(char* File1, char* File2);

void SetValue(int Value);

int GetValue() {return m_ThumbPosition;}

int GetPosValue(FLOAT Pos);

void SetMinMax(int Min, int Max);

void LoadBackground(char* File);

void SetChange(int Change) {m_Change = Change;}

};

� Scroll bars can be aligned vertically or horizontally. The exam-

ple in this book examines the vertical form only, but CXScroll-

Bar requires very little adaptation to allow both arrangements.

� Scroll bars have two arrow buttons, one at each end (m_Right-

TopArrow and m_LeftBottomArrow). These define the furthest

extents of the control.

� Between the buttons is the scroll bar’s thumb — the lifeblood

of the control. This is a movable block that can exist anywhere

between the two buttons and can slide either way according to

which button is pressed. The distance between the two buttons

is known as the scroll range. For example, in a vertical scroll

bar, clicking the up arrow will move the thumb nearer to the top

along the scroll range or track.

� Because one scroll button is on one side of the scroll range and

another is on the other side, and because the thumb can be any-

where in between, scroll bars conceptually define a single posi-

tion among a specific range of values, specifically the position of

the thumb between either of the two buttons. Thus, one arrow

defines a scroll bar’s min position (m_Min), the other defines

its max position (m_Max), and the thumb position is an integer

between these (m_ThumbPosition).

� As one of the scroll buttons is clicked, the thumb moves along

the scroll range toward the button’s direction. The quantity it

steps is known as the change value (m_Change). This usually

varies proportionally to the min and max values. For scroll bars

with a min of 0 and a max of 10, the change will often be 1.

252 Part II
Chapter 12: Scrolling Lists

12.2.1 The Class Constructor

Applications and controls that create instances of CXScrollBar

invoke its constructor. This sets all of its members to starting val-

ues, as listed below.

CXScrollBar::CXScrollBar(LPDIRECT3DDEVICE9 Device) : CXControl(Device)

{

m_Thumb = new CXButton(Device);

m_RightTopArrow = new CXButton(Device);

m_LeftBottomArrow = new CXButton(Device);

m_ThumbPosition = 0;

m_ThumbHeight = 0;

m_Change = 1;

SetMinMax(0,10);

SetValue(0);

m_DragMode = false;

ZeroMemory(&m_ThumbPos, sizeof(D3DXVECTOR2));

}

12.2.2 Arrows, a Thumb, and a Background

One of the first things an application should do with a newly created

scroll bar is load images for its arrows, its thumb, and its back-

ground. It does this using LoadThumbImage, LoadRightTopArrow,

LoadLeftBottomArrow, and LoadBackground. In this context, a

background refers to the image displayed behind the thumb and

spans the area of the scroll bar’s track, between the buttons. The

definitions for these simple methods can be viewed below.

Part II 253
Chapter 12: Scrolling Lists

U
I

L
IB

void CXScrollBar::LoadThumbImage(char* File1, char* File2)

{

m_Thumb->SetDefaultImage(File1);

m_Thumb->SetPressedImage(File2);

m_ThumbHeight = m_Thumb->GetHeight();

}

//--

void CXScrollBar::LoadRightTopArrow(char* File1, char* File2)

{

m_RightTopArrow->SetDefaultImage(File1);

m_RightTopArrow->SetPressedImage(File2);

}

//--

void CXScrollBar::LoadLeftBottomArrow(char* File1, char* File2)

{

m_LeftBottomArrow->SetDefaultImage(File1);

m_LeftBottomArrow->SetPressedImage(File2);

}

//--

void CXScrollBar::LoadBackground(char* File)

{

GetCanvas()->LoadFromFile(File);

D3DXIMAGE_INFO Info;

ZeroMemory(&Info, sizeof(D3DXIMAGE_INFO));

D3DXGetImageInfoFromFile(File, &Info);

m_BackgroundHeight = Info.Height;

}

� NOTE

One question that might pop into your head at this point is: What

happens if the image I want to use for the background is a different

size than the scroll bar? This is quite likely considering how narrow

scroll bars are. However, this is not a problem. Later sections demon-

strate how such images can be programmatically resized and tiled to

fit the scroll bar’s range track.

254 Part II
Chapter 12: Scrolling Lists

12.2.3 Width and Height, Min and Max

Another issue that takes priority when initializing the scroll bar is

setting its width, height, min, and max values. The min and max

represent the greatest extents to which the thumb position can

equal. Often, they will be 0 to 10 or 0 to 100. Therefore, the thumb

can be anything in between, including those values, but not greater

than max or less than min.

The width and height can be set simply by using CXControl’s

standard SetWidthHeight method, or the values can be set individu-

ally using SetWidth or SetHeight. The min and max values can be

set with an equally simple method, SetMinMax, which is part of

CXScrollBar and whose definition is below.

void CXScrollBar::SetMinMax(int Min, int Max)

{

m_Min = Min;

m_Max = Max;

if(m_ThumbPosition > m_Max)

m_ThumbPosition = m_Max;

if(m_ThumbPosition < Min)

m_ThumbPosition = Min;

}

12.2.4 Screen Positions to Scroll Values

Sooner or later the user is going to be allowed to set the thumb’s

position according to a location he clicks on within the scroll bar’s

range track. In other words, rather than clicking the up and down

buttons, the user can click in the scroll range and the thumb should

jump to that spot. Consequently, when the user clicks the mouse,

you will need to translate the mouse’s (X,Y) screen coordinate into

an integer that corresponds to the value of the position clicked,

somewhere between min and max. Effectively, this process

involves dividing the pixel length of the scroll region by CXScroll-

Bar’s max value in order to establish the length of each division.

Part II 255
Chapter 12: Scrolling Lists

U
I

L
IB

You then must categorize the mouse click by testing which division

intersects the cursor. The following GetPosValue method of

CXScrollBar performs this process.

int CXScrollBar::GetPosValue(FLOAT Pos)

{

if((Pos >= m_RightTopArrow->GetHeight())

if(Pos < (GetHeight() - m_LeftBottomArrow->GetHeight()))

{

FLOAT Range = (GetHeight() - m_LeftBottomArrow->GetHeight()) -

m_RightTopArrow->GetHeight();

FLOAT Increment = Range / m_Max;

for(int counter = m_Min; counter < m_Max; counter++)

{

FLOAT Item = m_RightTopArrow->GetHeight() + (Increment *

counter);

if(((Pos >= Item)) && (Pos <= (Item + Increment)))

return counter;

}

}

return 0;

}

� NOTE

You will notice that this function does not accept X and Y, just Y. This is

because we are dealing with vertical scroll bars only. For horizontal

ones, this value will be X instead.

256 Part II
Chapter 12: Scrolling Lists

12.2.5 Scaling the Thumb

Just as there are scaling issues related to the background, there are

also scaling issues related to the thumb. As mentioned, the thumb

refers to the movable block that slides along the track, between

either button, and represents a value between min and max. Thus,

the thumb cannot be larger than the height and width of the scroll

bar. It must also be scaled dynamically to equal the size of one divi-

sion along the scroll track — in other words, equal to the pixel area

that one unit, out of a total of max, occupies. Making the thumb

proportional to the total in this manner will ensure that it scrolls

correctly, division by division. The exact process of scaling is han-

dled later in the OnRender event by the ID3DXSprite interface,

which is wrapped in CXTexture. This can take care of the intrica-

cies of scaling for us. However, for it to do so, we must compute a

scaling factor. This is a floating-point value indicating the factor by

which the thumb’s true size must increase or decrease. For exam-

ple, a value of 2 doubles its size, whereas 0.5 halves its size. To

compute a scaling factor to size the thumb to one unit along the

scroll region, the following method has been added.

Part II 257
Chapter 12: Scrolling Lists

U
I

L
IB

Figure 12.3

FLOAT CXScrollBar::AutoSizeThumb()

{

FLOAT Range = (GetHeight() - m_LeftBottomArrow->GetHeight()) –

m_RightTopArrow->GetHeight();

FLOAT Increment = Range / m_Max;

return (Increment / m_Thumb->GetHeight()); //The scaling factor

}

� TIP

Always scaling the thumb to equal the size of one division may not be

the best solution since its size is never capped. Thus, it could become

too small to grab when its max value is particularly high.

12.2.6 Setting the Thumb Position

Once the thumb has been scaled to one division along the scroll

region, its position can be set quite simply as an offset from the min

value. So, you could specify the value of 5 and the thumb would

jump to the fifth unit along the scroll region. Setting the thumb

position is something that is going to occur as the user clicks either

arrow button, drags the thumb along the scroll region, or clicks a

point on the scroll region. Handling such input is examined in the

next section. Below, the definition for SetValue can be seen; it

adjusts the thumb position according to the specified location.

void CXScrollBar::SetValue(int Value)

{

int NewValue = Value;

if(Value < m_Min)

NewValue = m_Min;

else if (Value >= m_Max)

NewValue = m_Max - 1;

FLOAT Range = (GetHeight() - m_LeftBottomArrow->GetHeight()) –

m_RightTopArrow->GetHeight();

258 Part II
Chapter 12: Scrolling Lists

FLOAT Increment = Range / m_Max;

m_ThumbPos.y = m_RightTopArrow->GetHeight() + (Increment * NewValue);

m_ThumbPosition = NewValue;

}

12.2.7 Handling Input

The user can position the thumb by clicking either arrow, dragging

the thumb, clicking at a specific point in the scroll region, or press-

ing the keyboard direction arrows. Each of these occurrences is

handled in their respective events, and sooner or later end up call-

ing SetValue to change the thumb position. The following code lists

the OnMouseDown, OnMouseUp, and OnMouseMove events.

These demonstrate how to handle scroll bar input.

void CXScrollBar::OnMouseDown(int Button, int X, int Y)

{

D3DXVECTOR2 Abs;

ZeroMemory(&Abs, sizeof(D3DXVECTOR2));

GetAbsolutePosition(&Abs);

if ((Y >= Abs.y) && (Y <= Abs.y + m_RightTopArrow->GetHeight()))

{

SetValue(m_ThumbPosition - m_Change);

return;

}

if ((Y >= (Abs.y + GetHeight()) - m_LeftBottomArrow->GetHeight()))

if (Y <= Abs.y + GetHeight())

{

SetValue(m_ThumbPosition + m_Change);

return;

}

FLOAT Thumb = Abs.y + m_ThumbPos.y;

if((Y >= Thumb) && (Y <= Thumb + m_ThumbHeight))

{

m_DragMode = true;

Part II 259
Chapter 12: Scrolling Lists

U
I

L
IB

return;

}

FLOAT Val = m_RightTopArrow->GetHeight() + (Y -(Abs.y +

m_RightTopArrow->GetHeight()));

SetValue(GetPosValue(Val));

}

//---

void CXScrollBar::OnMouseMove(int X, int Y)

{

D3DXVECTOR2 Abs;

ZeroMemory(&Abs, sizeof(D3DXVECTOR2));

GetAbsolutePosition(&Abs);

FLOAT Thumb = (Abs.y + m_RightTopArrow->GetHeight()) + m_ThumbPos.y;

if(m_DragMode)

{

FLOAT Val = m_RightTopArrow->GetHeight() + (Y -(Abs.y +

m_RightTopArrow->GetHeight()));

SetValue(GetPosValue(Val));

return;

}

}

//---

void CXScrollBar::OnMouseUp(int Button, int X, int Y)

{

m_DragMode = false;

}

12.2.8 Tiling the Background

Section 12.2.5 explained how the thumb can be scaled to fit a spe-

cific size and region using a scaling factor; now a similar process

must be applied to the background. The background refers to the

image shown behind the thumb and spans the entire area of the

260 Part II
Chapter 12: Scrolling Lists

scroll region between the two scroll buttons. Typically images will

not be of a size that fits this area, particularly since the scroll bar is

so narrow. Therefore, to ensure that images of any size fit the

entire area, some image manipulation should occur. This process

involves two stages: First, scale the background using the same

technique to scale the thumb, ensuring it matches the size of a sin-

gle division along the range track. The image should then be tiled

from top to bottom — in other words, drawn recurrently in a tile

formation. The following function computes the scaling factor for

the background. The second step, tiling, occurs in the next section

as we examine the OnRender event.

FLOAT CXScrollBar::AutoSizeBackground()

{

FLOAT Range = (GetHeight() - m_LeftBottomArrow->GetHeight()) –

m_RightTopArrow->GetHeight();

FLOAT Increment = Range / m_Max;

return (Increment / m_BackgroundHeight);

}

12.2.9 Painting

OnRender notifies the scroll bar that it should paint itself. Such a

process involves drawing the background, the thumb, and the two

arrows according to their positions, alignments, and scales. Take a

look at the definition for OnRender below, and notice how the back-

ground is painted in a loop to achieve tiling.

bool CXScrollBar::OnRender()

{

D3DXVECTOR2 Abs;

ZeroMemory(&Abs, sizeof(D3DXVECTOR2));

GetAbsolutePosition(&Abs);

D3DXVECTOR2 Scaling;

D3DXVECTOR2 Trans;

Scaling.x = 1;

Part II 261
Chapter 12: Scrolling Lists

U
I

L
IB

Scaling.y = AutoSizeBackground();

Trans.x = Abs.x;

Trans.y = Abs.y + m_RightTopArrow->GetHeight();

GetCanvas()->SetScaling(&Scaling);

for(int counter = m_Min; counter < m_Max; counter++)

{

GetCanvas()->SetTranslation(&Trans);

GetPen()->DrawTexture(GetCanvas());

Trans.y += m_BackgroundHeight * Scaling.y;

}

m_RightTopArrow->SetXYPos(Abs.x, Abs.y);

m_RightTopArrow->OnRender();

m_LeftBottomArrow->SetXYPos(Abs.x, Abs.y + (GetHeight() -

m_LeftBottomArrow->GetHeight()));

m_LeftBottomArrow->OnRender();

UpdateScaling();

m_Thumb->SetXYPos(Abs.x, Abs.y + m_ThumbPos.y);

m_Thumb->OnRender();

return true;

}

12.2.10 CXScrollBar — Cleaning Up

Finally, the destructor is called as the class is deleted. As usual, it

frees whichever objects it allocated memory for. Its definition can

be seen below. Following sections examine how the scroll bar class

is attached to other controls — namely CXListBox and CXDrop-

DownList — to achieve scrolling.

CXScrollBar::~CXScrollBar()

{

if(m_Thumb)

delete m_Thumb;

if(m_RightTopArrow)

262 Part II
Chapter 12: Scrolling Lists

delete m_RightTopArrow;

if(m_LeftBottomArrow)

delete m_LeftBottomArrow;

}

12.3 List Boxes and List Items

Time to develop the next control, list boxes. Now, if you’re not very

careful, list boxes, and the rest of the list controls for that matter,

can become what’s technically termed “a real pain in the rear end.”

So you’ve got to keep your wits about you. Essentially, list boxes

are containers that hold a collection of items, called list items.

Typically, the user can use a scroll bar to browse the items and can

select one or many. Often, list boxes are employed to show a list of

selectable items to the user, such as different models of cars or dif-

ferent program options, etc. Thus, two classes are effectively being

developed here — CXListBox to hold the items and CXListItem to

represent a single item. The following sections investigate the

development of a list item class and a list box class.

12.4 CXListItem — List Items as a Class

List boxes may contain no, one, or many list items. They have two

backgrounds, one for their selected appearance and one for non-

selected, and they also have a caption and can contain an icon. The

class declaration for CXListItem appears below. The list that fol-

lows points out the key features of a list item.

class CXListItem : public CXControl

{

private:

protected:

FLOAT m_StretchWidthFactor;

FLOAT m_StretchHeightFactor;

Part II 263
Chapter 12: Scrolling Lists

U
I

L
IB

bool IsSelected;

std::string m_Caption;

public:

CXListItem(LPDIRECT3DDEVICE9 Device);

~CXListItem();

bool OnRender();

void OnMouseDown(int Button, int X, int Y);

void OnMouseMove(int X, int Y);

void OnMouseUp(int Button, int X, int Y);

void OnSetFocus();

void OnLostFocus();

void OnKeyDown(WPARAM Key, LPARAM Extended);

void OnKeyUp(WPARAM Key, LPARAM Extended);

void OnSysKey(WPARAM Key, LPARAM Extended);

void SetSelect(bool State) {IsSelected = State;}

void SetItemSize(FLOAT Width, FLOAT Height);

void SetCaption(char* Caption) {m_Caption = Caption;}

const char* GetCaption() {return m_Caption.c_str();}

};

� List items are rectangular areas that have position, width, and

height inside a list box. For the purposes of this book, all list

items in a single list box have the same width and height.

� List items can be selected or non-selected (IsSelected) and

have a background to represent either state. For the list items

in this book, the same backgrounds will actually be applied to

all list items in a single list box, ensuring they maintain a con-

sistent appearance throughout. Thus, the background images

are actually stored and managed by the list box, not the items,

and are shared between all of the list items. This also helps to

ensure memory is conserved. The only properties the items

maintain separately, regarding their backgrounds, are the

factors by which it stretches them to fit its canvas

(m_StretchWidthFactor and m_StretchHeightFactor).

