

Jennifer Davis & Katherine Daniels

Boston

Effective DevOps
Building a Culture of Collaboration, Affinity, and

Tooling at Scale

978-1-491-92630-7

[FILL IN]

Effective DevOps
by Jennifer Davis and Katherine Daniels

Copyright © 2015 Jennifer Davis and Katherine Daniels. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc. , 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com .

Editor: Brian Anderson
Production Editor: FILL IN PRODUCTION EDI‐
TOR
Copyeditor: FILL IN COPYEDITOR

Proofreader: FILL IN PROOFREADER
Indexer: FILL IN INDEXER
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

February 2016: First Edition

Revision History for the First Early Release Edition
2015-05-05: First Release
2015-07-22: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491926307 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Effective DevOps, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author(s) have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author(s) disclaim all responsibil‐
ity for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491926307

Table of Contents

1. Introduction. 7

2. What is Devops?. 9
The History of Devops 10

Developer as Operator 10
The Advent of Software Engineering 10
The Age of the Operating System 12
The Beginnings of a Global Community 13
The Age of Applications and the Web 14
Agile Infrastructure 16
The Beginning of DevopsDays 17

Foundational Devops Terminology and Concepts 17
Waterfall 18
Extreme Programming 19
Lean 19
ITIL 20
Agile 20
Community of Practice and Community of Interest 21
Blame Culture 22
Silos 23
Blamelessness 24
Retrospective 25
Organizational Learning 26
Post-Mortem 26

Devops: Adding it All Up 27
Common Devops Misconceptions 28

Devops only involves developers and system administrators. 28
Devops is a team. 28

iii

Devops is a job title. 29
Devops is only relevant to web startups. 30
Devops is about the tools. 30
You need a devops certification. 30
Devops means doing all the work with half the people. 31
There is one “right way” (or “wrong way”) to do devops. 31
It will take X weeks/months to implement devops. 32
Devops is about automation. 32
Devops is a fad. 33

The Current State of Devops 34
The Devops Compact 34
What’s Next in this Book 36

3. Collaboration: Individuals Working Together. 37
Introduction 37
Individual Differences and Backgrounds 37

Goals 38
Backgrounds 38
Working Styles 41

Individual Growth 45
The Right Mindset 45
Organizational Pressure 50
Superstars and Superflocks 52

Negotiation Styles 53
From Competition to Collaboration 55

Communication 55
Why Communicate 55
What we Communicate 58
How we Communicate 58

Trust and Empathy 61
Developing Empathy 62
Developing Trust 64

4. Hiring: Choosing Individuals. 67
Introduction and Audience 67
Determining your Hiring Needs 67

Position and Skills 67
Timeframe 68
Budget and Resources 69

Sourcing 70
Diversity 71

Interviewing 76

iv | Table of Contents

Before the Interview 76
During the Interview 77
After the Interview 78

Onboarding 79
Retention 81

Compensation 82
Growth Opportunities 84
Workload 85
Culture and Atmosphere 87

Case Studies 91
Measuring Success 98
Troubleshooting 102

We aren’t getting enough candidates. 102
We aren’t getting diverse candidates. 104
Interviews are a waste of time for the team. 104
People aren’t accepting our offers. 105

Conclusion 105

5. Tools: Selection and Implementation. 107
Introduction and Audience 107
Why Tools Matter 109
Why Tools Don’t Matter 112
Tool Ecosystem Overview 115

Configuration Management 115
Version Control 115
Infrastructure Automation 116
System Provisioning 116
Hardware Lifecycle Management 117
Continuous Integration 118
Test and Build Automation 118
Continuous Delivery 120
Application Deployment 120
Continuous Deployment 120
Metrics 120
Logging 121
Monitoring 121
Alerting 122
Events 123

Auditing your Tool Ecosystem 125
Communication 126
Moving Beyond the Basics 136

Optimization: Selection and Elimination of Tools 141

Table of Contents | v

Version Control 142
Infrastructure Automation 146
Artifact Management 149
Work Visualization 149
Metrics 152

Improvements: Planning and Measuring Change 153

vi | Table of Contents

CHAPTER 1

Introduction

<section data-type="sect1"> <aside data-type="sidebar"> <h5>Early Release Edi‐
tion</h5>

<p>This book is a work in progress – new chapters will be added as they are written.
We welcome feedback – if you spot any errors or would like to suggest improve‐
ments, please let us know.</p> </aside>

<h1>Who This Book Is For</h1>

<p>This book is aimed primarily at managers and individual contributors in leader‐
ship roles who see friction within their organizations and are looking for concrete,
actionable steps they can take towards implementing or improving a devops culture
in their work environment. However, individual contributors of all levels who want
practical suggestions for easing some of the pain points they face will find actionable
takeaways.</p>

<p>The audience is made up of a mix of professional roles, as devops is a professio‐
nal and cultural movement that stresses the iterative efforts to break down informa‐
tion silos, monitor relationships and repair when misunderstandings arise between
teams in an organization. Many may be leaders within their organizations who have
worked closely with developers or operations engineers.</p>

<p>The book covers a wide range of devops skills and theory, including an introduc‐
tion to the basic ideas and concepts. It is assumed that you will have heard of the term
devops and perhaps have a rudimentary understanding of devops, tools and pro‐
cesses used in the field.</p>

<p>By the end of Effective Devops, our hope is that you will have a solid understand‐
ing of what having a devops culture means practically for your organization, how to
encourage effective collaboration to help indivdiual contributors from different back‐

7

grounds and teams deal with different goals and working styles to work together pro‐
ductively, how to help teams collaborate to maximize value between them while
increasing employee satisfaction and balancing conflicting organizational goals, and
how to choose tools and workflows for your organization that complement your
organization.</p> </section>

<section data-type="sect1"> <h1>How this Book Is Organized</h1>

<p>This book is broken down into several parts, starting with an introductory chap‐
ter and then covering each of the pillars of devops.</p>

 Chapter I, What is Devops Chapter II, Collaboration: Individuals
Working Together Chapter III, Hiring: Choosing Individuals Chap‐
ter IV, Affinity: From Individuals to Teams Chapter V, Tools: Choosing and
Using Them Chapter VI, Scale: Scaling Everything UP </section>

<section data-type="sect1"> <h1>Conventions Used in This Book</h1> </section>

<section data-type="sect1"> <h1>Using Code Examples</h1> </section>

<section data-type="sect1"> <h1>How to Contact Us</h1>

<p>We have a web page for this book, where we list errata, examples, and any addi‐
tional information. You can access this page at http://effectivedevops.net.</p>

<p>To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.</p> </section>

<section data-type="sect1"> <h1>Acknowledgements</h1>

<p>Effective Devops would not have been possible without the help and guidance of
many friends, colleagues, and family members.</p> </section> </section>

8 | Chapter 1: Introduction

http://effectivedevops.net.</p>
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

CHAPTER 2

What is Devops?

What is devops? Some might define it as a software development method, while oth‐
ers might think that it is a set of tools and technologies such as configuration man‐
agement and continuous delivery. We would argue instead that devops is a cultural
movement that seeks to improve both software development and the professional
lives of the people involved in the field. In order to fully understand what we mean
when we’re talking about devops, it is necessary to understand not only what the con‐
cept means and how it is used today, but also the history of how it came to be.

No cultural movement exists in a vacuum. Technology is part of culture. We are born,
accept what is and introduce new cultural aspects as we live. The way that our overall
culture influences technology, and technology influences culture shapes the fabric of
how we live our lives.

Pre-1880, walking was the primary mode of transportation. Cities were compact with
residences and workplaces intermingled. Streets were narrow and inconsistently
paved. As automobiles were introduced, cities made decisions about the organization
and infrastructure either in favor of automobiles or existing pedestrians. These days,
some cities forgo infrastructure planning that factors in pedestrians at all creating
busy roadways with no safe way to travel by foot. Walking shaped the city and how
we worked, and the arrival of new technology changed the landscape accordingly.

Devops is part of the cultural weave that shapes how we work and why. While devops
does involve certain tools and technologies, an equally important part of our culture
is our values, norms, and knowledge. Examining how people work, the technologies
that we use, how technology influeces how we work, and how people influence tech‐
nology can help us make intentional decisions about the landscape of our industry.

This chapter will delve into the evolution of software engineering as it pertains to the
history of devops, define the terms and ideas closest to the movement, and address

9

some common misconceptions that people often have about the subject. Unlike most
histories on the topic, which often start slightly before the first DevOpsDays confer‐
ence in 2009, we will go back further so the reader can gain a richer understanding of
the ideas and principles that have shaped our industry over time, and how that con‐
tinued evolution has changed and grown, making devops not only necessary but
inevitable.

The History of Devops
In this section we will examine the history of the industry and how the recurring pat‐
terns and ideas have shaped the devops movement.

Developer as Operator
In the beginning, the developer was the operator. Early programmers were actually
known as human computers. Jean Bartik, one of the original programmers of the
Electronic Numeric Integrator and Computer (ENIAC) learned how to program the
machine by reviewing hardware and logic diagrams of the device. Programming the
machine and its 18,000 vacuum tubes meant setting dials and changing out cable
connections across 40 control panels. At the time, the focus was on the hardware
engineering and not on the software that Bartik, Kathleen Antonelli, Frances Holber‐
ton, Marlyn Meltzer, Frances Spence, and Ruth Teitelbaum built on the ENIAC.
These women felt the pain to manage the systems as they had to replace fuses and
cables. There were literal bugs in the system.

The Advent of Software Engineering
“Coming up with new ideas was an adventure. Dedication and commitment were a
given. Mutual respect was across the board. Because software was a mystery, a black
box, upper management gave us total freedom and trust. We had to find a way and we
did. Looking back, we were the luckiest people in the world; there was no choice but to
be pioneers; no time to be beginners.

—Margaret Hamilton

In 1961, President John F. Kennedy set the challenge that within the decade that the
United States should land a man on the moon, and return him safely to Earth. With a
deadline and no employees with the necessary skills, the National Aeronautics and
Space Administration (NASA) needed to find someone to write the onboard flight
software needed to accomplish this task. NASA enlisted Margaret Hamilton, a mathe‐
matician at Massachusetts Institute of Technology (MIT) to lead writing this critical
software. In her pursuit of writing this complex software, Hamilton is credited for
coining the term “software engineering”. She also created the concept of priority dis‐
plays, software that would alert astronauts to update configurations in realtime. She
instituted a set of requirement gathering that included:

10 | Chapter 2: What is Devops?

• debugging all individual components
• testing individual components prior to assembly
• integration testing

Space flight was not the only area software was becoming critical. As hardware
became more available, people became more concerned about the impending com‐
plexity of software that did not follow standards across other engineering disciplines.
The growth rate of systems and the emerging dependence on these systems was
alarming. In 1967, discussions were held by the NATO Science Committee compris‐
ing of scientists across countries and industries to do an assessment of software engi‐
neering. A Study Group on Computer Science was formed in the fall of 1967. The
goal was to focus attention on the problems of software. They planned a conference
inviting 50 experts from all areas of industry. The 3 working groups of this confer‐
ence were the Design of Software, Production of Software, and Service of Software.
The goal was an effort to define, describe, and set in motion solving the problems
with software engineering.

At the NATO Software Engineering Conference of 1968, key problems with software
engineering were identified including:

• defining and measuring success
• building complex systems requiring large investment and unknown feasibility
• producing systems on schedule and to specification
• economic pressures on manufacturers to build specific products.

In 1969, the software that Hamilton’s team wrote overrode a manual command that
could have led to the Eagle not landing on the moon. The freedom and trust that the
management gave to the team of engineers working on the onboard flight software
and the mutual respect between team members, led to software that facilitated one of
mankind’s leaps in technology as Neil Armstrong stepped on the moon.

The interactions between management and engineering were studied further by
Diane Vaughan, an American sociologist who did extensive research on the technical
and cultural aspects that led to the space shuttle Challenger disaster in 1986. In Janu‐
ary of that year, the space shuttle orbiter Challenger broke apart 73 seconds into its
flight, killing its 7 crew members. While others did much to evaluate the technical
reasons for the disaster, Vaughan was interested in the human side of things.

When investigating whether or not there was any misconduct during the months
leading up to Challenger’s launch, Vaughan found out that all of the managers
involved had been complying with NASA’s requirements throughout. These require‐
ments included rules about how to make decisions about the technical risks of the
equipment involved with space flight. Vaughan said, “We discovered that they could

The History of Devops | 11

set-up the rules that conformed to the basic engineering principles that allowed them
to accept more and more risk. So they established a social normalization of the devi‐
ance, meaning once they accepted the first technical anomaly, they continued to
accept more and more with each launch. It was not deviant to them. In their view,
they were conforming to engineering and organizational principles. That was the big
discovery. I concluded it was mistake, not misconduct.”

In addition to this idea of the normalization of deviance, Vaughan has done research
on early warning signs that point to issues later on down the road. Early signs are
often considered in the air traffic control industry, where people and organizations
are trained to identify these early warning signs to try and avoid having small mis‐
takes turn into large catastrophes. Looking at the ideas of failure and risk from a
human, sociological point of view in addition to a technical one was something that
would be of great value in many industries going forward.

The Age of the Operating System
In 1979, Usenet was started by university students- Tom Truscott, Jim Ellis, and Steve
Bellovin. It started out as a simple shell script that would automatically call different
computers, search for changes in files on those computers, and copy changes from
one computer to another using UUCP (Unix-to-Unix copy, a suite of programs
allowing for file transfer and remote command execution between computers). To
improve performance it was then rewritten in C. Ellis gave a talk on the “Invitation to
a General Access UNIX network” at an academic Unix users group known as Usenix.
This was one of the first ways to communicate and share knowledge across organiza‐
tions with computers and grew rapidly in use.

While this tool started to facilitate the sharing of knowledge across universities and
corporations, this was also a time where how companies were run was considered
part of the secret sauce. Talking about solving problems outside of the company was
not done, because knowledge of both the problems and the solutions was viewed as
part of the competitive advantage. There was an intentional cultural drive for com‐
petitors to work inefficiently. This stymied a great deal of collaboration and limited
the effectiveness of the communication channels that were available. This cultural
siloization reflected in how companies grew with complexity.

As systems complexity grew, this led to the need for specialization of skills and role
proliferation. This saw the formation of the system administrators specializing in sys‐
tems management and minimizing costs of systems, and the software engineers spe‐
cializing in creation of new products and features to address the new needs. Other
more specialized groups were siloed off as well with the NOC (network operations
center), QA, security, databases, and storage all becoming separate areas of concern.

12 | Chapter 2: What is Devops?

In 1985, the [National Science Foundation Network](http://www.nsf.gov/about/
history/nsf0050/internet/launch.htm) (NSFNET) was founded to promote advanced
networking in the United States.

This created the institutional Tower of Babel with the different silos all speaking dif‐
ferent languages due to differing concerns. Along with this siloization, the specific
pains of software and the hardware that it ran on was also separated. No longer were
developers exposed to the late night pages of down systems from being on-call, or the
anger expressed by unsatisfied users. Additionally, programming’s trend towards
higher level languages meant that development became more abstracted, moving fur‐
ther and further away from the hardware and the systems engineers of the past.

In an effort to be proactive and prevent service outages, system administrators would
document the set of steps required to do regular operations manually. System admin‐
istrators borrowed the ideas of “root cause analysis” from total quality management
(TQM). This led in part to additional rigor and attitudes towards minimizing risk.
Lack of transparency and change management became the entropy demon that
needed to be defeated.

The Beginnings of a Global Community
As interconnected networks allowed programmers and IT practitioners to begin
sharing their ideas online, people began looking for ways to share their ideas in per‐
son as well. User groups, where practitioners and users of various technologies could
meet to discuss their fields, began to grow in number and popularity. One of the big‐
gest worldwide user groups was DECUS, the Digital Equipment Computer Users’
Society, which was founded in 1961 with members consisting mostly of programmers
who wrote code for or maintained DEC computer equipment.

The US chapter of DECUS ran a variety of technical conferences and local user
groups (LUGs) throughout the United States, while chapters in other countries were
doing the same globally. These conferences and events began to publish the papers
and ideas presented at them in the form of DECUS proceedings, which were made
available to members as a way of sharing information and growing the total knowl‐
edge of the community as well as the interconnectedness of its members. A similar
community specifically for system administrators was found with the Unix Users
Group (founded in 1975 and known today as USENIX) and its special interest group,
the System Administrators Group (known later as SAGE and today as LISA). Sepa‐
rately, NSFNET “Regional-Tech” meetings evolved into the North American Network
Operators’ Group (NANOG), a community specfically for network administrators to
increase collaboration to make the Internet better.

Contrary to the focus on knowledge sharing that was a primary feature of these local
and global user groups, there was at the same time a great deal of secrecy in technol‐
ogy companies regarding their practices. The 1987 film Wall Street exemplified these

The History of Devops | 13

http://www.nsf.gov/about/history/nsf0050/internet/launch.htm
http://www.nsf.gov/about/history/nsf0050/internet/launch.htm

ideals, with the character of Gordon Gekko famously saying, “Greed, for lack of a bet‐
ter word, was good”. Companies, in their quests for their own financial and material
successes, kept their processes as closely-guarded secrets.

Companies kept their business practices and technical best practices to themselves,
because if their competitors had inefficient practices, that meant their own relative
success would be more likely. Employees were strongly discouraged or even explicitly
forbidden from sharing knowledge at industry conferences to try and maintain this
sort of competitive advantage. This is in stark contrast to more recent developments,
where communities and conferences are growing around knowledge sharing and
cross-collaboration between companies.

Trade Secrets and Proprietary Information

Information that is not generally known to the public that is suffi‐
ciently secret to confer economic or business advantage is consid‐
ered a trade secret. Information a company possesses, owns or
holds exclusive rights to is considered proprietary. Software, pro‐
cesses, methods, salary structure, organizational structure, cus‐
tomer lists are examples of items that can be considered a
company’s proprietary information. For example, proprietary soft‐
ware is software for which the source code is generally not available
to end users. All trade secrets are proprietary; not all proprietary
information is secret.
In addition to the changes in culture in the industry, commoditiza‐
tion and the costs of knowledge and technology impact what com‐
panies keep secret within their organizations.

The Age of Applications and the Web
In the late 90s, with the ease that new web applications could be created, people at
companies that needed to be able to grow and change quickly to reflect the rapidly
changing market had a problem they needed to overcome.

It was a time of angst and frustration. Endemic in system administration, we had the
culture of “No” and “It’s critical to preserve stability”. In 1992, Simon Travaglia started
posting a series on Usenet called The Bastard Operator From Hell(BOFH) that
described a rogue sysadmin who would take out his frustration and anger on the
users of the system. Toxic operations environments led to individuals viewing the
rogue sysadmin as a hero and emulating behaviors.

In development, we had a culture of “It’s critical to get these changes out” and “I don’t
want to know how to do that because I’ll get stuck doing it”. In some environments
this led to developers risking systems by finding unofficial ways to work around the
processes in place. This led to additional massive cleanups which further solidified

14 | Chapter 2: What is Devops?

http://en.wikipedia.org/wiki/Bastard_Operator_From_Hell

the idea that change is extremely risky. For the singletons in either group that tried to
make change to the overall processes, they’d find themselves stuck in the mire of
becoming the subject matter expert, locked into the positions of support that became
critical to maintain.

In 2001, an invite went out to folks interested and active in the Extreme Program‐
ming (XP) community and others within the field. XP was a form of Agile develop‐
ment that was designed to be more responsive to changing requirements than
previous development software methodologies, known for short release cycles, exten‐
sive testing, and pair programming. Seventeen software engineers got together in
Snowbird Utah to discuss software development. They summarized their shared
common values to capture the adaptiveness and response to change that they wanted
to see in development with an explicit emphasis on human factors. This Agile Mani‐
festo was the rallying cry that started the agile movement.

In 2004, Alistair Cockburn, a software developer who was one of the co-authors of
the Agile Manifesto, described Crystal Clear a software development methodology
for small teams based off of 10 years of research with successful teams. It described 3
common properties frequent delivery of usable code, reflective improvement, and
osmotic communication between developers. Crystal also described 3 priorities
safety, efficiency, and habitability.

This movement continued in software development for several years, and later began
to have its influence felt elsewhere. In 2006, Marcel Wegermann wrote an essay on
how to take the principles of Crystal Clear, Scrum, and Agile and applying them to
the field of system administration. Along with Agile and Scrum, it contained several
ideas that Wegermann argued could be applied to system administration as well as
software development, wanting to bring newer and better practices to the field. In
addition to giving a lightning talk on the subject where he suggested ideas such as
version control for the Linux operating system’s /etc directory, pair system adminis‐
tration, and operational retrospectives, he also started the Agile System Administra‐
tion mailing list.

As web technology continued to grow and evolve, the ways that people communica‐
ted and collaborated online did too. Twitter, an online social networking service was
introduced to the world not even a year later in 2006. At first it seemed very much
like a tool for people wanting to share information in an abbreviated format, for short
attention spans or for celebrities to reach out to fans. In 2007, however, the South by
Southwest Interactive conference saw the use of Twitter skyrocket as Twitter placed
screens in the hallways streaming twitter messages. Twitter quickly became a way for
ad-hoc communities to be formed across the globe. For conferences, it was a way to
get additional value out of the multi-track systems and connect with like minded
individuals. The hallway track, a phrase often used to describe the interactions and
conversations that take place in the hallways of conferences, had expanded from the

The History of Devops | 15

physical world to the web where anyone could discover and participate in these ad-
hoc interactions.

Agile Infrastructure
At the Agile 2008 conference in Toronto, Andrew Shafer, a former software developer
who was starting to take a great interest in IT concerns, proposed an Agile Infrastruc‐
ture session. At the same conference, Patrick Debois spoke on incorporating scrum
into operations “Agile Operations and Infrastructure: How Infra-gile are You?”. Pat‐
rick worked with development and operations teams on a project to test data center
migration. One day he would be working on agile development with the developers
and the next day he would be firefighting with the operations team leading to a lot of
context switching; the switching from one process or task to another. Context switch‐
ing for humans cost anywhere from 5 to 30 minutes in lost productivity per context
switch. Observing that he wasn’t the only one interested in Agile system administra‐
tion, Patrick contacted Andrew out of band to discuss agile system administration.

Around the same time, individual companies were beginning to not only make great
strides towards processes that allowed them to keep up with the increasingly rapid
changes of the internet, but were also beginning to share some of their stories pub‐
licly through communities that were building up around popular conferences like the
[O’Reilly Velocity Conference](http://velocityconf.com/).

One such company was Flickr, a popular community site for photographers. After
being purchased by Yahoo in 2005, Flickr needed to move all of the services and data
from Canada to the United States. John Allspaw, a web operations enthusiast who had
worked in systems operations for years, had joined the company as the Flickr Opera‐
tions Engineering Manager to help with its scaling and now was charged with this
massive migration. At the time, Flickr hosted over 3 billion photos with 40000 photos
being served per second. Paul Hammond joined the Flickr Development team in
2007, and became the Flickr Engineering manager in 2008 heading the development
org in collaboration with Allspaw.

Hammond and Allspaw co-presented at Velocity Santa Clara 2009 “10+ Deploys per
Day,” highlighting the revolutionary change that allowed the team to move rapidly.
They didn’t do this by setting out to break down silos or start a big professional and
cultural movement. They were able to collaborate a great deal in their work at Flickr,
which was in contrast to Allspaw’s previous experiences at Friendster, where emo‐
tions and pressures ran high and there was little in the way of inter-team collabora‐
tion. The opportunities to work together that presented themselves were something
that both managers took advantage of. Neither of them woke up one day and decided
that things needed a big change, but rather they recognized the little pieces of work‐
ing together that made things work well. They took note of these little things that
they did together, which ended up becoming much bigger cultural changes.

16 | Chapter 2: What is Devops?

http://velocityconf.com/

The Beginning of DevopsDays
“Don’t just say no, you aren’t respecting other people’s problems… #velocityconf
#devops #workingtogether”

—Andrew Clay Shafer (@littleidea)

This tweet, from Andrew Shafer on June 23 2009, caused Patrick Debois to lament
that even though he was watching remotely, he was unable to attend that year’s Veloc‐
ity conference in person. Paul Nasrat, at the time a lead systems integrator at the
Guardian, tweeted in reply, “Why not organize your own Velocity event in Belgium”.
Inspired Patrick did just that, creating a local conference that would allow for devel‐
opers, system administrators, toolsmiths and others in those fields to come together.
In October of that year, the first DevopsDays conference took place in Ghent. Two
weeks later, he wrote:

“I’ll be honest, for the past few years, when I went to some of the Agile conferences, it
felt like preaching in the desert. I was kinda giving up, maybe the idea was too crazy:
developers and ops working together. But now, oh boy, the fire is really spreading.”

—Patrick Debois

That first DevopsDays event ignited the powder keg of unmet needs, people separated
in silos frustrated with the status quo identified with devops and a way of describing
the work they felt they were already doing. The conferences grew and spread as indi‐
viduals started up new DevOpsDays across the world. With the availability of the
real-time communication platform of twitter, the hallway track never ended and
#devops took on a life of its own.

As we reflect on history, we see the trend of a focus on the outcome. Many have seen
the “10+ deploys a day” presentation from John Allspaw and Paul Hammond and
taken away from it that the importance was the 10+ deploys per day, the quantity of
deployments in a day. The title “10+ deploys a day” was the hook which pulled people
in to see the presentation. The content of the talk how they achieved something that
seemed impossible and not a simple metric. You can’t declare “doing devops success‐
fully” simply because you are “doing 10 deploys a day”. This fixation on an outcome
increases the stress to the human who is already stressed out because workflow of the
organization doesn’t allow for the adventurous dedication and commitment enabled
with freedom and trust to be happy and productive humans building new leaps for
mankind. As we will show in later chapters, focusing on the processes is a better way
of thinking, because devops is about how we do things, and why, not just what we end
up doing with those things.

Foundational Devops Terminology and Concepts
In order to effectively discuss the tools and techniques required to implement devops,
it is necessary to define some of the major terms and concepts surrounding it. When

Foundational Devops Terminology and Concepts | 17

we take a look at the history of both software development and operations, we notice
several broad concepts there that should be examined in order to understand the evo‐
lution of devops. Some of these terms are not foundational concepts of devops itself,
but anti-patterns that devops tried to overcome. This section will discuss those con‐
cepts as well as ideas related to devops as it exists today and end with a definition of
devops itself.

Waterfall
The waterfall methodology or model is a software development process with an
emphasis on a sequential progression from one stage of the process to the next adap‐
ted from hardware engineering. One of the driving forces behind this model was the
idea that bugs were easier to fix the earlier in the development process they were dis‐
covered, and so sought to ensure that each stage of the process would be completely
finished before any work was started in the next. The original stages were require‐
ments specification, design, implementation, integration, testing, installation, and
maintenance, and progress was visualized as flowing from one stage to another.

Figure 2-1. A Visual Representation of the Waterfall Model

Software development under the waterfall model tended to be very highly structured,
with a large amount of time being spent in the requirements and design phases, with
the idea that if both of those were completed correctly to begin with it would cut

18 | Chapter 2: What is Devops?

down on the number of mistakes that would be found later. Part of the appeal of this
stemmed from the high costs of delivering and changing software that was dis‐
tributed on CD-ROMs or floppy disks to be installed by hand. Since fixing a bug on
such software would require, for example, manufacturing and distributing another
CD-ROM with a software patch, it was much more cost-effective to spend the time to
get the design and specifications right up front.

The waterfall method makes sense in these cases where the cost of delivering software
is high or for projects with requirements unlikely to change. As with every methodol‐
ogy, the waterfall method has its pros and cons.

Some advantages of using the waterfall method is its emphasis on documentation,
discrete understandable phases and milestones. Documentation alleviates knowledge
lost when individuals leave or new employees join a project. With understandable
discrete phases, project members can finish a phase of the project and pass on to
other members at the significant milestones.

Project manager Mary Lotz has argued that gathering and specifying all requirements
in advance of any work being done is often the most difficult part of any software
development project. Customers often don’t know their exact requirements, at least
not enough to make sure that they are 100% completely specified, and requirements
will often change over time. As software is developed, limitations may be discovered
that cause requirements or deadlines to change.

Projects that require more flexibility might benefit from examining some more itera‐
tive or agile methodologies as well. As we will examine further in later chapters, a key
part of devops is being able to assess and evaluate different tools and processes to find
the most effective one for your environment, but it isn’t so rigidly defined as to pro‐
hibit any methodologies, even older ones such as waterfall.

Extreme Programming
• Communication
• Feedback
• Simplicity
• Courage
• Respect

Lean
The idea of lean originally stemmed from lean manufacturing, which was a system
for eliminating waste within a manufacturing process. The Toyota Production System
of the 1990s, also called “Just In Time” production is perhaps the best-known exam‐

Foundational Devops Terminology and Concepts | 19

ple of lean manufacturing, with the main goals of the process being to eliminate waste
and design out inconsistency. Lean systems focus on the parts of the system that add
value by eliminating waste everywhere else, whether that be over-production of some
parts, defective products that have to be re-built, or time spent waiting on some other
part of the system. Stemming from this are the concepts of lean IT and lean software
development, which apply these same concepts to software engineering and IT opera‐
tions. Waste to be eliminated in these areas can include unnecessary software fea‐
tures, communication delays, slow application response times, or overbearing
bureaucratic processes.

ITIL
ITIL, formerly known as Information Technology Infrastructure Library, is a set of
practices defined for managing IT services. It is published as a series of five volumes
which describe its processes, procedures, tasks, and checklists, and is used to demon‐
strate compliance as well as measure improvement towards that end. ITIL grew out of
a trend that saw the growing number of IT organizations in the 1980s using an
increasingly diverse set of practices. The British Central Computer and Telecommu‐
nications Agency developed a set of recommendations as a way to try to standardize
these practices. First published in 1989, the books and practices have grown over the
years, with the five core sections in the most recent (2011) version being service strat‐
egy, service design, service transition, service operation, and continual service
improvement.

IT analyst and consultant Stephen Mann notes that while there are many benefits that
come with ITIL’s standardization and while there are over 1.5 million ITIL certified
people worldwide, it has some areas where practitioners again might want to put
additional focus. Mann noted that ITIL is often more on the side of being reactive
rather than proactive, so we suggest organizations who have been using ITIL take
note of ways that they can try to add more proactive planning and customer focus to
their practices, as we will cover in later chapters.

Agile
Started with the writing of the Agile Manifesto in 2001, agile is the name given to a
group of software development methodologies that are designed to be more light‐
weight and flexible than previous methods such as waterfall. The developers that cre‐
ated the Manifesto wrote:

We are uncovering better ways of developing software by doing it and helping others
do it. Through this work we have come to value:
Individuals and interactions over Processes and tools
Working software over Comprehensive documentation
Customer collaboration over Contract negotiation

20 | Chapter 2: What is Devops?

Responding to change over Following a plan
That is, while there is value in the items on the right, we value the items on the left
more.

—The Agile Manifesto

Agile methodologies included processes such as Scrum, Extreme Programming, and
Feature-Driven Development. While this section is not intended to be a complete les‐
son on the history of software development, it is important to note that these new
methods placed a heavy emphasis on collaboration, flexibility, and the end result of
working software, ideas which are closely related to the core tenets of devops. In their
2011 paper, “Overview and Guidance on Agile Development in Large Organization,”
authors Barlow et al noted that many large organizations find agile practices to be too
flexible or extreme, but the ideas behind them are continuing to evolve along with the
field of software development.

Is Devops Just Agile?
Devops shares many common characteristics with the Agile movement, especially
with the focus on individuals, interactions, and collaboration. You might wonder if
devops is just “rebranded” Agile. While devops has certainly grown around Agile
principles, it is a separate cultural movement steeped in history of software engineer‐
ing with a broader reach that is inclusive of more than just developers. Devops
extends Agile ideas and applies them to an entire organization, not only the develop‐
ment process. As we will see in detail in later chapters, devops has cultural implica‐
tions far beyond what was seen with Agile and a focus that is broader than speed of
delivery.

Community of Practice and Community of Interest
Communities of practice are groups of people who share the same role or concern
and meet regularly to improve how they perform in an organization. Every role
within an organization has the opportunity to form a community of practice, so there
could be one community for developers, one for QA and testing engineers, and
another for scrum masters. Communities of practice could also form around specific
tools or languages, but in either case they are not restricted to people from any one
project or team. These communities tend to work best when they are not mandated
by management, but rather allowed to grow and change organically. Community
activity may ebb and flow over time as roles and projects do. It is important to note
that communities of practice are restricted to those people who are actively partici‐
pating in the role that the community is focused on so that learning and discussion
will come from peoples’ real-world knowledge and experience.

Foundational Devops Terminology and Concepts | 21

A community of interest is similar to a community of practice, but instead of being
limited to practitioners only, tends to be made up of people who are interested in the
management, governance, and communication of the teams involved in an organiza‐
tion. They might take responsibility for overseeing or creating communities of prac‐
tice, or discuss other higher-level issues that don’t have as much effect on the day-to-
day, real-world issues that practitioners are discussing. Some communities use the
term in a different way, meaning a community of interest to be anyone who is interes‐
ted in discussing a particular topic, team, or technology even if they don’t practice it
themselves. Both communities of practice and communities of interest are intended
to be cross-functional, with emphasis being placed on learning and common goals.

It should be noted that while these communities of practice and interest are often
seen in Agile organizations, they are not restricted to it. As an example, Linux user
groups are communities of practice, often local, where active practitioners or users of
Linux operating systems will discuss topics relevant to their work, such as dealing
with Linux security issues or how to improve the performance of databases running
on Linux systems. A community of interest might take the form of a Meetup group -
a Python community of interest would probably include both professional Python
programmers and people interested in playing around with or learning the language.

Blame Culture
A blame culture, or blameful culture, is one that tends toward blaming and punishing
people when mistakes are made, either at an individual or organizational level. In this
kind of culture, a root cause analysis as part of a post-mortem or retrospective is gen‐
erally misapplied with the search for one thing that ultimately caused a failure or inci‐
dent. If this analysis happens to point towards a person’s actions as being the “root
cause”, that person will be blamed, reprimanded or even fired for their role in the
incident. This sort of culture often arises from one that must answer to external audi‐
tors, or where there is some top-down mandate to improve performance according to
some set of metrics.

Heavily siloed environments that lack an appreciation for transparency are fertile
ground for blame culture. If management is set on finding one person or group of
people to blame for each incident that occurs, in order to get rid of that “bad apple”,
individual contributors will be motivated to try to shift blame away from themselves
and their own teams onto somebody else. While this sort of self-preservation is
understandable in such an environment, it doesn’t lend itself well to a culture of
openness and collaboration. More than likely, people will begin withholding informa‐
tion about incidents, especially with regards to their own actions, in an effort to keep
themselves from being blamed. Outside of incident response, a culture of blame that
calls people out as a way of trying to improve performance (such as which developers
introduced the most bugs into the codebase, or which IT technician closed the fewest
tickets) will contribute to an atmosphere of hostility between coworkers as everyone

22 | Chapter 2: What is Devops?

tries to avoid being called out. When people are too focused on simply avoiding hav‐
ing a finger pointed at them, they can’t be focused as much on learning.

Silos
A departmental or organizational silo is a term describing the mentality of teams that
do not share their knowledge with other teams in the same company. Instead of hav‐
ing common goals or responsibilities, siloed teams have very distinct and segregated
roles. Combined with a blameful culture this can lead to information hoarding as a
form of job security (“If I’m the only one who knows how to do X, they won’t be able
to get rid of me”), difficulty or slowness completing work that involves multiple
teams, and decreases in morale as teams or silos start to see each other as adversaries.
Often in a siloed environment you will find different teams using completely different
tools or processes to complete similar tasks, people having to go several levels up the
managerial chain of command in order to get resources or information from people
on another team, and a fair amount of “passing the buck”, moving blame or responsi‐
bility to another team.

The issues that can come from organizational silos take time, effort, and cultural
change to break down and fix. Having software developers and system administrators
or operations engineers be siloed, and trying to fix the issues in the software develop‐
ment process that came from that, was a big part of the root of the devops movement,
but it’s important to note that those are not the only silos that can be present in an
organization. Cross-functional teams, discussed later, are often touted as being the
anti-silos, but these are not the only two options, and in fact just because a team com‐
prises only one function does not necessarily make it a silo. Silos come from a lack of
communication and collaboration between teams, not just from a separation of
duties.

