
M A N N I N G

Saša Jurić

SECOND EDITION

praise for the first edition
Delightful and insightful ... with a ton of practical advice.

— Ved Antani, Electronic Arts

Outstanding coverage of Elixir’s distributed computing
capabilities, with a real-world point of view.

— Christopher Bailey, HotelTonight

Read this book if you want to think and solve problems in the Elixir
way!

— Kosmas Chatzimichalis, Mach 7x

Functional programming made easy.
— Mohsen Mostafa Jokar, Hamshahri

Probably the best introduction to Elixir and the Functional
Programming.

— Amazon customer

A good book for experienced programmers who want to learn more
about Elixir.

— Amazon customer

Elixir in Action
Second Edition

SAŠA JURIĆ

MANN I NG
Shelter ISland

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact
Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initialcaps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Karen Miller
 Review editor: Aleksandar Dragosavljevic
 Project manager: Vincent Nordhaus
 Copy editor: Andy Carrol
 Proofreader: Melody Dolab
 Technical proofreader: Riza Fahmi
 Typesetter: Happenstance Type-O-Rama
 Cover designer: Marija Tudor

ISBN 9781617295027
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 23 22 21 20 19 18

www.manning.com

v

brief contents
1 ■ First steps 1
2 ■ Building blocks 16
3 ■ Control flow 63
4 ■ Data abstractions 102
5 ■ Concurrency primitives 129
6 ■ Generic server processes 159
7 ■ Building a concurrent system 179
8 ■ Fault-tolerance basics 201
9 ■ Isolating error effects 224

10 ■ Beyond GenServer 251
11 ■ Working with components 277
12 ■ Building a distributed system 305
13 ■ Running the system 334

vii

contents
preface xiii
acknowledgments xv
about this book xvii
about the author xxi
about the cover illustration xxii

1 First steps 1
 1.1 About Erlang 1

High availability 3 ■ Erlang concurrency 3
Server-side systems 5 ■ The development platform 7

 1.2 About Elixir 8
Code simplification 9 ■ Composing functions 12
The big picture 13

 1.3 Disadvantages 13
Speed 14 ■ Ecosystem 14

2 Building blocks 16
 2.1 The interactive shell 17

 2.2 Working with variables 18

 2.3 Organizing your code 20
Modules 20 ■ Functions 21 ■ Function arity 25
Function visibility 26 ■ Imports and aliases 27
Module attributes 28 ■ Comments 30

viiiviii contents

 2.4 Understanding the type system 30
Numbers 30 ■ Atoms 31 ■ Tuples 34 ■ Lists 35
Immutability 38 ■ Maps 41 ■ Binaries and
bitstrings 43 ■ Strings 44 ■ First-class functions 46
Other built-in types 49 ■ Higher-level types 50 ■ IO lists 54

 2.5 Operators 55

 2.6 Macros 56

 2.7 Understanding the runtime 57
Modules and functions in the runtime 57 ■ Starting
the runtime 59

 3 Control flow 63
 3.1 Pattern matching 64

The match operator 64 ■ Matching tuples 64
Matching constants 65 ■ Variables in patterns 66
Matching lists 67 ■ Matching maps 68 ■ Matching
bitstrings and binaries 69 ■ Compound matches 71
General behavior 72

 3.2 Matching with functions 72
Multiclause functions 73 ■ Guards 76
Multiclause lambdas 78

 3.3 Conditionals 79
Branching with multiclause functions 79 ■ Classical
branching constructs 81 ■ The with special form 83

 3.4 Loops and iterations 86
Iterating with recursion 87 ■ Tail function calls 88
Higher-order functions 91 ■ Comprehensions 95 ■ Streams 97

 4 Data abstractions 102
 4.1 Abstracting with modules 104

Basic abstraction 104 ■ Composing abstractions 106
Structuring data with maps 107 ■ Abstracting with
structs 108 ■ Data transparency 112

 4.2 Working with hierarchical data 114
Generating IDs 115 ■ Updating entries 117 ■ Immutable
hierarchical updates 119 ■ Iterative updates 121
Exercise: importing from a file 122

 ix ixcontents

 4.3 Polymorphism with protocols 124
Protocol basics 124 ■ Implementing a protocol 125
Built-in protocols 126

 5 Concurrency primitives 129
 5.1 Concurrency in BEAM 130

 5.2 Working with processes 132
Creating processes 133 ■ Message passing 134

 5.3 Stateful server processes 139
Server processes 139 ■ Keeping a process state 144 ■ Mutable
state 145 ■ Complex states 148 ■ Registered processes 152

 5.4 Runtime considerations 153
A process is sequential 153 ■ Unlimited process
mailboxes 155 ■ Shared-nothing concurrency 156

Scheduler inner workings 157

 6 Generic server processes 159
 6.1 Building a generic server process 160

Plugging in with modules 160 ■ Implementing the generic
code 161 ■ Using the generic abstraction 162

Supporting asynchronous requests 164 ■ Exercise: refactoring
the to-do server 166

 6.2 Using GenServer 166
OTP behaviours 167 ■ Plugging into GenServer 168

Handling requests 169 ■ Handling plain messages 170

Other GenServer features 172 ■ Process lifecycle 175

OTP-compliant processes 176 ■ Exercise: GenServer-powered
to-do server 177

 7 Building a concurrent system 179
 7.1 Working with the mix project 180

 7.2 Managing multiple to-do lists 182
Implementing a cache 182 ■ Writing tests 185

Analyzing process dependencies 188

 7.3 Persisting data 189
Encoding and persisting 189 ■ Using the database 191

Analyzing the system 194 ■ Addressing the process bottleneck 195

Exercise: pooling and synchronizing 198

 7.4 Reasoning with processes 199

xx contents

 8 Fault-tolerance basics 201
 8.1 Runtime errors 202

Error types 203 ■ Handling errors 204

 8.2 Errors in concurrent systems 207
Linking processes 208 ■ Monitors 210

 8.3 Supervisors 211
Preparing the existing code 213 ■ Starting the supervisor
process 214 ■ Child specification 216 ■ Wrapping
the supervisor 218 ■ Using a callback module 218

Linking all processes 219 ■ Restart frequency 222

 9 Isolating error effects 224
 9.1 Supervision trees 225

Separating loosely dependent parts 225 ■ Rich process
discovery 228 ■ Via tuples 230 ■ Registering database
workers 232 ■ Supervising database workers 234

Organizing the supervision tree 237

 9.2 Starting processes dynamically 241
Registering to-do servers 241 ■ Dynamic
supervision 242 ■ Finding to-do servers 243 ■ Using
temporary restart strategy 244 ■ Testing the system 245

 9.3 “Let it crash” 246
Processes that shouldn’t crash 247 ■ Handling
expected errors 248 ■ Preserving the state 249

 10 Beyond GenServer 251
 10.1 Tasks 252

Awaited tasks 252 ■ Non-awaited tasks 254

 10.2 Agents 256
Basic use 256 ■ Agents and concurrency 257 ■ Agent-powered
to-do server 259 ■ Limitations of agents 260

 10.3 ETS tables 263
Basic operations 265 ■ ETS powered key/value store 268

Other ETS operations 271 ■ Exercise: process registry 274

 xi xicontents

 11 Working with components 277
 11.1 OTP applications 278

Creating applications with the mix tool 278 ■ The application
behavior 280 ■ Starting the application 280 ■ Library
applications 281 ■ Creating a to-do application 282

The application folder structure 284

 11.2 Working with dependencies 286
Adding a dependency 286 ■ Adapting the pool 287

Visualizing the system 289

 11.3 Building a web server 291
Choosing dependencies 291 ■ Starting the server 292

Handling requests 293 ■ Reasoning about the system 296

 11.4 Configuring applications 300
Application environment 300 ■ Varying
configuration 301 ■ Config script considerations 303

 12 Building a distributed system 305
 12.1 Distribution primitives 307

Starting a cluster 307 ■ Communicating between nodes 309

Process discovery 311 ■ Links and monitors 314

Other distribution services 315

 12.2 Building a fault-tolerant cluster 317
Cluster design 318 ■ The distributed to-do cache 318

Implementing a replicated database 323 ■ Testing the
system 326 ■ Detecting partitions 327 ■ Highly
available systems 329

 12.3 Network considerations 330
Node names 330 ■ Cookies 331

Hidden nodes 331 ■ Firewalls 332

 13 Running the system 334
 13.1 Running a system with Elixir tools 335

Using the mix and elixir commands 335 ■ Running
scripts 337 ■ Compiling for production 338

xii contentsxii

 13.2 OTP releases 339
Building a release with distillery 340 ■ Using a release 341

Release contents 343

 13.3 Analyzing system behavior 346
Debugging 347 ■ Logging 348 ■ Interacting with the
system 348 ■ Tracing 350

 index 353

xiii

preface
In 2010, I was given the task of implementing a system to transmit frequent updates to
a few thousand connected users in near real time. My company at the time was mostly
using Ruby on Rails, but I needed something more suitable for such a highly concur-
rent challenge. Following the suggestion of my CTO, I looked into Erlang, read some
material, made a prototype, and performed a load test. I was impressed with the initial
results and moved on to implement the whole thing in Erlang. A few months later the
system was shipped, and it’s been doing its job ever since.

As time passed, I began to increasingly appreciate Erlang and the way it helped me
manage such a complex system. Gradually, I came to prefer Erlang over the technol-
ogies I had used previously. I began to evangelize the language, first in my company
and then at local events. Finally, at the end of 2012, I started the blog “The Erlangelist”
(http://theerlangelist.com), where I aim to showcase the advantages of Erlang to pro-
grammers from OO backgrounds.

Because Erlang is an unusual language, I began experimenting with Elixir, hoping
it would help me explain the beauty of Erlang in a way that would resonate with OO
programmers. Despite the fact that it was at an early stage of development (at the time,
it was at version 0.8), I was immediately impressed with Elixir’s maturity and the way
it integrated with Erlang. Soon I started using Elixir to develop new features for my
Erlang-based system.

A few months later, I was contacted by Michael Stephens of Manning, who asked
me if I was interested in writing a book about Elixir. At the time, two Elixir books were
already in the making. After some consideration, I decided there was space for another
book that would approach the topic from a different angle, focusing on Elixir concur-
rency and the OTP way of thinking. Writing the book took a lot of work, but it was a
rewarding experience.

xiv prefacexiv

Two years after the first edition was published, Manning and I agreed to start work on
this second edition. This edition isn’t radically different from the first, but it brings the
book up to date with the latest changes in Elixir and Erlang. The most relevant updates
are in chapters 8, 9, and 10, which have been significantly reworked to accommodate
the new ways of working with supervisors and process registries.

At this point, Elixir in Action is again fully up to date and teaches you the most recent
idiomatic techniques for building software systems with Elixir. I hope you’ll enjoy reading
the book, learn a lot from it, and have a chance to apply your new knowledge in your work!

xv

acknowledgments
Writing this book required a significant investment of my time, so, above all, I want to
thank my wife Renata for her endless support and patience during those long hours
and busy weekends.

I’d like to thank Manning for making this book happen. In particular, thanks to
Michael Stephens for making the initial contact, to Marjan Bace for giving me a chance
to write this book, to Bert Bates for pointing me in the right direction, to Karen Miller
for keeping me on track, to Aleksandar Dragosavljevic for managing the review process,
to Kevin Sullivan and Vincent Nordhaus for overseeing production, to Tiffany Taylor
and Andy Carroll for transforming my “English” into proper English, and to Candace
Gillhoolley, Ana Romac, and Christopher Kaufmann for promoting the book.

The material in this book has been significantly improved thanks to great feedback
from reviewers and early readers. Above all, I wish to thank Andrew Gibson for useful
feedback and great insights, and for rescuing me when I got stuck at the last hurdle. I’d
also like to thank Alexei Sholik and Peter Minten, who provided excellent immediate
technical feedback during the writing process.

A big thank you to Riza Fahmi and to all the technical reviewers: Al Rahimi, Alan
Lenton, Alexey Galiullin, Andrew Courter, Arun Kumar, Ashad Dean, Christopher
Bailey, Christopher Haupt, Clive Harber, Daniel Couper, Eoghan O’Donnell, Freder-
ick Schiller, Gábor László Hajba, George Thomas, Heather Campbell, Jeroen Benck-
huijsen, Jorge Deflon, José Valim, Kosmas Chatzimichalis, Mafinar Khan, Mark Ryall,
Mathias Polligkeit, Mohsen Mostafa Jokar, Tom Geudens, Tomer Elmalem, Ved Antani,
and Yurii Bodarev.

xvixvi acknowledgments

I also wish to thank all the readers who bought and read the MEAP (Manning Early
Access Program) version and provided useful comments. Thank you for taking the time
to read my ramblings and for providing insightful feedback.

The people who gave us Elixir and Erlang, including the original inventors, core
team members, and contributors, deserve a special mention. Thank you for creating
such great products, which make my job easier and more fun. Finally, special thanks
to all the members of the Elixir community; this is the nicest and friendliest developer
community I’ve ever seen!

xvii

about this book
Elixir is a modern functional programming language for building large-scale scalable,
distributed, fault-tolerant systems for the Erlang virtual machine. Although the lan-
guage is compelling in its own right, arguably its biggest advantage is that it targets the
Erlang platform.

Erlang was made to help developers deal with the challenge of high availability. Orig-
inally the product was intended for developing telecommunication systems, but today
it’s used in all kinds of domains, such as collaboration tools, online payment systems,
real-time bidding systems, database servers, and multiplayer online games, to name
only a few examples. If you’re developing a system that must provide service to a multi-
tude of users around the world, you’ll want that system to function continuously, with-
out noticeable downtime, regardless of any software or hardware problems that occur
at runtime. Otherwise, significant and frequent outages will leave end users unhappy,
and ultimately they may seek alternative solutions. A system with frequent downtime
is unreliable and unusable, and thus fails to fulfill its intended purpose. Therefore,
high availability becomes an increasingly important property—and Erlang can help
you achieve that.

Elixir aims to modernize and improve the experience of developing Erlang-powered
systems. The language is a compilation of features from various other languages such
as Erlang, Clojure, and Ruby. Furthermore, Elixir ships with a toolset that simplifies
project management, testing, packaging, and documentation building. Arguably, Elixir
lowers the entry barrier into the Erlang world and improves developer productivity.
Having the Erlang runtime as the target platform means Elixir-based systems are able to
use all the libraries from the Erlang ecosystem, including the battle-tested OTP frame-
work that ships with Erlang.

xviiixviii about this book

Who should read this book
This book is a tutorial that will teach you how to build production-ready Elixir-based
systems. It’s not a complete reference on Elixir and Erlang—it doesn’t cover every
nuance of the language or every possible aspect of the underlying Erlang VM. It glosses
over or skips many topics, such as floating-point precision, Unicode specifics, file I/O,
unit testing, and more. Although they’re relevant, such topics aren’t this book’s pri-
mary focus, and you can research them yourself when the need arises. Omitting or
dealing quickly with these conventional topics gives us space to treat more interesting
and unusual areas in greater detail. Concurrent programming and the way it helps
bring scalability, fault tolerance, distribution, and availability to systems—these are the
core topics of this book.

Even the techniques that are covered aren’t treated in 100% detail. I’ve omitted some
fine-print nuances for the sake of brevity and focus. My goal is not to provide complete
coverage, but rather to teach you about the underlying principles and how each piece fits
into the bigger picture. After finishing this book, you should find it simple to research
and understand the remaining details on your own. To give you a push in the right direc-
tion, mentions of and links to further interesting topics appear throughout the book.

Because this book deals with upper-intermediate topics, there are some prerequi-
sites you should meet before reading it. I’ve assumed you’re a professional software
developer with a couple years of experience. The exact technology you’re proficient in
isn’t relevant: it can be Java, C#, Ruby, C++, or another general-purpose programming
language. Any experience in development of backend (server-side) systems is welcome.

You don’t need to know anything about Erlang, Elixir, or other concurrent platforms.
In particular, you don’t need to know anything about functional programming. Elixir
is a functional language, and if you come from an OO background, this may scare you
a bit. As a long-time OO programmer, I can sincerely tell you not to worry. The under-
lying functional concepts in Elixir are relatively simple and should be easy to grasp. Of
course, functional programming is significantly different from whatever you’ve seen in
a typical OO language, and it takes some getting used to. But it’s not rocket science, and
if you’re an experienced developer, you should have no problem understanding these
concepts.

How this book is organized
The book is divided into three parts.

Part 1 introduces the Elixir language, presents and describes its basic building
blocks, and then treats common functional programming idioms in more detail:

¡	Chapter 1 provides a high-level overview of Erlang and Elixir and explains why
those technologies are useful and what distinguishes them from other languages
and platforms.

¡	Chapter 2 presents the main building blocks of Elixir, such as modules, func-
tions, and the type system.

 xix xixabout this book

¡	Chapter 3 gives a detailed explanation of pattern matching and how it’s used to
deal with flow control.

¡	Chapter 4 explains how to build higher-level abstractions on top of immutable
data structures.

Part 2 builds on these foundations and focuses on the Erlang concurrency model and
its many benefits, such as scalability and fault-tolerance:

¡	Chapter 5 explains the Erlang concurrency model and presents basic concur-
rency primitives.

¡	Chapter 6 discusses generic server processes: building blocks of highly concur-
rent Elixir/Erlang systems.

¡	Chapter 7 demonstrates how to build a more involved concurrent system.
¡	Chapter 8 presents the idioms of error handling, with a special focus on errors

and faults in concurrent systems.
¡	Chapter 9 provides an in-depth discussion of how to isolate all kinds of errors and

minimize their impact in production.
¡	Chapter 10 discusses a couple of alternatives to generic server processes that are

sometimes more appropriate for implementing parts of your system.

Part 3 deals with systems in production:

¡	Chapter 11 explains OTP applications, which are used to package reusable
components.

¡	Chapter 12 discusses distributed systems, which can help you improve fault-toler-
ance and scalability.

¡	Chapter 13 presents various ways of preparing an Elixir-based system for produc-
tion, focusing in particular on OTP releases.

About the code
All source code in this book is in a `fixed-width font like this`, which sets it off
from the surrounding text. In many listings, the code is annotated to point out key
concepts. We’ve tried to format the code so that it fits within the available page space in
the book by adding line breaks and using indentation carefully.

The code accompanying this book is hosted at the GitHub repository: https://
github.com/sasa1977/elixir-in-action. It’s also available for download as a zip file from
the publisher’s website at www.manning.com/books/elixir-in-action-second-edition.

Book Forum
Purchase of Elixir in Action, Second Edition includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and other users. To access the forum, go
to www.manning.com/books/elixir-in-action-second-edition. You can also learn more

xx about this bookxx

about Manning’s forums and the rules of conduct at https://forums.manning.com/
forums/about.

Manning’s commitment to its readers is to provide a venue where a meaningful dia-
log between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contributions to the forum remain voluntary (and unpaid). We suggest you ask
the author challenging questions, lest his interest stray.

https://forums.manning.com/ forums/about
https://forums.manning.com/ forums/about

xxi

about the author
Saša Jurić is a developer with extensive experience
implementing high-volume, concurrent, server-side
systems; Windows desktop applications; and kiosk
applications. After almost 20 years of object-oriented
programming, he discovered Erlang and Elixir. He
used both languages to build a scalable, fault-tolerant
HTTP push server and the supporting backend system.
Currently he’s part of the Aircloak team and is using
Erlang to build a plug-and-play privacy-compliance
solution. He occasionally blogs about Elixir and Erlang
at http://theerlangelist.com.

http://theerlangelist.com

xxii

about the cover illustration
The figure on the cover of Elixir in Action is captioned “A Russian Girl.” The illustra-
tion is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient
and Modern (four volumes), London, published between 1757 and 1772. The title page
states that these are hand-colored copperplate engravings, heightened with gum ara-
bic. Thomas Jefferys (1719–1771), was called “Geographer to King George III.” An
English cartographer, he was the leading map supplier of his day. He engraved and
printed maps for government and other official bodies and produced a wide range
of commercial maps and atlases, especially of North America. Jeffreys’ work as a map
maker sparked an interest in local dress customs of the lands he surveyed and bril-
liantly displayed in this four-volume collection.

Fascination with faraway lands and travel for pleasure were relatively new phenomena
in the late eighteenth century, and collections such as this one were popular, introduc-
ing both the tourist as well as the armchair traveler to the inhabitants of other coun-
tries. The diversity of the drawings in Jeffreys’ volumes speaks vividly of the uniqueness
and individuality of the world’s nations some 200 years ago. Dress codes have changed
since then, and the diversity by region and country, so rich at the time, has faded away. It
is now often hard to tell the inhabitant of one continent from another. Perhaps, trying
to view it optimistically, we have traded a cultural and visual diversity for a more varied
personal life. Or a more varied and interesting intellectual and technical life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers based
on the rich diversity of regional life of two centuries ago, brought back to life by Jeffreys’
illustrations.

1

1First steps

This chapter covers
¡	Overview of Erlang

¡	Benefits of Elixir

This is the beginning of your journey into the world of Elixir and Erlang, two effi-
cient and useful technologies that can significantly simplify the development of
large, scalable systems. Chances are, you’re reading this book to learn about Elixir.
But because Elixir is built on top of Erlang and depends heavily on it, you should
first learn a bit about what Erlang is and the benefits it offers. So let’s take a brief,
high-level look at Erlang.

1.1 About Erlang
Erlang is a development platform for building scalable and reliable systems that
constantly provide service with little or no downtime. This is a bold statement, but
it’s exactly what Erlang was made for. Conceived in the mid-1980s by Ericsson, a
Swedish telecom giant, Erlang was driven by the needs of the company’s own tele-
com systems, where properties like reliability, responsiveness, scalability, and con-
stant availability were imperative. A telephone network should always operate

2 chapter 1 First steps

regardless of the number of simultaneous calls, unexpected bugs, or hardware and
software upgrades taking place.

Despite being originally built for telecom systems, Erlang is in no way specialized for
this domain. It doesn’t contain explicit support for programming telephones, switches,
or other telecom devices. Instead, it’s a general-purpose development platform that
provides special support for technical, nonfunctional challenges such as concurrency,
scalability, fault-tolerance, distribution, and high availability.

In late 1980s and early 90s, when most software was desktop-based, the need for
high availability was limited to specialized systems such as telecoms. Today we face a
much different situation: the focus is on the internet and the web, and most applica-
tions are driven and supported by a server system that processes requests, crunches
data, and pushes relevant information to many connected clients. Today’s popular
systems are more about communication and collaboration; examples include social
networks, content-management systems, on-demand multimedia, and multiplayer
games.

All of these systems have some common nonfunctional requirements. The system
must be responsive, regardless of the number of connected clients. The impact of unex-
pected errors must be minimal, instead of affecting the entire system. It’s acceptable if
an occasional request fails due to a bug, but it’s a major problem when the entire system
becomes completely unavailable. Ideally, the system should never crash or be taken
down, not even during a software upgrade. It should always be up and running, provid-
ing service to its clients.

These goals might seem difficult to reach, but they’re imperative when building sys-
tems that people depend on. Unless a system is responsive and reliable, it will eventually
fail to fulfill its purpose. Therefore, when building server-side systems, it’s essential to
make the system constantly available.

This is the intended purpose of Erlang. High availability is explicitly supported via
technical concepts such as scalability, fault-tolerance, and distribution. Unlike with
most other modern development platforms, these concepts were the main motivation
and driving force behind the development of Erlang. The Ericsson team, led by Joe
Armstrong, spent a couple of years designing, prototyping, and experimenting before
creating the development platform. Its uses may have been limited in the early 90s, but
today almost any system can benefit from it.

Erlang has recently gained more attention. It powers various large systems and has
been doing so for more than two decades, such as the WhatsApp messaging appli-
cation, the Riak distributed database, the Heroku cloud, the Chef deployment auto-
mation system, the RabbitMQ message queue, financial systems, and multiplayer
backends. It’s truly a proven technology, both in time and scale. But what is the magic
behind Erlang? Let’s take a look at how Erlang can help you build highly available,
reliable systems.

 3About Erlang

1.1.1 High availability

Erlang was specifically created to support the development of highly available sys-
tems — systems that are always online and provide service to their clients even when
faced with unexpected circumstances. On the surface, this may seem simple, but as you
probably know, many things can go wrong in production. To make systems work 24/7
without any downtime, you have to tackle some technical challenges:

¡	Fault-tolerance—A system has to keep working when something unforeseen hap-
pens. Unexpected errors occur, bugs creep in, components occasionally fail, net-
work connections drop, or the entire machine where the system is running crashes.
Whatever happens, you want to localize the impact of an error as much as possible,
recover from the error, and keep the system running and providing service.

¡	Scalability—A system should be able to handle any possible load. Of course, you
don’t buy tons of hardware just in case the entire planet’s population might start
using your system some day. But you should be able to respond to a load increase
by adding more hardware resources without any software intervention. Ideally,
this should be possible without a system restart.

¡	Distribution—To make a system that never stops, you have to run it on multiple
machines. This promotes the overall stability of the system: if a machine is taken
down, another one can take over. Furthermore, this gives you the means to scale
horizontally — you can address load increase by adding more machines to the
system, thus adding work units to support the higher demand.

¡	Responsiveness—It goes without saying that a system should always be reasonably fast
and responsive. Request handling shouldn’t be drastically prolonged, even if the
load increases or unexpected errors happen. In particular, occasional lengthy tasks
shouldn’t block the rest of the system or have a significant effect on performance.

¡	Live update—In some cases, you may want to push a new version of your software
without restarting any servers. For example, in a telephone system, you don’t
want to disconnect established calls while you upgrade the software.

If you manage to handle these challenges, the system will truly become highly available
and be able to constantly provide service to users, rain or shine.

Erlang gives us tools to address these challenges — that’s what it was built for. A sys-
tem can gain all these properties and ultimately become highly available through the
power of the Erlang concurrency model.

Let’s look at how concurrency works in Erlang.

1.1.2 Erlang concurrency

Concurrency is at the heart and soul of Erlang systems. Almost every nontrivial Erlang-
based production system is highly concurrent. Even the programming language is some-
times called a concurrency-oriented language. Instead of relying on heavyweight threads
and OS processes, Erlang takes concurrency into its own hands, as illustrated in figure 1.1.

4 chapter 1 First steps

Figure 1.1 Concurency in the Erlang virtual machine

The basic concurrency primitive is called an Erlang process (not to be confused with
OS processes or threads), and typical Erlang systems run thousands or even millions
of such processes. The Erlang virtual machine, called BEAM (Bogdan/Björn’s Erlang
Abstract Machine), uses its own schedulers to distribute the execution of processes
over the available CPU cores, thus parallelizing execution as much as possible. The way
processes are implemented provides many benefits.

fault-tolerance

Erlang processes are completely isolated from each other. They share no memory, and
a crash of one process doesn’t cause a crash of other processes. This helps you isolate
the effect of an unexpected error. If something bad happens, it has only a local impact.
Moreover, Erlang provides you with the means to detect a process crash and do some-
thing about it; typically, you start a new process in place of the crashed one.

scalability

Sharing no memory, processes communicate via asynchronous messages. This means
there are no complex synchronization mechanisms such as locks, mutexes, or sema-
phores. Consequently, the interaction between concurrent entities is much simpler to
develop and understand.

Typical Erlang systems are divided into a large number of concurrent processes,
which cooperate together to provide the complete service. The virtual machine can
efficiently parallelize the execution of processes as much as possible. This makes Erlang
systems scalable because they can take advantage of all available CPU cores.

distribution

Communication between processes works the same way regardless of whether these pro-
cesses reside in the same BEAM instance or on two different instances on two separate,

 5About Erlang

remote computers. Therefore, a typical highly concurrent Erlang-based system is auto-
matically ready to be distributed over multiple machines. This in turn gives you the ability
to scale out — to run a cluster of machines that share the total system load. Additionally,
running on multiple machines makes the system truly resilient — if one machine crashes,
others can take over.

responsiveness

The runtime is specifically tuned to promote the overall responsiveness of the system.
I’ve mentioned that Erlang takes the execution of multiple processes into its own
hands by employing dedicated schedulers that interchangeably execute many Erlang
processes. A scheduler is preemptive — it gives a small execution window to each pro-
cess and then pauses it and runs another process. Because the execution window is
small, a single long-running process can’t block the rest of the system. Furthermore,
I/O operations are internally delegated to separate threads, or a kernel-poll service
of the underlying OS is used if available. This means any process that waits for an I/O
operation to finish won’t block the execution of other processes.

Even garbage collection is specifically tuned to promote system responsiveness. Recall
that processes are completely isolated and share no memory. This allows per-process
garbage collection: instead of stopping the entire system, each process is individually
collected as needed. Such collections are much quicker and don’t block the entire sys-
tem for long periods of time. In fact, in a multicore system, it’s possible for one CPU
core to run a short garbage collection while the remaining cores are doing standard
processing.

As you can see, concurrency is a crucial element in Erlang, and it’s related to more
than just parallelism. Owing to the underlying implementation, concurrency pro-
motes fault-tolerance, distribution, and system responsiveness. Typical Erlang systems
run many concurrent tasks, using thousands or even millions of processes. This can be
especially useful when you’re developing server-side systems, which can often be imple-
mented completely in Erlang.

1.1.3 Server-side systems

Erlang can be used in various applications and systems. There are examples of Erlang-
based desktop applications, and it’s often used in embedded environments. Its sweet
spot, in my opinion, lies in server-side systems — systems that run on one or more serv-
ers and must serve many simultaneous clients. The term server-side system indicates that
it’s more than a simple server that processes requests. It’s an entire system that, in addi-
tion to handling requests, must run various background jobs and manage some kind of
server-wide in-memory state, as illustrated in figure 1.2.

A server-side system is often distributed on multiple machines that collaborate to
produce business value. You might place different components on different machines,
and you also might deploy some components on multiple servers to achieve load bal-
ancing or support failover scenarios.

6 chapter 1 First steps

Figure 1.2 Server-side system

This is where Erlang can make your life significantly simpler. By giving you primitives
to make your code concurrent, scalable, and distributed, it allows you to implement
the entire system completely in Erlang. Every component in figure 1.2 can be imple-
mented as an Erlang process, which makes the system scalable, fault-tolerant, and easy
to distribute. By relying on Erlang’s error-detection and recovery primitives, you can
further increase reliability and recover from unexpected errors.

Let’s look at a real-life example. I’ve been involved professionally in the develop-
ment of two web servers, both of which have similar technical needs: they serve a mul-
titude of clients, handle long-running requests, manage server-wide in-memory state,
persist data that must survive OS processes and machine restarts, and run background
jobs. Table 1.1 lists the technologies used in each server.

Table 1.1 Comparison of technologies used in two real-life web servers

Technical requirement Server A Server B

HTTP server Nginx and Phusion Passenger Erlang

Request processing Ruby on Rails Erlang

Long-running requests Go Erlang

Server-wide state Redis Erlang

Persistable data Redis and MongoDB Erlang

Background jobs Cron, Bash scripts, and Ruby Erlang

Service crash recovery Upstart Erlang

 7About Erlang

Server A is powered by various technologies, most of them known and popular in the
community. There were specific reasons for using these technologies: each was intro-
duced to resolve a shortcoming of those already present in the system. For example,
Ruby on Rails handles concurrent requests in separate OS processes. We needed a
way to share data between these different processes, so we introduced Redis. Similarly,
MongoDB is used to manage persistent frontend data, most often user-related infor-
mation. Thus there’s a rationale behind every technology used in server A, but the
entire solution seems complex. It’s not contained in a single project, the components
are deployed separately, and it isn’t trivial to start the entire system on a development
machine. We had to develop a tool to help us start the system locally!

In contrast, server B accomplishes the same technical requirements while relying on
a single technology, using platform features created specifically for these purposes and
proven in large systems. Moreover, the entire server is a single project that runs inside a
single BEAM instance — in production, it runs inside only one OS process, using a hand-
ful of OS threads. Concurrency is handled completely by the Erlang scheduler, and the
system is scalable, responsive, and fault-tolerant. Because it’s implemented as a single proj-
ect, the system is easier to manage, deploy, and run locally on the development machine.

It’s important to notice that Erlang tools aren’t always full-blown alternatives to
mainstream solutions, such as web servers like Nginx, database servers like Riak, and
in-memory key/value stores like Redis. But Erlang gives you options, making it possi-
ble to implement an initial solution using exclusively Erlang and resorting to alterna-
tive technologies when an Erlang solution isn’t sufficient. This makes the entire system
more homogeneous and therefore easier to develop and maintain.

It’s also worth noting that Erlang isn’t an isolated island. It can run in-process C code
and can communicate with practically any external component such as message queues,
in-memory key/value stores, and external databases. Therefore, when opting for Erlang,
you aren’t deprived of using existing third-party technologies. Instead, you have the
option of using them when they’re called for rather than because your primary develop-
ment platform doesn’t give you a tool to solve your problems.

Now that you know about Erlang’s strengths and the areas where it excels, let’s take a
closer look at what Erlang is.

1.1.4 The development platform

Erlang is more than a programming language. It’s a full-blown development platform
consisting of four distinct parts: the language, the virtual machine, the framework, and
the tools.

Erlang, the language, is the primary way of writing code that runs in the Erlang vir-
tual machine. It’s a simple, functional language with basic concurrency primitives.

Source code written in Erlang is compiled into bytecode that’s then executed in the
BEAM. This is where the true magic happens. The virtual machine parallelizes your
concurrent Erlang programs and takes care of process isolation, distribution, and the
overall responsiveness of the system.

8 chapter 1 First steps

The standard part of the release is a framework called Open Telecom Platform
(OTP). Despite its somewhat unfortunate name, the framework has nothing to do with
telecom systems. It’s a general-purpose framework that abstracts away many typical
Erlang tasks:

¡	Concurrency and distribution patterns
¡	Error detection and recovery in concurrent systems
¡	Packaging code into libraries
¡	Systems deployment
¡	Live code updates

All these things can be done without OTP, but that makes no sense. OTP is battle-tested
in many production systems and is such an integral part of Erlang that it’s hard to draw
a line between the two. Even the official distribution is called Erlang/OTP.

The tools are used for various typical tasks such as compiling Erlang code, starting a
BEAM instance, creating deployable releases, running the interactive shell, connecting
to the running BEAM instance, and so on. Both BEAM and its accompanying tools are
cross-platform. You can run them on most mainstream operating systems, such as Unix,
Linux, and Windows. The entire Erlang distribution is open source, and you can find
the source on the official site (http://erlang.org) or on the Erlang GitHub repository
(https://github.com/erlang/otp). Ericsson is still in charge of the development pro-
cess and releases a new version on a regular basis, once a year.

That concludes the story of Erlang. But if Erlang is so great, why do you need Elixir?
The next section aims to answer this question.

1.2 About Elixir
Elixir is an alternative language for the Erlang virtual machine that allows you to write
cleaner, more compact code that does a better job of revealing your intentions. You
write programs in Elixir and run them normally in BEAM.

Elixir is an open source project, originally started by José Valim. Unlike Erlang, Elixir
is more of a collaborative effort; presently it has about 700 contributors. New features
are frequently discussed on mailing lists, the GitHub issue tracker, and the #elixir-lang
freenode IRC channel. José has the last word, but the entire project is a true open
source collaboration, attracting an interesting mixture of seasoned Erlang veterans and
talented young developers. The source code can be found on the GitHub repository at
https://github.com/elixir-lang/elixir.

Elixir targets the Erlang runtime. The result of compiling the Elixir source code
is BEAM-compliant bytecode files that can run in a BEAM instance and can normally
cooperate with pure Erlang code — you can use Erlang libraries from Elixir and vice
versa. There’s nothing you can do in Erlang that can’t be done in Elixir, and usually the
Elixir code is as performant as its Erlang counterpart.

Elixir is semantically close to Erlang: many of its language constructs map directly to
their Erlang counterparts. But Elixir provides some additional constructs that make it

http://erlang.org
https://github.com/erlang/otp
https://github.com/elixir-lang/elixir

 9About Elixir

possible to radically reduce boilerplate and duplication. In addition, it tidies up some
important parts of the standard libraries and provides some nice syntactic sugar and a
uniform tool for creating and packaging systems. Everything you can do in Erlang is
possible in Elixir, and vice versa, but in my experience the Elixir solution is usually eas-
ier to develop and maintain.

Let’s take a closer look at how Elixir improves on some Erlang features. We’ll start
with boilerplate and noise reduction.

1.2.1 Code simplification

One of the most important benefits of Elixir is its ability to radically reduce boilerplate
and eliminate noise from code, which results in simpler code that’s easier to write and
maintain. Let’s see what this means by contrasting Erlang and Elixir code.

A frequently used building block in Erlang concurrent systems is the server process.
You can think of server processes as something like concurrent objects — they embed
private state and can interact with other processes via messages. Being concurrent, dif-
ferent processes may run in parallel. Typical Erlang systems rely heavily on processes,
running thousands or even millions of them.

The following example Erlang code implements a simple server process that adds
two numbers.

Listing 1.1 Erlang-based server process that adds two numbers

-module(sum_server).
-behaviour(gen_server).

-export([
 start/0, sum/3,
 init/1, handle_call/3, handle_cast/2, handle_info/2, terminate/2,
 code_change/3
]).

start() -> gen_server:start(?MODULE, [], []).
sum(Server, A, B) -> gen_server:call(Server, {sum, A, B}).

init(_) -> {ok, undefined}.
handle_call({sum, A, B}, _From, State) -> {reply, A + B, State}.
handle_cast(_Msg, State) -> {noreply, State}.
handle_info(_Info, State) -> {noreply, State}.
terminate(_Reason, _State) -> ok.
code_change(_OldVsn, State, _Extra) -> {ok, State}.

Even without any knowledge of Erlang, this seems like a lot of code for something
that only adds two numbers. To be fair, the addition is concurrent, but regardless,
due to the amount of code it’s hard to see the forest for the trees. It’s definitely not
immediately obvious what the code does. Moreover, it’s difficult to write such code.
Even after years of production-level Erlang development, I still can’t write this without
consulting the documentation or copying and pasting it from previously written code.

10 chapter 1 First steps

The problem with Erlang is that this boilerplate is almost impossible to remove,
even if it’s identical in most places (which in my experience is the case). The language
provides almost no support for eliminating this noise. In all fairness, there is a way to
reduce the boilerplate using a construct called parse transform, but it’s clumsy and
complicated to use. In practice, Erlang developers write their server processes using the
preceding pattern.

Because server processes are an important and frequently used tool in Erlang, it’s
unfortunate that Erlang developers have to constantly copy-paste this noise and work
with it. Surprisingly, many people get used to it, probably due to the wonderful things
BEAM does for them. It’s often said that Erlang makes hard things easy and easy things
hard. Still, the previous code leaves an impression that you should be able to do better.

Let’s look at the Elixir version of the same server process.

Listing 1.2 Elixir-based server process that adds two numbers

defmodule SumServer do
 use GenServer

 def start do
 GenServer.start(__MODULE__, nil)
 end

 def sum(server, a, b) do
 GenServer.call(server, {:sum, a, b})
 end

 def handle_call({:sum, a, b}, _from, state) do
 {:reply, a + b, state}
 end
end

This code is significantly smaller and therefore easier to read and maintain. Its inten-
tion is more clearly revealed, and it’s less burdened with noise. And yet, it’s as capable
and flexible as the Erlang version. It behaves exactly the same at runtime and retains
the complete semantics. There’s nothing you can do in the Erlang version that’s not
possible in its Elixir counterpart.

Despite being significantly smaller, the Elixir version of a sum server process still
feels somewhat noisy, given that all it does is add two numbers. The excess noise exists
because Elixir retains a 1:1 semantic relation to the underlying Erlang library that’s
used to create server processes.

But Elixir gives you tools to further eliminate whatever you may regard as noise and
duplication. For example, I’ve developed my own Elixir library called ExActor that
makes the server process definition dense, as shown next.

 11About Elixir

Listing 1.3 Elixir-based server process

defmodule SumServer do
 use ExActor.GenServer

 defstart start

 defcall sum(a, b) do
 reply(a + b)
 end
end

The intention of this code should be obvious even to developers with no previous
Elixir experience. At runtime, the code works almost exactly the same as the two pre-
vious versions. The transformation that makes this code behave like the previous ones
happens at compile time. When it comes to the bytecode, all three versions are similar.

NOTE I mention the ExActor library only to illustrate how much you can abstract
away in Elixir. You won’t use that library in this book because it’s a third-party
abstraction that hides important details of how server processes work. To com-
pletely take advantage of server processes, it’s important that you understand
what makes them tick, which is why in this book you’ll learn about lower-level
abstractions. Once you understand how server processes work, you can decide
for yourself whether you want to use ExActor to implement server processes.

This last implementation of the sum server process is powered by the Elixir macros
facility. A macro is Elixir code that runs at compile time. Macros take an internal repre-
sentation of your source code as input and can create alternative output. Elixir macros
are inspired by Lisp and shouldn’t be confused with C-style macros. Unlike C/C++
macros, which work with pure text, Elixir macros work on an abstract syntax tree (AST)
structure, which makes it easier to perform nontrivial manipulations of the input code
to obtain alternative output. Of course, Elixir provides helper constructs to simplify
this transformation.

Take another look at how the sum operation is defined in the last example:

defcall sum(a, b) do
 reply(a + b)
end

Notice the defcall at the beginning. There’s no such keyword in Elixir. This is a cus-
tom macro that translates the given definition to something like the following:

def sum(server, a, b) do
 GenServer.call(server, {:sum, a, b})
end

def handle_call({:sum, a, b}, _from, state) do
 {:reply, a + b, state}
end

12 chapter 1 First steps

Because macros are written in Elixir, they’re flexible and powerful, making it possible
to extend the language and introduce new constructs that look like an integral part of
the language. For example, the open source Ecto project, which aims to bring LINQ-
style queries to Elixir, is also powered by Elixir macro support and provides an expres-
sive query syntax that looks deceptively like part of the language:

from w in Weather,
 where: w.prcp > 0 or w.prcp == nil,
 select: w

Due to its macro support and smart compiler architecture, most of Elixir is written in
Elixir. Language constructs like if, and unless, and support for structures are imple-
mented via Elixir macros. Only the smallest possible core is done in Erlang — every-
thing else is then built on top of it in Elixir!

Elixir macros are something of a black art, but they make it possible to flush out
nontrivial boilerplate at compile time and extend the language with your own DSL-like
constructs.

But Elixir isn’t all about macros. Another worthy improvement is some seemingly
simple syntactic sugar that makes functional programming much easier.

1.2.2 Composing functions

Both Erlang and Elixir are functional languages. They rely on immutable data and
functions that transform data. One of the supposed benefits of this approach is that
code is divided into many small, reusable, composable functions.

Unfortunately, the composability feature works clumsily in Erlang. Let’s look at an
adapted example from my own work. One piece of code I’m responsible for maintains
an in-memory model and receives XML messages that modify the model. When an
XML message arrives, the following actions must be done:

¡	Apply the XML to the in-memory model.
¡	Process the resulting changes.
¡	Persist the model.

Here’s an Erlang sketch of the corresponding function:

process_xml(Model, Xml) ->
 Model1 = update(Model, Xml),
 Model2 = process_changes(Model1),
 persist(Model2).

I don’t know about you, but this doesn’t look composable to me. Instead, it seems fairly
noisy and error-prone. The temporary variables Model1 and Model2 are introduced
here only to take the result of one function and feed it to the next.

Of course, you could eliminate the temporary variables and inline the calls:

process_xml(Model, Xml) ->
 persist(
 process_changes(
 update(Model, Xml)

 13Disadvantages

)
).

This style, known as staircasing, is admittedly free of temporary variables, but it’s clumsy
and hard to read. To understand what goes on here, you have to manually parse it
inside-out.

Although Erlang programmers are more or less limited to such clumsy approaches,
Elixir gives you an elegant way to chain multiple function calls together:

def process_xml(model, xml) do
 model
 |> update(xml)
 |> process_changes
 |> persist
end

The pipeline operator |> takes the result of the previous expression and feeds it to the
next one as the first argument. The resulting code is clean, contains no temporary vari-
ables, and reads like the prose, top to bottom, left to right. Under the hood, this code
is transformed at compile time to the staircased version. This is again possible because
of Elixir’s macro system.

The pipeline operator highlights the power of functional programming. You treat
functions as data transformations and then combine them in different ways to gain the
desired effect.

1.2.3 The big picture

There are many other areas where Elixir improves the original Erlang approach. The
API for standard libraries is cleaned up and follows some defined conventions. Syn-
tactic sugar is introduced that simplifies typical idioms. A concise syntax for working
with structured data is provided. String manipulation is improved, and the language
has explicit support for Unicode manipulation. In the tooling department, Elixir pro-
vides a mix tool that simplifies common tasks such as creating applications and librar-
ies, managing dependencies, and compiling and testing code. In addition, a package
manager called Hex (https://hex.pm/) is available that makes it simpler to package,
distribute, and reuse dependencies.

The list goes on and on, but instead of presenting each feature, I’d like to express a
personal sentiment based on my own production experience. Personally, I find it much
more pleasant to code in Elixir. The resulting code seems simpler, more readable, and
less burdened with boilerplate, noise, and duplication. At the same time, you retain the
complete runtime characteristics of pure Erlang code. You can also use all the available
libraries from the Erlang ecosystem, both standard and third-party.

1.3 Disadvantages
No technology is a silver bullet, and Erlang and Elixir are definitely not exceptions.
Thus it’s worth mentioning some of their shortcomings.

https://hex.pm/

14 chapter 1 First steps

1.3.1 Speed

Erlang is by no means the fastest platform out there. If you look at various synthetic
benchmarks on the internet, you usually won’t see Erlang high on the list. Erlang pro-
grams are run in BEAM and therefore can’t achieve the speed of machine-compiled
languages, such as C and C++. But this isn’t accidental or poor engineering on behalf
of the Erlang/OTP team.

The goal of the platform isn’t to squeeze out as many requests per second as possible,
but to keep performance predictable and within limits. The level of performance your
Erlang system achieves on a given machine shouldn’t degrade significantly, meaning
there shouldn’t be unexpected system hiccups due to, for example, the garbage collec-
tor kicking in. Furthermore, as explained earlier, long-running BEAM processes don’t
block or significantly impact the rest of the system. Finally, as the load increases, BEAM
can use as many hardware resources as possible. If the hardware capacity isn’t enough,
you can expect graceful system degradation — requests will take longer to process, but
the system won’t be paralyzed. This is due to the preemptive nature of the BEAM sched-
uler, which performs frequent context switches that keep the system ticking and favors
short-running processes. And of course, you can address higher system demand by add-
ing more hardware.

Nevertheless, intensive CPU computations aren’t as performant as, for example,
their C/C++ counterparts, so you may consider implementing such tasks in some other
language and then integrating the corresponding component into your Erlang system.
If most of your system’s logic is heavily CPU-bound, you should probably consider some
other technology.

1.3.2 Ecosystem

The ecosystem built around Erlang isn’t small, but it definitely isn’t as big as that of
some other languages. At the time of writing, a quick search on GitHub reveals about
20,000 Erlang-based repositories and about 36,000 Elixir repositories. In contrast,
there are almost 1,500,000 Ruby repositories and more than 5,000,000 for JavaScript.

You should be aware that the choice of libraries won’t be as abundant as you may
be used to, and in turn you may end up spending extra time on something that would
take minutes in other languages. If that happens, keep in mind all the benefits you
get from Erlang. As I’ve explained, Erlang goes a long way toward making it possible
to write fault-tolerant systems that can run for a long time with hardly any downtime.
This is a big challenge and a specific focus of the Erlang platform. Although it’s admit-
tedly unfortunate that the ecosystem isn’t as mature as it could be, my sentiment is that
Erlang significantly helps with hard problems, even if simple problems can sometimes
be more clumsy to solve. Of course, those difficult problems may not always be import-
ant. Perhaps you don’t expect a high load, or a system doesn’t need to run constantly
and be extremely fault-tolerant. In such cases, you may want to consider some other
technology stack with a more evolved ecosystem.

 15Summary

Summary

¡	Erlang is a technology for developing highly available systems that constantly
provide service with little or no downtime. It has been battle tested in diverse
large systems for more than two decades.

¡	Elixir is a modern language that makes development for the Erlang platform
much more pleasant. It helps organize code more efficiently and abstracts away
boilerplate, noise, and duplication.

16

2Building blocks

This chapter covers
¡	Using the interactive shell

¡	Working with variables

¡	Organizing your code

¡	Understanding the type system

¡	Working with operators

¡	Understanding the runtime

It’s time to start learning about Elixir. This chapter presents the basic building
blocks of the language, such as modules, functions, and the type system. This will be
a somewhat long, not particularly exciting tour of language features, but the mate-
rial presented here is important because it prepares the stage for exploring more
interesting, higher-level topics.

Before starting, make sure you’ve installed Elixir version 1.7.x and Erlang version
21. There are multiple ways of installing Elixir, and it’s best to follow the instructions
from the official Elixir site at https://elixir-lang.org/install.html.

With that out of the way, let’s start our tour of Elixir. The first thing you should
know about is the interactive shell.

https://elixir-lang.org/install.html

 17The interactive shell

2
Detailed information
This book doesn’t provide a detailed reference on any of the language or platform fea-
tures. That would take up too much space, and the material would quickly become out-
dated. Here are some other references you can check out:

¡	For an alternative syntax quick start, you should look at the Getting Started guide
on the Elixir official site: https://elixir-lang.org/getting-started/introduction.html.

¡	A more detailed reference can be found in the online documentation: https://hexdocs
.pm/elixir.

¡	For specific questions, you can turn to the Elixir forum (https://elixirforum.com/),
the #elixir-lang channel on IRC (irc://irc.freenode.net/elixir-lang), or the Slack
channel (https://elixir-slackin.herokuapp.com/).

¡	Finally, for many things, you’ll need to look into the Erlang documentation: http://
www.erlang.org/doc. If you’re not familiar with Erlang syntax, you may also need
to read Elixir’s crash course on Erlang (https://elixir-lang.org/crash-course.html).

2.1 The interactive shell
The simplest way to experiment and learn about a language’s features is through the
interactive shell. You can start the Elixir interactive shell from the command line by
running the command iex:

$ iex
Erlang/OTP 21 [erts-10.0.8] [source] [64-bit] [smp:8:8] [ds:8:8:10]
 [async-threads:10] [hipe] [kernel-poll:false]

Interactive Elixir (1.7.3) - press Ctrl+C to exit
 (type h() ENTER for help)

iex(1)>

Running iex starts an instance of the BEAM and then starts an interactive Elixir shell
inside it. Runtime information is printed, such as the Erlang and Elixir version num-
bers, and then the prompt is provided so you can enter Elixir expressions:

iex(1)> 1 + 2
3

After you type an expression, it’s interpreted and executed. Its return value is then
printed to the screen.

NOTE Everything in Elixir is an expression that has a return value. This
includes not only function calls but also constructs like if and case.

TIP You’ll use iex extensively throughout the book, especially in the initial
chapters. The expression result often won’t be particularly relevant, and it will be
omitted to reduce noise. Regardless, keep in mind that each expression returns a
result, and when you enter an expression in the shell, its result will be presented.

 Elixir expression

 Result of the expression

https://elixir-lang.org/getting-started/introduction.html
https://hexdocs.pm/elixir
https://hexdocs.pm/elixir
https://elixirforum.com/
irc://irc.freenode.net/elixir-lang
https://elixir-slackin.herokuapp.com/
http://www.erlang.org/doc
http://www.erlang.org/doc
https://elixir-lang.org/crash-course.html

18 chapter 2 Building blocks

You can type practically anything that constitutes valid Elixir code, including more
complicated multiline expressions:

iex(2)> 2 * (
 3 + 1
) / 4
2.0

Notice how the shell doesn’t evaluate the expression until you finish it on the last line.
In Elixir, you need no special characters, such as semicolons, to indicate the end of
an expression. Instead, a line break indicates the end of an expression, if the expres-
sion is complete. Otherwise, the parser waits for additional input until the expression
becomes complete.

The quickest way to leave the shell is to press Ctrl-C twice. Doing so brutally kills the
OS process and all background jobs that are executing. Because the shell is mostly used
for experimenting and shouldn’t be used to run real production systems, it’s usually
fine to terminate it this way. But if you want a more polite way of stopping the system,
you can invoke System.halt.

NOTE There are multiple ways to start Elixir and the Erlang runtime, and to
run your Elixir programs. You’ll learn a bit about all of them by the end of
this chapter. In the first part of this book you’ll mostly work with the iex shell,
because it’s a simple and efficient way of experimenting with the language.

You can do many things with the shell, but most often you’ll use it to enter expressions
and inspect their results. You can research for yourself what else can be done in the
shell. Basic help can be obtained with the h command:

iex(4)> h

Entering this in the shell will output an entire screen of iex-related instructions. You
can also look for the documentation of the IEx module, which is responsible for the
shell’s workings:

iex(5)> h IEx

You can find the same help in the online documentation at https://hexdocs.pm/iex.
Now that you have a basic tool with which to experiment, let’s research the features

of the language. We’ll start with variables.

2.2 Working with variables
Elixir is a dynamic programming language, which means you don’t explicitly declare a
variable or its type. Instead, the variable type is determined by whatever data it contains
at the moment. In Elixir terms, assignment is called binding. When you initialize a vari-
able with a value, the variable is bound to that value:

iex(1)> monthly_salary = 10000
10000

 Expression isn’t finished

 Expression is finished, so it’s evaluated

 Binds a variable

 Result of the last expression

https://hexdocs.pm/iex

 19Working with variables

Each expression in Elixir has a result. In the case of the = operator, the result is what-
ever is on the right side of the operator. After the expression is evaluated, the shell
prints this result to the screen.

Now you can reference the variable:

iex(2)> monthly_salary
10000

The variable can, of course, be used in complex expressions:

iex(3)> monthly_salary * 12
120000

In Elixir, a variable name always starts with a lowercase alphabetic character or an
underscore. After that, any combination of alphanumerics and underscores is allowed.
The prevalent convention is to use only lowercase ASCII letters, digits, and underscores:

valid_variable_name
also_valid_1
validButNotRecommended
NotValid

Variable names can also end with the question mark (?) or exclamation mark (!)
characters:

valid_name?
also_ok!

Variables can be rebound to a different value:

iex(1)> monthly_salary = 10000
10000

iex(2)> monthly_salary
10000

iex(3)> monthly_salary = 11000
11000

iex(4)> monthly_salary
11000

Rebinding doesn’t mutate the existing memory location. It reserves new memory and
reassigns the symbolic name to the new location.

NOTE You should always keep in mind that data is immutable. Once a memory
location is occupied with data, it can’t be modified until it’s released. But vari-
ables can be rebound, which makes them point to a different memory location.
Thus, variables are mutable, but the data they point to is immutable.

Elixir is a garbage-collected language, which means you don’t have to manually release
memory. When a variable goes out of scope, the corresponding memory is eligible for
garbage collection and will be released sometime in the future, when the garbage col-
lector cleans up the memory.

 Expression that returns
the value of the variable

 Value of the variable

 Sets the initial value

 Verifies it

 Rebinds the variable

 Verifies the effect of rebinding

20 chapter 2 Building blocks

2.3 Organizing your code
Being a functional language, Elixir relies heavily on functions. Due to the immutable
nature of the data, a typical Elixir program consists of many small functions. You’ll wit-
ness this in chapters 3 and 4, as you start using some typical functional idioms. Multiple
functions can be further organized into modules.

2.3.1 Modules

A module is a collection of functions, somewhat like a namespace. Every Elixir func-
tion must be defined inside a module.

Elixir comes with a standard library that provides many useful modules. For exam-
ple, the IO module can be used to do various I/O operations. The puts function from
the IO module can be used to print a message to the screen:

iex(1)> IO.puts("Hello World!")
Hello World!
:ok

As you can see in the example, to call a function of a module you use the syntax
ModuleName.function_name(args).

To define your own module, you use the defmodule construct. Inside the module,
you define functions using the def construct. The following listing demonstrates the
definition of a module.

Listing 2.1 Defining a module (geometry.ex)

defmodule Geometry do
 def rectangle_area(a, b) do
 a * b
 end
end

There are two ways you can use this module. You can copy/paste this definition directly
into iex — as mentioned, almost anything can be typed into the shell. Another way is
to tell iex to interpret the file while starting:

$ iex geometry.ex

Regardless of which method you choose, the effect is the same. The code is compiled,
and the resulting module is loaded into the runtime and can be used from the shell
session. Let’s try it:

$ iex geometry.ex

iex(1)> Geometry.rectangle_area(6, 7)
42

 Calls the puts function of the IO module

 Function IO.puts prints to the screen

 Return value of IO.puts

 Starts a module definition

 Function definition

 Ends a module definition

 Invokes the function

 Function result

 21Organizing your code

That was simple! You created a Geometry module, loaded it into a shell session, and
used it to compute the area of a rectangle.

NOTE As you may have noticed, the filename has the .ex extension. This is a
common convention for Elixir source files.

In the source code, a module must be defined in a single file. A single file may contain
multiple module definitions:

defmodule Module1 do
 ...
end

defmodule Module2 do
 ...
end

A module name must follow certain rules. It starts with an uppercase letter and is
usually written in CamelCase style. A module name can consist of alphanumerics,
underscores, and the dot (.) character. The latter is often used to organize modules
hierarchically:

defmodule Geometry.Rectangle do
 ...
end

defmodule Geometry.Circle do
 ...
end

The dot character is a convenience. Once the code is compiled, there are no special
hierarchical relations between modules, nor are there services to query the hierarchy.
It’s just syntactic sugar that can help you scope your names.

You can also nest modules:

defmodule Geometry do
 defmodule Rectangle do
 ...
 end
 ...
end

The child module can be referenced with Geometry.Rectangle. Again, this nesting is
a convenience. After the compilation, there’s no special relation between the modules
Geometry and Geometry.Rectangle.

2.3.2 Functions

A function must always be a part of a module. Function names follow the same conven-
tions as variables: they start with a lowercase letter or underscore character, followed by
a combination of alphanumerics and underscores.

As with variables, function names can end with the ? and ! characters. The ? char-
acter is often used to indicate a function that returns either true or false. Placing the

22 chapter 2 Building blocks

character ! at the end of the name indicates a function that may raise a runtime error.
Both of these are conventions, rather than rules, but it’s best to follow them and respect
the community style.

Functions can be defined using the def macro:

defmodule Geometry do
 def rectangle_area(a, b) do
 ...
 end
end

The definition starts with the def construct, followed by the function name, the argu-
ment list, and the body enclosed in a do…end block. Because you’re dealing with a
dynamic language, there are no type specifications for arguments.

NOTE Notice that defmodule and def aren’t referred to as keywords. That’s
because they’re not! Instead, these are compilation constructs called macros.
You don’t need to worry about how this works yet; it’s explained a bit later in
this chapter. If it helps, you can think of def and defmodule as keywords, but be
aware that this isn’t exactly true.

If a function has no arguments, you can omit the parentheses:

defmodule Program do
 def run do
 ...
 end
end

What about the return value? Recall that in Elixir, everything that has a return value
is an expression. The return value of a function is the return value of its last expression.
There’s no explicit return in Elixir.

NOTE Given that there’s no explicit return, you might wonder how complex
functions work. This will be covered in detail in chapter 3, where you’ll learn
about branching and conditional logic. The general rule is to keep functions
short and simple, which makes it easy to compute the result and return it from
the last expression.

You saw an example of returning a value in listing 2.1, but let’s repeat it:

defmodule Geometry do
 def rectangle_area(a, b) do
 a * b
 end
end

You can now verify this. Start the shell again, and then try the rectangle_area function:

$ iex geometry.ex

iex(1)> Geometry.rectangle_area(3, 2)
6

 Function declaration

 Function body

 Calculates the area and returns the result

 Calls the function

 Function return value

 23Organizing your code

If a function definition is short, you can use a condensed form and define it in a single
line:

defmodule Geometry do
 def rectangle_area(a, b), do: a * b
end

To call a function defined in another module, you use the module name followed by
the function name:

iex(1)> Geometry.rectangle_area(3, 2)
6

Of course, you can always store the function result to a variable:

iex(2)> area = Geometry.rectangle_area(3, 2)
6

iex(3)> area
6

Parentheses are optional in Elixir, so you can omit them:

iex(4)> Geometry.rectangle_area 3, 2
6

Personally, I find that omitting parentheses makes the code ambiguous, so my advice is
to always include them when calling a function.

Using a code formatter
Starting with version 1.6, Elixir ships with the code formatter, which you can use to for-
mat your code in a consistent style, and stop worrying about lower-level style decisions,
such as layouts or parentheses usage.

For example, after formatting the following code snippet,

defmodule Client
do
def run do
Geometry.rectangle_area 3,2
end
end

you’ll end up with this nice-looking code:

defmodule Client do
 def run do
 Geometry.rectangle_area(3, 2)
 end
end

You can format your code with the mix format task (https://hexdocs.pm/mix/Mix.
Tasks.Format.html), or install a formatter extension in your editor of choice.

 Calls the function and stores its result

 Verifies the variable content

https://hexdocs.pm/mix/Mix.Tasks.Format.html
https://hexdocs.pm/mix/Mix.Tasks.Format.html

24 chapter 2 Building blocks

If a function resides in the same module, you can omit the module prefix:

defmodule Geometry do
 def rectangle_area(a, b) do
 a * b
 end

 def square_area(a) do
 rectangle_area(a, a)
 end
end

Given that Elixir is a functional language, you’ll often need to combine functions, pass-
ing the result of one function as the argument to the next one. Elixir comes with a
built-in operator, |>, called the pipeline operator, that does exactly this:

iex(5)> -5 |> abs() |> Integer.to_string() |> IO.puts()
5

This code is transformed at compile time into the following:

iex(6)> IO.puts(Integer.to_string(abs(-5)))
5

More generally, the pipeline operator places the result of the previous call as the first
argument of the next call. So the following code,

prev(arg1, arg2) |> next(arg3, arg4)

is translated at compile time to this:

next(prev(arg1, arg2), arg3, arg4)

Arguably, the pipeline version is more readable because the sequence of execution is read
from left to right. The pipeline operator looks especially elegant in source files, where you
can lay out the pipeline over multiple lines, which makes the code read like prose:

-5
|> abs()
|> Integer.to_string()
|> IO.puts()

NOTE Multiline pipelines don’t work in the shell. The previous code is an
example of a syntax that works only in source files and can’t be entered directly
in the shell. If you paste this code into the shell, it will raise an error. The reason
is that the first line is a proper standalone Elixir expression, and the shell will
execute it immediately. The rest of the code isn’t syntactically correct, because
it starts with the |> operator.

 Call to a function in the same module

 Starts with -5
 Calculates the abs value

 Converts to string

 Prints to the console

 25Organizing your code

2.3.3 Function arity

Arity is a fancy name for the number of arguments a function receives. A function is
uniquely identified by its containing module, its name, and its arity. Take a look at the
following function:

defmodule Rectangle do
 def area(a, b) do
 ...
 end
end

The function Rectangle.area receives two arguments, so it’s said to be a function of
arity 2. In the Elixir world, this function is often called Rectangle.area/2, where the
/2 part denotes the function’s arity.

Why is this important? Because two functions with the same name but different
arities are two different functions, as the following example demonstrates.

Listing 2.2 Functions with the same name but different arities (arity_demo.ex)

defmodule Rectangle do
 def area(a), do: area(a, a)

 def area(a, b), do: a * b
end

Load this module into the shell, and try the following:

iex(1)> Rectangle.area(5)
25

iex(2)> Rectangle.area(5,6)
30

As you can see, these two functions act completely differently. The name might be
overloaded, but the arities differ, so we talk about them as two distinct functions, each
having its own implementation.

It usually makes no sense for different functions with the same name to have com-
pletely different implementations. More commonly, a lower-arity function delegates to
a higher-arity function, providing some default arguments. This is what happens in list-
ing 2.2, where Rectangle.area/1 delegates to Rectangle.area/2.

Let’s look at another example.

Listing 2.3 Same-name functions, different arities, default params (arity_calc.ex)

defmodule Calculator do
 def sum(a) do
 sum(a, 0)
 end

 def sum(a, b) do

 Function with two arguments

 Rectangle.area/1

 Rectangle.area/2

 Calculator.sum/1 delegates to Calculator.sum/2

 Calculator.sum/2 contains the implementation

26 chapter 2 Building blocks

 a + b
 end
end

Again, a lower-arity function is implemented in terms of a higher-arity one. This pat-
tern is so frequent that Elixir allows you to specify defaults for arguments by using the
\\ operator followed by the argument’s default value:

defmodule Calculator do
 def sum(a, b \\ 0) do
 a + b
 end
end

This definition generates two functions exactly like in listing 2.3.
You can set the defaults for any combination of arguments:

defmodule MyModule do
 def fun(a, b \\ 1, c, d \\ 2) do
 a + b + c + d
 end
end

Always keep in mind that default values generate multiple functions of the same name
with different arities. The previous code generates three functions: MyModule.fun/2,
MyModule.fun/3, and MyModule.fun/4.

Because arity distinguishes multiple functions of the same name, it’s not possible to
have a function accept a variable number of arguments. There’s no counterpart of C’s …
or JavaScript’s arguments.

2.3.4 Function visibility

When you define a function using the def macro, the function is made public: it can
be called by anyone else. In Elixir terminology, it’s said that the function is exported. You
can also use the defp macro to make the function private. A private function can be
used only inside the module it’s defined in. The following example demonstrates this.

Listing 2.4 Module with a public and a private function (private_fun.ex)

defmodule TestPrivate do
 def double(a) do
 sum(a, a)
 end

 defp sum(a, b) do
 a + b
 end
end

The module TestPrivate defines two functions. The function double is exported and
can be called from outside. Internally, it relies on the private function sum to do its
work.

 Defining a default value for argument b

 Setting defaults for multiple arguments

 Public function

 Calls the private function

 Private function

 27Organizing your code

Let’s try this in the shell. Load the module, and do the following:

iex(1)> TestPrivate.double(3)
6

iex(2)> TestPrivate.sum(3, 4)
** (UndefinedFunctionError) function TestPrivate.sum/2
...

As you can see, the private function can’t be invoked outside the module.

2.3.5 Imports and aliases

Calling functions from another module can sometimes be cumbersome because you
need to reference the module name. If your module often calls functions from another
module, you can import that other module into your own. Importing a module allows
you to call its public functions without prefixing them with the module name:

defmodule MyModule do
 import IO

 def my_function do
 puts "Calling imported function."
 end
end

Of course, you can import multiple modules. In fact, the standard library’s Kernel
module is automatically imported into every module. Kernel contains functions that
are often used, so automatic importing makes their use easier.

NOTE You can see what functions are available in the Kernel module by look-
ing in the online documentation at https://hexdocs.pm/elixir/Kernel.html.

Another construct, alias, makes it possible to reference a module under a different
name:

defmodule MyModule do
 alias IO, as: MyIO

 def my_function do
 MyIO.puts("Calling imported function.")
 end
end

Aliases can be useful if a module has a long name. For example, if your application is heavily
divided into a deeper module hierarchy, it can be cumbersome to reference modules via
fully qualified names. Aliases can help with this. For example, let’s say you have a Geometry
.Rectangle module. You can alias it in your client module and use a shorter name:

defmodule MyModule do
 alias Geometry.Rectangle, as: Rectangle

 def my_function do
 Rectangle.area(...)
 end
end

 Imports the module

 You can use puts instead of IO.puts.

 Creates an alias for IO

 Calls a function using the alias

 Sets up an alias to a module

 Calls a module function using the alias

https://hexdocs.pm/elixir/Kernel.html

28 chapter 2 Building blocks

In the preceding example, the alias of Geometry.Rectangle is the last part in its name.
This is the most common use of alias, so Elixir allows you to skip the as option in this case:

defmodule MyModule do
 alias Geometry.Rectangle

 def my_function do
 Rectangle.area(...)
 end
end

Aliases can help you reduce some noise, especially if you call functions from a long-
named module many times.

2.3.6 Module attributes

The purpose of module attributes is twofold: they can be used as compile-time con-
stants, and you can register any attribute, which can then be queried in runtime. Let’s
look at an example.

The following module provides basic functions for working with circles:

iex(1)> defmodule Circle do
 @pi 3.14159

 def area(r), do: r*r*@pi
 def circumference(r), do: 2*r*@pi
 end

iex(2)> Circle.area(1)
3.14159

iex(3)> Circle.circumference(1)
6.28318

Notice how you define a module directly in the shell. This is permitted and makes it
possible to experiment without storing any files on disk.

The important thing about the @pi constant is that it exists only during the compila-
tion of the module, when the references to it are inlined.

Moreover, an attribute can be registered, which means it will be stored in the gener-
ated binary and can be accessed at runtime. Elixir registers some module attributes by
default. For example, the attributes @moduledoc and @doc can be used to provide docu-
mentation for modules and functions:

defmodule Circle do
 @moduledoc "Implements basic circle functions"
 @pi 3.14159

 @doc "Computes the area of a circle"
 def area(r), do: r*r*@pi

 @doc "Computes the circumference of a circle"
 def circumference(r), do: 2*r*@pi
end

 Sets up an alias to a module

 Calls a module function using the alias

 Defines a module attribute

 Uses a module attribute

 29Organizing your code

To try this, however, you need to generate a compiled file. Here’s a quick way to do it.
Save this code to the circle.ex file somewhere, and then run elixirc circle.ex. This
will generate the file Elixir.Circle.beam. Next, start the iex shell from the same folder.
You can now retrieve the attribute at runtime:

iex(1)> Code.get_docs(Circle, :moduledoc)
{1, "Implements basic circle functions"}

More interesting is that other tools from the Elixir ecosystem know how to work with
these attributes. For example, you can use the help feature of iex to see the module’s
documentation:

iex(2)> h Circle
 Circle
Implements basic circle functions

iex(3)> h Circle.area
 def area(r)
Computes the area of a circle

Furthermore, you can use the ex_doc tool (see https://github.com/elixir-lang/ex_doc)
to generate HTML documentation for your project. This is the way Elixir documentation
is produced, and if you plan to build more complex projects, especially something that
will be used by many different clients, you should consider using @moduledoc and @doc.

The underlying point is that registered attributes can be used to attach meta informa-
tion to a module, which can then be used by other Elixir (and even Erlang) tools. There
are many other preregistered attributes, and you can also register your own custom attri-
butes. Take a look at the documentation for the Module module (https://hexdocs.pm/
elixir/Module.html) for more details.

type specifications

Type specifications (often called typespecs) are another important feature based on attri-
butes. This feature allows you to provide type information for your functions, which
can later be analyzed with a static analysis tool called dialyzer (http://erlang.org/
doc/man/dialyzer.html).

Extend the Circle module to include typespecs:

defmodule Circle do
 @pi 3.14159

 @spec area(number) :: number
 def area(r), do: r*r*@pi

 @spec circumference(number) :: number
 def circumference(r), do: 2*r*@pi
end

Here you use the @spec attribute to indicate that both functions accept and return a
number.

 Module documentation

 Function documentation

 Type specification for area/1

 Type specification for circumference/1

https://github.com/elixir-lang/ex_doc
https://hexdocs.pm/elixir/Module.html
https://hexdocs.pm/elixir/Module.html
http://erlang.org/doc/man/dialyzer.html
http://erlang.org/doc/man/dialyzer.html

30 chapter 2 Building blocks

Typespecs provide a way of compensating for the lack of a static type system. This can be
useful in conjunction with the dialyzer tool to perform static analysis of your programs.
Furthermore, typespecs allow you to better-document your functions. Remember that Elixir
is a dynamic language, so function inputs and output can’t be easily deduced by looking at
the function’s signature. Typespecs can help significantly with this, and I can personally
attest that it’s much easier to understand someone else’s code when typespecs are provided.

For example, look at the typespec for the Elixir function:

List.insert_at/3:
@spec insert_at(list, integer, any) :: list

Even without looking at the code or reading the docs, you can reasonably guess that
this function inserts a term of any type (third argument) to a list (first argument) at a
given position (second argument) and returns a new list.

You won’t be using typespecs in this book, mostly to keep the code as short as possible.
But if you plan to build more complex systems, my advice is to seriously consider using
typespecs. You can find a detailed reference in the official docs at https://hexdocs.pm/
elixir/typespecs.html.

2.3.7 Comments

Comments in Elixir start with the character #, which indicates that the rest of the line is
a comment. Block comments aren’t supported. If you need to comment multiple lines,
prefix each one with a # character:

This is a comment
a = 3.14 # so is this

At this point, we’re done with the basics of functions and modules. You’re aware of the
primary code-organization techniques. With that out of our way, it’s time to look at the
Elixir type system.

2.4 Understanding the type system
At its core, Elixir uses the Erlang type system. Consequently, integration with Erlang
libraries is usually simple. The type system itself is reasonably simple, but if you’re com-
ing from a classical OO language, you’ll find it significantly different from what you’re
used to. This section covers basic Elixir types and also discusses some implications of
immutability. To begin, let’s look at numbers.

2.4.1 Numbers

Numbers can be integers or floats, and they work mostly as you’d expect:

iex(1)> 3
3

iex(2)> 0xFF
255

iex(3)> 3.14
3.14

 Integer

 Integer written in hex

 Float

https://hexdocs.pm/elixir/typespecs.html
https://hexdocs.pm/elixir/typespecs.html

 31Understanding the type system

iex(4)> 1.0e-2
0.01

Standard arithmetic operators are supported:

iex(5)> 1 + 2 * 3
7

The division operator / works differently than you might expect. It always returns a
float value:

iex(6)> 4/2
2.0

iex(7)> 3/2
1.5

To perform integer division or to calculate the remainder, you can use auto-imported
Kernel functions:

iex(8)> div(5,2)
2

iex(9)> rem(5,2)
1

As added syntactic sugar, you can use the underscore character as a visual delimiter:

iex(10)> 1_000_000
1000000

There’s no upper limit on an integer’s size, and you can use arbitrarily large numbers:

iex(11)> 99
99

If you’re worried about memory size, it’s best to consult the official Erlang memory
guide at http://erlang.org/doc/efficiency_guide/advanced.html. An integer takes up
as much space as needed to accommodate the number, whereas a float occupies either
32 or 64 bits, depending on the build architecture of the virtual machine. Floats are
internally represented in IEEE 754-1985 (binary precision) format.

2.4.2 Atoms

Atoms are literal named constants. They’re similar to symbols in Ruby or enumera-
tions in C/C++. Atom constants start with a colon character, followed by a combination
of alphanumerics and/or underscore characters:

:an_atom
:another_atom

It’s possible to use spaces in the atom name with the following syntax:

:"an atom with spaces"

An atom consists of two parts: the text and the value. The atom text is whatever you put
after the colon character. At runtime, this text is kept in the atom table. The value is the
data that goes into the variable, and it’s merely a reference to the atom table.

 Float, exponential notation

http://erlang.org/doc/efficiency_guide/advanced.html

32 chapter 2 Building blocks

This is exactly why atoms are best used for named constants. They’re efficient both
memory- and performance-wise. When you say

variable = :some_atom

the variable doesn’t contain the entire text, but only a reference to the atom table.
Therefore, memory consumption is low, the comparisons are fast, and the code is still
readable.

aliases

There’s another syntax for atom constants. You can omit the beginning colon and start
with an uppercase character:

AnAtom

This is called an alias, and at compile time it’s transformed into this:

:"Elixir.AnAtom":
iex(1)> AnAtom == :"Elixir.AnAtom"
true

When you use an alias, the compiler implicitly adds the Elixir. prefix to its text and
inserts an atom there. But if an alias already contains that prefix, it’s not added. Conse-
quently, the following also works:

iex(2)> AnAtom == Elixir.AnAtom
true

You may recall from earlier that you can also use aliases to give alternate names to
modules:

iex(3)> alias IO, as: MyIO

iex(4)> MyIO.puts("Hello!")
Hello!

It’s no accident that the term alias is used for both things. When you write alias IO,
as: MyIO, you instruct the compiler to transform MyIO into IO. Resolving this further,
the final result emitted in the generated binary is :Elixir.IO. Therefore, with an alias
set up, the following also holds:

iex(5)> MyIO == Elixir.IO
true

All of this may seem strange, but it has an important underlying purpose. Aliases sup-
port the proper resolution of modules. This will be discussed at the end of the chapter
when we revisit modules and look at how they’re loaded at runtime.

atoms as booleans

It may come as a surprise that Elixir doesn’t have a dedicated Boolean type. Instead,
the atoms :true and :false are used. As syntactic sugar, Elixir allows you to reference
these atoms without the starting colon character:

iex(1)> :true == true
true

 33Understanding the type system

iex(2)> :false == false
true

The term Boolean is still used in Elixir to denote an atom that has a value of either
:true or :false. The standard logical operators work with Boolean atoms:

iex(1)> true and false
false

iex(2)> false or true
true

iex(3)> not false
true

iex(4)> not :an_atom_other_than_true_or_false
** (ArgumentError) argument error

Always keep in mind that a Boolean is just an atom that has a value of true or false.

nil and truthy values

Another special atom is :nil, which works somewhat similarly to null from other lan-
guages. You can reference nil without a colon:

iex(1)> nil == :nil
true

The atom nil plays a role in Elixir’s additional support for truthness, which works simi-
larly to the way it’s used in mainstream languages such as C/C++ and Ruby. The atoms
nil and false are treated as falsy values, whereas everything else is treated as a truthy
value.

This property can be used with Elixir’s short-circuit operators ||, &&, and !. The
operator || returns the first expression that isn’t falsy:

iex(1)> nil || false || 5 || true
5

Because both nil and false are falsy expressions, the number 5 is returned. Notice
that subsequent expressions won’t be evaluated at all. If all expressions evaluate to a
falsy value, the result of the last expression is returned.

The operator && returns the second expression, but only if the first expression is
truthy. Otherwise, it returns the first expression without evaluating the second one:

iex(1)> true && 5
5

iex(2)> false && 5
false

iex(3)> nil && 5
nil

34 chapter 2 Building blocks

Short-circuiting can be used for elegant operation chaining. For example, if you need
to fetch a value from cache, a local disk, or a remote database, you can do something
like this:

read_cached || read_from_disk || read_from_database

Similarly, you can use the operator && to ensure that certain conditions are met:

database_value = connection_established? && read_data

In both examples, short-circuit operators make it possible to write concise code with-
out resorting to complicated nested conditional constructs.

2.4.3 Tuples

Tuples are something like untyped structures, or records, and they’re most often used
to group a fixed number of elements together. The following snippet defines a tuple
consisting of a person’s name and age:

iex(1)> person = {"Bob", 25}
{"Bob", 25}

To extract an element from the tuple, you can use the Kernel.elem/2 function, which
accepts a tuple and the zero-based index of the element. Recall that the Kernel mod-
ule is auto-imported, so you can call elem instead of Kernel.elem:

iex(2)> age = elem(person, 1)
25

To modify an element of the tuple, you can use the Kernel.put_elem/3 function,
which accepts a tuple, a zero-based index, and the new value of the field in the given
position:

iex(3)> put_elem(person, 1, 26)
{"Bob", 26}

The function put_elem doesn’t modify the tuple. It returns the new version, keeping
the old one intact. Recall that data in Elixir is immutable, so you can’t do an in-memory
modification of a value. You can verify that the previous call to put_elem didn’t change
the person variable:

iex(4)> person
{"Bob", 25}

So how can you use the put_elem function, then? You need to store its result to another
variable:

iex(5)> older_person = put_elem(person, 1, 26)
{"Bob", 26}

iex(6)> older_person
{"Bob", 26}

Recall that variables can be rebound, so you can also do the following:

iex(7)> person = put_elem(person, 1, 26)
{"Bob", 26}

 35Understanding the type system

By doing this, you’ve effectively rebound the person variable to the new memory loca-
tion. The old location isn’t referenced by any other variable, so it’s eligible for garbage
collection.

NOTE You may wonder if this approach is memory efficient. In most cases,
there will be little data copying, and the two variables will share as much mem-
ory as possible. This will be explained later in this section, when we discuss
immutability.

Tuples are most appropriate for grouping a small, fixed number of elements together.
When you need a dynamically sized collection, you can use lists.

2.4.4 Lists

Lists in Erlang are used to manage dynamic, variable-sized collections of data. The syn-
tax deceptively resembles arrays from other languages:

iex(1)> prime_numbers = [2, 3, 5, 7]
[2, 3, 5, 7]

Lists may look like arrays, but they work like singly linked lists. To do something with
the list, you have to traverse it. Therefore, most of the operations on lists have an O(n)
complexity, including the Kernel.length/1 function, which iterates through the
entire list to calculate its length:

iex(2)> length(prime_numbers)
4

List utility functions
There are many operations you can do with lists, but this section mentions only a couple
of the most basic ones. For a detailed reference, see the documentation for the List
module (https://hexdocs.pm/elixir/List.html). There are also many helpful services in
the Enum module (https://hexdocs.pm/elixir/Enum.html).

The Enum module deals with many different enumerable structures and is not limited to
lists. The concept of enumerables will be explained in detail in chapter 4, when we dis-
cuss protocols.

To get an element of a list, you can use the Enum.at/2 function:

iex(3)> Enum.at(prime_numbers, 3)
7

Enum.at is again an O(n) operation: it iterates from the beginning of the list to the
desired element. Lists are never a good fit when direct access is called for. For those
purposes, tuples, maps, or a higher-level data structure is appropriate.

You can check whether a list contains a particular element with the help of the in
operator:

iex(4)> 5 in prime_numbers

https://hexdocs.pm/elixir/List.html
https://hexdocs.pm/elixir/Enum.html

36 chapter 2 Building blocks

true

iex(5)> 4 in prime_numbers
false

To manipulate lists, you can use functions from the List module. For example, List
.replace_at/3 modifies the element at a certain position:

iex(6)> List.replace_at(prime_numbers, 0, 11)
[11, 3, 5, 7]

As was the case with tuples, the modifier doesn’t mutate the variable, but returns the
modified version of it, which you need to store to another variable:

iex(7)> new_primes = List.replace_at(prime_numbers, 0, 11)
[11, 3, 5, 7]

Or you can rebind to the same one:

iex(8)> prime_numbers = List.replace_at(prime_numbers, 0, 11)
[11, 3, 5, 7]

You can insert a new element at the specified position with the List.insert_at
function:

iex(9)> List.insert_at(prime_numbers, 3, 13)
[11, 3, 5, 13, 7]

To append to the end, you can use a negative value for the insert position:

iex(10)> List.insert_at(prime_numbers, -1, 13)
[11, 3, 5, 7, 13]

Like most list operations, modifying an arbitrary element has a complexity of O(n). In
particular, appending to the end is expensive because it always takes n steps, n being
the length of the list.

In addition, the dedicated operator ++ is available. It concatenates two lists:

iex(11)> [1, 2, 3] ++ [4, 5]
[1, 2, 3, 4, 5]

Again, the complexity is O(n), n being the length of the left list (the one you’re
appending to). In general, you should avoid adding elements to the end of a list. Lists
are most efficient when new elements are pushed to the top, or popped from it. To
understand why, let’s look at the recursive nature of lists.

 Inserts a new element at the fourth position

Value of -1 indicates that the element
should be appended to the end of the list

 37Understanding the type system

recursive list definition

An alternative way of looking at lists is to think of
them as recursive structures. A list can be repre-
sented by a pair (head, tail), where head is the first
element of the list and tail “points” to the (head, tail)
pair of the remaining elements, as illustrated in fig-
ure 2.1. If you’re familiar with Lisp, then you know
this concept as cons cells.
In Elixir, there’s a special syntax to support recur-
sive list definition:

a_list = [head | tail]

head can be any type of data, whereas tail is itself
a list. If tail is an empty list, it indicates the end of
the entire list.

Let’s look at some examples:

iex(1)> [1 | []]
[1]

iex(2)> [1 | [2 | []]]
[1, 2]

iex(3)> [1 | [2]]
[1, 2]

iex(4)> [1 | [2, 3, 4]]
[1, 2, 3, 4]

This is just another syntactical way of defining lists, but it illustrates what a list is. It’s a
pair with two values: a head and a tail, the tail being itself a list.

The following snippet is a canonical recursive definition of a list:

iex(1)> [1 | [2 | [3 | [4 | []]]]]
[1, 2, 3, 4]

Of course, nobody wants to write constructs like this one. But it’s important that you’re
always aware that, internally, lists are recursive structures of (head, tail) pairs.

To get the head of the list, you can use the hd function. The tail can be obtained by
calling the tl function:

iex(1)> hd([1, 2, 3, 4])
1

iex(2)> tl([1, 2, 3, 4])
[2, 3, 4]

Both operations are O(1), because they amount to reading one or the other value
from the (head, tail) pair.

Figure 2.1 Recursive structure of the
list [1, 2, 3, 4]

38 chapter 2 Building blocks

NOTE For the sake of completeness, it should be mentioned that the tail
doesn’t need to be a list. It can be any type. When the tail isn’t a list, it’s said that
the list is improper, and most of the standard list manipulations won’t work.
Improper lists have some special uses, but we won’t deal with them in this book.

Once you know the recursive nature of the list, it’s simple and efficient to push a new
element to the top of the list:

iex(1)> a_list = [5, :value, true]
[5, :value, true]

iex(2)> new_list = [:new_element | a_list]
[:new_element, 5, :value, true]

Construction of the new_list is an O(1) operation, and no memory copying occurs —
the tail of the new_list is the a_list. To understand how this works, let’s discuss the
internal details of immutability a bit.

2.4.5 Immutability

As has been mentioned before, Elixir data can’t be mutated. Every function returns
the new, modified version of the input data. You have to take the new version into
another variable or rebind it to the same symbolic name. In any case, the result resides
in another memory location. The modification of the input will result in some data
copying, but generally, most of the memory will be shared between the old and the new
version.

Let’s take a closer look at how this works.

modifying tuples

Let’s start with tuples. A modified tuple is always a complete, shallow copy of the old
version. Consider the following code:

a_tuple = {a, b, c}
new_tuple = put_elem(a_tuple, 1, b2)

The variable new_tuple will contain a shal-
low copy of a_tuple, differing only in the sec-
ond element, as illustrated in figure 2.2.

Both tuples reference variables a and c,
and whatever is in those variables is shared
(and not duplicated) between both tuples.
new_tuple is a shallow copy of the original
a_tuple.

What happens if you rebind a variable?
In this case, after rebinding, the variable

a_tuple references another memory loca-
tion. The old location of a_tuple isn’t acces-
sible and is available for garbage collection. Figure 2.2 Modifying a tuple creates a shallow

copy of it.

 39Understanding the type system

The same holds for the variable b referenced by the old version of the tuple, as illustrated in
figure 2.3.

Keep in mind that tuples are always copied, but the copying is shallow. Lists, however,
have different properties.

modifying lists

When you modify the nth element of a list, the new version will contain shallow copies
of the first n – 1 elements, followed by the modified element. After that, the tails are
completely shared, as illustrated in figure 2.4 .

This is precisely why adding elements to the end of a list is expensive. To append a
new element at the tail, you have to iterate and (shallow) copy the entire list.

In contrast, pushing an element to the top of a list doesn’t copy anything, which
makes it the least expensive operation, as illustrated in figure 2.5. In this case, the new
list’s tail is the previous list. This is often used in Elixir programs when iteratively build-
ing lists. In such cases, it’s best to push consecutive elements to the top, and then, after
the list is constructed, reverse the entire list in a single pass.

Figure 2.3 Rebinding a tuple makes
the old data garbage-collectible.

Figure 2.4 Modifying a list

40 chapter 2 Building blocks

benefits

Immutability may seem strange, and you may wonder about its purpose. There are two
important benefits of immutability: side-effect-free functions and data consistency.

Given that data can’t be mutated, you can treat most functions as side-effect-free
transformations. They take an input and return a result. More complicated programs
are written by combining simpler transformations:

def complex_transformation(data) do
 data
 |> transformation_1(...)
 |> transformation_2(...)
 ...
 |> transformation_n(...)
end

This code relies on the previously mentioned pipeline operator that chains two functions
together, feeding the result of the previous call as the first argument of the next call.

Side-effect-free functions are easier to analyze, understand, and test. They have
well-defined inputs and outputs. When you call a function, you can be sure that no vari-
able will be implicitly changed. Whatever the function does, you must take its result and
do something with it.

NOTE Elixir isn’t a pure functional language, so functions may still have side
effects. For example, a function may write something to a file and issue a data-
base or network call, which causes it to produce a side effect. But you can be
certain that a function won’t modify the value of any variable.

