

Dive Into
ReReffaaccttororinging

Offline Edition (Java)
v2019-1.3

Purchased by Lukas Haigner
lukas.haigner@gmail.com (#15232)

Boring Copyright
Page
Hi! My name is Alexander Shvets, I’m
the author of the online course Dive
Into Refactoring, which includes
this book.

This book is licensed for your personal
use. Please, don’t share it with other
people, except your family members. If you would like to share
the book with your friend or colleague, please purchase a copy
of the course and gift it to him or her.

If you’re reading this book and did not purchase it, or it was
not purchased for you, then please be a decent person and pur-
chase your own copy of the course.

Thank you for respecting years of hard work I’ve put into cre-
ating the course, as well as this book!

 Alexander Shvets, Refactoring.Guru, 2019
 support@refactoring.guru

https://refactoring.guru/course
https://refactoring.guru/course
mailto:support@refactoring.guru

 Illustrations by Dmitry Zhart

#15232

lukas.haigner@gmail.com (#15232)

Preface
I tried to cram all of the available information throughout the
full course into this book. For the most part, I succeeded. But
some things, such as live examples, are just impossible to
present in the form of a static electronic book. Therefore, con-
sider this book as auxiliary material, but not a replacement for
the full refactoring course.

The book is divided into two large sections: Code Smells and
Refactoring Techniques. The first part describes various signs
and symptoms of dirty code. The second part shows different
methods to treat dirty code and make it clean.

The book can be read both from cover to cover, as well as in
random order. Despite the fact that all the topics are closely
intertwined, you can easily jump around the chapters, using
the great number of links scattered through the text.

The code examples in this version of the book are in Java.
There are other versions which are available for download
inside your account.

4 Preface #15232

lukas.haigner@gmail.com (#15232)

Code Smells
Code smells are key signs that refactoring is necessary. In the
process of refactoring, we get rid of smells, enabling further
development of the application with equal or greater speed.

The lack of regular refactoring, can lead to a complete paral-
ysis of a project over time, wasting a few years of develop-
ment and requiring you to spend several more years to rewrite
it from scratch.

Therefore, it is necessary to get rid of code smells while they
are still small.

5 Code Smells #15232

lukas.haigner@gmail.com (#15232)

Bloaters
Bloaters are code, methods and classes that have increased to
such gargantuan proportions that they’re hard to work with.
Usually these smells don’t crop up right away, rather they
accumulate over time as the program evolves (and especially
when nobody makes an effort to eradicate them).

A method contains too many lines of code. Generally, any
method longer than ten lines should make you start asking
questions.

A class contains many fields/methods/lines of code.

▪ Use of primitives instead of small objects for simple tasks
(such as currency, ranges, special strings for phone num-
bers, etc.)

▪ Use of constants for coding information (such as a constant
USER_ADMIN_ROLE = 1 for referring to users with administra-

tor rights.)

▪ Use of string constants as field names for use in data arrays.

More than three or four parameters for a method.

§ Long Method

§ Large Class

§ Primitive Obsession

§ Long Parameter List

6 Code Smells / Bloaters #15232

lukas.haigner@gmail.com (#15232)

Sometimes different parts of the code contain identical groups
of variables (such as parameters for connecting to a database).
These clumps should be turned into their own classes.

§ Data Clumps

7 Code Smells / Bloaters #15232

lukas.haigner@gmail.com (#15232)

A Long Method
Signs and Symptoms

A method contains too many lines of code. Generally, any
method longer than ten lines should make you start asking
questions.

Reasons for the Problem

Like the Hotel California, something is always being added to a
method but nothing is ever taken out. Since it’s easier to write
code than to read it, this “smell” remains unnoticed until the
method turns into an ugly, oversized beast.

8 Code Smells / Long Method #15232

lukas.haigner@gmail.com (#15232)

Mentally, it’s often harder to create a new method than to add
to an existing one: “But it’s just two lines, there’s no use in cre-
ating a whole method just for that...” Which means that anoth-
er line is added and then yet another, giving birth to a tangle
of spaghetti code.

Treatment

As a rule of thumb, if you feel the need to comment on some-
thing inside a method, you should take this code and put it in
a new method. Even a single line can and should be split off
into a separate method, if it requires explanations. And if the
method has a descriptive name, nobody will need to look at
the code to see what it does.

• To reduce the length of a method body, use Extract Method.

9 Code Smells / Long Method #15232

lukas.haigner@gmail.com (#15232)

• If local variables and parameters interfere with extracting a
method, use Replace Temp with Query, Introduce Parameter
Object or Preserve Whole Object.

• If none of the previous recipes help, try moving the entire
method to a separate object via Replace Method with Method
Object.

• Conditional operators and loops are a good clue that code can
be moved to a separate method. For conditionals, use Decom-
pose Conditional. If loops are in the way, try Extract Method.

Payoff

• Among all types of object-oriented code, classes with short
methods live longest. The longer a method or function is, the
harder it becomes to understand and maintain it.

• In addition, long methods offer the perfect hiding place for
unwanted duplicate code.

10 Code Smells / Long Method #15232

lukas.haigner@gmail.com (#15232)

Performance

Does an increase in the number of methods hurt performance,
as many people claim? In almost all cases the impact is so
negligible that it’s not even worth worrying about.

Plus, now that you have clear and understandable code, you’re
more likely to find truly effective methods for restructuring
code and getting real performance gains if the need ever
arises.

11 Code Smells / Long Method #15232

lukas.haigner@gmail.com (#15232)

A Large Class
Signs and Symptoms

A class contains many fields/methods/lines of code.

Reasons for the Problem

Classes usually start small. But over time, they get bloated as
the program grows.

As is the case with long methods as well, programmers usually
find it mentally less taxing to place a new feature in an exist-
ing class than to create a new class for the feature.

12 Code Smells / Large Class #15232

lukas.haigner@gmail.com (#15232)

Treatment

When a class is wearing too many (functional) hats, think
about splitting it up:

• Extract Class helps if part of the behavior of the large class can
be spun off into a separate component.

• Extract Subclass helps if part of the behavior of the large class
can be implemented in different ways or is used in rare cases.

• Extract Interface helps if it’s necessary to have a list of the
operations and behaviors that the client can use.

• If a large class is responsible for the graphical interface, you
may try to move some of its data and behavior to a sepa-
rate domain object. In doing so, it may be necessary to store

13 Code Smells / Large Class #15232

lukas.haigner@gmail.com (#15232)

copies of some data in two places and keep the data consis-
tent. Duplicate Observed Data offers a way to do this.

Payoff

• Refactoring of these classes spares developers from needing to
remember a large number of attributes for a class.

• In many cases, splitting large classes into parts avoids dupli-
cation of code and functionality.

14 Code Smells / Large Class #15232

lukas.haigner@gmail.com (#15232)

A Primitive Obsession
Signs and Symptoms

• Use of primitives instead of small objects for simple tasks
(such as currency, ranges, special strings for phone num-
bers, etc.)

• Use of constants for coding information (such as a constant
USER_ADMIN_ROLE = 1 for referring to users with administrator

rights.)

• Use of string constants as field names for use in data arrays.

15 Code Smells / Primitive Obsession #15232

lukas.haigner@gmail.com (#15232)

Reasons for the Problem

Like most other smells, primitive obsessions are born in
moments of weakness. “Just a field for storing some data!” the
programmer said. Creating a primitive field is so much easi-
er than making a whole new class, right? And so it was done.
Then another field was needed and added in the same way. Lo
and behold, the class became huge and unwieldy.

Primitives are often used to “simulate” types. So instead of
a separate data type, you have a set of numbers or strings
that form the list of allowable values for some entity. Easy-
to-understand names are then given to these specific numbers
and strings via constants, which is why they’re spread wide
and far.

Another example of poor primitive use is field simulation. The
class contains a large array of diverse data and string con-
stants (which are specified in the class) are used as array
indices for getting this data.

16 Code Smells / Primitive Obsession #15232

lukas.haigner@gmail.com (#15232)

Treatment

• If you have a large variety of primitive fields, it may be possible
to logically group some of them into their own class. Even bet-
ter, move the behavior associated with this data into the class
too. For this task, try Replace Data Value with Object.

• If the values of primitive fields are used in method parameters,
go with Introduce Parameter Object or Preserve Whole Object.

• When complicated data is coded in variables, use Replace Type
Code with Class, Replace Type Code with Subclasses or Replace
Type Code with State/Strategy.

• If there are arrays among the variables, use Replace Array with
Object.

17 Code Smells / Primitive Obsession #15232

lukas.haigner@gmail.com (#15232)

Payoff

• Code becomes more flexible thanks to use of objects instead
of primitives.

• Better understandability and organization of code. Operations
on particular data are in the same place, instead of being scat-
tered. No more guessing about the reason for all these strange
constants and why they’re in an array.

• Easier finding of duplicate code.

18 Code Smells / Primitive Obsession #15232

lukas.haigner@gmail.com (#15232)

A Long Parameter List
Signs and Symptoms

More than three or four parameters for a method.

Reasons for the Problem

A long list of parameters might happen after several types of
algorithms are merged in a single method. A long list may
have been created to control which algorithm will be run
and how.

Long parameter lists may also be the byproduct of efforts to
make classes more independent of each other. For example,
the code for creating specific objects needed in a method was

19 Code Smells / Long Parameter List #15232

lukas.haigner@gmail.com (#15232)

moved from the method to the code for calling the method,
but the created objects are passed to the method as para-
meters. Thus the original class no longer knows about the
relationships between objects, and dependency has decreased.
But if several of these objects are created, each of them will
require its own parameter, which means a longer parame-
ter list.

It’s hard to understand such lists, which become contradicto-
ry and hard to use as they grow longer. Instead of a long list
of parameters, a method can use the data of its own object. If
the current object doesn’t contain all necessary data, another
object (which will get the necessary data) can be passed as a
method parameter.

Treatment

• Check what values are passed to parameters. If some of the
arguments are just results of method calls of another object,
use Replace Parameter with Method Call. This object can be
placed in the field of its own class or passed as a method
parameter.

• Instead of passing a group of data received from another
object as parameters, pass the object itself to the method, by
using Preserve Whole Object.

20 Code Smells / Long Parameter List #15232

lukas.haigner@gmail.com (#15232)

• If there are several unrelated data elements, sometimes you
can merge them into a single parameter object via Introduce
Parameter Object.

Payoff

• More readable, shorter code.

• Refactoring may reveal previously unnoticed duplicate code.

When to Ignore

Don’t get rid of parameters if doing so would cause unwanted
dependency between classes.

21 Code Smells / Long Parameter List #15232

lukas.haigner@gmail.com (#15232)

A Data Clumps
Signs and Symptoms

Sometimes different parts of the code contain identical groups
of variables (such as parameters for connecting to a database).
These clumps should be turned into their own classes.

Reasons for the Problem

Often these data groups are due to poor program structure or
"copypasta programming”.

If you want to make sure whether or not some data is a data
clump, just delete one of the data values and see whether the
other values still make sense. If this isn’t the case, this is a

22 Code Smells / Data Clumps #15232

lukas.haigner@gmail.com (#15232)

good sign that this group of variables should be combined into
an object.

Treatment

• If repeating data comprises the fields of a class, use Extract
Class to move the fields to their own class.

• If the same data clumps are passed in the parameters of meth-
ods, use Introduce Parameter Object to set them off as a class.

• If some of the data is passed to other methods, think about
passing the entire data object to the method instead of just
individual fields. Preserve Whole Object will help with this.

• Look at the code used by these fields. It may be a good idea to
move this code to a data class.

23 Code Smells / Data Clumps #15232

lukas.haigner@gmail.com (#15232)

Payoff

• Improves understanding and organization of code. Operations
on particular data are now gathered in a single place, instead
of haphazardly throughout the code.

• Reduces code size.

When to Ignore

Passing an entire object in the parameters of a method,
instead of passing just its values (primitive types), may create
an undesirable dependency between the two classes.

24 Code Smells / Data Clumps #15232

lukas.haigner@gmail.com (#15232)

Object-Orientation Abusers
All these smells are incomplete or incorrect application of
object-oriented programming principles.

You have a complex switch operator or sequence of if

statements.

Temporary fields get their values (and thus are needed by
objects) only under certain circumstances. Outside of these
circumstances, they’re empty.

If a subclass uses only some of the methods and proper-
ties inherited from its parents, the hierarchy is off-kilter. The
unneeded methods may simply go unused or be redefined and
give off exceptions.

Two classes perform identical functions but have different
method names.

§ Switch Statements

§ Temporary Field

§ Refused Bequest

§ Alternative Classes with Different Interfaces

25 Code Smells / Object-Orientation Abusers #15232

lukas.haigner@gmail.com (#15232)

A Switch Statements
Signs and Symptoms

You have a complex switch operator or sequence of if

statements.

Reasons for the Problem

Relatively rare use of switch and case operators is one of
the hallmarks of object-oriented code. Often code for a sin-
gle switch can be scattered in different places in the pro-
gram. When a new condition is added, you have to find all the
switch code and modify it.

26 Code Smells / Switch Statements #15232

lukas.haigner@gmail.com (#15232)

As a rule of thumb, when you see switch you should think of
polymorphism.

Treatment

• To isolate switch and put it in the right class, you may need
Extract Method and then Move Method.

• If a switch is based on type code, such as when the program’s
runtime mode is switched, use Replace Type Code with Sub-
classes or Replace Type Code with State/Strategy.

• After specifying the inheritance structure, use Replace Condi-
tional with Polymorphism.

• If there aren’t too many conditions in the operator and they
all call same method with different parameters, polymorphism
will be superfluous. If this case, you can break that method
into multiple smaller methods with Replace Parameter with
Explicit Methods and change the switch accordingly.

• If one of the conditional options is null , use Introduce Null
Object.

Payoff

Improved code organization.

27 Code Smells / Switch Statements #15232

lukas.haigner@gmail.com (#15232)

When to Ignore

• When a switch operator performs simple actions, there’s no
reason to make code changes.

• Often switch operators are used by factory design patterns
(Factory Method or Abstract Factory) to select a created class.

28 Code Smells / Switch Statements #15232

lukas.haigner@gmail.com (#15232)

https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/abstract-factory

A Temporary Field
Signs and Symptoms

Temporary fields get their values (and thus are needed by
objects) only under certain circumstances. Outside of these cir-
cumstances, they’re empty.

Reasons for the Problem

Oftentimes, temporary fields are created for use in an algo-
rithm that requires a large amount of inputs. So instead of
creating a large number of parameters in the method, the pro-
grammer decides to create fields for this data in the class.
These fields are used only in the algorithm and go unused the
rest of the time.

29 Code Smells / Temporary Field #15232

lukas.haigner@gmail.com (#15232)

This kind of code is tough to understand. You expect to see
data in object fields but for some reason they’re almost
always empty.

Treatment

• Temporary fields and all code operating on them can be put in
a separate class via Extract Class. In other words, you’re creat-
ing a method object, achieving the same result as if you would
perform Replace Method with Method Object.

• Introduce Null Object and integrate it in place of the condition-
al code which was used to check the temporary field values for
existence.

30 Code Smells / Temporary Field #15232

lukas.haigner@gmail.com (#15232)

Payoff

Better code clarity and organization.

31 Code Smells / Temporary Field #15232

lukas.haigner@gmail.com (#15232)

A Refused Bequest
Signs and Symptoms

If a subclass uses only some of the methods and proper-
ties inherited from its parents, the hierarchy is off-kilter. The
unneeded methods may simply go unused or be redefined and
give off exceptions.

Reasons for the Problem

Someone was motivated to create inheritance between class-
es only by the desire to reuse the code in a superclass. But the
superclass and subclass are completely different.

32 Code Smells / Refused Bequest #15232

lukas.haigner@gmail.com (#15232)

Treatment

• If inheritance makes no sense and the subclass really does
have nothing in common with the superclass, eliminate inher-
itance in favor of Replace Inheritance with Delegation.

• If inheritance is appropriate, get rid of unneeded fields and
methods in the subclass. Extract all fields and methods need-
ed by the subclass from the parent class, put them in a new
subclass, and set both classes to inherit from it (Extract Super-
class).

33 Code Smells / Refused Bequest #15232

lukas.haigner@gmail.com (#15232)

Payoff

Improves code clarity and organization. You will no longer
have to wonder why the Dog class is inherited from the
Chair class (even though they both have 4 legs).

34 Code Smells / Refused Bequest #15232

lukas.haigner@gmail.com (#15232)

A Alternative Classes
with Different
Interfaces
Signs and Symptoms

Two classes perform identical functions but have different
method names.

35 Code Smells / Alternative Classes with Different Interfaces #15232

lukas.haigner@gmail.com (#15232)

Reasons for the Problem

The programmer who created one of the classes probably
didn’t know that a functionally equivalent class already
existed.

Treatment

Try to put the interface of classes in terms of a common
denominator:

• Rename Methods to make them identical in all alternative
classes.

• Move Method, Add Parameter and Parameterize Method to
make the signature and implementation of methods the same.

• If only part of the functionality of the classes is duplicated, try
using Extract Superclass. In this case, the existing classes will
become subclasses.

• After you have determined which treatment method to use and
implemented it, you may be able to delete one of the classes.

Payoff

• You get rid of unnecessary duplicated code, making the result-
ing code less bulky.

36 Code Smells / Alternative Classes with Different Interfaces #15232

lukas.haigner@gmail.com (#15232)

• Code becomes more readable and understandable (you no
longer have to guess the reason for creation of a second class
performing the exact same functions as the first one).

When to Ignore

Sometimes merging classes is impossible or so difficult as
to be pointless. One example is when the alternative classes
are in different libraries that each have their own version of
the class.

37 Code Smells / Alternative Classes with Different Interfaces #15232

lukas.haigner@gmail.com (#15232)

Change Preventers
These smells mean that if you need to change something in
one place in your code, you have to make many changes in
other places too. Program development becomes much more
complicated and expensive as a result.

You find yourself having to change many unrelated methods
when you make changes to a class. For example, when adding
a new product type you have to change the methods for find-
ing, displaying, and ordering products.

Making any modifications requires that you make many small
changes to many different classes.

Whenever you create a subclass for a class, you find yourself
needing to create a subclass for another class.

§ Divergent Change

§ Shotgun Surgery

§ Parallel Inheritance Hierarchies

38 Code Smells / Change Preventers #15232

lukas.haigner@gmail.com (#15232)

A Divergent Change
Divergent Change resembles Shotgun Surgery but is actu-
ally the opposite smell. Divergent Change is when many
changes are made to a single class. Shotgun Surgery
refers to when a single change is made to multiple class-
es simultaneously.

Signs and Symptoms

You find yourself having to change many unrelated methods
when you make changes to a class. For example, when adding
a new product type you have to change the methods for find-
ing, displaying, and ordering products.

39 Code Smells / Divergent Change #15232

lukas.haigner@gmail.com (#15232)

Reasons for the Problem

Often these divergent modifications are due to poor program
structure or "copypasta programming”.

Treatment

• Split up the behavior of the class via Extract Class.

• If different classes have the same behavior, you may want to
combine the classes through inheritance (Extract Superclass
and Extract Subclass).

Payoff

• Improves code organization.

• Reduces code duplication.

40 Code Smells / Divergent Change #15232

lukas.haigner@gmail.com (#15232)

• Simplifies support.

41 Code Smells / Divergent Change #15232

lukas.haigner@gmail.com (#15232)

A Shotgun Surgery
Shotgun Surgery resembles Divergent Change but is actu-
ally the opposite smell. Divergent Change is when many
changes are made to a single class. Shotgun Surgery
refers to when a single change is made to multiple class-
es simultaneously.

Signs and Symptoms

Making any modifications requires that you make many small
changes to many different classes.

42 Code Smells / Shotgun Surgery #15232

lukas.haigner@gmail.com (#15232)

Reasons for the Problem

A single responsibility has been split up among a large num-
ber of classes. This can happen after overzealous application
of Divergent Change.

Treatment

• Use Move Method and Move Field to move existing class
behaviors into a single class. If there’s no class appropriate for
this, create a new one.

• If moving code to the same class leaves the original classes
almost empty, try to get rid of these now-redundant classes via
Inline Class.

43 Code Smells / Shotgun Surgery #15232

lukas.haigner@gmail.com (#15232)

Payoff

• Better organization.

• Less code duplication.

• Easier maintenance.

44 Code Smells / Shotgun Surgery #15232

lukas.haigner@gmail.com (#15232)

A Parallel Inheritance
Hierarchies
Signs and Symptoms

Whenever you create a subclass for a class, you find yourself
needing to create a subclass for another class.

Reasons for the Problem

All was well as long as the hierarchy stayed small. But with
new classes being added, making changes has become harder
and harder.

45 Code Smells / Parallel Inheritance Hierarchies #15232

lukas.haigner@gmail.com (#15232)

Treatment

You may de-duplicate parallel class hierarchies in two steps.
First, make instances of one hierarchy refer to instances of
another hierarchy. Then, remove the hierarchy in the referred
class, by using Move Method and Move Field.

Payoff

• Reduces code duplication.

• Can improve organization of code.

When to Ignore

Sometimes having parallel class hierarchies is just a way to
avoid even bigger mess with program architecture. If you find
that your attempts to de-duplicate hierarchies produce even

46 Code Smells / Parallel Inheritance Hierarchies #15232

lukas.haigner@gmail.com (#15232)

uglier code, just step out, revert all of your changes and get
used to that code.

47 Code Smells / Parallel Inheritance Hierarchies #15232

lukas.haigner@gmail.com (#15232)

Dispensables
A dispensable is something pointless and unneeded whose
absence would make the code cleaner, more efficient and eas-
ier to understand.

A method is filled with explanatory comments.

Two code fragments look almost identical.

Understanding and maintaining classes always costs time and
money. So if a class doesn’t do enough to earn your attention,
it should be deleted.

A data class refers to a class that contains only fields and crude
methods for accessing them (getters and setters). These are
simply containers for data used by other classes. These classes
don’t contain any additional functionality and can’t indepen-
dently operate on the data that they own.

A variable, parameter, field, method or class is no longer used
(usually because it’s obsolete).

§ Comments

§ Duplicate Code

§ Lazy Class

§ Data Class

§ Dead Code

48 Code Smells / Dispensables #15232

lukas.haigner@gmail.com (#15232)

There’s an unused class, method, field or parameter.

§ Speculative Generality

49 Code Smells / Dispensables #15232

lukas.haigner@gmail.com (#15232)

A Comments
Signs and Symptoms

A method is filled with explanatory comments.

Reasons for the Problem

Comments are usually created with the best of intentions,
when the author realizes that his or her code isn’t intuitive or
obvious. In such cases, comments are like a deodorant mask-
ing the smell of fishy code that could be improved.

The best comment is a good name for a method or class.

50 Code Smells / Comments #15232

lukas.haigner@gmail.com (#15232)

If you feel that a code fragment can’t be understood with-
out comments, try to change the code structure in a way that
makes comments unnecessary.

Treatment

• If a comment is intended to explain a complex expression, the
expression should be split into understandable subexpressions
using Extract Variable.

• If a comment explains a section of code, this section can be
turned into a separate method via Extract Method. The name
of the new method can be taken from the comment text itself,
most likely.