The Old View and the New View
In his 2006 book, “The Field Guide to Understanding Human Error,” professor of
human factors Sidney Dekker laid out two ways that organizations usually approach
issues. His “old view” describes a mindset in which human error is seen as something
that causes systems to fail and needs to be eliminated, the idea being that mistakes are
only made by “bad apples” who need to be rooted out and dealt with. This view is
very often found in blameful cultures as it assumes that errors are caused by malice or
incompetence and the individuals responsible must be blamed and shamed (or sim‐
ply fired). In contrast to this is his “new view” which says that human errors are
structural rather than personal - rather than making mistakes due to incompetence,
people make the choices and take the actions that make the most sense to them at the
time based on the circumstances they find themselves in, and that people should be
educated and complex systems considered holistically when looking to minimize or
respond to issues.

Foundational Devops Terminology and Concepts | 23

Root Cause Analysis
Root Cause Analysis(RCA) is a method to identify contributing and root causes of
events or near-miss/close calls and the actions adequate to prevent recurrence. It’s an
iterative process that is continued until all organizational factors have been identified
or until data is exhausted.

Organizational factors are any entity that exerts control over the system at any stage
in its life cycle including but not limited to design, development, testing, mainte‐
nance, operation, and retirement.

One method of identifying root causes is the 5-Whys. This method employs asking
“why” until the root causes are identified. It requires that the individuals answering
“why” have sufficient data to answer the question appropriately.

A second and more systematic approach is to create a Ishikawa Diagram. Developed
by Kaoru Ishikawa in 1968, this causal diagram gives a way to visualize and group
causes into major categories to identify sources of variation, relationships among
sources, and provide insight into process behaviors.

Often RCA is associated with determining a single root cause. Tools that provide
event management often only allow a single assignment of responsibility. This limits
the usefulness of root cause analysis as it focuses attention on the direct causes rather
than the additional elements that may be contributing factors.

Human Error
Human error is a term often used as the root cause in a root cause analysis, being the
idea that a human being made a mistake that directly caused a failure. With this often
comes the implication that a different person would not have made such a mistake,
which is commonly seen in a blame culture when somebody has to be reprimanded
for their role in an incident. Again, this is an overly simplistic view, and is used pre‐
maturely as the stopping point for an investigation. It tends to assume that human
mistakes are made due to simple negligence, fatigue, or incompetence, neglecting to
investigate the myriad factors that contributed to the person making the decision or
taking the action they did. In a blameful culture, discussion stops with the finding
that a specific person made a mistake, with the focus often being on who made the
mistake and the end result that it caused. In a blameless culture or a learning organi‐
zation, a human error is seen as a jumping off point rather than an ending one, start‐
ing a discussion on the context surrounding the decision and why it made sense at
the time.

Blamelessness
Blamelessness is a concept that arose in contrast to the idea of blame cultures dis‐
cussed previously. Though it had been discussed for years previously by Sidney Dek‐

24 | Chapter 2: What is Devops?

ker and others, this idea was really brought to prominence with John Allspaw’s post
on blameless post-mortems, with the idea that incident retrospectives would be more
effective if they focused on learning rather than punishment. A culture of blameless‐
ness exists not as a way of letting people off the hook, but to ensure that people feel
comfortable coming forward with details of an incident, even if their actions directly
contributed to a negative outcome, because it is only with all the details of how some‐
thing happened can learning begin to occur. We have to remember that the point of a
post-mortem or retrospective after an incident is to prevent the same thing from hap‐
pening in the future, and only if you accept the bad apples theory of Dekker’s “old
view” does it make sense to focus on the identification, blame, and removal of those
bad apples. In the New View, with a focus on identifying many contributing factors
and learning from each of them, blamelessness helps foster an environment where
those factors can be brought to light.

Organizations used to the idea of blaming and punishing people for making mistakes,
up to and often including firing them, might wonder if there is an exception to
blamelessness for repeated mistakes. They might ask, if someone makes the same
mistakes over and over again, doesn’t that indicate an inability or an unwillingness to
learn? The “new view” doesn’t work this way. In the new view, we are supposed to
examine all the circumstances surrounding an incident and how they contributed to
the actions of the people involved so that the system as a whole (including the human
operators) can be improved. If people keep making the same mistakes, how thorough
or effective were the debriefings that followed these incidents? Was anything changed
to improve the safety of the system as a whole? The philosophy of blamelessness still
applies - people should not be blamed for mistakes that stemmed from systemic or
organizational failures, especially if the organization could not or would not make
changes that would help protect against those failures.

Retrospective
A retrospective is a discussion of a project that takes place after it has been comple‐
ted, where topics such as what went well and what could be improved in future
projects are considered. Retrospectives usually take place on a regular (if not neces‐
sarily frequent) basis, either after fixed periods of time have elapsed (every quarter,
for example) or at the end of projects. A big goal is local learning - how can the suc‐
cesses and failures of this project be applied to similar projects in the future. Retro‐
spective styles may vary, but usually include topics of discussion such as:

• What Happened? What was the scope of the project and what ended up being
completed.

• What Went Well? Ways in which the project succeeded, features that the team is
especially proud of, what should be used in future projects.

Foundational Devops Terminology and Concepts | 25

https://codeascraft.com/2012/05/22/blameless-postmortems/
https://codeascraft.com/2012/05/22/blameless-postmortems/

• What Went Poorly? Things that went wrong, bugs that were encountered, dead‐
lines that were missed, things to be avoided in future projects.

Organizational Learning
A learning organization is one that learns continuously and transforms itself
Learning is a continuous, strategically used process — integrated with and running
parallel to work.

—Karen E. Watkins and Victoria J.
Marsick, Partners for Learning

Organizational learning is the process of collecting, growing, and sharing the body of
knowledge that an organization has. A learning organization is one that has made
their learning more deliberate, setting it as a specific goal and taking actionable steps
to increase their collective learning over time. Organizational learning as a goal is
part of what separates blameful cultures from blameless ones, as blameful cultures are
often much more focused on punishment than on learning, whereas a blameless or
learning organization takes value from the experiences it has and looks for lessons
learned and knowledge to be taken away, even from negative experiences. Learning
can happen at many different levels, including individual and group as well as organi‐
zation, but organizational learning has higher impact to companies as a whole, and
companies who practice organizational learning are often more competitive than
those who don’t.

Post-Mortem
Unlike the planned, regular nature of a retrospective, a post-mortem occurs after an
incident or outage, for cases where the outcome of an event was surprising to those
involved and at least one failure of the system or organization was revealed. Whereas
retrospectives occur at the end of projects and are planned in advance, post-mortems
are unexpected before the event they are discussing. Here the goal is organizational
learning and they benefit from having a systemic and consistent approach that often
include topics such as:

• What Happened? A timeline of the incident from start to finish, often including
communication or system error logs.

• Debrief Every person involved in the incident gives their perspective on the inci‐
dent, including their thinking during the events.

• Remediation Items Things that should be changed to increase system safety and
avoid repeats of this type of incident.

In the devops community, there is a big emphasis placed on having post-mortems
and retrospectives be blameless. While it is certainly possible to have a blameful post-

26 | Chapter 2: What is Devops?

mortem that looks for the person or people “responsible” for an incident in order to
call them out, that runs counter to the focus on learning that is present in the devops
movement.

Devops: Adding it All Up
The danger for a movement that regards itself as new is that it may try to embrace
everything that is not old.

—Naturalistic Decision Making

After defining all of these related terms, it is tempting to try to tie them all together
into one simple definition of devops. However, if it were that easy, there wouldn’t
have been nearly as much debate over the past five years as to what devops is and
isn’t. This book is not a prescription for the One True Way of doing devops. We don’t
offer you devops in a box, devops-as-a-service, or tell you that you are Doing Devops
Wrong. What this book offers is a collection of ideas and approaches for improving
individual collaboration, team and organizational affinity, and tool usage throughout
a company or organization, and discuss how these concepts operate at different sizes
and scales. Every organization is unique, and so while there is no one-size-fits-all way
of doing devops, these common themes can be applied in different ways to every
organization that wants to improve both the quality of their products and the effi‐
ciency and well-being of their employees.

While the term devops itself is a portmanteau of “development” and “operations”, the
core concepts of the devops movement apply much more broadly than just the devel‐
opment and operations teams. Companies building products or services are much
more complex than simply those who write the software and those who maintain it in
production. Like any complex system with many interdependencies it must be treated
differently than the comparatively simple single “system engineer” that the industry
began with. To be successful, a business needs to have many other teams and skills
involved, including QA, security, network and database specialists, and even support,
sales, and marketing, and all of those must work well together to be competitive in
today’s fast-paced environment.

Sometimes, in order to get around the issue of defining devops and get people talking
about concepts and principles, they will use an exaggerated example of so-called
“bad” behaviors as a way of focusing on the “good” behaviors that they see as being
“devops”. In order to talk about effective inter-team collaboration, someone might use
a cartoonish example of a company that creates a devops team that serves only to act
as go-betweens for the development and operations teams. It’s an extreme example
(though there are almost certainly places where it’s actually happened) but it serves to
get people talking about something more meaningful and applicable than a defini‐
tion.

Devops: Adding it All Up | 27

In the field of cognitive science, a folk model is a word or phrase that is used as an
abstraction for more concrete ideas, and often substituted for those things, with the
folk model being easier to understand than the concept really being discussed. An
example of this is the term “situational awareness” which is often used as a stand-in
for more specific ideas like perception and short-term memory. Folk models are not
necessarily bad, but they can be problematic when different groups of people use the
same term to refer to different underlying concepts. We would argue that in many
ways, devops has become a folk model. Different people use it to mean many differ‐
ent things, which can cause miscommunication to occur - people will often spend
more time arguing over what “devops” means, what folk model they are using for it,
than they spend focusing on the ideas that they really want to discuss. For this reason,
providing one definition of “devops” can be distracting away from what we want to
talk about instead.

At the end of this chapter we will discuss our five pillars of devops as well as what the
rest of this book will cover, and it is those core concepts that are what this book is
designed to talk about, not the particular definition or folk model we will be using.

Common Devops Misconceptions
To clarify even more what we mean when we discuss devops in this book, we will
clear up what are some common misconceptions about what devops is.

Devops only involves developers and system administrators.
While the name might indicate that it involves only developers and operations, and
though the DevopsDays conference tagline is “the conference that brings develop‐
ment and operations together”, the concepts and ideas of devops can and should be
expanded to include others as necessary. There is no one definitive list of which
teams or individuals should be involved or how, just as there is no one-size-fits-all
way to “do devops”.

Ideas that help development and operations teams communicate better and work
more efficiently together can be applied throughout a company. Any software devel‐
opment organization should be considering aspects of the product life cycle including
security, QA, and support in order to be most effective. In later chapters we will dis‐
cuss considerations for involving these other teams into an effective devops environ‐
ment.

Devops is a team.
Some people will argue very strongly against the creation of a designated “devops
team”. There are several valid reasons for this argument. Simply creating a team called
devops, or renaming an existing team to devops as a way to check off an item on a

28 | Chapter 2: What is Devops?

checklist, is neither necessary nor sufficient for creating a devops culture. If your
organization is in a state where the development and operations teams cannot com‐
municate with each other, an additional team adds the potential for more communi‐
cation issues. Underlying communication issues needs to be addressed for any
substantial and lasting change to stick.

Creating a separate team as an environment to kickstart new processes and commu‐
nication strategies can be effective if it is seen as a greenfield project. In large compa‐
nies generally this is a useful short term strategy to kickoff meaningful change and
usually results in blending the team members back into designated role teams as time
progresses.

In a startup environment having a single team that encompasses both functions can
work as it allows for the team to embrace the responsibility and mission of the service
as a collaborative unit rather than burning out a single individual on-call. Manage‐
ment will still need to facilitate clear roles and responsibilities to ensure that as the
company grows the team can scale out as required.

This book will cover different team organizational options and inter-team communi‐
cation and coordination strategies, but ultimately it’s important to remember that
there is no one right or wrong way of doing devops, and if having a devops team gen‐
uinely works for you, there’s no reason to change it.

Devops is a job title.
Probably no job title in the past five years has been as controversial as that of the
devops engineer. The job title has been described in various ways, including a system
administrator who also knows how to write code, a developer who knows the basics
of system administration, or some mythical 10X engineer (said to be ten times as pro‐
ductive as other engineers, though this is difficult to measure and often used figura‐
tively) who can be a full-time system administrator and full-time developer for only
the cost of one salary without any loss in the quality of their work. In addition to
being totally unrealistic, the concept of a devops engineer doesn’t scale well. At a very
early-stage startup, it might be necessary to have the developers being the same peo‐
ple deploying the code and maintaining the infrastructure, which makes more sense
in a cloud-based infrastructure like many startups have. As a company matures and
grows, however, it makes sense to have people become more specialized in their job
roles. Neither does it make much sense to have a director of devops or some other
position that puts one person in charge of devops. Devops is at its core a cultural and
professional movement, and its ideas and principles need to be used by everyone in
order to be effective.

Common Devops Misconceptions | 29

Devops is only relevant to web startups.
It is easy to see why devops makes sense for web-based companies - because the
movement helps break down barriers that can impede development, it can do a great
deal to speed up software development and deployment. This is especially good for
web-based products where the need to move fast is much greater than with other
forms of software - if a web company’s processes are so slow that it takes a matter of
weeks to fix a typo, chances are they aren’t going to do very well - but this in no way
means that it isn’t relevant to other types of companies as well. Probably no company
has ever complained that their processes were too efficient, and improving communi‐
cation and empathy among teams and individuals is something that any company can
benefit from. And while it might be easier to iterate on team structures and processes
at a small startup with only a few people, making these sorts of changes is very possi‐
ble even in the enterprise. The chapter on scale especially will discuss how devops
concepts can be applied at larger organizations.

Devops is about the tools.
While tools are valuable, devops does not mandate or require any particular tools.
This misconception is a big contributing factor to the idea that devops is only for
startups, as large enterprise companies are less able to switch to the newest and shini‐
est technologies at the drop of a hat. Devops, being a cultural movement, is
technology-agnostic. The principles that will be discussed in this book don’t require
any particular set of tools, instead being able to be applied to any technology stack.
There is a fair amount of overlap between companies who practice devops and those
who use containers or cloud providers, but that doesn’t mean that those particular
technologies are required - there are certainly companies successfully implementing
devops while running on bare metal, and the chapter on tools will discuss how to
choose and implement tools in a way that complements devops principles most effec‐
tively.

You need a devops certification.
Devops is a cultural movement - how do you certify culture? There is no 60 minute
exam that can certify how effectively you communicate with other people, how well
teams in your company work together, how your organization learns, or anything else
like that. Certifications in technology only make sense in the cases of very specific
technologies that require a high level of expertise to use, such as individual brands of
networking equipment. Since devops doesn’t have any one required technology or
one-size-fits-all solutions, makes very little sense to try and write a certification exam
for it. Exams do well at testing knowledge where there are simple questions with
obviously right or wrong answers, and because what works best for one company
won’t necessarily be optimal for any other, there’s no way to write such questions that

30 | Chapter 2: What is Devops?

would be universally answerable the same way for devops. Any devops certification is
more likely to be a money-making opportunity for whoever is running it than it is to
provide any value to those who have been certified.

Devops means doing all the work with half the people.
There are some people under the impression that devops is a way to get both a soft‐
ware developer and a system administrator in one person - and with one person’s sal‐
ary. Not only is this perception incorrect, it is often harmful. At a time when too
many startups are offering perks such as 3 meals a day in the office and on-site laun‐
dry as a way of encouraging workers to spend even more time in the office and too
many “rockstar” or “10X” engineers are working 60-80 hours a week, misconceptions
that drive people further away from work-life balance and more towards overwork
are not what our industry needs. During very early stages, it is true that a startup can
benefit from having developers who understand enough about operations to handle
deployments as well, especially with cloud providers and other “as a service"s to han‐
dle a lot of operational heavy lifting. Once an organization gets past the point where
every single employee must wear multiple hats out of sheer necessity, expecting one
person to fill two full-time roles is asking for burnout. Devops doesn’t save money by
cutting the number of engineers your company needs in half. Rather, it allows organi‐
zations to increase the quality and efficiency of their work, reducing the number and
duration of outages, shortening development times, and improving both individual
and team effectiveness.

There is one “right way” (or “wrong way”) to do devops.
Early adopters of devops practices and principles, especially those well-known for
this in the industry such as Netflix and Etsy, are often regarded as “unicorns” who
have cornered the marked on the “right” way to do devops. Other companies, eager to
get the benefits of a devops culture, will sometimes try to emulate their practices. The
term cargo cult, when used metaphorically, is used to describe the practice of emulat‐
ing behaviors without fully understanding the reasoning or circumstances behind
them, and isn’t something to be encouraged. Just because a company who is success‐
fully doing devops such as Netflix or Etsy does something doesn’t mean that that is
the “right way” of doing devops. Instead, devops not only encourages but also
requires critical thinking about processes, tools, and practices - being a learning orga‐
nization requires questioning and iterating on processes, not accepting things as the
“one true way” or the way that things have always been done.

One should also beware of people saying that anyone who isn’t following their exam‐
ple is doing devops “the wrong way.” It bears repeating that while there are valid criti‐
cisms of devops teams or devops engineers, there are also documented cases of
companies and people who make those terms work for them. Devops is a cultural
movement, having core tenets and principles rather than strict definitions, and

Common Devops Misconceptions | 31

because it isn’t as rigidly defined as something like ITIL, it doesn’t make a lot of sense
to say that if something like a devops team is working in a particular instance that
that’s the wrong way of doing things. The companies who are doing devops most suc‐
cessfully are comfortable learning and iterating to find what tools and processes are
most effective for them.

It will take X weeks/months to implement devops.
If some sort of management buy-in is required for an organizational transformation
such as those involved in devops, one of the questions asked of the transformation is
likely to be how long it will take. The problem with this question is that it assumes
that devops is a fixed or easily definable or measurable state, and once that state is
reached then the work is done. In reality, devops is an ongoing state - it is the journey,
not the destination. Some parts of it will have a fixed end point - such as setting up a
configuration management system and making sure that all the company’s servers are
being managed by it - but the ongoing maintenance and development of configura‐
tion management will continue. Because so much of devops is cultural, it is harder to
predict how long some of those changes will take - how long will it take people to
break old siloed habits and replace them with new collaborative ones? The following
chapters each contain a section on measuring for success, illustrating ways that pro‐
gress and effectiveness can be measured, but effectiveness doesn’t mean being done -
devops is ongoing.

Devops is about automation.
With many practitioners focusing on things like configuration management and con‐
tinuous integration, some people see devops as just a way to automate traditional sys‐
tem administrators out of their jobs. Alternatively, people may see the focus on
automation of some things as meaning that everything that can possibly be automa‐
ted should be. Neither of these is true. Devops is a movement that wants to improve
how people work together. If there are repetitive tasks that could be automated to free
up a human from having to do them, that automation helps that person work more
efficiently. Some cases like this are fairly obvious gains - automating server builds
saves hours per server that a system administrator can then spend on more interest‐
ing work. But if more time is spent trying to automate something than would be
saved by having it be automated, that’s not improving anyone’s workflow anymore.

There has been a great deal of discussion about the role of automation in any envi‐
ronment and the way that human factors affect what and how we choose to automate.
We will go into this topic in more depth in the Tools chapter later in the book, but for
this chapter we will suffice it to say that devops does not mean a simplistic, all-or-
nothing view of automation.

32 | Chapter 2: What is Devops?

Figure 2-2. A Comic from XKCD on Time Spent versus Time Saved, https://xkcd.com/
1205/

Devops is a fad.
Because devops is not a particular technology, tool, or methodology, it is unlikely to
become obsoleted or replaced. Ultimately, time will tell if devops fades into obscurity
a footnote in the historical recounting of workplace organization. A movement about
improving organizational effectiveness as well as individual employee happiness
seems very unlikely to be merely a passing trend. While it may seem similar to ITIL,
Lean, or Agile in ways, and one might wonder if its popularity will start to wane as
those did (even if they are still in use in some organizations today), but the primary
different is that things like ITIL or Agile have strict definitions, and those definitions
rarely, if ever, change. Devops, on the other hand, is a movement defined by ideas,
not a strict definition. It is the continuing conversations and evolutions of processes
and ideas, and that evolution and growth that carried it so strongly through its first
five years will likely prove to be its staying power for years to come.

There has been some discussion in the devops community recently as to whether or
not devops has lost its direction. Critics of the movement say that it is too defined by

Common Devops Misconceptions | 33

https://xkcd.com/1205/
https://xkcd.com/1205/

negative spaces, by people saying what devops isn’t rather than what it is (or not pro‐
viding a concise definition for it at all). They also claim that devops isn’t unique, that
it is merely a rebranding of ideas that have come before it, and that it will be aban‐
doned as soon as the next name or trend comes along. While it is true that several of
the driving ideas behind the devops movement have indeed been around for some
time, the zeitgeist of devops as something more than the sum of its parts is something
new and different. People have certainly argued against functional silos before, sug‐
gested learning organizations, advocated for humane systems or advocated for auto‐
mation and measurement. The devops movement is the first to combine all of these
ideas, and to do so with measurable success. This book will cover those ideas and
show how to harness and leverage them in ways that can continue to grow and evolve
with your company, just like the movement itself.

The Current State of Devops
It is inspiring to see how far the devops movement has come in the six years since
Patrick Debois held the first DevOpsDays in Belgium. The 2014 State of Devops
Report published by Puppet Labs has findings that show that companies who are
doing devops are outperforming those who aren’t, finally showing numerically what
many people have already suspected - that an emphasis on having teams and individ‐
uals work together effectively is better for business than silos full of engineers who
don’t exactly play well with others. High performing devops organizations deploy
code more frequently, have fewer failures, recover from those failures faster, and have
happier employees.

The number of DevopsDays conferences have increased from 1 in 2009 to 18 all over
the world in 2014. Not only that, but each year brings DevopsDays events happening
in new locations worldwide - this is not a phenomenon that is limited to places that
are considered technical hubs with concentrations of tech employees like Silicon Val‐
ley or New York. There are dozens of local Meetup groups with thousands of mem‐
bers in even more locations around the globe, not to mention the conversations about
the topic happening daily on Twitter. Bigger conferences such as O’Reilly’s Velocity
include tracks on devops and cultural changes in general in their programs.

The Devops Compact
Consider, as an example of the importance of communication and understanding,
two friends who want to leave a party at the same time. One of them, the General,
isn’t familiar with the neighborhood they’re currently in, and asks her friend George,
who is familiar with it, if she can follow him as she drives until she gets back into a
part of town that she’s comfortable with. George agrees, they decide what intersection
will be the point where the General feels comfortable navigating on her own, and they
leave the party in this two-car convoy.

34 | Chapter 2: What is Devops?

https://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf
https://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf

This convoy requires a compact between these two people. They have to set up and
maintain a shared mutual understanding that they are going to complete this convoy
together. This requires a lot of communication in advance to work out where the
boundaries of this compact are. How fast is the General comfortable driving, so
George knows what speed he should maintain as she follows him? What should they
do if the General falls behind due to traffic or a red light? What if one of them gets a
flat tire? Where will the convoy end - at the General’s house, or at some intersection
that she’s familiar with? All of these things must be decided and communicated in
advance, so that both people are on the same page and that shared mutual under‐
standing is present.

George is going to have to make some changes to his normal driving behavior during
this convoy. He’ll have to be less aggressive about going through intersections when
the light is yellow, to avoid having the General get left behind when it turns red. He’ll
have to keep an eye out in his rear view mirror to make sure she’s still following him.
He’ll have to be extra diligent about using turn signals to communicate his plans
clearly. And if something goes wrong and the General makes a wrong turn, he’ll have
to double back to find her again, which will delay him getting home. And because
these things, like traffic, can’t be predicted in advance, they’ll both have to figure it
out as they go, dynamically adjusting their own short-term goals and behavior in
order to achieve this shared goal.

We view devops as a similar compact.

Instead of people, we have teams working together. Instead of two friends both trying
to get home from a party, the shared goal is creating and delivering software. In a
siloed, non-devops environment, the lack of a shared understanding would be like
the General trying to follow George back to familiar territory without letting him
know she is doing this - it might end up working, but without communication of
intentions the odds are stacked against it. Devops is a compact that different teams
will work together, will communicate their intentions and the issues that they run
into, and dynamically adjust in order to work towards the shared organizational
goals.

Just like George and the General might run into traffic or car troubles, an organiza‐
tion working on a software product will certainly run into issues or roadblocks along
the way. But with the shared understanding that everyone is still a part of the com‐
pact, everything else turns into repair. We repair our misunderstandings about who
would be working on a particular feature or when something would get done. We
repair bugs that affect our understanding of how the software is supposed to behave.
We repair processes and their documentation when things don’t go the way we expect
in production.

The Devops Compact | 35

We’re going to take this idea of a devops compact and show how both the technologi‐
cal and cultural aspects of devops are ways of developing and maintaining this shared
mutual understanding.

What’s Next in this Book
Now that the historical context for devops has been explained, its major terms and
concepts defined as we will be using them in this book, and some of the most com‐
mon misconceptions have been addressed, it will be easier to dive into greater detail
in further chapters. While this book will not tell you one “true” way to do devops (as
no such thing exists, and anyone who says otherwise is selling something), it will
cover tested and practical examples of how the concepts we explain can be put into
practice.

We present you the five pillars of effective devops:

• Collaboration
• Hiring
• Affinity
• Tools
• Scaling

Each pillar is covered in a separate section which will include a detailed case study.
We have worked to pull examples from industry covering a diverse set of companies
from web startups to large enterprises. While it isn’t strictly necessary to read the
chapters in order - a reader who has some immediate decisions to make regarding the
tools their team or organization is using is welcome to start with that chapter, for
example. - it is recommended that they all eventually be read as it is the combination
and harmony of these five pillars that truly make devops effective.

36 | Chapter 2: What is Devops?

CHAPTER 3

Collaboration: Individuals Working
Together

Introduction
While one of the guiding principles that originally helped shape the devops move‐
ment was enabled software development and operations teams to work more effec‐
tively together, we believe it is best to start off by discussing what helps people work
better together at an individual level. After all, teams are made up of individuals, and
if a team cannot work well within itself, on an individual or intra-team level, there is
very little hope of that team being able to overcome those issues and work well on a
higher, inter-team level. This chapter will look into the human factors that can make
or break positive individual collaboration, discuss strategies for effective communica‐
tion and collaborative work, and address common misconceptions and issues that
can arise in these areas.

We’ll start out by looking at people as individuals, and understanding the different
factors that motivate people and how they work. Following up with a discussion on
individual growth and development, and how work environments can affect this, we
will then move into the different types of negotiation styles that can occur. Under‐
standing these different styles will lead into a deeper dive into the collaborative style,
how communication can be best used to achieve this, and the importance of trust and
empathy among teams.

Individual Differences and Backgrounds
When looking at collaboration between individual members of the same team, we are
assuming that the team as a whole has shared goals. We will discuss what differenti‐
ates a team from other groupings of individuals in the upcoming chapter, Affinity,

37

but for the sake of this chapter we will assume shared work goals among team mem‐
bers. This being the case, one of the biggest sources of strife for team members trying
to work together come in the form of different personal goals, backgrounds, or work‐
ing styles.

Goals
Although members of the same team will generally have the same overall professional
goals, usually communicated to them by their manager, they will likely have different
personal goals when it comes to what they want out of their jobs.

• For some people, their current position is an important stepping stone in their
career progression, while others may think of it as “just a job”, something they are
doing while they consider a career change, pursue side projects, or support their
families. The former, being more invested in this particular position, are likely to
put more consideration and effort into it, and might feel resentment towards the
latter, who they might perceive as not being “team players” or not pulling their
weight.

• Many people want to learn and grow their skills, but the specifics of this can vary
from person to person. More junior people are often eager to get as many new
experiences and learning opportunities as possible. More senior people may be
looking for specific projects or leadership roles, while some engineers are looking
for environments where they can experiment freely with whatever new bleeding-
edge technology strikes their fancy. Depending on the goals and working styles of
the rest of the team, these different learning goals might find themselves at odds.

• Some people might be focused more on their specific work while others might
place value on growing their networks or more community-focused activities
such as mentoring or speaking at industry conferences. To the latter, heads-down
coding-only sorts of engineers might be perceived as aloof, or not interested
enough in the bigger picture, while the other way around might see things as not
contributing enough to “real” work. Clarifying team and company expectations
around these different types of contributions can go a long way towards mini‐
mizing resentment for these reasons.

Backgrounds
As we’ll discuss in more depth in the Hiring chapter, there are great benefits to be
gained from diverse teams in terms of creativity, problem solving, and productivity,
but these can certainly lead to short-term interpersonal conflicts among people from
very different backgrounds, either personally or professionally.

38 | Chapter 3: Collaboration: Individuals Working Together

Professional Backgrounds
One of the biggest differences in professional backgrounds is the size of companies
that people have worked at previously. Especially in the startup world, there is a
strong preference towards hiring and working with people with previous startup
experience. This makes sense to some extent - especially in early-stage startups, suc‐
cess can be more likely when key individuals have had successful startup experiences
before - but beware of being overly biased towards people who have worked mostly
(or exclusively) at larger organizations. Enterprise experience does not disqualify
someone from being able to work well at a much smaller company.

There certainly will be cultural differences and expectations to overcome with some‐
one who is moving to a company of a different size in either direction. Focus should
instead be placed on the new viewpoints and benefits that different backgrounds can
provide, and how well people are able to learn to contribute in their current environ‐
ments. Ideally, team members should all be learning from each other. In this example,
startup experience may be more directly relevant to a startup team, but in a collabo‐
rative atmosphere, the contributions and ideas from someone with more enterprise
experience would be considered for how well they can be applied to benefit a startup
team, not dismissed out of hand.

Technical versus non-technical is another area of difference that can cause friction
between people. This can take place in a company-wide context, where perhaps engi‐
neers are seen as being more valuable to the company and teams like support, sales,
and marketing treated like second-class citizens. If these feelings are mirrored at all
by management, such as at an early-stage startup where all or many of the cofounders
are engineers themselves, this can cause a serious loss of morale among these non-
engineering employees. People need to feel that their work is appreciated, and if they
sense that the company as a whole doesn’t value the contributions of them or their
team, they may start looking for a job at another company that does.

This is not limited to non-technical roles, of course. In many traditional software
development shops, IT and related roles (system and network administrators, opera‐
tions engineers, and database administrators to name the most common ones) are
often treated the same way. Ops being seen primarily as a cost center, or being some‐
thing that was really only ackowledged when something went wrong and there was
some sort of outage, or being viewed by other teams as barriers or gatekeepers, was at
least a part of what spurred the beginnings of the devops movement in the first place.

Even among engineers, there can be differences in peoples’ backgrounds. It used to be
that software engineers almost exclusively had technical backgrounds, whether that
be a degree (or more) in a field like computer science or computer engineering or a
lifelong history of working with computers. It’s easy to look at someone who started
tinkering with their parents’ computers as a young child and taught themself to pro‐
gram soon after that as a “natural” engineer.

Individual Differences and Backgrounds | 39

These days, we are seeing come into existence many more coding bootcamps, short
programs (usually between 3 and 6 months in length) designed to quickly and effec‐
tively teach people the skills required to get a job as a software developer. These are a
way of making tech jobs available to people who are changing careers but don’t have
the money or time to spend on a traditional four year degree program. With some
bootcamps designed specifically to provide safe learning spaces for underrepresented
groups in tech such as women or people of color, they can be a great resource for
companies looking to improve the diversity of their engineering staff as well. How‐
ever, there is still some bias in some places towards people with “traditional” engi‐
neering backgrounds. As we’ll discuss more in the hiring chapter, it is important to be
aware of these biases, whether conscious or unconscious, when growing and main‐
taining a successful team.

One final place where professional backgrounds might cause friction between team
members is job level or experience. When looking to hire, most teams express a pref‐
erence towards hiring more experienced people or “senior” engineers, with the think‐
ing that a more senior person will be quicker to get up to speed and start contributing
to the team. However, there is a limited number of senior engineers - far fewer than
the number of companies looking to hire them, it seems. In addition to simply getting
more years of technical experience, more junior employees need guidance and coach‐
ing to help grow them into senior ones. When looking at the people on your team, it’s
important to consider how effective they are at teaching or mentoring in addition to
just their technical skills.

Types of Mentoring
The most traditional type of mentoring is senior-junior, where a senior engineer
mentors a junior one, usually in a more organized capacity as part of some formal
mentoring program. This is good for leveraging the expertise of more senior team
members to help grow the skills of the junior ones. This works best when the senior
employees have enough communication skills, teaching ability, and patience to help
other people truly learn (an impatient person will just grab the keyboard away and do
it themselves). In the best case, the questions from the junior employee can help the
senior one think through things they took for granted before, to question whether a
solution is the best one rather than just “the way we’ve always done it”.

Senior-senior mentoring is less common, where two senior-level employees mentor
each other. There can be a lot of deep knowledge sharing in these types of cases, but if
both people have been senior for a while at the same company, they might lose the
questioning and new perspectives that can come from having a fresh set of eyes look‐
ing at things.

Finally, junior-junior mentoring happens when two junior-level employees work to
help each other learn. This might happen on rapidly growing teams, where either
there was no senior engineer to be part of the process or any senior staff were too

40 | Chapter 3: Collaboration: Individuals Working Together

busy. Having someone else to learn with can enable both people to learn more quickly
than they might on their own, but without any experienced people to steer them
towards good practices or help when they get stuck, this can also result in some less-
than-ideal outcomes.

Personal Backgrounds
Often when people think about increasing the diversity of their team, what they are
looking for is a wider range of personal backgrounds. Including aspects such as gen‐
der, sexuality, race, class, and education level, diverse personal backgrounds can
increase the strength of an engineering, product-focused, or customer-support-
driven organization by having a greater number of experiences and points of view. As
we will discuss further in later chapters, there are many benefits to having an increas‐
ingly diverse workforce, both in individual organizations but also in the industry as a
whole, but as people learn to work well with people who are different from them,
there can be increased friction.

If a team has previously consisted entirely of white heterosexual men, working with
women, LGBT people, or people of color might require some adjustments of peoples’
behavior. Similarly, if a team used to consist of just young, single individuals, bring‐
ing on team members with family repsonsibilites will likely highlight places where
work-life balance needs to be addressed. It can be very beneficial to make sure you
have an HR department that understands diversity-related concerns, and that both
individual contributors and managers are able and encouraged to take unconscious
bias training.

The point of these sorts of initiatives is not to have companies become “political cor‐
rectness” police, but rather to foster and ensure an environment where every
employee feels safe and included. Without personal safety, there is unlikely to be trust
between employees, and without trust there will not be the empathy and honesty that
are necessary for truly effective collaboration. Personal backgrounds also tend to con‐
tribute to power differentials that can affect or even prevent negotiation.

Working Styles
It is hardly possible to overrate the value, in the present low state of human improve‐
ment, of placing human beings in contact with persons dissimilar to themselves, and
with modes of thought and action unlike those with which they are familiar. […] Such
communication has always been […] one of the primary sources of progress.

—John Stuart Mill

Both personal and professional backgrounds can affect how people collaborate, but
even unrelated to those areas there is a great variety of working styles that people can
have. These styles can be described as a group of different axes or spectra:

Individual Differences and Backgrounds | 41

Table 3-1. Different
Working Styles

Introvert Extrovert

Asker Guesser

Starter Finisher

Analytical Thinker Lateral Thinker

Purist Pragmatist

Night Owl Early Bird

This table shows some different ways in which peoples’ working styles can differ.
Many of these aspects are more spectra than fixed binaries, where instead of being
100% on one side or the other, people will fall somewhere along the scale, including
in the middle. Many of these categories were described by Laura Thompson, Director
of Cloud Services Engineering and Operations at Mozilla, in a talk she gave at the
Monitorama conference in Portland, Oregon in 2015. We’ll start our discussion of
working styles by taking a look at these axes in more detail.