� List items can have an icon, a small image that describes the

item or distinguishes it from others. This book deals only with

a list item’s text, but it would be a trivial matter to include a

small texture member that is rendered when the item is

painted.

264 Part II
Chapter 12: Scrolling Lists

� List items can also have a caption (m_Caption). Like back-

grounds, since all items have a caption, the list box, not the

item, is the owner of a shared ID3DXFont interface that each

item uses to draw its text.

� The parent control of a list item is the containing list box.

12.4.1 The Class Constructor

As list boxes create list items, CXListItem’s class constructor is

called. This is a simple method that initializes class members to

starting values. The definition for this function can be coded as

follows.

CXListItem::CXListItem(LPDIRECT3DDEVICE9 Device) : CXControl(Device)

{

m_StretchWidthFactor = 1.0f;

m_StretchHeightFactor = 1.0f;

IsSelected = false;

m_Caption = "";

}

12.4.2 Setting Item Size

One of the first things a list box should do to a newly created item

is initialize it to a starting size. This will allow CXListItem to com-

pute scaling factors to size the backgrounds correctly when the

item paints itself. For this book, all items should be the same width

and height, and all items should share their background images

from the list box. The following function, SetItemSize, has been

added to class CXListItem to perform item initialization.

void CXListItem::SetItemSize(FLOAT Width, FLOAT Height)

{

if(GetParentControl())

{

D3DXIMAGE_INFO Info;

CXListBox* List = NULL;

Part II 265
Chapter 12: Scrolling Lists

U
I

L
IB

ZeroMemory(&Info, sizeof(D3DXIMAGE_INFO));

List = (CXListBox*) GetParentControl();

D3DXGetImageInfoFromFile(List->GetBackgroundImage()->GetPath(),

&Info);

m_StretchWidthFactor = Width / Info.Width;

m_StretchHeightFactor = Height / Info.Height;

SetWidthHeight(Width, Height);

}

}

12.4.3 Painting

Setting the selected state of a list item and setting the caption have

already been defined as inline functions back in the class declara-

tion. Therefore, it is time to move on to how list items paint

themselves. Like all other controls, list items paint themselves dur-

ing an OnRender event. However, for list items, this event is

typically called at the discretion of the owning list box whenever it

requires items to display themselves. The OnRender event can be

defined as below. Notice how it calls upon the owning list box to

provide CXTexture pointers to the background images that should

be used for either their selected or non-selected backgrounds.

Remember, this is because backgrounds are shared between all

items. Notice also how an item uses the list box to provide a shared

ID3DXFont interface to draw text. The details of CXListBox are

examined throughout subsequent sections of this chapter.

bool CXListItem::OnRender()

{

D3DXVECTOR2 Abs;

ZeroMemory(&Abs, sizeof(D3DXVECTOR2));

GetAbsolutePosition(&Abs);

D3DXVECTOR2 Scaling;

266 Part II
Chapter 12: Scrolling Lists

ZeroMemory(&Scaling, sizeof(D3DXVECTOR2));

Scaling.x = m_StretchWidthFactor;

Scaling.y = m_StretchHeightFactor;

CXListBox* List = (CXListBox*) GetParentControl();

if(IsSelected)

{

if(List->GetSelectedImage())

{

List->GetSelectedImage()->SetTranslation(&Abs);

List->GetSelectedImage()->SetScaling(&Scaling);

GetPen()->DrawTexture(List->GetSelectedImage());

}

}

else

{

if(List->GetBackgroundImage())

{

List->GetBackgroundImage()->SetTranslation(&Abs);

List->GetBackgroundImage()->SetScaling(&Scaling);

GetPen()->DrawTexture(List->GetBackgroundImage());

}

}

if(List->GetFont())

{

RECT Rct;

ZeroMemory(&Rct, sizeof(RECT));

Rct.left = Abs.x;

Rct.top = Abs.y;

Rct.right = Abs.x + GetWidth();

Rct.bottom = Abs.y + GetHeight();

List->GetFont()->DrawText(m_Caption.c_str(), m_Caption.length(),

&Rct, DT_LEFT, D3DCOLOR_XRGB(255,255,255));

}

return true;

}

Part II 267
Chapter 12: Scrolling Lists

U
I

L
IB

12.5 CXListBox — List Boxes as a Class

A list box is a list of items. Visually, it is a frame or window contain-

ing a subset of its items because it may be too small to show them

all. It can have no, one, or many list items, and the subset it shows

can be controlled by its scroll bar. The scroll bar allows a user to

scroll through the list, browsing a specific number of items each

time. Take a look at the class declaration for CXListBox below and

then see the list that follows to examine the key points of a list box.

These are implemented in following sections.

class CXListBox : public CXControl

{

protected:

CXListItem* m_ListItems;

CXListItem* m_SelectedItem;

CXTexture* m_Selected;

CXTexture* m_Background;

LPD3DXFONT m_Font;

268 Part II
Chapter 12: Scrolling Lists

Figure 12.4

CXScrollBar* m_Bar;

bool m_AllowMultiSelect;

long m_ListFrame;

long m_ItemCount;

long ComputeListFrame();

public:

CXListBox(LPDIRECT3DDEVICE9 Device);

~CXListBox();

bool OnRender();

void OnMouseDown(int Button, int X, int Y);

void OnMouseMove(int X, int Y);

void OnMouseUp(int Button, int X, int Y);

void OnSetFocus();

void OnLostFocus();

void OnKeyDown(WPARAM Key, LPARAM Extended);

void OnKeyUp(WPARAM Key, LPARAM Extended);

void OnSysKey(WPARAM Key, LPARAM Extended);

void OnItemSelect(CXListItem* Item, int Button, int X, int Y);

void LoadItemBackgrounds(char* Default, char* Selected);

CXListItem* AddNewItem(char* Caption);

void RemoveListItem(CXListItem* Item);

CXTexture* GetBackgroundImage() {return m_Background;}

CXTexture* GetSelectedImage() {return m_Selected;}

LPD3DXFONT GetFont() {return m_Font;}

void LoadScrollBar(char* Background, char* Thumb, char* TopArrow,

char* BottomArrow);

CXListItem* GetItemAtPos(int X, int Y);

CXListItem* GetItemByIndex(long Index);

void ScrollTo(long Value);

void ClearItems();

bool ScrollBarIntersect(int X, int Y);

CXListItem* GetSelected() {return m_SelectedItem;}

FLOAT GetListWidth() {return GetWidth() - m_Bar->GetWidth();}

};

� List boxes can have no, one, or many list items. These are

implemented as a linked list and can be added, removed, and

edited dynamically. CXListBox maintains a pointer to the first

list item through member m_ListItems.

Part II 269
Chapter 12: Scrolling Lists

U
I

L
IB

� Each list item has an index in the list box. This is an integer off-

set from the beginning of the list, where 0 refers to the first list

item.

� Items have the same width and height, share the same two

background images for selected and non-selected states, and

share the same ID3DXFont interface to render their text.

These are created and maintained by CXListBox in members

m_Selected, m_Background, and m_Font, respectively.

� Often, list boxes will have more items than they can display.

Thus, list boxes must act like a frame, containing only a subset

of their items. This frame can be moved by a scroll bar, which

can scroll it up and down to view other items. The scroll bar is

maintained by m_Bar, and CXListBox represents the frame

simply with an integer that specifies how many items can be

displayed in the list box. This frame is computed by dividing the

list box’s total height in pixels by the height of one item,

remembering that all list items have the same height. The

result is stored in member m_ListFrame.

� List boxes often implement smooth scrolling such that items at

the top and bottom of the frame can be half visible as they slide

from view. However, for this book, items scroll on an

item-by-item basis; therefore, items can either be visible or

not. As each moves out of view, another moves into view.

� List boxes cannot be scrolled in any direction if the item count

(m_ItemCount) is less than m_ListFrame; in other words, if all

items can fit within the list box frame. Likewise, list boxes can-

not be scrolled upward or downward beyond their top and bot-

tom items, respectively.

� List items can be selected. If the list box allows multi-selection

(m_AllowMultiSelect), the user may select one or more items

together, but if multi-selection is disabled, only one item at a

time can be selected. Thus, as one item is selected, another

becomes deselected.

270 Part II
Chapter 12: Scrolling Lists

12.5.1 The Class Constructor

Applications declare instances of CXListBox to show a list of items

to a user. As the class is created, its constructor is called to initial-

ize its members. The code below shows the definition for this

function. Notice how the scroll bar is created and how a font object

is assigned. Other members are typically set to NULL.

CXListBox::CXListBox(LPDIRECT3DDEVICE9 Device) : CXControl(Device)

{

m_AllowMultiSelect = false;

m_Selected = NULL;

m_Background = NULL;

m_Font = NULL;

m_Bar = new CXScrollBar(GetDevice());

m_ListFrame = 0;

m_ItemCount = 0;

m_ListItems = NULL;

m_SelectedItem = NULL;

LOGFONT Font;

SystemParametersInfo(SPI_GETICONTITLELOGFONT, sizeof(LOGFONT),

& Font, 0);

D3DXCreateFont(GetDevice(), Font.lfWidth, Font.lfHeight,

Font.lfWeight, 1, Font.lfItalic, Font.lfCharSet,

Font.lfOutPrecision, Font.lfQuality,

Font.lfPitchAndFamily, Font.lfFaceName, &m_Font);

}

12.5.2 Loading Item Backgrounds

Section 12.4 mentioned how list items have two backgrounds, one

to appear if they are selected and one to appear in a default or unse-

lected state. Rather than store these images separately in each

item and accumulating goodness knows how much memory, it

makes sense to manage these images in the list box and share them

among the items. The following function, LoadItemBackgrounds,

shows how these images can be loaded.

Part II 271
Chapter 12: Scrolling Lists

U
I

L
IB

void CXListBox::LoadItemBackgrounds(char* Default, char* Selected)

{

if(!m_Background)

{

m_Background = new CXTexture(GetDevice());

m_Background->LoadFromFile(Default);

}

if(!m_Selected)

{

m_Selected = new CXTexture(GetDevice());

m_Selected->LoadFromFile(Selected);

}

}

12.5.3 Loading the Scroll Bar

Once item backgrounds have been loaded from image files, the

scroll bar should follow. This involves specifying which images

should be used for the scroll bar background, the scroll buttons, and

the thumb. It also involves setting the (X,Y) position at which the

scroll bar should appear within the list box, not to mention setting

its width, height, and starting thumb position. The LoadScrollBar

method has been added to CXListBox to achieve this process. It

simply requires valid paths to image files.

void CXListBox::LoadScrollBar(char* Background, char* Thumb, char* TopArrow,

char* BottomArrow)

{

if(m_Bar)

{

m_Bar->LoadThumbImage(Thumb);

m_Bar->LoadBackground(Background);

m_Bar->LoadLeftBottomArrow(BottomArrow);

m_Bar->LoadRightTopArrow(TopArrow);

m_Bar->SetWidthHeight(32, GetHeight());

272 Part II
Chapter 12: Scrolling Lists

m_Bar->SetXYPos(GetWidth() - m_Bar->GetWidth(), 0);

m_Bar->SetValue(0);

}

}

12.5.4 Computing a List Frame

A list box can only show a certain number of items based upon its

current height and width. If there are more items than can fit, you

could either extend the list box’s height and width or show only a

subset of items that can be navigated using a scroll bar. We use the

second solution here. Thus, computing a list frame refers to the

process of determining the maximum number of list items that can

be shown inside the list box at once. This is a simple division of the

total list box height in pixels by a single item’s height. Later, we’ll

be able to determine whether the current number of items can fit

in the list box or not, after comparing the item count to the frame

maximum. To calculate this maximum, the following ComputeList-

Frame method of CXListBox should be used. It will be invoked by

other methods later, such as AddNewItem, to ensure an updated

figure will always be maintained. Notice how it also sets the scroll

bar’s min and max values to ensure that the remainder will be

scrollable later on.

Part II 273
Chapter 12: Scrolling Lists

U
I

L
IBFigure 12.5

long CXListBox::ComputeListFrame()

{

if(m_ListItems)

{

long Frame = (long) GetHeight() / m_ListItems->GetHeight();

m_Bar->SetMinMax(0, (m_ItemCount+1) - Frame);

return Frame;

}

else

{

m_Bar->SetMinMax(0, 0);

return 0;

}

}

12.5.5 Adding List Items

The process of adding a list item is a fairly lengthy one considering

the number of different dependencies that must change or in some

way be recalculated, such as the list frame, the item count, the item

caption, and the item size. Specifically, however, this is really a

combination of different processes that have already been demon-

strated in previous sections. List items are stored in a linked list

and new items are appended to the end. To ensure the item is geo-

metrically positioned in the list correctly, in relation to other items,

items are effectively arranged in a tile formation, one above the

other. Therefore, a new item’s Y position is the cumulative height

of all items above it in the list. Take a look at the following

AddNewItem method of CXListBox to examine how this process is

achieved. Notice that a method called ScrollTo is invoked toward

the end. This function navigates the list frame to a specific item

index, such that the specified item becomes the top of the frame.

This method is explained in more detail in a later section.

274 Part II
Chapter 12: Scrolling Lists

CXListItem* CXListBox::AddNewItem(char* Caption)

{

if((m_Background) && (m_Selected))

{

D3DXIMAGE_INFO Info;

CXListItem* Item; //Item to add

Item = new CXListItem(GetDevice()); //Create new item

ZeroMemory(&Info, sizeof(D3DXIMAGE_INFO));

(m_Background->GetPath(), &Info);

if(Item)

{

Item->SetParentControl(this);

CXPen* Pen = Item->GetPen();

if(Pen)

delete Pen;

Item->SetPen(GetPen()); //Share parent CXPen

if(!m_ListItems)

{

m_ListItems = Item;

Item->SetXYPos(0,0);

}

else

{

CXListItem* Temp = m_ListItems;

FLOAT Height = 0;

while(Temp->GetNextSibling())

{

Height += Temp->GetHeight();

Temp = (CXListItem*) Temp->GetNextSibling();

}

Temp->SetNextSibling((CXControl*) Item);

Item->SetPreviousSibling((CXControl*) Temp);

Part II 275
Chapter 12: Scrolling Lists

U
I

L
IB

Item->SetXYPos(0,Height + Temp->GetHeight());

}

Item->SetItemSize(GetWidth() - m_Bar->GetWidth(), Info.Height);

Item->SetCaption(Caption);

m_ItemCount++;

m_ListFrame = ComputeListFrame(); //How many items can be displayed?

ScrollTo(0);

return Item;

}

}

return NULL;

}

12.5.6 Clearing List Items

There will be times when you’ll want to delete the list or repopu-

late the list. To do this, you’ll need to clear the list items. This is

achieved by calling CXListBox’s ClearItems method. Its definition

can be coded to delete all items as follows.

void CXListBox::ClearItems()

{

CXListItem* Temp = m_ListItems;

while(Temp)

{

CXListItem* Next = (CXListItem*) Temp->GetNextSibling();

if(Temp)

delete Temp;

Temp = Next;

}

}

276 Part II
Chapter 12: Scrolling Lists

12.5.7 Getting Items by Index

Each item in a list box has an index. This refers to an integer offset

from the list’s beginning. The first item has an index of 0, the next

item has an index of 1, the next 2, and so on. Thus, occasionally it

becomes convenient to select items by index. In other words, you’ll

want to retrieve a CXListItem* pointer to a specific item by speci-

fying an index. The following method of CXListBox achieves this.

CXListItem* CXListBox::GetItemByIndex(long Index)

{

long Counter = 0;

CXListItem* CurrentItem = m_ListItems;

while(CurrentItem)

{

if(Counter == Index)

return CurrentItem;

Counter++;

CurrentItem = (CXListItem*) CurrentItem->GetNextSibling();

}

return NULL;

}

12.5.8 Getting Items by (X,Y) Position

It is likely you’re going to want to detect which item a user clicked

or distinguish which item resides at a specific screen position.

Effectively, you’ll need to translate screen coordinates into a corre-

sponding list item. Like determining where the thumb should be

positioned on a scroll bar, you must categorize the click by intersec-

tion testing — testing an (X,Y) location against the position and

area of a list item. The following GetItemAtPos method returns a

list item according to a screen position.

Part II 277
Chapter 12: Scrolling Lists

U
I

L
IB

CXListItem* CXListBox::GetItemAtPos(int X, int Y)

{

long Counter = 0;

D3DXVECTOR2 Abs;

ZeroMemory(&Abs, sizeof(D3DXVECTOR2));

GetAbsolutePosition(&Abs);

CXListItem* CurrentItem = m_ListItems;

while(CurrentItem)

{

if(CurrentItem->GetVisible())

if((X >= Abs.x) && (X <= Abs.x + (GetWidth() - m_Bar->GetWidth())))

if((Y >= Abs.y + CurrentItem->GetYPos()) && (Y <= Abs.y +

CurrentItem->GetYPos() + CurrentItem->GetHeight()))

return CurrentItem;

CurrentItem = (CXListItem*) CurrentItem->GetNextSibling();

}

return NULL;

}

12.5.9 Scrolling the Frame

278 Part II
Chapter 12: Scrolling Lists

Figure 12.6

If the total number of items in a list box exceeds the maximum

frame limit, not all items can be viewed at once. Hence, a scroll bar

is required if a user is to navigate all items. Consequently, you’ll

need a function that connects the scroll bar to the list box, such that

certain subsets of list items are visible as long as the scroll bar’s

thumb is of a certain value. In other words, you want the list to

scroll as the scroll bar is moved. One way to achieve this is to per-

form the following two steps.