• If a method has already been extracted, but comments are still
necessary to explain what the method does, give the method
a self-explanatory name. Use Rename Method for this.

• If you need to assert rules about a state that’s necessary for the
system to work, use Introduce Assertion.

Payoff

Code becomes more intuitive and obvious.

51 Code Smells / Comments #15232

lukas.haigner@gmail.com (#15232)

When to Ignore

Comments can sometimes be useful:

• When explaining why something is being implemented in a
particular way.

• When explaining complex algorithms (when all other meth-
ods for simplifying the algorithm have been tried and come
up short).

52 Code Smells / Comments #15232

lukas.haigner@gmail.com (#15232)

A Duplicate Code
Signs and Symptoms

Two code fragments look almost identical.

Reasons for the Problem

Duplication usually occurs when multiple programmers are
working on different parts of the same program at the same
time. Since they’re working on different tasks, they may be
unaware their colleague has already written similar code that
could be repurposed for their own needs.

53 Code Smells / Duplicate Code #15232

lukas.haigner@gmail.com (#15232)

There’s also more subtle duplication, when specific parts of
code look different but actually perform the same job. This
kind of duplication can be hard to find and fix.

Sometimes duplication is purposeful. When rushing to meet
deadlines and the existing code is “almost right” for the job,
novice programmers may not be able to resist the temptation
of copying and pasting the relevant code. And in some cases,
the programmer is simply too lazy to de-clutter.

Treatment

• If the same code is found in two or more methods in the same
class: use Extract Method and place calls for the new method
in both places.

• If the same code is found in two subclasses of the same level:

54 Code Smells / Duplicate Code #15232

lukas.haigner@gmail.com (#15232)

◦ Use Extract Method for both classes, followed by Pull Up
Field for the fields used in the method that you’re
pulling up.

◦ If the duplicate code is inside a constructor, use Pull Up Con-
structor Body.

◦ If the duplicate code is similar but not completely identical,
use Form Template Method.

◦ If two methods do the same thing but use different algo-
rithms, select the best algorithm and apply Substitute Algo-
rithm.

• If duplicate code is found in two different classes:

◦ If the classes aren’t part of a hierarchy, use Extract Super-
class in order to create a single superclass for these classes
that maintains all the previous functionality.

◦ If it’s difficult or impossible to create a superclass, use
Extract Class in one class and use the new component in
the other.

• If a large number of conditional expressions are present and
perform the same code (differing only in their conditions),
merge these operators into a single condition using Consoli-
date Conditional Expression and use Extract Method to place

55 Code Smells / Duplicate Code #15232

lukas.haigner@gmail.com (#15232)

the condition in a separate method with an easy-to-under-
stand name.

• If the same code is performed in all branches of a condition-
al expression: place the identical code outside of the condition
tree by using Consolidate Duplicate Conditional Fragments.

Payoff

• Merging duplicate code simplifies the structure of your code
and makes it shorter.

• Simplification + shortness = code that’s easier to simplify and
cheaper to support.

56 Code Smells / Duplicate Code #15232

lukas.haigner@gmail.com (#15232)

When to Ignore

In very rare cases, merging two identical fragments of code
can make the code less intuitive and obvious.

57 Code Smells / Duplicate Code #15232

lukas.haigner@gmail.com (#15232)

A Lazy Class
Signs and Symptoms

Understanding and maintaining classes always costs time and
money. So if a class doesn’t do enough to earn your attention,
it should be deleted.

Reasons for the Problem

Perhaps a class was designed to be fully functional but after
some of the refactoring it has become ridiculously small.

Or perhaps it was designed to support future development
work that never got done.

58 Code Smells / Lazy Class #15232

lukas.haigner@gmail.com (#15232)

Treatment

• Components that are near-useless should be given the Inline
Class treatment.

• For subclasses with few functions, try Collapse Hierarchy.

Payoff

• Reduced code size.

• Easier maintenance.

When to Ignore

Sometimes a Lazy Class is created in order to delineate inten-
tions for future development, In this case, try to maintain a
balance between clarity and simplicity in your code.

59 Code Smells / Lazy Class #15232

lukas.haigner@gmail.com (#15232)

A Data Class
Signs and Symptoms

A data class refers to a class that contains only fields and crude
methods for accessing them (getters and setters). These are
simply containers for data used by other classes. These classes
don’t contain any additional functionality and can’t indepen-
dently operate on the data that they own.

Reasons for the Problem

It’s a normal thing when a newly created class contains only a
few public fields (and maybe even a handful of getters/setters).
But the true power of objects is that they can contain behavior
types or operations on their data.

60 Code Smells / Data Class #15232

lukas.haigner@gmail.com (#15232)

Treatment

• If a class contains public fields, use Encapsulate Field to hide
them from direct access and require that access be performed
via getters and setters only.

• Use Encapsulate Collection for data stored in collections (such
as arrays).

• Review the client code that uses the class. In it, you may find
functionality that would be better located in the data class
itself. If this is the case, use Move Method and Extract Method
to migrate this functionality to the data class.

• After the class has been filled with well thought-out methods,
you may want to get rid of old methods for data access that
give overly broad access to the class data. For this, Remove
Setting Method and Hide Method may be helpful.

61 Code Smells / Data Class #15232

lukas.haigner@gmail.com (#15232)

Payoff

• Improves understanding and organization of code. Operations
on particular data are now gathered in a single place, instead
of haphazardly throughout the code.

• Helps you to spot duplication of client code.

62 Code Smells / Data Class #15232

lukas.haigner@gmail.com (#15232)

A Dead Code
Signs and Symptoms

A variable, parameter, field, method or class is no longer used
(usually because it’s obsolete).

Reasons for the Problem

When requirements for the software have changed or cor-
rections have been made, nobody had time to clean up the
old code.

Such code could also be found in complex conditionals, when
one of the branches becomes unreachable (due to error or
other circumstances).

63 Code Smells / Dead Code #15232

lukas.haigner@gmail.com (#15232)

Treatment

The quickest way to find dead code is to use a good IDE.

• Delete unused code and unneeded files.

• In the case of an unnecessary class, Inline Class or Collapse
Hierarchy can be applied if a subclass or superclass is used.

• To remove unneeded parameters, use Remove Parameter.

Payoff

• Reduced code size.

• Simpler support.

64 Code Smells / Dead Code #15232

lukas.haigner@gmail.com (#15232)

http://en.wikipedia.org/wiki/Integrated_development_environment

A Speculative
Generality
Signs and Symptoms

There’s an unused class, method, field or parameter.

Reasons for the Problem

Sometimes code is created “just in case” to support anticipated
future features that never get implemented. As a result, code
becomes hard to understand and support.

65 Code Smells / Speculative Generality #15232

lukas.haigner@gmail.com (#15232)

Treatment

• For removing unused abstract classes, try Collapse Hierarchy.

• Unnecessary delegation of functionality to another class can
be eliminated via Inline Class.

• Unused methods? Use Inline Method to get rid of them.

• Methods with unused parameters should be given a look with
the help of Remove Parameter.

• Unused fields can be simply deleted.

Payoff

• Slimmer code.

66 Code Smells / Speculative Generality #15232

lukas.haigner@gmail.com (#15232)

• Easier support.

When to Ignore

• If you’re working on a framework, it’s eminently reasonable to
create functionality not used in the framework itself, as long
as the functionality is needed by the frameworks’s users.

• Before deleting elements, make sure that they aren’t used in
unit tests. This happens if tests need a way to get certain inter-
nal information from a class or perform special testing-related
actions.

67 Code Smells / Speculative Generality #15232

lukas.haigner@gmail.com (#15232)

Couplers
All the smells in this group contribute to excessive coupling
between classes or show what happens if coupling is replaced
by excessive delegation.

A method accesses the data of another object more than its
own data.

One class uses the internal fields and methods of anoth-
er class.

In code you see a series of calls resembling
$a->b()->c()->d()

If a class performs only one action, delegating work to another
class, why does it exist at all?

§ Feature Envy

§ Inappropriate Intimacy

§ Message Chains

§ Middle Man

68 Code Smells / Couplers #15232

lukas.haigner@gmail.com (#15232)

A Feature Envy
Signs and Symptoms

A method accesses the data of another object more than its
own data.

Reasons for the Problem

This smell may occur after fields are moved to a data class. If
this is the case, you may want to move the operations on data
to this class as well.

69 Code Smells / Feature Envy #15232

lukas.haigner@gmail.com (#15232)

Treatment

As a basic rule, if things change at the same time, you should
keep them in the same place. Usually data and functions that
use this data are changed together (although exceptions are
possible).

• If a method clearly should be moved to another place, use
Move Method.

• If only part of a method accesses the data of another object,
use Extract Method to move the part in question.

• If a method uses functions from several other classes, first
determine which class contains most of the data used. Then
place the method in this class along with the other data. Alter-
natively, use Extract Method to split the method into several
parts that can be placed in different places in different classes.

70 Code Smells / Feature Envy #15232

lukas.haigner@gmail.com (#15232)

Payoff

• Less code duplication (if the data handling code is put in a cen-
tral place).

• Better code organization (methods for handling data are next
to the actual data).

When to Ignore

Sometimes behavior is purposefully kept separate from the
class that holds the data. The usual advantage of this is the
ability to dynamically change the behavior (see Strategy, Visi-
tor and other patterns).

71 Code Smells / Feature Envy #15232

lukas.haigner@gmail.com (#15232)

https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/visitor
https://refactoring.guru/design-patterns/visitor

A Inappropriate
Intimacy
Signs and Symptoms

One class uses the internal fields and methods of anoth-
er class.

Reasons for the Problem

Keep a close eye on classes that spend too much time togeth-
er. Good classes should know as little about each other as pos-
sible. Such classes are easier to maintain and reuse.

72 Code Smells / Inappropriate Intimacy #15232

lukas.haigner@gmail.com (#15232)

Treatment

• The simplest solution is to use Move Method and Move Field
to move parts of one class to the class in which those parts are
used. But this works only if the first class truly doesn’t need
these parts.

• Another solution is to use Extract Class and Hide Delegate on
the class to make the code relations “official”.

• If the classes are mutually interdependent, you should use
Change Bidirectional Association to Unidirectional.

• If this “intimacy” is between a subclass and the superclass,
consider Replace Delegation with Inheritance.

73 Code Smells / Inappropriate Intimacy #15232

lukas.haigner@gmail.com (#15232)

Payoff

• Improves code organization.

• Simplifies support and code reuse.

74 Code Smells / Inappropriate Intimacy #15232

lukas.haigner@gmail.com (#15232)

A Message Chains
Signs and Symptoms

In code you see a series of calls resembling
$a->b()->c()->d()

Reasons for the Problem

A message chain occurs when a client requests another object,
that object requests yet another one, and so on. These chains
mean that the client is dependent on navigation along the
class structure. Any changes in these relationships require
modifying the client.

75 Code Smells / Message Chains #15232

lukas.haigner@gmail.com (#15232)

Treatment

• To delete a message chain, use Hide Delegate.

• Sometimes it’s better to think of why the end object is being
used. Perhaps it would make sense to use Extract Method for
this functionality and move it to the beginning of the chain, by
using Move Method.

Payoff

• Reduces dependencies between classes of a chain.

• Reduces the amount of bloated code.

76 Code Smells / Message Chains #15232

lukas.haigner@gmail.com (#15232)

When to Ignore

Overly aggressive delegate hiding can cause code in which it’s
hard to see where the functionality is actually occurring. Which
is another way of saying, avoid the Middle Man smell as well.

77 Code Smells / Message Chains #15232

lukas.haigner@gmail.com (#15232)

A Middle Man
Signs and Symptoms

If a class performs only one action, delegating work to another
class, why does it exist at all?

Reasons for the Problem

This smell can be the result of overzealous elimination of Mes-
sage Chains.

In other cases, it can be the result of the useful work of a class
being gradually moved to other classes. The class remains as
an empty shell that doesn’t do anything other than delegate.

78 Code Smells / Middle Man #15232

lukas.haigner@gmail.com (#15232)

Treatment

If most of a method’s classes delegate to another class,
Remove Middle Man is in order.

Payoff

Less bulky code.

When to Ignore

Don’t delete middle man that have been created for a reason:

• A middle man may have been added to avoid interclass
dependencies.

• Some design patterns create middle man on purpose (such as
Proxy or Decorator).

79 Code Smells / Middle Man #15232

lukas.haigner@gmail.com (#15232)

https://refactoring.guru/design-patterns/proxy
https://refactoring.guru/design-patterns/decorator

Other Smells
Below are the smells which don’t fall into any broad category.

Sooner or later, libraries stop meeting user needs. The only
solution to the problem – changing the library – is often
impossible since the library is read-only.

§ Incomplete Library Class

80 Code Smells / Other Smells #15232

lukas.haigner@gmail.com (#15232)

https://en.wikipedia.org/wiki/Library_(computing)

A Incomplete Library
Class
Signs and Symptoms

Sooner or later, libraries stop meeting user needs. The only
solution to the problem – changing the library – is often
impossible since the library is read-only.

Reasons for the Problem

The author of the library hasn’t provided the features you need
or has refused to implement them.

81 Code Smells / Incomplete Library Class #15232

lukas.haigner@gmail.com (#15232)

https://en.wikipedia.org/wiki/Library_(computing)

Treatment

• To introduce a few methods to a library class, use Introduce
Foreign Method.

• For big changes in a class library, use Introduce Local Exten-
sion.

Payoff

Reduces code duplication (instead of creating your own library
from scratch, you can still piggy-back off an existing one).

When to Ignore

Extending a library can generate additional work if the
changes to the library involve changes in code.

82 Code Smells / Incomplete Library Class #15232

lukas.haigner@gmail.com (#15232)

Refactoring Techniques
Refactoring is a controllable process of improving code with-
out creating new functionality. It transforms a mess into clean
code and simple design.

Clean code is code that is easy to read, write and maintain.
Clean code makes software development predictable and
increases the quality of a resulting product.

Refactoring techniques describe actual refactoring steps. Most
refactoring techniques have their pros and cons. Therefore,
each refactoring should be properly motivated and applied
with caution.

In the previous chapters, you have seen how particular refac-
torings can help fixing problems with code. Now it’s the time
to look over the refactoring techniques in more detail!

83 Refactoring Techniques #15232

lukas.haigner@gmail.com (#15232)

Composing Methods
Much of refactoring is devoted to correctly composing meth-
ods. In most cases, excessively long methods are the root of
all evil. The vagaries of code inside these methods conceal
the execution logic and make the method extremely hard to
understand – and even harder to change.

The refactoring techniques in this group streamline meth-
ods, remove code duplication, and pave the way for future
improvements.

Problem: You have a code fragment that can be grouped
together.

Solution: Move this code to a separate new method (or func-
tion) and replace the old code with a call to the method.

Problem: When a method body is more obvious than the
method itself, use this technique.

Solution: Replace calls to the method with the method’s con-
tent and delete the method itself.

Problem: You have an expression that’s hard to understand.

§ Extract Method

§ Inline Method

§ Extract Variable

84 Refactoring Techniques / Composing Methods #15232

lukas.haigner@gmail.com (#15232)

Solution: Place the result of the expression or its parts in sep-
arate variables that are self-explanatory.

Problem: You have a temporary variable that’s assigned the
result of a simple expression and nothing more.

Solution: Replace the references to the variable with the
expression itself.

Problem: You place the result of an expression in a local vari-
able for later use in your code.

Solution: Move the entire expression to a separate method
and return the result from it. Query the method instead of
using a variable. Incorporate the new method in other meth-
ods, if necessary.

Problem: You have a local variable that’s used to store var-
ious intermediate values inside a method (except for cycle
variables).

Solution: Use different variables for different values. Each
variable should be responsible for only one particular thing.

Problem: Some value is assigned to a parameter inside
method’s body.

§ Inline Temp

§ Replace Temp with Query

§ Split Temporary Variable

§ Remove Assignments to Parameters

85 Refactoring Techniques / Composing Methods #15232

lukas.haigner@gmail.com (#15232)

Solution: Use a local variable instead of a parameter.

Problem: You have a long method in which the local variables
are so intertwined that you can’t apply Extract Method.

Solution: Transform the method into a separate class so that
the local variables become fields of the class. Then you can
split the method into several methods within the same class.

Problem: So you want to replace an existing algorithm with a
new one?

Solution: Replace the body of the method that implements the
algorithm with a new algorithm.

§ Replace Method with Method Object

§ Substitute Algorithm

86 Refactoring Techniques / Composing Methods #15232

lukas.haigner@gmail.com (#15232)

B Extract Method
Problem

You have a code fragment that can be grouped together.

Solution

Move this code to a separate new method (or function) and
replace the old code with a call to the method.

void printOwing() {1

printBanner();2

3

// Print details.4

System.out.println("name: " + name);5

System.out.println("amount: " + getOutstanding());6

}7

void printOwing() {1

printBanner();2

printDetails(getOutstanding());3

}4

5

void printDetails(double outstanding) {6

System.out.println("name: " + name);7

System.out.println("amount: " + outstanding);8

87 Refactoring Techniques / Extract Method #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

The more lines found in a method, the harder it’s to figure
out what the method does. This is the main reason for this
refactoring.

Besides eliminating rough edges in your code, extracting
methods is also a step in many other refactoring approaches.

Benefits

• More readable code! Be sure to give the new method a name
that describes the method’s purpose: createOrder() ,
renderCustomerInfo() , etc.

• Less code duplication. Often the code that’s found in a method
can be reused in other places in your program. So you can
replace duplicates with calls to your new method.

• Isolates independent parts of code, meaning that errors are
less likely (such as if the wrong variable is modified).

How to Refactor

1. Create a new method and name it in a way that makes its pur-
pose self-evident.

}9

88 Refactoring Techniques / Extract Method #15232

lukas.haigner@gmail.com (#15232)

2. Copy the relevant code fragment to your new method. Delete
the fragment from its old location and put a call for the new
method there instead.

Find all variables used in this code fragment. If they’re
declared inside the fragment and not used outside of it, simply
leave them unchanged – they’ll become local variables for the
new method.

3. If the variables are declared prior to the code that you’re
extracting, you will need to pass these variables to the para-
meters of your new method in order to use the values pre-
viously contained in them. Sometimes it’s easier to get rid of
these variables by resorting to Replace Temp with Query.

4. If you see that a local variable changes in your extracted code
in some way, this may mean that this changed value will be
needed later in your main method. Double-check! And if this is
indeed the case, return the value of this variable to the main
method to keep everything functioning.

89 Refactoring Techniques / Extract Method #15232

lukas.haigner@gmail.com (#15232)

Anti-refactoring

Similar refactorings

Helps other refactorings

Eliminates smell

§ Inline Method

§ Move Method

§ Introduce Parameter Object

§ Form Template Method

§ Introduce Parameter Object

§ Parameterize Method

§ Duplicate Code

§ Long Method

§ Feature Envy

§ Switch Statements

§ Message Chains

§ Comments

§ Data Class

90 Refactoring Techniques / Extract Method #15232

lukas.haigner@gmail.com (#15232)

B Inline Method
Problem

When a method body is more obvious than the method itself,
use this technique.

Solution

Replace calls to the method with the method’s content and
delete the method itself.

class PizzaDelivery {1

// ...2

int getRating() {3

return moreThanFiveLateDeliveries() ? 2 : 1;4

}5

boolean moreThanFiveLateDeliveries() {6

return numberOfLateDeliveries > 5;7

}8

}9

class PizzaDelivery {1

// ...2

int getRating() {3

return numberOfLateDeliveries > 5 ? 2 : 1;4

91 Refactoring Techniques / Inline Method #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

A method simply delegates to another method. In itself, this
delegation is no problem. But when there are many such
methods, they become a confusing tangle that’s hard to sort
through.

Often methods aren’t too short originally, but become that way
as changes are made to the program. So don’t be shy about
getting rid of methods that have outlived their use.

Benefits

By minimizing the number of unneeded methods, you make
the code more straightforward.

How to Refactor

1. Make sure that the method isn’t redefined in subclasses. If the
method is redefined, refrain from this technique.

2. Find all calls to the method. Replace these calls with the con-
tent of the method.

3. Delete the method.

}5

}6

92 Refactoring Techniques / Inline Method #15232

lukas.haigner@gmail.com (#15232)

Anti-refactoring

Eliminates smell

§ Extract Method

§ Speculative Generality

93 Refactoring Techniques / Inline Method #15232

lukas.haigner@gmail.com (#15232)

B Extract Variable
Problem

You have an expression that’s hard to understand.

Solution

Place the result of the expression or its parts in separate
variables that are self-explanatory.

void renderBanner() {1

if ((platform.toUpperCase().indexOf("MAC") > -1) &&2

(browser.toUpperCase().indexOf("IE") > -1) &&3

wasInitialized() && resize > 0)4

{5

// do something6

}7

}8

void renderBanner() {1

final boolean isMacOs = platform.toUpperCase().indexOf("MAC") > -1;2

final boolean isIE = browser.toUpperCase().indexOf("IE") > -1;3

final boolean wasResized = resize > 0;4

5

if (isMacOs && isIE && wasInitialized() && wasResized) {6

// do something7

94 Refactoring Techniques / Extract Variable #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

The main reason for extracting variables is to make a complex
expression more understandable, by dividing it into its inter-
mediate parts. These could be:

• Condition of the if() operator or a part of the ?: operator
in C-based languages

• A long arithmetic expression without intermediate results

• Long multipart lines

Extracting a variable may be the first step towards performing
Extract Method if you see that the extracted expression is used
in other places in your code.

Benefits

More readable code! Try to give the extracted variables good
names that announce the variable’s purpose loud and clear.
More readability, fewer long-winded comments. Go for names
like customerTaxValue , cityUnemploymentRate ,
clientSalutationString , etc.

}8

}9

95 Refactoring Techniques / Extract Variable #15232

lukas.haigner@gmail.com (#15232)

Drawbacks

• More variables are present in your code. But this is counterbal-
anced by the ease of reading your code.

• When refactoring conditional expressions, remember that the
compiler will most likely optimize it to minimize the amount of
calculations needed to establish the resulting value. Say you
have a following expression if (a() || b()) The pro-
gram won’t call the method b if the method a returns true

because the resulting value will still be true , no matter what
value returns b .

However, if you extract parts of this expression into variables,
both methods will always be called, which might hurt perfor-
mance of the program, especially if these methods do some
heavyweight work.

How to Refactor

1. Insert a new line before the relevant expression and declare a
new variable there. Assign part of the complex expression to
this variable.

2. Replace that part of the expression with the new variable.

3. Repeat the process for all complex parts of the expression.

96 Refactoring Techniques / Extract Variable #15232

lukas.haigner@gmail.com (#15232)

Anti-refactoring

Similar refactorings

Eliminates smell

§ Inline Temp

§ Extract Method

§ Comments

97 Refactoring Techniques / Extract Variable #15232

lukas.haigner@gmail.com (#15232)

B Inline Temp
Problem

You have a temporary variable that’s assigned the result of a
simple expression and nothing more.

Solution

Replace the references to the variable with the expression
itself.

