

	
	

Docker:
The	Complete	Beginners	Guide	to	Start	with

Docker

Bonus	Gift	For	You!
	

Get	free	access	to	your	complimentary	book	“Amazon	Book
Bundle:	Complete	User	Guides	To	5	Amazon	Products”	by

clicking	the	link	below.
	
	

>>>CLICK	HERE	TO	DOWNLOAD<<<
(or	go	to:	https://freebookpromo.leadpages.co/amazon-book-

bundle/]

	

https://freebookpromo.leadpages.co/amazon-book-bundle/

Copyright	2016	-	All	rights	reserved.
	

This	document	is	geared	towards	providing	exact	and	reliable	information	in	regards	to	the
topic	and	issue	covered.	The	publication	is	sold	with	the	idea	that	the	publisher	is	not
required	to	render	legal,	financial,	medical	or	any	professional	services.	If	advice	is
necessary,	legal	or	professional,	a	practiced	individual	in	the	profession	should	be	ordered.

	

In	no	way	is	it	legal	to	reproduce,	duplicate,	or	transmit	any	part	of	this	document	in	either
electronic	means	or	in	printed	format.	Recording	of	this	publication	is	strictly	prohibited
and	any	storage	of	this	document	is	not	allowed	unless	with	written	permission	from	the
publisher.	All	rights	reserved.

	

The	information	provided	herein	is	stated	to	be	truthful	and	consistent,	in	that	any	liability,
in	terms	of	inattention	or	otherwise,	by	any	usage	or	abuse	of	any	policies,	processes,	or
directions	contained	within	is	the	solitary	and	utter	responsibility	of	the	recipient	reader.
Under	no	circumstances	will	any	legal	responsibility	or	blame	be	held	against	the
publisher	for	any	reparation,	damages,	or	monetary	loss	due	to	the	information	herein,
either	directly	or	indirectly.

	

The	information	herein	is	offered	for	informational	purposes	solely,	and	is	universal	as	so.
The	presentation	of	the	information	is	without	contract	or	any	type	of	guarantee	assurance.

	

The	trademarks	that	are	used	are	without	any	consent,	and	the	publication	of	the	trademark
is	without	permission	or	backing	by	the	trademark	owner.	All	trademarks	and	brands
within	the	book	are	for	clarifying	purposes	only	and	are	owned	by	the	owners	themselves,
not	affiliated	with	this	document.

Table	Of	Contents	
	
Introduction
Chapter	1	–	Getting	Started	with	Docker
Chapter	2	–	Tips	to	Install	Docker	for	Mac
Chapter	3	–	Understand	Container,	Images	and	Storage	Drives
Conclusion

Introduction
	

Docker	 helps	 users	 to	 package	 one	 application	 with	 all	 its	 dependencies	 into	 one
standardized	 unit	 for	 the	 software	 development.	 Unlike	 other	 virtual	 machines,	 the
containers	don’t	have	any	high	overhead	and	you	can	increase	the	efficiency	of	underlying
resources	and	system.

It	 is	 a	 common	 practice	 in	 the	 industry	 to	 use	VMs	 (virtual	Machines)	 to	 run	 different
software	applications.	The	VMS	can	run	these	applications	in	the	visitant	operating	system
that	runs	on	the	virtual	hardware.	This	hardware	is	powered	by	the	OS	host	of	the	server.

VMs	 play	 an	 important	 role	 to	 provide	 complete	 procedure	 isolation	 for	 different
applications.	The	problem	of	 the	host	OS	 (operating	 system)	can	 influence	 the	 software
running	in	the	operation	system	of	guest	and	vice	versa	in	different	ways.

This	 isolation	may	 be	 available	 at	 a	 higher	 cost	 and	 computational	 overhead	 disbursed
virtualizing	 hardware	 for	 the	 operating	 system	 of	 guest	 is	 essential.	 Container	may	 use
dissimilar	approach	by	leveraging	the	mechanics	of	the	operating	system	of	host	and	the
containers	 offer	 maximum	 isolation	 of	 the	 virtual	 machines	 at	 one	 fraction	 of	 your
computing	power.

Rise	of	Docker	is	nothing	that	short	of	spectacular.	The	containers	are	not	new	technology
because	 these	 also	 get	 conventional	 attention.	 The	 standard	 APIs	 make	 it	 easy	 to	 use
containers	 and	 create	 a	 unique	method	 for	 the	 public	 to	 collaborate	 all	 the	way	 around
libraries	of	the	containers.

Docker	plays	an	important	role	to	change	the	face	of	technology	landscape.	In	an	article	of
“The	Register”,	 they	claim	that	 the	Google	runs	more	than	two	billion	containers	in	one
week.					

In	 this	 book,	 you	 will	 read	 about	 Docker,	 its	 uses	 and	 procedure	 to	 use	 it.	 This	 book
proves	helpful	for	beginners	to	get	started	with	Docker.