1. First, set the scroll bar’s min to 0, and set max to equal the

number of excess items that cannot fit into the list box’s frame;

effectively, this value is: ItemCount minus limit. This allows the

user to slide the scroll bar thumb along a distance that can

potentially bring every list item into view.

2. Each time the user scrolls the thumb you need to set the list

box frame such that a corresponding subset of items comes into

view. This is achieved by setting the list item whose index

matches the scroll bar’s thumb value to be the top item in the

list box’s frame. In other words, if the thumb equals 5, then the

fifth list item should be at the top. All you need to do then is

draw every subsequent item until the frame is filled.

To perform this rather complicated scrolling process, the following

ScrollTo function has been added to CXListBox. Take a look at its

definition below. It is invoked during OnMouseUp events, as we

see in the next section, to ensure the list items move according to

the scroll bar.

void CXListBox::ScrollTo(long Value)

{

if(m_ItemCount > m_ListFrame) //Can it scroll?

if((Value + m_ListFrame) <= m_ItemCount)

{

//Get first item

CXListItem* CurrentItem = m_ListItems;

long Counter = 0;

FLOAT AccumulativeYPos = 0.0f;

Part II 279
Chapter 12: Scrolling Lists

U
I

L
IB

while(CurrentItem)

{

CurrentItem->SetSelect(false);

if((Counter >= Value) && (Counter < Value + m_ListFrame))

//Is it visible?

{

CurrentItem->SetVisible(true);

CurrentItem->SetXYPos(0, AccumulativeYPos);

AccumulativeYPos+= CurrentItem->GetHeight();

}

else

CurrentItem->SetVisible(false);

Counter++;

CurrentItem = (CXListItem*) CurrentItem->GetNextSibling();

}

}

}

12.5.10 Handling Input

Now that a list box can scroll to a specified index, various input

events, such as OnMouseDown, OnMouseUp, etc., can be coded to

process input accordingly. Notice how list items are selected on

mouse clicks and how the scroll box moves to particular items as

the mouse button is released over the scroll box.

void CXListBox::OnMouseDown(int Button, int X, int Y)

{

CXListItem* Selected = NULL;

Selected = GetItemAtPos(X, Y);

if(Selected)

280 Part II
Chapter 12: Scrolling Lists

OnItemSelect(Selected, Button, X, Y);

if(ScrollBarIntersect(X, Y)) //True or False; is mouse over scroll bar?

m_Bar->OnMouseDown(Button, X, Y);

}

//---

void CXListBox::OnMouseMove(int X, int Y)

{

m_Bar->OnMouseMove(X, Y);

}

//---

void CXListBox::OnMouseUp(int Button, int X, int Y)

{

if(ScrollBarIntersect(X, Y))

{

m_Bar->OnMouseUp(Button, X, Y);

ScrollTo(m_Bar->GetValue());

}

}

12.5.11 Painting

CXListBox must paint itself as it receives OnRender events, like

any other control in UI LIB. Here, it must render its scroll bar and

list items. The ScrollTo method featured in Section 12.5.9 sets the

list box frame and ensures that only visible list items have their vis-

ible status set to true. Remember, the visible status was coded into

the ancestor control CXControl, not CXListBox or CXListItem

themselves. This makes painting very simple because you simply

render only those items that are visible. A mechanism to achieve

this process — passing OnRender events to only visible controls —

was coded in Chapter 8 and is already part of CXControl. It can be

initiated by calling PostToAllReverse and can be used to invoke

render events in all visible list items. Take a look at CXListBox’s

OnRender definition to see how a list box should paint itself. Easy!

Part II 281
Chapter 12: Scrolling Lists

U
I

L
IB

bool CXListBox::OnRender()

{

D3DXVECTOR2 Abs;

ZeroMemory(&Abs, sizeof(D3DXVECTOR2));

GetAbsolutePosition(&Abs);

if(GetVisible())

{

if(m_Bar)

{

m_Bar->SetXYPos(Abs.x + (GetWidth() - m_Bar->GetWidth()),

Abs.y);

m_Bar->OnRender();

}

if(m_ListItems)

PostToAllReverse((CXControl*)m_ListItems, WM_RENDER, 0, 0,

NULL);

}

return true;

}

12.5.12 Cleaning Up

Finally, after an application has finished using CXListBox, it should

delete the class and thereby call its destructor to free its members.

This can be coded as follows.

CXListBox::~CXListBox()

{

ClearItems();

if(m_Selected)

delete m_Selected;

if(m_Background)

delete m_Background;

282 Part II
Chapter 12: Scrolling Lists

if(m_Font)

m_Font->Release();

if(m_Bar)

delete m_Bar;

}

12.6 CXDropDownList —
Drop-Down Lists as a Class

The final control to examine in this chapter, and in UI LIB, is the

drop-down list. A drop-down list is effectively a hybrid control; a

form of text box with a list box attached. The user can enter text

via normal keypresses or by selecting items from the list. Figure

12.7 demonstrates that a drop-down list is composed of the follow-

ing three controls: a text box, a list box, and a button that controls

the visibility of the list box. Thus, things get simpler because most

of the hard work has already been done in previous classes. The fol-

lowing class declaration is given for CXDropDownList. The list that

Part II 283
Chapter 12: Scrolling Lists

U
I

L
IB

Figure 12.7

follows defines the key points of drop-down lists. Subsequent sec-

tions examine this control’s implementation in a little more detail.

class CXDropDownList : public CXControl

{

private:

protected:

CXListBox* m_ListBox;

CXTextBox* m_TextBox;

CXButton* m_Button;

bool IsDroppedDown;

bool TextBoxIntersect(int X, int Y);

bool ButtonIntersect(int X, int Y);

bool ListBoxIntersect(int X, int Y);

bool ListItemIntersect(int X, int Y);

FLOAT m_RolledUpHeight;

public:

CXDropDownList(LPDIRECT3DDEVICE9 Device);

~CXDropDownList();

bool OnRender();

void OnMouseDown(int Button, int X, int Y);

void OnMouseMove(int X, int Y);

void OnMouseUp(int Button, int X, int Y);

void OnSetFocus();

void OnLostFocus();

void OnKeyDown(WPARAM Key, LPARAM Extended);

void OnKeyUp(WPARAM Key, LPARAM Extended);

void OnSysKey(WPARAM Key, LPARAM Extended);

CXListItem* AddNewItem(char* Caption) {return m_ListBox->

AddNewItem(Caption);}

void ShowDropDownList(bool State);

bool InitializeDropDownList(FLOAT DropDownWidth,

FLOAT DropDownHeight,

FLOAT ListHeight,

FLOAT ButtonWidth,

char* ScrollThumb,

char* ScrollTopArrow,

char* ScrollBottomArrow,

char* ScrollBackgroundDefault,

284 Part II
Chapter 12: Scrolling Lists

char* ButtonBackgroundDefault,

char* ButtonBackgroundSelected,

char* ItemBackgroundDefault,

char* ItemBackgroundSelected);

};

� A drop-down list is composed of a text box (m_TextBox), a list

box (m_ListBox), and a button (m_Button). The button controls

whether the list box is visible or not, up or down.

� Accordingly, the drop-down list control will fluctuate between

two potential heights, one for when the list is up and one for

when it is down (m_RolledUpHeight).

� Like text boxes, drop-down lists represent a piece of editable

text. This can be built from user keypresses or by selecting

items from the list.

� The list box can either be visible or invisible. When visible, the

user can select items. Otherwise, it acts like a normal text box

(IsDroppedDown).

12.6.1 The Class Constructor

Applications that instantiate a drop-down list invoke the class con-

structor. This initializes all its internal members, as with every

other class. Its definition is as follows.

CXDropDownList::CXDropDownList(LPDIRECT3DDEVICE9 Device) : CXControl(Device)

{

LOGFONT lf;

SystemParametersInfo(SPI_GETICONTITLELOGFONT, sizeof(lf), &lf, 0);

m_ListBox = new CXListBox(Device);

m_TextBox = new CXTextBox(lf, Device);

m_Button = new CXButton(Device);

m_RolledUpHeight = 0.0f;

}

Part II 285
Chapter 12: Scrolling Lists

U
I

L
IB

12.6.2 Initializing the Drop-Down List

Initializing the drop-down list is really a simple process but,

because it uses a list box, scroll box, and button, there’s a lot of it.

You’ll need to load images for each of those controls. This could be

performed individually, step by step. However, a function called

InitalizeDropDownList has been added to CXDropDownList. This

will allow applications to perform this rather tedious work in one

step. I don’t usually recommend coding functions with this many

parameters, but here is an example of its desirability. It requires

starting height and width values, and paths to all image files that

will be used. Take a look at its definition below.

bool CXDropDownList::InitalizeDropDownList(FLOAT DropDownWidth,

FLOAT DropDownHeight, FLOAT ListHeight, FLOAT ButtonWidth,

char* ScrollThumb, char* ScrollTopArrow, char* ScrollBottomArrow,

char* ScrollBackgroundDefault, char* ButtonBackgroundDefault,

char* ButtonBackgroundSelected, char* ItemBackgroundDefault,

char* ItemBackgroundSelected)

{

D3DXVECTOR2 Abs;

ZeroMemory(&Abs, sizeof(D3DXVECTOR2));

GetAbsolutePosition(&Abs);

SetWidthHeight(DropDownWidth, DropDownHeight);

m_RolledUpHeight = DropDownHeight;

m_ListBox->SetXYPos(Abs.x, Abs.y + DropDownHeight);

m_ListBox->SetWidthHeight(DropDownWidth, ListHeight);

m_ListBox->LoadScrollBar(ScrollBackgroundDefault,

ScrollThumb, ScrollTopArrow, ScrollBottomArrow);

m_ListBox->LoadItemBackgrounds(ItemBackgroundDefault,

ItemBackgroundSelected);

m_ListBox->SetVisible(false);

286 Part II
Chapter 12: Scrolling Lists

m_Button->SetXYPos(Abs.x + (DropDownWidth-ButtonWidth), Abs.y);

m_Button->SetWidthHeight(ButtonWidth, ListHeight);

m_Button->SetDefaultImage(ButtonBackgroundDefault);

m_Button->SetPressedImage(ButtonBackgroundSelected);

m_TextBox->SetXYPos(Abs.x, Abs.y);

m_TextBox->SetWidthHeight(DropDownWidth-ButtonWidth, DropDownHeight);

m_TextBox->SetFocus(true);

return true;

}

12.6.3 Showing and Hiding the List

Drop-down lists can be in one of two states that refer to whether

their list is shown or not; these are dropped down or not dropped

down. Ultimately, this corresponds to whether the list box is visible

or not. The following ShowDropDownList method of CXDrop-

DownList has been coded to switch the list’s visible status

according to a passed Boolean argument. This method is invoked

on OnMouseDown and OnMouseUp events. Specifically, this will

change the list’s visibility when the user clicks the drop-down list’s

button.

void CXDropDownList::ShowDropDownList(bool State)

{

m_ListBox->SetVisible(State);

IsDroppedDown = State;

if(State)

SetWidthHeight(GetWidth(), m_RolledUpHeight +

m_ListBox->GetHeight());

else

SetWidthHeight(GetWidth(), m_RolledUpHeight);

}

Part II 287
Chapter 12: Scrolling Lists

U
I

L
IB

12.6.4 Handling Input

User input affects which mode the drop-down list is in. On a mouse

click, an OnMouseDown event will be generated and this could lead

to a number of different outcomes: One, the user may have clicked

within the text box which implies he will input text; two, the user

could have clicked on the button and therefore the list should be

shown; three, if the list is shown, the user may click an item and

thereby the list disappears and the item text overwrites that of the

text box’s; and finally, the list may be visible and the click may have

occurred over the list’s scroll bar, in which case the list should

scroll and not disappear. The following two events, OnMouseDown

and OnKeyDown, show a sample of how input is handled. On the

companion CD, more events are handled.

void CXDropDownList::OnMouseDown(int Button, int X, int Y)

{

if(TextBoxIntersect(X,Y))

{

m_TextBox->OnMouseDown(Button, X, Y);

ShowDropDownList(false);

return;

}

if(ButtonIntersect(X,Y))

{

m_Button->OnMouseDown(Button, X, Y);

ShowDropDownList(true);

}

if(ListBoxIntersect(X,Y))

{

m_ListBox->OnMouseDown(Button, X, Y);

if(ListItemIntersect(X,Y))

{

if(m_ListBox->GetSelected())

{

char* Text = (char*) m_ListBox->GetSelected()->GetCaption();

288 Part II
Chapter 12: Scrolling Lists

m_TextBox->SetText(Text);

}

ShowDropDownList(false);

}

}

}

//--

void CXDropDownList::OnKeyDown(WPARAM Key, LPARAM Extended)

{

ShowDropDownList(false);

m_TextBox->OnKeyDown(Key, Extended);

}

12.6.5 Painting

Painting a drop-down list is a particularly simple process. You sim-

ply need to initiate the OnRender events in the text box, list box,

and button, and the rest all falls into place.

bool CXDropDownList::OnRender()

{

D3DXVECTOR2 Abs;

ZeroMemory(&Abs, sizeof(D3DXVECTOR2));

GetAbsolutePosition(&Abs);

m_TextBox->SetXYPos(Abs.x, Abs.y);

m_TextBox->OnRender();

m_Button->SetXYPos(Abs.x + (GetWidth()-m_Button->GetWidth()), Abs.y);

m_Button->OnRender();

m_ListBox->SetXYPos(Abs.x, Abs.y + m_RolledUpHeight);

m_ListBox->OnRender();

return true;

}

Part II 289
Chapter 12: Scrolling Lists

U
I

L
IB

12.6.6 Cleaning Up

Lastly, the drop-down lists frees its members using the following

destructor.

CXDropDownList::~CXDropDownList()

{

if(m_ListBox)

delete m_ListBox;

if(m_TextBox)

delete m_TextBox;

if(m_Button)

delete m_Button;

}

12.7 Conclusion

Well, ladies and gentlemen, UI LIB is now completed. Of course, it

is by no means comprehensive. You could add a veritable cornuco-

pia of controls including menus, toolbars, date and time controls,

and even tree views if you’re feeling particularly inspired. But what

has been covered thus far will have demonstrated a variety of dif-

ferent techniques that it’s almost as if a pattern exists among

developing controls, and thus creating more will be that much sim-

pler having now grasped the crucial understanding that governs an

interface library. At this point I recommend going back over Part II

to review the chapter conclusions and then move on to Part III,

which follows. Here, UI LIB will be put to the test as we develop an

interface for a DirectShow-powered media player.

290 Part II
Chapter 12: Scrolling Lists

Chapter 13

Introducing
DirectShow

Welcome to the final part of this book, Part III. At this point, UI LIB

has been completed and sports a number of different controls for

interface development, namely labels, buttons, text boxes, check

boxes, list boxes, and drop-down lists. During the course of Part III,

these controls will be employed to develop an interface for a

DirectShow media player. The development of that application

begins in this chapter as we examine DirectShow generally and

explore how it can be used to play media files. Specifically, this

chapter explains the following:

� How to enable Visual C++ projects to use DirectShow

� How to create DirectShow applications using the filter graph

� How to play media files like MPG, AVI, and MP3

� How to receive events from a playing file

291

13.1 DirectShow — What Is It?

Tracing its lineage from ActiveMovie, Microsoft DirectShow is part

of DirectX and is a COM-based architecture for streaming media in

Windows. It can capture media like video from cameras or audio

from microphones, and it can play media like videos and music from

files such as MPG and MP3. Specifically, this book employs Direct-

Show only to play media files, as is relevant to a media player. For

our purposes, therefore, DirectShow can be thought of as a pro-

grammable media player. Among the file formats and compressions

it supports are WMA, WMV, ASF, MPEG, WAV, MP3, DV, AIFF, and

QuickTime (version 2 and lower), among others. The following are

the basic steps involved in creating a DirectShow application from

beginning to end, using its interfaces to play media files. Subse-

quent sections examine these points in more detail.

1. Include headers and libraries

DirectShow applications should include dshow.h and link to

Strmiids.lib and Quartz.lib.

2. Initialize COM

DirectShow applications must begin by initializing COM. This

involves calling CoInitialize and then calling CoUninitialize.

3. Create the filter graph

Every DirectShow application must create a filter graph. This

represents the mechanism by which a media file is decoded and

played. Filter graphs are constructed by graph builders

(IGraphBuilder), and this interface is created by calling the

CoCreateInstance function.