The implicit consequence of immutable data is the ability to hold all versions of a data
structure in the program. This, in turn, makes it possible to perform atomic in-memory
operations. Let’s say you have a function that performs a series of transformations:

def complex_transformation(original_data) do
 original_data
 |> transformation_1(...)
 |> transformation_2(...)
 ...
end

Figure 2.5 Pushing a new element to the top
of the list

 41Understanding the type system

This code starts with the original data and passes it through a series of transforma-
tions, each one returning the new, modified version of the input. If something goes
wrong, the function complex_transformation can return original_data, which
will effectively roll back all of the transformations performed in the function. This
is possible because none of the transformations modifies the memory occupied by
original_data.

This concludes our look at basic immutability theory. It may still be unclear how to
properly use immutable data in more complex programs. This topic will be revisited in
chapter 4, where we’ll deal with higher-level data structures.

2.4.6 Maps

A map is a key/value store, where keys and values can be any term. Maps have dual
usage in Elixir. They’re used to power dynamically sized key/value structures, but
they’re also used to manage simple records — a couple of well-defined named fields
bundled together. Let’s take a look at these cases separately.

dynamically sized maps

An empty map can be created with the %{} construct:

iex(1)> empty_map = %{}

A map with some values can be created with the following syntax:

iex(2)> squares = %{1 => 1, 2 => 4, 3 => 9}

You can also prepopulate a map with the Map.new/1 function. The function takes an
enumerable where each element is a tuple of size two (a pair):

iex(3)> squares = Map.new([{1, 1}, {2, 4}, {3, 9}])
%{1 => 1, 2 => 4, 3 => 9}

To fetch a value at the given key, you can use the following approach:

iex(4)> squares[2]
4

iex(5)> squares[4]
nil

In the second expression, you get a nil because no value is associated with the given key.
A similar result can be obtained with Map.get/3. On the surface, this function

behaves like []. But Map.get/3 allows you to specify the default value, which is returned
if the key isn’t found. If this default isn’t provided, nil will be returned:

iex(6)> Map.get(squares, 2)
4

iex(7)> Map.get(squares, 4)
nil

iex(8)> Map.get(squares, 4, :not_found)
:not_found

42 chapter 2 Building blocks

Notice that in the last expression you don’t precisely know whether there’s no value
under the given key, or if the value is :not_found. If you want to precisely distinguish
between these cases, you can use Map.fetch/2:

iex(9)> Map.fetch(squares, 2)
{:ok, 4}

iex(10)> Map.fetch(squares, 4)
:error

As you can see, in the successful case you’ll get a value in the shape of {:ok, value}.
This format makes it possible to precisely detect the case when the key isn’t present.

Sometimes you want to proceed only if the key is in the map, and raise an exception
otherwise. This can be done with the Map.fetch!/2 function:

iex(11)> Map.fetch!(squares, 2)
4

iex(12)> Map.fetch!(squares, 4)
** (KeyError) key 4 not found in: %{1 => 1, 2 => 4, 3 => 9}
 (stdlib) :maps.get(4, %{1 => 1, 2 => 4, 3 => 9})

To store a new element to the map, you can use Map.put/3:

iex(13)> squares = Map.put(squares, 4, 16)
%{1 => 1, 2 => 4, 3 => 9, 4 => 16}

iex(14)> squares[4]
16

There are a bunch of other helpful functions in the Map module, such as Map.update/4
or Map.delete/2. You can look into the official module documentation at https://
hexdocs.pm/elixir/Map.html. In addition, a map is also enumerable, which means
that all the functions from the Enum module can work with maps.

structured data

Maps are the go-to type for managing key/value data structures of an arbitrary size. But
they’re also frequently used in Elixir to combine a couple of fields into a single struc-
ture. This use case somewhat overlaps that of tuples, but it provides the advantage of
allowing you to access fields by name.

Let’s look at an example. In the following snippet, you’ll create a map that represents
a single person:

iex(1)> bob = %{:name => "Bob", :age => 25, :works_at => "Initech"}

If keys are atoms, you can write this so it’s slightly shorter:

iex(2)> bob = %{name: "Bob", age: 25, works_at: "Initech"}

To retrieve a field, you can use the [] operator:

iex(3)> bob[:works_at]
"Initech"

iex(4)> bob[:non_existent_field]
nil

https://hexdocs.pm/elixir/Map.html
https://hexdocs.pm/elixir/Map.html

 43Understanding the type system

Atom keys again receive special syntax treatment. The following snippet fetches a value
stored under the :age key:

iex(5)> bob.age
25

With this syntax you’ll get an error if you try to fetch a nonexistent field:

iex(6)> bob.non_existent_field
** (KeyError) key :non_existent_field not found

To change a field value, you can use the following syntax:

iex(7)> next_years_bob = %{bob | age: 26}
%{age: 26, name: "Bob", works_at: "Initech"}

This syntax can be used to change multiple attributes as well:

iex(8)> %{bob | age: 26, works_at: "Initrode"}
%{age: 26, name: "Bob", works_at: "Initrode"}

But you can only modify values that already exist in the map. This makes the update
syntax a perfect choice for powering maps that represent structures. If you mistype the
field name, you’ll get an immediate runtime error:

iex(9)> %{bob | works_in: "Initech"}
** (KeyError) key :works_in not found

Using maps to hold structured data is a frequent pattern in Elixir. The common pat-
tern is to provide all the fields while creating the map, using atoms as keys. If the value
for some field isn’t available, you can set it to nil. Such a map, then, always has all
the fields. Using the update syntax, you can modify the map with the update syntax.
Finally, to fetch a desired field, you can use the a_map.some_field syntax.

Of course, such data is still a map, so you can also use the functions from the Map
module, such as Map.put/3, or Map.fetch/2. But these functions are usually suitable
for the cases where maps are used to manage a dynamically sized key/value structure.

2.4.7 Binaries and bitstrings

A binary is a chunk of bytes. You can create binaries by enclosing the byte sequence
between << and >> operators. The following snippet creates a 3-byte binary:

iex(1)> <<1, 2, 3>>
<<1, 2, 3>>

Each number represents the value of the corresponding byte. If you provide a byte
value bigger than 255, it’s truncated to the byte size:

iex(2)> <<256>>
<<0>>

iex(3)> <<257>>
<<1>>

iex(4)> <<512>>
<<0>>

44 chapter 2 Building blocks

You can specify the size of each value and thus tell the compiler how many bits to use
for that particular value:

iex(5)> <<257::16>>
<<1, 1>>

This expression places the number 257 into 16 bits of consecutive memory space. The
output indicates that you use 2 bytes, both having a value of 1. This is due to the binary
representation of 257, which in 16-bit form is written 00000001 00000001.

The size specifier is in bits and need not be a multiplier of 8. The following snippet
creates a binary by combining two 4-bit values:

iex(6)> <<1::4, 15::4>>
<<31>>

The resulting value has 1 byte and is represented in the output using the normalized
form 31 (0001 1111).

If the total size of all the values isn’t a multiple of 8, the binary is called a bitstring — a
sequence of bits:

iex(7)> <<1::1, 0::1, 1::1>>
<<5::size(3)>>

You can also concatenate two binaries or bitstrings with the operator <>:

iex(8)> <<1, 2>> <> <<3, 4>>
<<1, 2, 3, 4>>

There’s much more that can be done with binaries, but for the moment we’ll put them
aside. The most important thing you need to know about binaries is that they’re con-
secutive sequences of bytes. Binaries play an important role in support for strings.

2.4.8 Strings

It may come as a surprise, but Elixir doesn’t have a dedicated string type. Instead,
strings are represented by using either a binary or a list type.

binary strings

The most common way to use strings is to specify them with the familiar double-quotes
syntax:

iex(1)> "This is a string"
"This is a string"

The result is printed as a string, but underneath it’s a binary — nothing more than a
consecutive sequence of bytes.

Elixir provides support for embedded string expressions. You can use #{} to place an
Elixir expression in a string constant. The expression is immediately evaluated, and its
string representation is placed at the corresponding location in the string:

iex(2)> "Embedded expression: #{3 + 0.14}"
"Embedded expression: 3.14"

Classical \ escaping works as you’re used to:

iex(3)> "\r \n \" \\"

 45Understanding the type system

And strings don’t have to finish on the same line:

iex(4)> "
 This is
 a multiline string
 "

Elixir provides another syntax for declaring strings, so-called sigils. In this approach,
you enclose the string inside ~s():

iex(5)> ~s(This is also a string)
"This is also a string"

Sigils can be useful if you want to include quotes in a string:

iex(6)> ~s("Do... or do not. There is no try." -Master Yoda)
"\"Do... or do not. There is no try.\" -Master Yoda"

There’s also an uppercase version ~S that doesn’t handle interpolation or escape char-
acters (\):

iex(7)> ~S(Not interpolated #{3 + 0.14})
"Not interpolated \#{3 + 0.14}"

iex(8)> ~S(Not escaped \n)
"Not escaped \\n"

Finally, there’s a special heredocs syntax, which supports better formatting for multiline
strings. Heredocs strings start with a triple double-quote. The ending triple double-quote
must be on its own line:

iex(9)> """
 Heredoc must end on its own line """
 """
"Heredoc must end on its own line \"\"\"\n"

Because strings are binaries, you can concatenate them with the <> operator:

iex(10)> "String" <> " " <> "concatenation"
"String concatenation"

Many helper functions are available for working with binary strings. Most of them
reside in the String module (https://hexdocs.pm/elixir/String.html).

character lists

The alternative way of representing strings is to use single-quote syntax:

iex(1)> 'ABC'
'ABC'

This creates a character list, which is essentially a list of integers in which each element
represents a single character.

The previous result is exactly the same as if you manually construct the list of integers:

iex(2)> [65, 66, 67]
'ABC'

https://hexdocs.pm/elixir/String.html

46 chapter 2 Building blocks

As you can see, even the runtime doesn’t distinguish between a list of integers and a
character list. When a list consists of integers that represent printable characters, it’s
printed to the screen in the string form.

Just like with binary strings, there are syntax counterparts for various definitions of
character lists:

iex(3)> 'Interpolation: #{3 + 0.14}'
'Interpolation: 3.14'

iex(4)> ~c(Character list sigil)
'Character list sigil'

iex(5)> ~C(Unescaped sigil #{3 + 0.14})
'Unescaped sigil \#{3 + 0.14}'

iex(6)> '''
 Heredoc
 '''
'Heredoc\n'

Character lists aren’t compatible with binary strings. Most of the operations from the
String module won’t work with character lists. In general, you should prefer binary
strings over character lists. Occasionally, some functions may work only with character
lists. This mostly happens with pure Erlang libraries. In this case, you can convert a
binary string to a character list version using the String.to_charlist/1 function:

iex(7)> String.to_charlist("ABC")
'ABC'

To convert a character list to a binary string, you can use List.to_string/1.
In general, you should prefer binary strings as much as possible, using character lists

only when some third-party library (most often written in pure Erlang) requires it.

2.4.9 First-class functions

In Elixir, a function is a first-class citizen, which means it can be assigned to a variable.
Here, assigning a function to a variable doesn’t mean calling the function and storing
its result to a variable. Instead, the function definition itself is assigned, and you can
use the variable to call the function.

Let’s look at some examples. To create a function variable, you can use the fn
construct:

iex(1)> square = fn x ->
 x * x
 end

The variable square now contains a function that computes the square of a number.
Because the function isn’t bound to a global name, it’s also called an anonymous func-
tion or a lambda.

 47Understanding the type system

Notice that the list of arguments isn’t enclosed in parentheses. Technically, you can
use parentheses here, but the prevalent convention, also enforced by the Elixir format-
ter, is to omit parentheses. In contrast, a list of arguments to a named function should
be enclosed in parentheses. At first glance, this looks inconsistent, but there’s a good
reason for this convention, which will be explained in chapter 3.

You can call this function by specifying the variable name followed by a dot (.) and
the arguments:

iex(2)> square.(5)
25

NOTE You may wonder why the dot operator is needed here. The motivation
behind the dot operator is to make the code more explicit. When you encoun-
ter a square.(5) expression in the source code, you know an anonymous
function is being invoked. In contrast, the expression square(5) is invoking a
named function defined somewhere else in the module. Without the dot oper-
ator, you’d have to parse the surrounding code to understand whether you’re
calling a named or an anonymous function.

Because functions can be stored in a variable, they can be passed as arguments to other
functions. This is often used to allow clients to parameterize generic logic. For exam-
ple, the function Enum.each/2 implements the generic iteration — it can iterate over
anything enumerable, such as lists. The function Enum.each/2 takes two arguments: an
enumerable and a one-arity lambda (an anonymous function that accepts one argu-
ment). It iterates through the enumerable and calls the lambda for each element. The
clients provide the lambda to specify what they want to do with each element.

The following snippet uses Enum.each to print each value of a list to the screen:

iex(3)> print_element = fn x -> IO.puts(x) end
iex(4)> Enum.each(
 [1, 2, 3],
 print_element
)
1
2
3

:ok

Of course, you don’t need a temp variable to pass the lambda to Enum.each:

iex(5)> Enum.each(
 [1, 2, 3],
 fn x -> IO.puts(x) end
)
1
2
3

 Defines the lambda

 Passes the lambda to Enum.each

 Output printed by the lambda

 Return value of Enum.each

 Passes the lambda directly

48 chapter 2 Building blocks

Notice how the lambda just forwards all arguments to IO.puts, doing no other mean-
ingful work. For such cases, Elixir makes it possible to directly reference the function
and have a more compact lambda definition. Instead of writing fn x → IO.puts(x)
end, you can write &IO.puts/1.

The & operator, also known as the capture operator, takes the full function qualifier —
a module name, a function name, and an arity — and turns that function into a lambda
that can be assigned to a variable. You can use the capture operator to simplify the call
to Enum.each:

iex(6)> Enum.each(
 [1, 2, 3],
 &IO.puts/1
)

The capture operator can also be used to shorten the lambda definition, making it
possible to omit explicit argument naming. For example, you can turn this definition

iex(7)> lambda = fn x, y, z -> x * y + z end

into a more compact form:

iex(8)> lambda = &(&1 * &2 + &3)

This snippet creates a three-arity lambda. Each argument is referred to via the &n place-
holder, which identifies the nth argument of the function. You can call this lambda like
any other:

iex(9)> lambda.(2, 3, 4)
10

The return value 10 amounts to 2 * 3 + 4, as specified in the lambda definition.

closures

A lambda can reference any variable from the outside scope:

iex(1)> outside_var = 5
5

iex(2)> my_lambda = fn ->
 IO.puts(outside_var)
 end

iex(3)> my_lambda.()
5

As long as you hold the reference to my_lambda, the variable outside_var is also acces-
sible. This is also known as closure : by holding a reference to a lambda, you indirectly
hold a reference to all variables it uses, even if those variables are from the external
scope.

 Passes the lambda that delegates to IO.puts

 Lambda references a variable from the outside scope

 49Understanding the type system

A closure always captures a specific memory location. Rebinding a variable doesn’t
affect the previously defined lambda that references the same symbolic name:

iex(1)> outside_var = 5
iex(2)> lambda = fn -> IO.puts(outside_var) end
iex(3)> outside_var = 6
iex(4)> lambda.()
5

The preceding code illustrates another important point. Normally, after you have
rebound outside_var to the value 6, the original memory location would be eligible
for garbage collection. But because the lambda function captures the original location
(the one that holds the number 5), and you’re still referencing that lambda, the origi-
nal location isn’t available for garbage collection.

2.4.10 Other built-in types

There are a couple of types I still haven’t presented. We won’t deal with them in depth,
but it’s worth mentioning them for the sake of completeness:

¡	A reference is an almost unique piece of information in a BEAM instance. It’s gen-
erated by calling Kernel.make_ref/0 (or make_ref). According to the Elixir
documentation, a reference will reoccur after approximately 2^82 calls. But if
you restart a BEAM instance, reference generation starts from the beginning, so
its uniqueness is guaranteed only during the lifetime of the BEAM instance.

¡	A pid (process identifier) is used to identify an Erlang process. Pids are import-
ant when cooperating between concurrent tasks, and you’ll learn about them in
chapter 5 when we deal with Erlang processes.

¡	The port identifier is important when using ports. It’s a mechanism used in Erlang
to talk to the outside world. File I/O and communication with external programs
are done through ports. Ports are outside the scope of this book.

With that, we’ve covered all the basic data types. As you can see, Elixir has a simple type
system consisting of only a handful of data types.

Of course, higher-level types are also available, which build on these basic types to
provide additional functionality. Let’s look at some of the most important ones that
ship with Elixir.

Lambda captures the current
location of outside_var

 Rebinding doesn’t affect the closure.

Proof that the closure
isn’t affected

50 chapter 2 Building blocks

2.4.11 Higher-level types

The built-in types just mentioned are inherited from the Erlang world. After all, Elixir
code runs on BEAM, so its type system is heavily influenced by the Erlang foundations.
But on top of these basic types, Elixir provides some higher-level abstractions. The
ones most frequently used are Range, Keyword, MapSet, Date, Time, NaiveDateTime,
and DateTime. Let’s examine each of them.

range

A range is an abstraction that allows you to represent a range of numbers. Elixir even
provides a special syntax for defining ranges:

iex(1)> range = 1..2

You can ask whether a number falls in the range by using the in operator:

iex(2)> 2 in range
true

iex(3)> -1 in range
false

Ranges are enumerable, so functions from the Enum module know how to work with
them. Earlier you met Enum.each/2, which iterates through an enumerable. The
following example uses this function with a range to print the first three natural
numbers:

iex(4)> Enum.each(
 1..3,
 &IO.puts/1
)

1
2
3

It’s important to realize that a range isn’t a special type. Internally, it’s represented as
a map that contains range boundaries. You shouldn’t rely on this knowledge, because
the range representation is an implementation detail, but it’s good to be aware that
the memory footprint of a range is very small, regardless of the size. A million-number
range is still just a small map.

keyword lists

A keyword list is a special case of a list, where each element is a two-element tuple, and
the first element of each tuple is an atom. The second element can be of any type. Let’s
look at an example:

iex(1)> days = [{:monday, 1}, {:tuesday, 2}, {:wednesday, 3}]

Elixir allows a slightly more elegant syntax for defining a keyword list:

iex(2)> days = [monday: 1, tuesday: 2, wednesday: 3]

 51Understanding the type system

Both constructs yield the same result: a list of pairs. Arguably, the second one is a bit
more elegant.

Keyword lists are often used for small-size key/value structures, where keys are atoms.
Many useful functions are available in the Keyword module (https://hexdocs.pm/
elixir/Keyword.html). For example, you can use Keyword.get/2 to fetch the value for
a key:

iex(3)> Keyword.get(days, :monday)
1

iex(4)> Keyword.get(days, :noday)
nil

Just as with maps, you can use the operator [] to fetch a value:

iex(5)> days[:tuesday]
2

Don’t let that fool you, though. Because you’re dealing with a list, the complexity of a
lookup operation is O(n).

Keyword lists are most often useful for allowing clients to pass an arbitrary number of
optional arguments. For example, the result of the function IO.inspect, which prints
a string representation of a term to the console, can be controlled by providing addi-
tional options through a keyword list:

iex(6)> IO.inspect([100, 200, 300])
[100, 200, 300]

iex(7)> IO.inspect([100, 200, 300], [width: 3])
[100,
 200,
 300]

In fact, this pattern is so frequent that Elixir allows you to omit the square brackets if
the last argument is a keyword list:

iex(8)> IO.inspect([100, 200, 300], width: 3, limit: 1)
[100,
 ...]

Notice in this example that you’re still sending two arguments to IO.inspect/2: a
number and a two-element keyword list. But this snippet demonstrates how to simulate
optional arguments. You can accept a keyword list as the last argument of your func-
tion, and make that argument default to an empty list:

def my_fun(arg1, arg2, opts \\ []) do
 ...
end

Your clients can then pass options via the last argument. Of course, it’s up to you to
check the contents in the opts argument and perform some conditional logic depend-
ing on what the caller has sent you.

 Default behavior

 Passes additional options

https://hexdocs.pm/elixir/Keyword.html
https://hexdocs.pm/elixir/Keyword.html

52 chapter 2 Building blocks

You may wonder if it’s better to use maps instead of keywords for optional arguments.
A keyword list can contain multiple values for the same key. In addition, you can con-
trol the ordering of keyword list elements — something that isn’t possible with maps.
Finally, many functions in standard libraries of Elixir and Erlang take their options as
keyword lists. It’s best to stick to the existing convention and accept optional parame-
ters via keyword lists.

mapset

A MapSet is the implementation of a set — a store of unique values, where a value can
be of any type.

Let’s look at some examples:

iex(1)> days = MapSet.new([:monday, :tuesday, :wednesday])
#MapSet<[:monday, :tuesday, :wednesday]>

iex(2)> MapSet.member?(days, :monday)
true

iex(3)> MapSet.member?(days, :noday)
false

iex(4)> days = MapSet.put(days, :thursday)
#MapSet<[:monday, :thursday, :tuesday, :wednesday]>

As you can see, you can manipulate the set using the function from the MapSet module.
For a detailed reference, refer to the official documentation at https://hexdocs.pm/
elixir/MapSet.html.

A MapSet is also an enumerable, so you can pass it to functions from the Enum module:

iex(5)> Enum.each(days, &IO.puts/1)
monday
thursday
tuesday
wednesday

As you can tell from the output, MapSet doesn’t preserve the ordering of the items.

times and dates

Elixir has a couple of modules for working with date and time types: Date, Time, Date-
Time, and NaiveDateTime.

A date can be created with the ~D sigil. The following example creates a date that
represents January 31, 2018:

iex(1)> date = ~D[2018-01-31]
~D[2018-01-31]

 Creates a MapSet instance

 Verifies the presence of the existing element

 Verifies the presence of a non-existing element

 Puts a new element to the MapSet

https://hexdocs.pm/elixir/MapSet.html
https://hexdocs.pm/elixir/MapSet.html

 53Understanding the type system

Once you’ve created the date, you can retrieve its individual fields:

iex(2)> date.year
2018

iex(3)> date.month
1

Similarly, you can represent a time with the ~T sigil, by providing hours, minutes, sec-
onds, and microseconds:

iex(1)> time = ~T[11:59:12.00007]

iex(2)> time.hour
11

iex(3)> time.minute
59

There are also some useful functions available in the modules Date (https://hexdocs.pm/
elixir/Date.html) and Time (https://hexdocs.pm/elixir/Time.html).

In addition to these two types, you can also work with datetimes using the NaiveDate-
Time and DateTime modules. The naive version can be created with the ~N sigil:

iex(1)> naive_datetime = ~N[2018-01-31 11:59:12.000007]

iex(2)> naive_datetime.year
2018

iex(3)> naive_datetime.hour
11

The DateTime module can be used to work with datetimes in some timezone. Unlike
with other types, no sigil is available. Instead, you can create a datetime by using Date-
Time functions:

iex(4)> datetime = DateTime.from_naive!(naive_datetime, "Etc/UTC")

iex(5)> datetime.year
2018

iex(6)> datetime.hour
11

iex(7)> datetime.time_zone
"Etc/UTC"

You can refer to the reference documentation, available at https://hexdocs.pm/
elixir/NaiveDateTime.html and https://hexdocs.pm/elixir/DateTime.html, for more
details on working with these types.

https://hexdocs.pm/elixir/Date.html
https://hexdocs.pm/elixir/Date.html
https://hexdocs.pm/elixir/Time.html
https://hexdocs.pm/elixir/NaiveDateTime.html
https://hexdocs.pm/elixir/NaiveDateTime.html
https://hexdocs.pm/elixir/DateTime.html

54 chapter 2 Building blocks

2.4.12 IO lists

An IO list is a special sort of list that’s useful for incrementally building output that will
be forwarded to an I/O device, such as a network or a file. Each element of an IO list
must be one of the following:

¡	An integer in the range of 0 to 255
¡	A binary
¡	An IO list

In other words, an IO list is a deeply nested structure in which leaf elements are plain
bytes (or binaries, which are again a sequence of bytes). For example, here’s "Hello
world" represented as a convoluted IO list:

iex(1)> iolist = [[['H', 'e'], "llo,"], " worl", "d!"]

Notice how you can combine character lists and binary strings into a deeply nested list.
Many I/O functions can work directly and efficiently with such data. For example,

you can print this structure to the screen:

iex(2)> IO.puts(iolist)
Hello, world!

Under the hood, the structure is flattened, and you can see the human-readable out-
put. You’ll get the same effect if you send an IO list to a file or a network socket.

IO lists are useful when you need to incrementally build a stream of bytes. Lists
usually aren’t good in this case, because appending to a list is an O(n) operation. In
contrast, appending to an IO list is O(1), because you can use nesting. Here’s a demon-
stration of this technique:

iex(3)> iolist = []
 iolist = [iolist, "This"]
 iolist = [iolist, " is"]
 iolist = [iolist, " an"]
 iolist = [iolist, " IO list."]

[[[[[], "This"], " is"], " an"], " IO list."]

Here, you append to an IO list by creating a new list with two elements: a previous ver-
sion of the IO list and the suffix that’s appended. Each such operation is O(1), so this is
performant. And, of course, you can send this data to an IO function:

iex(4)> IO.puts(iolist)
This is an IO list.

This concludes our initial tour of the type system. We’ve covered most of the basics,
and we’ll expand on this theory throughout the book as the need arises. Next, it’s time
to learn a bit about Elixir operators.

 Initializes an IO list

 Multiple appends to an IO list

 Final IO list

 55Operators

2.5 Operators
You’ve been using various operators throughout this chapter, and in this section we’ll
take a systematic look at the ones most commonly used in Elixir. Most of the operators
are defined in the Kernel module, and you can refer to the module documentation for
a detailed description.

Let’s start with arithmetic operators. These include the standard +, -, *, and /, and
they work mostly as you’d expect, with the exception that the division operator always
returns a float, as explained earlier in this chapter when we were dealing with numbers.

The comparison operators are more or less similar to what you’re used to. They’re
listed in table 2.1.

Table 2.1 Comparison operators

Operator Description

===, !== Strict equality/inequality

==, != Weak equality/inequality

<, >, ≤, ≥ Less than, greater than, less than or equal, greater than or equal

The only thing we need to discuss here is the difference between strict and weak equal-
ity. This is relevant only when comparing integers to floats:

iex(1)> 1 == 1.0
true

iex(2)> 1 === 1.0
false

Logical operators work on Boolean atoms. You saw them earlier in the discussion of
atoms, but I’ll repeat them once more: and , or, and not.

Unlike logical operators, short-circuit operators work with the concept of truth-
ness: the atoms false and nil are treated as falsy, and everything else is treated as
truthy. The && operator returns the second expression only if the first one isn’t falsy.
The || operator returns the first expression if it’s truthy; otherwise it returns the sec-
ond expression. The unary operator ! returns false if the value is truthy; otherwise it
returns true.

The operators presented here aren’t the only ones available (for example, you’ve
also seen the pipeline operator |>). But these are the most common ones, so it was
worth mentioning them in one place.

 Weak equality

 Strict equality

56 chapter 2 Building blocks

Many operators are functions
It’s worth noting that many operators in Elixir are actually functions. For example, instead
of calling a+b , you can call Kernel.+(a,b). Of course, no one would ever want to write
this kind of code, but operator functions have a benefit when turned into anonymous
functions. For example, you can create a two-arity lambda that sums two numbers by
calling &Kernel.+/2 or the shorter &+/2. Such lambdas can then be used with various
enumeration and stream functions, as I’ll explain in chapter 3.

We’ve almost completed our initial tour of the language. One thing remains: Elixir
macros.

2.6 Macros
Macros are arguably one of the most important features Elixir brings to the table,
compared to plain Erlang. They make it possible to perform powerful code transfor-
mations in compile time, thus reducing boilerplate and providing elegant, mini-DSL
constructs.

Macros are a fairly complex subject, and it would take a small book to treat them
extensively. Because this book is more oriented toward runtime and BEAM, and mac-
ros are a somewhat advanced feature that should be used sparingly, I won’t provide a
detailed treatment. But you should have a general idea of how macros work because
many Elixir features are powered by them.

A macro consists of Elixir code that can change the semantics of the input code. A
macro is always called at compile time; it receives the parsed representation of the input
Elixir code, and it has the opportunity to return an alternative version of that code.

Let’s clear this up with an example. unless (an equivalent of if not) is a simple
macro provided by Elixir:

unless some_expression do
 block_1
else
 block_2
end

unless isn’t a special keyword. It’s a macro (meaning an Elixir function) that trans-
forms the input code into something like this:

if some_expression do
 block_2
else
 block_1
end

Such a transformation isn’t possible with C-style macros, because the code of the
expression can be arbitrarily complex and nested in multiple parentheses. But in
Elixir macros (which are heavily inspired by Lisp), you already work on a parsed

 57Understanding the runtime

source representation, so you’ll have access to the expression and both blocks in sep-
arate variables.

The end effect is that many parts of Elixir are written in Elixir with the help of mac-
ros. This includes the unless and if constructs, and also defmodule and def. Whereas
other languages usually use keywords for such features, in Elixir they’re built on top of
a much smaller language core.

The main point to take away is that macros are compile-time code transformers.
Whenever I say that something is a macro, the underlying implication is that it runs at
compile time and produces alternative code.

Special forms
The Elixir compiler treats some language constructs in a special way. Such constructs are
called special forms (https://hexdocs.pm/elixir/Kernel.SpecialForms.html). Some exam-
ples include the capture syntax &(…), for comprehension (presented in chapter 3),
receive construct (chapter 5), and try blocks (chapter 8).

For details, you may want to look at the official meta-programming guide (https://
elixir-lang.org/getting-started/meta/quote-and-unquote.html). Meanwhile, we’re done
with our initial tour of the Elixir language. But before we finish this chapter, we should
discuss some important aspects of the underlying runtime.

2.7 Understanding the runtime
As has been mentioned, the Elixir runtime is a BEAM instance. Once the compiling is
done and the system is started, Erlang takes control. It’s important to be familiar with
some details of the virtual machine so you can understand how your systems work.

First, let’s look at the significance of modules in the runtime.

2.7.1 Modules and functions in the runtime

Regardless of how you start the runtime, an OS process for the BEAM instance is started,
and everything runs inside that process. This is true even when you’re using the iex
shell. If you need to find this OS process, you can look it up under the name beam.

Once the system is started, you run some code, typically by calling functions from
modules. How does the runtime access the code? The VM keeps track of all modules
loaded in memory. When you call a function from a module, BEAM first checks whether
the module is loaded. If it is, the code of the corresponding function is executed. Oth-
erwise the VM tries to find the compiled module file — the bytecode — on the disk and
then load it and execute the function.

NOTE The previous description reveals that each compiled module resides in
a separate file. A compiled module file has the extension .beam (for Bogdan/
Björn’s Erlang Abstract Machine). The name of the file corresponds to the
module name.

https://hexdocs.pm/elixir/Kernel.SpecialForms.html
https://elixir-lang.org/getting-started/meta/quote-and-unquote.html
https://elixir-lang.org/getting-started/meta/quote-and-unquote.html

58 chapter 2 Building blocks

module names and atoms

Let’s recall how modules are defined:

defmodule Geometry do
 ...
end

Also recall from the discussion about atoms that Geometry is an alias that corresponds
to :"Elixir.Geometry", as demonstrated in the following snippet:

iex(1)> Geometry == :"Elixir.Geometry"
true

This isn’t an accident. When you compile the source containing the Geometry module,
the file generated on the disk is named Elixir.Geometry.beam, regardless of the name
of the input source file. In fact, if multiple modules are defined in a single source file,
the compiler will produce multiple .beam files that correspond to those modules. You
can try this by calling the Elixir compiler (elixirc) from the command line

$ elixirc source.ex

where the file source.ex defines a couple of modules. Assuming there are no syntax
errors, you’ll see multiple .beam files generated on the disk.

In the runtime, module names are aliases, and as I said, aliases are atoms. The first
time you call the function of a module, BEAM tries to find the corresponding file on the
disk. The VM looks for the file in the current folder and then in the code paths.

When you start BEAM with Elixir tools (such as iex), some code paths are predefined
for you. You can add additional code paths by providing the -pa switch:

$ iex -pa my/code/path -pa another/code/path

You can check which code paths are used at runtime by calling the Erlang function
:code.get_path.

If the module is loaded, the runtime doesn’t search for it on the disk. This can be
used when starting the shell, to auto-load modules:

$ iex my_source.ex

This command compiles the source file and then immediately loads all generated
modules. Notice that in this case, .beam files aren’t saved to disk. The iex tool per-
forms an in-memory compilation.

Similarly, you can define modules in the shell:

iex(1)> defmodule MyModule do
 def my_fun, do: :ok
 end

iex(2)> MyModule.my_fun
:ok

Again, the bytecode isn’t saved to the disk in this case.

In-memory bytecode generation
and loading of a module

 59Understanding the runtime

pure erlang modules

You’ve already seen how to call a function from a pure (non-Elixir) Erlang module.
Let’s talk a bit about this syntax:

:code.get_path

In Erlang, modules also correspond to atoms. Somewhere on the disk is a file named
code.beam that contains the compiled code of the :code module. Erlang uses simple
filenames, which is the reason for this call syntax. But the rules are the same as with
Elixir modules. In fact, Elixir modules are nothing more than Erlang modules with
fancier names (such as Elixir.MyModule).

You can create modules with simple names in Elixir (although this isn’t recommended):

defmodule :my_module do
 ...
end

Compiling the source file that contains such a definition will generate my_module.
beam on the disk.

The important thing to remember from this discussion is that at runtime, module
names are atoms. And somewhere on the disk is an xyz.beam file, where xyz is the expanded
form of an alias (such as Elixir.MyModule when the module is named MyModule).

dynamically calling functions

Somewhat related to this discussion is the ability to dynamically call functions at run-
time. This can be done with the help of the Kernel.apply/3 function:

iex(1)> apply(IO, :puts, ["Dynamic function call."])
Dynamic function call.

Kernel.apply/3 receives three arguments: the module atom, the function atom, and
the list of arguments passed to the function. Together, these three arguments, often
called MFA (for module, function, arguments), contain all the information needed to
call an exported (public) function. Kernel.apply/3 can be useful when you need to
make a runtime decision about which function to call.

2.7.2 Starting the runtime

There are multiple ways of starting BEAM. So far, you’ve been using iex, and you’ll
continue to do so for some time. But let’s quickly look at all the possible ways to start
the runtime.

interactive shell

When you start the shell, the BEAM instance is started underneath, and the Elixir shell
takes control. The shell takes the input, interprets it, and prints the result.

Calls the get_path function of
the pure Erlang :code module

60 chapter 2 Building blocks

It’s important to be aware that input is interpreted, because that means it won’t be
as performant as the compiled code. This is generally fine, because you use the shell
only to experiment with the language. But you shouldn’t try to measure performance
directly from iex.

On the other hand, modules are always compiled. Even if you define a module in the
shell, it will be compiled and loaded in memory, so there will be no performance hit.

running scripts

The elixir command can be used to run a single Elixir source file. Here’s the basic
syntax:

$ elixir my_source.ex

When you start this, the following actions take place:

1 The BEAM instance is started.

2 The file my_source.ex is compiled in memory, and the resulting modules are
loaded to the VM. No .beam file is generated on the disk.

3 Whatever code resides outside of a module is interpreted.

4 Once everything is finished, BEAM is stopped.

This is generally useful for running scripts. In fact, it’s recommended that such a script
have an .exs extension, the trailing “s” indicating that it’s a script.

The following listing shows a simple Elixir script.

Listing 2.5 Elixir script (script.exs)

defmodule MyModule do
 def run do
 IO.puts("Called MyModule.run")
 end
end

MyModule.run

You can execute this script from the command line:

$ elixir script.exs

This call first does the in-memory compilation of the MyModule module and then calls
MyModule.run. After the call to MyModule.run finishes, the BEAM instance is stopped.

If you don’t want a BEAM instance to terminate, you can provide the --no-halt
parameter:

$ elixir --no-halt script.exs

This is most often useful if your main code (outside a module) starts concurrent tasks
that perform all the work. In this situation, your main call finishes as soon as the con-
current tasks are started, and BEAM is immediately terminated (and no work is done).
Providing the --no-halt option keeps the entire system alive and running.

 Code outside of a module is executed immediately.

 61Summary

the mix tool

The mix tool is used to manage projects that are made up of multiple source files.
Whenever you need to build a production-ready system, mix is your best option.

To create a new mix project, you can call mix new project_name from the command
line:

$ mix new my_project

This creates a new folder named my_project containing a couple of subfolders and
files. You can change to the my_project folder and compile the entire project:

$ cd my_project
$ mix compile

$ mix compile
Compiling 1 file (.ex)
Generated my_project app

The compilation goes through all the files from the lib folder and places the resulting
.beam files in the ebin folder.

You can execute various mix commands on the project. For example, the generator
created the module MyProject with the single function hello/0. You can invoke it with
mix run:

$ mix run -e "IO.puts(MyProject.hello())"
world

The generator also create a couple of tests, which can be executed with mix test:

$ mix test
..

Finished in 0.03 seconds
2 tests, 0 failures

Regardless of how you start the mix project, it ensures that the ebin folder (where the
.beam files are placed) is in the load path so the VM can find your modules.

You’ll use mix a lot once you start creating more complex systems. For now, there’s
no need to go into any more detail.

Summary

¡	Elixir code is divided into modules and functions.
¡	Elixir is a dynamic language. The type of a variable is determined by the value it holds.
¡	Data is immutable — it can’t be modified. A function can return the modified

version of the input that resides in another memory location. The modified ver-
sion shares as much memory as possible with the original data.

¡	The most important primitive data types are numbers, atoms, and binaries.
¡	There is no Boolean type. Instead, the atoms true and false are used.
¡	There is no nullability. The atom nil can be used for this purpose.

62 chapter 2 Building blocks

¡	There is no string type. Instead, you can use either binaries (recommended) or
lists (when needed).

¡	The built-in complex types are tuples, lists, and maps. Tuples are used to group
a small, fixed-size number of fields. Lists are used to manage variable-size collec-
tions. A map is a key/value data structure.

¡	Range, keyword lists, MapSet, Date, Time, NaiveDateTime, and DateTime are
abstractions built on top of the existing built-in types.

¡	Functions are first-class citizens.
¡	Module names are atoms (or aliases) that correspond to .beam files on the disk.
¡	There are multiple ways of starting programs: iex, elixir, and the mix tool.

63

3Control flow

This chapter covers
¡	Understanding pattern matching

¡	Working with multiclause functions

¡	Using conditional expressions

¡	Working with loops

Now that you’re familiar with Elixir’s basic building blocks, it’s time to look at some
typical low-level idioms of the language. In this chapter, we’ll deal with conditionals
and loops. As you’ll see, these work differently than in most modern, imperative
languages.

Classical conditional constructs such as if and case are often replaced with mul-
ticlause functions, and there are no classical loop statements such as while. But you
can still solve problems of arbitrary complexity in Elixir, and the resulting code is no
more complicated than a typical OO solution.

All this may sound a bit radical, which is why conditionals and loops receive a
detailed treatment in this chapter. But before we start discussing branching and
looping, you need to learn about the important underlying supporting mechanism:
pattern matching.

64 chapter 3 Control flow

3.1 Pattern matching
As mentioned in chapter 2, the = operator isn’t an assignment. Instead, when I wrote
a = 1, I said variable a was bound to the value 1. The operator = is called the match oper-
ator, and the assignment-like expression is an example of pattern matching.

Pattern matching is an important construct in Elixir. It’s a feature that makes manip-
ulations with complex variables (such as tuples and lists) a lot easier. Less obviously, it
allows you to write elegant, declarative-like conditionals and loops. You’ll see what this
means by the end of the chapter; in this section we’ll look at the basic mechanical work-
ings of pattern matching.

Let’s begin by looking at the match operator.

3.1.1 The match operator

So far, you’ve seen the most basic use of the match operator:

iex(1)> person = {"Bob", 25}

We treated this as something akin to an assignment, but in reality something more
complex is going on here. At runtime, the left side of the = operator is matched to the
right side. The left side is called a pattern, whereas on the right side you have an expres-
sion that evaluates to an Elixir term.

In the example, you match the variable person to the right-side term {"Bob", 25}.
A variable always matches the right-side term, and it becomes bound to the value of that
term. This may seem a bit theoretical, so let’s look at a slightly more complex use of the
match operator that involves tuples.

3.1.2 Matching tuples

The following example demonstrates basic pattern matching of tuples:

iex(1)> {name, age} = {"Bob", 25}

This expression assumes that the right-side term is a tuple of two elements. When
the expression is evaluated, the variables name and age are bound to the corre-
sponding elements of the tuple. You can now verify that these variables are correctly
bound:

iex(2)> name
"Bob"

iex(3)> age
25

This feature is useful when you call a function that returns a tuple and you want to
bind individual elements of that tuple to separate variables. The following exam-
ple calls the Erlang function :calendar.local_time/0 to get the current date and
time:

iex(4)> {date, time} = :calendar.local_time()

 65Pattern matching

The date and time are also tuples, which you can further decompose:

iex(5)> {year, month, day} = date
iex(6)> {hour, minute, second} = time

What happens if the right side doesn’t correspond to the pattern? The match fails, and
an error is raised:

iex(7)> {name, age} = "can't match"
** (MatchError) no match of right hand side value: "can't match"

NOTE We haven’t yet covered the error-handling mechanisms — they’ll be dis-
cussed in chapter 8. For now, suffice it to say that raising an error works some-
what like the classical exception mechanisms in mainstream languages. When
an error is raised, control is immediately transferred to code somewhere up the
call chain, which catches the error (assuming such code exists).

Finally, it’s worth noting that, just like any other expression, the match expression also
returns a value. The result of a match expression is always the right-side term you’re
matching against:

iex(8)> {name, age} = {"Bob", 25}
{"Bob", 25}

Matching isn’t confined to destructuring tuple elements to individual variables. Sur-
prisingly enough, even constants are allowed on the left side of the match expression.

3.1.3 Matching constants

The left-side pattern can also include constants:

iex(1)> 1 = 1
1

Recall that the match operator = tries to match the right-side term to the left-side pat-
tern. In the example, you try to match the pattern 1 to the term 1. Obviously this suc-
ceeds, and the result of the entire expression is the right-side term.

This example doesn’t have much practical benefit, but it illustrates that you can
place constants to the left of =, which proves that = is not an assignment operator.

Constants are much more useful in compound matches. For example, it’s common
to use tuples to group various fields of a record. The following snippet creates a tuple
that holds a person’s name and age:

iex(2)> person = {:person, "Bob", 25}

The first element is a constant atom :person, which you use to denote that this tuple
represents a person. Later you can rely on this knowledge and retrieve individual attri-
butes of the person:

iex(3)> {:person, name, age} = person
{:person, "Bob", 25}

 Match expression

 Result of the match expression

66 chapter 3 Control flow

Here you expect the right-side term to be a three-element tuple, with its first element
having a value of :person. After the match, the remaining elements of the tuple are
bound to the variables name and age, which you can easily verify:

iex(4)> name
"Bob"

iex(5)> age
25

This is a common idiom in Elixir.
Many functions from Elixir and Erlang return either {:ok, result} or {:error,

reason}. For example, imagine that your system relies on a configuration file and
expects it to always be available. You can read the file contents with the help of the
File.read/1 function:

{:ok, contents} = File.read("my_app.config")

In this single line of code, three distinct things happen:

1 An attempt to open and read the file my_app.config takes place.

2 If the attempt succeeds, the file contents are extracted to the variable contents.

3 If the attempt fails, an error is raised. This happens because the result of File.read
is a tuple in the form {:error, reason}, so the match to {:ok, contents} fails.

By using constants in patterns, you tighten the match, making sure some part of the
right side has a specific value.

3.1.4 Variables in patterns

Whenever a variable name exists in the left-side pattern, it always matches the corre-
sponding right-side term. In addition, the variable is bound to the term it matches.

Occasionally we aren’t interested in a value from the right-side term, but we still need
to match on it. For example, let’s say you want to get the current time of day. You can use
the function :calendar.local_time/0, which returns a tuple {date, time}. But you
aren’t interested in a date, so you don’t want to store it to a separate variable. In such
cases, you can use the anonymous variable (_):

iex(1)> {_, time} = :calendar.local_time()

iex(2)> time
{20, 44, 18}

When it comes to matching, the anonymous variable works just like a named variable:
it matches any right-side term. But the value of the term isn’t bound to any variable.

You can also add a descriptive name after the underscore character:

iex(1)> {_date, time} = :calendar.local_time()

The _date is regarded as an anonymous variable, because its name starts with an under-
score. Technically speaking, you could use that variable in the rest of the program, but
the compiler will emit a warning.

 67Pattern matching

Patterns can be arbitrarily nested. Taking the example further, let’s say you only want
to retrieve the current hour of the day:

iex(3)> {_, {hour, _, _}} = :calendar.local_time()

iex(4)> hour
20

A variable can be referenced multiple times in the same pattern. In the following
expressions, you expect an RGB triplet with the same number for each component:

iex(5)> {amount, amount, amount} = {127, 127, 127}
{127, 127, 127}

iex(6)> {amount, amount, amount} = {127, 127, 1}
** (MatchError) no match of right hand side value: {127, 127, 1}

Occasionally, you’ll need to match against the contents of the variable. For this pur-
pose, the pin operator (^) is provided. This is best explained with an example:

iex(7)> expected_name = "Bob"
"Bob"

iex(8)> {^expected_name, _} = {"Bob", 25}
{"Bob", 25}

iex(9)> {^expected_name, _} = {"Alice", 30}
** (MatchError) no match of right hand side value: {"Alice", 30}

Using ^expected_name in patterns says that you expect the value of the variable
expected_name to be in the appropriate position in the right-side term. In this exam-
ple, it would be the same as if you used the hard-coded pattern {"Bob", _}. Therefore,
the first match succeeds, but the second one fails.

Notice that the pin operator doesn’t bind the variable. You expect that the variable is
already bound — in other words, that it has a value — and you try to match against that
value. This technique is used less often and is mostly relevant when you need to con-
struct the pattern at runtime.

3.1.5 Matching lists

List matching works similarly to tuples. The following example decomposes a
three-element list:

iex(1)> [first, second, third] = [1, 2, 3]
[1, 2, 3]

 Matches a tuple with three identical elements

Fails because the tuple
elements aren’t identical

 Matches anything and then binds to the variable expected_name

 Matches to the content of
the variable expected_name

68 chapter 3 Control flow

And of course, the previously mentioned pattern techniques work as well:

[1, second, third] = [1, 2, 3]
[first, first, first] = [1, 1, 1]
[first, second, _] = [1, 2, 3]
[^first, second, _] = [1, 2, 3]

Matching lists is more often done by relying on their recursive nature. Recall from
chapter 2 that each non-empty list is a recursive structure that can be expressed in the
form [head | tail]. You can use pattern matching to put each of these two elements
into separate variables:

iex(3)> [head | tail] = [1, 2, 3]
[1, 2, 3]

iex(4)> head
1

iex(5)> tail
[2, 3]

If you need only one element of the [head, tail] pair, you can use the anonymous
variable. Here’s an inefficient way of calculating the smallest element in the list:

iex(6)> [min | _] = Enum.sort([3,2,1])
iex(7)> min
1

First you sort the list, and then, with the pattern [min | _], you take only the head of
the (sorted) list. Note that this could also be done with the hd function mentioned in
chapter 2. In fact, for this case, hd would be more elegant. The pattern [head | _] is
more useful when pattern-matching function arguments, as you’ll see in section 3.2.

3.1.6 Matching maps

To match a map, the following syntax can be used:

iex(1)> %{name: name, age: age} = %{name: "Bob", age: 25}
%{age: 25, name: "Bob"}

iex(2)> name
"Bob"

iex(3)> age
25

When matching a map, the left-side pattern doesn’t need to contain all the keys from
the right-side term:

iex(4)> %{age: age} = %{name: "Bob", age: 25}

The first element must be 1.

 All elements must have the same value.

You don’t care about the third
element, but it must be present.

The first element must have the
same value as the variable first.

 69Pattern matching

iex(5)> age
25

You may wonder about the purpose of such a partial-matching rule. Maps are frequently
used to represent structured data. In such cases, you’re often interested in only some of
the map’s fields. For example, in the previous snippet, you just want to extract the age
field, ignoring everything else. The partial-matching rule allows you to do exactly this.

Of course, a match will fail if the pattern contains a key that’s not in the matched
term:

iex(6)> %{age: age, works_at: works_at} = %{name: "Bob", age: 25}
** (MatchError) no match of right hand side value

3.1.7 Matching bitstrings and binaries

We won’t deal with bitstrings and pure binaries much in this book, but it’s worth men-
tioning some basic matching syntax. Recall that a bitstring is a chunk of bits, and a
binary is a special case of a bitstring that's always aligned to the byte size.

To match a binary, you use syntax similar to creating one:

iex(1)> binary = <<1, 2, 3>>
<<1, 2, 3>>

iex(2)> <<b1, b2, b3>> = binary
<<1, 2, 3>>

iex(3)> b1
1

iex(4)> b2
2

iex(5)> b3
3

This example matches on a 3-byte binary and extracts individual bytes to separate
variables.

The following example takes the binary apart by taking its first byte into one variable
and the rest of the binary into another:

iex(6)> <<b1, rest :: binary>> = binary
<<1, 2, 3>>

iex(7)> b1
1

iex(8)> rest
<<2, 3>>

rest::binary states that you expect an arbitrary-sized binary. You can even extract sepa-
rate bits or groups of bits. The following example splits a single byte into two 4-bit values:

iex(9)> <<a :: 4, b :: 4>> = << 155 >>
<< 155 >>

 A binary match

70 chapter 3 Control flow

iex(10)> a
9

iex(11)> b
11

Pattern a::4 states that you expect a four-bit value. In the example, you put the first
four bits into variable a and the other four bits into variable b. Because the number 155
is in binary represented as 10011011, you get values of 9 (1001 binary) and 11 (1011
binary).

Matching bitstrings and binaries is immensely useful when you’re trying to parse
packed binary content that comes from a file, an external device, or a network. In such
situations, you can use binary matching to extract separate bits and bytes elegantly.

As mentioned, the examples in this book won’t need this feature. Still, you should
make a mental note of binaries and pattern matching, in case the need arises at some
point.

matching binary strings

Recall that strings are binaries, so you can use binary matches to extract individual bits
and bytes from a string:

iex(13)> <<b1, b2, b3>> = "ABC"
"ABC"

iex(13)> b1
65

iex(14)> b2
66

iex(15)> b3
67

Variables b1, b2, and b3 hold corresponding bytes from the string you matched on.
This isn’t very useful, especially if you’re dealing with Unicode strings. Extracting indi-
vidual characters is better done using functions from the String module.

A more useful pattern is to match the beginning of the string:

iex(16)> command = "ping www.example.com"
"ping www.example.com"

iex(17)> "ping " <> url = command
"ping www.example.com"

iex(18)> url
"www.example.com"

In this example, you construct a string that holds a ping command. When you write
"ping " <> url = command, you state the expectation that a command variable is a
binary string starting with "ping ". If this matches, the rest of the string is bound to the
variable url.

 Matching the string

 71Pattern matching

3.1.8 Compound matches

You’ve already seen this, but let’s make it explicit. Patterns can be arbitrarily nested, as
in the following contrived example:

iex(1)> [_, {name, _}, _] = [{"Bob", 25}, {"Alice", 30}, {"John", 35}]

In this example, the term being matched is a list of three elements. Each element is a
tuple representing a person, consisting of two fields: the person’s name and age. The
match extracts the name of the second person in the list.

Another interesting feature is match chaining. Before you see how that works, let’s
discuss match expressions in more detail.

A match expression has this general form:

pattern = expression

As you’ve seen in examples, you can place any expression on the right side:

iex(2)> a = 1 + 3
4

Let’s break down what happens here:

1 The expression on the right side is evaluated.

2 The resulting value is matched against the left-side pattern.

3 Variables from the pattern are bound.

4 The result of the match expression is the result of the right-side term.

An important consequence of this is that match expressions can be chained:

iex(3)> a = (b = 1 + 3)
4

In this (not so useful) example, the following things happen:

1 The expression 1 + 3 is evaluated.

2 The result (4) is matched against the pattern b.

3 The result of the inner match (which is again 4) is matched against the pattern a.

Consequently, both a and b have the value 4.
Parentheses are optional, and many developers omit them in this case:

iex(4)> a = b = 1 + 3
4

This yields the same result, due to the fact that the operator = is right-associative.
Now let’s look at a more useful example. Recall the function :calendar.

local_time/0:

iex(5)> :calendar.local_time()
{{2018, 11, 11}, {21, 28, 41}}

72 chapter 3 Control flow

Let’s say you want to retrieve the function’s total result (datetime) as well as the current
hour of the day. Here’s the way to do it in a single compound match:

iex(6)> date_time = {_, {hour, _, _}} = :calendar.local_time()

You can even swap the ordering. It still gives the same result (assuming you call it in the
same second):

iex(7)> {_, {hour, _, _}} = date_time = :calendar.local_time()

In any case, you get what you wanted:

iex(8)> date_time
{{2018, 11, 11}, {21, 32, 34}}

iex(9)> hour
21

This works because the result of a pattern match is always the result of the term being
matched (whatever is on the right side of the match operator). You can successively match
against the result of that term and extract different parts you’re interested in.

3.1.9 General behavior

We’re almost done with basic pattern-matching mechanics. We’ve worked through a
lot of examples, so let’s try to formalize the behavior a bit.

The pattern-matching expression consists of two parts: the pattern (left side) and the
term (right side). In a match expression, the attempt to match the term to the pattern
takes place.

If the match succeeds, all variables in the pattern are bound to the corresponding val-
ues from the term. The result of the entire expression is the entire term you matched. If
the match fails, an error is raised.

Therefore, in a pattern-matching expression, you perform two different tasks:

¡	You assert your expectations about the right-side term. If these expectations
aren’t met, an error is raised.

¡	You bind some parts of the term to variables from the pattern.

The match operator = is just one example where pattern matching can be used. Pat-
tern matching powers many other kinds of expressions, and it’s especially powerful
when used in functions.

3.2 Matching with functions
The pattern-matching mechanism is used in the specification of function arguments.
Recall the basic function definition:

def my_fun(arg1, arg2) do
 ...
end

The argument specifiers arg1 and arg2 are patterns, and you can use standard match-
ing techniques.

 73Matching with functions

Let’s see this in action. As mentioned in chapter 2, tuples are often used to group
related fields together. For example, if you do a geometry manipulation, you can rep-
resent a rectangle with a tuple, {a, b}, containing the rectangle’s sides. The following
listing shows a function that calculates a rectangle’s area.

Listing 3.1 Pattern-matching function arguments (rect.ex)

defmodule Rectangle do
 def area({a, b}) do
 a * b
 end
end

Notice how you pattern-match the argument. The function Rectangle.area/1 expects
that its argument is a two-element tuple. It then binds corresponding tuple elements
into variables and returns the result.

You can see whether this works from the shell. Start the shell, and load the module:

$ iex rect.ex

Then try the function:

iex(1)> Rectangle.area({2, 3})
6

What happens here? When you call a function, the arguments you provide are
matched against the patterns specified in the function definition. The function
expects a two-element tuple and binds the tuple’s elements to variables a and b.

When calling functions, the term being matched is the argument provided to the func-
tion call. The pattern you match against is the argument specifier, in this case {a, b}.

Of course, if you provide anything that isn’t a two-element tuple, an error will be
raised:

iex(2)> Rectangle.area(2)
** (FunctionClauseError) no function clause matching in Rectangle.area/1
 iex:2: Rectangle.area(2)

Pattern-matching function arguments is an extremely useful tool. It underpins one of
the most important features of Elixir: multiclause functions.

3.2.1 Multiclause functions

Elixir allows you to overload a function by specifying multiple clauses. A clause is a func-
tion definition specified by the def construct. If you provide multiple definitions of the
same function with the same arity, it’s said that the function has multiple clauses.

Let’s see this in action. Extending the previous example, let’s say you need to develop
a Geometry module that can handle various shapes. You’ll represent shapes with tuples
and use the first element of each tuple to indicate which shape it represents:

rectangle = {:rectangle, 4, 5}
square = {:square, 5}
circle = {:circle, 4}

 Matches a rectangle

74 chapter 3 Control flow

Given these shape representations, you can write the following function to calculate a
shape’s area.

Listing 3.2 Multiclause function (geometry.ex)

defmodule Geometry do
 def area({:rectangle, a, b}) do
 a * b
 end

 def area({:square, a}) do
 a * a
 end

 def area({:circle, r}) do
 r * r * 3.14
 end
end

As you can see, you provide three clauses of the same function. Depending on which
argument you pass, the appropriate clause is called. Let’s try this from the shell:

iex(1)> Geometry.area({:rectangle, 4, 5})
20

iex(2)> Geometry.area({:square, 5})
25

iex(3)> Geometry.area({:circle, 4})
50.24

When you call the function, the runtime goes through each of its clauses, in the order
they’re specified in the source code, and tries to match the provided arguments. The
first clause that successfully matches all arguments is executed.

Of course, if no clause matches, an error is raised:

iex(4)> Geometry.area({:triangle, 1, 2, 3})
** (FunctionClauseError) no function clause matching in Geometry.area/1
 geometry.ex:2: Geometry.area({:triangle, 1, 2, 3})

It’s important to be aware that from the caller’s perspective, a multiclause function is a
single function. You can’t directly reference a specific clause. Instead, you always work
on the entire function.

This applies to more than just function calls. Recall from chapter 2 that you can cre-
ate a function value with the capture operator, &:

&Module.fun/arity

If you capture Geometry.area/1, you capture all of its clauses:

iex(4)> fun = &Geometry.area/1

iex(5)> fun.({:circle, 4})
50.24

 First clause of area/1

 Second clause of area/1

 Third clause of area/1

 Captures the entire function

 75Matching with functions

iex(6)> fun.({:square, 5})
25

This proves that the function is treated as a whole, even if it consists of multiple clauses.
Sometimes you’ll want a function to return a term indicating a failure, rather than

raising an error. You can introduce a default clause that always matches. Let’s do this for
the area function. The next listing adds a final clause that handles any invalid input.

Listing 3.3 Multiclause function (geometry_invalid_input.ex)

defmodule Geometry do
 def area({:rectangle, a, b}) do
 a * b
 end

 def area({:square, a}) do
 a * a
 end

 def area({:circle, r}) do
 r * r * 3.14
 end

 def area(unknown) do
 {:error, {:unknown_shape, unknown}}
 end
end

If none of the first three clauses match, the final clause is called. This is because a variable
pattern always matches the corresponding term. In this case, you return a two-element
tuple {:error, reason}, to indicate that something has gone wrong.

Try it from the shell:

iex(1)> Geometry.area({:square, 5})
25

iex(2)> Geometry.area({:triangle, 1, 2, 3})
{:error, {:unknown_shape, {:triangle, 1, 2, 3}}}

TIP For this to work correctly, it’s important to place the clauses in the appro-
priate order. The runtime tries to select the clauses using the order in the
source code. If the area(unknown) clause was defined first, you’d always get the
error result.

Notice that the area(unknown) clause works only for area/1. If you pass more than
one argument, this clause won’t be called. Recall from chapter 2 that functions differ
in name and arity. Because functions with the same name but different arities are in
reality two different functions, there’s no way to specify an area clause that’s executed
regardless of how many arguments are passed.

One final note: you should always group clauses of the same function together,
instead of scattering them in various places in the module. If a multiclause function is

Additional clause that
handles invalid input

76 chapter 3 Control flow

spread all over the file, it becomes increasingly hard to analyze the function’s complete
behavior. Even the compiler complains about this by emitting a compilation warning.

3.2.2 Guards

Let’s say you want to write a function that accepts a number and returns an atom
:negative, :zero, or :positive, depending on the number’s value. This isn’t possi-
ble with the simple pattern matching you’ve seen so far. Elixir gives you a solution for
this in the form of guards.

Guards are an extension of the basic pattern-matching mechanism. They allow you to
state additional broader expectations that must be satisfied for the entire pattern to match.

A guard can be specified by providing the when clause after the arguments list. This
is best illustrated by example. The following code tests whether a given number is posi-
tive, negative, or zero.

Listing 3.4 Using guards (test_num.ex)

defmodule TestNum do
 def test(x) when x < 0 do
 :negative
 end

 def test(0), do: :zero

 def test(x) when x > 0 do
 :positive
 end
end

The guard is a logical expression that places further conditions on a clause. The first
clause will be called only if you pass a negative number, and the last one will be called
only if you pass a positive number, as demonstrated in this shell session:

iex(1)> TestNum.test(-1)
:negative

iex(2)> TestNum.test(0)
:zero

iex(3)> TestNum.test(1)
:positive

Surprisingly enough, calling this function with a non-number yields strange results:

iex(4)> TestNum.test(:not_a_number)
:positive

What gives? The explanation lies in the fact that Elixir terms can be compared with the
operators < and >, even if they’re not of the same type. In this case, the type ordering
determines the result:

number < atom < reference < fun < port < pid <
 tuple < map < list < bitstring (binary)

 77Matching with functions

A number is smaller than any other type, which is why TestNum.test/1 always returns
:positive if you provide a non-number. To fix this, you have to extend the guard by
testing whether the argument is a number, as illustrated next.

Listing 3.5 Using guards (test_num2.ex)

defmodule TestNum do
 def test(x) when is_number(x) and x < 0 do
 :negative
 end

 def test(0), do: :zero

 def test(x) when is_number(x) and x > 0 do
 :positive
 end
end

This code uses the function Kernel.is_number/1 to test whether the argument is a
number. Now TestNum.test/1 raises an error if you pass a non-number:

iex(1)> TestNum.test(-1)
:negative

iex(2)> TestNum.test(:not_a_number)
** (FunctionClauseError) no function clause matching in TestNum.test/1

The set of operators and functions that can be called from guards is very limited. In
particular, you may not call your own functions, and most of the other functions won’t
work. These are some examples of operators and functions allowed in guards:

¡	Comparison operators (==, !=, ===, !==, >, <, <=, >=)
¡	Boolean operators (and, or) and negation operators (not, !)
¡	Arithmetic operators (+, -, *, /)
¡	Type-check functions from the Kernel module (for example, is_number/1, is_

atom/1, and so on)

You can find the complete up-to-date list at https://hexdocs.pm/elixir/guards.html.
In some cases, a function used in a guard may cause an error to be raised. For exam-

ple, length/1 makes sense only on lists. Imagine you have the following function that
calculates the smallest element of a non-empty list:

defmodule ListHelper do
 def smallest(list) when length(list) > 0 do
 Enum.min(list)
 end

 def smallest(_), do: {:error, :invalid_argument}
end

NOTE: The leftwards double
arrow glpyh is not part of the
Courier STD font. Should it be
"<=," like the text ">=" after it?

https://hexdocs.pm/elixir/guards.html

78 chapter 3 Control flow

You may think that calling ListHelper.smallest/1 with anything other than a list will
raise an error, but this won’t happen. If an error is raised from inside the guard, it
won’t be propagated, and the guard expression will return false. The corresponding
clause won’t match, but some other might.

In the preceding example, if you call ListHelper.smallest(123), you’ll get the
result {:error, :invalid_argument}. This demonstrates that an error in the guard
expression is internally handled.

3.2.3 Multiclause lambdas

Anonymous functions (lambdas) may also consist of multiple clauses. First, recall the
basic way of defining and using lambdas:

iex(1)> double = fn x -> x*2 end

iex(2)> double.(3)
6

The general lambda syntax has the following shape:

fn
 pattern_1, pattern_2 ->
 ...

 pattern_3, pattern_4 ->
 ...

 ...
end

Let’s see this in action by reimplementing the test/1 function that inspects whether a
number is positive, negative, or zero:

iex(3)> test_num =
 fn
 x when is_number(x) and x < 0 ->
 :negative

 0 -> :zero

 x when is_number(x) and x > 0 ->
 :positive
 end

Notice that there’s no special ending terminator for a lambda clause. The clause ends
when the new clause is started (in the form pattern →) or when the lambda definition
is finished with end.

Because all clauses of a lambda are listed under the same fn expression, the paren-
theses for each clause are by convention omitted. In contrast, each clause of a named
function is specified in a separate def (or defp) expression. As a result, parentheses
around named function arguments are recommended.

 Defines a lambda

 Calls a lambda

 Executed if pattern_1 matches

 Executed if pattern_2 matches

 79Conditionals

You can now test this lambda:

iex(4)> test_num.(-1)
:negative

iex(5)> test_num.(0)
:zero

iex(6)> test_num.(1)
:positive

Multiclause lambdas come in handy when using higher-order functions, as you’ll see
later in this chapter. But for now, we’re done with the basic theory behind multiclause
functions. They play an important role in conditional runtime branching, which is our
next topic.

3.3 Conditionals
Elixir provides some standard ways of doing conditional branching, with constructs
such as if and case. Multiclause functions can be used for this purpose as well. In this
section, we’ll cover all the branching techniques, starting with multiclause functions.

3.3.1 Branching with multiclause functions

You’ve already seen how to do conditional logic with multiclauses, but let’s repeat it
once more:

defmodule TestNum do
 def test(x) when x < 0, do: :negative
 def test(0), do: :zero
 def test(x), do: :positive
end

The three clauses constitute three conditional branches. In a typical imperative lan-
guage, such as JavaScript, you could write something like the following:

function test(x){
 if (x < 0) return "negative";
 if (x == 0) return "zero";
 return "positive";
}

Arguably, both versions are equally readable. The nice thing about multiclauses is that
they can reap all the benefits of pattern matching. In the following example, a multi-
clause is used to test whether a given list is empty:

defmodule TestList do
 def empty?([]), do: true
 def empty?([_|_]), do: false
end

The first clause matches the empty list, whereas the second clause relies on the
[head | tail] representation of a non-empty list.

80 chapter 3 Control flow

By relying on pattern matching, you can implement polymorphic functions that
do different things depending on the input type. The following example implements
a function that doubles a variable. The function behaves differently depending on
whether it’s called with a number or with a binary (string):

iex(1)> defmodule Polymorphic do
 def double(x) when is_number(x), do: 2 * x
 def double(x) when is_binary(x), do: x <> x
 end

iex(2)> Polymorphic.double(3)
6

iex(3)> Polymorphic.double("Jar")
"JarJar"

The power of multiclauses starts to show in recursions. The resulting code seems
declarative and is devoid of redundant ifs and returns. Here’s a recursive implemen-
tation of a factorial, based on multiclauses:

iex(4)> defmodule Fact do
 def fact(0), do: 1
 def fact(n), do: n * fact(n - 1)
 end

iex(5)> Fact.fact(1)
1

iex(6)> Fact.fact(3)
6

A multiclause-powered recursion is also used as a primary building block for looping.
This will be thoroughly explained in the next section, but here’s a simple example.
The following function sums all the elements of a list:

iex(7)> defmodule ListHelper do
 def sum([]), do: 0
 def sum([head | tail]), do: head + sum(tail)
 end

iex(8)> ListHelper.sum([])
0

iex(9)> ListHelper.sum([1, 2, 3])
6

The solution implements the sum by relying on the recursive definition of a list. The
sum of an empty list is always 0, and the sum of a non-empty list equals the value of its
head plus the sum of its tail.

There’s nothing you can do with multiclauses that can’t be done with classical branch-
ing constructs. But the multiclause approach forces you to layer your code into many
small functions and push the conditional logic deeper into lower layers. The underlying
pattern-matching mechanism makes it possible to implement all kinds of branchings that

 81Conditionals

are based on values or types of function arguments. The higher-level functions remain
focused on the principal flow, and the entire code is arguably more self-descriptive.

In some cases, though, the code looks better with the classical, imperative style of
branching. Let’s look at the other branching constructs we have in Elixir.

3.3.2 Classical branching constructs

Multiclause solutions may not always be appropriate. Using them requires creating
a separate function and passing the necessary arguments. Sometimes it’s simpler to
use a classical branching construct in the function, and for such cases, the macros
if, unless, cond, and case are provided. These work roughly as you might expect,
although there are a couple of twists. Let’s look at each of them.

if and unless

The if macro has a familiar syntax:

if condition do
 ...
else
 ...
end

This causes one or the other branch to execute, depending on the truthiness of the
condition. If the condition is anything other than false or nil, you end up in the
main branch; otherwise the else part is called.

You can also condense this into a one-liner, much like a def construct:

if condition, do: something, else: another_thing

Recall that everything in Elixir is an expression that has a return value. The if expres-
sion returns the result of the executed block (that is, of the block’s last expression). If the
condition isn’t met and the else clause isn’t specified, the return value is the atom nil:

iex(1)> if 5 > 3, do: :one
:one

iex(2)> if 5 < 3, do: :one
nil

iex(3)> if 5 < 3, do: :one, else: :two
:two

Let’s look at a more concrete example. The following code implements a max function
that returns the larger of two elements (according to the semantics of the > operator):

def max(a, b) do
 if a >= b, do: a, else: b
end

The unless macro is also available, which is the equivalent of if (not …):

def max(a, b) do
 unless a >= b, do: b, else: a
end

82 chapter 3 Control flow

cond

The cond macro can be thought of as equivalent to an if-else-if pattern. It takes
a list of expressions and executes the block of the first expression that evaluates to a
truthy value:

cond do
 expression_1 ->
 ...

 expression_2 ->
 ...
...
end

The result of cond is the result of the corresponding executed block. If none of the
conditions is satisfied, cond raises an error.

If you used cond, the simple max/2 function could look like this:

def max(a, b) do
 cond do
 a >= b -> a
 true -> b
 end
end

This is fairly straightforward code, with the exception of the strange-looking true → b
part. The true pattern ensures that the condition will always be satisfied. If none of the
previously stated conditions in the cond construct are met, the true branch is executed.

case

The general syntax of case is as follows:

case expression do
 pattern_1 ->
 ...

 pattern_2 ->
 ...

 ...
end

The term pattern here indicates that it deals with pattern matching. In the case con-
struct, the provided expression is evaluated, and then the result is matched against
the given clauses. The first one that matches is executed, and the result of the corre-
sponding block (its last expression) is the result of the entire case expression. If no
clause matches, an error is raised.

The case-powered version of the max function would then look like this:

def max(a,b) do
 case a >= b do
 true -> a
 false -> b
 end
end

 Equivalent of a default clause

 83Conditionals

The case construct is most suitable if you don’t want to define a separate multiclause
function. Other than that, there are no differences between case and multiclause func-
tions. In fact, the general case syntax can be directly translated into the multiclause
approach:

defp fun(pattern_1), do: ...
defp fun(pattern_2), do: ...
...

This must be called using the fun(expression).
You can specify the default clause by using the anonymous variable to match

anything:

case expression do
 pattern_1 -> ...
 pattern_2 -> ...
 ...

 _ -> ...
end

As you’ve seen, there are different ways of doing conditional logic in Elixir. Multi-
clauses offer a more declarative feel of branching, but they require you to define a
separate function and pass all the necessary arguments to it. Classical constructs like
if and case seem more imperative but can often prove simpler than the multiclause
approach. Selecting an appropriate solution depends on the specific situation as well
as your personal preferences.

3.3.3 The with special form

The final branching construct we’ll discuss is the with special form, which can be very
useful when you need to chain a couple of expressions and return the error of the first
expression that fails. Let’s look at a simple example.

Suppose you need to process registration data submitted by a user. The input is a
map, with keys being strings (“login”, “email”, and “password”). Here’s an example of
one input map:

%{
 "login" => "alice",
 "email" => "some_email",
 "password" => "password",
 "other_field" => "some_value",
 "yet_another_field" => "...",
 ...
}

Your task is to normalize this map into a map that contains only the fields login, email,
and password. Usually, if the set of fields is well-defined and known upfront, you can
represent the keys as atoms. Therefore, for the given input, you can return the follow-
ing structure:

%{login: "alice", email: "some_email", password: "password"}

 The default clause that always matches

84 chapter 3 Control flow

But some required field might not be present in the input map. In this case, you want
to report the error, so your function can have two different outcomes. It can return the
normalized user map, or it can return an error. An idiomatic approach in such cases is
to make the function return {:ok, some_result} or {:error, error_reason}. In this
exercise, the successful result is the normalized user map, whereas the error reason is
descriptive text.

Start by writing the helper functions for extracting each field:

defp extract_login(%{"login" => login}), do: {:ok, login}
defp extract_login(_), do: {:error, "login missing"}

defp extract_email(%{"email" => email}), do: {:ok, email}
defp extract_email(_), do: {:error, "email missing"}

defp extract_password(%{"password" => password}), do: {:ok, password}
defp extract_password(_), do: {:error, "password missing"}

Here you’re relying on pattern matching to detect the field’s presence.
Now you need to write the top-level extract_user/1 function, which combines these

three functions. Here’s one way to do it with case:

def extract_user(user) do
 case extract_login(user) do
 {:error, reason} -> {:error, reason}

 {:ok, login} ->
 case extract_email(user) do
 {:error, reason} -> {:error, reason}

 {:ok, email} ->
 case extract_password(user) do
 {:error, reason} -> {:error, reason}

 {:ok, password} ->
 %{login: login, email: email, password: password}
 end
 end
 end
end

This is quite noisy, given that the code composes three functions. Each time you fetch
something, you need to branch depending on the result, and you end up with three
nested cases. In real life you usually have to perform many more validations, so the
code can become quite nasty pretty quickly.

This is precisely where with can help you. The with special form allows you to use
pattern matching to chain multiple expressions, verify that the result of each conforms
to the desired pattern, and return the first unexpected result.

 85Conditionals

In its simplest form, with has the following shape:

with pattern_1 <- expression_1,
 pattern_2 <- expression_2,
 ...
do
 ...
end

You start from the top, evaluating the first expression and matching the result against
the corresponding pattern. If the match succeeds, you move to the next expression. If
all the expressions are successfully matched, you end up in the do block, and the result
of the with expression is the result of the last expression in the do block.

If any match fails, however, with will not proceed to evaluate subsequent expres-
sions. Instead, it will immediately return the result that couldn’t be matched.

Let’s look at an example:

iex(1)> with {:ok, login} <- {:ok, "alice"},
 {:ok, email} <- {:ok, "some_email"} do
 %{login: login, email: email}
 end

%{email: "some_email", login: "alice"}

Here you went through two pattern matches to extract the login and the email. Then
the do block is evaluated. The result of the with expression is the last result of the
expression in the do block. Superficially, this is no different than the following:

{:ok, login} = {:ok, "alice"}
{:ok, email} = {:ok, "email"}
%{login: login, email: email}

The benefit of with is that it returns the first term that fails to be matched against the
corresponding pattern:

iex(2)> with {:ok, login} <- {:error, "login missing"},
 {:ok, email} <- {:ok, "email"} do
 %{login: login, email: email}
 end
{:error, "login missing"}

This is precisely what you need in your case. Armed with this new knowledge, refactor
the top-level extract_user function, as shown in the next listing.

Listing 3.6 with-based user extraction (user_extraction.ex)

def extract_user(user) do
 with {:ok, login} <- extract_login(user),
 {:ok, email} <- extract_email(user),
 {:ok, password} <- extract_password(user) do
 {:ok, %{login: login, email: email, password: password}}
 end
end

86 chapter 3 Control flow

As you can see, this code is much shorter and clearer. You extract desired pieces of
data, moving forward only if you succeed. If something fails, you return the first error.
Otherwise, you return the normalized structure. The complete implementation can be
found in user_extraction.ex. Try it out:

$ iex user_extraction.ex

iex(1)> UserExtraction.extract_user(%{})
{:error, "login missing"}

iex(2)> UserExtraction.extract_user(%{"login" => "some_login"})
{:error, "email missing"}

iex(3)> UserExtraction.extract_user(%{"login" => "some_login",
 "email" => "some_email"})
{:error, "password missing"}

iex(4)> UserExtraction.extract_user(%{"login" => "some_login",
 "email" => "some_email",
 "password" => "some_password"})
{:ok, %{email: "some_email", login: "some_login",
 password: "some_password"}}

The with special form has a couple more features not presented here, and you’re
advised to study it in more detail at https://hexdocs.pm/elixir/Kernel.SpecialForms
.html#with/1.

This concludes our tour of the branching constructs in Elixir. Now it’s time to look at
how you can perform loops and iterations.

3.4 Loops and iterations
Looping in Elixir works very differently than it does in mainstream languages. Con-
structs such as while and do…while aren’t provided. Nevertheless, any serious program
needs to do some kind of dynamic looping. So how do you go about it in Elixir?

The principal looping tool in Elixir is recursion, so we’ll take a detailed look at how to
use it.

NOTE Although recursion is the basic building block of any kind of looping,
most production Elixir code uses it sparingly. That’s because there are many
higher-level abstractions that hide the recursion details. You’ll learn about
many of these abstractions throughout the book, but it’s important to under-
stand how recursion works in Elixir, because most of the complex code is based
on this mechanism.

NOTE Most of the examples in this section deal with simple problems, such as
calculating the sum of all the elements in a list — tasks Elixir allows you to do
in an effective and elegant one-liner. The point of the examples, however, is
to understand the different aspects of recursion-based processing on simple
problems.

https://hexdocs.pm/elixir/Kernel.SpecialForms.html#with/1
https://hexdocs.pm/elixir/Kernel.SpecialForms.html#with/1

 87Loops and iterations

3.4.1 Iterating with recursion

Let’s say you want to implement a function that prints the first n natural numbers
(positive integers). Because there are no loops, you must rely on recursion. The basic
approach is illustrated in the following listing.

Listing 3.7 Printing the first n natural numbers (natural_nums.ex)

defmodule NaturalNums do
 def print(1), do: IO.puts(1)
 def print(n) do
 print(n - 1)
 IO.puts(n)
 end
end

This code relies on recursion, pattern matching, and multiclause functions. The code
is very declarative: if n is equal to 1, you print the number. Otherwise, you print the first
n – 1 numbers and then the nth one.

Trying it in the shell gives satisfying results:

iex(1)> NaturalNums.print(3)
1
2
3

You may have noticed that the function won’t work correctly if you provide a negative
integer or a float. This could be resolved with additional guards and is left for you as an
exercise.

The code in listing 3.7 demonstrates the basic way of doing a conditional loop. You
specify a multiclause function, first providing the clauses that stop the recursion. This
is followed by more general clauses that produce part of the result and call the function
recursively.

Next, let’s look at computing something in a loop and returning the result. You’ve
already seen this example when dealing with conditionals, but let’s repeat it. The fol-
lowing code implements a function that sums all the elements in a given list.

Listing 3.8 Calculating the sum of the list (sum_list.ex)

defmodule ListHelper do
 def sum([]), do: 0
 def sum([head | tail]) do
 head + sum(tail)
 end
end

This code looks very declarative:

¡	The sum of all the elements of an empty list is 0.
¡	The sum of all the elements of a non-empty list equals the list’s head plus the sum

of the list’s tail.

88 chapter 3 Control flow

Let’s see it in action:

iex(1)> ListHelper.sum([1, 2, 3])
6

iex(2)> ListHelper.sum([])
0

You probably know from other languages that a function call will lead to a stack push,
and therefore will consume some memory. A very deep recursion might lead to a
stack overflow and crash the entire program. This isn’t necessarily a problem in Elixir,
because of the tail-call optimization.

3.4.2 Tail function calls

If the last thing a function does is call another function (or itself), you’re dealing with
a tail call:

def original_fun(...) do
 ...
 another_fun(...)
end

Elixir (or, more precisely, Erlang) treats tail calls in a specific manner by performing
a tail-call optimization. In this case, calling a function doesn’t result in the usual stack
push. Instead, something more like a goto or a jump statement happens. You don’t
allocate additional stack space before calling the function, which in turn means the tail
function call consumes no additional memory.

How is this possible? In the previous snippet, the last thing done in original_fun is
the call of another_fun. The final result of original_fun is the result of another_fun.
This is why the compiler can safely perform the operation by jumping to the beginning
of another_fun without doing additional memory allocation. When another_fun fin-
ishes, you return to whatever place original_fun was called from.

Tail calls are especially useful in recursive functions. A tail-recursive function — that
is, a function that calls itself at the very end — can run virtually forever without consum-
ing additional memory.

The following function is the Elixir equivalent of an endless loop:

def loop_forever(...) do
 ...
 loop_forever(...)
end

Because tail recursion doesn’t consume additional memory, it’s an appropriate solu-
tion for arbitrarily large iterations. There is a downside, though. Whereas classical
(non-tail) recursion has a more declarative feel to it, tail recursion usually looks more
procedural.

In the next listing, you'll convert the ListHelper.sum/1 function to the tail-recursive
version.

 Tail call

 89Loops and iterations

Listing 3.9 Tail-recursive sum of the first n natural numbers (sum_list_tc.ex)

defmodule ListHelper do
 def sum(list) do
 do_sum(0, list)
 end

 defp do_sum(current_sum, []) do
 current_sum
 end

 defp do_sum(current_sum, [head | tail]) do
 new_sum = head + current_sum
 do_sum(new_sum, tail)
 end
end

The first thing to notice is that you have two functions. The exported function sum/1 is
called by the module clients, and on the surface it works just like before.

The recursion takes place in the private do_sum/2 function, which is implemented as
tail-recursive. It’s a two-clause function, and we’ll analyze it clause by clause. The second
clause is more interesting, so we’ll start with it. Here it is in isolation:

defp do_sum(current_sum, [head | tail]) do
 new_sum = head + current_sum
 do_sum(new_sum, tail)
end

This clause expects two arguments: the non-empty list to operate on, and the sum
you’ve calculated so far (current_sum). It then calculates the new sum and calls itself
recursively with the remainder of the list and the new sum. Because the call happens at
the very end, the function is tail-recursive, and the call consumes no additional memory.

The variable new_sum is introduced here just to make things more obvious. You could
also inline the computation:

defp do_sum(current_sum, [head | tail]) do
 do_sum(head + current_sum, tail)
end

This function is still tail-recursive because it calls itself at the very end.
The remaining thing to see is the first clause of do_sum/2:

defp do_sum(current_sum, []) do
 current_sum
end

This clause is responsible for stopping the recursion. It matches on an empty list, which
is the last step of the iteration. When you get here, there’s nothing else to sum, so you
return the accumulated result.

Finally, you have the function sum/1:

def sum(list) do
 do_sum(0, list)
end

 Computes the new value of the sum

 Tail-recursive call

90 chapter 3 Control flow

This function is used by clients and is also responsible for initializing the value of the
current_sum parameter that’s passed recursively in do_sum.

You can think of tail recursion as a direct equivalent of a classical loop in imperative
languages. The parameter current_sum is a classical accumulator: the value where you
incrementally add the result in each iteration step. The do_sum/2 function implements
the iteration step and passes the accumulator from one step to the next. Elixir is an
immutable language, so you need this trick to maintain the accumulated value through-
out the loop. The first clause of do_sum/2 defines the ending point of the iteration and
returns the accumulator value.

In any case, the tail-recursive version of the list sum is now working, so you can try it
from the shell:

iex(1)> ListHelper.sum([1, 2, 3])
6

iex(2)> ListHelper.sum([])
0

As you can see, from the caller’s point of view, the function works exactly the same way.
Internally, you rely on the tail recursion and can therefore process arbitrarily large lists
without requiring extra memory for this task.

Tail vs. non-tail recursion
Given the properties of tail recursion, you might think it’s always a preferred approach
for doing loops. It’s not that simple. Non-tail recursion often looks more elegant and con-
cise, and it can in some circumstances yield better performance. When you write recur-
sion, you should choose the solution that seems like a better fit. If you need to run an
infinite loop, tail recursion is the only way that will work. Otherwise, the choice amounts
to which looks like a more elegant and performant solution.

recognizing tail calls

Tail calls can take different shapes. You’ve seen the most obvious case, but there are a
couple of others. A tail call can also happen in a conditional expression:

def fun(...) do
 ...
 if something do
 ...
 another_fun(...)
 end
end

The call to another_fun is a tail call because it’s a last thing the function does. The
same rule holds for unless, cond, case, and with expressions.

But the following code isn’t a tail call:

def fun(...) do
 1 + another_fun(...)
end

 Tail call

 Not a tail call

 91Loops and iterations

This is because the call to another_fun isn’t the last thing done in the fun function.
After another_fun finishes, you have to increment its result by 1 to compute the final
result of fun.

practicing

All this may seem complicated, but it’s not that hard. If you’re coming from imperative
languages, it’s probably not what you’re used to, and it will take some time to get accus-
tomed to the recursive way of thinking, combined with the pattern-matching facility.
You may want to take some time and experiment with recursion yourself. Here are a
couple of functions you can write for practice:

¡	A list_len/1 function that calculates the length of a list
¡	A range/2 function that takes two integers, from and to, and returns a list of all

numbers in the given range
¡	A positive/1 function that takes a list and returns another list that contains only

the positive numbers from the input list

Try to write these functions first in the non-tail-recursive form, and then convert them to
the tail-recursive version. If you get stuck, the solutions are provided in the recursion_
practice.ex and recursion_practice_tc.ex files (for the tail-recursive versions).

Recursion is the basic looping technique, and no loop can be done without it. Still,
you won’t need to write explicit recursion all that often. Many typical tasks can be per-
formed by using higher-order functions.

3.4.3 Higher-order functions

A higher-order function is a fancy name for a function that takes one or more functions
as its input or returns one or more functions (or both). The word function here means
“function value.”

You already made first contact with higher-order functions in chapter 2, when you
used Enum.each/2 to iterate through a list and print all of its elements. Let’s recall how
to do this:

iex(1)> Enum.each(
 [1, 2, 3],
 fn x -> IO.puts(x) end
)
1
2
3

The function Enum.each/2 takes an enumerable (in this case, a list), and a lambda. It
iterates through the enumerable, calling the lambda for each of its elements. Because
Enum.each/2 takes a lambda as its input, it’s called a higher-order function.

You can use Enum.each/2 to iterate over enumerable structures without writing the
recursion. Under the hood, Enum.each/2 is powered by recursion: there’s no other way
to do loops and iterations in Elixir. But the complexity of writing the recursion, the
repetitive code, and the intricacies of tail recursion are hidden from you.

 Passing a function value to another function

92 chapter 3 Control flow

Enum.each/2 is just one example of an iteration powered by a higher-order func-
tion. Elixir’s standard library provides many other useful iteration helpers in the Enum
module. The Enum module is a Swiss Army knife for loops and iterations; it contains a
lot of useful functions. You should spend some time researching the module documen-
tation (https://hexdocs.pm/elixir/Enum.html). Here we’ll look at some of the most
frequently used Enum functions.

Enumerables
Most functions from the Enum module work on enumerables. You’ll learn what this
means in chapter 4. For now, it’s sufficient to know that an enumerable is a data struc-
ture that implements a certain contract, which makes it suitable to be used by functions
from the Enum module.

Some examples of enumerables are lists, ranges, maps, and MapSet. It’s also possible
to turn your own data structures into enumerables and thus harness all the features from
the Enum module.

One manipulation you’ll often need is a 1:1 transformation of a list to another list. For
this purpose, Enum.map/2 is provided. It takes an enumerable and a lambda that maps
each element to another element. The following example doubles every element in
the list:

iex(1)> Enum.map(
 [1, 2, 3],
 fn x -> 2 * x end
)
[2, 4, 6]

Recall from chapter 2 that you can use the capture operator, &, to make the lambda
definition a bit denser:

iex(2)> Enum.map(
 [1, 2, 3],
 &(2 * &1)
)

The &(…) denotes a simplified lambda definition, where you use &n as a placeholder
for the nth argument of the lambda.

Another useful function is Enum.filter/2, which can be used to extract only some
elements of the list, based on certain criteria. The following snippet returns all odd
numbers from a list:

iex(3)> Enum.filter(
 [1, 2, 3],
 fn x -> rem(x, 2) == 1 end
)
[1, 3]

https://hexdocs.pm/elixir/Enum.html

 93Loops and iterations

Enum.filter/2 takes an enumerable and a lambda. It returns only those elements for
which the lambda returns true.

Of course, you can use the capture syntax as well:

iex(3)> Enum.filter(
 [1, 2, 3],
 &(rem(&1, 2) == 1)
)
[1, 3]

Let’s play a bit more with Enum. Recall the example from section 3.3.3, where you used
with to verify that the login, email, and password are submitted. In that example, you
returned the first encountered error. Armed with this new knowledge, you can improve
that code to report all missing fields immediately.

To briefly recap, your input is a map, and you need to fetch the keys “login”, “email”,
and “password”, and convert them into a map where keys are atoms. If a required field
isn’t provided, you need to report an error. In the previous version, you simply reported
the first missing field. A better user experience would be to return a list of all missing
fields.

This is something you can do easily with the help of Enum.filter/2. The idea is to
iterate through the list of required fields and take only those fields that aren’t present
in the map. You can easily check for the presence of a key with the help of Map.has_
key?/2. The sketch of the solution then looks like the next listing.