	
	

Chapter	1	–	Getting	Started	with	Docker
	

Docker	is	basically	an	open	source	and	anyone	can	subsidize	to	Docker	and	expand	it	to
your	own	needs.	If	you	need	additional	features	and	these	are	not	available,	you	can	add
them	in	the	Docker.

This	 tool	 is	 good	 for	 system	 administrators	 and	 developers.	 It	 is	 an	 important	 part	 of
DevOps	 (developers	 and	 operations)	 tool	 chains.	 Developers	 can	 pay	 attention	 on	 the
writing	code	without	thinking	about	system	that	it	may	ultimately	be	run	on.

It	enables	them	to	get	one	head	start	with	the	use	of	thousands	of	predesigned	programs	to
run	in	the	Docker	container.	The	operations	staff	can	reduce	the	requirements	of	systems
and	 increase	 their	 flexibility	and	productivity.	 It	 is	a	good	way	 to	 reduce	your	overhead
and	footprint.

	

Getting	Started	with	Docker

There	are	some	helpful	 resources	 to	get	started	with	Docker	 to	maintain	your	workflow.
You	will	get	one	web-based	tutorial	along	with	one	command-line	simulator.	It	will	help
you	to	try	basic	commands	of	Docker	and	understand	it’s	working.

	

Security	and	Docker

Docker	increase	the	security	of	all	applications	running	in	the	shared	environment,	but	the
containers	 may	 not	 be	 an	 alternate	 of	 security	 measures.	 You	 have	 to	 understand	 the
security	 features	 of	 Docker	 to	 keep	 your	 containers	 secure.	 You	 will	 find	 about	 the
security	of	Docker	in	last	chapter.	Basically	Docker	has	three	important	elements,	such	as:

Docker	Images
Docker	Containers
Dockerfiles

As	one	project,	Docker	offers	a	complete	set	of	high-quality	tools	to	transfer	everything	to
make	one	application	across	machines	and	systems,	physical	or	virtual,	and	brings	loads	of
benefits	with	it.

Docker	 achieves	 full-bodied	 application	 and	 process	 and	 reserve	 containment	 via
Containers	 of	 Linux,	 such	 as	 Kernel	 features	 and	 namespaces.	 The	 further	 capabilities
may	come	from	different	components	and	parts	of	one	project	that	extract	the	intricacy	of
working	 along	 with	 the	 low-level	 tools	 and	 APIs	 of	 Linux.	 These	 are	 used	 for	 the
application	and	system	management	with	regards	to	the	secure	containing	procedures.

	

Main	Parts	of	Docker	Project

Project	of	Docker	consists	of	different	main	elements	and	parts	that	all	are	designed	on	the
top	 of	 existing	 functionality,	 frameworks	 and	 libraries	 offered	 by	 Linux	 Kernel	 or	 any

third	party,	such	as	aufs,	mapper	or	LXC.

	

Basic	Parts	of	Docker

Daemon	of	Docker	is	used	to	manage	LXC	(docker)	containers	on	its	current	host.
CLI	of	docker	is	used	to	communicate	and	give	command	to	docker	daemon.
Image	index	of	docker	is	a	private	or	public	repository	for	the	images	of	docker.

	

Elements	of	Docker

Containers	of	docker	are	directors	with	everything	about	your	application.
Images	of	docker	are	snapshots	of	base	OS	(for	instance,	Ubuntu)	or	containers.
Dockerfiles	are	scripts	to	automate	the	building	procedure	of	images.

	

Elements	of	Docker

These	elements	are	utilized	by	these	applications	making	the	project	of	the	docker:

	

Docker	Containers

This	 whole	 method	 of	 porting	 submissions	 with	 the	 use	 of	 docker	 depends	 on	 the
container’s	 shipment.	 These	 containers	 are	 directories	 that	 may	 pack	 (tar-archive)	 like
others.

It	 can	 share	 and	 run	 crossways	 various	 platforms	 (hosts)	 and	 machines.	 You	 have	 to
dependent	 on	 the	 host	 to	 run	 these	 containers.	 You	 have	 to	 install	 docker	 for	 this
procedure.	Containers	are	obtained	through	LXC	(Linux	Containers).

	

Linux	Containers	(LXC)

You	can	define	these	containers	as	an	amalgamation	of	different	Kernel-level	features.	It
enables	you	to	manage	your	applications	and	have	their	own	environment.	With	the	use	of
certain	 features,	 such	 as	 chroots,	 namespaces,	 SELinux	 and	 cgroups	 profiles,	 the	 LXC
may	 contain	 application	 procedure	 and	 help	 with	 the	 management	 through	 restricted
resources.

It	 may	 not	 allow	 you	 to	 reach	 beyond	 your	 file-system	 and	 restrict	 access	 to	 the
namespace	of	parent.	With	 containers,	 the	docker	makes	 it	 easy	 to	use	LXC	and	brings
much	more	benefits	along.

	

Docker	Containers

The	containers	of	docker	have	various	main	features	and	these	features	enable	you	to	get
the	advantage	of:

Isolating	procedure

Application	portability
Prevent	any	assuaging	with	the	external	source
Management	of	resource	consumption

As	 compared	 to	 traditional	 virtual-machines,	 they	 require	 fewer	 resources	 for	 the
deployment	of	isolated	applications.