4. Create a media control

After creating a filter graph representing a playable media file,

you should create a media control to perform basic operations

with it, such as playing the file or stopping the file. This is

achieved by the IMediaControl interface and is also returned

from CoCreateInstance.

292 Part III
Chapter 13: Introducing DirectShow

5. Create and configure an event mechanism

You’re going to want to know when file playback stops, when

errors occur, and when the user cancels operations. This can be

determined through the IMediaEventEx interface. Like other

interfaces in DirectShow, this is created by the CoCreate-

Instance function.

6. Load a file

You should then construct a filter graph to play a specific file.

This can be easily achieved by calling IGraphBuilder::

RenderFile.

7. Play the file

Once a graph builder has constructed a filter graph to play a

media file, and once an event interface has been instantiated,

the media control interface can be used to play the file.

8. Process media events

As a media file plays, a number of events occur — the file may

come to an end, the file may encounter an error, or the user

may cancel playback. To notify you of this, a custom message is

sent to WndProc, indicating that IMediaEventEx should be

polled for information.

9. Clean up

When you are finished using DirectShow, you should clean up

by releasing your instantiated interfaces and uninitializing

COM.

Part III 293
Chapter 13: Introducing DirectShow

T
h

e
M

e
d

ia
P

la
y
e
r

13.2 Getting Started

So how do you create a DirectShow application? Simple! You can

change your Direct3D projects to include the relevant libraries and

header or create a new program from scratch. Figure 13.1 demon-

strates how the linker options should appear.

To ensure DirectShow can compile and run, you must include

dshow.h and link to Strmiids.lib and Quartz.lib. You must also

ensure that you link to ole32.lib and oleaut32.lib to ensure the stan-

dard COM functions, such as CoCreateInstance, can compile.

Finally, you must ensure your application initializes the COM

library in some initialization procedure. This involves a call to

CoInitialize. For clarity, this process and more will occur in a sam-

ple procedure called InitDirectShow, as shown below. It contains all

the DirectShow initialization code for a sample application. The

next section examines the first stages of programming DirectShow.

294 Part III
Chapter 13: Introducing DirectShow

Figure 13.1

HRESULT InitDirectShow (HWND hWnd)

{

HRESULT hr = CoInitialize(NULL);

if (SUCCEEDED(hr))

{

}

return hr;

}

13.3 The Filter Graph

DirectShow plays media files using the filter graph. This is basically

a conceptual diagram that opens, decodes, and plays a file. It’s com-

posed from a series of process blocks, or modules, that are

connected to one another by pins. Media data enters the graph at a

starting point, and then travels along the pins and into each module.

Modules take in information, process it, and then output a result.

Thus, data moves along the graph, passing through module after

module until it exits in the form of something playable. Fortunately,

developers don’t often need to be concerned about the intricacies of

a filter graph’s components since DirectShow can automatically

assemble them to play common media files. However, developers

do need to create the IGraphBuilder interface to use DirectShow,

and it is with this interface that DirectShow assembles a filter

graph. This interface can be created by calling the CoCreate-

Instance function. Its declaration and parameters follow, and after

that a continuation of InitDirectShow demonstrates how to create a

filter graph builder.

Part III 295
Chapter 13: Introducing DirectShow

T
h

e
M

e
d

ia
P

la
y
e
r

STDAPI CoCreateInstance(

REFCLSID rclsid,

LPUNKNOWN pUnkOuter,

DWORD dwClsContext,

REFIID riid,

LPVOID *ppv

);

REFCLSID rclsid: CLSID representing the class associated with the object

to create. For DirectShow graph builders, this value should be

CLSID_FilterGraph.

LPUNKNOWN pUnkOuter: Don’t worry about this. Just pass NULL. For

more information, please consult the Windows SDK.

DWORD dwClsContext: Context in which the returned object will run. For

standard DirectShow applications, this value should be

CLSCTX_INPROC_SERVER.

REFIID riid: Identifier of the interface to be retrieved. For the DirectShow

filter graph builder, this should be IID_IGraphBuilder.

LPVOID *ppv: Address where the specified interface is to be returned.

HRESULT InitDirectShow (HWND hWnd)

{

HRESULT hr = CoInitialize(NULL);

if (SUCCEEDED(hr))

{

hr = CoCreateInstance(CLSID_FilterGraph, NULL,

CLSCTX_INPROC_SERVER, IID_IGraphBuilder, (void **)&pGraph);

}

return hr;

}

296 Part III
Chapter 13: Introducing DirectShow

13.4 The Media Control

Once IGraphBuilder has been created, an application then has cre-

ated a blank filter graph. This is now a blank canvas that is set to be

built in order to play a media file, such as a movie or a song. Before

populating the graph with all the blocks, pins, and connectors to

play such a file, you should first create a media control. This will act

like a remote control that will allow you to stop and start playback

of a media file running through the filter graph. The media control

is represented by the IMediaControl interface and is returned by

calling IGraphBuilder’s QueryInterface method. InitDirectShow can

be appended to include this.

HRESULT InitDirectShow (HWND hWnd)

{

HRESULT hr = CoInitialize(NULL);

if (SUCCEEDED(hr))

{

hr = CoCreateInstance(CLSID_FilterGraph, NULL,

CLSCTX_INPROC_SERVER, IID_IGraphBuilder, (void **)&pGraph);

hr = pGraph->QueryInterface(IID_IMediaControl, (void **)&pControl);

}

return hr;

}

13.5 The Event Mechanism

One other step an application should perform before loading a

media file and building the filter graph is creating an event inter-

face. This is explained in more detail later. Its purpose it to assist

an application in determining when a file has stopped playing or

when a large number of other events occur while a media file is

playing. This is represented by the IMediaEventEx interface and

can be returned by IGraphBuilder’s QueryInterface method.

Part III 297
Chapter 13: Introducing DirectShow

T
h

e
M

e
d

ia
P

la
y
e
r

HRESULT InitDirectShow (HWND hWnd)

{

HRESULT hr = CoInitialize(NULL);

if (SUCCEEDED(hr))

{

hr = CoCreateInstance(CLSID_FilterGraph, NULL,

CLSCTX_INPROC_SERVER, IID_IGraphBuilder, (void **)&pGraph);

hr = pGraph->QueryInterface(IID_IMediaControl, (void **)&pControl);

hr = pGraph->QueryInterface(IID_IMediaEventEx, (void **)&g_pEvent);

}

return hr;

}

13.6 Registering for Events

IMediaEventEx notifies applications as events occur during media

playback. It does this generally by sending a custom Windows mes-

sage to MsgProc, telling an application that some event has

happened. Applications should then handle the message by query-

ing the IMediaEventEx interface to find out specifically what

happened. The process of handling this message and events is dis-

cussed later. However, during initialization, an application must first

notify IMediaEventEx about which window a message should be

sent to and which message it is expected to send. This is called

registering for events. To do this, an application must first define its

own message, such as:

#define WM_GRAPHNOTIFY WM_APP + 1

Then, you register for events using the SetNotifyWindow method

of IMediaEventEx. The declaration and parameters for this function

are listed below, and then InitDirectShow has been coded to per-

form the registering process.

298 Part III
Chapter 13: Introducing DirectShow

HRESULT SetNotifyWindow(

OAHWND hwnd,

long lMsg,

long lInstanceData

);

OAHWND hwnd: Handle of the window to receive notifications or NULL

to stop receiving messages.

long lMsg: Window message you want to use as a notification. For the

purposes of this example, this value should be WM_GRAPHNOTIFY.

long lInstanceData: Value that is to be used for the LPARAM of the

notification.

HRESULT InitDirectShow (HWND hWnd)

{

HRESULT hr = CoInitialize(NULL);

if (SUCCEEDED(hr))

{

hr = CoCreateInstance(CLSID_FilterGraph, NULL,

CLSCTX_INPROC_SERVER, IID_IGraphBuilder, (void **)&pGraph);

hr = pGraph->QueryInterface(IID_IMediaControl, (void **)&pControl);

pGraph->QueryInterface(IID_IMediaEventEx, (void **)&g_pEvent);

g_pEvent->SetNotifyWindow((OAHWND)hWnd, WM_GRAPHNOTIFY, 0);

}

return hr;

}

13.7 Loading a File

Once an application has created IGraphBuilder, IMediaControl, and

IMediaEventEx, a file can be loaded into DirectShow for playback

via the filter graph. This is achieved simply by calling the Render-

File method of IGraphBuilder. Calling this method loads a specified

file, ready for playback, and automatically builds a filter graph to

accommodate it. Note, however, that this function does not actually

Part III 299
Chapter 13: Introducing DirectShow

T
h

e
M

e
d

ia
P

la
y
e
r

play a file. This is performed in the next section. Meanwhile, the

function declaration and parameters for RenderFile follow, and

beneath that continues the definition of InitDirectShow, which now

demonstrates how to load a sample MP3 file.

HRESULT RenderFile(

LPCWSTR lpwstrFile,

LPCWSTR lpwstrPlayList

);

LPCWSTR lpwstrFile: A wide char specifying the name of the media file.

This can be any media from MP3 to MPG to AVI. It could also be a local

file, such as those on your hard drive, or even an online resource, like a

file on the web.

LPCWSTR lpwstrPlayList: Just pass NULL.

HRESULT InitDirectShow (HWND hWnd)

{

HRESULT hr = CoInitialize(NULL);

if (SUCCEEDED(hr))

{

hr = CoCreateInstance(CLSID_FilterGraph, NULL,

CLSCTX_INPROC_SERVER, IID_IGraphBuilder, (void **)&pGraph);

hr = pGraph->QueryInterface(IID_IMediaControl, (void **)&pControl);

pGraph->QueryInterface(IID_IMediaEventEx, (void **)&g_pEvent);

g_pEvent->SetNotifyWindow((OAHWND)hWnd, WM_GRAPHNOTIFY, 0);

hr = pGraph->RenderFile(L"sample.mp3", NULL);

}

return hr;

}

300 Part III
Chapter 13: Introducing DirectShow

13.8 Playing a File

Playing a loaded file is one of the simplest processes to perform. It

involves calling the Run method of IMediaControl. It takes no

parameters and immediately begins playback via the filter graph.

The Run method can be called anywhere in an application to begin

playback. For the sake of clarity, I have done this inside the

InitDirectShow procedure. This can be coded as follows.

HRESULT InitDirectShow (HWND hWnd)

{

HRESULT hr = CoInitialize(NULL);

if (SUCCEEDED(hr))

{

hr = CoCreateInstance(CLSID_FilterGraph, NULL,

CLSCTX_INPROC_SERVER, IID_IGraphBuilder, (void **)&pGraph);

hr = pGraph->QueryInterface(IID_IMediaControl, (void **)&pControl);

pGraph->QueryInterface(IID_IMediaEventEx, (void **)&g_pEvent);

g_pEvent->SetNotifyWindow((OAHWND)hWnd, WM_GRAPHNOTIFY, 0);

hr = pGraph->RenderFile(L"sample.mp3", NULL);

hr = pControl->Run();

}

return hr;

}

13.9 Catching Media Events

Once a media file is playing, it’s likely to trigger a number of

events. These events might be the end of a song or a user cancel-

ing playback. It notifies applications of these events by sending a

custom Windows message to MsgProc, telling an application that

some event has happened. This message is the same one that was

passed to IMediaEventEx in Section 13.6. When an application

receives this, it knows that an event occurred and that it should

Part III 301
Chapter 13: Introducing DirectShow

T
h

e
M

e
d

ia
P

la
y
e
r

query IMediaEventEx for more information. The process of doing

this is handled in the next section. The following code, however,

demonstrates a sample WndProc procedure that captures this mes-

sage and passes it on to an application-defined function called

HandleGraphEvent. This function is used in the next section to

illustrate how messages are processed by IMediaEventEx.

LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)

{

switch(msg)

{

case WM_DESTROY:

Cleanup();

PostQuitMessage(0);

return 0;

case WM_PAINT:

ValidateRect(hWnd, NULL);

return 0;

case WM_GRAPHNOTIFY:

HandleGraphEvent();

return 0;

}

return DefWindowProc(hWnd, msg, wParam, lParam);

}

13.10 Reading Media Events

Once an application receives a custom message in WndProc, it

knows one or more events have occurred during media playback

and may need to be handled. For example, if a song has finished

playing, you might want to load another song for playback, espe-

cially if the user has made some kind of playlist. Thus, you need to

query IMediaEventEx to see what event or events occurred and

process them or ignore them accordingly. You read events from

IMediaEventEx by calling GetEvent. Its declaration and parameters

302 Part III
Chapter 13: Introducing DirectShow

follow, followed by Table 13.1, which lists common events that

could be returned. The next section handles some of these events.

HRESULT GetEvent(

long *lEventCode,

LONG_PTR *lParam1,

LONG_PTR *lParam2,

long msTimeout

);

long *lEventCode: Address of a variable to receive the event code.

LONG_PTR *lParam1: Address of a variable to receive the first event

parameter.

LONG_PTR *lParam2: Address of a variable to receive the second event

parameter.

long msTimeout: You can specify an interval of time to suspend program

execution and wait for the next event. Use INFINITE to block until an event

occurs. Since our application receives notifications through MsgProc,

there’s no need to wait, so just pass 0.

Table 13.1. Common events

EC_ACTIVATE A separate window playing a video has been activated or

deactivated.

lParam1

True means the window was activated and false

means it was deactivated.

lParam2

Pointer to an IBaseFilter interface.

EC_BUFFERING_DATA The filter graph is starting to buffer or has stopped buff-

ering data.

lParam1

If data is starting to buffer, this value is true; else it

is false.

lParam2

This value is 0.

Part III 303
Chapter 13: Introducing DirectShow

T
h

e
M

e
d

ia
P

la
y
e
r

EC_COMPLETE This event occurs when media has successfully finished

playing.

lParam1

HRESULT value.

lParam2

This value is 0 or a pointer to IBaseFilter.

EC_ERRORABORT Indicates that playback was aborted due to an error.

lParam1

HRESULT value of the failed operation.

lParam2

This value is 0.

EC_REPAINT Video requires repainting.

lParam1

Pointer to a PIN interface or NULL.

lParam2

This value is 0.

EC_USERABORT Occurs when the user cancels playback.

lParam1

This value is 0.

lParam2

This value is 0.

� TIP

For a list of notification codes and descriptions, please see the DirectX

SDK.

304 Part III
Chapter 13: Introducing DirectShow

13.11 Handling Media Events

After a custom message is received by WndProc, an application

knows that an event occurred during media playback. It should then

handle this message by checking IMediaEventEx for pending

events using the GetEvent function, as demonstrated in the previ-

ous section. However, one important thing to remember is that

there may be more than one event waiting to be processed and

GetEvent only returns one event at a time. Therefore, you should

continually call this function until it fails, as each time it will return

information about a different event. If the method succeeds, the rel-

evant information is returned at the specified addresses. If the

method fails, there are no more events to process. The following

code from an application-defined function, HandleGraphEvent,

demonstrates how messages can be retrieved from

IMediaEventEx.

void HandleGraphEvent()

{

if(g_pEvent)

{

long evCode;

LONG_PTR param1, param2;

while (SUCCEEDED(g_pEvent->GetEvent(&evCode, ¶m1, ¶m2, 0)))

{

switch (evCode)

{

case EC_COMPLETE:

case EC_USERABORT:

case EC_ERRORABORT:

return;

}

g_pEvent->FreeEventParams(evCode, param1, param2);

}

}

}

Part III 305
Chapter 13: Introducing DirectShow

T
h

e
M

e
d

ia
P

la
y
e
r

13.12 Cleaning Up

Finally, once you’ve finished using DirectShow, you should then

free its instantiated interfaces and uninitialize COM. This has been

performed in the following application-defined CleanUp function.

VOID Cleanup()

{

if(pGraph)

pGraph->Release();

if(pControl)

pControl->Release();

if(g_pEvent)

g_pEvent->Release();

CoUninitialize();

}

13.13 Conclusion

This chapter has presented a brief overview of the awesome power

of DirectShow and provided us with a good basis upon which to

build a media player application. The next chapter concentrates on

wrapping DirectShow into a form that is particularly favorable to

media players. Before moving on, however, let’s recap the key

points explained in this chapter.

� DirectShow plays media files using the filter graph, which is a

conceptual diagram that opens, decodes, and plays a file. This is

constructed by IGraphBuilder.

� IMediaControl is an interface that controls the filter graph’s

playback.

� IMediaEventEx is used to notify applications of media events

that occur.

306 Part III
Chapter 13: Introducing DirectShow

Chapter 14

Wrapping
DirectShow

This chapter continues from where the previous ended by encapsu-

lating DirectShow into two wrapper classes. These are geared

toward creating a media player in the following chapter. Specifically,

this chapter demonstrates the following:

� How to encapsulate media files into class CXMedia

� How to create a list of media classes to form a playlist

� How to encapsulate IGraphBuilder, IMediaControl, and

IMediaEventEx

� How to use this class to play a playlist

14.1 CXMedia and CXMediaPlayer

DirectShow contains much functionality, much of which is irrele-

vant to this book. However, its ability to play media files will be

encapsulated over the following two classes. Subsequent sections

examine their implementation.