• Introvert vs Extrovert: Introversion and extroversion are often misunderstood
to be whether someone is shy or outgoing, but more accurately it describes where
people draw their energy from and how they “recharge their batteries”, so to
speak. Introverts recover energy by being alone, or in small well-known intimate
groups, while extroverts recharge by being around and interacting with people.
This is not to say that introverts are quiet or don’t like people, but simply that
they find it more draining than extroverts do. This may make extroverts more
likely to enjoy group projects or organizational roles where they get to interact
with many people, while introverts may prefer a cubicle or office where they can
work quietly than they would an open-office floor plan.

• Asker vs Guesser: Ask versus guess culture came from an internet forum post
written in 2007 talking about different ways that people approach asking things
from others. Askers feel that it alright to ask for most things, with the under‐
standing that they may well get “no” for an answer, while guessers tend to read
more into situations and avoid asking for things unless they’re fairly certain that
the answer will be “yes”. The issues that can arise when these two sorts of people
interact is that askers might find guessers to be too passive and not direct
enough, while guessers often find askers to be presumptuous. This is one area
where we find that clarifying and documenting how your team members are

42 | Chapter 3: Collaboration: Individuals Working Together

http://ask.metafilter.com/55153/Whats-the-middle-ground-between-FU-and-Welcome#830421

expected to communicate can, if not necessarily overcome years of habit from
one culture or the other, at least ensure that people are on the same page.

• Starter vs Finisher: Starters are people who love coming up with new ideas and
getting them off the ground - they are energized by the process of beginning a
new project. They might love experimenting with new technologies, refactoring
existing code in fairly substantial ways, and looking for new greenfield projects to
take on, but after something is 80 or 90 percent of the way there, they lose inter‐
est in the details that would take it to 100%. Finishers, on the other hand, like
tying up all the loose ends, fixing any remaining issues in a project, and generally
hate to leave things feeling less than 100% complete. Often finishers can be found
on operations team, where they get to focus themselves on the final touches that
make things operationally ready. Starters will likely get bored if asked to do a
great deal of finisher work, while finishers might feel overwhelmed and not know
where to start if they find themselves asked to be starters.

• Analytical Thinker vs Lateral Thinker: Analytical thinkers have the ability to
focus on facts and evidence, dissecting complex things into simpler pieces, elimi‐
nating extraneous information or invalid alternatives. They tend toward being
organized and interested in the details, especially in working out how to execute
on something and what will or will not work. Lateral thinkers have the ability to
find information more indirectly, finding the missing elements, examining issues
from multiple perspectives, and eliminating sterotypical patterns of thought.

• Purist vs Pragmatist: Very similar to analytical vs lateral thinkers is the distinc‐
tion between purists and pragmatists, especially when thinking about engineer‐
ing problems. A purist wants to use the absolute best technology to solve a
problem, and if that perfect technology doesn’t exist, they will want to create their
own. Purists are much less comfortable with things that require workarounds or
making compromises around their engineering principles. Pragmatists instead
are much more focused on practicality, weighing the cost of trying to create an
ideal solution versus working with the realities of their current environments and
constraints. Pragmatists will think about how to operationalize something and
get it working in their actual production environment, rather than the purist
approach of focusing on a technology in an of itself.

• Night Owl vs Early Bird: Finally, people differ in their working habits based on
when they find themselves being most productive. In the simplest sense, people
differ between night owls who are more productive in the evening hours versus
early birds who will likely get into the office and start working before anyone
else. People might also differ in how much background noise they can handle
without getting too distracted or how long they need to work before taking a
break. While making sure that people are able to participate in necessary meet‐

Individual Differences and Backgrounds | 43

ings, allowing engineers to work flexible hours to ensure that they can be individ‐
ually more prductive is definitely something to consider.

For several of these axes that we just described, most teams are benefitted by having a
mix of types represented in the people on them. For example, a team that consists
only of starters, while great at coming up with product ideas and getting them off the
ground, maybe in some form of minimum viable product, is likely to find that they
run into stability and reliability issues without the input of finishers who want to
focus on operational details. A team of only purists might find themselves never
actually shipping anything because it never meets their exacting standards without
some pragmatists to focus on what they can actually accomplish by their next dead‐
line.

If you’re looking to increase the effectiveness of your team, a good step can be having
individuals assess themselves to figure out where they fall on each of these different
axes. From there, you might find some changes that need to be made in terms of
work assignments. This is a useful exercise if you notice that someone’s productivity
doesn’t seem to be in line with where it is expected to be and there aren’t any extenu‐
ating factors that would explain this - it could simply be the case that a starter has
been given assignments better suited to a finisher, and different tasks more suited to
their style would make them much happier and more productive. When arranging
for work assignments on larger projects as well, knowing who falls where on each axis
can make sure your project has a good balance between starters and finishers, critical
and creative thinkers, and purists and pragmatists.

Of course, with different working and collaborative styles, there are certainly oppor‐
tunities to run into disagreements. The biggest place that we’ve seen this occur on
teams is with purists versus pragmatists, where planning meetings for projects tend to
get derailed with long debates about the “ideal” solution versus the practical one (or,
with several purists, even longer discussions about which ideal solution is the most
ideal). A solid understanding of what the deadlines and other requirements are for
each project can help to keep these sorts of things in check. We’ll also touch more on
some of these issues in the upcoming section on communication.

It’s important to create and maintain a work environment that can be supportive of
people across these various spectra of styles. Keep an eye out for office policies that
unnecessarily favor some over others, for example, requiring people to be in at 8:00
sharp in the mornings even if there are no meetings that would necessitate that (or
not allowing people to attend meetings remotely), or a loud open-office floor plan
that has no areas where people can work when they need quiet, distraction-free focus.

44 | Chapter 3: Collaboration: Individuals Working Together

Individual Growth
Key to collaboration between individuals is creating a work environment where those
individuals are encouraged and enabled to grow. Growth is certainly an area where
teams can turn competitive rather than collaborative - in the wrong environment,
individual growth becomes a zero-sum game that necessarily pits people against each
other. In this section we’ll discuss both individual and group factors that can affect
peoples’ growth as employees.

The Right Mindset
Research has shown that the mindset that people have about their own abilities and
more specifically where those abilities come from has a significant impact on how
people learn and grow. Dr. Carol Dweck, and professor and researcher of social and
developmental psychology, described this in terms of two different mindsets. With a
fixed mindset, people believe that their talents and abilities are innate, fixed traits -
either they are naturally good at something or they aren’t, and that state is seen as
immutable. In a growth mindset, talents and abilities are seen as things that can be
learned and improved with effort and practice. These mindsets can impact how peo‐
ple work, how they approach challenges, and how they deal with failure.

A fixed mindset, believing that skills and traits are fixed and static, makes people feel
that they have to constantly prove themselves to others. If a person thinks that they
are either smart or not smart, and that that is set in stone, they will obviously want to
prove to themselves and the people around them that they fall into the smart cate‐
gory. While one might think this would do a good job of encouraging people to work
their hardest, this isn’t necessarily the case.

Someone with a fixed mindset views failures of any kind as proof that the individual
is inherently not smart, not talented, not good enough, or some other negative state.
In order to avoid failures and those feelings of inadequacy, people with a fixed mind‐
set may stay away from situations in which they might fail, which means they are less
likely to, for example, work on projects where they would have to learn new skills.
People avoid uncertainty as a way of avoiding failure and disapproval. This means
that people with fixed mindsets are less likely to pick up new skills on the job, which
over time might make them less hireable which they will ironically view also as a
fixed trait. They also tend to focus a great deal on comparing themselves with their
peers - a very competitive mindset - to confirm their beliefs about their traits.

Growth mindsets, on the other hand, lend themselves much more to individual
learning and learning environments. Someone with a growth mindset believes that
their intelligence and skills can grow and change over time - if they are currently not
knowledgeable about a particular area, they believe that with enough time, effort,
teaching, and practice, they can become knowledgeable about it. This isn’t to say that

Individual Growth | 45

everyone has the potential to be the next Albert Einstein or Marie Curie, but rather
takes a more practical view that while not every skill can be mastered or perfected,
nearly every skill can at least be improved.

In this case, challenges are viewed as learning opportunities, ways to gain new skills
and knowledge or practice and level up existing ones. Without the fear of failure that
can be hard to overcome in a fixed mindset, more risks can be taken and more
growth can happen. Failure is viewed not as a sign of an inherent personal flaw, but
simply as something that happens during the learning process.

Blamelessness and Learning Organizations
This view of failure applies at the organizational level as well as the individual one.
Consider the blameful culture that we introduced in the What is Devops chapter. A
blameful culture, when dealing with a failure, looks for the individual(s) who they
believe caused it so they can be removed, either from the project or the organization.
This is often because they view failure in a fixed way - if someone made a mistake, it
is seen as being because they were not good enough or not smart enough and because
that is viewed as immutable, they don’t give the person chances to improve. The orga‐
nization as a whole tends to stagnate in this way. Focus is placed not on dealing with
failure well and learning from it, but rather on avoiding it altogether.

A blameless view of failure works so well in part because it adopts a growth mindset,
acknowledging that mistakes happen but operating under the assumption that both
people and organizations are capable of learning, growing, and improving. The team
might not currently be good at something, but it can get better so people are looking
for ways to get better, ways to learn, and ways to improve. This focus on learning,
education, and self-improvement produces smarter and more robust individuals and
teams.

The Role of Feedback
Dweck’s years of research found that the nature of the feedback people received was a
key factor in whether they developed a fixed or a growth mindset. If someone does
well at something and the praise they receive is, “Good job, you’re so smart,” the
emphasis on smart pushes them towards a fixed mindset, making them less likely to
take on challenging tasks or anything that might call that smartness into question. If,
on the other hand, someone is praised by saying, “Good job, you worked so hard on
that,” they will associate their successes with the effort that they put into something,
not an innate quality, making them more likely to take on challenges and try again
after setbacks in the future.

The original studies in the area of feedback and mindsets were conducted with
school-age children, but the idea that the type of feedback people receive can shape
the mindset they have certainly applies to adults as well. A mindset might originally

46 | Chapter 3: Collaboration: Individuals Working Together

form during the childhood years, but even a fixed mindset is not a fixed thing - some‐
one who learned a fixed mindset as a child has the potential to develop a more
learning-focused growth mindset as an adult.

This is very important when considering employee growth and performance. People
with fixed mindsets tend to pay attention only to feedback that relates directly to their
present abilities, tuning out feedback that speaks to how they could improve in the
future. Growth mindset individuals, on the other hand, were very attentive to any
feedback that could help them do better, being focused on learning and improving
themselves rather than on their current state.

Keep both of these things in mind during employee reviews and feedback periods.
When people are giving feedback, either as a manager or as an individual contributor,
they should be emphasizing peoples’ efforts, actions, and the work and thought that
people put into things, focusing on what people can do rather than what they are and
thus guiding people towards a growth mindset. This is the case for both positive and
more negative feedback. Consider these examples:

“George is clearly an intelligent person - he intuitively understands the way that dis‐
tributed systems behave and interact. He isn’t very good with people though, and isn’t the
kind of person that others go to when they need help.”

“The General has clearly put a great deal of work into understanding the distributed sys‐
tems that she works with, and that effort shows in her deep knowledge of how these sys‐
tems behave and interact. I’d love to see her work more on how she comes across to other
people, so other people can learn from her experiences.”

How are these two employees likely to react when receiving these pieces of feedback?
Though the big pictures of each are the same (good at distributed systems, not so
good at people skills), the details of how this feedback is framed and given make a
world of difference. George’s feedback contains fixed mindset phrases - “an intelligent
person”, “intuitively understands”, “isn’t the kind of person” - that imply that these are
unchangeable facts about him. The General’s feedback is put differently - “a great deal
of work”, “that effort shows”, “see her work more on” - these phrases focus on her
work and actions, what she has done in the past and should do in the future, not how
she innately is and this will lead to or reinforce a growth mindset.

Reviews and Rankings
The goals of giving employees feedback are two-fold. First, feedback in the form of
things like performance reviews is designed to let people know how they are doing so
they can grow as individuals, level up their own skills and work to fill any gaps in
their knowledge or skill set. Aside from benefit to the individual, there is also benefit
to the organization by way of figuring out which people are performing better and
contributing more. The rationale for this is that if there are some people who aren’t

Individual Growth | 47

doing as well as their peers or are consistently failing to improve, the organization
would be better off without them.

There have been multiple books dedicated entirely to managing employee perfor‐
mance, so we will not go into a great amount of detail ourselves here. We will touch
on a few considerations that we’ve found to have a greater amount of impact on both
organizational and individual levels.

Frequency of Feedback: As recently as 2011, it was found that 51% of companies do
annual performance reviews while 41% do them semi-anually. However, more and
more companies are beginning to realize that feedback and reviews can be much
more impactful if given more frequently, if the feedback itself is helpful to those
receiving it. Obviously if feedback provides no new or actionable information there
will be no benefit to getting it more ofen. However, for feedback that is useful and
actionable, greater frequency does lead to greater benefit for both individuals and
organizations.

If someone isn’t on the right track with something that they’re doing, waiting up to a
year for their next annual review isn’t good for anyone involved. They will likely go
through this time thinking they are doing well, leading to a nasty surprise come
review time, and the psychology of getting feedback shows that people generally don’t
react well to negative surprises like this - this is knows as amygdala hijacking and
causes an emotional response rather than an intellectual one, making people less
likely to fully understand and be able to act on feedback they are being given. Habits
that have been going on for longer are harder to break, so it makes more sense to try
to nip a bad work habit in the bud rather than letting it continue.

Smaller, shorter feedback cycles mean that adjustments are smaller and thus easier to
make. This is a big driving factor behind teams moving away from the waterfall
model for software developments towards more agile practices and why continuous
delivery works so well. Annual performance reviews are similar to waterfall in that
the delay in getting feedback on how things are going can have a negative impact on
how things go overall, so move towards the more agile idea of continuous feedback.

Ranking System: Especially in larger organizations, various ranking systems are
often used to categorize or classify employee performance. One of the biggest changes
in recent years is the move away from stack ranking, also referred to as forced rank‐
ing or forced distribution. Popularized by then-CEO of GE Jack Welch in the 1980s,
the underlying beliefs of this practice is that the top 20 percent of the workforce is the
most productive, and the middle 70 percent work adequately. The remaining 10 per‐
cent should be fired - often referred to as “rank and yank”. This ranking creates a
drive for employees to avoid being in the 10 percent group.

When individuals in a system are forced to compete through comparing accomplish‐
ments with others this leads to a fixed mindset,increasing the challenge of effective

48 | Chapter 3: Collaboration: Individuals Working Together

communication. In this manner the effects of the system can be readily seen as clear,
transparent communication is not perceived as valuable to the individual. Sharing
information can impact your rewards, career advancement, even whether you have a
job. Studies have shown that stack ranking actually hurts performance instead of
helping it, but luckily there has been a marked decline in organizations using it in
recent years.

Having some system of ranking or categorizing performance isn’t necessarily bad, just
the idea of forcing performance into preset quotas. Having some kind of formalized
system for measuring performance can be helpful, especially if combined with useful
and frequent feedback to the employees, as it can provide clear steps forward for peo‐
ple who want to improve and grow their careers. Many startups, looking to move
away from ranking systems that they feel are too corporate, do away with rankings
and reviews entirely. However, in the chaos and change that categorizes these early-
stage companies, lack of feedback can be detrimental to individuals. Additionally,
without any kind of formal procedures or guidelines, it is easy for favoritism to come
into play, intentionally or unintentionally.

Looking at these factors, we can see how feedback and rankings around individual
performance, rather than being something that impacts only one individual at a time,
can actually have impacts on collaboration throughout teams and organizations.
Turning performance reviews into a zero-sum game inhibits communication and col‐
laboration as everyone is more focused on looking out only for themselves to protect
their jobs instead of working towards creating value for the company as a whole, let
alone what might provide the most benefit for customers. By focusing on comparing
a person’s performance with that of others, it unintentionally turns focus inwards so
people only consider what will benefit themselves and keep them from being one of
the “yanked” employees in a stack ranked organization.

Frequency and formality of feedback play a role in creating a collaborative environ‐
ment as well. Some formality in the process is certainly a good thing, but consider the
ease of how information will flow at one big yearly review versus a much smaller
weekly catch-up kind of review. If someone is overwhelmed trying to take in and
understand an entire year’s worth of feedback, they are less likely to be able to provide
any feedback in return, whether that be a self-assessment of their own performance
or addressing how someone else (their manager, peers, or team as a whole) could be
improved as well. If someone has a much smaller weekly or biweekly feedback session
with their manager, they will get more practice both receiving feedback and giving it
in return. This will lead to greater information sharing in both directions, not just
from the top down, which creates a more collaborative environment overall.

Individual Growth | 49

Organizational Pressure
There are two main types of pressures that individuals will sometimes find them‐
selves under in a workplace - individual and organizational. Individual pressure
comes from within - self-motivation that drives people to work and to improve. What
we’re going to discuss here is organizational pressure, how the organization as a
whole responds to pressures from events (usually unplanned events) and how those
pressures and stresses impact people at an individual level.

Figure 3-1. Organizational Pressure Curve

This relationship between organizational pressure and organizational and individual
performance can be seen here. Too little pressure and the result is boredom, as there
is no motivation to perform - even internal motivation is unlikely to hold up if the
organization as a whole doesn’t seem to care. As pressure increased to average levels,
so does performance increase as well - but this is only true up to a point. Short peri‐
ods of higher than average pressure will see short-term performance gains, but as the
pressure continues to increase, either in intesity or in duration, performance starts to
decrease again. At the very upper edge of the pressure curve is panic, where there is
too much going on for people to be able to respond rationally or effectively and per‐
formance is severely negatively impacted.

Recent research has identified six main factors of organizational pressure and how
these factors can impact performance. Taking a look into these factors, we’ll see how
teams can make changes in ways that will improve individual collaboration as well as
organizational performance.

• Workload: How much work is expected of employees, and if they have the time
and resources necessary to complete their expected work, is a big factor of organ‐

50 | Chapter 3: Collaboration: Individuals Working Together

izational pressure. As we mentioned in the What is Devops chapter, devops is not
a way to get twice the work out of the same number of employees - while job
descriptions might start to blur and startup employees might need to wear multi‐
ple hats, you should not be expecting one person to do the work of two full-time
people. Getting feedback from people on how they are feeling about their work‐
load, especially when done frequently (again, yearly reviews are not the way to go
here), can go a long way towards assessing if a team’s workload needs some redis‐
tribution or if it is necessary to hire more people.

• Monotonous Work: Monotonous work can quickly drain employee motivation,
especially among more senior-level people, or if there is unnecessary competition
among employees for who gets to do non-monotonous work. Some repetitious
work is to be expected for junior employees who need the repetition to cement
newly learned skills. Especially if the work is something that could be automated,
leaving little reason why it should be done by hand, monotony is something that
should be addressed. We’ll address automation more in the Tools chapter, but
also consider additional training or employee rotations to keep people engaged
and learning. Monotonous work is more often seen in the boredom part of the
pressure curve.

• Career Development: People who feel that they have a clear way to progress at
their current job, seeing a benefit to their hard work, are more likely to feel satis‐
fied by the effort that is expected from them. Conversely, a company that lacks
career development options, whether that be a startup so small that it hasn’t yet
bothered to put together things like job levels, skills matrices, or requirements for
promotion or a company that is perceived to play favorites when it comes to who
gets promotions and raises, will likely see more turnover and less productivity as
organizational pressure increases.

• Work Relationships: Having supportive and even friendly work relationships
can go a long way towards improving morale and productivity. This becomes
especially true at higher levels of organizational pressure - people who feel sup‐
ported by the people around them, who are able to turn to others for help as
opposed to it being everyone out for themself, or even people who are simply
able to vent a little bit to an understanding ear over a coffee break are happier
and more productive. Make sure people are given opportunity and encourage‐
ment to get to know each other - one company found that syncronizing peoples’
coffee breaks across different teams so they were able to take breaks together
increased their profits by $15 million.

• Conflicting Goals: When employees are given conflicting goals, it makes it more
difficult to know where they should be focusing their attention, as well as having
the effect of increasing their workload as they try to go in multiple directions at
once. Keep an eye out for other people, whether that be managers or individual
contributors, trying to manage (or micromanage) employees. This is another

Individual Growth | 51

area where having more frequent feedback sessions can be beneficial - someone
who is able to ask for clarification of their roles or goals at a weekly session will
spend much less time being frustrated than someone who can only do so semi-
anually.

• Compensation: Finally, although research has shown that money is only a moti‐
vator up to a certain point, a serious mismatch between organizational pressure
(especially workload) and compensation can harm morale and productivity. Peo‐
ple want to feel that the company understands and appreciates the effort that they
are putting in. Here as well if there is no clear process for negotiating compensa‐
tion or raises and bonuses appear to be given out unfairly, issues are likely to
arise.

Again, there are many other books and papers that go into even greater detail on
management strategies for both individual and team performance. Take a look at the
Further Reading section at the end of this chapter for recommendations on where to
look if you want to learn more about these topics.

Superstars and Superflocks
With the rise in popularity of concepts like “rockstar developer” and “10X engineer”,
many companies and hiring managers are trying to hire those elusive “superstars”,
offering ridiculous compensation packages or the ability to work with whatever pro‐
gramming language or other tool strikes their fancy. This might actually do more
harm than good, however.

Evolutionary biologist William Muir of Purdue University performed an experiment
on flocks of chickens, trying to find out how to make chickens more productive in
terms of their egg production. A regular flock of regular chickens, left to its own devi‐
ces for six generations, ended up increasing its productivity. Muir also created a
“superflock” from the most productive chickens, and with each generation selected
only the most productive chickens to breed the next. Instead of being even more pro‐
ductive, this superflock ended up with all but three members dead. The “superchick‐
ens” were only more productive at the expense of the productivity of others.

As it turns out, these same principles apply just as well to humans in the workplace. A
study at MIT that looked at the productivity and creative problem solving skills found
that the most productive and creative teams were not the ones created from all
“superstar” engineers. Intelligence and raw engineering talent wasn’t at all a good pre‐
dictor of the best teams. Rather they found that the best teams had higher social sen‐
sitivity (better known as empathy), gave each other close to equal time to speak, and
had more women in them. It was unclear if having more women helped bring about
the higher empathy and more equal speaking time since women are often socialized
to be empathetic, listen more, and interrupt less, but it was clear that the increased
empathy and communication were deciding factors in team productivity.

52 | Chapter 3: Collaboration: Individuals Working Together

1 Hall, Edward T. The Hidden Dimension. Garden City, N.Y.: Doubleday, 1966. Print.

This is an idea known as social capital, or the value of the social networks and interac‐
tions that people have. Social capital works through means such as greater informa‐
tion flow, reciprocity and helpfulness, and interdependency and trust. Compare this
to a team that is focused around a superstar employee - help and information are
likely to only flow in one direction, there is no interdependency, and likely very little
trust. Social capital is something that takes time to develop, and whose benefits
become increasingly apparent as time progresses.

To get the productive teams and organizations we want, we need to stop focusing on
these “superstar” employees that erode trust and social capital, and instead focus on
growing empathy among our existing teams. Collboration, helpfulness, and commu‐
nication are all things that help people bring out the best in each other, and being able
to bring out the best in others, rather that competitively only focusing on the best in
yourself, is what takes people and teams from good to great.

Negotiation Styles
In today’s workplaces, with increasing demands for both increasing product perfor‐
mance and reducing costs, individuals are more and more likely to find themselves
with competing demands for where they should focus their time and attention or
what their goals are. The conflicts that will arise from these demands will need to be
resolved somehow - there are several different ways this can be done, which we’ll look
at here in terms of negotiation styles.

Territory and “Personal” Space
Edward Hall proposed four different zones of space; intimate, personal, social, and
public in his book The Hidden Dimension.1 Intimate space is specific to our closest
relationships; family and close friends. Personal space is specific to the casual
acquaintances, friends and work associates. Social space is specific to space that is
comfortable for social interactions with acquaintances and strangers. Public space is
specific to space that is perceived as impersonal.

When companies press for constricting space by doubling up offices and creating
small shared cubicules they start to encroach into personal and social spaces adding
to the tension between individuals. This tension can add to any conflicts created by
differences in goals and motivations.

Competition occurs naturally where people are coexisting or sharing the same space.
It’s not necessarily a negative thing, but the lack of sharable goals means that it doesn’t

Negotiation Styles | 53

lend itself well towards accomplishing shared goals. If people on a team are focused
on competing without any kind of cooperation or collaboration, results for the team
as a whole will be less optimal with increased time to market, decreased innovation,
and decreased morale.

Accomodation is a second style of negotiation of individuals within a team that
involves one individual helping another with the goal of building a better relation‐
ship. If George accommodates the General, the General benefits at George’s cost.

Avoidance is a third style of negotiation of individuals within a team that involves
individuals avoiding the problem. While this style doesn’t increase conflict it doesn’t
generally lead to improvement. If George avoids resolving conflict with the General,
neither benefits. Avoidance dynamics can be observed in multiple ways:

• High tension between individuals.
• Lack of depth in communication and resolution.
• Rarely set goals or direct no’s.
• Unfullfilled commitments and missed deadlines.

Power Differentials
We can’t have a discussion on conflict and negotiation without making note of differ‐
ences in power. Power differentials can happen because of a variety of reasons. This
can be as simple as the power structures built into the workplace, where managers
have more power than their reports or senior engineers having more power than jun‐
ior ones. However, they can also take more subtle forms, with members of under-
represented groups in the tech industry such as women, people of color, or LGBTQ
people having less power than members of more represented or dominant groups.

These power differentials can have substantial effects on negotiation styles between
people. On the one hand, people with less power might avoid any kind of conflict,
hoping to avoid being co-opted or having to make compromises they don’t want to
make, knowing that they have less power and are likely to be the only ones “compro‐
mising”, which isn’t really a compromise at all. Alternatively, the high-power side
might also avoid conflict or negotiation because they see no need to - if they can
impose their will or solution on others, who have no choice but to accept it, they don’t
have much incentive to negotiate. It’s important to keep these power differentials in
mind when considering negotiation styles.

Compromise is a fourth style of negotiation of individuals within a team that involves
individuals helping one another by each giving up something of value to get some‐
thing of value. If George and the General compromise, then they both benefit but at a

54 | Chapter 3: Collaboration: Individuals Working Together

cost to each. It should be noted that when only one side is giving something up, this is
accomodation and not a true compromise.

Collaboration is the fifth style of negotiation of individuals within a team working
with others to achieve shared goals, often taking the form of knowledge sharing,
learning, and building consensus among the individuals involved. For a team to best
work towards its goals, its members must be able to work together towards goals that
are shared between all of the individuals involved. In this chapter, we’ll see that teams
with more individual collaboration are more productive as a whole, as well as being
better from the points of view of the people in them - and since lower turnover is
usually better for team morale and productivity, this is a positively reinforcing cycle.

From Competition to Collaboration
One of the key factors to getting individuals to work well together is modifying the
style of negotiation in the workplace from competition to one of collaboration.

What makes a team a collaborative environment as opposed to a competitive one?
Since competition occurs when resources that multiple people want are scarce
enough that people have to worry about not getting any or enough of the resources
they want or need, a team that acknowleges these factors and helps individuals to
mitigate them is more likely to be a collaborative one overall. A good manager can be
the key to having reports who work well together and trust each other rather than
being pitted against each other. This involves a great deal of understanding different
working styles and improving communication. These skills can be incredibly valuable
for individual contributors to understand themselves.

Communication
A large part of fostering collaboration as the primary negotiation style among a team
or workplace ultimately comes down to communication. We first saw this idea in
action when we introduced the devops compact - without effective communication,
neither the shared goals, strategies taken to reach them, or contingency plans would
have been anywhere near as likely to succeed.

Why Communicate
Aside from simply answering a question or telling somebody what to work on next,
there are many different reasons why we, as people, communicate with each other.
Five key reasons are understanding, influence, recognition, and building community.
In this section we’ll take a look at these different reasons for communicating before
moving onto the topics of what and how we communicate.

Communication | 55

Understanding
A large part of communication is designed to increase understanding - this could
mean a clearer understanding of what someone expects from us, a deeper under‐
standing of a technical topic, or anything in between. As discussed earlier, formal
mentorship programs are a great way of increasing understanding, but even without
this, there are plenty of opportunities to increase peoples’ understanding in your
environment successfully. An established community of practice meeting, whether it
comes in the form of regular coffee talks, a team hackathon, or bug fix sessions, is a
great opportunity to show new people the set of expectations that are implicit in the
environment. This is a form of implicit understanding, picking up on ideas, norms,
and social customs through observation, rather than the explicit understanding that
comes from a mentoring session or a formal lecture.

Embracing a learning culture and encouraging social engagement around knowledge
sharing provides appropriate contextual clues towards understanding that are not
generally present through self-learning on a subject. Rather than examining our envi‐
ronments and trying to encapsulate everything into checklists or other documents we
need to recognize the importance of community building in environments.

When a single individual becomes responsible for large amounts of systems and pro‐
cesses, that individual distils a large amount of knowledge through situational aware‐
ness and application of learning. Without active dissemination of this knowledge to
others, you build islands of knowledge that are vulnerable to external events in your
organization. Having just a couple people who understand a given topic also increa‐
ses pressure on those individuals (“No, George can’t go on vacation, he’s the only one
who can fix the database!”) which can increase stress and the likelihood of burnout.
Communicating to share and spread understanding is a great way to grow the skills
and increase the robustness of your organiation.

Many times, understanding includes an aspect of historical perspective. Given the
complex systems that we work with and the organic way they grow and evolve over
time, it is not always obvious to someone new to a team or project why things are the
way they are. This sort of context is greatly important to being able to fully compre‐
hend and contribute to something. This is especially true for operations teams who
are tasked with deciding if something is anamolous or not - was this alert a false
alarm or is there an actual issue that needs to be investigated? Being able to commu‐
nicate the historical contexts allows new or more junior team members to grow and
develop their knowledge and understanding much more quickly than they would
otherwise.

Influence
Communication can also be designed to influence people. The most common exam‐
ple of this, in a work context, is trying to get someone “on your side” or to come

56 | Chapter 3: Collaboration: Individuals Working Together

around to your point of view when there is a disagreement about how to do some‐
thing. If George wants to use a nosql data store for the team’s upcoming project but
The General thinks MySQL would be a better fit, they will both try to influence the
people around them, whether that be their peers or their manager.

There are different methods of influence, some that are more positive or collaborative
than others. Certainly one can influence others by interrupting anyone who disagrees
with them, by being the one who argues the loudest and the longest, or by using some
sort of power or coersion. None of these lend themselves well to a healthy or empa‐
thetic team dynamic - while influence may have been achieved, everyone else is likely
to feel resentful. As we’ll discuss more later, the most effective way to influence others
is to find enough common ground that not only will they do what you want, but they
will actually want what you want as well.

Recognition
Giving recognition is another common reason that people communicate. Giving rec‐
ognition can improve morale, since people obviously want to feel that their work and
accomplishments are noticed and appreciated, it can enhance cooperation between
employees as they see each other more as both generous and contributive, and it can
help to reinforce behaviors at work that you would like to see more of. Recognition
usually has two parts to it - the identification or realization of something that should
be recognized, and the actual communication of that sentiment.

Identification of opportunities for recognition is a skill that takes time, since if you
aren’t in the right mindset - for example, being in a negative mood, being stressed out
due to a heavy workload, or being in a team environment that it incredibly competi‐
tive and “everyone for themself ”, it will be harder to realize times when praise or rec‐
ognition would be appropriate. Communicating the recognition is another skill.
Some people feel less comfortable praising others, especially if there hasn’t been much
recognition in the workplace previously. Recognizing people publicly might feel more
uncomfortable than doing so privately, people might feel more recognized if praised
publically, such as in a team meeting.

Building Community
Finally, communication can be used to build communities. As the previously-
mentioned MIT study showed, teams with greater empathy and more equal commu‐
nication are more creative and more productive, and building community goes hand
in hand with these things. Teams where people regularly talk about things outside of
strictly work-related matters have higher levels of trust and empathy, are able to be
more productive and handle stressful times better as a group. People often interact
better on an individual level when they are able to see each other as complete individ‐
uals, not just email addresses or entries in the company’s staff directory.

Communication | 57

There should not be an expectation that employees will become best friends outside
of work, and there is a fine line between getting to know someone as a person and
getting too invasive or personal - some people are more willing to share personal
parts of their lives than others, and that’s fine. The key isn’t to force community-
building interpersonal communication, but to create opportunities for it, gently
encourage it, and then allow it to happen naturally. Building relationships and build‐
ing community both take time; neither happen overnight and neither can be forced.
Something like shared coffee breaks, shared lunches long enough to both eat and talk,
and opt-in activities for people with common interests can go a long way towards
building strong communities.

What we Communicate
Understanding why we communicate leads to understanding what we communicate.
There are many different things that people might communicate to each other in the
course of their work, and different tools or media will be more or less effective for
these different types.

The contents of our communications can take on many different forms. Sometimes
we are asking questions to which we require a response, while some questions might
be putting out feelers and just trying to gauge the general feel of something. We might
be brainstorming and trying to quickly gather as many ideas for something as possi‐
ble. We might be having a discussion and trying to reach a consensus or make a deci‐
sion on something significant. We might be sending out information that requires no
response, but some of it might be just of casual interest while some might be manda‐
tory for everyone in its audience to read and understand. Some communications
might make more sense when spoken or heard aloud, some might be better written
down, and some make more sense conveyed visually.

These different types of communications can and do happen over multiple types of
media. If we’re asking for information, we could send out a Google Form for people
to fill out, send an email to a mailing list with a subject of “Please Respond,” or we
could ask our Twitter followers in 140 characters. Different qualities of our commu‐
nications determine which media will be more appropriate than others. Communica‐
tion can be urgent (needs a response right away) or non-urgent (needs a response
whenever is convenient for the recipient), and it can be casual (doesn’t really matter if
it gets seen) or important (definitely needs to get seen and understood).

With these different ideas of what we communicate in mind, let’s take a look at how
the content affects the tools we choose for various communications.

How we Communicate
The methods for communication we choose will, if you’re trying to be most effective
communication, depend on the content, urgency, and importance of your communi‐

58 | Chapter 3: Collaboration: Individuals Working Together

cations. In addition, you’ll want to consider what kind of audience you’re trying to
reach, and how much context and investment from the intended audience will be
needed for the communication to be effective. We can consider how organized the
communication needs to be, versus more free-form.

Here, we’ll break down a (non-exhaustive) list of communication methods by a vari‐
ety of factors.

Table 3-2. Different Communication Tools and Methods

Urgency Audience Reach Investment Context Required Organization

Email Low High Medium High Medium

Impromptu in-person (or video) High Low Medium Low Low

Chat Medium Medium Low High Low

Meeting Very Low High High Low High

Twitter Low Medium Low High Low

Github Pull Request Low Medium Medium Medium Medium

Post-it Notes Very Low Medium Low High Low

PagerDuty Pages High High High Medium Low

Nagios Alerts Medium High High Medium Low

Books or Blog posts Very Low Low Medium Medium High

Pictures, Graphs, and Gifs Low Low Low High Low

Let’s look at what the columns in this table indicate in more detail.

• Immediacy refers to how quickly communication can be established - walking
up to someone in-person has high immediacy because you can tap them on the
shoulder and interrupt them, whereas email has low immediacy because you
can’t control how often other people check their email. Meetings can have very
low immediacy because scheduling around the availability of people and meeting
places can be very time-consuming indeed.

• Audience reach is how well a medium allows you to reach all of your intended
audience, so while an email to an individual has a pretty good chance of being
seen by who you want, chat messages will likely only be seen by people who hap‐

Communication | 59

pen to be online (or in a given channel) at the time, depending on what kind of
offline messaging and alerting options your chat solution has.

• Investment describes how much time and effort is required for people to partici‐
pate with a given form of communication. Meetings are one of the highest in
terms of investment as people have to take time out of their other work and
either go someplace in or dial in remotely to participate. An email, book, or blog
post requires a medium amount of investment in terms of finding the time to
read it thoroughly, but something like chat or twitter is low investment.