Listing 3.10 Reporting all missing fields (user_extraction_2.ex)

case Enum.filter(
 ["login", "email", "password"],
 &(not Map.has_key?(user, &1))
) do
 [] ->
 ...

 missing_fields ->
 ...
end

There are two possible outcomes of Enum.filter/2. If the result is an empty list, all the
fields are provided, and you can extract the data. Otherwise, some fields are missing,
and you need to report an error. The code for each branch is omitted here for the sake
of brevity, but you can find the complete solution in user_extraction_2.ex.

reduce

Probably the most versatile function from the Enum module is Enum.reduce/3, which
can be used to transform an enumerable into anything. If you’re coming from lan-
guages that support first-class functions, you may already know reduce under the name
inject or fold.

 Filters required fields

 Takes only missing fields

 No field is missing.

 Some fields are missing.

94 chapter 3 Control flow

Reducing is best explained with a specific example. You’ll use reduce to sum all the
elements in a list. Before doing it in Elixir, let’s see how you could do this task in an
imperative manner. Here’s an imperative JavaScript example:

var sum = 0;
[1, 2, 3].forEach(function(element) {
 sum += element;
})

This is a standard imperative pattern. You initialize an accumulator (the variable sum)
and then do some looping, adjusting the accumulator value in each step. After the
loop is finished, the accumulator holds the final value.

In a functional language, you can’t change the accumulator, but you can still calculate
the result incrementally by using Enum.reduce/3. The function has the following shape:

Enum.reduce(
 enumerable,
 initial_acc,
 fn element, acc ->
 ...
 end
)

Enum.reduce/3 takes an enumerable as its first argument. The second argument is the
initial value for the accumulator, the thing you compute incrementally. The final argu-
ment is a lambda that’s called for each element. The lambda receives the element from
the enumerable and the current accumulator value. The lambda’s task is to compute
and return the new accumulator value. When the iteration is done, Enum.reduce/3
returns the final accumulator value.

Let’s use Enum.reduce/3 to sum up elements in the list:

iex(4)> Enum.reduce(
 [1, 2, 3],
 0,
 fn element, sum -> sum + element end
)
6

That’s all there is to it! Coming from an imperative background myself, it helps me to
think of the lambda as the function that’s called in each iteration step. Its task is to add
a bit of the information to the result.

You may recall that I mentioned that many operators are functions, and you can turn
an operator into a lambda by calling &+/2, &*/2, and so on. This combines nicely with
higher-order functions. For example, the sum example can be written in a more compact
form:

iex(5)> Enum.reduce([1,2,3], 0, &+/2)
6

It’s worth mentioning that there’s a function called Enum.sum/1 that works exactly like
this snippet. The point of the sum example was to illustrate how to iterate through a
collection and accumulate the result.

 Initializes the sum

 Accumulates the result

Sets the initial accumulator value

Incrementally updates
the accumulator

 95Loops and iterations

Let’s work a bit more with reduce. The previous example works only if you pass a list
that consists exclusively of numbers. If the list contains anything else, an error is raised
(because the + operator is defined only for numbers). The next example can work on
any type of list and sums only its numeric elements:

iex(6)> Enum.reduce(
 [1, "not a number", 2, :x, 3],
 0,
 fn
 element, sum when is_number(element) ->
 sum + element

 _, sum -> sum
 end
)

This example relies on a multiclause lambda to obtain the desired result. If the ele-
ment is a number, you add its value to the accumulated sum. Otherwise (if the element
isn’t a number), you return whatever sum you have at the moment, effectively passing
it unchanged to the next iteration step.

Personally, I tend to avoid writing elaborate lambdas. If there’s a bit more logic in the
anonymous function, it’s a sign that it will probably look better as a distinct function. In
the following snippet, the lambda code is pushed to a separate private function:

defmodule NumHelper do
 def sum_nums(enumerable) do
 Enum.reduce(enumerable, 0, &add_num/2)
 end

 defp add_num(num, sum) when is_number(num), do: sum + num
 defp add_num(_, sum), do: sum
end

This is more or less similar to the approach you saw earlier. This example moves the
iteration step to the separate, private function add_num/2. When calling Enum.reduce,
you pass the lambda that delegates to that function, using the capture operator &.

Notice how when capturing the function, you don’t specify the module name. That’s
because add_num/2 resides in the same module, so you can omit the module prefix. In
fact, because add_num/2 is private, you can’t capture it with the module prefix.

This concludes our basic showcase of the Enum module. Be sure to check the other
functions that are available because you’ll find a lot of useful helpers that can simplify
loops, iterations, and manipulations of enumerables.

3.4.4 Comprehensions

The cryptic “comprehensions” name denotes another construct that can help you
iterate and transform enumerables. The following example uses a comprehension to
square each element of a list:

iex(1)> for x <- [1, 2, 3] do
 x*x
 end

 Multiclause lambda

Matches numerical
elements

 Matches anything else

Captures the add_num/2 to lambda

Handles each iteration step

96 chapter 3 Control flow

The comprehension iterates through each element and runs the do/end block. The
result is a list that contains all the results returned by the do/end block. In this basic
form, for is no different than Enum.map/2.

Comprehensions have various other features that often make them elegant, com-
pared to Enum-based iterations. For example, it’s possible to perform nested iterations
over multiple collections. The following example takes advantage of this feature to cal-
culate a small multiplication table:

iex(2)> for x <- [1, 2, 3], y <- [1, 2, 3], do: {x, y, x*y}
[
 {1, 1, 1}, {1, 2, 2}, {1, 3, 3},
 {2, 1, 2}, {2, 2, 4}, {2, 3, 6},
 {3, 1, 3}, {3, 2, 6}, {3, 3, 9}
]

In this example, the comprehension performs a nested iteration, calling the provided
block for each combination of input collections.

Just like functions from the Enum module, comprehensions can iterate through any-
thing that’s enumerable. For example, you can use ranges to compute a multiplication
table for single-digit numbers:

iex(3)> for x <- 1..9, y <- 1..9, do: {x, y, x*y}

In the examples so far, the result of the comprehension has been a list. But compre-
hensions can return anything that’s collectable. Collectable is an abstract term for a
functional data type that can collect values. Some examples include lists, maps, MapSet,
and file streams; you can even make your own custom type collectable (more on that
in chapter 4).

In more general terms, a comprehension iterates through enumerables, calling the
provided block for each value and storing the results in some collectable structure.
Let’s see this in action.

The following snippet makes a map that holds a multiplication table. Its keys are
tuples of factors {x,y}, and the values contain products:

iex(4)> multiplication_table =
 for x <- 1..9, y <- 1..9,
 into: %{} do
 {{x, y}, x*y}
 end

iex(5)> multiplication_table[{7, 6}]
42

Notice the into option, which specifies what to collect. In this case, it’s an empty map
%{} that will be populated with values returned from the do block. Notice how you
return a {factors, product} tuple from the do block. You use this format because map
“knows” how to interpret it. The first element will be used as a key, and the second will
be used as the corresponding value.

Another interesting comprehension feature is that you can specify filters. This
gives you the possibility to skip some elements from the input. The following example

 Specifies the collectable

 97Loops and iterations

computes a nonsymmetrical multiplication table for numbers x and y, where x is never
greater than y:

iex(6)> multiplication_table =
 for x <- 1..9, y <- 1..9,
 x <= y,
 into: %{} do
 {{x, y}, x*y}
 end

iex(7)> multiplication_table[{6, 7}]
42

iex(8)> multiplication_table[{7, 6}]
nil

The comprehension filter is evaluated for each element of the input enumerable,
prior to block execution. If the filter returns true, the block is called and the result is
collected. Otherwise the comprehension moves on to the next element.

As you can see, comprehensions are an interesting feature, allowing you to do some
elegant transformations of the input enumerable. Although this can be done with Enum
functions, most notably Enum.reduce/3, often the resulting code looks more elegant
when comprehensions are used. This is particularly true when you have to perform a
Cartesian product (cross-join) of multiple enumerables, as was the case with the multi-
plication table.

NOTE Comprehensions can also iterate through a binary. The syntax is some-
what different, and we won’t treat it here. For details, it’s best to look at the offi-
cial for documentation at https://hexdocs.pm/elixir/Kernel.SpecialForms
.html#for/1.

3.4.5 Streams

Streams are a special kind of enumerable that can be useful for doing lazy composable
operations over anything enumerable. To see what this means, let’s look at one short-
coming of standard Enum functions.

Let’s say you have a list of employees, and you need to print each one prefixed by
their position in the list:

1. Alice
2. Bob
3. John
...

This is fairly simple to perform by combining various Enum functions. For example,
there’s a function Enum.with_index/1 that takes an enumerable and returns a list of
tuples, where the first element of the tuple is a member from the input enumerable
and the second element is its zero-based index:

iex(1)> employees = ["Alice", "Bob", "John"]
["Alice", "Bob", "John"]

 Comprehension filter

https://hexdocs.pm/elixir/Kernel.SpecialForms.html#for/1
https://hexdocs.pm/elixir/Kernel.SpecialForms.html#for/1

98 chapter 3 Control flow

iex(2)> Enum.with_index(employees)
[{"Alice", 0}, {"Bob", 1}, {"John", 2}]

You can now feed the result of Enum.with_index/1 to Enum.each/2 to get the desired
output:

iex(3)> employees |>
 Enum.with_index |>
 Enum.each(
 fn {employee, index} ->
 IO.puts("#{index + 1}. #{employee}")
 end)
1. Alice
2. Bob
3. John

Here you rely on the pipeline operator to chain together various function calls. This
saves you from having to use intermediate variables and makes the code a bit cleaner.

Pipeline operator in the shell
You may wonder why the pipeline operator is placed at the end of the line. The reason is that
in the shell, you have to place the pipeline on the same line as the preceding expression. Oth-
erwise, as explained in chapter 2, the shell will immediately interpret the expression.

The pipeline operator at the end of the line signals to the shell that more input needs to
be provided before the expression is complete. In the source file, however, it’s better to
place |> at the beginning of the next line.

So what’s the problem with this code? Essentially, it iterates too much. The Enum.with_
index/1 function goes through the entire list to produce another list with tuples, and
Enum.each then performs another iteration through the new list. Obviously, it would
be better if you could do both operations in a single pass, and this is where streams can
help you.

Streams are implemented in the Stream module (https://hexdocs.pm/elixir/
Stream.html), which at first glance looks similar to the Enum module, containing func-
tions like map, filter, and take. These functions take any enumerable as an input and
give back a stream: an enumerable with some special powers.

A stream is a lazy enumerable, which means it produces the actual result on demand.
Let’s look at what this means.

The following snippet uses a stream to double each element in a list:

iex(4)> stream = [1, 2, 3] |>
 Stream.map(fn x -> 2 * x end)

#Stream<[enum: [1, 2, 3],
 funs: [#Function<44.45151713/1 in Stream.map/2>]]>

 Creates the stream

 The result of Stream.map/2
is a stream.

https://hexdocs.pm/elixir/Stream.html
https://hexdocs.pm/elixir/Stream.html

 99Loops and iterations

Because a stream is a lazy enumerable, the iteration over the input list ([1, 2, 3])
and the corresponding transformation (multiplication by 2) haven’t yet happened.
Instead, you get the structure that describes the computation.

To make the iteration happen, you have to send the stream to an Enum function, such
as each, map, or filter. You can also use the Enum.to_list/1 function, which converts
any kind of enumerable into a list:

iex(5)> Enum.to_list(stream)
[2, 4, 6]

Enum.to_list/1 (and any other Enum function, for that matter) is an eager operation.
It immediately starts iterating through the input and creates the result. In doing so,
Enum.to_list/1 requests that the input enumerable start producing values. This is
why the output of the stream is created when you send it to an Enum function.

The laziness of streams goes beyond iterating the list on demand. Values are pro-
duced one by one when Enum.to_list requests another element. For example, you can
use Enum.take/2 to request only one element from the stream:

iex(6)> Enum.take(stream, 1)
[2]

Because Enum.take/2 iterates only until it collects the desired number of elements, the
input stream doubled only one element in the list. The others were never visited.

Going back to the example of printing employees, using a stream allows you to print
employees in a single go. The change to the original code is simple enough. Instead of
using Enum.with_index/1, you can rely on its lazy equivalent, Stream.with_index/1:

iex(7)> employees |>
 Stream.with_index |>
 Enum.each(
 fn {employee, index} ->
 IO.puts("#{index + 1}. #{employee}")
 end)
1. Alice
2. Bob
3. John

The output is the same, but the list iteration is done only once. This becomes increas-
ingly useful when you need to compose multiple transformations of the same list. The
following example takes the input list and prints the square root of only those elements
that represent a non-negative number, adding an indexed prefix at the beginning:

iex(1)> [9, -1, "foo", 25, 49] |>
 Stream.filter(&(is_number(&1) and &1 > 0)) |>
 Stream.map(&{&1, :math.sqrt(&1)}) |>
 Stream.with_index |>
 Enum.each(
 fn {{input, result}, index} ->
 IO.puts("#{index + 1}. sqrt(#{input}) = #{result}")

At this point, stream iteration takes place.

Performs a lazy
transformation

100 chapter 3 Control flow

 end
)
1. sqrt(9) = 3.0
2. sqrt(25) = 5.0
3. sqrt(49) = 7.0

This code is dense, and it illustrates how concise you can be by relying only on func-
tions as the abstraction tool. You start with the input list and filter only positive num-
bers. You transform each such number into an {input_number, square_root} tuple.
Then you index the resulting tuples using Stream.with_index/1, and, finally, you
print the result.

Even though you stack multiple transformations, everything is performed in a single
pass when you call Enum.each. In contrast, if you used Enum functions everywhere, you’d
have to run multiple iterations over each intermediate list, which would incur a perfor-
mance and memory-usage penalty.

This lazy property of streams can become useful for consuming slow and potentially
large enumerable input. A typical case is when you need to parse each line of a file.
Relying on eager Enum functions means you have to read the entire file into memory
and then iterate through each line. In contrast, using streams makes it possible to read
and immediately parse one line at a time. For example, the following function takes a
filename and returns the list of all lines from that file that are longer than 80 characters:

def large_lines!(path) do
 File.stream!(path)
 |> Stream.map(&String.replace(&1, "\n", ""))
 |> Enum.filter(&(String.length(&1) > 80))
end

Here you rely on the File.stream!/1 function, which takes the path of a file and
returns a stream of its lines. Because the result is a stream, the iteration through the file
happens only when you request it. After File.stream! returns, no byte from the file has
been read yet. Then you remove the trailing newline character from each line, again in
the lazy manner. Finally, you eagerly take only long lines, using Enum.filter/2. It’s at
this point that iteration happens. The consequence is that you never read the entire file
in memory; instead, you work on each line individually.

NOTE There are no special tricks in the Elixir compiler that allow these lazy
enumerations. The real implementation is fairly involved, but the basic idea
behind streams is simple and relies on anonymous functions. In a nutshell, to
make a lazy computation, you need to return a lambda that performs the com-
putation. This makes the computation lazy, because you return its description
rather than its result. When the computation needs to be materialized, the con-
sumer code can call the lambda.

 101Summary

practicing

This style of coding takes some getting used to. You’ll use the techniques presented
here throughout the book, but you should try to write a couple such iterations your-
self. Here are some exercise ideas that may help you get into the swing of things.

Using large_lines!/1 as a model, write the following functions:

¡	A lines_lengths!/1 that takes a file path and returns a list of numbers, with
each number representing the length of the corresponding line from the file.

¡	A longest_line_length!/1 that returns the length of the longest line in a file.
¡	A longest_line!/1 that returns the contents of the longest line in a file.
¡	A words_per_line!/1 that returns a list of numbers, with each number rep-

resenting the word count in a file. Hint: to get the word count of a line, use
length(String.split(line)).

Solutions are provided in the enum_streams_practice.ex file, but I strongly suggest
that you spend some time trying to crack these problems yourself.

Summary

¡	Pattern matching is a construct that attempts to match a right-side term to the
left-side pattern. In the process, variables from the pattern are bound to corre-
sponding subterms from the term. If a term doesn’t match the pattern, an error
is raised.

¡	Function arguments are patterns. Calling a function tries to match the provided
values to the patterns specified in the function definition.

¡	Functions can have multiple clauses. The first clause that matches all the argu-
ments is executed.

¡	For conditional branching, you can use multiclause functions and constructs
such as if, unless, cond, case, and with.

¡	Recursion is the main tool for implementing loops. Tail recursion is used when
you need to run an arbitrarily long loop.

¡	Higher-order functions make writing loops much easier. There are many useful
generic iteration functions in the Enum module. The Stream module additionally
makes it possible to implement lazy and composable iterations.

¡	Comprehensions can also be used to iterate, transform, filter, and join various
enumerables.

102

4Data abstractions

This chapter covers
¡	Abstracting with modules

¡	Working with hierarchical data

¡	Polymorphism with protocols

This chapter deals with building higher-level data structures. In any complex system,
there will be a need for abstractions such as Money, Date, Employee, and OrderItem,
all textbook examples of higher-level abstractions that usually aren’t directly sup-
ported by the language and are instead written on top of built-in types.

In Elixir, such abstractions are implemented with pure, stateless modules. In this
chapter, you’ll learn how to create and work with your own data abstractions.

In a typical OO language, the basic abstraction building blocks are classes and
objects. For example, there may be a String class that implements various string
operations. Each string is then an instance of that class and can be manipulated by
calling methods, as the following Ruby snippet illustrates:

"a string".upcase

This approach generally isn’t used in Elixir. Being a functional language, Elixir pro-
motes decoupling of data from the code. Instead of classes, you use modules, which
are collections of functions. Instead of calling methods on objects, you explicitly call

 103

4
module functions and provide input data via arguments. The following snippet shows
the Elixir way of uppercasing a string:

String.upcase("a string")

Another big difference from OO languages is that data is immutable. To modify data,
you must call some function and take its result into a variable; the original data is left
intact. The following examples demonstrate this technique:

iex(1)> list = []
[]

iex(2)> list = List.insert_at(list, -1, :a)
[:a]

iex(3)> list = List.insert_at(list, -1, :b)
[:a, :b]

iex(4)> list = List.insert_at(list, -1, :c)
[:a, :b, :c]

In these examples, you’re constantly keeping the result of the last operation and feed-
ing it to the next one.

The important thing to notice in both Elixir snippets is that the module is used
as the abstraction over the data type. When you need to work with strings, you reach
for the String module. When you need to work with lists, you use the List module.

String and List are examples of modules that are dedicated to a specific data type.
They’re implemented in pure Elixir, and their functions rely on the predefined format
of the input data. String functions expect a binary string as the first argument, whereas
List functions expect a list.

Additionally, modifier functions (the ones that transform the data) return data of the
same type. The function String.upcase/1 returns a binary string, whereas List.insert_
at/3 returns a list.

Finally, a module also contains query functions that return some piece of information
from the data, such as String.length/1 and List.first/1. Such functions still expect
an instance of the data abstraction as the first argument, but they return another type
of information.

The basic principles of data abstraction in Elixir can be summarized as follows:

¡	A module is in charge of abstracting some data.
¡	The module’s functions usually expect an instance of the data abstraction as the

first argument.
¡	Modifier functions return a modified version of the abstraction.
¡	Query functions return some other type of data.

Given these principles, it’s fairly straightforward to create your own higher-level abstrac-
tions, as you’ll see in the next section.

104 chapter 4 Data abstractions

4.1 Abstracting with modules
Lists and strings are admittedly lower-level types. But higher-level data abstractions are
based on the same principles just stated. In fact, you already saw examples of a higher-level
data abstraction in chapter 2. For example, a MapSet module implements a set. MapSet is
implemented in pure Elixir and can serve as a good template for how to design an abstrac-
tion in Elixir.

Let’s look at an example that uses MapSet:

iex(1)> days =
 MapSet.new() |>
 MapSet.put(:monday) |>
 MapSet.put(:tuesday)

iex(2)> MapSet.member?(days, :monday)
true

This approach more or less follows the principles stated earlier. The code is slightly
simplified by using the pipeline operator to chain operations together. This is possible
because all the functions from the MapSet module take a set as the first argument. Such
functions are pipeline-friendly and can be chained with the |> operator.

Notice the new/0 function that creates an empty instance of the abstraction. There’s
nothing special about this function, and it could have been given any name. Its only
purpose is to create an empty data structure you can then work on.

Because MapSet is an abstraction, you, as a client of this module, don’t concern your-
self with its internal workings or its data structure. You call MapSet functions, holding
on to whatever result you get and passing that result back to functions from the same
module.

NOTE You may think that abstractions like MapSet are something like user-defined
types. Although there are many similarities, module-based abstractions aren’t
proper data types like the ones explained in chapter 2. Instead, they’re imple-
mented by composing built-in data types. For example, a MapSet instance is also a
map, which you can verify by invoking is_map(MapSet.new()).

Given this template, let’s try to build a simple data abstraction.

4.1.1 Basic abstraction

The example in this section is a simple to-do list. The problem is admittedly not spec-
tacular, but it’s complex enough to give you something to work on while not being
overly complicated. This will allow you to focus on techniques without spending too
much time trying to grasp the problem itself.

The basic version of the to-do list will support the following features:

¡	Creating a new data abstraction
¡	Adding new entries
¡	Querying the abstraction

Instances the abstraction

Modifies the abstraction

Queries the abstraction

 105Abstracting with modules

Here’s an example of the desired usage:

$ iex simple_todo.ex
iex(1)> todo_list =
 TodoList.new() |>
 TodoList.add_entry(~D[2018-12-19], "Dentist") |>
 TodoList.add_entry(~D[2018-12-20], "Shopping") |>
 TodoList.add_entry(~D[2018-12-19], "Movies")

iex(2)> TodoList.entries(todo_list, ~D[2018-12-19])
["Movies", "Dentist"]

iex(3)> TodoList.entries(todo_list, ~D[2018-12-18])
[]

This is fairly self-explanatory. You instantiate a structure by calling TodoList.new/0, then
add some entries, and finally execute some queries. The expression ~D[2018-12-19], as
explained in section 2.4.11, creates a date (December 19, 2018), powered by the Date
module.

As the chapter progresses, you’ll add additional features and modify the interface
slightly. You’ll continue adding features throughout this book, and by the end you’ll
have a fully working distributed web server that can manage a large number of to-do
lists.

For now, let’s start with this simple interface. First you have to decide on the internal
data representation. In the preceding snippet, you can see that the primary use case
is finding all entries for a single date. Therefore, using a map seems like a reasonable
initial approach. You’ll use dates as keys, with values being lists of entries for given dates.
With this in mind, the implementation of the new/0 function is straightforward.

Listing 4.1 Initializing a to-do list (simple_todo.ex)

defmodule TodoList do
 def new(), do: %{}
 ...
end

Next you have to implement the add_entry/3 function. This function expects a to-do list
(which you know is a map) and has to add the entry to the list under a given key (date).
Of course, it’s possible that no entries for that date exist, so you have to cover that case
as well. As it turns out, this can be done with a single call to the function Map.update/4.

Listing 4.2 Adding an entry (simple_todo.ex)

defmodule TodoList do
 ...
 def add_entry(todo_list, date, title) do
 Map.update(
 todo_list,
 date,
 [title],

Initial value

106 chapter 4 Data abstractions

 fn titles -> [title | titles] end
)
 end
 ...
end

The Map.update/4 function receives a map, a key, an initial value, and an updater
lambda. If no value exists for the given key, the initial value is used. Otherwise, the
updater lambda is called. The lambda receives the existing value and returns the
new value for that key. In this case, you push the new entry to the top of list. You may
remember from chapter 2 that lists are most efficient when pushing new elements to
the top. Therefore, you opt for a fast insertion operation but sacrifice ordering — more
recently added entries are placed before the older ones in the list.

Finally, you need to implement the entries/2 function that returns all entries for a
given date, or an empty list if no task exists for that date. This is fairly straightforward, as
you can see in the next listing.

Listing 4.3 Querying the to-do list (simple_todo.ex)

defmodule TodoList do
 ...
 def entries(todo_list, date) do
 Map.get(todo_list, date, [])
 end
end

You fetch a value for the given date from todo_list, which must be a map. The third argu-
ment to Map.get/3 is a default value that’s returned if a given key isn’t present in the map.

4.1.2 Composing abstractions

Nothing stops you from creating one abstraction on top of another. In our initial take
on the to-do list, there’s an opportunity to move some of the code into a separate
abstraction.

Look at the way you operate on a map, allowing multiple values to be stored under a
single key, and retrieving all values for that key. This code could be moved to a separate
abstraction. Let’s call this MultiDict, which is implemented in the next listing.

Listing 4.4 Implementing the MultiDict abstraction (todo–multi_dict.ex)

defmodule MultiDict do
 def new(), do: %{}

 def add(dict, key, value) do
 Map.update(dict, key, [value], &[value | &1])
 end

 def get(dict, key) do
 Map.get(dict, key, [])
 end
end

Updater lambda

 107Abstracting with modules

This is more or less a copy-and-paste from the initial to-do list implementation. The
names are changed a bit, and you use the capture operator to shorten the updater
lambda definition: &[value | &1].

With this abstraction in place, the TodoList module becomes much simpler.

Listing 4.5 TodoList relying on a MultiDict (todo_multi_dict.ex)

defmodule TodoList do
 def new(), do: MultiDict.new()

 def add_entry(todo_list, date, title) do
 MultiDict.add(todo_list, date, title)
 end

 def entries(todo_list, date) do
 MultiDict.get(todo_list, date)
 end
end

This is a classical separation of concerns, where you extract a distinct responsibility
into a separate abstraction, and then create another abstraction on top of it. A distinct
MultiDict abstraction is now readily available to be used in other places in code if
needed. Furthermore, you can extend TodoList with additional functions that don’t
belong to MultiDict. For example, due_today/2 would return all entries for today.

The point of this refactoring is to illustrate that the code organization isn’t that differ-
ent from an OO approach. You use different tools to create abstractions (stateless mod-
ules and pure functions instead of classes and methods), but the general idea is the same.

4.1.3 Structuring data with maps

TodoList now works as a reasonable abstraction. You can insert entries into the struc-
ture and get all entries for a given date. But the interface is somewhat clumsy. When
adding a new entry, you have to specify each field as a separate argument:

TodoList.add_entry(todo_list, ~D[2018-12-19], "Dentist")

If you want to extend an entry with another attribute — such as time — you must change
the signature of the function, which will in turn break all the clients. Moreover, you
have to change every place in the implementation where this data is being propagated.

An obvious solution to this problem is to somehow combine all entry fields as a single
data abstraction.

As explained in section 2.4.6, the most common way of doing this in Elixir is to use
maps, with field names stored as keys of the atom type. The following snippet demon-
strates how you can create and use an entry instance:

iex(1)> entry = %{date: ~D[2018-12-19], title: "Dentist"}

iex(2)> entry.date
~D[2018-12-19]

iex(3)> entry.title
"Dentist"

108 chapter 4 Data abstractions

You can immediately adapt your code to represent entries with maps. As it turns out,
this change is extremely simple. All you need to do is change the code of the TodoList
.add_entry function to accept two arguments: a to-do list instance, and a map that
describes an entry. The new version is presented in the following listing.

Listing 4.6 Representing entries with maps (todo_entry_map.ex)

defmodule TodoList do
 ...
 def add_entry(todo_list, entry) do
 MultiDict.add(todo_list, entry.date, entry)
 end
 ...
end

That was simple! You assume an entry is a map and add it to MultiDict, using its date
field as a key.

Let’s see this in action. To add a new entry, clients now must provide a map:

iex(1)> todo_list = TodoList.new() |>
 TodoList.add_entry(%{date: ~D[2018-12-19], title: "Dentist"})

The client code is obviously more verbose, because it must provide field names. But
because entries are now structured in a map, data retrieval is improved. The TodoList
.entries/2 function now returns complete entries, not just their titles:

iex(2)> TodoList.entries(todo_list, ~D[2018-12-19])
[%{date: ~D[2018-12-19], title: "Dentist"}]

The current implementation of TodoList relies on a map. This means that at runtime,
it’s impossible to make a distinction between a map and a TodoList instance. In some
situations, you may want to define and enforce a more precise structure definition. For
such cases, Elixir provides a feature called structs.

4.1.4 Abstracting with structs

Let’s say you need to perform various arithmetic operations on fractions (a/b). This
could be done efficiently if you had a corresponding abstraction. The following snip-
pet demonstrates how such an abstraction could be used:

$ iex fraction.ex
iex(1)> Fraction.add(Fraction.new(1, 2), Fraction.new(1, 4)) |>
 Fraction.value()
0.75

Here you sum one half (1/2) with one quarter (1/4) and return the numerical value
of the resulting fraction. A fraction is created using Fraction.new/2 and is then passed
to various other functions that know how to work with it.

Notice that there’s no notion of how the fraction is represented. A client instan-
tiates the abstraction and passes it on to another function from the corresponding
module.

 109Abstracting with modules

How can you implement this? There are many approaches, such as relying on plain
tuples or using maps. In addition, Elixir provides a facility called structs that allows you
to specify the abstraction structure up front and bind it to a module. Each module can
define only one struct, which can then be used to create new instances and pattern-match
on them.

In this case, a fraction has a well-defined structure, so you can use struct to specify
and enforce data correctness. Let’s see this in action.

To define a struct, you use the defstruct macro, as shown next.

Listing 4.7 Defining a structure (fraction.ex)

defmodule Fraction do
 defstruct a: nil, b: nil
 ...
end

A keyword list provided to defstruct defines the struct’s fields together with their ini-
tial values. You can now instantiate a struct using this special syntax:

iex(1)> one_half = %Fraction{a: 1, b: 2}
%Fraction{a: 1, b: 2}

Notice how a struct bears the name of the module it’s defined in. There’s a tight rela-
tion between structs and modules. A struct may exist only in a module, and a single
module can define only one struct.

Underneath, a struct instance is a special kind of map. Therefore, individual fields
are accessed just like maps:

iex(2)> one_half.a
1

iex(3)> one_half.b
2

The nice thing about structs is that you can pattern-match on them:

iex(4)> %Fraction{a: a, b: b} = one_half
%Fraction{a: 1, b: 2}

iex(5)> a
1

iex(6)> b
2

This makes it possible to assert that some variable is really a struct:

iex(6)> %Fraction{} = one_half
%Fraction{a: 1, b: 2}

iex(7)> %Fraction{} = %{a: 1, b: 2}
** (MatchError) no match of right hand side value: %{a: 1, b: 2}

Successful match

A struct pattern doesn’t match a map.

110 chapter 4 Data abstractions

Here you use a %Fraction{} pattern that matches any Fraction struct, regardless of its
contents. Pattern matching with structs works much like it does with maps. This means
in a pattern match, you need to specify only the fields you’re interested in, ignoring all
other fields.

Updating a struct works similarly to the way it works with maps:

iex(8)> one_quarter = %Fraction{one_half | b: 4}
%Fraction{a: 1, b: 4}

This code creates a new struct instance based on the original one (one_half), chang-
ing the value of the field b to 4.

Armed with this knowledge, add some functionality to the Fraction abstraction.
First you need to provide the instantiation function.

Listing 4.8 Instantiating a fraction (fraction.ex)

defmodule Fraction do
 ...
 def new(a, b) do
 %Fraction{a: a, b: b}
 end
 ...
end

This is a simple wrapper around the %Fraction{} syntax. It makes the client code
clearer and less coupled with the fact that structs are used.

Next, implement a Fraction.value/1 function that returns a decimal representa-
tion of the fraction.

Listing 4.9 Calculating the fraction value (fraction.ex)

defmodule Fraction do
 ...
 def value(%Fraction{a: a, b: b}) do
 a / b
 end
 ...
end

value/1 matches a fraction, taking its fields into individual variables and using them
to compute the final result. The benefit of pattern matching is that the input type is
enforced. If you pass anything that isn’t a fraction instance, you’ll get a match error.

Instead of decomposing fields into variables, you could also use dot notation:

def value(fraction) do
 fraction.a / fraction.b
end

This code is arguably clearer, but it will run slightly more slowly than the previous case
where you read all fields in a match. This performance penalty shouldn’t make much of
a difference in most situations, so you can choose the approach you find more readable.

Matches a fraction

 111Abstracting with modules

One final thing left to do is to implement the add function.

Listing 4.10 Adding two fractions (fraction.ex)

defmodule Fraction

 def add(%Fraction{a: a1, b: b1}, %Fraction{a: a2, b: b2}) do
 new(
 a1 * b2 + a2 * b1,
 b2 * b1
)
 end

end

You can now test your fraction:

iex(1)> Fraction.add(Fraction.new(1, 2), Fraction.new(1, 4)) |>
 Fraction.value()
0.75

The code works as expected. By representing fractions with a struct, you can provide
the definition of your type, listing all fields and their default values. Furthermore, it’s
possible to distinguish struct instances from any other data type. This allows you to
place %Fraction{} matches in function arguments, thus asserting that you only accept
fraction instances.

structs vs. maps

You should always be aware that structs are in reality just maps, so they have the same
characteristics with respect to performance and memory usage. But a struct instance
receives special treatment. Some things that can be done with maps don’t work with
structs. For example, you can’t call the Enum function on a struct:

iex(1)> one_half = Fraction.new(1, 2)

iex(2)> Enum.to_list(one_half)
** (Protocol.UndefinedError) protocol Enumerable not implemented for
 %Fraction{a: 1, b: 2}

Remember, a struct is a functional abstraction and should therefore behave according
to the implementation of the module where it’s defined. In the case of the Fraction
abstraction, you must define whether Fraction is enumerable and, if so, in what way.
If this isn’t done, Fraction isn’t an enumerable, so you can’t call Enum functions on it.

In contrast, a plain map is an enumerable, so you can convert it to a list:

iex(3)> Enum.to_list(%{a: 1, b: 2})
[a: 1, b: 2]

On the other hand, because structs are maps, directly calling Map functions works:

iex(4)> Map.to_list(one_half)
[__struct__: Fraction, a: 1, b: 2]

112 chapter 4 Data abstractions

Notice the _struct_: Fraction bit. This key/value pair is automatically included in
each struct. It helps Elixir distinguish structs from plain maps and perform proper run-
time dispatches from within polymorphic generic code. You’ll learn more about this
later when we describe protocols.

The struct field has an important consequence for pattern matching. A struct pat-
tern can’t match a plain map:

iex(5)> %Fraction{} = %{a: 1, b: 2}
** (MatchError) no match of right hand side value: %{a: 1, b: 2}

But a plain map pattern can match a struct:

iex(5)> %{a: a, b: b} = %Fraction{a: 1, b: 2}
%Fraction{a: 1, b: 2}

iex(6)> a
1

iex(7)> b
2

This is due to the way pattern matching works with maps. Remember, all fields from
the pattern must exist in the matched term. When matching a map to a struct pattern,
this isn’t the case, because %Fraction{} contains the field struct, which isn’t present
in the map being matched.

The opposite works, because you match a struct to the %{a: a, b: b} pattern.
Because all these fields exist in the Fraction struct, the match is successful.

records

In addition to maps and structs, there’s another way to structure data: records. This is a
facility that lets you use tuples and still be able to access individual elements by name.
Records can be defined using the defrecord and defrecordp macros from the Record
module (https://hexdocs.pm/elixir/Record.html).

Given that they’re essentially tuples, records should be faster than maps (although
the difference usually isn’t significant in the grand scheme of things). On the flip side,
the usage is more verbose, and it’s not possible to access fields by name dynamically.

Records are present mostly for historical reasons. Before maps appeared, records
were one of the main tools for structuring data. In fact, many libraries from the Erlang
ecosystem use records as their interface. If you need to interface an Erlang library using
a record defined in that library, you must import that record into Elixir and define
it as a record. This can be done with the Record.extract/2 function in conjunction
with the defrecord macro. This idiom isn’t required often, so records won’t be demon-
strated here. Still, it may be useful to keep this information in the back of your head and
research it if the need arises.

4.1.5 Data transparency

The modules you’ve devised so far are abstractions, because clients aren’t aware of
their implementation details. For example, as a client, you call Fraction.new/2 to

https://hexdocs.pm/elixir/Record.html

 113Abstracting with modules

create an instance of the abstraction, and then send that instance back to some other
function from that same module.

But the entire data structure is always visible. As a client, you can obtain individual
fraction values, even if this was not intended by the library developer.

It’s important to be aware that data in Elixir is always transparent. Clients can read
any information from your structs (and any other data type), and there’s no easy way
of preventing that. In that sense, encapsulation works differently than in typical OO
languages. In Elixir, modules are in charge of abstracting the data and providing opera-
tions to manipulate and query that data, but the data is never hidden.

Let’s verify this in a shell session:

$ iex todo_entry_map.ex

iex(1)> todo_list = TodoList.new() |>
 TodoList.add_entry(%{date: ~D[2018-12-19], title: "Dentist"})

%{~D[2018-12-19] => [%{date: ~D[2018-12-19], title: "Dentist"}]}

Looking at the return value, you can see the entire structure of the to-do list. From the
output, you can immediately tell that the to-do list is powered by a map, and you can
also find out details about how individual entries are kept.

Let’s look at another example. A MapSet instance is also an abstraction, powered by
the MapSet module and a corresponding struct. At first glance, this isn’t visible:

iex(1)> mapset = MapSet.new([:monday, :tuesday])
#MapSet<[:monday, :tuesday]>

Notice how #MapSet is printed in a special way, using #MapSet<…> output. This is due to
the inspection mechanism in Elixir: whenever a result is printed in the shell, the func-
tion Kernel.inspect/1 is called to transform the structure into an inspected string.
For each abstraction you build, you can override the default behavior and provide your
own inspected format. This is exactly what MapSet does, and you’ll learn how to do this
for your type later in this chapter when we discuss protocols.

Occasionally you may want to see the pure data structure, without this decorated out-
put. This can be useful when you’re debugging, analyzing, or reverse-engineering code.
To do so, you can provide a special option to the inspect function:

iex(2)> IO.puts(inspect(mapset, structs: false))
%{__struct__: MapSet, map: %{monday: [], tuesday: []}, version: 2}

The output now reveals the complete structure of a date, and you can “see through”
the MapSet abstraction. This demonstrates that data privacy can’t be enforced in func-
tional abstractions; you can see the naked structure of the data. Remember from chap-
ter 2 that the only complex types are tuples, lists, and maps. Any other abstraction,
such as MapSet or your own TodoList, will ultimately be built on top of these types.

The benefit of data transparency is that the data can be easily inspected, which can be
useful for debugging purposes. But as a client of a data abstraction, you shouldn’t rely on
its internal representation, even though it’s visible to you. You shouldn’t pattern-match

To-do list with a single element

114 chapter 4 Data abstractions

on the internal structure or try to extract or modify individual parts of it because a proper
abstraction, such as MapSet, doesn’t guarantee what the data will look like. The only guar-
antee is that the module’s functions will work if you send them a properly structured
instance that you already received from that same module.

Sometimes a module will publicly document some parts of its internal struc-
ture. Good examples of this are the date and time modules, such as Date, Time, and
DateTime. Looking at the documentation, you’ll see explicit mention that the cor-
responding data is represented as a structure with fields such as year, month, hour,
and so on. In this case, the structure of the data is publicly documented, and you
can freely rely on it.

One final thing you should know, related to data inspection, is the IO.inspect/1
function. This function prints the inspected representation of a structure to the screen
and returns the structure itself. This is particularly useful when debugging a piece of
code. Look at the following example:

iex(1)> Fraction.new(1, 4) |>
 Fraction.add(Fraction.new(1, 4)) |>
 Fraction.add(Fraction.new(1, 2)) |>
 Fraction.value()
1.0

This code relies on the pipeline operator to perform a series of fraction operations.
Let’s say you want to inspect the entire structure after each step. You can easily insert
the call to IO.inspect/1 after every line:

iex(2)> Fraction.new(1, 4) |>
 IO.inspect() |>
 Fraction.add(Fraction.new(1, 4)) |>
 IO.inspect() |>
 Fraction.add(Fraction.new(1, 2)) |>
 IO.inspect() |>
 Fraction.value()

%Fraction{a: 1, b: 4}
%Fraction{a: 8, b: 16}
%Fraction{a: 32, b: 32}

This works because IO.inspect/1 prints the data structure and then returns that same
data structure unchanged.

We’re now done with the basic theory behind functional abstractions, but you’ll
practice some more by extending the to-do list.

4.2 Working with hierarchical data
In this section, you’ll extend the TodoList abstraction to provide basic CRUD support.
You already have the C and R parts resolved with the add_entry/3 and entries/1 func-
tions, respectively. Now you need to add support for updating and deleting entries. To
do this, you must be able to uniquely identify each entry in the to-do list, so you’ll begin
by adding unique ID values to each entry.

Output of each IO.inspect call

 115Working with hierarchical data

4.2.1 Generating IDs

When adding a new entry to the list, you’ll autogenerate its ID value, using incremen-
tal integers for IDs. To implement this, you have to do a couple of things:

¡	Transform the to-do list into a struct — You need to do this because the to-do list now
has to keep two pieces of information: the entries collection and the ID value for
the next entry.

¡	Use the entry’s ID as the key — So far, when storing entries in a collection, you used
the entry’s date as the key. You’ll change this and use the entry’s ID instead. This
will make it possible to quickly insert, update, and delete individual entries.
You’ll now have exactly one value per each key, so you won’t need the MultiDict
abstraction anymore.

Let’s start implementing this. The code in the following listing contains the module
and struct definitions.

Listing 4.11 TodoList struct (todo_crud.ex)

defmodule TodoList do
 defstruct auto_id: 1, entries: %{}

 def new(), do: %TodoList{}
 ...
end

The to-do list will now be represented as a struct with two fields. The field auto_id con-
tains the ID value that will be assigned to the new entry while it’s being added to the
structure. The field entries is the collection of entries. As has been mentioned, you’re
now using a map, and the keys are entry ID values.

During the struct definition, the default values for the auto_id and entries fields are
immediately specified. Therefore, you don’t have to provide these when creating a new
instance. The instantiation function new/0 creates and returns an instance of the struct.

Next, it’s time to reimplement the add_entry/2 function. It has to do more work:

¡	Set the ID for the entry being added.
¡	Add the new entry to the collection.
¡	Increment the auto_id field.

Here’s the code.

Listing 4.12 Autogenerating ID values for new entries (todo_crud.ex)

defmodule TodoList do
 ...

 def add_entry(todo_list, entry) do
 entry = Map.put(entry, :id, todo_list.auto_id)

Struct that describes the to-do list

Creates a new instance

Sets the new entry’s ID

116 chapter 4 Data abstractions

 new_entries = Map.put(
 todo_list.entries,
 todo_list.auto_id,
 entry
)

 %TodoList{todo_list |
 entries: new_entries,
 auto_id: todo_list.auto_id + 1
 }
 end

 ...
end

A lot of things happen here, so let’s take them one at a time.
In the function body, you first update the entry’s id value with the value stored in the

auto_id field. Notice how you use Map.put/3 to update the entry map. The input map
may not contain the id field, so you can’t use the standard %{entry | id: auto_id}
technique, which works only if the id field is already present in the map.

Once the entry is updated, you add it to the entries collection, keeping the result in
the new_entries variable.

Finally, you must update the TodoList struct instance, setting its entries field to
the new_entries collection and incrementing the auto_id field. Essentially, you made
a complex change in the struct, modifying multiple fields as well as the input entry
(because you set its id field).

To the external caller, the entire operation will be atomic. Either everything will hap-
pen or, in case of an error, nothing at all. This is the consequence of immutability. The
effect of adding an entry is visible to others only when the add_entry/2 function fin-
ishes and its result is taken into a variable. If something goes wrong and you raise an
error, the effect of any transformations won’t be visible.

It’s also worth repeating, as mentioned in chapter 2, that the new to-do list (the one
returned by the add_entry/2 function) will share as much memory as possible with the
input to-do list.

With the add_entry/2 function finished, you need to adjust the entries/2 function.
This will be more complicated because you changed the internal structure. Earlier, you kept
a date-to-entries mapping. Now entries are stored using id as the key, so you have to iterate
through all the entries and return the ones that fall on a given date. This code is shown next.

Listing 4.13 Filtering entries for a given date (todo_crud.ex)

defmodule TodoList do
 ...

 def entries(todo_list, date) do
 todo_list.entries
 |> Stream.filter(fn {_, entry} -> entry.date == date end)
 |> Enum.map(fn {_, entry} -> entry end)
 end

Adds the new entry to the entries list

Updates the struct

Filters entries
for a given date

Takes only values

 117Working with hierarchical data

 ...
end

This function takes advantage of the fact that a map is an enumerable. When you use a
map instance with functions from Enum or Stream, each map element is treated in the
form of {key, value}.

Two transformations are performed here. First, you take only those entries that fall
on a given date. After that, you have a collection of {id, entry} tuples (due to the
just-mentioned enumerable properties of a map). Therefore, you have to do an addi-
tional transformation and extract only the second element of each tuple.

Notice that the first transformation is done with the Stream module, whereas the
second one uses Enum. As explained in chapter 3, this allows both transformations to
happen in a single pass through the input collection.

Finally, you can check whether your new version of the to-do list works:

$ iex todo_crud.ex
iex(1)> todo_list = TodoList.new() |>
 TodoList.add_entry(%{date: ~D[2018-12-19], title: "Dentist"}) |>
 TodoList.add_entry(%{date: ~D[2018-12-20], title: "Shopping"}) |>
 TodoList.add_entry(%{date: ~D[2018-12-19], title: "Movies"})

iex(2)> TodoList.entries(todo_list, ~D[2018-12-19])
[
 %{date: ~D[2018-12-19], id: 1, title: "Dentist"},
 %{date: ~D[2018-12-19], id: 3, title: "Movies"}
]

This works as expected, and you can even see the ID value for each entry. Also note that
the interface of the TodoList module is the same as the previous version. You’ve made
a number of internal modifications, changed the data representation, and practically
rewritten the entire module. And yet, the module’s clients don’t need to be altered,
because you kept the same interface for your functions.

This is nothing revolutionary — it’s a classical benefit of abstracting the data. But it
demonstrates how you can construct and reason about higher-level types when working
with stateless modules and immutable data.

4.2.2 Updating entries

Now that your entries have ID values, you can add additional modifier operations. Let’s
implement the update_entry operation, which can be used to modify a single entry in
the to-do list.

The first question is, how will the update_entry function be used? There are two
possible options:

¡	The function will accept an ID value for the entry and an updater lambda. This
will work similarly to Map.update. The lambda will receive the original entry and
return its modified version.

¡	The function will accept an entry map. If an entry with the same ID exists in the
entries collection, it will be replaced.

118 chapter 4 Data abstractions

Another question is what to do if an entry with a given ID doesn’t exist. You can either
do nothing or raise an error. In this example, you’ll use the first option, the updater
lambda approach, and you won’t raise an error if the entry with a given ID doesn’t exist.

The following snippet illustrates the usage. Here, you modify the date of an entry
that has an ID value of 1:

iex(1)> TodoList.update_entry(
 todo_list,
 1,
 &Map.put(&1, :date, ~D[2018-12-20])
)

The implementation is presented in the following listing.

Listing 4.14 Updating an entry (todo_crud.ex)

defmodule TodoList do
 ...

 def update_entry(todo_list, entry_id, updater_fun) do
 case Map.fetch(todo_list.entries, entry_id) do
 :error ->
 todo_list

 {:ok, old_entry} ->
 new_entry = updater_fun.(old_entry)
 new_entries = Map.put(todo_list.entries, new_entry.id, new_entry)
 %TodoList{todo_list | entries: new_entries}
 end
 end

 ...
end

Let’s break down what happens here. First, you look up the entry with the given ID,
using Map.fetch/2. The function will return :error if the entry doesn’t exist, and
{:ok, value} otherwise.

In the first case, if the entry doesn’t exist, you return the original version of the list.
Otherwise, you have to call the updater lambda to get the modified entry. Then you
store the modified entry into the entries collection. Finally, you store the modified
entries collection in the TodoList instance and return that instance.

fun with pattern matching

update_entry/3 works fine, but it’s not quite bulletproof. The updater lambda can
return any data type, possibly corrupting the entire structure. You can make some
assertions about this with a little help from pattern matching, as shown in the following
snippet:

new_entry = %{} = updater_fun.(old_entry)

ID of the entry to be modified

Modifies an entry date

No entry — returns
the unchanged list

Entry exists — performs the update
and returns the modified list

 119Working with hierarchical data

Here you use a nested match, as explained in chapter 3: you require that the result of
the updater lambda be a map. If that fails, an error will be raised. Otherwise, you take
the entire result into the new_entry variable.

You can go a step further and assert that the ID value of the entry hasn’t been
changed in the lambda:

old_entry_id = old_entry.id
new_entry = %{id: ^old_entry_id} = updater_fun.(old_entry)

Here you store the ID of the old entry in a separate variable. Then you check that the
result of the updater lambda has that same ID value. Recall from chapter 3 that ̂ var in
a pattern match means you’re matching on the value of the variable. In this case, you
match on the value stored in the old_entry_id variable. If the updater lambda returns
an entry with a different ID, the match will fail, and an error will be raised.

You can also use pattern matching to provide an alternative update interface. The
following snippet depicts the idea:

def update_entry(todo_list, %{} = new_entry) do
 update_entry(todo_list, new_entry.id, fn _ -> new_entry end)
end

Here you define an update_entry/2 function that expects a to-do list and an entry
that’s a map. It delegates to update_entry/3, which you just implemented. The
updater lambda ignores the old value and returns the new entry. Recall from chapter
3 that functions with the same name but different arities are different functions. This
means you now have two distinct update_entry functions. Which one will be called
depends on the number of arguments passed.

Finally, note that this abstraction is still overly vague. When clients provide entries via
TodoList.add_entry/2 and TodoList.update_entry/2, there are no restrictions on
what the entries should contain. These functions accept any kind of map. To make this
abstraction more restrictive, you could introduce a dedicated struct for the entry (for
example, a TodoEntry) and then use pattern matching to enforce that each entry is in
fact an instance of that struct.

4.2.3 Immutable hierarchical updates

You may not have noticed, but in the previous example you performed a deep update
of an immutable hierarchy. Let’s break down what happens when you call TodoList
.update_entry(todo_list, id, updater_lambda):

1 You take the target entry into a separate variable.

2 You call the updater that returns the modified version of the entry to you.

3 You call Map.put to put the modified entry into the entries collection.

4 You return the new version of the to-do list, which contains the new entries
collection.

120 chapter 4 Data abstractions

Notice that steps 2, 3, and 4 are the ones where you transform data. Each of these steps
creates a new variable that contains the transformed data. In each subsequent step, you
take this data and update its container, again by creating a transformed version of it.

This is how you work with immutable data structures. If you have hierarchical data, you
can’t directly modify part of it that resides deep in its tree. Instead, you have to walk down
the tree to the particular part that needs to be modified, and then transform it and all of
its ancestors. The result is a copy of the entire model (in this case, the to-do list). As men-
tioned, the two versions — new and previous — will share as much memory as possible.

If you divide these operations into many smaller functions, the implementation is
fairly simple and straightforward. Each function is responsible for modifying part of the
hierarchy. If it needs to change something that’s deeper in the tree, it finds the topmost
ancestor and then delegates to another function to perform the rest of the work. In this
way, you’re breaking down the walk through the tree into many smaller functions, each
of which is in charge of a particular level of abstraction.

provided helpers

Although the technique presented works, it may become cumbersome for deeper hier-
archies. Remember, to update an element deep in the hierarchy, you have to walk to
that element and then update all of its parents. To simplify this, Elixir offers support
for more elegant deep hierarchical updates.

Let’s look at a basic example. Internally, the to-do structure is a simple map, where
keys are IDs and values are plain maps consisting of fields. Let’s create one such map:

iex(1)> todo_list = %{
 1 => %{date: ~D[2018-12-19], title: "Dentist"},
 2 => %{date: ~D[2018-12-20], title: "Shopping"},
 3 => %{date: ~D[2018-12-19], title: "Movies"}
}

Now, let’s say you change your mind and want to go to the theater instead of a movie.
The original structure can be modified elegantly using the Kernel.put_in/2 macro:

iex(2)> put_in(todo_list[3].title, "Theater")

%{
 1 => %{date: ~D[2018-12-19], title: "Dentist"},
 2 => %{date: ~D[2018-12-20], title: "Shopping"},
 3 => %{date: ~D[2018-12-19], title: "Theater"}
}

What happened here? Internally, put_in/2 does something similar to what you did. It
walks recursively to the desired element, transforms it, and then updates all the par-
ents. Notice that this is still an immutable operation, meaning the original structure is
left intact, and you have to take the result to a variable.

To be able to do a recursive walk, put_in/2 needs to receive source data and a path
to the target element. In the preceding example, the source is provided as todo_list
and the path is specified as [3].title. The macro put_in/2 then walks down that path,
rebuilding the new hierarchy on the way up.

Hierarchical update

Entry title is updated

 121Working with hierarchical data

It’s also worth noting that Elixir provides similar alternatives for data retrieval and
updates in the form of the get_in/2, update_in/2, and get_and_update_in/2 macros.
The fact that these are macros means the path you provide is evaluated at compile time
and can’t be built dynamically.

If you need to construct paths at runtime, there are equivalent functions that accept
data and path as separate arguments. For example, put_in can also be used as follows:

iex(3)> path = [3, :title]

iex(4)> put_in(todo_list, path, "Theater")

Functions and macros, such as put_in/2, rely on the Access module, which allows you
to work with key/value structures such as maps. You can also make your own abstrac-
tion work with Access. You need to implement a couple of functions required by the
Access contract, and then put_in and related macros and functions will know how to
work with your own abstraction. Refer to the official Access documentation (https://
hexdocs.pm/elixir/Access.html) for more details.

exercise: deleting an entry

Your TodoList module is almost complete. You’ve already implemented create (add_
entry/2), retrieve (entries/2), and update (update_entry/3) operations. The last
thing remaining is the delete_entry/2 operation. This is straightforward, and it’s left
for you to do as an exercise. If you get stuck, the solution is provided in the source file
todo_crud.ex.

4.2.4 Iterative updates

So far, you’ve been doing updates manually, one at a time. Now it’s time to implement
iterative updates. Imagine that you have a raw list describing the entries:

$ iex todo_builder.ex

iex(1)> entries = [
 %{date: ~D[2018-12-19], title: "Dentist"},
 %{date: ~D[2018-12-20], title: "Shopping"},
 %{date: ~D[2018-12-19], title: "Movies"}
]

Now you want to create an instance of the to-do list that contains all of these entries:

iex(2)> todo_list = TodoList.new(entries)

It’s obvious that the function new/1 performs an iterative build of the to-do list. How
can you implement such a function? As it turns out, this is simple, as you can see in the
following listing.

Listing 4.15 Iteratively building the to-do list (todo_builder.ex)

defmodule TodoList do
 ...

 def new(entries \\ []) do

Using a path constructed at runtime

https://hexdocs.pm/elixir/Access.html
https://hexdocs.pm/elixir/Access.html

122 chapter 4 Data abstractions

 Enum.reduce(
 entries,
 %TodoList{},
 fn entry, todo_list_acc ->
 add_entry(todo_list_acc, entry)
 end
)
 end
 ...
end

To build the to-do list iteratively, you’re relying on Enum.reduce/3. Recall from chapter
3 that reduce is used to transform something enumerable to anything else. In this case,
you’re transforming a raw list of Entry instances into an instance of the Todo-List
struct. Therefore, you call Enum.reduce/3, passing the input list as the first argument,
the new structure instance as the second argument (the initial accumulator value),
and the lambda that’s called in each step.

The lambda is called for each entry in the input list. Its task is to add the entry to the
current accumulator (TodoList struct) and return the new accumulator value. To do
this, the lambda delegates to the already-present add_entry/2 function, reversing the
argument order. The arguments need to be reversed because Enum.reduce/3 calls the
lambda, passing the iterated element (entry) and accumulator (TodoList struct). In
contrast, add_entry accepts a struct and an entry.

Notice that you can make the lambda definition more compact with the help of the
capture operator:

def new(entries \\ []) do
 Enum.reduce(
 entries,
 %TodoList{},
 &add_entry(&2, &1)
)
end

Whether you prefer this version or the previous one is entirely up to your personal
taste. The capture version is definitely shorter, but it’s arguably more cryptic.

4.2.5 Exercise: importing from a file

Now it’s time for you to practice a bit. In this exercise, you’ll create a TodoList instance
from the comma-separated file.

Assume that you have a todos.csv file in the current folder. Each line in the file
describes a single to-do entry:

2018/12/19,Dentist
2018/12/20,Shopping
2018/12/19,Movies

Your task is to create an additional module, TodoList.CsvImporter, that can be used
to create a TodoList instance from the file contents:

iex(1)> todo_list = TodoList.CsvImporter.import("todos.csv")

Initial accumulator value

Iteratively updates the accumulator

Reverses the order of arguments
and delegates to add_entry/2

 123Working with hierarchical data

To simplify the task, assume that the file is always available and in the correct format.
Also assume that the comma character doesn’t appear in the entry title.

This is generally not hard to do, but it might require some cracking and experiment-
ing. Here are a couple of hints that will lead you in the right direction.

First, create a single file with the following layout:

defmodule TodoList do
 ...
end

defmodule TodoList.CsvImporter do
 ...
end

Always work in small steps. Implement part of the calculation, and then print the result
to the screen using IO.inspect/1. I can’t stress enough how important this is. This task
requires some data pipelining. Working in small steps will allow you to move gradually
and verify that you’re on the right track.

The general steps you should undertake are as follows:

1 Open a file and go through it, removing \n from each line. Hint: use File
.stream!/1, Stream.map/2, and String.replace/2. You did this in chapter 3,
when we talked about streams, in the example where you filtered lines longer
than 80 characters.

2 Parse each line obtained from the previous step into a raw tuple in the form
{{year, month, date}, title}. Hint: you have to split each line using String
.split/2. Then further split the first element (date), and extract the date parts.
String.split/2 returns a list of strings separated by the given token. When you
split the date field, you’ll have to additionally convert each date part into a num-
ber. Use String.to_integer/1 for this.

3 Once you have the raw tuple, create a map that represents the entry.

4 The output of step 3 should be an enumerable that consists of maps. Pass that
enumerable to the TodoList.new/1 function that you recently implemented.

In each of these steps, you’ll receive an enumerable as an input, transform each ele-
ment, and pass the resulting enumerable forward to the next step. In the final step, the
resulting enumerable is passed to the already-implemented TodoList.new/1, and the
to-do list is created.

If you work in small steps, it’s harder to get lost. For example, you can start by open-
ing a file and printing each line to the screen. Then try to remove the trailing newline
from each line and print them to the screen, and so on.

While transforming the data in each step, you can work with Enum functions or func-
tions from the Stream module. It will probably be simpler to start with eager functions
from the Enum module and get the entire thing to work. Then you should try to replace
as many of the Enum functions as possible with their Stream counterparts. Recall from
chapter 3 that the Stream functions are lazy and composable, which results in a single
iteration pass. If you get lost, the solution is provided in the file todo_import.ex.

124 chapter 4 Data abstractions

In the meantime, we’re almost done with our exploration of higher-level data abstrac-
tions. The final topic we’ll briefly discuss is the Elixir way of doing polymorphism.

4.3 Polymorphism with protocols
Polymorphism is a runtime decision about which code to execute, based on the nature
of the input data. In Elixir, the basic (but not the only) way of doing this is by using the
language feature called protocols.

Before discussing protocols, let’s see them in action. You’ve already seen polymor-
phic code. For example, the entire Enum module is generic code that works on anything
enumerable, as the following snippet illustrates:

Enum.each([1, 2, 3], &IO.inspect/1)
Enum.each(1..3, &IO.inspect/1)
Enum.each(%{a: 1, b: 2}, &IO.inspect/1)

Notice how you use the same Enum.each/2 function, sending it different data struc-
tures: a list, a range, and a map. How does Enum.each/2 know how to walk each struc-
ture? It doesn’t. The code in Enum.each/2 is generic and relies on a contract. This
contract, called a protocol, must be implemented for each data type you wish to use with
Enum functions. This is roughly similar to abstract interfaces from OO, with a slight
twist.

Let’s see how to define and use protocols.

4.3.1 Protocol basics

A protocol is a module in which you declare functions without implementing them.
Consider it a rough equivalent of an OO interface. The generic logic relies on the pro-
tocol and calls its functions. Then you can provide a concrete implementation of the
protocol for different data types.

Let’s look at an example. The protocol String.Chars is provided by the Elixir stan-
dard libraries and is used to convert data to a binary string. This is how the protocol is
defined in the Elixir source:

defprotocol String.Chars do
 def to_string(thing)
end

This resembles the module definition, with the notable difference that functions are
declared but not implemented.

Notice the first argument of the function (the thing). At runtime, the type of this
argument determines the implementation that’s called. Let’s see this in action. Elixir
already implements the protocol for atoms, numbers, and some other data types, so you
can issue the following calls:

iex(1)> String.Chars.to_string(1)
"1"

iex(2)> String.Chars.to_string(:an_atom)
"an_atom"

Definition of the protocol

Declaration of protocol functions

 125Polymorphism with protocols

If the protocol isn’t implemented for the given data type, an error is raised:

iex(3)> String.Chars.to_string(TodoList.new())
** (Protocol.UndefinedError) protocol String.Chars not implemented

Usually you don’t need to call the protocol function directly. More often, there’s
generic code that relies on the protocol. In the case of String.Chars, this is the
auto-imported function Kernel.to_string/1:

iex(4)> to_string(1)
"1"

iex(5)> to_string(:an_atom)
"an_atom"

iex(6)> to_string(TodoList.new())
** (Protocol.UndefinedError) protocol String.Chars not implemented

As you can see, the behavior of to_string/1 is exactly the same as that of String.Chars
.to_string/1. This is because Kernel.to_string/1 delegates to the String.Chars
implementation.

In addition, you can send anything that implements String.Chars to IO.puts/1:

iex(7)> IO.puts(1)
1

iex(8)> IO.puts(:an_atom)
an_atom

iex(9)> IO.puts(TodoList.new())
** (Protocol.UndefinedError) protocol String.Chars not implemented

As you can see, an instance of the TodoList isn’t printable because String.Chars isn’t
implemented for the corresponding type.

4.3.2 Implementing a protocol

How do you implement a protocol for a specific type? Let’s refer to the Elixir source
again. The following snippet implements String.Chars for integers:

defimpl String.Chars, for: Integer do
 def to_string(term) do
 Integer.to_string(term)
 end
end

You start the implementation by calling the defimpl macro. Then you specify which
protocol to implement and the corresponding data type. Finally, the do/end block con-
tains the implementation of each protocol function. In the example, the implementa-
tion delegates to the existing standard library function Integer.to_string/1.

The for: Type part deserves some explanation. The type is an atom and can be any
of following aliases: Tuple, Atom, List, Map, BitString, Integer, Float, Function, PID,
Port, or Reference. These values correspond to built-in Elixir types.

126 chapter 4 Data abstractions

In addition, the alias Any is allowed, which makes it possible to specify a fallback
implementation. If a protocol isn’t defined for a given type, an error will be raised,
unless a fallback to Any is specified in the protocol definition and an Any implemen-
tation exists. Refer to the defprotocol documentation (https://hexdocs.pm/elixir/
Kernel.html#defprotocol/2) for details.

Finally, and most importantly, the type can be any other arbitrary alias (but not a
regular, simple atom):

defimpl String.Chars, for: SomeAlias do
 ...
end

This implementation will be called if the first argument of the protocol function (the
thing) is a struct defined in the corresponding module.

For example, you can implement String.Chars for TodoList. Do this:

iex(1)> defimpl String.Chars, for: TodoList do
 def to_string(_) do
 "#TodoList"
 end
 end

Now you can pass a to-do list instance to IO.puts/1:

iex(2)> IO.puts(TodoList.new())
#TodoList

It’s important to notice that the protocol implementation doesn’t need to be part of
any module. This has powerful consequences: you can implement a protocol for a
type even if you can’t modify the type’s source code. You can place the protocol imple-
mentation anywhere in your own code, and the runtime will be able to take advantage
of it.

4.3.3 Built-in protocols

Elixir comes with some predefined protocols. It’s best to consult the online documen-
tation for the complete reference (https://hexdocs.pm/elixir), but let’s mention
some of the more important ones.

You’ve already seen String.Chars, which specifies the contract for converting data
into a binary string. There’s also the List.Chars protocol, which converts input data to
a character string (a list of characters).

If you want to control how your structure is printed in the debug output (via the
inspect function), you can implement the Inspect protocol.

Arguably the most important protocol is Enumerable. By implementing it, you can
make your data structure enumerable. This means you can use all the functions from the
Enum and Stream modules for free! This is probably the best demonstration of protocol
usefulness. Both Enum and Stream are generic modules that offer many useful func-
tions, which can work on your custom data structures as soon as you implement the
Enumerable protocol.

https://hexdocs.pm/elixir/Kernel.html#defprotocol/2
https://hexdocs.pm/elixir/Kernel.html#defprotocol/2
https://hexdocs.pm/elixir

 127Polymorphism with protocols

Closely related to enumeration is the Collectable protocol. Recall from chapter 3
that a collectable structure is one that you can repeatedly add elements to. A collectable
can be used with comprehensions to collect results or with Enum.into/2 to transfer ele-
ments of one structure (enumerable) to another (collectable).

And, of course, you can define your own protocols and implement them for any
available data structure (your own or someone else’s). See the Kernel.defprotocol/2
documentation for more information.

collectable to-do list

Let’s look at a more involved example. You’ll make your to-do list collectable so that
you can use it as a comprehension target. This is a slightly more advanced example, so
don’t worry if you don’t get every detail in the first go.

To make the abstraction collectable, you have to implement the corresponding
protocol:

defimpl Collectable, for: TodoList do
 def into(original) do
 {original, &into_callback/2}
 end

 defp into_callback(todo_list, {:cont, entry}) do
 TodoList.add_entry(todo_list, entry)
 end
 defp into_callback(todo_list, :done), do: todo_list
 defp into_callback(todo_list, :halt), do: :ok
end

The exported function into/1 is called by the generic code (comprehensions, for
example). Here you provide the implementation that returns the appender lambda.
This appender lambda is then repeatedly invoked by the generic code to append each
element to your data structure.

The appender function receives a to-do list and an instruction hint. If you receive
{:cont, entry}, you must add a new entry. If you receive :done, you return the list,
which at this point contains all appended elements. Finally, :halt indicates that the
operation has been canceled, and the return value is ignored.

Let’s see this in action. Copy and paste the previous code into the shell, and then try
the following:

iex(1)> entries = [
 %{date: ~D[2018-12-19], title: "Dentist"},
 %{date: ~D[2018-12-20], title: "Shopping"},
 %{date: ~D[2018-12-19], title: "Movies"}
]

iex(2)> for entry <- entries, into: TodoList.new(), do: entry
%TodoList{...}

By implementing the Collectable protocol, you essentially adapt the TodoList
abstraction to any generic code that relies on that protocol, such as comprehensions
and Enum.into/2.

Returns the appender lambda

Appender implementation

Collecting into a TodoList

128 chapter 4 Data abstractions

Summary

¡	A module is used to create a data abstraction. A module’s functions create, manipu-
late, and query data. Clients can inspect the entire structure but shouldn’t rely on it.

¡	Maps can be used to group different fields together in a single structure.
¡	Structs are special kinds of maps that allow you to define data abstractions related

to a module.
¡	Polymorphism can be implemented with protocols. A protocol defines an inter-

face that is used by the generic logic. You can then provide specific protocol
implementations for a data type.

129

5Concurrency primitives

This chapter covers
¡	Understanding BEAM concurrency principles

¡	Working with processes

¡	Working with stateful server processes

¡	Runtime considerations

Now that you have sufficient knowledge of Elixir and functional programming
idioms, we’ll turn our attention to the Erlang platform. We’ll spend some time
exploring BEAM concurrency, a feature that plays a central role in Elixir’s and
Erlang’s support for scalability, fault-tolerance, and distribution.

In this chapter, we’ll start our tour of BEAM concurrency by looking at basic
techniques and tools. Before we explore the lower-level details, we’ll take a look at
higher-level principles.

130 chapter 5 Concurrency primitives

5.1 Concurrency in BEAM
Erlang is all about writing highly available systems — systems that run forever and are
always able to meaningfully respond to client requests. To make your system highly
available, you have to tackle the following challenges:

¡	Fault-tolerance — Minimize, isolate, and recover from the effects of runtime errors.
¡	Scalability — Handle a load increase by adding more hardware resources without

changing or redeploying the code.
¡	Distribution — Run your system on multiple machines so that others can take over

if one machine crashes.

If you address these challenges, your systems can constantly provide service with min-
imal downtime and failures. Concurrency plays an important role in achieving high
availability. In BEAM, the unit of concurrency is a process : a basic building block that
makes it possible to build scalable, fault-tolerant, distributed systems.

NOTE A BEAM process shouldn’t be confused with an OS process. As you’re
about to learn, BEAM processes are much lighter and cheaper than OS pro-
cesses. Because this book deals mostly with BEAM, the term process in the
remaining text refers to a BEAM process.

In production, a typical server system must handle many simultaneous requests from
many different clients, maintain a shared state (for example, caches, user session data,
and server-wide data), and run some additional background processing jobs. For the
server to work normally, all of these tasks should run reasonably quickly and be reliable.

Because many tasks are pending simultaneously, it’s imperative to execute them in
parallel as much as possible, thus taking advantage of all available CPU resources. For
example, it’s extremely bad if the lengthy processing of one request blocks all other
pending requests and background jobs. Such behavior can lead to a constant increase
in the request queue, and the system can become unresponsive.

Moreover, tasks should be as isolated from each other as possible. You don’t want an
unhandled exception in one request handler to crash another unrelated request handler,
a background job, or, especially, the entire server. You also don’t want a crashing task to
leave behind an inconsistent memory state, which might later compromise another task.

That’s exactly what the BEAM concurrency model does for us. Processes help us run
things in parallel, allowing us to achieve scalability — the ability to address a load increase
by adding more hardware power that the system automatically takes advantage of.

Processes also ensure isolation, which in turn gives us fault-tolerance — the ability to
localize and limit the impact of unexpected runtime errors that inevitably occur. If you
can localize exceptions and recover from them, you can implement a system that truly
never stops, even when unexpected errors occur.

In BEAM, a process is a concurrent thread of execution. Two processes run concur-
rently and may therefore run in parallel, assuming at least two CPU cores are available.
Unlike OS processes or threads, BEAM processes are lightweight concurrent entities han-
dled by the VM, which uses its own scheduler to manage their concurrent execution.

Figure 5.1 BEAM as a single OS process, using a few threads to schedule a large number of processes

 131Concurrency in BEAM

By default, BEAM uses as many schedulers as there are CPU cores available. For exam-
ple, on a quad-core machine, four schedulers are used, as shown in figure 5.1.

Each scheduler runs in its own thread, and the entire VM runs in a single OS process.
In figure 5.1, there’s one OS process and four OS threads, and that’s all you need to run
a highly concurrent server system.

A scheduler is in charge of the interchangeable execution of processes. Each process
gets an execution time slot; after the time is up, the running process is preempted, and
the next one takes over.

Processes are light. It takes only a couple of microseconds to create a single pro-
cess, and its initial memory footprint is a few kilobytes. By comparison, OS threads
usually use a couple of megabytes just for the stack. Therefore, you can create a
large number of processes: the theoretical limit imposed by the VM is roughly 134
million!

This feature can be exploited in server-side systems to manage various tasks that
should run simultaneously. Using a dedicated process for each task, you can take advan-
tage of all available CPU cores and parallelize the work as much as possible.

Moreover, running tasks in different processes improves the server’s reliability
and fault-tolerance. BEAM processes are completely isolated; they share no mem-
ory, and a crash of one process won’t take down other processes. In addition, BEAM
provides a means to detect a process crash and do something about it, such as restart-
ing the crashed process. All this makes it easier to create systems that are more sta-
ble and can gracefully recover from unexpected errors, which inevitably occur in
production.

5.1 Concurrency in BEAM
Erlang is all about writing highly available systems — systems that run forever and are
always able to meaningfully respond to client requests. To make your system highly
available, you have to tackle the following challenges:

¡	Fault-tolerance — Minimize, isolate, and recover from the effects of runtime errors.
¡	Scalability — Handle a load increase by adding more hardware resources without

changing or redeploying the code.
¡	Distribution — Run your system on multiple machines so that others can take over

if one machine crashes.

If you address these challenges, your systems can constantly provide service with min-
imal downtime and failures. Concurrency plays an important role in achieving high
availability. In BEAM, the unit of concurrency is a process : a basic building block that
makes it possible to build scalable, fault-tolerant, distributed systems.

NOTE A BEAM process shouldn’t be confused with an OS process. As you’re
about to learn, BEAM processes are much lighter and cheaper than OS pro-
cesses. Because this book deals mostly with BEAM, the term process in the
remaining text refers to a BEAM process.

In production, a typical server system must handle many simultaneous requests from
many different clients, maintain a shared state (for example, caches, user session data,
and server-wide data), and run some additional background processing jobs. For the
server to work normally, all of these tasks should run reasonably quickly and be reliable.

Because many tasks are pending simultaneously, it’s imperative to execute them in
parallel as much as possible, thus taking advantage of all available CPU resources. For
example, it’s extremely bad if the lengthy processing of one request blocks all other
pending requests and background jobs. Such behavior can lead to a constant increase
in the request queue, and the system can become unresponsive.

Moreover, tasks should be as isolated from each other as possible. You don’t want an
unhandled exception in one request handler to crash another unrelated request handler,
a background job, or, especially, the entire server. You also don’t want a crashing task to
leave behind an inconsistent memory state, which might later compromise another task.

That’s exactly what the BEAM concurrency model does for us. Processes help us run
things in parallel, allowing us to achieve scalability — the ability to address a load increase
by adding more hardware power that the system automatically takes advantage of.

Processes also ensure isolation, which in turn gives us fault-tolerance — the ability to
localize and limit the impact of unexpected runtime errors that inevitably occur. If you
can localize exceptions and recover from them, you can implement a system that truly
never stops, even when unexpected errors occur.

In BEAM, a process is a concurrent thread of execution. Two processes run concur-
rently and may therefore run in parallel, assuming at least two CPU cores are available.
Unlike OS processes or threads, BEAM processes are lightweight concurrent entities han-
dled by the VM, which uses its own scheduler to manage their concurrent execution.

Figure 5.1 BEAM as a single OS process, using a few threads to schedule a large number of processes

132 chapter 5 Concurrency primitives

Finally, each process can manage some state and can receive messages from other
processes to manipulate or retrieve that state. As you saw in part 1 of this book, data
in Elixir is immutable. To keep it alive, you have to hold on to it, constantly passing
the result of one function to another. A process can be considered a container of this
data — a place where an immutable structure is stored and kept alive for a longer time,
possibly forever.

As you can see, there’s more to concurrency than parallelization of the work. With
this high-level view of BEAM processes in place, let’s look at how you can create pro-
cesses and work with them.

5.2 Working with processes
The benefits of processes are most obvious when you want to run something concur-
rently and parallelize the work as much as possible. For example, let’s say you need to
run a bunch of potentially long-running database queries. You could run those queries
sequentially, one at a time, or you can try to run them concurrently, hoping that the
total execution time will speed up.

Concurrency vs. parallelism
It’s important to realize that concurrency doesn’t necessarily imply parallelism. Two con-
current things have independent execution contexts, but this doesn’t mean they will run
in parallel. If you run two CPU-bound concurrent tasks and you only have one CPU core,
parallel execution can’t happen. You can achieve parallelism by adding more CPU cores
and relying on an efficient concurrent framework. But you should be aware that concur-
rency itself doesn’t necessarily speed things up.

To keep things simple, we’ll use a simulation of a long-running database query, pre-
sented in the following snippet:

iex(1)> run_query =
 fn query_def ->
 Process.sleep(2000)
 "#{query_def} result"
 end

Here, the code sleeps for two seconds to simulate a long-running operation. When you
call the run_query lambda, the shell is blocked until the lambda is done:

iex(2)> run_query.("query 1")

"query 1 result"

Consequently, if you run five queries, it will take 10 seconds to get all the results:

iex(3)> Enum.map(1..5, &run_query.("query #{&1}"))

["query 1 result", "query 2 result", "query 3 result"
 "query 4 result", "query 5 result"]

Simulates a long running time

Two seconds later

Ten seconds later

 133Working with processes

Obviously, this is neither performant nor scalable. Assuming that the queries are
already optimized, the only thing you can do to try to make things faster is to run the
queries concurrently. This won’t speed up the running time of a single query, but the
total time required to run all the queries should be much less. In the BEAM world, to
run something concurrently, you have to create a separate process.

5.2.1 Creating processes

To create a process, you can use the auto-imported spawn/1 function:

spawn(fn ->
 expression_1
 ...
 expression_n
end)

The function spawn/1 takes a zero-arity lambda that will run in the new process. After the
process is created, spawn immediately returns, and the caller process’s execution con-
tinues. The provided lambda is executed in the new process and therefore runs concur-
rently. After the lambda is done, the spawned process exits, and its memory is released.

You can try this to run the query concurrently:

iex(4)> spawn(fn -> IO.puts(run_query.("query 1")) end)
#PID<0.48.0>

result of query 1

As you can see, the call to spawn/1 returns immediately, and you can do something else
in the shell while the query runs. Then, after two seconds, the result is printed to the
screen. This happens because you called IO.puts/1 from a separate process.

The funny-looking #PID<0.48.0> that’s returned by spawn/1 is the identifier of the
created process, often called a pid. This can be used to communicate with the process,
as you’ll see later in this chapter.

In the meantime, let’s play some more with concurrent execution. First, you’ll create
a helper lambda that concurrently runs the query and prints the result:

iex(5)> async_query =
 fn query_def ->
 spawn(fn -> IO.puts(run_query.(query_def)) end)
 end

iex(6)> async_query.("query 1")
#PID<0.52.0>

result of query 1

This code demonstrates an important technique: passing data to the created process.
Notice that async_query takes one argument and binds it to the query_def variable.
This data is then passed to the newly created process via the closure mechanism.
The inner lambda — the one that runs in a separate process — references the vari-
able query_def from the outer scope. This results in cross-process data passing — the

Runs in the new process

Immediately returned

Printed after two seconds

Two seconds later

134 chapter 5 Concurrency primitives

contents of query_def are passed from the main process to the newly created one.
When it’s passed to another process, the data is deep-copied, because two processes
can’t share any memory.

NOTE In BEAM, everything runs in a process. This also holds for the interac-
tive shell. All expressions you enter in iex are executed in a single shell-specific
process. In this example, the main process is the shell process.

Now that you have the async_query lambda in place, you can try to run five queries
concurrently:

iex(7)> Enum.each(1..5, &async_query.("query #{&1}"))
:ok

result of query 5
result of query 4
result of query 3
result of query 2
result of query 1

As expected, the call to Enum.each/2 now returns immediately (in the first sequential
version you had to wait 10 seconds for it to finish). Moreover, all the results are printed
at practically the same time, two seconds later, which is a five-fold improvement over
the sequential version. This happens because you run each computation concurrently.

Also note that because processes run concurrently, the order of execution isn’t
guaranteed.

In contrast to the sequential version, the caller process doesn’t get the result of the
spawned processes. The processes run concurrently, each one printing the result to the
screen. At the same time, the caller process runs independently and has no access to
any data from the spawned processes. Remember, processes are completely indepen-
dent and isolated.

Often, a simple “fire and forget” concurrent execution, where the caller process
doesn’t receive any notification from the spawned ones, will suffice. Sometimes, though,
you’ll want to return the result of the concurrent operation to the caller process. For
this purpose, you can use the message-passing mechanism.

5.2.2 Message passing

In complex systems, you often need concurrent tasks to cooperate in some way. For
example, you may have a main process that spawns multiple concurrent calculations,
and then you want to handle all the results in the main process.

Being completely isolated, processes can’t use shared data structures to exchange
knowledge. Instead, processes communicate via messages, as illustrated in figure 5.2.

When process A wants process B to do something, it sends an asynchronous message
to B. The content of the message is an Elixir term — anything you can store in a variable.
Sending a message amounts to storing it into the receiver’s mailbox. The caller then con-
tinues with its own execution, and the receiver can pull the message in at any time and
process it in some way. Because processes can’t share memory, a message is deep-copied
when it’s sent.

Returns immediately

After two seconds

Figure 5.2 Inter-process communication via messages

 135Working with processes

The process mailbox is a FIFO queue limited only by the available memory. The
receiver consumes messages in the order received, and a message can be removed
from the queue only if it’s consumed.

To send a message to a process, you need to have access to its process identifier (pid).
Recall from the previous section that the pid of the newly created process is the result
of the spawn/1 function. In addition, you can obtain the pid of the current process by
calling the auto-imported self/0 function.

Once you have a receiver’s pid, you can send it messages using the Kernel.send/2
function:

send(pid, {:an, :arbitrary, :term})

The consequence of send is that a message is placed in the mailbox of the receiver. The
caller then continues doing something else.

On the receiver side, to pull a message from the mailbox, you have to use the receive
expression:

receive do
 pattern_1 -> do_something
 pattern_2 -> do_something_else
end

The receive expression works similarly to the case expression you saw in chapter 3.
It tries to pull one message from the process mailbox, match it against any of the pro-
vided patterns, and run the corresponding code. You can easily test this by making the
shell process send messages to itself:

iex(1)> send(self(), "a message") Sends the message

contents of query_def are passed from the main process to the newly created one.
When it’s passed to another process, the data is deep-copied, because two processes
can’t share any memory.

NOTE In BEAM, everything runs in a process. This also holds for the interac-
tive shell. All expressions you enter in iex are executed in a single shell-specific
process. In this example, the main process is the shell process.

Now that you have the async_query lambda in place, you can try to run five queries
concurrently:

iex(7)> Enum.each(1..5, &async_query.("query #{&1}"))
:ok

result of query 5
result of query 4
result of query 3
result of query 2
result of query 1

As expected, the call to Enum.each/2 now returns immediately (in the first sequential
version you had to wait 10 seconds for it to finish). Moreover, all the results are printed
at practically the same time, two seconds later, which is a five-fold improvement over
the sequential version. This happens because you run each computation concurrently.

Also note that because processes run concurrently, the order of execution isn’t
guaranteed.

In contrast to the sequential version, the caller process doesn’t get the result of the
spawned processes. The processes run concurrently, each one printing the result to the
screen. At the same time, the caller process runs independently and has no access to
any data from the spawned processes. Remember, processes are completely indepen-
dent and isolated.

Often, a simple “fire and forget” concurrent execution, where the caller process
doesn’t receive any notification from the spawned ones, will suffice. Sometimes, though,
you’ll want to return the result of the concurrent operation to the caller process. For
this purpose, you can use the message-passing mechanism.

5.2.2 Message passing

In complex systems, you often need concurrent tasks to cooperate in some way. For
example, you may have a main process that spawns multiple concurrent calculations,
and then you want to handle all the results in the main process.

Being completely isolated, processes can’t use shared data structures to exchange
knowledge. Instead, processes communicate via messages, as illustrated in figure 5.2.

When process A wants process B to do something, it sends an asynchronous message
to B. The content of the message is an Elixir term — anything you can store in a variable.
Sending a message amounts to storing it into the receiver’s mailbox. The caller then con-
tinues with its own execution, and the receiver can pull the message in at any time and
process it in some way. Because processes can’t share memory, a message is deep-copied
when it’s sent.

Returns immediately

After two seconds

Figure 5.2 Inter-process communication via messages

136 chapter 5 Concurrency primitives

iex(2)> receive do
 message -> IO.inspect(message)
 end
"a message"

If you want to handle a specific message, you can rely on pattern matching:

iex(3)> send(self(), {:message, 1})

iex(4)> receive do
 {:message, id} ->
 IO.puts("received message #{id}")
 end
received message 1

If there are no messages in the mailbox, receive waits indefinitely for a new message
to arrive. The following call blocks the shell, and you need to manually terminate it:

iex(5)> receive do
 message -> IO.inspect(message)
 end

The same thing happens if a message can’t be matched against provided pattern
clauses:

iex(1)> send(self(), {:message, 1})

iex(2)> receive do
 {_, _, _} ->
 IO.puts("received")
 end

If you don’t want receive to block, you can specify the after clause, which is executed
if a message isn’t received in a given time frame (in milliseconds):

iex(1)> receive do
 message -> IO.inspect(message)
 after
 5000 -> IO.puts("message not received")
 end

message not received

receive algorithm

Recall from chapter 3 that an error is raised when you can’t pattern-match the given
term. The receive expression is an exception to this rule. If a message doesn’t match
any of the provided clauses, it’s put back into the process mailbox, and the next mes-
sage is processed.

The receive expression works as follows:

1 Take the first message from the mailbox.

2 Try to match it against any of the provided patterns, going from top to bottom.

3 If a pattern matches the message, run the corresponding code.

Receives the message

Pattern-matches the message

The shell is blocked because
the process mailbox is empty.

This doesn’t match the sent message …Note: In the xml file, the
callout is on a blank line
after the line that reads
"end." Is this correct?

… so the shell is blocked.

Five seconds later

Figure 5.3 Synchronous send and receive
implemented on top of the asynchronous messages

 137Working with processes

4 If no pattern matches, put the message back into the mailbox at the same posi-
tion it originally occupied. Then try the next message.

5 If there are no more messages in the queue, wait for a new one to arrive. When a
new message arrives, start from step 1, inspecting the first message in the mailbox.

6 If the after clause is specified and no message is matched in the given amount of
time, run the code from the after block.

As you already know, each Elixir expression returns a value, and receive is no differ-
ent. The result of receive is the result of the last expression in the appropriate clause:

iex(1)> send(self(), {:message, 1})

iex(2)> receive_result =
 receive do
 {:message, x} ->
 x + 2
 end

iex(3)> IO.inspect(receive_result)
3

To summarize, receive tries to find the first (oldest) message in the process mailbox
that can be matched against any of the provided patterns. If such a message is found,
the corresponding code is executed. Otherwise, receive waits for such a message for a
specified amount of time, or indefinitely if the after clause isn’t provided.

synchronous sending

The basic message-passing mechanism is the asynchronous “fire and forget” kind. A
process sends a message and then continues to run, oblivious to what happens in the
receiver. Sometimes a caller needs some kind of response from the receiver. There’s no
special language construct for doing this. Instead, you must program both parties to
cooperate using the basic asynchronous messaging facility.

The caller must include its own pid in the message contents and then wait for a
response from the receiver. The receiver uses the embedded pid to send the response
to the caller, as illustrated in figure 5.3. You’ll see this in action a bit later, when we dis-
cuss server processes.

collecting query results

Let’s try message-passing with the concurrent queries developed in the previous sec-
tion. In your initial attempt, you’ll run queries in separate processes and print them to
the screen from those processes. Then you’ll try to collect all the results in the main
process.

The result of receive

iex(2)> receive do
 message -> IO.inspect(message)
 end
"a message"

If you want to handle a specific message, you can rely on pattern matching:

iex(3)> send(self(), {:message, 1})

iex(4)> receive do
 {:message, id} ->
 IO.puts("received message #{id}")
 end
received message 1

If there are no messages in the mailbox, receive waits indefinitely for a new message
to arrive. The following call blocks the shell, and you need to manually terminate it:

iex(5)> receive do
 message -> IO.inspect(message)
 end

The same thing happens if a message can’t be matched against provided pattern
clauses:

iex(1)> send(self(), {:message, 1})

iex(2)> receive do
 {_, _, _} ->
 IO.puts("received")
 end

If you don’t want receive to block, you can specify the after clause, which is executed
if a message isn’t received in a given time frame (in milliseconds):

iex(1)> receive do
 message -> IO.inspect(message)
 after
 5000 -> IO.puts("message not received")
 end

message not received

receive algorithm

Recall from chapter 3 that an error is raised when you can’t pattern-match the given
term. The receive expression is an exception to this rule. If a message doesn’t match
any of the provided clauses, it’s put back into the process mailbox, and the next mes-
sage is processed.

The receive expression works as follows:

1 Take the first message from the mailbox.

2 Try to match it against any of the provided patterns, going from top to bottom.

3 If a pattern matches the message, run the corresponding code.

Receives the message

Pattern-matches the message

The shell is blocked because
the process mailbox is empty.

This doesn’t match the sent message …Note: In the xml file, the
callout is on a blank line
after the line that reads
"end." Is this correct?

… so the shell is blocked.