Why Refactor

Inline local variables are almost always used as part of Replace
Temp with Query or to pave the way for Extract Method.

boolean hasDiscount(Order order) {1

double basePrice = order.basePrice();2

return basePrice > 1000;3

}4

boolean hasDiscount(Order order) {1

return order.basePrice() > 1000;2

}3

98 Refactoring Techniques / Inline Temp #15232

lukas.haigner@gmail.com (#15232)

Benefits

This refactoring technique offers almost no benefit in and
of itself. However, if the variable is assigned the result of a
method, you can marginally improve the readability of the pro-
gram by getting rid of the unnecessary variable.

Drawbacks

Sometimes seemingly useless temps are used to cache the
result of an expensive operation that’s reused several times. So
before using this refactoring technique, make sure that sim-
plicity won’t come at the cost of performance.

How to Refactor

1. Find all places that use the variable. Instead of the variable,
use the expression that had been assigned to it.

2. Delete the declaration of the variable and its assignment line.

Helps other refactorings

§ Replace Temp with Query

§ Extract Method

99 Refactoring Techniques / Inline Temp #15232

lukas.haigner@gmail.com (#15232)

B Replace Temp with
Query
Problem

You place the result of an expression in a local variable for
later use in your code.

Solution

Move the entire expression to a separate method and return
the result from it. Query the method instead of using a
variable. Incorporate the new method in other methods, if
necessary.

double calculateTotal() {1

double basePrice = quantity * itemPrice;2

if (basePrice > 1000) {3

return basePrice * 0.95;4

}5

else {6

return basePrice * 0.98;7

}8

}9

100 Refactoring Techniques / Replace Temp with Query #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

This refactoring can lay the groundwork for applying Extract
Method for a portion of a very long method.

The same expression may sometimes be found in other meth-
ods as well, which is one reason to consider creating a com-
mon method.

Benefits

• Code readability. It’s much easier to understand the purpose of
the method getTax() than the line orderPrice() * 0.2 .

• Slimmer code via deduplication, if the line being replaced is
used in multiple methods.

double calculateTotal() {1

if (basePrice() > 1000) {2

return basePrice() * 0.95;3

}4

else {5

return basePrice() * 0.98;6

}7

}8

double basePrice() {9

return quantity * itemPrice;10

}11

101 Refactoring Techniques / Replace Temp with Query #15232

lukas.haigner@gmail.com (#15232)

Good to Know

Performance

This refactoring may prompt the question of whether this
approach is liable to cause a performance hit. The honest
answer is: yes, it’s, since the resulting code may be burdened
by querying a new method. But with today’s fast CPUs and
excellent compilers, the burden will almost always be mini-
mal. By contrast, readable code and the ability to reuse this
method in other places in program code – thanks to this refac-
toring approach – are very noticeable benefits.

Nonetheless, if your temp variable is used to cache the result
of a truly time-consuming expression, you may want to stop
this refactoring after extracting the expression to a new
method.

How to Refactor

1. Make sure that a value is assigned to the variable once and
only once within the method. If not, use Split Temporary Vari-
able to ensure that the variable will be used only to store the
result of your expression.

2. Use Extract Method to place the expression of interest in a
new method. Make sure that this method only returns a value
and doesn’t change the state of the object. If the method

102 Refactoring Techniques / Replace Temp with Query #15232

lukas.haigner@gmail.com (#15232)

affects the visible state of the object, use Separate Query from
Modifier.

3. Replace the variable with a query to your new method.

Similar refactorings

Eliminates smell

§ Extract Method

§ Long Method

§ Duplicate Code

103 Refactoring Techniques / Replace Temp with Query #15232

lukas.haigner@gmail.com (#15232)

B Split Temporary
Variable
Problem

You have a local variable that’s used to store various
intermediate values inside a method (except for cycle
variables).

Solution

Use different variables for different values. Each variable
should be responsible for only one particular thing.

double temp = 2 * (height + width);1

System.out.println(temp);2

temp = height * width;3

System.out.println(temp);4

final double perimeter = 2 * (height + width);1

System.out.println(perimeter);2

final double area = height * width;3

System.out.println(area);4

104 Refactoring Techniques / Split Temporary Variable #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

If you’re skimping on the number of variables inside a function
and reusing them for various unrelated purposes, you’re sure
to encounter problems as soon as you need to make changes
to the code containing the variables. You will have to recheck
each case of variable use to make sure that the correct values
are used.

Benefits

• Each component of the program code should be responsible
for one and one thing only. This makes it much easier to main-
tain the code, since you can easily replace any particular thing
without fear of unintended effects.

• Code becomes more readable. If a variable was created long
ago in a rush, it probably has a name that doesn’t explain any-
thing: k , a2 , value , etc. But you can fix this situation by
naming the new variables in an understandable, self-explana-
tory way. Such names might resemble customerTaxValue ,
cityUnemploymentRate , clientSalutationString and the like.

• This refactoring technique is useful if you anticipate using
Extract Method later.

105 Refactoring Techniques / Split Temporary Variable #15232

lukas.haigner@gmail.com (#15232)

How to Refactor

1. Find the first place in the code where the variable is given a
value. Here you should rename the variable with a name that
corresponds to the value being assigned.

2. Use the new name instead of the old one in places where this
value of the variable is used.

3. Repeat as needed for places where the variable is assigned a
different value.

Anti-refactoring

Similar refactorings

Helps other refactorings

§ Inline Temp

§ Extract Variable

§ Remove Assignments to Parameters

§ Extract Method

106 Refactoring Techniques / Split Temporary Variable #15232

lukas.haigner@gmail.com (#15232)

B Remove
Assignments to
Parameters
Problem

Some value is assigned to a parameter inside method’s body.

Solution

Use a local variable instead of a parameter.

int discount(int inputVal, int quantity) {1

if (inputVal > 50) {2

inputVal -= 2;3

}4

// ...5

}6

int discount(int inputVal, int quantity) {1

int result = inputVal;2

if (inputVal > 50) {3

result -= 2;4

107 Refactoring Techniques / Remove Assignments to Parameters #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

The reasons for this refactoring are the same as for Split Tem-
porary Variable, but in this case we’re dealing with a parame-
ter, not a local variable.

First, if a parameter is passed via reference, then after the
parameter value is changed inside the method, this value is
passed to the argument that requested calling this method.
Very often, this occurs accidentally and leads to unfortunate
effects. Even if parameters are usually passed by value (and
not by reference) in your programming language, this coding
quirk may alienate those who are unaccustomed to it.

Second, multiple assignments of different values to a single
parameter make it difficult for you to know what data should
be contained in the parameter at any particular point in time.
The problem worsens if your parameter and its contents are
documented but the actual value is capable of differing from
what’s expected inside the method.

}5

// ...6

}7

108 Refactoring Techniques / Remove Assignments to Parameters #15232

lukas.haigner@gmail.com (#15232)

Benefits

• Each element of the program should be responsible for only
one thing. This makes code maintenance much easier going
forward, since you can safely replace code without any side
effects.

• This refactoring helps to extract repetitive code to separate
methods.

How to Refactor

1. Create a local variable and assign the initial value of your
parameter.

2. In all method code that follows this line, replace the parame-
ter with your new local variable.

Similar refactorings

Helps other refactorings

§ Split Temporary Variable

§ Extract Method

109 Refactoring Techniques / Remove Assignments to Parameters #15232

lukas.haigner@gmail.com (#15232)

B Replace Method
with Method Object
Problem

You have a long method in which the local variables are so
intertwined that you can’t apply Extract Method.

Solution

Transform the method into a separate class so that the local
variables become fields of the class. Then you can split the
method into several methods within the same class.

class Order {1

// ...2

public double price() {3

double primaryBasePrice;4

double secondaryBasePrice;5

double tertiaryBasePrice;6

// Perform long computation.7

}8

}9

110 Refactoring Techniques / Replace Method with Method Object #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

A method is too long and you can’t separate it due to tan-
gled masses of local variables that are hard to isolate from
each other.

The first step is to isolate the entire method into a separate
class and turn its local variables into fields of the class.

class Order {1

// ...2

public double price() {3

return new PriceCalculator(this).compute();4

}5

}6

7

class PriceCalculator {8

private double primaryBasePrice;9

private double secondaryBasePrice;10

private double tertiaryBasePrice;11

12

public PriceCalculator(Order order) {13

// Copy relevant information from the14

// order object.15

}16

17

public double compute() {18

// Perform long computation.19

}20

}21

111 Refactoring Techniques / Replace Method with Method Object #15232

lukas.haigner@gmail.com (#15232)

Firstly, this allows isolating the problem at the class level.
Secondly, it paves the way for splitting a large and unwieldy
method into smaller ones that wouldn’t fit with the purpose of
the original class anyway.

Benefits

Isolating a long method in its own class allows stopping a
method from ballooning in size. This also allows splitting it
into submethods within the class, without polluting the origi-
nal class with utility methods.

Drawbacks

Another class is added, increasing the overall complexity of
the program.

How to Refactor

1. Create a new class. Name it based on the purpose of the
method that you’re refactoring.

2. In the new class, create a private field for storing a reference
to an instance of the class in which the method was previously
located. It could be used to get some required data from the
original class if needed.

3. Create a separate private field for each local variable of the
method.

112 Refactoring Techniques / Replace Method with Method Object #15232

lukas.haigner@gmail.com (#15232)

4. Create a constructor that accepts as parameters the values of
all local variables of the method and also initializes the corre-
sponding private fields.

5. Declare the main method and copy the code of the original
method to it, replacing the local variables with private fields.

6. Replace the body of the original method in the original class
by creating a method object and calling its main method.

Similar refactorings

Does the same with fields.

Eliminates smell

§ Replace Data Value with Object

§ Long Method

113 Refactoring Techniques / Replace Method with Method Object #15232

lukas.haigner@gmail.com (#15232)

B Substitute
Algorithm
Problem

So you want to replace an existing algorithm with a new one?

Solution

Replace the body of the method that implements the
algorithm with a new algorithm.

String foundPerson(String[] people){1

for (int i = 0; i < people.length; i++) {2

if (people[i].equals("Don")){3

return "Don";4

}5

if (people[i].equals("John")){6

return "John";7

}8

if (people[i].equals("Kent")){9

return "Kent";10

}11

}12

return "";13

}14

114 Refactoring Techniques / Substitute Algorithm #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

1. Gradual refactoring isn’t the only method for improving a pro-
gram. Sometimes a method is so cluttered with issues that it’s
easier to tear down the method and start fresh. And perhaps
you have found an algorithm that’s much simpler and more
efficient. If this is the case, you should simply replace the old
algorithm with the new one.

2. As time goes on, your algorithm may be incorporated into
a well-known library or framework and you want to get rid
of your independent implementation, in order to simplify
maintenance.

3. The requirements for your program may change so heavily that
your existing algorithm can’t be salvaged for the task.

String foundPerson(String[] people){1

List candidates =2

Arrays.asList(new String[] {"Don", "John", "Kent"});3

for (int i=0; i < people.length; i++) {4

if (candidates.contains(people[i])) {5

return people[i];6

}7

}8

return "";9

}10

115 Refactoring Techniques / Substitute Algorithm #15232

lukas.haigner@gmail.com (#15232)

How to Refactor

1. Make sure that you have simplified the existing algorithm as
much as possible. Move unimportant code to other methods
using Extract Method. The fewer moving parts in your algo-
rithm, the easier it’s to replace.

2. Create your new algorithm in a new method. Replace the old
algorithm with the new one and start testing the program.

3. If the results don’t match, return to the old implementation
and compare the results. Identify the causes of the discrepan-
cy. While the cause is often an error in the old algorithm, it’s
more likely due to something not working in the new one.

4. When all tests are successfully completed, delete the old algo-
rithm for good!

Eliminates smell

§ Duplicate Code

§ Long Method

116 Refactoring Techniques / Substitute Algorithm #15232

lukas.haigner@gmail.com (#15232)

Moving Features between
Objects
Even if you have distributed functionality among different
classes in a less-than-perfect way, there’s still hope.

These refactoring techniques show how to safely move func-
tionality between classes, create new classes, and hide imple-
mentation details from public access.

Problem: A method is used more in another class than in its
own class.

Solution: Create a new method in the class that uses the
method the most, then move code from the old method to
there. Turn the code of the original method into a reference to
the new method in the other class or else remove it entirely.

Problem: A field is used more in another class than in its
own class.

Solution: Create a field in a new class and redirect all users of
the old field to it.

§ Move Method

§ Move Field

117 Refactoring Techniques / Moving Features between Objects #15232

lukas.haigner@gmail.com (#15232)

Problem: When one class does the work of two, awkwardness
results.

Solution: Instead, create a new class and place the fields and
methods responsible for the relevant functionality in it.

Problem: A class does almost nothing and isn’t responsible for
anything, and no additional responsibilities are planned for it.

Solution: Move all features from the class to another one.

Problem: The client gets object B from a field or method of
object А. Then the client calls a method of object B.

Solution: Create a new method in class A that delegates the
call to object B. Now the client doesn’t know about, or depend
on, class B.

Problem: A class has too many methods that simply delegate
to other objects.

Solution: Delete these methods and force the client to call the
end methods directly.

Problem: A utility class doesn’t contain the method that you
need and you can’t add the method to the class.

§ Extract Class

§ Inline Class

§ Hide Delegate

§ Remove Middle Man

§ Introduce Foreign Method

118 Refactoring Techniques / Moving Features between Objects #15232

lukas.haigner@gmail.com (#15232)

Solution: Add the method to a client class and pass an object
of the utility class to it as an argument.

Problem: A utility class doesn’t contain some methods that
you need. But you can’t add these methods to the class.

Solution: Create a new class containing the methods and make
it either the child or wrapper of the utility class.

§ Introduce Local Extension

119 Refactoring Techniques / Moving Features between Objects #15232

lukas.haigner@gmail.com (#15232)

B Move Method
Problem

A method is used more in another class than in its own class.

Solution

Create a new method in the class that uses the method the
most, then move code from the old method to there. Turn
the code of the original method into a reference to the new
method in the other class or else remove it entirely.

120 Refactoring Techniques / Move Method #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

1. You want to move a method to a class that contains most of
the data used by the method. This makes classes more inter-
nally coherent.

2. You want to move a method in order to reduce or eliminate
the dependency of the class calling the method on the class
in which it’s located. This can be useful if the calling class is
already dependent on the class to which you’re planning to
move the method. This reduces dependency between classes.

How to Refactor

1. Verify all features used by the old method in its class. It may be
a good idea to move them as well. As a rule, if a feature is used

121 Refactoring Techniques / Move Method #15232

lukas.haigner@gmail.com (#15232)

only by the method under consideration, you should certainly
move the feature to it. If the feature is used by other methods
too, you should move these methods as well. Sometimes it’s
much easier to move a large number of methods than to set up
relationships between them in different classes.

Make sure that the method isn’t declared in superclasses and
subclasses. If this is the case, you will either have to refrain
from moving or else implement a kind of polymorphism in the
recipient class in order to ensure varying functionality of a
method split up among donor classes.

2. Declare the new method in the recipient class. You may want
to give a new name for the method that’s more appropriate for
it in the new class.

3. Decide how you will refer to the recipient class. You may
already have a field or method that returns an appropriate
object, but if not, you will need to write a new method or field
to store the object of the recipient class.

Now you have a way to refer to the recipient object and a new
method in its class. With all this under your belt, you can turn
the old method into a reference to the new method.

4. Take a look: can you delete the old method entirely? If so,
place a reference to the new method in all places that use the
old one.

122 Refactoring Techniques / Move Method #15232

lukas.haigner@gmail.com (#15232)

Similar refactorings

Helps other refactorings

Eliminates smell

§ Extract Method

§ Move Field

§ Extract Class

§ Inline Class

§ Introduce Parameter Object

§ Shotgun Surgery

§ Feature Envy

§ Switch Statements

§ Parallel Inheritance Hierarchies

§ Message Chains

§ Inappropriate Intimacy

§ Data Class

123 Refactoring Techniques / Move Method #15232

lukas.haigner@gmail.com (#15232)

B Move Field
Problem

A field is used more in another class than in its own class.

Solution

Create a field in a new class and redirect all users of the old
field to it.

124 Refactoring Techniques / Move Field #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Often fields are moved as part of the Extract Class technique.
Deciding which class to leave the field in can be tough. Here is
our rule of thumb: put a field in the same place as the methods
that use it (or else where most of these methods are).

This rule will help in other cases when a field is simply located
in the wrong place.

How to Refactor

1. If the field is public, refactoring will be much easier if you
make the field private and provide public access methods (for
this, you can use Encapsulate Field).

125 Refactoring Techniques / Move Field #15232

lukas.haigner@gmail.com (#15232)

2. Create the same field with access methods in the recipi-
ent class.

3. Decide how you will refer to the recipient class. You may
already have a field or method that returns the appropriate
object; if not, you will need to write a new method or field to
store the object of the recipient class.

4. Replace all references to the old field with appropriate calls
to methods in the recipient class. If the field isn’t private, take
care of this in the superclass and subclasses.

5. Delete the field in the original class.

Similar refactorings

Helps other refactorings

Eliminates smell

§ Move Field

§ Extract Class

§ Inline Class

§ Shotgun Surgery

§ Parallel Inheritance Hierarchies

§ Inappropriate Intimacy

126 Refactoring Techniques / Move Field #15232

lukas.haigner@gmail.com (#15232)

B Extract Class
Problem

When one class does the work of two, awkwardness results.

Solution

Instead, create a new class and place the fields and methods
responsible for the relevant functionality in it.

127 Refactoring Techniques / Extract Class #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Classes always start out clear and easy to understand. They
do their job and mind their own business as it were, with-
out butting into the work of other classes. But as the program
expands, a method is added and then a field... and eventual-
ly, some classes are performing more responsibilities than ever
envisioned.

Benefits

• This refactoring method will help maintain adherence to the
Single Responsibility Principle. The code of your classes will be
more obvious and understandable.

• Single-responsibility classes are more reliable and tolerant of
changes. For example, say that you have a class responsible
for ten different things. When you change this class to make it
better for one thing, you risk breaking it for the nine others.

Drawbacks

If you “overdo it” with this refactoring technique, you will have
to resort to Inline Class.

How to Refactor

Before starting, decide on how exactly you want to split up the
responsibilities of the class.

128 Refactoring Techniques / Extract Class #15232

lukas.haigner@gmail.com (#15232)

1. Create a new class to contain the relevant functionality.

2. Create a relationship between the old class and the new one.
Optimally, this relationship is unidirectional; this allows
reusing the second class without any issues. Nonetheless, if
you think that a two-way relationship is necessary, this can
always be set up.

3. Use Move Field and Move Method for each field and method
that you have decided to move to the new class. For methods,
start with private ones in order to reduce the risk of making a
large number of errors. Try to relocate just a little bit at a time
and test the results after each move, in order to avoid a pileup
of error-fixing at the very end.

After you’re done moving, take one more look at the result-
ing classes. An old class with changed responsibilities may be
renamed for increased clarity. Check again to see whether you
can get rid of two-way class relationships, if any are present.

4. Also give thought to accessibility to the new class from the
outside. You can hide the class from the client entirely by mak-
ing it private, managing it via the fields from the old class.
Alternatively, you can make it a public one by allowing the
client to change values directly. Your decision here depends on
how safe it’s for the behavior of the old class when unexpected
direct changes are made to the values in the new class.

129 Refactoring Techniques / Extract Class #15232

lukas.haigner@gmail.com (#15232)

Anti-refactoring

Similar refactorings

Eliminates smell

§ Inline Class

§ Extract Subclass

§ Replace Data Value with Object

§ Duplicate Code

§ Large Class

§ Divergent Change

§ Data Clumps

§ Primitive Obsession

§ Temporary Field

§ Inappropriate Intimacy

130 Refactoring Techniques / Extract Class #15232

lukas.haigner@gmail.com (#15232)

B Inline Class
Problem

A class does almost nothing and isn’t responsible for anything,
and no additional responsibilities are planned for it.

Solution

Move all features from the class to another one.

131 Refactoring Techniques / Inline Class #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Often this technique is needed after the features of one class
are “transplanted” to other classes, leaving that class with lit-
tle to do.

Benefits

Eliminating needless classes frees up operating memory on
the computer – and bandwidth in your head.

How to Refactor

1. In the recipient class, create the public fields and methods
present in the donor class. Methods should refer to the equiv-
alent methods of the donor class.

2. Replace all references to the donor class with references to the
fields and methods of the recipient class.

3. Now test the program and make sure that no errors have been
added. If tests show that everything is working A-OK, start
using Move Method and Move Field to completely transplant
all functionality to the recipient class from the original one.
Continue doing so until the original class is completely empty.

4. Delete the original class.

132 Refactoring Techniques / Inline Class #15232

lukas.haigner@gmail.com (#15232)

Anti-refactoring

Eliminates smell

§ Extract Class

§ Shotgun Surgery

§ Lazy Class

§ Speculative Generality

133 Refactoring Techniques / Inline Class #15232

lukas.haigner@gmail.com (#15232)

B Hide Delegate
Problem

The client gets object B from a field or method of object А.
Then the client calls a method of object B.

Solution

Create a new method in class A that delegates the call to
object B. Now the client doesn’t know about, or depend on,
class B.

134 Refactoring Techniques / Hide Delegate #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

To start with, let’s look at terminology:

• Server is the object to which the client has direct access.

• Delegate is the end object that contains the functionality need-
ed by the client.

A call chain appears when a client requests an object from
another object, then the second object requests another one,
and so on. These sequences of calls involve the client in navi-
gation along the class structure. Any changes in these interre-
lationships will require changes on the client side.

135 Refactoring Techniques / Hide Delegate #15232

lukas.haigner@gmail.com (#15232)

Benefits

Hides delegation from the client. The less that the client code
needs to know about the details of relationships between
objects, the easier it’s to make changes to your program.

Drawbacks

If you need to create an excessive number of delegating meth-
ods, server-class risks becoming an unneeded go-between,
leading to an excess of Middle Man.

How to Refactor

1. For each method of the delegate-class called by the client, cre-
ate a method in the server-class that delegates the call to the
delegate-class.

2. Change the client code so that it calls the methods of the serv-
er-class.

3. If your changes free the client from needing the delegate-class,
you can remove the access method to the delegate-class from
the server-class (the method that was originally used to get the
delegate-class).

136 Refactoring Techniques / Hide Delegate #15232

lukas.haigner@gmail.com (#15232)

Anti-refactoring

Eliminates smell

§ Remove Middle Man

§ Message Chains

§ Inappropriate Intimacy

137 Refactoring Techniques / Hide Delegate #15232

lukas.haigner@gmail.com (#15232)

B Remove Middle Man
Problem

A class has too many methods that simply delegate to other
objects.

Solution

Delete these methods and force the client to call the end
methods directly.

138 Refactoring Techniques / Remove Middle Man #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

To describe this technique, we’ll use the terms from Hide Del-
egate, which are:

• Server is the object to which the client has direct access.

• Delegate is the end object that contains the functionality need-
ed by the client.

There are two types of problems:

1. The server-class doesn’t do anything itself and simply creates
needless complexity. In this case, give thought to whether this
class is needed at all.

139 Refactoring Techniques / Remove Middle Man #15232

lukas.haigner@gmail.com (#15232)

2. Every time a new feature is added to the delegate, you need to
create a delegating method for it in the server-class. If a lot of
changes are made, this will be rather tiresome.