• Context is how much context is required for a given communication medium, or
how likely misunderstandings are to occur without it. Twitter, chat, and email
require high context, because of how easy it is to misinterpret phrasing or tone -
in general the shorter the text communication is, the more likely misunderstand‐
ings are to occur because of context being lost. In-person (or video) forms of
communication are much lower context because people can see body language,
hear voice and tone, and quickly bring up and resolve misunderstandings.

• Organization refers to how organized the thoughts or ideas ought to be in a par‐
ticular medium. Meetings are high organization because they really should have
an agenda so peoples’ time isn’t wasted. Email is medium because people can
choose to organize their thoughts quite a bit before sending, while chat and Twit‐
ter are low due to their often rapid nature and short form.

Communication and Context
A lot of how we communicate is also impacted by the context of our communica‐
tions. This is not just the amount of context that various communication media and
methods can provide as described above but also the situations and circumstances in
which communication can take place.

Regular communication as part of everyday work is likely to be very different from
the communication that takes place during an emergency, such as a site outage or
other operational issue. While shared jokes, internet memes, and funny cat pictures
might be a good way to build cameraderie and trust during normal work, they can be
an unwelcome distraction during an ongoing issue. Companies that rely heavily on
chat would do well to create a separate chat room or channel for these situations such
as a “war room” which is reserved for straightforward, on-topic communication only.

Context can also informed by the power differentials discussed earlier. Talking with
or sending an email to someone higher up in the organizational hierarchy will likely
have a different tone to communications directed at peers or people further down in
the org chart. Keeping in mind the effect that these differentials can have on negotia‐
tion and collaboration can be a good way of improving the effectiveness of interper‐
sonal communication. A comment that might seem clearly lighthearted when sent to

60 | Chapter 3: Collaboration: Individuals Working Together

a peer might take on a very different tone when sent to someone with less power in
the professional relationship.

This can happen in more subtle ways as well, as there are other power differentials
that exist outside of a company’s org chart. This is especially true when considering
gender diversity in the workplace and addressing the unconscious biases that exist
there. Studies have shown that when women use the same language as men in terms
of how they phrase things, they are perceived as more “harsh”, “abrasive”, or “aggres‐
sive”, in a negative light, while men are praised for how “straightforward” and “take-
charge” they are. On the other side of things, women are often judged negatively for
softening their language by apologizing or using hedging words like “just”. If they
interrupt as much as their male colleagues they are often deemed “unlikeable”, but
without interrupting, depending on the office culture, it can be hard to ever get your
opinions heard. These sorts of contexts can have an enormous impact on how suc‐
cessful our communications are and should be kept in mind.

Finally, whether or not team members are located together can also be very impactful
on communication. If a company is just getting started with allowing remote workers,
or simply hasn’t given their remote employees much focus or attention, remote com‐
munication and collaboration can take a serious hit. If the majority of work-related
decisions happen in person, usually outside of a formal meeting context, remote
employees might find themselves missing out of valuable information.

One way of dealing with this is the practice of communicating “as remote by default”.
This means using the remote-friendly methods of communication, most commonly
email and group chat, for as much communication as possible and as the first choice
of method, not a last resort. If, instead of walking over to someone’s desk to ask a
question but asking instead in a team’s chat room, remote employees are given a
chance to learn and participate in these discussions that they wouldn’t have before -
this leads to more information and better visibility for the entire team. Having a
searchable record of communications for future reference can be very valuable as
well.

Trust and Empathy
Effective communication, in addition to more commonly thought of use cases like
distributing information, is key to building trust and empathy between individuals,
and a shared foundation of trust and empathy is what enables devops to really work.
This goes back to the root of the devops compact that we introduced earlier in the
book. In order to be able to assume that all parties are still on board and still working
towards the same goals, we have to be able to trust them, and in order to really under‐
stand and get on board with these shared goals, we have to be able to empathize with
each other.

Trust and Empathy | 61

Creating a compact involves being able to establish and communicate a shared vision
or shared goals - the commonalities that will be shaping the big picture of what peo‐
ple are working on even as the details differ. Aside from increased empathy and a
common focus, a shared vision should give individuals a much clearer picture that
will help direct, inform, and guide autonomous action. Goals that are too vague or
that don’t seem relevant are harder to fully grasp and realize, which might not provide
individuals with the motivation, context, or ability to choose effective courses of
action.

Increased trust can go a long way towards increasing the resiliency of a team.
Without trust, individuals can be very protective of their projects or areas of respon‐
sibility, often to the detriment of their own health or the team’s overall productivity.
Imagine, as an example, a team of system administrators so protective of their
servers, and so distrustful of anyone else touching them, that they restrict any privi‐
leged server access at all to just their own team. If other teams don’t have the ability to
install necessary software or deploy code to these servers, this team is likely to
become a bottleneck, a barrier that other teams will end up resenting or finding ways
to work around. This is a typical example that comes to mind when people think of
the drawbacks to heavily siloed environments.

That kind of negative impact can become even more apparent when it is a single per‐
son rather than a team being too closed off. If only one person knows about or has
access to something, they become a single point of failure for that thing. If that thing
breaks and that one person is sick or on vacation, the rest of the team might be dead
in the water and unable to be productive until the one person can be reached, which
will either lead to the rest of the team being blocked or that person never being able
(or willing) to take time off. With increased trust, this knowledge and responsibility
can be shared not only between people but between teams, increasing the resiliency
of the organization as a whole.

Developing Empathy
Empathy, the ability to understand and share someone else’s feelings, is a skill that can
and should be learned and developed. Its benefits are becoming increasingly well-
known, both in and out of the workplace. More empathetic individuals are less ego‐
centric, less socially aggressive, and less likely to use stereotypes when considering
others - they are also much more likely to compromise during debates or other disa‐
greements rather than tending towards one of the other negotiation styles discussed
earlier. Research has also shown that increased empathy is positively correlated with
better job performance.

While a great deal of empathy is developed (or not) in childhood, there are many
ways that empathy can be learned as an adult as well. We’ll take a look at a few of the
most common and effective methods and how they can be applied in the workplace.

62 | Chapter 3: Collaboration: Individuals Working Together

Listening
Listening is important for building empathy in general, but it can be even more bene‐
ficial during disagreements or other heated discussions. Too often when we are disa‐
greeing with someone we are merely waiting for our own next chance to start talking
and planning what we are going to say, rather than really listening and trying to
understand where the other person is coming from. Instead, try slowing down and
forcing yourself to actually listen, and instead of interrupting, wait until they are
actually finished speaking before considering your own response.

Active listening is another good skill to consider here. This involves reflecting what
you think the other person just said, paraphrasing or summarizing to make sure that
what they heard and understood was the same as the original meaning or intention -
this makes sure that both parties are on the same page and are actually talking about
the same thing. Paying attention to non-verbal cues, such as tone of voice, rate of
speech, body language, and facial expressions is also a key part of listening. Because
these non-verbal cues aren’t conveyed via text, making sure you have a good video (or
at the bare minimum, audio) setup is key if you have any remote employees.

Asking Questions
After listening, asking questions can be a great way to build understanding and clarify
meaning, often as part of active listening. In addition to asking questions of others,
we can also ask questions of or to ourselves. Cultivating curiosity about others,
whether they be strangers or the other people on our team, is a habit that can expand
empathy by helping us understand where other people are coming from. Questions
could take the form of “Could you clarify what you meant when you said X?” or
something more hypothetical, such as “Where do I think that person on the train is
heading right now? What might they be looking at on their phone?”, or self-facing,
“What unconscious biases might I have that are impacting my opinions on this?”
Combined with then listening to the answers we get, either from ourselves or others,
asking questions can be a very powerful tool for building empathy.

Imagining Other Perspectives
Going beyond asking hypothetical questions about what other people might be think‐
ing, doing, or feeling, we get to trying to imagine ourselves in other peoples’ shoes. It’s
one thing to say that we should assume good intentions, but we can go further and
ask ourselves, how might this person be feeling right now when I disagree with them?
What good intentions can I identify that this person holds? What might their positive
motivations be, and how do they impact the disagreement or discussion that we are
having? What valid arguements might they have against my point of view?

A research study conducted at Harvard University showed that simply being given a
description of someone else didn’t do much to increase empathy, but being given

Trust and Empathy | 63

more specific information about a disagreement and the other person’s point of view,
such as information about the person’s thoughts, or overhearing the details of a dis‐
cussion or conversation enabled them to step into someone else’s shoes much more
easily, making them more likely to compromise and negotiate.

Appreciating Individual Differences
In addition to imagining what other peoples’ thoughts, opinions, and motivations
might be, we can teach ourselves to appreciate those differences as another way of
cultivating empathy. Working with, genuinely listening to, and imagining ourselves as
the various people that we work with can go a long way towards breaking down bia‐
ses, both conscious and unconscious. Consider the different working styles described
above and how they complement each other - both starters and finishers, purists and
pragmatists, can combine their skills to bring projects to fruition. Then take this
understanding and appreciation and apply it to the other personal and professional
backgrounds you might find - appreciating the benefits of differing perspectives can
go a long way towards appreciating diversity and building empathy among different
people.

Developing Trust
Trust and empathy go hand in hand - as one grows, so often does the other, and visa
versa. There are different strategies that can be used specifically for developing trust,
however, and both are needed to foster an environment that can be really and reliably
collaborative. One of the differentiating factors between a group and a team is the
presence of trust (though we’ll discuss more differences in the Affinity chapter).

Swift trust is a form of trust that occurs in short-term or short-lived groups or organ‐
izations, where trust is assumed to be present at first and then verified as time goes
on. First explored by professor of organizational behavior Dr. Debra Meyerson, it is
often used in quick-starting groups or teams that lack the time necessary to develop
trust the way that normally occurs naturally in longer-term relationships (here mean‐
ing any relationship between individuals, not specifically or at all limited to romantic
relationships). Because time is limited, time members will initially assume trustwor‐
thiness and then verify and adjust that trust later based on others’ actions.

Research has showed for some time that self-disclosure is one of the hallmarks of
trusting relationships - being open enough to share things about ourselves can
increase feelings of trust and intimacy between people, as well as increase cooperative
and collaborative attitudes. Of course, there is a balance that must be achieved when
practicing self-disclosure in the workplace. Not enough disclosure and suspicions
may grow, wondering what someone is hiding and if they can be trusted, but too
much or the wrong kind of disclosure, including inappropriate admissions or what

64 | Chapter 3: Collaboration: Individuals Working Together

might sound like betrayal of someone else’s confidence can damage trust and credibil‐
ity as well.

The trust-but-verify model can be used when dealing with sharing professional
responsibilities as well. Someone who waits until trust has already been “earned”
before doing something like sharing access to a project they’ve been working on
might find themselves with a chicken-and-egg problem: how can someone earn trust
if they’re not given opportunities to earn that trust because they aren’t yet trusted?
Instead, people should be encouraged to share responsibilities with trust given first
and followed up by verification. This is also true for sharing power and decision-
making ability in addition to things like project work and responsibilities.

Trust plays a role when considering the human side of growing an organization in
addition to the technical one. As we’ll see more when discussing employee retention
in the hiring chapter, the perception of fairness is very important to employee satis‐
faction, meaning employees need to be able to trust that they are being treated fairly.
One thing that can help in this regard is developing formalized roles, job levels, and
pay scales, as well as providing a reasonable amount of transparency in these areas.
This can help people to understand what the requirements of their role are or pro‐
cesses for pay increases and promotions, which can notably decrease the feeling that
they are being unfairly passed over or wondering why someone else got a promotion,
feelings that can understandably decrease trust.

Sharing risks in addition to sharing responsibilities and resources is key as well. If
two teams are sharing work or resources on a project, but only one of them will be
negatively impacted if something goes wrong with it, the team with the risk might be
distrustful of the team without. In addition, this can lead to a power differential in
favor of the team without (or with less) risk and the problems associated with that.

Trust and Empathy | 65

CHAPTER 4

Hiring: Choosing Individuals

Introduction and Audience
This chapter is aimed at those who want to examine their current hiring practices,
optimize the hiring and interview process, and measure and iteratively improve hir‐
ing in their environment. It will be beneficial to managers, hiring or otherwise, who
have hiring needs. We will cover identifying your hiring goals, interviewing techni‐
ques, hiring for diversity, and retention of employees - all key aspects of growing,
transforming and maintaining an effective organization.

Determining your Hiring Needs
The first step in hiring is determining what kinds of candidates you are looking for.
There are quite a few factors that you’ll want to consider in this step. With tight time
constraints with the hunt for talent, or limited window for open job requisitions in a
tightly constrained budget focused team, it can be tempting to spend little time on
analyzing needs and move ahead quickly to try to source and interview candidates.
The more time you spend finding out what you need to complement the team you
have, the more successful your searches are likely to be.

Position and Skills
The skills you’re looking for might seem relatively straightforward - if you’re running
a Ruby on Rails application, it might seem obvious that you need to hire experienced
Ruby on Rails developers. There is more to having a person be a good fit for a posi‐
tion than the particular technologies they’ve used before, however.

The position you’re looking to fill, and the reason it needs to be filled, can have a
good deal of influence on what skills will be a good fit. If you are looking for someone

67

to fill a very specific role for a very particular project, then it might make sense to
focus on someone who already has the specific skillset you need. For example, if your
company has started processing payments and you need to be PCI compliant by an
upcoming quarterly deadline, then it would likely be better to find someone who is
well versed in those specific compliance issues already rather than training someone
who isn’t.

Without these kinds of time pressures, you can search more broadly for candidates
who will fit your team in a more cultural sense. Even if you need a specific skillset,
such as an operations team who has outgrown cloud-based architectures and needs to
start hiring data center technicians and network engineers, with a reasonable amount
of time you can be more flexible as to how you get those skillsets. If someone on your
existing team has an interest, could they fill that position with proper training? What
about a more junior person who is looking to grow their skills?

Even when you’re looking for someone to work with a particular technology, without
a time crunch, direct experience with it isn’t always necessary. In our Ruby on Rails
example, if you hire someone who has worked with Rails before but is a poor culture
fit or lacks critical thinking and troubleshooting skills, what will happen if you find it
necessary to switch technologies in the future, or add a new one to your stack? On
the other hand, if you find an excellent Python developer who has great people and
learning skills, her ability to pick up new things will be a much better benefit in the
long run.

A Balance of Skills
Recall the axes of Collaborative Styles that we introduced in the Collaboration chap‐
ter. When thinking about the requirements for a position, you’ll probably want to
keep these axes in mind. Take a look at where your current team members fall on the
various axes, and keep an eye out for any where the team is starting to become unbal‐
anced. While it probably doesn’t matter so much if you have more night owls than
early birds, if you find that your team doesn’t have a good balance between starters
and finishers, and purists and pragmatists, that can lead to issues with overall team
productivity and quality. If you find that you need to hire one or the other to address
this imbalance, keep that in mind throughout the interview process.

Timeframe
As we touched on in the previous sub-section, there are occasionally circumstances
when time pressures require faster hiring decisions than you might otherwise want to
make. Outside of externally mandated deadlines, time questions often revolve around
how quickly new team members will be able to get up to speed and make meaningful
contributions to the team. People often shy away from hiring more junior candidates

68 | Chapter 4: Hiring: Choosing Individuals

because they worry that it will take too much time for them to get “real” work done,
or that more senior team members will have to spend too much of their time training
and mentoring the new people.

When considering time, you should also take into account a candidate’s fit within the
team. If someone has expressed a strong preference for working at small startups and
yours is growing rapidly, will you have to replace them in six months when your
company has gotten bigger than one they want to work at? If you hire someone who
is technically very experienced but who nobody else can stand to work with, how
much time will be spent replacing either them or other team members who leave
because of that person? Also, as we’ll discuss further in the sourcing section, not
being willing to invest in training and growing more junior candidates will likely lead
to a more homogeneous team, which is something you’ll want to consider as well.

Budget and Resources
Your budget and resources will obviously have an effect on the number of people you
can hire, as well as often their seniority. If you can’t or won’t pay close to a competi‐
tive market rate for the area you’re hiring in, you will find far fewer candidates willing
to accept your offers. This is an area where having distributed teams can be a benefit -
a competitive salary in Denver, Colorado will be less than what is market rate in San
Francisco, California, because of the incredible difference in cost-of-living expenses,
and opening up positions to more locations will provide a much wider range of can‐
didates.

Smaller startups, especially ones without the benefits of millions and millions of dol‐
lars in Silicon Valley venture capital funding, likely won’t be able to offer the same
salary (or stock options or insurance options) as a bigger, more established company.
What you can do to make up for that comes in the form of cultural benefits. Can you
offer flexible hours, remote work, vacations and parental leave, or just a culture that
strongly discourages working more than 40 hours a week? Can you send employees
to training, let them speak at industry conferences, give them a platform to publish
technical blog posts, or let employees spend some of their time working on projects
they find interesting outside of their normal responsibilities?

It’s important to be as competitive as is financially possible when considering candi‐
dates’ compensation, but most people also have non-monetary goals with their career
including making a postive impact on the organization, helping solve social or envi‐
ronmental challenges, or working with a diverse group of people. Providing a more
creative environment that provides outlets for these other goals can be the differenti‐
ating element that makes a company stand out from the competition.

Determining your Hiring Needs | 69

Sourcing
Once you’ve determined what you are looking for in a candidate, the next big ques‐
tion is where to find candidates.

Job boards are a good place to start because they tend to be frequented by people who
are actively looking for new opportunities. Generic job boards such as Monster and
Indeed get postings in front of more eyes, but industry-specific job boards tend to get
higher quality candidates in terms of matching up with tech-specific skill sets. Stack‐
Overflow Careers is one of the most well-known technology job boards, and compa‐
nies that post to it can share their score on the Joel Test, a 12-question test created by
software engineer, writer, and CEO Joel Spolsky that is designed to help companies
create productive environments for software developers to work.

The Joel Test

The Joel Test’s questions, which can be found online, are a good
starting point for evaluating your company in terms of how good a
place to work it is for software developers. It is only a starting place
however, and it doesn’t necessarily apply to every company. It
should also be noted that there are many more teams equally
important to companies than development teams, and you should
regularly be assessing how productive your workplace is for those
teams as well.

A new kind of site gaining in popularity somewhat resembles a dating site - both
companies and individual job seekers create profiles, can search for profiles based on
criteria they select, and can choose what kinds of communication they want to get
based on other profiles. Some sites, such as Whitetruffle, have profiles that are anony‐
mous until there is a mutual opt-in. Once a company and a candidate have both indi‐
cated that they’re interested in each other, they are given each other’s details and the
ability to contact each other. Because of the opt-in requirements, sites like this are
often a good way to cut down on candidates who aren’t really interested.

Recruiters are often popular with companies and hiring managers because they cut
down on the amount of time that managers or individual contributors have to spend
on sourcing instead of their other responsibilities. There are internal recruiters, who
are full employees of the company they represent and find candidates for only that
company, as well as external recruiters who are working for many companies at the
same time, usually on some kind of commission-based structure.

For individuals, recruiters are often seen as a nuisance through repetitively bulk
emailing, incomplete form letters, or inappropriately categorized job requirements
based on current position. We’ll go over some detailed examples in this chapter, but

70 | Chapter 4: Hiring: Choosing Individuals

http://www.joelonsoftware.com/articles/fog0000000043.html

keep in mind that a recruiter can do a great deal of damage to your company’s reputa‐
tion among potential candidates nullifying the potential time-saving benefits.

An alternative to reaching out to people who haven’t had any contact with your com‐
pany or given any indication that they are looking for a new job is to find people
organically. When your current employees go to local meetups or tech conferences,
they will be meeting people and making connections, often genuinely getting to know
people as opposed to cold-calling (or cold-emailing) them. If these people ever
become open to new opportunities, they’ll often reach out to these sorts of connec‐
tions and acquaintances first, before looking on job boards or contacting recruiters
themselves. The reasoning behind this is that there is a greater amount of trust with a
personal connection, with people who can answer questions more candidly and
vouch for the companies and other employees. Candidates want to know that they’ll
be happy with whichever job they take, and that information is much more believable
coming from an individual contributor than from a recruiter who is getting paid to
talk up the company.

Diversity
Many companies and teams these days are looking to grow and hire diverse teams.
Although there are many resources available that can go into much more depth than
we have space for here, we’ll briefly discuss the benefits and axes of diversity and how
teams can source and hire a wider range of people.

Benefits of Diversity
The tech industry tends to be very homogeneous in terms of the people in it, consist‐
ing mostly of heterosexual, cisgender, white men, in proportions much higher than
they are found in the general population. There have been many studies that show
that diverse, heterogeneous teams tend to outperform homogeneous ones.

“Strength lies in differences, not in similarities.”
—Stephen Covey

Diversity is critical for innovation, with the differing ideas, perspectives, and view‐
points that come from different backgrounds being a crucial part in developing new
ideas. Diverse teams will be able to develop products that reach a wider customer
base due to these differing experiences. The more closely different groups or individ‐
uals work together, the more creatively stimulated people tend to be.

A 2006 study from Dr. Samuel R. Sommers, director of the Diversity & Intergroup
Relations Lab at Tufts University, showed that racially diverse groups performed bet‐
ter than all-White groups. Heterogeneous groups exchange a wider range of informa‐
tion and discuss more topics than homogeneous ones. Additionally, White people
individually performed better in mixed groups than in all-White ones. Similar studies

Sourcing | 71

have shown that gender has the same effect - mixed gender groups out-perform
groups of all men on individual and group levels.

These benefits are even more pronounced when groups are working on tasks that
require creativity, where divergent thinking can be of benefit, or when they are
required to interact with non-group members. In practice, this means that teams that
interact with customers will benefit from increased diversity (especially if your
employees are not also users of your product), leading to increased customer satisfac‐
tion. A 2000 study from researcher and management professor Orlando C. Richard
showed that cultural diversity in the workforce led to increased company perfor‐
mance during periods of company and business growth.

Although diverse groups do lead to increased performance at individual, team, and
company levels, the drawback can be that they can also caused increases in interper‐
sonal conflict, which often leads to lower morale. It makes sense that differing view‐
points and opinions can lead to disagreements and conflicts, so it can be beneficial to
make sure employees know how to handle conflicts most effectively. It’s important to
make sure that disagreements are handled well, not just by whoever screams the
loudest winning, because teams that can survive these interpersonal conflicts show
even more performance gains in the long term.

Having employees who know how to resolve disagreements without damaging their
work relationships is always a good thing. Thinking back to the devops compact, we
have to know that we are ultimately working towards the same goal, and act with the
understanding that we still share that goal in spite of disagreements.

Axes of Diversity and Intersectionality
Many diversity initiatives in tech start by recognizing a lack of women in the work‐
place. Rectifying the gender disparity is necessary, but not sufficient. There are many
different axes that diversity can take. These include:

• Gender and gender presentation
• Race and ethnicity
• National origin
• Sexual orientation
• Age
• Veteran status
• Disability

Increasing diversity on any one of these axes is important, but only one axis does not
mean your company is truly diverse, nor that it is a safe place to work for a wide
range of people. Intersectionality is defined as the study of intersections between dif‐

72 | Chapter 4: Hiring: Choosing Individuals

ferent forms of oppression or discrimination, and how these different forms of
oppression are interconnected. The term was first coined by legal scholar Kimberlé
Crenshaw and is an important consideration when thinking about diversity at your
company.

Diversity, like any other devops practice, is not a simple thing that can be imple‐
mented once and then checked off a list of things to do. It’s an iterative process that
must be monitored and measured. Your reasons for considering diversity matter, and
how successful your efforts are will depend on them. Both initiatives are ones that
should be undertaken out of a genuine concern for improving the lives of all people
in your company and the community as a whole.

Unconscious Bias
People often think of sexism, racism, or any other “-ism” as an overt thing like one
might see when watching Mad Men. Those sorts of biases are certainly things to be
fought against, but unconscious biases can be even more insidious in their subtlety.
Unconscious biases are shaped from our environments and the times and cultures we
live in, and we often don’t notice their presence. These are ingrained thought patterns
that cause us to assume that men are more qualified than women with the same quali‐
fications, for example, without even realizing that we’re doing it. The best way to fight
against unconscious biases is to become (and stay) aware of them, which is why com‐
panies like Google and others are starting to offer unconscious bias training for their
employees.

Hiring Considerations
There are things to be considered throughout the hiring process when trying to
improve the diversity of your workforce. We will touch on additional ideas in the
interviewing and retention sections as well, but here are a few things to keep in mind
when sourcing candidates.

• Keep an eye out for language that can be exclusionary, such as overtly masculine
or militarized phrasing as well as overtly sexist, racist, or homophobic remarks in
both job postings and communications from recruiters. External recruiters espe‐
cially should be given as much guidance as possible on the tone and culture that
your company is trying to convey. More specific examples of this will be given in
this chapter’s case study.

• Be aware of those unconscious biases - even when we mean well, we often inad‐
vertently assume that a resume is better when it has a name that sounds like it
belongs to a white man’s on it. When possible, have everyone involved in the
sourcing and hiring processes take unconscious bias training, and keep person‐
ally identifying information out of the sourcing process for as long as possible.

Sourcing | 73

• There are recruiters and consultants who specialize in creating diverse teams. If
you are struggling with finding as many diverse candidates as you’d like, it might
well be worth bringing in a professional who has more experience in the area to
help.

• While some teams are fond of having candidates submit “homework” as part of
the screening process, keep in mind that this might put members of marginalized
groups at a disadvantage, whether that be women with family responsibilities or
people who don’t have the time or inclination to do free work for a company.

Inclusivity
It doesn’t matter much if you manage to interview and hire diverse employees if you
can’t retain them. Along with diversity, companies need to start inclusivity initiatives
to ensure that individuals in the minority experience belongingness and encourage‐
ment to retain the uniqueness within the work group.

A common narrative we see in the case of a small startup who has hired their first
woman in their engineering team. From the rest of the team’s perspective, this is great
- they’re being more diverse, they now have an internal resource to help them avoid
any potentially sexist mistakes! From the woman’s point of view, however, it doesn’t
necessarily feel like an inclusive environment at all.

Many teams of men, upon hiring their first woman, will do things like say “Hey guys,”
when entering the office or a meeting, then look at the woman, wonder if she might
feel excluded by that, and follow up with an awkward “…and girls (or gals).” This is
well-intentioned, but many women said such additions make them feel more awk‐
ward and excluded rather than included. On top of the fact that we shouldn’t be
addressing adult women as “girls”, drawing attention to peoples’ differences from the
rest of the group does not make for a feeling of inclusion. There is often a cost to
members of minority groups in this kind of environment as they are often expected
to take on a great deal of diversity-related work on top of their regular work responsi‐
bilities. They are asked to review job postings to make sure they are free of racist and
sexist language, to represent the company and give it a diverse face at industry or
recruiting events. They are often asked to represent all members of whatever group(s)
they happen to be a part of - no woman is a spokesperson for all women. One woman
cannot give insight into what all women everywhere are thinking or feeling.

Stereotype Threat
Stereotype threat is what happens when people find themselves in a position when
they are at risk of confirming a negative stereotype about themselves and the group
they are a part of. It has been shown in over 300 different studies to decrease individ‐
uals’ performance, especially when they expect discriminations based on their group

74 | Chapter 4: Hiring: Choosing Individuals

membership or identity. For example, take the stereotype that women are worse at
math than men. Women who are exposed to this stereotype will perform more poorly
on math exams than those who aren’t, as well as displaying more stress responses
such as elevated heart rate and increased cortisol levels. Long-term exposure to ster‐
eotype threat can have the same negative long-term effects of mental and physical
health that chronic stress does.

Studies have shown that a sense of belonging within a group can help to mitigate ster‐
eotype threat. If people are welcomed into the larger group or environment, if they
feel that they are genuinely included, they are less influenced by the negative stereo‐
types that might lower their performance (and health).

There are many things that can be done to make sure your work environment is as
inclusive as possible. We’ll discuss more of these points in the Interviewing,
Onboarding, and Retention sections later in this chapter, but here are some things to
keep in mind when sourcing candidates:

• Make sure that any recruiters you use are aware of your diversity and inclusion
goals.

• Send employees to unconscious bias training or an Ally Skills Workshop.
• Lead by example, and call out problematic language or behavior - don’t leave that

to be the sole responsibility of minority team members
• Organize employee resource groups. Establish places to address the needs of the

diverse individuals, including community building, networking, and support.
These groups facilitate resilience for the individuals mitigating some of the costs
of being different to the majority.

• Audit your work environment. Determine how accessible key elements of the
environment are to differently-abled employees beyond the government manda‐
ted requirements.

• If you ask people to do the work of reviewing your job postings to be more inclu‐
sive, compensate them for that work.

• Pay attention to if your language or behavior is racist or sexist (or homophobic or
transphobic) all the time, not just when people from those groups might be
present - preemtively create an inclusive atmosphere.

We will touch on these ideas and how you can make them part of your interviewing
and retention processes later in the chapter. Overall, keep in mind that you get out of
sourcing what you put into it - it’s not enough to just throw together a job posting
and hope that diverse, quality candidates will materialize out of thin air.

Sourcing | 75

https://adainitiative.org/what-we-do/workshops-and-training/

Interviewing
Interviewing is about more than just weeding out people who don’t have enough
technical skills to do a job well. It is a tricky process that not only assesses skills but a
person’s fit within a team as well. The goal of each interview should be to determine if
the team and the candidate are well suited to work together, and it’s important to
remember that this should go both ways. It’s not only about whether a candidate
would be a good addition to the team, but also about whether or not the team would
be good for the candidate.

Before the Interview
Preparation is just as important for interviewers as for interviewees. Being unpre‐
pared for an interview is a waste of time on both sides of the table - not something
you want for your team or an impression you want to give out to future candidates.
The first thing to do is to figure out the hiring criteria for the interview you are doing.
Are you looking for a particular skill set for a specific project? Are you trying to fill a
gap in your existing team, or replacing a person who left? Do you need to have some‐
one senior, or are you willing to train and mentor a more junior candidate? If there
are any hard requirements that would absolutely disqualify a candidate, figure those
out well in advance (and be sure you’re communicating these to candidates as well).

Once you know what you’re interviewing for, people need to know how to interview
well. This is a skill that takes practice, so it can often be helpful to have two people
interview together, one more experienced and one less, so the more junior person can
learn from the other’s experience. In addition to unconscious bias training (those
pesky things can and do affect us during interviews as well as just when looking at
resumes) training people how to interview well can be a great benefit, especially if
you are going to be hiring a large number of people any time soon.

Finally, figure out what the logistics of the interview will be. When should the candi‐
date arrive, and who will greet them when they do? Who will they be talking to? The
schedule should be determined and communicated to the candidate as far in advan‐
ces as possible, especially for interviews that last the better part of a day. Interviewing
is often nerve-wracking enough without having to worry about logistics. Setting
expectations for the position and the interview process makes it a better experience
on both sides. Be sure to plan for beverages, snacks, meals and restroom breaks as
well based on the length of the interview.

What questions will people be asking? If multiple people will be interviewing the can‐
didate in sequence, you probably don’t want each of them to be asking the exact same
questions. Of course it can be helpful to get different peoples’ perspectives on how
good a candidate’s answers were, but since pairing can accomplish the same thing,
you want to make sure you’re not wasting peoples’ times going over the same ques‐

76 | Chapter 4: Hiring: Choosing Individuals

tions. A good strategy is to compare the criteria you have for the position and the
knowledge areas of people on your team, matching them up as best you can to deter‐
mine who will be asking about what.

There are a few things to keep in mind when interviewing a diverse range of candi‐
dates. If at all possible, make sure that people have a chance to interview with people
who are like them. This can be tough when just starting with a diversity initiative, but
even if they’re on another team, a candidate of color would likely appreciate the
chance to interview another person of color, to be able to ask them about their expe‐
riences at the company. Find out before the interview if your candidates have any
schedule restrictions that would make a full-day interview difficult, such as transpor‐
tation and childcare needs, and make sure that your interview spaces are accessible
for more than just able-bodied people.

During the Interview
Interviews are challenging to every organization. We all value our time, and getting a
good sense for if a candidate is a good fit for the team and visa versa usually requires
a great deal of it.

A lot of discussion has happened around the “best” interview questions, especially for
software engineering candidates. Books have been written on the sorts of questions
that companies like Google are known for using. How Would You Move Mt. Fuji is
one such example of this, coaching candidates on how to think through and answer
questions such as that or similar ones like “how many piano tuners are there in New
York City”. The problem with questions like these or brainteaser questions is that they
are very poor predictors of how employees will actually perform on the job.

Indeed, any question that seems to exist only to make the interviewer feel smart and
the interviewee feel either stupid or nervous should be avoided. There are plenty of
ways to assess how much a candidate knows without purposely exhausting them or
making them feel stupid. Interviews can be a very good indicator of company culture,
whether that is deliberate or not. An interviewer who continually interrupts a candi‐
date is likely to do the same as a coworker, and an interview that is adversarial in
nature indicates a culture that is probably aggressive and adversarial as well. Overly
hostile interviews tend to self-select for more aggressive candidates, which can drive
away people such as women who are socialized for, or simply prefer, much less
aggressive styles of communication.

Aim instead for an interview that is conversational in style. Your goal is to find out if
a candidate is suited to join your team, but also to get them to want to join. Conversa‐
tions that feel more informal than a six-hour marathon whiteboarding session often
do much better job of that. And like puzzlers and brainteasers, whiteboard coding of
algorithms doesn’t correlate strongly with job performance either - if you do feel the

Interviewing | 77

need to get a demonstration of skills, having a candidate pair with a current team
member on some actual work is a much better way of doing that.

As an interviewer assessing a candidate’s skill, your goal should be to probe and ques‐
tion until you determine where the boundaries of their knowledge are. Think of it as
finding the edges of a potato, or some other mostly smooth but somewhat irregular
object. The edges of this object will be uneven, with some places that are lower than
others - gaps in knowledge - and some that are higher - areas of deeper knowledge or
expertise. You are trying to figure out where those edges are, what areas do they know
more and less about, to get as complete and accurate picture of the candidate as pos‐
sible.

For this reason, it can often be beneficial to have a wide range of people interview a
candidate, to find as many of the edges as possible. Keep in mind that these include
“soft” skills as well as “hard” or technical ones. Many companies have people from
other teams or other areas interview candidates to see how people interact with other
disciplines, such as having a developer candidate interview with operations and secu‐
rity, or possibly even people in less technical roles, as an engineer who can’t treat less
technical people with respect will not be a good addition to your team. When think‐
ing about soft skills, it is good to specify in advance what things like “personality” and
“culture fit” mean to your team. Too often, people use the term “culture fit” to
describe “someone I’d like to go out for drinks with” and this tends to lead to increas‐
ingly homogeneous teams. Many jobs in past were based on who you knew, or the so-
called airport test of “would I want to be stuck in an airport with this person”. Having
several different people interview a candidate can help alleviate this to a degree, as
you will likely get more points of feedback to consider, especially if reviewers cannot
see others’ feedback before they have given their own (to help avoid what they say
being colored by what others have said). Remember that you are not hiring people to
be your friends, but rather people whose skills, technical and otherwise, will benefit
your team and your company.

After the Interview
After the interview you will want to get feedback from all the interviews as to what
they thought of the candidate. It’s better to do this sooner rather than later so the
experience will be fresh in peoples’ minds. As mentioned previously, it’s also best to
keep other reviewers’ feedback hidden from reviewers until they have submitted their
own to avoid coloring peoples’ opinions with those of others.

It helps to have specific criteria for reviewing determined in advance. If you have a
standard set of technical questions you ask, you might come up with a scale based on
how correct and complete their answer was. Otherwise, having a system where people
can enter feedback in a consistent format will be helpful. The more consistent the

78 | Chapter 4: Hiring: Choosing Individuals

feedback gathering process is, the more likely it is that people will be able to agree on
the outcomes.

Once all the feedback has been gathered, it is helpful to get all the interviewers
together to have them discuss their opinions - again, sooner is better than later with
this. You want to find out if people are inclined or disinclined to hire the candidate,
how strongly those opinions are held, and why. When a decision has been reached,
and an offer made an accepted, you can move on to considerations of onboarding
and retention.

Onboarding
They say you never get a second chance to make a first impression. Cliché, to be sure,
but a new employee’s first impressions of your company and team can be hard to
shake. Especially for junior people who have less industry experience, the first few
days can make or break the beginning of a relationship with a new team member.