Five seconds later

Figure 5.3 Synchronous send and receive
implemented on top of the asynchronous messages

138 chapter 5 Concurrency primitives

First let’s recall how the async_query lambda works:

iex(1)> run_query =
 fn query_def ->
 Process.sleep(2000)
 "#{query_def} result"
 end

iex(2)> async_query =
 fn query_def ->
 spawn(fn -> IO.puts(run_query.(query_def)) end)
 end

Instead of printing to the screen, make the lambda send the query result to the caller
process:

iex(3)> async_query =
 fn query_def ->
 caller = self()
 spawn(fn ->
 send(caller, {:query_result, run_query.(query_def)})
 end)
 end

In this code, you first store the pid of the calling process to a distinct caller variable.
This is necessary so the worker process (the one doing the calculation) can know the
pid of the process that should receive the response.

Keep in mind that the result of self/0 depends on the calling process. If you didn’t
store the result to the caller variable, and you tried to send(self(), …) from the
inner lambda, it would have no effect. The spawned process would send the message to
itself, because calling self/0 returns the pid of the process that invoked the function.

The worker process can now use the caller variable to return the result of the calcu-
lation. The message is in the custom format {:query_result, result}. This makes it
possible to distinguish between your messages and any others that might be sent to the
caller process.

Now you can start your queries:

iex(4)> Enum.each(1..5, &async_query.("query #{&1}"))

This runs all the queries concurrently, and the result is stored in the mailbox of the
caller process. In this case, this is the shell (iex) process.

Notice that the caller process is neither blocked nor interrupted while receiving mes-
sages. Sending a message doesn’t disturb the receiving process in any way. If the process
is performing computations, it continues to do so. The only thing affected is the con-
tent of the receiving process’s mailbox. Messages remain in the mailbox until they’re
consumed or the process terminates.

Let’s get the results. First you make a lambda that pulls one message from the mail-
box and extracts the query result from it:

iex(5)> get_result =
 fn ->

Stores the pid of the calling process

Responds to the calling process

 139Stateful server processes

 receive do
 {:query_result, result} -> result
 end
 end

Now you can pull all the messages from the mailbox into a single list:

iex(6)> results = Enum.map(1..5, fn _ -> get_result.() end)
["query 3 result", "query 2 result", "query 1 result",
 "query 5 result", "query 4 result"]

Notice the use of Enum.map/2, which maps anything enumerable to a list of the same
length. In this case, you create a range of size 5 and then map each element to the
result of the get_result lambda. This works because you know there are five mes-
sages waiting for you. Otherwise, the loop would get stuck waiting for new messages
to arrive.

It’s also worth pointing out that results arrive in a nondeterministic order. Because
all computations run concurrently, it’s not certain in which order they’ll finish.

This is a simple implementation of a parallel map technique that can be used to pro-
cess a larger amount of work in parallel and then collect the results into a list. Let’s look
at the complete version once more:

iex(7)> 1..5 |>
 Enum.map(&async_query.("query #{&1}")) |>
 Enum.map(fn _ -> get_result.() end)

5.3 Stateful server processes
Spawning processes to perform one-off tasks isn’t the only use case for concurrency. In
Elixir, it’s common to create long-running processes that can respond to various mes-
sages. Such processes can keep their internal state, which other processes can query or
even manipulate.

In this sense, stateful server processes resemble objects. They maintain state and
can interact with other processes via messages. But a process is concurrent, so multiple
server processes can run in parallel.

Server processes are an important concept in Elixir/Erlang systems, so we’ll spend
some time exploring this topic.

5.3.1 Server processes

A server process is an informal name for a process that runs for a long time (or forever)
and can handle various requests (messages). To make a process run forever, you have
to use endless tail recursion. You may remember from chapter 3 that tail calls receive
special treatment. If the last thing a function does is call another function (or itself), a
simple jump takes place instead of a stack push. Consequently, a function that always
calls itself will run forever, without causing a stack overflow or consuming additional
memory.

Starts concurrent
computations

Collects the results

140 chapter 5 Concurrency primitives

This can be used to implement a server process. You need to run the endless loop
and wait for a message in each step of the loop. When the message is received, you han-
dle it and then continue the loop. Let’s try this and turn the query example into a server
process. The basic sketch is provided in the following listing.

Listing 5.1 Long-running server process that runs queries (database_server.ex)

defmodule DatabaseServer do
 def start do
 spawn(&loop/0)
 end

 defp loop do
 receive do
 ...
 end

 loop()
 end
 ...
end

start/0 is the so-called interface function that’s used by clients to start the server pro-
cess. When start/0 is called, it creates the long-running process that runs forever. This
is ensured in the private loop/0 function, which waits for a message, handles it, and
finally calls itself, thus ensuring that the process never stops. This loop isn’t CPU-in-
tensive. Waiting for a message puts the process in a suspended state and doesn’t waste
CPU cycles.

Notice that functions in this module run in different processes. The function
start/0 is called by clients and runs in a client process. The private function loop/0
runs in the server process. It’s perfectly normal to have different functions from the
same module running in different processes — there’s no special relationship between
modules and processes. A module is just a collection of functions, and these functions
can be invoked in any process.

When implementing a server process, it usually makes sense to put all of its code in
a single module. The functions of this module generally fall into two categories: inter-
face and implementation. Interface functions are public and are executed in the caller
process. They hide the details of process creation and the communication protocol.
Implementation functions are usually private and run in the server process.

NOTE As was the case with classical loops, you typically won’t need to
code the recursion loop yourself. A standard abstraction called GenServer
(generic server process) is provided, which simplifies the development of
stateful server processes. The abstraction still relies on recursion, but this
recursion is implemented in GenServer. You’ll learn about this abstraction
in chapter 6.

Starts the loop concurrently

Handles one message

Keeps the loop running

 141Stateful server processes

Let’s look at the full implementation of the loop/0 function.

Listing 5.2 Database server loop (database_server.ex)

defmodule DatabaseServer do
 ...

 defp loop do
 receive do
 {:run_query, caller, query_def} ->
 send(caller, {:query_result, run_query(query_def)})
 end

 loop()
 end

 defp run_query(query_def) do
 Process.sleep(2000)
 "#{query_def} result"
 end

 ...
end

This code reveals the communication protocol between the caller process and the
database server. The caller sends a message in the format {:run_query, caller,
query_def}. The server process handles such a message by executing the query and
sending the query result back to the caller process.

Usually you want to hide these communication details from your clients. Clients
shouldn’t depend on knowing the exact structure of messages that must be sent or
received. To hide this, it’s best to provide a dedicated interface function. Let’s intro-
duce a function called run_async/2 that will be used by clients to request the opera-
tion — in this case, a query execution — from the server. This function makes the clients
unaware of message-passing details — they just call run_async/2 and get the result. The
implementation is given in the following listing.

Listing 5.3 Implementation of run_async/2 (database_server.ex)

defmodule DatabaseServer do
 ...
 def run_async(server_pid, query_def) do
 send(server_pid, {:run_query, self(), query_def})
 end
 ...
end

The run_async/2 function receives the pid of the database server and a query you want
to execute. It sends the appropriate message to the server and then does nothing else.
Calling run_async/2 from the client requests that the server process run the query
while the caller goes about its business.

Awaits a message

Runs the query and sends
the response to the caller

Query execution

142 chapter 5 Concurrency primitives

Once the query is executed, the server sends a message to the caller process. To get
this result, you need to add another interface function. It’s called get_result/0.

Listing 5.4 Implementation of get_result/0 (database_server.ex)

defmodule DatabaseServer do
 ...

 def get_result do
 receive do
 {:query_result, result} -> result
 after
 5000 -> {:error, :timeout}
 end
 end

 ...
end

get_result/0 is called when the client wants to get the query result. Here, you use
receive to get the message. The after clause ensures that you give up after some
time passes — for example, if something goes wrong during the query execution and a
response never comes back.

The database server is now complete. Let’s see how to use it:

iex(1)> server_pid = DatabaseServer.start()

iex(2)> DatabaseServer.run_async(server_pid, "query 1")
iex(3)> DatabaseServer.get_result()
"query 1 result"

iex(4)> DatabaseServer.run_async(server_pid, "query 2")
iex(5)> DatabaseServer.get_result()
"query 2 result"

Notice how you execute multiple queries in the same process. First you run query 1
and then query 2. This proves that the server process continues running after a mes-
sage is received.

Because communication details are wrapped in functions, the client isn’t aware of
them. Instead, it communicates with the process with plain functions. Here, the server
pid plays an important role. You receive the pid by calling DatabaseServer.start/0,
and then you use it to issue requests to the server.

Of course, the request is handled asynchronously in the server process. After calling
DatabaseServer.run_async/2, you can do whatever you want in the client (iex) pro-
cess and collect the result when you need it.

server processes are sequential

It’s important to realize that a server process is internally sequential. It runs a loop that
processes one message at a time. Thus, if you issue five asynchronous query requests to
a single server process, they will be handled one by one, and the result of the last query
will come after 10 seconds.

 143Stateful server processes

This is a good thing because it helps you reason about the system. A server process
can be considered a synchronization point. If multiple actions need to happen syn-
chronously, in a serialized manner, you can introduce a single process and forward all
requests to that process, which handles the requests sequentially.

Of course, in this case, a sequential property is a problem. You want to run multiple
queries concurrently to get the result as quickly as possible. What can you do about it?

Assuming that the queries can be run independently, you can start a pool of server
processes, and then for each query somehow choose one of the processes from the pool
and have that process run the query. If the pool is large enough and you divide the work
uniformly across each worker in the pool, you’ll parallelize the total work as much as
possible.

Here’s a basic sketch of how can this be done. First, create a pool of database-server
processes:

iex(1)> pool = Enum.map(1..100, fn _ -> DatabaseServer.start() end)

Here you create 100 database-server processes and store their pids in a list. You may
think that 100 processes is a lot, but recall that processes are lightweight. They take up a
small amount of memory (~2 KB) and are created very quickly (in a few microseconds).
Furthermore, because all of these processes wait for a message, they’re effectively idle
and don’t waste CPU time.

Next, when you run a query, you need to decide which process will execute the query.
The simplest way is to use the :rand.uniform/1 function, which takes a positive integer
and returns a random number in the range 1..N (inclusive). Taking advantage of this,
the following expression distributes five queries over a pool of processes:

iex(2)> Enum.each(
 1..5,
 fn query_def ->
 server_pid = Enum.at(pool, :rand.uniform(100) - 1)
 DatabaseServer.run_async(server_pid, query_def)
 end
)

Note that this isn’t efficient. You’re using Enum.at/2 to get the pid at a random posi-
tion. Because you use a list to keep the processes, and a random lookup is an O(N)
operation, selecting a random worker isn’t very performant. You could do better if you
used a map with process indexes as keys and pids as values; and there are other alter-
natives, such as using a round-robin approach. But for now, let’s stick with this simple
implementation.

Once you’ve queued the queries to the workers, you need to collect the responses.
This is now straightforward, as illustrated in the following snippet:

iex(3)> Enum.map(1..5, fn _ -> DatabaseServer.get_result() end)
["5 result", "3 result", "1 result", "4 result", "2 result"]

Thanks to this, you get all the results much faster, because queries are again executed
concurrently.

Selects a random process

Runs a query on it

144 chapter 5 Concurrency primitives

5.3.2 Keeping a process state

Server processes open the possibility of keeping some kind of process-specific state.
For example, when you talk to a database, you need a connection handle that’s used to
communicate with the server. If your process is responsible for TCP communication, it
needs to keep the corresponding socket.

To keep state in the process, you can extend the loop function with additional argu-
ment(s). Here’s a basic sketch:

def start do
 spawn(fn ->
 initial_state = ...
 loop(initial_state)
 end)
end

defp loop(state) do
 ...
 loop(state)
end

Let’s use this technique to extend the database server with a connection. In this example,
you’ll use a random number as a simulation of the connection handle. First you need to
initialize the connection while the process starts, as demonstrated in the following listing.

Listing 5.5 Initializing the process state (stateful_database_server.ex)

defmodule DatabaseServer do
 ...
 def start do
 spawn(fn ->
 connection = :rand.uniform(1000)
 loop(connection)
 end)
 end
 ...
end

Here, you open the connection and then pass the corresponding handle to the loop
function. In real life, instead of generating a random number, you’d use a database
client library (such as ODBC) to open the connection.

Next you need to modify the loop function.

Listing 5.6 Using the connection while querying (stateful_database_server.ex)

defmodule DatabaseServer do
 ...

 defp loop(connection) do
 receive do
 {:run_query, from_pid, query_def} ->
 query_result = run_query(connection, query_def)
 send(from_pid, {:query_result, query_result})

Initializes the state during process creation

Enters the loop with that state

Keeps the state during the loop

Uses the connection
while running the query

 145Stateful server processes

 end

 loop(connection)
 end

 defp run_query(connection, query_def) do
 Process.sleep(2000)
 "Connection #{connection}: #{query_def} result"
 end

 ...
end

This is fairly straightforward. The loop function keeps the state (connection) as the
first argument. You have to additionally extend the run_query function to use the con-
nection while querying the database.

The connection handle (in this case, a number) is included in the query result.
With this, your stateful database server is complete. Notice that you didn’t change

the interface of its public functions, so the usage remains the same as it was. Let’s see
how it works:

iex(1)> server_pid = DatabaseServer.start()

iex(2)> DatabaseServer.run_async(server_pid, "query 1")
iex(3)> DatabaseServer.get_result()
"Connection 753: query 1 result"

iex(4)> DatabaseServer.run_async(server_pid, "query 2")
iex(5)> DatabaseServer.get_result()
"Connection 753: query 2 result"

The results for different queries are executed using the same connection handle, which
is kept internally in the process loop and is completely invisible to other processes.

5.3.3 Mutable state

So far, you’ve seen how to keep constant process-specific state. It doesn’t take much to
make this state mutable. Here’s the basic idea:

def loop(state) do
 new_state =
 receive do
 msg1 ->
 ...

 msg2 ->
 ...
 end

 loop(new_state)
end

This is a typical stateful server technique. You wait for a message and then, based on its
contents, compute the new state. Finally, you loop recursively with the new state, effec-
tively changing the state. The next received message operates on the new state.

Keeps the connection in the loop argument

Computes the new state based on the message

Loops with the new state

146 chapter 5 Concurrency primitives

From the outside, stateful processes are mutable. By sending messages to a process,
a caller can affect its state and the outcome of subsequent requests handled in that
server. In that sense, sending a message is an operation with possible side effects. Still,
the server relies on immutable data structures. A state can be any valid Elixir variable
ranging from simple numbers to complex data abstractions, such as TodoList (which
you saw in chapter 4).

Let’s see this in action. You’ll start with a simple example: a stateful calculator pro-
cess that keeps a number as its state. Initially the state of the process is 0, and you can
manipulate it by issuing requests such as add, sub, mul, and div. You can also retrieve
the process state with the value request.

Here’s how you use the server:

iex(1)> calculator_pid = Calculator.start()

iex(2)> Calculator.value(calculator_pid)
0

iex(3)> Calculator.add(calculator_pid, 10)
iex(4)> Calculator.sub(calculator_pid, 5)
iex(5)> Calculator.mul(calculator_pid, 3)
iex(6)> Calculator.div(calculator_pid, 5)

iex(7)> Calculator.value(calculator_pid)
3.0

In this code, you start the process and check its initial state. Then you issue some modifier
requests and verify the result of the operations (((0 + 10) - 5) * 3) / 5, which is 3.0.

Now it’s time to implement this. First, let’s look at the server’s inner loop.

Listing 5.7 Concurrent stateful calculator (calculator.ex)

defmodule Calculator do
 ...

 defp loop(current_value) do
 new_value =
 receive do
 {:value, caller} ->
 send(caller, {:response, current_value})
 current_value

 {:add, value} -> current_value + value
 {:sub, value} -> current_value - value
 {:mul, value} -> current_value * value
 {:div, value} -> current_value / value

 invalid_request ->
 IO.puts("invalid request #{inspect invalid_request}")
 current_value
 end

 loop(new_value)

Starts the process

Verifies the initial value

Issues requests

Verifies the value

Getter request

Arithmetic operations requests

Unsupported request

 147Stateful server processes

 end

 ...
end

The loop handles various messages. The :value message is used to retrieve the serv-
er’s state. Because you need to send the response back, the caller must include its pid
in the message. Notice that the last expression of this block returns current_value.
This is needed because the result of receive is stored in new_value, which is then
used as the server’s new state. By returning current_value, you specify that the :value
request doesn’t change the process state.

The arithmetic operations compute the new state based on the current value and
the argument received in the message. Unlike a :value message handler, arithmetic
operation handlers don’t send responses back to the caller. This makes it possible to
run these operations asynchronously, as you’ll see soon when you implement interface
functions.

The final receive clause matches all the other messages. These are the ones you’re
not supporting, so you log them to the screen and return current_value, leaving the
state unchanged.

Next, you have to implement the interface functions that will be used by clients. This
is done in the next listing.

Listing 5.8 Calculator interface functions (calculator.ex)

defmodule Calculator do
 def start do
 spawn(fn -> loop(0) end)
 end

 def value(server_pid) do
 send(server_pid, {:value, self()})
 receive do
 {:response, value} ->
 value
 end
 end

 def add(server_pid, value), do: send(server_pid, {:add, value})
 def sub(server_pid, value), do: send(server_pid, {:sub, value})
 def mul(server_pid, value), do: send(server_pid, {:mul, value})
 def div(server_pid, value), do: send(server_pid, {:div, value})
 ...
end

The interface functions are straightforward and follow the protocol specified in the
loop/1 function. The :value request is an example of the synchronous message
passing mentioned in section 5.2.2. There’s nothing special happening here — you
send a message and immediately wait for the response. Notice that this waiting
blocks the caller until the response comes back, thus making the request-handling
synchronous.

Starts the server and initializes the state

The value request

Arithmetic operations

148 chapter 5 Concurrency primitives

The arithmetic operations run asynchronously. There’s no response message, so the
caller doesn’t have to wait for anything. Therefore, a caller can issue a number of these
requests and continue doing its own work while the operations run concurrently in the
server process. Keep in mind that the server handles messages in the order received, so
requests are handled in the proper order.

Why make the arithmetic operations asynchronous? Because you don’t care when
they’re executed. Until you request the server’s state (via the value/1 function), you
don’t want the client to block. This makes the client more efficient, because it doesn’t
block while the server is doing a computation.

refactoring the loop

As you introduce multiple requests to your server, the loop function becomes more
complex. If you have to handle many requests, it will become bloated, turning into a
huge switch/case-like expression.

You can refactor this by relying on pattern matching and moving the message handling
to a separate multiclause function. This keeps the code of the loop function very simple:

defp loop(current_value) do
 new_value =
 receive do
 message -> process_message(current_value, message)
 end

 loop(new_value)
end

Looking at this code, you can see the general workflow of the server. A message is first
received and then processed. Message processing generally amounts to computing the
new state based on the current state and the message received. Finally, you loop with
this new state, effectively setting it in place of the old one.

process_message/2 is a simple multiclause function that receives the current state
and the message. Its task is to perform message-specific code and return the new state:

defp process_message(current_value, {:value, caller}) do
 send(caller, {:response, current_value})
 current_value
end

defp process_message(current_value, {:add, value}) do
 current_value + value
end
...

This code is a simple reorganization of the server process loop. It allows you to keep
the loop code compact and to move the message-handling details to a separate multi-
clause function, with each clause handling a specific message.

5.3.4 Complex states

State is usually much more complex than a simple number. But the technique remains
the same — you keep the mutable state using the private loop function. As the state

 149Stateful server processes

becomes more complex, the code of the server process can become increasingly com-
plicated. It’s worth extracting the state manipulation to a separate module and keep-
ing the server process focused only on passing messages and keeping the state.

Let’s look at this technique using the TodoList abstraction developed in chapter 4.
First, let’s recall the basic usage of the structure:

iex(1)> todo_list = TodoList.new() |>
 TodoList.add_entry(%{date: ~D[2018-12-19], title: "Dentist"}) |>
 TodoList.add_entry(%{date: ~D[2018-12-20], title: "Shopping"}) |>
 TodoList.add_entry(%{date: ~D[2018-12-19], title: "Movies"})

iex(2)> TodoList.entries(todo_list, ~D[2018-12-19])
[
 %{date: ~D[2018-12-19], id: 1, title: "Dentist"},
 %{date: ~D[2018-12-19], id: 3, title: "Movies"}
]

As you may recall, a TodoList is a pure functional abstraction. To keep the structure
alive, you must constantly hold on to the result of the last operation performed on the
structure.

In this example, you’ll build a TodoServer module that keeps this abstraction in the
private state. Let’s see how the server is used:

iex(1)> todo_server = TodoServer.start()

iex(2)> TodoServer.add_entry(todo_server,
 %{date: ~D[2018-12-19], title: "Dentist"})

iex(3)> TodoServer.add_entry(todo_server,
 %{date: ~D[2018-12-20], title: "Shopping"})

iex(4)> TodoServer.add_entry(todo_server,
 %{date: ~D[2018-12-19], title: "Movies"})

iex(5)> TodoServer.entries(todo_server, ~D[2018-12-19])
[
 %{date: ~D[2018-12-19], id: 3, title: "Movies"},
 %{date: ~D[2018-12-19], id: 1, title: "Dentist"}
]

You start the server and then use its pid to manipulate the data. In contrast to the pure
functional approach, you don’t need to take the result of a modification and feed it as
an argument to the next operation. Instead, you constantly use the same todo_server
variable to manipulate the to-do list.

In a sense, todo_server works more like an object reference or a pointer in a clas-
sical OO language. Whatever you do on a server is preserved as long as the server is
running. Of course, unlike objects, the server operations are running concurrently to
the caller.

Let’s start implementing this server. First you need to place all the modules in a sin-
gle file, as shown in the following listing.

150 chapter 5 Concurrency primitives

Listing 5.9 TodoServer modules (todo_server.ex)

defmodule TodoServer do
 ...
end

defmodule TodoList do
 ...
end

Putting both modules in the same file ensures that you have everything available when
you load the file while starting the iex shell. In more complicated systems, you’d use a
proper mix project, as will be explained in chapter 7, but for now, this is sufficient.

The TodoList implementation is the same as in chapter 4. It has all the features you
need to use it in a server process.

Now set up the basic structure of the to-do server process.

Listing 5.10 TodoServer basic structure (todo_server.ex)

defmodule TodoServer do
 def start do
 spawn(fn -> loop(TodoList.new()) end)
 end

 defp loop(todo_list) do
 new_todo_list =
 receive do
 message -> process_message(todo_list, message)
 end

 loop(new_todo_list)
 end
 ...
end

There’s nothing new here. You start the loop using a new instance of the TodoList
abstraction as the initial state. In the loop, you receive messages and apply them to the
state by calling the process_message/2 function, which returns the new state. Finally,
you loop with the new state.

For each request you want to support, you have to add a dedicated clause in the pro-
cess_message/2 function. Additionally, a corresponding interface function must be
introduced. You’ll begin by supporting the add_entry request.

Listing 5.11 The add_entry request (todo_server.ex)

defmodule TodoServer do
 ...

 def add_entry(todo_server, new_entry) do
 send(todo_server, {:add_entry, new_entry})
 end

Uses a to-do list as the initial state

Interface function

 151Stateful server processes

 ...

 defp process_message(todo_list, {:add_entry, new_entry}) do
 TodoList.add_entry(todo_list, new_entry)
 end

 ...
end

The interface function sends the new entry data to the server. Recall that the loop
function calls process_message/2, and the call ends up in the process_message/2
clause. Here, you delegate to the TodoList.add_entry/2 function and return the
modified Todo-List instance. This returned instance is used as the new server’s
state.

Using a similar approach, you can implement the entries request, keeping in
mind that you need to wait for the response message. The code is shown in the next
listing.

Listing 5.12 The entries request (todo_server.ex)

defmodule TodoServer do
 ...

 def entries(todo_server, date) do
 send(todo_server, {:entries, self(), date})

 receive do
 {:todo_entries, entries} -> entries
 after
 5000 -> {:error, :timeout}
 end
 end

 ...

 defp process_message(todo_list, {:entries, caller, date}) do
 send(caller, {:todo_entries, TodoList.entries(todo_list, date)})
 todo_list
 end

 ...
end

Again, this is a synthesis of techniques you’ve seen previously. You send a message
and wait for the response. In the corresponding process_message/2 clause, you del-
egate to TodoList, and then you send the response and return the unchanged to-do
list. This is needed because loop/2 takes the result of process_message/2 as the new
state.

In a similar way, you can add support for other to-do list requests such as update_
entry and delete_entry. The implementation of these requests is left for you as an
exercise.

Message-handler clause

Sends the response to the caller

The state remains unchanged.

152 chapter 5 Concurrency primitives

concurrent vs. functional approach

A process that keeps mutable state can be regarded as a kind of mutable data structure.
You can start the server and then perform various requests on it. But you shouldn’t abuse
processes to avoid using the functional approach of transforming immutable data.

The data should be modeled using pure functional abstractions, just as you did with
TodoList. A pure functional data structure provides many benefits, such as integrity and
atomicity. Furthermore, it can be reused in various contexts and tested independently.

A stateful process is then used on top of functional abstractions as a kind of concur-
rent controller that keeps the state and that can be used by other processes in the sys-
tem to manipulate or read parts of that state.

For example, if you’re implementing a web server that manages multiple to-do lists,
you most likely have one server process for each to-do list. While handling an HTTP
request, you can find the corresponding to-do server and have it run the requested
operation. Each to-do list manipulation runs concurrently, thus making your server
scalable and more performant. Moreover, there are no synchronization problems,
because each to-do list is managed in a dedicated process. Recall that a single process is
always sequential, so multiple competing requests that manipulate the same to-do list
are serialized and handled sequentially in the corresponding process. Don’t worry if
this seems vague — you’ll see it in action in chapter 7.

5.3.5 Registered processes

In order for a process to cooperate with other processes, it must know their where-
abouts. In BEAM, a process is identified by the corresponding pid. To make process A
send messages to process B, you have to bring the pid of process B to process A. In this
sense, a pid resembles a reference or pointer in the OO world.

Sometimes it can be cumbersome to keep and pass pids. If you know there will always
be only one instance of some type of server, you can give the process a local name and use
that name to send messages to the process. The name is called local because it has mean-
ing only in the currently running BEAM instance. This distinction becomes important
when you start connecting multiple BEAM instances to a distributed system, as you’ll
see in chapter 12.

Registering a process can be done with Process.register(pid, name), where a
name must be an atom. Here’s a quick illustration:

iex(1)> Process.register(self(), :some_name)

iex(2)> send(:some_name, :msg)

iex(3)> receive do
 msg -> IO.puts("received #{msg}")
 end
received msg

Registers a process

Sends a message via a symbolic name

Verifies that the message is received

 153Runtime considerations

The following rules apply to registered names:

¡	The name can only be an atom.
¡	A single process can have only one name.
¡	Two processes can’t have the same name.

If these rules aren’t satisfied, an error is raised.
For practice, try to change the to-do server to run as a registered process. The inter-

face of the server will then be simplified, because you don’t need to keep and pass the
server’s pid.

Here’s an example of how such a server can be used:

iex(1)> TodoServer.start()

iex(2)> TodoServer.add_entry(%{date: ~D[2018-12-19], title: "Dentist"})
iex(3)> TodoServer.add_entry(%{date: ~D[2018-12-20], title: "Shopping"})
iex(4)> TodoServer.add_entry(%{date: ~D[2018-12-19], title: "Movies"})

iex(5)> TodoServer.entries(~D[2018-12-19])
[%{date: ~D[2018-12-19], id: 3, title: "Movies"},
 %{date: ~D[2018-12-19], id: 1, title: "Dentist"}]

To make this work, you have to register a server process under a name (such as :todo_
server). Then you change all the interface functions to use the registered name when
sending a message to the process. If you get stuck, the solution is provided in the regis-
tered_todo_server.ex file.

Using the registered server is much simpler because you don’t have to store the serv-
er’s pid and pass it to the interface functions. Instead, the interface functions internally
use the registered name to send messages to the process.

Local registration plays an important role in process discovery. Registered names
provide a way of communicating with a process without knowing its pid. This becomes
increasingly important when you start dealing with restarting processes (as you’ll see in
chapters 8 and 9) and distributed systems (discussed in chapter 12).

This concludes our initial exploration of stateful processes. They play an important
role in Elixir-based systems, and you’ll continue using them throughout the book. Now,
though, we’ll look at some important runtime properties of BEAM processes.

5.4 Runtime considerations
You’ve learned a great deal about how processes work. To take full advantage of
BEAM concurrency, though, it’s important to understand some of its internals. Don’t
worry — we won’t go too deep and will only deal with relevant topics.

5.4.1 A process is sequential

It has already been mentioned, but it’s very important, so I’ll stress it again: although
multiple processes may run in parallel, a single process is always sequential — it either
runs some code or waits for a message. If many processes send messages to a single pro-
cess, that single process can significantly affect overall throughput.

154 chapter 5 Concurrency primitives

Let’s look at an example. The code in the following listing implements a slow echo
server.

Listing 5.13 Demonstration of a process bottleneck (process_bottleneck.ex)

defmodule Server do
 def start do
 spawn(fn -> loop end)
 end

 def send_msg(server, message) do
 send(server, {self(), message})

 receive do
 {:response, response} -> response
 end
 end

 defp loop do
 receive do
 {caller, msg} ->
 Process.sleep(1000)
 send(caller, {:response, msg})
 end

 loop()
 end
end

Upon receiving a message, the server sends the message back to the caller. Before that,
it sleeps for a second to simulate a long-running request.

Now fire up five concurrent clients:

iex(1)> server = Server.start()

iex(2)> Enum.each(
 1..5,
 fn i ->
 spawn(fn ->
 IO.puts("Sending msg ##{i}")
 response = Server.send_msg(server, i)
 IO.puts("Response: #{response}")
 end)
 end
)

As soon as you start this, you’ll see the following lines printed:

Sending msg #1
Sending msg #2
Sending msg #3
Sending msg #4
Sending msg #5

Simulates long processing

Echoes the message back

Spawns a concurrent client

Sends a message to the server

 155Runtime considerations

So far, so good. Five processes have been started and are running concurrently. But
now the problems begin — the responses come back slowly, one by one, a second apart:

Response: 1
Response: 2
Response: 3
Response: 4
Response: 5

What happened? The echo server can handle only one message per second. Because
all other processes depend on the echo server, they’re constrained by its throughput.

What can you do about this? Once you identify the bottleneck, you should try to
optimize the process internally. Generally, a server process has a simple flow. It receives
and handles message one by one. So the goal is to make the server handle messages at
least as fast as they arrive. In this example, server optimization amounts to removing the
Process.sleep/1 call.

If you can’t make message handling fast enough, you can try to split the server into
multiple processes, effectively parallelizing the original work and hoping that doing so
will boost performance on a multicore system. This should be your last resort, though.
Parallelization isn’t a remedy for a poorly structured algorithm.

5.4.2 Unlimited process mailboxes

Theoretically, a process mailbox has an unlimited size. In practice, the mailbox size
is limited by available memory. Thus, if a process constantly falls behind, meaning
messages arrive faster than the process can handle them, the mailbox will constantly
grow and increasingly consume memory. Ultimately, a single slow process may cause an
entire system to crash by consuming all the available memory.

A more subtle version of the same problem occurs if a process doesn’t handle some
messages at all. Consider the following server loop:

def loop
 receive do
 {:message, msg} -> do_something(msg)
 end

 loop()
end

A server powered by this loop handles only messages that are in the form {:message,
something}. All other messages remain in the process mailbox forever, taking up mem-
ory space for no reason.

One second later

Two seconds later

Three seconds later

Four seconds later

Five seconds later

156 chapter 5 Concurrency primitives

In addition, large mailbox contents cause performance slowdowns. Recall how pat-
tern matching works in the receive expression: messages are analyzed one by one,
from oldest to newest, until a message is matched. Let’s say your process contains a mil-
lion unhandled messages. When a new message arrives, receive iterates through the
existing million messages before processing the new one. Consequently, the process
wastes time iterating through unhandled messages, and its throughput suffers.

How can you resolve this problem? For each server process, you should introduce a
match-all receive clause that deals with unexpected kinds of messages. Typically, you’ll
log that a process has received the unknown message, and do nothing else about it:

def loop
 receive
 {:message, msg} -> do_something(msg)
 other -> log_unknown_message(other)
 end

 loop()
end

The server in this case handles all types of messages, logging the unexpected ones.
It’s also worth noting that BEAM gives you tools for analyzing processes at runtime.

In particular, you can query each process for its mailbox size and thus detect the ones
for which the mailbox-queue buildup occurs. We’ll discuss this feature in chapter 13.

5.4.3 Shared-nothing concurrency

As already mentioned, processes share no memory. Thus, sending a message to another
process results in a deep copy of the message contents:

send(target_pid, data)

Less obviously, closing on a variable from a spawn also results in deep-copying the
closed variable:

data = ...

spawn(fn ->
 ...
 some_fun(data)
 ...
end)

This is something you should be aware of when moving code into a separate process.
Deep-copying is an in-memory operation, so it should be reasonably fast, and occasion-
ally sending a big message shouldn’t present a problem. But having many processes
frequently send big messages may affect system performance. The notion of small ver-
sus big is subjective. Simple data, such as a number, an atom, or a tuple with few ele-
ments, is obviously small. A list of a million complex structures is big. The border lies
somewhere in between and depends on your specific case.

Match-all clause

The data variable is deep-copied.

Results in a deep copy of the data variable

 157Runtime considerations

A special case where deep-copying doesn’t take place involves binaries (including
strings) that are larger than 64 bytes. These are maintained on a special shared binary
heap, and sending them doesn’t result in a deep copy. This can be useful when you need
to send information to many processes, and the processes don’t need to decode the string.

You may wonder about the purpose of shared-nothing concurrency. First, it simplifies
the code of each individual process. Because processes don’t share memory, you don’t
need complicated synchronization mechanisms such as locks and mutexes. Another
benefit is overall stability: one process can’t compromise the memory of another. This
in turn promotes the integrity and fault-tolerance of the system. Finally, shared-nothing
concurrency makes it possible to implement an efficient garbage collector.

Because processes share no memory, garbage collection can take place on a pro-
cess level. Each process gets an initial small chunk of heap memory (~2 KB on 64-bit
BEAM). When more memory is needed, garbage collection for that process takes place
and is included in the process execution window. Instead of one large “stop the entire
system” collection, you have many smaller collections. This keeps the entire system
more responsive, without larger, unexpected blockages during garbage collections. It’s
possible for one scheduler to perform a micro-collection while the others are doing
meaningful work.

5.4.4 Scheduler inner workings

Each BEAM scheduler is in reality an OS thread that manages the execution of BEAM
processes. By default, BEAM uses only as many schedulers as there are logical proces-
sors available. You can change these settings via various Erlang emulator flags.

To provide those flags, you can use the following syntax:

$ iex --erl "put Erlang emulator flags here"

A list of all Erlang flags can be found at http://erlang.org/doc/man/erl.html.
In general, you can assume that there are n schedulers that run m processes, with

m most often being significantly larger than n. This is called m:_n_ threading, and it
reflects the fact that you run a large number of logical microthreads using a smaller
number of OS threads, as illustrated in figure 5.4.

Internally, each scheduler maintains a run queue, which is something like a list
of BEAM processes it’s responsible for. Each process gets a small execution window,
after which it’s preempted and another process is executed. The execution window is
approximately 2,000 function calls (internally called reductions).

Because you’re dealing with a functional language where functions are very small,
it’s clear that context switching happens often, generally in less than one millisecond.
This promotes the responsiveness of BEAM-powered systems. If one process performs
a long CPU-bound operation, such as computing the value of pi to a billion decimals, it
won’t block the entire scheduler, and other processes shouldn’t be affected.

http://erlang.org/doc/man/erl.html

158 chapter 5 Concurrency primitives

There are some special cases when a process will implicitly yield execution to the sched-
uler before its execution time is up. The most notable situation is when using receive.
Another example is a call to the Process.sleep/1 function. In both cases, the process
is suspended, and the scheduler can run other processes.

Another important case of implicit yielding involves I/O operations, which are inter-
nally executed on separate threads called async threads. When issuing an I/O call, the
calling process is preempted, and other processes get the execution slot. After the I/O
operation finishes, the scheduler resumes the calling process. A great benefit of this
is that your I/O code looks synchronous, while under the hood it still runs asynchro-
nously. By default, BEAM fires up 10 async threads, but you can change this via the +A n
Erlang flag.

Additionally, if your OS supports it, you can rely on a kernel poll such as epoll or
kqueue, which takes advantage of the OS kernel for nonblocking I/O. You can request
the use of a kernel poll by providing the +K true Erlang flag when you start the BEAM.

Implicit yields provide additional benefits. If most processes are suspended most of
the time — for example, while the kernel is doing I/O or while many processes are wait-
ing for messages — BEAM schedulers are even more efficient and have bigger overall
throughput.

Summary
¡	A BEAM process is a lightweight concurrent unit of execution. Processes are

completely isolated and share no memory.
¡	Processes can communicate with asynchronous messages. Synchronous sends

and responses are manually built on top of this basic mechanism.
¡	A server process is a process that runs for a long time (possibly forever) and han-

dles various messages. Server processes are powered by endless recursion.
¡	Server processes can maintain their own private state using the arguments of the

endless recursion.

Figure 5.4 m:_n_ threading: a small number of schedulers running a large number of BEAM processes

159

6Generic server processes

This chapter covers
¡	Building a generic server process

¡	Using GenServer

In chapter 5, you became familiar with basic concurrency techniques: you learned
how to create processes and communicate with them. I also explained the idea
behind stateful server processes — long-running processes that maintain state and
can react to messages, do some processing, optionally send a response, and maybe
change the internal process state.

Server processes play an important role and are used frequently when building
highly concurrent systems in Elixir and Erlang, so we’ll spend some time exploring
them in detail. In this chapter, you’ll learn how to reduce some of the boilerplate
associated with server processes, such as infinite recursion, state management, and
message passing.

Erlang provides a helper for implementing server processes — it’s part of the
framework called Open Telecom Platform (OTP). Despite its misleading name, the
framework has nothing to do with telecoms; rather, it provides patterns and abstrac-
tions for tasks such as creating components, building releases, developing server
processes, handling and recovering from runtime errors, logging, event handling,
and upgrading code.

160 chapter 6 Generic server processes

You’ll learn about various parts of OTP throughout this book, but in this chapter we’ll
focus on one of its most important parts: GenServer — a helper that simplifies the imple-
mentation of server processes. Before we look at GenServer, though, you’ll implement
a simplified version of it, based on the message-passing primitives you saw in chapter 5.

6.1 Building a generic server process
You saw a few examples of server processes in chapter 5. Although those processes
serve different purposes, there are some commonalities in their implementations. In
particular, all code that implements a server process needs to do the following:

¡	Spawn a separate process
¡	Run an infinite loop in the process
¡	Maintain the process state
¡	React to messages
¡	Send a response back to the caller

No matter what kind of server process you run, you’ll always need to do these tasks, so
it’s worth moving this code to a single place. Concrete implementations can then reuse
this code and focus on their specific needs. Let’s look at how you can implement such
generic code.

6.1.1 Plugging in with modules

The generic code will perform various tasks common to server processes, leaving the spe-
cific decisions to concrete implementations. For example, the generic code will spawn a
process, but the concrete implementation must determine the initial state. Similarly, the
generic code will receive a message and optionally send the response, but the concrete
implementation must decide how the message is handled and what the response is.

In other words, the generic code drives the entire process, and the specific imple-
mentation must fill in the missing pieces. Therefore, you need a plug-in mechanism
that lets the generic code call into the concrete implementation when a specific deci-
sion needs to be made.

The simplest way to do this is to use modules. Remember that a module name is an
atom. You can store that atom in a variable and use the variable later to invoke functions
on the module:

iex(1)> some_module = IO

iex(2)> some_module.puts("Hello")
Hello

You can use this feature to provide callback hooks from the generic code. In particular,
you can take the following approach:

1 Make the generic code accept a plug-in module as the argument. That module is
called a callback module.

2 Maintain the module atom as part of the process state.

3 Invoke callback-module functions when needed.

Stores a module atom in a variable

Dynamic invocation

 161Building a generic server process

Obviously, for this to work, a callback module must implement and export a well-defined
set of functions, which I’ll gradually introduce as we implement the generic code.

6.1.2 Implementing the generic code

Let’s start building a generic server process. First you need to start the process and ini-
tialize its state, as shown in the following listing.

Listing 6.1 Starting the server process (server_process.ex)

defmodule ServerProcess do
 def start(callback_module) do
 spawn(fn ->
 initial_state = callback_module.init()
 loop(callback_module, initial_state)
 end)
 end

 ...
end

ServerProcess.start/1 takes a module atom as the argument and then spawns the pro-
cess. In the spawned process, the callback function init/0 is invoked to create the initial
state. Obviously, for this to work, the callback module must export the init/0 function.

Finally, you enter the loop that will power the server process and maintain this state.
The return value of ServerProcess.start/1 is a pid, which can be used to send mes-
sages to the request process.

Next, you need to implement the loop code that powers the process, waits for mes-
sages, and handles them. In this example, you’ll implement a synchronous send-and-
response communication pattern. The server process must receive a message, handle it,
send the response message back to the caller, and change the process state.

The generic code is responsible for receiving and sending messages, whereas the
specific implementation must handle the message and return the response and the new
state. The idea is illustrated in the following listing.

Listing 6.2 Handling messages in the server process (server_process.ex)

defmodule ServerProcess do
 ...
 defp loop(callback_module, current_state) do
 receive do
 {request, caller} ->
 {response, new_state} =
 callback_module.handle_call(
 request,
 current_state
)

 send(caller, {:response, response})

 loop(callback_module, new_state)

Invokes the callback
to initialize the state

Invokes the callback to handle the message

Sends the response back

Loops with the new state

162 chapter 6 Generic server processes

 end
 end
 ...
end

Here, you expect a message in the form of a {request, caller} tuple. The request is
data that identifies the request and is meaningful to the specific implementation. The
callback function handle_call/2 takes the request payload and the current state, and
it must return a {response, new_state} tuple. The generic code can then send the
response back to the caller and continue looping with the new state.

There’s only one thing left to do: you need to provide a function to issue requests to
the server process, as shown in the following listing.

Listing 6.3 Helper for issuing requests (server_process.ex)

defmodule ServerProcess do
 ...
 def call(server_pid, request) do
 send(server_pid, {request, self()})

 receive do
 {:response, response} ->
 response
 end
 end
end

At this point you have the abstraction for the generic server process in place. Let’s see
how it can be used.

6.1.3 Using the generic abstraction

To test the server process, you’ll implement a simple key/value store. It will be a pro-
cess that can be used to store mappings between arbitrary terms.

Remember that the callback module must implement two functions: init/0, which
creates the initial state, and handle_call/2, which handles specific requests. The code
is shown next.

Listing 6.4 Key/value store implementation (server_process.ex)

defmodule KeyValueStore do
 def init do
 %{}
 end

 def handle_call({:put, key, value}, state) do
 {:ok, Map.put(state, key, value)}
 end

 def handle_call({:get, key}, state) do
 {Map.get(state, key), state}
 end
end

Sends the message

Waits for the response

Returns the response

Initial process state

Handles the put request

Handles the get request

 163Building a generic server process

That’s all it takes to create a specific server process. Because the infinite loop and
message-passing boilerplate are pushed to the generic code, the specific implemen-
tation is more concise and focused on its main task.

Take particular notice of how you use a multiclause in handle_call/2 to handle
different types of requests. This is the place where the specific implementation decides
how to handle each request. The ServerProcess module is generic code that blindly
forwards requests from client processes to the callback module.

Let’s test the process:

iex(1)> pid = ServerProcess.start(KeyValueStore)

iex(2)> ServerProcess.call(pid, {:put, :some_key, :some_value})
:ok

iex(3)> ServerProcess.call(pid, {:get, :some_key})
:some_value

Notice how you start the process with ServerProcess.start(KeyValueStore). This
is where you plug the specific KeyValueStore into the generic code of Server-
Process. All subsequent invocations of ServerProcess.call/2 will send messages
to that process, which will in turn call KeyValueStore.handle_call/2 to perform
the handling.

It’s beneficial to make clients completely oblivious to the fact that the ServerProcess
abstraction is used. This can be achieved by introducing helper functions, as shown here.

Listing 6.5 Wrapping ServerProcess function calls (server_process.ex)

defmodule KeyValueStore do
 def start do
 ServerProcess.start(KeyValueStore)
 end

 def put(pid, key, value) do
 ServerProcess.call(pid, {:put, key, value})
 end

 def get(pid, key) do
 ServerProcess.call(pid, {:get, key})
 end

 ...
end

Clients can now use start/0, put/3, and get/2 to manipulate the key/value store.
These functions are informally called interface functions. Clients use the interface func-
tions of KeyValueStore to start and interact with the process.

In contrast, init/0 and handle_call/2 are callback functions used internally by the
generic code. Note that interface functions run in client processes, whereas callback
functions are always invoked in the server process.

164 chapter 6 Generic server processes

6.1.4 Supporting asynchronous requests

The current implementation of ServerProcess supports only synchronous requests.
Let’s expand on this and introduce support for asynchronous fire-and-forget requests,
where a client sends a message and doesn’t wait for a response.

In the current code, we use the term call for synchronous requests. For asynchronous
requests, we’ll use the term cast. This is the naming convention used in OTP, so it’s good
to adopt it.

Because you’re introducing the second request type, you need to change the for-
mat of messages that are passed between client processes and the server. This will allow
you to determine the request type in the server process and handle different types of
requests in different ways.

This can be as simple as including the request-type information in the tuple being
passed from the client process to the server, as shown next.

Listing 6.6 Including the request type in the message (server_process_cast.ex)

defmodule ServerProcess do
 ...
 def call(server_pid, request) do
 send(server_pid, {:call, request, self()})
 ...
 end

 defp loop(callback_module, current_state) do
 receive do
 {:call, request, caller} ->
 ...
 end
 end

 ...
end

Now you can introduce support for cast requests. In this scenario, when the message
arrives, the specific implementation handles it and returns the new state. No response
is sent back to the caller, so the callback function must return only the new state. The
code is provided in the following listing.

Listing 6.7 Supporting casts in the server process (server_process_cast.ex)

defmodule ServerProcess do
 ...
 def cast(server_pid, request) do
 send(server_pid, {:cast, request})
 end

 defp loop(callback_module, current_state) do
 receive do
 {:call, request, caller} ->
 ...

Tags the request message as a call

Handles a call request

Issues a cast message

 165Building a generic server process

 {:cast, request} ->
 new_state =
 callback_module.handle_cast(
 request,
 current_state
)

 loop(callback_module, new_state)
 end
 end

 ...
end

To handle a cast request, you need the callback function handle_cast/2. This func-
tion must handle the message and return the new state. In the server loop, you then
invoke this function and loop with the new state. That’s all it takes to support cast
requests.

Finally, you'll change the implementation of the key/value store to use casts.
Keep in mind that a cast is a fire-and-forget type of request, so it’s not suitable for
all requests. In this example, the get request must be a call, because the server pro-
cess needs to respond with the value associated with a given key. In contrast, the put
request can be implemented as a cast because the client doesn’t need to wait for the
response.

Listing 6.8 Implementing put as a cast (server_process_cast.ex)

defmodule KeyValueStore do
 ...

 def put(pid, key, value) do
 ServerProcess.cast(pid, {:put, key, value})
 end

 ...

 def handle_cast({:put, key, value}, state) do
 Map.put(state, key, value)
 end

 ...
end

Now you can try the server process:

iex(1)> pid = KeyValueStore.start()

iex(2)> KeyValueStore.put(pid, :some_key, :some_value)

iex(3)> KeyValueStore.get(pid, :some_key)
:some_value

Handles a cast message

Issues the put request as a cast

Handles the put request

166 chapter 6 Generic server processes

With a simple change in the generic implementation, you added another feature to
the service processes. Specific implementations can now decide whether each con-
crete request should be implemented as a call or as a cast.

6.1.5 Exercise: refactoring the to-do server

An important benefit of the generic ServerProcess abstraction is that it lets you easily
create various kinds of processes that rely on this common code. For example, in chap-
ter 5, you developed a simple to-do server that maintains a to-do list abstraction in its
internal state. This server can also be powered by the generic ServerProcess.

This is the perfect opportunity for you to practice a bit. Take the complete code from
todo_server.ex from the chapter 5 source, and save it to a different file. Then add the
last version of the ServerProcess module to the same file. Finally, adapt the code of the
TodoServer module to work with ServerProcess.

Once you have everything working, compare the code between the two versions. The
new version of TodoServer should be smaller and simpler, even for such a simple server
process that supports only two different requests. If you get stuck, you can find the solu-
tion in the server_process_todo.ex file.

NOTE It’s clumsy to place multiple modules in a single file and maintain mul-
tiple copies of the ServerProcess code in different files. In chapter 7, you’ll
start using a better approach to code organization powered by the mix tool. But
for the moment, let’s stick with the current simplistic approach.

You’re now finished implementing a basic abstraction for generic server processes.
The current implementation is simple and leaves a lot of room for improvement, but it
demonstrates the basic technique of generic server processes. Now it’s time to use the
full-blown OTP abstraction for generic server processes: GenServer.

6.2 Using GenServer
When it comes to production-ready code, it doesn’t make much sense to build and
use the manually baked ServerProcess abstraction. That’s because Elixir ships with
a much better support for generic server processes, called GenServer. In addition to
being much more feature-rich than ServerProcess, GenServer also handles various
kinds of edge cases and is battle-tested in production in complex concurrent systems.

Some of the compelling features provided by GenServer include the following:

¡	Support for calls and casts
¡	Customizable timeouts for call requests
¡	Propagation of server-process crashes to client processes waiting for a response
¡	Support for distributed systems

 167Using GenServer

Note that there’s no special magic behind GenServer. Its code relies on concurrency
primitives explained in chapter 5 and fault-tolerance features explained in chapter 9.
After all, GenServer is implemented in plain Erlang and Elixir. The heavy lifting is done
in the :gen_server module, which is included in the Erlang standard library. Some addi-
tional wrapping is performed in the Elixir standard library, in the GenServer module.

In this section, you’ll learn how to build your server processes with GenServer. But
first, let’s examine the concept of OTP behaviours.

NOTE Notice the British spelling of the word behaviour: this is the preferred
spelling both in OTP code and official documentation. This book uses the Brit-
ish spelling to specifically denote an OTP behaviour but retains the American
spelling (behavior) for all other purposes.

6.2.1 OTP behaviours

In Erlang terminology, a behaviour is generic code that implements a common pat-
tern. The generic logic is exposed through the behaviour module, and you can plug
into it by implementing a corresponding callback module. The callback module must
satisfy a contract defined by the behaviour, meaning it must implement and export a
set of functions. The behaviour module then calls into these functions, allowing you to
provide your own specialization of the generic code.

This is exactly what ServerProcess does. It powers a generic server process, requir-
ing specific implementations to provide the callback module that implements the
init/0, handle_call/2, and handle_cast/2 functions. ServerProcess is a simple
example of a behaviour.

It’s even possible to specify the behaviour contract and verify that the callback mod-
ule implements required functions during compilation. For details, see the official
documentation (https://hexdocs.pm/elixir/Module.html#module-behaviour-notice-
the-british-spelling).

The Erlang standard library includes the following OTP behaviours:

¡	gen_server — Generic implementation of a stateful server process
¡	supervisor — Provides error handling and recovery in concurrent systems
¡	application — Generic implementation of components and libraries
¡	gen_event — Provides event-handling support
¡	gen_statem — Runs a finite state machine in a stateful server process

Elixir provides its own wrappers for the most frequently used behaviours via the
modules GenServer, Supervisor, and Application. This book focuses on these
behaviours. The GenServer behaviour receives detailed treatment in this chapter
and chapter 7, Supervisor is discussed in chapters 8 and 9, and Application is pre-
sented in chapter 11.

https://hexdocs.pm/elixir/Module.html#module-behaviour-notice-the-british-spelling
https://hexdocs.pm/elixir/Module.html#module-behaviour-notice-the-british-spelling

168 chapter 6 Generic server processes

The remaining behaviours, although useful, are used less often and won’t be dis-
cussed in this book. Once you get a grip on GenServer and Supervisor, you should be
able to research other behaviours on your own and use them when the need arises. You
can find more about gen_event and gen_statem in the Erlang documentation (http://
erlang.org/doc/design_principles/des_princ.html).

6.2.2 Plugging into GenServer

Using GenServer is roughly similar to using ServerProcess. There are some differ-
ences in the format of the returned values, but the basic idea is the same.

The GenServer behaviour requires seven callback functions, but frequently you’ll
need only a subset of those. You can get some sensible default implementations of all
required callback functions if you use the GenServer module:

iex(1)> defmodule KeyValueStore do
 use GenServer
 end

The use macro is a language feature you haven’t seen previously. During compilation,
when this instruction is encountered, the specific macro from the GenServer mod-
ule is invoked. That macro then injects a bunch of functions into the calling module
(KeyValueStore, in this case). You can verify this in the shell:

iex(2)> KeyValueStore.__info__(:functions)
[child_spec: 1, code_change: 3, handle_call: 3, handle_cast: 2,
 handle_info: 2, init: 1, terminate: 2]

Here you use the info/1 function that’s automatically injected into each Elixir module
during compilation. It lists all exported functions of a module (except info/1).

As you can see in the output, many functions are automatically included in the
module due to use GenServer. These are all callback functions that need to be imple-
mented for you to plug into the GenServer behaviour.

Of course, you can then override the default implementation of each function as
required. If you define a function of the same name and arity in your module, it will
overwrite the default implementation you get through use.

At this point, you can plug your callback module into the behaviour. To start the pro-
cess, use the GenServer.start/2 function:

iex(3)> GenServer.start(KeyValueStore, nil)
{:ok, #PID<0.51.0>}

This works roughly like ServerProcess. The server process is started, and the
behaviour uses KeyValueStore as the callback module. The second argument of
GenServer.start/2 is a custom parameter that’s passed to the process during its ini-
tialization. For the moment, you don’t need this, so you send the nil value. Finally,
notice that the result of GenServer.start/2 is a tuple of the form {:ok, pid}.

http://erlang.org/doc/design_principles/des_princ.html
http://erlang.org/doc/design_principles/des_princ.html

 169Using GenServer

6.2.3 Handling requests

Now you can convert the KeyValueStore to work with GenServer. To do this, you need
to implement three callbacks: init/1, handle_cast/2, and handle_call/3, shown in
listing 6.9. These callbacks work similarly to the ones in ServerProcess, with a couple
of differences:

¡	init/1 accepts one argument. This is the second argument provided to
GenServer.start/2, and you can use it to pass data to the server process while
starting it.

¡	The result of init/1 must be in the format {:ok, initial_state}.
¡	handle_cast/2 accepts the request and the state and should return the result in

the format {:noreply, new_state}.
¡	handle_call/3 takes the request, the caller information, and the state. It should

return the result in the format {:reply, response, new_state}.

Listing 6.9 Implementing GenServer callbacks (key_value_gen_server.ex)

defmodule KeyValueStore do
 use GenServer

 def init(_) do
 {:ok, %{}}
 end

 def handle_cast({:put, key, value}, state) do
 {:noreply, Map.put(state, key, value)}
 end

 def handle_call({:get, key}, _, state) do
 {:reply, Map.get(state, key), state}
 end
end

The second argument to handle_call/3 is a tuple that contains the request ID (used
internally by the GenServer behaviour) and the pid of the caller. This information is in
most cases not needed, so in this example you ignore it.

With these callbacks in place, the only things missing are interface functions.
To interact with a GenServer process, you can use functions from the GenServer
module. In particular, you can use GenServer.start/2 to start the process and
GenServer.cast/2 and GenServer.call/2 to issue requests. The implementation is
then straightforward.

170 chapter 6 Generic server processes

Listing 6.10 Adding interface functions (key_value_gen_server.ex)

defmodule KeyValueStore do
 use GenServer

 def start do
 GenServer.start(KeyValueStore, nil)
 end

 def put(pid, key, value) do
 GenServer.cast(pid, {:put, key, value})
 end

 def get(pid, key) do
 GenServer.call(pid, {:get, key})
 end

 ...
end

That’s it! With only a few changes, you’ve moved from a basic ServerProcess to a
full-blown GenServer. Let’s test the server:

iex(1)> {:ok, pid} = KeyValueStore.start()

iex(2)> KeyValueStore.put(pid, :some_key, :some_value)

iex(3)> KeyValueStore.get(pid, :some_key)
:some_value

It works as expected.
There are many differences between ServerProcess and GenServer, but a couple

points deserve special mention.
First, GenServer.start/2 works synchronously. In other words, start/2 returns

only after the init/1 callback has finished in the server process. Consequently, the cli-
ent process that starts the server is blocked until the server process is initialized.

Second, note that GenServer.call/2 doesn’t wait indefinitely for a response. By
default, if the response message doesn’t arrive in five seconds, an error is raised in the
client process. You can alter this by using GenServer.call(pid, request, timeout),
where the timeout is given in milliseconds. In addition, if the receiver process happens
to terminate while you’re waiting for the response, GenServer detects it and raises a
corresponding error in the caller process.

6.2.4 Handling plain messages

Messages sent to the server process via GenServer.call and GenServer.cast con-
tain more than just a request payload. Those functions include additional data in the

 171Using GenServer

message sent to the server process. This is something you did in the ServerProcess
example in section 6.1:

defmodule ServerProcess do
 ...

 def call(server_pid, request) do
 send(server_pid, {:call, request, self()})
 ...
 end

 def cast(server_pid, request) do
 send(server_pid, {:cast, request})
 end

 ...

 defp loop(callback_module, current_state) do
 receive do
 {:call, request, caller} ->
 ...

 {:cast, request} ->
 ...
 end
 end
 ...
end

Notice that you don’t send the plain request payload to the server process; you include
additional data, such as the request type and the caller for call requests.

GenServer uses a similar approach, using :"$gen_cast" and :"$gen_call" atoms
to decorate cast and call messages. You don’t need to worry about the exact format of
those messages, but it’s important to understand that GenServer internally uses particu-
lar message formats and handles those messages in a specific way.

Occasionally you may need to handle messages that aren’t specific to GenServer. For
example, imagine that you need to do a periodic cleanup of the server process state.
You can use the Erlang function :timer.send_interval/2, which periodically sends a
message to the caller process. Because this message isn’t a GenServer-specific message,
it’s not treated as a cast or a call. Instead, for such plain messages, GenServer calls the
handle_info/2 callback, giving you a chance to do something with the message.

Here’s a sketch of this technique:

iex(1)> defmodule KeyValueStore do
 use GenServer

 def init(_) do
 :timer.send_interval(5000, :cleanup)

Calls a message

Casts a message

Special handling of a call message

Special handling of a cast message

Sets up periodic message sending

172 chapter 6 Generic server processes

 {:ok, %{}}
 end

 def handle_info(:cleanup, state) do
 IO.puts "performing cleanup..."
 {:noreply, state}
 end
 end

iex(2)> GenServer.start(KeyValueStore, nil)
performing cleanup...
performing cleanup...
performing cleanup...

During process initialization, you make sure a :cleanup message is sent to the pro-
cess every five seconds. This message is handled in the handle_info/2 callback, which
essentially works like handle_cast/2, returning the result as {:noreply, new_state}.

6.2.5 Other GenServer features

There are various other features and subtleties I haven’t mentioned in this basic intro-
duction to GenServer. You’ll learn about some of them elsewhere in this book, but you
should definitely take the time to look over the documentation for the GenServer mod-
ule (https://hexdocs.pm/elixir/GenServer.html) and its Erlang foundation (http://
erlang.org/doc/man/gen_server.html).

A couple of points still deserve special mention.

compile-time checking

One problem with the callbacks mechanism is that it’s easy to make a subtle mistake
when defining a callback function. Consider the following example:

iex(1)> defmodule EchoServer do
 use GenServer

 def handle_call(some_request, server_state) do
 {:reply, some_request, server_state}
 end
 end

Here you have a simple echo server, which handles every call request by sending the
request back to the client. Try it out:

iex(2)> {:ok, pid} = GenServer.start(EchoServer, nil)
{:ok, #PID<0.96.0>}

iex(3)> GenServer.call(pid, :some_call)
** (exit) exited in: GenServer.call(#PID<0.96.0>, :some_call, 5000)
 ** (EXIT) an exception was raised:
 ** (RuntimeError) attempted to call GenServer #PID<0.96.0> but
 no handle_call/3 clause was provided

Handles the plain :cleanup message

Printed every five seconds

https://hexdocs.pm/elixir/GenServer.html
http://erlang.org/doc/man/gen_server.html
http://erlang.org/doc/man/gen_server.html

 173Using GenServer

Issuing a call caused the server to crash with an error that no handle_call/3 clause
is provided, although the clause is listed in the module. What happened? If you look
closely at the definition of EchoServer, you’ll see that you defined handle_call/2,
while GenServer requires handle_call/3.

You can get a compile-time warning here if you tell the compiler that the function
being defined is supposed to satisfy a contract by some behaviour. To do this, you need
to provide the @impl module attribute immediately before the first clause of the call-
back function:

iex(1)> defmodule EchoServer do
 use GenServer

 @impl GenServer
 def handle_call(some_request, server_state) do
 {:reply, some_request, server_state}
 end
 end

The @impl GenServer tells the compiler that the function about to be defined is a call-
back function for the GenServer behaviour. As soon as you execute this expression in
the shell, you’ll get a warning:

warning: got "@impl GenServer" for function handle_call/2 but this
behaviour does not specify such callback.

The compiler tells you that GenServer doesn’t deal with handle_call/2, so already
during compilation you get a hint that something is wrong. It’s a good practice to
always specify the @impl attribute for every callback function you define in your
modules.

name registration

Recall from chapter 5 that a process can be registered under a local name (an atom),
where local means the name is registered only in the currently running BEAM instance.
This allows you to create a singleton process that you can access by name without need-
ing to know its pid.

Local registration is an important feature because it supports patterns of fault-
tolerance and distributed systems. You’ll see exactly how this works in later chapters, but
it’s worth mentioning that you can provide the process name as an option to GenServer
.start:

GenServer.start(
 CallbackModule,
 init_param,
 name: :some_name
)

Indicates an upcoming definition of a callback function

Registers the process under a name

174 chapter 6 Generic server processes

You can then issue calls and casts using the name:

GenServer.call(:some_name, ...)
GenServer.cast(:some_name, ...)

The most frequent approach is to use the same name as the module name. As
explained in section 2.4.2, module names are atoms, so you can safely pass them as the
:name option. Here’s a sketch of this approach:

defmodule KeyValueStore do
 def start() do
 GenServer.start(KeyValueStore, nil, name: KeyValueStore)
 end

 def put(key, value) do
 GenServer.cast(KeyValueStore, {:put, key, value})
 end

 ...
end

Notice how KeyValueStore.put now doesn’t need to take the pid. It will simply issue a
request to the registered process.

You can also replace KeyValueStore with the special form __MODULE__. During com-
pilation, __MODULE__ is replaced with the name of the module where the code resides:

defmodule KeyValueStore do
 def start() do
 GenServer.start(__MODULE__, nil, name: __MODULE__)
 end

 def put(key, value) do
 GenServer.cast(__MODULE__, {:put, key, value})
 end

 ...
end

After compilation, this code is completely equivalent to the previous version, but
some future refactoring is made easier. If, for example, you rename KeyValueStore to
KeyValue.Store, you need to do it only in one place in the module.

stopping the server

Different callbacks can return various types of responses. So far, you’ve seen the most
common cases:

¡	{:ok, initial_state} from init/1
¡	{:reply, response, new_state} from handle_call/3
¡	{:noreply, new_state} from handle_cast/2 and handle_info/2

Registers the
server process

Sends a request to the
registered process

Registers the
server process

Sends a request to the
registered process

 175Using GenServer

There are additional possibilities, the most important one being the option to stop the
server process.

In init/1, you can decide against starting the server. In this case, you can either
return {:stop, reason} or :ignore. In both cases, the server won’t proceed with the
loop, and will instead terminate.

If init/1 returns {:stop, reason}, the result of start/2 will be {:error, reason}.
In contrast, if init/1 returns :ignore, the result of start/2 will also be :ignore. The dif-
ference between these two return values is in their intention. You should opt for {:stop,
reason} when you can’t proceed further due to some error. In contrast, :ignore should
be used when stopping the server is the normal course of action.

Returning {:stop, reason, new_state} from handle_* callbacks causes GenServer
to stop the server process. If the termination is part of the standard workflow, you should
use the atom :normal as the stoppage reason. If you’re in handle_call/3 and also need
to respond to the caller before terminating, you can return {:stop, reason, response,
new_state}.

You may wonder why you need to return a new state if you’re terminating the pro-
cess. The reason is that just before the termination, GenServer calls the callback func-
tion terminate/2, sending it the termination reason and the final state of the process.
This can be useful if you need to perform cleanup.

Finally, you can also stop the server process by invoking GenServer.stop/3 from
the client process. This invocation will issue a synchronous request to the server. The
behaviour will handle the stop request itself by stopping the server process.

6.2.6 Process lifecycle

It’s important to always be aware of how GenServer-powered processes tick and where
(in which process) various functions are executed. Let’s do a quick recap by looking at
figure 6.1, which shows the lifecycle of a typical server process.
A client process starts the server by calling GenServer.start and providing the call-
back module (1). This creates the new server process, which is powered by the Gen-
Server behaviour.

Requests can be issued by client processes using various GenServer functions or plain
send. When a message is received, GenServer invokes callback functions to handle it.
Therefore, callback functions are always executed in the server process.

The process state is maintained in the GenServer loop but is defined and manipu-
lated by the callback functions. It starts with init/1, which defines the initial state that’s
then passed to subsequent handle_* callbacks (2). Each of these callbacks receives the
current state and must return its new version, which is used by the GenServer loop in
place of the old one.

176 chapter 6 Generic server processes

The Actor model
Erlang is an accidental implementation of the Actor model originally described by Carl
Hewitt. An actor is a concurrent computational entity that encapsulates state and can
communicate with other actors. When processing a single message, an actor can desig-
nate the new state that will be used when processing the next message. This is roughly
similar to how GenServer-based processes work in Erlang. Note, though, that as Robert
Virding (one of Erlang’s co-inventors) has repeatedly stated, Erlang developers arrived
at this idea on their own and learned about the existence of the Actor model much later.

There are some disagreements about whether Erlang is a proper implementation of the
Actor model, and the term actor isn’t used much in the Erlang community. This book
doesn’t use this terminology either. Still, it’s worth keeping in mind that in the context of
Erlang, an actor corresponds to a server process, most frequently a GenServer.

6.2.7 OTP-compliant processes

For various reasons, once you start building production systems, you should avoid using
plain processes started with spawn. Instead, all of your processes should be so-called
OTP-compliant processes. Such processes adhere to OTP conventions, they can be used
in supervision trees (described in chapter 9), and errors in those processes are logged
with more details.

Figure 6.1 Lifecycle of a GenServer-powered process

 177Summary

All processes powered by OTP behaviours, such as GenServer and Supervisor, are OTP-
compliant. Elixir also includes other modules that can be used to run OTP-compliant
processes. For example, the Task module (https://hexdocs.pm/elixir/Task.html) is
perfect to run one-off jobs that process some input and then stop. The Agent module
(https://hexdocs.pm/elixir/Agent.html) is a simpler (but less powerful) alternative to
GenServer-based processes and is appropriate if the single purpose of the process is to
manage and expose state. Both Task and Agent are discussed in chapter 10.

In addition, there are various other OTP-compliant abstractions available via third-party
libraries. For example, GenStage (https://github.com/elixir-lang/gen_stage) can be used
for back-pressure and load control. The Phoenix.Channel module, which is part of the
Phoenix web framework (http://phoenixframework.org/), is used to facilitate bidirec-
tional communication between a client and a web server over protocols such as WebSocket
or HTTP.

There isn’t enough space in this book to treat every possible OTP-compliant abstrac-
tion, so you’ll need to do some research of your own. But it’s worth pointing out that
most such abstractions follow the ideas of GenServer. Except for the Task module, all
of the OTP abstractions mentioned in this section are internally implemented on top
of GenServer. Therefore, in my personal opinion, GenServer is likely the most import-
ant part of OTP. If you properly understand the principles of GenServer, most other
abstractions should be much easier to grasp.

6.2.8 Exercise: GenServer-powered to-do server

Let’s wrap up this chapter with a simple but important exercise. For practice, try to
change the to-do server, implemented earlier in this chapter, to work with the GenServer
behaviour. This should be a straightforward task, but if you get stuck, the solution is in the
todo_server.ex file.

Be sure to either finish this exercise or analyze and understand the solution, because
in future chapters you’ll gradually expand on this simple server process and build a
highly concurrent distributed system.

Summary

¡	A generic server process is an abstraction that implements tasks common to any
kind of server process, such as recursion-powered looping and message passing.

¡	A generic server process can be implemented as a behaviour. A behaviour drives
the process, whereas specific implementations can plug into the behaviour via
callback modules.

¡	The behaviour invokes callback functions when the specific implementation
needs to make a decision.

https://hexdocs.pm/elixir/Task.html
https://hexdocs.pm/elixir/Agent.html
https://github.com/elixir-lang/gen_stage
http://phoenixframework.org/

178 chapter 6 Generic server processes

¡	GenServer is a behaviour that implements a generic server process.
¡	A callback module for GenServer must implement various functions. The

most frequently used ones are init/1, handle_cast/2, handle_call/3, and
handle_info/2.

¡	You can interact with a GenServer process with the GenServer module.
¡	Two types of requests can be issued to a server process: calls and casts.
¡	A cast is a fire-and-forget type of request — a caller sends a message and immedi-

ately moves on to do something else.
¡	A call is a synchronous send-and-respond request — a caller sends a message and

waits until the response arrives, the timeout occurs, or the server crashes.

179

7Building a concurrent system

This chapter covers
¡	Working with the mix project

¡	Managing multiple to-do lists

¡	Persisting data

¡	Reasoning with processes

The concurrent examples you’ve seen so far have relied on a single server-process
instance. But typical Elixir/Erlang systems are powered by a multitude of processes,
many of which are stateful server processes. It’s not uncommon for a moderately
complex system to run a few thousand processes, whereas larger systems may be
powered by hundreds of thousands or even millions of processes. Remember that
processes are cheap, so you can create them in abundance. And owing to mes-
sage-passing concurrency, it’s still fairly easy to reason about highly concurrent sys-
tems. Therefore, it’s useful to run different tasks in separate processes. Such a highly
concurrent approach can often improve the scalability and reliability of your systems.

In this chapter, you’ll see an example of a more involved system powered by many
processes that cooperate to provide the full service. Your ultimate goal is to build a
distributed HTTP server that can handle many end users who are simultaneously

180 chapter 7 Building a concurrent system

manipulating many to-do lists. You’ll do this throughout the remaining chapters and
reach the final goal in chapter 12. In this chapter, you’ll develop an infrastructure for
handling multiple to-do lists and persisting them to disk.

But first, let’s look at how you can manage more complex projects with the mix
tool.

7.1 Working with the mix project
As code gets more involved, placing all the modules in a single file becomes increas-
ingly clumsy. This is the right time to start working with multifile projects.

Chapter 2 briefly mentioned that Elixir ships with the mix tool, which you can use to
create, build, and run projects as well as manage their dependencies, run tests, and cre-
ate custom project-based tasks. Here you’ll learn just enough about mix to create and
run a project. Additional mix features will be introduced as the need arises.

You’ll use mix to create a project for the to-do list. Type the following at the com-
mand line:

$ mix new todo

This creates the todo folder and a project structure under it. The result is a folder that
contains only a handful of files, including a readme, unit-test support files, and the
.gitignore file. mix projects are extremely simple and don’t introduce a plethora of auto-
generated files.

TIP This book doesn’t provide a detailed treatment of the mix tool. Instead,
essential features are introduced when needed. To find out more about mix,
check the online Introduction to Mix guide (https://elixir-lang.org/getting-
started/mix-otp/introduction-to-mix.html). In addition, from the command
line, you can run mix help to get a list of available commands and mix help
command to get detailed help for a particular command. Finally, the online ref-
erence for mix is available at https://hexdocs.pm/mix.

Once the project is in place, you can go to its folder and run mix tasks from there. For
example, you can compile the project with the mix compile command, or you can run
tests with mix test.

You can also use a special way of starting iex, which is useful when you want to play
with mix projects in the Elixir shell. When you run iex -S mix, two things happen.
First, the project is compiled (just as with mix compile). If this is successful, the shell
is started, and all modules from the project are available. The word available here
means that all generated BEAM files (binaries that represent compiled modules) are
in load paths.

Using mix, it’s possible to organize your code into multiple files and folders. You can
place .ex files under the lib folder, and they’ll automatically be included in the next
build. You can also use arbitrarily nested subfolders under the lib folder. Of course, one
.ex file may contain many modules.

https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html
https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html
https://hexdocs.pm/mix

 181Working with the mix project

There are no hard rules regarding how files should be named and organized, but
there are some preferred conventions:

¡	You should place your modules under a common top-level alias. For example,
modules might be called Todo.List, Todo.Server, and so on. This reduces the
chance of module names conflicting when you combine multiple projects into a
single system.

¡	In general, one file should contain one module. Occasionally, if a helper module
is small and used only internally, it can be placed in the same file as the module
using it. If you want to implement protocols for the module, you can do this in
the same file as well.

¡	A filename should be an underscore case (aka snake case) version of the main
module name it implements. For example, a TodoServer module would reside in
a todo_server.ex file in the lib folder.

¡	The folder structure should correspond to multipart module names. A module
called Todo.Server should reside in the file lib/todo/server.ex.

These aren’t strict rules, but they’re the ones used by the Elixir project as well as many
third-party libraries.

With this out of the way, you can start adding code to the project. You’ve already
developed two modules: TodoList and TodoServer. The final version of both modules
resides in the file todo_server.ex from chapter 6. Per conventions, you’ll rename the
modules Todo.List and Todo.Server and move them to the todo project. Here’s what
you need to do:

1 Remove the file todo/lib/todo.ex.

2 Remove the file todo/test/todo_test.exs.

3 Place the TodoList code in the todo/lib/todo/list.ex file. Rename the module to
Todo.List.

4 Place the TodoServer code in the todo/lib/todo/server.ex file. Rename the mod-
ule to Todo.Server.

5 Replace all references to TodoServer with Todo.Server and all references to
TodoList with Todo.List.

Now you can start the system with iex -S mix and verify that it works:

$ iex -S mix

iex(1)> {:ok, todo_server} = Todo.Server.start()

iex(2)> Todo.Server.add_entry(todo_server,
 %{date: ~D[2018-12-19], title: "Dentist"})

iex(3)> Todo.Server.entries(todo_server, ~D[2018-12-19])
[%{date: ~D[2018-12-19], id: 1, title: "Dentist"}]

182 chapter 7 Building a concurrent system

At this point, the to-do code is in the mix project, and you can continue to extend it
with additional features.

7.2 Managing multiple to-do lists
This section introduces support for managing multiple to-do lists. Before starting, let’s
recap what you’ve built so far:

¡	A pure functional Todo.List abstraction
¡	A to-do server process that can be used to manage one to-do list for a long time

There are two approaches to extending this code to work with multiple lists:

¡	Implement a TodoListCollection pure functional abstraction to work with mul-
tiple to-do lists. Modify Todo.Server to use the new abstraction as its internal
state.

¡	Run one instance of the existing to-do server for each to-do list.

The problem with the first approach is that you’ll end up having only one process to
serve all users. This approach isn’t very scalable. If the system is used by many different
users, they’ll frequently block each other, competing for the same resource — a single
server process that performs all tasks.

The alternative is to use as many processes as there are to-do lists. With this approach,
each list is managed concurrently, and the system should be more responsive and
scalable.

To run multiple to-do server processes, you need another entity — something you’ll
use to create Todo.Server instances or fetch the existing ones. That “something” must
manage a state — essentially a key/value structure that maps to-do list names to to-do
server pids. This state will of course be mutable (the number of lists changes over time)
and must be available during the server’s lifetime.

Therefore, you’ll introduce another process: a to-do cache. You’ll run only one
instance of this process, and it will be used to create and return a pid of a to-do server
process that corresponds to the given name. The module will export only two func-
tions: start/0, which starts the process, and server_process/2, which retrieves a to-do
server process (its pid) for a given name, optionally starting the process if it isn’t already
running.

7.2.1 Implementing a cache

Let’s begin implementing the cache process. First, copy the entire todo folder to the
todo_cache folder. Then add the new file todo_cache/lib/todo/cache.ex, which is
where the code for Todo.Cache will reside.

Now you need to decide what the process state will be. Remember, the process will
provide to-do server pids. You give it a name, and it gives you the corresponding pro-
cess. In this case, it seems reasonable to use a map that associates to-do list names with
to-do server pids. This is implemented in the following listing.

 183Managing multiple to-do lists

Listing 7.1 Cache initialization (todo_cache/lib/todo/cache.ex)

defmodule Todo.Cache do
 use GenServer

 def init(_) do
 {:ok, %{}}
 end

 ...
end

With this in place, you can begin introducing the server_process request. You need
to decide on the request’s type. Because this request must return a result to the caller
(a to-do server pid), there are no options — it needs to be a call. The implementation is
fairly straightforward, as shown next.

Listing 7.2 Handling the server_process request (todo_cache/lib/todo/cache.ex)

defmodule Todo.Cache do
 ...

 def handle_call({:server_process, todo_list_name}, _, todo_servers) do
 case Map.fetch(todo_servers, todo_list_name) do
 {:ok, todo_server} ->
 {:reply, todo_server, todo_servers}

 :error ->
 {:ok, new_server} = Todo.Server.start()

 {
 :reply,
 new_server,
 Map.put(todo_servers, todo_list_name, new_server)
 }
 end
 end
 ...
end

In this example, you use Map.fetch/2 to query the map. If there’s something for the
given key, you return the value to the caller, leaving the state unchanged. Otherwise,
you must start a server, return its pid, and insert an appropriate name/value pair in the
process state.

Finally, you shouldn’t forget to include interface functions.

Listing 7.3 Interface functions (todo_cache/lib/todo/cache.ex)

defmodule Todo.Cache do
 ...

 def start do

Server exists in the map

Server doesn’t exist Starts the new server

184 chapter 7 Building a concurrent system

 GenServer.start(__MODULE__, nil)
 end

 def server_process(cache_pid, todo_list_name) do
 GenServer.call(cache_pid, {:server_process, todo_list_name})
 end

 ...
end

Notice how __MODULE__ is passed as the first argument to GenServer.start/2. During
compilation, this expression is replaced with the name of the current module. This is
a simple convenience; you could write Todo.Cache instead, but this approach removes
this minor duplication and guards the code against a possible change of the module
name.

At this point, the to-do cache is complete, and you can try it. Start the shell with iex -S
mix, and do the following:

iex(1)> {:ok, cache} = Todo.Cache.start()

iex(2)> Todo.Cache.server_process(cache, "Bob's list")
#PID<0.69.0>

iex(3)> Todo.Cache.server_process(cache, "Bob's list")
#PID<0.69.0>

iex(4)> Todo.Cache.server_process(cache, "Alice's list")
#PID<0.72.0>

The returned pid represents a to-do server process that manages a single to-do list. You
can use it in the familiar way to manipulate the list:

iex(5)> bobs_list = Todo.Cache.server_process(cache, "Bob's list")

iex(6)> Todo.Server.add_entry(bobs_list,
 %{date: ~D[2018-12-19], title: "Dentist"})

iex(7)> Todo.Server.entries(bobs_list, ~D[2018-12-19])
[%{date: ~D[2018-12-19], id: 1, title: "Dentist"}]

Of course, Alice’s list isn’t affected by these manipulations:

iex(8)> Todo.Cache.server_process(cache, "Alice's list") |>
 Todo.Server.entries(~D[2018-12-19])
[]

Having the cache in place makes it possible for you to manage many to-do lists inde-
pendently. The following session creates 100,000 to-do list servers and verifies that you
have that many processes running:

iex(1)> {:ok, cache} = Todo.Cache.start()

The first retrieval
creates a new process.

The second retrieval
returns the same process.

A different name returns
a different process.

 185Managing multiple to-do lists

iex(2)> :erlang.system_info(:process_count)
54

iex(3)> Enum.each(
 1..100_000,
 fn index ->
 Todo.Cache.server_process(cache, "to-do list #{index}")
 end
)

iex(4)> :erlang.system_info(:process_count)
100054

Here you use the :erlang.system_info/1 function to get the number of currently
running processes.

You might be puzzled as to why you initially have 54 processes running, even though
you started just 1. The remaining processes are those started and used internally by
Elixir and Erlang.

7.2.2 Writing tests

Now that the code is organized in the mix project, you can write automated tests.
The testing framework for Elixir is called ex_unit, and it’s included in the Elixir
distribution. Running tests is as easy as invoking mix test. All you need to do is write
the test code.

Let’s look at a quick example by testing the behavior of Todo.Cache.server_
process/2. First you need to create the test file. The sketch is provided in the following
listing.

Listing 7.4 Test file skeleton (todo_cache/test/todo_cache_test.exs)

defmodule TodoCacheTest do
 use ExUnit.Case

 ...
end

Take note of the file location and the name. A test file must reside in the test folder, and
its name must end with _test.exs to be included in the test execution. As explained
in chapter 2, the .exs extension stands for Elixir script, and it’s used to indicate that a
file isn’t compiled to disk. Instead, mix will interpret this file every time the tests are
executed.

The script file must define the test module that contains the tests. The expression
use ExUnit.Case prepares the test module for testing. This expression injects some
boilerplate that makes the module compliant with ex_unit and imports some helper
test macros to the module.

One such macro is test, which can be used to define tests. You’ll use it to test the behav-
ior of Todo.Cache.server_process/2. The code is provided in the following listing.

Prepares the module for testing

186 chapter 7 Building a concurrent system

Listing 7.5 Testing server_process (todo_cache/test/todo_cache_test.exs)

defmodule TodoCacheTest do
 use ExUnit.Case

 test "server_process" do
 {:ok, cache} = Todo.Cache.start()
 bob_pid = Todo.Cache.server_process(cache, "bob")

 assert bob_pid != Todo.Cache.server_process(cache, "alice")
 assert bob_pid == Todo.Cache.server_process(cache, "bob")
 end

 ...
end

To define a test, you need to write test test_description do … end. The test descrip-
tion is a string that’s included in the output if the test fails. The code of the test itself is
included in the do block.

The test macro is an example of metaprogramming capabilities in Elixir. This
macro will generate a function that contains some boilerplate and the code provided
in the do block. This function will then be invoked by ex_unit when you execute tests.

In this particular test, you first start the cache process and then fetch one server pro-
cess. Then you verify the expected behavior. This is done with the help of the assert
macro, which takes an expression and verifies its outcome. If the expression fails,
assert will raise an error with a descriptive output. This error will be caught by ex_unit
and displayed.

For example, take a look at the first assertion:

assert bob_pid != Todo.Cache.server_process(cache, "alice")

In this assertion, you’re verifying that Alice’s and Bob’s to-do lists are powered by dif-
ferent processes.

Just like test, assert is a macro and therefore is invoked during compilation. The
macro introspects the expression and transforms it into different code. An approxima-
tion of the generated code could be something like this:

left_value = bob_pid
right_value = Todo.Cache.server_process(cache, "alice")
comparison_result = left_value != right_value
if comparison_result == false do
 # raise an error
end

In other words, the assert macro generates the code that will fail if the expression
bob_pid != Todo.Cache.server_process(cache, "alice") returns false.

A great benefit of the way assert works is that you don’t need to learn a completely
new set of functions, such as assert_equal, assert_not_equal, or assert_gt, to write
your assertions. Instead, you use the same expressions as in the regular code to verify the
desired behavior. You can assert on standard comparisons such as ==, !=, >, <, and so on.

Defines a test

Test assertions

 187Managing multiple to-do lists

You can even assert that a pattern matching expression succeeded. Let’s look at a
quick example. You’ll add another test that verifies the behavior of to-do server oper-
ations. To keep things simple, you’ll include the test in the same file. The code is pro-
vided in the following listing.

Listing 7.6 Testing to-do server operations (todo_cache/test/todo_cache_test.exs)

defmodule TodoCacheTest do
 use ExUnit.Case

 ...

 test "to-do operations" do
 {:ok, cache} = Todo.Cache.start()
 alice = Todo.Cache.server_process(cache, "alice")
 Todo.Server.add_entry(alice, %{date: ~D[2018-12-19], title: "Dentist"})
 entries = Todo.Server.entries(alice, ~D[2018-12-19])

 assert [%{date: ~D[2018-12-19], title: "Dentist"}] = entries
 end
end

Here you create one to-do server, add a single entry, and then fetch the entries for the
given date. Finally, using pattern matching, you assert that the list of entries has exactly
one element, with date and title fields having proper values. Relying on pattern match-
ing allowed you to check only the relevant fields, and to verify the size of the result in a
single expression.

At this point, you’ve created a single test file with a couple of tests. The test project
in the todo_cache folder also includes another test file called todo_list_test.exs, which
verifies the behavior of the Todo.List module. For the sake of brevity, that code isn’t
presented here.

NOTE It’s worth noting that the example projects in this book aren’t test-driven
or particularly well tested. In this book, the focus is on extremely simple code
that illustrates a point. Such code is often not very testable, and some improvi-
sations have been used to ensure basic correctness.

Now you can run all the tests with mix test:

$ mix test
.......

Finished in 0.05 seconds
7 tests, 0 failures

There are many other features available in ex_unit, but we’ll stop here. To learn more
about unit testing in Elixir, check out the official ExUnit reference at https://hexdocs
.pm/ex_unit, and the mix test documentation at https://hexdocs.pm/mix/Mix.Tasks
.Test.html.

Asserts a matching expression

https://hexdocs.pm/ex_unit
https://hexdocs.pm/ex_unit
https://hexdocs.pm/mix/Mix.Tasks.Test.html
https://hexdocs.pm/mix/Mix.Tasks.Test.html

188 chapter 7 Building a concurrent system

7.2.3 Analyzing process dependencies

Let’s reflect a bit on the current system. You’ve developed support for managing many
to-do list instances, and the end goal is to use this infrastructure in an HTTP server. In
the Elixir/Erlang world, HTTP servers typically use a separate process for each request.
Thus, if you have many simultaneous end users, you can expect many BEAM processes
accessing your to-do cache and to-do servers. The dependency between processes is illus-
trated in figure 7.1.

Here, each box represents a single process. The Clients boxes are arbitrary clients,
such as HTTP request-handler processes. Looking at this diagram, you can immediately
spot some characteristics of your system’s concurrent behavior:

¡	Multiple clients (possibly a large number of them) issue requests to the single
to-do cache process.

¡	Multiple clients communicate with multiple to-do server processes.

The first point identifies a possible source of a bottleneck. Because you have only one
to-do cache process, you can handle only one server_process request simultaneously,
regardless of how many CPU resources you have.

Notice that this problem may not be significant in practice. If your server_process
takes, for example, one microsecond, the to-do cache could handle a load of up to 1,000,000
requests per second, which should be sufficient for most needs. But if request handling
takes 100 milliseconds, you could process only 10 requests per second, and your system
wouldn’t be able to handle higher loads.

It’s easy to reason about an individual process. Regardless of how many concurrent
requests are coming in, a single process can handle only one request at a time. Thus, a
process is good enough if its request-handling rate is at least equal to the incoming rate.
Otherwise, you have to either optimize the process or do other interventions.

For this specific case, the to-do cache performs a very simple operation — a map lookup
followed by an optional process creation and map update. According to a quick test on
my machine, for 1 million to-do lists, it takes about 10 microseconds to start a new to-do
server and put it in the map, or 2 microseconds to fetch the existing one. This should be
sufficient for a load of at least 100,000 requests/sec, which seems like reasonable perfor-
mance for this initial attempt. If you want to repeat the test on your machine, take a look
at the instructions in todo_cache/lib/load_test.ex.

There’s an added benefit to the sequential nature of processes. Because a process
runs only one request at a time, its internal state is consistent. You know there can’t be
multiple simultaneous updates of the process state, which makes race conditions in a
single process impossible.

TIP If you need to make sure part of the code is synchronized — that is, that
there are no multiple simultaneous executions of critical code — it’s best to run
that code in a dedicated process. When multiple clients want this code to run,
they issue a request to that process. The process then serves as a synchroniza-
tion point, making sure the critical code is run in a single process.

Figure 7.1 Cooperation of processes

 189Persisting data

I need to say a few words about client interactions with to-do servers. Once a client gets
a to-do server pid, the list manipulation runs concurrently to all other activities in the
system. Because you can expect list manipulations to be fairly involved, it’s beneficial
to run those operations concurrently. This is where your system is concurrent and scal-
able — it can manipulate multiple lists, using as many resources as possible.