How to Refactor

1. Create a getter for accessing the delegate-class object from the
server-class object.

2. Replace calls to delegating methods in the server-class with
direct calls for methods in the delegate-class.

Anti-refactoring

Eliminates smell

§ Hide Delegate

§ Middle Man

140 Refactoring Techniques / Remove Middle Man #15232

lukas.haigner@gmail.com (#15232)

B Introduce Foreign
Method
Problem

A utility class doesn’t contain the method that you need and
you can’t add the method to the class.

Solution

Add the method to a client class and pass an object of the
utility class to it as an argument.

class Report {1

// ...2

void sendReport() {3

Date nextDay = new Date(previousEnd.getYear(),4

previousEnd.getMonth(), previousEnd.getDate() + 1);5

// ...6

}7

}8

class Report {1

// ...2

141 Refactoring Techniques / Introduce Foreign Method #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

You have code that uses the data and methods of a certain
class. You realize that the code will look and work much bet-
ter inside a new method in the class. But you can’t add the
method to the class because, for example, the class is located
in a third-party library.

This refactoring has a big payoff when the code that you want
to move to the method is repeated several times in different
places in your program.

Since you’re passing an object of the utility class to the para-
meters of the new method, you have access to all of its fields.
Inside the method, you can do practically everything that you
want, as if the method were part of the utility class.

void sendReport() {3

Date newStart = nextDay(previousEnd);4

// ...5

}6

private static Date nextDay(Date arg) {7

return new Date(arg.getYear(), arg.getMonth(), arg.getDate() + 1);8

}9

}10

142 Refactoring Techniques / Introduce Foreign Method #15232

lukas.haigner@gmail.com (#15232)

Benefits

Removes code duplication. If your code is repeated in several
places, you can replace these code fragments with a method
call. This is better than duplication even considering that the
foreign method is located in a suboptimal place.

Drawbacks

The reasons for having the method of a utility class in a client
class won’t always be clear to the person maintaing the code
after you. If the method can be used in other classes, you could
benefit by creating a wrapper for the utility class and placing
the method there. This is also beneficial when there are sev-
eral such utility methods. Introduce Local Extension can help
with this.

How to Refactor

1. Create a new method in the client class.

2. In this method, create a parameter to which the object of the
utility class will be passed. If this object can be obtained from
the client class, you don’t have to create such a parameter.

3. Extract the relevant code fragments to this method and
replace them with method calls.

143 Refactoring Techniques / Introduce Foreign Method #15232

lukas.haigner@gmail.com (#15232)

4. Be sure to leave the Foreign method tag in the comments for
the method along with the advice to place this method in a
utility class if such becomes possible later. This will make it
easier to understand why this method is located in this partic-
ular class for those who’ll be maintaining the software in the
future.

Similar refactorings

Move all extension methods to a separate class, which is
wrapper or a subclass of some service class.

Eliminates smell

§ Introduce Local Extension

§ Incomplete Library Class

144 Refactoring Techniques / Introduce Foreign Method #15232

lukas.haigner@gmail.com (#15232)

B Introduce Local
Extension
Problem

A utility class doesn’t contain some methods that you need.
But you can’t add these methods to the class.

Solution

Create a new class containing the methods and make it either
the child or wrapper of the utility class.

145 Refactoring Techniques / Introduce Local Extension #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

The class that you’re using doesn’t have the methods that you
need. What’s worse, you can’t add these methods (because the
classes are in a third-party library, for example). There are two
ways out:

• Create a subclass from the relevant class, containing the meth-
ods and inheriting everything else from the parent class. This
way is easier but is sometimes blocked by the utility class itself
(due to final).

• Create a wrapper class that contains all the new methods and
elsewhere will delegate to the related object from the utility
class. This method is more work since you need not only code
to maintain the relationship between the wrapper and utility
object, but also a large number of simple delegating methods
in order to emulate the public interface of the utility class.

146 Refactoring Techniques / Introduce Local Extension #15232

lukas.haigner@gmail.com (#15232)

Benefits

By moving additional methods to a separate extension class
(wrapper or subclass), you avoid gumming up client class-
es with code that doesn’t fit. Program components are more
coherent and are more reusable.

How to Refactor

1. Create a new extension class:

◦ Option A: Make it a child of the utility class.

◦ Option B: If you have decided to make a wrapper, create a
field in it for storing the utility class object to which delega-
tion will be made. When using this option, you will need to
also create methods that repeat the public methods of the
utility class and contain simple delegation to the methods
of the utility object.

2. Create a constructor that uses the parameters of the construc-
tor of the utility class.

3. Also create an alternative “converting” constructor that takes
only the object of the original class in its parameters. This will
help to substitute the extension for the objects of the origi-
nal class.

147 Refactoring Techniques / Introduce Local Extension #15232

lukas.haigner@gmail.com (#15232)

4. Create new extended methods in the class. Move foreign
methods from other classes to this class or else delete the for-
eign methods if their functionality is already present in the
extension.

5. Replace use of the utility class with the new extension class in
places where its functionality is needed.

Similar refactorings

If you only want one special method, which doesn't exist in
service class, and you can't extend it, move it to the client
class and pass the object of a service class as a parameter.

Eliminates smell

§ Introduce Foreign Method

§ Incomplete Library Class

148 Refactoring Techniques / Introduce Local Extension #15232

lukas.haigner@gmail.com (#15232)

Organizing Data
These refactoring techniques help with data handling, replac-
ing primitives with rich class functionality.

Another important result is untangling of class associations,
which makes classes more portable and reusable.

Problem: You use direct access to private fields inside a class.

Solution: Create a getter and setter for the field, and use only
them for accessing the field.

Problem: A class (or group of classes) contains a data field. The
field has its own behavior and associated data.

Solution: Create a new class, place the old field and its behav-
ior in the class, and store the object of the class in the origi-
nal class.

Problem: So you have many identical instances of a single
class that you need to replace with a single object.

Solution: Convert the identical objects to a single reference
object.

§ Self Encapsulate Field

§ Replace Data Value with Object

§ Change Value to Reference

149 Refactoring Techniques / Organizing Data #15232

lukas.haigner@gmail.com (#15232)

Problem: You have a reference object that’s too small and
infrequently changed to justify managing its life cycle.

Solution: Turn it into a value object.

Problem: You have an array that contains various types of data.

Solution: Replace the array with an object that will have sepa-
rate fields for each element.

Problem: Is domain data stored in classes responsible for the
GUI?

Solution: Then it’s a good idea to separate the data into sep-
arate classes, ensuring connection and synchronization
between the domain class and the GUI.

Problem: You have two classes that each need to use the fea-
tures of the other, but the association between them is only
unidirectional.

Solution: Add the missing association to the class that
needs it.

Problem: You have a bidirectional association between class-
es, but one of the classes doesn’t use the other’s features.

§ Change Reference to Value

§ Replace Array with Object

§ Duplicate Observed Data

§ Change Unidirectional Association to Bidirectional

§ Change Bidirectional Association to Unidirectional

150 Refactoring Techniques / Organizing Data #15232

lukas.haigner@gmail.com (#15232)

Solution: Remove the unused association.

Problem: Your code uses a number that has a certain meaning
to it.

Solution: Replace this number with a constant that has a
human-readable name explaining the meaning of the number.

Problem: You have a public field.

Solution: Make the field private and create access methods
for it.

Problem: A class contains a collection field and a simple getter
and setter for working with the collection.

Solution: Make the getter-returned value read-only and create
methods for adding/deleting elements of the collection.

Problem: A class has a field that contains type code. The val-
ues of this type aren’t used in operator conditions and don’t
affect the behavior of the program.

Solution: Create a new class and use its objects instead of the
type code values.

§ Replace Magic Number with Symbolic Constant

§ Encapsulate Field

§ Encapsulate Collection

§ Replace Type Code with Class

151 Refactoring Techniques / Organizing Data #15232

lukas.haigner@gmail.com (#15232)

Problem: You have a coded type that directly affects pro-
gram behavior (values of this field trigger various code in
conditionals).

Solution: Create subclasses for each value of the coded type.
Then extract the relevant behaviors from the original class
to these subclasses. Replace the control flow code with
polymorphism.

Problem: You have a coded type that affects behavior but you
can’t use subclasses to get rid of it.

Solution: Replace type code with a state object. If it’s nec-
essary to replace a field value with type code, another state
object is “plugged in”.

Problem: You have subclasses differing only in their (constant-
returning) methods.

Solution: Replace the methods with fields in the parent class
and delete the subclasses.

§ Replace Type Code with Subclasses

§ Replace Type Code with State/Strategy

§ Replace Subclass with Fields

152 Refactoring Techniques / Organizing Data #15232

lukas.haigner@gmail.com (#15232)

B Self Encapsulate
Field

Self-encapsulation is distinct from ordinary Encapsulate
Field: the refactoring technique given here is performed
on a private field.

Problem

You use direct access to private fields inside a class.

Solution

Create a getter and setter for the field, and use only them for
accessing the field.

class Range {1

private int low, high;2

boolean includes(int arg) {3

return arg >= low && arg <= high;4

}5

}6

153 Refactoring Techniques / Self Encapsulate Field #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Sometimes directly accessing a private field inside a class just
isn’t flexible enough. You want to be able to initiate a field
value when the first query is made or perform certain oper-
ations on new values of the field when they’re assigned, or
maybe do all this in various ways in subclasses.

Benefits

• Indirect access to fields is when a field is acted on via access
methods (getters and setters). This approach is much more
flexible than direct access to fields.

◦ First, you can perform complex operations when data in the
field is set or received. Lazy initialization and validation of

class Range {1

private int low, high;2

boolean includes(int arg) {3

return arg >= getLow() && arg <= getHigh();4

}5

int getLow() {6

return low;7

}8

int getHigh() {9

return high;10

}11

}12

154 Refactoring Techniques / Self Encapsulate Field #15232

lukas.haigner@gmail.com (#15232)

field values are easily implemented inside field getters and
setters.

◦ Second and more crucially, you can redefine getters and set-
ters in subclasses.

• You have the option of not implementing a setter for a field
at all. The field value will be specified only in the construc-
tor, thus making the field unchangeable throughout the entire
object lifespan.

Drawbacks

When direct access to fields is used, code looks simpler and
more presentable, although flexibility is diminished.

How to Refactor

1. Create a getter (and optional setter) for the field. They should
be either protected or public .

2. Find all direct invocations of the field and replace them with
getter and setter calls.

Similar refactorings

Hide public fields, provide getters and setters.

§ Encapsulate Field

155 Refactoring Techniques / Self Encapsulate Field #15232

lukas.haigner@gmail.com (#15232)

Helps other refactorings

§ Duplicate Observed Data

§ Replace Type Code with Subclasses

§ Replace Type Code with State/Strategy

156 Refactoring Techniques / Self Encapsulate Field #15232

lukas.haigner@gmail.com (#15232)

B Replace Data Value
with Object
Problem

A class (or group of classes) contains a data field. The field has
its own behavior and associated data.

Solution

Create a new class, place the old field and its behavior in the
class, and store the object of the class in the original class.

157 Refactoring Techniques / Replace Data Value with Object #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

This refactoring is basically a special case of Extract Class.
What makes it different is the cause of the refactoring.

In Extract Class, we have a single class that’s responsible for
different things and we want to split up its responsibilities.

With replacement of a data value with an object, we have a
primitive field (number, string, etc.) that’s no longer so simple
due to growth of the program and now has associated data and
behaviors. On the one hand, there’s nothing scary about these
fields in and of themselves. However, this fields-and-behaviors
family can be present in several classes simultaneously, creat-
ing duplicate code.

Therefore, for all this we create a new class and move both the
field and the related data and behaviors to it.

Benefits

Improves relatedness inside classes. Data and the relevant
behaviors are inside a single class.

How to Refactor

Before you begin with refactoring, see if there are direct refer-
ences to the field from within the class. If so, use Self Encap-
sulate Field in order to hide it in the original class.

158 Refactoring Techniques / Replace Data Value with Object #15232

lukas.haigner@gmail.com (#15232)

1. Create a new class and copy your field and relevant getter to it.
In addition, create a constructor that accepts the simple value
of the field. This class won’t have a setter since each new field
value that’s sent to the original class will create a new value
object.

2. In the original class, change the field type to the new class.

3. In the getter in the original class, invoke the getter of the asso-
ciated object.

4. In the setter, create a new value object. You may need to also
create a new object in the constructor if initial values had been
set there for the field previously.

Next Steps

After applying this refactoring technique, it’s wise to apply
Change Value to Reference on the field that contains the
object. This allows storing a reference to a single object that
corresponds to a value instead of storing dozens of objects for
one and the same value.

Most often this approach is needed when you want to have
one object be responsible for one real-world object (such as
users, orders, documents and so forth). At the same time, this
approach won’t be useful for objects such as dates, money,
ranges, etc.

159 Refactoring Techniques / Replace Data Value with Object #15232

lukas.haigner@gmail.com (#15232)

Similar refactorings

Does the same with method's code.

Eliminates smell

§ Extract Class

§ Introduce Parameter Object

§ Replace Array with Object

§ Replace Method with Method Object

§ Duplicate Code

160 Refactoring Techniques / Replace Data Value with Object #15232

lukas.haigner@gmail.com (#15232)

B Change Value to
Reference
Problem

So you have many identical instances of a single class that you
need to replace with a single object.

Solution

Convert the identical objects to a single reference object.

Why Refactor

In many systems, objects can be classified as either values or
references.

161 Refactoring Techniques / Change Value to Reference #15232

lukas.haigner@gmail.com (#15232)

• References: when one real-world object corresponds to only
one object in the program. References are usually user/order/
product/etc. objects.

• Values: one real-world object corresponds to multiple objects
in the program. These objects could be dates, phone numbers,
addresses, colors, and the like.

The selection of reference vs. value isn’t always clear-cut.
Sometimes there’s a simple value with a small amount of
unchanging data. Then it becomes necessary to add change-
able data and pass these changes every time the object is
accessed. In this case it becomes necessary to convert it to a
reference.

Benefits

An object contains all the most current information about a
particular entity. If the object is changed in one part of the pro-
gram, these changes are accessible from the other parts of the
program that make use of the object.

Drawbacks

References are much harder to implement.

162 Refactoring Techniques / Change Value to Reference #15232

lukas.haigner@gmail.com (#15232)

How to Refactor

1. Use Replace Constructor with Factory Method on the class
from which the references are to be generated.

2. Determine which object will be responsible for providing
access to references. Instead of creating a new object, when
you need one you now need to get it from a storage object or
static dictionary field.

3. Determine whether references will be created in advance or
dynamically as necessary. If objects are created in advance,
make sure to load them before use.

4. Change the factory method so that it returns a reference. If
objects are created in advance, decide how to handle errors
when a non-existent object is requested. You may also need
to use Rename Method to inform that the method returns only
existing objects.

Anti-refactoring

§ Change Reference to Value

163 Refactoring Techniques / Change Value to Reference #15232

lukas.haigner@gmail.com (#15232)

B Change Reference
to Value
Problem

You have a reference object that’s too small and infrequently
changed to justify managing its life cycle.

Solution

Turn it into a value object.

164 Refactoring Techniques / Change Reference to Value #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Inspiration to switch from a reference to a value may come
from the inconvenience of working with the reference. Refer-
ences require management on your part:

• They always require requesting the necessary object from
storage.

• References in memory may be inconvenient to work with.

• Working with references is particularly difficult, compared to
values, on distributed and parallel systems.

Values are especially useful if you would rather have
unchangeable objects than objects whose state may change
during their lifetime.

Benefits

• One important property of objects is that they should be
unchangeable. The same result should be received for each
query that returns an object value. If this is true, no problems
arise if there are many objects representing the same thing.

• Values are much easier to implement.

165 Refactoring Techniques / Change Reference to Value #15232

lukas.haigner@gmail.com (#15232)

Drawbacks

If a value is changeable, make sure if any object changes that
the values in all the other objects representing the same enti-
ty are updated. This is so burdensome that it’s easier to create
a reference for this purpose.

How to Refactor

1. Make the object unchangeable. The object shouldn’t have any
setters or other methods that change its state and data
(Remove Setting Method may help here). The only place where
data should be assigned to the fields of a value object is a
constructor.

2. Create a comparison method to be able to compare two values.

3. Check whether you can delete the factory method and make
the object constructor public.

Anti-refactoring

§ Change Value to Reference

166 Refactoring Techniques / Change Reference to Value #15232

lukas.haigner@gmail.com (#15232)

B Replace Array with
Object

This refactoring technique is a special case of Replace
Data Value with Object.

Problem

You have an array that contains various types of data.

Solution

Replace the array with an object that will have separate fields
for each element.

String[] row = new String[2];1

row[0] = "Liverpool";2

row[1] = "15";3

Performance row = new Performance();1

row.setName("Liverpool");2

row.setWins("15");3

167 Refactoring Techniques / Replace Array with Object #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Arrays are an excellent tool for storing data and collections of
a single type. But if you use an array like post office boxes,
storing the username in box 1 and the user’s address in box 14,
you will someday be very unhappy that you did. This approach
leads to catastrophic failures when somebody puts something
in the wrong “box” and also requires your time for figuring out
which data is stored where.

Benefits

• In the resulting class, you can place all associated behaviors
that had been previously stored in the main class or elsewhere.

• The fields of a class are much easier to document than the ele-
ments of an array.

How to Refactor

1. Create the new class that will contain the data from the array.
Place the array itself in the class as a public field.

2. Create a field for storing the object of this class in the original
class. Don’t forget to also create the object itself in the place
where you initiated the data array.

3. In the new class, create access methods one by one for each
of the array elements. Give them self-explanatory names that

168 Refactoring Techniques / Replace Array with Object #15232

lukas.haigner@gmail.com (#15232)

indicate what they do. At the same time, replace each use of an
array element in the main code with the corresponding access
method.

4. When access methods have been created for all elements,
make the array private.

5. For each element of the array, create a private field in the class
and then change the access methods so that they use this field
instead of the array.

6. When all data has been moved, delete the array.

Similar refactorings

Eliminates smell

§ Replace Data Value with Object

§ Primitive Obsession

169 Refactoring Techniques / Replace Array with Object #15232

lukas.haigner@gmail.com (#15232)

B Duplicate Observed
Data
Problem

Is domain data stored in classes responsible for the GUI?

Solution

Then it’s a good idea to separate the data into separate classes,
ensuring connection and synchronization between the domain
class and the GUI.

170 Refactoring Techniques / Duplicate Observed Data #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

You want to have multiple interface views for the same data
(for example, you have both a desktop app and a mobile app).
If you fail to separate the GUI from the domain, you will have
a very hard time avoiding code duplication and a large number
of mistakes.

171 Refactoring Techniques / Duplicate Observed Data #15232

lukas.haigner@gmail.com (#15232)

Benefits

• You split responsibility between business logic classes and
presentation classes (cf. the Single Responsibility Principle),
which makes your program more readable and understand-
able.

• If you need to add a new interface view, create new presenta-
tion classes; you don’t need to touch the code of the business
logic (cf. the Open/Closed Principle).

• Now different people can work on the business logic and the
user interfaces.

When Not to Use

• This refactoring technique, which in its classic form is per-
formed using the Observer template, isn’t applicable for web
apps, where all classes are recreated between queries to the
web server.

• All the same, the general principle of extracting business logic
into separate classes can be justified for web apps as well.
But this will be implemented using different refactoring tech-
niques depending on how your system is designed.

172 Refactoring Techniques / Duplicate Observed Data #15232

lukas.haigner@gmail.com (#15232)

https://refactoring.guru/design-patterns/observer

How to Refactor

1. Hide direct access to domain data in the GUI class. For this, it’s
best to use Self Encapsulate Field. So you create the getters
and setters for this data.

2. In handlers for GUI class events, use setters to set new field
values. This will let you pass these values to the associated
domain object.

3. Create a domain class and copy necessary fields from the GUI
class to it. Create getters and seters for all these fields.

4. Create an Observer pattern for these two classes:

◦ In the domain class, create an array for storing observer
objects (GUI objects), as well as methods for registering,
deleting and notifying them.

◦ In the GUI class, create a field for storing references to the
domain class as well as the update() method, which will
be reacting to changes in the object and update the values
of fields in the GUI class. Note that value updates should
be established directly in the method, in order to avoid
recursion.

◦ In the GUI class constructor, create an instance of domain
class and save it in the field you have created. Register the
GUI object as an observer in the domain object.

173 Refactoring Techniques / Duplicate Observed Data #15232

lukas.haigner@gmail.com (#15232)

◦ In the setters for domain class fields, call the method for
notifying the observer (in other words, method for updating
in the GUI class), in order to pass the new values to the GUI.

◦ Change the setters of the GUI class fields so that they set
new values in the domain object directly. Watch out to make
sure that values aren’t set through a domain class setter –
otherwise infinite recursion will result.

Implements design pattern

Eliminates smell

§ Observer

§ Large Class

174 Refactoring Techniques / Duplicate Observed Data #15232

lukas.haigner@gmail.com (#15232)

https://refactoring.guru/design-patterns/observer

B Change
Unidirectional
Association to
Bidirectional
Problem

You have two classes that each need to use the features of the
other, but the association between them is only unidirectional.

Solution

Add the missing association to the class that needs it.

175 Refactoring Techniques / Change Unidirectional Association to Bidirectional#15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Originally the classes had a unidirectional association. But
with time, client code needed access to both sides of the
association.

Benefits

If a class needs a reverse association, you can simply calculate
it. But if these calculations are complex, it’s better to keep the
reverse association.

Drawbacks

• Bidirectional associations are much harder to implement and
maintain than unidirectional ones.

• Bidirectional associations make classes interdependent. With a
unidirectional association, one of them can be used indepen-
dently of the other.

How to Refactor

1. Add a field for holding the reverse association.

2. Decide which class will be “dominant”. This class will contain
the methods that create or update the association as elements
are added or changed, establishing the association in its class

176 Refactoring Techniques / Change Unidirectional Association to Bidirectional#15232

lukas.haigner@gmail.com (#15232)

and calling the utility methods for establishing the association
in the associated object.

3. Create a utility method for establishing the association in the
“non-dominant” class. The method should use what it’s given
in parameters to complete the field. Give the method an obvi-
ous name so that it isn’t used later for any other purposes.

4. If old methods for controlling the unidirectional association
were in the “dominant” class, complement them with calls to
utility methods from the associated object.

5. If the old methods for controlling the association were in the
“non-dominant” class, create the methods in the “dominant”
class, call them, and delegate execution to them.

Anti-refactoring

§ Change Bidirectional Association to Unidirectional

177 Refactoring Techniques / Change Unidirectional Association to Bidirectional#15232

lukas.haigner@gmail.com (#15232)

B Change Bidirectional
Association to
Unidirectional
Problem

You have a bidirectional association between classes, but one
of the classes doesn’t use the other’s features.

Solution

Remove the unused association.

178 Refactoring Techniques / Change Bidirectional Association to Unidirectional#15232

lukas.haigner@gmail.com (#15232)

Why Refactor

A bidirectional association is generally harder to maintain than
a unidirectional one, requiring additional code for properly
creating and deleting the relevant objects. This makes the pro-
gram more complicated.