As much of the logistical work as possible should be done before the new person
arrives, both to minimize stress on them and so that they can start being productive
sooner. This can include:

• Adding them to whatever HR, benefits and payroll systems, so there’s less time
they have to wait before they’re getting paid and receiving health insurance. (No,
jobs aren’t only about the money, but it’s hard to focus on doing your best work
when you’re wondering if you’re going to be able to eat and pay rent. Big tech
areas like New York and San Francisco are incredibly expensive, and people who
are just entering tech or who have been underpaid in previous tech positions
might not have been able to build up a big buffer in savings. It’s not all about the
money - until you have to worry about the money.)

• Purchasing and configuring a computer for them. If you don’t have any automa‐
ted provisioning for personal computers, at the bare minimum make sure the
computer is purchased and ready to be set up on the employee’s first day.
Without even a computer, there is very little a person can do to even start trying
to get going - unless all your team’s documentation happens to be printed out
(and up to date)! If they need other hardware, such as a company phone or
portable wireless hotspot device for people who will be on-call, get that pur‐
chased as soon as possible as well.

• Setting up their email and calendar accounts, and adding them to any mailing
lists, shared calendars, and other groups they need to be a part of. If you don’t
have a list of these shared accounts, start one. Nobody wants to realize a few
months down the line that they forgot to add the new team member to the team’s
calendar.

Onboarding | 79

• Creating accounts on any other systems they will need access to. This will depend
on their job function and what systems your team uses. Common examples
include instant messaging, ticketing, time management, and documentation sys‐
tems or sites. Engineers will need access to any source control and configuration
management systems, as well as server login credentials. This is another place
where creating a list of accounts to create (or even better, automating this pro‐
cess) can be very beneficial to smooth the process for future hires, especially if
you plan to do a lot of hiring in the near future.

Setting expectations is an important part of the onboarding process as well. You
should have communicated your general expectations for the position clearly during
the interview process, but it can be good to reiterate and clarify those, especially if a
fair amount of time has passed since the interview, as can be the case with new college
hires who often interview several months before graduation.

Giving new employees some work to get started on should be done as soon as possi‐
ble - maybe after a couple days of getting set up with HR and getting computers and
accounts all squared away. New employees want to show what they can do and learn,
and current team members are likely interested in how well the new person can start
contributing, especially if the team is overworked and bringing on new people to
lighten everyone’s load. Unless you happen to have a very clear idea of an employees
skill level, it is beneficial to have potential work at a few different levels so they can
find out where they’re comfortable.

Most teams have some sort of backlog in whatever ticketing or work tracking system
they use. A week or so before a new employee starts, existing team members can pick
a few of these tickets that seem appropriate and assign them to (or just earmark them
for) the new person. Be sure to set expectations around these as well. If your team
does ticketing a certain way, such as having a policy that no tickets are to be left
unclaimed for more than a day, be sure to communicate these policies. It’s usually
helpful to have a current team member who is very good at using the system take
some time to walk the new person through everything.

Make sure the new person knows what work is expected of them in their first couple
weeks, and even more importantly, who they can turn to if they have questions or get
stuck on anything. Don’t leave a new employee sitting alone, feeling blocked and not
knowing where to turn! Anyone who feels stuck and abandoned like this is unlikely
to stick around of be happy for long. Make sure there’s at least one person on the
team who can be a dedicated resource during these first couple weeks - yes, it will be
time out of their normal workday, but that’s vastly preferable to going through the
entire interview and hiring process only to lose someone because they didn’t feel like
they could be part of the team.

Managers should set up recurring 1:1 meetings with their new reports as soon as pos‐
sible. Depending on how frequently you meet with your existing team members, you

80 | Chapter 4: Hiring: Choosing Individuals

may want to increase the frequency for new ones until they’ve settled in a bit. Check
in regularly to make sure that they don’t have any outstanding questions and aren’t
being blocked on anything, that they aren’t having problems with any of the systems
or other team members. Make sure there isn’t any confusion as to how to do some‐
thing or what they should be working on.

When considering diversity, think about the social groups and activities that exist that
employees can participate in. Are employees allowed or encouraged to start groups,
such as a women-in-engineering group or an LGBT group, as a way of connecting
with their coworkers and creating safe and supportive spaces? Do people have access
to leaders or mentors who are similar to them? If you have several more junior
women in engineering, but no senior women engineers or women in engineering
leadership, for example, those junior employees may wonder if there is room for
them to grow at your company.

In terms of making sure an environment is as inclusive as possible, also think about
what office activities, especially social or “extra-curricular” ones, are opt-in versus
opt-out. An opt-in activity is one that employees are not a part of unless they choose
to join, whereas an opt-out activity is one that all employees are expected to partici‐
pate in by default unless they explicitly opt out of doing so.

While it may seem like opt-in creates a barrier to entry that might discourage people
from joining, opt-out has the issue of requiring people to draw attention to the fact
that they don’t want to do something, or provide specific reasons for doing so. For
example, many companies view drinking alcohol as the default after-work activity,
and startups especially are prone to peer pressure when it comes to drinking, where
not going to a bar after work labels someone as different or “not a team player”. A
new employee is likely to feel uncomfortable having to explain reasons for opting out
of this to new coworkers they don’t know very well, which is then likely to make them
feel excluded. In this example, an office kitchenette stocked with a variety of alcoholic
and non-alcoholic drinks with no mandatory times when “everyone” is expected to
partake, is a much more inclusive setup.

In general, an office environment that is as inclusive and safe as possible will be one
where people feel like they are becoming part of the team more quickly. It is quite a
bit of work to get a new team member up to speed, but the more efficient the
onboarding process, the more quickly new team members will be able to contribute.

Retention
In the competitive environment of today’s tech industry, keeping employees around is
of increasing importance to employers. Employee retention affects not only team
productivity, but morale as well, as frequently losing coworkers can cause additional
stress to the remaining employees as well as hinting at larger problems with the team

Retention | 81

or the company. If many employees are leaving for reasons like getting greatly
increased salaries or because they’re worried about the direction the company is
going in, that often doesn’t bode well for those who stay. While some reasons employ‐
ees leave, such as family circumstances causing them to move away from a position
that doesn’t support remote work, aren’t controllable, there are many factors of reten‐
tion that are. This section will examine those factors.

Compensation
Money isn’t everything, and more and more frequently people are choosing healthy
work environments and companies they feel connected to over simply a larger pay‐
check. Even so, people want to feel like they’re being paid competitively. A recent
study found that employees who stay at companies longer than 2 years end up mak‐
ing significantly less money - 50% less over only 10 years - over the course of their
careers. Conventional wisdom, especially among individual contributors, says that
the best way to get a substantial raise is to change jobs and negotiate a higher starting
salary from a new company. On average, employees staying at a company can expect
around a 3% raise, which comes out to be effectively more like 1% when taking into
account the 2% rate of inflation. Changing jobs, however, they can expect an increase
of between 10 and 30 percent - even at a company you love, over time that kind of
disparity is hard to look away from.

To help combat this, start by making sure that you are paying competitively from the
beginning. Employers are often tempted to offer the lowest starting salary they can
get away with to help their bottom line. This often disproportionately affects mem‐
bers of minority groups who tend to make notably less on the dollar than white men.
Offering salaries and benefits that are in line with industry averages can help attract
these people who many have been significantly underpaid at previous positions.
Transparency about the salary negotiation process, pay bands (if your company uses
them) and other issues related to compensation can help with retention. People not
only want to feel like they are being compensated competitively but also that they are
being treated fairly.

One thing that can help, especially in retaining employees who tend to be penalized
for negotiating salary rather than rewarded for it, is transparency around the process
for raises. Having a clearly defined and publicly (within the company) documented
process is key. A process that relies on people asking or only happens when managers
think of it is far more prone to unconscious biases than one that happens on a regular
schedule with clearly defined parameters. Having pay bands rather than simply rely‐
ing on managers’ judgments can reduce these kinds of biases as well. Make sure that
everyone, managers and individual contributors alike, is aware of the process around
raises (and yearly bonuses, if your company has them) as well as who to talk to if they
have a concern with the process.

82 | Chapter 4: Hiring: Choosing Individuals

Non-Monetary Benefits
Being paid competitively and fairly is important, but once employees are compensa‐
ted well enough that they are able to enjoy a good standard of living and save money
for the future without having to worry about whether or not their rent check will
bounce (especially in rental markets like New York and San Francisco), non-
monetary compensation can often be more valuable to them than additional salary
increases. For smaller or less mature companies that might not be able to offer the
same salaries that more heavily-funded or more profitable ones can, these kinds of
perks can be a good way to attract and retain talent.

It is important to note that when we talk about perks, we are not talking about things
like beer fridges and ping-pong tables in the office. Those kinds of things tend to con‐
tribute towards an atmosphere more resembling a frat house than a professional
office space, and can be a deterrent towards people who feel uncomfortable in such
an environment, whether that be women, non-drinkers, or people who simply don’t
want to play table sports at work. Meals, especially ones that are healthy and include
options for a variety of dietary restrictions, can be a plus (pizza tends not to be vegan,
lactose-free, gluten-free, or especially healthy) but be wary of offering breakfasts and
especially dinners as perks, as those meals that fall near the ends of the day tend to
indicate a culture where people are expected to arrive early and work late on a regular
basis.

Benefits you might consider include:

• Remote opportunities: Whether this is for attracting a wider range of candidates
than you might be requiring them to be local or retaining employees whose life
has taken them away from one of your company’s offices (moving away to have
children, to be near parents, or to avoid paying the ever-increasing New York and
San Francisco rents are popular reasons), offering the ability to work remotely
can be a big benefit.

• Educational opportunities: These might take the form of instructors brought
onsite, sending employees to conferences or training seminars so they can either
learn new skills or improve existing ones, or going as far as to provide tuition or
textbook reimbursements for people who are seeking continuing education in
fields relevant to their profession. Personal and professional development are
important to people, so providing opportunities (as well as time) to pursue these
opportunities can be a great benefit.

• Flexible work hours: Unless there is a legitimate reason for requiring people to
work specific hours, a little flexibility can go a long way. This, like remote work,
shows trust in the employees and teams as well as respecting the lives and
responsibilities that people have outside of work. Flexible hours can allow people
to pursue hobbies, avoid rush-hour commutes, or take care of family and house‐

Retention | 83

hold responsibilities while getting their work done at times that are convenient
for both them and the rest of their team.

• Work-life balance: Continually working 50-80 hour weeks actually has a negative
impact on overall productivity, not a positive one. Make sure that employees are
allowed and encouraged to come into and leave the office at reasonable times,
and to not spend their time at home working or checking email constantly as
well. One of the best ways to do this is to provide good examples from manage‐
ment - employees who see their supervisor emailing them at 10 pm or 5 am may
feel pressure to respond that late or early, whether that pressure is intentional or
not. If employees are on-call, providing extra time off for each on-call shift can
be a great benefit also.

• Vacation: Make sure that your company provides vacation time and that people
are actually using it. Outside of whatever holidays are required by the laws in
your country, try to avoid mandating when vacation days should be used. For
example, providing 10 days of vacation but requiring that 8 of them be taken
during the weeks around Christmas and New Years leaves only 2 vacation days
for the other 50 weeks of the year - far from ideal (especially considering not
everyone celebrates Christmas). For companies considering unlimited vacation
policies, consider this article by CEO of the TravisCI continuous integration
company Mathias Meyer on how those can be problematic.

Overall, employees should not feel like their company is trying to shortchange them
when it comes to monetary or non-monetary benefits. People who feel that they are
treated fairly, taken care of, and have a process for addressing any questions or com‐
plaints they might have are generally happy employees.

Growth Opportunities
Before money and work-life balance, the number one reason that people leave jobs is
due to a lack of opportunities for advancement. Nobody goes into a job expecting or
hoping that it will be a dead-end one. People want opportunities to grow their skills
and to demonstrate that growth, whether that means more independence, more
choice in the projects that they take on, being trusted with bigger projects, and lead‐
ership opportunities.

Keep in mind that leadership doesn’t just mean management. Some companies have
the management track as the only one with clearly defined job levels and the only way
that employees can advance in their career, but many technical ICs have no desire to
go into management. Leadership for these people can mean leading projects and
expanding the impact that their contributions can have in an organization. Make sure
that you have a way for non-managers to advance as well. Ideally this would mean
creating a technical track with clearly defined levels of individual contributor growth,
as well as a management track.

84 | Chapter 4: Hiring: Choosing Individuals

http://www.paperplanes.de/2014/12/10/from-open-to-minimum-vacation-policy.html

Having a clearly defined process for growth and promotion is critical for manage‐
ment and individual contributor tracks alike. Make sure that there are definitions of
job levels available to employees, with enough detail that people can see clearly what
they need to do to move from one level to the next. The process for promotion
should be clearly and publicly defined as well. A “process” that consists only of people
getting metaphorically tapped on the shoulder by management with no more visibil‐
ity than that can be incredibly frustrating for employees who don’t get chosen, as well
as being rife with opportunities for unconscious bias to appear. All employees deserve
the opportunity to grow, not just those who happen to be friends with their boss or
the CTO.

Going along with this, make sure that employees have chances to explore different
areas of interest at the company. If a software developer, after several years, wants to
explore an interest in operations or security, for example, they will likely go to
another company to explore that if their current one doesn’t afford them any way to
do so. While mangers generally shouldn’t try to poach employees from other teams,
they should be open to the possibilities that peoples’ interests and career goals will
change and try to work with that whenever possible. Some companies do what they
call “senior rotations” where employees get to take a few weeks to work on teams
other than their own once they’ve been with the company long enough. Whether in
their current job area or another one, growth throughout the entire course of their
career is very important to people, so providing opportunities for that is necessary if
you want them to stick around.

Workload
In general, people are looking for workloads that are challenging but doable. Con‐
tinuing off of what we were saying about growth opportunities, challenging work that
allows people to test themselves and grow their skills is important to their senses of
satisfaction about their jobs.

Too much challenge can lead to problems. People might feel that their company or
their manager expects too much of them and isn’t willing to give them the time, sup‐
port, or resources they need to get it done, or it might seem like their manager is out
of touch with reality and doesn’t understand how much work they can actually
accomplish. It might indicate a team that has taken on too much or has an uneven
distribution of work, where some employees are relatively relaxed while others are
overworked. Whatever, the reasons, long-term overworking of people (as opposed to
a one-off period of crunch time) can have very negative impacts.

Overworked employees might just end up leaving the company for a different job that
doesn’t require so much of them. Perhaps even less desirable is the possibility that
they will stay, but be suffering from burnout. It is important for managers to regularly
check in with the team as a whole and with individual employees to make sure that

Retention | 85

they don’t have an unrealistic amount of work they are trying to take on. Make sure
that employees are taking vacations as needed as well - if a team or person has just
finished a period of extra work, such as towards the end of a project, encourage them
to take some time off, and make sure that everyone is taking at least one good-sized
vacation (or even staycation) per year to avoid burnout.

Burnout
Burnout is a term that refers to long-term exhaustion and lack of interest in work and
often in activities outside of work as well. Symptoms of burnout are very similar to
those of clinical depression, and has even been called a form of depression in some
recent studies. People suffering from burnout may start isolating themselves from
others, pay less attention to their own personal needs, have problems sleeping, and
have feelings of indifference, helplessness, and hopelessness. It often arises from pro‐
longed periods of stress and overwork, which are far too common in the tech indus‐
try, especially in Silicon Valley startups that idealize the “heroic” hacker or “rockstar”
developer. Mental health is as important as physical health, if not more so, and taking
care to avoid burnout should be a priority for every team and every company.

Many tech companies have some kind of on-call position - people whose responsibili‐
ties include carrying a phone or pager and responding to incidents outside of stan‐
dard working hours. It is very important to make sure that on-call is not placing
undue stress on people. If at all possible, make sure that the on-call responsibilities
are shared between at least two people - this is really the bare minimum. Having only
one person on-call 24/7/365 is pretty much asking for that person to get burnt out.
No one person should be forced to give up all their nights and weekends in perpetu‐
ity. Ideally, on-call rotations would be shared between several people, possibly with
several rotations as your company grows, to give every individual adequate time to
catch up on sleep and relax in between their shifts.

If people are part of an on-call rotation, make sure they are compensated for it. Some
companies increase the salary of employees who have ongoing on-call responsibili‐
ties, some pay extra for each hour that someone carries a pager or for each off-hours
incident they have to respond to, some provide extra vacation hours or days for each
on-call shift. If on-call responsibilities are part of a job from the beginning, make sure
that the extent of these responsibilities is clarified up front, so employees know what
they are signing up for and can negotiate their compensation accordingly. If these
responsibilities are added after someone has started, make sure there is an opportu‐
nity for them to discuss the details and compensation with their manager.

On the other side of things, make sure that employees are not underworked and
unchallenged. Challenges, which include new projects, learning new technologies or
tools, taking on bigger projects or having more responsibility, are key to making sure

86 | Chapter 4: Hiring: Choosing Individuals

employees are growing and staying engaged with their work. Contrary to what some
managers fear, most people do not want to have lots of downtime where they will play
games or waste time on the internet out of boredom - they want to be engaged and
learning. Employees who seem to be less engaged might not have enough to do, or
the work that they do have might not interest them. If they have been working on the
exact same kind of work for a long time, either because they haven’t been given any‐
thing new to challenge them or because they’ve been assigned to a project that is tak‐
ing a very long time to complete, they might well be getting bored. Again, regular
check-ins with your team are important to keep in touch with them and where they’re
at.

Alignment with Working Styles
In the Collaboration chapter we addressed several different working or collaborative
styles, including starters versus finishers and purists versus pragmatists. If the work
that people are regularly being given doesn’t align well with the type of work they
most prefer to be doing, that can make their workload feel higher than it is, and dis‐
engagement with the work itself is likely to decrease a person’s happiness and produc‐
tivity.

Culture and Atmosphere
Culture and atmosphere are both things that sound broad, vague, and hard to use‐
fully define at first. Yet many reasons that people might start feeling unhappy are hard
to define at first. In this subsection we’ll examine a few of the less tangible factors that
can cause people to stay at or leave positions.

“Cultural Fit”
Cultural fit is a term that is so vague it can be problematic, often used by people mak‐
ing hiring decisions who seek, either consciously or not, to keep a certain amount of
homogeneity within their team, perhaps hiring people who went to the same school,
like the same sports, or participated in the same fraternity as them. This is a misuse of
the idea of cultural fit, as it takes very superficial ideas of culture and uses them to
create an atmosphere of exclusivity. Culture is often defined as the ideas, customs,
and social behavior of a people or society, and when we look deeper into those areas
we can see how culture in this way can make or break someone’s desire to stay with a
company.

Ideas can mean a lot of different things when talking about a company or a team.
Most broadly, an idea for the company is its value proposition, what it is selling, how
it has chosen to make money. Some companies value is essentially in advertising, or
selling user data to advertisers. As mentioned previously, individual’s motivations and

Retention | 87

concerns extend beyond the paycheck to caring about what the organization does and
how it achieves it. If someone feels that their company’s values conflict too much with
their own personal ones, or they simply don’t have any interest in what the company
is doing, there is a force driving the individual away from the company regardless of
the company’s success.

This can be something to try and address during the candidate sourcing and inter‐
viewing phases, but these ideas are often ones that can change over time, perhaps as
business practices also change. Someone might feel that there was value alignment
when they started, only to see that change, or realized that what was a good fit on
paper didn’t match up with how those values were played out in reality.

Ideas might also be interpreted to mean what is considered valuable in a given orga‐
nization or team. As a typical example, in many organizations, especially before the
idea of devops rose to popularity, operations or IT work was often very undervalued.
IT was seen as nothing but a cost center. Investment in IT was seen as something to
be minimized at all costs, as IT was thought to provide very little to no value to the
company.

Similarly, one might feel devalued by their team or manager. If a few team members
are very buddy-buddy with their supervisor, and if that friendliness leads the supervi‐
sor to listen to them more, the other team members can easily feel that their contri‐
butions aren’t valuable to the team.

Anyone whose ideas are different from the majority might quickly feel this way as
well. We’ve touched previously on considerations for helping to increase the diversity
of a team or organization, but it’s very important to consider the impact that this can
have on people who aren’t “the norm”. A lone woman on a team of men, or a person
of color in an otherwise all-white team, especially on a team that primarily handles
disagreements by way of who yells the loudest, might very well feel that their contri‐
butions are neither heard nor valued.

Customs are the traditional or widely accepted ways of behaving, speaking, or doing
things. A lot of things about a workplace can be viewed as customs in this light,
including:

• How work is assigned, and who is responsible for assigning it
• How members of a team or the same level within the company communicate

with each other
• How managers communicate news to their reports
• When people arrive at and leave the office
• Technical processes for doing work
• How promotions, raises, and bonuses are awarded

88 | Chapter 4: Hiring: Choosing Individuals

One of the problems with customs is that they can be hard to recognize as just one
way of doing things and not the only way, because once people are used to them they
have a tendency to fade into the background. Often it takes a new pair of eyes and a
fresh perspective to point out that there might be a better way of doing something.

It is important to recognize and value these insights - “we’ve always done it this way”
is not a sufficient reason for continuing to do something. Refusal to change or to even
consider new ideas is how teams and companies stagnate, often leading to them get‐
ting passed over by their competitors. It’s human nature to fear change, to reject the
unfamiliar, but we should recognize this tendency in ourselves and actively work
against it to make sure that we’re hearing, considering, and choosing the best ideas,
not just the ones we’re most comfortable with.

Company customs regarding promotions, raises, and bonuses merit special consider‐
ation when trying to improve diversity. It bears reiterating that even though we might
not want or notice them, unconscious biases can easily creep in here. If these sorts of
things are awarded solely at a manager’s discretion without people applying, being
encouraged to apply, or something like having all employees of a certain role or rank
being considered, unconscious biases can (and often do) come into play.

Social behaviors, the last major part of culture, cover a wide range of things in how
people interact. Pay attention to the way people communicate - do more “senior”
employees talk down to or talk over those who are lower in the ranks than them, or
are all ideas treated with respect regardless of who they came from? Do people tend
to interrupt each other in meetings, or do they wait until others have finished speak‐
ing? Is this true among only peers, or with management as well? When people have
disagreements, how are they resolved - by calm discussions, by consensus, or by peo‐
ple simply yelling at and over each other until all but one party has given up out of
frustration? How do decisions get made?

Social behaviors also include ones that we might more often think of when we hear
the word “social”. How do teams get to know each other or bond? There are many
benefits to better knowing the people you work with, including greater empathy and
more effective communication, but there are more or less effective ways to improve
camaraderie. More corporate environments might opt for some awkward ice breakers
and trust falls, while startups might tend towards a trip to the nearest bar. The most
effective might be something in between, soliciting input from all team members and
trying to find something that is agreeable to everyone. Be aware, however, that some
people might not feel comfortable giving their opinions publicly. Someone who has
struggled with alcohol abuse, for example, would likely be hesitant to explain in from
of their coworkers why they don’t want to go on a work-sponsored bar crawl. Make
sure to give people ample opportunity to give their opinions in a private, safe manner.

Similarly, the ways that people socialize in the office can be very telling as to the over‐
all social behaviors. People will generally notice who frequently goes to lunch or cof‐

Retention | 89

fee with their team’s manager, especially if this is not a privilege afforded equally to
everyone on the team. (While it is true, especially at startups that are often founded
by people who previously knew each other, that people might become friends at
work, it is important to avoid unconscious biases and blatant favoritism in the office.)

Many offices, especially smaller ones, develop activities that often take place after
hours or during breaks. Some might have cold-brew coffee or beer on tap, today’s
equivalent of the water cooler. Some might have ping-pong or foosball tables that
employees can use at the end of the day or to blow off some steam. Increasingly com‐
mon in environments dominated by younger male employees are things such as
remote controlled helicopters or Nerf guns. These things are not universally bad, but
they can be exclusionary of those who don’t like such things. Someone who doesn’t
care for kids’ toys in a work environment is likely to be pretty upset by getting hit in
the head with a poorly aimed Nerf dart in the middle of trying to get work done.

Keep in mind that people might not feel comfortable speaking up against things that
happen in the name of “fun” - nobody wants to come across as being anti-fun. It’s
hard to be the only one to speak up against something that’s been a longstanding part
of the culture, and if someone is a minority on the team they might feel even less
comfortable coming forward. Making sure that people are comfortable speaking up
about their opinions, as well as paying attention to what kinds of activities are com‐
mon around the office, can go a long way towards promoting a culture that everyone
feels like they are a part of.

Problems with Management
Many articles have been written around the idea that people often don’t leave jobs,
they leave their bosses. There can be myriad reasons why people don’t like working
for a manager, but some of the most common include:

• Distribution of work: Feeling like work is not distributed equally among team
members, leaving some to be overworked while some are underworked, or that
certain people always get the best projects, is a common source of frustration.

• Lack of (or too much) attention: A manager who gives each of their reports only
a cursory 1:1 every quarter is likely to be much less in touch with reports’ goals,
successes, problems, and frustration than one who makes time monthly or even
weekly. On the other side of things, people who feel like they are micromanaged
are likely to be unhappy with that situation as well.

• Poor communication: This works both ways. A boss who doesn’t listen (or
doesn’t seem to) is a common frustration, but the manager’s communication
skills are equally important. Someone who doesn’t pass on important information
to their reports in a timely manner, who forgets critical details, or who can’t get a
point across in an effective or timely manner isn’t an effective communicator.

90 | Chapter 4: Hiring: Choosing Individuals

• Fairness: A very common frustration with employees is the feeling that their boss
is treating them unfairly. Maybe some members of the team get all the good
projects, get bigger raises and bonuses, or are first in line for promotion. Trans‐
parency around team and company processes can help alleviate this, as can
unconscious bias training for managers.

• Lack of guidance: In the same way that employees value career growth opportu‐
nities as something that will keep them at a company, they also look for a man‐
ager who will actively help facilitate this growth. A manager who seems
uninterested, unable, or unwilling to help their reports progress in their careers is
a manager that those reports are often eager to get away from.

It can be difficult, as a manager, to consider that you might be the reason some of
your employees are unhappy, but it is a very important thing to think about. We men‐
tioned earlier that often times, management is the only way to progress up the career
ladder at some companies, and at startups people often get moved into management
due to organizational need, not necessarily out of desire or skill. We recommend that
all managers, new and experienced, get regular management training. Management is
a very different career path from engineering, requiring a very different set of skills,
and it is in everyone’s best interests if managers are regularly making sure they’re
doing the best job they can be.

Having discussed several considerations for sourcing, interviewing, and retention as
they relate to hiring, we’ll now take a look at how these ideas can be applied in the
wild.

Case Studies
For this Chapter’s case studies we spoke with two people involved in hiring in differ‐
ent capacities: a director of devops at a private e-commerce and crowdsourcing com‐
pany, and a technology lead at a private digital marketing and design firm.

The Director, who started his career as a developer, joined a large e-commerce com‐
pany that develops software for online stores as well as retail POS systems, and built
their operations team from the ground up. He later built from the ground-up the
operations team at a digital media and publishing company, as well. At the company,
he oversees production operations and corporate IT from the technical side as well as
helping to grow both those departments.

Looking for an opportunity for a director-level position as well as to find an environ‐
ment with plenty of room for learning and growth, the director was drawn to the
company due to its diversity and culture. The company’s senior management were
over half women, including the CTO and CEO, which is much more diverse than
most Silicon Valley companies. It currently has around 125 employees, with about 30
of those in engineering. In terms of their operations, they run on about 50 servers on

Case Studies | 91

a combination of physical and cloud infrastructure, with autoscaling (increasing or
decreasing the number of servers running in a cloud infrastructure based on some
metric such as server CPU load) of up to hundreds of job workers as load necessi‐
tates. To them, doing devops effectively means having operations engineers working
closely with developers to build beautiful automated systems that help the business
achieve its goals. This involves teaching developers about operations work and auto‐
mation in particular, then working closely with them across the life cycles of the sys‐
tems they build.

The director leads the devops team at the company, which currently consists of four
engineers besides himself, ranging in experience from a junior engineer in his first
devops role to a former director making his way back into being an individual con‐
tributor. All of these were hires that the director made. Their process involves appro‐
val from the VP of Engineering for the headcount, followed by sharing the job
posting they create on Twitter and the Github and StackOverflow job boards. Like
many companies, they haven’t had a great deal of success with recruiters and have
found these industry-specific job boards and individual contact to be much more
effective at finding the kinds of candidates they need.

The interview process starts with two phone screens - one by a current team member,
one by the director himself - and passing the phone screens leads to a full interview
which involves two engineers, an engineering director, a manager on the business
side of things, and finally the VP of engineering. Some interviews are more techni‐
cally focused, while others focus on getting to know the person. For the director’s
team, this means finding out what they liked and disliked about their previous posi‐
tions, what they’re looking for, and what excites them. He notes that he tries to find
out if candidates have any strong opinions (on text editors, or SQL versus nosql, or
their favorite Linux distribution) and whether or not those opinions are so rigidly
held as to be completely inflexible. They have found that people who refuse to change
their minds about things tend not to be people who fit in well to their team environ‐
ment. Interviewing with people outside of their direct team, such as with the business
manager, is useful for finding out if candidates work well with other teams, especially
non-engineering teams.

He realized that their hiring process needed some improvement when it was pointed
out that their job posting was glorifying hero culture, where “heroic” behaviors such
as working long hours, and single-handed troubleshooting and “firefighting” to keep
services up and running are looked upon as desirable. The problems with this kind of
culture are that it is unhealthy, with long hours and working weekends leading to
burnout as well as physical and often mental health issues, and that it tends to attract
people who are more interested in being “heroes” for their own recognition or gain
than they are in working effectively as part of a team. Though the glorification of
hero culture in the job posting was inadvertent, it was affecting the types of candi‐
dates the director was getting for the positions he was trying to fill.

92 | Chapter 4: Hiring: Choosing Individuals

Examples of these kinds of job descriptions include:

• Asking for candidates to “give 110%” or “go above and beyond” - phrases like this
tend to be indicative of teams with little to no work-life balance. In addition to
being unhealthy, these kinds of requirements are biased towards single men and
away from women or any other candidates that have family responsibilities (or
simply want to get home at a reasonable hour most nights)

• Describing a team that “works hard and plays harder”. You are hiring employees,
not friends, and expecting your employees to spend their non-work hours at
work social events, especially when those events tend to be heavily focused on
alcohol, is off-putting to many candidates, especially those who aren’t young
men.

• “Awesomeness” or some other vague quality. A term like this is vague enough to
be close to meaningless, and attracts the sort of people who think they exude
“awesomeness”, which often goes hand in hand with egotism and unwillingness
to learn or listen, excluding groups like women and people of color who tend to
suffer from impostor syndrome. This includes to asking for candidates who self-
identify as “rockstars”, “ninjas”, “wizards”, and the like as ways of describing their
skills..

• Homework or otherwise requiring applicants to prove their knowledge is another
thing that shows a lack of respect for employees’ time and something else that
tends to be biased towards people with fewer responsibilities outside of work

These and similar requirements that emphasize hero culture tend to lead to workpla‐
ces where employees are often losing sleep, which itself leads to degradation of crea‐
tivity, productivity, and empathy, as well as eventual job dissatisfaction, loss of self-
confidence, and burnout.

Using recruiters, especially third-party ones, can also lead to issues, as recruiters who
don’t share your values won’t necessarily represent your company well, and may be
incredibly off-putting or even offensive to candidates. The following examples are not
from the director or the company, but are an example of the kinds of things to espe‐
cially watch out for in either job descriptions or messages from recruiters (internal or
external).

Lack of Effort or Attention to Detail
If an email begins with “Dear %%FIRSTNAME%%, we are looking for someone to fill
a %%JOBTITLE%% position,” that’s a clear sign of someone who copied and pasted
from a template and couldn’t even be bothered to glance over their email for these
very obvious mistakes before hitting send. Even copying a potential candidate’s skills
from their LinkedIn profile isn’t always a sure bet, especially without proofreading -
sending an email to someone asking to discuss their “experience with back-end devel‐

Case Studies | 93

opment and drinking” is a clear indication that someone either didn’t double-check
their work or is hiring for a very unhealthy company culture. Copying and pasting
the same form letter to every member of a team is a lack of effort that will not go
unnoticed by those teammates - word about companies who use these tactics gets
around.

In the same vein, asking a potential candidate to recommend some other people if
they aren’t interested in the position comes across as being incredibly lazy. These
days, nearly every company is actively hiring - if they knew any qualified candidates
they would be talking to them themselves, not doing free recruiting work for some‐
one else’s company. People are often willing to give recommendations, but to their
friends or colleagues they know and trust, not to complete strangers who bother them
with repeated solicited emails.

Exclusionary or Unprofessional Language
Look out for language in job postings or recruiting emails that are likely to alienate
candidates. Exceptionally masculine language - “crushing code”, “rockstars”, and “are
you a [TECH] weapon” are likely to be off-putting to people who don’t fall into a ster‐
eotypically masculine mold. Even worse than this is overtly sexist or homophobic
language. A job description that lists “making it rain on them hoes” and “partying
with rockstars” as job perks and “be totally gay for code” as a requirement is wildly
inappropriate in a professional context, pointing to a company that is likely to be hos‐
tile to women or LGBT people. Saying that you’re looking for a “nice dude” who is
“under 30” does the same thing, and specifying gender and age is often illegal
depending on the country you’re hiring in.

Misplaced Focus on Technology
Many engineers are excited by getting to use new technologies, so it makes sense that
people might use those technologies to get people interested in their jobs. Too much
focus on tech, especially without doing due diligence, can backfire, however. If you’re
asking for experience in a particular technology, do your research. Asking for 10
years of experience in a product that has only existed for 2 years makes it look like
you don’t know what you’re talking about at all - probably not the impression you’re
trying to give.

Also be aware that candidates are more and more often interested in what a company
is doing, not just the technologies. If your technology is interesting with good reason,
feel free to mention it, but sending an email to a potential candidate that talks only
about the tech without even mentioning what that technology is building and what
the company does is a mistake. An engineering team that is always using the latest
“hot” new bleeding-edge tools (and again, descriptions like “hot” and “sexy” are very
likely to alienate large groups of potential candidates) isn’t necessarily going to sell
your team very well.

94 | Chapter 4: Hiring: Choosing Individuals

Linting Your Job Descriptions

Linting is a term in computer programming that describes progra‐
matically searching for suspicious, dangerous, or non-portable
code constructs that are likely to cause issues. Engineers can “lint”
their code to do this kind of analysis on it, checking for common
errors or style problems, before they commit it to the main code
repository.
A similar tool exists for analyzing job descriptions or postings, or
recruiter emails, to check for some of the common issues that we
have described here. You can use this tool yourself at joblint.org to
catch some issues you might not be aware of, and to remind you of
what you should check for in the future.

The company later revised their job postings and got rid of these “heroic” descrip‐
tions and instead highlights the teams cultural values, including work-life balance.
For example, they note that they give every on-call engineer an extra day off after
each 1-week on-call rotation, to help counteract the stress and sleep deprivation that
is so often part of being on call. They also work to optimize away the unpleasant parts
of working in operational areas by doing things like having a rotation for who is
responsible for responding to walkup questions and other interruptions from other
engineers, and using a ticketing system to track these requests.

Other examples of better job postings include:

• Mentioning general skills rather than specific technologies. Instead of saying you
want someone with 2 years of Puppet experience, try advertising for concepts
such as automation of repetitive tasks and configuration management. Also
assess whether or not a specific number of years experience is actually required -
in many cases it isn’t and those kinds of hard requirements will leave out candi‐
dates who are actually qualified.

• Call out important cultural values. By culture, we’re not talking about having a
team who drinks beer and plays foosball together, but rather cultural values such
as empathy, effective communication, getting rid of silos, and work-life balance.
(Of course, don’t mention values that your team doesn’t actually have - lying
about your culture to get hires will quickly be found out and word of that will
spread.)

• Make sure your job descriptions are gender-neutral and free of aggressive termi‐
nology. You’re looking for somebody who can write code, not “crush” code.

• Specifically call out your company’s commitment to diversity if that’s something
you’re working on. Mention perks that will be appealing to a wide range of appli‐
cants - instead of a beer fridge and ping-pong table, talk about a culture that

Case Studies | 95

http://joblint.org/

encourages people to leave work on-time, parental leave, and training opportuni‐
ties.