The CXMedia class encapsulates a media file that is to be

played by the CXMediaPlayer class. This equates to storing a valid

path to a media file. It also will be linked list enabled by storing a

next pointer, which makes it easy to maintain a playlist of media.

307

The CXMediaPlayer class is the real meat and potatoes of the

operation. This class encapsulates the IGraphBuilder, IMedia-

Control, and IMediaEventEx interfaces. These will be used to play

media files — or more specifically, will be used to play one or more

instances of CXMedia. These will be stored in a linked list and

played sequentially.

14.2 CXMedia — Songs, Movies, and More

Media for media players consists mainly of movies and music, and

these are divided into different file formats, namely, MPG, MPEG,

AVI, WAV, MP3, SND, etc. All types of media like this can be repre-

sented in class CXMedia. Its entire declaration and definition

follows. This class stores several properties about a single media

file, including its file path, whether the file is currently being

played, and how many times it should be repeated, if any. Take a

look at its code below to get a taste of how it works. The next sec-

tion examines how this is played by class CXMediaPlayer.

class CXMedia

{

private:

protected:

std::string m_Media;

int m_Repeats;

CXMedia* m_Next;

bool m_IsPlaying;

public:

CXMedia();

void SetMedia(const char* Path) {m_Media = Path;}

const char* GetMedia() {return m_Media.c_str();}

void SetRepeats(int Repeats) {m_Repeats = Repeats;}

int GetRepeats() const {return m_Repeats;}

CXMedia* GetNext() const {return m_Next;}

void SetNext(CXMedia* Next) {m_Next = Next;}

void SetPlaying(bool State) {m_IsPlaying = State;}

bool GetPlaying() const {return m_IsPlaying;}

308 Part III
Chapter 14: Wrapping DirectShow

};

CXMedia::CXMedia()

{

m_Repeats = 0;

m_Next = NULL;

m_IsPlaying = false;

}

14.3 CXMediaPlayer —
Player of the Playlist

Media files are represented by class CXMedia. This defines the

path to a media file and the number of times a player should repeat

it. Instances of CXMedia are intended to be played by CXMedia-

Player. This encapsulates IGraphBuilder, IMediaControl, and

IMediaEventEx and performs the usual DirectShow tedium that

was demonstrated in the previous chapter. The code below pres-

ents the class declaration and the key points of this class follow.

class CXMediaPlayer

{

private:

protected:

CXMedia* m_PlayList;

CXMedia* m_CurrentlyPlaying;

IGraphBuilder *m_Graph;

IMediaControl *m_Control;

IMediaEventEx *m_pEvent;

HWND m_hWnd;

int m_Counter;

void Initialize(); //Initializes DirectShow objects

void Free(); //Clears DirectShow objects

public:

CXMediaPlayer(HWND hWnd);

~CXMediaPlayer();

void ClearPlayList();

CXMedia* AddMediaToPlayList(const char* Path, int Repeats);

Part III 309
Chapter 14: Wrapping DirectShow

T
h

e
M

e
d

ia
P

la
y
e
r

void Play(CXMedia* Media);

void Stop();

void Pause();

void Update();

CXMedia* GetFirstItem() {return m_PlayList;}

CXMedia* GetPlayingItem() {return m_CurrentlyPlaying;}

};

� Class CXMediaPlayer plays media files of type CXMedia. It

stores them as a playlist and maintains a pointer to the first

item (m_PlayList).

� CXMediaPlayer plays media for its specified number of repeats

through the Play method and keeps track of the currently play-

ing item through m_CurrentlyPlaying.

� As playback finishes, CXMediaPlayer increments a counter of

how many plays the current item has had (m_Counter). This is

compared to the item’s repeat count to determine whether the

next item in the playlist should be played. A repeat count of –1

means it should repeat indefinitely.

14.3.1 The Class Constructor

Applications that declare instances of the media player implicitly

call its constructor. This sets all of its member variables to starting

values and initializes COM, ready to use DirectShow. Its definition

follows.

CXMediaPlayer::CXMediaPlayer(HWND hWnd)

{

m_Graph = NULL;

m_Control = NULL;

m_pEvent = NULL;

m_PlayList = NULL;

m_CurrentlyPlaying = NULL;

m_Counter = 0;

m_hWnd = hWnd;

CoInitialize(NULL);

}

310 Part III
Chapter 14: Wrapping DirectShow

� TIP

You may want to call CoInitialize at application start, especially if you

decide to change COM mode or use other COM interfaces.

14.3.2 Initializing DirectShow

Once a media player object is created, one of the first things that

should be done is the initialization of DirectShow, as demonstrated

in the previous chapter. Briefly, this involves creating the filter

graph through which media travels, creating the media control to

start, stop, and pause playback, and creating the event mechanism

by which the media player can be notified of events during media

playback. Actually, this process is performed implicitly as the class

is called upon to play media files. Initialization is achieved with the

Initialize method, and it can be coded to initialize DirectShow as

follows.

void CXMediaPlayer::Initialize()

{

Free(); //Deletes any previous DirectShow instances

CoCreateInstance(CLSID_FilterGraph, NULL,

CLSCTX_INPROC_SERVER, IID_IGraphBuilder, (void **)&m_Graph);

m_Graph->QueryInterface(IID_IMediaControl, (void **)&m_Control);

m_Graph->QueryInterface(IID_IMediaEventEx, (void **)&m_pEvent);

m_pEvent->SetNotifyWindow((OAHWND)m_hWnd, WM_GRAPHNOTIFY, 0);

}

14.3.3 Adding Media Files

You might have guessed by now that I like using linked lists. This is

because they — or adaptations of them — are useful for a whole

range of scenarios, and storing a playlist is just one of them. By def-

inition, a playlist refers to a list of media files that are scheduled to

be played sequentially, one after the other. The user doesn’t need

to prompt a media player for this to occur. The user can simply load

in his playlist and away it goes. CXMediaPlayer stores a playlist as

Part III 311
Chapter 14: Wrapping DirectShow

T
h

e
M

e
d

ia
P

la
y
e
r

an array of CXMedia classes — or more specifically, as a linked list.

This means the list can grow and shrink dynamically, as media is

added or removed. The process of adding files is simple. This can

be seen below using the following AddMediaToPlayList method of

CXMediaPlayer.

CXMedia* CXMediaPlayer::AddMediaToPlayList(const char* Path, int Repeats)

{

CXMedia* Media = new CXMedia();

Media->SetMedia(Path);

Media->SetRepeats(Repeats);

if(!m_PlayList)

m_PlayList = Media;

else

{

CXMedia* Temp = m_PlayList;

while(Temp->GetNext())

Temp = Temp->GetNext();

Temp->SetNext(Media);

}

return Media;

}

14.3.4 Clearing Media Files

There are going to be times when you’ll want to clear the playlist,

perhaps because you’re loading a new set of media or deleting the

media player from memory. The following ClearPlayList method

has been added to CXMediaPlayer to achieve this simple task, a

process that we have seen before in other contexts.

312 Part III
Chapter 14: Wrapping DirectShow

void CXMediaPlayer::ClearPlayList()

{

CXMedia* Temp = m_PlayList;

while(Temp)

{

CXMedia* Next = Temp->GetNext();

if(Temp)

delete Temp;

Temp = Next;

}

m_PlayList = NULL;

}

14.3.5 Playing a Playlist

Once one or more media files have been added to the playlist, the

media player class can then play items. It does this through the

Play method, which requires a starting item in the playlist where

playback is to begin. For example, if you wanted to play the whole

list, from beginning to end, then you’d simply pass the first media

item as the Play method’s argument.

void CXMediaPlayer::Play(CXMedia* Media)

{

if(Media)

{

if(m_CurrentlyPlaying) //Resume paused file

{

m_Control->Run();

}

else //Play new file

{

Initialize();

const char* Str = Media->GetMedia();

int Length = strlen(Str);

Part III 313
Chapter 14: Wrapping DirectShow

T
h

e
M

e
d

ia
P

la
y
e
r

WCHAR* Path = new wchar_t [Length + 1];

MultiByteToWideChar(CP_ACP, 0, Str, Length+1, Path, Length + 1);

m_Control->Stop();

m_Graph->RenderFile(Path, NULL);

m_Control->Run();

m_CurrentlyPlaying = Media;

Media->SetPlaying(true);

return;

}

}

m_CurrentlyPlaying = NULL;

}

� NOTE

Notice that RenderFile requires its media source to be specified as a

wide string, rather than the standard char. Thus, the MultiByteToWide-

Char function has been used to convert the returned string from

std::string’s c_str method.

14.3.6 Pausing and Stopping

Apart from playing media files, it is also useful to stop and pause

them, a subject not addressed in the previous chapter. However, it

doesn’t require much explanation since IMediaControl supports

both Stop and Pause methods and neither requires arguments. The

following Stop and Pause methods of CXMediaPlayer encapsulate

them, and their definition can be coded as follows.

void CXMediaPlayer::Stop()

{

m_Counter = 0;

m_CurrentlyPlaying = NULL;

if(m_Control)

m_Control->Stop();

}

314 Part III
Chapter 14: Wrapping DirectShow

void CXMediaPlayer::Pause()

{

if(m_Control)

m_Control->Pause();

}

14.3.7 Handling Messages

Once a media file is playing, CXMediaPlayer must know when

events occur. Specifically, it must know when playback is completed

in order to kick off the next file playing, stop playback, or repeat the

current item. To notify CXMediaPlayer that an event occurred, an

application must watch for the custom message in WndProc and

then invoke CXMediaPlayer’s Update method where events are

handled. Take a look at its function definition below to see how it

handles EC_COMPLETE.

void CXMediaPlayer::Update()

{

if(m_pEvent)

{

long evCode;

LONG_PTR param1, param2;

while (SUCCEEDED(m_pEvent->GetEvent(&evCode, ¶m1, ¶m2, 0)))

{

switch (evCode)

{

case EC_COMPLETE:

if(m_CurrentlyPlaying)

{

if((m_CurrentlyPlaying->GetRepeats() == –1) ||

(m_Counter < m_CurrentlyPlaying->GetRepeats()))

{

m_Counter++;

Play(m_CurrentlyPlaying);

}

else

{

Part III 315
Chapter 14: Wrapping DirectShow

T
h

e
M

e
d

ia
P

la
y
e
r

m_CurrentlyPlaying->SetPlaying(false);

CXMedia* Next = m_CurrentlyPlaying->GetNext();

m_CurrentlyPlaying = NULL;

m_Counter = 0;

Play(Next);

}

}

break;

}

m_pEvent->FreeEventParams(evCode, param1, param2);

}

}

}

14.3.8 Uninitializing DirectShow

Once you’ve finished using DirectShow, you should uninitialize its

interfaces by calling their release methods. Usually, this will occur

in the class destructor, but it has been coded as a separate method

that will always be invoked there. This method is called Free and

its definition is given below.

void CXMediaPlayer::Free()

{

if(m_Graph)

m_Graph->Release();

if(m_Control)

m_Control->Release();

if(m_pEvent)

m_pEvent->Release();

}

316 Part III
Chapter 14: Wrapping DirectShow

14.3.9 Cleaning Up

Finally, once an application has finished using the media player, it

should delete it from memory. This invokes its class destructor

where its members are consequently released.

CXMediaPlayer::~CXMediaPlayer()

{

Free();

ClearPlayList();

CoUninitialize();

}

14.4 Conclusion

This chapter has presented an overview of how to encapsulate

DirectShow. It supports playlists, and media can be played, paused,

and stopped. One potential improvement that could be made is the

inclusion of media seeking such that a user can jump backward and

forward to specific points in a media file. This is achieved by the

IMediaSeeking interface but is beyond the scope of this book. To

learn more about this and DirectShow in general, please consult the

appendix. However, the classes thus far developed facilitate our

needs adequately and it’s now time for us to move on. The follow-

ing chapter is not only the last, but also demonstrates how our

foundational knowledge from Part I, UI LIB from Part II, and our

media player work during Part III come together to form a media

player application, complete with an interface.

Part III 317
Chapter 14: Wrapping DirectShow

T
h

e
M

e
d

ia
P

la
y
e
r

This page intentionally left blank.

Chapter 15

Building the Media
Player

Congratulations! You’ve reached the final chapter. Here, we’ll cre-

ate a media player application, complete with an interface. To do

this, we’ll be using the DirectShow wrappers from the previous

chapter and an assortment of controls from UI LIB, developed in

Part II. This chapter demonstrates the following:

� How to use CXMedia and CXMediaPlayer

� How to use buttons, labels, text boxes, list boxes, scroll bars,

and windows

� How to override buttons to handle clicks differently

� How to implement connectivity between controls

15.1 The Media Player

As mentioned, this chapter focuses on creating a basic media player

application. Primarily, this application is geared toward playing a

playlist of MP3 music files, but it can also play video and other

media. Specifically, it allows the user to enter a search path. Having

done so the user can click the search button, whereupon a list of

MP3s found at that destination are loaded into the playlist. These

319

can be played, stopped, or paused using the media player buttons.

See Figure 15.1 for a glimpse at the final program.

15.2 CXMyMediaPlayerApp —
The Media Player

The entire media player application is coded into a single class.

Hence, this means that any Visual C++ project wanting to become

a media player can just instantly plug in our class. Specifically, this

class will be derived from CXWindow and can be set to act as a par-

ent window, or desktop. Recall from Chapter 9 that CXWindow can

encapsulate the largest frame inside which an interface exists,

including other windows and controls. To this extent therefore, our

class will be the parent window in an MDI application, or like the

Windows desktop; it is a container for an interface. Therefore,

applications essentially become media players by instantiating this

320 Part III
Chapter 15: Building the Media Player

Figure 15.1

class to be its desktop, or topmost window. The class will be named

CXMyMediaPlayerApp and its declaration and key points follow.

class CXMyMediaPlayerApp : public CXDesktopWindow

{

private:

protected:

CXWindow* m_Window;

CXListBox* m_FileList;

CXPlayButton* m_PlayButton;

CXStopButton* m_StopButton;

CXSearchButton* m_SearchButton;

CXCloseButton* m_CloseButton;

CXMediaPlayer* m_MediaPlayer;

CXTextBox* m_SearchPath;

void LoadWindows();

void LoadListBoxes();

void LoadButtons();

void LoadTextBoxes();

public:

CXMyMediaPlayerApp(HWND hWnd, LPDIRECT3DDEVICE9 Device);

~CXMyMediaPlayerApp();

bool Intialize(int Width, int Height);

bool OnRender();

void OnMouseDown(int Button, int X, int Y);

void OnMouseMove(int X, int Y);

void OnMouseUp(int Button, int X, int Y);

void OnSetFocus();

void OnLostFocus();

void OnKeyDown(WPARAM Key, LPARAM Extended);

void OnKeyUp(WPARAM Key, LPARAM Extended);

void OnSysKey(WPARAM Key, LPARAM Extended);

void Update() {m_MediaPlayer->Update();}

};

� Class CXMyMediaPlayerApp allows an application to become a

media player. It implements both the front end and back end of

a media player application. This means it implements both the

interface and inner workings.

Part III 321
Chapter 15: Building the Media Player

T
h

e
M

e
d

ia
P

la
y
e
r

� Class CXMyMediaPlayerApp represents a desktop, or parent

window, that contains an interface for a media player. Spe-

cifically, it contains a single child window (m_Window) and its

child controls, which are used to present a media player and

control its operations.

� CXMyMediaPlayerApp maintains a media player and playlist

through member m_MediaPlayer. This class was developed in

the previous chapter and is used to play MP3 files.

� m_Window has a number of child controls that are used to pres-

ent the application. These are lists, text boxes, and customized

buttons that perform different operations. The controls this

window contains are as follows:

� CXListBox* m_FileList — List box representing the

playlist the media player should play.

� CXPlayButton* m_PlayButton — Button that switches

between play and paused. Clicking on this for the first time

plays the playlist. Clicking again pauses playback, and click-

ing yet again resumes playback.

� CXStopButton* m_StopButton — This button stops

playback of the current playlist.

� CXTextBox* m_SearchPath — Text box where a user

enters a path to search for MP3 files.

� CXSearchButton* m_SearchButton — This button cre-

ates a playlist by searching a specified path, defined by

m_SearchPath, for MP3 files. The found files are then

loaded into the list box m_FileList for playback.

� CXCloseButton* m_CloseButton — This button closes

the application.

322 Part III
Chapter 15: Building the Media Player

15.2.1 Creating the Media Player

As mentioned, CXMyMediaPlayerApp represents a media player

application, both interface and back end included. As instances of

this class are instantiated, the class constructor is called to initialize

its members to starting values. Inside this function, the media

player class, CXMediaPlayer, is created. However, interface con-

trols, such as buttons and lists, are created and initialized inside the

Initialize method, which is handled in the next section onward. The

definition below demonstrates how the constructor works.