	

You	are	not	allowed	for:

Messing	with	remaining	procedures
Dependency	hell	may	be	caused
May	not	work	on	the	different	system
You	may	be	vulnerable	to	abuse	and	attacks	to	all	resources	of	the	system

Being	depending	and	based	on	the	LXC,	makes	one	technical	aspect	and	these	containers
are	 similar	 to	 directory,	 but	 one	 formatted	 and	 shaped	 one.	 This	 may	 increase	 the
portability	and	gradually	construct	containers.

Every	 container	 may	 layer	 like	 one	 onion	 and	 every	 action	 may	 be	 taken	 within	 one
container	 comprises	 of	 putting	 a	 separate	 block	 that	 actually	 translated	 to	 the	 simple
change	within	 your	 file	 system	 on	 the	 top	 of	 previous	 one.	 Various	 configurations	 and
tools	make	this	set-up	effective	in	a	melodious	manner	altogether	(e.g.	file-system).

	

This	method	will	make	 containers	 extremely	 beneficial	 for	 you	 because	 you	 can	 easily
create	 and	 launch	 new	 images	 and	 containers.	 These	 are	 kept	 lightweight	 because	 of
layered	and	gradual	procedure.

Everything	 required	 a	 file-system	 and	 take	 performing	 roll-backs	 and	 snapshots	 in
particular	 times.	 You	 can	 get	 the	 advantage	 of	 VCS	 (version-control	 systems).	 Docker
containers	 initiate	from	the	docker	 image	that	make	the	base	of	various	other	 layers	and
applications.

	

Docker	Images

These	 images	 establish	 the	 foundation	 of	 docker	 container	 and	 it	 is	 a	 point	 when
everything	 just	 starts	 to	 form.	These	 are	 similar	 to	 the	default	 disk	 images	of	 operating
system	that	are	utilized	to	run	different	applications	on	desktop	computers	and	servers.

These	images	will	help	you	to	get	 the	advantage	of	seamless	movability	across	systems.
You	 can	 make	 consistent,	 dependable	 and	 solid	 base	 with	 each	 and	 everything.	 It	 is
required	to	run	all	applications.

With	 self-contained	 options,	 the	 risks	 of	 system-level	modifications	 or	 updates	may	 be
eliminated	 and	 the	 container	 turns	 out	 to	 be	 immune	 for	 the	 external	 exposure.	 This
immune	is	important	to	prevent	the	hell	dependency.

Some	extra	layers	of	applications	and	tools	are	added	on	the	top	of	this	base	and	the	new
images	may	be	designed	with	 the	help	of	 committed	 changes.	A	new	container	may	be

created	from	saved	things	and	images	to	continue	this	procedure.	The	file	system	(union-
file-system)	brings	every	layer	together	as	one	single	entity	and	you	may	work	with	one
container.

These	 foundation	 images	may	 explicitly	 state	 the	 working	 with	 CLI	 docker	 to	 directly
form	one	new	container	and	they	may	be	specified	in	one	Dockerfile	 to	automate	image
building.

	

Dockerfiles

These	are	scripts	with	a	series	of	consecutive	instructions,	commands	and	directions	that
can	be	executed	to	make	one	new	docker	image.	Every	executed	command	is	translated	to
one	new	layer	of	onion	and	makes	the	end	product.

They	 can	 replace	 the	 procedure	 of	 undertaking	 everything	 repeatedly	 and	 manually.	 A
Dockerfile	 may	 finish	 its	 execution	 and	 you	 may	 make	 one	 image	 to	 start	 one	 new
container.

	

Chapter	2	–	Tips	to	Install	Docker	for	Mac
	

If	you	want	to	install	docker,	you	have	to	check	your	system	requirements.	You	can	create
a	docker	machine	on	Mac	and	copy	your	 images	and	container	 from	default	machine	 to
new	docker	for	HyperKit	VM.	For	Mac,	you	have	to	check	these	requirements:

Your	 Mac	 should	 have	 latest	 model	 with	 intel	 hardware,	 MMU	 (memory
management	virtualization	and	EPT	(extended-page	tablets).
Operating	System	X	10.10.3	Yosemite	or	latest
Almost	4GB	RAM
VirtualBox	 proceeding	 to	 the	 version	 4.3.30	 should	 not	 be	 installed	 and	 it	 is
incompatible	with	the	mac	for	docker.

Note:	 If	 your	 system	 doesn’t	 fulfill	 these	 requirements,	 you	 should	 install	 Toolbox	 of
Docker	that	uses	Virtual	Box	of	Oracle	in	its	place	of	HyperKit.	The	installation	includes
Docker	CLI,	Docker	Enginer,	Docker	Machine	and	Docker	Compose.

	

Step	01:	Run	and	Install	Docker	for	Mac

Double-click	the	Docker.dmg	to	 launch	Docker	 installer	and	use	whale	 to	drag	Moby	 to
the	Applications	folder.