Also recall from chapter 5 that a process waiting for a message is suspended and
doesn’t waste CPU resources. Thus, regardless of the number of processes, only those
that are actually doing computations consume CPU. In this case, that means a client
process doesn’t use CPU while it waits for a to-do server to finish.

Finally, you can be sure that a single list can’t be modified by two simultaneous cli-
ents. Recall that the list is managed by a single process. Even if a million clients try to
modify the same list, their requests will be serialized in the corresponding to-do server
and handled one by one.

Now you have a basic system that you can use to manipulate many to-do lists. It’s time
to include basic persistence so your data can outlive server restarts.

7.3 Persisting data
In this section, you’ll extend the to-do cache and introduce basic data persistence.
The focus here isn’t so much on the persistence itself, but rather on exploring the pro-
cess model — how you can organize your system into various server processes, analyze
dependencies, and identify and address bottlenecks. You’ll start with the code from
the todo_cache project and extend it gradually. For data persistence, you’ll use simple
disk-based persistence, encoding the data into the Erlang external term format. The
complete solution is in the persistable_todo_cache folder.

7.3.1 Encoding and persisting

To encode an arbitrary Elixir/Erlang term, you use the :erlang.term_to_binary/1
function, which accepts an Erlang term and returns an encoded byte sequence as a
binary value. The input term can be of arbitrary complexity, including deep hierarchies
of nested lists and tuples. The result can be stored to disk, retrieved at a later point, and
decoded to an Erlang term with the inverse function :erlang.binary_to _term/1.

Equipped with this knowledge, you’ll introduce another process: a database pow-
ered by the Todo.Database module. This will be a simple process that supports two

7.2.3 Analyzing process dependencies

Let’s reflect a bit on the current system. You’ve developed support for managing many
to-do list instances, and the end goal is to use this infrastructure in an HTTP server. In
the Elixir/Erlang world, HTTP servers typically use a separate process for each request.
Thus, if you have many simultaneous end users, you can expect many BEAM processes
accessing your to-do cache and to-do servers. The dependency between processes is illus-
trated in figure 7.1.

Here, each box represents a single process. The Clients boxes are arbitrary clients,
such as HTTP request-handler processes. Looking at this diagram, you can immediately
spot some characteristics of your system’s concurrent behavior:

¡	Multiple clients (possibly a large number of them) issue requests to the single
to-do cache process.

¡	Multiple clients communicate with multiple to-do server processes.

The first point identifies a possible source of a bottleneck. Because you have only one
to-do cache process, you can handle only one server_process request simultaneously,
regardless of how many CPU resources you have.

Notice that this problem may not be significant in practice. If your server_process
takes, for example, one microsecond, the to-do cache could handle a load of up to 1,000,000
requests per second, which should be sufficient for most needs. But if request handling
takes 100 milliseconds, you could process only 10 requests per second, and your system
wouldn’t be able to handle higher loads.

It’s easy to reason about an individual process. Regardless of how many concurrent
requests are coming in, a single process can handle only one request at a time. Thus, a
process is good enough if its request-handling rate is at least equal to the incoming rate.
Otherwise, you have to either optimize the process or do other interventions.

For this specific case, the to-do cache performs a very simple operation — a map lookup
followed by an optional process creation and map update. According to a quick test on
my machine, for 1 million to-do lists, it takes about 10 microseconds to start a new to-do
server and put it in the map, or 2 microseconds to fetch the existing one. This should be
sufficient for a load of at least 100,000 requests/sec, which seems like reasonable perfor-
mance for this initial attempt. If you want to repeat the test on your machine, take a look
at the instructions in todo_cache/lib/load_test.ex.

There’s an added benefit to the sequential nature of processes. Because a process
runs only one request at a time, its internal state is consistent. You know there can’t be
multiple simultaneous updates of the process state, which makes race conditions in a
single process impossible.

TIP If you need to make sure part of the code is synchronized — that is, that
there are no multiple simultaneous executions of critical code — it’s best to run
that code in a dedicated process. When multiple clients want this code to run,
they issue a request to that process. The process then serves as a synchroniza-
tion point, making sure the critical code is run in a single process.

Figure 7.1 Cooperation of processes

190 chapter 7 Building a concurrent system

requests: store and get. While storing data, clients will provide a key and the corre-
sponding data. The data will be stored in the file that bears the same name as the key.
This approach is far from perfect and is error-prone, but it’s simple enough to let us
focus on the concurrency aspect of the problem.

The full implementation of the database process is given in the following listing.

Listing 7.7 Database process (persistable_todo_cache/lib/todo/database.ex)

defmodule Todo.Database do
 use GenServer

 @db_folder "./persist"

 def start do
 GenServer.start(__MODULE__, nil,
 name: __MODULE__
)
 end

 def store(key, data) do
 GenServer.cast(__MODULE__, {:store, key, data})
 end

 def get(key) do
 GenServer.call(__MODULE__, {:get, key})
 end

 def init(_) do
 File.mkdir_p!(@db_folder)
 {:ok, nil}
 end

 def handle_cast({:store, key, data}, state) do
 key
 |> file_name()
 |> File.write!(:erlang.term_to_binary(data))

 {:noreply, state}
 end

 def handle_call({:get, key}, _, state) do
 data = case File.read(file_name(key)) do
 {:ok, contents} -> :erlang.binary_to_term(contents)
 _ -> nil
 end

 {:reply, data, state}
 end

 defp file_name(key) do
 Path.join(@db_folder, to_string(key))
 end
end

Locally registers the process

Makes sure the folder exists

Stores the data

Reads the data

 191Persisting data

This is mostly a synthesis of techniques mentioned earlier. First, you set the module
attribute @db_folder to the hardcoded value of the database folder. As explained in
section 2.3.6, this works as a compile-time constant, allowing you to encode the knowl-
edge about the database folder in a single place in code.

The database server is locally registered under a name; this keeps things simple and
relieves you from passing around the Todo.Database pid. Of course, a downside is that
you can run only one instance of the database process.

It’s worth noting that the store request is a cast, whereas get is a call. In this imple-
mentation, I decided to turn store into a cast because the client isn’t interested in
a response. Using casts promotes scalability of the system because the caller issues a
request and goes about its business.

A huge downside of a cast is that the caller can’t know whether the request was suc-
cessfully handled. In fact, the caller can’t even be sure that the request reached the
target process. This is a property of casts. Casts promote overall availability by allowing
client processes to move on immediately after a request is issued. But this comes at
the cost of consistency, because you can’t be confident about whether a request has
succeeded.

In this example, you’ll start with the store request being a cast. This makes the entire
system more scalable and responsive, with the downside being that you can’t guarantee
that all changes have been persisted.

During initialization, you use File.mkdir_p!/1 to create the specified folder if it
doesn’t exist. The exclamation mark at the end of the name indicates a function that
raises an error if the folder can’t be created for some reason. The data is stored by
encoding the given term to the binary and then persisting it to the disk. Data fetching is
an inverse of storing. If the given file doesn’t exist on the disk, you return nil.

7.3.2 Using the database

With the database process in place, it’s time to use it from your existing system. You
have to do three things:

1 Ensure that a database process is started

2 Persist the list on every modification

3 Try to fetch the list from disk during the first retrieval

To start the server, you’ll plug into the Todo.Cache.init/1 function. This is a quick
hack, but it’s sufficient for the moment. The modification is provided next.

Listing 7.8 Starting the database (persistable_todo_cache/lib/todo/cache.ex)

defmodule Todo.Cache do
 ...

 def init(_) do

192 chapter 7 Building a concurrent system

 Todo.Database.start()
 {:ok, %{}}
 end

 ...
end

Here you use the persist subfolder of the current folder as the place to store data.

storing the data

Next you have to persist the list after it’s modified. Obviously, this must be done
from the to-do server. But remember that the database’s store request requires a
key. For this purpose, you’ll use the to-do list name. As you may recall, this name
is currently maintained only in the to-do cache, so you must propagate it to the
to-do server as well. This means extending the to-do server state to be in the format
{list_name, todo_list}. The code isn’t shown here, but these are the correspond-
ing changes:

¡	Todo.Server.start now accepts the to-do list name and passes it to GenServer
.start/2.

¡	Todo.Server.init/1 uses this parameter and keeps the list name in the process
state.

¡	Todo.Server.handle callbacks are updated to work with the new state format.

While starting the new to-do server, the cache process passes the list name.
After these modifications, the to-do server knows its own name. Now it’s trivial to per-

sist the data, as shown in the following listing.

Listing 7.9 Persisting the data (persistable_todo_cache/lib/todo/server.ex)

defmodule Todo.Server do
 ...
 def handle_cast({:add_entry, new_entry}, {name, todo_list}) do
 new_list = Todo.List.add_entry(todo_list, new_entry)
 Todo.Database.store(name, new_list)
 {:noreply, {name, new_list}}
 end
 ...
end

You can immediately test whether this works. Run iex -S mix, and try the following:

iex(1)> {:ok, cache} = Todo.Cache.start()

iex(2)> bobs_list = Todo.Cache.server_process(cache, "bobs_list")

iex(3)> Todo.Server.add_entry(bobs_list,
 %{date: ~D[2018-12-19], title: "Dentist"})

If all goes well, there should be a file named persist/bobs_list on the disk.

Persists the data

 193Persisting data

reading the data

All that’s left to do is to read the data from the disk when the server is started. You’ll use
a simplistic implementation here, as illustrated next.

Listing 7.10 Reading data (persistable_todo_cache/lib/todo/server.ex)

defmodule Todo.Server do
 ...

 def init(name) do
 {:ok, {name, Todo.Database.get(name) || Todo.List.new()}}
 end

 ...
end

Here you try to fetch the data from the database, and you resort to the empty list if
there’s nothing on disk. This is a simplistic approach that works for this case, but you
should generally be careful about possibly long-running init/1 callbacks. Recall that
GenServer.start returns only after the process has been initialized. Consequently, a
long-running init/1 function will cause the creator process to block. In this case, a
long initialization of a to-do server will block the cache process, which is used by many
clients.

To circumvent this problem, there’s a simple trick. You can use init/1 to send
yourself an internal message and then initialize the process state in the corresponding
handle_info callback:

def init(params) do
 send(self(), :real_init)
 {:ok, nil}
 end

...

def handle_info(:real_init, state) do
 ...
end

By sending yourself a message, you place a request in your own message queue. Then
you return immediately, which makes the corresponding GenServer.start return,
and the creator process can continue running other code. In the meantime, the pro-
cess loop starts and immediately handles the first message, which is :real_init.

This technique will generally work as long as your process isn’t registered under a
local name. If the process isn’t registered, someone has to know its pid to send it a mes-
sage, and that pid will only be known after init/1 has finished. Hence, you can be sure
that the message you send to yourself is the first one being handled.

But if the process is registered, there’s a chance that someone else will put the mes-
sage in the queue first by referencing the process via registered name. This can happen
because at the moment init/1 is invoked, the process is already registered under the

Sends itself a message

You’re not really initialized here.

Performs a long initialization

194 chapter 7 Building a concurrent system

name (due to the inner workings of GenServer). There are a couple of workarounds for
this problem, the simplest one being not using the :name option and opting instead for
manual registration of the process in the init/1 callback after the message to self is sent:

def init(params) do
 ...

 send(self(), :real_init)
 register(self(), :some_name)
end

In any case, the to-do server now reads data from the database on creation. You can
immediately test this. If you have the previous shell session open, close it, and start the
new one. Then try the following:

iex(1)> {:ok, cache} = Todo.Cache.start()
iex(2)> bobs_list = Todo.Cache.server_process(cache, "bobs_list")

iex(3)> Todo.Server.entries(bobs_list, ~D[2018-12-19])
[%{date: ~D[2018-12-19], id: 1, title: "Dentist"}]

As you can see, your to-do list contains data, which proves that deserialization works.

7.3.3 Analyzing the system

Let’s analyze how the new version of the system works. The process interaction is pre-
sented in figure 7.2.

You introduced just one process, but it can have a negative impact on the entire sys-
tem. Recall that the database performs term encoding/decoding and, even worse, disk
I/O operations. Depending on the load and list sizes, this can affect performance badly.
Let’s recall all the places where database requests are issued:

defmodule Todo.Server do
 ...

 def init(name) do
 {:ok, {name, Todo.Database.get(name) || Todo.List.new()}}
 end

 ...

 def handle_cast({:add_entry, new_entry}, {name, todo_list}) do
 ...
 Todo.Database.store(name, todo_list)
 ...
 end

 ...
end

The store request may not seem problematic from the client-side perspective, because it’s
an asynchronous cast. A client issues a store request and then goes about its business. But
if requests to the database come in faster than they can be handled, the process mailbox

Manual name registration

Figure 7.2 Process dependencies

Synchronous request

Asynchronous request

 195Persisting data

will grow and increasingly consume memory. Ultimately, the entire system may experience
significant problems, resulting in the possible termination of the BEAM OS process.

The get request can cause additional problems. It’s a synchronous call, so the to-do
server waits while the database returns the response. While it’s waiting for the response,
this to-do server can’t handle new messages. What’s worse, because this is happening
from initialization, the cache process is blocked until the list data is retrieved, which
ultimately may render the entire system useless under a heavier load.

It’s worth repeating that the synchronous call won’t block indefinitely. Recall that
GenServer.call has a default timeout of five seconds, and you can configure it to be
less for better responsiveness. Still, when a request times out, it isn’t removed from the
receiver’s mailbox. A request is a message that’s placed in the receiver’s mailbox. A
timeout means you give up waiting on the response, but the message remains in the
receiver’s mailbox and will be processed at some point.

7.3.4 Addressing the process bottleneck

It’s obvious that you should address the bottleneck introduced by the singleton data-
base process. There are many approaches, but here we’ll discuss only a few of them.

bypassing the process

The simplest possible way to eliminate the process bottleneck is to bypass the process.
You should ask yourself — does this need to be a process, or can it be a plain module?

There are various reasons for running a piece of code in a dedicated server process:

¡	The code must manage a long-living state.
¡	The code handles a kind of a resource that can and should be reused, such as a TCP

connection, database connection, file handle, pipe to an OS process, and so on.
¡	A critical section of the code must be synchronized. Only one process may run

this code in any moment.

name (due to the inner workings of GenServer). There are a couple of workarounds for
this problem, the simplest one being not using the :name option and opting instead for
manual registration of the process in the init/1 callback after the message to self is sent:

def init(params) do
 ...

 send(self(), :real_init)
 register(self(), :some_name)
end

In any case, the to-do server now reads data from the database on creation. You can
immediately test this. If you have the previous shell session open, close it, and start the
new one. Then try the following:

iex(1)> {:ok, cache} = Todo.Cache.start()
iex(2)> bobs_list = Todo.Cache.server_process(cache, "bobs_list")

iex(3)> Todo.Server.entries(bobs_list, ~D[2018-12-19])
[%{date: ~D[2018-12-19], id: 1, title: "Dentist"}]

As you can see, your to-do list contains data, which proves that deserialization works.

7.3.3 Analyzing the system

Let’s analyze how the new version of the system works. The process interaction is pre-
sented in figure 7.2.

You introduced just one process, but it can have a negative impact on the entire sys-
tem. Recall that the database performs term encoding/decoding and, even worse, disk
I/O operations. Depending on the load and list sizes, this can affect performance badly.
Let’s recall all the places where database requests are issued:

defmodule Todo.Server do
 ...

 def init(name) do
 {:ok, {name, Todo.Database.get(name) || Todo.List.new()}}
 end

 ...

 def handle_cast({:add_entry, new_entry}, {name, todo_list}) do
 ...
 Todo.Database.store(name, todo_list)
 ...
 end

 ...
end

The store request may not seem problematic from the client-side perspective, because it’s
an asynchronous cast. A client issues a store request and then goes about its business. But
if requests to the database come in faster than they can be handled, the process mailbox

Manual name registration

Figure 7.2 Process dependencies

Synchronous request

Asynchronous request

196 chapter 7 Building a concurrent system

If none of these conditions are met, you probably don’t need a process and can run the
code in client processes, which will completely eliminate the bottleneck and promote
parallelism and scalability.

In the current code, you could indeed store to the file directly from the to-do server
process. All operations on the same list are serialized in the same process, so there are
no race conditions. But the problem with this approach is that concurrency is unbound.
If you have 100,000 simultaneous clients, then you’ll issue that many concurrent I/O
operations, which may negatively affect the entire system.

handling requests concurrently

Another option is to keep the database process and make it handle database opera-
tions concurrently. This is useful when requests depend on a common state but can be
handled independently. The idea is illustrated in figure 7.3.

As you can see, each request is still serialized through the central server process, but
this server process spawns one-off worker processes that perform the actual request
handling. If you keep the code in the database process short and fast, you’ll get to keep
a high degree of scalability with many workers running concurrently.

To implement this, you must run each database operation in a spawned one-off pro-
cess. For casts, this means transforming the body of the handler:

def handle_cast({:store, key, data}, state) do
 spawn(fn ->
 key
 |> file_name()
 |> File.write!(:erlang.term_to_binary(data))
 end)

 {:noreply, state}
end

The handler function spawns the new worker process and immediately returns. While
the worker is running, the database process can accept new requests.

For synchronous calls, this approach is slightly more complicated because you have
to return the response from the spawned worker process:

def handle_call({:get, key}, caller, state) do
 spawn(fn ->
 data = case File.read(file_name(key)) do
 {:ok, contents} -> :erlang.binary_to_term(contents)
 _ -> nil
 end

 GenServer.reply(caller, data)
 end)

 {:noreply, state}
end

Figure 7.3 Handling requests concurrently

Handled in a spawned process

Spawns the reader

Responds from the spawned process

No reply from the database process

 197Persisting data

The server process spawns another worker process and then returns {:noreply,
state}, indicating to GenServer that you won’t reply at this point. In the meantime,
the spawned process handles the request and reports back to the caller with GenServer
.reply/2. This is one situation where you need to use the second argument of handle_
call/3: the caller pid and the unique ID of the request. This information is used in the
spawned process to send the response message to the caller.

This technique keeps the processing in the database process short while still allow-
ing concurrent execution of database operations. This approach has the same draw-
backs as the previous idea. The concurrency is still unbound, so too many simultaneous
clients might overload the disk I/O to the point where the entire system becomes
unresponsive.

limiting concurrency with pooling

A typical remedy for this problem is to introduce pooling. For example, your data-
base process might create three worker processes and keep their pids in its internal
state. When a request arrives, it’s delegated to one of the worker processes, perhaps in
a round-robin fashion or with some other load-distribution strategy. The idea is pre-
sented in figure 7.4.

Figure 7.4 Pooling database operations

If none of these conditions are met, you probably don’t need a process and can run the
code in client processes, which will completely eliminate the bottleneck and promote
parallelism and scalability.

In the current code, you could indeed store to the file directly from the to-do server
process. All operations on the same list are serialized in the same process, so there are
no race conditions. But the problem with this approach is that concurrency is unbound.
If you have 100,000 simultaneous clients, then you’ll issue that many concurrent I/O
operations, which may negatively affect the entire system.

handling requests concurrently

Another option is to keep the database process and make it handle database opera-
tions concurrently. This is useful when requests depend on a common state but can be
handled independently. The idea is illustrated in figure 7.3.

As you can see, each request is still serialized through the central server process, but
this server process spawns one-off worker processes that perform the actual request
handling. If you keep the code in the database process short and fast, you’ll get to keep
a high degree of scalability with many workers running concurrently.

To implement this, you must run each database operation in a spawned one-off pro-
cess. For casts, this means transforming the body of the handler:

def handle_cast({:store, key, data}, state) do
 spawn(fn ->
 key
 |> file_name()
 |> File.write!(:erlang.term_to_binary(data))
 end)

 {:noreply, state}
end

The handler function spawns the new worker process and immediately returns. While
the worker is running, the database process can accept new requests.

For synchronous calls, this approach is slightly more complicated because you have
to return the response from the spawned worker process:

def handle_call({:get, key}, caller, state) do
 spawn(fn ->
 data = case File.read(file_name(key)) do
 {:ok, contents} -> :erlang.binary_to_term(contents)
 _ -> nil
 end

 GenServer.reply(caller, data)
 end)

 {:noreply, state}
end

Figure 7.3 Handling requests concurrently

Handled in a spawned process

Spawns the reader

Responds from the spawned process

No reply from the database process

198 chapter 7 Building a concurrent system

All requests still arrive at the database process first, but they’re quickly forwarded to
one of the workers. Essentially, this technique keeps the concurrency level under con-
trol, and it works best when dealing with resources that can’t cope with a large number
of concurrent requests.

This approach will work correctly in this example, so it’s the one you’ll use. In a dif-
ferent situation, some other approach might work better. The point of this analysis is
to illustrate how you can think in terms of processes. Always keep in mind that multiple
processes run concurrently, whereas a single process handles requests sequentially. If
computations can safely run in parallel, you should consider running them in separate
processes. In contrast, if an operation must be synchronized, you’ll want to run it in a
single process.

Database connection pool
In this example, increasing the number of concurrent disk-based operations doesn’t
yield significant improvements. In this sense, the optimizations serve more as a didac-
tic example than an efficient solution. But in real life, you’d probably talk to a database
that’s able to handle multiple concurrent requests efficiently. In such a case, you’d typi-
cally need to constrain the number of simultaneous database operations. And this is the
purpose of a pool of processes.

There’s no need to implement such a pool yourself. A couple of generic pool libraries are
available for the Elixir/Erlang ecosystem, one of the more popular being Poolboy (https://
github.com/devinus/poolboy). Depending on which database library you’re using, you’ll
either need to combine it with Poolboy (or another pooling solution), or this will be done
by the library (as is the case, for example, with the Ecto library, which internally relies on
Poolboy: https://github.com/elixir-lang/ecto). In chapter 11, when you learn how to man-
age application dependencies, you’ll replace the custom implementation with Poolboy.

7.3.5 Exercise: pooling and synchronizing

Now it’s time for you to practice a bit. This exercise introduces pooling and makes the
database internally delegate to three workers that perform the actual database opera-
tions. Moreover, there should be per-key (to-do list name) synchronization on the data-
base level. Data with the same key should always be treated by the same worker.

Here are some pointers for doing this:

¡	Start with the existing solution, and migrate it gradually. Of the existing code,
the only thing that needs to change is the Todo.Database implementation. This
means you don’t have to touch any of the other modules.

¡	Introduce a Todo.DatabaseWorker module. It will be almost a copy of the current
Todo.Database, but the process must not be registered under a name, because
you need to run multiple instances.

¡	Todo.DatabaseWorker.start should receive the database folder as its argu-
ment, and pass it as the second argument to GenServer.start/2. This argument
is received in the init/1 callback, and it should be stored in the worker state.

https://github.com/devinus/poolboy
https://github.com/devinus/poolboy
https://github.com/elixir-lang/ecto

 199Reasoning with processes

¡	Todo.Database will receive a significant rewrite, but its interface must remain
the same. This means it still implements a locally registered process that’s used
via the functions start/0, get/1, and store/2.

¡	During the Todo.Database initialization, start three workers and store their pids
in a map, using zero-based indexes as values.

¡	In Todo.Database, implement a single request, choose_worker, that will return a
worker’s pid for a given key.

¡	choose_worker should always return the same worker for the same key. The eas-
iest way to do this is to compute the key’s numerical hash and normalize it to fall
in the range [0, 2]. This can be done by calling :erlang.phash2(key, 3).

¡	The interface functions get and store of Todo.Database internally call choose_
worker to obtain the worker’s pid and then forward to interface functions of
DatabaseWorker using the obtained pid as the first argument.

Always try to work in small steps, and test as often as possible. For example, once you
implement Todo.DatabaseWorker, you can immediately start iex -S mix and try it in
isolation.

The same goes for Todo.Database. First you can initialize the state without imple-
menting a request handler. Call IO.inspect from init/1 to verify that the state is cor-
rect. Then implement choose_worker, and test that it works in the shell. Finally, add
interface functions and test the entire system.

How can you be sure that requests for different keys are running in different pro-
cesses? You can use IO.inspect and, from within the worker, print the pid and the key
using something like IO.inspect "#{self()}: storing #{key}". Use IO.inspect
extensively. It’s your friend and can help you significantly during development.

If you get stuck, the complete solution is in the todo_cache_pooling folder. Make
sure you understand the solution, because you’ll continue extending this version in
subsequent chapters.

7.4 Reasoning with processes
You’ve now seen various examples of server processes in action. The point of these
examples has been to demonstrate how simple it is to reason about an involved concur-
rent system.

A server process is a simple entity, something like a concurrent object. From within,
it’s a sequential thing that accepts and handles requests, optionally managing internal
state. From the outside, it’s a concurrent agent that exposes a well-defined communica-
tion interface.

Another way to look at server processes is to think of them as services. Each process
is like a small service that’s responsible for a single task. In the to-do example, there’s
a to-do server that handles a distinct to-do list. Different lists are handled by different
to-do servers, which makes the system more efficient. But a single list is always handled
by the same process, which eliminates race conditions and keeps consistency. The to-do
cache is a service that maps to-do names to corresponding to-do servers. Finally, the

200 chapter 7 Building a concurrent system

database process is a service that handles database requests. Internally, it distributes the
work over a limited pool of workers, making sure the same item is always handled by the
same worker.

Those services (processes) are mostly independent, but in some cases they need to
cooperate. For this purpose, you can use calls and casts. Obviously, when a client needs
a response, you should use calls. But even when a response isn’t needed, calls can some-
times be a better fit. The main problem with a cast is that it’s a fire-and-forget kind of
request, so the caller doesn’t get any guarantees. You can’t be sure that the request has
reached the target, and you most certainly don’t know about its outcome.

Essentially, both types have benefits and downsides. Casts promote system respon-
siveness (because a caller isn’t blocked) at the cost of reduced consistency (because a
caller doesn’t know about the outcome of the request). On the other hand, calls pro-
mote consistency (a caller gets a response) but reduce system responsiveness (a caller is
blocked while waiting for a response).

Finally, calls can also be used to apply back-pressure to client processes. Because a
call blocks a client, it prevents the client from generating too much work. The client
becomes synchronized with the server and can never produce more work than the
server can handle. In contrast, if you use casts, clients may overload the server, and
requests may pile up in the message box and consume memory. Ultimately, you may
run out of memory, and the entire VM may be terminated.

Which approach is a better fit depends on the specific situation and circumstances.
If you’re unsure, it’s probably better to start with a call, because it’s more consistent. You
can then consider switching to casts in places where you establish that calls hurt perfor-
mance and system responsiveness.

Summary

¡	When a system needs to perform various tasks, it’s often beneficial to run different
tasks in separate processes. Doing so promotes the scalability and fault-tolerance
of the system.

¡	A process is internally sequential and handles requests one by one. A single pro-
cess can thus keep its state consistent, but it can also cause a performance bottle-
neck if it serves many clients.

¡	Carefully consider calls versus casts. Calls are synchronous and therefore block
the caller. If the response isn’t needed, casts may improve performance at the
expense of reduced guarantees, because a client process doesn’t know the
outcome.

¡	You can use mix projects to manage more involved systems that consist of multi-
ple modules.

201

8Fault-tolerance basics

This chapter covers
¡	Runtime errors

¡	Errors in concurrent systems

¡	Supervisors

Fault-tolerance is a first-class concept in BEAM. The ability to develop reliable
systems that can operate even when faced with runtime errors is what brought us
Erlang in the first place.

The aim of fault-tolerance is to acknowledge the existence of failures, minimize
their impact, and ultimately recover without human intervention. In a sufficiently
complex system, many things can go wrong. Occasional bugs will happen, compo-
nents you’re depending on may fail, and you may experience hardware failures. A
system may also become overloaded and fail to cope with an increased incoming
request rate. Finally, if a system is distributed, you can experience additional issues
such as a remote machine becoming unavailable, perhaps due to a crash or a broken
network link.

It’s hard to predict everything that can go wrong, so it’s better to face the harsh
reality that anything can fail. Regardless of which part of the system happens to fail, it

202 chapter 8 Fault-tolerance basics

shouldn’t take down the entire system; you want to be able to provide at least some ser-
vice. For example, if the database server becomes unreachable, you can still serve data
from the cache. You might even queue incoming store requests and try to resolve them
later, when the connection to the database is reestablished.

Another thing you need to do is detect failures and try to recover from them. In the
previous example, the system may try to reconnect to the database until it succeeds, and
then resume providing full service.

These are the properties of a resilient, self-healing system. Whatever goes wrong
(and remember, anything can go wrong), the system should keep providing as much
service as possible and fully recover as soon as possible.

Such thinking significantly changes the approach to error handling. Instead of
obsessively trying to reduce the number of errors, your priority should be to minimize
their effects and recover from them automatically. In a system that has to run contin-
uously, it’s better to experience many isolated errors than to encounter a single error
that takes down the entire system.

It’s somewhat surprising that the core tool for error handling is concurrency. In
the BEAM world, two concurrent processes are completely separated; they share no
memory, and a crash in one process can’t by default compromise the execution flow
of another. Process isolation allows you to confine the negative effects of an error to
a single process or a small group of related processes, which keeps most of the system
functioning normally.

Of course, when a process crashes, you’ll usually want to detect this state and do
something about it. In this chapter, you’ll learn the basic techniques of detecting and
handling errors in a concurrent system.

Then, in chapter 9, you’ll expand on this knowledge and implement fine-grained
error isolation. Let’s start with a bit of theory about runtime errors.

8.1 Runtime errors
In previous chapters, I loosely mentioned that in various situations an error is raised.
One of the most common examples is a failed pattern match. If a match fails, an
error is raised. Another example is a synchronous GenServer.call. If the response
message doesn’t arrive in a given time interval (five seconds by default), a runtime
error happens. There are many other examples, such as invalid arithmetic opera-
tions (such as division by zero), invocation of a nonexistent function, and explicit
error signaling.

When a runtime error happens, execution control is transferred up the call stack to
the error-handling code. If you didn’t specify such code, the process where the error
happened is terminated. All other processes by default run unaffected. Of course, there
are means to intercept and handle errors, and these resemble the familiar try-catch
constructs you probably know from other languages.

 203Runtime errors

8.1.1 Error types

BEAM distinguishes three types of runtime errors: errors, exits, and throws. Here are
some typical examples of errors:

iex(1)> 1/0
** (ArithmeticError) bad argument in arithmetic expression

iex(1)> Module.nonexistent_function()
** (UndefinedFunctionError) function Module.nonexistent_function/0 is
 undefined or private

iex(1)> List.first({1,2,3})
** (FunctionClauseError) no function clause matching in List.first/1

You can also raise your own error by using the raise/1 macro, passing an error string:

iex(1)> raise("Something went wrong")
** (RuntimeError) Something went wrong

If your function explicitly raises an error, you should append the ! character to its
name. This is a convention used in Elixir standard libraries. For example, File.open!
raises an error if a file can’t be opened:

iex(1)> File.open!("nonexistent_file")
** (File.Error) could not open non_existing_file: no such file or directory

In contrast, File.open (notice the lack of !) just returns the information that the file
couldn’t be opened:

iex(1)> File.open("nonexistent_file")
{:error, :enoent}

Notice that in this snippet there’s no runtime error. File.open returns a result, which
the caller can handle in some way.

Another type of error is the exit, which is used to deliberately terminate a process. To
exit the current process, you can call exit/1, providing an exit reason:

iex(2)> spawn(fn ->
 exit("I'm done")
 IO.puts("This doesn't happen")
 end)

The exit reason is an arbitrary term that describes why you’re terminating the process.
As you’ll see later, it’s possible for some other process to detect a process crash and
obtain this exit reason.

Invalid arithmetic expression

Calls a nonexistent function

Pattern-matching error

Exits the current process

204 chapter 8 Fault-tolerance basics

The final runtime error type is a throw. To issue a throw, you can call throw/1:

iex(3)> throw(:thrown_value)
** (throw) :thrown_value

The purpose of throws is to allow nonlocal returns. As you saw in chapters 3 and 4,
Elixir programs are organized in many nested function calls. In particular, loops are
implemented as recursions. The consequence is that there are no constructs such as
break, continue, and return, which you’ve probably seen in other languages. When
you’re deep in a loop, it’s not trivial to stop the loop and return a value, and throws can
help with this. You can throw a value and catch it up the call stack. But using throws for
control flow is hacky, somewhat reminiscent of goto, and you should avoid this tech-
nique as much as possible.

8.1.2 Handling errors

It is, of course, possible to intercept any kind of error (error, exit, or throw) and do
something about it. The main tool for this is the try expression. Here’s how to run
some code and catch errors:

try do
 ...
catch error_type, error_value ->
 ...
end

This works much like what you’ve probably seen in other languages. The code in the
do block is executed, and, if an error happens, execution is transferred to the catch
block.

Notice that two things are specified in the catch. The error_type will contain an
atom :error, :exit, or :throw , indicating the type of error that has occurred. The
error_value will contain error-specific information such as a value that was thrown or
an error that was raised.

Let’s play with this a bit by writing a helper lambda to make it easier to experiment
with errors:

iex(1)> try_helper = fn fun ->
 try do
 fun.()
 IO.puts("No error.")
 catch type, value ->
 IO.puts("Error\n #{inspect(type)}\n #{inspect(value)}")
 end
 end

This helper lambda takes a function as its argument, calls this function in a try, and
reports the type of error and the corresponding value. Let’s try it out:

iex(2)> try_helper.(fn -> raise("Something went wrong") end)
Error
 :error
 %RuntimeError{message: "Something went wrong"}

Error type

Error value

 205Runtime errors

Notice how the string message is wrapped in a RuntimeError struct. This is an Elixir-
specific decoration done from within the raise/1 macro. If you want to raise a naked,
undecorated error, you can use Erlang’s :erlang.error/1 and provide an arbitrary
term. The resulting error value will be the term you’ve raised.

If you attempt to throw a value, you’ll get a different error type:

iex(3)> try_helper.(fn -> throw("Thrown value") end)
Error
 :throw
 "Thrown value"

Calling exit/1 has its own type:

iex(4)> try_helper.(fn -> exit("I'm done") end)
Error
 :exit
 "I'm done"

Remember that in Elixir, everything is an expression that has a return value. With try,
the return value is the result of the last executed statement — either from the do block
or, if an error was raised, from the catch block:

iex(5)> result =
 try do
 throw("Thrown value")
 catch type, value -> {type, value}
 end

iex(6)> result
{:throw, "Thrown value"}

It’s also worth noting that the type and value specified in the catch block are pat-
terns. If you want to handle a specific type of error, you can do this by providing corre-
sponding patterns.

For example, let’s say you want to immediately return a value from inside a deep
nested loop. You could invoke the following:

throw({:result, some_result})

Then, somewhere up the call stack, you would handle this particular throw:

try do
 ...
catch
 :throw, {:result, x} -> x
end

In this example, you only match for a specific runtime error: a throw in the form
{:result, x}. If anything else is raised, you won’t catch it, and an error will be propa-
gated further up the call stack. If the error isn’t handled, the process terminates.

Because catch is a pattern match, multiple clauses can be specified, just as you’ve
seen with case and receive expressions:

try do
 ...

206 chapter 8 Fault-tolerance basics

catch
 type_pattern_1, error_value_1 ->
 ...

 type_pattern_2, error_value_2 ->
 ...

 ...
end

The block under the first pattern that matches a raised error is invoked, and the result
of the last statement is returned.

If you want to catch anything, you can use the type, value pattern, or _, _ if you’re
not interested in values. These patterns will handle any error that can occur.

It’s also possible to specify code that should always be executed after the try block,
regardless of whether an error was raised:

iex(7)> try do
 raise("Something went wrong")
 catch
 , -> IO.puts("Error caught")
 after
 IO.puts("Cleanup code")
 end

Error caught
Cleanup code

Because it’s always executed, the after block is useful for cleaning up resources — for
example, to close an open file.

It’s worth noting that the after clause doesn’t affect the result of the entire try
expression. The result of try is the result of the last statement either from the do block
or from the corresponding catch block if something was caught.

Try and tail calls
You may recall the tail-call optimization from chapter 3. If the last thing a function does is
call another function (or itself), then a simple jump will occur without a stack push. This
optimization isn’t possible if the function call resides in a try expression. This is fairly
obvious, because the last thing a function does is a try block, and it won’t finish until its
do or catch block is done. Consequently, whatever is called in try isn’t the last thing a
function does and is therefore not available for tail-call optimization.

There’s much more to signaling and handling runtime errors. Elixir provides some
abstractions on top of this basic mechanism. You can define custom errors via a
defexception macro (see https://hexdocs.pm/elixir/Kernel.html#defexception/1) and
handle them in a slightly more elegant fashion. The try special form also has a couple
other features we haven’t discussed. You should definitely research the official try doc-
umentation (https://hexdocs.pm/elixir/Kernel.SpecialForms.html#try/1) as well as the

Always executed

https://hexdocs.pm/elixir/Kernel.html#defexception/1
https://hexdocs.pm/elixir/Kernel.SpecialForms.html#try/1

 207Errors in concurrent systems

corresponding “Getting Started” section (https://elixir-lang.org/getting-started/try-catch-
and-rescue.html).

What I’ve presented here are the core concepts of runtime errors. All other exten-
sions supported by Elixir eventually boil down to these concepts and have the same
properties:

¡	A runtime error has a type, which can be :error, :exit, or :throw.
¡	A runtime error also has a value, which can be any arbitrary term.
¡	If a runtime error isn’t handled, the corresponding process will terminate.

Compared to languages such as C++, C#, Java, and JavaScript, there’s much less need
to catch runtime errors. A more common idiom is to let the process crash and then do
something about it (usually, restart the process). This approach may seem hacky, but
there’s reasoning behind it. In a complex system, most bugs are flushed out in the test-
ing phase. The remaining bugs mostly fall into a so-called Heisenbug category — unpre-
dictable errors that occur irregularly in special circumstances and are hard to
reproduce. The cause of such errors usually lies in corruptness of the state. Therefore,
a reasonable remedy for such errors is to let the process crash and start another one.

This may help, because you’re getting rid of the process state (which may be cor-
rupt) and starting with a clean state. In many cases, doing so resolves the immediate
problem. Of course, the error should be logged so you can analyze it later and detect
the root cause. But in the meantime, you can recover from an unexpected failure and
continue providing service. This is a property of a self-healing system.

Don’t worry if this discussion seems vague. This approach to error handling, also
known as letting it crash, will be explained in detail throughout this chapter and the next.
In the following section, we’ll look at the basics of error handling in concurrent systems.

8.2 Errors in concurrent systems
Concurrency plays a central role in building fault-tolerant, BEAM-based systems. This
is due to the total isolation and independence of individual processes. A crash in one
process won’t affect the others (unless you explicitly want it to).

Here’s a quick demonstration:

iex(1)> spawn(fn ->
 spawn(fn ->
 Process.sleep(1000)
 IO.puts("Process 2 finished")
 end)

 raise("Something went wrong")
 end)

Running this yields the following output:

17:36:20.546 [error] Process #PID<0.94.0> raised an exception
...
Process 2 finished

Starts process 1

Starts process 2

Raises an error from within process 1

Error logger output

Output of process 2

https://elixir-lang.org/getting-started/try-catch-and-rescue.html
https://elixir-lang.org/getting-started/try-catch-and-rescue.html

208 chapter 8 Fault-tolerance basics

As you can see, the execution of process 2 goes on despite the fact that process 1
crashes. Information about the crash of process 1 is printed to the screen, but the rest
of the system — including process 2 and the iex shell prompt — runs normally.

Furthermore, because processes share no memory, a crash in one process won’t leave
memory garbage that might corrupt another process. Therefore, by running indepen-
dent actions in separate processes, you automatically ensure isolation and protection.

You already benefit from process isolation in this book’s example to-do system. Recall
the current architecture, shown in figure 8.1.

All the boxes in the figure are BEAM processes. A crash in a single to-do server
doesn’t affect operations on other to-do lists. A crash in Todo.Database doesn’t block
cached reads that take place in to-do server processes.

Of course, this isolation isn’t enough by itself. As you can see in figure 8.1, processes
often communicate with each other. If a process isn’t running, its clients can’t use its
services. For example, if the database process goes down, the to-do servers can’t query
it. What’s worse, modifications to the to-do list won’t be persisted. Obviously this isn’t
desirable behavior, and you must have a way of detecting a process crash and somehow
recovering from it.

8.2.1 Linking processes

A basic primitive for detecting a process crash is the concept of links. If two processes
are linked, and one of them terminates, the other process receives an exit signal — a
notification that a process has crashed.

Figure 8.1 Isolating errors in the to-do system

 209Errors in concurrent systems

An exit signal contains the pid of the crashed process and the exit reason — an arbitrary
Elixir term that provides a description of why the process has terminated. In the case of
a normal termination (when the spawned function has finished), the exit reason is the
atom :normal. By default, when a process receives an exit signal from another process,
and that signal is anything other than :normal, the linked process terminates as well. In
other words, when a process terminates abnormally, the linked process is also taken down.

One link connects exactly two processes and is always bidirectional. To create a link,
you can use Process.link/1, which connects the current process with another process.
More often, a link is created when you start a process. You can do this by using spawn_
link/1, which spawns a process and links it to the current one.

Let’s verify this. In the following example, you again spawn two processes, this time
linking them together. Then you take down one process:

iex(1)> spawn(fn ->
 spawn_link(fn ->
 Process.sleep(1000)
 IO.puts("Process 2 finished")
 end)

 raise("Something went wrong")
 end)

Not surprisingly, this example gives the following output:

17:36:20.546 [error] Process #PID<0.96.0> raised an exception

Notice in particular that you don’t see the output from process 2. This is because pro-
cess 1 terminated abnormally, which caused an exit signal to be emitted to process 2.

One process can be linked to an arbitrary number of other processes, and you can
create as many links in the system as you want, as shown in figure 8.2. This illustrates the
transitive nature of process links. In this structure, the crash of a single process will emit
exit signals to all of its linked processes. If the default behavior isn’t overridden, those pro-
cesses will crash as well. Ultimately, the entire tree of linked processes will be taken down.

Starts process 2 and links it to process 1

Figure 8.2 Example of links with multiple processes

210 chapter 8 Fault-tolerance basics

trapping exits

You may be puzzled by the consequences of links. Earlier I explained how process isola-
tion makes it possible to isolate the effect of a runtime error. Links break this isolation
and propagate errors over process boundaries. You can think of a link as a communica-
tion channel for providing notifications about process terminations.

Usually you don’t want a linked process to crash. Instead, you want to detect the pro-
cess crash and do something about it. This can be done by trapping exits. When a process
is trapping exits, it isn’t taken down when a linked process crashes. Instead, an exit
signal is placed in the surviving process’s message queue, in the form of a standard mes-
sage. A trapping process can receive these messages and do something about the crash.

To set up an exit trap, you call Process.flag(:trap_exit, true), which makes the
current process trap exit signals. Let’s look at how this works:

iex(1)> spawn(fn ->
 Process.flag(:trap_exit, true)

 spawn_link(fn -> raise("Something went wrong") end)

 receive do
 msg -> IO.inspect(msg)
 end
 end)

Here you make the parent process trap exits and then spawn a linked process that will
crash. Then you receive a message and print it to the screen. The shell session pro-
duces the following output:

{:EXIT, #PID<0.93.0>,
 {%RuntimeError{message: "Something went wrong"},
 [{:erl_eval, :do_apply, 6, [file: 'erl_eval.erl', line: 668]}]}}

The general format of the exit signal message is {:EXIT, from_pid, exit_reason},
where from_pid is the pid of the crashed process and exit_reason is an arbitrary term
that describes the reason for process termination. If a process is terminated due to a
throw or an error, the exit reason is a tuple in the form {reason, where}, with where
containing the stack trace. Otherwise, if a process is terminated due to an exit, the rea-
son is a term provided to exit/1.

8.2.2 Monitors

As mentioned earlier, links are always bidirectional. Most of the time, this is exactly
what you need, but in some cases unidirectional propagation of a process crash works
better. Sometimes you need to connect two processes, A and B, in such a way that pro-
cess A is notified when B terminates, but not the other way around. In such cases, you
can use a monitor, which is something like a unidirectional link.

To monitor a process, you use Process.monitor:

monitor_ref = Process.monitor(target_pid)

This makes the current process monitor the target process. The result is a unique ref-
erence that identifies the monitor. A single process can create multiple monitors.

Traps exits in the current process

Spawns a
linked process

Receives and prints
the message

 211Supervisors

If the monitored process dies, your process receives a message in the format {:DOWN,
monitor_ref, :process, from_pid, exit_reason}. If you want to, you can also stop
the monitor by calling Process.demonitor(monitor_ref).

Here’s a quick example:

iex(1)> target_pid = spawn(fn ->
 Process.sleep(1000)
 end)

iex(2)> Process.monitor(target_pid)

iex(3)> receive do
 msg -> IO.inspect(msg)
 end

{:DOWN, #Reference<0.1398266903.3291480065.256365>, :process,
 #PID<0.88.0>, :noproc}

There are two main differences between monitors and links. First, monitors are unidi-
rectional — only the process that created a monitor receives notifications. In addition,
unlike a link, the observer process won’t crash when the monitored process terminates.
Instead, a message is sent, which you can handle or ignore.

Exits are propagated through GenServer calls
When you issue a synchronous request via GenServer.call, if a server process
crashes, an exit signal will occur in your client process. This is a simple but very important
example of cross-process error propagation. Internally, GenServer sets up a temporary
monitor that targets the server process. While waiting for a response from the server, if a
:DOWN message is received, GenServer can detect that a process has crashed and raise
a corresponding exit signal in the client process.

Links, exit traps, and monitors make it possible to detect errors in a concurrent system.
You can introduce a process whose only responsibility is to receive links and monitor
notifications, and do something when a process crashes. Such processes, called supervi-
sors, are the primary tools of error recovery in concurrent systems.

8.3 Supervisors
A supervisor is a generic process that manages the lifecycle of other processes in a sys-
tem. A supervisor process can start other processes, which are then considered to be its
children. Using links, monitors, and exit traps, a supervisor detects possible termina-
tions of any child, and can restart it if needed.

Processes that aren’t supervisors are called workers. These are the processes that pro-
vide the actual services of the system. Your current version of the to-do system consists
only of worker processes, such as the to-do cache and to-do server processes.

If any of the worker processes crashes, perhaps due to a bug, some part of your system
will be gone forever. This is where supervisors can help. By running workers under a
supervisor, you can ensure that a failing process is restarted, and the service of your sys-
tem is restored.

Spawns a process that terminates after one second

Monitors the spawned process

Waits for a monitor message

Monitor message

212 chapter 8 Fault-tolerance basics

In order to do that, you need at least one supervisor process in the system. In Elixir,
this can be done using the Supervisor module (https://hexdocs.pm/elixir/Supervisor
.html). By invoking Supervisor.start_link/2, you can start the supervisor process,
which then works as follows:

1 The supervisor process traps exits, and then starts the child processes.

2 If at any point in time a child terminates, the supervisor process receives a cor-
responding exit message and performs corrective actions, such as restarting the
crashed process.

3 If a supervisor process terminates, its children are also taken down.

There are two different ways of starting a supervisor. In a basic approach, you invoke
the function Supervisor.start_link, passing it a list that describes each child to be
started under the supervisor, together with some additional supervisor options. Alter-
natively, you can pass a module defining a callback function that returns this informa-
tion. We’ll start with the basic approach, and explain the second version a bit later.

Let’s introduce one supervisor to the to-do system. Figure 8.3 recaps the processes in
the system:

¡	Todo.Server — Allows multiple clients to work on a single to-do list
¡	Todo.Cache — Maintains a collection of to-do servers and is responsible for their

creation and discovery
¡	Todo.DatabaseWorker — Performs read/write operations on the database
¡	Todo.Database — Manages a pool of database workers, and forwards database

requests to them

Figure 8.3 Processes in the to-do system

https://hexdocs.pm/elixir/Supervisor.html
https://hexdocs.pm/elixir/Supervisor.html

 213Supervisors

The to-do cache process is the system entry point. When you start the cache, all the
needed processes are started, so the cache can be considered the root of the system.
Now we’ll introduce a new supervisor process that will supervise the to-do cache
process.

8.3.1 Preparing the existing code

Before you start working with the supervisor, you’ll need to make a couple of changes
to the cache.

First, you’ll register the cache process. This will allow you to interact with the process
without needing to know its pid.

You’ll also need to create a link while starting the to-do cache process. This is
required if you want to run the process under a supervisor. Why is the supervisor using
links rather than monitors? Because links work in both directions, so the termination
of a supervisor means all of its children will be automatically taken down. This, in turn,
allows you to properly terminate any part of the system without leaving behind dangling
processes. You’ll see how this works in this chapter and the next, when you work with
finer-grained supervision.

Creating a link to the caller process is as simple as using GenServer.start_link in
place of GenServer.start. While you’re at it, you can also rename the corresponding
Todo.Cache interface function to start_link.

Finally, you’ll make the start_link function take one argument and ignore it. This
seems confusing, but it makes starting a supervised process a bit easier. The reasons will
be explained later, when we discuss child specifications.

The changes are shown in the following listing.

Listing 8.1 Changes in the to-do cache (supervised_todo_cache/lib/todo/cache.ex)

defmodule Todo.Cache do
 use GenServer

 def start_link(_) do
 IO.puts("Starting to-do cache.")
 GenServer.start_link(__MODULE__, nil, name: __MODULE__)
 end

 def server_process(todo_list_name) do
 GenServer.call(__MODULE__, {:server_process, todo_list_name})
 end

 ...
end

Notice that you also call IO.puts/1 from the start_link function for debugging pur-
poses. This debug expression is included in all other processes.

Renamed interface function

Debug message

Registers under a
name and links to
the caller process

Interface function that
uses the registered name

214 chapter 8 Fault-tolerance basics

8.3.2 Starting the supervisor process

With these changes in place, you can immediately try to start the supervisor process
with to-do cache as its only child. Change the current folder to supervised_todo_cache,
and start the shell (iex -S mix). Now you can start the supervisor:

iex(1)> Supervisor.start_link([Todo.Cache], strategy: :one_for_one)

Starting to-do cache.
Starting database server.
Starting database worker.
Starting database worker.
Starting database worker.

As you can see from the console output, invoking Supervisor.start_link/2 caused
the to-do cache to start. The cache process then started the database processes.

Let’s take a closer look at the invocation of Supervisor.start_link/2:

Supervisor.start_link(
 [Todo.Cache],
 strategy: :one_for_one
)

As the function name hints, Supervisor.start_link/2 starts a supervisor process and
links it to the caller.

The first argument is the list of desired children. More precisely, each element of this
list is a child specification that describes how the child should be started and managed.
We’ll discuss child specifications in detail a bit later. In this simple form, the provided
child specification is a module name.

When the supervisor process is started, it will go through this list and start each child
according to the specification. In this example, the supervisor will invoke Todo.Cache
.start_link/1. Once all the children are started, Supervisor.start_link/2 returns
{:ok, supervisor_pid}.

The second argument to Supervisor.start_link/2 is the list of supervisor-specific
options. The option :strategy, also known as restart strategy, is mandatory. This option
specifies how a supervisor should handle restarts of its children. The one_for_one strat-
egy states that if a child terminates, another child should be started in its place There
are a couple of other strategies (for example, “Restart all children if a single child
crashes”), and we’ll discuss them in chapter 9.

NOTE The term restart is used casually here. Technically, a process can’t be
restarted. It can only be terminated; then another process, powered by the
same module, can be started in its place. The new process has a different pid
and doesn’t share any state with the old one.

In any case, after Supervisor.start_link/2 returns, all the required processes in the
system are running, and you can interact with the system. For example, you can start
one to-do server:

iex(2)> bobs_list = Todo.Cache.server_process("Bob's list")

Starts a supervisor and to-do cache as its child

List of child specifications

Supervisor strategy

 215Supervisors

Starting to-do server for Bob's list.
#PID<0.116.0>

The cache process is started as the child of the supervisor process, so we say that it’s
supervised. This means that if the cache process crashes, its supervisor will restart it.

You can quickly verify this by provoking a crash of the cache process. First, you need
to get the pid of the cache. As mentioned, the cache is now registered under a name
(its own module name), so getting its pid is easily done with the help of Process.
whereis/1:

iex(3)> cache_pid = Process.whereis(Todo.Cache)
#PID<0.110.0>

Now, you can kill the process using the Process.exit/2 function, which accepts a pid
and the exit reason, and sends the corresponding exit signal to the given process. The
exit reason can be an arbitrary term. Here, you’ll use the atom :kill, which is treated
in a special way. The exit reason :kill ensures that the target process is uncondition-
ally taken down, even if the process is trapping exits. Let’s see it in action:

iex(4)> Process.exit(cache_pid, :kill)
Starting to-do cache.
Starting database server.

As you can see from the output, the process is immediately restarted. You can also
prove that the to-do cache is now a process with a different pid:

iex(5)> Process.whereis(Todo.Cache)
#PID<0.119.0>

And you can use the new process, just as you did the old one:

iex(6)> bobs_list = Todo.Cache.server_process("Bob's list")
Starting to-do server for Bob's list.
#PID<0.122.0>

This brief experiment proves some basic fault-tolerance capabilities. After the crash,
the system healed itself and resumed the full service.

Names allow process discovery
It’s important to explain why you register the to-do cache under a local name. You should
always keep in mind that in order to talk to a process, you need to have its pid. In chapter 7,
you used a naive approach, somewhat resembling that of typical OO systems, where you
created a process and then passed around its pid. This works fine until you enter the super-
visor realm.

The problem is that supervised processes can be restarted. Remember that restarting
boils down to starting another process in place of the old one — the new process has a dif-
ferent pid. This means any reference to the pid of the crashed process becomes invalid,
identifying a nonexistent process.

That’s why registered names are important. They provide a reliable way of finding a pro-
cess and talking to it, regardless of possible process restarts.

216 chapter 8 Fault-tolerance basics

8.3.3 Child specification

In order to manage a child process, a supervisor needs some information, such as

¡	How should the child be started?
¡	What should be done if the child terminates?
¡	What term should be used to uniquely distinguish each child?

These pieces of information are collectively called the child specification. Recall that
when invoking Supervisor.start_link/2, you sent a list of child specifications. In its
basic shape, a specification is a map with a couple of fields configuring the properties
of the child.

For example, here’s what the specification for the to-do cache looked like:

%{
 id: Todo.Cache,
 start: {Todo.Cache, :start_link, [nil]},
}

The :id field is an arbitrary term that’s used to distinguish this child from any other
child of the same supervisor. The :start field is a triplet in the shape of {module,
start_function, list_of_arguments}. When starting the child, the supervisor pro-
cess will invoke module.start_function, passing it the given list of arguments. This
function must start and link the process.

There are some other fields that you can omit from the specification, in which case
some sensible defaults are chosen. We’ll discuss some of them later, in chapter 9. You
can also refer to the official documentation at https://hexdocs.pm/elixir/Supervisor
.html#module-child-specification for more details.

In any case, you can pass the specification map directly to Supervisor.start_link.
Here’s an example:

Supervisor.start_link(
 [
 %{
 id: Todo.Cache,
 start: {Todo.Cache, :start_link, [nil]}
 }
],
 strategy: :one_for_one
)

This will instruct the supervisor to invoke Todo.Cache.start_link(nil) to start the
child. Recall that you changed Todo.Cache.start_link to take one argument (which
is ignored), so you need to pass some value, in this example nil.

One problem with this approach is that it’s error-prone. If something changes in the
implementation of the cache, such as the signature of the start function, you need to
remember to adapt the specification in the code starting the supervisor.

The id of the child

The start specification

https://hexdocs.pm/elixir/Supervisor.html#module-child-specification
https://hexdocs.pm/elixir/Supervisor.html#module-child-specification

 217Supervisors

To address this issue, Supervisor allows you to pass a tuple {module_name, arg} in
the child specification list. In this case, Supervisor will first invoke module_name.child_
spec(arg) to get the actual specification. This function must return the specification
map. The supervisor then proceeds to start the child according to the specification.

The Todo.Cache module already has child_spec/1 defined, even though you didn’t
write it yourself. The default implementation is injected by use GenServer. Therefore,
you can also start the supervisor in the following way:

Supervisor.start_link(
 [{Todo.Cache, nil}],
 strategy: :one_for_one
)

As a consequence, Supervisor will invoke Todo.Cache.child_spec(nil) and start the
child according to the returned specification. It’s easy to verify what the injected imple-
mentation of child_spec/1 returns:

iex(1)> Todo.Cache.child_spec(nil)
%{id: Todo.Cache, start: {Todo.Cache, :start_link, [nil]}}

In other words, the generated child_spec/1 returns a specification that invokes the
module’s start_link/1 function with the argument passed to child_spec/1. This is
precisely why you made Todo.Cache.start_link take one argument, even though the
argument is ignored:

defmodule Todo.Cache do
 use GenServer

 def start_link(_) do
 ...
 end

 ...
end

By doing this, you made Todo.Cache compatible with the generated child_spec/1,
which means you can include Todo.Cache in the list of children without needing to do
any extra work.

If you don’t like that approach, you can provide some options to use GenServer to
tweak the output of the generated child_spec/1. Refer to the official documentation
(https://hexdocs.pm/elixir/GenServer.html#module-use-genserver-and-callbacks)
for more details. If you need even more control, you can simply define child_spec/1
yourself, which will override the default implementation.

Finally, if you don’t care about the argument passed to child_spec/1, you can
include just the module name in the child specification list. In this case, Supervisor
will pass the empty list [] to child_spec/1.

Therefore, you can also start Todo.Cache like this:

Supervisor.start_link(
 [Todo.Cache],
 strategy: :one_for_one
)

Generates the default child_spec/1

Conforms to the default child_spec/1

https://hexdocs.pm/elixir/GenServer.html#module-use-genserver-and-callbacks

218 chapter 8 Fault-tolerance basics

Before going further, let’s recap how supervisor starting works. When you invoke
Supervisor.start_link(child_specs, options), the following happens:

1 The new process is started, powered by the Supervisor module.

2 The supervisor process goes through the list of child specifications and starts
each child, one by one.

3 Each specification is resolved, if needed, by invoking child_spec/1 from the cor-
responding module.

4 The supervisor starts the child process, according to the :start field of the child
specification.

8.3.4 Wrapping the supervisor

So far, you’ve played with the supervisor in the shell. But in real life, you’ll want to work
with supervisor in the code. Just like with GenServer, the idiomatic approach is to wrap
the Supervisor in a module.

The following listing implements the module for your first supervisor:

Listing 8.2 To-do system supervisor (supervised_todo_cache/lib/todo/system.ex)

defmodule Todo.System do
 def start_link do
 Supervisor.start_link(
 [Todo.Cache],
 strategy: :one_for_one
)
 end
end

With this simple addition, starting the whole system becomes easy:

$ iex -S mix

iex(1)> Todo.System.start_link()

Starting to-do cache.
Starting database server.
Starting database worker.
Starting database worker.
Starting database worker.

The name Todo.System is chosen to describe the purpose of the module. By invoking
Todo.System.start_link() you start the entire to-do system, with all the required ser-
vices, such as the cache and database.

8.3.5 Using a callback module

Another way of starting a supervisor is by providing a callback module. This works simi-
larly to GenServer. You develop the module that must implement the init/1 function.
This function must return the list of child specifications and additional supervisor
options, such as its strategy.

 219Supervisors

Here’s how you could rewrite Todo.System to use this approach:

defmodule Todo.System do
 use Supervisor

 def start_link do
 Supervisor.start_link(__MODULE__, nil)
 end

 def init(_) do
 Supervisor.init([Todo.Cache], strategy: :one_for_one)
 end
end

As with GenServer, you start with use Supervisor to get some common boilerplate in
your module.

The crucial bit happens when you invoke Supervisor.start_link/2. Instead of the
list of child specifications, you’re now passing the callback module. In this case, the
supervisor process will invoke the init/1 function to provide the supervisor specifica-
tion. The argument passed to init/1 is the second argument you pass to Supervisor.
start_link/2.

Finally, in init/1, you describe the supervisor with the help of the Supervisor.
init/2 function, passing it the list of children and the supervisor options.

The preceding code is a more elaborate equivalent of Supervisor.start_link([T-
odo.Cache], strategy: :one_for_one). Clearly, you need more lines of code to get
the same effect. On the upside, this approach gives you more control. For example, if
you need to perform some extra initialization before starting the children, you can do
it in init/1. Moreover, the callback module is more flexible with respect to hot-code
reloading, allowing you to modify the list of children without needing to restart the
entire supervisor.

In most cases, the simple approach of passing the list of child specifications directly
will be sufficient. Moreover, as you’ve seen in the preceding examples, if you wrap the
use of Supervisor in a dedicated module, it’s easy to switch from one approach to the
other. Therefore, in this book, you’ll exclusively use the simple approach without a call-
back module.

8.3.6 Linking all processes

At this point, you’re supervising the to-do cache process, so you get some basic
fault-tolerance. If the cache process crashes, a new process is started, and the system
can resume providing the service.

However, there’s a problem in your current implementation. When the supervisor
restarts the to-do cache, you’ll get a completely separate process hierarchy, and there
will be a new set of to-do server processes that are in no way related to the previous ones.
The previous to-do servers will be unused garbage that’s still running and consuming
both memory and CPU resources.

Includes some common boilerplate

Starts the supervisor with Todo.System
as the callback module

Implements the required
callback function

220 chapter 8 Fault-tolerance basics

Let’s demonstrate this issue. First, start the system and request one to-do server:

iex(1)> Todo.System.start_link()

iex(2)> Todo.Cache.server_process("Bob's list")
Starting to-do server for Bob's list.
#PID<0.141.0>

A cached to-do server isn’t started on subsequent requests:

iex(3)> Todo.Cache.server_process("Bob's list")
#PID<0.141.0>

Check the number of running processes:

iex(4)> :erlang.system_info(:process_count)
60

Now terminate the to-do cache:

iex(5)> Process.exit(Process.whereis(Todo.Cache), :kill)
Starting to-do cache.
Starting database server.

Finally, request a to-do server for Bob’s list:

iex(6)> Todo.Cache.server_process("Bob's list")
Starting to-do server for Bob's list.
#PID<0.147.0>

As you can see, after you restart the to-do cache, retrieving a previously fetched server
creates a new process. This isn’t surprising because you killed the previous cache pro-
cess, which also destroyed the process state.

When a process terminates, its state is released, and the new process starts with the
fresh state. If you want to preserve the state, you must handle it yourself; we’ll discuss
this in chapter 9.

After the cache process is restarted, you have a completely new process that has no
notion of what was previously cached. At the same time, your old cache structure (to-
do servers) isn’t cleaned up. You can see this by rechecking the number of running
processes:

iex(7)> :erlang.system_info(:process_count)
61

You have one additional process, which is the previously started to-do server for Bob’s
list. This obviously isn’t good. Terminating a to-do cache destroys its state, so you
should also take down all existing to-do servers. This way, you ensure proper process
termination.

To do this, you must establish links between processes. Each to-do server must be
linked to the cache. Going further, you’ll also link the database server to the to-do cache
and the database workers to the database server. This will effectively ensure that the
entire structure is linked, as illustrated in figure 8.4.

Figure 8.4 Linking all processes in the to-do system

 221Supervisors

This is the primary way of achieving process consistency. By linking a group of inter-
dependent processes, you can ensure that the crash of one process takes down its
dependencies as well. Regardless of which process crashes, links make sure the entire
structure is terminated. Because this will lead to the termination of the cache process,
it will be noticed by the supervisor, which will start a new system.

This is a proper error-recovery approach: you can detect an error in any part of the
system and recover from it without leaving behind dangling processes. On the down-
side, you’re allowing errors to have a wide impact. An error in a single database worker
or a single to-do server will take down the entire structure. This is far from perfect, and
you’ll make improvements in chapter 9.

For now, let’s stick with this simple approach and implement the required code. In
your present system, you have a to-do supervisor that starts and supervises the cache. You
must ensure that the cache is directly or indirectly linked to all other worker processes.

The change is simple. All you need to do is switch from start to start_link for all
the processes in the project. In the corresponding modules, you currently have some-
thing like this:

def start(...) do
 GenServer.start(...)
end

This snippet must be transformed into the following:

def start_link(...) do
 GenServer.start_link(...)
end

Let’s demonstrate this issue. First, start the system and request one to-do server:

iex(1)> Todo.System.start_link()

iex(2)> Todo.Cache.server_process("Bob's list")
Starting to-do server for Bob's list.
#PID<0.141.0>

A cached to-do server isn’t started on subsequent requests:

iex(3)> Todo.Cache.server_process("Bob's list")
#PID<0.141.0>

Check the number of running processes:

iex(4)> :erlang.system_info(:process_count)
60

Now terminate the to-do cache:

iex(5)> Process.exit(Process.whereis(Todo.Cache), :kill)
Starting to-do cache.
Starting database server.

Finally, request a to-do server for Bob’s list:

iex(6)> Todo.Cache.server_process("Bob's list")
Starting to-do server for Bob's list.
#PID<0.147.0>

As you can see, after you restart the to-do cache, retrieving a previously fetched server
creates a new process. This isn’t surprising because you killed the previous cache pro-
cess, which also destroyed the process state.

When a process terminates, its state is released, and the new process starts with the
fresh state. If you want to preserve the state, you must handle it yourself; we’ll discuss
this in chapter 9.

After the cache process is restarted, you have a completely new process that has no
notion of what was previously cached. At the same time, your old cache structure (to-
do servers) isn’t cleaned up. You can see this by rechecking the number of running
processes:

iex(7)> :erlang.system_info(:process_count)
61

You have one additional process, which is the previously started to-do server for Bob’s
list. This obviously isn’t good. Terminating a to-do cache destroys its state, so you
should also take down all existing to-do servers. This way, you ensure proper process
termination.

To do this, you must establish links between processes. Each to-do server must be
linked to the cache. Going further, you’ll also link the database server to the to-do cache
and the database workers to the database server. This will effectively ensure that the
entire structure is linked, as illustrated in figure 8.4.

Figure 8.4 Linking all processes in the to-do system

222 chapter 8 Fault-tolerance basics

And of course, every Module.start call must be replaced with Module.start_link.
These changes are mechanical, and the code isn’t presented here. The complete solu-
tion resides in the todo_link folder.

Let’s see how the new system works:

iex(1)> Todo.System.start_link()

iex(2)> Todo.Cache.server_process("Bob's list")
Starting to-do server for Bob's list.

iex(3)> :erlang.system_info(:process_count)
60

iex(4)> Process.exit(Process.whereis(Todo.Cache), :kill)

iex(5)> bobs_list = Todo.Cache.server_process("Bob's list")
Starting to-do server for Bob's list.

iex(6)> :erlang.system_info(:process_count)
60

When you crash a process, the entire structure is terminated, and the new process
starts in its place. Links ensure that dependent processes are terminated as well, which
keeps the system consistent.

8.3.7 Restart frequency

It’s important to keep in mind that a supervisor won’t restart a child process forever.
The supervisor relies on the maximum restart frequency, which defines how many
restarts are allowed in a given time period. By default, the maximum restart frequency
is three restarts in five seconds. You can change these parameters by passing :max_
restarts and :max_seconds options to Supervisor.start_link/2. If this frequency is
exceeded, the supervisor gives up and terminates itself together with all of its children.

Let’s verify this in the shell. First, start the supervisor:

iex(1)> Todo.System.start_link()
Starting the to-do cache.

Now you need to perform frequent restarts of the to-do cache process:

iex(1)> for _ <- 1..4 do
 Process.exit(Process.whereis(Todo.Cache), :kill)
 Process.sleep(200)
 end

Here you terminate the cache process and sleep for a short while, allowing the super-
visor to restart the process. This is done four times, meaning that in the last iteration,
you’ll exceed the default maximum restart frequency (three restarts in five seconds).

Here’s the output:

Starting the to-do cache.
Starting database server.
...

** (EXIT from #PID<0.107.0>) :shutdown

Terminates the entire process structure

The process count remains the same.

Repeated three times

Supervisor terminates

 223Summary

After the maximum restart frequency was exceeded, the supervisor gave up and termi-
nated, taking down the child processes as well.

You may wonder about the reason for this mechanism. When a critical process in the
system crashes, its supervisor tries to bring it back online by starting the new process. If
this doesn’t help, there’s no point in infinite restarting. If too many restarts occur in a
given time interval, it’s clear that the problem can’t be fixed. In this case, the only sen-
sible thing a supervisor can do is give up and terminate itself, which also terminates all
of its children.

This mechanism plays an important role in so-called supervision trees, where super-
visors and workers are organized in a deeper hierarchy that allows you to control how
the system recovers from errors. This will be thoroughly explained in the next chapter,
where you’ll build a fine-grained supervision tree.

Summary
¡	There are three types of runtime errors: throws, errors, and exits.
¡	When a runtime error occurs, execution moves up the stack to the correspond-

ing try block. If an error isn’t handled, a process will crash.
¡	Process termination can be detected in another process. To do this, you can use

links or monitors.
¡	Links are bidirectional — a crash of either process is propagated to the other

process.
¡	By default, when a process terminates abnormally, all processes linked to it termi-

nate as well. By trapping exits, you can react to the crash of a linked process and
do something about it.

¡	A supervisor is a process that manages the lifecycle of other processes. It can start,
supervise, and restart crashed processes.

¡	The Supervisor module is used to start supervisors and work with them.
¡	A supervisor is defined by the list of child specifications and the supervision strat-

egy. You can provide these as the arguments to Supervisor.start_link/2, or
you can implement a callback module.

224

9Isolating error effects

This chapter covers
¡	Understanding supervision trees

¡	Starting workers dynamically

¡	“Let it crash”

In chapter 8 you learned about the basic theory behind error handling in concur-
rent systems based on the concept of supervisors. The idea is to have a process whose
only job is to supervise other processes and to restart them if they crash. This gives
you a way to deal with all sorts of unexpected errors in your system. Regardless of
what goes wrong in a worker process, you can be sure that the supervisor will detect
an error and restart the worker.

In addition to providing basic error detection and recovery, supervisors play an
important role in isolating error effects. By placing individual workers directly under
a supervisor, you can confine an error’s impact to a single worker. This has an import-
ant benefit: it makes your system more available to its clients. Unexpected errors will
occur no matter how hard you try to avoid them. Isolating the effects of such errors
allows other parts of the system to run and provide service while you’re recovering
from the error.

 225Supervision trees

9
For example, a database error in this book’s example to-do system shouldn’t stop the

cache from working. While you’re trying to recover from whatever went wrong in the
database part, you should continue to serve existing cached data, thus providing at least
partial service. Going even further, an error in an individual database worker shouldn’t
affect other database operations. Ultimately, if you can confine an error’s impact to a
small part of the system, your system can provide most of its service all of the time.

Isolating errors and minimizing their negative effects is the topic of this chapter. The
main idea is to run each worker under a supervisor, which makes it possible to restart
each worker individually. You’ll see how this works in the next section, where you start
to build a fine-grained supervision tree.

9.1 Supervision trees
In this section, we’ll discuss how to reduce the effect of an error on the entire system.
The basic tools are processes, links, and supervisors, and the general approach is fairly
simple. You always have to consider what will happen to the rest of the system if a pro-
cess crashes due to an error, and you should take corrective measures when an error’s
impact is too wide (when the error affects too many processes).

9.1.1 Separating loosely dependent parts

Let’s look at how errors are propagated in the to-do system. Links between processes
are depicted in figure 9.1.

As you can see in the diagram, the entire structure is connected. Regardless of which
process crashes, the exit signal will be propagated to its linked processes. Ultimately, the
to-do cache process will crash as well, and this will be noticed by the Todo.Supervisor,
which will in turn restart the cache process.

Figure 9.1 Process links in the to-do system

226 chapter 9 Isolating error effects

This is a correct error-handling approach because you restart the system and don’t
leave behind any dangling processes. But such a recovery approach is too coarse. Wher-
ever an error happens, the entire system is restarted. In the case of a database error, the
entire to-do cache will terminate. Similarly, an error in one to-do server process will take
down all the database workers.

This coarse-grained error recovery is due to the fact that you’re starting worker
processes from within other workers. For example, a database server is started from
the to-do cache. To reduce error effects, you need to start individual workers from the
supervisor. Such a scheme makes it possible for the supervisor to supervise and restart
each worker separately.

Let’s see how to do this. First, you’ll move the database server so it’s started directly
from the supervisor. This will allow you to isolate database errors from those that hap-
pen in the cache.

Placing the database server under supervision is simple enough. You must remove
the call to Todo.Database.start_link from Todo.Cache.init/1. Then you have to
add another child specification when invoking Supervisor.start_link/2, as illus-
trated in the following listing.

Listing 9.1 Supervising database server (supervise_database/lib/todo/system.ex)

defmodule Todo.System do
 def start_link do
 Supervisor.start_link(
 [
 Todo.Database,
 Todo.Cache
],
 strategy: :one_for_one
)
 end
end

There’s one more small change that needs to be done. Just like you did with Todo
.Cache, you need to adapt Todo.Database.start_link to take exactly one argument
and ignore it. This will make it possible to rely on the autogenerated Todo.Database
.child_spec/1, obtained by use GenServer.

Listing 9.2 Adapting start_link (supervise_database/lib/todo/system.ex)

defmodule Todo.Database do
 ...

 def start_link(_) do
 ...
 end

 ...
end

Includes database in the specification list

 227Supervision trees

These changes ensure that the cache and the database are separated, as shown in fig-
ure 9.2. Running both the database and cache processes under the supervisor makes it
possible to restart each worker individually. An error in the database worker will crash
the entire database structure, but the cache will remain undisturbed. This means all
clients reading from the cache will be able to get their results while the database part
is restarting.

Let’s verify this. Go to the supervise_database folder, and start the shell (iex -S mix).
Then start the system:

iex(1)> Todo.System.start_link()
Starting database server.
Starting database worker.
Starting database worker.
Starting database worker.
Starting to-do cache.

Now, kill the database server:

iex(2)> Process.exit(Process.whereis(Todo.Database), :kill)
Starting database server.
Starting database worker.
Starting database worker.
Starting database worker.

As you can see from the output, only database-related processes are restarted. The
same is true if you terminate the to-do cache. By placing both processes under a super-
visor, you localize the negative impact of an error. A cache error will have no effect on
the database part, and vice versa.

Recall chapter 8’s discussion of process isolation. Because each part is implemented
in a separate process, the database server and the to-do cache are isolated and don’t
affect each other. Of course, these processes are indirectly linked via the supervisor, but
the supervisor is trapping exit signals, thus preventing further propagation. This is a
property of one_for_one supervisors in particular—they confine an error’s impact to a
single worker and take the corrective measure (restart) only on that process.

Figure 9.2 Separated supervision of database and cache

228 chapter 9 Isolating error effects

Child processes are started synchronously
In this example, the supervisor starts two child processes. It’s important to be aware
that children are started synchronously, in the order specified. The supervisor starts a
child, waits for it to finish, and then moves on to start the next child. When the worker is
a GenServer, the next child is started only after the init/1 callback function for the
current child is finished.

You may recall from chapter 7 that init/1 shouldn’t run for a long time. This is precisely
why. If Todo.Database was taking, say, five minutes to start, you wouldn’t have the to-do
cache available all that time. Always make sure your init/1 functions run quickly, and
use the trick mentioned in chapter 7 (a process that sends itself a message during initial-
ization) when you need more complex initialization.

9.1.2 Rich process discovery

Although you now have some basic error isolation, there’s still a lot to be desired. An
error in one database worker will crash the entire database structure and terminate all
running database operations. Ideally you want to confine a database error to a single
worker. This means each database worker has to be directly supervised.

There’s one problem with this approach. Recall that in the current version, the data-
base server starts the workers and keeps their pids in its internal list. But if a process is
started from a supervisor, you don’t have access to the pid of the worker-process. This
is a property of supervisors. You can’t keep a worker’s pid for a long time because that
process might be restarted, and its successor will have a different pid.

Therefore, you need a way to give symbolic names to supervised processes and access
each process via this name. When a process is restarted, the successor will register itself
under the same name, which will allow you to reach the right process even after multi-
ple restarts.

You could use registered names for this purpose. The problem is that names can only
be atoms, and in this case you need something more elaborate that will allow you to use
arbitrary terms, such as {:database_worker, 1}, {:database_worker, 2}, and so on.
What you need is a process registry that maintains a key-value map, where the keys are
names and the values are pids. A process registry differs from standard local registration
in that names can be arbitrarily complex.

Every time a process is created, it can register itself to the registry under a name. If a
process is terminated and restarted, the new process will re-register itself. Having a reg-
istry will give you a fixed point where you can discover processes (their pids). The idea
is illustrated in figure 9.3.

In step 1, the worker process registers itself, usually during initialization. Some time
later, the client process will query the registry for the pid of the desired worker. The cli-
ent can then issue a request to the server process.

Figure 9.3 Discovering processes through a registry

 229Supervision trees

Elixir’s standard library includes the implementation of a process registry in the
Registry module. This module allows you to associate a process with one or more
arbitrary complex keys, and then find the process (its pid) by doing a key-based
lookup.

Let’s look at a couple of examples. The process registry is itself a process. You can
start it by invoking Registry.start_link/1:

iex(1)> Registry.start_link(name: :my_registry, keys: :unique)

The single argument is a keyword list of registry options. The mandatory options are
:name and :keys.

The :name option is an atom, and it specifies the name of the registry process. You’ll
use this name to interact with the registry.

The :keys option can either be :unique or :duplicate. In a unique registry, names
are unique—only one process can be registered under any key. This is useful when you
want to assign a unique role to processes. For example, in your system, only one process
could be associated with {:database_worker, 1}. In contrast, in a duplicate registry,
multiple processes can have the same name. Duplicate registry is useful in scenarios
where a single publisher process needs to send notifications to a dynamic number of
subscriber processes, which tend to come and go over time.

Once you have the registry started, you can register a process under some key. Let’s
try it out. You’ll spawn a mock {:database_worker, 1} process that waits for a message
and then prints it to the console:

iex(2)> spawn(fn ->
 Registry.register(:my_registry, {:database_worker, 1}, nil)

 receive do
 msg -> IO.puts("got message #{inspect(msg)}")
 end
 end)

The crucial bit happens when invoking Registry.register/3. Here, you’re passing
the name of the registry (:my_registry), the desired name of the spawned process
({:database_worker, 1}), and an arbitrary value. The Registry will then store a
mapping of the name to the provided value and the pid of the caller process.

Registers the process
at the registry

Child processes are started synchronously
In this example, the supervisor starts two child processes. It’s important to be aware
that children are started synchronously, in the order specified. The supervisor starts a
child, waits for it to finish, and then moves on to start the next child. When the worker is
a GenServer, the next child is started only after the init/1 callback function for the
current child is finished.

You may recall from chapter 7 that init/1 shouldn’t run for a long time. This is precisely
why. If Todo.Database was taking, say, five minutes to start, you wouldn’t have the to-do
cache available all that time. Always make sure your init/1 functions run quickly, and
use the trick mentioned in chapter 7 (a process that sends itself a message during initial-
ization) when you need more complex initialization.

9.1.2 Rich process discovery

Although you now have some basic error isolation, there’s still a lot to be desired. An
error in one database worker will crash the entire database structure and terminate all
running database operations. Ideally you want to confine a database error to a single
worker. This means each database worker has to be directly supervised.

There’s one problem with this approach. Recall that in the current version, the data-
base server starts the workers and keeps their pids in its internal list. But if a process is
started from a supervisor, you don’t have access to the pid of the worker-process. This
is a property of supervisors. You can’t keep a worker’s pid for a long time because that
process might be restarted, and its successor will have a different pid.

Therefore, you need a way to give symbolic names to supervised processes and access
each process via this name. When a process is restarted, the successor will register itself
under the same name, which will allow you to reach the right process even after multi-
ple restarts.

You could use registered names for this purpose. The problem is that names can only
be atoms, and in this case you need something more elaborate that will allow you to use
arbitrary terms, such as {:database_worker, 1}, {:database_worker, 2}, and so on.
What you need is a process registry that maintains a key-value map, where the keys are
names and the values are pids. A process registry differs from standard local registration
in that names can be arbitrarily complex.

Every time a process is created, it can register itself to the registry under a name. If a
process is terminated and restarted, the new process will re-register itself. Having a reg-
istry will give you a fixed point where you can discover processes (their pids). The idea
is illustrated in figure 9.3.

In step 1, the worker process registers itself, usually during initialization. Some time
later, the client process will query the registry for the pid of the desired worker. The cli-
ent can then issue a request to the server process.

Figure 9.3 Discovering processes through a registry

230 chapter 9 Isolating error effects

At this point, the registered process can be discovered by other processes. Notice how
in the preceding snippet, you didn’t take the pid of the database worker. That’s because
you don’t need it. You can look it up in the registry by invoking Registry.lookup/2:

iex(3)> [{db_worker_pid, _value}] =
 Registry.lookup(
 :my_registry,
 {:database_worker, 1}
)

Registry.lookup/2 takes the name of the registry and the key (process name), and
returns a list of {pid, value} tuples. When the registry is unique, this list can be either
empty (no process is registered under the given key), or it can have one element. For
a duplicate registry, this list can have any number of entries. The pid element in each
tuple is the pid of the registered process, whereas the value is the value provided to
Registry.register/3.

Now that you’ve discovered the mock database worker, you can send it a message:

iex(4)> send(db_worker_pid, :some_message)
got message :some_message

A very useful property of Registry is that it links to all the registered processes. This
allows the registry to notice the termination of these processes and remove the corre-
sponding entry from its internal structure.

You can immediately verify this. The database worker mock was a one-off process. It
received a message, printed it, and then stopped. Try to discover it again:

iex(5)> Registry.lookup(:my_registry, {:database_worker, 1})
[]

As you can see, no entry is found under the given key because the database worker
terminated.

NOTE It’s worth mentioning that Registry is implemented in plain Elixir. You
can think of Registry as something like a GenServer that holds the map of
names to pids in its state. In reality, the implementation is more sophisticated
and relies on the ETS table feature, which you’ll learn about in chapter 10. ETS
tables allow Registry to be very efficient and scalable. Lookups and writes are
very fast, and in many cases they won’t block each other, meaning that multiple
operations on the same registry may run in parallel.

Registry has more features and properties, which we won’t discuss here. You can take
a look at the official documentation at https://hexdocs.pm/elixir/Registry.html for
more details. But there’s one very important feature of OTP processes that you need to
learn about, called via tuple.

9.1.3 Via tuples

A via tuple is a mechanism that allows you to use an arbitrary third-party registry to reg-
ister OTP-compliant processes, such as GenServer and supervisor. Recall that you can
provide a :name option when starting a GenServer:

GenServer.start_link(callback_module, some_arg, name: some_name)

https://hexdocs.pm/elixir/Registry.html

 231Supervision trees

So far, you’ve only passed atoms as the :name option, which caused the started process
to be registered locally. But the :name option can also be provided in the shape of
{:via, some_module, some_arg}. Such a tuple is also called a via tuple.

If you provide a via tuple as the name option, GenServer will invoke a well-defined
function from some_module to register the process. Likewise, you can pass a via tuple
as the first argument to GenServer.cast and GenServer.call, and GenServer will dis-
cover the pid using some_module. In this sense, some_module acts like a custom third-
party process registry, and the via tuple is the way of connecting such a registry with
GenServer and similar OTP abstractions.

The third element of the via tuple, some_arg, is a piece of data that’s passed to func-
tions of some_module. The exact shape of this data is defined by the registry module. At
the very least, this piece of data must contain the name under which the process should
be registered and looked up.

In the case of Registry, the third argument should be a pair, {registry_name,
process_key}, so the entire via tuple then has the shape of {:via, Registry, {registry_
name, process_key}}.

Let’s look at an example. We’ll revisit our old friend from chapter 6, the EchoServer.
This is a simple GenServer that handles a call request by returning the request payload.
Now you’ll add registration to the echo server. When you start the server, you’ll provide
the server ID—an arbitrary term that uniquely identifies the server. When you want to
send a request to the server, you’ll pass this ID, instead of the pid.

Here’s the full implementation:

defmodule EchoServer do
 use GenServer

 def start_link(id) do
 GenServer.start_link(__MODULE__, nil, name: via_tuple(id))
 end

 def call(id, some_request) do
 GenServer.call(via_tuple(id), some_request)
 end

 defp via_tuple(id) do
 {:via, Registry, {:my_registry, {__MODULE__, id}}}
 end

 def handle_call(some_request, _, state) do
 {:reply, some_request, state}
 end
end

Here you consolidate the shaping of the via tuple in the via_tuple/1 helper func-
tion. The registered name of the process will be {__MODULE__, id}, or in this case,
{EchoServer, id}.

Try it out. Start the iex session, copy and paste the module definition, and then start
:my_registry:

Registers the server using a via tuple

Discovers the server
using a via tuple

Registry-compliant
via tuple

232 chapter 9 Isolating error effects

iex(1)> defmodule EchoServer do ... end

iex(2)> Registry.start_link(name: :my_registry, keys: :unique)

Now you can start and interact with multiple echo servers without needing to keep
track of their pids:

iex(3)> EchoServer.start_link("server one")
iex(4)> EchoServer.start_link("server two")

iex(5)> EchoServer.call("server one", :some_request)
:some_request

iex(6)> EchoServer.call("server two", :another_request)
:another_request

Notice that the IDs here are strings, and also recall that the whole registered key is in
fact {EchoServer, some_id}, which proves that you’re using arbitrary complex terms
to register processes and discover them.

9.1.4 Registering database workers

Now that you’ve learned the basics of Registry, you can implement registration and
discovery of your database workers. First you need to create the Todo.ProcessRegistry
module. The code is presented in the following listing.

Listing 9.3 Todo process registry (pool_supervision/lib/todo/process_registry.ex)

defmodule Todo.ProcessRegistry do
 def start_link do
 Registry.start_link(keys: :unique, name: __MODULE__)
 end

 def via_tuple(key) do
 {:via, Registry, {__MODULE__, key}}
 end

 def child_spec(_) do
 Supervisor.child_spec(
 Registry,
 id: __MODULE__,
 start: {__MODULE__, :start_link, []}
)
 end
end

The interface functions are straightforward. The start_link function simply forwards
to the Registry module to start a unique registry. The via_tuple/1 function can be
used by other modules, such as Todo.DatabaseWorker, to create the appropriate via
tuple that registers a process with this registry.

Because the registry is a process, it should be supervised. Therefore you include
child_spec/1 in the module. Here you’re using Supervisor.child_spec/2 to adjust
the default specification from the Registry module. This invocation essentially states

Child specification

 233Supervision trees

that you’ll use whatever child specification is provided by Registry, with :id and
:start fields changed. By doing this, you don’t need to know about the internals of
the Registry implementation, such as whether the registry process is a worker or a
supervisor.

With this in place, you can immediately put the registry under the Todo.System
supervisor. The code is presented in the following listing.

Listing 9.4 Supervising registry (pool_supervision/lib/todo/system.ex)

defmodule Todo.System do
 def start_link do
 Supervisor.start_link(
 [
 Todo.ProcessRegistry,
 Todo.Database,
 Todo.Cache
],
 strategy: :one_for_one
)
 end
end

Keep in mind that processes are started synchronously, in the order you specify. Thus,
the order in the child specification list matters and isn’t chosen arbitrarily. A child
must always be specified after its dependencies. In this case, you must start the registry
first because database workers will depend on it.

With Todo.ProcessRegistry in place, you can start adapting the database workers.
The relevant changes are presented in the following listing.

Listing 9.5 Registering workers (pool_supervision/lib/todo/database_worker.ex)

defmodule Todo.DatabaseWorker do
 use GenServer

 def start_link({db_folder, worker_id}) do
 IO.puts("Starting database worker #{worker_id}")

 GenServer.start_link(
 __MODULE__,
 db_folder,
 name: via_tuple(worker_id)
)
 end

 def store(worker_id, key, data) do
 GenServer.cast(via_tuple(worker_id), {:store, key, data})
 end

 def get(worker_id, key) do
 GenServer.call(via_tuple(worker_id), {:get, key})
 end

Starts the process registry

Registration

Discovery

234 chapter 9 Isolating error effects

 defp via_tuple(worker_id) do
 Todo.ProcessRegistry.via_tuple({__MODULE__, worker_id})
 end

 ...
end

This code introduces the notion of a worker_id, which is an integer in the range 1..
pool_size. The start_link function now takes this parameter together with db_
folder. But notice that the function takes both parameters as a single {db_folder,
worker_id} tuple. The reason is again in conformance with the autogenerated
child_spec/1, which forwards to start_link/1. To manage a worker under a super-
visor, you can now use the {Todo.DatabaseWorker, {db_folder, worker_id}} child
specification.