More Diverse Hiring Resources

Model View Culture, an independent publication writing on issues
of culture and diversity in tech, has a list of 25 tips for diverse hir‐
ing that is an excellent collection of resources for anyone looking to
improve the diversity of their teams.

The new job posting has been working very well for the director and his team -
they’ve had five successful hires, with only one person who didn’t end up being a
good fit. They’ve managed to take their infrastructure from one of entirely unman‐
aged snowflake servers to one that is completely automated, because of the people
that they’ve hired. Their team worked to hire engineers who are fanatical about auto‐
mation and testing, and then let them do their best work. This ended up with a com‐
plete overhaul of their automation and testing infrastructure, providing the entire
engineering organization with simple, well-documented tools that everyone knew
how to use and contribute to.

Moving now to the technology lead at the digital design agency, we meet someone
who has been working in technology for nearly 15 years and across industries includ‐
ing higher education, finance, media, and advertising. To her, devops means leverag‐
ing the coding skills of developers with the operational knowledge of system
administrators to provision and operate reliable computing systems at scale, some‐
thing that is important regardless of the specific industry those systems are support‐
ing.

As a team lead, her focus is on growing and improving her team, similar to the direc‐
tor previously described, but at over 500 people, her company is operating at a much
larger scale than his. This necessitates different specific hiring practices, even though
their general objectives are the same.

Because their organization is so large, they have staffed recruiters who work full-time
in house to find qualified candidates. If a team lead or hiring manager isn’t satisfied
with the candidates they are getting from the recruiters, it is their responsibility to
work with the specified recruiter to try and resolve those issues. The interview pro‐
cess consists of a phone interview, which usually lasts around 30 minutes and covers a
candidate’s work history, followed by a number of on-site interviews. The exact num‐
ber depends on the team and the type of position a candidate is interviewing for. For
example, an entry-level developer would only be requested to come to one on-site
interview. The higher the position a candidate may be considered for, the more inter‐
views a candidate may have.

96 | Chapter 4: Hiring: Choosing Individuals

https://modelviewculture.com/pieces/25-tips-for-diverse-hiring
https://modelviewculture.com/pieces/25-tips-for-diverse-hiring

Once the interview process has been completed and a hire has been made, every
employee at this company is assigned a Career Developer. Career Developers act as
mentors to the employees assigned to them, which is usually a number around four,
though they have found over time that no Career Developer has been very effective
with more than seven mentees, as they all have other work assignments and responsi‐
bilities as well. Their primary goal as a Career Developer is to help employees be suc‐
cessful at the company, in whatever form that takes. Each of them meets with their
mentees individually at least once a month.

A type of feedback called 360 feedback is used for company performance reviews. In
this method, feedback is gathered from a variety of people in an employee’s immedi‐
ate work circle, often including their direct peers, their direct reports, and the person
(or people) they report to. In this case study, 360 feedback is provided anonymously,
and a Career Developer will receive a copy of all the feedback for their mentees. In
this way they can help their mentees process that feedback, doing things like coming
up with a performance improvement plan if there was significant negative feedback.
This is a large part of how Career Developers help their mentees, in addition to things
like career direction advice or assisting with perplexing technical issues.

In addition to career growth and mentorship, this company takes retention very seri‐
ously as a key part of their hiring strategy. They have realized that while monetary
compensation is important, there are other ways of making employees feel valued
aside from simply increasing their salaries.

In their weekly technology staff meetings, all team members are encouraged to talk
about what they’re working on and describe the contributions they’ve made to
projects they are working on. Once a month, employees are asked to nominate one of
their coworkers for what is called a spot bonus, which combines the interpersonal sat‐
isfaction that comes from peer respect and recognition with a monetary bonus.

Letting employees explore multiple interests and grow their careers in the directions
they choose is an important retention strategy as well. The technology lead shared a
story of a front-end developer on her team who was very valued on the team, but
found himself wanting to do more than just JavaScript and CSS. He discussed this
with his Career Developer, who brought it to the attention of the tech lead, and
together the three of them came up with a way for the developer to start spending at
least 25% of his time each week working on other creative technology projects. This
slight modification to his responsibilities allowed him to grow his skill set, gave him
the opportunity to work in an area of technology that excites him, let the company
retain a talented (and much happier) developer.

These two case studies taken side by side show how even though companies have the
same overall objectives (to hire and retain talented engineers), their sizes and specific
situations led them to different hiring and retention techniques. In the next sections,
we’ll give examples of how to measure and troubleshoot your own hiring initiatives,

Case Studies | 97

examining the common factors that you’ll need to consider no matter where your
company is at.

Measuring Success
There are many different metrics that can be used to assess the success of your hiring
initiatives. Some people might be tempted to look simply at onboarding numbers:
How many new people have you managed to hire? Or how many people have you
made offers to? Or how many candidates have you found that you want to bring in
for in-person interviews?

These numbers, while they might be easy to measure, don’t really provide any kind of
insight into the actual effectiveness of your hiring and retention strategies. As a first
step, consider the recruitment funnel - similar to a customer acquisition funnel, an
employee acquisition funnel can help identify where issues might be popping up in
your process.

98 | Chapter 4: Hiring: Choosing Individuals

Figure 4-1. The Employee Acquisition Funnel

Like other acquisition funnels, it is expected that each phase be smaller than the pre‐
vious one. If you make sure to measure your numbers at each of these phases over
time, that can provide insight if you notice changes happening. Maybe a smaller
number of applicants can be traced back to changes in the wording of a job descrip‐
tion, or just a job posting that expired and needed to be renewed. Fewer people mak‐
ing it to an in-person interview could be due to a variety of factors, but it’s hard to
assess which ones unless you can know how the percentages are changing - it could
be fewer people applying, or more people applying but proportionally fewer of them
making it to each stage of the interview process. Without knowing which case you’re

Measuring Success | 99

dealing with, it will be much more difficult to figure out what actions to take in
response.

A decrease in the number of people who are applying for a position if the same num‐
ber of people are viewing it could indicate that something in the job posting is driving
away candidates - the other case study and the troubleshooting section of this chapter
give examples of how the content and tone of your job descriptions can affect how
they are viewed by potential candidates. Fewer candidates making it through phone
or in-person interviews could indicate issues with either candidate screening or the
interview processes themselves, and fewer offers being accepted relative to the num‐
ber of offers being extended could very well mean that your compensation isn’t com‐
petitive enough.

Other metrics that you should consider measuring when considering the effective‐
ness of your hiring include:

• How many people that actually interview with 0% interest in the position?
Engineers are often encouraged to take interviews every so often (6 or 12 months
is common) to make sure that they are keeping up with industry trends and mak‐
ing sure their interviewing skills are still sharp. Some people will interview with
the goal of getting an offer that they can then leverage as a way of getting a raise
from their current employer. While it can be very difficult to detect this kind of
behavior, if you notice that very few of your offers are being accepted but believe
they are competitive, you might consider if your screening processes aren’t gaug‐
ing interest well. Alternatively, there could be significant mismatches between the
job as described and its reality.

• How many years does the average employee stay? While it is true that employ‐
ees these days are less likely to remain with the same employer for as long as
members of previous generations, where having more than two or maybe three
employers over the course of one’s career was incredibly uncommon, it can be
very revealing to keep track of how long most of your employees stay. Significant
changes in these numbers might be traceable back to events such as changes in
leadership or company strategy, new management or budget cuts that affected
training and compensation. Employee surveys can provide more detailed infor‐
mation, if people are willing and able to share that level of detail, but high-level
retention numbers are important as well.

• How do you measure the long term growth/education of your employees?
Many companies, especially smaller or younger startups, don’t give much consid‐
eration to growing their employees, as they are much more focused on growing
the company. With all the costs associated with onboarding new employees as
opposed to retaining existing ones, it makes sense to pay attention to how you
are going to grow and retain personnel. Measuring rates of promotions, training

100 | Chapter 4: Hiring: Choosing Individuals

budgets, and employee satisfaction with their professional growth opportunities
can go a long way towards achieving this.

How do you know when you’ve made a good hire? Often, it takes time to be able to
tell. People will have periods of adjustment as they get used to working together, espe‐
cially in situations where you’re actively trying to increase the diversity of your team.
In operations teams, which tend to be even more male-dominated that software
development, it may take some time for men to get used to working with a woman,
especially if they’ve never worked with a female peer in a professional context before.
When bringing in more junior employees, it is a given that it will take some time to
get their technical skills up to speed as they learn their way around the environment.

When asked about his most successful hire, the director talked about a hire who had
been a data center technician looking to make a move into a more involved opera‐
tions role. The candidate expressed concern that his lack of operations experience
and lack of college degree would be a problem, but he had an obvious enthusiasm for
the subject and desire to learn and improve his skills that the director, like many peo‐
ple, valued more than simply the number of years experience on a resume. The candi‐
date had also been discounting a great deal of experience he had working on side
projects, including work as a package maintainer. He was offered a position that gave
him a safe environment in which to experiment and learn, as well as colleagues who
were willing to mentor and guide him, and has ended up making significant and val‐
uable contributions to the team. This just goes to show how actual job requirements
can end up being more flexible than you might think.

In general, things to look for when considering the success of your hiring initiatives
include:

• Alignment with your hiring goals. The first section of this chapter introduced
how to identify your hiring goals. If you were looking for a specific skill set for a
particular project, was that project successful? If you were aiming to improve the
diversity of your team, were you able to source, hire, and retain a more diverse
set of candidates? The particulars of this will vary based on what your goals were,
which is why defining them in the first place is so important.

• Employee Retention and Satisfaction. Hiring new employees doesn’t do much
good if you can’t keep them in your organization. In fact, frequent employee
turnover can be detrimental both in terms of productivity due to the time costs
of onboarding new employees and taking over existing work from old ones, but
also in that morale can suffer when people are leaving regularly. Having regular
anonymous workplace surveys, where employees can give honest opinions about
their work, the environment, and the company as a whole without fear of retribu‐
tion, as well as exit interviews for employees who leave, will likely help uncover
problem areas that need to be addressed.

Measuring Success | 101

• Communication and Collaboration. How well do new employees work with the
existing teams? An engineer who is technically brilliant but that nobody can
stand working with is unlikely to be a successful hire. If they don’t end up leav‐
ing, they’re likely to drive other employees to leave if their interpersonal behavior
is problematic enough.

• Productivity. Perhaps the most common hiring goal is to get more work done as
a company grows. If more work isn’t getting done, it’s worth digging in to try to
find out why. If there is a skill set mismatch, that might indicate some changes
that need to be made to the interview process. A new employee who is feeling
blocked and struggling to contribute may be uncovering some cultural or process
problems in the organization that need to be addressed.

Without defining beforehand what success looks like, it is difficult to measure it.
Make sure that your hiring goals are specific and measurable as much as possible at
the beginning of every hiring cycle, and you’ll have a much better chance of meeting
them.

Troubleshooting
What do you do when your hiring practices aren’t meeting your needs. Chances are,
you’ve probably run into at least some areas that you want to improve upon, even if
it’s just struggling to find enough candidates, a common complaint when there seem
to be far more companies hiring devops skills than there are people looking to change
jobs. In this section, we’ll take a look at some common issues people run into with
hiring and how to troubleshoot them.

We aren’t getting enough candidates.
In today’s competitive job market, finding candidates who are even open to talking
about new positions can be difficult. If you work for a smaller company that isn’t
well-known in the industry, relying on having jobs posted on your company’s website
or word of mouth can be difficult. Some other ways to find candidates include:

Attend Local Meetup Groups
Meetup groups are becoming more and more popular, and not just in big metro areas
that already have a well-developed tech scene. If you’re looking for a particular skill‐
set, attending Meetup events in those areas can be a good way to make connections
but also to get a feel for the community and the competition. Keep in mind that most
Meetups frown upon recruiters who have no interest in the topics being discussed
showing up with the sole purpose of trying to hire people. Sending developers to
Meetup groups for their programming language or tool of choice can not only be a
good learning experience for them but also a way of making genuine connections

102 | Chapter 4: Hiring: Choosing Individuals

with other people in the industry. You never know when someone you happened to
meet locally might have the answer to a tough problem you’ve been working on, or
six months down the line knows someone who happens to be looking for a job.

This can also work at larger industry conferences as well, though unless you live in an
area that happens to have a lot of big tech conferences like the Bay Area, this is likely
to be a more expensive strategy. Still, keeping a finger on the pulse of the industry is a
great way to make sure your workplace is a competitive one.

Rethink Your Requirements
As we saw in the case study, your job posting might be hurting you without you even
realizing it. If you’re having problems finding candidates, have several people you
trust to give you honest feedback look over your job descriptions. Look for things
like, are you asking for a particular tool, programming language, or number of years
of experience for a position that doesn’t really need it? Are you asking more of a posi‐
tion than one person could reasonably be expected to do? Is the salary range you’re
offering for this position in line with the industry and the job requirements?
(Remember, devops is not a way to get the work of two people for the price of one!)

Also consider whether you can take the time to train a more junior person for the
position you need. With so many coding schools and bootcamps, as well as people
who take other non-traditional paths into the tech industry, there are a lot of intelli‐
gent, qualified candidates out there, even if they don’t have a 4-year degree or years of
industry experience already.

Give Back to the Community
A spirit of generosity to the community, often demonstrated by speaking at conferen‐
ces, writing public blog posts, and contributing to open-source projects, can be a
great way of finding candidates. These sorts of things help to get your company’s
name out there, and demonstrate that it’s a place to work where these sorts of activi‐
ties are not only allowed but encouraged.

Expand Your Searches
Having employees putting feelers out at Meetups, conferences, user groups, and the
like is great, but sometimes you might want to bring in a recruiter or tech sourcer,
especially if you have a very particular role you need filled. The thing to keep in mind
with using recruiters is that the recruiters you choose to work with reflect on your
company. Most engineers are inundated with emails or LinkedIn requests from
recruiters. Often times these recruiters haven’t bothered to do even basic research,
such as contacting a candidate for a Java position when that candidate doesn’t even
mention Java on their resume. Recruiters who try too hard to be cute or clever also
aren’t loved by candidates - asking if someone has gotten eaten by an alligator instead

Troubleshooting | 103

of replying to your third unsolicited email is unlikely to get a positive response, and
word gets around about companies or recruiters who use these kinds of tactics.

We aren’t getting diverse candidates.
Similar to dealing with a shortage of candidates in general, not getting enough diver‐
sity in the candidates you do find can be very frustrating. In addition to the sugges‐
tions mentioned previously in the case study, you should have some people you trust
read through your job postings.

It can often be helpful to have people of the sort you’re trying to hire look over your
job descriptions, but there are a couple potential issues with this. First, you may have
a chicken-and-egg problem - how do you get diverse people to critique your postings
if you can’t manage to get any diverse candidates? Second, asking people in underpri‐
vileged groups to do diversity work for you is problematic if you are expecting that
work for free. These people are on average already paid less than white men for doing
the same work, so asking them to do additional work on top of that without compen‐
sation isn’t helping anyone except you. There are diversity consultants out there who
do this kind of work for a living; for the most part it would be better to bring in one
of them.

In addition to off-putting job listings, a lack of diverse candidates might suggest other
problems with your company culture. If your executive team and management are
very homogeneous, you’ll likely find it harder to find individual contributors who
don’t fit that same mold. People often times don’t want to be the only different person
on the team, and they can be hesitant to work for places where they don’t see oppor‐
tunities for growth and mentorship. A company known for overworking employees,
for alcohol-laden social events, or a history of problematic behavior from employees,
whether on company time or not, will turn people off from your organization as well.

These sorts of cultural problems require longer-term and more substantial fixes than
simply changing the wording of a job description, but they are even more important.

Interviews are a waste of time for the team.
For technical skill mismatches, make sure your job description is clearly stating all
necessary and desired skills. Don’t list something as a “nice-to-have” if it’s essential for
the job you’re hiring for, but also don’t list something as necessary if you’re fine with
hires learning it on the job. If you’re working with a recruiter, make sure they under‐
stand enough about what skills are needed to weed out any obvious mismatches.

Be aware of potential unconscious biases in sourcing candidates. It’s easy for people to
bring in their friends or people they know from the community because they’re famil‐
iar, but that familiarity can cause them to move candidates ahead further than they
might ordinarily progress (nobody wants to have to tell a friend that they aren’t up to

104 | Chapter 4: Hiring: Choosing Individuals

snuff). People might also tend towards bringing in candidates who are similar to
them, passing over candidates who might be more qualified but don’t resemble the
“typical” engineer they’re used to. Unconscious bias training can go a long way
towards getting rid of these kinds of issues.

Finally, make sure that everyone is on the same page regarding the interview process.
If people are repeating questions that other interviewers have already asked, that very
well might be a poor use of current employees’ time. Having people asking irrelevant
questions also isn’t ideal. For example, if you’re hiring for a position that requires no
database knowledge, having the candidates be interviewed by a DBA who will only
examine those skill areas isn’t doing anyone involved any favors.

People aren’t accepting our offers.
In our experience, we’ve found that the biggest reason that people don’t accept job
offers is compensation. As we’ve previously addressed, devops is not a way to get two
employees’ work for only one salary. The benefits that come from an effective devops
culture will often eventually include cost savings, cutting down on salary costs should
not be your primary reason for making these kinds of changes. If you are putting out
offers that aren’t being accepted, take a good look at whether or not your compensa‐
tion packages are competitive.

This can include other factors aside from simply the annual salary numbers. Health
coverage, including parental leave and transgender-inclusive healthcare, is very
important. Vacation policies are important, especially for candidates with families. A
healthy work-life balance can also be a factor. Asking somebody to “give 110 percent”
and often work nights and weekends, or to be the only person on-call, is unlikely to
make people want to join your team. Take a good look at your total compensation
packages compared to what you’re asking of your candidates and make sure that you
have a good match.

Conclusion
There is no one magic bullet for hiring, no solution that will source amazing candi‐
dates out of thin air and make them fall in love with your company. Often times,
problems with hiring can be indicative of deeper problems with a company’s culture.
It can be uncomfortable to address these kinds of issues - nobody likes to hear that
they are doing things poorly, no matter the circumstances. But working to identify
and address these issues will help not only your own organization but the industry as
a whole.

Conclusion | 105

CHAPTER 5

Tools: Selection and Implementation

This chapter is aimed at those who want to examine their current tools, optimize the
process of selection and elimination, and measure and iteratively improve the tools in
their environment.

We will cover the most common concerns and decisions that exist for different types
of tools. It’s important to note that while we may occasionally call out a feature of a
specific product as being well-suited for a given need to illustrate the values that
encourage collaboration, hiring and affinity, the authors are not paid to endorse any
particular tools and strive to present an objective view of the current tool ecosystem.

Introduction and Audience
Generally the first place people look to implement change is through tooling. We
have included this chapter towards the end of the book to emphasize the importance
of examining collaboration, hiring and affinity early in your process. While tool
choices tend to be easy wins, it can lead to obscuring issues in the interactions
between team members as well as cultures across teams. This leads to invisible failure
conditions as culture debt builds up.

One challenge to environments that use a waterfall methodology may be that the
team is focused on discovering all parts of a tools strategy before implementing any
single aspect. Some individuals may find themselves searching for tools that will solve
all the issues present in the organization, speed up delivery of innovation and soft‐
ware, while providing value to customers. Looking for holistic solutions is essentially
looking for the unicorn. Our industry is filled with very hard problems that are still in
the process of being solved. If it is not obvious how to do something manually, there
aren’t going to be great solutions towards solving the problems programmatically.

107

Time and energy spent towards planning for all potential problems will lead to learn‐
ing that there is no single solution.

Even if not tracking every single part of a tool ecosystem, teams experienced with cer‐
tain types of failures may have trouble deciding on a single technology to implement
in the stack due to fear of choosing the wrong technology. Deploying tools that can
help visualize and track this contention for time, and wasted effort can help build an
environment of continuous learning.

Tools are objects that exist in the world and are demonstrable improvements that
individuals can show when management asks, “Are we succeeding at our devops ini‐
tiatives?”. Changes that impact culture outside of the technical landscape can be espe‐
cially challenging when there is not executive buy-in towards cultural improvements,
or when teams are deeply entrenched in their own current patterns.

Presentations, marketing, and certifications focus on tooling when talking about
devops, illustrating the value in easy-to-consume graphs. Company newsletters,
mainstream media, and conference booths will display lists and articles covering the
“best” tools for a devops toolchain. How can you tell the difference between a com‐
pany trying to sell a solution that could be effective in your environment versus a
company trying to get on the trend of devops?

Some people de-emphasize the importance of tools, saying “devops is not about
tools”, and “anyone who is trying to sell a devops tool, toolchain, devops in a box, or
anything similar is simply looking to make a quick buck off of people who don’t know
any better”. How do you know where to start looking to introduce devops into your
environment with any effectiveness, with the cacophony of competing opinions on
whether or not tools are essential to devops?

In this chapter, we will help you take a critical look at your current toolset, optimize
the tools you are using, and selectively choose new tools to complement your current
environment while averting the disaster of cultural debt buildup. In the appendix, you
will find a checklist that will help you start assessing the current state of your tools.
This chapter will provide key strategies for examining the value of advertised tools to
help you determine whether a tool is useful for your environment. It will help explain
why some current toolchains that are outdated or ineffective may be worse than hav‐
ing no tooling at all.

If you’re overwhelmed by how many tools are out there claiming to be a necessary
part of a devops transformation and want to know which of them, if any, you actually
need in your environment, this chapter is for you. People looking to understand
which tools are most important, which to change or implement first, and how to
choose between various competing tools will also find this chapter beneficial.

108 | Chapter 5: Tools: Selection and Implementation

Why Tools Matter
Tools are inherent to our jobs, inherent to how we solve the problems we face each
day. Our comfort level with the set of tools that are available to us, and our ability to
adapt to new tools as they evolve and shape our thoughts and ideas. The availability
of collective knowledge within the palm of your hand combined with the collabora‐
tion across organization and company boundaries through open source software is
dramatically disrupting the status quo of work. Companies mired in managing infra‐
structure configuration management by hand with unknown numbers of divergent
systems, unable to quickly change and respond to market demands will struggle
against their counterparts who have managed to contain their complexity on one axis
through infrastructure automation. While it is possible to manage servers by hand, or
even artisinally crafted shell scripts, a proper configuration management tool is
invaluable especially as your environment and team changes.

Even the best software developers will struggle if they are working in an environment
without a version control system in place. Tools matter in that not having them, or
using them incorrectly, can destroy the effectiveness of even the most intelligent and
empathetic of engineers. The consideration you give to the tools you use in your
organization will reflect in the overall organization’s success. You’ll find that what is a
good tool for some teams might not be a good one for others. The strength of tools
comes from how well they fit the needs of the the people or groups using them. If you
don’t need feature X, its presence won’t be a selling point when considering which
tool your organization should use. Especially in larger organizations with teams num‐
bering in the dozens, finding one tool that meets the needs of every team will be
increasingly difficult. You will have to strike a balance between deciding on one tool
that will be used across the entire company consistently and allowing more freedom
of choice among individual teams. There are benefits to both the consistency and
manageability that comes from having only one tool in use in an organization, and
also from allowing teams to pick specific tools that work best for then. We will discuss
how to strike that balance in more detail in this chapter’s case study.

Think back to the two main ideas covered in the previous chapters: individual collab‐
oration and team affinity. If tools, or lack thereof, get in the way of individuals or
teams working well together, your initiatives will not succeed. The cost of collabora‐
tion is high, investing in no or poor tools can raise the costs dramatically.

Humans have a long history of using tools in order to get jobs done more effectively.
Moving from typewriters to word processors allows people to more easily make
changes and correct mistakes. Going from punchcards and assembly languages to
higher level languages lets us better understand the code that we’re writing, and even
more so lets us share that code with others and have them easily understand it. These
tools were not invented as ends in and of themselves - they were all created to make
specific jobs easier for the people using them, and that’s an important thing to keep in

Why Tools Matter | 109

mind when choosing tools for use. These tools all allow us to collaborate more as
software has moved from being written by one person and only read by that same
person to being written by multiple people, multiple teams, and having to be under‐
stood and maintained by different teams, sometimes years later.

Often when we talk about tools, we talk only about the software side of things - which
programming languages we write with in which IDEs, which text editor or shell we
prefer, which configuration management solution and which chat program. It’s
important to keep in mind that tools might mean hardware as well. A smaller, lighter
laptop is less physical strain when traveling to conferences or bringing a computer
through a data center. Choosing a hardware RAID solution over a software RAID sol‐
ution costs more money but offers feature like battery backups and easier mainte‐
nance. With so much being in the cloud or as a service these days it’s easy to focus
most of our attention on software, but it’s important to keep hardware in mind as
well.

Not all tools are created equal - this is something that applies to both hardware and
software. If they were, we wouldn’t need to write this chapter - you could just pick
whichever tool was simply the cheapest, or the one whose logo you liked the best.
Even among tools that nearly everyone agrees are key like configuration management
or source control, some are better suited to collaboration than others.

Tools can be a way of giving back to the community. Chances are, the problems that
you are having aren’t unique to your organization, or at least not so unique that you
wouldn’t be able to share some of your tooling with other companies. Sharing and
open-sourcing the tools you’ve written keeps other companies from having to rein‐
vent the wheel.

But what about companies who worry that open sourcing their tooling will take away
their competitive advantage? If your company’s success depends on your tooling, that
should be part of your business model, so that you’re making money from either the
software or, as many companies do these days, the support for that software. If you
use any open source software, you owe it to the open source community to give back
in some way - nobody likes a person who only takes and never gives anything back. If
every company was selfish and never open-sourced anything, the industry as a whole
would be less innovative because people would have to spend their time writing their
own version of tools that already exist, solving problems that have already been
solved by other companies, which is time that can’t then be spent on things that
actually bring value to the company’s bottom line. Technology gives us the ability to
make significant positive changes to the world, and we should be able to focus on that
instead of writing some tool that already exists somewhere else.

Contributing to open source is an excellent reflection of company intentions. Open
sourcing software within companies encourages teams to contribute to each other’s
projects rather than reinventing the wheel, and it exposes people, both individual

110 | Chapter 5: Tools: Selection and Implementation

contributors and managers, to the benefits of open source collaboration. Contribu‐
ting to open source and using open source often go hand in hand as well. Teams that
are used to the open source community are more likely to look for open source solu‐
tions that already exist rather than writing their own. As an example, Yahoo went
through five homegrown configuration management solutions prior to finally adopt‐
ing Chef. How much time and energy went into developing those internal solutions
that could have been better spent on their core products and services?

Many companies look towards the well-known companies in the devops space and
their open source contributions, such as Netflix and Etsy, and feel compelled to start
writing and open sourcing many of their own tools as well. Despite the benefits of
open source contribution, balance is key here - too far in the other direction and you
end up with Not Invented Here (NIH) syndrome. This is a term used to describe
companies who, on principle, refuse to use third party tools because they originated
outside the company. There can be various reasons for this behavior, with the most
common probably being competition, where companies don’t want to acknowledge
solutions created by competitors, let alone use them, or fear of software that is exter‐
nal and unknown. Maybe they don’t trust that other people could write code as well
as they could themselves, or maybe they’d rather write something than figure out how
to read and use someone else’s code. Some people just like the challenge of creating
software that they haven’t before, or trying a project written in a new language.

There can be valid concerns about using a third party solution. If it is something that
will be integrated into an existing software project, that project’s license might have to
be updated or change to match the license of the new external component. There is
also the possibility that the software’s maintainer will abandon it, no longer providing
bug fixes, security updates, or support, or that future development will introduce
breaking changes. Companies might also not want to be tied to a particular vendor
for a variety of reasons. Still, there are serious drawbacks to a case of Not Invented
Here. Unless you have a team of security experts, any cryptographic software you
write is likely to contain bugs and thus security vulnerabilities. A company not in the
business of networking is unlikely to get any benefits from writing their own DNS
server - any effort they can produce is unlikely to be better than BIND, and certainly
won’t be worth the time spent in development, maintenance, and troubleshooting a
piece of software that nobody else has any experience with.

Tools can and will enforce behavior, which will affect your culture. It is critical to
examine tools when examining the behaviors and cultures, and this is where the true
importance of your tooling choices lies.

As we discussed in Chapter 1, a lot of working effectively comes down to developing
shared mutual understandings and negotiation around the inevitable miscommuni‐
cation and misunderstandings that come when trying to navigate multiple goals at
once. Tools can help to communicate with each other. Tools can help work out

Why Tools Matter | 111

boundaries. We also said that, given the knowledge that both parties are still in the
compact, everything else comes down to repair, and repair operations are best served
with tools. It is the strengths of the tools we choose that will become our greatest
strengths when trying to work together effectively.

Availability of data, empowered to inform and guide decisions. Tools shape the ques‐
tions we ask, the information readily available to us, how we analyze the information,
and build from it. Tools change the dynamics of how the company communicates
point to point to vast interconnected networks.

Many organizations cling to homogeneous standardization of laptops with specific
tools to ensure reliability and security. It is important to balance these concerns with
allowing for flexibility that will let people be more productive at an individual level.
We’d also like to note that firewalls that prevent collaboration on social tools like
Twitter and Facebook, eliminate a source of knowledge and collaboration from users
of services. As we’ll discuss more in the Collaboration and Hiring chapters, there are
better ways to ensure employee motivation and productivity than policing their
behavior the way that one would for young children.

Standardization of tools can also help create stable bridges from old to new as the
technologies being used at a company change. If there is a consistent process for eval‐
uating and choosing new tools, as well as retiring old ones, organizations will be more
likely to decide upon a tool that meets the most peoples’ needs, make sure that any
necessary features that were present in an old tool are also features of a new one, and
ensure that employees are properly trained to be able to effectively use a new piece of
hardware or software. Without this kind of bridging, employees might be more resist‐
ant to new tools or technologies simply because the change was too abrupt or the
transition wasn’t handled well.

Choosing specific tools within our tool categories matters because they help shape
and define the way we work. For example, choosing git as your version control sys‐
tem encourages pull requests in a way that cannot happen with something like sub‐
version, because while git allows for repositories to be forked, subversion uses only
one repository for everybody. The same behavior can ultimately be accomplished in
subversion, but it is much more complex to do so, and because of that overhead many
people will choose not to go that route if they even know it exists. So while both of
these version control systems technically allow for this same kind of collaborative
behavior, only git encourages it, and this will be seen in the work patterns of develop‐
ers working with each system.

Why Tools Don’t Matter
There have been differing opinions on whether or not tools matter, and how much so
if they do, over the course of the devops movement. Saying that tools don’t matter

112 | Chapter 5: Tools: Selection and Implementation

developed in response to too many vendors jumping on the bandwagon of calling
everything “devops” (regardless of whether or not that label was accurate) trying to
sell their products. By saying that tools don’t matter, people wanted to convey the idea
that tooling is not a sufficient condition for a devops culture to exist. Tools do not fix
broken cultures, they can serve to expose and exacerbate existing conditions.

Your company might fail if you can’t figure out how to use configuration manage‐
ment at all to the point where your beautiful and unique snowflake servers are con‐
stantly causing lots of downtime and thus lost revenue, but if you are using
configuration management properly, the choice to use Puppet or Chef (or Ansible or
Salt or even CFEngine or some new CM system that hasn’t even been written yet)
doesn’t matter if you can use it to do what you need to do. While there are technical
differences between those different tools, what really matters is if the tools have the
features that your particular organization needs to solve their problems.

Conway’s Law is the idea that software tends to end up being developed in ways that
mirror the structures and organization of the teams that developed it. A corollary to
this might be that teams tend to end up choosing and using tools in ways that mimic
their original structure and communication patterns. Two teams that don’t communi‐
cate with each other aren’t going to start doing so just because the company started
using Slack as their new chat system. But since tools shape behavior, having tools that
reduce the friction required to communicate with other teams makes it more likely
that communication will start to take place. If a company doesn’t even have any chat
software, or if what they use has technical limitations that prevent inter-team com‐
munication, it will be much harder for communication to happen.

Conway’s Law
Conway’s Law is a saying named after Melvin Conway, a computer programmer who
stated that “organizations which design systems … are constrained to produce
designs which are copies of the communication structures of these organizations”, or,
more simply stated, software components will tend to communicate in the same way
that the teams who designed and created them communicate with each other. This
means that in order for two software components to work together if they are each
being designed and implemented by a separate team, those two teams must be able to
communicate as well. Conversely, teams that do not communicate well, such as in a
heavily siloed environment, will tend to create products that don’t work together well
either.

Sometimes, the way tools are used is of greater importance than the specific tool
chosen. Take a ticketing or bug-tracking system, for example. If every team decides
that tools don’t matter and picks a specific ticketing system that complements their
working style, changes are high that intra-team issues will arise down the line that

Why Tools Don’t Matter | 113

impact cross-functional teams as well as increasing the overall communication that
management have to be aware of to distil flow and current status. Individuals will
either have more accounts to manage, or lack the visibility into another teams work.
This lack of visibility is one of the problems that often plagues siloed organizations.
Siloization can lead to duplicated effort, a lack of clarity or detail as to what is actually
being worked on (or whether or not work is actually getting done at all), and distrust
between teams.

This same principle can be applied not only to ticketing systems but also infrastruc‐
ture automation, chat systems, deployment tools, and any tool that is used by multi‐
ple teams within an organization. While it is important to figure out everyone’s
requirements and try to meet as many of them as possible, it is unlikely that 100% of
your people will be 100% happy with any tool at all - compromise is pretty much
guaranteed. At some point, continuing to argue and debate over which tool to use
doesn’t gain anything, and may end up causing hostility as arguments continue to
occur in addition to all the time lost. It’s tempting to say just pick one tool and stick
with it.

In order to steer clear of the kinds of logistical nightmares that can arise from having
each team using a different ticketing system, for example, in most cases it makes
sense to have everyone end up using the same tools across the company. Even if there
isn’t 100% satisfaction, this kind of standardization will cut down on support or
licensing costs as well as making things easier on whatever help desk staff that has to
support these tools.

There are of course exceptions to this rule. If a team needs to be somewhat isolated
for whatever reason, there isn’t necessarily cause to force them to use the same tooling
as everyone else if there is a reasonable need for them to do otherwise. PCI compli‐
ance, for example, requires a very strict separation of duties, so that a team doing PCI
work is likely to have separate computers running on a separate network from the
rest of their organization. In a case like this, since they are already somewhat segrega‐
ted from the rest of their environment, they could conceivably use different tooling
without having a detrimental effect on the organization as a whole. These are deci‐
sions that you will need to make on a case-by-case basis.

Even though there are so many commonalities, each team and each company is going
to have unique needs and experiences. In the case studies in this chapter, we will look
at how two companies approach their tooling selection and implementation deci‐
sions. Despite their many differences, common practices emerge showcasing how dif‐
ferent devops can be even with similar tooling. The case study will help illuminate
points for consideration that you can use in your own organization.

With those caveats in mind, arguments about which particular tool to use among
choices that all fulfill your requirements don’t make sense. This chapter isn’t going to
tell you that X is the One True Y Tool for Devops, because there is no such thing.

114 | Chapter 5: Tools: Selection and Implementation

That would be the same thing as declaring ed.footnote[ed is a line editor for Unix. At
one point, it was the default editor for systems and it’s terseness made it very difficult
albeit powerful to use in automation.] the true victor in the editor wars. As tools do
heavily influence behavior, give serious consideration when evaluating your environ‐
ment, assessing the cultural and technical landscape, and collaboratively defining the
goals and visions of the team or organization to make the right choice. Keep in mind
that this is an ongoing process that requires continual re-evaluation.

Tool Ecosystem Overview
Configuration Management
Started in the 1950s by the United States Department of Defense as a technical man‐
agement discipline, configuration management (CM) has been adopted in many
industries. Configuration management is the process of establishing and maintaining
the consistency of something’s performance, functional and physical attributes
throughout its life-cycle. This includes the policies, processes, documentation, and
tools required to implement this system of consistent performance, functionality, and
attributes. Specifically within the software engineering industry, ITIL, IEEE, ISO, and
SEI have all proposed a standard for Configuration Management. As with the term
“devops” this has led to some confusion in the industry about a common definition
for configuration management.