	

Now,	 you	 have	 to	 permit	 Docker.app	 using	 password	 of	 your	 system	 throughout	 the
installation	 procedure.	 You	 will	 need	 privileged	 access	 to	 install	 the	 components	 of
networking	and	links	to	the	apps	of	Docker.

	

Double-click	the	Docker.app	to	initiate	Docker.

	

	

You	will	see	a	whale	in	the	upper	status	bar	that	indicates	the	running	status	of	docker,	and
you	can	easily	access	docker	from	one	terminal.

After	installing	this	app,	you	can	get	one	success	message	and	subsequent	suggestions	and
one	 link	 for	 documentation.	You	 have	 to	 click	 the	whale	 ()	 in	 your	 “status	 bar”	 to
terminate	this	popup.

You	have	to	tap	the	whale	()	and	get	some	Preferences,	and	several	other	choices.

You	 have	 to	 choose	 “About	 Docker”	 to	 authenticate	 that	 your	 system	 has	 the	 latest
version.

	

Well	done!	The	latest	Docker	is	running	for	Mac	on	your	system.

	

	

Step	 02:	 Focus	 on	 the	 Available	 Versions	 of	 the	 Docker	 Engine,	 Machine	 and
Compose

You	 have	 to	 run	 these	 important	 commands	 in	 your	 docker	 to	 check	 the	 version,	 such
as	 docker,docker-compose	 &docker-machine.	 Make	 sure	 these	 all	 are	 compatible	 and
updated	to	the	Docker.app.

Note:	This	example	will	help	you	to	understand	docker	installation.	Your	own	output	can
be	different	with	a	different	version.

	

Step	03:	Run	Examples	and	Explore	Applications

You	 can	 open	 the	 terminal	 of	 command-line	 and	 run	 a	 few	 docker	 commands	 to
authenticate	that	the	docker	is	working	as	per	your	expectations.

There	 are	 some	 commands	 to	 try,	 such	 as	 docker	 version	 is	 good	 to	 check	 the	 latest
version,	and	the	docker	ps	along	with	docker-run-hello-world	is	good	to	authenticate	that
docker	is	successfully	running.

If	you	want	some	adventure,	you	can	start	with	web	server	dockerized.

	

If	you	are	unable	to	find	a	local	image,	the	docker	can	pull	it	for	your	assistance	from	a
docker	hub.

	

In	your	web	browser,	you	can	use	http://localhost/	to	get	your	home	page.	(Meanwhile	you
itemized	 the	default	port	of	HTTP	and	 it	 is	not	essential	 to	affix	 :80	at	 the	 final	part	of
your	URL.)

Note:	Initial	beta	issues	utilized	docker	as	hostname	to	create	the	URL.	The	ports	may	be
exposed	on	the	IP	addresses	(private)	of	VM	and	accelerated	to	the	local	host	without	host
name.	You	can	see	release	for	Beta	09.

You	can	run	docker	ps	although	the	web	serve	may	run	to	check	the	details	of	your	web
server	container.

	

Remove	or	Stop	Images	and	Containers

The	webserver	nginx	will	endure	to	run	the	container	on	the	port	until	you	remove	or	stop
the	container.	Anyone	who	wants	 to	stop	webserver	can	type	docker-stop-webserver	and
initiate	it	once	again	with	the	help	of	docker-start-webserver.

If	you	want	to	remove	and	stop	your	running	container	with	one	command,	you	can	write
docker-rm	 –f-webserver.	 This	 may	 remove	 the	 container,	 but	 it	 is	 not	 good	 to	 remove
nginx	image.	If	you	want	to	list	some	local	images,	you	can	use	docker	images.

If	you	want	to	keep	a	few	images,	there	is	no	need	to	drag	them	once	again	from	the	hub
of	docker.	You	can	remove	one	image	as	long	as	you	don’t	need	it,	you	can	use	docker-rmi
<imageID>|<imageName>	for	 this	procedure.	For	 instance,	docker-rmi-nginx	can	be	 the
right	command	for	you.

	

Preferences

You	can	select	 	—>	preferences	available	in	your	menu	bar.	It	will	help	you	to	set	the

runtime	options.

	

General

Docker	is	available	to	set	for	your	Mac	to	start	it	automatically	after	your	log	in.	You	have
to	uncheck	the	option	of	autostart	login	option	to	avoid	opening	of	docker	session	with	the
start	of	computer.

Docker	is	all	set	to	check	the	updates	and	you	will	get	notification	about	available	updates.
If	the	updates	are	found,	you	can	click	“OK”	to	install	and	accept	updates.	You	can	also
cancel	 them	 to	 use	 your	 current	 version.	You	 can	 also	 disable	 updates	 by	 selecting	 and

	->	check	for	updates.

You	can	exclude	the	VM	from	the	backups	of	your	Time	Machine	and	prevent	your	time
Machine	from	docker’s	backing	up	for	the	virtual	machine.