When invoking GenServer.start_link, you provide the via tuple as the name option.
The exact shape of the tuple is wrapped in the internal via_tuple/1 function, which
takes the worker ID and returns the corresponding via tuple. This function just dele-
gates to Todo.ProcessRegistry, passing it the desired name in the form {__MODULE__,
worker_id}. Therefore, a worker is registered with the key {Todo.DatabaseWorker,
worker_id}. Such a name eliminates possible clashes with other types of processes that
might be registered with the same registry.

Similarly, you use the via_tuple/1 helper to discover the processes when invoking
GenServer.call and GenServer.cast. Notice that store/3 and get/2 functions now
receive a worker ID as the first argument. This means that their clients don’t need to
keep track of the pids anymore.

9.1.5 Supervising database workers

Now you can create a new supervisor that will manage the pool of workers. Why intro-
duce a separate supervisor? Theoretically, you could place workers under Todo.System,
and this would work fine. But remember from the previous chapter that if restarts hap-
pen too often, the supervisor gives up at some point and terminates all of its children. If
you keep too many children under the same supervisor, you might reach the maximum
restart intensity sooner, in which case all processes are restarted. In other words, prob-
lems in a single process could easily trip over to the majority of the system.

In this case, I made an arbitrary decision to place a distinct part of the system (the
database) under a separate supervisor. This approach may limit the impact of a failed
restart to database operations. If restarting one database worker fails, the supervisor
will terminate, which means the parent supervisor will try to restart the entire database
service without touching other processes in the system.

Either way, the consequence of these changes is that you don’t need the database
GenServer anymore. The purpose of this server was to start a pool of worker processes
and to manage the mapping of a worker ID to pid. With these new changes, the workers
are started by the supervisor; the mapping is already handled by the registry. Therefore,
the database GenServer is redundant.

 235Supervision trees

You can still keep the Todo.Database module. It will now implement a supervisor
of database worker processes and retain the same interface functions as before. As a
result, you don’t need to change the code of the client Todo.Server module at all, and
you can still keep Todo.Database in the list of Todo.System children.

Next you’ll convert the database into a supervisor. The code is presented in the next
listing.

Listing 9.6 Supervising workers (pool_supervision/lib/todo/database.ex)

defmodule Todo.Database do
 @pool_size 3
 @db_folder "./persist"

 def start_link do
 File.mkdir_p!(@db_folder)

 children = Enum.map(1..@pool_size, &worker_spec/1)
 Supervisor.start_link(children, strategy: :one_for_one)
 end

 defp worker_spec(worker_id) do
 default_worker_spec = {Todo.DatabaseWorker, {@db_folder, worker_id}}
 Supervisor.child_spec(default_worker_spec, id: worker_id)
 end

 ...
end

You start off by creating a list of three child specifications, each of them describing one
database worker. Then you pass this list to Supervisor.start_link/2.

The specification for each worker is created in worker_spec/1. You start off with the
default specification for the database worker, {Todo.DatabaseWorker, {@db_folder,
worker_id}}. Then you use Supervisor.child_spec/2 to set the unique ID for the
worker.

Without that, you’d end up with multiple children having the same ID. Recall from
chapter 8 that a default child_spec/1, generated via use GenServer, provides the name
of the module in the :id field. Consequently, if you use that default specification and try
to start two database workers, they’ll both get the same ID of Todo.DatabaseWorker. The
Supervisor module will complain about it and raise an error.

You also need to implement Todo.Database.child_spec/1. You just converted the
database into a supervisor, so the module doesn’t contain use GenServer anymore,
meaning child_spec/1 isn’t auto-generated. The code is given in the following listing.

Listing 9.7 Database operations (pool_supervision/lib/todo/database.ex)

defmodule Todo.Database do
 ...

 def child_spec(_) do
 %{

236 chapter 9 Isolating error effects

 id: __MODULE__,
 start: {__MODULE__, :start_link, []},
 type: :supervisor
 }
 end

 ...
end

The specification contains the field :type, which hasn’t been mentioned before.
This field can be used to indicate the type of the started process. The valid values are
:supervisor (if the child is a supervisor process) or :worker (for any other kind of
process). If you omit this field, the default value of :worker is used.

The child_spec/1 in listing 9.7 therefore specifies that Todo.Database is a supervi-
sor, and that it can be started by invoking Todo.Database.start_link/0.

This is a nice example of how child_spec/1 helps you keep implementation details
in the module that powers a process. You just turned the database into a supervisor, and
you changed the arity of its start_link function (it now takes zero arguments), but
nothing needs to be changed in the Todo.System module.

Next, you need to adapt the store/2 and get/1 functions.

Listing 9.8 Database operations (pool_supervision/lib/todo/database.ex)

defmodule Todo.Database do
 ...

 def store(key, data) do
 key
 |> choose_worker()
 |> Todo.DatabaseWorker.store(key, data)
 end

 def get(key) do
 key
 |> choose_worker()
 |> Todo.DatabaseWorker.get(key)
 end

 defp choose_worker(key) do
 :erlang.phash2(key, @pool_size) + 1
 end

 ...
end

The only difference from the previous version is in the choose_worker/1 function. Pre-
viously this function issued a call to the database server. Now it just selects the worker
ID in the range 1..@pool_size. This ID is then passed to Todo.DatabaseWorker func-
tions, which will perform a registry lookup and forward the request to the correspond-
ing database worker.

 237Supervision trees

At this point, you can test how the system works. Start everything:

iex(1)> Todo.System.start_link()
Starting database worker 1
Starting database worker 2
Starting database worker 3
Starting to-do cache.

Now verify that you can restart individual workers correctly. To do that, you need to
get the pid of a worker. Because you know the internals of the system, this can easily
be done by looking it up in the registry. Once you have the pid, you can terminate the
worker:

iex(2)> [{worker_pid, _}] =
 Registry.lookup(
 Todo.ProcessRegistry,
 {Todo.DatabaseWorker, 2}
)

iex(3)> Process.exit(worker_pid, :kill)
Starting database worker 2

The worker is restarted, as expected, and the rest of the system is undisturbed.
It’s worth repeating how the registry supports proper behavior in the system regard-

ing restarted processes. When a worker is restarted, the new process has a different pid.
But owing to the registry, the client code doesn’t care about that. You resolve the pid
at the latest possible moment, doing a registry lookup prior to issuing a request to the
database worker. Therefore, in most cases the lookup will succeed, and you’ll talk to the
proper process.

In some cases, the discovery of the database worker might fail, such as if the database
worker crashes after the client process found its pid, but before the request is sent. In
this case, the client process has a stale pid, so the request will fail. A similar problem can
occur if a client wants to find a database worker that has just crashed. Restarting and
registration run concurrently with the client, so the client might not find the worker pid
in the registry.

Both scenarios lead to the same result: the client process, in this case a to-do server,
will crash, and the error will be propagated to the end user. This is a consequence of the
highly concurrent nature of the system. A failure recovery is performed concurrently in
the supervisor process, so some part of the system might not be in a consistent state for
a brief period of time.

9.1.6 Organizing the supervision tree

Let’s stop for a moment and reflect on what you’ve done so far. The relationship
between processes is presented in figure 9.4.

This is an example of a simple supervision tree—a nested structure of supervisors and
workers. The tree describes how the system is organized into a hierarchy of services. In
this example, the system consists of three services: the process registry, the database,
and the cache.

238 Chapter 9 Isolating error effects

Each service can be further subdivided into subservices. For example, the database is
composed of multiple workers and the cache is composed of multiple to-do servers.
Even the registry is further subdivided into multiple processes, but that’s an implemen-
tation detail of the Registry module, so it’s not shown on the diagram.

Although supervisors are frequently mentioned in the context of fault-tolerance
and error recovery, defining the proper starting order is their most essential role. The
supervision tree describes how the system is started and how it’s taken down.

A more granular tree allows you to take down an arbitrary part of the system, without
touching anything else. In the current version, stopping the database service is as easy
as asking its parent (Todo.System) to stop the Todo.Database child, using the Super-
visor.terminate_child/2 function. This will take down the database process together
with its descendants.

If worker processes are small services in a system, you can think of supervisors as
being service managers—a built-in equivalent of systemd, Windows Service Manager,
and the like. They’re responsible for the lifecycle of services they directly manage. If any
critical service stops, its parent will try to restart it.

Looking at the supervision tree, you can reason about how errors are handled and
propagated throughout the system. If a database worker crashes, the database supervi-
sor will restart it, leaving the rest of the system alone. If that doesn’t help, you’ll exceed
the maximum restart frequency, and the database supervisor will terminate all database
workers and then itself.

This will be noticed by the system supervisor, which will then start a fresh database
pool in hopes of solving the problem. What does all this restarting get you? By restarting
an entire group of workers, you effectively terminate all pending database operations
and begin clean. If that doesn’t help, there’s nothing more you can do, so you propa-
gate the error up the tree (in this case, killing everything). This is how error recovery
works in supervision trees—you try to recover from an error locally, affecting as few

Figure 9.4 Supervision tree

 239Supervision trees

processes as possible. If that doesn’t work, you move up and try to restart the wider part
of the system.

otp-compliant processes

All processes that are started directly from a supervisor should be OTP-compliant. To
implement an OTP-compliant process, it’s not enough to spawn or link a process; you
also must handle some OTP-specific messages in a particular way. The details of what
exactly must be done are provided in the “sys and proc_lib” section of the Erlang docu-
mentation at http://erlang.org/doc/design_principles/spec_proc.html#id80464.

Luckily, you usually won’t need to implement an OTP-compliant process from scratch.
Instead, you can use various higher-level abstractions, such as GenServer, Supervisor,
and Registry. The processes started with these modules will be OTP-compliant. Elixir
also ships with Task and Agent modules that can be used to run OTP-compliant pro-
cesses. You’ll learn about tasks and agents in the next chapter.

Plain processes started by spawn_link aren’t OTP-compliant, so such processes
shouldn’t be started directly from a supervisor. You can freely start plain processes from
workers such as GenServer, but it’s generally better to use OTP-compliant processes
wherever possible. Doing so will improve the logging of your system because crashes
that take place in OTP-compliant processes are logged with more details.

shutting down processes

An important benefit of supervision trees is the ability to stop the entire system with-
out leaving dangling processes. When you terminate a supervisor, all of its immediate
children are also terminated. If all other processes are directly or indirectly linked to
those children, they will eventually be terminated as well. Consequently, you can stop
the entire system by terminating the top-level supervisor process.

Most often, a supervisor subtree is terminated in a controlled manner. A supervisor
process will instruct its children to terminate gracefully, thus giving them the chance
to do final cleanup. If some of those children are themselves supervisors, they will take
down their own trees in the same way. Graceful termination of a GenServer worker
involves invoking the terminate/2 callback, but only if the worker process is trapping
exits. Therefore, if you want to do some cleanup from a GenServer process, make sure
you set up an exit trap from an init/1 callback.

Because graceful termination involves the possible execution of cleanup code, it
may take longer than desired. The :shutdown option in a child specification lets you
control how long the supervisor will wait for the child to terminate gracefully. If the
child doesn’t terminate in this time, it will be forcefully terminated. You can choose
the shutdown time by specifying shutdown: shutdown_strategy in child_spec/1 and
passing an integer representing a time in milliseconds. Alternatively, you can pass the
atom :infinity, which instructs the supervisor to wait indefinitely for the child to ter-
minate. Finally, you can pass the atom :brutal_kill, telling the supervisor to immedi-
ately terminate the child in a forceful way. The forceful termination is done by sending
a :kill exit signal to the process, like you did with Process.exit(pid, :kill).

http://erlang.org/doc/design_principles/spec_proc.html#id80464

240 chapter 9 Isolating error effects

The default value of the :shutdown option is 5000 for a worker process or :infinity
for a supervisor process.

avoiding process restarting

By default, a supervisor restarts a terminated process regardless of the exit reason.
Even if the process terminates with the reason :normal, it will be restarted. Sometimes
you may want to alter this behavior.

For example, consider a process that handles an HTTP request or a TCP connection.
If such a process fails, the socket will be closed, and there’s no point in restarting the
process (the remote party will be disconnected anyway). You still want to have such pro-
cesses under a supervision tree because this makes it possible to terminate the entire
supervisor subtree without leaving dangling processes. In this situation, you can set up
a temporary worker by providing restart: :temporary in child_spec/1. A temporary
worker isn’t restarted on termination.

Another option is a transient worker, which is restarted only if it terminates abnor-
mally. Transient workers can be used for processes that may terminate normally, as
part of the standard system workflow. A typical example for this is a one-off job that
you want to execute when the system is started. You could start the corresponding pro-
cess (usually powered by the Task module) in the supervision tree, and configure it as
transient. A transient worker can be specified by providing restart: :transient in
child_spec/1.

restart strategies

So far, you’ve been using only the :one_for_one restart strategy. In this mode, a super-
visor handles a process termination by starting a new process in its place, leaving other
children alone. There are two additional restart strategies:

¡	:one_for_all—When a child crashes, the supervisor terminates all other chil-
dren and then starts all children.

¡	:rest_for_one—When a child crashes, the supervisor terminates all younger
siblings of the crashed child. Then the supervisor starts new child processes in
place of the terminated ones.

These strategies are useful if there’s tight coupling between siblings, where the ser-
vice of some child doesn’t make any sense without its siblings. One example is when a
process keeps the pid of some sibling in its own state. In this case, the process is tightly
coupled to a particular instance of the sibling. If the sibling terminates, so should the
dependent process.

By opting for :one_for_all or :rest_for_one, you can make that happen. The for-
mer is useful when there’s tight dependency in all directions (every sibling depends on
other siblings). The latter is appropriate if younger siblings depend on the older ones.

For example, in the to-do system, you could use :rest_for_one to take down data-
base workers if the registry process terminates. Without the registry, these processes
can’t serve any purpose, so taking them down would be a proper thing to do. In this

 241Starting processes dynamically

particular case, however, you don’t need to do that because Registry links each regis-
tered process to the registry process. As a result, a termination of the registry process
is properly propagated to the registered processes. Any such process that doesn’t trap
exits will be taken down automatically; processes that trap exits will receive a notifica-
tion message.

This concludes our initial look at fine-grained supervision. You’ve made a number of
changes that minimize the effects of errors, but there’s still a lot of room for improve-
ment. You’ll continue extending the system in the next section, where you’ll learn how
to start workers dynamically.

9.2 Starting processes dynamically
With the changes you made in the previous section, the impact of a database-worker
error is now confined to a single worker. It’s time to do the same thing for to-do serv-
ers. You’ll use roughly the same approach as you did with database workers: you’ll
run each to-do server under a supervisor and register the servers in the process
registry.

9.2.1 Registering to-do servers

You’ll start off by adding registration to to-do servers. The change is simple, as shown
in the following listing.

Listing 9.9 Registering to-do servers (dynamic_workers/lib/todo/server.ex)

defmodule Todo.Server do
 use GenServer, restart: :temporary

 def start_link(name) do
 IO.puts("Starting to-do server for #{name}")
 GenServer.start_link(Todo.Server, name, name: via_tuple(name))
 end

 defp via_tuple(name) do
 Todo.ProcessRegistry.via_tuple({__MODULE__, name})
 end

 ...
end

This is the same technique you used with database workers. You pass the via tuple as
the name option. The via tuple will state that the server should be registered with the
{__MODULE__, name} key to the process registry. Using this form of the key avoids pos-
sible collisions between to-do server keys and database worker keys.

The functions add_entry/2 and entries/2 are unchanged, and they still take the
pid as the first argument, so the usage remains the same. A client process first obtains
the pid of the to-do server by invoking Todo.Cache.server_process/1, and then it
invokes Todo.Server functions.

Registers the server

242 chapter 9 Isolating error effects

9.2.2 Dynamic supervision

Next, you need to supervise to-do servers. There’s a twist, though. Unlike database
workers, to-do servers are created dynamically when needed. Initially, no to-do server
is running; each is created on demand when you call Todo.Cache.server_process/1.
This effectively means you can’t specify supervisor children up front because you don’t
know how many children you’ll need.

For such cases, you need a dynamic supervisor that can start children on demand. In
Elixir, this feature is available via the DynamicSupervisor module.

DynamicSupervisor is similar to Supervisor, but where Supervisor is used to start
a predefined list of children, DynamicSupervisor is used to start children on demand.
When you start a dynamic supervisor, you don’t provide a list of child specifications,
so only the supervisor process is started. Then, whenever you want to, you can start a
supervised child using DynamicSupervisor.start_child/2.

Let’s see this in action. You’ll convert Todo.Cache into a dynamic supervisor, much like
what you did with the database. The relevant code is presented in the following listing.

Listing 9.10 To-do cache as a supervisor (dynamic_workers/lib/todo/cache.ex)

defmodule Todo.Cache do
 def start_link() do
 IO.puts("Starting to-do cache")

 DynamicSupervisor.start_link(
 name: __MODULE__,
 strategy: :one_for_one
)
 end

 ...
end

You start the supervisor using DynamicSupervisor.start_link/1. This will start the
supervisor process, but no children are specified at this point. Notice that when start-
ing the supervisor, you’re also passing the :name option. This will cause the supervisor
to be registered under a local name.

By making the supervisor locally registered, it’s easier for you to interact with the
supervisor and ask it to start a child. You can immediately use this by adding the start_
child/1 function, which starts the to-do server for the given to-do list:

defmodule Todo.Cache do
 ...

 defp start_child(todo_list_name) do
 DynamicSupervisor.start_child(
 __MODULE__,
 {Todo.Server, todo_list_name}
)
 end

 ...

Starts a dynamic supervisor

 243Starting processes dynamically

Here, you’re invoking DynamicSupervisor.start_child/2, passing it the name of your
supervisor and the child specification of the child you want to start. The specification
{Todo.Server, todo_list_name} will lead to the invocation of Todo.Server.start_
link(todo_list_name). The to-do server will be started as the child of the Todo.Cache
supervisor.

It’s worth noting that DynamicSupervisor.start_child/2 is a cross-process syn-
chronous call. A request is sent to the supervisor process, which then starts the child. If
multiple client processes simultaneously try to start a child under the same supervisor,
the requests will be serialized.

For more details on dynamic supervisors, refer to the official documentation at
https://hexdocs.pm/elixir/DynamicSupervisor.html.

One small thing left to do is the implementation of child_spec/1:

defmodule Todo.Cache do
 ...

 def child_spec(_arg) do
 %{
 id: __MODULE__,
 start: {__MODULE__, :start_link, []},
 type: :supervisor
 }
 end

 ...
end

At this point, the to-do cache is converted into a dynamic supervisor.

9.2.3 Finding to-do servers

The final thing left to do is to change the discovery Todo.Cache.server_process/1
function. This function takes a name and returns the pid of the to-do server, starting it
if it’s not running. The implementation is provided in the following listing.

Listing 9.11 Finding a to-do server (dynamic_workers/lib/todo/cache.ex)

defmodule Todo.Cache do
 ...

 def server_process(todo_list_name) do
 case start_child(todo_list_name) do
 {:ok, pid} -> pid
 {:error, {:already_started, pid}} -> pid
 end
 end

 defp start_child(todo_list_name) do
 DynamicSupervisor.start_child(
 __MODULE__,
 {Todo.Server, todo_list_name}
)
 end
end

A new server is started.

The server was already running.

https://hexdocs.pm/elixir/DynamicSupervisor.html

244 chapter 9 Isolating error effects

The function first invokes the local start_child/1 function, which you prepared
in the previous section, and which is a simple wrapper around DynamicSupervisor
.start_child/2.

This invocation can have two successful outcomes. In the most obvious case, the
function returns {:ok, pid} with the pid of the newly started to-do server.

The second outcome is more interesting. If the result is {:error, {:already_
started, pid}}, the to-do process failed to register because another process is already
registered with the same name—a to-do server for the list with the given name is already
running. For the to-do example, this outcome is also a success. You tried to start the
server, but it was already running. That’s fine. You have the pid of the server, and you
can interact with it.

The result {:error, {:already_started, pid}} is returned due to the inner work-
ings of GenServer registration. When a :name option is provided to GenServer.start_
link, the registration is performed in the started process before init/1 is invoked. This
registration can fail if some other process is already registered under the same key. In this
case, GenServer.start_link doesn’t resume to run the server loop. Instead, it returns
{:error, {:already_started, pid}} where the pid points to the process that’s registered
under the same key. This result is then returned by DynamicSupervisor.start_child.

It’s worth briefly discussing how server_process/1 behaves in a concurrent sce-
nario. Consider the case of two processes invoking this function at the same time. The
execution moves to DynamicSupervisor.start_child/2, so you might end up with two
simultaneous executions of start_child on the same supervisor. Recall that a child is
started in the supervisor process. Therefore, the invocations of start_child are serial-
ized, and server_process/1 doesn’t suffer from race conditions.

On the flip side, the way start_child is used here is not very efficient. Every time you
want to work with a to-do list, you issue a request to the supervisor, so the supervisor pro-
cess can become a bottleneck. Even if the to-do server is already running, the supervisor
will briefly start a new child, which will immediately stop. This can easily be improved,
but we’ll leave it for now because the current implementation is behaving properly.
We’ll revisit this issue in chapter 12 when we move to a distributed registration.

9.2.4 Using temporary restart strategy

There’s one thing left to do. You’ll configure the to-do server to be a :temporary child.
As a result, if a to-do server stops, say due to a crash, it won’t be restarted.

Why choose this approach? Servers are started on demand, so when a user tries to
interact with a to-do list, if the server process isn’t running, it will be started. If a to-do
list server crashes, it will be started on the next use, so there’s no need to restart it
automatically.

Opting for the :temporary strategy also means that the parent supervisor won’t be
restarted due to too many failures in its children. Even if there are frequent crashes in
one to-do server, say due to corrupt state, you’ll never take down the entire cache, which
should improve the availability of the entire system.

 245Starting processes dynamically

Changing the restart strategy is easily done by providing the :restart option to use
GenServer:

defmodule Todo.Server do
 use GenServer, restart: :temporary

 ...
end

The :temporary value will be included under the :restart key in the result of child_
spec/1, so the parent supervisor will treat the child as temporary. If the child termi-
nates, it won’t be restarted.

You might wonder why to-do servers are supervised if they’re not restarted. There
are two important benefits. First, this structure ensures that the failure of a single to-do
server doesn’t affect any other process in the system. In addition, as explained in sec-
tion 9.1.6, this allows you to properly take down the system, or some service in the sys-
tem, without leaving any dangling processes behind. To stop all to-do servers, you need
to stop the Todo.Cache supervisor. In other words, supervision isn’t just about restart-
ing crashed processes, but also about isolating individual crashes and enabling proper
termination.

9.2.5 Testing the system

At this point, the to-do servers are supervised and you can test the code. Notice that
you didn’t have to make any change in the Todo.System supervisor. The Todo.Cache
was already listed as a child, and you only changed its internals. Let’s see if this works.

Start the shell and the entire system:

iex(1)> Todo.System.start_link()
Starting database worker 1
Starting database worker 2
Starting database worker 3
Starting to-do cache

Now, you can get one to-do server:

iex(2)> bobs_list = Todo.Cache.server_process("Bob's list")
Starting to-do server for Bob's list
#PID<0.118.0>

Repeating the request doesn’t start another server:

iex(3)> bobs_list = Todo.Cache.server_process("Bob's list")
#PID<0.118.0>

In contrast, using a different to-do list name creates another process:

iex(4)> alices_list = Todo.Cache.server_process("Alice's list")
Starting to-do server for Alice's list
#PID<0.121.0>

Crash one to-do server:

iex(5)> Process.exit(bobs_list, :kill)

246 chapter 9 Isolating error effects

The subsequent call to Todo.Cache.server_process/1 will return a different pid:

iex(6)> Todo.Cache.server_process("Bob's list")
Starting to-do server for Bob's list
#PID<0.124.0>

Of course, Alice’s server remains undisturbed:

iex(7)> Todo.Cache.server_process("Alice's list")
#PID<0.121.0>

The supervision tree of the new code is presented in figure 9.5. The diagram depicts
how you supervise each process, limiting the effect of unexpected errors.

With this, you’re finished making your to-do system fault-tolerant. You’ve introduced
additional supervisor processes to the system, and you’ve also managed to simplify some
other parts (removing the to-do cache and database server processes). You’ll make
many more changes to this system, but for now let’s leave it and look at some important
practical considerations.

9.3 “Let it crash”
In general, when you develop complex systems, you should employ supervisors to do
your error handling and recovery. With properly designed supervision trees, you can
limit the impact of unexpected errors, and the system will hopefully recover. I can
personally testify that supervisors have helped me in occasional weird situations in pro-
duction, keeping the running system stable and saving me from unwanted phone calls
in the middle of the night. It’s also worth noting that OTP provides logging facilities,
so process crashes are logged and you can see that something went wrong. It’s even
possible to set up an event handler that will be triggered on every process crash, thus
allowing you to perform custom actions, such as sending an email or reporting to an
external system.

Figure 9.5 Supervising to-do servers

 247“Let it crash”

An important consequence of this style of error handling is that the worker code is
liberated from paranoid, defensive try/catch constructs. Usually these aren’t needed
because you use supervisors to handle error recovery. Joe Armstrong, one of the inven-
tors of Erlang, described such a style in his PhD thesis (“Making reliable distributed
systems in the presence of software errors,” http://erlang.org/download/armstrong_
thesis_2003.pdf) as intentional programming. Using this approach, the code states the pro-
grammer’s intention, rather than being cluttered with all sorts of defensive constructs.

This style is also known as let it crash. In addition to making the code shorter and
more focused, “let it crash” promotes clean-slate recovery. Remember, when a new pro-
cess starts, it starts with new state, which should be consistent. Furthermore, the mes-
sage queue (mailbox) of the old process is thrown away. This will cause some requests
in the system to fail. But the new process starts fresh, which gives it a better chance to
resume normal operation.

“Let it crash” can initially seem confusing, and people may mistake it for the “let
everything crash” approach. There are two important situations in which you should
explicitly handle an error:

¡	In critical processes that shouldn’t crash
¡	When you expect an error that can be dealt with in a meaningful way

Let’s look at each of these.

9.3.1 Processes that shouldn’t crash

Processes that shouldn’t crash are informally called a system’s error kernel—processes
that are critical for the entire system to work and whose state can’t be restored in a sim-
ple and consistent way. Such processes are the heart of your system, and you generally
don’t want them to crash, because without them the system can’t provide any service.

You should keep the code of such important processes as simple as possible. The
less logic that happens in the process, the smaller the chance of a process crash. If the
code of your error-kernel process is complex, consider splitting it into two processes:
one that holds state, and another that does the actual work. The former process then
becomes extremely simple and is unlikely to crash, whereas the worker process can be
removed from the error kernel (because it no longer maintains critical state).

In addition, you could consider including defensive try/catch statements in each
handle_* callback of a critical process, to prevent a process from crashing. Here’s a
simple sketch of the idea:

def handle_call(message, _, state) do
 try
 new_state =
 state
 |> transformation_1()
 |> transformation_2()
 ...

 {:reply, response, new_state}

http://erlang.org/download/armstrong_thesis_2003.pdf
http://erlang.org/download/armstrong_thesis_2003.pdf

248 chapter 9 Isolating error effects

 catch _, _ ->
 {:reply, {:error, reason}, state}
 end
end

This snippet illustrates how immutable data structures allow you to implement a
fault-tolerant server. While processing a request, you make a series of transformations
on the state. If anything bad happens, you use the initial state, effectively performing
a rollback of all changes. This preserves state consistency while keeping the process
constantly alive.

Keep in mind that this technique doesn’t completely guard against a process crash.
For example, you can always kill a process by invoking Process.exit(pid, :kill),
because a :kill exit reason can’t be intercepted even if you’re trapping exits. There-
fore, you should always have a recovery plan for the crash of a critical process. Set up a
proper supervision hierarchy to ensure the termination of all dependent processes in
the case of an error-kernel process crash.

9.3.2 Handling expected errors

The whole point of the let-it-crash approach is to leave recovery of unexpected errors
to supervisors. But if you can predict an error and you have a way to deal with it, there’s
no reason to let the process crash.

Here’s a simple example. Look at the :get request in the database worker:

def handle_call({:get, key}, _, db_folder) do
 data =
 case File.read(file_name(db_folder, key)) do
 {:ok, contents} -> :erlang.binary_to_term(contents)
 _ -> nil
 end

 {:reply, data, db_folder}
end

When handling a get request, you try to read from a file, covering the case when this
read fails. If it doesn’t succeed, you return nil, treating this case as if an entry for the
given key isn’t in the database.

But you can do better. Consider using an error only when the file isn’t available. This
error is identified with {:error, :enoent}, so the corresponding code would look like
this:

case File.read(...) do
 {:ok, contents} -> do_something_with(contents)
 {:error, :enoent} -> nil
end

Notice how you rely on pattern matching here. If neither of these two expected situa-
tions happens, a pattern match will fail, and so will your process. This is the idea of “let
it crash.” You deal with expected situations (the file is either available or doesn’t exist),

Catches all errors and uses the original state

Handles a file-read error

 249“Let it crash”

ignoring anything else that can go wrong (for example, you don’t have permissions).
Personally, I don’t even regard this as error handling. It’s a normal execution path—an
expected situation that can and should be dealt with. It’s certainly not something you
should let crash.

In contrast, when storing data, you use File.write!/2 (notice the exclamation
mark), which may throw an exception and crash the process. If you don’t succeed in
saving the data, your database worker has failed, and there’s no point in hiding this fact.
Better to fail fast, which will cause an error that will be logged and (hopefully) noticed
and fixed.

Of course, restarting may or may not help. For example, if a bug in the system allows
multiple workers to write to the same file, then restarting will fix this situation—you let
one process crash, and after restart, things will work again. Occasional requests will fail,
but the system as a whole will provide service. In a different case, perhaps you don’t have
proper file permissions, so restarting won’t help. The supervisor will give up and crash
itself, and the system will quickly come to a halt, which is probably a good thing. No
point in working if you can’t persist the data.

As a general rule, if you know what to do with an error, you should definitely handle
it. Otherwise, for anything unexpected, let the process crash and ensure proper error
isolation and recovery via supervisors.

9.3.3 Preserving the state

Keep in mind that state isn’t preserved when a process is restarted. Remember from
chapter 5 that a process’s state is its own private affair. When a process crashes, the
memory it occupied is reclaimed, and the new process starts with new state. This has
the important advantage of starting clean. Perhaps a process crashed due to inconsis-
tent state, and starting fresh may fix the error.

That said, in some cases you’ll want the process’s state to survive the crash. This isn’t
provided out of the box; you need to implement it yourself. The general approach is to
save the state outside of the process (for example, in another process or to a database)
and then restore the state when the successor process is started.

You already have this functionality in the to-do server. Recall that you have a simple
database system that persists to-do lists to disk. When the to-do server is started, the first
thing it tries to do is to restore the data from the database. This makes it possible for the
new process to inherit the state of the old one.

In general, be careful when preserving state. As you learned in chapter 4, a typical
change in a functional data abstraction goes through chained transformations:

new_state =
 state
 |> transformation_1(...)
 ...
 |> transformation_n(...)

250 chapter 9 Isolating error effects

As a rule, the state should be persisted after all transformations are completed. Only
then can you be certain that your state is consistent, so this is a good opportunity to
save it. For example, you do this in the to-do cache after you modify the internal data
abstraction:

def handle_cast({:add_entry, new_entry}, {name, todo_list}) do
 new_list = TodoList.add_entry(todo_list, new_entry)
 Todo.Database.store(name, new_list)
 {:noreply, {name, new_list}}
end

TIP Persistent state can have a negative effect on restarts. Let’s say an error is
caused by state that’s somehow invalid (perhaps due to a bug). If this state is
persisted, your process can never restart successfully, because the process will
restore the invalid state and then crash again (either on starting or when han-
dling a request). You should be careful when persisting state. If you can afford
to, it’s better to start clean and terminate all other dependent processes.

Summary

¡	Supervisors allow you to localize the impact of an error, keeping unrelated parts
of the system undisturbed.

¡	The registry helps you find processes without needing to track their pids. This is
very helpful if a process is restarted.

¡	Each process should reside somewhere in a supervision tree. This makes it possi-
ble to terminate the entire system (or an arbitrary sub-part of it) by terminating
the supervisor.

¡	DynamicSupervisor is used for on-demand starting.
¡	When a process crashes, its state is lost. You can deal with this by storing state out-

side the process, but more often than not, it’s best to start with clean state.
¡	In general, you should handle unexpected errors through a proper supervision

hierarchy. Explicit handling through a try construct should be used only when
you have a meaningful way to deal with an error.

Persists the state

251

10Beyond GenServer

This chapter covers
¡	Tasks

¡	Agents

¡	ETS tables

Chapters 8 and 9 introduced the distinction between worker and supervisor processes.
Workers are the processes that provide some part of your service, whereas supervisors
organize the worker processes into a tree. This allows you to start and stop processes
in the desired order, and also to restart critical processes if they fail.

As was mentioned in section 9.1.6, all processes that are started directly from a
supervisor should be OTP-compliant processes. Processes started with plain spawn
and spawn_link are not OTP-compliant, so you should refrain from running such
processes in production. Modules such as Supervisor, GenServer, and Registry
allow you to start OTP-compliant processes that can be placed into a supervision tree.

In this chapter you’ll learn about two additional modules that also allow you to run
OTP-compliant workers: Task and Agent. Tasks can be very useful when you need to
run one-off jobs, whereas agents can be used to manage state and provide concur-
rent access to it. Finally, we’ll discuss a related feature called ETS tables, which under
some conditions can serve as more efficient alternatives to GenServer and Agent.

252 chapter 10 Beyond GenServer

There’s a lot of new ground to cover, so let’s start by discussing tasks.

10.1 Tasks
The Task module can be used to concurrently run a job — a process that takes some
input, performs some computation, and then stops. In this sense, task-powered pro-
cesses have a different flow than server processes. Whereas a GenServer process acts
as a long-running server, a Task-powered process starts its work immediately, doesn’t
serve requests, and stops when the work is done.

The Task module can be used in two different ways, depending on whether the task
process needs to send a result back to the process that started it or not. The former case
is also called an awaited task, because the starter process waits for the task to send the
result back. Let’s discuss this option first.

10.1.1 Awaited tasks

An awaited task is a process that executes some function, sends the function result back
to the starter process, and then terminates. Let’s look at a basic example.

Suppose you want to start a concurrent, possibly long-running, job, and get its result
back. You can simulate a long-running job with the following function:

iex(1)> long_job =
 fn ->
 Process.sleep(2000)
 :some_result
 end

This lambda, when invoked, sleeps for two seconds and then returns :some_result.
To run this lambda concurrently, you can use Task.async/1:

iex(2)> task = Task.async(long_job)

The function Task.async/1 takes a zero-arity lambda, spawns a separate process, and
invokes the lambda in the spawned process. The return value of the lambda will be
sent as a message back to the starter process.

Because the computation runs in a separate process, Task.async/1 returns imme-
diately, even if the lambda itself takes a long time to finish. This means that the starter
process isn’t blocked and can perform some additional work concurrently with the task
process.

The return value of Task.async/1 is a struct that describes the running tasks. This
struct can be passed to Task.await/1 to await the result of the task:

iex(3)> Task.await(task)
:some_result

The function Task.await/1 waits for the response message from the task process.
This message will contain the result of the lambda. When the message arrives, Task
.await/1 returns the lambda’s result. If the message doesn’t arrive within five seconds,
Task.await/1 will raise an exception. You can provide a different timeout as the sec-
ond parameter to Task.await/2.

 253Tasks

Awaited tasks can be very useful when you need to run a couple of mutually indepen-
dent one-off computations and wait for all the results. To illustrate this, we’ll reuse the
example from section 5.2.2. In that example, you needed to execute multiple indepen-
dent queries and collect all the results. Because queries are mutually independent, you
can improve the total execution time by running each query in a separate process and
sending the result as a message to the starter process. The starter process then needs to
await all the results.

Back in chapter 5, you implemented this from scratch using spawn, send, and
receive. Here you’ll rely on Task.async/1 and Task.await/1.

First, define a helper lambda that simulates a long-running query execution:

iex(1)> run_query =
 fn query_def ->
 Process.sleep(2000)
 "#{query_def} result"
 end

Now you can start five queries, each in a separate task:

iex(2)> queries = 1..5

iex(3)> tasks =
 Enum.map(
 queries,
 &Task.async(fn -> run_query.("query #{&1}") end)
)

Here you create five queries, and then start each query execution in a separate task.
The result in the tasks variable is a list of five %Task{} structs, each describing one task
executing a query.

To wait for all the results, you pass each task from the tasks variable to the Task
.await/1 function:

iex(4)> Enum.map(tasks, &Task.await/1)
["query 1 result", "query 2 result", "query 3 result", "query 4 result",
 "query 5 result"]

Using the pipe operator, you can write this code in a slightly shorter way:

iex(5)> 1..5 |>
 Enum.map(&Task.async(fn -> run_query.("query #{&1}") end)) |>
 Enum.map(&Task.await/1)

["query 1 result", "query 2 result", "query 3 result", "query 4 result",
 "query 5 result"]

The fact that all the results are collected in two seconds proves that each task is run-
ning in a separate process.

It should be noted that Task.async/1 links the new task to the starter process. There-
fore, if any task process crashes, the starter process will crash too (unless it’s trapping
exits). The crash of the starter process will, in turn, cause all the other tasks started by

Returns after two seconds

254 chapter 10 Beyond GenServer

the same process to crash. In other words, starting multiple tasks with Task.async/1
has all-or-nothing semantics. The crash of a single task takes down all other tasks as well
as the starter process.

If you want to explicitly handle failures of individual tasks, you’ll need to trap exits
and handle corresponding exit messages in the starter process. There are some func-
tions available in the Task module that can help you here, most notably Task.async_
stream/3. You can refer to the official documentation at https://hexdocs.pm/elixir/
Task.html for more details.

In the meantime, let’s take a look at how you can work with tasks when the starter
process doesn’t need to wait for their result.

10.1.2 Non-awaited tasks

Sometimes you don’t want to send the result message back to the starter process. For
example, let’s say that when handling a web request you start a longer-running task
that communicates with the payment gateway. You could start the task and immedi-
ately respond to the user that the request has been accepted. Once the task is done,
the server would issue a notification about the outcome, perhaps via WebSocket or
an email. Or suppose a task needs to produce a side effect, such as a database update,
without notifying the starter process. In either scenario, the starter process doesn’t
need to be notified about the task’s outcome.

Furthermore, in some cases you won’t want to link the task process to the starter
process. This is typically done to make sure the task process lives on even if the starter
process terminates. In such situations, you can use Task.start_link/1.

The Task.start_link/1 function can be thought of as an OTP-compliant wrapper
around plain spawn_link. The function starts a separate process and links it to the caller.
Then the provided lambda is executed in the started process. Once the lambda finishes,
the process terminates with the reason :normal. Unlike Task.async/1, Task.start_
link/1 won’t send any message to the starter process. Here’s a basic example:

iex(1)> Task.start_link(fn ->
 Process.sleep(1000)
 IO.puts("Hello from task")
 end)
{:ok, #PID<0.89.0>}

Hello from task!

Let’s look at a more concrete example. Suppose you want to gather some metrics
about your system and report them at regular intervals. This is an example of a simple
non-responsive job. You don’t really need a GenServer here because you don’t need
to serve requests from other client processes. Instead, you want a process that sleeps
for a while and then gathers relevant metrics and reports them.

Let’s start implementing this in your to-do system. First you’ll implement a sequen-
tial loop that periodically gathers metrics and prints them to the screen. The code is
provided in the following listing.

Result of Task.start_link/1

Printed one second later

https://hexdocs.pm/elixir/Task.html
https://hexdocs.pm/elixir/Task.html

 255Tasks

Listing 10.1 Reporting system metrics (todo_metrics/lib/todo/metrics.ex)

defmodule Todo.Metrics do
 ...

 defp loop() do
 Process.sleep(:timer.seconds(10))
 IO.inspect(collect_metrics())
 loop()
 end

 defp collect_metrics() do
 [
 memory_usage: :erlang.memory(:total),
 process_count: :erlang.system_info(:process_count)
]
 end
end

In real life you’d likely want to collect much more data and send it to an external
service, but in this example we’ll keep things simple.

You want to run this loop as a part of your system. To do this, you need to start a task.

Listing 10.2 Metrics reporter as task (todo_metrics/lib/todo/metrics.ex)

defmodule Todo.Metrics do
 use Task

 def start_link(_arg), do: Task.start_link(&loop/0)

 ...
end

First you specify use Task, which will inject the child_spec/1 function into the Todo
.Metrics module. Just like with GenServer, the injected specification will invoke
start_link/1, so you need to define start_link/1 even if you don’t use the argu-
ment. The implementation of start_link/1 simply invokes Task.start_link/1 to
start a task process where the loop is running.

With these two simple lines of code, the Todo.Metrics module is ready to be injected
into the supervision tree, as shown in the following listing.

Listing 10.3 Starting a supervised metrics task (todo_metrics/lib/todo/system.ex)

defmodule Todo.System do
 def start_link do
 Supervisor.start_link(
 [
 Todo.Metrics,
 ...
],
 strategy: :one_for_one
)
 end
end

256 chapter 10 Beyond GenServer

This is the main purpose of Task.start_link/1 — it allows you to start an OTP-compliant
process that you can safely start as a child of some supervisor.

Try it out:

$ iex -S mix

iex(1)> Todo.System.start_link()

[memory_usage: 29662600, process_count: 63]
[memory_usage: 29662600, process_count: 63]

This was a simple way of implementing a periodic job in your system, without needing
to run multiple OS processes and use external schedulers such as cron.

In more complex scenarios, it’s worth separating scheduling from the job logic. The
idea is to use one process for periodic scheduling, and then start each job instance
in a separate one-off process. Such an approach improves fault-tolerance, because
the crash of a job process won’t disturb the scheduling process. You can try to imple-
ment this approach as an exercise, but when it comes to production, it’s better to
rely on battle-tested third-party libraries, such as Quantum (https://github.com/
quantum-elixir/quantum-core).

This concludes our brief tour of tasks. We haven’t covered all the nuances, so I advise
you to study the official module documentation in more detail at https://hexdocs.pm/
elixir/Task.html.

Next, we’ll take a look at agents.

10.2 Agents
The Agent module provides an abstraction that’s similar to GenServer. Agents require
a bit less ceremony and can therefore eliminate some boilerplate associated with
GenServers. On the flip side, Agent doesn’t support all the scenarios that GenServer
does. As a mechanical rule, if a GenServer-powered module implements only init/1,
handle_cast/2, and handle_call/3, it can be replaced with an Agent. But if you need
to use handle_info/2 or terminate/1, Agent won’t suffice, and you’ll need to use
GenServer.

Let’s explore this further, starting with the basic use of agents.

10.2.1 Basic use

To start an agent, you can use Agent.start_link/1:

iex(1)> {:ok, pid} = Agent.start_link(fn -> %{name: "Bob", age: 30} end)
{:ok, #PID<0.86.0>}

Agent.start_link/1 will start a new process and execute the provided lambda in
that process. Unlike a task, an agent process doesn’t terminate when the lambda is
finished. Instead, an agent uses the return value of the lambda as its state. Other

Printed after 10 seconds

Printed after 20 seconds

https://github.com/quantum-elixir/quantum-core
https://github.com/quantum-elixir/quantum-core
https://hexdocs.pm/elixir/Task.html
https://hexdocs.pm/elixir/Task.html

 257Agents

processes can access and manipulate an agent’s state using various functions from the
Agent module.

To fetch the agent’s state, or some part of it, you can use Agent.get/2:

iex(2)> Agent.get(pid, fn state -> state.name end)
"Bob"

Agent.get/2 takes the pid of the agent and a lambda. The lambda is invoked in the
agent’s process, and it receives the agent’s state as the argument. The return value of
the lambda is sent back to the caller process as a message. This message is received in
Agent.get/2, which then returns the result to its caller.

To modify the agent’s state you can use Agent.update/2:

iex(3)> Agent.update(pid, fn state -> %{state | age: state.age + 1} end)
:ok

This will cause the internal state of the agent process to change. You can verify the
change with Agent.get/2:

iex(2)> Agent.get(pid, fn state -> state end)
%{age: 31, name: "Bob"}

It’s worth mentioning that Agent.update/2 is synchronous. The function only returns
after the update has succeeded. An asynchronous update can be performed with
Agent.cast/2.

There are some other functions available in the Agent module, so you’re advised
to study the official documentation at https://hexdocs.pm/elixir/Agent.html. In the
meantime, let’s discuss how agents work in a concurrent setting.

10.2.2 Agents and concurrency

A single agent, being a process, can be used by multiple client processes. A change
made by one process can be observed by other processes in subsequent agent opera-
tions. Let’s demonstrate this.

You’ll start an agent that’s used as a counter:

iex(1)> {:ok, counter} = Agent.start_link(fn -> 0 end)

The initial state of the agent is 0. Now manipulate the agent’s state from another
process:

iex(2)> spawn(fn -> Agent.update(counter, fn count -> count + 1 end) end)

Finally, let’s check the agent’s state from the shell process:

iex(3)> Agent.get(counter, fn count -> count end)
1

This example demonstrates that the state is associated with the agent process. When
one client process changes the state of the agent, subsequent operations issued by
other processes will see the new state.

https://hexdocs.pm/elixir/Agent.html

258 chapter 10 Beyond GenServer

An agent process works exactly like a GenServer. If multiple clients try to work with
the same agent at the same time, the operations will be serialized and executed one by
one. In fact, the Agent module is implemented in plain Elixir on top of GenServer. To
demystify this, let’s sketch a naive implementation of an Agent-like module.

Here’s how you can implement the agent-like state initialization:

defmodule MyAgent do
 use GenServer

 def start_link(init_fun) do
 GenServer.start_link(__MODULE__, init_fun)
 end

 def init(init_fun) do
 {:ok, init_fun.()}
 end

 ...
end

Recall from chapter 5 that any term can be sent as a message. This includes anony-
mous functions, and the agent implementation takes advantage of that fact. Agent
interface functions take an anonymous function as an argument and pass the func-
tion to the server process, which in turn invokes the function and does something
with its result.

The same approach is used to provide get and update operations:

defmodule MyAgent do
 ...

 def get(pid, fun) do
 GenServer.call(pid, {:get, fun})
 end

 def update(pid, fun) do
 GenServer.call(pid, {:update, fun})
 end

 def handle_call({:get, fun}, _from, state) do
 response = fun.(state)
 {:reply, response, state}
 end

 def handle_call({:update, fun}, _from, state) do
 new_state = fun.(state)
 {:reply, :ok, new_state}
 end

 ...
end

The real implementation of the Agent module is more sophisticated and feature-rich,
but the basic idea is the same as in the preceding example. The Agent module is a

Agent is implemented with GenServer

Passes the lambda as the
argument to the server

Invokes the lambda and uses its result as the server’s state

 259Agents

plain GenServer that can be controlled by sending lambdas to the process. Therefore,
concurrent reasoning about agents is exactly the same as with GenServer.

10.2.3 Agent-powered to-do server

Because Agent can be used to manage concurrent state, it’s a perfect candidate to
power your to-do list server. Converting a GenServer into an agent is a fairly straight-
forward job. You need to replace a pair of interface functions and the corresponding
GenServer callback clause with a single function that uses the Agent API.

The full code of the Todo.Server as an agent is provided in the following listing.

Listing 10.4 Agent-powered to-do server (todo_agent/lib/todo/server.ex)

defmodule Todo.Server do
 use Agent, restart: :temporary

 def start_link(name) do
 Agent.start_link(
 fn ->
 IO.puts("Starting to-do server for #{name}")
 {name, Todo.Database.get(name) || Todo.List.new()}
 end,
 name: via_tuple(name)
)
 end

 def add_entry(todo_server, new_entry) do
 Agent.cast(todo_server, fn {name, todo_list} ->
 new_list = Todo.List.add_entry(todo_list, new_entry)
 Todo.Database.store(name, new_list)
 {name, new_list}
 end)
 end

 def entries(todo_server, date) do
 Agent.get(
 todo_server,
 fn {_name, todo_list} -> Todo.List.entries(todo_list, date) end
)
 end

 defp via_tuple(name) do
 Todo.ProcessRegistry.via_tuple({__MODULE__, name})
 end
end

It’s worth noting that the interface of the module remains unchanged, so there’s no
need to modify the code of any other module.

There are two things worth discussing in this code. The first is the expression use
Agent at the start of the module. Just like with GenServer and Task, this expression will
inject the default implementation of child_spec/1, allowing you to list the module in
a child specification list.

260 chapter 10 Beyond GenServer

In addition, the implementation of add_entry/2 uses Agent.cast/2. This function
is the asynchronous version of Agent.update/2, which means that the function returns
immediately and the update is performed concurrently. Agent.cast/2 is used here to
keep the same behavior as in the previous version, where GenServer.cast/2 was used.

Always wrap agent code in a module
One problem with agents is that they completely open the process’s state. Recall that with
GenServer, the state is private to the server and can only be manipulated via well-defined
messages. With an Agent, though, the state can be manipulated in an arbitrary way through
lambdas passed to Agent functions, which means the state is prone to accidental corrup-
tion. To guard against this problem, you’re advised to always wrap an agent in a dedicated
module, and to only manipulate the agent process through functions of that module. This is
precisely what you did when you converted Todo.Server into an agent.

The new version of Todo.Server requires only 29 lines of code, which is somewhat
shorter than the previous 41 lines of code in the GenServer. An agent definitely seems
like an appealing alternative to GenServer.

But agents can’t handle all the scenarios that GenServer can, so they’re not always
appropriate. In the next section we’ll take a look at those limitations.

10.2.4 Limitations of agents

The Agent module can’t be used if you need to handle plain messages, or if you want
to run some logic on termination. In such cases, you need to use GenServer. Let’s look
at an example.

In the current version of your system, you never expire items from the to-do cache.
This means that when a user manipulates a single to-do list, the list will remain in mem-
ory until the system is terminated. This is clearly not good, because as users work with
different to-do lists, you’ll consume more and more memory until the whole system
runs out of memory and blows up.

Let’s introduce a simple expiry of to-do servers. You’ll stop to-do servers that have
been idle for a while.

One way to implement this is to create a single cleaning process that would terminate
an idle to-do server. In this approach, each to-do server would need to notify the cleaning
process every time it’s been used, and that would cause the cleaning process to become a
possible bottleneck. You’d end up with one process that needs to handle a possibly high
load of messages from many other processes, and it might not be able to keep up.

A better approach is to make each to-do server decide on its own when it wants to ter-
minate. This will simplify the logic and also avoid any performance bottlenecks. This is
an example of something that can be done with GenServer, but can’t be implemented
with Agent.

Detecting an idle period in a GenServer can be done in a couple of ways, and here
you’ll use a simple approach. In values returned from GenServer callbacks, you can
include one extra element at the end of the return tuple. This element, if it’s an integer,
represents an idle time after which the timeout message is sent to the GenServer process.

 261Agents

For example, in init/1, instead of returning {:ok, initial_state}, you can return
{:ok, initial_state, 1000}. The value of 1000 states that if no call, cast, or plain
message arrives to the server process in 1,000 milliseconds, the handle_info/2 callback
will be invoked, and the first argument will have the value of :timeout.

The same thing holds true for other callbacks, such as handle_cast/2 and handle_
call/3, where you can return {:noreply, new_state, timeout} and {:reply,
response, new_state, timeout} respectively.

Therefore, to make the to-do server stop itself after a period of inactivity, you need to
do the following:

1 Convert the implementation of the to-do server back to GenServer.

2 Include the idle timeout integer in all result tuples of all callback functions.

3 Add handle_info/2 and stop the server if the :timeout message arrives.

Starting with the last GenServer-powered version of the Todo.Server, you're going to
include the idle timeout integer in the callback functions’ results. The code is pro-
vided in the following listing.

Listing 10.5 Specifying idle timeout (todo_cache_expiry/lib/todo/server.ex)

defmodule Todo.Server do
 ...

 @expiry_idle_timeout :timer.seconds(10)

 def init(name) do
 IO.puts("Starting to-do server for #{name}")
 {
 :ok,
 {name, Todo.Database.get(name) || Todo.List.new()},
 @expiry_idle_timeout
 }
 end

 def handle_cast({:add_entry, new_entry}, {name, todo_list}) do
 new_list = Todo.List.add_entry(todo_list, new_entry)
 Todo.Database.store(name, new_list)
 {:noreply, {name, new_list}, @expiry_idle_timeout}
 end

 def handle_call({:entries, date}, _, {name, todo_list}) do
 {
 :reply,
 Todo.List.entries(todo_list, date),
 {name, todo_list},
 @expiry_idle_timeout
 }
 end

 ...
end

Declares the idle timeout

Includes the idle timeout in response

262 chapter 10 Beyond GenServer

First you declare a module attribute, @expiry_idle_timeout, which will contain the
value of 10000 (obtained by invoking :timer.seconds(10)). This attribute serves as
a module-level constant, which you include as the last element of each return tuple of
every callback function. These changes ensure that handle_info(:timeout, state)
will be invoked when there’s no activity in the server process for 10 seconds.

Now you need to handle the :timeout message and stop the server, as shown next.

Listing 10.6 Stopping an idle to-do server (todo_cache_expiry/lib/todo/server.ex)

defmodule Todo.Server do
 ...

 def handle_info(:timeout, {name, todo_list}) do
 IO.puts("Stopping to-do server for #{name}")
 {:stop, :normal, {name, todo_list}}
 end
end

Now quickly verify if expiration works properly. Go to the todo_cache_expiry folder,
start the system, and start one to-do server:

$ iex -S mix

iex(1)> Todo.System.start_link()
iex(2)> pid = Todo.Cache.server_process("bobs_list")

Now wait for a while, and you should see the debug message:

Stopping to-do server for bobs_list

Finally, verify whether the process is still alive:

iex(3)> Process.alive?(pid)
false

This is an example of a scenario where agents just won’t suffice, and you need to use
GenServer. But until you wanted to implement expiry, agents were just as appropriate
a solution as GenServer. As long as you don’t need to handle plain messages or you
don’t need to run some termination code in terminate/1, you can use Agent.

Personally, I mostly don’t use Agent and start immediately with GenServer. Because
converting an Agent into a GenServer requires some work, I’d much rather start
with GenServer immediately. As an added bonus, this keeps the code more uniform,
because all the server processes are implemented using the same abstraction. If you
feel confused and aren’t sure whether to use Agent or GenServer, my advice is to
always go for GenServer because it covers more scenarios and it’s not much more com-
plicated than Agent.

This concludes the story about agents. Next, we’ll take a look at a feature called ETS
tables.

Stops the process

 263ETS tables

10.3 ETS tables
ETS (Erlang Term Storage) tables are a mechanism that allows you to share some state
between multiple processes in a more efficient way. ETS tables can be thought of as
an optimization tool. Whatever you can do with an ETS table can also be done with
GenServer or Agent, but the ETS version can often perform much better. But ETS
tables can handle only limited scenarios, so often they can’t replace GenServer.

Typical situations where ETS tables can be useful are shared key/value structures
and counters. Although these scenarios can also be implemented with GenServer, such
solutions might lead to performance and scalability issues.

Let’s look at a simple demonstration of those issues by implementing a concurrent
key/value store with GenServer. First, let’s look at the example use of such a store:

iex(1)> KeyValue.start_link()
{:ok, #PID<0.118.0>}

iex(2)> KeyValue.put(:some_key, :some_value)
:ok

iex(3)> KeyValue.get(:some_key)
:some_value

The full implementation of the KeyValue module is provided in the following listing.

Listing 10.7 GenServer-powered key/value store (key_value/lib/key_value.ex)

defmodule KeyValue do
 use GenServer

 def start_link do
 GenServer.start_link(__MODULE__, [], name: __MODULE__)
 end

 def put(key, value) do
 GenServer.cast(__MODULE__, {:put, key, value})
 end

 def get(key) do
 GenServer.call(__MODULE__, {:get, key})
 end

 def init(_) do
 {:ok, %{}}
 end

 def handle_cast({:put, key, value}, store) do
 {:noreply, Map.put(store, key, value)}
 end

 def handle_call({:get, key}, _, store) do
 {:reply, Map.get(store, key), store}
 end
end

264 chapter 10 Beyond GenServer

Nothing new happens here. The KeyValue module is a simple GenServer that holds a
map in its state. The put and get requests boil down to invoking Map.put/3 and Map
.get/2 in the server process.

Next you’ll do some quick and inconclusive performance measurements of this key/
value store. Go to the key_value folder and run the following command:

mix run -e "Bench.run(KeyValue)"

You haven’t seen the mix run command before. This command compiles the project,
starts a BEAM instance, and then executes the expression provided via the -e argument,
which means that Bench.run/1 is invoked. Once the function is done, the BEAM instance
stops.

The Bench module, available in key_value/lib/bench.ex conducts a simple load test.
It starts the KeyValue server and then performs operations on one million keys. For
each key, the bench program executes 10 put operations. Each put is followed by a get,
so in total the program performs 20,000,000 operations.

Once the test is done, the function prints the observed throughput:

mix run -e "Bench.run(KeyValue)"
621003 operations/sec

The throughput of about 620,000 operations/sec seems decent enough. But check
how the key/value server performs when it must serve multiple client processes. You
can verify this by providing the :concurrency option to Bench.run:

mix run -e "Bench.run(KeyValue, concurrency: 1000)"
325055 operations/sec

Somewhat unexpectedly, with 1,000 client processes you got worse throughput. What
happened? The main problem is that despite having so many processes, there’s just
one key/value server process, so all of the key/value operations are synchronized, as
shown in figure 10.1.

The key/value server therefore becomes a performance bottleneck and a scalability
killer. The system isn’t able to efficiently utilize all the hardware resources. Even though
there are 1,000 client processes running, all the key/value operations are serialized.

Moreover, keep in mind that even in moderately concurrent systems, you usually
run many more processes than there are CPU cores. In this case you have 1,000 clients,
which is many more than the number of CPU cores available. Consequently, not all pro-
cesses can run at the same time — some have to wait their turn.

As explained in chapter 5, the VM goes to great lengths to use CPUs as well as possi-
ble, but the fact remains that you have many processes competing for limited resources.
As a result, the key/value server doesn’t get a single CPU core all to itself. The process
must sometimes wait for its turn if BEAM schedulers run other processes in the system.
Because the key/value server has fewer CPU resources for doing its job, it will take more
time to compute the results.

Figure 10.1 Single process bottleneck

 265ETS tables

This isn’t to say that processes are bad. In general, you should strive to run indepen-
dent tasks concurrently to improve scalability and fault tolerance. Processes should
also be your first choice for maintaining state that changes over time. The problem
isn’t the many processes running in the system, but the single process on which many
other processes depend.

In this particular scenario, you can do much better with ETS tables, so let’s see what
they are and how you can work with them.

10.3.1 Basic operations

ETS table is a separate memory-data structure where you can store Erlang terms. This
makes it possible to share the system-wide state without introducing a dedicated server
process. The data is kept in an ETS table — a dynamic memory structure where you can
store tuples.

Compared to other data structures, ETS tables have some unusual characteristics:

¡	There’s no specific ETS data type. A table is identified by its ID (a reference type)
or a global name (an atom).

¡	ETS tables are mutable. A write to a table will affect subsequent read operations.
¡	Multiple processes can write to or read from a single ETS table. Writes and reads

are concurrent.
¡	Minimum isolation is ensured. Multiple processes can safely write to the same

row of the same table. The last write wins.
¡	An ETS table resides in a separate memory space. Any data coming in or out is

deep-copied.
¡	ETS doesn’t put pressure on the garbage collector. Overwritten or deleted data is

immediately released.

Nothing new happens here. The KeyValue module is a simple GenServer that holds a
map in its state. The put and get requests boil down to invoking Map.put/3 and Map
.get/2 in the server process.

Next you’ll do some quick and inconclusive performance measurements of this key/
value store. Go to the key_value folder and run the following command:

mix run -e "Bench.run(KeyValue)"

You haven’t seen the mix run command before. This command compiles the project,
starts a BEAM instance, and then executes the expression provided via the -e argument,
which means that Bench.run/1 is invoked. Once the function is done, the BEAM instance
stops.

The Bench module, available in key_value/lib/bench.ex conducts a simple load test.
It starts the KeyValue server and then performs operations on one million keys. For
each key, the bench program executes 10 put operations. Each put is followed by a get,
so in total the program performs 20,000,000 operations.

Once the test is done, the function prints the observed throughput:

mix run -e "Bench.run(KeyValue)"
621003 operations/sec

The throughput of about 620,000 operations/sec seems decent enough. But check
how the key/value server performs when it must serve multiple client processes. You
can verify this by providing the :concurrency option to Bench.run:

mix run -e "Bench.run(KeyValue, concurrency: 1000)"
325055 operations/sec

Somewhat unexpectedly, with 1,000 client processes you got worse throughput. What
happened? The main problem is that despite having so many processes, there’s just
one key/value server process, so all of the key/value operations are synchronized, as
shown in figure 10.1.

The key/value server therefore becomes a performance bottleneck and a scalability
killer. The system isn’t able to efficiently utilize all the hardware resources. Even though
there are 1,000 client processes running, all the key/value operations are serialized.

Moreover, keep in mind that even in moderately concurrent systems, you usually
run many more processes than there are CPU cores. In this case you have 1,000 clients,
which is many more than the number of CPU cores available. Consequently, not all pro-
cesses can run at the same time — some have to wait their turn.

As explained in chapter 5, the VM goes to great lengths to use CPUs as well as possi-
ble, but the fact remains that you have many processes competing for limited resources.
As a result, the key/value server doesn’t get a single CPU core all to itself. The process
must sometimes wait for its turn if BEAM schedulers run other processes in the system.
Because the key/value server has fewer CPU resources for doing its job, it will take more
time to compute the results.

Figure 10.1 Single process bottleneck

266 chapter 10 Beyond GenServer

¡	An ETS table is deeply connected to its owner process (by default, the process that
created the table). If the owner process terminates, the ETS table is reclaimed.

¡	Other than on owner-process termination, there’s no automatic garbage collec-
tion of an ETS table. Even if you don’t hold a reference to the table, it still occu-
pies memory.

These characteristics mean ETS tables somewhat resemble processes. In fact, it’s often
said that ETS tables have process semantics. You could implement ETS table with pro-
cesses, but such an implementation would be much less efficient. In BEAM, ETS tables
are powered by C code, which ensures better speed and efficiency.

The fifth point in the previous list is especially interesting. Because data is deep-copied
to and from an ETS table, there’s no classical mutability problem. Once you read data
from an ETS table, you have a snapshot that no one can change. Regardless of other pro-
cesses possibly modifying the contents of those rows in the ETS table, the data you read
remains unaffected.

Let’s look at some examples. All functions related to ETS tables are contained in
the Erlang :ets module (http://erlang.org/doc/man/ets.html). To create a table, you
can call :ets.new/2:

iex(1)> table = :ets.new(:my_table, [])
#Reference<0.970221231.4117102596.53103>

The first argument is a table name, which is important only if you want to register the
table (we’ll discuss this in a minute). In addition, you can pass various options, some
of which are discussed shortly. You should definitely spend some time researching the
official documentation about :ets.new/2 to see which options are possible.

The result of :ets.new/2 is a reference, a unique opaque term that represents the
ETS table in the running system.

Because the structure is a table, you can store multiple rows into it. Each row is an
arbitrarily sized tuple (with at least one element), and each tuple element can contain
any Erlang term, including a deep hierarchy of nested lists, tuples, maps, or anything
else you can store in a variable.

To store data, you can use :ets.insert/2:

iex(2)> :ets.insert(table, {:key_1, 1})
true

iex(3)> :ets.insert(table, {:key_2, 2})
true

iex(4)> :ets.insert(table, {:key_1, 3})
true

The first element of the tuple represents the key — something you can use for a fast
lookup into the table. By default, ETS tables are of the set type, which means you can’t
store multiple tuples with the same key. Consequently, your last write overwrites the
row from the first write.

Inserts the new row

Overwrites the existing row

http://erlang.org/doc/man/ets.html

 267ETS tables

To verify this, you can use :ets_lookup, which returns a list of rows for a given key:

iex(5)> :ets.lookup(table, :key_1)
[key_1: 3]

iex(6)> :ets.lookup(table, :key_2)
[key_2: 2]

You may wonder why the list is returned if you can have only one row per distinct key.
The reason is that ETS tables support other table types, some of which allow duplicate
rows. In particular, the following table types are possible:

¡	:set — The default. One row per distinct key is allowed.
¡	:ordered_set — Just like :set, but rows are in term order (comparison via the

< and > operators).
¡	:bag — Multiple rows with the same key are allowed, but two rows can’t be com-

pletely identical.
¡	:duplicate_bag — Just like :bag, but allows duplicate rows.

Another important option is the table’s access permissions. The following values are
possible:

¡	:protected — The default. The owner process can read from and write to the
table. All other processes can read from the table.

¡	:public — All processes can read from and write to the table.
¡	:private — Only the owner process can access the table.

To create a table of a different type, or to use a different access level, you can simply
include the desired option in the list passed to :ets.new/2. For example, to create a
public duplicate bag list, you can invoke this:

:ets.new(:some_table, [:public, :duplicate_bag])

Finally, it’s worth discussing the table name. This argument must be an atom, and by
default it serves no purpose (although, strangely enough, you must still provide it).
You can create multiple tables with the same name, and they’re still different tables.

But if you provide a :named_table option, the table becomes accessible via its name:

iex(1)> :ets.new(:my_table, [:named_table])
:my_table

iex(2)> :ets.insert(:my_table, {:key_1, 3})

iex(3)> :ets.lookup(:my_table, :key_2)
[]

In this sense, a table name resembles a locally registered process name. It’s a symbolic
name of a table, and it relieves you of having to pass around the ETS reference.

Trying to create a duplicate named table will result in an error:

iex(4)> :ets.new(:my_table, [:named_table])
** (ArgumentError) argument error
 (stdlib) :ets.new(:my_table, [:named_table])

Creates a named table

Manipulates the table using the name

268 chapter 10 Beyond GenServer

TIP ETS tables are a limited resource. You can create at most 1,400 tables per
BEAM instance. This number can be increased by setting the environment vari-
able ERL_MAX_ETS_TABLES while starting the system (for example, iex --erl
'-env ERL_MAX_ETS_TABLES 10000'). The reason for the limitation is that an
ETS table initially takes up a couple of kilobytes of memory. You should, in gen-
eral, avoid overusing ETS tables; having a large number of them in the system is
usually an indication of misuse.

10.3.2 ETS powered key/value store

Equipped with this new knowledge, you’re going to implement key/value store with
ETS tables. The idea is simple. You’ll still use a GenServer process. In init/1, this pro-
cess will create a named ETS table with public access. The put and get functions will
work directly with the table, without needing to issue a request to the server.

The relevant code is contained in the same project as the initial attempt. First you
need to start and initialize the table owner process, as shown in the next listing.

Listing 10.8 Creating the ETS table (key_value/lib/ets_key_value.ex)

defmodule EtsKeyValue do
 use GenServer

 def start_link do
 GenServer.start_link(__MODULE__, nil, name: __MODULE__)
 end

 def init(_) do
 :ets.new(
 __MODULE__,
 [:named_table, :public, write_concurrency: true]
)

 {:ok, nil}
 end

 ...
end

In start_link, you start a GenServer. Then, in the init/1 callback, the new ETS table
is created. The table is configured as named, so the client processes can access it by its
name (the name of the module). The access is set to public, which allows client pro-
cesses to write to the table. The table type isn’t provided, so it will default to set.

Notice the :write_concurrency option provided to :ets.new. This option allows
you to issue concurrent writes to the table, which is exactly what you want in this case.
There’s also a :read_concurrency option, which can improve read performance in
some cases. This option isn’t set here, because the Bench module performs a lot of inter-
leaved reads and writes, and in such cases :read_concurrency can lead to worse per-
formance. Instead of randomly setting these options, it’s always good to measure and
observe their effects.

Starts the table owner process

Creates the table

 269ETS tables

At this point, you can implement the operations:

defmodule EtsKeyValue do
 ...

 def put(key, value) do
 :ets.insert(__MODULE__, {key, value})
 end

 def get(key) do
 case :ets.lookup(__MODULE__, key) do
 [{^key, value}] -> value
 [] -> nil
 end
 end

 ...
end

The preceding code is a simple application of the presented :ets functions. To store
an entry, you invoke :ets.insert/2. To perform a lookup, you invoke :ets.lookup/2.
Because the ETS table is a set, the result list can contain at most one element — the
key/value pair for the given key. If there’s no row for the given key, the result is an
empty list.

The crucial thing to notice here is that get and put operations now don’t go through
the server process. This means that multiple clients can work with the key/value store
simultaneously, without blocking each other, as shown in figure 10.2.

As you can see, operations working on different keys can be executed in parallel.
Multiple operations working on the same key will be properly synchronized to prevent
possible race conditions. When you have a lot of keys, the chances for collisions are
small, so you can expect better scheduler use, and therefore better scalability.

Inserts a key/value pair

Performs an ETS lookup

Something is found.

Nothing is found.

Figure 10.2 Concurrency in an ETS-powered key/value store

270 chapter 10 Beyond GenServer

Now verify that the new key/value store works correctly:

iex(1)> EtsKeyValue.start_link()
{:ok, #PID<0.109.0>}

iex(2)> EtsKeyValue.put(:some_key, :some_value)
true

iex(3)> EtsKeyValue.get(:some_key)
:some_value

The key/value store seems to be working. Now let’s see how it performs. You’ll start
with a sequential bench:

mix run -e "Bench.run(EtsKeyValue)"
3576332 operations/sec

On my machine, I obtained a projected throughput of about 3.6 million requests per
second. Recalling that the pure GenServer version managed about 620,000 requests
per second, this is an almost 6x increase in throughput!

There are a couple of reasons for this improvement. First, ETS operations are han-
dled immediately in the client process. In contrast, a cross-process request involves put-
ting a message in the mailbox of the receiver and then waiting for the receiver to be
scheduled in and to handle the request. If the request is a synchronous call, the client
process also has to wait for the response message to arrive.

In addition, changes to ETS tables are destructive. If a value under some key is
changed, the old value is immediately released. Therefore, data managed in ETS tables
doesn’t put any pressure on a garbage collector. In contrast, transforming standard
immutable data generates garbage. In a GenServer-based key/value store, frequent
writes will generate a lot of garbage, and this means that the server process is occasion-
ally blocked while it’s being garbage-collected.

In this case, even in a plain sequential scenario, you get a significant improvement.
But how does ETS hold up against multiple clients? Let’s see:

mix run -e "Bench.run(EtsKeyValue, concurrency: 1000, num_updates: 100)"
16993927 operations/sec

Notice the num_updates: 100 option. Because the ETS-based implementation is much
faster, you’re passing this option to run a longer test. This test will perform 100 put
(and therefore also 100 get) operations on each key.

Using 1,000 client processes yields a 5x greater throughput. Compared to the plain
GenServer solution, the improvement is 52x (17,000,000 vs. 325,000 requests per sec-
ond). The single-process key/value server starts to slow down with an increase in the total
number of running processes in the system. In contrast, the ETS-based cache scales better.

The main reason for this scaling lies in the fact that cache operations are executed
in the client process, so you don’t need to perform GenServer-based serialization. The
atomic operations provided by the :ets module are properly synchronized and can
safely run simultaneously in multiple processes. Operations working on different keys
can run in parallel. Even the reads of the same key can work in parallel. Only writes will
block other operations on the same key.

 271ETS tables

On the flip side, the vocabulary of write operations is small. You can perform key/
value writes with :ets.insert/2, delete a row with :ets.delete/2, modify a row with
:ets.update_element/3, and atomically update an integer in a row with :ets.update_
counter/4. For more complex scenarios, you’ll likely need to channel writes through
a GenServer. Therefore, you can think of ETS tables as being an optimization tool.
They’re extremely efficient in simple scenarios, but not as powerful or flexible as server
processes.

If you’re unsure whether you should use a GenServer or an ETS table, it’s best to start
with a GenServer. This will be a simple solution, and in many cases the performance will
be sufficient. If you establish that a particular server is a bottleneck, you can see if an ETS
table would be a good fit. In many cases, moving to an ETS table will only require chang-
ing the implementation. For example, if you compare the KeyValue module to EtsKey-
Value, you’ll notice that they have the same public interface. That made it possible to
have a generic Bench module that can work with both.

You might wonder why GenServer is still used in the ETS-based key/value store.
The sole purpose of this process is to keep the table alive. Remember, an ETS table is
released from memory when the owner process terminates. Therefore, you need to
have a distinct, long-running process that creates and owns the table.

10.3.3 Other ETS operations

So far, we’ve covered only basic insertions and key-based lookups. These are argu-
ably the most important operations you’ll need, together with :ets.delete/2, which
deletes all rows associated with a given key.

Key-based operations are extremely fast, and you should keep this in mind when
structuring your tables. Your aim should be to maximize key-based operations, thus
making ETS-related code as fast as possible.

Occasionally you may need to perform non-key-based lookups or modifications,
retrieving a list of rows based on value criteria. There are a couple of ways you can do this.

The simplest but least efficient approach is to convert the table to a list using :ets.
tab2list/1. You can then iterate over the list and filter out your results, such as by
using functions from the Enum and Stream modules.

Another option is to use :ets.first/1 and :ets.next/2, which make it possible to tra-
verse the table iteratively. Keep in mind that this traversal isn’t isolated. If you want to make
sure no one modifies the table while you’re traversing it, you should serialize all writes and
traversals in the same process. Alternatively, you can call :ets.safe_fixtable/2, which
provides some weak guarantees about traversal. If you’re iterating a fixed table, you can
be certain there won’t be any errors, and each element will be visited only once. But an
iteration through the fixed table may or may not pick up rows that are inserted during the
iteration.

Traversals and :ets.tab2list/1 aren’t very performant. Given that data is always
copied from the ETS memory space to the process, you end up copying the entire table.
If you only need to fetch a couple of rows based on non-key criteria, this is overkill and
a waste of resources.

272 chapter 10 Beyond GenServer

A better alternative is to rely on match patterns — features that allow you to describe
the data you want to retrieve.

match patterns

Match patterns are a simple way to match individual rows. For example, let’s say you’re
managing a to-do list in an ETS table:

iex(1)> todo_list = :ets.new(:todo_list, [:bag])
iex(2)> :ets.insert(todo_list, {~D[2018-05-24], "Dentist"})
iex(3)> :ets.insert(todo_list, {~D[2018-05-24], "Shopping"})
iex(4)> :ets.insert(todo_list, {~D[2018-05-30], "Dentist"})

Here you use a bag ETS table because it allows you to store multiple rows with the same
key (date).

Most often, you’ll want to query a table by key, asking, “What appointments are on
the given date?”

iex(5)> :ets.lookup(todo_list, ~D[2018-05-24])
[{~D[2018-05-24], "Dentist"}, {~D[2018-05-24], "Shopping"}]

Occasionally you may be interested in obtaining all dates for an appointment type.
Here’s an example of how to do this using match patterns:

iex(6)> :ets.match_object(todo_list, {:_, "Dentist"})
[{~D[2018-05-24], "Dentist"}, {~D[2018-05-30], "Dentist"}]

The function :ets.match_object/2 accepts a match pattern — a tuple that describes
the shape of the row. The atom :_ indicates that you accept any value, so the pat-
tern {:_, "Dentist"} essentially matches all rows where the second element is
"Dentist".

Notice that this isn’t classical pattern matching. Instead, this tuple is passed to :ets.
match_object/2, which iterates through all rows and returns the matching ones.
Therefore, when you don’t care about a tuple element, you must pass an atom (:_)
instead of a typical match-all anonymous variable (_). It’s also worth mentioning the
:ets.match_delete/2 function, which can be used to delete multiple objects with a
single statement.

In addition to being a bit more elegant, match patterns have an important perfor-
mance benefit over simple traversal. Recall that data is always copied from the ETS table
to the selected process. If you used :ets.tab2list/1 or plain traversal, you’d have to
copy every single row into your own process. In contrast, :ets.match_object/2 per-
forms filtering in the ETS memory space, which is more efficient.

Going beyond match patterns, it’s possible to perform even richer queries, specify-
ing more complex filters and even choosing individual fields you want to return. This is
done by writing a full-blown match specification that consists of the following parts:

¡	Head — A match pattern describing the rows you want to select
¡	Guard — Additional filters
¡	Result — The shape of the returned data

 273ETS tables

Such specifications can be passed to the :ets.select/2 function, which produces the
corresponding result.

Match specifications can become complicated quickly, as you can see by looking at the
documentation for :ets.select/2 (http://erlang.org/doc/man/ets.html#select-2).
To make that task simpler, take a look at the third-party library called ex2ms (https://
github.com/ericmj/ex2ms).

other use cases for ets
Managing server-wide shared state is arguably the most common use case for ETS
tables. In addition, ETS tables can be used to allow processes to persist their data.
Remember from chapters 8 and 9 that processes lose their state on termination. If you
want to preserve state across process restarts, the simplest way is to use a public ETS
table as a means of providing in-memory state persistence. This should work reason-
ably quickly and allow you to recover from process crashes.

But be careful about taking this road. As mentioned in chapters 8 and 9, it’s generally
better to recover from a crash with clean state. You should also consider whether you
can restore state based on data from other processes. Persisting state in the ETS table
(or anywhere else, for that matter) should be used mostly for critical processes that are
part of your error kernel.

It’s also possible to use ETS tables as a faster alternative to immutable data structures,
such as maps. Because changes to ETS tables are destructive and data is immediately
released, there won’t be any garbage-collection penalty involved, so you can expect
more predictable latency, with fewer deviations.

There is a caveat, though. Remember that data is copied between an ETS table and
a client process. Consequently, if your row data is complex and large, ETS tables may
yield worse performance than pure, immutable data structures. Another important
downside of ETS tables is that unlike plain data, they can’t be sent over the network to
another BEAM instance. That means relying on ETS makes it harder to take advantage
of distribution facilities (described in chapter 12).

In general, you should avoid using ETS and instead favor immutable structures as
much as possible. Resort to ETS only in cases where you can obtain significant perfor-
mance gains.

beyond ets
Erlang ships with two facilities that are closely related to ETS and that provide a sim-
ple way of implementing an embedded database that runs in the BEAM OS process. I
won’t discuss these features in detail in this book, but they deserve a brief mention so
you can be aware that they exist and research them more deeply on your own.

The first feature, disk-based ETS (DETS, http://erlang.org/doc/man/dets.html) is
disk-based term storage. Just like ETS, DETS relies on the concept of tables, and each
table is managed in a single file. The interface of the corresponding :dets module is
somewhat similar to ETS, but more limited in features. DETS provides a simple way of
persisting data to disk. Basic isolation is supported — concurrent writes are allowed,
even when you’re storing to the same row.

http://erlang.org/doc/man/ets.html#select-2
https://github.com/ericmj/ex2ms
https://github.com/ericmj/ex2ms
http://erlang.org/doc/man/dets.html

274 chapter 10 Beyond GenServer

Erlang also ships with a database called Mnesia (http://erlang.org/doc/apps/mnesia/
users_guide.html), built on top of ETS and DETS, that has many interesting features:

¡	Mnesia is an embedded database — it runs in the same BEAM instance as the rest
of your Elixir/Erlang code.

¡	Data consists of Erlang terms.
¡	Tables can be in-memory (powered by ETS) or disk-based (powered by DETS).
¡	Some typical database features are provided, such as complex transactions, dirty

operations, and fast searches via secondary indices.
¡	Sharding and replication are supported.

These features make Mnesia a compelling option for storing data. You initialize the
database from your startup Elixir/Erlang code, and you’re good to go. This has the
huge benefit of allowing you to run the entire system in a single OS process.

On the downside, Mnesia is a somewhat esoteric database and isn’t used much out-
side the Elixir/Erlang community. This means there’s less community and tooling sup-
port compared to popular DBMS solutions. It also takes some trickery to make Mnesia
work on a larger scale. For example, one problem is that disk-based tables can’t exceed
4 GB (this is a limitation of the underlying DETS storage), which means you have to
fragment larger tables.

10.3.4 Exercise: process registry

Now is a good time to practice a bit. A textbook example of ETS in practice is a pro-
cess registry. The Registry module uses a smart combination of GenServer and ETS
to obtain maximum efficiency. In this exercise, you’ll implement a basic version of a
:unique registry.

Here’s an example of using such a registry:

iex(1)> SimpleRegistry.start_link()
{:ok, #PID<0.89.0>}

iex(2)> SimpleRegistry.register(:some_name)
:ok

iex(3)> SimpleRegistry.register(:some_name)
:error

iex(4)> SimpleRegistry.whereis(:some_name)
#PID<0.87.0>

iex(5)> SimpleRegistry.whereis(:unregistered_name)
nil

The interface of SimpleRegistry is very basic. The server process is started and regis-
tered locally. Then, any process can register itself by invoking SimpleRegistry.reg-
ister/1, passing an arbitrary term for the process key. The function returns :ok on
successful registration, or :error if the name is occupied. Lookup is done by invoking
SimpleRegistry.whereis/1, which returns the pid for the given key, or nil if no pro-
cess is registered under a given name.

Successful registration

Error on duplicate registration

Successful lookup

Failed lookup

http://erlang.org/doc/apps/mnesia/users_guide.html
http://erlang.org/doc/apps/mnesia/users_guide.html

 275ETS tables

In addition, the registry process can detect a termination of each registered process
and remove all the registration entries for that process.

SimpleRegistry has no other fancy features of the Registry module, such as sup-
port for via tuples, duplicate registrations, or multiple registry instances.

Here’s how you could build such a registry:

1 Implement the first version of SimpleRegistry as a GenServer. Both register
and whereis will be implemented as calls.

2 The state of the GenServer should be a map, where keys are registered names
and values are pids.

3 While handling the :register call, the registry process should link to the caller,
so it can detect the process termination and deregister it. Therefore, the registry
server also has to trap exits (by invoking Process.flag(trap_exit: true) in
init/1).

4 The registry process should handle {:EXIT, pid, reason} in its handle_info,
and remove all entries for the given process from the map.

Once you have this registry in place, you can consider moving some parts out of the
server process. In particular, by using ETS tables, it’s possible to perform both registra-
tion and lookup in client processes. Here’s how:

1 During init/1, the registry process should create a named ETS table with public
access. This table will map names to pids so the registry process doesn’t need to
maintain any state.

2 Registration can be done via :ets.insert_new/2 (http://erlang.org/doc/man/
ets.html#insert_new-2). This function will only insert the new entry if there’s no
entry under the given key. Therefore, you can safely call this function simulta-
neously from separate processes. The function returns a Boolean to indicate
whether the entry has been inserted or not.

3 Prior to invoking :ets.insert_new/2, the caller process should link to the server
process by invoking Process.link/1. You can wrap this linking in SimpleRegis-
try.register/1.

4 The implementation of whereis/1 boils down to invoking :ets.lookup/2 and
matching the result.

5 Finally, the server process still needs to handle :EXIT messages and remove the
entries for the terminated processes. This can easily be done with the help of
:ets.match_delete/2.

This exercise is a bit more involved than previous ones, but it’s a nice synthesis of some
techniques you’ve seen in the past few chapters. If you get stuck, take a look at the
solution in the process_registry folder. There, you’ll find both versions — the basic one
implemented completely in a GenServer, and a more performant one that uses an ETS
table to store registrations.

http://erlang.org/doc/man/ets.html#insert_new-2
http://erlang.org/doc/man/ets.html#insert_new-2

276 chapter 10 Beyond GenServer

Summary

¡	Tasks can be used to run OTP-compliant concurrent job processes.
¡	Agents can be used to simplify the implementation of processes that manage

some state but don’t need to handle any plain messages.
¡	ETS tables can be used to improve performance in some cases, such as shared

key/value memory structures.

277

11Working with components

This chapter covers
¡	Creating OTP applications

¡	Working with dependencies

¡	Building a web server

¡	Configuring applications

It’s time to turn our attention toward producing releasable systems that can be
deployed and started simply. To reach that goal, you need to learn about OTP appli-
cations, which let you organize your system into reusable components. Applications
are a standard way of building Elixir/Erlang production systems and libraries, and
relying on them brings various benefits, such as dependency management, simpli-
fied system starting, and the ability to build standalone, deployable releases.

In this chapter, you’ll learn how to create applications and work with dependen-
cies. In the process, you’ll turn your to-do system into a proper OTP application
and use some third-party libraries from the Erlang and Elixir ecosystem to expose
an HTTP interface for your existing system. There’s a lot of work ahead, so let’s get
started with OTP applications.

278 chapter 11 Working with components

11.1 OTP applications
An OTP application is a component that consists of multiple modules and that can
depend on other applications. This makes it possible to start the entire system and
dependent components with a single function call. As you’re about to see, it’s reason-
ably easy to turn a system into an application. Your current version of the to-do sys-
tem is already an OTP application, but there are some minor details you can improve.
You’ll see this in action shortly; first let’s look at what OTP applications consist of.

11.1.1 Creating applications with the mix tool

An application is an OTP-specific construct. The resource that defines an application is
called an application resource file — a plain-text file written in Erlang terms that describes
the application (don’t worry, you won’t need to write this directly; you’ll instead rely on
the mix tool to do this for you). This file contains several pieces of information:

¡	The application’s name and version, and a description
¡	A list of application modules
¡	A list of application dependencies (which must be applications themselves)
¡	An optional application-callback module

Once you have this file in place, you can use the Application module to start and stop
the application. The underlying code will dynamically load this resource file (which
obviously must be somewhere in the load path) and start your application. Starting the
application amounts to starting all dependencies and then the application itself, which
you do by calling the callback module’s start/2 function.

Relying on the mix tool simplifies and automates some of the work of generating
application resource files. For example, the application resource file must contain a list
of all application modules. When you use mix, this list is generated for you automati-
cally, based on the source code and the modules you define.

Some things, such as the application name, version, and description, must of course
be provided by you. The mix tool can then use this data and your source code to gener-
ate the corresponding resource file while compiling the project.

Let’s see this in practice. Go to a temporary folder, and run mix new hello_world
--sup. This command creates the hello_world folder with the minimum mix project
skeleton. The parameter --sup makes the mix tool generate the application callback
module and start the empty (childless) supervisor from it.

You can now change to the hello_world folder and start the system with the familiar iex
-S mix. On the surface, nothing spectacular happens. But mix automatically starts your
application, which you can verify by calling Application.started_applications/0:

iex(1)> Application.started_applications()
[
 {:hello_world, 'hello_world', '0.1.0'},
 {:logger, 'logger', '1.7.3'},
 {:mix, 'mix', '1.7.3'},

The application is running.

 279OTP applications

 {:iex, 'iex', '1.7.3'},
 {:elixir, 'elixir', '1.7.3'},
 {:compiler, 'ERTS CXC 138 10', '7.2.4'},
 {:stdlib, 'ERTS CXC 138 10', '3.5.1'},
 {:kernel, 'ERTS CXC 138 10', '6.0.1'}
]

As you can see, the hello_world application is running, together with some additional
applications such as Elixir’s mix, iex, and elixir, and Erlang’s stdlib and kernel.

You’ll see the benefits of this shortly, but first let’s look at how the application is
described. The main place where you specify an application is in the mix.exs file. Here
are the full contents of the generated file (comments are stripped out):

defmodule HelloWorld.MixProject do
 use Mix.Project

 def project do
 [
 app: :hello_world,
 version: "0.1.0",
 elixir: "~> 1.7-rc",
 start_permanent: Mix.env() == :prod,
 deps: deps()
]
 end

 def application do
 [
 extra_applications: [:logger],
 mod: {HelloWorld.Application, []}
]
 end

 defp deps do
 []
 end
end

The first interesting thing happens in the project/0 function, where you describe the
mix project. The app: :hello_world: gives a name to your application. Only an atom
is allowed as an application name, and you can use this atom to start and stop the appli-
cation at runtime.

The application is described in the application/0 function. Here you specify some
options that will eventually make it to the application resource file. In this case, the
description includes the list of other Erlang and Elixir applications you depend on,
together with the module that will be used to start the application. By default, Elixir’s
:logger application is listed (https://hexdocs.pm/logger/Logger.html).

Finally, the deps function returns the list of third-party dependencies — other librar-
ies you want to use in your project. By default, this list is empty. You’ll see how depen-
dencies are used a bit later in this chapter.

Describes the project

Describes the application

Lists dependencies

https://hexdocs.pm/logger/Logger.html

280 chapter 11 Working with components

OTP applications vs. mix projects
It’s worth noting that an OTP application is a runtime construct: a resource file that’s
dynamically interpreted by the corresponding OTP-specific code. When using mix, you
describe some aspects of this file, and other aspects are derived from your code. But the
application itself has meaning only at runtime.