CXMyMediaPlayerApp::CXMyMediaPlayerApp(HWND hWnd, LPDIRECT3DDEVICE9 Device)

: CXDesktopWindow(Device)

{

m_MediaPlayer = new CXMediaPlayer(hWnd);

m_Window = NULL;

m_FileList = NULL;

m_PlayButton = NULL;

m_StopButton = NULL;

m_SearchButton = NULL;

m_CloseButton = NULL;

m_SearchPath = NULL;

}

15.2.2 Loading Controls

The interface for our media player program consists of the controls

listed in Section 15.2. These are contained inside a window and

include a list box, several buttons, and a text box. They allow the

user to search a path for MP3 files, load them into a playlist, and

then start, stop, or pause playback. These controls are loaded in

groups by separate methods of CXMyMediaPlayerApp. Specifically,

these methods are LoadWindows, LoadListBoxes, LoadButtons,

and LoadTextBoxes, and they are all called by the Initialize method,

which is used to load the media player’s entire interface and to set

the desktop frame’s overall width and height. The definition for Ini-

tialize appears below, and the loading and development of individual

controls is handled separately in subsequent sections.

Part III 323
Chapter 15: Building the Media Player

T
h

e
M

e
d

ia
P

la
y
e
r

bool CXMyMediaPlayerApp::Intialize(int Width, int Height)

{

SetWidthHeight(Width, Height); //Set desktop dimensions

LoadWindows(); //Load the window

LoadListBoxes(); //Load the playlist list box

LoadTextBoxes(); //Load the edit box to enter a search path

LoadButtons(); //Load all buttons: play, stop, pause, search,

//and close

return true;

}

15.2.3 The Window

The first control to examine is the main media player window.

Remember that class CXMyMediaPlayerApp is derived from

CXWindow and is therefore a window itself. However, this is not a

visible window and simply acts as a frame, or desktop, encompass-

ing the entire interface. Thus, another window must be created and

should be made the child window of the desktop. It should be the

standard type, CXWindow, as developed in Chapter 9, and should be

visible, able to be dragged, and contain the controls described in

Section 15.2. Figure 15.2 demonstrates the image I created in

Photoshop to be the background of this window, and the following

code shows the LoadWindows method of CXMyMediaPlayerApp.

This instantiates an instance of CXWindow and then sets its start-

ing properties. It also adds it to the control hierarchy as a child of

the desktop.

324 Part III
Chapter 15: Building the Media Player

void CXMyMediaPlayerApp::LoadWindows()

{

m_Window = new CXWindow(GetDevice());

m_Window->LoadCanvasFromFile("Window_background.bmp");

m_Window->SetXYPos(0,0);

AddChildControl((CXControl*) m_Window);

}

� TIP

Of course, it’s usually not a great idea to hard-code paths, as has

been used for LoadCanvasFromFile. Typically, you would load this

data from a file.

Part III 325
Chapter 15: Building the Media Player

T
h

e
M

e
d

ia
P

la
y
e
r

Figure 15.2

15.2.4 The List Box

Once the window (m_Window) is created, controls can be added to

it. The first control, for no particular reason, will be the list box.

This is going to be used to show a list of MP3 files at a specified

path, and these will also be added to the playlist. Later, as the play

button is pressed, the list is played sequentially, from top to bottom.

The following images in Figures 15.3 to 15.8 are used for the list

items’ selected and un-selected states, and for the scroll bar thumb,

background, and arrow buttons.

The following LoadListBoxes function initializes the list box and

adds it to the control hierarchy as a child of m_Window.

void CXMyMediaPlayerApp::LoadListBoxes()

{

const FLOAT List_Item_Height = 32;

m_FileList = new CXListBox(GetDevice());

m_Window->AddChildControl((CXControl*) m_FileList);

m_FileList->SetXYPos(6,75);

m_FileList->SetWidthHeight(500, List_Item_Height*7);

326 Part III
Chapter 15: Building the Media Player

Figure 15.3. List item selected Figure 15.4. List item unselected

Figure 15.5. Scroll bar thumb Figure 15.6. Scroll bar background

Figure 15.7. Scroll bar up
arrow

Figure 15.8. Scroll bar down arrow

m_FileList->LoadScrollBar("Background.jpg", " thumb.jpg", " up.jpg",

"down.jpg");

m_FileList->LoadItemBackgrounds("thumb.jpg", "thumb_Sel.jpg");

}

15.2.5 The Text Box

Another control to be added to and positioned inside m_Window is

text box m_SearchPath. This allows a user to enter a search path to

be searched for MP3 files. The following LoadTextBoxes function

loads this control and inserts it into the control hierarchy as a child

of the window m_Window.

void CXMyMediaPlayerApp::LoadTextBoxes()

{

LOGFONT lf;

SystemParametersInfo(SPI_GETICONTITLELOGFONT, sizeof(lf), &lf, 0);

m_SearchPath = new CXTextBox(lf, GetDevice());

m_SearchPath->SetXYPos(100,450);

m_SearchPath->SetWidthHeight(300,32);

m_SearchPath->SetText("c:\\");

m_Window->AddChildControl((CXControl*) m_SearchPath);

}

15.3 Buttons Are Connectivity

Until now, controls have been added to member m_Window as rela-

tively autonomous components. They have little interaction with

one another at all. Thus, if the user enters a path into the text box

to search for MP3 files, there’s no implicit way the list box can

know about it. Consequently, it cannot be populated with search

results. Therefore, there needs to be a way in which some kind of

connectivity can be established between controls such that one

control can appropriately interact with another. This is where but-

tons come to the rescue. Buttons allow us to store pointers to other

controls in the window and communicate between them. You may

remember that buttons were developed in Chapter 10, as class

Part III 327
Chapter 15: Building the Media Player

T
h

e
M

e
d

ia
P

la
y
e
r

CXButton. Of course, this class was fine for sample applications but

there was a small problem: Because buttons are all going to do dif-

ferent things, you need to handle mouse clicks differently. For

example, a search button might search for a group of files, while a

close button might end an application. Using CXButton exclusively

doesn’t allow you to do this. So, what should you do instead? Sim-

ple. You should add a virtual function — say OnButtonClick — to

CXButton and trigger it during OnMouseDown events. Then you

simply override this event in a derived class to customize OnClick

functionality. The following sections describe each of the derived

buttons developed for the media player program. These were listed

in Section 15.2; they are classes CXPlayButton, CXStopButton,

CXSearchButton, and CXCloseButton.

15.3.1 CXSearchButton — The Search Button

The first button to be developed for our media player is the search

button. This sits beside text box m_SearchPath and should be

clicked upon after a user has entered a search path. Once clicked,

its OnClick event handler should be coded to search the specified

path for MP3 files and populate list box m_FileList. As it does so, it

also adds found files to the playlist of the media player. As shown in

the class declaration below, CXSearchButton is derived from

CXButton and overrides an OnClick event. It also supports connec-

tivity between controls by maintaining pointers to the text box, list

box, and media player. These pointers are set later by the media

player application. Following sections examine how this button

works.

class CXSearchButton : public CXButton

{

private:

CXTextBox* m_SearchPath;

CXListBox* m_FileList;

CXMediaPlayer* m_MediaPlayer;

CXPlayButton* m_PlayButton;

protected:

public:

328 Part III
Chapter 15: Building the Media Player

void OnButtonClick();

CXSearchButton(LPDIRECT3DDEVICE9 Device);

void SetMediaPlayer(CXMediaPlayer* Player) {m_MediaPlayer = Player;}

void SetTextBox(CXTextBox* TextBox) {m_SearchPath = TextBox;}

void SetListBox(CXListBox* ListBox) {m_FileList = ListBox;}

void SetPlayButton(CXPlayButton* Button) {m_PlayButton = Button;}

};

15.3.2 CXSearchButton — Loading Images

Class CXMyMediaPlayerApp could have loaded the images for

CXSearchButton itself. But for clarity, the image loading process

has been coded into CXSearchButton’s constructor. This means

that as soon as this button is instantiated, its images are loaded.

The constructor follows.

CXSearchButton::CXSearchButton(LPDIRECT3DDEVICE9 Device) : CXButton(Device)

{

m_SearchPath = NULL;

m_FileList = NULL;

m_MediaPlayer = NULL;

m_PlayButton = NULL;

SetUnpressedImage("Search.bmp");

}

15.3.3 CXSearchButton — Handling Mouse Clicks

As mentioned, when the search button is clicked it achieves three

processes: It searches a specified path for MP3 files, it adds those

files to the list box, and it adds those files to the playlist. The fol-

lowing list explains the button click event in more detail. Its

function definition follows.

� The search path is taken from text input into the text box. This

text box is pointed to by member m_SearchPath. It could be a

string like “C:\mp3s.”

� The search path is then appended with “*.mp3” to specify an

entire string representing search criterion. This may now look

like “C:\mp3s*.mp3.”

Part III 329
Chapter 15: Building the Media Player

T
h

e
M

e
d

ia
P

la
y
e
r

� MP3 files are then searched for using the FindFirstFile and

FindNextFile Win API functions. See the Win SDK documenta-

tion for more information. It works much like getting the first

and next items in a linked list, except this represents getting

the first and next files at a specified path.

� On each iteration of the loop, a new MP3 file is retrieved. Here,

you should add the file to the list box as an item and add the file

to the playlist as a song.

void CXSearchButton::OnButtonClick()

{

WIN32_FIND_DATA FileData;

BOOL bFinished = FALSE;

std::string Search = m_SearchPath->GetText();

Search += "*.mp3";

HANDLE hSearch = FindFirstFile(Search.c_str(), &FileData);

//Get first file

if (hSearch == INVALID_HANDLE_VALUE)

return;

m_FileList->ClearItems(); //Clear list box

m_MediaPlayer->Stop(); //Stop media player

m_MediaPlayer->ClearPlayList(); //Clear playlist

while(!bFinished)

{

m_FileList->AddNewItem(FileData.cFileName); //Add list item

Search = m_SearchPath->GetText();

Search += FileData.cFileName;

m_MediaPlayer->AddMediaToPlayList(Search.c_str(), 0); //Add new song

if (!FindNextFile(hSearch, &FileData)) //Get next file

{

if (GetLastError() == ERROR_NO_MORE_FILES)

{

FindClose(hSearch);

bFinished = true;

330 Part III
Chapter 15: Building the Media Player

}

else

{

FindClose(hSearch);

return;

}

}

}

}

15.3.4 CXPlayButton — The Play Button

One of the most important buttons for the user is the play button.

This is encapsulated into class CXPlayButton. It exists in primarily

two modes: play mode and paused mode, and a user switches

modes by clicking on the button. Clicking for the first time sets the

button to play mode, which begins playback of the playlist. Clicking

again brings the button into pause mode and consequently pauses

playback. Clicking again brings it into play and so on. The class dec-

laration for CXPlayButton appears below.

class CXPlayButton : public CXButton

{

private:

CXMediaPlayer* m_MediaPlayer;

protected:

public:

void OnButtonClick();

CXPlayButton(LPDIRECT3DDEVICE9 Device);

void SetMediaPlayer(CXMediaPlayer* Player) {m_MediaPlayer = Player;}

};

� NOTE

The code for the constructor is not listed here, but, like all buttons in

this chapter, its images are loaded inside this function.

Part III 331
Chapter 15: Building the Media Player

T
h

e
M

e
d

ia
P

la
y
e
r

15.3.5 CXPlayButton — Handling Button Clicks

As the play button is clicked, it changes modes from play to pause

or pause to play. Consequently, the media player acts accordingly.

The code below demonstrates how the button click event has been

written to handle this appropriately.

void CXPlayButton::OnButtonClick()

{

if (!m_Pressed && m_MediaPlayer)

{

m_MediaPlayer->Play(m_MediaPlayer->GetFirstItem());

m_Pressed = true;

}

else

{

m_MediaPlayer->Pause();

m_Pressed = false;

}

}

� NOTE

This event sets the m_Pressed member of CXButton. You’ll remember

from Chapter 10 that this ultimately determines which image is drawn,

the pressed state (play) or the unpressed state (pause).

15.3.6 CXStopButton — The Stop Button

No prizes for guessing what this does. Users who click on the stop

button stop media playback. Because this is so simple, the class

declaration, constructor, and OnClick handler are given below, all in

one.

class CXStopButton : public CXButton

{

private:

CXMediaPlayer* m_MediaPlayer;

CXPlayButton* m_PlayButton;

protected:

332 Part III
Chapter 15: Building the Media Player

public:

void OnButtonClick();

CXStopButton(LPDIRECT3DDEVICE9 Device);

void SetMediaPlayer(CXMediaPlayer* Player) {m_MediaPlayer = Player;}

void SetPlayButton(CXPlayButton* Button) {m_PlayButton = Button;}

};

CXStopButton::CXStopButton(LPDIRECT3DDEVICE9 Device) : CXButton(Device)

{

m_MediaPlayer = NULL;

m_PlayButton = NULL;

SetDefaultImage("Stop_Button.bmp");

}

void CXStopButton::OnButtonClick()

{

if(m_MediaPlayer)

m_MediaPlayer->Stop();

if (m_PlayButton && m_PlayButton->GetPressed())

m_PlayButton->OnButtonClick();

}

15.3.7 CXCloseButton — The Close Button

The final button to be developed for the media player application is

the close button. This is by far the simplest of its buttons. All it

does is close the application by posting a quit message. This control

is so simple, its entire definition can be written as below.

class CXCloseButton : public CXButton

{

private:

protected:

public:

void OnButtonClick();

CXCloseButton(LPDIRECT3DDEVICE9 Device);

};

CXCloseButton::CXCloseButton(LPDIRECT3DDEVICE9 Device) :

Part III 333
Chapter 15: Building the Media Player

T
h

e
M

e
d

ia
P

la
y
e
r

CXMediaButton(Device)

{

SetDefaultImage("Window_Close_Button.bmp");

}

void CXCloseButton::OnButtonClick()

{

PostQuitMessage(0);

}

15.4 CXMyMediaPlayerApp —
Loading Buttons

Having developed the buttons for our media player application, we

can now jump back to class CXMyMediaPlayerApp and examine

how they are loaded. This is achieved with the LoadButtons

method. Its definition is given below. Notice how the pointers for

various controls, such as list boxes, etc., are set using the buttons’

accessors.

void CXMyMediaPlayerApp::LoadButtons()

{

m_PlayButton = new CXPlayButton(GetDevice());

m_StopButton = new CXStopButton(GetDevice());

m_SearchButton = new CXSearchButton(GetDevice());

m_CloseButton = new CXCloseButton(GetDevice());

m_PlayButton->SetXYPos(100,350);

m_PlayButton->SetMediaPlayer(m_MediaPlayer);

m_StopButton->SetXYPos(100 + m_PlayButton->GetWidth(), 350);

m_StopButton->SetMediaPlayer(m_MediaPlayer);

m_StopButton->SetPlayButton(m_PlayButton);

m_SearchButton->SetXYPos(m_SearchPath->GetXPos() +

m_SearchPath->GetWidth(), m_SearchPath->GetYPos());

m_SearchButton->SetListBox(m_FileList);

m_SearchButton->SetTextBox(m_SearchPath);

334 Part III
Chapter 15: Building the Media Player

m_SearchButton->SetMediaPlayer(m_MediaPlayer);

m_SearchButton->SetPlayButton(m_PlayButton);

m_CloseButton->SetXYPos((m_FileList->GetXPos() +

m_FileList->GetWidth()) - 32, 15);

m_Window->AddChildControl((CXControl*) m_PlayButton);

m_Window->AddChildControl((CXControl*) m_StopButton);

m_Window->AddChildControl((CXControl*) m_SearchButton);

m_Window->AddChildControl((CXControl*) m_CloseButton);

}

15.4.1 CXMyMediaPlayerApp — Cleaning Up

Finally, hard work over, the media player application should be

released once you’ve finished using it. This calls the destructor,

which looks like the following.

CXMyMediaPlayerApp::~CXMyMediaPlayerApp()

{

if(m_MediaPlayer)

delete m_MediaPlayer;

}

15.5 Sample Program —
Plugging in the Media Player

Having completed CXMyMediaPlayerApp, it can now be plugged

into a standard application. In other words, applications can become

media players by just declaring an instance of CXMyMediaPlayer-

App, as you would any other control. Furthermore, because it

represents a derived CXWindow, it loads all the controls it needs —

such as lists, buttons, and more — and implicitly adds them as chil-

dren. Typically, to become a media player, an application performs

the following steps. A sample application can be found on the com-

panion CD.

Part III 335
Chapter 15: Building the Media Player

T
h

e
M

e
d

ia
P

la
y
e
r

1. Initialize CXMyMediaPlayerApp. This creates the media player

application. The code to do this would look like:

CXMyMediaPlayerApp g_Application = new CXMyMediaPlayerApp(hWnd,

g_pd3dDevice);

2. Call the Initialize method of CXMyMediaPlayerApp to load the

entire interface, passing it the dimensions of the screen. The

controls it loads include buttons, list boxes, and text boxes.

g_Application ->Intialize(1024, 768);

3. During the rendering loop, pass on the render message. This

ensures all controls in the media application are drawn.