The	CUPs,	by	default,	your	docker	 for	 the	Mac	 is	all	 set	 to	utilize	 two	processors.	 It	 is
good	to	increase	the	processing	power	of	your	app	by	setting	it	to	lower	or	higher	number
to	have	it	with	docker	for	the	use	of	Mac	with	limited	computing	resources.

Memory:	The	Docker	 (by	default)	 for	Mac	 can	use	 2GB	 runtime-memory.	 It	 is	 allotted
from	the	entire	accessible	memory	on	the	Mac.	It	is	possible	to	increase	the	RAM	on	your
app	to	get	the	advantage	of	quicker	performance	and	adjust	this	number	to	higher	number,
such	as	3	or	lower,	such	as	1.	You	can	adjust	the	memory	usage	of	your	docker.

Advanced

Addition	of	registries:	It	can	be	used	as	a	substitute	to	use	the	hub	of	docker	to	store	the
private	 and	 public	 images	 or	 the	 trusted	 registry	 of	 docker.	 It	 is	 easy	 to	 use	 docker	 to
adjust	your	own	apprehensive	registry.	Users	can	add	URLs	for	insecure	registry	mirrors
and	registries	to	host	all	your	images.

	

HTTP	 Settings	 for	 Proxy:	 Docker	 with	 your	 mach	 can	 detect	 HTTPS	 and	 HTTP
automatically	propagate	and	proxy	settings	to	docker	and	your	containers.	For	instance,	if
you	 want	 to	 set	 proxy	 setting	 for	 you,	 you	 can	 visit	 http://proxy.example.com	 and	 the
docker	may	use	this	proxy	to	pull	containers.

	

Share	Files

If	you	want	 to	share	 files,	you	have	 to	select	directories	on	 the	Mac	 to	share	 them	with
containers.	You	can	click	“+”	to	add	one	directory	and	navigate	the	directory	that	you	are
interested	to	add.

You	have	to	hit	apply	and	restart	the	available	directories	on	the	container	with	the	use	of
bind	mount	of	docker	“-v”	feature.

You	may	face	some	limitations	on	your	directories	and	these	may	be	shared:

	

You	can’t	make	a	subdirectory	of	a	shared	directory.
They	may	not	previously	exist	in	docker.

Privacy

It	is	easy	to	set	docker	for	your	mac	to	auto-send	crash	report,	usage	data	and	diagnostics.
These	details	prove	helpful	 for	docker	 to	bring	 improvements	 in	 the	application	and	get
maximum	context	to	troubleshoot	problems.

You	can	uncheck	any	option	to	prevent	auto-sending	of	any	data.	The	docker	can	prompt
for	extra	information	in	various	cases	and	you	can	enable	auto-send	as	well.

It	 is	easy	to	disable	and	enable	the	auto-reporting	adjustments	with	just	one	click	on	the
popup	for	information,	as	you	start	your	docker.

Reset	or	Uninstall

You	can	 select	 	—>	options	 from	your	menu	bar	 and	hit	Uninstall	 or	Reset	 on	 the
dialog	of	Preferences.

Uninstall:	You	can	select	this	choice	to	remove	this	docker	from	your	system	and
Mac.
Factory	defaults	(Reset):	This	option	will	help	you	to	reset	all	your	options	on	the
docker.	It	will	take	to	the	initial	level	as	you	first	time	install	docker.

You	can	uninstall	docker	for	your	mac	by	using	one	command-line	terminal:

Bash	completion	Installation

If	you	want	to	use	bash	completion,	including	“homebrew-bash-completion	on	your	Mac”
and	bash	completion	script	for	the	docker	compose,	docker	machine	and	docker	is	easy	to
find	in	the	docker.app	and	you	can	get	it	in	resources	or	contents	folder.

You	can	activate	the	completion	of	bash	and	these	files	should	be	symlinked	or	copied	to
the	bash_completion.d	directory.	For	instance,	you	can	use	Homebrew:

	

Chapter	 3	 –	 Understand	 Container,	 Images	 and	 Storage
Drives
	

To	 effectively	 use	 your	 storage	 device,	 you	 should	 learn	 how	docker	 creates	 and	 stores
different	images.	You	have	to	understand	that	these	images	will	be	utilized	by	containers.
You	 should	 have	 short	 introduction	 to	 this	 technology	 to	 enable	 container	 and	 image
operations.

	

Layers	and	Images

Every	docker	image	mentions	one	list	of	layers	(read-only)	that	represent	the	differences	n
filesystem.	The	layers	may	stack	on	the	top	of	every	other	to	make	one	base	of	one	root
filesystem	 of	 the	 container.	 The	 below	 diagram	will	 help	 you	 to	 understand	 the	 image
layers	of	Ubunto	15.04:

Storage	driver	of	docker	is	liable	to	stack	these	layers	and	provide	one	single	incorporated
view.