In contrast, a mix project is a compile-time construct. In the mix.exs file, you describe
your application and implement modules. The compilation process then produces an
application resource file.

11.1.2 The application behavior

The critical part of the application description is mod: {HelloWorld, []}, specified by
application/0. This part describes the module that will be used to start the applica-
tion. When you start the application, the function HelloWorld.Application.start/2
is called with arguments provided in the second element of the tuple ([] in this case).

Obviously, you need to implement the HelloWorld.Application module. This is
done for you by the mix tool, so let’s see what it looks like:

defmodule HelloWorld.Application do
 use Application

 def start(_type, _args) do
 children = []
 opts = [strategy: :one_for_one, name: HelloWorld.Supervisor]
 Supervisor.start_link(children, opts)
 end
end

An application is an OTP behavior, powered by the Application module (https://hexdocs
.pm/elixir/Application.html), which is a wrapper around Erlang’s :application mod-
ule (http://erlang.org/doc/apps/kernel/application.html). To be able to work with
Application, you must implement your own callback module and define some callback
functions.

At minimum, your callback module must contain the start/2 function. The argu-
ments passed are the application start type (which you’ll usually ignore) and an arbi-
trary argument (a term specified in mix.exs under the mod key).

The task of the start/2 callback is to start the top-level process of your system, which
should usually be a supervisor. The function returns its result in the form {:ok, pid},
or {:error, reason} if something went wrong.

11.1.3 Starting the application

To start the application in the running BEAM instance, you can call Application.
start/1. This function first looks for the application resource file (which is gener-
ated by mix) and interprets its contents. Then it verifies whether all the applications

Uses the Application module

Callback function

Starts the top-level
supervisor

https://hexdocs.pm/elixir/Application.html
https://hexdocs.pm/elixir/Application.html
http://erlang.org/doc/apps/kernel/application.html

 281OTP applications

you’re depending on are started. Finally, the application is started by calling the call-
back module’s start/2 function. The Application.ensure_all_started/2 function
is also available, which recursively starts all dependencies that aren’t yet started.

Usually you won’t need to invoke these functions because mix automatically starts
the application implemented by the project. Calling iex -S mix automatically starts the
application together with its dependencies.

$ iex -S mix
iex(1)> Application.start(:hello_world)
{:error, {:already_started, :hello_world}}

It should be noted that you can’t start multiple instances of a single application. In this
sense, an application is like a singleton in a single BEAM instance. Trying to start an
already-running application will return an error.

You can stop the application using Application.stop/1:

iex(2)> Application.stop(:hello_world)
:ok
[info] Application hello_world exited: :stopped

Stopping the application terminates its top-level process. This plays nicely with the
supervision trees you saw in chapter 9. If all of your processes run in a supervision tree,
and if your top-level process is a supervisor, then by terminating the top-level process,
you also terminate all other processes created by your application, leaving no dangling
processes behind.

But Application.stop/1 stops only the specified application, leaving dependen-
cies (other applications) running. To stop the entire system in a controlled way, you
can invoke System.stop/0. This function will take down all the OTP applications, and
then the BEAM instance itself. Both Application.stop/1 and System.stop/0 work in
a polite way. Every process in the supervision tree can perform some final cleanup in its
terminate/1 callback, as explained in section 9.1.6.

11.1.4 Library applications

You don’t need to provide the mod: … option from the application/0 function in mix.
exs:

defmodule HelloWorld.Application do
 ...

 def application do
 []
 end

 ...
end

In this case, there’s no application callback module, which in turn means there’s no
top-level process to be started. Oddly enough, this is still a proper OTP application.
You can even start it and stop it.

282 chapter 11 Working with components

What’s the purpose of such applications? This technique is used for library applica-
tions: components that don’t need to create their own supervision tree. As the name indi-
cates, these are usually simpler libraries; a typical example is a JSON parser. For example,
Erlang’s own stdlib application (http://erlang.org/doc/apps/stdlib/index.html) is a
pure library application because it exposes various utility modules but doesn’t need to
manage its own supervision tree.

Library applications are useful because you can list them as runtime dependencies.
This plays an important role when you start to assemble the deployable release, as you’ll
see in chapter 13.

11.1.5 Creating a to-do application

Equipped with this knowledge, you can turn your to-do system into a proper applica-
tion. As mentioned earlier, it’s already an OTP application, albeit a library one that
doesn’t implement a callback module for the application behavior.

Given that the to-do system runs a set of its own processes under a supervision tree, it
makes sense to turn it into a full-blown application. This yields the immediate benefit of
simplified system startup. Once you properly implement the application callback mod-
ule, the system can be automatically started as soon as you run iex -S mix.

The first thing you need is the mix.exs file. Recall that you created your initial project
back in chapter 7 using the mix tool. Therefore, you already have this file in place and
only need to add some information. The complete code for mix.exs is provided in the
following listing.

Listing 11.1 Specifying application parameters (todo_app/mix.exs)

defmodule Todo.MixProject do
 use Mix.Project

 def project do
 [
 app: :todo,
 version: "0.1.0",
 elixir: "~> 1.7",
 start_permanent: Mix.env() == :prod,
 deps: deps()
]
 end

 def application do
 [
 extra_applications: [:logger],
 mod: {Todo.Application, []}
]
 end

 defp deps do
 []
 end
end

Specifying the application callback module

http://erlang.org/doc/apps/stdlib/index.html

 283OTP applications

The only change to mix.exs is in the application/0 function, where the callback mod-
ule is specified.

Next, you need to implement the module. This is now a simple task, as shown next.

Listing 11.2 Implementing the application module (todo_app/lib/todo/application.ex)

defmodule Todo.Application do
 use Application

 def start(_, _) do
 Todo.System.start_link()
 end
end

As already mentioned, starting the application is as simple as starting the top-level super-
visor. Given that you’ve already structured your system to reside under Todo.System, this
is all it takes to turn your system into a full-blown OTP application.

Let’s see it in action:

$ iex -S mix

Starting database worker 1
Starting database worker 2
Starting database worker 3
Starting to-do cache

By turning the system into an OTP application, you’ve made it possible to start the sys-
tem automatically.

It’s worth noting that you get the same benefit when running tests. When you invoke
mix test, all of the essential processes in your system are started. Back in chapter 7,
when you added a couple of tests, you had to manually start the cache process:

defmodule TodoCacheTest do
 use ExUnit.Case

 test "server_process" do
 {:ok, cache} = Todo.Cache.start()
 bob_pid = Todo.Cache.server_process(cache, "bob")

 assert bob_pid != Todo.Cache.server_process("alice")
 assert bob_pid == Todo.Cache.server_process("bob")
 end

 ...
end

The code has since seen a bunch of transformations, but in every incarnation there
was some version of the preceding pattern. Inside TodoCacheTest you needed to
manually start the supporting processes, such as cache. With the system turned into a
proper OTP application, this is not the case anymore, as you can see in the following
listing.

The system is started automatically.

Manually started cache

284 chapter 11 Working with components

Listing 11.3 Testing server_process (todo_app/test/todo_cache_test.exs)

defmodule TodoCacheTest do
 use ExUnit.Case

 test "server_process" do
 bob_pid = Todo.Cache.server_process("bob")

 assert bob_pid != Todo.Cache.server_process("alice")
 assert bob_pid == Todo.Cache.server_process("bob")
 end

 ...
end

11.1.6 The application folder structure

Let’s briefly discuss your compiled application’s folder structure. Owing to the mix
tool, you usually won’t need to worry about this, but it can sometimes be useful to
understand the folder structure of a compiled system.

mix environments

Before we look at the application structure, you should know a bit about mix environment.
This is a compile-time option that can be used to affect the shape of the compiled code.

Mix projects use three environments: dev, test, and prod. These three environments
produce slight variations in the compiled code. For example, in a version compiled for
development (the dev environment), you’ll likely want to run some extra debug logging,
whereas in a version compiled for production (the prod environment) you don’t want to
include such logging. In a version compiled for tests (the test environment), you might
want to use a different database to prevent the tests from polluting your development
database.

For most mix tasks, the default environment is dev, indicating that you’re dealing with
development. One exception to that rule is the test task. When you invoke mix test, the
mix environment is automatically set to test.

You can specify a mix environment by setting the MIX_ENV OS environment variable.
By convention, when building for production, you should use the prod environment.
To compile the code for prod, you can invoke MIX_ENV=prod mix compile. To compile
and start a prod version you can invoke MIX_ENV=prod iex -S mix.

the compiled code structure

Once you compile your project, compiled binaries reside in the _build/ProjectEnv
folder, where ProjectEnv is the mix environment that was in effect during compilation.

Because dev is the default environment, if you run mix compile or iex -S mix, you
get binaries in the _build/dev folder. The OTP itself recommends the following folder
convention:

lib/
 App1/
 ebin/

Works without manually
starting the cache

 285OTP applications

 priv/

 App2/
 ebin/
 priv/
 ...

Here, App1 and App2 represent application names (such as todo). The ebin folder con-
tains compiled binaries (.beam files and application resource files), whereas the priv
folder contains application-specific private files (images, compiled C binaries, and so
on). This isn’t a mandatory structure, but it’s a convention used in most Elixir/Erlang
projects, including Elixir and Erlang. Some tools may rely on this structure, so it’s best
to follow this convention.

Luckily, you don’t need to maintain this structure yourself because mix does so auto-
matically. The final folder structure of a compiled mix project has the following shape:

YourProjectFolder
 _build
 dev
 lib
 App1
 ebin
 priv

 App2
 ...

In addition to your application, the lib folder contains your compile-time depen-
dencies. Other runtime dependencies (such as Elixir/Erlang standard applications)
already reside someplace else on the disk and are accessible via the load path.

As mentioned, the application resource file resides in lib/YourApp/ebin and is named
YourApp.app. For the to-do system, the file resides in _build/dev/lib/todo/ebin/ (rel-
ative to the root project folder). When you attempt to start the application, the generic
application behavior looks for the resource file in the load paths (the same paths that are
searched for compiled binaries).

This concludes our discussion of application basics. Now that you have a grasp of
some theory, let’s look at how to work with dependencies.

Deployable systems
Applications play an important role in building a deployable system. You’ll learn about this
in chapter 13, where we’ll discuss OTP releases. In short, the general idea is to assemble
a minimal self-contained system that includes only required applications and the Erlang
runtime. For this to work, you must turn your code into an OTP application, because only
then can you specify dependencies to other applications. This is ultimately used to bundle
all required applications into a single deployable release.

Therefore, anything reusable in Elixir/Erlang should reside in an application. This holds even
for Elixir/Erlang: examples include the elixir application, which bundles the Elixir stan-
dard library, as well as iex and mix, which are implemented as separate applications. The
same thing happens in Erlang, which is divided into many applications (http://erlang.org/
doc), such as kernel and stdlib.

http://erlang.org/doc
http://erlang.org/doc

286 chapter 11 Working with components

11.2 Working with dependencies
Depending on third-party libraries is an important feature. As soon as you start
developing more complicated projects, you’ll probably want to use various librar-
ies, such as web frameworks, the JSON parser, and database drivers, to name a few
examples. Such libraries can simplify various side concerns, prevent you from going
down too many rabbit holes, and allow you to focus on the core challenges of your
system.

For example, in the current implementation of the to-do system, you maintain a
small pool of database workers, which allows you to have controlled parallelism of data-
base operations. You implemented this pool completely from scratch back in chapter
7. But as it happens, managing a pool of processes is a frequent pattern in Elixir and
Erlang, so a couple of third-party libraries offer a solution to this challenge. In this
chapter, you’ll replace your naive implementation of the process pool with a proven
and battle-tested process pool library.

11.2.1 Adding a dependency

In this section, you’ll add a dependency to the Poolboy library (https://github.com/
devinus/poolboy). This library provides a mature implementation of a process pool.

The dependency to an external library must be specified in the mix.exs file, as illus-
trated in the next listing.

Listing 11.4 Adding an external dependency (todo_poolboy/mix.exs)

defmodule Todo.MixProject do
 ...

 defp deps do
 [
 {:poolboy, "~> 1.5"}
]
 end
end

An external dependency is specified as a tuple. The first element is always an atom,
which should correspond to the application name of the dependency. The second ele-
ment in the tuple, "~> 1.5", is the version requirement. Here you indicate that you
want version 1.5 or any later 1.x version. For more information about the version syntax,
take a look at the official documentation at https://hexdocs.pm/elixir/Version.html#
module-requirements.

At this point, you’ve specified that your project depends on an external library, so
you need to fetch your dependencies. This can be done by running mix deps.get from
the command line. Dependencies are fetched from Elixir’s external package manager,
which is called Hex (http://hex.pm). Other possible dependency sources include the
GitHub repository, a Git repository, or a local folder. For more information, take a look
at the official documentation at https://hexdocs.pm/mix/Mix.Tasks.Deps.html.

Specifies an external dependency

https://github.com/devinus/poolboy
https://github.com/devinus/poolboy
https://hexdocs.pm/elixir/Version.html#module-requirements
https://hexdocs.pm/elixir/Version.html#module-requirements
http://hex.pm
https://hexdocs.pm/mix/Mix.Tasks.Deps.html

 287Working with dependencies

Running mix deps.get fetches all dependencies (recursively) and stores the ref-
erence to the exact version of each dependency in the mix.lock file, unless mix.lock
already exists on the disk, in which case this file is consulted to fetch the proper versions
of dependencies. This ensures reproducible builds across different machines, so make
sure you include mix.lock in the source control where your project resides.

Now that you’ve fetched all of your dependencies, you can build the entire system by
running mix compile, which will compile all the dependencies and the project. It’s worth
mentioning that Poolboy is an Erlang library, but mix will still know how to compile it.

11.2.2 Adapting the pool

With these preparations in place, you can start adapting the pool implementation.
Using Poolboy is fairly simple. There’s one process that manages a pool of workers.

When you start this process, you pass the desired pool size (the number of worker pro-
cesses), and the module that powers each worker. The pool manager is then started,
and it in turn starts the worker processes as its children.

Other processes can ask the pool manager to give them the pid of one worker. This
operation is called checkout. Once a process gets the worker’s pid, it can issue requests to
that worker. When the client process doesn’t need the worker process anymore, it noti-
fies the pool manager. This operation is called checkin.

This workflow is a bit more sophisticated than your own simple pool. By doing the
checkout/checkin dance, the pool manager can keep track of which worker processes
are being used. If some workers are available, a client can immediately get a worker.
Otherwise, if all the workers are checked out, the client will have to wait. As soon as the
first worker is returned to the pool, a waiting client will check out that worker.

Poolboy also relies on monitors and links to detect the termination of a client. If a
client checks out a worker and then crashes, the pool manager process will detect it and
return the worker to the pool. Likewise, if a worker process crashes, a new one will be
started.

Equipped with this knowledge, you’re going to adapt the pool. First, you need to start
the pool manager somewhere in your supervision tree. You could do that by invoking
:poolboy.start_link, but there’s a slightly more elegant way. You can invoke :poolboy
.child_spec/3, which describes how Poolboy is supposed to be started. Therefore, to
switch the database to the Poolboy-powered pool, you only need to change the implemen-
tation of Todo.Database.child_spec/1. The code is provided in the following listing.

Listing 11.5 Starting a Poolboy-powered pool (todo_poolboy/lib/todo/database.ex)

defmodule Todo.Database do
 @db_folder "./persist"

 def child_spec(_) do
 File.mkdir_p!(@db_folder)

 :poolboy.child_spec(
 __MODULE__,

The child ID

288 chapter 11 Working with components

 [
 name: {:local, __MODULE__},
 worker_module: Todo.DatabaseWorker,
 size: 3
],

 [@db_folder]
)
 end

 ...
end

The first argument passed to :poolboy.child_spec/3 is the ID of the child. This infor-
mation is needed by the parent supervisor. Here, you use the module name (Todo
.Database) as the ID.

The second argument is the pool options. The :name option states that the pool
manager process should be locally registered, so you can interact with it without need-
ing to know its pid. The :worker_module option specifies the module that will power
each worker process, whereas :size specifies the pool size.

The final argument to :poolboy.child_spec/3 is a list of arguments passed to the
start_link of each worker when they’re being started.

These particular arguments state that you want three worker processes, with each
worker powered by the Todo.DatabaseWorker module. The pool manager will start
each worker by invoking Todo.DatabaseWorker.start_link(@db_folder).

It’s worth noting that with this change, you don’t need Todo.Database.start_link
anymore because the new specification states that the database should be started by
invoking :poolboy.start_link.

Next you need to adapt the store and get functions of Todo.Database. Previously
these functions selected a worker ID, and then forwarded this ID to the corresponding
function in the Todo.DatabaseWorker module. Now these functions need to check out
the worker from the pool, make a request to the worker, and return the worker to the
pool. All of this can be easily done with the function :poolboy.transaction/2. The
code is provided in the following listing.

Listing 11.6 Adapted operation functions (todo_poolboy/lib/todo/database.ex)

defmodule Todo.Database do
 ...

 def store(key, data) do
 :poolboy.transaction(
 __MODULE__,
 fn worker_pid ->
 Todo.DatabaseWorker.store(worker_pid, key, data)
 end
)
 end

Pool options

Worker arguments

Asks the pool for a single worker

Performs an operation
on the worker

 289Working with dependencies

 def get(key) do
 :poolboy.transaction(
 __MODULE__,
 fn worker_pid ->
 Todo.DatabaseWorker.get(worker_pid, key)
 end
)
 end
end

Here you invoke :poolboy.transaction/2, passing the registered name of the pool
manager. This will issue a checkout request to fetch a single worker. Once a worker
is available, the provided lambda is invoked. When the lambda is finished, :poolboy
.transaction/2 will return the worker to the pool.

In the provided lambda, you get the pid of the checked-out worker and issue a Todo
.DatabaseWorker request. This means that you need to slightly change the implemen-
tation of Todo.DatabaseWorker. Previously the functions from this module accepted a
worker ID and then did a registry lookup to find the worker process. In this version, the
discovery of the pid is performed by the pool, so you don’t need to register the workers
anymore or perform any lookup to discover the process. The new implementation is
provided in the following listing.

Listing 11.7 Adapted worker interface functions (todo_poolboy/lib/todo/database.ex)

defmodule Todo.DatabaseWorker do
 use GenServer

 def start_link(db_folder) do
 GenServer.start_link(__MODULE__, db_folder)
 end

 def store(pid, key, data) do
 GenServer.cast(pid, {:store, key, data})
 end

 def get(pid, key) do
 GenServer.call(pid, {:get, key})
 end

 ...
end

That’s all it took to change the pool implementation. The code in the client modules,
Todo.System, and Todo.Server, as well as the testing code remains exactly the same. This
is thanks to the fact that you hid the implementation details behind the interface functions.

11.2.3 Visualizing the system

Once you have a full-blown OTP application, you can visualize it with the help of a tool
called observer, which is part of the standard Erlang/OTP distribution.

 [
 name: {:local, __MODULE__},
 worker_module: Todo.DatabaseWorker,
 size: 3
],

 [@db_folder]
)
 end

 ...
end

The first argument passed to :poolboy.child_spec/3 is the ID of the child. This infor-
mation is needed by the parent supervisor. Here, you use the module name (Todo
.Database) as the ID.

The second argument is the pool options. The :name option states that the pool
manager process should be locally registered, so you can interact with it without need-
ing to know its pid. The :worker_module option specifies the module that will power
each worker process, whereas :size specifies the pool size.

The final argument to :poolboy.child_spec/3 is a list of arguments passed to the
start_link of each worker when they’re being started.

These particular arguments state that you want three worker processes, with each
worker powered by the Todo.DatabaseWorker module. The pool manager will start
each worker by invoking Todo.DatabaseWorker.start_link(@db_folder).

It’s worth noting that with this change, you don’t need Todo.Database.start_link
anymore because the new specification states that the database should be started by
invoking :poolboy.start_link.

Next you need to adapt the store and get functions of Todo.Database. Previously
these functions selected a worker ID, and then forwarded this ID to the corresponding
function in the Todo.DatabaseWorker module. Now these functions need to check out
the worker from the pool, make a request to the worker, and return the worker to the
pool. All of this can be easily done with the function :poolboy.transaction/2. The
code is provided in the following listing.

Listing 11.6 Adapted operation functions (todo_poolboy/lib/todo/database.ex)

defmodule Todo.Database do
 ...

 def store(key, data) do
 :poolboy.transaction(
 __MODULE__,
 fn worker_pid ->
 Todo.DatabaseWorker.store(worker_pid, key, data)
 end
)
 end

Pool options

Worker arguments

Asks the pool for a single worker

Performs an operation
on the worker

290 chapter 11 Working with components

Let’s see this in action. First, start the system, and then create two to-do servers:

$ iex -S mix

iex(1)> Todo.Cache.server_process("Alice")
iex(2)> Todo.Cache.server_process("Bob")

Now you can start the observer tool:

iex(3)> :observer.start()

A GUI window should appear, which presents some basic information about the sys-
tem. If you click on the Applications tab, you can see the supervision tree of your appli-
cation, as illustrated in figure 11.1.

The two top processes, with pids <0.148.0> and <0.149.0> are the processes used by
OTP to manage the application. The third process, with the pid <0.150.0>, is the top-
level Todo.System supervisor. Then you can see the three children: Todo.Cache, Todo
.Database, and Todo.ProcessRegistry.

Under the cache, you can see two children, which are to-do servers that you just
started from the shell. You can easily verify this by double-clicking on the process box
and clicking the State button in the new window. In the last row, you’ll see the process
state, which will contain the name of the to-do list.

The observer tool can be useful for visualizing the behavior of the running system.
For example, in the Processes tab you can see a list of all processes running in the sys-
tem, and easily figure out which processes are very busy or use a lot of memory. This tab
is frequently used to find bottlenecks in the system. You can even use the observer to
visualize the system running in production. This will be explained in chapter 13.

Figure 11.1 Observing the application

 291Building a web server

11.3 Building a web server
The time has finally come to introduce an HTTP interface into your to-do system. You’ll
implement a rudimentary server, wrapping only entries and add_entry requests.

Our focus won’t be so much on the details and finesse of web servers. Instead, my aim
is to demonstrate how you can work with OTP applications and to show you how every-
thing connects in a simplistic simulation of a real-world system.

11.3.1 Choosing dependencies

You could, of course, implement the entire server from scratch, but that would be too
much work. Instead you’ll reach for a couple of existing libraries to make your life
easier. Note that it’s not the purpose of this section to provide detailed descriptions of
those libraries; they’re just a simple means to an end (a basic working HTTP server).
You’re encouraged to research those libraries in more detail on your own.

Various web server frameworks and libraries are available for both Elixir and Erlang.
If you plan on doing any serious production development, you should definitely take a
look at the Phoenix Framework (http://phoenixframework.org/). Phoenix is versatile
and highly modular, so it’s a great choice for powering all kinds of HTTP servers. At first
glance, Phoenix might seem a bit daunting, so we’ll keep things simple here and reach
for two lower-level HTTP libraries.

The first one is an Erlang library called Cowboy (https://github.com/extend/cowboy);
it’s a fairly lightweight and efficient HTTP server library that’s popular for HTTP servers
in Erlang and Elixir ecosystems.

But you won’t use Cowboy directly. Instead, you’ll interface with it via the Plug library
(https://github.com/elixir-lang/plug) — a project maintained by the Elixir core team.
Plug is somewhat similar to Ruby’s Rack or Clojure’s Ring. The aim of Plug is to provide
a unified API that abstracts away the web library. Moreover, Plug introduces the concept
of stackable plugs — middleware modules or functions that can be injected into the
request-handling pipe and that intervene in various phases of request processing.

You’re going to introduce these dependencies to the mix.exs file. The relevant
changes are shown in the following listing.

Listing 11.8 External dependencies for the web server (todo_web/mix.exs)

defmodule Todo.Mixfile do
 ...

 defp deps do
 [
 {:poolboy, "~> 1.5"},
 {:cowboy, "~> 1.1"},
 {:plug, "~> 1.4"},
]
 end
end

New dependencies

http://phoenixframework.org/
https://github.com/extend/cowboy
https://github.com/elixir-lang/plug

292 chapter 11 Working with components

11.3.2 Starting the server

With the dependencies configured, you can now run mix deps.get and start imple-
menting the HTTP interface. As mentioned, your primary interface for working with
Cowboy is Plug. Plug is a reasonably complex library, and I won’t provide an in-depth
treatment here. Our focus is on getting a basic version running and understanding
how all the pieces work together.

To start a server powered by Plug and Cowboy, you can reach for Plug.Adapters
.Cowboy.child_spec/1. This function returns a child specification describing how to
start the processes responsible for the HTTP server part of the system. As usual, it’s best
to wrap this in a dedicated module. The code is provided in the following listing.

Listing 11.9 HTTP server specification (todo_web/lib/todo/web.ex)

defmodule Todo.Web do
 ...

 def child_spec(_arg) do
 Plug.Adapters.Cowboy.child_spec(
 scheme: :http,
 options: [port: 5454],
 plug: __MODULE__
)
 end

 ...
end

The argument passed to Plug.Adapters.Cowboy.child_spec/1 provides the server
options. Here you specify that you want to serve HTTP traffic on port 5454. The final
option, :plug, indicates that some function from this module will be invoked to han-
dle the request.

When you include Todo.Web in a supervisor, a bunch of new processes will be started.
There will be at least one process that listens on a given port and accepts requests. Then,
each distinct TCP connection will be handled in a separate process, and your callbacks
(which you have to implement) will be invoked in those request-specific processes. But
you don’t need to care about any of these details. Owing to child_spec/1, the Plug
library keeps these internals to itself.

With child_spec/1 in place, you can inject the HTTP server into the supervision
tree. This is best done in the Todo.System supervisor.

Listing 11.10 Starting the HTTP server (todo_web/lib/todo/system.ex)

defmodule Todo.System do
 def start_link do
 Supervisor.start_link(
 [
 Todo.ProcessRegistry,

 293Building a web server

 Todo.Database,
 Todo.Cache,
 Todo.Web
],
 strategy: :one_for_one
)
 end
end

Thanks to wrapping and proper naming, the Todo.System module clearly describes
what the system is made of: a process registry, a database, a cache, and a web server.

NOTE Remember that applications are singletons — you can start only one
instance of a distinct application in a running BEAM instance. But this doesn’t
mean you can run only one HTTP server in your system. The Plug and Cowboy
applications can be considered factories of HTTP servers. When you start these
applications, no HTTP server is started yet. You use child_spec/1 to inject an
HTTP server somewhere in your supervision tree. You can, of course, run mul-
tiple HTTP servers in your system. For example, you could add another HTTP
server for administration purposes.

11.3.3 Handling requests

Now you can start handling some requests. Let’s introduce support for add_entry.
This will be a POST request, but to keep the implementation simple, you’ll transfer all
parameters via URL. The example request looks like this:

http://localhost:5454/add_entry?list=bob&date=2018-12-19&title=Dentist

Begin by setting up a route for this request. The skeleton is provided next.

Listing 11.11 Setting up a route for add_entry (todo_web/lib/todo/web.ex)

defmodule Todo.Web do
 use Plug.Router

 plug :match
 plug :dispatch

 ...

 post "/add_entry" do
 ...
 end

 ...
end

There are some strange constructs here, which are part of how Plug is used. I’ll provide
a simple explanation, but you don’t need to understand all this because it isn’t the aim
of this exercise.

The new child

Includes boilerplate

Sets up plugs

Defines a handler

294 chapter 11 Working with components

Calling use Plug.Router adds some functions to your module. This is similar to how
you used the Elixir behavior helper (by calling use GenServer). For the most part, the
functions imported will be used internally by Plug.

Expressions such as plug :match and plug :dispatch deserve special mention.
These calls will perform some additional compile-time work that will allow you to match
different HTTP requests. These expressions are examples of Elixir macro invocations,
and they’ll be resolved at compilation time. As a result, you’ll get some additional func-
tions in your module (which are again used only by Plug).

Finally, you call a post macro to define request-handling code. The post macro
works similarly to the test macro you saw in chapter 7. Under the hood, this macro will
generate a function that’s used by all the other generated boilerplate you got by calling
the plug macro and use Plug.Router. The generated function will look roughly like
the following:

defp do_match("POST", ["add_entry"]) do
 fn(conn) ->
 ...
 end
end

The generated do_match function is invoked by some other generated code that exists
in your module courtesy of the use Plug.Router and plug :match expressions.

If you issue multiple calls to the post macro, you’ll have multiple clauses for this do_
match function, each clause corresponding to the single route you’re handling. You’ll
end up with something like this:

defp do_match("POST", ["add_entry"]), do: ...
defp do_match("POST", ["delete_entry"]), do: ...
...
defp do_match(_, _), do: ...

Ultimately, the code you provide to post "/add_entry" is invoked when an HTTP
POST request with an /add_entry path arrives at your server.

Let’s now look at the implementation of the request handler.

Listing 11.12 Implementing the add_entry request (todo_web/lib/todo/web.ex)

defmodule Todo.Web do
 ...

 post "/add_entry" do
 conn = Plug.Conn.fetch_query_params(conn)
 list_name = Map.fetch!(conn.params, "list")
 title = Map.fetch!(conn.params, "title")
 date = Date.from_iso8601!((Map.fetch!(conn.params, "date"))

 list_name
 |> Todo.Cache.server_process()
 |> Todo.Server.add_entry(%{title: title, date: date})

Code passed to the post macro

Handles all other requests

Decodes input
parameters

Performs the operation

 295Building a web server

 conn
 |> Plug.Conn.put_resp_content_type("text/plain")
 |> Plug.Conn.send_resp(200, "OK")
 end

 ...
end

Notice that in the request handler you use the conn variable, which doesn’t exist any-
where. This variable is brought to you by the post macro, which generates this variable
and binds it to the proper value.

As the name implies, the conn variable holds your connection. This is an instance
of a Plug.Conn structure that holds a TCP socket together with information about the
state of the request you’re processing. From your handler code, you must return the
modified connection, which will hold response information, such as its status and body.

The implementation of the request handler consists of three parts. You first decode
the input parameters. Then you invoke the code that performs some action in your sys-
tem, in this case adding the new entry. Finally, you respond to the client.

To decode input parameters, you need to invoke Plug.Conn.fetch_params/1. This
function returns a new version of the connection structure with the params field con-
taining request parameters (in the form of a map). This is essentially a caching tech-
nique. Plug caches the result of fetch_params in the connection struct, so repeated
calls to fetch_params won’t result in excessive parsing.

Once you have the parameters ready, you can add the entry. Finally, you set the
response content type, status, and body.

The same approach is used to handle the entries request. The code is provided in
the following listing.

Listing 11.13 Implementing the entries request (todo_web/lib/todo/web.ex)

defmodule Todo.Web do
 ...

 get "/entries" do
 conn = Plug.Conn.fetch_query_params(conn)
 list_name = Map.fetch!(conn.params, "list")
 date = Date.from_iso8601!((Map.fetch!(conn.params, "date"))

 entries =
 list_name
 |> Todo.Cache.server_process()
 |> Todo.Server.entries(date)

 formatted_entries =
 entries
 |> Enum.map(&"#{&1.date} #{&1.title}")
 |> Enum.join("\n")

 conn
 |> Plug.Conn.put_resp_content_type("text/plain")

Returns the response

296 chapter 11 Working with components

 |> Plug.Conn.send_resp(200, formatted_entries)
 end

 ...
end

This code follows the same approach as in add_entry. Because entries is a GET
request, you use the get macro instead of post.

In this implementation, you decode the parameters and then fetch the desired
entries. You then produce the textual representation sent to the client and return the
response.

NOTE In the Elixir community, this style of handling HTTP requests is occa-
sionally called “Phoenix is not your Application.” This phrase, coined by Lance
Halvorsen, indicates an approach where you treat the HTTP server as merely
an interface to the core of the system. Notice how in both requests, you convert
the input into domain-specific types, and then invoke HTTP-agnostic code to
perform the operation. The core code in your request handlers doesn’t know
or care that it’s running in the context of an HTTP request. Such an approach
leads to a nice separation of concerns, improves testability, and makes it easier
to add additional interfaces to the system.

At this point, you can start the system with iex -S mix and issue requests. For example,
this is what you get using a command-line curl tool:

$ curl -d "" \
 "http://localhost:5454/add_entry?list=bob&date=2018-12-19&title=Dentist"
OK

$ curl "http://localhost:5454/entries?list=bob&date=2018-12-19"
2018-12-19 Dentist

This proves that your system is working, but let’s see how everything combines.

11.3.4 Reasoning about the system

First, let’s look at how the HTTP server works. The simplified idea is illustrated in fig-
ure 11.2.

The most important thing to notice is that each connection is managed in a distinct
process. In practice, this means different requests are handled in different processes.
There’s no special magic here — this is how the underlying Cowboy web server is imple-
mented. It uses one process to listen on a port, and then it spawns a separate process for
each incoming request.

This architecture has all sorts of benefits due to the way BEAM treats processes.
Because processes are concurrent, CPU resources are maximally used and the system
is scalable. Because processes are lightweight, you can easily manage a large number of
simultaneous connections. Moreover, thanks to the BEAM scheduler being preemp-
tive, you can be certain that occasional long-running, CPU-intensive requests won’t par-
alyze the entire system. Finally, due to process isolation, a crash in a single request won’t
affect the rest of the system.

Figure 11.2 Requests are handled in separate processes

 297Building a web server

Processes also make it easy to reason about the system. For example, you can be certain
that independent requests won’t block each other, whereas multiple requests on the
same to-do list are synchronized, as illustrated in figure 11.3.

This is due to the way the to-do cache works. Whenever you want to manipulate Bob’s
list, you first ask the to-do cache to return the pid of the process in charge. All requests
for Bob’s list go through that same process and are therefore handled one by one.

Figure 11.3 Independent simultaneous requests are handled concurrently, whereas requests on the
same to-do list are synchronized.

 |> Plug.Conn.send_resp(200, formatted_entries)
 end

 ...
end

This code follows the same approach as in add_entry. Because entries is a GET
request, you use the get macro instead of post.

In this implementation, you decode the parameters and then fetch the desired
entries. You then produce the textual representation sent to the client and return the
response.

NOTE In the Elixir community, this style of handling HTTP requests is occa-
sionally called “Phoenix is not your Application.” This phrase, coined by Lance
Halvorsen, indicates an approach where you treat the HTTP server as merely
an interface to the core of the system. Notice how in both requests, you convert
the input into domain-specific types, and then invoke HTTP-agnostic code to
perform the operation. The core code in your request handlers doesn’t know
or care that it’s running in the context of an HTTP request. Such an approach
leads to a nice separation of concerns, improves testability, and makes it easier
to add additional interfaces to the system.

At this point, you can start the system with iex -S mix and issue requests. For example,
this is what you get using a command-line curl tool:

$ curl -d "" \
 "http://localhost:5454/add_entry?list=bob&date=2018-12-19&title=Dentist"
OK

$ curl "http://localhost:5454/entries?list=bob&date=2018-12-19"
2018-12-19 Dentist

This proves that your system is working, but let’s see how everything combines.

11.3.4 Reasoning about the system

First, let’s look at how the HTTP server works. The simplified idea is illustrated in fig-
ure 11.2.

The most important thing to notice is that each connection is managed in a distinct
process. In practice, this means different requests are handled in different processes.
There’s no special magic here — this is how the underlying Cowboy web server is imple-
mented. It uses one process to listen on a port, and then it spawns a separate process for
each incoming request.

This architecture has all sorts of benefits due to the way BEAM treats processes.
Because processes are concurrent, CPU resources are maximally used and the system
is scalable. Because processes are lightweight, you can easily manage a large number of
simultaneous connections. Moreover, thanks to the BEAM scheduler being preemp-
tive, you can be certain that occasional long-running, CPU-intensive requests won’t par-
alyze the entire system. Finally, due to process isolation, a crash in a single request won’t
affect the rest of the system.

Figure 11.2 Requests are handled in separate processes

298 chapter 11 Working with components

performance

After so much development, it’s worth measuring the performance of the system. I
quickly tested the system using a tool called wrk (https://github.com/wg/wrk). A brief
30-second load test on my machine gives a throughput of about 25,000 requests per
second, with an average latency of 0.90 ms, and a 99 percentile latency of 5 ms. While
the test was running, all the CPU cores were completely busy, which proves that there
are no bottlenecks in the system. The system is highly concurrent and able to use all of
the cores at its disposal.

The observed results are quite decent, especially given that we made some quick
and easy decisions in the implementation. Here are a couple of possible issues in the
implementation:

¡	On every list modification, you store the entire list.
¡	Date-based lookups in the to-do list abstraction iterate through the entire list.
¡	Every to-do server lookup goes through a to-do cache dynamic supervisor.

There’s definitely some room for improvement here, but it’s comforting to know that
the system performs well out of the box, even though you we didn’t do any particular
fine-tuning.

calls vs. casts

Let’s discuss some effects that calls and casts may have on your system. To refresh
your memory, casts are fire-and-forget requests. A caller sends a message to the server
and then immediately moves on to do something else. In contrast, a call is a blocking
request, where a caller waits for the server to respond.

Remember that you’ve opted to use casts for all operations except where you need
to return a response. This was a somewhat arbitrary decision, made mostly for didactic
purposes. In reality, casts have a drawback: you don’t know what happened with your
request. This, in turn, means you may be giving false responses to end users, as illus-
trated in figure 11.4.

Because you use a cast to add a to-do entry in your system, you have no way of know-
ing what happened with your request. When you’re telling the end user that you suc-
ceeded, this is a guess rather than a truthful statement.

Figure 11.4 Using casts reduces the certainty of your responses.

https://github.com/wg/wrk

 299Building a web server

Obviously, the simple way to resolve this is to use calls, which are synchronous, mean-
ing the client must wait until the response arrives, as illustrated in figure 11.5.

This approach is more consistent: you return success only when you’re certain that
the entry has been stored. But the downside is that the entire system now depends on
the throughput of database workers, and as you may recall, you’re running only three
workers, and you’re using a pretty inefficient database.

This can be resolved by introducing an intermediate process. The idea is to provide
an immediate response stating that the request has been queued. Then you do your
best to process the request, and you send a subsequent notification about the request’s
status. See figure 11.6.

Figure 11.5 Using calls promotes consistency but reduces the responsiveness of the system.

Figure 11.6 Queuing the request and sending a notification about the status

300 chapter 11 Working with components

This scheme is definitely more elaborate and involved, so it’s not appropriate for sim-
pler cases where using plain calls is enough. But in cases when the load is very high and
end-to-end operations can take longer, introducing an intermediate process may be ben-
eficial. This process can increase the responsiveness of the system while retaining consis-
tency. Moreover, this process can serve as a proactive agent in dealing with congestion and
increased load. If the system becomes overloaded and the queue starts piling up, you can
refuse to take more requests into the queue process until you regain some breathing space.

As always, no single approach works for all cases. Using calls can be a reasonable first
attempt because it promotes consistency. Later you can easily switch to casts or intro-
duce an intermediate process, depending on the specific situation.

If you need to perform more complex load management, you can introduce an inter-
mediate process. Instead of rolling your own solution, you can consider using the Gen-
Stage library (https://github.com/elixir-lang/gen_stage), which allows you to build
various pipelines of producers and consumers.

At this point, you’re finished implementing a basic HTTP server. Next we’ll talk
about application configuration.

11.4 Configuring applications
An OTP application can be configured using a feature called an application environ-
ment — a key/value, in-memory store where both keys and values are Elixir terms. You
can provide application environment values through config script files — Elixir scripts
that reside in the config folder. Config scripts are evaluated before the project is com-
piled and started, and their sole purpose is to provide values for application environ-
ments. The mix tool makes sure that the configuration is loaded into the application
environment before the application is started. Finally, from the application code, you
can retrieve an environment value using functions from the Application module.

11.4.1 Application environment

Let’s look at a simple example. The todo HTTP server currently listens on a hard-
coded port, 5454. In this example, you’ll configure the HTTP port via an application
environment.

The most typical way of setting an application environment is to use the config/con-
fig.exs file. You can specify various environment settings in that file, and these settings
will be loaded before the OTP application is started.

The code in the following listing configures the HTTP port.

Listing 11.14 Configuring the HTTP port (todo_env/config/config.exs)

use Mix.Config

config :todo, http_port: 5454

Brings in compile-time helpers

Adds an application’s environment value

https://github.com/elixir-lang/gen_stage

 301Configuring applications

The config.exs file is a script that’s evaluated by the mix tool when compiling the
project and starting the application. Here you use the config macro to configure the
:http_port setting of the :todo application to the value of 5454. As soon as you start
the system, this setting is available in the application environment, and you can retrieve
it; for example, with the function Application.get_env/2:

$ iex -S mix

iex(1)> Application.get_env(:todo, :http_port)
5454

Now you can adapt the code of Todo.Web. The change is simple, as shown next.

Listing 11.15 Fetching the http_port setting (todo_env/lib/todo/web.ex)

defmodule Todo.Web do
 ...

 def child_spec(_arg) do
 Plug.Adapters.Cowboy.child_spec(
 scheme: :http,
 options: [port: Application.fetch_env!(:todo, :http_port)],
 plug: __MODULE__
)
 end

 ...
end

In this particular case, you use Application.fetch_env!, which will raise an error if
the HTTP port isn’t configured.

11.4.2 Varying configuration

In some cases, you might want to use different settings for different compilation targets.
For example, you currently always use the same HTTP port for development and for
tests. As a consequence, you can’t run tests if the to-do system is started in development.

Recall that before running the tests, mix starts the entire application. A part of the appli-
cation is Todo.Web, which will try to listen on port 5454. But if an iex -S mix session is
started, Todo.Web will fail to bind to the same port, and you won’t be able to run the tests.

The solution for this problem is to use a different HTTP port in the test mix environ-
ment. This will eliminate the port conflict, and you can run tests even when the devel-
opment system is running.

NOTE It’s worth noting that the term “environment” has two different uses.
An application environment is a key/value store that holds various settings for
your OTP application. A mix environment determines the compilation target,
such as development, test, or production.

To vary the settings in different mix environments, you need to slightly tweak config/
config.exs. The code is shown next.

Retrieves the HTTP port from the
todo application environment

302 chapter 11 Working with components

Listing 11.16 Mix environment-specific settings (todo_env/config/config.exs)

use Mix.Config

config :todo, http_port: 5454

...

import_config "#{Mix.env()}.exs"

The crucial bit happens in the very last line in the file. The expression import_config
"#{Mix.env()}.exs" imports the configuration specific to the current mix environ-
ment. To do that, you use the Mix.env/0 function, which returns the mix environment
as an atom (:dev, :test, or :prod).

Mix.env/0 is not available at runtime
The function Mix.env/0 is not available at runtime, so you shouldn’t invoke it from your
regular code (standard functions that are compiled and executed at runtime). This func-
tion can only be used in config scripts, in the code of custom mix tasks, and in the code
that’s executed at compile time (Elixir macros).

Depending on the mix environment, this expression will import the configuration
from config/dev.exs, config/test.exs, or config/prod.exs. That means you need to cre-
ate these files, which, at the very least, have to contain the expression use Mix.Config.
In each of these files, you can provide additional settings, or override any setting spec-
ified in config.exs.

Therefore, the config.exs file provides common settings for all mix environments,
whereas environment-specific files, such as test.exs, are used to vary some settings.

To use a different HTTP port in the test environment, you need to configure it in
test.exs. The code is shown in the following listing.

Listing 11.17 Overriding configuration (todo_env/config/test.exs)

use Mix.Config

config :todo, http_port: 5455

Let’s quickly verify if this works. Start the application in the default dev environment:

$ iex -S mix

iex(1)> Application.get_env(:todo, :http_port)
5454

Now, try the same in the test environment:

$ MIX_ENV=test iex -S mix

iex(1)> Application.get_env(:todo, :http_port)
5455

Mix environment-specific overrides

 303Summary

At this point, you can run tests, even if the system is started in another OS process. It
should be mentioned that the code in the todo_env folder also configures the database
folder through application environment. The configurable folder allows you to use a
different folder in the test environment, and thus avoid polluting the development
database when running tests.

11.4.3 Config script considerations

You should keep in mind that scripts such as config.exs, or environment-specific ones
like dev.exs, are evaluated before the project is compiled and started. This means
you’re limited in what you can do in such scripts. Even though the scripts are regular
Elixir code, you can only invoke functions from the Elixir standard library and mix
helper functions (such as Mix.env/0). You can’t invoke functions from your own mod-
ules, nor any code from your dependencies. That’s because these modules aren’t yet
available when the config scripts are being evaluated.

In addition, if you’re using OTP releases (which are explained in chapter 13), you
can’t make runtime decisions in config scripts. With OTP releases, config scripts are
evaluated at compile time, and the configuration values are baked into the OTP release,
which typically happens on the build machine, not the machine where the system is
running. Therefore, config scripts can’t help you provide parameters that you need
to fetch at runtime. Typical examples include parameters that must be retrieved from
external sources, such as OS environment, .ini files, external databases, etcd, or vault.
To fetch these parameters, you’ll need to invoke some function in the regular code
that’s executed at runtime.

Library authors should keep these limitations in mind. If you’re developing a library,
try to avoid taking your parameters through the application environment. If a library is
accepting its parameters via application environment, its users are forced to provide the
values through config scripts. This is quite rigid and makes it much harder to retrieve
some parameters at runtime. A much more flexible approach is to design the API of
your library to accept all the parameters as function arguments. With such an approach,
library users have complete freedom in deciding how to provide the parameters. They
can hardcode the parameters, configure them through the application environment,
or fetch the parameters from external sources at runtime. For more details, refer to the
Library Guidelines page in the official documentation (https://hexdocs.pm/elixir/
master/library-guidelines.html).

Summary

¡	An OTP application is a reusable component. The application can run the entire
supervision tree or just provide utility modules (as in a library application).

¡	In a single BEAM instance, an application is a singleton. There can be only one
instance of an OTP application.

¡	A non-library application is a callback module that must start the supervision tree.

https://hexdocs.pm/elixir/master/library-guidelines.html
https://hexdocs.pm/elixir/master/library-guidelines.html

304 chapter 11 Working with components

¡	Applications allow you to specify runtime dependencies to other applications.
This isn’t the same as compile-time dependencies that allow you to fetch external
code and compile it from your project.

¡	Application environments allow you to provide application settings. This can be
useful if you want to vary settings for different build targets.

305

12Building a distributed system

This chapter covers
¡	Working with distribution primitives

¡	Building a fault-tolerant cluster

¡	Network considerations

Now that you have a to-do HTTP server in place, it’s time to make it more reliable.
To have a truly reliable system, you need to run it on multiple machines. A single
machine represents a single point of failure because a machine crash leads to a sys-
tem crash. In contrast, with a cluster of multiple machines, a system can continue
providing service even when individual machines are taken down.

Moreover, by clustering multiple machines, you have a chance of scaling hori-
zontally. When demand for the system increases, you can add more machines to the
cluster to accommodate the extra load. This idea is illustrated in figure 12.1.

Here you have multiple nodes sharing the load. If a node crashes, the remaining
load will be spread across survivors, and you can continue to provide service. If the
load increases, you can add more nodes to the cluster to take the extra load. Clients
access a well-defined endpoint and are unaware of internal cluster details.

Distributed systems obviously offer significant benefits, and Elixir/Erlang gives
you some simple and yet powerful distribution primitives. The central tools for

306 chapter 12 Building a distributed system

distributed Erlang-based systems are processes and messages. You can send a message
to another process regardless of whether it’s running in the same BEAM instance or on
another instance on a remote machine.

Don’t confuse this with a traditional RPC approach, where a remote call is wrapped
to look like a local call. Erlang and, by extension, Elixir take the opposite route, and
their distributed nature appears early in the game. If you think about it, a typical con-
current system that runs a multitude of processes can already be considered distributed.

Much like remote components, processes live their own lives and run in total isolation
from each other. Issuing a request to another local process can be considered a remote
call, and message-passing has much in common with remote network communication.
In the basic version, you send a message and don’t know anything about its outcome. You
can’t even be sure whether the message will reach the target. If you want stronger guar-
antees, you can design the protocol to make the target send you a response (for exam-
ple, by using a synchronous call). Moreover, you must take into account that there’s a
cost to passing a message (the contents are copied), and this property sometimes affects
the design of the communication protocol among multiple processes.

All these properties are common to the Erlang concurrency model and distributed
systems, and you need to take them into consideration. The good news is that a prop-
erly designed concurrent system is in many ways ready to be distributed across multiple
machines.

Figure 12.1 The to-do system as a cluster

 307Distribution primitives

This transformation is by no means free. Distributed systems introduce an additional
set of non-trivial challenges that need to be tackled. But thanks to the simple distribu-
tion building blocks that are available, many of which you’re already familiar with, you
can focus on the core challenges of distributed systems.

As you’ll see in this chapter, it doesn’t take much to turn your to-do system into a
basic fault-tolerant cluster. In order to do this, you need to become familiar with basic
distribution primitives.

12.1 Distribution primitives
BEAM-powered distributed systems are built by connecting multiple nodes into a clus-
ter. A node is a BEAM instance that has a name associated with it.

You can start multiple nodes on the same host machine or on different machines,
and you can connect those nodes. Once the nodes are connected, you can commu-
nicate between different processes on different nodes by relying on the familiar
message-passing mechanism.

12.1.1 Starting a cluster

To set up a cluster, you need to start a couple of nodes. Starting a node can be as simple
as using the --sname parameter while starting the shell:

$ iex --sname node1@localhost
iex(node1@localhost)1>

Using --sname turns your BEAM instance into a node with the name node1@localhost.
The part before the @ character is a prefix that uniquely identifies a node on a single
machine. The second part (localhost) identifies the host machine. If you omit the
host part, the host machine’s name is automatically used.

The --sname parameter sets a short name in which the host machine is identified only
by its name. It’s also possible to provide a long name in which the host machine is identi-
fied by a fully qualified symbolic name or an IP address. This will be discussed in more
detail in the final section of this chapter.

Once you’ve started a node, you can obtain its name by calling the Kernel.node/0
function:

iex(node1@localhost)1> node()
:node1@localhost

As you can see from the output, a node name is represented internally as an atom.
Using a node usually makes sense when you want to connect it to another node. Let’s

try this. Keep node1 running, and start another OS shell session. Now start node2 and
connect it to node1:

$ iex --sname node2@localhost
iex(node2@localhost)1> Node.connect(:node1@localhost)
true

Provides the node name

The shell reports the node name.

The name of this node

Connects to
another node

308 chapter 12 Building a distributed system

The argument to Node.connect/1 is an atom that represents the target node name.
When Node.connect/1 is invoked, BEAM tries to establish a TCP connection with the
target BEAM instance. Once the connection is established, nodes are considered to be
connected, and all communication between them takes place via this connection.

You can prove that nodes are connected by calling Node.list/0, which returns a list
of all nodes connected to the current one (the current node isn’t listed). Trying this on
node1 and node2 gives the expected results:

iex(node1@localhost)2> Node.list()
[:node2@localhost]

iex(node2@localhost)2> Node.list()
[:node1@localhost]

It’s of course possible to connect multiple nodes. In fact, BEAM by default tries to
establish a fully connected cluster. If you start a third node, node3, and connect it to
node2, a connection is established to all other nodes that node2 is connected to:

$ iex --sname node3@localhost
iex(node3@localhost)1> Node.connect(:node2@localhost)

iex(node3@localhost)2> Node.list()
[:node2@localhost, :node1@localhost]

This is useful in scenarios where you want to set up a fully connected cluster of multi-
ple nodes. Adding a new node to such a cluster amounts to establishing a connection
to a single node from the cluster. The new node will then automatically connect to all
nodes in the cluster.

To get a list of all nodes in a cluster, including the current one, you can use Node
.list/1:

iex(node1@localhost)3> Node.list([:this, :visible])
[:node1@localhost, :node2@localhost, :node3@localhost]

The :this option states that you want the current node to appear in the list. The
:visible option indicates that you also want to get the list of all visible nodes. It’s pos-
sible to start a node as hidden, as I’ll explain in the last section of this chapter.

Detecting disconnected nodes
Node disconnection deserves a special mention. After the connection is established,
each node periodically sends tick messages to all of its connected peers, to check
whether they’re still alive. All nodes that fail to respond to four consecutive tick messages
are considered to be disconnected and are removed from the list of connected nodes.

There’s no automatic attempt to reconnect those nodes, but it’s possible to register and
receive notifications when a node is disconnected, using the Node.monitor/1 func-
tion (https://hexdocs.pm/elixir/Node.html#monitor/2). Moreover, you can monitor all
node connections and disconnections with the help of :net_kernel.monitor_nodes
(http://erlang.org/doc/man/net_kernel.html#monitor_nodes-1). I’ll demonstrate how
this works a bit later when I discuss network partitions.

Nodes connected to node1

Nodes connected to node2

node3 is connected to all nodes.

https://hexdocs.pm/elixir/Node.html#monitor/2
http://erlang.org/doc/man/net_kernel.html#monitor_nodes-1

 309Distribution primitives

12.1.2 Communicating between nodes

Once you have some nodes started and connected, you can make them cooperate. A
simple way to try this is to use Node.spawn/2, which receives a node name (an atom)
and a lambda. The function then spawns a new process on the target node and runs
the lambda in that process.

For example, from node1 you can spawn a process on node2.

Listing 12.1 Spawning a process on another node

iex(node1@localhost)4> Node.spawn(
 :node2@localhost,
 fn -> IO.puts("Hello from #{node}") end
)
Hello from node2@localhost

The output proves that the lambda has been executed on another node.

Group leader process
Something unexpected is happening in listing 12.1. Even though the lambda has been
executed on node2, the output is printed in the shell of node1. How is this possible? The
reason lies in how Erlang does standard I/O operations.

All standard I/O calls (such as IO.puts/1) are forwarded to the group leader — a process
that’s in charge of performing the actual input or output. A spawned process inherits the
group leader from the process that spawned it, even when you’re spawning a process on
another node. Therefore, your process may run on node2, but its group leader is still on
node1. As a consequence, the string to be printed is created on node2 (as the string con-
tents prove), but the output is printed on node1.

Another important primitive is the ability to send messages to processes regardless of
their location. This property is also known as location transparency. The send operation
works the same way regardless of the node on which the target process is running.

Let’s look at a simple example. From node1 you’ll start a computation that runs on
node2 and then send the result back to node1:

iex(node1@localhost)5> caller = self()

iex(node1@localhost)6> Node.spawn(
 :node2@localhost,
 fn -> send(caller, {:response, 1+2}) end
)

iex(node1@localhost)7> flush()
{:response, 3}

Target node

Runs on the target node

Sends the response back to the caller

The response is received on the caller.

310 chapter 12 Building a distributed system

This example clearly resembles standard use of processes. You spawn a process on
a remote node, and then, from the spawned process, send the message back to the
caller. Notice how the caller variable is used. Even though the lambda runs on
another node, the closure mechanism still works.

Finally, you use the iex shell’s flush helper, which takes all messages from the cur-
rent process mailbox and prints them to the console. This proves that the messages
have been received on the caller node.

There are no limits to what can be sent as a message. Whatever works in one BEAM
instance will work across different instances (with a small caveat, described in the
sidebar on lambdas). When the destination process is on another node, the message
is encoded using :erlang.term_to_binary/1 and decoded on the target node with
:erlang.binary_to_term/1.

Avoid spawning lambdas or sending them to different nodes
You can spawn lambdas from your shell, which is a somewhat special case because
shell-defined lambdas embed their own code and are interpreted dynamically on each
invocation. In contrast, lambdas that are defined in module functions can be spawned
remotely (or sent to a remote node via a message) only if both nodes are powered by
exactly the same compiled code. These requirements are hard to satisfy if you start run-
ning a multinode cluster and then need to update the code. You can’t simultaneously
upgrade all the nodes in the cluster, so at some point the code on the nodes will differ.

Therefore, it’s generally better to avoid passing lambdas to a remote node. Instead, you
should use the Node.spawn/4 function, which accepts an MFA (module, function, argu-
ments list) that identifies a function to be invoked on the target node. This is safe to use
as long as the module exists on the target node and exports the corresponding function.

In a multinode environment, the term “local registration” finally starts to make sense.
When you register a process locally, the scope of registration is only the current node.
This means you can use the same registered name on different nodes (but only once
on each node). For example, register shell processes for both node1 and node2:

iex(node1@localhost)8> Process.register(self(), :shell)
true

iex(node2@localhost)3> Process.register(self(), :shell)
true

Calling send(:shell, some_message) will send the message to either node1 or node2,
depending on the node where you invoke send.

It’s possible to reference a locally registered process on another node by using
{some_alias, some_node}. For example, to send a message from the node1 to node2
shell, you can do this:

iex(node1@localhost)9> send(
 {:shell, :node2@localhost},
 "Hello from node1!"
)

Identifies a process registered
on another node

 311Distribution primitives

Then, on node2, you can verify that a message is received:

iex(node2@localhost)4> flush()
"Hello from node1!"

You can also use the {some_alias, some_node} form when making GenServer-powered
requests (casts and calls). Finally, there are two special functions, GenServer.abcast/3
and GenServer.multi_call/4, that let you issue a request to all locally registered pro-
cesses on given nodes.

12.1.3 Process discovery

Process discovery is a very important operation in a cluster, but this same operation is
used in clusterless mode as well. In fact, distributed system or not, the typical pattern of
process communication is always the same:

1 A client process must obtain the server’s pid.

2 A client sends a message to the server.

In step 1, you discover a process. You used a form of discovery with the Registry mod-
ule in chapter 9.

Even in a single-node system, you must somehow find the target process’s pid. This
doesn’t change in a distributed setting, but you must use another means of discovery
because Registry isn’t cluster-aware and works only in the scope of a local node.

global registration

The simplest way to do cluster-wide discovery is to use the :global module (http://
erlang.org/doc/man/global.html), which provides a global name registration facility.
For example, if you run the to-do system as a multinode cluster, you may want to run
exactly one process per single to-do list (unless you aim for redundancy, of course).
Global name registration allows you to achieve this.

As an example, you can register the node1 shell process to act as the process respon-
sible for handling Bob’s to-do list:

iex(node1@localhost)10> :global.register_name({:todo_list, "bob"}, self())
:yes

The global (cluster-wide) alias of the current process is now {:todo_list, "bob"}.
The result (:yes) means global registration is successful.

At this point, all processes on all nodes in the cluster can find the process registered
under this alias. Attempting to globally register the node2 shell process under the same
alias will fail:

iex(node2@localhost)7> :global.register_name({:todo_list, "bob"}, self())
:no

How global registration works
There’s no special magic to global registration. It’s implemented in pure Erlang, and you
can reimplement it yourself in Elixir. It’s just an elaborate, multinode-aware version of a
process registry.

http://erlang.org/doc/man/global.html
http://erlang.org/doc/man/global.html

312 chapter 12 Building a distributed system

When you attempt to register a global alias, a cluster-wide lock is set, preventing any
competing registration on other nodes. Then a check is performed to see whether the
alias is already registered. If not, all nodes are informed about the new registration.
Finally, the lock is released. Obviously, this involves a lot of chatter, and multiple small
messages are passed between nodes.

You can use :global.whereis_name/1 to find the process:

iex(node2@localhost)8> :global.whereis_name({:todo_list, "bob"})
#PID<7954.90.0>

Note that lookups are local. When a registration is being performed, all nodes are
contacted, and they cache the registration information in their local ETS tables. Each
subsequent lookup on any node is performed on that node, without any additional
chatter. This means a lookup can be performed quickly, whereas registration requires
chatting between nodes.

Take a look at the shape of this pid: #PID<7954.90.0>. The first number in the pid
string representation isn’t 0: this indicates that you’re dealing with a process from some
other node.

Recognizing remote processes
It should be obvious by now that a pid identifies both a local and a remote process. In
almost all cases, you don’t need to worry about the physical location of a process. But
you should know some network-specific details about pids.

All the pids you’ve seen up to now have had a similar form: <0.X.0>, where X is a posi-
tive integer. Internally, each process has a node-wide unique identifier. This identifier can
be seen in the last two numbers of the string representation. If you create enough pro-
cesses on a single node, the third number will also be greater than zero.

The first number represents the node number — an internal identifier of the node where
the process is running. When this number is zero, the process is from the local node.
Conversely, when the output includes a pid in the form <X.Y.Z> and X isn’t zero, you
can be sure it’s a remote process. To programmatically determine the node where a pro-
cess is running, you can use Kernel.node/1 (https://hexdocs.pm/elixir/Kernel.html#
node/1).

Global registration allows you to forward all requests that need to manipulate the same
resource (in this case, a to-do list) to a single synchronization point (a process) in your
cluster. This is exactly the same pattern you use in a single-node setting, now applied to
a cluster of nodes. You’ll see this in action a bit later when you start making the to-do
system distributed.

(continued)

https://hexdocs.pm/elixir/Kernel.html#node/1
https://hexdocs.pm/elixir/Kernel.html#node/1

 313Distribution primitives

Global registration can also be used with GenServer, as illustrated in the following
snippet:

GenServer.start_link(
 __MODULE__,
 arg,
 name: {:global, some_global_alias}
)

GenServer.call({:global, some_global_alias}, ...)

Finally, if a registered process crashes or the owner node disconnects, the alias is auto-
matically unregistered on all other machines.

groups of processes

Another frequent discovery pattern occurs when you want to register multiple pro-
cesses under the same alias. This may sound strange, but it’s useful in situations where
you want to categorize processes in a cluster and broadcast messages to all processes in
a category.

For example, in redundant clusters, you want to keep multiple copies of the same
data. Having multiple copies allows you to survive node crashes. If one node terminates,
a copy should exist somewhere else in the cluster.

For this particular problem, you can use the strangely named :pg2 (process groups,
version 2) module (http://erlang.org/doc/man/pg2.html). This module allows you
to create arbitrarily named cluster-wide groups and add multiple processes to those
groups. This addition is propagated across all nodes, and later you can query the group
and get the list of all processes belonging to it.

Let’s try this. You’ll set up both shell processes of node1 and node2 to handle Bob’s
to-do list. To do this, you’ll need to

1 Create a group of processes for Bob’s list.

2 Add both processes to this group.

Creating a process group is as simple as calling :pg2.create/1 on any node and pro-
viding an arbitrary term that serves as the group’s identifier. Do this on node1:

iex(node1@localhost)11> :pg2.start()
iex(node1@localhost)12> :pg2.create({:todo_list, "bob"})
:ok

This group is immediately visible on node2:

iex(node2@localhost)9> :pg2.start()
iex(node2@localhost)10> :pg2.which_groups()
[todo_list: "bob"]

Remaining on node2, you can now add the shell process to this group:

iex(node2@localhost)11> :pg2.join({:todo_list, "bob"}, self())
:ok

Registers the process under a global alias

A global alias can be
used to make a request.

http://erlang.org/doc/man/pg2.html

314 chapter 12 Building a distributed system

This change should be visible on node1:

iex(node1@localhost)13> :pg2.get_members({:todo_list, "bob"})
[#PID<8531.90.0>]

Finally, you can add the node1 shell process to the same group:

iex(node1@localhost)14> :pg2.join({:todo_list, "bob"}, self())
:ok

At this point, both processes are in the process group, and both nodes can see this:

iex(node1@localhost)15> :pg2.get_members({:todo_list, "bob"})
[#PID<8531.90.0>, #PID<0.90.0>]

iex(node2@localhost)12> :pg2.get_members({:todo_list, "bob"})
[#PID<0.90.0>, #PID<7954.90.0>]

How can you use this technique? When you want to make an update to Bob’s to-do list,
you can query the corresponding process group and get a list of all processes responsi-
ble for Bob’s list. Then you can issue your request to all processes: for example, by using
GenServer.multi_call/4. This ensures that all replicas in the cluster are updated.

But when you need to issue a query (for example, to retrieve to-do list entries), you
can do this on a single process from the group (no need to perform multiple queries
on all replicas, unless you want better confidence). Therefore, you can choose a single
pid from the process group. For this purpose, you can use :pg2.get_closest_pid/1,
which returns the pid of a local process, if one exists, or a random process from the
group otherwise.

Just like the :global module, :pg2 is implemented in pure Erlang and is also an elab-
orate version of a process registry. Group creations and joins are propagated across the
cluster, but lookups are performed on a locally cached ETS table. Process crashes and
node disconnects are automatically detected, and nonexistent processes are removed
from the group.

12.1.4 Links and monitors

Links and monitors work even if processes reside on different nodes. A process receives
an exit signal or a :DOWN notification message (in the case of a monitor) if any of the
following events occurs:

¡	Crash of a linked or monitored process
¡	Crash of a BEAM instance or the entire machine where the linked or monitored

process is running
¡	Network connection loss

Let’s quickly prove this. You’ll start two nodes, connect them, and set up a monitor
from the node1 shell to the shell of node2:

$ iex --sname node1@localhost
$ iex --sname node2@localhost

iex(node2@localhost)1> Node.connect(:node1@localhost)

 315Distribution primitives

iex(node2@localhost)2> :global.register_name({:todo_list, "bob"}, self())

iex(node1@localhost)1> Process.monitor(
 :global.whereis_name({:todo_list, "bob"})
)

Now you can terminate node2 and flush messages in node1:

iex(node1@localhost)2> flush()
{:DOWN, #Reference<0.0.0.99>, :process, #PID<7954.90.0>, :noconnection}

As you can see, you have a notification that the monitored process isn’t running any-
more. This allows you to detect errors in distributed systems and recover from them.
In fact, the error-detection mechanism works the same way as in concurrent systems,
which isn’t surprising given that concurrency is also a distribution primitive.

12.1.5 Other distribution services

Other interesting services are provided as part of the Erlang standard library. I’ll men-
tion them briefly here, but once you start writing distributed systems, you should defi-
nitely spend time researching them.

I already mentioned that many basic primitives can be found in the Node module
(https://hexdocs.pm/elixir/Node.html). On top of that, you may find some useful ser-
vices in the :net_kernel (http://erlang.org/doc/man/net_kernel.html) and :net_
adm (http://erlang.org/doc/man/net_adm.html) modules.

Occasionally you’ll need to issue function calls on other nodes. As you’ve seen, this
can be done with Node.spawn, but this is a low-level approach and often isn’t suitable.
The problem with Node.spawn is that it’s a fire-and-forget kind of operation, so you
don’t know anything about its outcome.

More often, you’ll want to obtain the result of a remote function call or invoke a
function on multiple nodes and collect all the results. In such cases, you can refer to the
:rpc Erlang module (http://erlang.org/doc/man/rpc.html), which provides various
useful helpers.

For example, to call a function on another node and get its result, you can use
:rpc.call/4, which accepts a node and an MFA identifying the function to be called
remotely. Here’s an example that performs a remote call of Kernel.abs(-1) on node2:

iex(node1@localhost)1> :rpc.call(:node2@localhost, Kernel, :abs, [-1])
1

Other useful helpers included in the :rpc module allow you to issue a remote function
call on multiple nodes in the cluster. You’ll see this in action a bit later when you add
replication features to your database.

Message passing is the core distribution primitive
Many services, such as :rpc, are implemented in pure Erlang. Just like :global and
:pg2, :rpc relies on transparent message passing and the ability to send messages to
locally registered processes on remote nodes. For example, :rpc relies on the existence
of a locally registered :rex process (which is started when Erlang’s :kernel application

Monitors a process on another node

https://hexdocs.pm/elixir/Node.html
http://erlang.org/doc/man/net_kernel.html
http://erlang.org/doc/man/net_adm.html
http://erlang.org/doc/man/rpc.html

316 chapter 12 Building a distributed system

is started). Making an rpc call on other nodes amounts to sending a message containing
MFA to :rex processes on target nodes, calling apply/3 from those servers, and send-
ing back the response.

If you want to dive deeper into distributed programming on Erlang systems, spend some
time studying the code for rpc.erl, pg2.erl, and global.erl to learn about various
distributed idioms and patterns.

I also want to mention cluster-wide locks. These are implemented in the :global mod-
ule, and they allow you to grab an arbitrary named lock. Once you have a particular
lock, no other process in the cluster can acquire it until you release it.

Let’s see this in action. Start node1 and node2 and connect them. Then, on node1, try
to acquire the lock using :global.set_lock/1:

iex(node1@localhost)1> :global.set_lock({:some_resource, self()})
true

The tuple you provide consists of the resource ID and the requester ID. The resource
ID is an arbitrary term, whereas the requester ID identifies a unique requester. Two dif-
ferent requesters can’t acquire the same lock in the cluster. Usually you’ll want to use
the process ID as the requester ID, which means that at any point, at most one process
can acquire the lock.

Acquiring the lock involves chatting with other nodes in the cluster. Once :set_lock
returns, you know that you have the lock, and no one else in the cluster can acquire it.
Attempt to acquire a lock on node2:

iex(node2@localhost)1> :global.set_lock({:some_resource, self()})

The shell process on node2 will wait indefinitely (this can be configured via an addi-
tional parameter) until the lock becomes available. As soon as you release the lock on
node1, it’s obtained on node2:

iex(node1@localhost)2> :global.del_lock({:some_resource, self()})
iex(node2@localhost)2>

There’s also a simple helper for the acquire/release pattern available in the form of
:global.trans/2 (http://erlang.org/doc/man/global.html#trans-2), which takes the
lock, runs the provided lambda, and finally releases the lock.

Locking is something you should usually avoid because it causes the same kinds of
problems as classical synchronization approaches. Excessively relying on locks increases
the possibility of deadlocks, livelocks, or starvation. Generally you should synchronize
through processes because it’s easier to reason about the system this way.

Blocks until the lock is released

The lock is now held by the shell process on node2.

(continued)

http://erlang.org/doc/man/global.html#trans-2

 317Building a fault-tolerant cluster

But used judiciously, locks can sometimes improve performance. Remember that
message passing has an associated cost; this is especially true in distributed systems,
where a message must be serialized and transmitted over the network. If a message is
very large, this can introduce significant delays and hurt system performance.

Locks can help here, because they let you synchronize multiple processes on differ-
ent nodes without needing to send large messages to another process. Here’s a sketch
of this idea. Let’s say you need to ensure that the processing of a large amount of data
is serialized in the entire cluster (at any point in time, at most one process may run in
the entire cluster). Normally this is done by passing the data to a process that acts as a
synchronization point. But passing a large chunk of data may introduce a performance
penalty because data must be copied and transmitted over the network. To avoid this,
you can synchronize different processes with locks and then process the data in the
caller context:

def process(large_data) do
 :global.trans(
 {:some_resource, self},
 fn ->
 do_something_with(large_data)
 end
)
end

Calling :global.trans/2 ensures cluster-wide isolation. At most one process in the
cluster can be running do_something_with/1 on :some_resource at any point in time.
Because do_something_with/1 is running in the caller process, you avoid sending a
huge message to another synchronization process. Invoking :global_trans/2 intro-
duces additional chatter between nodes, but messages used to acquire the lock are
much smaller than passing the contents of large_data to another process on another
node, so you save bandwidth.

This concludes our discussion of the basics of distribution. I didn’t mention some
important aspects that arise once you start using a network as a communication chan-
nel for message passing. We’ll revisit this topic in the last section of this chapter. For
now, let’s focus on making the to-do system more distributed.

12.2 Building a fault-tolerant cluster
With some distribution primitives in your arsenal, you can begin building a cluster of
to-do web servers. The aim is to make the system more resilient to all sorts of outages,
including crashes of entire nodes. The solution presented here will be simplistic. Mak-
ing a proper distributed system requires much more attention to various details, and
the topic could easily fill an entire book.

On the plus side, making a basic BEAM-powered distributed system isn’t compli-
cated. In this section, you’ll get a feel for how distribution primitives fit nicely into the
existing BEAM concurrency model.

Most of your work here will be based on the GenServer abstraction. This shouldn’t
come as a surprise, given that message passing is the main distribution tool in BEAM.

Acquires the cluster-wide lock

Runs in the caller process

318 chapter 12 Building a distributed system

Before continuing, make sure you remember how GenServer works; if needed, revisit
the explanation in chapter 6.

12.2.1 Cluster design

The goals of this cluster are deceptively simple:

¡	The cluster will consist of multiple nodes, all of which are powered by the same
code and provide the same service (a web interface for managing multiple to-do
lists).

¡	Changes should be propagated across the cluster. A modification made on a sin-
gle to-do list on one node should be visible on all other nodes. From the outside,
clients shouldn’t care which node they access.

¡	The crash of a single node shouldn’t disturb the cluster. Service should be pro-
vided continuously, and data from the crashed node shouldn’t be lost.

These goals describe a fault-tolerant system. You always provide service, and individual
crashes don’t cause a disturbance. Thus the system becomes more resilient and highly
available.

Network partitions
Note that you won’t tackle the most difficult challenge of distributed systems: network
partitions. A partition is a situation in which a communication channel between two nodes
is broken and the nodes are disconnected. In this case, you may end up with a “split brain”
situation: the cluster gets broken into two (or more) disconnected smaller clusters, all of
which work and provide service. This situation can cause problems because you have
multiple isolated systems, each of which accepts input from users. Ultimately, you may
end up with conflicting data that’s impossible to reconcile. For most of this section, we’ll
ignore this issue, but we’ll discuss some consequences before parting.

Let’s begin work on making the system distributed. First, we’ll look at the to-do cache.

12.2.2 The distributed to-do cache

In a sense, the to-do cache is the centerpiece of the system. This is the primary element
that maintains the consistency of the data, so let’s recall how it works. The main idea is
illustrated in figure 12.2.

When you want to modify a to-do list, you ask the to-do cache to provide the corre-
sponding to-do server process for you. This to-do server then acts as a synchronization
point for a single to-do list. All requests for Bob’s list go through that process, which
ensures consistency and prevents race conditions.

When clustering your system, you’ll aim to keep this property. The difference is that
your cache must somehow be made to work across all nodes in the cluster. No matter
where in the cluster you ask the question “Who’s in charge of Bob’s list?”, the answer will
always points to the same process in the cluster (until that process crashes, of course).

Figure 12.2 Using a to-do cache

 319Building a fault-tolerant cluster

This is the single thing you need to change to make your to-do cache distributed. As
you’ll see, the changes are reasonably straightforward.

discovering to-do servers

There are various ways of doing cluster-wide discovery. Probably the simplest (although
not necessarily the most efficient) relies on services from the :global module that
allow you to register a process under a global alias — an arbitrary term that identifies a
process in the cluster. Here’s what you need to do:

1 Adapt the Todo.Server module to use global registration

2 Adapt Todo.Cache to work with the new registration

Let’s start implementing this. The first thing you need to do is modify the Todo.Server
module to rely on global registration. So far, you’ve been using Registry, which is
suitable only for single-node registrations. For distributed process registration and dis-
covery, you can use the :global module.

Process registrations
You may be puzzled by all these different registration facilities, so let’s recall the key
differences:

¡	The basic registration facility is a local registration that allows you to use a simple
atom as an alias to the single process on a node.

¡	Registry extends this by letting you use rich aliases — any term can be used as
an alias.

¡	:global allows you to register a cluster-wide alias.
¡	:pg2 is useful for registering multiple processes behind a cluster-wide alias (pro-

cess group), which is usually suitable for distributed pub-sub scenarios.

Replacing Registry with :global requires a single change in the Todo.Server mod-
ule. The current version of the relevant code, introduced in chapter 9, looks like this:

defmodule Todo.Server do
 def start_link(name) do
 GenServer.start_link(Todo.Server, name, name: via_tuple(name))
 end

 defp via_tuple(name) do

Before continuing, make sure you remember how GenServer works; if needed, revisit
the explanation in chapter 6.

12.2.1 Cluster design

The goals of this cluster are deceptively simple:

¡	The cluster will consist of multiple nodes, all of which are powered by the same
code and provide the same service (a web interface for managing multiple to-do
lists).

¡	Changes should be propagated across the cluster. A modification made on a sin-
gle to-do list on one node should be visible on all other nodes. From the outside,
clients shouldn’t care which node they access.

¡	The crash of a single node shouldn’t disturb the cluster. Service should be pro-
vided continuously, and data from the crashed node shouldn’t be lost.

These goals describe a fault-tolerant system. You always provide service, and individual
crashes don’t cause a disturbance. Thus the system becomes more resilient and highly
available.

Network partitions
Note that you won’t tackle the most difficult challenge of distributed systems: network
partitions. A partition is a situation in which a communication channel between two nodes
is broken and the nodes are disconnected. In this case, you may end up with a “split brain”
situation: the cluster gets broken into two (or more) disconnected smaller clusters, all of
which work and provide service. This situation can cause problems because you have
multiple isolated systems, each of which accepts input from users. Ultimately, you may
end up with conflicting data that’s impossible to reconcile. For most of this section, we’ll
ignore this issue, but we’ll discuss some consequences before parting.

Let’s begin work on making the system distributed. First, we’ll look at the to-do cache.

12.2.2 The distributed to-do cache

In a sense, the to-do cache is the centerpiece of the system. This is the primary element
that maintains the consistency of the data, so let’s recall how it works. The main idea is
illustrated in figure 12.2.

When you want to modify a to-do list, you ask the to-do cache to provide the corre-
sponding to-do server process for you. This to-do server then acts as a synchronization
point for a single to-do list. All requests for Bob’s list go through that process, which
ensures consistency and prevents race conditions.

When clustering your system, you’ll aim to keep this property. The difference is that
your cache must somehow be made to work across all nodes in the cluster. No matter
where in the cluster you ask the question “Who’s in charge of Bob’s list?”, the answer will
always points to the same process in the cluster (until that process crashes, of course).

Figure 12.2 Using a to-do cache

320 chapter 12 Building a distributed system

 Todo.ProcessRegistry.via_tuple({__MODULE__, name})
 end

 ...
end

To make the registration use the :global module, you need to return {:global,
registered_name} from via_tuple/1. While you’re at it, you can also rename the
function. The changes are provided in the following listing.

Listing 12.2 Global registration of to-do servers (todo_distributed/lib/todo/server.ex)

defmodule Todo.Server do
 ...

 def start_link(name) do
 GenServer.start_link(Todo.Server, name, name: global_name(name))
 end

 defp global_name(name) do
 {:global, {__MODULE__, name}}
 end

 ...
end

With this single simple change, you’ve switched to distributed registration and discov-
ery. There’s no need to change anything else; the system will work properly.

But there’s one possible performance issue with the current implementation. When
you register a process under a global alias, the :global module performs a synchro-
nized chat across the entire cluster. This means that a global registration is much more
expensive than a local one, which is particularly problematic with the current imple-
mentation of the cache, introduced in chapter 9. Let’s recall the relevant parts:

defmodule Todo.Cache do
 ...

 def server_process(todo_list_name) do
 case start_child(todo_list_name) do
 {:ok, pid} -> pid
 {:error, {:already_started, pid}} -> pid
 end
 end

 defp start_child(todo_list_name) do
 DynamicSupervisor.start_child(
 __MODULE__,
 {Todo.Server, todo_list_name}
)
 end

 ...
end

Global registration

A new process is always started.

 321Building a fault-tolerant cluster

Way back in section 9.2.3, you opted for this simplistic approach. Whenever a child
lookup is done, you start the new process and attempt to register it. If the registration
fails, DynamicSupervisor.start_child/2 will return {:error, {:already_started,
pid}}. This was a simple solution that served you well. But now, with the system being
distributed, this unconditional registration attempt can become a serious bottleneck.
Every time you want to work with a to-do list, even if the server process is already run-
ning, you attempt a :global registration, which will in turn grab a cluster-wide lock
and will then chat with all other nodes in the system.

This can be improved by doing an explicit lookup first. You’ll check whether the to-do
server is registered, and attempt to start the server only if the lookup returns nothing. To
do this, you need to first expand the Todo.Server module with the whereis/1 function,
which takes a name and returns a pid of the registered process, or nil if no process is
registered under the given name. The code is provided in the following listing.

Listing 12.3 Discovering to-do servers (todo_distributed/lib/todo/server.ex)

defmodule Todo.Server do
 ...

 def whereis(name) do
 case :global.whereis_name({__MODULE__, name}) do
 :undefined -> nil
 pid -> pid
 end
 end

 ...
end

It’s worth repeating that :global.whereis_name/1 doesn’t lead to any cross-node
chatting. This function only makes a single lookup to a local ETS table. Therefore,
you can expect pretty good and stable performance from the Todo.Server.whereis/1
function.

Now you can adapt the code in Todo.Cache. The implementation is provided in the
following listing.

Listing 12.4 Optimized process discovery (todo_distributed/lib/todo/cache.ex)

defmodule Todo.Cache do
 ...

 def server_process(todo_list_name) do
 existing_process(todo_list_name) || new_process(todo_list_name)
 end

 defp existing_process(todo_list_name) do
 Todo.Server.whereis(todo_list_name)

322 chapter 12 Building a distributed system

 end

 defp new_process(todo_list_name) do
 case DynamicSupervisor.start_child(
 __MODULE__,
 {Todo.Server, todo_list_name}
) do
 {:ok, pid} -> pid
 {:error, {:already_started, pid}} -> pid
 end
 end
end

Relying on a bit of wrapping and the || operator, the server_process/1 function high-
lights the approach of finding the to-do server. You either return the pid of the existing
process, or you attempt to start the new process. As explained in section 9.2.3, the code
in new_process/1 properly handles the situation where two different client processes
attempt to start the server for the same to-do list at the same time. The code will also
work properly in a distributed setting, and it will handle race conditions between two
clients on two different nodes.

With these changes in place, the Todo.ProcessRegistry module isn’t used any-
more, and it can therefore be removed from the project. The process registry entry can
also be removed from the child specification list in the Todo.System module.

alternative discovery

Keep in mind that global registration is chatty and serialized (only one process at a
time may perform global registration). This means the preceding approach isn’t very
scalable with respect to the number of different to-do lists or the number of nodes in
the cluster. The solution will also perform poorly if the network is slow.

There are alternatives. The main challenge here is to reliably discover the process
responsible for a to-do list while reducing network communication. This can be done
by introducing a rule that always maps the same to-do list name to the same node in the
network. Here’s a simple sketch of the idea:

def node_for_list(todo_list_name) do
 all_sorted_nodes = Enum.sort(Node.list([:this, :visible]))

 node_index = :erlang.phash2(
 todo_list_name,
 length(all_sorted_nodes)
)

 Enum.at(all_sorted_nodes, node_index)
end

You get the list of all nodes and sort it to ensure that it’s always in the same order. Then
you hash the input name, making sure the result falls in the range 0..length(all_
sorted_nodes). Finally, you return the node at the given position. This ensures that as
long as the cluster is stable (the list of nodes doesn’t change), the same to-do list will
always be mapped to the same node.

 323Building a fault-tolerant cluster

Now you can make a discovery in a single hop to the single node. Assuming the pre-
vious version of Todo.Cache (not the one you just implemented), retrieving the target
process can be as simple as this:

:rpc.call(
 node_for_list(todo_list_name),
 Todo.Cache,
 :server_process,
 [todo_list_name]
)

You forward to the target node and retrieve the desired process there. You don’t need
to use global registration, and Todo.Cache can continue working as it was before this
chapter. The result of the preceding invocation is a pid, which you can then use to
make your call. The benefit is that you can discover the pid with less chatting.

The main downside of this approach is that it doesn’t work properly when the cluster
configuration changes. If you add another node or a node disconnects, the mapping
rules will change. Dealing with this situation is complex. You need to detect the change
in the cluster (which is possible, as will be explained a bit later) and migrate all data
to different nodes according to new mapping rules. While this data is being migrated,
you’ll probably want to keep the service running, which will introduce another layer
of complexity. The amount of data that needs to be migrated can be greatly reduced if
you use some form of consistent hashing (http://en.wikipedia.org/wiki/Consistent_
hashing) — a smarter mapping of keys to nodes that’s more resilient to changes in the
cluster.

It’s obvious that the implementation can quickly become more involved, which is
why you started simple and chose the global registration approach. Although it’s not
particularly scalable, it’s a simple solution that works. But if you need better perfor-
mance and scalability, you’ll have to resort to a more complex approach. Instead of
reinventing the wheel, consider looking at third-party solutions, such as Syn (https://
github.com/ostinelli/syn) or Swarm (https://github.com/bitwalker/swarm).

12.2.3 Implementing a replicated database

After the changes you just made, you’ll have the following behavior:

1 When the first request for Bob’s list arrives, a to-do list is created on the node that
handles that request.

2 All subsequent requests on Bob’s to-do list are forwarded to the process created
in step 1.

3 If the node (or the process) created in step 1 crashes, a new request for Bob’s list
will cause the new to-do server to be registered.

Everything seems fine at first glance, and the system looks properly distributed. You
won’t test it now because there’s one important issue we haven’t addressed yet: the
database doesn’t survive crashes. Let’s say you performed multiple updates to Bob’s list

http://en.wikipedia.org/wiki/Consistent_hashing
http://en.wikipedia.org/wiki/Consistent_hashing
https://github.com/ostinelli/syn
https://github.com/ostinelli/syn
https://github.com/bitwalker/swarm

324 chapter 12 Building a distributed system

on node A. If this node crashes, some other node, such as node B, will take over the
work for Bob’s list. But previously stored data won’t be on that node, and you’ll lose all
your changes.

Obviously the database needs to be replicated so that data can survive node crashes.
The simplest (although not the most efficient) way of preserving data is to replicate it in
the entire cluster. This idea is illustrated in figure 12.3.

This is pretty straightforward. When you store data to the database, you’ll propagate
the change to all nodes in the cluster. The corresponding implementation can be sim-
ple if you rely on services from the :rpc module. I mentioned that :rpc, among other
things, allows you to issue a function call on all nodes in the cluster. You’ll rely on this
feature and make some changes to the Database module:

1 Rename the existing Database.store function to Database.store_ local. The
code remains the same.

2 Provide the new implementation to Database.store. This new implementation
will call Database.store_local on all nodes in the cluster.

Another change you’ll make (the code isn’t presented here) will turn Todo.Database-
Worker.store/2 into a call. This request should have been implemented as a call in the
first place. Back in chapter 7, I opted for a cast somewhat arbitrarily, mostly for didactic
purposes. In reality, if you’re asking another process to store data, you should request
a confirmation message so you know whether the data has been stored or something
went wrong. This becomes increasingly important as you move to a less reliable com-
munication medium (a network) where all sorts of things can go wrong. When you
expect a request to be used across nodes, you should usually implement it as a call.

No other changes are required. In particular, Todo.Database.get/1 remains
unchanged. When you want to read the data, you can do so from the local node, opti-
mistically assuming that all nodes have the same copy of the data. The changes are sim-
ple, as shown in the following listing.

Figure 12.3 Replicating the database

 325Building a fault-tolerant cluster

Listing 12.5 Storing data on all nodes (todo_distributed/lib/todo/database.ex)

defmodule Todo.Database do
 ...

 def store(key, data) do
 {_results, bad_nodes} =
 :rpc.multicall(
 __MODULE__,
 :store_local,
 [key, data],
 :timer.seconds(5)
)

 Enum.each(bad_nodes, &IO.puts("Store failed on node #{&1}"))
 :ok
 end

 ...
end

Here you rely on :rpc.multicall/4 to make a function call on all nodes in the clus-
ter. multicall accepts MFA and a timeout. The target function is then invoked on all
nodes in the cluster, all results are collected, and you get a tuple in the form {results,
bad_nodes}: a list of results and a list of nodes that didn’t respond in the given time.

Always provide timeouts
The timeout provided to multicall is important. Without it, multicall, and in turn the
store operation, would be blocked forever.

When doing distributed calls, you should usually specify a timeout. Note that this is no
different from cross-process calls — when making a call to another process, you usually
want to have a timeout as well, and GenServer recognizes this by providing a default
five-second timeout. Again, cross-node operations aren’t all that different from cross-pro-
cess operations, and in many cases you’ll have to consider a similar set of problems
when developing a single-node system.

Finally, you print all nodes on which the request timed out. Note that in practice, this
isn’t sufficient. You should also verify that each received response returns :ok. More-
over, you should do something meaningful in the case of a partial success. Otherwise
you’ll end up with an inconsistent cluster, with different nodes containing different
data. To deal with this situation properly, you need to implement a two-phase commit
protocol and a log-based database implementation. This would allow you to safely roll
back in case of a partial failure. For the sake of simplicity and brevity, I’ve refrained
from doing this here, but in a real project this is an issue that needs to be considered
and addressed.

I made another small change in the database workers, which isn’t presented
here. Up to now, you’ve used the persist folder to store your data. This is changed to

Calls store_local on all nodes

Logs failed results

326 chapter 12 Building a distributed system

accommodate the node name. If your node is called node1@localhost, you’ll store data
in the persist/node1 folder. This is done mostly to simplify testing and to allow you to
start multiple nodes locally from the same root folder.