To ensure a standard common place from which to build from for the audience of
this book, we define configuration management as the process of identifying, manag‐
ing, monitoring, and auditing a product through its entire life including the pro‐
cesses, documentation, people, tools, software, and systems. Often infrastructure
automation is conflated with configuration management which creates a divide with
other disciplines usage of CM.

Version Control
Version control records changes to files or sets of files stored within the system. This
can be source code, assets, and other documents that may be part of a software devel‐
opment project. Developers commit changes in groups called commits or revisions.
Each revision along with metadata such as who made the change and when, is stored
within the software depending on the version control implementation.

Version control systems can be categorized by the process of how the metadata and
revisions are stored: local, centralized or distributed. While the inner workings of
version control systems are beyond the scope of this introduction, understanding the
overall concept of version control and the limitations of different models as they

Tool Ecosystem Overview | 115

influence the collaboration and affinity of team members is important in understand‐
ing impact on software development.

Local vs Centralized vs Distributed
Local version control is managed through saving patch sets of differences in files on a
single node local to where the files are stored.

Centralized version control is managed through a single remote server containing all
versioned files. Clients check out files from this centralized location.

Distributed version control is managed through entire repositories being replicated
across different nodes.

Having the ability to commit, compare, merge, and restore past revisions to objects to
the repository allows for a richer cooperation and collaboration within and between
teams. It minimizes risks by establishing a way to revert objects in production to pre‐
vious versions.

Infrastructure Automation
Infrastructure automation is creating systems that reduce the burden on people to
manage services and increase the quality, accuracy and precision of a service to the
consumers of a service.

Example 5-1. Convergence versus Congruence

Convergence is defined as the process of arriving to a desired end state based on cal‐
culating the route from the current starting point. If there is a failure, another round
of execution will still strive to reach the desired end state by re-calculating the route
without rolling back changes and starting from the beginning.

Congruence is starting from a blank slate and following a sequence of steps to mas‐
sage a system into a desired state.

System Provisioning
Once companies had to plan, buy, and provision hardware in data centers. Now, com‐
panies have the option to invest in cloud infrastructure with the option towards on-
demand computing where they purchase only what they need and scale up and down
as necessary.

Infrastructure automation allows the definition and control of how a given system is
set up to be described in code, from the system settings to the programs that are
installed and running to user management and network configuration. Benefits of

116 | Chapter 5: Tools: Selection and Implementation

describing infrastructure as code include repeatable, consistent, documented, and
resilient processes that withstand some amount of failure. This frees up time,
improves efficiency of staff, allows for more flexibility, and risk measurement. It also
increases the degree of confidence that individuals have in the machine setup and
deployment being identical reducing the amount of time spent debugging problems
based on system differences.

Provisioning automation is an extension to infrastructure automation allowing com‐
panies to define infrastructure in terms of the clusters of dependent systems required
to define their infrastructure and not just single nodes. It allows individuals to specify
how they want a group of servers to be provisioned once, and then to automatically
use that specification as many times as they want later. Often, server hardware manu‐
facturers such as HP and Dell will provide a provisioning tool that will only work
with their brand of hardware, but there are also open-source solutions available.

Different Linux distributions will often provide operating system-specific tooling as
well. As an example, Cobbler and Kickstart can be used to automate the provisioning
of systems running Red Hat Enterprise Linux or CentOS. Operations staff can write
“Kickstart files” that can specify hard disk partitioning, network configuration, which
software packages to install, and more.

Provisioning automation tools can even be made to install and set up infrastructure
configuration. In this way, the creation and management of servers can be automated
nearly completely from end to end, reducing the amount of time required to do the
repetitive tasks of clicking through tedious installation screens. Computers are much
better suited to these tasks than humans are, reducing errors and ensuring consis‐
tency in delivered product.

Some infrastructure automation tools have been extended to provide this functional‐
ity. Chef Provisioning which is included in the Chef Developer Kit lets you define the
whole cluster of systems including hardware, network and software.

Hardware Lifecycle Management
Every company has to deal with hardware lifecycle management in one way or
another - though the advent of the cloud and infrastructure or platform services has
cut down on the amount of attention this requires to some extent. The hardware life
cycle begins with planning and purchasing (or leasing), continues with installation,
maintenance, and repair, and ends with trading in, returning, or recycling hardware
that has reached the end of its life.

Provisioning automation tools greatly cut down on the amount of manual work that
must be done during hardware installation and after hardware maintenance. Without
it, installing new hardware meant manual configuration by system administrators or
data center technicians, which, like all repetitious work, tends to be error-prone as

Tool Ecosystem Overview | 117

previously mentioned. Automating the provisioning steps makes bringing up new
hardware more reliable in addition to being much faster.

This same automation can aid in repair and maintenance. If a server must be taken
out of production to do something like replace a bad memory module or upgrade a
hard drive, automation of provisioning and server state can ensure that it gets put
back into production in the same state, with the same configuration, as it was when it
was taken out, or that if a server needs to be completely rebuilt it can be done so
easily. If a particular process needs to be followed for maintenance or decommission‐
ing of hardware, this can be automated as well, freeing up system administrator
resources to focus on more intensive work.

Continuous Integration
Continuous integration (CI) is the process of integrating new code written by devel‐
opers with a mainline or “master” branch frequently throughout the day. This is in
contrast to having developers working on independent feature branches for weeks
and months at a time, only merging their code back to the master branch when it was
completely finished - long periods of time in between merges mean that much more
has been changed, increasing the likelihood of some of those changes being breaking
ones. With bigger changesets, it is much more difficult to isolate and identify what
caused something to break. With small, frequently merged changesets, finding the
specific change that caused a regression is much easier. The goal is to avoid these
kinds of integration problems that come from large, infrequent merges.

In order to make sure that the integrations were successful, CI systems will usually
run a series of tests automatically upon merging in of new changes. When these
changes are committed and merged, the tests automatically start running to avoid the
overhead of people having to remember to do so - the more overhead an activity
requires, the less likely it is that it will get done, especially when people are in a hurry.
The outcome of these tests is often visualized, where “green” means the tests passed
and the newly integrated build is said to be clean, and failing or “red” tests means the
build is broken and needs to be fixed. With this kind of workflow, problems can be
identified and fixed much more quickly.

Test and Build Automation
Test and build systems manage the testing, workflow and build process that qualifies
and builds releases. Test and build automation automates these processes eliminating
the manual steps required. Just as with infrastructure as code, this hands the tasks to
the computers to handle.

Back in the days of the first computers and compilers, programs were rarely con‐
tained in more than one source file. As programs began to grow in size and complex‐
ity, developers started to split them out into multiple source files. Standard libraries of

118 | Chapter 5: Tools: Selection and Implementation

code made available to users of a given programming language added to the complex‐
ity. With so many different source files needing to be compiled together correctly to
get the final program executables, it became necessary to automate the build pro‐
cesses.

Build automation tools today usually specify both how the software is to be built
(what steps need to be done and in what order) and what dependencies (what other
software needs to be present in order for the build to succeed). Some tools are best
suited to projects in specific programming languages, such as Apache’s Maven and
Ant which, while they can technically be used with other projects are most often used
with Java projects. Others, such as Hudson or Jenkins, can be used more broadly with
a wider range of projects.

These tools usually fall into one of three use cases. On-demand automation is run by
users, often on the command line, at the users’ discretion. For example, a developer
might run a Make script by hand during local development to make sure she can
build the software locally before checking it into version control. Scheduled automa‐
tion is automation that runs on a predefined schedule, such as a nightly build. Nightly
builds are created every night, usually at times when nobody is working so that no
new changes are taking place while the software is building (though this is becoming
less doable as teams get more globally distributed). Finally, triggered automation hap‐
pens as specified events happening, such as a continuous integration server that kicks
of a new build every time a commit is checked into the code.

Test, Monitor, or Diagnostic
Words can be problematic and distracting. Often tests, monitors, and diagnostics are
conflated causing more churn within and between teams. In order to work together,
teams need to establish clear boundaries by establishing a common vocabulary to
encode information. This encourages mutual understanding without limiting any
individual team member or requiring everyone to know every single detail.

During Sysadvent 2014, Yvonne Lam identified a set of questions a team should ask to
build this shared context around tests, monitors, and diagnostics.

1. Where is it going to run?
2. When is it going to run?
3. How often will it run?
4. Who is going to consume the result?
5. What is that entity going to do with the result?

Lam further enumerated a set of definitions that could be applied to clarify the differ‐
ences.

Tool Ecosystem Overview | 119

http://sysadvent.blogspot.com/2014/12/day-5-how-to-talk-about-monitors-tests.html

Tests run against non-production systems and qualify the system or software readi‐
ness. A test generally runs when something changes.

Monitors run against pre-production and production systems on a schedule. A moni‐
tor generally runs frequently or is triggered by an event.

Diagnostics run against production systems on demand due to an event.

Continuous Delivery
Continuous delivery is the process of releasing new software frequently through the
use of automated testing and continuous integration.

Application Deployment
Application deployment is the process of planning, maintaining, and executing on
the delivery of a release of software to the compute resources required.

In the general sense, the craft of application deployment needs to consider the aspect
of changes underneath the system. Having infrastructure automation building the
compute, operating system and dependencies required to run a specific application
minimizes the impact of inconsistencies impacting the software.

Depending on the application type, different engineering concerns may be important.
For example, databases may have strict guarantees in terms of consistency. If a trans‐
action occurs, it must reflect in the data. Application deployment is a critical aspect to
engineering quality software.

Continuous Deployment
Continuous deployment is the process of deploying change to production through
the engineering of application deployment that has defined tests and validations to
minimize risk.

The faster software changes make it into production, the quicker individuals see their
work in effect. Visibility to work impact increases job satisfaction, and overall happi‐
ness with work leading to higher performance.

It also leads to opportunities to learn quickly. If something is fundamentally wrong
with the design or feature, the context of work is more recent and change can occur.

Continuous deployment also gets the product out to the customer faster.

Metrics
Metrics are the collection of qualitative and quantitative measurements. Generally
they are compared against some benchmark or established standard, tracked for ana‐

120 | Chapter 5: Tools: Selection and Implementation

lytics, or for historical purposes. Often metric are siloed within functional organiza‐
tions which can impact choosing the right direction with product development.

Metrics are one of the key parts of monitoring - data can be gathered and stored for
nearly any part of even the most complex web software, and different teams can have
different metrics that they keep track of and use in their work. Statsd and Graphite
are very commonly used and a powerful combination for tracking, storing, and view‐
ing metrics.

There is a community driven effort to define the set of system and application metrics
that should be collected grouped by protocol, service, and application on github in
the metrics-catalog repo.

Logging
Logging is the generation, filtering, recording, and analysis of events that occur on a
system due to operating system or software messages. When tracking down the
source of a software issue, one of the first things that engineers often do is to check
the logs for any relevant error messages. Logs can be treasure troves full of useful
information, and with storage getting cheaper and cheaper, just about any log you
might want can be saved and stored for later use. Logs can come from the applica‐
tions you develop, from third-party tools you use, even from the operating system. As
there is no standardization across software for logging, it can be difficult to categorize
and qualify events within logs to identify patterns of concern.

A single system generate hundreds of lines of logs a day. In modern environments
that have thousands of applications running on hundreds or thousands of servers, the
sheer volume of log data can be overwhelming - it is no longer a simple matter of
searching through one log file. Much work has gone into developing applications that
handle the storage and searching of logs.

Monitoring
Monitoring is a large topic that can be split into multiple facets events and analytics.
The methods of information collection include metrics and logs. Monitoring includes
gathering basic system-level metrics such as if a server is up or down, how much
memory and CPU are being used, and how full each disk is, or it might be higher-
level application monitoring which can range from how many user requests a web
server is handling, how many items are queued in a queuing system, how long a given
web page takes to load, and what are the longest-running queries going into a data‐
base. While once solely the domain of system and network administrators, as soft‐
ware grows more complex and teams collaborate more, people are beginning to
realize that it’s a core reflection of product health.

Tool Ecosystem Overview | 121

One of the benefits of using configuration management is that it can be used to help
automate the process of setting up monitoring of new systems or services. Monitor‐
ing only works when it’s configured to monitor the right things - you don’t want to
realize only after an incident has occurred that monitoring hadn’t been set up prop‐
erly yet. Once you have determined what you need to be monitoring, configuration
management can be used to automatically monitor new hosts or services as they are
deployed or provisioned. Additionally, many configuration management systems
have monitoring built in to them that can provide information such as when each
host checked in, to gain additional confidence that systems are configured as
expected.

In today’s environment, with more and more systems being connected to the internet
and the increased visibility that comes with incidents that are highly publicized, com‐
panies are starting to care an increasing amount about security. While the topic of
how to secure your environment is far beyond the scope of this book, we will say that
in addition to checking on the health of your systems and applications, you should
consider monitoring the security of your environment as well. This could mean any‐
thing from tracking numbers of failed login attempts to setting up a sophisticated
intrusion detection system, but either way it is not something that should be forgot‐
ten or left until the last minute.

In general, monitoring is the process of tracking the current state of your systems and
environment, usually with the goal of checking whether or not they meet some pre-
defined conditions of what the desired state is. Often monitoring, alerting, and test‐
ing are conflated. This leads to confusion around understanding what we are trying
to accomplish or build. As mentioned above, monitoring usually runs on a pre-
defined schedule while tests are run in response to changes. Alerts are automated
communications sent to humans about the results of a test or a monitor.

Alerting
Monitoring and alerting are important not only from a performance perspective, but
also as a way of trying to make sure that you find out about potential issues before
they become actual issues for your customers. When the United States’ Health‐
Care.gov site was first launched in October 2013, they originally had no monitoring
or alerting to let them know whether or not the website, which had been two years in
the making, was up or not. As discussed by United States Digital Service administra‐
tor Mikey Dickerson in several industry talks he’s given, his team was reduced to
watching new sources such as CNN to report on whether or not the site was having
issues as their original form of monitoring during the site’s first few months of auto‐
mation. While it is not a panacea, a well-considered alerting strategy could have cut
down on some of the embarrassment that came from having those issues be so public.

When reasoning about alerting, there are several factors that need to be considered:

122 | Chapter 5: Tools: Selection and Implementation

• Impact: Not all systems have the same impact - something that is widespread,
affecting multiple systems or a large group of customers, has a much higher
impact than something that affects only a small subset of systems or people.
Some incidents aren’t customer facing at all, or might affect systems that have
enough redundancy so as to not have much impact that way. To avoid alert fati‐
gue, as we will discuss in more detail later, alerting should be restricted to inci‐
dents that have the most impact.

• Urgency: Similar to impact, not all issues are equally urgent. An urgent issue is
one that requires a fast (or sometimes immediate) response. For example, your
site being completely down such that you are currently losing money or custom‐
ers is much more urgent than a purely informational blog site being unreachable.
Different stakeholders will likely have different opinions about what is urgent, so
its important to consider all the stakeholders when configuring your monitoring
and alerting.

• Interested Party: Primarily, the parties interested in an incident are those affec‐
ted by it - this could be your customers (or a subset of them) or groups of
employees in the case of internal service incidents. Interested parties could also
be taken to mean who is responsible for responding to an incident. For example,
if only DBAs can deal with a particular kind of database issue, it would make
sense to alert them, rather than alerting an operations team whose only action
would be to call the DBAs.

• Resources: What resources are required to respond to a given incident or alert,
and what is the availability of those resources? Is there enough human coverage
to make sure that multiple incidents can be responded to, or do you have only
one on-call person that is a single point of failure without backup? Does your
organization have the resources to function without a given service, piece of
hardware, or individual? These are all things to consider when setting up your
alerting.

• Cost: There is cost associated with monitoring and alerting, from the cost of a
monitoring service and solution, to storage space for historical monitoring or
alert data, to the cost of sending out alerts to humans, not to mention the costs
associated with responding to incidents from the point of view of the person han‐
dling the issue to the cost to your company if a given service is unavailable.

In general, alerting is the process of creating events from the data that is gathered
through monitoring. We will now take a look at events in more detail.

Events
Event management is the element of monitoring that is concerned with existing
knowledge around impacts to systems and services. For 24x7 services this generally

Tool Ecosystem Overview | 123

reflects the need for real-time information about the status of all the different compo‐
nents of infrastructure. A system is configured to monitor a specific metric or log
based on a defined event and signal or alert if a threshold is crossed or an alert condi‐
tion has been met.

With much software development now being done on web software that is expected
to be available 24/7, more consideration is being given to handling alerts that occur
when engineers are at home instead of in the office. One way of dealing with this is to
set up as much automated handling of events as possible.

Many alerting and monitoring systems have built-in ways to automatically respond to
a given event. The Nagios monitoring system, for example, has “event handlers” that
can be configured for different alert conditions. These handers can do a variety of
things, from automatically restarting a service that had crashed to creating a ticket for
a technician to replace a failed hard disk. Automated event handlers can cut down on
the amount of work that Operations staff have to do (and likely the number of times
they get woken up off-hours as well) but they are not without their risks. It’s impor‐
tant to make sure that your failure conditions are clearly defined, that the event han‐
dler process is understood well enough to be automated, and that there are necessary
safeguards in place to keep the automation from causing more problems than it sol‐
ves.

No alerting system is 100% accurate 100% of the time. A false positive event is when
an event was generated when there wasn’t actually an issue. If your events generate
alerts such as pages that are designed to wake people up off-hours to deal with them,
a false positive will disturb someone’s sleep unnecessarily. On the flip side, a false
negative is when an incident occurred without generating an event for it, which
could lead to a longer time before the issue was detected and resolved. There are costs
to both false positives and false negatives, and which one is better or worse to risk will
depend on your specific issues and environment.

Over time, you will want to tune and adjust your monitoring and alerting as you
learn more about the true impact of your issues and events. We recommend monitor‐
ing the trends of your alerting, including information such as whether or not any
action was taken for each event, how many of your alerts were actionable overall, and
how many of them occurred off-hours.

Alert design, or how to create alerts that convey information in the most efficient way
for humans to interpret, is a big topic in alerting these days. Etsy developed their
OpsWeekly tool to allow for this kind of tracking as well as categorization of alerts by
type of alert and component. Keeping track of alert trends, and performing analytics
on the alert data can make a big difference in improving the effectiveness of alerts, as

124 | Chapter 5: Tools: Selection and Implementation

https://github.com/etsy/opsweekly

well as improving the health and happiness of the humans whose job it is to respond
to them.

Alert Fatigue
Just as with other first-hand responders, in the field experience leads to implicit
knowledge of what alerts are noise. It may be hard to generalize an automated mecha‐
nism that handles all cases clearly, but it is important to keep working to improve the
efficiency of the alerting system. Alert fatigue, or desensitization to alerts (usually
false positives) can lead to slower response to actual issues as well as contributing to
burnout.

Environments change, something that was a problem before may not be a problem
now due to change in function in software or complexity grows and old way of solv‐
ing the problem doesn’t work anymore. Humans can change to deal with the issue
quickly, algorithms do not have the same adaptive behaviors. Dealing with this con‐
stant change is an important part of alert and incident management.

Auditing your Tool Ecosystem
Before diving into selecting specific tools, you must examine the state of your ecosys‐
tem. In the appendix, you will find a checklist that will help you start assessing the
current state of your tools. The first litmus test for many tools is whether the function
exists in your environment. In this section we will establish the basic types of tools,
the essential foundations that help measure the overall health of your ecosystem and
will ensure support for the rest of your choices.

When auditing your environment to identify your tool ecosystem also include infor‐
mation about who has access and overall usage of the tool. Also include information
about multiple tools within the same category or overlapping tools in your environ‐
ment. This will inform areas of improvement that may require additional training or
replacement of tools.

Alignment with process and individuals desire to use a specific tool is critical for
effective tool usage. Too much process leads to a high cost to individuals as they are
trying to maintain the intricate context around the processes. This effort can detract
from project work. Too little process leads to lack in team cohesion with the prolifer‐
ation of tools and methods of using the tools. This can also impact individuals. Time
may be spent repairing understanding, and merging work or examining duplicated
work. Finding this baseline is key to all aspects of identifying and selecting tools. It is
even more important as we try to scale up and down organizations.

Auditing your Tool Ecosystem | 125

Communication
Examination of the tool ecosystem starts with communication. Work environment
community is built from effective communication. Communication is a key part of
being able to work together, and the tools and processes that your company uses for
interpersonal communication can have noticeable effects on culture. In addition,
every tool that you use has implicit communication inherent to its use.

Include the state of company policies in your examination of your
tools and identify how those policies may impact the efficacy of the
tools. These policies may be areas of improvement more crucial
than improved tooling.

As mentioned in the Collaboration chapter, there are many factors to take into
account with communication. These factors preclude finding a single communication
tool that will meet all of the needs inherent to a healthy organization. As with any of
the fundamental tools, examining the tools in place now is critical prior to making
changes in the availability of tools.

It’s likely that your communication needs will change as your company grows. While
communicating with everyone via chat might make sense at a small startup when
everyone can easily participate in one conversation, over time you might find teams
leaning more towards email or team wikis.

Measuring Participation

It is critical to understand and measure the participation within the
larger scope of the organization as your company grows. We will
give this topic more focus within the Scaling your organization
chapter, but the importance can not be stressed enough.
The process of finding the right tools at the right time is an iterative
process. Ensuring that all voices are heard in the critical conversa‐
tions ensures for a more healthy company. Silence should not be
assumed to mean consent to the majority. As evidenced through
research on smart teams, teams where everyone has a voice work
are more effective and produce more.

When working with remote employees, invest in high-quality video conference solu‐
tions. Ensure that your team members have quality headsets as the onboard laptop
microphones and speakers will lead to sub-par experiences that discourage individu‐
als from using the medium.

It’s a matter of choosing the tools, platforms, or methods based on the content, imme‐
diacy, context, and other factors of the communication itself. Once these needs are

126 | Chapter 5: Tools: Selection and Implementation

identified based on the types of communication you find yourself or your team par‐
ticipating in, you can work on choosing the particular tool of that type based on other
needs (such as paying for a chat program or using a free one).

The most important thing to keep in mind is that communication tools are like trav‐
eling companions in the convoy we introduced in Chapter 1. They can either be good
companions that help us keep the compact we have made, or they can be poor com‐
panions that distract us or get in our way. This, of course, will depend on how each of
our tools is used - trying to use a low-immediacy medium such as email for things
that require immediate replies will cause problems, as will trying to describe some‐
thing only with words when drawing a picture on a whiteboard would be quicker and
more effective.

Finally, when choosing tools it is necessary to balance cohesiveness with flexibility. If
there are too many communication methods used, people will likely find themselves
having to do lots of searching for the information they need (was that in an email or a
Google Doc or a Confluence wiki page?) or struggling with how to most effectively
reach people (should I send an instant message or a text message or go to their desk
for something like this). Too few methods, on the other hand, and you’ll cause frus‐
tration - we’ve all heard the stories of companies who help meetings for everything
when too often a quick email would have done the trick.

Our compact, with its focus on shared mutual understanding, will be aided if there
are traditions or customs that people can draw upon to help decide on the most effec‐
tive medium, but only if there is still enough flexibility to choose the right tool for the
right job.

Local Development Environment

Often overlooked a consistent local development environment is critical. This is not
to say that individuals should be locked into a single standard editor to get their job
done. It means ensuring that individuals have the tools needed to get the job done.

It can be hard to qualify what a reasonable standard for tools can be based on the dif‐
fering nature of jobs. For some who do a lot of image creation and manipulation,
hardware and software requirements are vastly different than those who are focused
on backend development focused on database schema design.

A reasonable standard for the average developer in 2015 to use some of the tools that
will be described in this chapter is 16GB memory, and a reasonable sized solid state
drive (SSD). These recommendations allow for sandbox environments that replicate
production on the laptop, and overall decreased latency for every step of development
along the way from compile times to opening up applications. Other aspects of mini‐
mal requirements may vary in your environment depending on individual preferen‐

Auditing your Tool Ecosystem | 127

ces from multiple displays for increased collaboration, retina displays allowing for
more comfortable long term viewing sessions, to specific keyboards.

Qualifying the current standard of your local development environment includes
determining whether there is a consistent framework that teams share within the
team and across teams. Reflect back on the topics covered in the Hiring chapter on
onboarding, and the assessment of how long it takes an engineer to get onboarded
within your environment. Further, how much consistency is there or do team mem‐
bers comment on having to establish their own way of doing things. This is a poten‐
tial danger zone where knowledge is gained and isolated within individuals with
regular incurred additional cost where individuals spend creativity time on fussing
with special environment setup to get work done.

Identify a shared area for documenting the local development environment. This
could be within a version control repository, or an internal wiki. Proficiency with
tools will happen over time and use, so the goal isn’t to have documentation that elab‐
orates on every single detail, but enough to get individuals going and successful in the
environment.

Invest in a quality editor(s). Depending on the size of your company, and teams,
ensure there is budget to invest in quality editors. While individuals will be very
attached to the editor that they have used over years, having the ability to choose an
editor that will work more efficiently in your environment with the languages in use
will be useful. Critical elements of a good editor include:

• syntax highlighting
• auto-completion of common commands
• line number visualization
• project organization

Some editors are more useful than others depending on the language used. Addi‐
tional plugins may be available that will speed up and minimize mistakes.

For example, individuals using Chef may find that an editor like [Sublime Text]
(http://www.sublimetext.com/) is very helpful with the [SublimeChef](https://
github.com/cabeca/SublimeChef) and [SublimeGuard](https://github.com/cyphactor/
sublime_guard) plugins. SublimeChef includes several code snippets that autocom‐
plete common chef resources which leads to faster development. Including Sublime‐
Guard allows for continuous testing through showing output of [guard](http://
guardgem.org/) within the editor ensuring that anything written complies to style and
correctness early in the process rather than testing done during the automated test
and build environments.

128 | Chapter 5: Tools: Selection and Implementation

http://www.sublimetext.com/
https://github.com/cabeca/SublimeChef
https://github.com/cabeca/SublimeChef
https://github.com/cyphactor/sublime_guard
https://github.com/cyphactor/sublime_guard
http://guardgem.org/
http://guardgem.org/

Version Control
Every organization should implement, use, train, and measure adoption of tool usage
of version control. It gives teams the ability to deal with conflicts that come from hav‐
ing multiple developers working on the same file or project at the same time, and
provides a safe way to make changes and roll them back if necessary. Using version
control early in your product’s development will facilitate adoption of good habits.

When choosing the appropriate tool in your environment for source control manage‐
ment, look for one that encourages the collaboration in your organization that you
want to see.

Qualities that encourage collaboration include:

• opening and forking repositories
• contributing back to repositories
• curating contributions to your own repositories
• defining processes for contributing
• sharing commit rights

Some tools may lack the collaborative features but have inherent system knowledge
within your environment due to long term use. In these cases identify the impact to
not migrating for example hiring capability. With sufficient process, collaboration can
still be implemented but it will not be as easy.

There are different types of repository models that version control systems can have,
local, centralized or distributed.

In a local model, the repository is located on the node that is storing the files. The
easiest to set up, it is also the most vulnerable to system failure.

In a client-server model, there is one main or central version of the repository, loca‐
ted on the server, and developers do their work locally, commit changes to the server
in order to make those changes visible to other developers. Because clients do not
store the entire repository locally, a centralized model can be useful for repositories
that contain many large binary files, where storing local versions of every version of
every file would quickly become costly for every client. On the other hand, the server
becomes a single point of failure.

Distributed version control systems do not rely on a central server, and every client
that copies or “clones” the repository has a full copy of it, including all metadata.
Since most software projects are made of text files, and storage has become cheap, the
overhead of storing large files is not as costly as it was decades ago. One advantage of
having a full local copy is that all actions aside from pushing and pulling can be done
offline, allowing developers to work without an internet connection - a great thing if

Auditing your Tool Ecosystem | 129

you have employees who want to work offline to focus or travel a lot. Developers can
also spend time collaborating on changes together without pushing these changes to
everyone, because everyone has their own local copy.

Metrics for Success
Lines of code is not an accurate measure of value. There are different types of devel‐
opers, some that refactor hundreds of confusing lines into tens of lines of simple to
read abstractions that can be built upon by others in the team. Others that focus their
attention in finding the bugs hidden within code. Use quantitative measurements as
informative trends to encourage the behaviors you want to see. For example, unless
you have the skill to qualitatively examine code don’t assume that more is better.

Artifact Management
An artifact is the output of any step in the software development process. Depending
on the language, artifacts can be a number of things from jars, wars, libraries, assets,
to applications.

An artifact repository should be

• secure
• trusted
• stable
• accessible
• versioned

Having an artifact repository allows you to treat your dependencies statically. You can
store a versioned common library as an artifact separate from your software version
control allowing all teams to use the exact same shared library. You build binaries
once and only once (even though you could build the same binary again). This helps
alleviate complexity by ensuring that the same binary is used throughout the test
cycles and promotion between builds.

Artifact repositories allow you to store artifacts the way you use them. Some reposi‐
tory systems only store a single version of a package at a time. This can lead to prob‐
lems describing the history of packages, increase the duplication factor of package
storage to maintain a separate artifact repository per environment in your workflow.

When using an open source operating system like CentOS or Ubuntu, the default
package manager will use external package repositories. This can lead to instability if
depending on this external package repository. Network links being down, issues

130 | Chapter 5: Tools: Selection and Implementation

with systems at the remote package store can lead to build issues if your systems rely
on these external resources being available.

Beyond the OS more and more software dependencies and applications from vendors
rely on downloading software from external providers like rubygems.org for ruby
gems. In you environment you need to identify what the risks are and how you want
to mitigate these risks. People generally trust external providers because the software
works, other folks are using the software, and it’s the easiest way to get software work‐
ing.

Audit Code
Before putting external code into production, make sure that you have a process in
place to audit and verify third party packages are not vulnerable.

Relying on third party packages? Ask for information about what steps they have in
place to generate secure code, and store their binaries. Companies that care about the
quality of their code will provide you this information.

While you can use version control to store binaries, this is not always an optimum
use of resources. Developers don’t modify binaries directly, so cloning a repository
with a large number of binaries can affect bandwidth, as well as build times.

Table 5-1. Recognize
Common Artifact
Types

Purpose Type

Linux rpm,deb

Java JAR, WAR

Ruby gem

Windows DLLs

General tarball,zip files

While small, the need to pass certain security compliance requirements may not exist
in your environment. As you grow, and pivot along product lines this may become a
requirement. Having a dedicated local artifact repository allows you for a much
smoother transistion to these requirements.

Auditing your Tool Ecosystem | 131

Ideally, your local development environment has the same access to your internal
artifact repository as the other build and deploy mechanisms in your environment.
This helps minimize the “it works on my laptop” syndrome because the same pack‐
ages and dependencies used in production are now used in the local development
environment. If the access is limited or blocked, this friction can lead to new ways of
doing things that circumvent security and other policies.

Define Policies Early

Establish governance processes early to promote collaboration
within the context of your environment and constraints. For exam‐
ple, identify who can push what artifacts, how are artifacts vetted,
licensed, and secured. This will alleviate growing pains of out-of-
date artifacts.

If you don’t have access to the internet within your environment, you need to host
your own universe. This includes software repositories, (ruby) gem servers, depend‐
ency management, and more. A lot of available shared services must be replicated.

Infrastructure Management
Infrastructure management may seem outside of the scope of the foundations of a
strong tool ecosystem within your environment as it is just part of identifying the
compute resources you need, and the function they have within your environment.
Yet, these elements are the foundations of your company’s health from email as the
communication portal between internal and external individuals to the website that
informs and educates about your product and possible services.

When IT is seen as a cost center this leads to underfunded and under-resourced oper‐
ations teams. Single person ops teams supporting small companies may be the only
individual involved in the selection of a tool that can ease the administration of all the
systems that connect the company. This can lead to a very short sighted implementa‐
tion as the person tasked with this enormous responsibility is the one most over‐
whelmed with ensuring that the systems and services operate at their best capacity.

132 | Chapter 5: Tools: Selection and Implementation

Minimum Operations Team Size

As mentioned in the Hiring chapter, ensure that each team meets a
minimum functional size. For Operations teams, the quorum is 3.
Issues happen, life disrupts work. For small companies, this may
mean that until you reach the size that allows for additional head‐
count that individuals share multiple roles. If you only have one
person responsible for infrastructure automation, you will incur
technical debt that will only grow as your team grows. One sure
sign of a problem is the presence of a single subject matter expert
that everyone goes to every time there is a problem. These single
subject matter experts are single points of failure in your infra‐
structure.

Fundamentally you should be able to provision elements of your infrastructure
through code, treat this code just like the rest of your software, and recover your
business through data backups, code repository, and compute resources. This is
known as infrastructure automation. “Treat infrastructure code like the rest of your
software” means the code developed using a common local development environ‐
ment, versioned in version control, versioned artifacts in an artifact repository, tested,
and verified before being put into production.

Infrastructure automation allows the definition and control of how a given system is
set up to be described in code, from the system settings to the programs that are
installed and running to user management and network configuration. Benefits of
infrastructure automation include repeatable, consistent, documented, auditable and
resilient processes that withstand some amount of failure. This frees up time,
improves efficiency of staff, allows for more flexibility, and risk measurement. It also
increases the degree of confidence that individuals have in the machine setup and
deployment being identical reducing the amount of time spent debugging problems
based on system differences.

Repetitious Work

Manual repetition of task driven work like infrastructure configu‐
ration can be a contributory factor to burnout. See the hiring chap‐
ter for more information on managing burnout.

Contrast infrastructure automation with an environment where a person must repeat
a series of manual steps by hand on every single one of a group of many servers.
Humans performing repetitive tasks lead to mistakes. Systems might be configured
inconsistently due to a change in process not configured on older systems or a step in
the checklist of manual steps could be missed. The solution isn’t to institute more
process and checklists, but to ensure that sufficient time is allocated to translate these

Auditing your Tool Ecosystem | 133

manual checklists into computer executable scripts. Computers are much better at
repetitive tasks than humans are.

Even if this is a one time system, implementing in code is one step of disaster recov‐
ery. When one person deploys a system there is knowledge generated that creates a
single point of knowledge (SPOK).

Establishing a common method of describing infrastructure in code across your
teams so having a infrastructure as code system reduces the number of “special snow‐
flake” servers that exist - servers that were set up by hand one at a time, often becom‐
ing so unique that others are wary of making any changes to them for fear of
irreparably breaking whatever long-forgotten incantations were typed to get them
there. This also allows for a higher server-to-people ratio because the time to config‐
ure and maintain each individual server is significantly less.

A Site Configuration Engine
With the proliferation of systems, and the inherent complexity of managing the con‐
figuration and state of systems, Mark Burgess shared cfengine with the community
through a paper titled “A Site Configuration Engine”. He proposed mechanizing a tool
to systemize administration and configuration of a system. Cfengine was the early
prototype encapsulating the ideas behind infrastructure as code.

Finally, infrastructure automation makes it easier for more people to understand and
be able to perform the setup of machines necessary for them to do their jobs. No
longer is bringing up a test server some arcane ritual only understood by a few system
administrators. By abstracting away many of the details, infrastructure as code sys‐
tems allow developers and other non-operations engineers to gain a high-level under‐
standing of the systems they need.

With there being so many tangible benefits to using infrastructure as code, it makes
sense that it would be one of the first tools that companies pursuing a devops initia‐
tive would look into and need to decide upon. As mentioned earlier, tools can only be
understood in use. Depending on the environment, the specific culture and beliefs of
the environment can impact the efficacy of the tool. Which infrastructure automation
works best for you will depend on your specific needs.

Even as a small startup with small number of systems, it’s absolutely critical to not
build technical debt through the creation of automation through specially hand-
crafted snowflake systems. Investing in individuals with operational skills that under‐
stand the difference between snowflake shell scripts and infrastructure automation
will make the difference in whether you are spending cycles on specializing outside of
the area you are competing in. Even if you are contributing software and tools back to
the community to expand the fundamental features of software that exists in this

134 | Chapter 5: Tools: Selection and Implementation

space is better than architecting and maintaining systems that provide infrastructure
automation at the core of the system.

As companies grow, complexity increases through additional compute resources,
staff, software and services. The more people interacting with those compute resour‐
ces leads to more interesting boundaries and edge cases. As an organization crosses
the threshold from startup into a well-established company (or absorbed into another
company with their own automation standards), the effectiveness of managing infra‐
structure becomes critical, and so do the qualities that an effective solution needs.