As	you	create	one	new	container,	you	can	add	one	new,	writable	and	thin	layer	on	the	top
of	 original	 stack.	 This	 layer	may	 be	 known	 as	 container	 layer	 and	 all	 changes	 in	 your
running	container,	such	as	new	file	writing,	modification	of	existing	files,	removing	files
will	be	written	on	the	thin	layer	of	container.	You	can	see	the	diagram	to	understand	this
procedure.

Addressable	Storage	for	Content
The	 1.10	 docker	 is	 introduced	 with	 one	 addressable	 model	 for	 storage.	 This	 is	 a	 new
method	to	work	layer	and	mage	data	on	your	disk.	The	layer	and	image	data	was	stored
and	referenced	with	the	use	of	UUID	(randomly	generated).	In	the	unique	model,	you	can
replace	it	by	one	content	hash.

This	new	model	is	good	to	enhance	the	security	and	offer	one	built-in	method	to	avoid	the
collisions	 of	 ID	 and	 guarantee	 the	 integrity	 of	 data	 after	 push,	 load,	 pull	 and	 save
activities.	It	helps	you	to	share	layers	by	sharing	images	even	from	a	different	built.	See
the	diagram	below	to	understand	this:

You	can	see	that	all	layers	in	the	IDs	are	cryptographic	botches	and	the	ID	container	is	a
random	UUID.	There	are	various	things	to	note	in	your	new	model,	such	as:

Migrate	current	images
Layer	and	image	filesystem	structures

Current	 images,	 pulled	 and	 created	 by	 the	 initial	 docker’s	 versions,	 should	 be	migrated
before	 their	use	with	 the	novel	model.	Migration	may	 involve	calculation	of	checksums
and	it	is	automatically	performed	for	the	first	time	while	you	start	update	of	your	docker
daemon.	Once	the	migration	is	finished,	all	tags	and	images	will	become	new	and	secure
IDs.

This	 migration	 procedure	 is	 transparent	 and	 automatic	 and	 it	 is	 intensive	 on	 a
computational	 level.	 It	 means	 you	 have	 to	 take	 some	 time	 with	 image	 data.	 During
migration	time,	the	docker	daemon	may	not	give	proper	response	to	requests.

You	 can	 get	 the	 advantage	 of	 migration	 tool	 to	 migrate	 current	 images	 to	 new	 format
before	 upgrading	 your	 daemon	 docker.	 The	 upgraded	 daemons	 docker	will	 not	 have	 to
perform	 the	 in-band	 migration	 and	 avoid	 any	 linked	 downtime.	 It	 offers	 one	 way	 to
physically	migrate	current	 images	 to	distribute	 them	to	other	deamons	docker	 in	current
environment	with	recent	docker’s	version.

This	 tool	 is	 offered	 by	 Docker	 and	 it	 work	 as	 one	 container.	 You	 can	 use
https://github.com/docker/v1.10-migrator/releases	to	download	it.

If	you	are	running	migrator	image,	you	have	to	expose	the	data	of	directory’s	host	to	your
container.	If	you	have	to	use	default	data	path	of	docker,	the	command	for	docker	can	be
this	one:

If	you	want	 to	use	devicemapper	 driver	 for	 storage,	you	have	 to	write	—privileged	 choices	 to
give	access	to	storage	driver	to	your	container.
Example	of	Migration

Check	 the	 example	 below	 to	 use	 the	migration	 tool	 on	 docker	 1.9.1	 version	 and	AUFs
drivers	 for	storage.	This	host	may	run	on	one	 t2.micro	AWS	EC2	along	with	8GB	SSD
volume,	 1GB	RAM	 and	 1	 vCPU.	 The	 data	 directory	 (/var/lib/docker)	 of	 docker	 consumed
almost	2GB	space.

https://github.com/docker/v1.10-migrator/releases

With	 the	 help	 of	 time	 Unix	 command,	 the	 docker	 can	 produce	 time	 for	 a	 particular
operation.	If	you	want	to	migrate	seven	images	taking	2GB	space	on	your	disk,	it	will	take
almost	one	minute.	This	may	include	the	time	required	to	pull	the	docker/v1.10-migrator	image
in	 almost	 3.5	 seconds.	 This	 similar	 operation	 on	 the	m4.10	 by	 large	 EC2	with	 160GB
RAM,	8GB	EBS	and	provisioned	IOPS	and	40	vCPUs	may	take	different	time.	See	below
to	improve	this	operation:

It	is	enough	to	see	the	effect	of	hardware	spec	on	the	migration	operation.

	

Layers	and	Containers

The	basic	different	between	one	image	and	one	container	is	writable	layer	on	the	top.	All
writes	to	your	container	may	add	one	new	or	modify	prevailing	data	stored	in	the	writable
layer.	If	you	delete	your	container,	it	will	also	delete	your	writable	layer.	There	will	be	no
changes	in	the	original	image.