Remember, PostMessage is a method of CXControl, from which

CXMyMediaPlayerApp is ultimately derived.

g_Application ->PostMessage(WM_RENDER,0,0,NULL);

4. During WndProc, ensure all other messages are posted to the

control hierarchy, including the customized media player event

message.

case WM_MOUSEMOVE:

case WM_LBUTTONDBLCLK:

case WM_LBUTTONDOWN:

case WM_LBUTTONUP:

case WM_MBUTTONDBLCLK:

case WM_MBUTTONDOWN:

case WM_MBUTTONUP:

case WM_RBUTTONDBLCLK:

case WM_RBUTTONDOWN:

case WM_RBUTTONUP:

g_Application->PostMessage(msg,wParam,lParam,NULL);

return true;

case WM_GRAPHNOTIFY:

g_Application->Update();

return true;

336 Part III
Chapter 15: Building the Media Player

5. Finally, clean up the object after you’re finished.

if(g_Application)

delete g_Application;

15.6 Conclusion

This chapter really works hand in hand with the companion CD and

presents a program that utilizes the work from all three parts of

this book. The media player application is not without room for

improvement, however. Currently, it does not support media seek-

ing, CD burning, and DVD playback, among other functionality.

These are items — with the possible exception of CD burning —

that you could add with a bit of reading of the DirectX SDK docs.

One particular challenge for advanced readers though, would be to

create an entirely skinnable interface. Regardless of which

enhancements you may or may not decide to implement, however,

the media player thus far represents some definitely sizeable and

arguably complex code. One of the best things you can do now is go

though various sections of the companion CD to explore and exper-

iment. Hopefully, what seemed confusing as you first began this

book will now take shape and seem rather less ominous. As you

may notice from this chapter in particular, none of the code is as

bad as it first seems.

Part III 337
Chapter 15: Building the Media Player

T
h

e
M

e
d

ia
P

la
y
e
r

This page intentionally left blank.

Afterword

Having read this far, I hope you’ve gained a few tips and tricks that

will help you on your way to creating great interfaces in DirectX.

Much of the work presented in this book can, like most things in

programming, be improved upon, optimized, and adapted to suit

your needs. In presenting the various exercises throughout this

book, I have attempted to avoid being too specific or spending too

long optimizing code because I wanted to demonstrate the ideas

and principles behind interface development. Once you know these,

you’ll find that you can apply them to almost any interface in

DirectX. So, where to go from here? One of the best places to start

is the recommended reading section of the book, the appendix. It is

also a good idea to check out the source code on this book’s com-

panion CD, if you haven’t already. There, you’ll find a veritable

wealth of code just waiting to be tweaked and expanded upon.

I hope this book has been informative and that it can be used as

both a reference and a guide. By now, you’re probably anxious to

put this knowledge into practice — so don’t let me stop you. On

that note, I’ll wish you luck. Happy coding.

339

This page intentionally left blank.

Appendix

Recommended
Reading

For those interested in learning more about interface development

and DirectX in general, I recommend reading the following titles in

the order listed.

3D Math Primer for Graphics and Game Development

Author: Fletcher Dunn and Ian Parberry

Publisher: Wordware Publishing

ISBN: 1-55622-911-9

The Zen of Direct3D Game Programming

Author: Peter Walsh

Publisher: Prima Tech

ISBN: 0-7615-3429-6

Special Effects Game Programming with DirectX

Author: Mason McCuskey

Publisher: Prima Tech

ISBN: 1931841063

Programming Role Playing Games with DirectX

Author: Jim Adams

Publisher: Prima Tech

ISBN: 1931841098

341

Programming Microsoft DirectShow

Author: Michael Linetsky

Publisher: Wordware Publishing

ISBN: 1-55622-855-4

Advanced 3D Game Programming with DirectX 9.0

Author: Peter Walsh

Publisher: Wordware Publishing

ISBN: 1-55622-968-2

Appendix: Recommended Reading

342

Index

2D coordinates, see D3DXVECTOR2

3D Studio Max, 31

A

absolute positioning, 116, 126, 133, 146-147,

152, 180, 227

Acquire function, 83, 90, 96

ActiveMovie, see DirectShow

Adobe Photoshop, 35, 73-74

alpha blending (transparency), 45, 51, 61, 72,

76

alpha channel (transparency mask), 60, 72-75

alpha tested textures (for skinnable applica-

tions), 140

application window, 140, 148, 161, 181-182

dragging, 187

minimizing and restoring, 190

painting, 186

B

back buffer, 58, 63, 100, 103, 109, 111, 121

back end, 2, 321, 323

base class, see base control

base control, 135, 137, 152

Begin function, 68

BeginScene function, 58, 63, 68, 71, 103,

105, 110, 195, 200, 222

buttons, 7, 204 see also CXButton

customizing, 322, 327-328, 334-335

C

canvas, 135, 139-140, 142, 147, 150, 152,

158, 180, 227

Caps Viewer, 33

caret, 161, 236-237, 241

ID3DXLine as caret, 232

Cartesian coordinate system, 47-48

change value (scroll box increment), 252-253

check boxes, 11, 226, 244 see also

CXCheckBox

child controls, 140 see also hierarchy

adding, 143-144

clearing, 144

counting, 146

removing, 145

child window, 181, 183-184, 322, 324

implementing, 184-187

class hierarchy, 137

Clear function, 56

CoCreateInstance function, 292, 296, 297

CoInitialize function, 292, 294, 296

COM, see CoCreateInstance, CoInitialize,

CoUninitialize

components, see controls

container controls, see windows

controls, 1, 4-5

cooperative level, 82, 87, 92

CoUninitialize function, 292

CreateDevice function, 53

creating Direct3D devices, 55, 194

creating DirectInput devices, 85-86,

118

CreateOffscreenPlainSurface function,

59-60, 62, 93

cstr function, converting strings to char*,

230

cursor, 24, 79, 121, 129, 131, 158

caret at cursor, 241

loading cursor images, 93

reading cursor position, 95, 133

registering cursors, 94

setting cursor position, 94, 96, 240

setting cursor visibility, 94

cursor intersection, 160

cursor list, 126, 129, 131

CXButton, 204, 212-219, 244, 251, 328

using, 219-223

CXCheckBox, 244-247

CXCloseButton, 322, 333-334

343

CXControl, 135, 138, 150-151, 174-176

base control and hierarchies, 137,

140-143

canvas, 139-140

messages, 154-157

positioning, 146-148

CXDropDownList, 250, 283-290

CXInput, 113, 114-117

CXKeyboard, 113-114, 117-120

CXLabel, 204-212, 216

using, 219-223

CXListBox, 250, 268-283, 322

CXListItem, 263-267

CXMedia, 307, 308-309

CXMediaPlayer, 308, 309-317

CXMouse, 114, 116, 121, 126-134

CXMouseSurface, 121-122, 125

CXMyMediaPlayerApp, 320-322

CXPen, 99, 109

deleting, 109-110

instantiating, 109-110

rendering, 110-111

using, 111

CXPlayButton, 322, 331-332

CXScrollBar, 250-263 see also scroll thumb

CXSearchButton, 322, 328-331

CXStopButton, 322, 332-333

CXSurface, 99-101

copying, 102-103

deleting, 101

instantiating, 101

loading images, 102

rendering, 104

representing back buffer, 103-104

using, 104-105

CXTextBox, 226, 233-243, 322

CXTexture, 99, 106-107

deleting, 107

instantiating, 107

loading images, 107-108

rendering, 108, 110-111

using, 111

CXWindow, 179, 181

features, 180

using, 193-200

D

D3DCAPS9, 55

D3DCOLOR, see D3DCOLOR_XRGB

D3DCOLOR_XRGB, 57

D3DPRESENT_PARAMETERS, 54

D3DXCreateFont function, 207

D3DXCreateFontIndirect function, 208

D3DXCreateLine function, 232

D3DXCreateSprite function, 66

D3DXCreateTexureFromFile function, 66

D3DXLoadSurfaceFromFile function, 61

D3DXMATRIX, 68

D3DXMatrixTransformation2D function, 69

D3DXVec2Add function, 47

D3DXVec2Scale function, 47

D3DXVec2Subtract function, 47

D3DXVECTOR2, 47

data format, 82 see also SetDataFormat

depth sorting, 170-171

desktop window, 193

DIDATAFORMAT, 88

DIMOUSESTATE, 91, 95, 126

Direct3D, 29, 45-48

applications, 51-52

device, 51, 53

initializing, 52-53

object, 51

projects, 48-50

Direct3DCreate9 function, 52

DirectAudio, 30

DirectInput, 29, 80

applications, 80-83

device, 82, 85, 116-117

object, 82, 83, 115

DirectInput8Create function, 84

DirectMusic, see DirectAudio

DirectPlay, 30

DirectShow, 30, 292-293, 307

creating applications, 294-295

DirectSound, see DirectAudio

DirectX, 27-29

components, 29-30

features, 31-35

installation, 37

system requirements, 36

disabling features, 20

dragging, 187-188

Draw function, 70-71, 232-233

drawing

lines, see ID3DXLine

text, see ID3DXFont

DrawText function, 210-211

drop-down lists, 10, 250 see also

CXDropDownList

Index

344

hiding, 287

initializing, 286-287

showing, 287

dynamic string, see std::string

E

EndScene function, 58

error handling, 19

Error Lookup, 32

events, triggering, 163, 166, 173

F

filter graph, 30, 34, 295

focus, 164-165

force feedback devices, 80

FreeEventParams function, 305

front end, 2

G

GDI, 66

GetBackBuffer function, 64

GetDeviceCaps function, 55

GetDeviceState function, 90-91

GetEvent function, 303-304

graph builder, see IGraphBuilder

GraphEdit, 34

graphics, 21

GUI, 4

H

HandleGraphEvent function, 305

hierarchical posting, 161-162

hierarchy,

class, 137

control, 140

Hungarian notation, 42

I

icons, see graphics

ID3DXFont, 205-212 see also CXLabel,

CXTextBox

ID3DXLine, 231-233 see also caret

ID3DXMesh, 59

ID3DXSprite, 66, 109 see also CXPen

IDirect3D9, 51, 53

IDirect3DDevice9, 53

IDirect3DSurface9, 59

loading from file, 61

see also back buffer, CreateOffscreen-

PlainSurface, CXSurface

IDirect3DTexture9, 65 see also CXTexture,

ID3DXSprite

loading from file, 66

IDirectInput8, 82, 84 see also CXInput

IDirectInputDevice8, 85 see also

CXKeyboard, CXMouse

IGraphBuilder, 292, 295

IMediaControl, 297

IMediaEventEx, 297, 298

immediate data, 90

interface, 2

design, 16-24

examples, 3-4

interface flow diagrams, 15

IUnknown, 52, 83

J

joysticks, 29

K

keyboard, 29

configuring, 87-89

creating, 86-87

reading from, 90-92

see also CXKeyboard, DirectInput

device

keypresses, processing, 238-239

L

labels, 8, 204 see also CXLabel

lines, drawing, 232-233

linked list, 122-125 see also two-way linked

lists

list boxes, 9, 250, 263 see also CXListBox

list items, 263

adding, 274-276

clearing, 276

see also CXListItem

M

matrix, see D3DXMATRIX

Maya, 31

media control, 292, 297

media events,

catching, 301-302

handling, 305

reading, 302-303

media player, 319-320

creating, 323

loading buttons, 334-335

using, 335-337

Index

345

see also CXMyMediaPlayerApp

menus, 12

Mesh Viewer, 31-32

message loop, 48, 50, 56, 80, 84

messages, 154-156

handling keyboard, 164

handling mouse, 158-162

posting, 157

minimizing, 190-191

mouse, 29

creating, 92

processing cursor position, 96-97

reading buttons, 97-98

reading from, 95-96

setting cursor, 93-94

see also CXMouse, DirectInput device

MsgProc, 49

N

navigation, 22-23

O

overriding button clicks, see customizing

buttons

P

page controls, 13

Paint Shop Pro, 74

painting, 155, 167

parent, 140

parent window, 181-182

implementing, 183

paths, 22-23

pin, see filter graph

playback, 301, 309

playlist, 302, 307, 309 see also CXMedia

polling, 83, 132

Present function, 58

Q

QueryInterface function, 297

R

rectangular drawing space, see canvas

relative positioning, 135, 146-147

Render function, 50, 52, 56

RenderFile function, 293, 300

rendering, 46

Run function, 301

S

scaling, 106, 108, 205, 257-258

scaling factor, 260 see also

D3DXMatrixTransformation2D,

D3DXVec2Scale

scroll bars, 250

background, 253

see also CXScrollBar

scroll

range, 252, 258

thumb, 252, 257-258

track, 252, 257

SetCaretPos function, 237

SetCooperativeLevel function, 87-88

SetCursorProperties function, 94

SetDataFormat function, 88

SetNotifyWindow function, 299

SetRenderState function, 76

SetTransform function, 68, 70

ShowCursor function, 94

sibling, 140

skinnable, 140

snapshot, 56, 83, 90

std::string, 227-228

appending, 229

assigning, 228

copying, 230

editing, 229

emptying, 231

erasing, 231

initializing, 228

length, 229

strcpy function, 209, 228

strings, converting to char*, 230

surface, see IDirect3DSurface9

T

tab controls, 13

target control, 161

text,

drawing, see ID3DXFont

inserting, 237-238

removing, 238

setting, 236

text boxes, 5, 226-227 see also CXTextBox

text edits, 6

textures, see IDirect3DTexture9

Texture Tool, 35, 75

tiling, 260-261

tool tips, 24

Index

346

two-way linked lists, 141

U

UI LIB, 136

Unacquire function, 119

UpdateSurface function, 63

user interface, see interface

V

vector, see D3DXVECTOR2

vertex, 47

virtual functions, 219

Visual C++, configuring, 39-41

W

Win 32 SDK, 330

windows, 14 see also CXWindow

Windows API, 148, 230

WinMain, 48, 196, 223

WM_GRAPHNOTIFY, 298

WndProc, 154, 157, 163, 293, 302

wrapper classes, 99

Z

Z-order, 168-170

Index

347

Looking

Check out Wordware’s market-
featuring the following new

Visit us online at www.wordware.com for more information.

Strategy Game Programming
with DirectX 9.0
1-55622-922-4 • $59.95
6 x 9 • 560 pp.

Introduction to 3D Game Programming
with DirectX 9.0
1-55622-913-5 • $49.95
6 x 9 • 424 pp.

ShaderX2: Introductions &
Tutorials with DirectX 9
1-55622-902-X • $44.95
6 x 9 • 384 pp.

Advanced 3D Game Programming
with DirectX 9.0
1-55622-968-2 • $59.95
6 x 9 • 552 pp.

ShaderX2: Shader Programming Tips
& Tricks with DirectX 9
1-55622-988-7 • $59.95
6 x 9 • 728 pp.

Learn Vertex and Pixel Shader
Programming with DirectX 9
1-55622-287-4 • $34.95
6 x 9 • 304 pp.

DirectX 9 Audio Exposed:
Interactive Audio Development
1-55622-288-2 • $59.95
6 x 9 • 568 pp.

Games That Sell!
1-55622-950-X • $34.95
6 x 9 • 336 pp.

Game Design Foundations
1-55622-973-9 • $39.95
6 x 9 • 400 pp.

Game Design: Theory and Practice
1-55622-735-3 • $49.95
7½ x 9¼ • 608 pp.

Vector Game Math Processors
1-55622-921-6 • $59.95
6 x 9 • 528 pp.

Java 1.4 Game Programming
1-55622-963-1 • $59.95
6 x 9 • 672 pp.

3D Math Primer for Graphics and
Game Development
1-55622-911-9 • $49.95
7½ x 9¼ • 448 pp.

Use the following coupon code for online specials: dxui2491

for more?

leading Game Developer ’s Library
releases and backlist titles.

Game Development and Production
1-55622-951-8 • $49.95
6 x 9 • 432 pp.

CGI Filmmaking: The Creation of Ghost
Warrior
1-55622-227-0 • $49.95
9 x 7 • 344 pp.

Essential LightWave 3D 7.5
1-55622-226-2 • $44.95
6 x 9 • 424 pp.

LightWave 3D 7.5 Lighting
1-55622-354-4 • $69.95
6 x 9 • 496 pp.

LightWave 3D 7 Character
Animation
1-55622-901-1 • $49.95
7½ x 9¼ • 360 pp.

Looking for more?

Check out Wordware’s market-leading Game
Developer ’s Library featuring the following new

releases, backlist, and upcoming titles.

Visit us online at www.wordware.com for more information.

Use the following coupon code for online specials: dxui2491

LightWave 3D 8: 1001 Tips & Tricks
1-55622-090-1 • $39.95
6 x 9 • 500 pp.

LightWave 3D 8 Character
Creation
1-55622-083-9 • $49.95
6 x 9 • 500 pp.

Modeling a Character in 3DS Max
(2nd Edition)
1-55622-088-X • $44.95
6 x 9 • 550 pp.