In any case, this simple change makes it possible to replicate your data across the
cluster. With this, our basic take on a clustered to-do system is finished, and you can try
it out.

12.2.4 Testing the system

Finally, it’s time to test the system. You need to start a few nodes, connect them, and see
how the cluster works. But recall that in chapter 11 you made the web server listen on
port 5454. You can’t have two nodes listening on the same port, so you need to change
this. Luckily, in section 11.4 you made the web port configurable via the application
environment, so it’s possible to change the default port from the command line.

Start two instances, node1 and node2, that listen on ports 5454 and 5555 respectively:

$ iex --sname node1@localhost -S mix
$ iex --erl "-todo port 5555" --sname node2@localhost -S mix

Next, you need to connect the two nodes:

iex(node1@localhost)1> Node.connect(:node2@localhost)

Now the cluster is established, and you can use your servers. Add an entry for Bob on
the first node:

$ curl -d "" \
 "http://localhost:5454/add_entry?list=bob&date=2018-12-19&title=Dentist"
OK

Then verify that this entry is visible on another node:

$ curl "http://localhost:5555/entries?list=bob&date=2018-12-19"
2018-12-19 Dentist

This proves that your data is propagated across the cluster. Furthermore, looking at
individual iex shells, you’ll see the “Starting to-do server for bob” message in the node1
shell but not in node2. This is clear proof that even when you try to access Bob’s list on
another node, you’re forwarded to the corresponding process on node1.

You can thus safely modify Bob’s list on node2 without compromising the data:

$ curl -d "" \
 "http://localhost:5555/add_entry?list=bob&date=2018-12-19&title=Movies"

$ curl "http://localhost:5454/entries?list=bob&date=2018-12-19"
2018-12-19 Dentist
2018-12-19 Movies

Finally, crashing a single node won’t disturb the system. Stop node1, where Bob’s to-do
server is running, and try to query node2:

$ curl "http://localhost:5555/entries?list=bob&date=2018-12-19"

Starts node1, which listens on the default port
Starts node2, and sets the alternative port

 327Building a fault-tolerant cluster

2018-12-19 Dentist
2018-12-19 Movies

Sure enough, the cluster is still providing its service, and data is preserved. The new
to-do server has been created on node2, and it restored the state from the replicated
database.

At this point, your basic cluster is complete. There are some remaining issues, which
I won’t address here but will mention:

¡	You should set up a load balancer to serve as a single access point for all clients.
¡	You need a scheme for introducing new nodes to the running cluster. When a

new node is introduced, it should first synchronize the database with one of the
already-connected nodes; then it can begin serving requests.

¡	Database replication is fragile. You need some kind of two-phase commit strategy.
¡	You need to handle network partitions.

Some of these challenges aren’t easy to tackle, but they’re inherent to distributed sys-
tems, and you’ll have to deal with them regardless of the underlying technology. It’s
important to understand that Erlang isn’t a magic wand for distributed problems. In
a distributed system, many things can go wrong, and it’s up to you to decide how you
want to recover from various failures. There’s no one-size-fits-all solution: your job is to
combine basic distribution primitives in a way that suits the problem at hand.

Of course, offloading the work to proven third-party components can often help. For
example, by using the built-in Mnesia database, you could achieve better write guarantees
and be able to easily migrate new nodes to the cluster. But even then, it’s important to
understand how a third-party library works in a distributed setting. In this example, Mne-
sia doesn’t deal explicitly with network partitions and split-brain scenarios, and instead
leaves it to the developer to resolve this situation. Some other component might exhibit
different drawbacks, so you need to understand how it works in a distributed setting.

Erlang distribution primitives can take you a long way. Only a few changes were needed
to make your system distributed, even if you didn’t prepare for the distributed system up
front.

12.2.5 Detecting partitions

The work so far has been easy, but we’ve conveniently ignored the issue of network
partitions. This is one of the biggest challenges when building a distributed system.
Fully discussing this topic could easily turn into a substantial-sized book, so here I’ll just
explain the basic mechanisms of detecting partitions.

When you decide to go distributed, partitions are a problem you’ll have to deal with,
one way or another. Network partitions shouldn’t be ignored in a distributed system,
so even if you reach for a third-party product (such as an external database) to han-
dle clustering and replication, you should understand how that product behaves when
partitions occur. It’s best to be aware of the challenges you’ll face so you can make con-
scious and informed decisions about how to proceed.

328 chapter 12 Building a distributed system

A network partition, or netsplit, is a situation in which two nodes can no longer com-
municate with each other. There can be all sorts of underlying causes, and it’s impossi-
ble to tell them apart:

¡	A network connection is lost.
¡	A network connection is extremely slow.
¡	A remote node has crashed.
¡	A remote node is overloaded and busy to the point that it can’t respond in a

timely manner.

From the standpoint of one node, all those situations look the same. The remote node
doesn’t respond, and you don’t know why. It’s therefore virtually impossible to guar-
antee that a netsplit will never take place. Even on an ultra-fast and reliable network,
a bug or overload may cause one host to become so busy that it can’t respond to the
other in a timely manner. The other node has no choice but to interpret this situation
as a netsplit and conclude that the connection is lost. This means that when you’re
implementing a distributed system, you need to consider network partitions and devise
a strategy to deal with such situations.

When a partition occurs, you may end up with multiple independent clusters that
are mutually disconnected. The problem is that although those clusters can’t talk to
each other, a cluster’s clients may be able to reach all nodes. This situation is also known
as split-brain. If different clusters continue to serve users independently, you may end up
with undesired behavior. A request issued on one cluster won’t be visible on another,
and users may face lost updates, or phantom entries may appear. Ultimately, once you
reconnect those clusters, you may end up with conflicting data.

To deal with partitions, you need to be able to detect them. Remember, a partition
always manifests as a loss of connection to the remote node, and it’s possible to detect
this situation. As mentioned earlier, a node periodically pings its peers via tick mes-
sages, and if a peer fails to respond to these messages, it will be considered discon-
nected. Each process can subscribe to notifications about changes in connected nodes
via :net_kernel.monitor_nodes/1 (http://erlang.org/doc/man/net_kernel.html#
monitor_nodes-1).

The argument you provide is a Boolean that indicates whether you’re adding a new
subscription (true) or installing a single subscriber that overwrites all previous ones on
this node (false). Either way, a process that calls monitor_nodes will receive notifica-
tions whenever a remote node connects or disconnects.

Let’s try this. First, start node1 and subscribe to notifications:

$ iex --sname node1@localhost
iex(node1@localhost)1> :net_kernel.monitor_nodes(true)

This makes the caller process (in this case, the shell) receive notifications.
Now, start two additional nodes and connect them to node1:

$ iex --sname node2@localhost
iex(node2@localhost)1> Node.connect(:node1@localhost)

http://erlang.org/doc/man/net_kernel.html#monitor_nodes-1
http://erlang.org/doc/man/net_kernel.html#monitor_nodes-1

 329Building a fault-tolerant cluster

$ iex --sname node3@localhost
iex(node3@localhost)1> Node.connect(:node1@localhost)

In the node1 shell, you can see the corresponding messages:

iex(node1@localhost)2> flush()
{:nodeup, :node2@localhost}
{:nodeup, :node3@localhost}

The same thing happens on disconnect. You can stop node2 and node3 and check the
messages in node1:

iex(node1@localhost)3> flush()
{:nodedown, :node3@localhost}
{:nodedown, :node2@localhost}

Alternatively, you can also use Node.monitor/2 if you want to monitor a particular
node (https://hexdocs.pm/elixir/Node.html#monitor/2).

Either way, detecting a partition amounts to listening for :nodedown messages. For
example, if you want to ensure that you’re still part of the majority, you can handle a
:nodedown message by checking the number of nodes to which you’re still connected.
If the quorum is met, you continue running; otherwise, you must stop your service, for
example by stopping the application.

Finally, as I already mentioned, you can set up a monitor or a link to a remote pro-
cess. This works just as it does with local processes. If a remote process crashes (or the
node disconnects), you’ll receive a message (when using monitors) or an exit signal
(when using links).

12.2.6 Highly available systems

Way back in chapter 1, I described some properties of a highly available system. It may
not be obvious, but you’ve gradually reached this goal in the to-do system, which now
has some nice properties:

¡	Responsiveness — Because you have a highly concurrent system, you can use your
hardware more efficiently and serve multiple requests concurrently. Owing to
how BEAM processes work, you won’t experience unexpected pauses, such as
system-wide garbage collection (because processes are GC-ed individually and
concurrently). Occasional long-running tasks won’t block the entire system, due
to frequent preemption of processes. Ultimately, you should have a predictable
running system with fairly constant latency that degrades gracefully if your sys-
tem becomes overloaded.

¡	Scalability — Your system is both concurrent and distributed, so you can address
increased popularity and load by using a more powerful machine or by adding
more nodes to the system. The system can automatically take advantage of the
new hardware.

¡	Fault-tolerance — Due to process isolation, you can limit the effect of individual
errors. Due to process links, you can propagate such errors across the system and
deal with them. Supervisors can help the system self-heal and recover from errors.

https://hexdocs.pm/elixir/Node.html#monitor/2

330 chapter 12 Building a distributed system

At the same time, the main code will follow the happy path, focusing on the work
that needs to be done, liberated from error-detection constructs. Finally, due to
distribution, you can survive crashes of entire machines in the system.

At this point, it should be clear that the main tool for high availability is the BEAM
concurrency model. Relying on processes provided many nice properties and made it
possible to come close to having a proper highly available system.

Of course, this system is extremely simplified: you haven’t provided proper imple-
mentations for aspects such as the database, and you haven’t dealt with netsplits, which
makes these claims overconfident. Regardless, when you set out to implement a highly
available system that must serve a multitude of users continuously, these are the prop-
erties you’ll need to achieve, and processes are the main tool that can take you there.

At this point, you’re finished making the system distributed. Before departing,
though, there are some important network-related considerations to discuss.

12.3 Network considerations
So far, you’ve been running nodes locally. This is fine for making local experiments
and doing development-time testing. But in production you’ll usually want to run dif-
ferent nodes on different machines. When running a cross-host cluster, you need to
consider some additional details.

Let’s start with node names.

12.3.1 Node names

The names you’ve been using so far are short names that consist of an arbitrary name
prefix (node1 and node2 in this case) and the host name (localhost in these exam-
ples). You can also provide a fully qualified node name, also known as a long name,
which consists of a name prefix and a fully qualified host name. A long name can be
provided with the --name command-line option:

$ iex --name node1@127.0.0.1
iex(node1@127.0.0.1)1>

It’s also possible to use symbolic names:

$ iex --name node1@some_host.some_domain
iex(node1@some_host.some_domain)1>

A node name plays an important role when establishing a connection. Recall that a
name uses the form arbitrary_prefix@host (short name) or arbitrary_prefix@
host.domain (long name). This name obviously identifies a BEAM instance on a
machine. The second part of the name (host or host.domain) must be resolvable to
the IP address of the machine where the instance is running. When you attempt to
connect to node2@some_host.some_domain from node1, the node1 host must be able to
resolve some_host.some_domain to the IP address of the host machine.

It’s also worth noting that a node can connect only to a node that has the same type
of name. In other words, a connection between a long-named node and a short-named
node isn’t possible.

Long node name

 331Network considerations

12.3.2 Cookies

In order to connect two nodes, they must agree on a magical cookie — a kind of pass-
phrase that’s verified while the nodes are connecting. The first time you start a BEAM
instance, a random cookie is generated for you and persisted in your home folder in
the .erlang.cookie file. By default, all nodes you start on that machine will have this
cookie.

To see your cookie, you can use Node.get_cookie/0:

iex(node1@localhost)1> Node.get_cookie()
:JHSKSHDYEJHDKEDKDIEN

Notice that the cookie is internally represented as an atom. A node running on
another machine will have a different cookie, so connecting two nodes on different
machines won’t work by default; you need to somehow make all nodes use the same
cookie. This can be as simple as calling Node.set_cookie/1 on all nodes you want to
connect:

iex(node1@localhost)1> Node.set_cookie(:some_cookie)

iex(node1@localhost)2> Node.get_cookie()
:some_cookie

Another approach is to provide the --cookie option when you start the system:

$ iex --sname node1@localhost --cookie another_cookie

iex(node1@localhost)1> Node.get_cookie()
:another_cookie

Cookies provide a bare minimum of security and also help prevent a fully connected
cluster where all nodes can directly talk to each other. For example, let’s say you want
to connect node A to B, and B to C, but you don’t want to connect A and C. This can
be done by assigning different cookies to all the nodes and then, in A and C, using the
Node.set_cookie/2 function, which allows you to explicitly set different cookies that
need to be used when connecting to different nodes.

12.3.3 Hidden nodes

It should be clear by now that most node operations revolve around the cluster. Most
often, you’ll treat all connected nodes as part of your cluster. But in some cases this
isn’t what you need. For example, various tools let you connect to the remote run-
ning node and interact with it. A simple example is starting a local node that acts as a
remote shell to another node. Another example is an instrumentation tool — a node
that connects to another node, collects all sorts of metrics from it, and presents the
results in a GUI.

Such nodes are helpers that shouldn’t be part of the cluster, and you usually don’t
want them to be seen as such. For this purpose, you can make a hidden connection.
When you start your BEAM instance with the --hidden argument, the node isn’t seen in
other nodes’ connected lists (and vice versa).

332 chapter 12 Building a distributed system

Keep in mind, though, that a hidden node is still maintained in the node’s connec-
tion list, albeit under a different hidden tag. You can explicitly retrieve hidden nodes
by calling Node.list([:hidden]). Calling Node.list([:connected]) returns all
connected nodes, both hidden and visible, whereas calling Node.list([:visible])
returns only visible nodes. When you want to perform a cluster-wide operation, you
should generally use the :visible option.

Services provided by :global, :rpc, and :pg2 ignore hidden nodes. Registering a
global alias on one node won’t affect any hidden peer, and vice versa.

12.3.4 Firewalls

Given that nodes communicate via TCP connection, it’s obvious that you need to have
some ports that are open to other machines. When one node wants to connect to
another node on a different machine, it needs to communicate with two different com-
ponents, as illustrated in figure 12.4.

The first component, the Erlang Port Mapper Daemon (EPMD), is an OS process
that’s started automatically when you start the first Erlang node on the host machine.
This component acts as a node name resolver on the host machine. EPMD knows the
names of all currently running BEAM nodes on the machine. When a node wants to
connect to a node on this machine, it first queries EPMD to determine which port the
target node is listening on, and then it contacts the target node. EPMD listens on port
4369, and this port must be accessible from remote machines.

In addition, each node listens on a random port that needs to be accessible as well,
because it’s used to establish the connection between two nodes. Obviously it’s not par-
ticularly helpful that the node’s listening port is random, because it’s not possible to
define firewall rules.

Luckily, you can provide a fixed range of ports on which a node will listen. This can
be done by setting the inet_dist_listen_min and inet_dist_listen_max environ-
ment variables of the kernel app at the command line:

$ iex \
 --erl '-kernel inet_dist_listen_min 10000' \
 --erl '-kernel inet_dist_listen_max 10100' \
 --sname node1@localhost

The node will listen on the first port available in the given range. If you’re sure there
won’t be a port clash, you can use the same value for both parameters, thus effectively
designating a single port to be used.

You can manually inspect the ports of all nodes on the host machine via :net_adm
.names/0:

iex(node1@localhost)1> :net_adm.names()
{:ok, [{'node1', 10000}]}

Alternatively, you can also invoke epmd -names from the OS command line.
To summarize, if you’re behind a firewall, you need to open port 4369 (EPMD) and

the range of ports on which your node will listen.

Figure 12.4 Connecting to a remote node

Sets the range of ports

 333Network considerations

Security
Other than the magical cookie, no particular security model is provided. When you connect
to a remote node, you can do anything on that node, including running system commands.
If the remote node has root privileges, you have full access to the entire remote host.

Erlang’s distributed model was designed to run in a trusted environment, and you should
be aware of that. In particular, this means that in production your BEAM instances should
run under minimal privileges. Moreover, you shouldn’t expose your BEAM instances over
the internet. If you need to connect nodes from different networks, you should consider
switching to SSL as the communication protocol. Some pointers for doing this are provided
in the Erlang documentation at http://erlang.org/doc/apps/ssl/ssl_distribution.html.

Summary

¡	Distributed systems can improve fault-tolerance, eliminating the risk of a single
point of failure.

¡	Clustering lets you scale out and spread the total load over multiple machines.
¡	BEAM-powered clusters are composed of nodes, which are named BEAM instances

that can be connected and can communicate.
¡	Two nodes communicate via a single TCP connection. If this connection is bro-

ken, the nodes are considered disconnected.
¡	The main distribution primitive is a process. Sending a message works the same

way, regardless of the process location. A remotely registered process can be
accessed via {alias, node_name}.

¡	Many useful higher-level services built on top of those primitives are available in
the :global, :rpc, and GenServer modules.

¡	When communicating between nodes, use calls rather than casts.
¡	Always consider and prepare for netsplit scenarios.

Keep in mind, though, that a hidden node is still maintained in the node’s connec-
tion list, albeit under a different hidden tag. You can explicitly retrieve hidden nodes
by calling Node.list([:hidden]). Calling Node.list([:connected]) returns all
connected nodes, both hidden and visible, whereas calling Node.list([:visible])
returns only visible nodes. When you want to perform a cluster-wide operation, you
should generally use the :visible option.

Services provided by :global, :rpc, and :pg2 ignore hidden nodes. Registering a
global alias on one node won’t affect any hidden peer, and vice versa.

12.3.4 Firewalls

Given that nodes communicate via TCP connection, it’s obvious that you need to have
some ports that are open to other machines. When one node wants to connect to
another node on a different machine, it needs to communicate with two different com-
ponents, as illustrated in figure 12.4.

The first component, the Erlang Port Mapper Daemon (EPMD), is an OS process
that’s started automatically when you start the first Erlang node on the host machine.
This component acts as a node name resolver on the host machine. EPMD knows the
names of all currently running BEAM nodes on the machine. When a node wants to
connect to a node on this machine, it first queries EPMD to determine which port the
target node is listening on, and then it contacts the target node. EPMD listens on port
4369, and this port must be accessible from remote machines.

In addition, each node listens on a random port that needs to be accessible as well,
because it’s used to establish the connection between two nodes. Obviously it’s not par-
ticularly helpful that the node’s listening port is random, because it’s not possible to
define firewall rules.

Luckily, you can provide a fixed range of ports on which a node will listen. This can
be done by setting the inet_dist_listen_min and inet_dist_listen_max environ-
ment variables of the kernel app at the command line:

$ iex \
 --erl '-kernel inet_dist_listen_min 10000' \
 --erl '-kernel inet_dist_listen_max 10100' \
 --sname node1@localhost

The node will listen on the first port available in the given range. If you’re sure there
won’t be a port clash, you can use the same value for both parameters, thus effectively
designating a single port to be used.

You can manually inspect the ports of all nodes on the host machine via :net_adm
.names/0:

iex(node1@localhost)1> :net_adm.names()
{:ok, [{'node1', 10000}]}

Alternatively, you can also invoke epmd -names from the OS command line.
To summarize, if you’re behind a firewall, you need to open port 4369 (EPMD) and

the range of ports on which your node will listen.

Figure 12.4 Connecting to a remote node

Sets the range of ports

http://erlang.org/doc/apps/ssl/ssl_distribution.html

334

13Running the system

This chapter covers
¡	Running the system with the Elixir tools

¡	OTP releases

¡	Analyzing system behavior

You’ve spent a lot of time building a to-do system, and now it’s time to prepare it
for production. There are various ways to start a system, but the basic idea is always
the same. You have to compile your code as well as your dependencies. Then you
start the BEAM instance and ensure that all compiled artifacts are in the load path.
Finally, from within the BEAM instance, you need to start your OTP application
together with its dependencies. Once the OTP application is started, you can con-
sider your system to be running.

There are various approaches to achieving this, and in this chapter we’ll focus
on two of them. First we’ll look at how you can use Elixir tools, most notably mix, to
start the system. Then we’ll discuss OTP releases. Finally, I’ll end the chapter and the
book by providing some pointers on how to interact with a running system, so you
can detect and analyze faults and errors that inevitably happen at runtime.

 335Running a system with Elixir tools

13
13.1 Running a system with Elixir tools

Regardless of the method you use to start the system, some common principles always
hold. Running the system amounts to doing the following:

1 Compile all modules. Corresponding .beam files must exist somewhere on the
disk (as explained in section 2.7). The same holds for the application resource
(.app) files of all OTP applications that are needed to run the system.

2 Start the BEAM instance and set up load paths to include all locations from step 1.

3 Start all required OTP applications.

Probably the simplest way to do this is to rely on standard Elixir tools. Doing so is trivial,
and you’re already familiar with some aspects of mix, iex, and elixir command-line
tools. So far you’ve been using iex, which lets you start the system and interact with it.
When you invoke iex -S mix, all the steps just mentioned are taken to start the system.

When running in production, you may want to avoid implicitly starting the iex shell,
and you’ll probably want to start the system as a background process. To do this, you
need to use mix and elixir commands to start your system.

13.1.1 Using the mix and elixir commands

So far, we’ve been using the command iex -S mix to start the system. It’s also possible
to start the system with mix run --no-halt. This command starts the BEAM instance
and then starts your OTP application together with its dependencies. The --no-halt
option instructs mix to keep the BEAM instance running forever.

$ mix run --no-halt

Starting to-do cache

Compared to iex -S mix, the important difference is that mix run doesn’t start the
interactive shell.

A slightly more elaborate option is to use the elixir command:

$ elixir -S mix run --no-halt

Starting to-do cache

This approach requires a bit more typing, but it allows you to run the system in the
background.

By using the --detached flag, you can start the system in detached mode. The OS
process will be detached from the terminal, and there will be no console output (it’s
redirected to /dev/null). When starting a detached system, it’s also useful to turn the
BEAM instance into a node, so you can later interact with it and terminate it when
needed:

$ elixir --detached --sname todo_system@localhost -S mix run --no-halt

This starts the BEAM instance in background.

Starts the system without the iex shell

336 chapter 13 Running the system

You can check that it’s running by looking at which BEAM nodes exist on your system:

$ epmd -names

epmd: up and running on port 4369 with data:
name todo_system at port 51028

At this point, your system is running and you can use it — for example, by issuing an
HTTP request to manipulate to-do lists.

You can connect to a running BEAM instance and interact with it. It’s possible to
establish a remote shell — something like a terminal shell session to the running BEAM
instance. In particular, with the the --remsh option you can start another node and use
it as a shell to the todo_system node:

$ iex --sname debugger@localhost --remsh todo_system@localhost --hidden

iex(todo_system@localhost)1>

In this example, you start the debugger node, but the shell is running in the context
of todo_system. Whatever function you call will be invoked on todo_system. This is
extremely useful, because you can now interact with the running system. BEAM pro-
vides all kinds of nice services that allow you to query the system and individual pro-
cesses, as we’ll discuss a bit later.

Notice that you start the debugger node as hidden. As mentioned in chapter 12,
this means the debugger node won’t appear in the results of Node.list (or Node
.list([:this, :visible])) on todo_system, so it won’t be considered part of the cluster.

To stop the running system, you can use the System.stop function (https://hexdocs
.pm/elixir/System.html#stop/1), which takes down the system in a graceful manner. It
shuts down all running applications and then terminates the BEAM instance:

iex(todo_system@localhost)1> System.stop()

The remote shell session is left hanging, and an attempt to run any other command
will result in an error:

iex(todo_system@localhost)2>
*** ERROR: Shell process terminated! (^G to start new job) ***

At this point, you can close the shell and verify the running BEAM nodes:

$ epmd -names
epmd: up and running on port 4369 with data:

If you want to stop a node programmatically, you can rely on the distributed features
described in chapter 12. Here’s a quick example:

if Node.connect(:todo_system@localhost) == true do
 :rpc.call(:todo_system@localhost, System, :stop, [])
 IO.puts "Node terminated."
else
 IO.puts "Can't connect to a remote node."
end

The node is running

Shell is running on the todo_system node

Invokes System.stop on a remote node

https://hexdocs.pm/elixir/System.html#stop/1
https://hexdocs.pm/elixir/System.html#stop/1

 337Running a system with Elixir tools

Here, you connect to a remote node and then rely on :rpc.call/4 to invoke System
.stop there.

You can store the code in the stop_node.exs file (the .exs extension is frequently
used for Elixir-based scripts). Then you can run the script from the command line:

$ elixir --sname terminator@localhost stop_node.exs

Running a script starts a separate BEAM instance and interprets the code in that
instance. After the script code is executed, the host instance is terminated. Because the
script instance needs to connect to a remote node (the one you want to terminate),
you need to give it a name to turn the BEAM instance into a proper node.

13.1.2 Running scripts

I haven’t discussed scripts and tools so far, but they’re worth a quick mention. Some-
times you may want to build a command-line tool that does some processing, produces
the results, and then stops. The simplest way to go about that is to write a script.

You can create a plain Elixir file, give it an .exs extension to indicate that it’s a script,
implement one or more modules, and invoke a function:

defmodule MyTool do
 ...

 def run do
 ...
 end
end

MyTool.run()

You can then invoke the script with the elixir my_script.exs command. All modules
you define will be compiled in memory, and all expressions outside of any module will
be interpreted. After everything finishes, the script will terminate. Of course, an Elixir
script can run only on a system with correct versions of Erlang and Elixir installed.

An .exs script is fine for simpler tools, but it’s not efficient when the code becomes
more complex, or if you need to include third-party libraries as dependencies. In those
cases, it’s best to use a proper mix project and build a full OTP application.

But because you’re not building a system that runs continuously, you also need to
include a runner module in the project — something that does processing and produces
output:

defmodule MyTool.Runner do
 def run do
 ...
 end
end

Then you can start the tool with mix run -e MyTool.Runner.run. This starts the OTP
application, invokes the MyTool.Runner.run/0 function, and terminates as soon as the
function is finished.

Starts the tool

338 chapter 13 Running the system

Finally, you can package the entire tool in an escript — a single binary file that embeds
all your .beam files, Elixir .beam files, and the start-up code. An escript file is thus a
fully compiled, cross-platform script that requires only the presence of Erlang on the
running machine. For more details, refer to the mix escript.build documentation
(https://hexdocs.pm/mix/Mix.Tasks.Escript.Build.html).

13.1.3 Compiling for production

As mentioned in chapter 11, there’s a construct called the mix environment — a com-
pile-time identifier that allows you to conditionally define code. The default mix envi-
ronment is dev, indicating that you’re dealing with development. In contrast, when you
run tests with mix test, the code is compiled in the test environment.

You can use the mix environment to conditionally include code for development- or
test-time convenience. For example, you can rely on the Mix.env/0 function to define
different versions of a function. Here’s a simple sketch:

defmodule Todo.Database do
 case Mix.env() do
 :dev ->
 def store(key, data) do ... end

 :test ->
 def store(key, data) do ... end

 _ ->
 def store(key, data) do ... end
 end
end

Notice how you branch on the result of Mix.env/0 at the module level, outside of any
functions. This is a compile-time construct, and this code runs during compilation. The
final definition of store/2 will depend on the mix environment you’re using to com-
pile the code. In the dev environment, you might run additional logging and bench-
marking, whereas in the test environment you might use an alternative database and
perhaps in-memory storage, such as a public ETS table.

It’s important to understand that Mix.env/0 has meaning only during compilation.
You should never rely on it at runtime.

In any case, your code may contain such conditional definitions, so you should assume
that your project isn’t completely optimized when compiled in the dev environment.

To start your system in production, you can set the MIX_ENV OS environment variable
to the corresponding value:

$ MIX_ENV=prod elixir -S mix run --no-halt

This causes the recompilation of the code and all dependencies. All .beam files are
stored in the _build/prod folder, and mix ensures that the BEAM instance loads files
from this folder.

https://hexdocs.pm/mix/Mix.Tasks.Escript.Build.html

 339OTP releases

TIP It should be obvious from the discussion that the default compiled code (in
the dev environment) isn’t optimal. The dev environment allows for better devel-
opment convenience, but it makes the code perform less efficiently. When you
decide to measure how your system behaves under a heavier load, you should
always compile everything in the prod environment. Measuring with the dev envi-
ronment may give you false indications about bottlenecks, and you may spend
energy and time optimizing code that isn’t problematic at all in production.

You’ve now seen the basics of starting the system with mix and elixir. This process
was mostly simple, and it fits nicely into your development flow.

There are some serious downsides, though. First, to start the project with mix,
you need to compile it, which means the system source code must reside on the host
machine. You need to fetch all dependencies and compile them as well. Consequently,
you’ll need to install all the tools required for compilation on the target host machine.
This includes Erlang and Elixir, hex and possibly rebar, and any other third-party tools
that you integrate in your mix workflow.

For example, if you’re developing a web server, and you use npm to manage JavaS-
cript packages, you’ll need npm installed on the production server. This means you’ll
need to pollute the target host machine with compile-time tools. Moreover, if you’re
running multiple systems on the same machine, it can become increasingly difficult to
reconcile the different versions of support tools that are needed for different systems.
Luckily there’s a way out, in the form of OTP releases.

13.2 OTP releases
An OTP release is a standalone, compiled, runnable system that consists of the mini-
mum set of OTP applications needed by the system. An OTP release can optionally
include the minimum set of Erlang runtime binaries, which makes the release com-
pletely self-sufficient. A release doesn’t contain artifacts, such as source code, docu-
mentation files, or tests.

This approach provides all sorts of benefits. First, you can build the system on your
development machine or the build server and ship only binary artifacts. Furthermore,
the host machine doesn’t need to have any tools installed. If you embed the minimum
Erlang runtime into the release, you don’t even need Elixir and Erlang installed on the
production server. Whatever is required to run the system will be part of your release
package. Finally, releases pave the way for systematic online system upgrades (and
downgrades), known in Erlang as release handling.

Conceptually, releases seem simple. You need to compile your main OTP application
and all of its dependencies and then include all the binaries in the release, together with
the Erlang runtime. Erlang ships with all the necessary tooling for this, but using these tools
requires many manual steps. Luckily, there’s a library called distillery (https://github
.com/bitwalker/distillery), which significantly simplifies the task of building OTP
releases.

https://github.com/bitwalker/distillery
https://github.com/bitwalker/distillery

340 chapter 13 Running the system

13.2.1 Building a release with distillery

As you’ll see, building a fully standalone release with distillery is extremely simple. You
need to add distillery as a dependency, create the release configuration file, and
then you can produce the release by invoking mix release.

Let’s build a release. First you need to add distillery as a dependency, as shown in
the following listing.

Listing 13.1 Adding distillery as a dependency (todo_release/mix.exs)

defmodule Todo.MixProject do
 ...

 defp deps do
 [
 ...
 {:distillery, "~> 2.0"}
]
 end
end

At this point, you can invoke mix deps.get to fetch the dependencies.
Next you need to configure how the release is built. You need to create a folder

named rel, and in that folder the release configuration file named config.exs. A sensi-
ble initial version can be generated by invoking mix release.init.

To keep things simpler, we’ll use a minimal version of rel/config.exs that configures
the release only for the prod environment. The code is provided in the following listing.

Listing 13.2 Configuring a release (todo_release/rel/config.exs)

use Mix.Releases.Config, default_environment: :prod

environment :prod do
 set(include_erts: true)
 set(include_src: false)
 set(cookie: :todo)
end

release :todo do
 set(version: current_version(:todo))
end

This configuration file is a reduced version of the configuration you’ll obtain by invok-
ing mix release.init. The configuration specifies that the Erlang runtime should be
included, which makes the release completely self-sufficient.

At this point, you can build the release by invoking MIX_ENV=prod mix release.
Because you’re only building the release for production, you can enforce the default
environment for the release task in mix.exs. The code is provided in the following
listing.

 341OTP releases

Listing 13.3 Enforcing prod environment for the release task (todo_release/mix.exs)

defmodule Todo.MixProject do
 ...

 def project do
 [
 ...
 preferred_cli_env: [release: :prod]
]
 end

The :preferred_cli_env option is a keyword list, where each key is the task name
(provided as an atom) and the value is the desired default environment.

With this change in place, you can invoke mix release, which will compile your proj-
ect in the prod environment, and then generate the release:

$ mix release

...

==> Assembling release..
==> Building release todo:0.1.0 using environment prod
==> Including ERTS 10.0.8
==> Packaging release..
==> Release successfully built!
 You can run it in one of the following ways:
 Interactive: _build/prod/rel/todo/bin/todo console
 Foreground: _build/prod/rel/todo/bin/todo foreground
 Daemon: _build/prod/rel/todo/bin/todo start

After mix release is done, your release will reside in the _build/prod/rel/todo/ sub-
folder. We’ll discuss the release’s contents a bit later. First, let’s see how you can use it.

13.2.2 Using a release

The main tool used to interact with a release is the shell script that resides in _build/
prod/rel/todo/bin/todo. You can use it to perform all kinds of tasks, such as these:

¡	Start the system and iex shell in the foreground.
¡	Start the system as a background process.
¡	Stop the running system.
¡	Attach a remote shell to the running system.

The simplest way to verify that the release works is to start the system in the foreground
together with the iex shell:

$ _build/prod/rel/todo/bin/todo console

Starting to-do cache
iex(todo@127.0.0.1)1>

342 chapter 13 Running the system

Notice from the iex shell prompt that the release is automatically running as the todo
node. By default, distillery uses the application name as the node name.

I want to stress that the release is no longer dependent on your system’s Erlang and
Elixir. It’s fully standalone: you can copy the contents of the _build/prod/rel/todo sub-
folder to another machine where Elixir and Erlang aren’t installed, and it will still work.
Of course, because the release contains Erlang runtime binaries, the target machine
has to be powered by the same OS and architecture.

To start the system as a background process, you can use the start argument:

$ _build/prod/rel/todo/bin/todo start

This isn’t the same as a detached process, mentioned earlier. Instead, the system is
started via the run_erl tool (http://erlang.org/doc/man/run_erl.html). This tool
redirects standard output to a log file residing in the _build/prod/rel/todo/var/log
folder, which allows you to analyze your system’s console output.

Once the system is running in the background, you can start a remote shell to the node:

$ _build/prod/rel/todo/bin/todo remote_console

iex(todo@127.0.0.1)1>

At this point, you have an iex shell session running in the context of the production
node. Pressing Ctrl-C twice to exit the shell stops the remote shell, but the todo node
will still be running.

It’s also possible to attach directly to the shell of the running process. On the surface,
this looks like the remote shell, but it offers an important benefit: it captures the stan-
dard output of the running node. Whatever the running node prints — for example, via
IO.puts — is seen in the attached process (which isn’t the case for the remote shell).

To attach to the shell, you use the attach argument:

$ _build/prod/rel/todo/bin/todo attach

iex(todo@127.0.0.1)1>

Be careful when attaching to the shell. Unlike a remote shell, an attached shell runs
in the context of the running node. You’re merely attached to the running node via
an OS pipe. The consequence is that stopping the shell by pressing Ctrl-C twice will
terminate the running node. As hinted at the prompt, you should press Ctrl-D to exit
(detach) from the running node.

If the system is running as a background process, and you want to stop it, you can use
the stop argument:

$ _build/prod/rel/todo/bin/todo stop

The todo script can perform various other tasks. To get the help, simply invoke _
build/prod/rel/todo/bin/todo without any argument. This will print the help to the
standard output. Finally, for more details on release-building, take a look at the official
distillery documentation at https://hexdocs.pm/distillery.

http://erlang.org/doc/man/run_erl.html
https://hexdocs.pm/distillery

 343OTP releases

13.2.3 Release contents

Let’s spend some time discussing the structure of your release. A fully standalone
release consists of the following:

¡	Compiled OTP applications needed to run your system
¡	A file containing arguments that will be passed to the virtual machine
¡	A boot script describing which OTP applications need to be started
¡	A configuration file containing environment variables for OTP applications
¡	A helper shell script to start, stop, and interact with the system
¡	Erlang runtime binaries

In this case, all these reside somewhere in the _build/prod/rel/todo folder. Let’s take
a closer look at some important parts of the release.

compiled binaries

Compiled versions of all required applications reside in the _build/prod/rel/todo/
lib folder:

$ ls _build/prod/rel/todo/lib
artificery-0.2.6
asn1-5.0.6
compiler-7.2.4
cowboy-1.1.2
cowlib-1.0.2
crypto-4.3.2
distillery-2.0.10
elixir-1.7.3
iex-1.7.3
kernel-6.0.1
logger-1.7.3
mime-1.2.0
mix-1.7.3
plug-1.4.3
poolboy-1.5.1
public_key-1.6.1
ranch-1.3.2
runtime_tools-1.13
sasl-3.2
ssl-9.0.1
stdlib-3.5.1
todo-0.1.0

This list includes all of your runtime dependencies, both direct (specified in mix.exs)
and indirect (dependencies of dependencies). In addition, some OTP applications,
such as kernel, stdlib, and elixir, are automatically included in the release. These
are core OTP applications needed by any Elixir-based system. Finally, the iex applica-
tion is also included, which makes it possible to run the remote iex shell.

In each of these folders is an ebin subfolder where the compiled binaries reside
together with the .app file. Each OTP application folder may also contain the priv
folder with additional application-specific files.

344 chapter 13 Running the system

TIP If you need to include additional files in the release, the best way to do it is
to create a priv folder under your project root. This folder, if it exists, automat-
ically appears in the release under the application folder. When you need to
access a file from the priv folder, you can invoke Application.app_dir(:an_
app_name, "priv") to find the folder’s absolute path.

Bundling all required OTP applications makes the release standalone. Because the sys-
tem includes all required binaries (including the Elixir and Erlang standard libraries),
nothing else is required on the target host machine.

You can prove this by looking at the load paths:

$ _build/prod/rel/todo/bin/todo console

iex(todo@127.0.0.1)1> :code.get_path()

['ch13/todo_release/_build/prod/rel/todo/lib/todo-0.1.0/consolidated',
 'ch13/todo_release/_build/prod/rel/todo/lib/kernel-6.0.1/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/stdlib-3.5.1/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/compiler-7.2.4/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/elixir-1.7.3/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/artificery-0.2.6/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/runtime_tools-1.13/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/distillery-2.0.10/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/mime-1.2.0/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/crypto-4.3.2/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/logger-1.7.3/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/plug-1.4.3/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/cowlib-1.0.2/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/asn1-5.0.6/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/public_key-1.6.1/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/ssl-9.0.1/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/ranch-1.3.2/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/cowboy-1.1.2/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/poolboy-1.5.1/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/todo-0.1.0/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/sasl-3.2/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/iex-1.7.3/ebin',
 'ch13/todo_release/_build/prod/rel/todo/lib/mix-1.7.3/ebin']

Notice how all the load paths point to the release folder. In contrast, when you start
a plain iex -S mix and run :code.get_path/0, you’ll see a much longer list of load
paths, some pointing to the build folder and others pointing to the system Elixir and
Erlang installation paths. This should convince you that your release is self-contained.
The runtime will only look for modules in the release folder.

In addition, the minimum Erlang binaries are included in the release. They reside in
_build/prod/rel/todo/erts-X.Y, where X.Y corresponds to the runtime version num-
ber (which isn’t related to the Erlang version number). The fact that the Erlang run-
time is included makes the release completely standalone. Moreover, it allows you to
run multiple systems powered by different Elixir/Erlang versions on the same machine.

Retrieves a list of load paths

 345OTP releases

configurations

Configuration files reside in the _build/prod/rel/todo/releases/0.1.0 folder, with
0.1.0 corresponding to the version of your todo application (as provided in mix.exs).
The two most relevant files in this folder are vm.args and sys.config.

The vm.args file can be used to provide flags to the Erlang runtime, such as the afore-
mentioned +P flag that sets the maximum number of running processes. Some basic
defaults are generated for you by distillery. For example, the node name and mag-
ical cookie are specified here. You can provide your own vm.args file as an input to
distillery. Refer to the configuration section in the official documentation for more
details (https://hexdocs.pm/distillery/configuration.html).

Sys.config is an Erlang file that contains OTP environment variables, as specified in
your mix.exs and config.exs files. For example, in chapter 11, you made the HTTP lis-
tening port configurable via an environment variable, and in config.exs you set it to the
value 5454. This setting will propagate to the sys.config file. When you start the system,
sys.config will be consulted, and the corresponding environment variables will be set
prior to starting the OTP applications. Consequently, sys.config can be used to tweak
settings without the need to rebuild the release. For example, if you want to change the
listening port, you can edit sys.config on the target machine and restart the system.

compressed release package

If you take a closer look at the contents of the _build/prod/rel/todo/releases/0.1.0
folder, you’ll notice a compressed tarball named todo.tar.gz, which is essentially a com-
pressed version of the entire release. When you want to deploy to the target machine,
you can copy this file, unpack it, and start the system by running bin/todo start.

This file isn’t just a convenience for faster uploads. It plays an important role in the
live upgrade process. When you make changes to your code, you can increase the version
number in mix.exs and rebuild the release. The resulting release package will reside
in a different folder (such as _build/prod/rel/todo/releases/0.2.0). You can then
upload this file to the corresponding subfolder of your running system and invoke bin/
todo upgrade "0.0.2", which will make your system upgrade on the fly, without restart-
ing. See the distillery documentation for details (https://hexdocs.pm/distillery/
walkthrough.html#building-an-upgrade-release).

Live upgrades can be tricky
In its basic version, a live upgrade can look deceptively simple, especially with the help
of the distillery tool. But in a more complex project, live upgrading can become much
trickier. Keep in mind that a BEAM system runs many stateful server processes and may
maintain state in ETS tables. A more complex upgrade may require implementing the
code_changegen_server callback, where you need to migrate the old process state
to the new one. Moreover, you’ll sometimes need to reconfigure your supervision tree or
even stop or restart some OTP applications. Doing this properly requires careful changes
and exhaustive testing. You should therefore first consider whether you can tolerate the
short downtime caused by plain BEAM process restarts.

https://hexdocs.pm/distillery/configuration.html
https://hexdocs.pm/distillery/walkthrough.html#building-an-upgrade-release
https://hexdocs.pm/distillery/walkthrough.html#building-an-upgrade-release

346 chapter 13 Running the system

If you’re running your system as a cluster, you can also migrate nodes one by one, thus
keeping the entire system running. Resort to live upgrades only when you establish that
simple restarts aren’t good enough for your particular use case. For details, see the
distillery documentation and Erlang documentation (http://erlang.org/doc/design_
principles/release_handling.html).

fine-grained release assembly

Tools such as distillery assemble the entire release in a single pass on the build
machine. This should serve most purposes, but sometimes it may not fit your particular
needs. For example, you may want to deploy your system on a large number of different
machines. In such cases, embedding the Erlang runtime won’t work, because it’s tied to
the particular OS and architecture. It’s more likely you’ll want to assemble just the .beam
and configuration files on the build server, finishing the release assembly process on
each target machine. It’s even possible to have your node load the code from a remote
machine, which means your release doesn’t need to contain application binaries.

Obviously, there are all sorts of options. If you have special requirements, you’ll need
to roll up your sleeves and assemble some parts of the release on your own. To do this,
you’ll need to learn about releases in more detail. Erlang’s documentation is a good first
source (http://erlang.org/doc/design_principles/release_structure.html). In addition,
you may want to research the documentation for :systools (http://erlang.org/doc/
man/systools.html) and :reltool (http://erlang.org/doc/man/reltool.html).

This concludes the topic of releases. Once you have your system up and running, it’s
useful to see how you can analyze its behavior.

13.3 Analyzing system behavior
Even after the system is built and placed in production, your work isn’t done. Things
will occasionally go wrong, and you’ll experience errors. The code also may not be
properly optimized, and you may end up consuming too many resources. If you man-
age to properly implement a fault-tolerant system, it may recover and cope with the
errors and increased load. Regardless, you’ll still need to get to the bottom of any
issues and fix them.

Given that your system is highly concurrent and distributed, it may not be obvious
how you can discover and understand the issues that arise. Proper treatment of this
topic could easily fill a separate book — and an excellent free book is available, called
Stuff Goes Bad: Erlang in Anger, by Fred Hébert (http://www.erlang-in-anger.com). This
chapter provides a basic introduction to some standard techniques of analyzing com-
plex BEAM systems, but if you plan to run Elixir/Erlang code in production, you should
at some point study the topic in more detail, and Stuff Goes Bad is a great place to start.

(continued)

http://erlang.org/doc/design_principles/release_handling.html
http://erlang.org/doc/design_principles/release_handling.html
http://erlang.org/doc/design_principles/release_structure.html
http://erlang.org/doc/man/systools.html
http://erlang.org/doc/man/systools.html
http://erlang.org/doc/man/reltool.html
http://www.erlang-in-anger.com

 347Analyzing system behavior

13.3.1 Debugging

Although it’s not strictly related to the running system, debugging deserves a brief men-
tion. It may come as a surprise that standard step-by-step debugging isn’t a frequently
used approach in Erlang (which ships with a GUI-based debugger; see http://erlang.org/
doc/apps/debugger/debugger_chapter.html). That’s because it’s impossible to do classi-
cal debugging of a highly concurrent system, where many things happen simultaneously.
Imagine that you set a breakpoint in a process. What should happen to other processes
when the breakpoint is encountered? Should they continue running, or should they
pause as well? Once you step over a line, should all other processes move forward by a
single step? How should timeouts be handled? What happens if you’re debugging a dis-
tributed system? As you can see, there are many problems with classical debugging, due to
the highly concurrent and distributed nature of BEAM-powered systems.

Instead of relying on a debugger, you should adapt to more appropriate strategies.
The key to understanding a highly concurrent system lies in logging and tracing. Once
something goes wrong, you’ll want to have as much information as possible, which will
allow you to find the cause of the problems.

The nice thing is that some logging is available out of the box in the form of Elixir’s
logger application (https://hexdocs.pm/logger/Logger.html). In particular, whenever
an OTP-compliant process crashes (such as GenServer), an error is printed, together
with a stack trace. The stack trace also contains file and line information, so this should
serve as a good starting point for investigating the error.

Sometimes the failure reason may not be obvious from the stack trace, and you’ll need
more data. At development time, a primitive helper tool for this purpose is IO.inspect.
Remember that IO.inspect takes an expression, prints its result, and returns it. This
means you can surround any part of the code with IO.inspect (or pipe into it via |>)
without affecting the behavior of the program. This is a simple technique that can help
you quickly determine the cause of the problem, and I use it frequently when a new piece
of code goes wrong. Placing IO.inspect to see how values were propagated to the failing
location often helps me discover errors. Once I’m done fixing the problem, I remove the
IO.inspect calls.

Another useful feature is pry, which allows you to temporarily stop execution in the
iex shell and inspect the state of the system, such as variables that are in scope. For
detailed instructions, refer to the IEx.pry/1 documentation (https://hexdocs.pm/
iex/IEx.html#pry/1).

An overview of typical debugging techniques is also available on the official Elixir site
at https://elixir-lang.org/getting-started/debugging.html.

It goes without saying that automated tests can be of significant assistance. Testing
individual parts in isolation can help you quickly discover and fix errors.

It’s also worth mentioning a couple of useful benchmarking and profiling tools. The
most primitive one comes in the form of the :timer.tc/1 function (http://erlang.org/
doc/man/timer.html#tc-1), which takes a lambda, runs it, and returns its result together
with the running time (in microseconds).

http://erlang.org/doc/apps/debugger/debugger_chapter.html
http://erlang.org/doc/apps/debugger/debugger_chapter.html
https://hexdocs.pm/logger/Logger.html
https://hexdocs.pm/iex/IEx.html#pry/1
https://hexdocs.pm/iex/IEx.html#pry/1
https://elixir-lang.org/getting-started/debugging.html
http://erlang.org/doc/man/timer.html#tc-1
http://erlang.org/doc/man/timer.html#tc-1

348 chapter 13 Running the system

A somewhat more structured helper library for benchmarking is Benchfella (https://
github.com/alco/benchfella), which integrates nicely with the mix tool and provides a
framework for generating automated benchmarking tests. Another popular choice for
benchmarking is Benchee (https://github.com/PragTob/benchee).

In addition, a few profiling tools are shipped with Erlang/OTP: cprof, eprof, and
fprof. Elixir includes mix tasks for running these tools:

¡	mix profile.cprof (https://hexdocs.pm/mix/Mix.Tasks.Profile.Cprof.html)
¡	mix profile.eprof (https://hexdocs.pm/mix/Mix.Tasks.Profile.Eprof.html)
¡	mix profile.fprof (https://hexdocs.pm/mix/Mix.Tasks.Profile.Fprof.html)

I won’t explain these in detail, so when you decide to profile, it’s best to start reading
the official documentation for these mix tasks, as well as the Erlang documentation at
http://erlang.org/doc/efficiency_guide/profiling.html.

13.3.2 Logging

Once you’re in production, you shouldn’t rely on IO.inspect calls anymore. Instead,
it’s better to log various pieces of information that may help you understand what went
wrong. For this purpose, you can rely on Elixir’s logger application. When you gen-
erate your mix project, this dependency will be included automatically, and you’re
encouraged to use logger to log various events. As already mentioned, logger auto-
matically catches various BEAM reports, such as crash errors that happen in processes.

Logging information goes to the console by default. If you start your system as a
release, the standard output will be forwarded to the log folder under the root folder of
your release, and you’ll be able to later find and analyze those errors.

Of course, you can write a custom logger backend, such as one that writes to syslog
or sends log reports to a different machine. See the logger documentation for more
details (https://hexdocs.pm/logger/Logger.html).

13.3.3 Interacting with the system

A huge benefit of the Erlang runtime is that you can connect to the running node and
interact with it in various ways. You can send messages to processes, and stop or restart
different processes (including supervisors) or OTP applications. It’s even possible to
force the VM to reload the code for a module.

On top of this, all sorts of built-in functions allow you to gather data about the system
and individual processes. For example, you can start a remote shell and use functions such
as :erlang.system_info/1 and :erlang.memory/0 to get information about the runtime.

You can also get a list of all processes using Process.list/0 and then query each
process in detail with Process.info/1, which returns information such as memory
usage and the total number of instructions (known in Erlang as reductions) the process
has executed. Such services make way for tools that can connect to the running system
and present BEAM system information in a GUI.

One example is the observer application, which you’ve seen in chapter 11. Being
GUI-based, observer works only when there’s a windowing system in the host OS. On

https://github.com/alco/benchfella
https://github.com/alco/benchfella
https://github.com/PragTob/benchee
https://hexdocs.pm/mix/Mix.Tasks.Profile.Cprof.html
https://hexdocs.pm/mix/Mix.Tasks.Profile.Eprof.html
https://hexdocs.pm/mix/Mix.Tasks.Profile.Fprof.html
http://erlang.org/doc/efficiency_guide/profiling.html
https://hexdocs.pm/logger/Logger.html

 349Analyzing system behavior

the production server, this usually isn’t the case. But you can start the observer locally
and have it gather data from a remote node.

Let’s see this in action. You’ll start your system as a background service and then start
another node on which you’ll run the observer application. The observer application
will connect to the remote node, collect data from it, and present it in the GUI.

The production system doesn’t need to run the observer application, but it needs to
contain the modules that gather data for the remote observer application. These mod-
ules are part of the runtime_tools application that you need to include in your release.
You can easily do this via the :extra_applications option in mix.exs, as shown in the
following listing.

Listing 13.4 Including runtime_tools in a release (todo_release/mix.exs)

defmodule Todo.MixProject do
 ...

 def application do
 [
 extra_applications: [:logger, :runtime_tools],
 ...
]
 end

 ...
end

The :extra_applications option specifies Elixir and Erlang stock OTP applications
that you depend on. By default, Elixir’s :logger OTP application is included as a
dependency when you generate a new project with the mix tool.

NOTE Notice that :extra_applications serves a different purpose than the
deps function in the mix.exs file. With deps, you list third-party dependencies
that have to be fetched and compiled. In contrast, with :extra_applications
you list Elixir and Erlang stock applications that are already compiled on your
disk, as a part of Erlang and Elixir installations. The code of these dependen-
cies doesn’t have to be fetched, and nothing needs to be compiled. But you still
need to list these dependencies, to ensure that applications are included in the
OTP release.

With this change, runtime_tools is included in your OTP release, and now you can
remotely observe the production system. Let’s see this in action. First, you need to start
the to-do system in the background:

$ _build/prod/rel/todo/bin/todo start

Now start the interactive shell as a named node, and start the observer application:

$ iex --hidden --name observer@127.0.0.1 --cookie todo

iex(observer@127.0.0.1)1> :observer.start()

Includes runtime_tools
in the OTP release

350 chapter 13 Running the system

Note how you explicitly set the node’s cookie to match the one used in the running sys-
tem. Also, just as with the earlier remsh example in section 13.1.1, you start the node as
hidden. Once the observer is started, you need to select Nodes > todo@127.0.0.1 from
the menu. At this point, observer is presenting the data about the production node.

It’s worth mentioning that observer and runtime_tools are written in plain Erlang
and rely on lower-level functions to gather data and present it in various ways. Therefore,
you can use other kinds of frontends, or even write your own. One example is Wobserver,
a web-based observer (https://github.com/shinyscorpion/wobserver), which gives you
features similar to the stock observer, but over an HTTP interface.

13.3.4 Tracing

It’s also possible to turn on traces related to processes and function calls, relying on services
from the :sys (http://erlang.org/doc/man/sys.html) and :dbg (http://erlang.org/doc/
man/dbg.html) modules. The :sys module allows you to trace OTP-compliant processes
(such as GenServer).

Tracing is done on the standard output, so you need to attach to the system (as
opposed to establishing a remote shell). Then you can turn on tracing for a particular
process with the help of :sys.trace/2:

$ _build/prod/rel/todo/bin/todo attach

iex(todo@127.0.0.1)1> :sys.trace(Todo.Cache.server_process("bob"), true)

This turns on console tracing. Information about process-related events, such as
received requests, will be printed to the standard output.

Now, issue an HTTP request for Bob’s list:

$ curl "http://localhost:5454/entries?list=bob&date=2018-12-19"

Back in the attached shell, you should see something like this:

DBG {todo_server,<<"bob">>} got call {entries,
 #{'__struct__' => 'Elixir.Date', calendar => 'Elixir.Calendar.ISO',
 day => 19,month => 12, year => 2018}} from <0.983.0>}

DBG {todo_server,<<"bob">>} sent [] to <0.322.0>,
 new state {<<"bob">>, #{'__struct__' => 'Elixir.Todo.List',
 auto_id => 1, entries => #{}}}

The output may seem a bit cryptic, but if you look carefully, you can see two trace
entries: one for a received call request and another for the response you sent. You can
also see the full state of the server process. Keep in mind that all terms are printed in
Erlang syntax.

Tracing is a powerful tool because it allows you to analyze the behavior of the running
system. But be careful because excessive tracing may hurt the system’s performance. If
the server process you’re tracing is heavily loaded or has a huge state, BEAM will spend
a lot of time doing tracing I/O, which may slow down the entire system.

https://github.com/shinyscorpion/wobserver
http://erlang.org/doc/man/sys.html
http://erlang.org/doc/man/dbg.html
http://erlang.org/doc/man/dbg.html

 351Analyzing system behavior

In any case, once you’ve gathered some knowledge about the process, you should
stop tracing it:

iex(todo@127.0.0.1)1> :sys.trace(Todo.Cache.server_process("bob"), false)

Other useful services from :sys allow you to get the OTP process state (:sys.get_
state/1) and even change it (:sys.replace_state/2). Those functions are meant to
be used purely for debugging or hacky manual fixes. You shouldn’t invoke them from
your code.

Another useful tracing tool comes with the :erlang.trace/3 function (http://erlang
.org/doc/man/erlang.html#trace-3), which allows you to subscribe to events in the sys-
tem such as message-passing or function calls.

In addition to this function, an entire module called :dbg (http://erlang.org/doc/
man/dbg.html) is available, which simplifies tracing. You can run :dbg directly on the
attached console, but it’s also possible to start another node and make it trace the main
system. This is the route you’ll take in the next example.

Assuming your to-do node is running, start another node:

$ iex --name tracer@127.0.0.1 --cookie todo --hidden

Now, on the tracer node, start tracing the main todo node, and specify that you’re
interested in all calls to functions from the Todo.Server module:

iex(tracer@127.0.0.1)1> :dbg.tracer()
iex(tracer@127.0.0.1)2> :dbg.n(:'todo@127.0.0.1')
iex(tracer@127.0.0.1)3> :dbg.p(:all, [:call])
iex(tracer@127.0.0.1)4> :dbg.tp(Todo.Server, [])

With traces set up, you can make an HTTP request to retrieve Bob’s entries. In the
shell of the tracer node, you should see something like the following:

(<10188.996.0>) call 'Elixir.Todo.Server':whereis(<<"bob">>)

(<10188.996.0>) call 'Elixir.Todo.Server':entries(
 <10188.958.0>,
 #{'__struct__' => 'Elixir.Date',calendar => 'Elixir.Calendar.ISO',
 day => 19, month => 12, year => 2013}
)

(<10188.958.0>) call 'Elixir.Todo.Server':handle_call(
 {
 entries,
 #{'__struct__' => 'Elixir.Date',calendar => 'Elixir.Calendar.ISO',
 day => 19,month => 12,year => 2013}
 },

Starts the tracer process

Subscribes only to events
from the todo node

Subscribes to function
calls in all processes

Sets the trace pattern to all functions
from the Todo.Server process

http://erlang.org/doc/man/erlang.html#trace-3
http://erlang.org/doc/man/erlang.html#trace-3
http://erlang.org/doc/man/dbg.html
http://erlang.org/doc/man/dbg.html

352 chapter 13 Running the system

 {
 <10188.996.0>,
 #Ref<10188.2468446053.3623092231.112404>},
 {<<"bob">>, #{'__struct__' => 'Elixir.Todo.List',
 auto_id => 1, entries => #{}}
 }
)

Again, be careful about tracing in production, because huge numbers of traces may flood
the system. Once you’re finished tracing, invoke :dbg.stop_clear/0 to stop all traces.

This was admittedly a brief demo; :dbg has many more options. If you decide to do
some tracing, you should look at the :dbg documentation.

In addition, you should take a look at the third-party library called Recon (https://
github.com/ferd/recon), which provides many useful functions for analyzing a run-
ning BEAM node.

We’re now finished exploring Elixir, Erlang, and OTP. This book covered the primary
aspects of the Elixir language, basic functional programming idioms, the Erlang con-
currency model, and the most frequently used OTP behaviors (GenServer, Supervisor,
and Application). In my experience, these are the most frequently needed building
blocks of Elixir and Erlang systems.

Of course, many topics have been left untreated, so your journey doesn’t stop here.
You’ll probably want to look for other knowledge resources, such as other books, blogs,
and podcasts. A good starting place to look for further material is the Learning page on
the official Elixir site (https://elixir-lang.org/learning.html).

Summary

¡	To start a system, all code must be compiled. Then you must start a BEAM instance
with properly set-up load paths. Finally, you need to start all OTP applications.

¡	The simplest way to do this is to rely on Elixir tools such as iex and mix.
¡	An OTP release is a standalone system consisting only of runtime artifacts — com-

piled OTP applications and (optionally) the Erlang runtime system.
¡	OTP releases can be easily built with the distillery library.
¡	Once the release is running, you can connect to it via a remote shell or attach

to its console. Then you can interact with the system in various ways and find
detailed information about the VM and individual processes.

https://github.com/ferd/recon
https://github.com/ferd/recon
https://elixir-lang.org/learning.html

353

Symbols

@ character 307
%{} construct 41
@doc attribute 28
@expiry_idle_timeout

attribute 262
%Fraction{} pattern 110
--hidden argument;hidden 331
@impl attribute 173
@moduledoc attribute 28
&n placeholder 48
^ operator 67
\\ operator 26
&& operator 33, 55
<< operator 43
<> operator 44
> operator 24, 55, 98
>> operator 43
@pi constant 28

A

abstract syntax tree (AST) 11
Actor model 176
agents 256–262

agent-powered to-do
server 259–260

basic use 256–257
concurrency and 257–259
limitations of 260–262
wrapping agent code in

module 260

aliases 28–32
anonymous functions 46
anonymous variable 66
application environment 300
Application module 278
area(unknown) clause 75
arithmetic operators 55, 77
assert macro 186
AST (abstract syntax tree) 11
asynchronous requests 164–

166
async_query lambda 134
async threads 158
atoms 31–34

aliases 32
as booleans 32–33
nil and truthy values 33–34

atom table 31
awaited tasks 252–254

B

BEAM (Bogdan/Björn’s Erlang
Abstract Machine) 4,
130–132

binaries 43–44
binary strings 44–45
matching 69–70

binding 18
bits 44
bitstrings 44

general discussion 43–44
matching 69–70

Booleans
atoms as 32–33
operators allowed in

guards 77
bottlenecks 189
branching

classical branching
constructs 81–83

case 82–83
cond 82
if and unless 81

with multiclause
functions 79–81

built-in protocols 126–127
bypassing processes 195–196

C

cache, implementing 182–185
cache operations 270
callback module 160
caller variable 138
capture operator 107
capture syntax 57
case construct 83
case expression 135
case macro 82–83
cast 164
cast requests 164
character lists 45–46
checkout operation 287
Circle module 29
clauses 73

index

354 index

client (iex) process 142
closures 48–49
code formatter 23
code simplification 9–12
collectable 96
Collectable protocol 127
collectable to-do list 127
comments 30
comparison operators 55, 77
compiling for production

338–339
complex states 148–152
complex_transformation

function 41
components

configuring
applications 300–303

application
environment 300–301

config script
considerations 303

varying
configuration 301–303

dependencies 286–290
adapting pool 287–289
adding 286–287
visualizing system 289–290

OTP applications 278–285
application behavior 280
creating applications with

mix tool 278–280
folder structure 284–285
library applications

281–282
starting 280–281
to-do application,

creating 282–284
web server, building 291–300

choosing
dependencies 291

handling requests
293–296

reasoning about
system 296–300

starting server 292–293
componentsapplication

environment 300
compound matches 71–72
comprehension filter 97
comprehensions 95–97

concurrency 132, 139
agents and 257–259
Erlang platform 3–5

distribution 4–5
fault tolerance 4
responsiveness 5
scalability 4

in BEAM 130–132
processes 132–139

creating 133–134
message passing 134–139

runtime considerations
153–158

process as sequential
153–155

scheduler inner
workings 157–158

shared-nothing
concurrency 156–157

unlimited process
mailboxes 155–156

stateful server processes
139–153

complex states 148–152
keeping process state

144–145
mutable state 145–148
server processes 139–143

concurrent systems
building

mix project 180–182
multiple to-do lists,

managing 182–189
persisting data 189–199
reasoning with

processes 199–200
errors in 207–211

linking processes 208–210
monitors 210–211

conditionals
branching with multiclause

functions 79–81
classical branching

constructs 81–83
case 82–83
cond 82
if and unless 81

with special form 83–86
cond macro 82
config macro 301

configuring applications
300–303

application
environment 300–301

config script
considerations 303

varying configuration
301–303

cons cells 37
constants, matching 65–66
cookies 331
Cowboy library 291
current_sum parameter 90

D

data abstractions
hierarchical data 114–124

generating IDs 115–117
immutable hierarchical

updates 119–121
importing from files

122–124
iterative updates 121–122
updating entries 117–119

polymorphism with
protocols 124–127

built-in protocols 126–127
implementing a

protocol 125–126
protocol basics 124–125

with modules 104–114
basic abstraction 104–106
composing

abstractions 106–107
data transparency 112–114
structs 108–112
structuring data with

maps 107–108
database connection pool 198
database, persisting data

using 191–194
reading data 193–194
storing data 192

database workers
registering 232–234
supervising 234–237

dates 52–53
dbg module 351
debugger node 336

 355index

debugging 347–348
default clause 75
def construct 73
defmodule construct 20
defp macro 26
defrecord macro 112
defrecordp macro 112
defstruct macro 109
dependencies 286–290

adapting pool 287–289
adding 286–287
overview 286
specifying 286
visualizing system 289–290

deployable systems 285
detached mode 335
dialyzer tool 29
disconnected nodes 308
disk-based ETS 273
disk I/O operations 194
distillery 346

building release with 340–341
defaults generated by 345

distributed system, building
distribution primitives

307–317
communicating between

nodes 309–311
links and monitors

314–315
process discovery 311–314
starting cluster 307–308

fault-tolerant cluster
317–330

cluster design 318
detecting partitions

327–329
distributed to-do

cache 318–323
highly available

systems 329–330
implementing replicated

database 323–326
testing system 326–327

network considerations
330–333

cookies 331
firewalls 332–333
hidden nodes 331–332
node names 330

distribution 3, 130
do block 204
do…end block 22
do/end block 96
dot (.) character 21, 47
double fuction 26
dynamically sized maps 41–42

E

EchoServer 173
elixir command 60, 335–337
Elixir Getting Started guide 17
Elixir language 8–13

big picture 13
code simplification 9–12
composing functions 12–13
disadvantages of 13–14

elixir my_script.exs
command 337

Elixiroverview 8, 13
else clause 81
empty map 96
encoding data 189–191
entries request 295
enumerables 91
Enum module 35
EPMD (Erlang Port Mapper

Daemon) 332
epoll 158
Erlang platform 1–8

concurrency 3–5
distribution 4–5
fault tolerance 4
responsiveness 5
scalability 4

development platform 7–8
high availability 3
pure Erlang modules 59
server-side systems 5–7

Erlang Port Mapper Daemon
(EPMD) 332

error effects, isolating
letting it crash 246–250

handling expected
errors 248–249

preserving state 249–250
processes that shouldn't

crash 247–248

starting processes
dynamically 241–246

dynamic supervision
242–243

finding to-do servers
243–244

registering to-do
servers 241

testing the system 245–246
using temporary restart

strategy 244–245
supervision trees 225–241

organizing 237–241
registering database

workers 232–234
rich process

discovery 228–230
separating loosely

dependent parts
225–228

supervising database
workers 234–237

via tuples 230–232
escape characters 45
escript 338
EtsKeyValue module 271
ets module 266
ETS tables 263–275

basic operations 265–268
ETS-powered key/value

store 268–271
exercise 274–275
match patterns 272–273

ExActor 10
exclamation mark character 19
exit reason 209
exits 203
exported functions 26, 59
expressions 22
extra_applications option 349
extract_user function 85

F

falsy values 33
fault tolerance 3

Erlang platform 4
errors in concurrent

systems 207–211
linking processes 208–210

356 index

monitors 210–211
runtime errors 202–207

error types 203–204
handling 204–207

supervisors 211–223
child specification

216–218
linking all processes

219–222
preparing existing

code 213
restart frequency 222–223
starting supervisor

process 214–215
using callback

module 218–219
wrapping supervisor 218

fault-tolerant cluster 317–330
cluster design 318
detecting partitions 327–329
distributed to-do cache

318–323
alternative discovery

322–323
discovering to-do

servers 319–322
highly available systems

329–330
implementing replicated

database 323–326
testing system 326–327

fields, missing 93
filtering entries 116
fire-and-forget requests 298
firewalls 332–333
first-class functions 46–49
functions 21–24

arity of 25
composing 12–13
dynamically calling 59
matching with 72–79

guards 76–78
multiclause functions

73–76
multiclause lambdas

78–79
operators and 56
overview 21
visibility of 26–27

G

generic server processes 140,
166

creating 161
exits 211
key/value store

implementation 162
supporting asynchronous

requests 164
gen_event behaviour 168
GenServer 140, 166–177

compile-time checking
172–173

exercise 177
handling plain

messages 170–172
handling requests 169–170
name registration 173–174
OTP behaviours 167–168
OTP-compliant

processes 176–177
plugging into 168
process lifecycle 175–176
stopping server 174–175

gen_server behaviour 167
GenStage 177
gen_statem behaviour 168
Geometry module 21, 73
Geometry.Rectangle

module 21, 27
get function 268
global (cluster-wide) alias 311
global registration 311–313
group leader process 309
groups of processes 313–314
guards 76–78

H

handle_* callback 247
hashing 323
Heisenbug category 207
heredocs syntax 45
Hex package manager 13
hidden nodes 331–332
hierarchical data 114–124

generating IDs 115–117
immutable hierarchical

updates 119–121

deleting entries 121
provided helpers 120–121

importing from files 122–124
iterative updates 121–122
updating entries 117–119

higher-level types 50–53
keyword lists 50–52
MapSet 52
range 50
times and dates 52–53

higher-order functions 91–95

I

idle timeout integer 261
IDs, generating 115–117
ID values 115
iex command 17
if-else-if pattern 82
if expression 81
if macro 81
immutability 38–41

benefits 40–41
modifying lists 39
modifying tuples 38–39

immutable hierarchical
updates 119–121

deleting entries 121
provided helpers 120–121

implementation functions 140
importing from files 122–124
inspect function 113
Inspect protocol 126
intentional programming 247
interactive shell 18–59

overview 17
process for 134

interface functions 140, 163,
232, 259

interpolation 45
IO lists 54
IO module 20
I/O operations 194
iterations 86

comprehensions 95
higher-order functions 91
updates during 121

iterative updates 121–122

 357index

K

Kernel module 27, 55
kernel poll 158
KeyValueStore 163, 174
keyword lists 50–52
kill exit 248
kqueue 158

L

lambdas 46
creating 48
defined 46
multiclause 78–79

letting it crash 207
library applications 281–282
linked process 314–315
lists

matching 67–68
modifying 39
recursive lists 37–38
utility functions for 35

live updates 3
live upgrades 345
local name 152
location transparency 309
logging 348
logical operators 55
long names 330
loop function 144
loops and iterations 86–101

comprehensions 95–97
higher-order functions 91–95
iterating with recursion 87–88
streams 97–101
tail function calls 88–91

practicing 91
recognizing 90–91

M

macros 11, 22, 56–57
maps 41–43

dynamically sized maps
41–42

matching 68–69

structured data 42–43
vs. structs 111–112

MapSet 52, 104
matching, with functions 64,

72–79, 118
guards 76–78
multiclause functions 73–76
multiclause lambdas 78–79

match operator 64
match specification 272
maximum restart

frequency 222
memory, ETS tables and 271
message passing 134–139, 315

collecting query results
137–139

receive algorithm 136–137
synchronous sending 137

missing fields 93
mix commands 335–337
mix environment 338
MIX_ENV OS environment

variable 284, 338
mix project 180–182
mix run command 264
mix tool 278

creating applications
with 278–280

general discussion 61
Mnesia 274
modules 20–21

abstraction with 104–114
basic abstraction 104–106
composing

abstractions 106–107
data transparency 112–114
structs 108–112
structuring data with

maps 107–108
attributes 28–30
names of 58
pure Erlang modules 59

module.start_function 216
monitored process 314–315
multiclause functions 63,

73–76, 79
multiclause lambdas 78–79
multiple to-do lists,

managing 182–189

analyzing process
dependencies 188–189

implementing cache 182–185
writing tests 185–187

mutable state 145–148

N

name command-line
option 330

negation operators 77
netsplits 328

defined 328
detecting 328

networks 318, 330–333
cookies 331
firewalls 332–333
hidden nodes 331–332
node names 330

new_sum variable 89
nil values 33–34
Node module 315
nodes 308

communicating
between 309–311

disconnected 308
hidden 331–332
mapping to 322
names of 330

no-halt option 335
non-awaited tasks 254–256
numbers 30–31

O

observer application 349
one_for_one restart

strategy 240
operators 55–56
organizing code 20–30

comments 30
functions 21–24

arity of 25–26
visibility of 26–27

imports and aliases 27–28
module attributes 28–30
modules 20–21
type specifications 29–30

358 index

OTP applications 278–285
application behavior 280
creating applications with mix

tool 278–280
folder structure 284–285

compiled code
structure 284–285

mix environments 284
library applications 281–282
starting 280–281
to-do application,

creating 282–284
OTP-compliant processes

176–177, 239
OTP (Open Telecom

Platform) 8, 159
OTP releases 339–346

building release with
distillery 340–341

contents of 343–346
compiled binaries

343–344
compressed release

package 345–346
configurations 345
fine-grained release

assembly 346
using release 341–342

P

parallelism 132
parallelization 155
parentheses 71
partitions

detecting 327–329
overview 318

pattern matching 64–72,
118–119

compound matches 71–72
general behavior 72
matching bitstrings and

binaries 69–70
matching constants 65–66
matching lists 67–68
matching maps 68–69
matching tuples 64–65
match operator 64
variables in patterns 66–67

pattern-matching
expression 72

performance, Erlang and 14
persisting data 189–199

analyzing system 194–195
encoding and 189–191
exercise 198–199
process bottleneck 195–198

bypassing process 195–196
handling requests

concurrently 196–197
limiting concurrency with

pooling 197–198
using database 191–194

reading data 193–194
storing data 192

Phoenix Framework 291
pid (process identifier) 49, 133
ping command 70
pin operator 67
pipeline operator 13, 24, 55, 98,

253
placeholders 48
Plug library 291
polymorphism, with

protocols 124–127
built-in 126–127
implementing 125–126
overview 124–125

Poolboy library 198, 286
pooling, limiting concurrency

with 197–198
port identifier 49
positive integers 87
post macro 294
preferred_cli_env option 341
process bottleneck 195–198

bypassing process 195–196
handling requests

concurrently 196–197
limiting concurrency with

pooling 197–198
process dependencies,

analyzing 188–189
processes 132–139

avoiding restarting 240
creating 133–134
message passing 134–139

collecting query
results 137–139

receive algorithm 136–137
synchronous sending 137

process discovery 311–314
global registration 311–313
groups of processes

313–314
shutting down 239–240

process identifier (pid) 49, 133
protocols 124–127

built-in 126–127
implementing 125–126
overview 124–125

public functions 59
put_elem function 34
put function 268
puts function 20

Q

Quantum 256
query_def variable 133
question mark character 19

R

ranges 50
read_concurrency option 268
reading data 193–194
receive algorithm 136–137
receive clause 147
receive construct 57
receive expression 135, 156
records 112
rectangle_area function 22
recursion 86

iterating with 87–88
tail vs. non-tail 90

recursive lists 37–38
reduce function 93–95
reductions 157, 348
references 49
registered attributes 28
registered processes 152–153
registering database

workers 232–234
registration

global 311
local 310

 359index

of attributes 28
of processes 319

Registry module 232, 238
release handling 339
releases

building with distillery 340
compiled applications in 343
compressed release package

in 345
configuration files in 345
Erlang binaries in 344
manual assembly of 346
overview 339
using 341

reltool 346
remote nodes 332
remote processes 312
remote shell 336
requests, handling

concurrently 196–197
responsiveness 3, 329

Erlang platform 5
high availability and 3
overview 5

restart strategies 240–241
rest_for_one restart

strategy 240
runner module 337
running system

analyzing system
behavior 346–352

debugging 347–348
interacting with

system 348–350
logging 348
tracing 350–352

OTP releases 339–346
building release with

distillery 340–341
contents of 343–346
using release 341–342

with Elixir tools 335–339
compiling for

production 338–339
mix and elixir

commands 335–337
running scripts 337–338

run_query lambda 132
runtime 57–61

bottlenecks 153
concurrency primitives

and 153–158
process as sequential

153–155
scheduler inner

workings 157–158
shared-nothing

concurrency 156–157
unlimited process

mailboxes 155–156
errors 202–207

error types 203–204
handling 204–207

modules
names of 58
pure Erlang modules 59

process mailboxes 155
pure Erlang modules 59
starting 59–61

interactive shell 59–60
mix tool 61
running scripts 60

RuntimeError struct 205
runtime_tools application 349

S

scalability 4, 130, 329
scripts, running 60, 337–338
security model 333
semicolon character 18
server processes, generic

building 160–166
implementing generic

code 161–162
plugging in with

modules 160–161
refactoring to-do

server 166
supporting asynchronous

requests 164–166
using generic

abstraction 162–163
GenServer 166–177

compile-time
checking 172–173

exercise 177

handling plain
messages 170–172

handling requests 169–170
name registration 173–174
OTP behaviours 167–168
OTP-compliant

processes 176–177
plugging into 168
process lifecycle 175–176
stopping server 174–175

ServerProcess module 163, 166
server-side systems, Erlang

and 5–7
shared-nothing

concurrency 156–157
shell (iex) process 138
short-circuit operators 33
short names 330
side-effect-free functions 40
sigils 45
SimpleRegistry interface 275
sname parameter 307
spawning lambdas 310
spawn_link function 254
speed, Erlang and 14
split-brain 328
square variable 46
staircasing 13
start argument 342
start_link function 213, 232
stateful server processes

139–153
complex states 148–152
keeping process state

144–145
mutable state 145–148
overview 139–143
registered processes 152–153

stdlib application 282
store request 191
storing data 192
streams 97–101
String.Chars protocol 124
strings 44–46

binary strings 44–45
character lists 45–46

structs 108–112
records 112
vs. maps 111–112

360 index

structured data 42–43
sum function 11, 26
supervision trees 225–241

organizing 237–241
avoiding process

restarting 240
OTP-compliant

processes 239
restart strategies 240–241
shutting down

processes 239–240
registering database

workers 232–234
rich process discovery

228–230
separating loosely dependent

parts 225–228
supervising database

workers 234–237
via tuples 230–232

supervisors 211–223
child specification 216–218
linking all processes 219–222
preparing existing code 213
restart frequency 222–223
starting supervisor

process 214–215
using callback module

218–219
wrapping supervisor 218

synchronous sending 137
System.halt 18
systools 346

T

table types 267
tail-call optimization 88
tail function calls 88–91

practicing 91
recognizing 90–91

tasks 252–256
awaited 252–254
non-awaited 254–256

temporary worker 240
TestPrivate module 26

tests, writing 185–187
throws 203
timeouts 325
times 52–53
tl function 37
to-do application, creating

282–284
TodoCacheTest 283
TodoListCollection 182
TodoList struct 115
Todo.Metrics module 255
Todo.ProcessRegistry

module 233, 322
Todo.Server module 181
TodoServer module 149, 166
to-do server pids 182
Todo.System module 293
todo_system node 336
tracing 350–352
transient worker 240
transparency 112–114
truthy values 33–34
try/catch statements 247
try expression 204
tuples 34–35

matching 64–65
modifying 38–39

type-check functions 77
type specifications 29–30
type system 30–54

atoms 31–34
aliases 32
as booleans 32–33
nil and truthy values 33–34

binaries and bitstrings 43–44
first-class functions 46–49
higher-level types 50–53

keyword lists 50–52
MapSet 52
range 50
times and dates 52–53

immutability 38–41
benefits 40–41
modifying lists 39
modifying tuples 38–39

IO lists 54
lists 35–38, 37–38
maps 41–43

dynamically sized
maps 41–42

structured data 42–43
numbers 30–31
other built-in types 49
strings 44–46

binary strings 44–45
character lists 45–46

tuples 34–35

U

underscore character 19
unidirectional links 210
unless macro 81
update_entry function 117
updater lambda 106
updating entries 118–119
utility functions 35

V

variables 18–19, 66–67
via tuples 230–232

W

web server, building 291–300
choosing dependencies 291
handling requests 293–296
reasoning about system

296–300
reasoning about the system

calls vs. casts 298–300
performance 298

starting server 292–293
with special form 83–86
workers 211
wrapping 293
write_concurrency option 268

Saša Juric

W
hen you’re building mission-critical software, fault
tolerance matters. The Elixir programming language
delivers fast, reliable applications, whether you’re

building a large-scale distributed system, a set of backend
services, or a simple web app. And Elixir’s elegant syntax and
functional programming mindset make your software easy to
write, read, and maintain.

Elixir in Action, Second Edition teaches you how to build
production-quality distributed applications using the Elixir
programming language. Author Saša Juric introduces this
powerful language using examples that highlight the benefi ts
of Elixir’s functional and concurrent programming. You’ll
discover how the OTP framework can radically reduce tedious
low-level coding tasks. You’ll also explore practical approaches
to concurrency as you learn to distribute a production system
over multiple machines.

What’s Inside
● Updated for Elixir 1.7
● Functional and concurrent programming
● Creating deployable releases
● Introduction to distributed system design

You’ll need intermediate skills with client/server applications
and a language like Java, C#, or Ruby. No previous experience
with Elixir required.

Saša Juric is a developer with extensive experience using Elixir
and Erlang in complex server-side systems.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/elixir-in-action-second-edition

$49.99 / Can $65.99 [INCLUDING eBOOK]

Elixir IN ACTION Second Edition

SOFTWARE DEVELOPMENT

M A N N I N G

“A gentle, lucid, and
compelling guide

to Elixir; loaded with
practical advice.”

—George Thomas
Manhattan Associates

“A commanding
introduction to Elixir and
Erlang/OTP; impressive in
its breadth and depth.”—Eoghan O’Donnell

Trellis Energy

“Discover and rediscover
Elixir/OTP from one

of the leading authorities of
the platform in this

well-written book.”
—Mafi nar Khan, Tread

´

´

´

See first page

	Elixir in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	about the author
	about the cover illustration
	1: First steps
	1.1	About Erlang
	1.1.1	High availability
	1.1.2	Erlang concurrency
	1.1.3	Server-side systems
	1.1.4	The development platform

	1.2	About Elixir
	1.2.1	Code simplification
	1.2.2	Composing functions
	1.2.3	The big picture

	1.3	Disadvantages
	1.3.1	Speed
	1.3.2	Ecosystem

	2: Building blocks
	2.1	The interactive shell
	2.2	Working with variables
	2.3	Organizing your code
	2.3.1	Modules
	2.3.2	Functions
	2.3.3	Function arity
	2.3.4	Function visibility
	2.3.5	Imports and aliases
	2.3.6	Module attributes
	2.3.7	Comments

	2.4	Understanding the type system
	2.4.1	Numbers
	2.4.2	Atoms
	2.4.3	Tuples
	2.4.4	Lists
	2.4.5	Immutability
	2.4.6	Maps
	2.4.7	Binaries and bitstrings
	2.4.8	Strings
	2.4.9	First-class functions
	2.4.10	Other built-in types
	2.4.11	Higher-level types
	2.4.12	IO lists

	2.5	Operators
	2.6	Macros
	2.7	Understanding the runtime
	2.7.1	Modules and functions in the runtime
	2.7.2	Starting the runtime

	3: Control flow
	3.1	Pattern matching
	3.1.1	The match operator
	3.1.2	Matching tuples
	3.1.3	Matching constants
	3.1.4	Variables in patterns
	3.1.5	Matching lists
	3.1.6	Matching maps
	3.1.7	Matching bitstrings and binaries
	3.1.8	Compound matches
	3.1.9	General behavior

	3.2	Matching with functions
	3.2.1	Multiclause functions
	3.2.2	Guards
	3.2.3	Multiclause lambdas

	3.3	Conditionals
	3.3.1	Branching with multiclause functions
	3.3.2	Classical branching constructs
	3.3.3	The with special form

	3.4	Loops and iterations
	3.4.1	Iterating with recursion
	3.4.2	Tail function calls
	3.4.3	Higher-order functions
	3.4.4	Comprehensions
	3.4.5	Streams

	4: Data abstractions
	4.1	Abstracting with modules
	4.1.1	Basic abstraction
	4.1.2	Composing abstractions
	4.1.3	Structuring data with maps
	4.1.4	Abstracting with structs
	4.1.5	Data transparency

	4.2	Working with hierarchical data
	4.2.1	Generating IDs
	4.2.2	Updating entries
	4.2.3	Immutable hierarchical updates
	4.2.4	Iterative updates
	4.2.5	Exercise: importing from a file

	4.3	Polymorphism with protocols
	4.3.1	Protocol basics
	4.3.2	Implementing a protocol
	4.3.3	Built-in protocols

	5: Concurrency primitives
	5.1	Concurrency in BEAM
	5.2	Working with processes
	5.2.1	Creating processes
	5.2.2	Message passing

	5.3	Stateful server processes
	5.3.1	Server processes
	5.3.2	Keeping a process state
	5.3.3	Mutable state
	5.3.4	Complex states
	5.3.5	Registered processes

	5.4	Runtime considerations
	5.4.1	A process is sequential
	5.4.2	Unlimited process mailboxes
	5.4.3	Shared-nothing concurrency
	5.4.4	Scheduler inner workings

	6: Generic server processes
	6.1	Building a generic server process
	6.1.1	Plugging in with modules
	6.1.2	Implementing the generic code
	6.1.3	Using the generic abstraction
	6.1.4	Supporting asynchronous requests
	6.1.5	Exercise: refactoring the to-do server

	6.2	Using GenServer
	6.2.1	OTP behaviours
	6.2.2	Plugging into GenServer
	6.2.3	Handling requests
	6.2.4	Handling plain messages
	6.2.5	Other GenServer features
	6.2.6	Process lifecycle
	6.2.7	OTP-compliant processes
	6.2.8	Exercise: GenServer-powered to-do server

	7: Building a concurrent system
	7.1	Working with the mix project
	7.2	Managing multiple to-do lists
	7.2.1	Implementing a cache
	7.2.2	Writing tests
	7.2.3	Analyzing process dependencies

	7.3	Persisting data
	7.3.1	Encoding and persisting
	7.3.2	Using the database
	7.3.3	Analyzing the system
	7.3.4	Addressing the process bottleneck
	7.3.5	Exercise: pooling and synchronizing

	7.4	Reasoning with processes

	8: Fault-tolerance basics
	8.1	Runtime errors
	8.1.1	Error types
	8.1.2	Handling errors

	8.2	Errors in concurrent systems
	8.2.1	Linking processes
	8.2.2	Monitors

	8.3	Supervisors
	8.3.1	Preparing the existing code
	8.3.2	Starting the supervisor process
	8.3.3	Child specification
	8.3.4	Wrapping the supervisor
	8.3.5	Using a callback module
	8.3.6	Linking all processes
	8.3.7	Restart frequency

	9: Isolating error effects
	9.1	Supervision trees
	9.1.1	Separating loosely dependent parts
	9.1.2	Rich process discovery
	9.1.3	Via tuples
	9.1.4	Registering database workers
	9.1.5	Supervising database workers
	9.1.6	Organizing the supervision tree

	9.2	Starting processes dynamically
	9.2.1	Registering to-do servers
	9.2.2	Dynamic supervision
	9.2.3	Finding to-do servers
	9.2.4	Using temporary restart strategy
	9.2.5	Testing the system

	9.3	?Let it crash?
	9.3.1	Processes that shouldn?t crash
	9.3.2	Handling expected errors
	9.3.3	Preserving the state

	10: Beyond GenServer
	10.1	Tasks
	10.1.1	Awaited tasks
	10.1.2	Non-awaited tasks

	10.2	Agents
	10.2.1	Basic use
	10.2.2	Agents and concurrency
	10.2.3	Agent-powered to-do server
	10.2.4	Limitations of agents

	10.3	ETS tables
	10.3.1	Basic operations
	10.3.2	ETS powered key/value store
	10.3.3	Other ETS operations
	10.3.4	Exercise: process registry

	11: Working with components
	11.1	OTP applications
	11.1.1	Creating applications with the mix tool
	11.1.2	The application behavior
	11.1.3	Starting the application
	11.1.4	Library applications
	11.1.5	Creating a to-do application
	11.1.6	The application folder structure

	11.2	Working with dependencies
	11.2.1	Adding a dependency
	11.2.2	Adapting the pool
	11.2.3	Visualizing the system

	11.3	Building a web server
	11.3.1	Choosing dependencies
	11.3.2	Starting the server
	11.3.3	Handling requests
	11.3.4	Reasoning about the system

	11.4	Configuring applications
	11.4.1	Application environment
	11.4.2	Varying configuration
	11.4.3	Config script considerations

	12: Building a distributed system
	12.1	Distribution primitives
	12.1.1	Starting a cluster
	12.1.2	Communicating between nodes
	12.1.3	Process discovery
	12.1.4	Links and monitors
	12.1.5	Other distribution services

	12.2	Building a fault-tolerant cluster
	12.2.1	Cluster design
	12.2.2	The distributed to-do cache
	12.2.3	Implementing a replicated database
	12.2.4	Testing the system
	12.2.5	Detecting partitions
	12.2.6	Highly available systems

	12.3	Network considerations
	12.3.1	Node names
	12.3.2	Cookies
	12.3.3	Hidden nodes
	12.3.4	Firewalls

	13: Running the system
	13.1	Running a system with Elixir tools
	13.1.1	Using the mix and elixir commands
	13.1.2	Running scripts
	13.1.3	Compiling for production

	13.2	OTP releases
	13.2.1	Building a release with distillery
	13.2.2	Using a release
	13.2.3	Release contents

	13.3	Analyzing system behavior
	13.3.1	Debugging
	13.3.2	Logging
	13.3.3	Interacting with the system
	13.3.4	Tracing

	index