Every	 container	 contains	 its	 individual	 writable	 and	 thin	 layer	 and	 all	 changes	 will	 be
secured	in	the	layer	of	container.	It	means	multiple	containers	can	share	the	accessibility	to
the	similar	image	and	have	their	own	state	of	data.	See	the	diagram	of	multiple	containers:

The	storage	drive	in	the	docker	is	responsible	to	manage	and	enable	both	writable	layers
of	 container	 and	 image	 layers.	 The	 storage	 driver	 can	 accomplish	 between	 drives	 in	 a
different	way.	There	are	2	main	technologies	behind	the	container	management	and	image
of	docker.	The	docker	layer	stackable	images	with	CoW	(copy-on-write)	ability.

	

Strategy	of	Copy-on-Write

You	can	optimize	resources	by	sharing	them	and	people	often	do	this	impulsively	in	their
life.	For	instance,	Joseph	and	Jane	are	twins	taking	calculus	classes	at	separate	times	from

separate	teachers.	They	can	share	their	exercise	book	by	passing	it	to	each	other.	Jane	has
to	 complete	 the	 homework	 on	 the	 11th	 page	 his	 book.	 Now,	 the	 original	 exercise	 book
can’t	be	changed	and	only	Jane	can	copy	this	page.

Copy-on-write	 strategy	 is	 simple	 for	 copying	 and	 sharing.	This	 strategy	 enables	 system
(that	 requires	 similar	 data)	 processes	 the	 data	 instead	 of	 getting	 their	 own	 copy.	 At	 a
particular	 point,	 if	 one	 procedure	 requires	 some	 modification	 to	 write	 data,	 only	 the
procedure	 that	 should	 be	 written	 will	 copy	 the	 data.	 All	 other	 procedures	 will	 be
continuing	to	the	use	of	actual	data.

Docker	 requires	one	copy-on-write	 technology	with	containers	 and	 image.	This	 strategy
can	optimize	 the	performance	of	your	 container	 and	disk	 space.	 In	 the	next	 section,	 the
system	 will	 work	 to	 leverage	 the	 copy	 with	 containers	 and	 images	 via	 copying	 and
sharing.

	

Promote	Small	Images	via	Sharing

You	have	to	look	at	the	CoW	and	image	layers	technology.	All	images	have	layers	in	the
local	 storage	 of	 docker	 and	managed	 by	 the	 driver	 of	 storage.	 The	Linux-based	 docker
may	 host	 this	 under	 /var/lib/docker/.	 These	 clients	 often	 report	 the	 images	 layers	 and	 the
below	command	will	prove	helpful	for	you:

You	can	notice	output	because	these	commands	can	actually	grab	four	image	layers.	Every
line	is	listing	the	layer	images	and	UUID	has.	Combination	of	these	layers	will	help	you	to
make	your	favorite	images.

Every	layer	will	be	stored	in	the	directory	in	the	host	of	docker.	It	may	use	local	storage
area.	 Earlier	 versions	 of	 docker	 were	 storing	 every	 layer	 in	 one	 direction	 with	 similar
name	as	the	actual	name	of	image	layer.	If	you	are	using	1.9.1	version	of	docker,	you	can
apply	this	command	and	get	desired	results.	See	the	instruction	below:

Check	the	matching	procedure	of	four	directories	with	IDs	layer	of	downloaded	images.
You	can	compare	with	similar	operations	perfumed	on	the	host	version	1.10	of	docker.

You	can	see	matchup	procedure	of	all	four	directories	with	the	layer	IDs	of	images.

You	 can	 notice	 different	 among	 image	 management	 in	 afore	 and	 after	 versions.	 All
docker’s	version	enables	images	to	carefully	share	the	layers.	For	instance,	you	can	grab
one	 image	 to	 share	 some	 similar	 layers	 of	 image	 as	 one	 image	 and	 it	 may	 be	 already
pulled.	The	daemon	Docker	can	 recognize	 this	and	pulls	 the	 required	 layers	out	of	 their
stored	location.	The	second	pull	proves	helpful	to	pull	images	with	common	features	and
layers.

This	illustration	can	help	you,	just	start	with	15.04	Ubuntu	image	that	you	have	recently
pulled	and	make	some	changes	into	it	to	build	a	new	image.	You	can	use	docker	build	or
dockerfile	command	to	make	your	work	easy.

Take	empty	directory	and	create	one	simple	dockerfile	to	start	with	15.04	ubuntu	image.

You	can	add	one	new	file	and	it	will	be	known	as	new	files	in	the	/tmp	directory	of	images
and	with	a	line	“Hello	World”.	Once	you	have	done	with	it,	the	dockerfile	will	have	these
two	lines:

You	have	to	close	and	save	file	and	from	the	terminal	in	similar	folder	as	Dockerfile,	you
can	run	the	given	commands:

Note:	 The	 (.)	 period	 is	 available	 at	 the	 end	 of	 above	 command	 and	 this	 period	 is
important.	It	will	communicate	with	docker-build	command	to	utilize	the	current	directory
and	build	the	context.

The	above	shown	output	will	show	you	the	new	image	and	its	ID	will	be	94e6b7d2c720.

Execute	 the	 docker-images	 command	 to	 authenticate	 the	 changed-unbuntu	 image	 in	 the
local	storage	area	of	docker	host.