These qualities include:

• Management of configuration drift: Configuration drift is the phenomenon
where servers will change, or drift, away from their desired configuration over
time. This can be due to manual changes, software updates or errors, or entropy.
A good solution will have a way of preventing this, often by having an individual
node regularly check the desired configuration against its actual configuration
and self-correcting any inconsistencies.

• Elimination of snowflake servers: A snowflake server is one that has gotten to
its current, desired configuration by way of many manual changes, often requir‐
ing a combination of command line sorcery, configuration files, hand-applied
patches, and even GUI configurations and installations. Snowflakes are difficult
to manage and would be quite difficult to set up again if they were to have some
kind of hardware failure. Infrastructure automation solutions can avoid creation
of snowflake servers by making sure all changes are clearly and deterministically
defined. These servers can also be eliminated by applying configuration manage‐
ment to snowflakes in small batches, adding management to one piece of the sys‐
tem at a time until the same configuration management recipe can be used to
recreate the server from scratch in its desired configuration.

• Versioned artifacted infrastructure code: A good infrastructure automation sol‐
ution will tie in nicely to a version control system and artifact repository. This
ensures the code that defines the server configuration can be versioned with all
the benefits that come from that, such as being able to easily roll back changes to
a known good version, or have post-commit hooks that run test against the
infrastructure-defining code. It’s also a familiar process such that all team mem‐
bers can contribute towards improving the infrastructure code as they feel com‐
fortable with the process.

• Minimizing complexity: By specifying specific version of configuration per plat‐
form type or version, infrastructure automation solutions should allow individu‐
als despite their official title to manage a heterogeneous environment with a
minimum of overhead.

Auditing your Tool Ecosystem | 135

Moving Beyond the Basics
These fundamental tools are so essential because it would be prohibitively difficult to
work effectively without them. Any type of operations without infrastructure auto‐
mation would mean significant amounts of extra work for operations staff prevent‐
ing, checking for, and mitigating configuration drift and snowflake servers, and
development work without version control is pretty much asking for trouble when
work gets lost and a bad set of changes goes live and has to be rolled back. And com‐
munication is present in every part of any job that involves working with other people
at all.

Beyond the basics there are several other types of tools that often come up in the pro‐
cess of creating, deploying, and running software. The absence of these other types of
tools might not be as readily apparent as trying to work without version control, for
example, but they bear mentioning for how they can, if used effectively, also help
negotiate the compact.

Sandbox Automation
A sandbox is a testing environment that allows an individual to test code changes,
and experiment with different infrastructure elements without impacting production.
Sandbox automation is the process of encapsulating the definition of a sandbox so
that an individual can quickly replicate or share the specifications that make up a
sandbox.

Test Kitchen is an implementation of sandbox automation that can run on a individ‐
ual’s laptop and integrates with a number of different cloud providers and virtualiza‐
tion technologies including Amazon EC2, CloudStack, Digital Ocean, Rackspace,
OpenStack, Vagrant, and Docker. It has a static configuration that can be easily
checked into version control along with a software project.

Work Visualization and Planning
One of the key elements of Lean manufacturing, as discussed more in-depth in the
“What is Devops” chapter, is the idea of just-in-time production as a way of limiting
the manufacture of parts to only what was needed for the current batch of whatever
final product was currently being produced. This eliminated waste by not having sur‐
plusses of materials being created and sitting around needlessly, which helped to
streamline the overall manufacturing process. This concept of limiting the amount of
work in progress to a manageable amount has also carried over into Lean software
development, helping to ensure that development teams don’t take on more work
than they can reasonably expect to finish.

136 | Chapter 5: Tools: Selection and Implementation

http://kitchen.ci/

Most organizations use some kind of ticketing or bug-tracking system to keep track
of the work that they are both currently doing and planning for the future. The best
systems will include some kind of visualization tool as a way of representing work.

Figure 5-1. A Visualization of Work in Progress

Visualizing work in this way allows both individual contributors and managers to
keep an eye on how much work a team or group is currently doing, so they can adjust
their work as needed as time goes by. Having this information easily accessible is key
to making this work. Jira, for example, allows users to create dashboards that have
various visualizations of work broken down by status, team or individual, due date,
and so on. Trello, while not a full-featured bug tracker, has the advantages of being
very affordable and mobile-friendly.

Kanban
Kanban, which also originated with Japanese manufacturing processes, is a way of vis‐
ualizing and managing work while avoiding overloading the people doing the work.
A Kanban board has “cards” for each unit of work, and a column representing each
state the work can be in. For software development, this might include states such as
planning, in development, under code review, sent to QA for testing, and deployed to

Auditing your Tool Ecosystem | 137

production. Many teams will use a Kanban board, either physical or digital, as a way
of managing and visualizing their work. If you find your teams are constantly under
too much stress or it seems like features never make it all the way to completion, visu‐
alizing work in this way can be an excellent starting place.

Some work visualization tools will provide ways of automatically limiting the sizes of
different work states, only allowing a specified number of items to be designated as
“in progress”. Teams may also decide to limit the size of their inbox or backlog, using
this as a way of making them prioritize which work is most important. This automa‐
tion can be helpful for teams just starting out with work visualization and planning,
instead of people having to remember their limits themselves. These limits can of
course be changed over time - adding a couple new team members will likely mean
an increase in the amount of work in progress once the new employees get up to
speed.

Being able to move work in between teams or projects can also be very important.
This kind of flexibility allows for more collaboration between teams, especially if the
tools allow for easy in-place communication of why something is being moved. Let‐
ting different teams see what each other are working on can also lead to collabora‐
tion, or at the very least avoid unnecessary duplication of work.

Deployment
Deployment was often a point of contention back when software development teams
who wrote the code were siloed off from the system administrators whose job it was
to deploy and maintain the code in production. Originally, deployment might have
involved a system administrator taking the code, on some kind of physical media, to a
server or mainframe and installing it by hand - not only a slow and cumbersome pro‐
cess but one that was likely to be error-prone as well, as manual processes tend to be.
Modern deployment tools come in a variety of forms today but the common theme is
that they try to automate the process as much as possible to cut down on time spent
and the possibility of errors.

The software deployment process will obviously vary based on what kind of software
is being deployed. Code that runs on very small systems embedded into other devices
such as printers or televisions will be deployed differently than a mobile application
(which has to go through the mobile operating system’s application process) will be
deployed differently than a website. The key pieces of a robust deployment system
include:

• Clearly defined steps. To get started with setting up a deployment tool, you’ll
want to specify all the steps required for a deployment. It’s a common saying that
you can’t automate something until you can define it, and that is certainly true
for deployments. Once all the steps of the process are clear, it becomes much

138 | Chapter 5: Tools: Selection and Implementation

more straightforward to start automating pieces of the process. Documenting the
steps required also makes it easier to bring new employees up to speed on the
process as well as troubleshoot if something goes wrong.

• Plenty of error checking and error handling. With as important as deploying
code is, the last thing you want is for the process to fail but nobody find out
about it until it’s too late and there are customer-facing impacts. A good deploy‐
ment toolset will check for possible errors every step of the way (defining the
problems that can arise is an important part of defining the steps of the process)
and make those errors visible. Part of this is having a way to back out of a deploy
if an error occurs in any part of the process to avoid having a bad change being
unstoppably deployed to production.

• Minimal overhead. A long, cumbersome deploy process means that deploys will
happen less frequently, and the more intervention required on the part of an
operator means the more likelihood there is of an issue occurring. While it might
not be possible or desirable to automate the entire deploy process, the more steps
that can be done without human intervention, the smoother the process will be.

As we will see in this chapter’s case study, there are reasons to use an existing deploy‐
ment tool or to create your own.

Monitoring
Monitoring is how you keep tabs on what is going on with your product and infra‐
structure. Infrastructure monitoring, taking the form of checking on the states and
statuses of server hardware, operating system processes, and network functionality
can be taken care of by tools like Nagios, Cacti, and Ganglia. Application-level moni‐
toring is often more complex as it depends on the specifics of your application.

Organizations taking advantage of cloud offerings such as Platforms as a Service,
Infrastructure as a Service, or anything else that runs outside of their own infrastruc‐
ture will often have to rely on those providers for detailed monitoring. From their
end, they will be able to see whether or not a provider’s service is functioning or not,
and possibly get some error codes, but more detailed monitoring will likely be
unavailable. You will have to decide whether or not you have the bandwidth to
develop and maintain your own in-house monitoring, and whether or not the addi‐
tional detail and customization you can get from that is worth the overhead.

Tools such as statsd and graphite allow developers to choose what metrics they want
to monitor in those applications and graph those metrics with relatively little over‐
head. Monitoring should not be considered the sole purview of an operations depart‐
ment, something that only system administrators worry about once software has been
deployed in production. It is something that should be considered from the begin‐
ning of product development, so choosing a tool that developers can easily use is
vital.

Auditing your Tool Ecosystem | 139

Alerting
While alerting tools used to be limited to the ability to send emails that was built in to
monitoring systems such as Nagios, or later to send text messages with the advent of
email-to-SMS gateways, tools are being developed these days to make more featured-
rich or easy to use alerting systems. Whereas using something like Nagios’s built-in
email feature usually requires running your own mail server as well, services such as
PagerDuty or VictorOps will handle sending emails, SMSs, and even push notifica‐
tions to their mobile applications or making phone calls for you.

One of the other benefits to a more robust alerting solution is that of schedule and
rotation management. In previous decades, when an organization might only have
one system administrator who handled all on-call responsibilities, this was much less
of a concern. These days, with larger and more complex organizations, as well as with
web apps that are expected to be available 24/7, organizations are likely to have one or
more teams that share in on-call rotations. An application such as PagerDuty that
allows for easy scheduling, whether you want your shifts to last multiple hours or
multiple days, and takes care of sending the correct alerts to the correct people auto‐
matically, can cut down on a lot of manual work.

Again, using an external service means that you are relying on someone else for part
of the reliability of your infrastructure, so again you will have to consider the trade‐
offs and decide what makes the most sense for your organization, but we’ve found
most alerting providers to be quite reliable and well worth getting rid of having to
manually set and change alerting schedules by hand. And as we’ve discussed in the
Hiring chapter, burnout is a serious concern, so in all likelihood you’ll want to have at
least a few people on your on-call rotation to avoid that, making an alerting solution
even more attractive.

Logging
Logging is of great importance to organizations - it can be incredibly helpful when
troubleshooting application issues, but can also be necessary for compliance regula‐
tions that require keeping records or audits for certain periods of time. When consid‐
ering a logging solution, there are several factors to consider:

• Retention: Referring to how long you want to keep logs around, this will likely
vary for different parts of your infrastructure. Server or application error logs can
be helpful in debugging, but might lose their usefulness not too long after inci‐
dents occur, so keeping them for many months or years might not be a great use
of storage space. Logs of financial transactions you are likely interested in (or
required to) keeping them around for longer. The tradeoff with the convenience
of having logs still stored to search through is that the storage space required has
costs that will have to be considered, whether it goes to a cloud provider or is
disk space and power in your own data center.

140 | Chapter 5: Tools: Selection and Implementation

• Search: Generally one of the points of storing logs is to be able to search through
them for useful information at some later point, so ease of searching is often key.
You will have to decide which fields are likely to be searched enough that you will
want to index them, with the consideration that indices also require storage
space. The ease of the search interface for people, especially less technical people,
to use is also a key factor. More advanced search features are one of the reasons
that search solutions like Splunk are so popular.

• Cost: We’ve mentioned costs in relation to storage and power usage, but if you
are using an external logging provider, there will be a monetary cost as well.
Enterprise solutions like Splunk, being very robust and full-featured, tend to be
quite pricey as well. Cloud-based solutions such as Loggly or LogEntries are
becoming more popular, and offer usually much lower-cost pricing solutions
based on log volume and the length of your retention period. There may be a cost
for a support contract as well.

• Maintenance: If you are running your own logging solution in-house, you will be
paying for it more in engineers’ time and energy as opposed to simply writing a
check every month. If there are bugs in the software you use, you’ll likely have to
wait for an upstream fix or find one yourself, though some software companies
do have support contracts available. You’ll own your own availability and cus‐
tomization, but you’ll also be responsible for maintenance and capacity planning.

Many companies will find that the best logging solution for them will change over
time as their organization size and requirements change. A larger company might
find that they have more engineering time available to maintain an internal solution,
while a smaller one might find that the pricing of a logging-as-a-service makes the
most sense for them.

Optimization: Selection and Elimination of Tools
Many of the factors to use when analyzing your tool usage are common across the
types of tools that you have identified within your environment.

Some selection factors are common across tool types when analyzing tool usage
within your environment. These factors include:

• Product Development
• Community Health
• In-House Customization

Optimization: Selection and Elimination of Tools | 141

Product Development
An actively developed product will be quicker to get new features, support newer
operating systems and platform versions, and deal with any security vulnerabilities.

Community Health
An active community can be even more beneficial. As discussed earlier in this chap‐
ter, one of the benefits of open source software is that you don’t have to reinvent the
wheel by coming up with your own solutions to problems that other people have
already dealt with. An open source solution with a strong community contributing to
it can make its implementation even more effective.

In-House Customization
A tool that can be easily customized and contributed to will make for a robust solu‐
tion that is well suited to both the technological and human aspects of an environ‐
ment. This is especially important in organizations with a large number of people
working with the tool. A tool that deals well with that kind of scale is one that will be
able to grow along with your organization, as well as making engineering work easier.

Version Control
To demonstrate some of the differences that you might consider when choosing a
version control system, we will look at two examples: Git, which is a distributed sys‐
tem, and Subversion, which is centralized. We chose these for our examples because
they are two of the most popular version control systems being used today, and
because they are free and open source tools that can be used on Linux, OS X, and
Windows. Unless you have very specific requirements (the ability to cache objects
that were built by other clients instead of rebuilding them locally is included in very
few version control systems, for example), we would likely recommend picking one
of the more well-known open-source systems, both because of the benefits of using
open-source software that we described in Chapter 1, but also because it will make it
more likely that developers will be familiar with your environment.

It might be tempting to hire engineers based in part on which version control sys‐
tem(s) they are most familiar with. However, familiarity with a tool doesn’t guarantee
that someone can use it effectively - more than digging into nitty-gritty technical
details of your tool of choice, we would recommend having candidates speak to the
workflows and use patterns that they liked and disliked as well as their reasons why.
Also keep in mind that engineers don’t always have a say in what tools they worked
with. Your team should be able to teach engineers the new skills and best practices
they need to be successful.

Let’s take a look at some common version control workflows:

142 | Chapter 5: Tools: Selection and Implementation

Example 5-2. Creating a Repository with Git

cd /path/to/project
git init

Creating a repository with git This will create a repository in the current directory,
which can then be cloned by other developers by using a command of the form git
clone git@server:/path/to/project.git. This command doesn’t have to be run
on any particular server, because Git is distributed. The repository can be created
anywhere and then cloned as needed.

Example 5-3. Creating a Repository with Subversion

cd /path/to
svnadmin create project

Because Subversion is a client-server model, this command must be run on the cen‐
tral SVN server, not on any machine that is going to be a client.

Making and Committing Changes

Example 5-4. Making and Committing Changes with Git

git clone git@server:/path/to/project.git
cd project
vim file1
touch file2
git add file1 file2
git commit -m "Message describing your changes"
git push

This shows how to make, commit, and push changes back upstream with Git. Clon‐
ing the project is how a developer creates a local copy of the repository - again,
because Git is distributed, this creates a local copy of the entire repository, including
all the project metadata. Left out of this example is configuring where the code gets
pushed to. Git’s distributed nature allows users to define any number of remote
respositories. They could push their changes to another developer, to a local git
server, or to something like Github - part of the flexibility of Git is that it allows for
the use of a central server, but unlike client-server version control systems, it does not
require it. Pushing the changes pushes the differences between your local copy and
the repository being pushed to, so commits containing big binary files will get quite
large.

Example 5-5. Making and Committing Changes with Subversion

cd /path/to/project
svn checkout svn://server/project .

Optimization: Selection and Elimination of Tools | 143

vim file1
touch file2
svn add file1 file2
svn commit -m "Message describing your changes"

With Subversion, there are slight differences in how we need to think about our
workflow. First, subversion is going to ensure that all of my files are up to date. It
compares my working copy with the latest revision of the project in the repository.
The working copy is the directory of versioned files along with metadata about the
files. If any of my files are out of date, they’re automatically converged to the latest
version. After editing the files, we schedule the changes to be uploaded and added to
the next commit. Finally we commit our changes back to the repository as a single
atomic transaction with a log message. Either all of the changes are accepted or none
of them are.

Up to this point, you may notice that both of these examples look fairly similar - and
for basic workflows, they do in fact behave very similarly. It is when we start to get
into more complex and collaborative workflows that the differences between these
two types of tools become more apparent. Recall from Chapter 1 the idea of the com‐
pact and working towards shared mutual understanding, both of the individual and
shared goals that people of teams have, and of the terms of the compact itself. A more
explicitly collaborative workflow will make these understandings more explicit.

Branching a Repository and Curating Contributions

Let’s consider an example with George and the General. The General has a project
that she is working on, and George has some ideas that he wants to contribute. He
and the General haven’t worked together on this project before, and his changes are
pretty substantial - he’ll want to make sure that he can develop and test them thor‐
oughly before committing them to the main project, to avoid breaking things for the
General and anyone else who might be using this project.

First, George is going to create a feature branch, then make all of his changes.

Example 5-6. Branching a Repository with Git

cd /path/to/project
git checkout -b georges-feature master
vim file1
git add file1
git commit -m "file1 in george's feature"
git push -u origin georges-feature
vim file2
git add file2
git commit -m "file2 in george's feature"
git push

144 | Chapter 5: Tools: Selection and Implementation

First, with the git checkout -b command, George creates a feature branch called
georges-feature based on the master branch of the General’s project. This branch
gets created on his local machine, and because this is Git it contains a full copy of the
entire repository. He makes some changes, commits them, then pushes them
upstream for safekeeping. Until he has pushed, the files and their changes live only on
his local workstation - it is only with the push command that they exist on the server
at all for other people to be able to see them. The -u flag adds his branch as an
upstream source so that he won’t have to specify which branch to push to on subse‐
quent commits, as is seen with his commit and push of his changes to file2 - this is
very convenient on projects with many many commits.

Now that he’s done with his work and ready for it to be merged into the master
branch, which the General maintains, let’s take a look at her workflow.

Example 5-7. Merging Contributions with Git

git checkout master
git pull
git pull origin georges-feature
git push

Once she’s looked at George’s changes and decided she’s ok to merge them, the Gen‐
eral checks out her master branch and pulls, just to make sure she’s got the latest ver‐
sion of her code checked out. She then pulls the branch georges-feature from the
origin of the repository, where we saw he pushed it after he was done with his
changes. This command merges his branch into the master branch that she has
checked out. Finally, she pushes the updated master branch back to the origin, so any
other contributors to the project can get these changes.

With Github, a web-based Git hosting service, this can be done via pull requests in
the web UI. This allows developers to request that their branches (or forks, if they are
using Github’s fork feature) be merged with a couple clicks of a button, and offers
things like color-coded diffs for easy comparison.

Now, let’s look at how this workflow would look if this project were managed with
Subversion.

Example 5-8. Branching a Repository with Subversion

svn copy svn://server/project/trunk svn://server/project/georges-feature
cd /path/to/project
svn checkout
svn update
svn switch svn://server/project/georges-feature .
vim file1
svn add file1

Optimization: Selection and Elimination of Tools | 145

svn commit -m "file1 in george's feature"
vim file2
svn add file2
svn commit -m "file2 in george's feature"

With Subversion being a client-server model, the svn copy command copies the
repository to a different branch on the remote server. At this point, the branch exists
only on the server, as does trunk. The svn switch command is what switches the
environment so that George’s changes will be applied to that branch. When he makes
his changes and adds them, those changesets exist locally, but when he does the com‐
mits, each commit applies those changes to the server, as happens with the client-
server model. You’ll notice that there is no comment of having local commits that
only get pushed upstream later the way there is with Git.

Now, on the server, the General can merge George’s branch into the trunk.

Example 5-9. Merging Contributions with Subversion

cd /path/to/project/trunk
svn update
svn merge --reintegrate ^/project/georges-feature

As these last example workflows show, the distributed Git version control system
allows for many more collaborative efforts than the client-server based Subversion. It
is certainly possible for developers to collaborate using something like Subversion,
but as you can see there is a lot more friction. One of the goals of an effective configu‐
ration management tool is to reduce the frictions that get in the way of engineers
doing their best work, and that means looking for and using tools that make working
together easier instead of getting in the way.

Two key parts of the idea of devops as a compact are defining boundaries and repair‐
ing when there are conflicts, both of which can be emphasized with the right version
control solution. Because branching in a distributed version control system like Git is
a first-class consideration, it is easier to both create forks or branches for experimen‐
tation or feature development and merge different branches together in a DVCS.
Engineers can more easily define who can contribute to their projects and which
changes they want to accept. It might not be worth the effort of migrating existing
projects to a different version control system, but for new projects, a distributed
option has much more strength and flexibility in terms of the collaboration it allows.

Infrastructure Automation
Most of the established infrastructure automation solutions will be similar in terms of
overall functionality even though their implementations differ. As with all of the tool
categories, each tool may reduce or encourage different aspects of collaboration.

146 | Chapter 5: Tools: Selection and Implementation

As an example, we will illustrate the more advanced workflows that are possible with
Chef and some of its plugins. This workflow could be improved further by keeping
the cookbooks in version control. We have chosen to focus on the elements of infra‐
structure automation.

The General and George are both working on their organization’s apache cookbook,
which defines the Apache web server configurations for their website. Using the Chef
environment abstration, they have defined environments that reflect the workflow in
use within their organization. This allows the team to define the configuration in pro‐
duction, while also working towards the next release of software that could include
new Apache modules. This ensures that new production systems can be deployed that
are identical to current existing systems without introducing new systems with the
development version of configuration.

The production environment will have specification of versions of cookbooks to be
used until they decide to change it. This means anyone can experiment with the
cookbook in different versions in the development environment. With George and
General both updating the Apache cookbook at the same time, they might run into
version conflicts. How can they most effectively resolve, or even better, avoid these
conflicts? They use a community developed plugin, knife-spork that allows for them
to avoid cookbook conflicts.

Example 5-10. Avoiding Cookbook Conflicts with knife-spork

> knife spork check apache
Checking versions for cookbook apache...

Local Version:
 1.0.0

Remote Versions: (* indicates frozen)
 *1.0.0
 *0.9.9

> knife spork bump apache
Successfully bumped apache to v1.0.1!

> knife spork upload apache
Freezing apache at 1.0.1...
Successfully uploaded apache@1.0.1!

When George makes his changes, he uses knife spork check to check what version
of the cookbook is on the server. This shows him that the server has version 1.0.0,
which is the same version he’s been working on which indicates a potential conflict.

The Chef server is an artifact repository that provides the feature of freezing cookbook
artifacts. Freezing ensures that an artifact that is uploaded with a specific version can

Optimization: Selection and Elimination of Tools | 147

not be overwritten with a second artifact that is different. This ensures that if you
deploy version 1.0.0 into production, 1.0.0 will always have the same elements.

Prevent re-use of version identifiers

Elimination of re-use of version identifiers will eliminate some
unexpected side effects. With Chef this means freeze your cook‐
books. While it may seem like a quick fix is sufficient to re-use ver‐
sion identifiers, this can introduce unexpected problems due to
other software misidentifying the need for applying a change.

The organization has taken advantage of this feature to freeze the cookbook artifacts,
where the server will not overwrite the same version of a cookbook with different
contents - this helps prevent unnoticed changes from causing problems. George uses
spork to update the cookbook locally to a new version, 1.0.1, then uploads it to the
Chef server. His new version is automatically frozen by knife-spork to prevent
changes being unknowingly overwritten.

What happens when the General goes to push her changes to the Chef server?
Without this plugin, she might inadvertently push her changes over George’s, espe‐
cially if he hadn’t manually frozen his new cookbook version. With knife-spork, how‐
ever, her workflow goes something like this:

Example 5-11. Avoiding Cookbook Conflicts with knife-spork

> knife spork check apache
Checking versions for cookbook apache...

Local Version:
 1.0.0

Remote Versions: (* indicates frozen)
 *1.0.1
 *1.0.0
 *0.9.9

> knife spork bump apache
Successfully bumped apache to v1.0.2!

> knife spork upload apache
Freezing apache at 1.0.2...
Successfully uploaded apache@1.0.2!

Here, knife-spork check discovers George’s 1.0.1 version of the cookbook on the
Chef server, even though he hadn’t told the General that he was working on the cook‐
book at that time. It then bumps the version to 1.0.2, avoiding any conflicts with
George’s version. Knife-spork plugins can also be used to automatically announce

148 | Chapter 5: Tools: Selection and Implementation

these changes in a chatroom so other developers can easily see them without much in
the way of extra effort on either end.

This workflow can easily be repeated and defined by continuous integration software
which lends itself to the build and release of cookbook artifacts that follow standard
software practices. This means that if a member of an external team wants to contrib‐
ute to the cookbook, and only knows about the version control processes in place
they can still provide meaningful contributions. The continuous integration software
would be the process that did the knife-spork workflow after tests passed.

People wanting to take full advantage of the benefits that their current infrastructure
automation can offer would do well to read a more in-depth book such as Alessandro
Franceschi’s Extending Puppet or Jon Cowie’s Customizing Chef, both available in the
O’Reilly online store.

If you are in the process of choosing a specific solution, make sure that you have
identified the elements in your environment that will reflect your workflows to fulfill
your organization’s configuration and collaboration needs now and as your teams
grow.

Artifact Management
Artifact management can be as simple as a web server with access controls that allows
file management internal to your environment to a more complex managed service
with a variety of extended features.

Much like early version control for source code, artifact management can be handled
in a variety of ways based on your budgetary concerns. Generally an artifact reposi‐
tory can serve three functions:

• central point for management of binaries and dependencies
• configurable proxy between organization and public repositories
• integrated depot for build promotions of internally developed software

When choosing between a simple repository and more complex feature-full reposi‐
tory, understand the cost to support additional services as well as inherent security
concerns.

Work Visualization
To demonstrate work visualization, we will use kanban to illustrate the process of
selecting and implementing a work visualization.

Optimization: Selection and Elimination of Tools | 149

The essentials of implementing kanban within an organization include a kanban
board, cards, some mechanism to flag, and another mechanism to individuals who
are currently working on a specific task.

You can implement kanban virtually or within the physical world. In initial planning
it is useful to try out different steps physically to see the impact and value of the
board layout.

The kanban board is generally a big white magnetic dry erase board. You can use any
other surface on which you are prepared to create markings through the judicious
usage of tape. You need sufficient room to attach additional meta-information about
the board and its lanes.

The cards are generally sticky notes of varying colors and sizes. The colors generally
indicate different types of tasks. For example a green sticky note could represent all
user story tasks and a yellow sticky note could represent all feature tasks.

The flags are generally sticky flags or circle stickers of varying colors. The colors gen‐
erally indicate special information about the task such as the task having a specific
start date, or end date.

The mechanism to identify individuals assigned to a card is generally obtained by
creating an avatar of the user either through a cartoonish figure or a picture.

The key principles of kanban are:

• Visualize Make work visible, identify work queues and potential bottlenecks.
• Limit WIP Each individual increases their focus. Priorities are set, and load is

managed.
• Flow management Flow is a metric of productivity. Smooth flow makes work

more predictable.
• Explicit Policies Document each implicit assumption. What do cards and flags

mean, how do cards move on the board.
• Implement feedback loops Continuous improvement is driven by sufficient

feedback loops that inform behavior management.

The first step in the adoption of kanban is to get everyone in the team aware of the
basic principles of kanban. There are a number of workshops at different conferences,
or customized trainings available. Dominica DeGrandis is one of the key authorites
on work visualization with kanban. Along with providing kanban for devops train‐
ing, she has created the Kanban for Devops game that is available for play at a variety
of DevOpsDays.

150 | Chapter 5: Tools: Selection and Implementation

http://www.ddegrandis.com/:

Once the team has an initial idea of the terminology and premise of kanban, the next
step is to get the team together to discuss their current workflow. Prior to the meeting
a few indivdual roles should be assigned: champion, gatekeeper, and recordkeeper.

The champion will be the individual responsible for ensuring that the team makes it
to the finish line, whether that is with a successful implementation or selection of a
different process of work visualization.

The gatekeeper should be assigned with the responsibilities of ensuring everyone has
the opportunity to speak up in the meeting, that no one person dominates the whole
conversations, and that the team discusses the current state of work and not the ideal
state.

The record-keeper should also be assigned with the responsibilities of ensuring that
the end result is accurately recorded.

During the meeting, the team discusses the workflow, i.e. the process of a specific
request coming to the team to complete. Sample boards are drawn out with columns
reflecting the different stages a specific task flows through.

Figure 5-2. Workflow Visualization

It’s really important that the team have a clear and common understanding of what
each state means. Each of the states needs to have a clear boundary with the exit and
entrance conditions defined. In the above diagram, there are 4 states. The words used
to describe the states could be interpreted differently depending on the individual.
What does “Accepted” mean as a state in this workflow?

Optimization: Selection and Elimination of Tools | 151

Giving further definitions helps clarify intent and get everyone on the team to a com‐
mon understanding. The “Accepted” state is when the team understands the work
that has been requested and the complete state known. The “WIP” state is when a
team member has started work and clarified the goals of the specific task. The “Done”
state is the completion of understood tasks. The “Verified” state is the check for com‐
pletion, external from the work done.

The team needs to categorize task types, common task sizes, task states, and how
tasks move among states. Key to this meeting is that everyone gets the opportunity to
express their feelings about the workflow and to get down the process that is cur‐
rently occuring.

Once the current process is documented clearly, everyone agrees to the process of
incremental evolutionary change. All roles will be respected for now, but as process
evolve new roles may be assumed based on improvements in the environment. Cen‐
tral to positive change is that everyone is a leader and has the capacity to pull tasks
that they feel they have the skills and resources to complete.

Sometimes it is helpful for management to facilitate the meeting and then leave to
ensure that individuals speak candidly about the work environment. After the meet‐
ing, the manager should take the notes from the meeting and follow up with individ‐
uals to ensure that any additional feedback is captured.

Every sticky note represents a task that a team or an individual has to perform. You
simply write what has to be done on the sticky note (name the task). Sticky notes can
be of different colors for different types of tasks (User story, feature, defect …). On
every note, you can also write additional data, like the estimated scope of the task in
hours, a unique task ID, task owners and other information.

After you have the board and sticky notes, you simply stick the notes in one of the
columns, depending on the phase the task is in. Now you have a nice visual represen‐
tation of what needs to be done, the works in progress and tasks that are being com‐
pleted.

Little’s Law
Fundamental relationship between work in progress, cycle time and throughput.

Cycle Time = Work in Progress (WIP) / Average Completion Rate (throughput)

Metrics
Some things that you might want to monitor have simple yes/no answers, such as is
the site currently up. Most things that you’ll want to measure will have some numeri‐
cal value that you’ll want to keep track of instead - metrics allow you to measure these

152 | Chapter 5: Tools: Selection and Implementation

things. Metrics are most often gathered and stored in a time-series database so that
the changes to the metric over time can be easily tracked and reasoned about.

Analyzing metrics in order to get useful information out of them usually requires a
fair amount of contextual knowledge. If your traffic patterns vary based on time of
day or time of year, what is normal at one point in time might be problematic at
another, and new employees without this context or background information might
not be able to make decisions in as informed a manner. This is why software to detect
anomalies is not a solved problem and requires humans to make more intelligent
contextual decisions around metrics.

Another thing to consider is that obtaining and storing metrics does not come
without a cost. Calculating more complex metric values costs CPU cycles, as does
sending them to an external server for collection. Storage space for metrics on what‐
ever servers you use also has a price tag associated with it. While many systems will
have ways to age out data, keeping less and less granular information for metrics the
older they get, you will still have to figure out how much detail you will need for each
metric in order to have it be useful, as well as how long you will want or need to keep
historical data.

Improvements: Planning and Measuring Change
Remember that lasting change will take time.

Identify the problem that you are solving. Before tackling a specific change, look
around and examine what needs to be done. Determine who is interested in the
project, who has time, and the overall value of the project. Visualize the various
options and identify possible projects. Prioritize the projects.

Break down the specific project into smaller pieces that can be accomplished and
tracked.

Identify who you are solving the problem for. What are their needs and motivations?
How often are they going to use the solution?

Describe the solution, focus on the end goal. Talk to the stakeholders and ensure buy-
in. This generally takes time and effort.

Identify possible tooling. Probe strengths and weaknesses. Sometimes you have to
invent and develop the tooling. In-house development may seem cheaper but include
the time and resources to support long term.

Focus on the process first. Do what makes sense. Make sure work is visible.

Now that we’ve taken a deep dive into the considerations around a variety of tools
that you’ll likely have as part of your business, we’ll take a look at real-world exam‐
ples. These companies target different industries, differ in specific tool implementa‐

Improvements: Planning and Measuring Change | 153

tions and processes, yet embrace similar principles. Seeing these use cases are
examples for how you might identify your own implicit values and adopt desired
principles in your own environment as you examine current tools, optimize the pro‐
cess of selection and elimination, and measure and iteratively improve your tool eco‐
system.

154 | Chapter 5: Tools: Selection and Implementation

	Cover
	Copyright
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. What is Devops?
	The History of Devops
	Developer as Operator
	The Advent of Software Engineering
	The Age of the Operating System
	The Beginnings of a Global Community
	The Age of Applications and the Web
	Agile Infrastructure
	The Beginning of DevopsDays

	Foundational Devops Terminology and Concepts
	Waterfall
	Extreme Programming
	Lean
	ITIL
	Agile
	Community of Practice and Community of Interest
	Blame Culture
	Silos
	Blamelessness
	Retrospective
	Organizational Learning
	Post-Mortem

	Devops: Adding it All Up
	Common Devops Misconceptions
	Devops only involves developers and system administrators.
	Devops is a team.
	Devops is a job title.
	Devops is only relevant to web startups.
	Devops is about the tools.
	You need a devops certification.
	Devops means doing all the work with half the people.
	There is one “right way” (or “wrong way”) to do devops.
	It will take X weeks/months to implement devops.
	Devops is about automation.
	Devops is a fad.

	The Current State of Devops
	The Devops Compact
	What’s Next in this Book

	Chapter 3. Collaboration: Individuals Working Together
	Introduction
	Individual Differences and Backgrounds
	Goals
	Backgrounds
	Working Styles

	Individual Growth
	The Right Mindset
	Organizational Pressure
	Superstars and Superflocks

	Negotiation Styles
	From Competition to Collaboration

	Communication
	Why Communicate
	What we Communicate
	How we Communicate

	Trust and Empathy
	Developing Empathy
	Developing Trust

	Chapter 4. Hiring: Choosing Individuals
	Introduction and Audience
	Determining your Hiring Needs
	Position and Skills
	Timeframe
	Budget and Resources

	Sourcing
	Diversity

	Interviewing
	Before the Interview
	During the Interview
	After the Interview

	Onboarding
	Retention
	Compensation
	Growth Opportunities
	Workload
	Culture and Atmosphere

	Case Studies
	Measuring Success
	Troubleshooting
	We aren’t getting enough candidates.
	We aren’t getting diverse candidates.
	Interviews are a waste of time for the team.
	People aren’t accepting our offers.

	Conclusion

	Chapter 5. Tools: Selection and Implementation
	Introduction and Audience
	Why Tools Matter
	Why Tools Don’t Matter
	Tool Ecosystem Overview
	Configuration Management
	Version Control
	Infrastructure Automation
	System Provisioning
	Hardware Lifecycle Management
	Continuous Integration
	Test and Build Automation
	Continuous Delivery
	Application Deployment
	Continuous Deployment
	Metrics
	Logging
	Monitoring
	Alerting
	Events

	Auditing your Tool Ecosystem
	Communication
	Moving Beyond the Basics

	Optimization: Selection and Elimination of Tools
	Version Control
	Infrastructure Automation
	Artifact Management
	Work Visualization
	Metrics

	Improvements: Planning and Measuring Change