In addition, an improperly implemented bidirectional associa-
tion can cause problems for garbage collection (in turn leading
to memory bloat by unused objects).

Example: the garbage collector removes objects from mem-
ory that are no longer referenced by other objects. Let’s say
that an object pair User - Order was created, used, and then
abandoned. But these objects won’t be cleared from memory
since they still refer to each other. That said, this problem is
becoming less important thanks to advances in programming
languages, which now automatically identify unused object
references and remove them from memory.

There’s also the problem of interdependency between class-
es. In a bidirectional association, the two classes must know
about each other, meaning that they can’t be used separate-
ly. If many of these associations are present, different parts
of the program become too dependent on each other and any
changes in one component may affect the other components.

179 Refactoring Techniques / Change Bidirectional Association to Unidirectional#15232

lukas.haigner@gmail.com (#15232)

Benefits

• Simplifies the class that doesn’t need the relationship. Less
code equals less code maintenance.

• Reduces dependency between classes. Independent classes
are easier to maintain since any changes to a class affect only
that class.

How to Refactor

1. Make sure that one of the following is true for your classes:

◦ No association is used.

◦ There’s another way to get the associated object, such
through a database query.

◦ The associated object can be passed as an argument to the
methods that use it.

2. Depending on your situation, use of a field that contains an
association with another object should be replaced by a para-
meter or method call for getting the object in a different way.

3. Delete the code that assigns the associated object to the field.

4. Delete the now-unused field.

180 Refactoring Techniques / Change Bidirectional Association to Unidirectional#15232

lukas.haigner@gmail.com (#15232)

Anti-refactoring

Eliminates smell

§ Change Unidirectional Association to Bidirectional

§ Inappropriate Intimacy

181 Refactoring Techniques / Change Bidirectional Association to Unidirectional#15232

lukas.haigner@gmail.com (#15232)

B Replace Magic
Number with
Symbolic Constant
Problem

Your code uses a number that has a certain meaning to it.

Solution

Replace this number with a constant that has a human-
readable name explaining the meaning of the number.

double potentialEnergy(double mass, double height) {1

return mass * height * 9.81;2

}3

static final double GRAVITATIONAL_CONSTANT = 9.81;1

2

double potentialEnergy(double mass, double height) {3

return mass * height * GRAVITATIONAL_CONSTANT;4

}5

182 Refactoring Techniques / Replace Magic Number with Symbolic Constant #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

A magic number is a numeric value that’s encountered in the
source but has no obvious meaning. This “anti-pattern” makes
it harder to understand the program and refactor the code.

Yet more difficulties arise when you need to change this magic
number. Find and replace won’t work for this: the same number
may be used for different purposes in different places, mean-
ing that you will have to verify every line of code that uses this
number.

Benefits

• The symbolic constant can serve as live documentation of the
meaning of its value.

• It’s much easier to change the value of a constant than to
search for this number throughout the entire codebase, with-
out the risk of accidentally changing the same number used
elsewhere for a different purpose.

• Reduce duplicate use of a number or string in the code. This is
especially important when the value is complicated and long
(such as 3.14159 or 0xCAFEBABE).

183 Refactoring Techniques / Replace Magic Number with Symbolic Constant #15232

lukas.haigner@gmail.com (#15232)

Good to Know

Not all numbers are magical.

If the purpose of a number is obvious, there’s no need to
replace it. A classic example is:

Alternatives

1. Sometimes a magic number can be replaced with method
calls. For example, if you have a magic number that signifies
the number of elements in a collection, you don’t need to use
it for checking the last element of the collection. Instead, use
the standard method for getting the collection length.

2. Magic numbers are sometimes used as type code. Say that you
have two types of users and you use a number field in a class
to specify which is which: administrators are 1 and ordinary
users are 2 .

In this case, you should use one of the refactoring methods to
avoid type code:

◦ Replace Type Code with Class

◦ Replace Type Code with Subclasses

for (i = 0; i < сount; i++) { ... }1

184 Refactoring Techniques / Replace Magic Number with Symbolic Constant #15232

lukas.haigner@gmail.com (#15232)

◦ Replace Type Code with State/Strategy

How to Refactor

1. Declare a constant and assign the value of the magic number
to it.

2. Find all mentions of the magic number.

3. For each of the numbers that you find, double-check that the
magic number in this particular case corresponds to the pur-
pose of the constant. If yes, replace the number with your con-
stant. This is an important step, since the same number can
mean absolutely different things (and replaced with different
constants, as the case may be).

185 Refactoring Techniques / Replace Magic Number with Symbolic Constant #15232

lukas.haigner@gmail.com (#15232)

B Encapsulate Field
Problem

You have a public field.

Solution

Make the field private and create access methods for it.

class Person {1

public String name;2

}3

class Person {1

private String name;2

3

public String getName() {4

return name;5

}6

public void setName(String arg) {7

name = arg;8

}9

}10

186 Refactoring Techniques / Encapsulate Field #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

One of the pillars of object-oriented programming is Encapsu-
lation, the ability to conceal object data. Otherwise, all objects
would be public and other objects could get and modify the
data of your object without any checks and balances! Data is
separated from the behaviors associated with this data, mod-
ularity of program sections is compromised, and maintenance
becomes complicated.

Benefits

• If the data and behavior of a component are closely interrelat-
ed and are in the same place in the code, it’s much easier for
you to maintain and develop this component.

• You can also perform complicated operations related to access
to object fields.

When Not to Use

In some cases, encapsulation is ill-advised due to performance
considerations. These cases are rare but when they happen,
this circumstance is very important.

Say that you have a graphical editor that contains objects
possessing x- and y-coordinates. These fields are unlikely to
change in the future. What’s more, the program involves a
great many different objects in which these fields are present.

187 Refactoring Techniques / Encapsulate Field #15232

lukas.haigner@gmail.com (#15232)

So accessing the coordinate fields directly saves significant
CPU cycles that would otherwise be taken up by calling access
methods.

As an example of this unusual case, there’s the Point class in
Java. All fields of this class are public.

How to Refactor

1. Create a getter and setter for the field.

2. Find all invocations of the field. Replace receipt of the field
value with the getter, and replace setting of new field values
with the setter.

3. After all field invocations have been replaced, make the field
private.

Next Steps

Encapsulate Field is only the first step in bringing data and the
behaviors involving this data closer together. After you cre-
ate simple methods for access fields, you should recheck the
places where these methods are called. It’s quite possible that
the code in these areas would look more appropriate in the
access methods.

188 Refactoring Techniques / Encapsulate Field #15232

lukas.haigner@gmail.com (#15232)

http://docs.oracle.com/javase/7/docs/api/java/awt/Point.html

Similar refactorings

Create getters and setters for a field instead of direct access
within the class' methods.

Eliminates smell

§ Self Encapsulate Field

§ Data Class

189 Refactoring Techniques / Encapsulate Field #15232

lukas.haigner@gmail.com (#15232)

B Encapsulate
Collection
Problem

A class contains a collection field and a simple getter and
setter for working with the collection.

Solution

Make the getter-returned value read-only and create methods
for adding/deleting elements of the collection.

190 Refactoring Techniques / Encapsulate Collection #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

A class contains a field that contains a collection of objects.
This collection could be an array, list, set or vector. A nor-
mal getter and setter have been created for working with the
collection.

But the collections should be used by a protocol that’s a bit
different from the one used by other data types. The get-
ter method shouldn’t return the collection object itself, since
this would let clients change collection contents without the
knowledge of the owner class. In addition, this would show too
much of the internal structures of the object data to clients.
The method for getting collection elements should return a
value that doesn’t allow changing the collection or disclose
excessive data about its structure.

In addition, there shouldn’t be a method that assigns a value
to the collection. Instead, there should be operations for
adding and deleting elements. Thanks to this, the owner

191 Refactoring Techniques / Encapsulate Collection #15232

lukas.haigner@gmail.com (#15232)

object gains control over addition and deletion of collection
elements.

Such a protocol properly encapsulates a collection, which ulti-
mately reduces the degree of association between the owner
class and the client code.

Benefits

• The collection field is encapsulated inside a class. When the
getter is called, it returns a copy of the collection, which pre-
vents accidental changing or overwriting of the collection ele-
ments without the knowledge of the class that contains the
collection.

• If collection elements are contained inside a primitive type,
such as an array, you create more convenient methods for
working with the collection.

• If collection elements are contained inside a non-primitive
container (standard collection class), by encapsulating the col-
lection you can restrict access to unwanted standard meth-
ods of the collection (such as by restricting addition of new
elements).

How to Refactor

1. Create methods for adding and deleting collection elements.
They must accept collection elements in their parameters.

192 Refactoring Techniques / Encapsulate Collection #15232

lukas.haigner@gmail.com (#15232)

2. Assign an empty collection to the field as the initial value if
this isn’t done in the class constructor.

3. Find the calls of the collection field setter. Change the setter
so that it uses operations for adding and deleting elements, or
make these operations call client code.

Note that setters can be used only to replace all collection
elements with other ones. Therefore it may be advisable to
change the setter name (Rename Method) to replace .

4. Find all calls of the collection getter after which the collection
is changed. Change the code so that it uses your new methods
for adding and deleting elements from the collection.

5. Change the getter so that it returns a read-only representation
of the collection.

6. Inspect the client code that uses the collection for code that
would look better inside of the collection class itself.

Eliminates smell

§ Data Class

193 Refactoring Techniques / Encapsulate Collection #15232

lukas.haigner@gmail.com (#15232)

B Replace Type Code
with Class

What’s type code? Type code occurs when, instead of a
separate data type, you have a set of numbers or strings
that form a list of allowable values for some entity.
Often these specific numbers and strings are given
understandable names via constants, which is the reason
for why such type code is encountered so much.

Problem

A class has a field that contains type code. The values of this
type aren’t used in operator conditions and don’t affect the
behavior of the program.

194 Refactoring Techniques / Replace Type Code with Class #15232

lukas.haigner@gmail.com (#15232)

Solution

Create a new class and use its objects instead of the type code
values.

Why Refactor

One of the most common reasons for type code is working with
databases, when a database has fields in which some complex
concept is coded with a number or string.

For example, you have the class User with the field
user_role , which contains information about the access priv-

195 Refactoring Techniques / Replace Type Code with Class #15232

lukas.haigner@gmail.com (#15232)

ileges of each user, whether administrator, editor, or ordinary
user. So in this case, this information is coded in the field as
A , E , and U respectively.

What are the shortcomings of this approach? The field setters
often don’t check which value is sent, which can cause big
problems when someone sends unintended or wrong values to
these fields.

In addition, type verification is impossible for these fields. It’s
possible to send any number or string to them, which won’t be
type checked by your IDE and even allow your program to run
(and crash later).

Benefits

• We want to turn sets of primitive values – which is what coded
types are – into full-fledged classes with all the benefits that
object-oriented programming has to offer.

• By replacing type code with classes, we allow type hinting for
values passed to methods and fields at the level of the pro-
gramming language.

For example, while the compiler previously didn’t see differ-
ence between your numeric constant and some arbitrary num-
ber when a value is passed to a method, now when data that
doesn’t fit the indicated type class is passed, you’re warned of
the error inside your IDE.

196 Refactoring Techniques / Replace Type Code with Class #15232

lukas.haigner@gmail.com (#15232)

• Thus we make it possible to move code to the classes of the
type. If you needed to perform complex manipulations with
type values throughout the whole program, now this code can
“live” inside one or multiple type classes.

When Not to Use

If the values of a coded type are used inside control flow
structures (if , switch , etc.) and control a class behavior,
you should use one of the two refactoring techniques for
type code:

• Replace Type Code with Subclasses

• Replace Type Code with State/Strategy

How to Refactor

1. Create a new class and give it a new name that corresponds to
the purpose of the coded type. Here we’ll call it type class.

2. Copy the field containing type code to the type class and make
it private. Then create a getter for the field. A value will be set
for this field only from the constructor.

3. For each value of the coded type, create a static method in type
class. It’ll be creating a new type class object corresponding to
this value of the coded type.

197 Refactoring Techniques / Replace Type Code with Class #15232

lukas.haigner@gmail.com (#15232)

4. In the original class, replace the type of the coded field with
type class. Create a new object of this type in the constructor
as well as in the field setter. Change the field getter so that it
calls the type class getter.

5. Replace any mentions of values of the coded type with calls of
the relevant type class static methods.

6. Remove the coded type constants from the original class.

Similar refactorings

Eliminates smell

§ Replace Type Code with Subclasses

§ Replace Type Code with State/Strategy

§ Primitive Obsession

198 Refactoring Techniques / Replace Type Code with Class #15232

lukas.haigner@gmail.com (#15232)

B Replace Type Code
with Subclasses

What’s type code? Type code occurs when, instead of a
separate data type, you have a set of numbers or strings
that form a list of allowable values for some entity.
Often these specific numbers and strings are given
understandable names via constants, which is the reason
for why such type code is encountered so much.

Problem

You have a coded type that directly affects program behavior
(values of this field trigger various code in conditionals).

199 Refactoring Techniques / Replace Type Code with Subclasses #15232

lukas.haigner@gmail.com (#15232)

Solution

Create subclasses for each value of the coded type. Then
extract the relevant behaviors from the original class to these
subclasses. Replace the control flow code with polymorphism.

Why Refactor

This refactoring technique is a more complicated twist on
Replace Type Code with Class.

As in the first refactoring method, you have a set of simple val-
ues that constitute all the allowed values for a field. Although
these values are often specified as constants and have under-
standable names, their use makes your code very error-prone
since they’re still primitives in effect. For example, you have
a method that accepts one of these values in the parameters.
At a certain moment, instead of the constant USER_TYPE_ADMIN

with the value "ADMIN" , the method receives the same string

200 Refactoring Techniques / Replace Type Code with Subclasses #15232

lukas.haigner@gmail.com (#15232)

in lower case ("admin"), which will cause execution of some-
thing else that the author (you) didn’t intend.

Here we’re dealing with control flow code such as the condi-
tionals if , switch and ?: . In other words, fields with coded
values (such as $user->type === self::USER_TYPE_ADMIN) are
used inside the conditions of these operators. If we were to
use Replace Type Code with Class here, all these control flow
constructions would be best moved to a class responsible for
the data type. Ultimately, this would of course create a type
class very similar to the original one, with the same problems
as well.

Benefits

• Delete the control flow code. Instead of a bulky switch in the
original class, move the code to appropriate subclasses. This
improves adherence to the Single Responsibility Principle and
makes the program more readable in general.

• If you need to add a new value for a coded type, all you need
to do is add a new subclass without touching the existing code
(cf. the Open/Closed Principle).

• By replacing type code with classes, we pave the way for type
hinting for methods and fields at the level of the programming
language. This wouldn’t be possible using simple numeric or
string values contained in a coded type.

201 Refactoring Techniques / Replace Type Code with Subclasses #15232

lukas.haigner@gmail.com (#15232)

When Not to Use

• This technique isn’t applicable if you already have a class
hierarchy. You can’t create a dual hierarchy via inheritance in
object-oriented programming. Still, you can replace type code
via composition instead of inheritance. To do so, use Replace
Type Code with State/Strategy.

• If the values of type code can change after an object is created,
avoid this technique. We would have to somehow replace the
class of the object itself on the fly, which isn’t possible. Still, an
alternative in this case too would be Replace Type Code with
State/Strategy.

How to Refactor

1. Use Self Encapsulate Field to create a getter for the field that
contains type code.

2. Make the superclass constructor private. Create a static factory
method with the same parameters as the superclass construc-
tor. It must contain the parameter that will take the starting
values of the coded type. Depending on this parameter, the
factory method will create objects of various subclasses. To do
so, in its code you must create a large conditional but, at least,
it’ll be the only one when it’s truly necessary; otherwise, sub-
classes and polymorphism will do.

202 Refactoring Techniques / Replace Type Code with Subclasses #15232

lukas.haigner@gmail.com (#15232)

3. Create a unique subclass for each value of the coded type. In
it, redefine the getter of the coded type so that it returns the
corresponding value of the coded type.

4. Delete the field with type code from the superclass. Make its
getter abstract.

5. Now that you have subclasses, you can start to move the fields
and methods from the superclass to corresponding subclasses
(with the help of Push Down Field and Push Down Method).

6. When everything possible has been moved, use Replace Condi-
tional with Polymorphism in order to get rid of conditions that
use the type code once and for all.

Anti-refactoring

Similar refactorings

Eliminates smell

§ Replace Subclass with Fields

§ Replace Type Code with Class

§ Replace Type Code with State/Strategy

§ Primitive Obsession

203 Refactoring Techniques / Replace Type Code with Subclasses #15232

lukas.haigner@gmail.com (#15232)

B Replace Type Code
with State/Strategy

What’s type code? Type code occurs when, instead of a
separate data type, you have a set of numbers or strings
that form a list of allowable values for some entity.
Often these specific numbers and strings are given
understandable names via constants, which is the reason
for why such type code is encountered so much.

Problem

You have a coded type that affects behavior but you can’t use
subclasses to get rid of it.

204 Refactoring Techniques / Replace Type Code with State/Strategy #15232

lukas.haigner@gmail.com (#15232)

Solution

Replace type code with a state object. If it’s necessary to
replace a field value with type code, another state object is
“plugged in”.

Why Refactor

You have type code and it affects the behavior of a class, there-
fore we can’t use Replace Type Code with Class.

Type code affects the behavior of a class but we can’t create
subclasses for the coded type due to the existing class hierar-
chy or other reasons. Thus means that we can’t apply Replace
Type Code with Subclasses.

Benefits

• This refactoring technique is a way out of situations when a
field with a coded type changes its value during the object’s

205 Refactoring Techniques / Replace Type Code with State/Strategy #15232

lukas.haigner@gmail.com (#15232)

lifetime. In this case, replacement of the value is made via
replacement of the state object to which the original class
refers.

• If you need to add a new value of a coded type, all you need to
do is to add a new state subclass without altering the existing
code (cf. the Open/Closed Principle).

Drawbacks

If you have a simple case of type code but you use this refac-
toring technique anyway, you will have many extra (and
unneeded) classes.

Good to Know

Implementation of this refactoring technique can make use of
one of two design patterns: State or Strategy. Implementation
is the same no matter which pattern you choose. So which pat-
tern should you pick in a particular situation?

If you’re trying to split a conditional that controls the selection
of algorithms, use Strategy.

But if each value of the coded type is responsible not only for
selecting an algorithm but for the whole condition of the class,
class state, field values, and many other actions, State is better
for the job.

206 Refactoring Techniques / Replace Type Code with State/Strategy #15232

lukas.haigner@gmail.com (#15232)

How to Refactor

1. Use Self Encapsulate Field to create a getter for the field that
contains type code.

2. Create a new class and give it an understandable name that
fits the purpose of the type code. This class will be playing the
role of state (or strategy). In it, create an abstract coded field
getter.

3. Create subclasses of the state class for each value of the coded
type. In each subclass, redefine the getter of the coded field so
that it returns the corresponding value of the coded type.

4. In the abstract state class, create a static factory method that
accepts the value of the coded type as a parameter. Depend-
ing on this parameter, the factory method will create objects
of various states. For this, in its code create a large condition-
al; it’ll be the only one when refactoring is complete.

5. In the original class, change the type of the coded field to the
state class. In the field’s setter, call the factory state method
for getting new state objects.

6. Now you can start to move the fields and methods from the
superclass to the corresponding state subclasses (using Push
Down Field and Push Down Method).

207 Refactoring Techniques / Replace Type Code with State/Strategy #15232

lukas.haigner@gmail.com (#15232)

7. When everything moveable has been moved, use Replace Con-
ditional with Polymorphism in order to get rid of conditionals
that use type code once and for all.

Similar refactorings

Implements design pattern

Eliminates smell

§ Replace Type Code with Class

§ Replace Type Code with Subclasses

§ State

§ Strategy

§ Primitive Obsession

208 Refactoring Techniques / Replace Type Code with State/Strategy #15232

lukas.haigner@gmail.com (#15232)

https://refactoring.guru/design-patterns/state
https://refactoring.guru/design-patterns/strategy

B Replace Subclass
with Fields
Problem

You have subclasses differing only in their (constant-returning)
methods.

209 Refactoring Techniques / Replace Subclass with Fields #15232

lukas.haigner@gmail.com (#15232)

Solution

Replace the methods with fields in the parent class and delete
the subclasses.

Why Refactor

Sometimes refactoring is just the ticket for avoiding type code.

In one such case, a hierarchy of subclasses may be differ-
ent only in the values returned by particular methods. These
methods aren’t even the result of computation, but are strictly
set out in the methods themselves or in the fields returned by
the methods. To simplify the class architecture, this hierarchy
can be compressed into a single class containing one or sever-
al fields with the necessary values, based on the situation.

These changes may become necessary after moving a large
amount of functionality from a class hierarchy to another
place. The current hierarchy is no longer so valuable and its
subclasses are now just dead weight.

210 Refactoring Techniques / Replace Subclass with Fields #15232

lukas.haigner@gmail.com (#15232)

Benefits

Simplifies system architecture. Creating subclasses is overkill
if all you want to do is to return different values in different
methods.

How to Refactor

1. Apply Replace Constructor with Factory Method to the
subclasses.

2. Replace subclass constructor calls with superclass factory
method calls.

3. In the superclass, declare fields for storing the values of each
of the subclass methods that return constant values.

4. Create a protected superclass constructor for initializing the
new fields.

5. Create or modify the existing subclass constructors so that
they call the new constructor of the parent class and pass the
relevant values to it.

6. Implement each constant method in the parent class so that it
returns the value of the corresponding field. Then remove the
method from the subclass.

211 Refactoring Techniques / Replace Subclass with Fields #15232

lukas.haigner@gmail.com (#15232)

7. If the subclass constructor has additional functionality, use
Inline Method to incorporate the constructor into the super-
class factory method.

8. Delete the subclass.

Anti-refactoring

§ Replace Type Code with Subclasses

212 Refactoring Techniques / Replace Subclass with Fields #15232

lukas.haigner@gmail.com (#15232)

Simplifying Conditional
Expressions
Conditionals tend to get more and more complicated in their
logic over time, and there are yet more techniques to combat
this as well.

Problem: You have a complex conditional (if-then / else or
switch).

Solution: Decompose the complicated parts of the conditional
into separate methods: the condition, then and else .

Problem: You have multiple conditionals that lead to the same
result or action.

Solution: Consolidate all these conditionals in a single
expression.

Problem: Identical code can be found in all branches of a
conditional.

Solution: Move the code outside of the conditional.

§ Decompose Conditional

§ Consolidate Conditional Expression

§ Consolidate Duplicate Conditional Fragments

213 Refactoring Techniques / Simplifying Conditional Expressions #15232

lukas.haigner@gmail.com (#15232)

Problem: You have a boolean variable that acts as a control
flag for multiple boolean expressions.

Solution: Instead of the variable, use break , continue and
return .

Problem: You have a group of nested conditionals and it’s hard
to determine the normal flow of code execution.

Solution: Isolate all special checks and edge cases into sep-
arate clauses and place them before the main checks. Ide-
ally, you should have a “flat” list of conditionals, one after
the other.

Problem: You have a conditional that performs various actions
depending on object type or properties.