You	 have	 to	 run	 the	 history	 of	 docker	 command	 to	 check	 the	 layers	 of	 images	 used	 to
create	changed-unbuntu	pictures.

The	history	of	docker	output	reveals	the	new	image	94e6b7d2c720	layer	at	top.	This	new
layer	of	image	is	easy	to	add	because	it	is	created	by	the	tmp/newfile	of	hello	world	in	the
dockerfile.	 The	 four	 image	 layers	 under	 it	 are	 accurately	 similar	 image	 layers	 to	make
Ubuntu:	15.04	pictures.

Note:	 under	 the	 addressable	 storage	 content	 model	 familiarized	 with	 1.10	 docker	 and

history	data	of	image	will	not	be	stored	in	the	configuration	file	with	every	image	layer.	It
is	stored	as	one	string	of	text	in	the	single	configuration	to	whole	image.	This	may	result
in	 the	 similar	 image	 layer	 and	 it	 will	 be	 shown	 mixing	 in	 the	 docker-history	 output
command.	 This	 behavior	 is	 normal	 and	 you	 can	 ignore	 it.	 These	 types	 of	 images	 are
commonly	known	as	level	images.

You	can	check	 the	changed-ubuntu	 image	because	 it	doesn’t	have	an	 individual	copy	of
each	layer.	You	can	see	in	the	below	diagram	that	the	image	is	shared	with	four	layers	with
15.04	ubuntu	image:

The	docker-history	command	will	display	the	size	of	every	layer	of	image.	You	can	notice
the	94e6b7d2c720	layer	consumes	only	12	byes	space	on	the	disk.	It	means	that	the	image
of	 changed-ubuntu	 requires	 only	 12	 bytes	 extra	 space	 on	 the	 docker.	All	 layers	 already
exist	on	the	host	docker	and	shared	by	various	other	images.

Sharing	image	layers	make	the	images	of	containers	and	docker	really	space	efficient.

	

Copying	can	Make	the	Containers	Efficient

Container	is	one	docker	image	with	one	thin	writable	and	layer	of	container.	This	diagram
will	help	you	to	understand	the	layers	of	container	on	the	basis	of	15.04	ubuntu	image:

All	writes	on	the	container	are	secured	in	one	writable	layer	of	container.	The	other	layers
are	 only	 RO	 (read	 only)	 layers	 and	 you	 can’t	 change	 them.	 You	 can	 use	 multiple
containers	 to	 share	 one	 single	 foundation	 image.	 The	 diagram	 below	 will	 help	 you	 to
understand	the	sharing	of	images	by	multiple	containers.	Every	container	may	possess	its
individual	layers.	See	the	image:

As	you	modify	 the	existing	file	 in	a	container,	 the	docker	utilizes	your	storage	driver	 to
perform	operation	of	CoW.	This	may	specify	the	operations	on	the	basis	of	storage	driver.
For	OverlayFS	and	AUFS	storage	drivers,	the	CoW	operations	can	be	as	follows:

You	can	search	through	the	layers	of	image	to	update	file.	This	procedure	starts	at
the	 top	of	your	new	layer	and	work	 in	 the	downward	direction	 to	 the	 foundation
layer.	It	will	work	on	one	layer	at	a	time.
You	can	perform	one	“copy-up”	operation	on	initial	copy	of	your	file.	The	copy	up
may	copy	your	file	up	to	the	individual	container	with	thin	and	writable	layer.
You	can	modify	the	copy	of	file	in	thin	writable	layer	of	your	container.

ZFS,	Btrfs	and	many	other	drivers	can	handle	the	CoW	(copy-on-write)	contrarily.

	

Storage	Drive	and	Data	Volumes

As	you	delete	one	container,	the	data	written	to	this	container	may	not	be	stored	in	the	data
volume	is	also	deleted	with	this	container.	The	data	volume	is	one	file	or	directory	in	the
filesystem	mounted	directly	in	one	container.	These	volumes	will	not	be	controlled	by	any
storage	driver.

Data	 volumes	 live	 exterior	 of	 local	 storage	 on	 the	 host	 docker.	 It	 can	 reinforce	 the
independence	 from	 the	 control	 of	 storage	 driver.	 As	 one	 container	 is	 deleted,	 the	 data
stored	in	the	volumes	persists	on	the	host	docker.

	

Conclusion
	

Docker	is	designed	for	different	applications	and	container.	These	containers	are	good	for
developers	to	develop	codes	and	make	their	own	assignments.	There	are	different	tools	in
docker	for	your	assistance	and	you	can	use	these	tools	to	create	different	things.

This	open	source	program	is	good	to	automate	the	deployment	of	software	and	container
with	extra	 layer	of	abstraction	and	automation.	 In	 this	book,	you	will	 find	useful	details
about	docker	and	containers.

	
	
	

	Introduction
	Chapter 1 – Getting Started with Docker
	Chapter 2 – Tips to Install Docker for Mac
	Chapter 3 – Understand Container, Images and Storage Drives
	Conclusion