Timothy Albee’s Fundamentals of Character
Animation
1-55622-248-3 • $49.95
9 x 7 • 400 pp.

Design First for 3D Animators
1-55622-085-5 • $49.95
9 x 7 • 350 pp.

Advanced Lighting and Materials with
Shaders
1-55622-292-0 • $59.95
9 x 7 • 500 pp.

The Microsoft DirectX 9.0 SDK Update (Summer 2003) was reproduced by

Wordware Publishing, Inc., under a special arrangement with Microsoft

Corporation. For this reason, Wordware is responsible for the product war-

ranty and for support. If your CD is defective, please return it to Wordware,

which will arrange for its replacement. PLEASE DO NOT RETURN IT TO

MICROSOFT CORPORATION. Any product support will be provided, if at all,

by Wordware. PLEASE DO NOT CONTACT MICROSOFT CORPORATION

FOR PRODUCT SUPPORT. End users of this Microsoft program shall not be

considered “registered owners” of a Microsoft product and therefore shall not

be eligible for upgrades, promotions, or other benefits available to “registered

owners” of Microsoft products.

Microsoft DirectX 9.0 SDK Update (Summer 2003) copyright Microsoft

Corporation, 2002. All rights reserved.

CD/Source Code Usage License Agreement

Please read the following CD/Source Code usage license agreement before opening the CD

and using the contents therein:

1. By opening the accompanying software package, you are indicating that you have read

and agree to be bound by all terms and conditions of this CD/Source Code usage license

agreement.

2. The compilation of code and utilities contained on the CD and in the book are copy-

righted and protected by both U.S. copyright law and international copyright treaties,

and is owned by Wordware Publishing, Inc. Individual source code, example programs,

help files, freeware, shareware, utilities, and evaluation packages, including their copy-

rights, are owned by the respective authors.

3. No part of the enclosed CD or this book, including all source code, help files, share-

ware, freeware, utilities, example programs, or evaluation programs, may be made

available on a public forum (such as a World Wide Web page, FTP site, bulletin board, or

Internet news group) without the express written permission of Wordware Publishing,

Inc. or the author of the respective source code, help files, shareware, freeware, utili-

ties, example programs, or evaluation programs.

4. You may not decompile, reverse engineer, disassemble, create a derivative work, or

otherwise use the enclosed programs, help files, freeware, shareware, utilities, or eval-

uation programs except as stated in this agreement.

5. The software, contained on the CD and/or as source code in this book, is sold without

warranty of any kind. Wordware Publishing, Inc. and the authors specifically disclaim all

other warranties, express or implied, including but not limited to implied warranties of

merchantability and fitness for a particular purpose with respect to defects in the disk,

the program, source code, sample files, help files, freeware, shareware, utilities, and

evaluation programs contained therein, and/or the techniques described in the book and

implemented in the example programs. In no event shall Wordware Publishing, Inc., its

dealers, its distributors, or the authors be liable or held responsible for any loss of profit

or any other alleged or actual private or commercial damage, including but not limited

to special, incidental, consequential, or other damages.

6. One (1) copy of the CD or any source code therein may be created for backup purposes.

The CD and all accompanying source code, sample files, help files, freeware, share-

ware, utilities, and evaluation programs may be copied to your hard drive. With the

exception of freeware and shareware programs, at no time can any part of the contents

of this CD reside on more than one computer at one time. The contents of the CD can

be copied to another computer, as long as the contents of the CD contained on the orig-

inal computer are deleted.

7. You may not include any part of the CD contents, including all source code, example

programs, shareware, freeware, help files, utilities, or evaluation programs in any com-

pilation of source code, utilities, help files, example programs, freeware, shareware, or

evaluation programs on any media, including but not limited to CD, disk, or Internet

distribution, without the express written permission of Wordware Publishing, Inc. or

the owner of the individual source code, utilities, help files, example programs,

freeware, shareware, or evaluation programs.

8. You may use the source code, techniques, and example programs in your own commer-

cial or private applications unless otherwise noted by additional usage agreements as

found on the CD.

� Warning: Opening the CD package makes this book nonreturnable.

	DirectX 9 User Interfaces: Design and Implementation
	Cover

	Dedication
	Contents
	Acknowledgements
	Introduction
	Chapter 1 User Interfaces
	1.1 User Interfaces-What Are They?
	1.2 Controls-Gadgets and Gizmos
	1.2.1 Text Boxes
	1.2.2 Text Edits
	1.2.3 Buttons
	1.2.4 Labels
	1.2.5 List Boxes
	1.2.6 Drop-Down Lists
	1.2.7 Check Boxes
	1.2.8 Menus
	1.2.9 Page Controls/Tab Controls
	1.2.10 Windows and Other Containers

	1.3 Interface Flow Diagrams-Interfaces on Paper
	1.4 Interface Design-Tips and Tricks
	1.4.1 Be Consistent
	1.4.2 Know Your Audience
	1.4.3 Justification and Alignment
	1.4.4 Grouping Data
	1.4.5 Error Handling
	1.4.6 Disabling Program Features
	1.4.7 Graphics, Colors, Icons, and Art
	1.4.8 Balancing Text and Symbols
	1.4.9 Paths and Navigation
	1.4.10 Keyboard Support
	1.4.11ToolTips

	1.5 Conclusion

	Chapter 2 Introducing DirectX
	2.1 DirectX-What Is It?
	2.1.1 Direct3D-Graphics
	2.1.2 DirectInput-Keyboards, Mice, and Joysticks
	2.1.3 DirectMusic and DirectSound-MIDI and WAV
	2.1.4 DirectPlay-Networking
	2.1.5 DirectShow-Programmable Media Player

	2.2 DirectX-Other Features
	2.2.1 Mesh Viewer
	2.2.2ErrorLookup
	2.2.3 Caps Viewer
	2.2.4 GraphEdit
	2.2.5 Texture Tool

	2.3 System Requirements
	2.4 Where to Obtain DirectX
	2.5 Installation
	2.6 Installed Files
	2.7 Configuring Visual C++
	2.8 Coding with Hungarian Notation
	2.9 Conclusion

	Chapter 3 Introducing Direct3D
	3.1 Direct3D Concepts-Overview and Mathematics
	3.2 Getting Started
	3.3 Programming Direct3D Applications
	3.4 Initializing Direct3D
	3.5 Creating a Direct3D Device-A Graphics Card
	3.6 Preparing to Render
	3.7 Initializing World Data
	3.7.1 Direct3D Surfaces-IDirect3DSurface9
	3.7.2 Direct3D Surfaces-Loading Image Files
	3.7.3 Direct3D Surfaces-Rendering
	3.7.4 Direct3D Textures-IDirect3DTexture9
	3.7.5 Direct3D Textures-Preparing to Render
	3.7.6 Direct3D Textures-Rendering

	3.8 Alpha Blending
	3.8.1 Using Adobe Photoshop
	3.8.2 Using Paint Shop Pro
	3.8.3 Using the DirectX Texture Tool
	3.8.4 Enabling Alpha Blending in Direct3D

	3.9 Conclusion

	Chapter 4 Introducing DirectInput
	4.1 DirectInput Basics
	4.2 Getting Started
	4.3 Programming
	4.4 Creating a DirectInput Object
	4.5 Creating DirectInput Devices
	4.6 The Keyboard
	4.6.1 Creating the Keyboard
	4.6.2 Configuring the Keyboard
	4.6.3 Reading from the Keyboard

	4.7 The Mouse
	4.7.1 Creating the Mouse
	4.7.2 Setting the Cursor
	4.7.3 Reading from the Mouse
	4.7.4 Processing the Cursor Position

	4.7.5 Reading Mouse Buttons
	4.8 Conclusion

	Chapter 5 Wrapping Direct3D
	5.1 CXSurface-Wrapping Surfaces
	5.1.1 Instantiating and Deleting CXSurface
	5.1.2 Loading Images
	5.1.3 Copying Surfaces
	5.1.4 Representing the Back Buffer
	5.1.5 Rendering
	5.1.6 Using CXSurface

	5.2 CXTexture-Wrapping Textures
	5.2.1 Instantiating and Deleting
	5.2.2 Loading Images
	5.2.3 Preparing to Render

	5.3 CXPen-Wrapping ID3DXSprite
	5.3.1 Instantiating and Deleting
	5.3.2 Rendering Textures
	5.3.3 Using CXPen and CXTexture

	5.4 Conclusion

	Chapter 6 Abstracting DirectInput
	6.1 CXInput-The DirectInput Object
	6.1.1 Instantiating the DirectInput Object
	6.1.2 Creating Input Devices

	6.2 CXKeyboard-Wrapping the Keyboard Device
	6.2.1 Instantiating Keyboard Devices
	6.2.2 Reading from CXKeyboard

	6.3 Wrapping the Mouse Device
	6.3.1 CXMouseSurface-Wrapping a List of Cursors
	6.3.2 Linked Lists-A Definition
	6.3.3 Navigating Linked Lists
	6.3.4 Adding New Items to Linked Lists
	6.3.5 Deleting Linked Lists
	6.3.6 CXMouseSurface-Other Properties
	6.3.7 Wrapping the Mouse Device with CXMouse
	6.3.8 Initializing Mouse Cursors with CXMouse
	6.3.9 Changing Mouse Cursors with CXMouse
	6.3.10 Reading Mouse Data with CXMouse
	6.3.11 Reading Cursor Positions with CXMouse
	6.3.12 Reading Button States with CXMouse

	6.4 Conclusion

	Chapter 7 Beginning CXControl
	7.1 UI LIB (User Interface Library)-What Is It?
	7.2 UI LIB-Controls as Classes
	7.3 Controls-Class Hierarchy and Base Controls
	7.4 CXControl-The Beginnings
	7.5 Defining CXControl-Controls and a Canvas
	7.6 CXControl-Parent, Sibling, and Child Controls
	7.6.1 Adding Child Controls
	7.6.2 Clearing Child Controls
	7.6.3 Removing Specific Children
	7.6.4 Counting Child Controls

	7.7 Absolute and Relative Positioning
	7.7.1 Computing Positions

	7.8 CXControl-The Class Declaration Thus Far
	7.9 Conclusion

	Chapter 8 Continuing CXControl
	8.1 Messages
	8.1.1 Posting Messages
	8.1.2 Message Specifics

	8.2 Handling Mouse Messages
	8.2.1 Cursor Intersection
	8.2.2 Hierarchical Posting
	8.2.3 Triggering Mouse Events

	8.3 Handling Keyboard Messages
	8.3.1 Focus
	8.3.2 Triggering Events

	8.4 Handling Control Painting
	8.5 Posting in Reverse
	8.6 Depth Sorting
	8.7 Triggering Paint Events
	8.8 CXControl-The Final Declaration
	8.9 Conclusion

	Chapter 9 Developing Windows
	9.1 CXWindow-Deriving from CXControl
	9.2 Desktop and Application Windows
	9.3 Class CXWindow as a Parent
	9.4 Implementing the Parent Window
	9.5 CXWindow as a Child Window
	9.6 Implementing Child Windows
	9.6.1 Child Windows-Loading the Canvas
	9.6.2 Painting Application Windows
	9.6.3 Dragging Application Windows
	9.6.4 Minimizing and Restoring Application Windows

	9.7 Using CXWindow-Sample Application
	9.7.1 Overview
	9.7.2 Desktop Initialization
	9.7.3 Window Initialization
	9.7.4 Windows Message Posting
	9.7.5 Deleting an Interface

	9.8 Conclusion

	Chapter 10 Labels and Buttons
	10.1 Labels and Buttons
	10.2 CXLabel-Labels
	10.3 Labels as ID3DXFont
	10.3.1 Instantiating ID3DXFont
	10.3.2 Setting the Label Caption
	10.3.3 Painting with ID3DXFont
	10.3.4 Releasing ID3DXFont
	10.4 CXButton-Buttons
	10.5 CXButton-The Class Declaration
	10.5.1 The Class Constructor
	10.5.2 Setting Pressed and Unpressed Images
	10.5.3 Setting the Button Caption
	10.5.4 Painting
	10.5.5 Destructor

	10.6 CXLabel and CXButton-A Sample Application
	10.7 Conclusion

	Chapter 11 Text Boxes and Check Boxes
	11.1 Text Boxes and Check Boxes
	11.2 Text Boxes
	11.3 Clever Strings-Std::String
	11.3.1 Initialization and Assigning
	11.3.2 String Lengths
	11.3.3 Editing and Appending Strings
	11.3.4 Copying Substrings
	11.3.5 Converting Strings to char*
	11.3.6 Erasing and Emptying

	11.4 Lines-ID3DXLINE
	11.4.1 Drawing Lines

	11.5 CXTextBox-The Class Declaration
	11.5.1 Constructor
	11.5.2 Text Width and Height
	11.5.3 Setting Text
	11.5.4TextBoxCaret
	11.5.5 Inserting Text
	11.5.6 Removing Text
	11.5.7 Processing Keypresses
	11.5.8 Cursor Positioning
	11.5.9 Caret at Cursor
	11.5.10 Handling the Mouse
	11.5.11 Painting
	11.5.12 Cleaning Up

	11.6 Check Boxes
	11.7 CXCheckBox-The Class Declaration
	11.7.1 Image and Text Loading
	11.7.2 Checking and Unchecking
	11.7.3 Painting
	11.7.4 Cleaning Up

	11.8 Conclusion

	Chapter 12 Scrolling Lists
	12.1 Scroll Bars, List Boxes and Drop-Down Lists
	12.2 CXScrollBar-Scroll Bars as a Class
	12.2.1 The Class Constructor
	12.2.2 Arrows, a Thumb, and a Background
	12.2.3 Width and Height, Min and Max
	12.2.4 Screen Positions to Scroll Values
	12.2.5 Scaling the Thumb
	12.2.6 Setting the Thumb Position
	12.2.7 Handling Input
	12.2.8 Tiling the Background
	12.2.9 Painting
	12.2.10 CXScrollBar-Cleaning Up

	12.3 List Boxes and List Items
	12.4 CXListItem-ListItems as a Class
	12.4.1 The Class Constructor
	12.4.2 Setting Item Size
	12.4.3 Painting

	12.5 CXListBox-List Boxes as Classes
	12.5.1 The Class Constructor
	12.5.2 Loading Item Backgrounds
	12.5.3 Loading the Scroll Bar
	12.5.4 Computing a List Frame
	12.5.5 Adding List Items
	12.5.6 Clearing List Items
	12.5.7 Getting Items by Index
	12.5.8 Getting Items by (X,Y) Position
	12.5.9 Scrolling the Frame
	12.5.10 Handling Input
	12.5.11 Painting
	12.5.12 Cleaning Up

	12.6 CXDropDownList-Drop-Down Lists as Classes
	12.6.1 The Class Constructor
	12.6.2 Initializing the Drop-Down List
	12.6.3 Showing and Hiding the List
	12.6.4 Handling Input
	12.6.5 Painting
	12.6.6 Cleaning Up

	12.7 Conclusion

	Chapter 13 Introducing DirectShow
	13.1 DirectShow-What Is It?
	13.2 Getting Started
	13.3 The Filter Graph
	13.4 The Media Control
	13.5 The Event Mechanism
	13.6 Registering for Events
	13.7 Loading a File
	13.8 Playing a File
	13.9 Catching Media Events
	13.10 Reading Media Events
	13.11 Handling Media Events
	13.12 Cleaning Up
	13.13 Conclusion

	Chapter 14 Wrapping DirectShow
	14.1 CXMedia and CXMediaPlayer
	14.2 CXMedia- Songs, Movies, and More
	14.3 CXMediaPlayer- Player of the Playlist
	14.3.1 The Class Constructor
	14.3.2 Initializing DirectShow
	14.3.3 Adding Media Files
	14.3.4 Clearing Media Files
	14.3.5 Playing a Playlist
	14.3.6 Pausing and Stopping
	14.3.7 Handling Messages
	14.3.8 Uninitializing DirectShow
	14.3.9 Cleaning Up

	14.4 Conclusion

	Chapter 15 Building the Media Player
	15.1 The Media Player
	15.2 CXMyMediaPlayerApp-The Media Player
	15.2.1 Creating the Media Player
	15.2.2 Loading Controls
	15.2.3 The Window
	15.2.4 The List Box
	15.2.5TheTextBox

	15.3 Buttons Are Connectivity
	15.3.1 CXSearchButton-The Search Button
	15.3.2 CXSearchButton-Loading Images
	15.3.3 CXSearchButton-Handling Mouse Clicks
	15.3.4 CXPlayButton-The Play Button
	15.3.5 CXPlayButton-Handling Button Clicks
	15.3.6 CXStopButton-The Stop Button
	15.3.7 CXCloseButton-The Close Button

	15.4 CXMyMediaPlayerApp-Loading Buttons
	15.4.1 CXMyMediaPlayerApp-Cleaning Up

	15.5 Sample Program-Plugging in the Media Player
	15.6 Conclusion

	Afterword
	Appendix Recommended Reading
	Index
	Team DDU