Solution: Create subclasses matching the branches of the con-
ditional. In them, create a shared method and move code from
the corresponding branch of the conditional to it. Then replace
the conditional with the relevant method call. The result is
that the proper implementation will be attained via polymor-
phism depending on the object class.

Problem: Since some methods return null instead of real
objects, you have many checks for null in your code.

§ Remove Control Flag

§ Replace Nested Conditional with Guard Clauses

§ Replace Conditional with Polymorphism

§ Introduce Null Object

214 Refactoring Techniques / Simplifying Conditional Expressions #15232

lukas.haigner@gmail.com (#15232)

Solution: Instead of null , return a null object that exhibits
the default behavior.

Problem: For a portion of code to work correctly, certain con-
ditions or values must be true.

Solution: Replace these assumptions with specific assertion
checks.

§ Introduce Assertion

215 Refactoring Techniques / Simplifying Conditional Expressions #15232

lukas.haigner@gmail.com (#15232)

B Decompose
Conditional
Problem

You have a complex conditional (if-then / else or switch).

Solution

Decompose the complicated parts of the conditional into
separate methods: the condition, then and else .

if (date.before(SUMMER_START) || date.after(SUMMER_END)) {1

charge = quantity * winterRate + winterServiceCharge;2

}3

else {4

charge = quantity * summerRate;5

}6

if (isSummer(date)) {1

charge = summerCharge(quantity);2

}3

else {4

charge = winterCharge(quantity);5

216 Refactoring Techniques / Decompose Conditional #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

The longer a piece of code is, the harder it’s to understand.
Things become even more hard to understand when the code
is filled with conditions:

• While you’re busy figuring out what the code in the then

block does, you forget what the relevant condition was.

• While you’re busy parsing else , you forget what the code in
then does.

Benefits

• By extracting conditional code to clearly named methods, you
make life easier for the person who’ll be maintaining the code
later (such as you, two months from now!).

• This refactoring technique is also applicable for short expres-
sions in conditions. The string isSalaryDay() is much prettier
and more descriptive than code for comparing dates.

How to Refactor

1. Extract the conditional to a separate method via Extract
Method.

}6

217 Refactoring Techniques / Decompose Conditional #15232

lukas.haigner@gmail.com (#15232)

2. Repeat the process for the then and else blocks.

Eliminates smell

§ Long Method

218 Refactoring Techniques / Decompose Conditional #15232

lukas.haigner@gmail.com (#15232)

B Consolidate
Conditional
Expression
Problem

You have multiple conditionals that lead to the same result or
action.

double disabilityAmount() {1

if (seniority < 2) {2

return 0;3

}4

if (monthsDisabled > 12) {5

return 0;6

}7

if (isPartTime) {8

return 0;9

}10

// Compute the disability amount.11

// ...12

}13

219 Refactoring Techniques / Consolidate Conditional Expression #15232

lukas.haigner@gmail.com (#15232)

Solution

Consolidate all these conditionals in a single expression.

Why Refactor

Your code contains many alternating operators that perform
identical actions. It isn’t clear why the operators are split up.

The main purpose of consolidation is to extract the conditional
to a separate method for greater clarity.

Benefits

• Eliminates duplicate control flow code. Combining multiple
conditionals that have the same “destination” helps to show
that you’re doing only one complicated check leading to one
action.

double disabilityAmount() {1

if (isNotEligableForDisability()) {2

return 0;3

}4

// Compute the disability amount.5

// ...6

}7

220 Refactoring Techniques / Consolidate Conditional Expression #15232

lukas.haigner@gmail.com (#15232)

• By consolidating all operators, you can now isolate this com-
plex expression in a new method with a name that explains
the conditional’s purpose.

How to Refactor

Before refactoring, make sure that the conditionals don’t have
any “side effects” or otherwise modify something, instead of
simply returning values. Side effects may be hiding in the code
executed inside the operator itself, such as when something is
added to a variable based on the results of a conditional.

1. Consolidate the conditionals in a single expression by using
and and or . As a general rule when consolidating:

◦ Nested conditionals are joined using and .

◦ Consecutive conditionals are joined with or .

2. Perform Extract Method on the operator conditions and give
the method a name that reflects the expression’s purpose.

Eliminates smell

§ Duplicate Code

221 Refactoring Techniques / Consolidate Conditional Expression #15232

lukas.haigner@gmail.com (#15232)

B Consolidate
Duplicate
Conditional
Fragments
Problem

Identical code can be found in all branches of a conditional.

Solution

Move the code outside of the conditional.

if (isSpecialDeal()) {1

total = price * 0.95;2

send();3

}4

else {5

total = price * 0.98;6

send();7

}8

222 Refactoring Techniques / Consolidate Duplicate Conditional Fragments #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Duplicate code is found inside all branches of a conditional,
often as the result of evolution of the code within the condi-
tional branches. Team development can be a contributing fac-
tor to this.

Benefits

Code deduplication.

How to Refactor

1. If the duplicated code is at the beginning of the conditional
branches, move the code to a place before the conditional.

2. If the code is executed at the end of the branches, place it after
the conditional.

3. If the duplicate code is randomly situated inside the branch-
es, first try to move the code to the beginning or end of the

if (isSpecialDeal()) {1

total = price * 0.95;2

}3

else {4

total = price * 0.98;5

}6

send();7

223 Refactoring Techniques / Consolidate Duplicate Conditional Fragments #15232

lukas.haigner@gmail.com (#15232)

branch, depending on whether it changes the result of the sub-
sequent code.

4. If appropriate and the duplicate code is longer than one line,
try using Extract Method.

Eliminates smell

§ Duplicate Code

224 Refactoring Techniques / Consolidate Duplicate Conditional Fragments #15232

lukas.haigner@gmail.com (#15232)

B Remove Control Flag
Problem

You have a boolean variable that acts as a control flag for
multiple boolean expressions.

Solution

Instead of the variable, use break , continue and return .

Why Refactor

Control flags date back to the days of yore, when “proper” pro-
grammers always had one entry point for their functions (the
function declaration line) and one exit point (at the very end
of the function).

In modern programming languages this style tic is obsolete,
since we have special operators for modifying the control flow
in loops and other complex constructions:

• break : stops loop

• continue : stops execution of the current loop branch and
goes to check the loop conditions in the next iteration

225 Refactoring Techniques / Remove Control Flag #15232

lukas.haigner@gmail.com (#15232)

• return : stops execution of the entire function and returns its
result if given in the operator

Benefits

Control flag code is often much more ponderous than code
written with control flow operators.

How to Refactor

1. Find the value assignment to the control flag that causes the
exit from the loop or current iteration.

2. Replace it with break , if this is an exit from a loop; continue ,
if this is an exit from an iteration, or return , if you need to
return this value from the function.

3. Remove the remaining code and checks associated with the
control flag.

226 Refactoring Techniques / Remove Control Flag #15232

lukas.haigner@gmail.com (#15232)

B Replace Nested
Conditional with
Guard Clauses
Problem

You have a group of nested conditionals and it’s hard to
determine the normal flow of code execution.

public double getPayAmount() {1

double result;2

if (isDead){3

result = deadAmount();4

}5

else {6

if (isSeparated){7

result = separatedAmount();8

}9

else {10

if (isRetired){11

result = retiredAmount();12

}13

else{14

result = normalPayAmount();15

}16

227 Refactoring Techniques / Replace Nested Conditional with Guard Clauses #15232

lukas.haigner@gmail.com (#15232)

Solution

Isolate all special checks and edge cases into separate clauses
and place them before the main checks. Ideally, you should
have a “flat” list of conditionals, one after the other.

Why Refactor

Spotting the “conditional from hell” is fairly easy. The inden-
tations of each level of nestedness form an arrow, pointing to
the right in the direction of pain and woe:

}17

}18

return result;19

}20

public double getPayAmount() {1

if (isDead){2

return deadAmount();3

}4

if (isSeparated){5

return separatedAmount();6

}7

if (isRetired){8

return retiredAmount();9

}10

return normalPayAmount();11

}12

228 Refactoring Techniques / Replace Nested Conditional with Guard Clauses #15232

lukas.haigner@gmail.com (#15232)

It’s difficult to figure out what each conditional does and how,
since the “normal” flow of code execution isn’t immediately
obvious. These conditionals indicate helter-skelter evolution,
with each condition added as a stopgap measure without any
thought paid to optimizing the overall structure.

To simplify the situation, isolate the special cases into sepa-
rate conditions that immediately end execution and return a

1

if () {2

if () {3

do {4

if () {5

if () {6

if () {7

...8

}9

}10

...11

}12

...13

}14

while ();15

...16

}17

else {18

...19

}20

}21

229 Refactoring Techniques / Replace Nested Conditional with Guard Clauses #15232

lukas.haigner@gmail.com (#15232)

null value if the guard clauses are true. In effect, your mission
here is to make the structure flat.

How to Refactor

Try to rid the code of side effects – Separate Query from Mod-
ifier may be helpful for the purpose. This solution will be nec-
essary for the reshuffling described below.

1. Isolate all guard clauses that lead to calling an exception or
immediate return of a value from the method. Place these con-
ditions at the beginning of the method.

2. After rearrangement is complete and all tests are successfully
completed, see whether you can use Consolidate Conditional
Expression for guard clauses that lead to the same exceptions
or returned values.

230 Refactoring Techniques / Replace Nested Conditional with Guard Clauses #15232

lukas.haigner@gmail.com (#15232)

B Replace Conditional
with Polymorphism
Problem

You have a conditional that performs various actions
depending on object type or properties.

class Bird {1

// ...2

double getSpeed() {3

switch (type) {4

case EUROPEAN:5

return getBaseSpeed();6

case AFRICAN:7

return getBaseSpeed() - getLoadFactor() * numberOfCoconuts;8

case NORWEGIAN_BLUE:9

return (isNailed) ? 0 : getBaseSpeed(voltage);10

}11

throw new RuntimeException("Should be unreachable");12

}13

}14

231 Refactoring Techniques / Replace Conditional with Polymorphism #15232

lukas.haigner@gmail.com (#15232)

Solution

Create subclasses matching the branches of the conditional.
In them, create a shared method and move code from the
corresponding branch of the conditional to it. Then replace the
conditional with the relevant method call. The result is that
the proper implementation will be attained via polymorphism
depending on the object class.

abstract class Bird {1

// ...2

abstract double getSpeed();3

}4

5

class European extends Bird {6

double getSpeed() {7

return getBaseSpeed();8

}9

}10

class African extends Bird {11

double getSpeed() {12

return getBaseSpeed() - getLoadFactor() * numberOfCoconuts;13

}14

}15

class NorwegianBlue extends Bird {16

double getSpeed() {17

return (isNailed) ? 0 : getBaseSpeed(voltage);18

}19

}20

21

// Somewhere in client code22

232 Refactoring Techniques / Replace Conditional with Polymorphism #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

This refactoring technique can help if your code contains oper-
ators performing various tasks that vary based on:

• Class of the object or interface that it implements

• Value of an object’s field

• Result of calling one of an object’s methods

If a new object property or type appears, you will need to
search for and add code in all similar conditionals. Thus the
benefit of this technique is multiplied if there are multiple con-
ditionals scattered throughout all of an object’s methods.

Benefits

• This technique adheres to the Tell-Don’t-Ask principle: instead
of asking an object about its state and then performing actions
based on this, it’s much easier to simply tell the object what it
needs to do and let it decide for itself how to do that.

• Removes duplicate code. You get rid of many almost identical
conditionals.

speed = bird.getSpeed();23

233 Refactoring Techniques / Replace Conditional with Polymorphism #15232

lukas.haigner@gmail.com (#15232)

• If you need to add a new execution variant, all you need to
do is add a new subclass without touching the existing code
(Open/Closed Principle).

How to Refactor

Preparing to Refactor

For this refactoring technique, you should have a ready hier-
archy of classes that will contain alternative behaviors. If you
don’t have a hierarchy like this, create one. Other techniques
will help to make this happen:

• Replace Type Code with Subclasses. Subclasses will be creat-
ed for all values of a particular object property. This approach
is simple but less flexible since you can’t create subclasses for
the other properties of the object.

• Replace Type Code with State/Strategy. A class will be dedicat-
ed for a particular object property and subclasses will be cre-
ated from it for each value of the property. The current class
will contain references to the objects of this type and delegate
execution to them.

The following steps assume that you have already created the
hierarchy.

234 Refactoring Techniques / Replace Conditional with Polymorphism #15232

lukas.haigner@gmail.com (#15232)

Refactoring Steps

1. If the conditional is in a method that performs other actions as
well, perform Extract Method.

2. For each hierarchy subclass, redefine the method that contains
the conditional and copy the code of the corresponding condi-
tional branch to that location.

3. Delete this branch from the conditional.

4. Repeat replacement until the conditional is empty. Then delete
the conditional and declare the method abstract.

Eliminates smell

§ Switch Statements

235 Refactoring Techniques / Replace Conditional with Polymorphism #15232

lukas.haigner@gmail.com (#15232)

B Introduce Null
Object
Problem

Since some methods return null instead of real objects, you
have many checks for null in your code.

Solution

Instead of null , return a null object that exhibits the default
behavior.

if (customer == null) {1

plan = BillingPlan.basic();2

}3

else {4

plan = customer.getPlan();5

}6

class NullCustomer extends Customer {1

boolean isNull() {2

return true;3

}4

236 Refactoring Techniques / Introduce Null Object #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Dozens of checks for null make your code longer and uglier.

Drawbacks

The price of getting rid of conditionals is creating yet another
new class.

How to Refactor

1. From the class in question, create a subclass that will perform
the role of null object.

2. In both classes, create the method isNull() , which will
return true for a null object and false for a real class.

Plan getPlan() {5

return new NullPlan();6

}7

// Some other NULL functionality.8

}9

10

// Replace null values with Null-object.11

customer = (order.customer != null) ?12

order.customer : new NullCustomer();13

14

// Use Null-object as if it's normal subclass.15

plan = customer.getPlan();16

237 Refactoring Techniques / Introduce Null Object #15232

lukas.haigner@gmail.com (#15232)

3. Find all places where the code may return null instead of a
real object. Change the code so that it returns a null object.

4. Find all places where the variables of the real class are com-
pared with null . Replace these checks with a call for
isNull() .

5. ◦ If methods of the original class are run in these condition-
als when a value doesn’t equal null , redefine these meth-
ods in the null class and insert the code from the else

part of the condition there. Then you can delete the entire
conditional and differing behavior will be implemented via
polymorphism.

◦ If things aren’t so simple and the methods can’t be rede-
fined, see if you can simply extract the operators that were
supposed to be performed in the case of a null value to
new methods of the null object. Call these methods instead
of the old code in else as the operations by default.

238 Refactoring Techniques / Introduce Null Object #15232

lukas.haigner@gmail.com (#15232)

Similar refactorings

Implements design pattern

Eliminates smell

§ Replace Conditional with Polymorphism

§ Null-object

§ Switch Statements

§ Temporary Field

239 Refactoring Techniques / Introduce Null Object #15232

lukas.haigner@gmail.com (#15232)

B Introduce Assertion
Problem

For a portion of code to work correctly, certain conditions or
values must be true.

Solution

Replace these assumptions with specific assertion checks.

double getExpenseLimit() {1

// Should have either expense limit or2

// a primary project.3

return (expenseLimit != NULL_EXPENSE) ?4

expenseLimit :5

primaryProject.getMemberExpenseLimit();6

}7

double getExpenseLimit() {1

Assert.isTrue(expenseLimit != NULL_EXPENSE || primaryProject != null2

3

return (expenseLimit != NULL_EXPENSE) ?4

expenseLimit:5

primaryProject.getMemberExpenseLimit();6

}7

240 Refactoring Techniques / Introduce Assertion #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Say that a portion of code assumes something about, for
example, the current condition of an object or value of a para-
meter or local variable. Usually this assumption will always
hold true except in the event of an error.

Make these assumptions obvious by adding corresponding
assertions. As with type hinting in method parameters, these
assertions can act as live documentation for your code.

As a guideline to see where your code needs assertions, check
for comments that describe the conditions under which a par-
ticular method will work.

Benefits

If an assumption isn’t true and the code therefore gives the
wrong result, it’s better to stop execution before this causes
fatal consequences and data corruption. This also means that
you neglected to write a necessary test when devising ways to
perform testing of the program.

Drawbacks

• Sometimes an exception is more appropriate than a simple
assertion. You can select the necessary class of the exception
and let the remaining code handle it correctly.

241 Refactoring Techniques / Introduce Assertion #15232

lukas.haigner@gmail.com (#15232)

• When is an exception better than a simple assertion? If the
exception can be caused by actions of the user or system
and you can handle the exception. On the other hand, ordi-
nary unnamed and unhandled exceptions are basically equiva-
lent to simple assertions – you don’t handle them and they’re
caused exclusively as the result of a program bug that never
should have occurred.

How to Refactor

When you see that a condition is assumed, add an assertion for
this condition in order to make sure.

Adding the assertion shouldn’t change the program’s behavior.

Don’t overdo it with use of assertions for everything in your
code. Check for only the conditions that are necessary for cor-
rect functioning of the code. If your code is working normal-
ly even when a particular assertion is false, you can safely
remove the assertion.

Eliminates smell

§ Comments

242 Refactoring Techniques / Introduce Assertion #15232

lukas.haigner@gmail.com (#15232)

Simplifying Method Calls
These techniques make method calls simpler and easier to
understand. This, in turn, simplifies the interfaces for interac-
tion between classes.

Problem: The name of a method doesn’t explain what the
method does.

Solution: Rename the method.

Problem: A method doesn’t have enough data to perform cer-
tain actions.

Solution: Create a new parameter to pass the necessary data.

Problem: A parameter isn’t used in the body of a method.

Solution: Remove the unused parameter.

Problem: Do you have a method that returns a value but also
changes something inside an object?

Solution: Split the method into two separate methods. As you
would expect, one of them should return the value and the
other one modifies the object.

§ Rename Method

§ Add Parameter

§ Remove Parameter

§ Separate Query from Modifier

243 Refactoring Techniques / Simplifying Method Calls #15232

lukas.haigner@gmail.com (#15232)

Problem: Multiple methods perform similar actions that are
different only in their internal values, numbers or operations.

Solution: Combine these methods by using a parameter that
will pass the necessary special value.

Problem: A method is split into parts, each of which is run
depending on the value of a parameter.

Solution: Extract the individual parts of the method into their
own methods and call them instead of the original method.

Problem: You get several values from an object and then pass
them as parameters to a method.

Solution: Instead, try passing the whole object.

Problem: Calling a query method and passing its results as the
parameters of another method, while that method could call
the query directly.

Solution: Instead of passing the value through a parameter, try
placing a query call inside the method body.

Problem: Your methods contain a repeating group of
parameters.

§ Parameterize Method

§ Replace Parameter with Explicit Methods

§ Preserve Whole Object

§ Replace Parameter with Method Call

§ Introduce Parameter Object

244 Refactoring Techniques / Simplifying Method Calls #15232

lukas.haigner@gmail.com (#15232)

Solution: Replace these parameters with an object.

Problem: The value of a field should be set only when it’s cre-
ated, and not change at any time after that.

Solution: So remove methods that set the field’s value.

Problem: A method isn’t used by other classes or is used only
inside its own class hierarchy.

Solution: Make the method private or protected.

Problem: You have a complex constructor that does something
more than just setting parameter values in object fields.

Solution: Create a factory method and use it to replace con-
structor calls.

Problem: A method returns a special value that indicates an
error?

Solution: Throw an exception instead.

Problem: You throw an exception in a place where a simple
test would do the job?

Solution: Replace the exception with a condition test.

§ Remove Setting Method

§ Hide Method

§ Replace Constructor with Factory Method

§ Replace Error Code with Exception

§ Replace Exception with Test

245 Refactoring Techniques / Simplifying Method Calls #15232

lukas.haigner@gmail.com (#15232)

B Rename Method
Problem

The name of a method doesn’t explain what the method does.

Solution

Rename the method.

Why Refactor

Perhaps a method was poorly named from the very beginning
– for example, someone created the method in a rush and
didn’t give proper care to naming it well.

246 Refactoring Techniques / Rename Method #15232

lukas.haigner@gmail.com (#15232)

Or perhaps the method was well named at first but as its
functionality grew, the method name stopped being a good
descriptor.

Benefits

Code readability. Try to give the new method a name that
reflects what it does. Something like createOrder() ,
renderCustomerInfo() , etc.

How to Refactor

1. See whether the method is defined in a superclass or subclass.
If so, you must repeat all steps in these classes too.

2. The next method is important for maintaining the functionali-
ty of the program during the refactoring process. Create a new
method with a new name. Copy the code of the old method
to it. Delete all the code in the old method and, instead of it,
insert a call for the new method.

3. Find all references to the old method and replace them with
references to the new one.

4. Delete the old method. If the old method is part of a pub-
lic interface, don’t perform this step. Instead, mark the old
method as deprecated.

247 Refactoring Techniques / Rename Method #15232

lukas.haigner@gmail.com (#15232)

Similar refactorings

Eliminates smell

§ Add Parameter

§ Remove Parameter

§ Alternative Classes with Different Interfaces

§ Comments

248 Refactoring Techniques / Rename Method #15232

lukas.haigner@gmail.com (#15232)

B Add Parameter
Problem

A method doesn’t have enough data to perform certain actions.

Solution

Create a new parameter to pass the necessary data.

Why Refactor

You need to make changes to a method and these changes
require adding information or data that was previously not
available to the method.

249 Refactoring Techniques / Add Parameter #15232

lukas.haigner@gmail.com (#15232)

Benefits

The choice here is between adding a new parameter and
adding a new private field that contains the data needed by
the method. A field is preferable when you need some occa-
sional or frequently changing data for which there’s no point
in holding it in an object all of the time. In this case, a new
parameter will be a better fit than a private field and the refac-
toring will pay off. Otherwise, add a private field and fill it with
the necessary data before calling the method.

Drawbacks

• Adding a new parameter is always easier than removing it,
which is why parameter lists frequently balloon to grotesque
sizes. This smell is known as the Long Parameter List.

• If you need to add a new parameter, sometimes this means
that your class doesn’t contain the necessary data or the exist-
ing parameters don’t contain the necessary related data. In
both cases, the best solution is to consider moving data to the
main class or to other classes whose objects are already acces-
sible from inside the method.

How to Refactor

1. See whether the method is defined in a superclass or subclass.
If the method is present in them, you will need to repeat all
the steps in these classes as well.

250 Refactoring Techniques / Add Parameter #15232

lukas.haigner@gmail.com (#15232)

2. The following step is critical for keeping your program func-
tional during the refactoring process. Create a new method by
copying the old one and add the necessary parameter to it.
Replace the code for the old method with a call to the new
method. You can plug in any value to the new parameter (such
as null for objects or a zero for numbers).

3. Find all references to the old method and replace them with
references to the new method.

4. Delete the old method. Deletion isn’t possible if the old
method is part of the public interface. If that’s the case, mark
the old method as deprecated.

Anti-refactoring

Similar refactorings

Helps other refactorings

§ Remove Parameter

§ Rename Method

§ Introduce Parameter Object

251 Refactoring Techniques / Add Parameter #15232

lukas.haigner@gmail.com (#15232)

B Remove Parameter
Problem

A parameter isn’t used in the body of a method.

Solution

Remove the unused parameter.

Why Refactor

Every parameter in a method call forces the programmer read-
ing it to figure out what information is found in this parameter.

252 Refactoring Techniques / Remove Parameter #15232

lukas.haigner@gmail.com (#15232)

And if a parameter is entirely unused in the method body, this
“noggin scratching” is for naught.

And in any case, additional parameters are extra code that has
to be run.

Sometimes we add parameters with an eye to the future, antic-
ipating changes to the method for which the parameter might
be needed. All the same, experience shows that it’s better to
add a parameter only when it’s genuinely needed. After all,
anticipated changes often remain just that – anticipated.

Benefits

A method contains only the parameters that it truly requires.

When Not to Use

If the method is implemented in different ways in subclasses
or in a superclass, and your parameter is used in those imple-
mentations, leave the parameter as-is.

How to Refactor

1. See whether the method is defined in a superclass or subclass.
If so, is the parameter used there? If the parameter is used
in one of these implementations, hold off on this refactoring
technique.

253 Refactoring Techniques / Remove Parameter #15232

lukas.haigner@gmail.com (#15232)

2. The next step is important for keeping the program functional
during the refactoring process. Create a new method by copy-
ing the old one and delete the relevant parameter from it.
Replace the code of the old method with a call to the new one.

3. Find all references to the old method and replace them with
references to the new method.

4. Delete the old method. Don’t perform this step if the old
method is part of a public interface. In this case, mark the old
method as deprecated.

Anti-refactoring

Similar refactorings

Helps other refactorings

Eliminates smell

§ Add Parameter

§ Rename Method

§ Replace Parameter with Method Call

§ Speculative Generality

254 Refactoring Techniques / Remove Parameter #15232

lukas.haigner@gmail.com (#15232)

B Separate Query from
Modifier
Problem

Do you have a method that returns a value but also changes
something inside an object?

Solution

Split the method into two separate methods. As you would
expect, one of them should return the value and the other one
modifies the object.

255 Refactoring Techniques / Separate Query from Modifier #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

This factoring technique implements Command and Query
Responsibility Segregation. This principle tells us to separate
code responsible for getting data from code that changes
something inside an object.

Code for getting data is named a query. Code for changing
things in the visible state of an object is named a modifier.
When a query and modifier are combined, you don’t have a way
to get data without making changes to its condition. In other
words, you ask a question and can change the answer even as
it’s being received. This problem becomes even more severe
when the person calling the query may not know about the
method’s “side effects”, which often leads to runtime errors.

But remember that side effects are dangerous only in the case
of modifiers that change the visible state of an object. These
could be, for example, fields accessible from an object’s pub-
lic interface, entry in a database, in files, etc. If a modifier only
caches a complex operation and saves it within the private
field of a class, it can hardly cause any side effects.

Benefits

If you have a query that doesn’t change the state of your pro-
gram, you can call it as many times as you like without having
to worry about unintended changes in the result caused by the
mere fact of you calling the method.

256 Refactoring Techniques / Separate Query from Modifier #15232

lukas.haigner@gmail.com (#15232)

Drawbacks

In some cases it’s convenient to get data after performing a
command. For example, when deleting something from a data-
base you want to know how many rows were deleted.

How to Refactor

1. Create a new query method to return what the original
method did.

2. Change the original method so that it returns only the result
of calling the new query method.

3. Replace all references to the original method with a call to the
query method. Immediately before this line, place a call to the
modifier method. This will save you from side effects in case if
the original method was used in a condition of a conditional
operator or loop.

4. Get rid of the value-returning code in the original method,
which now has become a proper modifier method.

Helps other refactorings

§ Replace Temp with Query

257 Refactoring Techniques / Separate Query from Modifier #15232

lukas.haigner@gmail.com (#15232)

B Parameterize
Method
Problem

Multiple methods perform similar actions that are different
only in their internal values, numbers or operations.

Solution

Combine these methods by using a parameter that will pass
the necessary special value.

258 Refactoring Techniques / Parameterize Method #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

If you have similar methods, you probably have duplicate code,
with all the consequences that this entails.

What’s more, if you need to add yet another version of this
functionality, you will have to create yet another method.
Instead, you could simply run the existing method with a dif-
ferent parameter.

Drawbacks

• Sometimes this refactoring technique can be taken too far,
resulting in a long and complicated common method instead
of multiple simpler ones.

• Also be careful when moving activation/deactivation of func-
tionality to a parameter. This can eventually lead to creation
of a large conditional operator that will need to be treated via
Replace Parameter with Explicit Methods.

How to Refactor

1. Create a new method with a parameter and move it to the code
that’s the same for all classes, by applying Extract Method.
Note that sometimes only a certain part of methods is actually
the same. In this case, refactoring consists of extracting only
the same part to a new method.

259 Refactoring Techniques / Parameterize Method #15232

lukas.haigner@gmail.com (#15232)

2. In the code of the new method, replace the special/differing
value with a parameter.

3. For each old method, find the places where it’s called, replac-
ing these calls with calls to the new method that include a
parameter. Then delete the old method.

Anti-refactoring

Similar refactorings

Eliminates smell

§ Replace Parameter with Explicit Methods

§ Extract Method

§ Form Template Method

§ Duplicate Code

260 Refactoring Techniques / Parameterize Method #15232

lukas.haigner@gmail.com (#15232)

B Replace Parameter
with Explicit
Methods
Problem

A method is split into parts, each of which is run depending on
the value of a parameter.

void setValue(String name, int value) {1

if (name.equals("height")) {2

height = value;3

return;4

}5

if (name.equals("width")) {6

width = value;7

return;8

}9

Assert.shouldNeverReachHere();10

}11

261 Refactoring Techniques / Replace Parameter with Explicit Methods #15232

lukas.haigner@gmail.com (#15232)

Solution

Extract the individual parts of the method into their own
methods and call them instead of the original method.

Why Refactor

A method containing parameter-dependent variants has grown
massive. Non-trivial code is run in each branch and new vari-
ants are added very rarely.

Benefits

Improves code readability. It’s much easier to understand the
purpose of startEngine() than
setValue("engineEnabled", true) .

When Not to Use

Don’t replace a parameter with explicit methods if a method is
rarely changed and new variants aren’t added inside it.

void setHeight(int arg) {1

height = arg;2

}3

void setWidth(int arg) {4

width = arg;5

}6

262 Refactoring Techniques / Replace Parameter with Explicit Methods #15232

lukas.haigner@gmail.com (#15232)

How to Refactor

1. For each variant of the method, create a separate method. Run
these methods based on the value of a parameter in the main
method.

2. Find all places where the original method is called. In these
places, place a call for one of the new parameter-dependent
variants.

3. When no calls to the original method remain, delete it.

Anti-refactoring

Similar refactorings

Eliminates smell

§ Parameterize Method

§ Replace Conditional with Polymorphism

§ Switch Statements

§ Long Method

263 Refactoring Techniques / Replace Parameter with Explicit Methods #15232

lukas.haigner@gmail.com (#15232)

B Preserve Whole
Object
Problem

You get several values from an object and then pass them as
parameters to a method.

Solution

Instead, try passing the whole object.

Why Refactor

The problem is that each time before your method is called,
the methods of the future parameter object must be called. If
these methods or the quantity of data obtained for the method

int low = daysTempRange.getLow();1

int high = daysTempRange.getHigh();2

boolean withinPlan = plan.withinRange(low, high);3

boolean withinPlan = plan.withinRange(daysTempRange);1

264 Refactoring Techniques / Preserve Whole Object #15232

lukas.haigner@gmail.com (#15232)

are changed, you will need to carefully find a dozen such
places in the program and implement these changes in each
of them.

After you apply this refactoring technique, the code for getting
all necessary data will be stored in one place – the method
itself.

Benefits

• Instead of a hodgepodge of parameters, you see a single object
with a comprehensible name.

• If the method needs more data from an object, you won’t need
to rewrite all the places where the method is used – merely
inside the method itself.

Drawbacks

Sometimes this transformation causes a method to become
less flexible: previously the method could get data from many
different sources but now, because of refactoring, we’re limit-
ing its use to only objects with a particular interface.

How to Refactor

1. Create a parameter in the method for the object from which
you can get the necessary values.

265 Refactoring Techniques / Preserve Whole Object #15232

lukas.haigner@gmail.com (#15232)

2. Now start removing the old parameters from the method one
by one, replacing them with calls to the relevant methods of
the parameter object. Test the program after each replacement
of a parameter.

3. Delete the getter code from the parameter object that had pre-
ceded the method call.

Similar refactorings

Eliminates smell

§ Introduce Parameter Object

§ Replace Parameter with Method Call

§ Primitive Obsession

§ Long Parameter List

§ Long Method

§ Data Clumps

266 Refactoring Techniques / Preserve Whole Object #15232

lukas.haigner@gmail.com (#15232)

B Replace Parameter
with Method Call
Problem

Calling a query method and passing its results as the
parameters of another method, while that method could call
the query directly.

Solution

Instead of passing the value through a parameter, try placing a
query call inside the method body.

int basePrice = quantity * itemPrice;1

double seasonDiscount = this.getSeasonalDiscount();2

double fees = this.getFees();3

double finalPrice = discountedPrice(basePrice, seasonDiscount, fees);4

int basePrice = quantity * itemPrice;1

double finalPrice = discountedPrice(basePrice);2

267 Refactoring Techniques / Replace Parameter with Method Call #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

A long list of parameters is hard to understand. In addition,
calls to such methods often resemble a series of cascades, with
winding and exhilarating value calculations that are hard to
navigate yet have to be passed to the method. So if a parame-
ter value can be calculated with the help of a method, do this
inside the method itself and get rid of the parameter.

Benefits

We get rid of unneeded parameters and simplify method calls.
Such parameters are often created not for the project as it’s
now, but with an eye for future needs that may never come.

Drawbacks

You may need the parameter tomorrow for other needs... mak-
ing you rewrite the method.

How to Refactor

1. Make sure that the value-getting code doesn’t use parame-
ters from the current method, since they’ll be unavailable from
inside another method. If so, moving the code isn’t possible.

2. If the relevant code is more complicated than a single method
or function call, use Extract Method to isolate this code in a
new method and make the call simple.

268 Refactoring Techniques / Replace Parameter with Method Call #15232

lukas.haigner@gmail.com (#15232)

3. In the code of the main method, replace all references to the
parameter being replaced with calls to the method that gets
the value.

4. Use Remove Parameter to eliminate the now-unused
parameter.

269 Refactoring Techniques / Replace Parameter with Method Call #15232

lukas.haigner@gmail.com (#15232)

B Introduce Parameter
Object
Problem

Your methods contain a repeating group of parameters.

Solution

Replace these parameters with an object.

270 Refactoring Techniques / Introduce Parameter Object #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Identical groups of parameters are often encountered in mul-
tiple methods. This causes code duplication of both the para-
meters themselves and of related operations. By consolidating
parameters in a single class, you can also move the methods
for handling this data there as well, freeing the other methods
from this code.

Benefits

• More readable code. Instead of a hodgepodge of parameters,
you see a single object with a comprehensible name.

• Identical groups of parameters scattered here and there create
their own kind of code duplication: while identical code isn’t
being called, identical groups of parameters and arguments
are constantly encountered.

Drawbacks

If you move only data to a new class and don’t plan to move
any behaviors or related operations there, this begins to smell
of a Data Class.

How to Refactor

1. Create a new class that will represent your group of parame-
ters. Make the class immutable.

271 Refactoring Techniques / Introduce Parameter Object #15232

lukas.haigner@gmail.com (#15232)

2. In the method that you want to refactor, use Add Parameter,
which is where your parameter object will be passed. In all
method calls, pass the object created from old method para-
meters to this parameter.

3. Now start deleting old parameters from the method one by
one, replacing them in the code with fields of the parameter
object. Test the program after each parameter replacement.

4. When done, see whether there’s any point in moving a part of
the method (or sometimes even the whole method) to a para-
meter object class. If so, use Move Method or Extract Method.

Similar refactorings

Eliminates smell

§ Preserve Whole Object

§ Long Parameter List

§ Data Clumps

§ Primitive Obsession

§ Long Method

272 Refactoring Techniques / Introduce Parameter Object #15232

lukas.haigner@gmail.com (#15232)

B Remove Setting
Method
Problem

The value of a field should be set only when it’s created, and
not change at any time after that.

Solution

So remove methods that set the field’s value.

273 Refactoring Techniques / Remove Setting Method #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

You want to prevent any changes to the value of a field.

How to Refactor

1. The value of a field should be changeable only in the construc-
tor. If the constructor doesn’t contain a parameter for setting
the value, add one.

2. Find all setter calls.

◦ If a setter call is located right after a call for the constructor
of the current class, move its argument to the constructor
call and remove the setter.

◦ Replace setter calls in the constructor with direct access to
the field.

3. Delete the setter.

Helps other refactorings

§ Change Reference to Value

274 Refactoring Techniques / Remove Setting Method #15232

lukas.haigner@gmail.com (#15232)

B Hide Method
Problem

A method isn’t used by other classes or is used only inside its
own class hierarchy.

Solution

Make the method private or protected.

Why Refactor

Quite often, the need to hide methods for getting and setting
values is due to development of a richer interface that provides

275 Refactoring Techniques / Hide Method #15232

lukas.haigner@gmail.com (#15232)

additional behavior, especially if you started with a class that
added little beyond mere data encapsulation.

As new behavior is built into the class, you may find that public
getter and setter methods are no longer necessary and can be
hidden. If you make getter or setter methods private and apply
direct access to variables, you can delete the method.

Benefits

• Hiding methods makes it easier for your code to evolve. When
you change a private method, you only need to worry about
how to not break the current class since you know that the
method can’t be used anywhere else.

• By making methods private, you underscore the importance
of the public interface of the class and of the methods that
remain public.

How to Refactor

1. Regularly try to find methods that can be made private. Sta-
tic code analysis and good unit test coverage can offer a big
leg up.

2. Make each method as private as possible.

276 Refactoring Techniques / Hide Method #15232

lukas.haigner@gmail.com (#15232)

Eliminates smell

§ Data Class

277 Refactoring Techniques / Hide Method #15232

lukas.haigner@gmail.com (#15232)

B Replace Constructor
with Factory Method
Problem

You have a complex constructor that does something more
than just setting parameter values in object fields.

Solution

Create a factory method and use it to replace constructor calls.

class Employee {1

Employee(int type) {2

this.type = type;3

}4

// ...5

}6

class Employee {1

static Employee create(int type) {2

employee = new Employee(type);3

// do some heavy lifting.4

return employee;5

278 Refactoring Techniques / Replace Constructor with Factory Method #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

The most obvious reason for using this refactoring technique
is related to Replace Type Code with Subclasses.

You have code in which a object was previously created and
the value of the coded type was passed to it. After use of
the refactoring method, several subclasses have appeared and
from them you need to create objects depending on the value
of the coded type. Changing the original constructor to make
it return subclass objects is impossible, so instead we create
a static factory method that will return objects of the neces-
sary classes, after which it replaces all calls to the original
constructor.

Factory methods can be used in other situations as well, when
constructors aren’t up to the task. They can be important when
attempting to Change Value to Reference. They can also be
used to set various creation modes that go beyond the number
and types of parameters.

}6

// ...7

}8

279 Refactoring Techniques / Replace Constructor with Factory Method #15232

lukas.haigner@gmail.com (#15232)

Benefits

• A factory method doesn’t necessarily return an object of the
class in which it was called. Often these could be its subclass-
es, selected based on the arguments given to the method.

• A factory method can have a better name that describes what
and how it returns what it does, for example
Troops::GetCrew(myTank) .

• A factory method can return an already created object, unlike
a constructor, which always creates a new instance.

How to Refactor

1. Create a factory method. Place a call to the current constructor
in it.

2. Replace all constructor calls with calls to the factory method.

3. Declare the constructor private.

4. Investigate the constructor code and try to isolate the code not
directly related to constructing an object of the current class,
moving such code to the factory method.

280 Refactoring Techniques / Replace Constructor with Factory Method #15232

lukas.haigner@gmail.com (#15232)

Helps other refactorings

Implements design pattern

§ Change Value to Reference

§ Replace Type Code with Subclasses

§ Factory Method

281 Refactoring Techniques / Replace Constructor with Factory Method #15232

lukas.haigner@gmail.com (#15232)

https://refactoring.guru/design-patterns/factory-method

B Replace Error Code
with Exception
Problem

A method returns a special value that indicates an error?

Solution

Throw an exception instead.

int withdraw(int amount) {1

if (amount > _balance) {2

return -1;3

}4

else {5

balance -= amount;6

return 0;7

}8

}9

void withdraw(int amount) throws BalanceException {1

if (amount > _balance) {2

throw new BalanceException();3

}4

282 Refactoring Techniques / Replace Error Code with Exception #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Returning error codes is an obsolete holdover from procedural
programming. In modern programming, error handling is per-
formed by special classes, which are named exceptions. If a
problem occurs, you “throw” an error, which is then “caught”
by one of the exception handlers. Special error-handling code,
which is ignored in normal conditions, is activated to respond.

Benefits

• Frees code from a large number of conditionals for checking
various error codes. Exception handlers are a much more suc-
cinct way to differentiate normal execution paths from abnor-
mal ones.

• Exception classes can implement their own methods, thus con-
taining part of the error handling functionality (such as for
sending error messages).

• Unlike exceptions, error codes can’t be used in a constructor,
since a constructor must return only a new object.

balance -= amount;5

}6

283 Refactoring Techniques / Replace Error Code with Exception #15232

lukas.haigner@gmail.com (#15232)

Drawbacks

An exception handler can turn into a goto-like crutch. Avoid
this! Don’t use exceptions to manage code execution. Excep-
tions should be thrown only to inform of an error or critical
situation.

How to Refactor

Try to perform these refactoring steps for only one error code
at a time. This will make it easier to keep all the important
information in your head and avoid errors.

1. Find all calls to a method that returns error codes and, instead
of checking for an error code, wrap it in try / catch blocks.

2. Inside the method, instead of returning an error code, throw
an exception.

3. Change the method signature so that it contains information
about the exception being thrown (@throws section).

284 Refactoring Techniques / Replace Error Code with Exception #15232

lukas.haigner@gmail.com (#15232)

B Replace Exception
with Test
Problem

You throw an exception in a place where a simple test would
do the job?

Solution

Replace the exception with a condition test.

double getValueForPeriod(int periodNumber) {1

try {2

return values[periodNumber];3

} catch (ArrayIndexOutOfBoundsException e) {4

return 0;5

}6

}7

double getValueForPeriod(int periodNumber) {1

if (periodNumber >= values.length) {2

return 0;3

}4

285 Refactoring Techniques / Replace Exception with Test #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Exceptions should be used to handle irregular behavior related
to an unexpected error. They shouldn’t serve as a replacement
for testing. If an exception can be avoided by simply verifying
a condition before running, then do so. Exceptions should be
reserved for real errors.

For instance, you entered a minefield and triggered a mine
there, resulting in an exception; the exception was success-
fully handled and you were lifted through the air to safety
beyond the mine field. But you could have avoided this all by
simply reading the warning sign in front of the minefield to
begin with.

Benefits

A simple conditional can sometimes be more obvious than
exception handling code.

How to Refactor

1. Create a conditional for an edge case and move it before the
try/catch block.

return values[periodNumber];5

}6

286 Refactoring Techniques / Replace Exception with Test #15232

lukas.haigner@gmail.com (#15232)

2. Move code from the catch section inside this conditional.

3. In the catch section, place the code for throwing a usual
unnamed exception and run all the tests.

4. If no exceptions were thrown during the tests, get rid of the
try / catch operator.

Similar refactorings

§ Replace Error Code with Exception

287 Refactoring Techniques / Replace Exception with Test #15232

lukas.haigner@gmail.com (#15232)

Dealing with Generalization
Abstraction has its own group of refactoring techniques, pri-
marily associated with moving functionality along the class
inheritance hierarchy, creating new classes and interfaces, and
replacing inheritance with delegation and vice versa.

Problem: Two classes have the same field.

Solution: Remove the field from subclasses and move it to the
superclass.

Problem: Your subclasses have methods that perform simi-
lar work.

Solution: Make the methods identical and then move them to
the relevant superclass.

Problem: Your subclasses have constructors with code that’s
mostly identical.

Solution: Create a superclass constructor and move the code
that’s the same in the subclasses to it. Call the superclass con-
structor in the subclass constructors.

§ Pull Up Field

§ Pull Up Method

§ Pull Up Constructor Body

288 Refactoring Techniques / Dealing with Generalization #15232

lukas.haigner@gmail.com (#15232)

Problem: Is behavior implemented in a superclass used by
only one (or a few) subclasses?

Solution: Move this behavior to the subclasses.

Problem: Is a field used only in a few subclasses?

Solution: Move the field to these subclasses.

Problem: A class has features that are used only in cer-
tain cases.

Solution: Create a subclass and use it in these cases.

Problem: You have two classes with common fields and
methods.

Solution: Create a shared superclass for them and move all the
identical fields and methods to it.

Problem: Multiple clients are using the same part of a class
interface. Another case: part of the interface in two classes is
the same.

Solution: Move this identical portion to its own interface.

§ Push Down Method

§ Push Down Field

§ Extract Subclass

§ Extract Superclass

§ Extract Interface

289 Refactoring Techniques / Dealing with Generalization #15232

lukas.haigner@gmail.com (#15232)

Problem: You have a class hierarchy in which a subclass is
practically the same as its superclass.

Solution: Merge the subclass and superclass.

Problem: Your subclasses implement algorithms that contain
similar steps in the same order.

Solution: Move the algorithm structure and identical steps to
a superclass, and leave implementation of the different steps
in the subclasses.

Problem: You have a subclass that uses only a portion of the
methods of its superclass (or it’s not possible to inherit super-
class data).

Solution: Create a field and put a superclass object in it,
delegate methods to the superclass object, and get rid of
inheritance.

Problem: A class contains many simple methods that delegate
to all methods of another class.

Solution: Make the class a delegate inheritor, which makes the
delegating methods unnecessary.

§ Collapse Hierarchy

§ Form Template Method

§ Replace Inheritance with Delegation

§ Replace Delegation with Inheritance

290 Refactoring Techniques / Dealing with Generalization #15232

lukas.haigner@gmail.com (#15232)

B Pull Up Field
Problem

Two classes have the same field.

Solution

Remove the field from subclasses and move it to the
superclass.

291 Refactoring Techniques / Pull Up Field #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Subclasses grew and developed separately, causing identical
(or nearly identical) fields and methods to appear.

Benefits

• Eliminates duplication of fields in subclasses.

• Eases subsequent relocation of duplicate methods, if they
exist, from subclasses to a superclass.

How to Refactor

1. Make sure that the fields are used for the same needs in
subclasses.

292 Refactoring Techniques / Pull Up Field #15232

lukas.haigner@gmail.com (#15232)

2. If the fields have different names, give them the same name
and replace all references to the fields in existing code.

3. Create a field with the same name in the superclass. Note
that if the fields were private, the superclass field should be
protected.

4. Remove the fields from the subclasses.

5. You may want to consider using Self Encapsulate Field for the
new field, in order to hide it behind access methods.

Anti-refactoring

Similar refactorings

Eliminates smell

§ Push Down Field

§ Pull Up Method

§ Duplicate Code

293 Refactoring Techniques / Pull Up Field #15232

lukas.haigner@gmail.com (#15232)

B Pull Up Method
Problem

Your subclasses have methods that perform similar work.

Solution

Make the methods identical and then move them to the
relevant superclass.

294 Refactoring Techniques / Pull Up Method #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Subclasses grew and developed independently of one another,
causing identical (or nearly identical) fields and methods.

Benefits

• Gets rid of duplicate code. If you need to make changes to
a method, it’s better to do so in a single place than have to
search for all duplicates of the method in subclasses.

• This refactoring technique can also be used if, for some reason,
a subclass redefines a superclass method but performs what’s
essentially the same work.

295 Refactoring Techniques / Pull Up Method #15232

lukas.haigner@gmail.com (#15232)

How to Refactor

1. Investigate similar methods in superclasses. If they aren’t
identical, format them to match each other.

2. If methods use a different set of parameters, put the parame-
ters in the form that you want to see in the superclass.

3. Copy the method to the superclass. Here you may find that
the method code uses fields and methods that exist only in
subclasses and therefore aren’t available in the superclass. To
solve this, you can:

◦ For fields: use either Pull Up Field or Self-Encapsulate Field
to create getters and setters in subclasses; then declare
these getters abstractly in the superclass.

◦ For methods: use either Pull Up Method or declare abstract
methods for them in the superclass (note that your class
will become abstract if it wasn’t previously).

4. Remove the methods from the subclasses.

5. Check the locations in which the method is called. In some
places you may be able to replace use of a subclass with the
superclass.

296 Refactoring Techniques / Pull Up Method #15232

lukas.haigner@gmail.com (#15232)

Anti-refactoring

Similar refactorings

Helps other refactorings

Eliminates smell

§ Push Down Method

§ Pull Up Field

§ Form Template Method

§ Duplicate Code

297 Refactoring Techniques / Pull Up Method #15232

lukas.haigner@gmail.com (#15232)

B Pull Up Constructor
Body
Problem

Your subclasses have constructors with code that’s mostly
identical.

Solution

Create a superclass constructor and move the code that’s the
same in the subclasses to it. Call the superclass constructor in
the subclass constructors.

class Manager extends Employee {1

public Manager(String name, String id, int grade) {2

this.name = name;3

this.id = id;4

this.grade = grade;5

}6

// ...7

}8

class Manager extends Employee {1

298 Refactoring Techniques / Pull Up Constructor Body #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

How is this refactoring technique different from Pull Up
Method?

1. In Java, subclasses can’t inherit a constructor, so you can’t
simply apply Pull Up Method to the subclass constructor and
delete it after removing all the constructor code to the super-
class. In addition to creating a constructor in the superclass it’s
necessary to have constructors in the subclasses with simple
delegation to the superclass constructor.

2. In C++ and Java (if you didn’t explicitly call the superclass
constructor) the superclass constructor is automatically called
prior to the subclass constructor, which makes it necessary
to move the common code only from the beginning of the
subclass constructors (since you won’t be able to call the
superclass constructor from an arbitrary place in a subclass
constructor).

3. In most programming languages, a subclass constructor can
have its own list of parameters different from the parameters

public Manager(String name, String id, int grade) {2

super(name, id);3

this.grade = grade;4

}5

// ...6

}7

299 Refactoring Techniques / Pull Up Constructor Body #15232

lukas.haigner@gmail.com (#15232)

of the superclass. Therefore you should create a superclass
constructor only with the parameters that it truly needs.

How to Refactor

1. Create a constructor in a superclass.

2. Extract the common code from the beginning of the construc-
tor of each subclass to the superclass constructor. Before doing
so, try to move as much common code as possible to the begin-
ning of the constructor.

3. Place the call for the superclass constructor in the first line in
the subclass constructors.

Similar refactorings

Eliminates smell

§ Pull Up Method

§ Duplicate Code

300 Refactoring Techniques / Pull Up Constructor Body #15232

lukas.haigner@gmail.com (#15232)

B Push Down Method
Problem

Is behavior implemented in a superclass used by only one (or
a few) subclasses?

Solution

Move this behavior to the subclasses.

301 Refactoring Techniques / Push Down Method #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

At first a certain method was meant to be universal for all
classes but in reality is used in only one subclass. This situa-
tion can occur when planned features fail to materialize.

Such situations can also occur after partial extraction (or
removal) of functionality from a class hierarchy, leaving a
method that’s used in only one subclass.

If you see that a method is needed by more than one subclass,
but not all of them, it may be useful to create an intermedi-
ate subclass and move the method to it. This allows avoiding
the code duplication that would result from pushing a method
down to all subclasses.

302 Refactoring Techniques / Push Down Method #15232

lukas.haigner@gmail.com (#15232)

Benefits

Improves class coherence. A method is located where you
expect to see it.

How to Refactor

1. Declare the method in a subclass and copy its code from the
superclass.

2. Remove the method from the superclass.

3. Find all places where the method is used and verify that it’s
called from the necessary subclass.

303 Refactoring Techniques / Push Down Method #15232

lukas.haigner@gmail.com (#15232)

Anti-refactoring

Similar refactorings

Helps other refactorings

Eliminates smell

§ Pull Up Method

§ Push Down Field

§ Extract Subclass

§ Refused Bequest

304 Refactoring Techniques / Push Down Method #15232

lukas.haigner@gmail.com (#15232)

B Push Down Field
Problem

Is a field used only in a few subclasses?

Solution

Move the field to these subclasses.

305 Refactoring Techniques / Push Down Field #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Although it was planned to use a field universally for all class-
es, in reality the field is used only in some subclasses. This
situation can occur when planned features fail to pan out, for
example.

This can also occur due to extraction (or removal) of part of the
functionality of class hierarchies.

Benefits

• Improves internal class coherency. A field is located where it’s
actually used.

306 Refactoring Techniques / Push Down Field #15232

lukas.haigner@gmail.com (#15232)

• When moving to several subclasses simultaneously, you can
develop the fields independently of each other. This does cre-
ate code duplication, yes, so push down fields only when you
really do intend to use the fields in different ways.

How to Refactor

1. Declare a field in all the necessary subclasses.

2. Remove the field from the superclass.

Anti-refactoring

Similar refactorings

Helps other refactorings

Eliminates smell

§ Pull Up Field

§ Push Down Method

§ Extract Subclass

§ Refused Bequest

307 Refactoring Techniques / Push Down Field #15232

lukas.haigner@gmail.com (#15232)

B Extract Subclass
Problem

A class has features that are used only in certain cases.

Solution

Create a subclass and use it in these cases.

308 Refactoring Techniques / Extract Subclass #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Your main class has methods and fields for implementing a
certain rare use case for the class. While the case is rare, the
class is responsible for it and it would be wrong to move all
the associated fields and methods to an entirely separate class.
But they could be moved to a subclass, which is just what we’ll
do with the help of this refactoring technique.

Benefits

• Creates a subclass quickly and easily.

309 Refactoring Techniques / Extract Subclass #15232

lukas.haigner@gmail.com (#15232)

• You can create several separate subclasses if your main class
is currently implementing more than one such special case.

Drawbacks

Despite its seeming simplicity, Inheritance can lead to a dead
end if you have to separate several different class hierarchies.
If, for example, you had the class Dogs with different behav-
ior depending on the size and fur of dogs, you could tease out
two hierarchies:

◦ by size: Large , Medium and Small

◦ by fur: Smooth and Shaggy

And everything would seem well, except that problems will
crop up as soon as you need to create a dog that’s both Large

and Smooth , since you can create an object from one class
only. That said, you can avoid this problem by using Compose
instead of Inherit (see the Strategy pattern). In other words, the
Dog class will have two component fields, size and fur. You

will plug in component objects from the necessary classes into
these fields. So you can create a Dog that has LargeSize and
ShaggyFur .

How to Refactor

1. Create a new subclass from the class of interest.

310 Refactoring Techniques / Extract Subclass #15232

lukas.haigner@gmail.com (#15232)

https://refactoring.guru/design-patterns/strategy

2. If you need additional data to create objects from a subclass,
create a constructor and add the necessary parameters to it.
Don’t forget to call the constructor’s parent implementation.

3. Find all calls to the constructor of the parent class. When the
functionality of a subclass is necessary, replace the parent con-
structor with the subclass constructor.

4. Move the necessary methods and fields from the parent class
to the subclass. Do this via Push Down Method and Push
Down Field. It’s simpler to start by moving the methods first.
This way, the fields remain accessible throughout the whole
process: from the parent class prior to the move, and from the
subclass itself after the move is complete.

5. After the subclass is ready, find all the old fields that controlled
the choice of functionality. Delete these fields by using poly-
morphism to replace all the operators in which the fields had
been used. A simple example: in the Car class, you had the field
isElectricCar and, depending on it, in the refuel() method

the car is either fueled up with gas or charged with electricity.
Post-refactoring, the isElectricCar field is removed and the
Car and ElectricCar classes will have their own implemen-

tations of the refuel() method.

311 Refactoring Techniques / Extract Subclass #15232

lukas.haigner@gmail.com (#15232)

Similar refactorings

Eliminates smell

§ Extract Class

§ Large Class

312 Refactoring Techniques / Extract Subclass #15232

lukas.haigner@gmail.com (#15232)

B Extract Superclass
Problem

You have two classes with common fields and methods.

Solution

Create a shared superclass for them and move all the identical
fields and methods to it.

313 Refactoring Techniques / Extract Superclass #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

One type of code duplication occurs when two classes perform
similar tasks in the same way, or perform similar tasks in dif-
ferent ways. Objects offer a built-in mechanism for simplifying
such situations via inheritance. But oftentimes this similarity
remains unnoticed until classes are created, necessitating that
an inheritance structure be created later.

Benefits

Code deduplication. Common fields and methods now “live” in
one place only.

314 Refactoring Techniques / Extract Superclass #15232

lukas.haigner@gmail.com (#15232)

When Not to Use

You can not apply this technique to classes that already have
a superclass.

How to Refactor

1. Create an abstract superclass.

2. Use Pull Up Field, Pull Up Method, and Pull Up Constructor
Body to move the common functionality to a superclass. Start
with the fields, since in addition to the common fields you will
need to move the fields that are used in the common methods.

3. Look for places in the client code where use of subclasses can
be replaced with your new class (such as in type declarations).

Similar refactorings

Eliminates smell

§ Extract Interface

§ Duplicate Code

315 Refactoring Techniques / Extract Superclass #15232

lukas.haigner@gmail.com (#15232)

B Extract Interface
Problem

Multiple clients are using the same part of a class interface.
Another case: part of the interface in two classes is the same.

Solution

Move this identical portion to its own interface.

316 Refactoring Techniques / Extract Interface #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

1. Interfaces are very apropos when classes play special roles in
different situations. Use Extract Interface to explicitly indicate
which role.

2. Another convenient case arises when you need to describe the
operations that a class performs on its server. If it’s planned to
eventually allow use of servers of multiple types, all servers
must implement the interface.

317 Refactoring Techniques / Extract Interface #15232

lukas.haigner@gmail.com (#15232)

Good to Know

There’s a certain resemblance between Extract Superclass and
Extract Interface.

Extracting an interface allows isolating only common inter-
faces, not common code. In other words, if classes contain
Duplicate Code, extracting the interface won’t help you to
deduplicate.

All the same, this problem can be mitigated by applying
Extract Class to move the behavior that contains the duplica-
tion to a separate component and delegating all the work to
it. If the common behavior is large in size, you can always use
Extract Superclass. This is even easier, of course, but remem-
ber that if you take this path you will get only one parent class.

How to Refactor

1. Create an empty interface.

2. Declare common operations in the interface.

3. Declare the necessary classes as implementing the interface.

4. Change type declarations in the client code to use the new
interface.

318 Refactoring Techniques / Extract Interface #15232

lukas.haigner@gmail.com (#15232)

Similar refactorings

§ Extract Superclass

319 Refactoring Techniques / Extract Interface #15232

lukas.haigner@gmail.com (#15232)

B Collapse Hierarchy
Problem

You have a class hierarchy in which a subclass is practically the
same as its superclass.

Solution

Merge the subclass and superclass.

320 Refactoring Techniques / Collapse Hierarchy #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Your program has grown over time and a subclass and super-
class have become practically the same. A feature was
removed from a subclass, a method was moved to the super-
class... and now you have two look-alike classes.

Benefits

• Program complexity is reduced. Fewer classes mean fewer
things to keep straight in your head and fewer breakable mov-
ing parts to worry about during future code changes.

• Navigating through your code is easier when methods are
defined in one class early. You don’t need to comb through the
entire hierarchy to find a particular method.

When Not to Use

• Does the class hierarchy that you’re refactoring have more
than one subclass? If so, after refactoring is complete, the
remaining subclasses should become the inheritors of the
class in which the hierarchy was collapsed.

• But keep in mind that this can lead to violations of the Liskov
substitution principle. For example, if your program emulates
city transport networks and you accidentally collapse the
Transport superclass into the Car subclass, then the Plane

class may become the inheritor of Car . Oops!

321 Refactoring Techniques / Collapse Hierarchy #15232

lukas.haigner@gmail.com (#15232)

How to Refactor

1. Select which class is easier to remove: the superclass or its
subclass.

2. Use Pull Up Field and Pull Up Method if you decide to get rid
of the subclass. If you choose to eliminate the superclass, go
for Push Down Field and Push Down Method.

3. Replace all uses of the class that you’re deleting with the class
to which the fields and methods are to be migrated. Often this
will be code for creating classes, variable and parameter typ-
ing, and documentation in code comments.

4. Delete the empty class.

Similar refactorings

Collapse Hierarchy is a variation of Inline Class, where the code
moves to superclass or subclass.

Eliminates smell

§ Inline Class

§ Lazy Class

§ Speculative Generality

322 Refactoring Techniques / Collapse Hierarchy #15232

lukas.haigner@gmail.com (#15232)

B Form Template
Method
Problem

Your subclasses implement algorithms that contain similar
steps in the same order.

Solution

Move the algorithm structure and identical steps to a
superclass, and leave implementation of the different steps in
the subclasses.

323 Refactoring Techniques / Form Template Method #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Subclasses are developed in parallel, sometimes by different
people, which leads to code duplication, errors, and difficulties
in code maintenance, since each change must be made in all
subclasses.

Benefits

• Code duplication doesn’t always refer to cases of simple copy/
paste. Often duplication occurs at a higher level, such as when
you have a method for sorting numbers and a method for sort-
ing object collections that are differentiated only by the com-
parison of elements. Creating a template method eliminates
this duplication by merging the shared algorithm steps in a
superclass and leaving just the differences in the subclasses.

324 Refactoring Techniques / Form Template Method #15232

lukas.haigner@gmail.com (#15232)

• Forming a template method is an example of the Open/Closed
Principle in action. When a new algorithm version appears, you
need only to create a new subclass; no changes to existing
code are required.

How to Refactor

1. Split algorithms in the subclasses into their constituent parts
described in separate methods. Extract Method can help
with this.

2. The resulting methods that are identical for all subclasses can
be moved to a superclass via Pull Up Method.

3. The non-similar methods can be given consistent names via
Rename Method.

4. Move the signatures of non-similar methods to a superclass as
abstract ones by using Pull Up Method. Leave their implemen-
tations in the subclasses.

5. And finally, pull up the main method of the algorithm to
the superclass. Now it should work with the method steps
described in the superclass, both real and abstract.

325 Refactoring Techniques / Form Template Method #15232

lukas.haigner@gmail.com (#15232)

Implements design pattern

Eliminates smell

§ Template Method

§ Duplicate Code

326 Refactoring Techniques / Form Template Method #15232

lukas.haigner@gmail.com (#15232)

https://refactoring.guru/design-patterns/template-method

B Replace Inheritance
with Delegation
Problem

You have a subclass that uses only a portion of the methods of
its superclass (or it’s not possible to inherit superclass data).

Solution

Create a field and put a superclass object in it, delegate
methods to the superclass object, and get rid of inheritance.

327 Refactoring Techniques / Replace Inheritance with Delegation #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Replacing inheritance with composition can substantially
improve class design if:

• Your subclass violates the Liskov substitution principle, i.e., if
inheritance was implemented only to combine common code
but not because the subclass is an extension of the superclass.

• The subclass uses only a portion of the methods of the super-
class. In this case, it’s only a matter of time before some-
one calls a superclass method that he or she wasn’t supposed
to call.

In essence, this refactoring technique splits both classes and
makes the superclass the helper of the subclass, not its parent.
Instead of inheriting all superclass methods, the subclass will
have only the necessary methods for delegating to the meth-
ods of the superclass object.

328 Refactoring Techniques / Replace Inheritance with Delegation #15232

lukas.haigner@gmail.com (#15232)

Benefits

• A class doesn’t contain any unneeded methods inherited from
the superclass.

• Various objects with various implementations can be put in the
delegate field. In effect you get the Strategy design pattern.

Drawbacks

You have to write many simple delegating methods.

How to Refactor

1. Create a field in the subclass for holding the superclass. Dur-
ing the initial stage, place the current object in it.

2. Change the subclass methods so that they use the superclass
object instead of this .

3. For methods inherited from the superclass that are called
in the client code, create simple delegating methods in the
subclass.

4. Remove the inheritance declaration from the subclass.

5. Change the initialization code of the field in which the former
superclass is stored by creating a new object.

329 Refactoring Techniques / Replace Inheritance with Delegation #15232

lukas.haigner@gmail.com (#15232)

https://refactoring.guru/design-patterns/strategy

Anti-refactoring

Implements design pattern

§ Replace Delegation with Inheritance

§ Strategy

330 Refactoring Techniques / Replace Inheritance with Delegation #15232

lukas.haigner@gmail.com (#15232)

https://refactoring.guru/design-patterns/strategy

B Replace Delegation
with Inheritance
Problem

A class contains many simple methods that delegate to all
methods of another class.

Solution

Make the class a delegate inheritor, which makes the
delegating methods unnecessary.

331 Refactoring Techniques / Replace Delegation with Inheritance #15232

lukas.haigner@gmail.com (#15232)

Why Refactor

Delegation is a more flexible approach than inheritance, since
it allows changing how delegation is implemented and plac-
ing other classes there as well. Nonetheless, delegation stop
being beneficial if you delegate actions to only one class and
all of its public methods.

In such a case, if you replace delegation with inheritance, you
cleanse the class of a large number of delegating methods and
spare yourself from needing to create them for each new del-
egate class method.

Benefits

Reduces code length. All these delegating methods are no
longer necessary.

332 Refactoring Techniques / Replace Delegation with Inheritance #15232

lukas.haigner@gmail.com (#15232)

When Not to Use

• Don’t use this technique if the class contains delegation to
only a portion of the public methods of the delegate class. By
doing so, you would violate the Liskov substitution principle.

• This technique can be used only if the class still doesn’t have
parents.

How to Refactor

1. Make the class a subclass of the delegate class.

2. Place the current object in a field containing a reference to the
delegate object.

3. Delete the methods with simple delegation one by one. If
their names were different, use Rename Method to give all the
methods a single name.

4. Replace all references to the delegate field with references to
the current object.

5. Remove the delegate field.

333 Refactoring Techniques / Replace Delegation with Inheritance #15232

lukas.haigner@gmail.com (#15232)

Anti-refactoring

Similar refactorings

Eliminates smell

§ Replace Inheritance with Delegation

§ Remove Middle Man

§ Inappropriate Intimacy

334 Refactoring Techniques / Replace Delegation with Inheritance #15232

lukas.haigner@gmail.com (#15232)

Afterword
Congrats on reaching the last page!

Now that you know so much about refactoring, what are you
planning to do? Here’s a bunch of ideas, if you still haven’t
decided:

•  Read Joshua Kerievsky’s book “Refactoring to Patterns”.

•  What? Don’t you know what are the design patterns? Read
our section about design patterns

•  Print out the refactoring cheat sheet and pin it somewhere
you’ll always see it.

•  Submit your feedback about this book and the full course.
I’d be glad to hear any feedback, even if it’s negative 

#15232

lukas.haigner@gmail.com (#15232)

https://refactoring.guru/ref-to-patterns-book
https://refactoring.guru/design-patterns
https://refactoring.guru/design-patterns
https://refactoring.guru/files/refactoring-cheat-sheet.pdf
https://refactoring.guru/refactoring/feedback

	
	Copyright
	Preface
	Code Smells
	Bloaters
	Long Method
	Large Class
	Primitive Obsession
	Long Parameter List
	Data Clumps

	Object-Orientation Abusers
	Switch Statements
	Temporary Field
	Refused Bequest
	Alternative Classes with Different Interfaces

	Change Preventers
	Divergent Change
	Shotgun Surgery
	Parallel Inheritance Hierarchies

	Dispensables
	Comments
	Duplicate Code
	Lazy Class
	Data Class
	Dead Code
	Speculative Generality

	Couplers
	Feature Envy
	Inappropriate Intimacy
	Message Chains
	Middle Man

	Other Smells
	Incomplete Library Class

	Refactoring Techniques
	Composing Methods
	Extract Method
	Inline Method
	Extract Variable
	Inline Temp
	Replace Temp with Query
	Split Temporary Variable
	Remove Assignments to Parameters
	Replace Method with Method Object
	Substitute Algorithm

	Moving Features between Objects
	Move Method
	Move Field
	Extract Class
	Inline Class
	Hide Delegate
	Remove Middle Man
	Introduce Foreign Method
	Introduce Local Extension

	Organizing Data
	Self Encapsulate Field
	Replace Data Value with Object
	Change Value to Reference
	Change Reference to Value
	Replace Array with Object
	Duplicate Observed Data
	Change Unidirectional Association to Bidirectional
	Change Bidirectional Association to Unidirectional
	Replace Magic Number with Symbolic Constant
	Encapsulate Field
	Encapsulate Collection
	Replace Type Code with Class
	Replace Type Code with Subclasses
	Replace Type Code with State/Strategy
	Replace Subclass with Fields

	Simplifying Conditional Expressions
	Decompose Conditional
	Consolidate Conditional Expression
	Consolidate Duplicate Conditional Fragments
	Remove Control Flag
	Replace Nested Conditional with Guard Clauses
	Replace Conditional with Polymorphism
	Introduce Null Object
	Introduce Assertion

	Simplifying Method Calls
	Rename Method
	Add Parameter
	Remove Parameter
	Separate Query from Modifier
	Parameterize Method
	Replace Parameter with Explicit Methods
	Preserve Whole Object
	Replace Parameter with Method Call
	Introduce Parameter Object
	Remove Setting Method
	Hide Method
	Replace Constructor with Factory Method
	Replace Error Code with Exception
	Replace Exception with Test

	Dealing with Generalization
	Pull Up Field
	Pull Up Method
	Pull Up Constructor Body
	Push Down Method
	Push Down Field
	Extract Subclass
	Extract Superclass
	Extract Interface
	Collapse Hierarchy
	Form Template Method
	Replace Inheritance with Delegation
	Replace Delegation with Inheritance

	Afterword

